Science.gov

Sample records for akt phosphorylation increased

  1. Insulin Resistance Prevents AMPK-induced Tau Dephosphorylation through Akt-mediated Increase in AMPKSer-485 Phosphorylation*

    PubMed Central

    Kim, Bhumsoo; Figueroa-Romero, Claudia; Pacut, Crystal; Backus, Carey; Feldman, Eva L.

    2015-01-01

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, diabetes, and dyslipidemia, and insulin resistance (IR) is the central feature of MetS. Recent studies suggest that MetS is a risk factor for Alzheimer disease (AD). AMP-activated kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme and a key player in regulating energy metabolism. In this report, we examined the role of IR on the regulation of AMPK phosphorylation and AMPK-mediated Tau phosphorylation. We found that AMPKSer-485, but not AMPKThr-172, phosphorylation is increased in the cortex of db/db and high fat diet-fed obese mice, two mouse models of IR. In vitro, treatment of human cortical stem cell line (HK-5320) and primary mouse embryonic cortical neurons with the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR), induced AMPK phosphorylation at both Thr-172 and Ser-485. AMPK activation also triggered Tau dephosphorylation. When IR was mimicked in vitro by chronically treating the cells with insulin, AICAR specifically induced AMPKSer-485, but not AMPKThr-172, hyperphosphorylation whereas AICAR-induced Tau dephosphorylation was inhibited. IR also resulted in the overactivation of Akt by AICAR treatment; however, preventing Akt overactivation during IR prevented AMPKSer-485 hyperphosphorylation and restored AMPK-mediated Tau dephosphorylation. Transfection of AMPKS485A mutant caused similar results. Therefore, our results suggest the following mechanism for the adverse effect of IR on AD pathology: IR → chronic overactivation of Akt → AMPKSer-485 hyperphosphorylation → inhibition of AMPK-mediated Tau dephosphorylation. Together, our results show for the first time a possible contribution of IR-induced AMPKSer-485 phosphorylation to the increased risk of AD in obesity and diabetes. PMID:26100639

  2. Insulin Resistance Prevents AMPK-induced Tau Dephosphorylation through Akt-mediated Increase in AMPKSer-485 Phosphorylation.

    PubMed

    Kim, Bhumsoo; Figueroa-Romero, Claudia; Pacut, Crystal; Backus, Carey; Feldman, Eva L

    2015-07-31

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, diabetes, and dyslipidemia, and insulin resistance (IR) is the central feature of MetS. Recent studies suggest that MetS is a risk factor for Alzheimer disease (AD). AMP-activated kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme and a key player in regulating energy metabolism. In this report, we examined the role of IR on the regulation of AMPK phosphorylation and AMPK-mediated Tau phosphorylation. We found that AMPK(Ser-485), but not AMPK(Thr-172), phosphorylation is increased in the cortex of db/db and high fat diet-fed obese mice, two mouse models of IR. In vitro, treatment of human cortical stem cell line (HK-5320) and primary mouse embryonic cortical neurons with the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), induced AMPK phosphorylation at both Thr-172 and Ser-485. AMPK activation also triggered Tau dephosphorylation. When IR was mimicked in vitro by chronically treating the cells with insulin, AICAR specifically induced AMPK(Ser-485), but not AMPK(Thr-172), hyperphosphorylation whereas AICAR-induced Tau dephosphorylation was inhibited. IR also resulted in the overactivation of Akt by AICAR treatment; however, preventing Akt overactivation during IR prevented AMPK(Ser-485) hyperphosphorylation and restored AMPK-mediated Tau dephosphorylation. Transfection of AMPK(S485A) mutant caused similar results. Therefore, our results suggest the following mechanism for the adverse effect of IR on AD pathology: IR → chronic overactivation of Akt → AMPK(Ser-485) hyperphosphorylation → inhibition of AMPK-mediated Tau dephosphorylation. Together, our results show for the first time a possible contribution of IR-induced AMPK(Ser-485) phosphorylation to the increased risk of AD in obesity and diabetes. PMID:26100639

  3. Phosphorylation of AKT and abdominal aortic aneurysm formation.

    PubMed

    Ghosh, Abhijit; Lu, Guanyi; Su, Gang; McEvoy, Brendan; Sadiq, Omar; DiMusto, Paul D; Laser, Adriana; Futchko, John S; Henke, Peter K; Eliason, Jonathan L; Upchurch, Gilbert R

    2014-01-01

    It is hypothesized that differential AKT phosphorylation between sexes is important in abdominal aortic aneurysm (AAA) formation. Male C57BL/6 mice undergoing elastase treatment showed a typical AAA phenotype (80% over baseline, P < 0.001) and significantly increased phosphorylated AKT-308 (p308) and total-AKT (T-AKT) at day 14 compared with female mice. Elastase-treated Raw cells produced increased p308 and significant amounts of matrix metalloproteinase 9 (MMP-9), and these effects were suppressed by LY294002 treatment, a known AKT inhibitor. Male and female rat aortic smooth muscle cells treated with elastase for 1, 6, or 24 hours demonstrated that the p308/T-AKT and AKT-Ser-473/T-AKT ratios peaked at 6 hours and were significantly higher in the elastase-treated cells compared with controls. Similarly, male cells had higher phosphorylated AKT/T-AKT levels than female cells. LY294002 also inhibited elastase-induced p308 formation more in female smooth muscle cells than in males, and the corresponding cell media had less pro-MMP-9. AKT siRNA significantly decreased secretion of pro-MMP-9, as well as pro-MMP-2 and active MMP-2 from elastase-treated male rat aortic smooth muscle cells. IHC of male mice AAA aortas showed increased p308, AKT-Ser-473, and T-AKT compared with female mice. Aortas from male AAA patients had a significantly higher p308/T-AKT ratio than female AAA tissues. These data suggest that AKT phosphorylation is important in the upstream regulation of MMP activity, and that differential phosphorylation may be important in sex differences in AAA. PMID:24332015

  4. Amoxicillin and amoxicillin/clavulanate reduce ethanol intake and increase GLT-1 expression as well as AKT phosphorylation in mesocorticolimbic regions.

    PubMed

    Goodwani, Sunil; Rao, P S S; Bell, Richard L; Sari, Youssef

    2015-10-01

    Studies have shown that administration of the β-lactam antibiotic ceftriaxone (CEF) attenuates ethanol consumption and cocaine seeking behavior as well as prevents ethanol-induced downregulation of glutamate transporter 1 (GLT-1) expression in central reward brain regions. However, it is not known if these effects are compound-specific. Therefore, the present study examined the effects of two other β-lactam antibiotics, amoxicillin (AMOX) and amoxicillin/clavulanate (Augmentin, AUG), on ethanol drinking, as well as GLT-1 and phosphorylated-AKT (pAKT) levels in the nucleus accumbens (Acb) and medial prefrontal cortex (mPFC) of alcohol-preferring (P) rats. P rats were exposed to free-choice of ethanol (15% and 30%) for five weeks and were given five consecutive daily i.p. injections of saline vehicle, 100 mg/kg AMOX or 100mg/kg AUG. Both compounds significantly decreased ethanol intake and significantly increased GLT-1 expression in the Acb. AUG also increased GLT-1 expression in the mPFC. Results for changes in pAKT levels matched those for GLT-1, indicating that β-lactam antibiotic-induced reductions in ethanol intake are negatively associated with increases in GLT-1 and pAKT levels within two critical brains regions mediating drug reward and reinforcement. These findings add to a growing literature that pharmacological increases in GLT-1 expression are associated with decreases in ethanol intake and suggest that one mechanism mediating this effect may be increased phosphorylation of AKT. Thus, GLT-1 and pAKT may serve as molecular targets for the treatment of alcohol and drug abuse/dependence. PMID:26168897

  5. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    NASA Astrophysics Data System (ADS)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  6. Hydrogen Peroxide-Induced Akt Phosphorylation Regulates Bax Activation

    PubMed Central

    Sadidi, Mahdieh; Lentz, Stephen I.; Feldman, Eva L.

    2009-01-01

    Reactive oxygen species such as hydrogen peroxide (H2O2) are involved in many cellular processes that positively and negatively regulate cell fate. H2O2, acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H2O2 was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H2O2-induced activation of PI3K/Akt influences posttranslational modification of Bax and inactivate a key component of the cell death machinery. PMID:19278624

  7. PI3 kinase directly phosphorylates Akt1/2 at Ser473/474 in the insulin signal transduction pathway

    PubMed Central

    Tsuchiya, A; Kanno, T; Nishizaki, T

    2014-01-01

    Insulin stimulated translocation of the glucose transporter GLUT4 from the cytosol to the plasma membrane in a concentration (1 nM–1 μM)-dependent manner and increased glucose uptake in 3T3-L1 adipocytes. Insulin-induced GLUT4 translocation to the cell surface was prevented by the phosphoinositide 3 kinase (PI3K) inhibitor wortmannin, the 3-phosphoinositide-dependent protein kinase 1 (PDK1) inhibitor BX912 or the Akt1/2 inhibitor MK2206, and by knocking-down PI3K, PDK1 or Akt1/2. Insulin increased phosphorylation of Akt1/2 at Thr308/309 and Ser473/474, to activate Akt1/2, in the adipocytes. Insulin-induced phosphorylation of Akt1/2 was suppressed by wortmannin and knocking-down PI3K, while no significant inhibition of the phosphorylation was obtained with BX912 or knocking-down PDK1. In the cell-free Akt assay, PI3K phosphorylated Akt1 both at Thr308 and Ser473 and Akt2 at Ser474 alone. In contrast, PDK1 phosphorylates Akt1 at Thr308 and Akt2 at Thr309. The results of this study indicate that PI3K activates Akt1, independently of PDK1, and Akt2 by cooperating with PDK1 in the insulin signal transduction pathway linked to GLUT4 translocation. PMID:24169049

  8. Hypoxia activates Akt and induces phosphorylation of GSK-3 in PC12 cells.

    PubMed

    Beitner-Johnson, D; Rust, R T; Hsieh, T C; Millhorn, D E

    2001-01-01

    Akt is a serine/threonine kinase that has been shown to play a central role in promoting cell survival and opposing apoptosis. We evaluated the effect of hypoxia on Akt in rat pheochromocytoma (PC12) cells. PC12 cells were exposed to varying levels of hypoxia, including 21%, 15%, 10%, 5%, and 1% O(2). Hypoxia dramatically increased phosphorylation of Akt (Ser(473)). This effect peaked after 6 h exposure to hypoxia, but persisted strongly for up to 24 h. Phosphorylation of Akt was paralleled with a progressive increase in phosphorylation of glycogen synthase kinase-3 (GSK-3), one of its downstream substrates. The effect of hypoxia on phosphorylation of Akt was completely blocked by pretreatment of the cells with wortmannin (100 nM), indicating that this effect is mediated by phosphatidylinositol 3-kinase (P13K). In contrast, whereas hypoxia also strongly induced phosphorylation of the transcription factors CREB and EPAS1, these effects persisted in the presence of wortmannin. Thus, hypoxia regulates both P13K-dependent and P13K-independent signaling pathways. Furthermore, activation of the P13K and Akt signaling pathways may be one mechanism by which cells adapt and survive under conditions of hypoxia. PMID:11257444

  9. Expression of phosphorylated Akt/mTOR and clinical significance in human ameloblastoma

    PubMed Central

    Li, Ning; Sui, Jianfu; Liu, Hao; Zhong, Ming; Zhang, Min; Wang, Yan; Hao, Fengyu

    2015-01-01

    This study aimed to evaluate the expression of AKT and phosphorylated AKT (p-Akt) in human ameloblastoma (AB). Immunohistochemistry showed human AB was positive for Akt and Akt expression was mainly found in the cytoplasm of epithelial cells. The Akt expression in AB was significantly higher than that in normal oral mucosa (NOM), but still lower than that in oral squamous cell carcinoma (OSCC). NOM was negative for p-Akt, but AB was positive for p-Akt. In some AB tissues, p-Akt expression was found in both cytoplasm and nucleus. Akt expression in AB was significantly different from that in NOM and OSCC. The p-Akt in AB was markedly higher than that in NOM, but lower than that in OSCC. mTOR expressed in cytoplasm in AB, but not in NOM. P-mTOR expressed on cell membrane in NOM, while in cytoplasm and nucleus in Ab. Results of western blot assay showed that Akt expression was found in all the AB tissues, and increased in tissues with malignant transformation. In addition, the p-Akt expression also markedly increased in AB, but was still lower than that in OSCC tissues. Compared to NOM, mTOR and p-mTOR expression significantly increased in AB. BandScan 5.0 software was used to detect the optical density of protein bands. Results showed p-Akt, mTOR and p-mTOR expression in AB was markedly different from that in control group. PMID:26131097

  10. Akt phosphorylation is essential for nuclear translocation and retention in NGF-stimulated PC12 cells

    SciTech Connect

    Truong Le Xuan Nguyen; Choi, Joung Woo; Lee, Sang Bae; Ye, Keqiang; Woo, Soo-Dong; Lee, Kyung-Hoon; Ahn, Jee-Yin . E-mail: jyahn@med.skku.ac.kr

    2006-10-20

    Nerve growth factor (NGF) elicits Akt translocation into the nucleus, where it phosphorylates nuclear targets. Here, we describe that Akt phosphorylation can promote the nuclear translocation of Akt and is necessary for its nuclear retention. Overexpression of Akt-K179A, T308A, S473A-mutant failed to show either nuclear translocation or nuclear Akt phosphorylation, whereas expression of wild-type counterpart elicited profound Akt phosphorylation and induced nuclear translocation under NGF stimulation. Employing the PI3K inhibitor and a variety of mutants PI3K, we showed that nuclear translocation of Akt was mediated by activation of PI3K, and Akt phosphorylation status in the nucleus required PI3K activity. Thus the activity of PI3K might contribute to the nuclear translocation of Akt, and that Akt phosphorylation is essential for its nuclear retention under NGF stimulation conditions.

  11. Impaired degradation of WNK by Akt and PKA phosphorylation of KLHL3.

    PubMed

    Yoshizaki, Yuki; Mori, Yutaro; Tsuzaki, Yoshihito; Mori, Takayasu; Nomura, Naohiro; Wakabayashi, Mai; Takahashi, Daiei; Zeniya, Moko; Kikuchi, Eriko; Araki, Yuya; Ando, Fumiaki; Isobe, Kiyoshi; Nishida, Hidenori; Ohta, Akihito; Susa, Koichiro; Inoue, Yuichi; Chiga, Motoko; Rai, Tatemitsu; Sasaki, Sei; Uchida, Shinichi; Sohara, Eisei

    2015-11-13

    Mutations in with-no-lysine kinase (WNK) 1, WNK4, Kelch-like 3 (KLHL3), and Cullin3 result in an inherited hypertensive disease, pseudohypoaldosteronism type II. WNK activates the Na-Cl cotransporter (NCC), increasing sodium reabsorption in the kidney. Further, KLHL3, an adapter protein of Cullin3-based E3 ubiquitin ligase, has been recently found to bind to WNK, thereby degrading them. Insulin and vasopressin have been identified as powerful activators of WNK signaling. In this study, we investigated effects of Akt and PKA, key downstream substrates of insulin and vasopressin signaling, respectively, on KLHL3. Mass spectrometry analysis revealed that KLHL3 phosphorylation at S433. Phospho-specific antibody demonstrated defective binding between phosphorylated KLHL3 and WNK4. Consistent with the fact that S433 is a component of Akt and PKA phosphorylation motifs, in vitro kinase assay demonstrated that Akt and PKA can phosphorylate KLHL3 at S433, that was previously reported to be phosphorylated by PKC. Further, forskolin, a representative PKA stimulator, increased phosphorylation of KLHL3 at S433 and WNK4 protein expression in HEK293 cells by inhibiting the KLHL3 effect that leads to WNK4 degradation. Insulin also increased phosphorylation of KLHL3 at S433 in cultured cells. In conclusion, we found that Akt and PKA phosphorylated KLHL3 at S433, and phosphorylation of KLHL3 by PKA inhibited WNK4 degradation. This could be a novel mechanism on how insulin and vasopressin physiologically activate the WNK signal. PMID:26435498

  12. Long-term effects of rapamycin treatment on insulin mediated phosphorylation of Akt/PKB and glycogen synthase activity

    SciTech Connect

    Varma, Shailly; Shrivastav, Anuraag; Changela, Sheena; Khandelwal, Ramji L.

    2008-04-01

    Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3{beta} (GSK-3{beta}) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-{alpha} (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.

  13. Asymmetric Dimethylarginine Stimulates Akt1 Phosphorylation via Heat Shock Protein 70-Facilitated Carboxyl-Terminal Modulator Protein Degradation in Pulmonary Arterial Endothelial Cells.

    PubMed

    Sun, Xutong; Kellner, Manuela; Desai, Ankit A; Wang, Ting; Lu, Qing; Kangath, Archana; Qu, Ning; Klinger, Christina; Fratz, Sohrab; Yuan, Jason X-J; Jacobson, Jeffrey R; Garcia, Joe G N; Rafikov, Ruslan; Fineman, Jeffrey R; Black, Stephen M

    2016-08-01

    Asymmetric dimethylarginine (ADMA) induces the mitochondrial translocation of endothelial nitric oxide synthase (eNOS) through the nitration-mediated activation of Akt1. However, it is recognized that the activation of Akt1 requires phosphorylation events at threonine (T) 308 and serine (S) 473. Thus, the current study was performed to elucidate the potential effect of ADMA on Akt1 phosphorylation and the mechanisms that are involved. Exposure of pulmonary arterial endothelial cells to ADMA enhanced Akt1 phosphorylation at both threonine 308 and Ser473 without altering Akt1 protein levels, phosphatase and tensin homolog activity, or membrane Akt1 levels. Heat shock protein (Hsp) 90 plays a pivotal role in maintaining Akt1 activity, and our results demonstrate that ADMA decreased Hsp90-Akt1 interactions, but, surprisingly, overexpression of a dominant-negative Hsp90 mutant increased Akt1 phosphorylation. ADMA exposure or overexpression of dominant-negative Hsp90 increased Hsp70 levels, and depletion of Hsp70 abolished ADMA-induced Akt1 phosphorylation. ADMA decreased the interaction of Akt1 with its endogenous inhibitor, carboxyl-terminal modulator protein (CTMP). This was mediated by the proteasomal-dependent degradation of CTMP. The overexpression of CTMP attenuated ADMA-induced Akt1 phosphorylation at Ser473, eNOS phosphorylation at Ser617, and eNOS mitochondrial translocation. Finally, we found that the mitochondrial translocation of eNOS in our lamb model of pulmonary hypertension is associated with increased Akt1 and eNOS phosphorylation and reduced Akt1-CTMP protein interactions. In conclusion, our data suggest that CTMP is directly involved in ADMA-induced Akt1 phosphorylation in vitro and in vivo, and that increasing CTMP levels may be an avenue to treat pulmonary hypertension. PMID:26959555

  14. Akt phosphorylation and regulation of transketolase is a nodal point for amino acid control of purine synthesis.

    PubMed

    Saha, Arindam; Connelly, Stephen; Jiang, Jingjing; Zhuang, Shunhui; Amador, Deron T; Phan, Tony; Pilz, Renate B; Boss, Gerry R

    2014-07-17

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway integrates environmental clues to regulate cell growth and survival. We showed previously that depriving cells of a single essential amino acid rapidly and reversibly arrests purine synthesis. Here we demonstrate that amino acids via mammalian target of rapamycin 2 and IκB kinase regulate Akt activity and Akt association and phosphorylation of transketolase (TKT), a key enzyme of the nonoxidative pentose phosphate pathway (PPP). Akt phosphorylates TKT on Thr382, markedly enhancing enzyme activity and increasing carbon flow through the nonoxidative PPP, thereby increasing purine synthesis. Mice fed a lysine-deficient diet for 2 days show decreased Akt activity, TKT activity, and purine synthesis in multiple organs. These results provide a mechanism whereby Akt coordinates amino acid availability with glucose utilization, purine synthesis, and RNA and DNA synthesis. PMID:24981175

  15. Low Phosphorylated AKT Expression in Laryngeal Cancer: Indications for a Higher Metastatic Risk

    SciTech Connect

    Nijkamp, Monique M.; Span, Paul N.; Stegeman, Hanneke; Grénman, Reidar; Kaanders, Johannes H.A.M.; Bussink, Johan

    2013-10-01

    Purpose: To validate the association of phosphorylated (p)AKT with lymph node metastasis in an independent, homogeneous cohort of patients with larynx cancer. Methods and Materials: Seventy-eight patients with laryngeal cancer were included. Epidermal growth factor receptor, pAKT, vimentin, E-cadherin, hypoxia, and blood vessels were visualized in biopsy material using immunohistochemistry. Positive tumor areas and spatial relationships between markers were assessed by automated image analysis. In 6 laryngeal cancer cell lines, E-cadherin and vimentin messenger RNA was quantified by real-time polymerase chain reaction and by immunohistochemistry before and after treatment with the pAKT inhibitor MK-2206. Results: A significant correlation was found between low pAKT in the primary tumor and positive lymph node status (P=.0005). Tumors with lymph node metastases had an approximately 10-fold lower median pAKT value compared with tumors without lymph node metastases, albeit with large intertumor variations, validating our previous results. After inhibition of pAKT in laryngeal cancer cells with MK-2206, up-regulation of vimentin and a downregulation of E-cadherin occurred, consistent with epithelial–mesenchymal transition. Conclusion: Low pAKT expression in larynx tumors is associated with lymph node metastases. Further, inhibition of pAKT in laryngeal cancer induces epithelial–mesenchymal transition, predisposing for an increased metastatic risk.

  16. Inhibition of Rb Phosphorylation Leads to mTORC2-Mediated Activation of Akt.

    PubMed

    Zhang, Jinfang; Xu, Kai; Liu, Pengda; Geng, Yan; Wang, Bin; Gan, Wenjian; Guo, Jianping; Wu, Fei; Chin, Y Rebecca; Berrios, Christian; Lien, Evan C; Toker, Alex; DeCaprio, James A; Sicinski, Piotr; Wei, Wenyi

    2016-06-16

    The retinoblastoma (Rb) protein exerts its tumor suppressor function primarily by inhibiting the E2F family of transcription factors that govern cell-cycle progression. However, it remains largely elusive whether the hyper-phosphorylated, non-E2F1-interacting form of Rb has any physiological role. Here we report that hyper-phosphorylated Rb directly binds to and suppresses the function of mTORC2 but not mTORC1. Mechanistically, Rb, but not p107 or p130, interacts with Sin1 and blocks the access of Akt to mTORC2, leading to attenuated Akt activation and increased sensitivity to chemotherapeutic drugs. As such, inhibition of Rb phosphorylation by depleting cyclin D or using CDK4/6 inhibitors releases Rb-mediated mTORC2 suppression. This, in turn, leads to elevated Akt activation to confer resistance to chemotherapeutic drugs in Rb-proficient cells, which can be attenuated with Akt inhibitors. Therefore, our work provides a molecular basis for the synergistic usage of CDK4/6 and Akt inhibitors in treating Rb-proficient cancer. PMID:27237051

  17. AKT inhibitor suppresses hyperthermia-induced Ndrg2 phosphorylation in gastric cancer cells

    PubMed Central

    Tao, Yurong; Guo, Yan; Liu, Wenchao; Zhang, Jian; Li, Xia; Shen, Lan; Ru, Yi; Xue, Yan; Zheng, Jin; Liu, Xinping; Zhang, Jing; Yao, Libo

    2013-01-01

    Hyperthermia is one of the most effective adjuvant treatments for various cancers with few side effects. However, the underlying molecular mechanisms still are not known. N-myc downstream-regulated gene 2 (NDRG2), a tumor suppressor, has been shown to be involved in diverse cellular stresses including hypoxia, lipotoxicity, etc. In addition, Ndrg2 has been reported to be related to progression of gastric cancer. In the current study, our data showed that the apoptosis rate of MKN28 cells increased relatively rapidly to 13.4% by 24 h after treatment with hyperthermia (42°C for 1 h) compared to 5.1% in control cells (P < 0.05). Nevertheless, there was no obvious change in the expression level of total Ndrg2 during this process. Further investigation demonstrated that the relative phosphorylation levels of Ndrg2 at Ser332, Thr348 increased up to 3.2- and 1.9-fold (hyperthermia group vs control group) at 3 h in MKN28 cells, respectively (P < 0.05). We also found that heat treatment significantly increased AKT phosphorylation. AKT inhibitor VIII (10 µM) decreased the phosphorylation level of Ndrg2 induced by hyperthermia. Accordingly, the apoptosis rate rose significantly in MKN28 cells (16.4%) treated with a combination of AKT inhibitor VIII and hyperthermia compared to that (6.8%) of cells treated with hyperthermia alone (P < 0.05). Taken together, these data demonstrated that Ndrg2 phosphorylation could be induced by hyperthermia in an AKT-dependent manner in gastric cancer cells. Furthermore, AKT inhibitor VIII suppressed Ndrg2 phosphorylation and rendered gastric cancer cells susceptible to apoptosis induced by hyperthermia. PMID:23558861

  18. TCR-induced Akt serine 473 phosphorylation is regulated by protein kinase C-alpha

    SciTech Connect

    Yang, Lifen; Qiao, Guilin; Ying, Haiyan; Zhang, Jian; Yin, Fei

    2010-09-10

    Research highlights: {yields} Conventional PKC positively regulates TCR-induced phosphorylation of Akt. {yields} PKC-alpha is the PDK-2 responsible for phosphorylating Akt at Ser{sup 473} upon TCR stimulation. {yields} Knockdown of PKC-alpha decreases TCR-induced Akt phosphorylation. -- Abstract: Akt signaling plays a central role in T cell functions, such as proliferation, apoptosis, and regulatory T cell development. Phosphorylation at Ser{sup 473} in the hydrophobic motif, along with Thr{sup 308} in its activation loop, is considered necessary for Akt function. It is widely accepted that phosphoinositide-dependent kinase 1 (PDK-1) phosphorylates Akt at Thr{sup 308}, but the kinase(s) responsible for phosphorylating Akt at Ser{sup 473} (PDK-2) remains elusive. The existence of PDK-2 is considered to be specific to cell type and stimulus. PDK-2 in T cells in response to TCR stimulation has not been clearly defined. In this study, we found that conventional PKC positively regulated TCR-induced Akt Ser{sup 473} phosphorylation. PKC-alpha purified from T cells can phosphorylate Akt at Ser{sup 473} in vitro upon TCR stimulation. Knockdown of PKC-alpha in T-cell-line Jurkat cells reduced TCR-induced phosphorylation of Akt as well as its downstream targets. Thus our results suggest that PKC-alpha is a candidate for PDK-2 in T cells upon TCR stimulation.

  19. PARP1 inhibitors attenuate AKT phosphorylation via the upregulation of PHLPP1

    SciTech Connect

    Wang, Shuai; Wang, Huibo; Davis, Ben C.; Liang, Jiyong; Cui, Rutao; Chen, Sai-Juan; Xu, Zhi-Xiang

    2011-08-26

    Highlights: {yields} PARP1 inhibitors cause a cytotoxic effect independent of DNA repair impairment. {yields} PARP1 inhibitors attenuated AKT-FOXO3A signaling by activating PHLPP1. {yields} PHLPP1 regulates the sensitivity of cancer cells to PARP1 inhibitors. -- Abstract: Poly(ADP-ribose) polymerase-1 (PARP1) inhibitors are emerging as an important class of drugs for treating BRCA-deficient cancers. Recent discoveries have shown that PARP1 inhibitors may treat other cancer patients in addition to the relatively small proportion of patients carrying BRCA mutations. However, the additional targets by which PARP1 inhibitor-mediated tumor suppression remain poorly understood. In this study, we show that two PARP1 inhibitors, PJ-34 and 3-AB, attenuate AKT phosphorylation at serine 473 (S473) independent of DNA repair impairment. These inhibitors decrease the AKT-associated phosphorylation of FOXO3A, enhance the nuclear retention of FOXO3A, and activate its transcriptional activity. We further demonstrate that treatment with PJ-34 or 3-AB dramatically increases the level of PHLPP1. Overexpression of PHLPP1 enhances the PARP1 inhibitor-induced downregulation of AKT phosphorylation and increases tumor cell death. In contrast, knockdown of PHLPP1 abrogates the PARP1 inhibitor-mediated AKT inhibition and desensitizes cells to its treatment. Therefore, our findings not only show the robust role of PARP1 inhibitors in AKT inhibition but also develop a novel strategy to increase the effectiveness of cancer treatment via PARP1 inhibitor-induced PHLPP1 upregulation.

  20. Akt/Protein Kinase B-Dependent Phosphorylation and Inactivation of WEE1Hu Promote Cell Cycle Progression at G2/M Transition

    PubMed Central

    Katayama, Kazuhiro; Fujita, Naoya; Tsuruo, Takashi

    2005-01-01

    The serine/threonine kinase Akt is known to promote cell growth by regulating the cell cycle in G1 phase through activation of cyclin/Cdk kinases and inactivation of Cdk inhibitors. However, how the G2/M phase is regulated by Akt remains unclear. Here, we show that Akt counteracts the function of WEE1Hu. Inactivation of Akt by chemotherapeutic drugs or the phosphatidylinositide-3-OH kinase inhibitor LY294002 induced G2/M arrest together with the inhibitory phosphorylation of Cdc2. Because the increased Cdc2 phosphorylation was completely suppressed by wee1hu gene silencing, WEE1Hu was associated with G2/M arrest induced by Akt inactivation. Further analyses revealed that Akt directly bound to and phosphorylated WEE1Hu during the S to G2 phase. Serine-642 was identified as an Akt-dependent phosphorylation site. WEE1Hu kinase activity was not affected by serine-642 phosphorylation. We revealed that serine-642 phosphorylation promoted cytoplasmic localization of WEE1Hu. The nuclear-to-cytoplasmic translocation was mediated by phosphorylation-dependent WEE1Hu binding to 14-3-3θ but not 14-3-3β or -σ. These results indicate that Akt promotes G2/M cell cycle progression by inducing phosphorylation-dependent 14-3-3θ binding and cytoplasmic localization of WEE1Hu. PMID:15964826

  1. Capillary Isoelectric Focusing of Akt Isoforms Identifies Highly Dynamic Phosphorylation in Neuronal Cells and Brain Tissue.

    PubMed

    Schrötter, Sandra; Leondaritis, George; Eickholt, Britta J

    2016-05-01

    The PI3K/PTEN/Akt pathway has been established as a core signaling pathway that is crucial for the integration of neurons into neuronal circuits and the maintenance of the architecture and function of neurons in the adult brain. Akt1-3 kinases are specifically activated by two phosphorylation events on residues Thr(308) and Ser(473) upon growth factor signaling, which subsequently phosphorylate a vast cohort of downstream targets. However, we still lack a clear understanding of the complexity and regulation of isoform specificity within the PI3K/PTEN/Akt pathway. We utilized a capillary-based isoelectric focusing method to study dynamics of Akt phosphorylation in neuronal cells and the developing brain and identify previously undescribed features of Akt phosphorylation and activation. First, we show that the accumulation of multiple phosphorylation events on Akt forms occur concurrently with Ser(473) and Thr(308) phosphorylation upon acute PI3K activation and provide evidence for uncoupling of Ser(473) and Thr(308) phosphorylation, as well as differential sensitivities of Akt1 forms upon PI3K inhibition. Second, we detect a transient shift in Akt isoform phosphorylation and activation pattern during early postnatal brain development, at stages corresponding to synapse development and maturation. Third, we show differential sensitivities of Ser(473)-Akt species to PTEN deletion in mature neurons, which suggests inherent differences in the Akt pools that are accessible to growth factors as compared with the pools that are controlled by PTEN. Our study demonstrates the presence of complex phosphorylation events of Akt in a time- and signal-dependent manner in neurons. PMID:26945062

  2. Capillary Isoelectric Focusing of Akt Isoforms Identifies Highly Dynamic Phosphorylation in Neuronal Cells and Brain Tissue*

    PubMed Central

    Schrötter, Sandra; Leondaritis, George; Eickholt, Britta J.

    2016-01-01

    The PI3K/PTEN/Akt pathway has been established as a core signaling pathway that is crucial for the integration of neurons into neuronal circuits and the maintenance of the architecture and function of neurons in the adult brain. Akt1–3 kinases are specifically activated by two phosphorylation events on residues Thr308 and Ser473 upon growth factor signaling, which subsequently phosphorylate a vast cohort of downstream targets. However, we still lack a clear understanding of the complexity and regulation of isoform specificity within the PI3K/PTEN/Akt pathway. We utilized a capillary-based isoelectric focusing method to study dynamics of Akt phosphorylation in neuronal cells and the developing brain and identify previously undescribed features of Akt phosphorylation and activation. First, we show that the accumulation of multiple phosphorylation events on Akt forms occur concurrently with Ser473 and Thr308 phosphorylation upon acute PI3K activation and provide evidence for uncoupling of Ser473 and Thr308 phosphorylation, as well as differential sensitivities of Akt1 forms upon PI3K inhibition. Second, we detect a transient shift in Akt isoform phosphorylation and activation pattern during early postnatal brain development, at stages corresponding to synapse development and maturation. Third, we show differential sensitivities of Ser473-Akt species to PTEN deletion in mature neurons, which suggests inherent differences in the Akt pools that are accessible to growth factors as compared with the pools that are controlled by PTEN. Our study demonstrates the presence of complex phosphorylation events of Akt in a time- and signal-dependent manner in neurons. PMID:26945062

  3. mTORC2 Phosphorylation of Akt1: A Possible Mechanism for Hydrogen Sulfide-Induced Cardioprotection

    PubMed Central

    Zhou, Yue; Wang, Daying; Gao, Xiufang; Lew, Karsheng; Richards, Arthur Mark; Wang, Peipei

    2014-01-01

    Hydrogen sulfide (H2S) is known to have cardiac protective effects through Akt activation. Akt acts as a ‘central sensor’ for myocyte survival or death; its activity is regulated by multiple kinases including PI3K, mTORC2, PDK1 and phosphatases including PTEN, PP2A and PHLPPL. Based on the previous finding that PI3K inhibitor LY294002 abolishes H2S-induced Akt phosphorylation and cardioprotection, it is accepted that PI3K is the mediator of H2S-induced Akt phosphorylation. However, LY294002 inhibits both PI3K and mTOR, and PI3K only recruits Akt to the membrane where Akt is phosphorylated by Akt kinases. We undertook a series of experiments to further evaluate the role of mTORC2, PDK1, PTEN, PP2A and PHLPPL in H2S-induced Akt phosphorylation and cardioprotection, which, we believe, has not been investigated before. Hearts from adult Sprague-Dawley rats were isolated and subjected to (i) normoxia, (ii) global ischemia and (iii) ischemia/reperfusion in the presence or absence of 50 µM of H2S donor NaHS. Cardiac mechanical function and lactate dehydrogenase (LDH) release were assessed. All hearts also were Western analyzed at the end of perfusion for Akt and a panel of appropriate Akt regulators and targets. Hearts pretreated with 50 µM NaHS had improved function at the end of reperfusion (Rate pressure product; 19±4×103 vs. 10±3×103 mmHg/min, p<0.05) and reduced cell injury (LDH release 19±10 vs. 170±87 mU/ml p<0.05) compared to untreated hearts. NaHS significantly increased phospho-Akt, phospho-mTOR, phospho-Bim and Bcl-2 in reperfused hearts (P<0.05). Furthermore using H9c2 cells we demonstrate that NaHS pretreatment reduces apoptosis following hypoxia/re-oxygenation. Importantly, PP242, a specific mTOR inhibitor, abolished both cardioprotection and protein phosphorylation in isolated heart and reduced apoptotic effects in H9c2 cells. Treating hearts with NaHS only during reperfusion produced less cardioprotection through a similar mechanism. These data

  4. CD133 promotes gallbladder carcinoma cell migration through activating Akt phosphorylation

    PubMed Central

    Zhen, Jiaojiao; Ai, Zhilong

    2016-01-01

    Gallbladder carcinoma (GBC) is the fifth most common malignancy of gastrointestinal tract. The prognosis of gallbladder carcinoma is extremely terrible partially due to metastasis. However, the mechanisms underlying gallbladder carcinoma metastasis remain largely unknown. CD133 is a widely used cancer stem cell marker including in gallbladder carcinoma. Here, we found that CD133 was highly expressed in gallbladder carcinoma as compared to normal tissues. CD133 was located in the invasive areas in gallbladder carcinoma. Down-regulation expression of CD133 inhibited migration and invasion of gallbladder carcinoma cell without obviously reducing cell proliferation. Mechanism analysis revealed that down-regulation expression of CD133 inhibited Akt phosphorylation and increased PTEN protein level. The inhibitory effect of CD133 down-regulation on gallbladder carcinoma cell migration could be rescued by Akt activation. Consistent with this, addition of Akt inhibitor Wortmannin markedly inhibited the migration ability of CD133-overexpressing cells. Thus, down-regulation of CD133 inhibits migration of gallbladder carcinoma cells through reducing Akt phosphorylation. These findings explore the fundamental biological aspect of CD133 in gallbladder carcinoma progression, providing insights into gallbladder carcinoma cell migration. PMID:26910892

  5. Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus

    PubMed Central

    Liu, Pengda; Begley, Michael; Michowski, Wojciech; Inuzuka, Hiroyuki; Ginzberg, Miriam; Gao, Daming; Tsou, Peiling; Gan, Wenjian; Papa, Antonella; Kim, Byeong Mo; Wan, Lixin; Singh, Amrik; Zhai, Bo; Yuan, Min; Wang, Zhiwei; Gygi, Steven P.; Lee, Tae Ho; Lu, Kun-Ping; Toker, Alex; Pandolfi, Pier Paolo; Asara, John M.; Kirschner, Marc W.; Sicinski, Piotr; Cantley, Lewis; Wei, Wenyi

    2014-01-01

    Akt, also known as protein kinase B, plays key roles in cell proliferation, survival and metabolism. Akt hyperactivation contributes to many pathophysiological conditions, including human cancers1–3, and is closely associated with poor prognosis and chemo- or radio-therapeutic resistance4. Phosphorylation of Akt at S473 (ref. 5) and T308 (ref. 6) activates Akt. However, it remains unclear whether further mechanisms account for full Akt activation, and whether Akt hyperactivation is linked to misregulated cell cycle progression, another cancer hallmark7. Here we report that Akt activity fluctuates across the cell cycle, mirroring cyclin A expression. Mechanistically, phosphorylation of S477 and T479 at the Akt extreme carboxy terminus by cyclin-dependent kinase 2 (Cdk2)/cyclin A or mTORC2, under distinct physiological conditions, promotes Akt activation through facilitating, or functionally compensating for, S473 phosphorylation. Furthermore, deletion of the cyclin A2 allele in the mouse olfactory bulb leads to reduced S477/T479 phosphorylation and elevated cellular apoptosis. Notably, cyclin A2-deletion-induced cellular apoptosis in mouse embryonic stem cells is partly rescued by S477D/T479E-Akt1, supporting a physiological role for cyclin A2 in governing Akt activation. Together, the results of our study show Akt S477/T479 phosphorylation to be an essential layer of the Akt activation mechanism to regulate its physiological functions, thereby providing a new mechanistic link between aberrant cell cycle progression and Akt hyperactivation in cancer. PMID:24670654

  6. Similar requirement for clathrin in EGF- and HGF- stimulated Akt phosphorylation.

    PubMed

    Lucarelli, Stefanie; Pandey, Rohan; Judge, Gurjeet; Antonescu, Costin N

    2016-01-01

    Receptor tyrosine kinases, such as the epidermal growth factor (EGF) receptor (EGFR) and Met lead to activation of intracellular signals including Akt, a critical regulator of cell survival, metabolism and proliferation. Upon binding their respective ligands, each of these receptors is recruited into clathrin coated pits (CCPs) eventually leading to endocytosis. We have recently shown that phosphorylation of Gab1 and Akt following EGFR activation requires clathrin, but does not require receptor endocytosis. We examined whether clathrin regulates Akt signaling downstream of Met, as it does for EGFR signaling. Stimulation with the Met ligand Hepatocyte Growth Factor (HGF) leads to enrichment of phosphorylated Gab1 (pGab1) within CCPs in ARPE-19 cells. Perturbation of clathrin using the inhibitor pitstop2 decreases HGF-stimulated Akt phosphorylation. These results indicate that clathrin may regulate Met signaling leading to Akt phosphorylation similarly as it does for EGFR signaling. PMID:27489582

  7. Plk1 phosphorylation of IRS2 prevents premature mitotic exit via AKT inactivation

    PubMed Central

    Chen, Long; Li, Zhiguo; Ahmad, Nihal; Liu, Xiaoqi

    2016-01-01

    Insulin receptor substrate (IRS) proteins play important roles by acting as a platform in transducing signals from transmembrane receptors upon growth factor stimulation. Although tyrosine phosphorylation on IRS proteins plays critical roles in signal transduction, phosphorylation of IRS proteins on serine/threonine residues are believed to play various regulatory roles on IRS protein function. However, studies on serine/threonine phosphorylation of IRS proteins are very limited, especially for insulin receptor substrate 2 (IRS2), one member of the IRS protein family. In this study, we identify Polo-like kinase 1 (Plk1) as the responsible kinase for phosphorylation of IRS2 on two serine residues, Ser 556 and Ser 1098. Phosphorylation of IRS2 on these two serine residues by Plk1 prevents the activation of the PI3K pathway upon growth factor stimulation by inhibiting the binding between IRS2 and the PI3K pathway components and increasing IRS2 protein degradation. Of significance, we show that IRS2 phosphorylation is cell cycle regulated and that Plk1 phosphorylation of IRS2 prevents premature mitotic exit via AKT inactivation. PMID:25830382

  8. Phosphorylation-dependent Akt-Inversin interaction at the basal body of primary cilia.

    PubMed

    Suizu, Futoshi; Hirata, Noriyuki; Kimura, Kohki; Edamura, Tatsuma; Tanaka, Tsutomu; Ishigaki, Satoko; Donia, Thoria; Noguchi, Hiroko; Iwanaga, Toshihiko; Noguchi, Masayuki

    2016-06-15

    A primary cilium is a microtubule-based sensory organelle that plays an important role in human development and disease. However, regulation of Akt in cilia and its role in ciliary development has not been demonstrated. Using yeast two-hybrid screening, we demonstrate that Inversin (INVS) interacts with Akt. Mutation in the INVS gene causes nephronophthisis type II (NPHP2), an autosomal recessive chronic tubulointerstitial nephropathy. Co-immunoprecipitation assays show that Akt interacts with INVS via the C-terminus. In vitro kinase assays demonstrate that Akt phosphorylates INVS at amino acids 864-866 that are required not only for Akt interaction, but also for INVS dimerization. Co-localization of INVS and phosphorylated form of Akt at the basal body is augmented by PDGF-AA Akt-null MEF cells as well as siRNA-mediated inhibition of Akt attenuated ciliary growth, which was reversed by Akt reintroduction. Mutant phosphodead- or NPHP2-related truncated INVS, which lack Akt phosphorylation sites, suppress cell growth and exhibit distorted lumen formation and misalignment of spindle axis during cell division. Further studies will be required for elucidating functional interactions of Akt-INVS at the primary cilia for identifying the molecular mechanisms underlying NPHP2. PMID:27220846

  9. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    SciTech Connect

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li{sub 2}CO{sub 3} significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li{sub 2}CO{sub 3} did not affect PI3K-mediated PI(3,4,5)P{sub 3} production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li{sub 2}CO{sub 3} on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li{sub 2}CO{sub 3} significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li{sub 2}CO{sub 3} significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity.

  10. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    SciTech Connect

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra; Galadari, Sehamuddin

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  11. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation.

    PubMed

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li2CO3 significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li2CO3 did not affect PI3K-mediated PI(3,4,5)P3 production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li2CO3 on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li2CO3 significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li2CO3 significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity. PMID:24950409

  12. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    PubMed

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy. PMID:26739493

  13. Diaminothiazoles inhibit angiogenesis efficiently by suppressing Akt phosphorylation.

    PubMed

    Thomas, Sannu A; Thamkachy, Reshma; Ashokan, Bindu; Komalam, Reena J; Sreerekha, Keerthi V; Bharathan, Asha; Santhoshkumar, Thankayyan R; Rajasekharan, Kallikat N; Sengupta, Suparna

    2012-06-01

    The prevention of neovessel formation or angiogenesis is a recent popular strategy for limiting and curing cancer. Diaminothiazoles are a class of compounds that have been reported to show promise in the treatment of cancer by inhibiting cancer cell proliferation and inducing apoptosis, because of their effects on microtubules and as inhibitors of cyclin-dependent kinases. Many microtubule-targeting agents are being studied for their antiangiogenic activity, and a few have shown promising activity in the treatment of cancer. Here, we report that diaminothiazoles can be highly effective as antiangiogenic agents, as observed in the chick membrane assay. The lead compound, 4-amino-5-benzoyl-2-(4-methoxyphenylamino)thiazole (DAT1), inhibits endothelial cell processes such as invasion, migration, and tubule formation, which require a functional cytoskeleton. DAT1 also decreases the expression of cell adhesion markers. The antiangiogenic activities of DAT1 occur at concentrations that are not cytotoxic to the normal endothelium. Analysis of intracellular signaling pathways shows that DAT1 inhibits Akt phosphorylation, which is actively involved in the angiogenic process. The antiangiogenic properties of diaminothiazoles, in addition to their promising antimitotic and cytotoxic properties in cancer cell lines, give them an extra advantage in the treatment of cancer. PMID:22414853

  14. EGFR phosphorylation of DCBLD2 recruits TRAF6 and stimulates AKT-promoted tumorigenesis

    PubMed Central

    Feng, Haizhong; Lopez, Giselle Y.; Kim, Chung Kwon; Alvarez, Angel; Duncan, Christopher G.; Nishikawa, Ryo; Nagane, Motoo; Su, An-Jey A.; Auron, Philip E.; Hedberg, Matthew L.; Wang, Lin; Raizer, Jeffery J.; Kessler, John A.; Parsa, Andrew T.; Gao, Wei-Qiang; Kim, Sung-Hak; Minata, Mutsuko; Nakano, Ichiro; Grandis, Jennifer R.; McLendon, Roger E.; Bigner, Darell D.; Lin, Hui-Kuan; Furnari, Frank B.; Cavenee, Webster K.; Hu, Bo; Yan, Hai; Cheng, Shi-Yuan

    2014-01-01

    Aberrant activation of EGFR in human cancers promotes tumorigenesis through stimulation of AKT signaling. Here, we determined that the discoidina neuropilin-like membrane protein DCBLD2 is upregulated in clinical specimens of glioblastomas and head and neck cancers (HNCs) and is required for EGFR-stimulated tumorigenesis. In multiple cancer cell lines, EGFR activated phosphorylation of tyrosine 750 (Y750) of DCBLD2, which is located within a recently identified binding motif for TNF receptor-associated factor 6 (TRAF6). Consequently, phosphorylation of DCBLD2 Y750 recruited TRAF6, leading to increased TRAF6 E3 ubiquitin ligase activity and subsequent activation of AKT, thereby enhancing EGFR-driven tumorigenesis. Moreover, evaluation of patient samples of gliomas and HNCs revealed an association among EGFR activation, DCBLD2 phosphorylation, and poor prognoses. Together, our findings uncover a pathway in which DCBLD2 functions as a signal relay for oncogenic EGFR signaling to promote tumorigenesis and suggest DCBLD2 and TRAF6 as potential therapeutic targets for human cancers that are associated with EGFR activation. PMID:25061874

  15. Akt mediated phosphorylation of LARP6; critical step in biosynthesis of type I collagen

    PubMed Central

    Zhang, Yujie; Stefanovic, Branko

    2016-01-01

    La ribonucleoprotein domain family, member 6 (LARP6) is the RNA binding protein, which regulates translation of collagen mRNAs and synthesis of type I collagen. Posttranslational modifications of LARP6 and how they affect type I collagen synthesis have not been studied. We show that in lung fibroblasts LARP6 is phosphorylated at 8 serines, 6 of which are located within C-terminal domain. Phosphorylation of LARP6 follows a hierarchical order; S451 phosphorylation being a prerequisite for phosphorylations of other serines. Inhibition of PI3K/Akt pathway reduced the phosphorylation of LARP6, but had no effect on the S451A mutant, suggesting that PI3K/Akt pathway targets S451 and we have identified Akt as the responsible kinase. Overexpression of S451A mutant had dominant negative effect on collagen biosynthesis; drastically reduced secretion of collagen and induced hyper-modifications of collagen α2 (I) polypeptides. This indicates that LARP6 phosphorylation at S451 is critical for regulating translation and folding of collagen polypeptides. Akt inhibitor, GSK-2141795, which is in clinical trials for treatment of solid tumors, reduced collagen production by human lung fibroblasts with EC50 of 150 nM. This effect can be explained by inhibition of LARP6 phosphorylation and suggests that Akt inhibitors may be effective in treatment of various forms of fibrosis. PMID:26932461

  16. Human recombinant H2 relaxin induces AKT and GSK3β phosphorylation and HTR-8/SVneo cell proliferation.

    PubMed

    Astuti, Yoni; Nakabayashi, Koji; Deguchi, Masashi; Ebina, Yasuhiko; Yamada, Hideto

    2015-01-01

    Relaxin is essential for trophoblast development during pregnancy. Evidence shows that relaxin increases trophoblast cell migration capacity. Here, we show the effect of relaxin on protein kinase B (AKT) activation and glycogen synthase kinase 3-beta (GSK3β) inactivation as well as on the proliferation of HTR-8/SVneo cells, a model of human extravillous trophoblast (EVT). HTR-8/SVneo cells were treated with different doses of human recombinant (rH2) relaxin in serum-deprived conditions and treated for increasing time with 1 ng/mL of rH2 relaxin. Western blot analysis was performed to detect pAKT, AKT, pGSK3β, GSK3β, and actin expression. Proliferation of HTR-8/SVneo cells was analyzed by MTS assay. rH2 relaxin treatment increased the ratio of pAKT/AKT, pGSK3β/GSK3β, and proliferation in HTR-8/SVneo cells. Furthermore, AKT and GSK3β activation by rH2 relaxin was inhibited by a phosphoinositide 3-kinase (PI3K) inhibitor. This study suggests that rH2 relaxin induces AKT and GSK3β phosphorylation as well as proliferation in HTR-8/SVneo cells. PMID:25868609

  17. KIF14 promotes AKT phosphorylation and contributes to chemoresistance in triple-negative breast cancer.

    PubMed

    Singel, Stina M; Cornelius, Crystal; Zaganjor, Elma; Batten, Kimberly; Sarode, Venetia R; Buckley, Dennis L; Peng, Yan; John, George B; Li, Hsiao C; Sadeghi, Navid; Wright, Woodring E; Lum, Lawrence; Corson, Timothy W; Shay, Jerry W

    2014-03-01

    Despite evidence that kinesin family member 14 (KIF14) can serve as a prognostic biomarker in various solid tumors, how it contributes to tumorigenesis remains unclear. We observed that experimental decrease in KIF14 expression increases docetaxel chemosensitivity in estrogen receptor-negative/progesterone receptor-negative/human epidermal growth factor receptor 2-negative, "triple-negative" breast cancers (TNBC). To investigate the oncogenic role of KIF14, we used noncancerous human mammary epithelial cells and ectopically expressed KIF14 and found increased proliferative capacity, increased anchorage-independent grown in vitro, and increased resistance to docetaxel but not to doxorubicin, carboplatin, or gemcitabine. Seventeen benign breast biopsies of BRCA1 or BRCA2 mutation carriers showed increased KIF14 mRNA expression by fluorescence in situ hybridization compared to controls with no known mutations in BRCA1 or BRCA2, suggesting increased KIF14 expression as a biomarker of high-risk breast tissue. Evaluation of 34 cases of locally advanced TNBC showed that KIF14 expression significantly correlates with chemotherapy-resistant breast cancer. KIF14 knockdown also correlates with decreased AKT phosphorylation and activity. Live-cell imaging confirmed an insulin-induced temporal colocalization of KIF14 and AKT at the plasma membrane, suggesting a potential role of KIF14 in promoting activation of AKT. An experimental small-molecule inhibitor of KIF14 was then used to evaluate the potential anticancer benefits of downregulating KIF14 activity. Inhibition of KIF14 shows a chemosensitizing effect and correlates with decreasing activation of AKT. Together, these findings show an early and critical role for KIF14 in the tumorigenic potential of TNBC, and therapeutic targeting of KIF14 is feasible and effective for TNBC. PMID:24784001

  18. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    SciTech Connect

    Roffe, Suzy; Hagai, Yosey; Pines, Mark; Halevy, Orna

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  19. Distinct Time Course of the Decrease in Hepatic AMP-Activated Protein Kinase and Akt Phosphorylation in Mice Fed a High Fat Diet

    PubMed Central

    Shiwa, Mami; Yoneda, Masayasu; Okubo, Hirofumi; Ohno, Haruya; Kobuke, Kazuhiro; Monzen, Yuko; Kishimoto, Rui; Nakatsu, Yusuke; Asano, Tomoichiro; Kohno, Nobuoki

    2015-01-01

    AMP-activated protein kinase (AMPK) plays an important role in insulin resistance, which is characterized by the impairment of the insulin-Akt signaling pathway. However, the time course of the decrease in AMPK and Akt phosphorylation in the liver during the development of obesity and insulin resistance caused by feeding a high fat diet (HFD) remains controversial. Moreover, it is unclear whether the impairment of AMPK and Akt signaling pathways is reversible when changing from a HFD to a standard diet (SD). Male ddY mice were fed the SD or HFD for 3 to 28 days, or fed the HFD for 14 days, followed by the SD for 14 days. We examined the time course of the expression and phosphorylation levels of AMPK and Akt in the liver by immunoblotting. After 3 days of feeding on the HFD, mice gained body weight, resulting in an increased oil red O staining, indicative of hepatic lipid accumulation, and significantly decreased AMPK phosphorylation, in comparison with mice fed the SD. After 14 days on the HFD, systemic insulin resistance occurred and Akt phosphorylation significantly decreased. Subsequently, a change from the HFD to SD for 3 days, after 14 days on the HFD, ameliorated the impairment of AMPK and Akt phosphorylation and systemic insulin resistance. Our findings indicate that AMPK phosphorylation decreases early upon feeding a HFD and emphasizes the importance of prompt lifestyle modification for decreasing the risk of developing diabetes. PMID:26266809

  20. Activation of PI3-kinase stimulates endocytosis of ROMK via Akt1/SGK1-dependent phosphorylation of WNK1.

    PubMed

    Cheng, Chih-Jen; Huang, Chou-Long

    2011-03-01

    WNK kinases stimulate endocytosis of ROMK channels to regulate renal K+ handling. Phosphatidylinositol 3-kinase (PI3K)-activating hormones, such as insulin and IGF 1, phosphorylate WNK1, but how this affects the regulation of ROMK abundance is unknown. Here, serum starvation of ROMK-transfected HEK cells led to an increase of ROMK current density; subsequent addition of insulin or IGF1 inhibited ROMK currents in a PI3K-dependent manner. Serum and insulin also increased phosphorylation of the downstream kinases Akt1 and SGK1 as well as WNK1. A biotinylation assay suggested that insulin and IGF1 inhibit ROMK by enhancing its endocytosis, a process that WNK1 may mediate. Knockdown of WNK1 with siRNA or expression of a phospho-deficient WNK1 mutant (T58A) both prevented insulin-induced inhibition of ROMK currents, suggesting that phosphorylation at Threonine-58 of WNK1 is important to mediate the inhibition of ROMK by PI3K-activating hormones or growth factors. In vitro and in vivo kinase assays supported the notion that Akt1 and SGK1 can phosphorylate WNK1 at this site, and we established that Akt1 and SGK1 synergistically inhibit ROMK through WNK1. We used dominant-negative intersectin and dynamin constructs to show that SGK1-mediated phosphorylation of WNK1 inhibits ROMK by promoting its endocytosis. Taken together, these results suggest that PI3K-activating hormones inhibit ROMK by enhancing its endocytosis via a mechanism that involves phosphorylation of WNK1 by Akt1 and SGK1. PMID:21355052

  1. Lycium barbarum polysaccharide attenuates the cytotoxicity of mutant huntingtin and increases the activity of AKT.

    PubMed

    Fang, Fang; Peng, Ting; Yang, Shiming; Wang, Weixi; Zhang, Yinong; Li, He

    2016-08-01

    Huntington's disease (HD) is an inherited neurodegenerative disease that is caused by the abnormal expansion of CAG repeats in the gene encoding huntingtin (Htt). Reduced AKT phosphorylation and inhibited AKT activity have been shown to be involved in mutant Htt (mHtt)-induced cell death. Lycium barbarum polysaccharide (LBP), the main bioactive component of Lycium barbarum, reportedly has neuroprotective roles in neural injuries, including neurodegenerative diseases. Here, we report that treatment with LBP can increased the viability of HEK293 cells that stably expressed mHtt containing 160 glutamine repeats and significantly improved motor behavior and life span in HD-transgenic mice. Furthermore, we found that in LBP-treated HEK293 cells expressing mHtt, mHtt levels were reduced and the phosphorylation of AKT at Ser473 (p-AKT-Ser473) was significantly increased. We also found that treatment with LBP increased p-AKT-Ser473 and decreased mHtt in the cortex, hippocampus and striatum in HD-transgenic mice. The level of phosphorylation of p-GSK3β-Ser9 remained unchanged in both cultured cells and HD-transgenic mice. Our findings suggest that LBP alleviates the cytotoxicity of mHtt by activating AKT and reducing mHtt levels, indicating that LBP may be potentially useful for treating HD. PMID:27196502

  2. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177

    PubMed Central

    Walther, Stefanie; Pluteanu, Florentina; Renz, Susanne; Nikonova, Yulia; Maxwell, Joshua T.; Yang, Li-Zhen; Schmidt, Kurt; Edwards, Joshua N.; Wakula, Paulina; Groschner, Klaus; Maier, Lars S.; Spiess, Joachim; Blatter, Lothar A.; Pieske, Burkert

    2014-01-01

    Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca2+-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling. PMID:25015964

  3. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177.

    PubMed

    Walther, Stefanie; Pluteanu, Florentina; Renz, Susanne; Nikonova, Yulia; Maxwell, Joshua T; Yang, Li-Zhen; Schmidt, Kurt; Edwards, Joshua N; Wakula, Paulina; Groschner, Klaus; Maier, Lars S; Spiess, Joachim; Blatter, Lothar A; Pieske, Burkert; Kockskämper, Jens

    2014-09-01

    Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling. PMID:25015964

  4. Decreased Phosphorylated Protein Kinase B (Akt) in Individuals with Autism Associated with High Epidermal Growth Factor Receptor (EGFR) and Low Gamma-Aminobutyric Acid (GABA)

    PubMed Central

    Russo, Anthony J

    2015-01-01

    Dysregulation of the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway could contribute to the pathogenesis of autism spectrum disorders. In this study, phosphorylated Akt concentration was measured in 37 autistic children and 12, gender and age similar neurotypical, controls using an enzyme-linked immunosorbent assay. Akt levels were compared to biomarkers known to be associated with epidermal growth factor receptor (EGFR) and c-Met (hepatocyte growth factor (HGF) receptor) pathways and severity levels of 19 autism-related symptoms. We found phosphorylated Akt levels significantly lower in autistic children and low Akt levels correlated with high EGFR and HGF and low gamma-aminobutyric acid, but not other biomarkers. Low Akt levels also correlated significantly with increased severity of receptive language, conversational language, hypotonia, rocking and pacing, and stimming, These results suggest a relationship between decreased phosphorylated Akt and selected symptom severity in autistic children and support the suggestion that the AKT pathways may be associated with the etiology of autism. PMID:26508828

  5. TRAIL-induced caspase/p38 activation is responsible for the increased catalytic and invasive activities of Akt

    PubMed Central

    SUN, BO K.; KIM, JOO-HANG; NGUYEN, HOAN N.; KIM, SO Y.; OH, SEEUN; LEE, YONG J.; SONG, JAE J.

    2010-01-01

    We previously observed that TRAIL induces acquired TRAIL resistance coinciding with increased Akt phosphorylation brought about by the Src-PI3K-Akt signaling pathways and mediated by c-Cbl. c-Cbl, a ubiquitously expressed cytoplasmic adaptor protein, is simultaneously involved in the rapid degradation of TRAIL receptors and Akt phosphorylation during TRAIL treatment. Here, we show that Akt phosphorylation is not exclusively responsible for acquired TRAIL resistance. Akt catalytic activation is known to increase during metabolic oxidative stress, but we show that TRAIL also dramatically induces the catalytic activation of Akt in TRAIL-sensitive cells, but not in TRAIL-resistant cells. This suggests that Akt catalytic activation during TRAIL-induced apoptosis is likely to play a compensatory role in the maintenance of cell homeostasis. In addition, activated p38 and phosphorylated HSP27 were found to act as downstream effector molecules of p38 during TRAIL treatment and were shown to be responsible for increased Akt catalytic and invasive activities. PMID:21109947

  6. Pyruvate Kinase M2 Activates mTORC1 by Phosphorylating AKT1S1.

    PubMed

    He, Chang-Liang; Bian, Yang-Yang; Xue, Yu; Liu, Ze-Xian; Zhou, Kai-Qiang; Yao, Cui-Fang; Lin, Yan; Zou, Han-Fa; Luo, Fang-Xiu; Qu, Yuan-Yuan; Zhao, Jian-Yuan; Ye, Ming-Liang; Zhao, Shi-Min; Xu, Wei

    2016-01-01

    In cancer cells, the mammalian target of rapamycin complex 1 (mTORC1) that requires hormonal and nutrient signals for its activation, is constitutively activated. We found that overexpression of pyruvate kinase M2 (PKM2) activates mTORC1 signaling through phosphorylating mTORC1 inhibitor AKT1 substrate 1 (AKT1S1). An unbiased quantitative phosphoproteomic survey identified 974 PKM2 substrates, including serine202 and serine203 (S202/203) of AKT1S1, in the proteome of renal cell carcinoma (RCC). Phosphorylation of S202/203 of AKT1S1 by PKM2 released AKT1S1 from raptor and facilitated its binding to 14-3-3, resulted in hormonal- and nutrient-signals independent activation of mTORC1 signaling and led accelerated oncogenic growth and autophagy inhibition in cancer cells. Decreasing S202/203 phosphorylation by TEPP-46 treatment reversed these effects. In RCCs and breast cancers, PKM2 overexpression was correlated with elevated S202/203 phosphorylation, activated mTORC1 and inhibited autophagy. Our results provided the first phosphorylome of PKM2 and revealed a constitutive mTORC1 activating mechanism in cancer cells. PMID:26876154

  7. Pyruvate Kinase M2 Activates mTORC1 by Phosphorylating AKT1S1

    PubMed Central

    He, Chang-Liang; Bian, Yang-Yang; Xue, Yu; Liu, Ze-Xian; Zhou, Kai-Qiang; Yao, Cui-Fang; Lin, Yan; Zou, Han-Fa; Luo, Fang-Xiu; Qu, Yuan-Yuan; Zhao, Jian-Yuan; Ye, Ming-Liang; Zhao, Shi-Min; Xu, Wei

    2016-01-01

    In cancer cells, the mammalian target of rapamycin complex 1 (mTORC1) that requires hormonal and nutrient signals for its activation, is constitutively activated. We found that overexpression of pyruvate kinase M2 (PKM2) activates mTORC1 signaling through phosphorylating mTORC1 inhibitor AKT1 substrate 1 (AKT1S1). An unbiased quantitative phosphoproteomic survey identified 974 PKM2 substrates, including serine202 and serine203 (S202/203) of AKT1S1, in the proteome of renal cell carcinoma (RCC). Phosphorylation of S202/203 of AKT1S1 by PKM2 released AKT1S1 from raptor and facilitated its binding to 14-3-3, resulted in hormonal- and nutrient-signals independent activation of mTORC1 signaling and led accelerated oncogenic growth and autophagy inhibition in cancer cells. Decreasing S202/203 phosphorylation by TEPP-46 treatment reversed these effects. In RCCs and breast cancers, PKM2 overexpression was correlated with elevated S202/203 phosphorylation, activated mTORC1 and inhibited autophagy. Our results provided the first phosphorylome of PKM2 and revealed a constitutive mTORC1 activating mechanism in cancer cells. PMID:26876154

  8. Impaired Striatal Akt Signaling Disrupts Dopamine Homeostasis and Increases Feeding

    PubMed Central

    Davis, Adeola R.; Owens, W. Anthony; Matthies, Heinrich J. G.; Saadat, Sanaz; Kennedy, Jack P.; Vaughan, Roxanne A.; Neve, Rachael L.; Lindsley, Craig W.; Russo, Scott J.; Daws, Lynette C.; Niswender1, Kevin D.; Galli, Aurelio

    2011-01-01

    Background The prevalence of obesity has increased dramatically worldwide. The obesity epidemic begs for novel concepts and therapeutic targets that cohesively address “food-abuse” disorders. We demonstrate a molecular link between impairment of a central kinase (Akt) involved in insulin signaling induced by exposure to a high-fat (HF) diet and dysregulation of higher order circuitry involved in feeding. Dopamine (DA) rich brain structures, such as striatum, provide motivation stimuli for feeding. In these central circuitries, DA dysfunction is posited to contribute to obesity pathogenesis. We identified a mechanistic link between metabolic dysregulation and the maladaptive behaviors that potentiate weight gain. Insulin, a hormone in the periphery, also acts centrally to regulate both homeostatic and reward-based HF feeding. It regulates DA homeostasis, in part, by controlling a key element in DA clearance, the DA transporter (DAT). Upon HF feeding, nigro-striatal neurons rapidly develop insulin signaling deficiencies, causing increased HF calorie intake. Methodology/Principal Findings We show that consumption of fat-rich food impairs striatal activation of the insulin-activated signaling kinase, Akt. HF-induced Akt impairment, in turn, reduces DAT cell surface expression and function, thereby decreasing DA homeostasis and amphetamine (AMPH)-induced DA efflux. In addition, HF-mediated dysregulation of Akt signaling impairs DA-related behaviors such as (AMPH)-induced locomotion and increased caloric intake. We restored nigro-striatal Akt phosphorylation using recombinant viral vector expression technology. We observed a rescue of DAT expression in HF fed rats, which was associated with a return of locomotor responses to AMPH and normalization of HF diet-induced hyperphagia. Conclusions/Significance Acquired disruption of brain insulin action may confer risk for and/or underlie “food-abuse” disorders and the recalcitrance of obesity. This molecular model

  9. 14-3-3 Proteins regulate Akt Thr308 phosphorylation in intestinal epithelial cells.

    PubMed

    Gómez-Suárez, M; Gutiérrez-Martínez, I Z; Hernández-Trejo, J A; Hernández-Ruiz, M; Suárez-Pérez, D; Candelario, A; Kamekura, R; Medina-Contreras, O; Schnoor, M; Ortiz-Navarrete, V; Villegas-Sepúlveda, N; Parkos, C; Nusrat, A; Nava, P

    2016-06-01

    Akt activation has been associated with proliferation, differentiation, survival and death of epithelial cells. Phosphorylation of Thr308 of Akt by phosphoinositide-dependent kinase 1 (PDK1) is critical for optimal stimulation of its kinase activity. However, the mechanism(s) regulating this process remain elusive. Here, we report that 14-3-3 proteins control Akt Thr308 phosphorylation during intestinal inflammation. Mechanistically, we found that IFNγ and TNFα treatment induce degradation of the PDK1 inhibitor, 14-3-3η, in intestinal epithelial cells. This mechanism requires association of 14-3-3ζ with raptor in a process that triggers autophagy and leads to 14-3-3η degradation. Notably, inhibition of 14-3-3 function by the chemical inhibitor BV02 induces uncontrolled Akt activation, nuclear Akt accumulation and ultimately intestinal epithelial cell death. Our results suggest that 14-3-3 proteins control Akt activation and regulate its biological functions, thereby providing a new mechanistic link between cell survival and apoptosis of intestinal epithelial cells during inflammation. PMID:26846144

  10. Aloe-emodin suppresses esophageal cancer cell TE1 proliferation by inhibiting AKT and ERK phosphorylation

    PubMed Central

    Chang, Xiaobin; Zhao, Jimin; Tian, Fang; Jiang, Yanan; Lu, Jing; Ma, Junfen; Zhang, Xiaoyan; Jin, Guoguo; Huang, Youtian; Dong, Zigang; Liu, Kangdong; Dong, Ziming

    2016-01-01

    Aberrant AKT and extracellular signal-regulated kinase (ERK) activation is often observed in various human cancers. Both AKT and ERK are important in the phosphoinositide 3-kinase/AKT and mitogen-activated protein kinase kinase/ERK signaling pathways, which play vital roles in cell proliferation, differentiation and survival. Compounds that are able to block these pathways have therefore a promising use in cancer treatment and prevention. The present study revealed that AKT and ERK are activated in esophageal cancer TE1 cells. Aloe-emodin, an anthraquinone present in aloe latex, can suppress TE1 cell proliferation and anchor-independent cell growth. Aloe-emodin can also reduce the number of TE1 cells in S phase. Protein analysis indicated that aloe-emodin inhibits the phosphorylation of AKT and ERK in a dose-dependent manner. Overall, the present data indicate that aloe-emodin can suppress TE1 cell growth by inhibiting AKT and ERK phosphorylation, and suggest its clinical use for cancer therapy. PMID:27602169

  11. The PI3K/Akt Pathway Regulates Oxygen Metabolism via Pyruvate Dehydrogenase (PDH)-E1α Phosphorylation.

    PubMed

    Cerniglia, George J; Dey, Souvik; Gallagher-Colombo, Shannon M; Daurio, Natalie A; Tuttle, Stephen; Busch, Theresa M; Lin, Alexander; Sun, Ramon; Esipova, Tatiana V; Vinogradov, Sergei A; Denko, Nicholas; Koumenis, Constantinos; Maity, Amit

    2015-08-01

    Inhibition of the PI3K/Akt pathway decreases hypoxia within SQ20B human head and neck cancer xenografts. We set out to understand the molecular mechanism underlying this observation. We measured oxygen consumption using both a Clark electrode and an extracellular flux analyzer. We made these measurements after various pharmacologic and genetic manipulations. Pharmacologic inhibition of the PI3K/mTOR pathway or genetic inhibition of Akt/PI3K decreased the oxygen consumption rate (OCR) in vitro in SQ20B and other cell lines by 30% to 40%. Pharmacologic inhibition of this pathway increased phosphorylation of the E1α subunit of the pyruvate dehydrogenase (PDH) complex on Ser293, which inhibits activity of this critical gatekeeper of mitochondrial respiration. Expressing wild-type PTEN in a doxycycline-inducible manner in a cell line with mutant PTEN led to an increase in PDH-E1α phosphorylation and a decrease in OCR. Pretreatment of SQ20B cells with dichloroacetate (DCA), which inhibits PDH-E1α phosphorylation by inhibiting dehydrogenase kinases (PDK), reversed the decrease in OCR in response to PI3K/Akt/mTOR inhibition. Likewise, introduction of exogenous PDH-E1α that contains serine to alanine mutations, which can no longer be regulated by phosphorylation, also blunted the decrease in OCR seen with PI3K/mTOR inhibition. Our findings highlight an association between the PI3K/mTOR pathway and tumor cell oxygen consumption that is regulated in part by PDH phosphorylation. These results have important implications for understanding the effects of PI3K pathway activation in tumor metabolism and also in designing cancer therapy trials that use inhibitors of this pathway. PMID:25995437

  12. Phosphorylated Ribosomal Protein S6 Is Required for Akt-Driven Hyperplasia and Malignant Transformation, but Not for Hypertrophy, Aneuploidy and Hyperfunction of Pancreatic β-Cells

    PubMed Central

    Wittenberg, Avigail Dreazen; Azar, Shahar; Klochendler, Agnes; Stolovich-Rain, Miri; Avraham, Shlomit; Birnbaum, Lea; Binder Gallimidi, Adi; Katz, Maximiliano; Dor, Yuval; Meyuhas, Oded

    2016-01-01

    Constitutive expression of active Akt (Akttg) drives hyperplasia and hypertrophy of pancreatic β-cells, concomitantly with increased insulin secretion and improved glucose tolerance, and at a later stage the development of insulinoma. To determine which functions of Akt are mediated by ribosomal protein S6 (rpS6), an Akt effector, we generated mice that express constitutive Akt in β-cells in the background of unphosphorylatable ribosomal protein S6 (rpS6P-/-). rpS6 phosphorylation deficiency failed to block Akttg-induced hypertrophy and aneuploidy in β-cells, as well as the improved glucose homeostasis, indicating that Akt carries out these functions independently of rpS6 phosphorylation. In contrast, rpS6 phosphorylation deficiency efficiently restrained the reduction in nuclear localization of the cell cycle inhibitor p27, as well as the development of Akttg-driven hyperplasia and tumor formation in β-cells. In vitro experiments with Akttg and rpS6P-/-;Akttg fibroblasts demonstrated that rpS6 phosphorylation deficiency leads to reduced translation fidelity, which might underlie its anti-tumorigenic effect in the pancreas. However, the role of translation infidelity in tumor suppression cannot simply be inferred from this heterologous experimental model, as rpS6 phosphorylation deficiency unexpectedly elevated the resistance of Akttg fibroblasts to proteotoxic, genotoxic as well as autophagic stresses. In contrast, rpS6P-/- fibroblasts exhibited a higher sensitivity to these stresses upon constitutive expression of oncogenic Kras. The latter result provides a possible mechanistic explanation for the ability of rpS6 phosphorylation deficiency to enhance DNA damage and protect mice from Kras-induced neoplastic transformation in the exocrine pancreas. We propose that Akt1 and Kras exert their oncogenic properties through distinct mechanisms, even though both show addiction to rpS6 phosphorylation. PMID:26919188

  13. Phosphorylated Ribosomal Protein S6 Is Required for Akt-Driven Hyperplasia and Malignant Transformation, but Not for Hypertrophy, Aneuploidy and Hyperfunction of Pancreatic β-Cells.

    PubMed

    Wittenberg, Avigail Dreazen; Azar, Shahar; Klochendler, Agnes; Stolovich-Rain, Miri; Avraham, Shlomit; Birnbaum, Lea; Binder Gallimidi, Adi; Katz, Maximiliano; Dor, Yuval; Meyuhas, Oded

    2016-01-01

    Constitutive expression of active Akt (Akttg) drives hyperplasia and hypertrophy of pancreatic β-cells, concomitantly with increased insulin secretion and improved glucose tolerance, and at a later stage the development of insulinoma. To determine which functions of Akt are mediated by ribosomal protein S6 (rpS6), an Akt effector, we generated mice that express constitutive Akt in β-cells in the background of unphosphorylatable ribosomal protein S6 (rpS6P-/-). rpS6 phosphorylation deficiency failed to block Akttg-induced hypertrophy and aneuploidy in β-cells, as well as the improved glucose homeostasis, indicating that Akt carries out these functions independently of rpS6 phosphorylation. In contrast, rpS6 phosphorylation deficiency efficiently restrained the reduction in nuclear localization of the cell cycle inhibitor p27, as well as the development of Akttg-driven hyperplasia and tumor formation in β-cells. In vitro experiments with Akttg and rpS6P-/-;Akttg fibroblasts demonstrated that rpS6 phosphorylation deficiency leads to reduced translation fidelity, which might underlie its anti-tumorigenic effect in the pancreas. However, the role of translation infidelity in tumor suppression cannot simply be inferred from this heterologous experimental model, as rpS6 phosphorylation deficiency unexpectedly elevated the resistance of Akttg fibroblasts to proteotoxic, genotoxic as well as autophagic stresses. In contrast, rpS6P-/- fibroblasts exhibited a higher sensitivity to these stresses upon constitutive expression of oncogenic Kras. The latter result provides a possible mechanistic explanation for the ability of rpS6 phosphorylation deficiency to enhance DNA damage and protect mice from Kras-induced neoplastic transformation in the exocrine pancreas. We propose that Akt1 and Kras exert their oncogenic properties through distinct mechanisms, even though both show addiction to rpS6 phosphorylation. PMID:26919188

  14. Akt phosphorylates myc-associated zinc finger protein (MAZ), releases P-MAZ from the p53 promoter, and activates p53 transcription.

    PubMed

    Lee, Wei-Ping; Lan, Keng-Hsin; Li, Chung-Pin; Chao, Yee; Lin, Han-Chieh; Lee, Shou-Dong

    2016-05-28

    The p53 protein is a cell cycle regulator. When the cell cycle progresses, p53 plays an important role in putting a brake on the G1 phase to prevent unwanted errors during cell division. Akt is a downstream kinase of receptor tyrosine kinase. Upon activation, Akt phorphorylates IKK that then phosphorylates IκB and releases NF-κB, leading to transcriptional activation of Dmp1. Dmp1 is a transcriptional activator of Arf. It has been known that oncogene activation stabilizes p53 through transcriptional activation of Arf, which then binds and inhibits Mdm2. In the current study, we show that myc-associated zinc finger protein (MAZ) is a transcriptional repressor of the p53 promoter. Akt phosphorylates MAZ at Thr385, and the phosphorylated MAZ is released from the p53 promoter, leading to transcriptional activation of p53, a new mechanism that contributes to increased p53 protein pool during oncogene activation. PMID:26902421

  15. AKT hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a patient with lymphatic malformation

    PubMed Central

    Boscolo, Elisa; Coma, Silvia; Luks, Valerie L.; Greene, Arin; Klagsbrun, Michael; Warman, Matthew L.; Bischoff, Joyce

    2014-01-01

    Lymphatic malformations (LM) are characterized by abnormal formation of lymphatic vessels and tissue overgrowth. The lymphatic vessels present in LM lesions may become blocked and enlarged as lymphatic fluid collects, forming a mass or cyst. Lesions are typically diagnosed during childhood, and are often disfiguring and life threatening. Available treatments consist of sclerotherapy, surgical removal and therapies to diminish complications. We isolated lymphatic endothelial cells (LM-LEC) from a surgically removed microcystic LM lesion. LM-LEC and normal human dermal-LEC (HD-LEC) expressed endothelial (CD31, VE-Cadherin) as well as lymphatic endothelial (Podoplanin, PROX1, LYVE1)-specific markers. Targeted gene sequencing analysis in patient-derived LM-LEC revealed the presence of two mutations in class I phosphoinositide 3-kinases (PI3K) genes. One is an inherited, premature stop codon in the PI3K regulatory subunit PIK3R3. The second is a somatic missense mutation in the PI3K catalytic subunit PIK3CA; this mutation has been found in association with overgrowth syndromes and cancer growth. LM-LEC exhibited angiogenic properties: both cellular proliferation and sprouting in collagen were significantly increased compared to HD-LEC. AKT-Thr308 was constitutively hyper-phosphorylated in LM-LEC. Treatment of LM-LEC with PI3-Kinase inhibitors Wortmannin and LY294 decreased cellular proliferation and prevented the phosphorylation of AKT-Thr308 in both HD-LEC and LM-LEC. Treatment with the mTOR inhibitor rapamycin also diminished cellular proliferation, sprouting and AKT phosphorylation, but only in LM-LEC. Our results implicate disrupted PI3K-AKT signaling in LEC isolated from a human lymphatic malformation lesion. PMID:25424831

  16. Suppression of Akt1 phosphorylation by adenoviral transfer of the PTEN gene inhibits hypoxia-induced proliferation of rat pulmonary arterial smooth muscle cells

    SciTech Connect

    Luo, Chunxia; Yi, Bin; Bai, Li; Xia, Yongzhi; Wang, Guansong; Qian, Guisheng; Feng, Hua

    2010-07-02

    Recent findings identify the role of proliferation of pulmonary artery smooth muscle cells (PASMCs) in pulmonary vascular remodeling. Phosphoinositide 3 kinase (PI3K) and serine/threonine kinase (Akt) proteins are expressed in vascular smooth muscle cells. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been identified as a negative regulator of cytokine signaling that inhibits the PI3K-Akt pathway. However, little is known about the role of PTEN/Akt signaling in hypoxia-associated vascular remodeling. In this study, we found that hypoxia-induced the expression of Akt1 mRNA and phosphorylated protein by at least twofold in rat PASMCs. Phospho-PTEN significantly decreased in the nuclei of PASMCs after hypoxic stimulation. After forcing over-expression of PTEN by adenovirus-mediated PTEN (Ad-PTEN) transfection, the expression of phospho-Akt1 was significantly suppressed in PASMCs at all time-points measured. Additionally, we showed here that hypoxia increased proliferation of PASMCs by nearly twofold and over-expression of PTEN significantly inhibited hypoxia-induced PASMCs proliferation. These findings suggest that phospho-PTEN loss in the nuclei of PASMCs under hypoxic conditions may be the major cause of aberrant activation of Akt1 and may, therefore, play an important role in hypoxia-associated pulmonary arterial remodeling. Finally, the fact that transfection with Ad-PTEN inhibits the phosphorylation of Akt1 in PASMCs suggests a potential therapeutic effect on hypoxia-associated pulmonary arterial remodeling.

  17. Smad3 Sensitizes Hepatocelluar Carcinoma Cells to Cisplatin by Repressing Phosphorylation of AKT

    PubMed Central

    Zhou, Hong-Hao; Chen, Lin; Liang, Hui-Fang; Li, Guang-Zhen; Zhang, Bi-Xiang; Chen, Xiao-Ping

    2016-01-01

    Background: Heptocelluar carcinoma (HCC) is insensitive to chemotherapy due to limited bioavailability and acquired drug resistance. Smad3 plays dual roles by inhibiting cell growth initially and promoting the progression of advanced tumors in HCC. However, the role of smad3 in chemosensitivity of HCC remains elusive. Methods: The role of smad3 in chemosensitivity of HCC was measured by cell viability, apoptosis, plate colony formation assays and xenograft tumor models. Non-smad signaling was detected by Western blotting to search for the underlying mechanisms. Results: Smad3 enhanced the chemosensitivity of HCC cells to cisplatin. Smad3 upregulated p21Waf1/Cip1 and downregulated c-myc and bcl2 with the treatment of cisplatin. Moreover, overexpression of smad3 repressed the phosphorylation of AKT, and vice versa. Inhibition of PI3K/AKT pathway by LY294002 restored chemosensitivity of smad3-deficiency cells to cisplatin in HCC. Conclusion: Smad3 sensitizes HCC cells to the effects of cisplatin by repressing phosphorylation of AKT and combination of inhibitor of AKT pathway and conventional chemotherapy may be a potential way to solve drug resistance in HCC. PMID:27110775

  18. Akt-mediated Phosphorylation of XLF Impairs Non-homologous End Joining DNA Repair

    PubMed Central

    Liu, Pengda; Gan, Wenjian; Guo, Chunguang; Xie, Anyong; Gao, Daming; Guo, Jianping; Zhang, Jinfang; Willis, Nicholas; Su, Arthur; Asara, John M.; Scully, Ralph; Wei, Wenyi

    2015-01-01

    SUMMARY Deficiency in repair of damaged DNA leads to genomic instability and is closely associated with tumorigenesis. Most DNA double-strand-breaks (DSBs) are repaired by two major mechanisms, homologous-recombination (HR) and non-homologous-end-joining (NHEJ). Although Akt has been reported to suppress HR, its role in NHEJ remains elusive. Here, we report that Akt phosphorylates XLF at Thr181 to trigger its dissociation from the DNA ligase IV/XRCC4 complex, and promotes its interaction with 14-3-3β leading to XLF cytoplasmic retention, where cytosolic XLF is subsequently degraded by SCFβ-TRCP in a CKI-dependent manner. Physiologically, upon DNA damage, XLF-T181E expressing cells display impaired NHEJ and elevated cell death. Whereas a cancer-patient-derived XLF-R178Q mutant, deficient in XLF-T181 phosphorylation, exhibits an elevated tolerance of DNA damage. Together, our results reveal a pivotal role for Akt in suppressing NHEJ and highlight the tight connection between aberrant Akt hyper-activation and deficiency in timely DSB repair, leading to genomic instability and tumorigenesis. PMID:25661488

  19. IL-6 cytoprotection in hyperoxic acute lung injury occurs via PI3K/Akt-mediated Bax phosphorylation

    PubMed Central

    Kolliputi, Narasaiah; Waxman, Aaron B.

    2009-01-01

    IL-6 overexpression protects mice from hyperoxic acute lung injury in vivo, and treatment with IL-6 protects cells from oxidant-mediated death in vitro. The mechanisms of protection, however, are not clear. We characterized the expression, localization, and regulation of Bax, a proapoptotic member of the Bcl-2 family, in wild-type (WT) and IL-6 lung-specific transgenic (Tg+) mice exposed to 100% O2 and in human umbilical vein endothelial cells (HUVEC) treated with H2O2 and IL-6. In control HUVEC treated with H2O2 or in WT mice exposed to 100% O2, a marked induction of Bax translocation and dimerization was associated with increased JNK and p38 kinase activity. In contrast, specific JNK or p38 kinase inhibitors or treatment with IL-6 inhibited Bax mitochondrial translocation and apoptosis of HUVEC. IL-6 Tg+ mice exposed to 100% O2 exhibited enhanced phosphatidylinositol 3-kinase (PI3K)/Akt kinase and increased serine phosphorylation of Bax at Ser184 compared with WT mice. The PI3K-specific inhibitor LY-2940002 blocked this IL-6-induced Bax phosphorylation and promoted cell death. Furthermore, IL-6 potently blocked hyperoxia- or oxidant-induced Bax insertion into mitochondrial membranes. Thus IL-6 functions in a cytoprotective manner, in part, by suppressing Bax translocation and dimerization through PI3K/Akt-mediated Bax phosphorylation. PMID:19376889

  20. ERK and AKT phosphorylation status in lung cancer and emphysema using nanocapillary isoelectric focusing

    PubMed Central

    Crosbie, Philip A J; Crosbie, Emma J; Aspinall-O'Dea, Mark; Walker, Michael; Harrison, Rebecca; Pernemalm, Maria; Shah, Rajesh; Joseph, Leena; Booton, Richard; Pierce, Andrew; Whetton, Anthony D

    2016-01-01

    Background Emphysema is an independent risk factor for the development of lung cancer in smokers. Activation of oncogenic signalling proteins AKT and ERK by phosphorylation has an established role in the development of lung cancer and has also been implicated in the pathogenesis of emphysema. The aim of this study was to compare the protein level and phosphorylation status of AKT and ERK in paired lung cancer and emphysema tissue using a highly sensitive phosphoprotein analysis approach. Methods An antibody-based, nanocapillary isoelectric focusing (cIEF) assay was used to determine the relative quantities and phosphorylation status of AKT and ERK in tumour and matched lung tissue from patients, with or without evidence of emphysema, undergoing curative resection for non-small cell lung cancer. Results 20 patients with adenocarcinoma (n=9) or squamous cell carcinoma (n=11) of the lung were included (mean age 67.3 years (SD 7.5, range 47–80 years)), 12 were men and all were current (n=10) or former smokers (n=10). Paired macroscopically normal lung tissue was either histologically normal (n=7) or showed emphysema (n=13). Total and phosphorylated AKT levels were fourfold (p=0.0001) and fivefold (p=0.001) higher in tumour compared with matched lung, respectively. There was no correlation with tumour histology, stage or differentiation; however, total AKT signal in tumour was significantly correlated with fluorodeoxyglucose avidity on positron emission tomography-CT scan (r=0.53, p=0.035). Total ERK was not differentially expressed, but doubly phosphorylated (activated) ERK was threefold higher in emphysema (23.5%, SD 9.2) than either matched tumour (8.8%, SD 8.6) or normal lung tissue (8.3%, SD 9.0) and correlated with the histological severity of emphysema (p=0.005). Conclusions cIEF offers opportunities for quantifying subtle shifts in the phosphorylation status of oncoproteins in nanogram amounts of lung tissue. ERK activation is a feature of emphysema. PMID

  1. Novel RNA chaperone domain of RNA-binding protein La is regulated by AKT phosphorylation

    PubMed Central

    Kuehnert, Julia; Sommer, Gunhild; Zierk, Avery W.; Fedarovich, Alena; Brock, Alexander; Fedarovich, Dzmitry; Heise, Tilman

    2015-01-01

    The cellular function of the cancer-associated RNA-binding protein La has been linked to translation of viral and cellular mRNAs. Recently, we have shown that the human La protein stimulates IRES-mediated translation of the cooperative oncogene CCND1 in cervical cancer cells. However, there is little known about the underlying molecular mechanism by which La stimulates CCND1 IRES-mediated translation, and we propose that its RNA chaperone activity is required. Herein, we show that La binds close to the CCND1 start codon and demonstrate that La's RNA chaperone activity can change the folding of its binding site. We map the RNA chaperone domain (RCD) within the C-terminal region of La in close proximity to a novel AKT phosphorylation site (T389). Phosphorylation at T389 by AKT-1 strongly impairs its RNA chaperone activity. Furthermore, we demonstrate that the RCD as well as T389 is required to stimulate CCND1 IRES-mediated translation in cells. In summary, we provide a model whereby a novel interplay between RNA-binding, RNA chaperoning and AKT phosphorylation of La protein regulates CCND1 IRES-mediated translation. PMID:25520193

  2. Sustained Oxidative Stress Causes Late Acute Renal Failure via Duplex Regulation on p38 MAPK and Akt Phosphorylation in Severely Burned Rats

    PubMed Central

    Cai, Xiaoqing; Wang, Dexin; Wu, Kaimin; Chen, Hongli; Li, Jia; Lei, Wei

    2013-01-01

    Background Clinical evidence indicates that late acute renal failure (ARF) predicts high mortality in severely burned patients but the pathophysiology of late ARF remains undefined. This study was designed to test the hypothesis that sustained reactive oxygen species (ROS) induced late ARF in a severely burned rat model and to investigate the signaling mechanisms involved. Materials and Methods Rats were exposed to 100°C bath for 15 s to induce severe burn injury (40% of total body surface area). Renal function, ROS generation, tubular necrosis and apoptosis, and phosphorylation of MAPK and Akt were measured during 72 hours after burn. Results Renal function as assessed by serum creatinine and blood urea nitrogen deteriorated significantly at 3 h after burn, alleviated at 6 h but worsened at 48 h and 72 h, indicating a late ARF was induced. Apoptotic cells and cleavage caspase-3 in the kidney went up slowly and turned into significant at 48 h and 72 h. Tubular cell ROS production shot up at 6 h and continuously rose during the 72-h experiment. Scavenging ROS with tempol markedly attenuated tubular apoptosis and renal dysfunction at 72 h after burn. Interestingly, renal p38 MAPK phosphorylation elevated in a time dependent manner whereas Akt phosphorylation increased during the first 24 h but decreased at 48 h after burn. The p38 MAPK specific inhibitor SB203580 alleviated whereas Akt inhibitor exacerbated burn-induced tubular apoptosis and renal dysfunction. Furthermore, tempol treatment exerted a duplex regulation through inhibiting p38 MAPK phosphorylation but further increasing Akt phosphorylation at 72 h postburn. Conclusions These results demonstrate that sustained renal ROS overproduction induces continuous tubular cell apoptosis and thus a late ARF at 72 h after burn in severely burned rats, which may result from ROS-mediated activation of p38 MAPK but a late inhibition of Akt phosphorylation. PMID:23349934

  3. Antiplatelet activity of loureirin A by attenuating Akt phosphorylation: In vitro studies.

    PubMed

    Hao, Hong-Zhen; He, Ao-Di; Wang, Dao-Chun; Yin, Zhao; Zhou, Ya-Jun; Liu, Gang; Liang, Ming-Lu; Da, Xing-Wen; Yao, Guang-Qiang; Xie, Wen; Xiang, Ji-Zhou; Ming, Zhang-Yin

    2015-01-01

    Loureirin A is a flavonoid extracted from Dragon׳s Blood that has been used to promote blood circulation and remove stasis in Chinese traditional medicine. However, the mechanisms of these effects are not fully understood. We explored the anti-platelet activity and underlying mechanism of loureirin A in vitro. Our results indicated that loureirin A negatively affected agonist-induced platelet aggregation such as collagen, collagen-related peptide (CRP), ADP and thrombin. Loureirin A inhibited collagen-induced platelet ATP secretion and thrombin-stimulated P-selectin expression in a dose-dependent manner. Platelet spreading on immobilized fibrinogen was significantly impaired in the presence of loureirin A. Immunoblotting analysis indicated that 100μM of loureirin A almost completely eliminated collagen-induced Akt phosphorylation at Ser473. Interestingly, a submaximal dose (50μM) of loureirin A had an additive inhibitory effect with the phosphoinositide 3-kinase (PI3K) inhibitor Ly294002 on collage-induced Akt phosphorylation in platelets. Taken together, loureirin A had an inhibitory effect on platelet activation, perhaps through an impairment of PI3K/Akt signaling. PMID:25445049

  4. Histone Deacetylase Inhibition Promotes Osteoblast Maturation by Altering the Histone H4 Epigenome and Reduces Akt Phosphorylation*

    PubMed Central

    Dudakovic, Amel; Evans, Jared M.; Li, Ying; Middha, Sumit; McGee-Lawrence, Meghan E.; van Wijnen, Andre J.; Westendorf, Jennifer J.

    2013-01-01

    Bone has remarkable regenerative capacity, but this ability diminishes during aging. Histone deacetylase inhibitors (HDIs) promote terminal osteoblast differentiation and extracellular matrix production in culture. The epigenetic events altered by HDIs in osteoblasts may hold clues for the development of new anabolic treatments for osteoporosis and other conditions of low bone mass. To assess how HDIs affect the epigenome of committed osteoblasts, MC3T3 cells were treated with suberoylanilide hydroxamic acid (SAHA) and subjected to microarray gene expression profiling and high-throughput ChIP-Seq analysis. As expected, SAHA induced differentiation and matrix calcification of osteoblasts in vitro. ChIP-Seq analysis revealed that SAHA increased histone H4 acetylation genome-wide and in differentially regulated genes, except for the 500 bp upstream of transcriptional start sites. Pathway analysis indicated that SAHA increased the expression of insulin signaling modulators, including Slc9a3r1. SAHA decreased phosphorylation of insulin receptor β, Akt, and the Akt substrate FoxO1, resulting in FoxO1 stabilization. Thus, SAHA induces genome-wide H4 acetylation and modulates the insulin/Akt/FoxO1 signaling axis, whereas it promotes terminal osteoblast differentiation in vitro. PMID:23940046

  5. Casein kinase 2 dependent phosphorylation of neprilysin regulates receptor tyrosine kinase signaling to Akt.

    PubMed

    Siepmann, Martin; Kumar, Sathish; Mayer, Günter; Walter, Jochen

    2010-01-01

    Neprilysin (NEP) is a type II membrane metalloproteinase that cleaves physiologically active peptides at the cell surface thus regulating the local concentration of these peptides available for receptor binding and signal transduction. In addition, the cytoplasmic N-terminal domain of NEP interacts with the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) thereby regulating intracellular signaling via Akt. Thus, NEP serves dual functions in extracellular and intracellular signal transduction. Here, we show that NEP undergoes phosphorylation at serine residue 6 within the N-terminal cytoplasmic domain. In vitro and cell culture experiments demonstrate that Ser 6 is efficiently phosphorylated by protein kinase CK2. The phosphorylation of the cytoplasmic domain of NEP inhibits its interaction with PTEN. Interestingly, expression of a pseudophosphorylated NEP variant (Ser6Asp) abrogates the inhibitory effect of NEP on insulin/insulin-like growth factor-1 (IGF-1) stimulated activation of Akt. Thus, our data demonstrate a regulatory role of CK2 in the interaction of NEP with PTEN and insulin/IGF-1 signaling. PMID:20957047

  6. PTEN-inhibition by zinc ions augments interleukin-2-mediated Akt phosphorylation.

    PubMed

    Plum, Laura Marie; Brieger, Anne; Engelhardt, Gabriela; Hebel, Silke; Nessel, Andreas; Arlt, Marcus; Kaltenberg, Jennifer; Schwaneberg, Ulrich; Huber, Michael; Rink, Lothar; Haase, Hajo

    2014-07-01

    Free zinc ions (Zn(2+)) participate in several signaling pathways. The aim of the present study was to investigate a potential involvement of Zn(2+) in the PI3K/Akt pathway of interleukin (IL)-2 signaling in T-cells. The IL-2 receptor triggers three major pathways, ERK1/2, JAK/STAT5, and PI3K/Akt. We have previously shown that an IL-2-mediated release of lysosomal Zn(2+) into the cytoplasm activates ERK1/2, but not STAT5. In the present study, Akt phosphorylation in response to IL-2 was abrogated by the Zn(2+) chelator N,N,N',N'-tetrakis-2(pyridyl-methyl)ethylenediamine, and was induced by treatment with Zn(2+) and the ionophore pyrithione. The latter were ineffective in cells that were treated with siRNA against the phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a phosphatase that degrades the lipid second messenger PI(3,4,5)P3, which is produced by PI3K and leads to activation of Akt. Inhibition of recombinant PTEN by Zn(2+)in vitro yielded an IC50 of 0.59 nM. Considering a resting free cytoplasmic Zn(2+) level of 0.2 nM in the T-cell line CTLL-2, this seems ideally suited for dynamic regulation by cellular Zn(2+). Oxidation with H2O2 and supplementation with Zn(2+) led to similar changes in the CD spectrum of PTEN. Moreover, Zn(2+) partially prevented the oxidation of cysteines 71 and 124. Hence, we hypothesize that zinc signals affect the IL-2-dependent PI3K/Akt pathway by inhibiting the negative regulator PTEN through binding with a sub-nanomolar affinity to cysteine residues that are essential for its catalytic activity. PMID:24759986

  7. Targeted deletion of Kif18a protects from colitis-associated colorectal (CAC) tumors in mice through impairing Akt phosphorylation

    SciTech Connect

    Zhu, Houbao; Xu, Wangyang; Zhang, Hongxin; Liu, Jianbing; Xu, Haimin; Lu, Shunyuan; Dang, Suying; Kuang, Ying; Jin, Xiaolong; Wang, Zhugang

    2013-08-16

    Highlights: •Kif18A is up-regulated in CAC of mouse model. •Kif18a{sup −/−} mice are protected from CAC. •Tumor cells from Kif18a{sup −/−} mice undergo more apoptosis. •Kif18A deficiency induces poor Atk phosphorylation. -- Abstract: Kinesins are a superfamily of molecular motors involved in cell division or intracellular transport. They are becoming important targets for chemotherapeutic intervention of cancer due to their crucial role in mitosis. Here, we demonstrate that the kinesin-8 Kif18a is overexpressed in murine CAC and is a crucial promoter during early CAC carcinogenesis. Kif18a-deficient mice are evidently protected from AOM–DSS-induced colon carcinogenesis. Kif18A is responsible for proliferation of colonic tumor cells, while Kif18a ablation in mice promotes cell apoptosis. Mechanistically, Kif18a is responsible for induction of Akt phosphorylation, which is known to be associated with cell survival regulation. In conclusion, Kif18a is critical for colorectal carcinogenesis in the setting of inflammation by mechanisms of increased PI3K-AKT signaling. Inhibition of Kif18A activity may be useful in the prevention or chemotherapeutic intervention of CAC.

  8. Phosphorylation of the translation initiation factor eIF2α at serine 51 determines the cell fate decisions of Akt in response to oxidative stress.

    PubMed

    Rajesh, K; Krishnamoorthy, J; Kazimierczak, U; Tenkerian, C; Papadakis, A I; Wang, S; Huang, S; Koromilas, A E

    2015-01-01

    Phosphorylation of the α subunit of the translation initiation factor eIF2 at serine 51 (eIF2αP) is a master regulator of cell adaptation to various forms of stress with implications in antitumor treatments with chemotherapeutic drugs. Herein, we demonstrate that genetic loss of the eIF2α kinases PERK and GCN2 or impaired eIF2αP by genetic means renders immortalized mouse fibroblasts as well as human tumor cells increasingly susceptible to death by oxidative stress. We also show that eIF2αP facilitates Akt activation in cells subjected to oxidative insults. However, whereas Akt activation has a pro-survival role in eIF2αP-proficient cells, the lesser amount of activated Akt in eIF2αP-deficient cells promotes death. At the molecular level, we demonstrate that eIF2αP acts through an ATF4-independent mechanism to control Akt activity via the regulation of mTORC1. Specifically, eIF2αP downregulates mTORC1 activity, which in turn relieves the feedback inhibition of PI3K resulting in the upregulation of the mTORC2-Akt arm. Inhibition of mTORC1 by rapamycin restores Akt activity in eIF2αP-deficient cells but renders them highly susceptible to Akt-mediated death by oxidative stress. Our data demonstrate that eIF2αP acts as a molecular switch that dictates either cell survival or death by activated Akt in response to oxidative stress. Hence, we propose that inactivation of eIF2αP may be a suitable approach to unleash the killing power of Akt in tumor cells treated with pro-oxidant drugs. PMID:25590801

  9. AKT1 Inhibits Epithelial-to-Mesenchymal Transition in Breast Cancer through Phosphorylation-Dependent Twist1 Degradation.

    PubMed

    Li, Chia-Wei; Xia, Weiya; Lim, Seung-Oe; Hsu, Jennifer L; Huo, Longfei; Wu, Yun; Li, Long-Yuan; Lai, Chien-Chen; Chang, Shih-Shin; Hsu, Yi-Hsin; Sun, Hui-Lung; Kim, Jongchan; Yamaguchi, Hirohito; Lee, Dung-Fang; Wang, Hongmei; Wang, Yan; Chou, Chao-Kai; Hsu, Jung-Mao; Lai, Yun-Ju; LaBaff, Adam M; Ding, Qingqing; Ko, How-Wen; Tsai, Fuu-Jen; Tsai, Chang-Hai; Hortobagyi, Gabriel N; Hung, Mien-Chie

    2016-03-15

    Epithelial-to-mesenchymal transition (EMT) is an essential physiologic process that promotes cancer cell migration, invasion, and metastasis. Several lines of evidence from both cellular and genetic studies suggest that AKT1/PKBα, but not AKT2 or AKT3, serves as a negative regulator of EMT and breast cancer metastasis. However, the underlying mechanism by which AKT1 suppresses EMT remains poorly defined. Here, we demonstrate that phosphorylation of Twist1 by AKT1 is required for β-TrCP-mediated Twist1 ubiquitination and degradation. The clinically used AKT inhibitor MK-2206, which possesses higher specificity toward AKT1, stabilized Twist1 and enhanced EMT in breast cancer cells. However, we discovered that resveratrol, a naturally occurring compound, induced β-TrCP-mediated Twist1 degradation to attenuate MK-2206-induced EMT in breast cancer cells. Taken together, our findings demonstrate that resveratrol counteracts the unexpected metastatic potential induced by anti-AKT therapy and therefore suggest that the addition of resveratrol to an anti-AKT therapeutic regimen may provide extra support for limiting EMT. PMID:26759241

  10. A novel AKT inhibitor, AZD5363, inhibits phosphorylation of AKT downstream molecules, and activates phosphorylation of mTOR and SMG-1 dependent on the liver cancer cell type

    PubMed Central

    ZHANG, YUNCHENG; ZHENG, YUANWEN; FAHEEM, ALI; SUN, TIANTONG; LI, CHUNYOU; LI, ZHE; ZHAO, DIANTANG; WU, CHAO; LIU, JUN

    2016-01-01

    Due to frequent phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway dysregulation, AKT is typically accepted as a promising anticancer therapeutic target. mTOR, in particular, represents a suitable therapeutic target for hepatocellular carcinoma, whilst suppressor with morphogenetic effect on genitalia family member-1 (SMG-1) is believed to serve a potential tumor suppressor role in human cancer. Despite SMG-1 and mTOR belonging to the same PI3K-related kinase family, the interactions between them are not yet fully understood. In the present study, a novel pyrrolopyrimidine-derived compound, AZD5363, was observed to suppress proliferation in liver cancer Hep-G2 and Huh-7 cells by inhibiting the phosphorylation of downstream molecules in the AKT signal pathway, in a dose- and time-dependent manner. AZD5363 activated the phosphorylation of mTOR, dependent on the liver cancer cell type, as it may have differing effects in various liver cancer cell lines. Additionally, AZD5363 also activated SMG-1 within the same liver cancer cells types, which subsequently activated the phosphorylation of mTOR. In conclusion, the present study indicates that AZD5363 inhibited phosphorylation of AKT downstream molecules, and activated phosphorylation of mTOR and SMG-1, dependent on the liver cancer type. PMID:26998062

  11. Notch signaling regulates the phosphorylation of Akt and survival of lipopolysaccharide-activated macrophages via regulator of G protein signaling 19 (RGS19)

    PubMed Central

    Sangphech, Naunpun; Osborne, Barbara A.; Palaga, Tanapat

    2014-01-01

    Macrophages play critical roles in innate immune defense by sensing microbes using pattern-recognition receptors. Lipopolysaccharide (LPS) stimulates macrophages via TLR, which leads to activation of downstream signaling cascades. In this study, we investigated the roles of a conserved signaling pathway, Notch signaling, in regulating the downstream signaling cascades of the LPS/TLR4 pathways in macrophages. Using a phosphoproteomic approach and a gamma-secretase inhibitor (GSI) to suppress the processing and activation of Notch signaling, we identified regulator of G protein signaling 19 (RGS19) as a target protein whose phosphorylation was affected by GSI treatment. RGS19 is a guanosine triphosphatase (GTPase)-activating protein that functions to negatively regulate G protein-coupled receptors via Gαi/Gαq-linked signaling. Stimulation of RAW264.7 cells with LPS increased the level of the phosphorylated form of RGS19, while LPS stimulation in the presence of GSI decreased its level. GSI treatment did not alter the mRNA level of rgs19. Treatment with GSI or silencing of rgs19 in macrophages impaired the phosphorylation of Akt Thr308 upon LPS stimulation. Furthermore, targeted deletion of a DNA-binding protein and binding partner of the Notch receptor, RBP-Jκ/CSL, in macrophages resulted in delayed and decreased Akt phosphorylation. Because the PI3K/Akt pathway regulates cell survival in various cell types, the cell cycle and cell death were assayed upon GSI treatment, phosphatidylinositol 3 kinase (PI3K) inhibitor treatment or silencing of rgs19. GSI treatment resulted in decreased cell populations in the G1 and S phases, while it increased the cell population of cell death. Similarly, silencing of rgs19 resulted in a decreased cell population in the G1 phase and an increased cell population in the subG1 phase. Inhibition of Akt phosphorylation by PI3K inhibitor in LPS-stimulated macrophages increased cell population in G1 phase, suggesting a possible cell cycle

  12. Involvement of the Na+/Ca2+ exchanger isoform 1 (NCX1) in Neuronal Growth Factor (NGF)-induced Neuronal Differentiation through Ca2+-dependent Akt Phosphorylation*

    PubMed Central

    Secondo, Agnese; Esposito, Alba; Sirabella, Rossana; Boscia, Francesca; Pannaccione, Anna; Molinaro, Pasquale; Cantile, Maria; Ciccone, Roselia; Sisalli, Maria Josè; Scorziello, Antonella; Di Renzo, Gianfranco; Annunziato, Lucio

    2015-01-01

    NGF induces neuronal differentiation by modulating [Ca2+]i. However, the role of the three isoforms of the main Ca2+-extruding system, the Na+/Ca2+ exchanger (NCX), in NGF-induced differentiation remains unexplored. We investigated whether NCX1, NCX2, and NCX3 isoforms could play a relevant role in neuronal differentiation through the modulation of [Ca2+]i and the Akt pathway. NGF caused progressive neurite elongation; a significant increase of the well known marker of growth cones, GAP-43; and an enhancement of endoplasmic reticulum (ER) Ca2+ content and of Akt phosphorylation through an early activation of ERK1/2. Interestingly, during NGF-induced differentiation, the NCX1 protein level increased, NCX3 decreased, and NCX2 remained unaffected. At the same time, NCX total activity increased. Moreover, NCX1 colocalized and coimmunoprecipitated with GAP-43, and NCX1 silencing prevented NGF-induced effects on GAP-43 expression, Akt phosphorylation, and neurite outgrowth. On the other hand, the overexpression of its neuronal splicing isoform, NCX1.4, even in the absence of NGF, induced an increase in Akt phosphorylation and GAP-43 protein expression. Interestingly, tetrodotoxin-sensitive Na+ currents and 1,3-benzenedicarboxylic acid, 4,4′-[1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diylbis(5-methoxy-6,12-benzofurandiyl)]bis-, tetrakis[(acetyloxy)methyl] ester-detected [Na+]i significantly increased in cells overexpressing NCX1.4 as well as ER Ca2+ content. This latter effect was prevented by tetrodotoxin. Furthermore, either the [Ca2+]i chelator(1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid) (BAPTA-AM) or the PI3K inhibitor LY 294002 prevented Akt phosphorylation and GAP-43 protein expression rise in NCX1.4 overexpressing cells. Moreover, in primary cortical neurons, NCX1 silencing prevented Akt phosphorylation, GAP-43 and MAP2 overexpression, and neurite elongation. Collectively, these data show that NCX1 participates in neuronal differentiation

  13. TNFα Mediated IL-6 Secretion Is Regulated by JAK/STAT Pathway but Not by MEK Phosphorylation and AKT Phosphorylation in U266 Multiple Myeloma Cells

    PubMed Central

    Lee, Chansu; Oh, Jeong-In; Park, Juwon; Choi, Jee-Hye; Bae, Eun-Kyung; Lee, Hyun Jung; Jung, Woo June; Lee, Dong Soon; Ahn, Kwang-Sung; Yoon, Sung-Soo

    2013-01-01

    IL-6 and TNFα were significantly increased in the bone marrow aspirate samples of patients with active multiple myeloma (MM) compared to those of normal controls. Furthermore, MM patients with advanced aggressive disease had significantly higher levels of IL-6 and TNFα than those with MM in plateau phase. TNFα increased interleukin-6 (IL-6) production from MM cells. However, the detailed mechanisms involved in signaling pathways by which TNFα promotes IL-6 secretion from MM cells are largely unknown. In our study, we found that TNFα treatments induce MEK and AKT phosphorylation. TNFα-stimulated IL-6 production was abolished by inhibition of JAK2 and IKKβ or by small interfering RNA (siRNA) targeting TNF receptors (TNFR) but not by MEK, p38, and PI3K inhibitors. Also, TNFα increased phosphorylation of STAT3 (ser727) including c-Myc and cyclin D1. Three different types of JAK inhibitors decreased the activation of the previously mentioned pathways. In conclusion, blockage of JAK/STAT-mediated NF-κB activation was highly effective in controlling the growth of MM cells and, consequently, an inhibitor of TNFα-mediated IL-6 secretion would be a potential new therapeutic agent for patients with multiple myeloma. PMID:24151609

  14. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system

    PubMed Central

    Xu, Daichao; Shan, Bing; Lee, Byung-Hoon; Zhu, Kezhou; Zhang, Tao; Sun, Huawang; Liu, Min; Shi, Linyu; Liang, Wei; Qian, Lihui; Xiao, Juan; Wang, Lili; Pan, Lifeng; Finley, Daniel; Yuan, Junying

    2015-01-01

    Regulation of ubiquitin-proteasome system (UPS), which controls the turnover of short-lived proteins in eukaryotic cells, is critical in maintaining cellular proteostasis. Here we show that USP14, a major deubiquitinating enzyme that regulates the UPS, is a substrate of Akt, a serine/threonine-specific protein kinase critical in mediating intracellular signaling transducer for growth factors. We report that Akt-mediated phosphorylation of USP14 at Ser432, which normally blocks its catalytic site in the inactive conformation, activates its deubiquitinating activity in vitro and in cells. We also demonstrate that phosphorylation of USP14 is critical for Akt to regulate proteasome activity and consequently global protein degradation. Since Akt can be activated by a wide range of growth factors and is under negative control by phosphoinosotide phosphatase PTEN, we suggest that regulation of UPS by Akt-mediated phosphorylation of USP14 may provide a common mechanism for growth factors to control global proteostasis and for promoting tumorigenesis in PTEN-negative cancer cells. DOI: http://dx.doi.org/10.7554/eLife.10510.001 PMID:26523394

  15. Increased Akt signaling in the mosquito fat body increases adult survivorship.

    PubMed

    Arik, Anam J; Hun, Lewis V; Quicke, Kendra; Piatt, Michael; Ziegler, Rolf; Scaraffia, Patricia Y; Badgandi, Hemant; Riehle, Michael A

    2015-04-01

    Akt signaling regulates diverse physiologies in a wide range of organisms. We examine the impact of increased Akt signaling in the fat body of 2 mosquito species, the Asian malaria mosquito Anopheles stephensi and the yellow fever mosquito Aedes aegypti. Overexpression of a myristoylated and active form of A. stephensi and Ae. aegypti Akt in the fat body of transgenic mosquitoes led to activation of the downstream signaling molecules forkhead box O (FOXO) and p70 S6 kinase in a tissue and blood meal-specific manner. In both species, increased Akt signaling in the fat body after blood feeding significantly increased adult survivorship relative to nontransgenic sibling controls. In A. stephensi, survivorship was increased by 15% to 45%, while in Ae. aegypti, it increased 14% to 47%. Transgenic mosquitoes fed only sugar, and thus not expressing active Akt, had no significant difference in survivorship relative to nontransgenic siblings. Expression of active Akt also increased expression of fat body vitellogenin, but the number of viable eggs did not differ significantly between transgenic and nontransgenic controls. This work demonstrates a novel mechanism of enhanced survivorship through increased Akt signaling in the fat bodies of multiple mosquito genera and provides new tools to unlock the molecular underpinnings of aging in eukaryotic organisms. PMID:25550465

  16. Phosphorylation of Akt Mediates Anti-Inflammatory Activity of 1-p-Coumaroyl β-D-Glucoside Against Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells

    PubMed Central

    Vo, Van Anh; Lee, Jae-Won; Kim, Ji-Young; Park, Jun-Ho; Lee, Hee Jae; Kim, Sung-Soo; Kwon, Yong-Soo

    2014-01-01

    Hydroxycinnamic acids have been reported to possess numerous pharmacological activities such as antioxidant, anti-inflammatory, and anti-tumor properties. However, the biological activity of 1-p-coumaroyl β-D-glucoside (CG), a glucose ester derivative of p-coumaric acid, has not been clearly examined. The objective of this study is to elucidate the anti-inflammatory action of CG in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. In the present study, CG significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the protein expression of iNOS and COX-2. CG also inhibited LPS-induced secretion of pro-inflammatory cytokines, IL-1β and TNF-α. In addition, CG significantly suppressed LPS-induced degradation of IκB. To elucidate the underlying mechanism by which CG exerts its anti-inflammatory action, involvement of various signaling pathways were examined. CG exhibited significantly increased Akt phosphorylation in a concentration-dependent manner, although MAPKs such as Erk, JNK, and p38 appeared not to be involved. Furthermore, inhibition of Akt/PI3K signaling pathway with wortmannin significantly, albeit not completely, abolished CG-induced Akt phosphorylation and anti-inflammatory actions. Taken together, the present study demonstrates that Akt signaling pathway might play a major role in CG-mediated anti-inflammatory activity in LPS-stimulated RAW264.7 macrophage cells. PMID:24634601

  17. Pistacia chinensis Methanolic Extract Attenuated MAPK and Akt Phosphorylations in ADP Stimulated Rat Platelets In Vitro.

    PubMed

    Park, Ji Young; Hong, Mei; Jia, Qi; Lee, Young-Chul; Yayeh, Taddesse; Hyun, Eujin; Kwak, Dong-Mi; Cho, Jae Youl; Rhee, Man Hee

    2012-01-01

    Pistacia chinensis (Chinese pistache) is a widely grown plant in southern China where the galls extract is a common practice in folk medicine. However, extracts from this plant have never been attempted for their cardiovascular protective effects in experimental setting. Here therefore we aimed to investigate the antiplatelet activity of Pistacia chinensis methanolic extract (PCME) in ADP stimulated rat platelets in vitro. PCME (2.5-20 μg/mL) inhibited ADP-induced platelet aggregation. While PCME diminished [Ca(2+)]i, ATP, and TXA2 release in ADP-activated platelets, it enhanced cAMP production in resting platelets. Likewise, PCME inhibited fibrinogen binding to αIIbβ3 and downregulated JNK, ERK, and Akt phosphorylations. Thus, PCME contains potential antiplatelet compounds that could be deployed for their therapeutic values in cardiovascular pathology. PMID:22899962

  18. Pistacia chinensis Methanolic Extract Attenuated MAPK and Akt Phosphorylations in ADP Stimulated Rat Platelets In Vitro

    PubMed Central

    Park, Ji Young; Hong, Mei; Jia, Qi; Lee, Young-Chul; Yayeh, Taddesse; Hyun, Eujin; Kwak, Dong-Mi; Cho, Jae Youl; Rhee, Man Hee

    2012-01-01

    Pistacia chinensis (Chinese pistache) is a widely grown plant in southern China where the galls extract is a common practice in folk medicine. However, extracts from this plant have never been attempted for their cardiovascular protective effects in experimental setting. Here therefore we aimed to investigate the antiplatelet activity of Pistacia chinensis methanolic extract (PCME) in ADP stimulated rat platelets in vitro. PCME (2.5–20 μg/mL) inhibited ADP-induced platelet aggregation. While PCME diminished [Ca2+]i, ATP, and TXA2 release in ADP-activated platelets, it enhanced cAMP production in resting platelets. Likewise, PCME inhibited fibrinogen binding to αIIbβ3 and downregulated JNK, ERK, and Akt phosphorylations. Thus, PCME contains potential antiplatelet compounds that could be deployed for their therapeutic values in cardiovascular pathology. PMID:22899962

  19. Akt2 influences glycogen synthase activity in human skeletal muscle through regulation of NH2-terminal (sites 2 + 2a) phosphorylation

    PubMed Central

    Birk, Jesper B.; Richter, Erik A.; Ribel-Madsen, Rasmus; Pehmøller, Christian; Hansen, Bo Falck; Beck-Nielsen, Henning; Hirshman, Michael F.; Goodyear, Laurie J.; Vaag, Allan; Poulsen, Pernille; Wojtaszewski, Jørgen F. P.

    2013-01-01

    Type 2 diabetes is characterized by reduced muscle glycogen synthesis. The key enzyme in this process, glycogen synthase (GS), is activated via proximal insulin signaling, but the exact molecular events remain unknown. Previously, we demonstrated that phosphorylation of Thr308 on Akt (p-Akt-Thr308), Akt2 activity, and GS activity in muscle were positively associated with insulin sensitivity. Here, in the same study population, we determined the influence of several upstream elements in the canonical PI3K signaling on muscle GS activation. One-hundred eighty-one nondiabetic twins were examined with the euglycemic hyperinsulinemic clamp combined with excision of muscle biopsies. Insulin signaling was evaluated at the levels of the insulin receptor, IRS-1-associated PI3K (IRS-1-PI3K), Akt, and GS employing activity assays and phosphospecific Western blotting. The insulin-stimulated GS activity was positively associated with p-Akt-Thr308 (P = 0.01) and Akt2 activity (P = 0.04) but not p-Akt-Ser473 or IRS-1-PI3K activity. Furthermore, p-Akt-Thr308 and Akt2 activity were negatively associated with NH2-terminal GS phosphorylation (P = 0.001 for both), which in turn was negatively associated with insulin-stimulated GS activity (P < 0.001). We found no association between COOH-terminal GS phosphorylation and Akt or GS activity. Employing whole body Akt2-knockout mice, we validated the necessity for Akt2 in insulin-mediated GS activation. However, since insulin did not affect NH2-terminal phosphorylation in mice, we could not use this model to validate the observed association between GS NH2-terminal phosphorylation and Akt activity in humans. In conclusion, our study suggests that although COOH-terminal dephosphorylation is likely necessary for GS activation, Akt2-dependent NH2-terminal dephosphorylation may be the site for “fine-tuning” insulin-mediated GS activation in humans. PMID:23321478

  20. Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT.

    PubMed

    Chunhua, Li; Donglan, Lin; Xiuqiong, Fu; Lihua, Zhang; Qin, Fan; Yawei, Liu; Liang, Zhao; Ge, Wen; Linlin, Jing; Ping, Zeng; Kun, Li; Xuegang, Sun

    2013-10-01

    Colorectal cancer (CRC) is a major cause of morbidity and mortality throughout the world. Apigenin is a flavonoid that possesses various clinically relevant properties such as anti-tumour, anti-platelet and anti-inflammatory activities. Our results showed that apigenin has anti-proliferation, anti-invasion and anti-migration effects in three kinds of colorectal adenocarcinoma cell lines, namely SW480, DLD-1 and LS174T. Proteomic analysis with SW480 indicated that apigenin up-regulated the expression of transgelin (TAGLN) in mitochondria to exert its anti-tumour growth and anti-metastasis effects. Real-time quantitative polymerase chain reaction (RQ-PCR) and western blot confirm the up-regulation in all the three colorectal adenocarcinoma cells. An inverse correlation was observed between TAGLN expression and CRC metastasis in tissue microarray staining. TAGLN siRNA increased the viability of SW480. Apigenin decreased the expression of MMP-9 in a dose-dependent manner. Transfection of three truncated forms of TAGLN and wild type has identified TAGLN as a repressor of MMP-9 expression. A synergetic effect was observed in overexpression of TAGLN wild type and apigenin treatment which manifested as lowered phosphorylation of AKT Ser473 and ATK Thr308. In an orthotopic CRC model, apigenin inhibited tumour growth and metastasis to liver and lung. In conclusion, our research provided direct evidence that apigenin inhibited tumour growth and metastasis both in vitro and in vivo. Apigenin up-regulated TAGLN and hence down-regulated MMP-9 expression through decreasing phosphorylation of Akt at Ser473 and in particular Thr308 to prevent cell proliferation and migration. PMID:23773626

  1. Constitutive phosphorylation of the mTORC2/Akt/4E-BP1 pathway in newly derived canine hemangiosarcoma cell lines

    PubMed Central

    2012-01-01

    Background Canine hemangiosarcoma (HSA) is a malignant tumor with poor long-term prognosis due to development of metastasis despite aggressive treatment. The phosphatidyl-inositol-3 kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is involved in its endothelial pathologies; however, it remains unknown how this pathway plays a role in canine HSA. Here, we characterized new canine HSA cell lines derived from nude mice-xenografted canine HSAs and investigated the deregulation of the signaling pathways in these cell lines. Results Seven canine HSA cell lines were established from 3 xenograft canine HSAs and showed characteristics of endothelial cells (ECs), that is, uptake of acetylated low-density lipoprotein and expression of canine-specific CD31 mRNA. They showed varied morphologies and mRNA expression levels for VEGF-A, bFGF, HGF, IGF-I, EGF, PDGF-B, and their receptors. Cell proliferation was stimulated by these growth factors and fetal bovine serum (FBS) in 1 cell line and by FBS alone in 3 cell lines. However, cell proliferation was not stimulated by growth factors and FBS in the remaining 3 cell lines. Phosphorylated p44/42 Erk1/2 was increased by FBS stimulation in 4 cell lines. In contrast, phosphorylation of Akt at Ser473, mTOR complex 1 (mTORC1) at Ser2448, and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) at Ser65 was high in serum-starved condition and not altered by FBS stimulation in 6 cell lines, despite increased phosphorylation of these residues in normal canine ECs. This suggested that the mTORC2/Akt/4E-BP1 pathway was constitutively activated in these 6 canine HSA cell lines. After cell inoculation into nude mice, canine HSA tumors were formed from 4 cell lines and showed Akt and 4E-BP1 phosphorylation identical to the parental cell lines. Conclusions Our findings suggest that the present cell lines may be useful tools for investigating the role of the mTORC2/Akt/4E-BP1 pathway in canine HSA formation both

  2. IL-8 up-regulates proliferative angiogenesis in ischemic myocardium in rabbits through phosphorylation of Akt/GSK-3βser9 dependent pathways

    PubMed Central

    Xie, Qiying; Sun, Zelin; Chen, Meifang; Zhong, Qiaoqing; Yang, Tianlun; Yi, Jun

    2015-01-01

    Background: Therapeutic myocardial angiogenesis is an important compensatory mechanism in severely coronary stenosis. Previous studies demonstrated that interleukin-8 (IL-8) not only plays an important role in inflammation, but also a potent angiogenic factor through p38 mitogen-activated protein kinase (p38MAPK), nuclear factor-kappaB (NK-κB)-dependent pathway in carcinoma. Our study sought to investigate the effects of IL-8 on the angiogenesis and the underlying mechanism in the ischemic myocardium. Methods: Acute myocardial infarction animal model was established with male rabbits by directly suturing the left anterior descending branch, then lentivirus-mediated IL-8 was quarterly injected into the borderline of infarction area immediately. We employed CoCl2 induced hypoxic HUVECs for in vitro ischemia study. Left ventricular end-diastolic diameter (LVEDd) and ejection fraction (EF) were measured by echocardiography in pre-operation and at 6th week after operation. CD34 was detected with immunohistochemisty to analyse angiogenesis. Western blot was performed with regard to IL-8, protein kinase B (PKB/Akt) and Glycogen synthase kinase-3βser9 (GSK-3βser9). For the HUVECs’ proliferation and apoptosis, multiscan spectrum reader at A570 nm and annexin V-FITC/PI staining method were used respectively. Results: The levels of IL-8, phosphorylated Akt and GSK-3βser9 in focal myocardium significantly increased, and the over expression of IL-8 led to an increasing in angiogenesis in rabbits. Hypoxia inhibited cell proliferation and promoted apoptosis. IL-8 induced cell proliferation, phosphorylation of Akt and GSK-3βser9, inhibited apoptosis and Caspase3 expression in HUVECs, which were attenuated by anti-IL-8 or the Akt inhibitor LY294002. Conclusions: The present results indicate that IL-8 can increase angiogenesis in myocardial infarction, which maybe through enhancing Akt and GSK-3βser9 expression, and inhibiting myocardial apoptosis. PMID:26550160

  3. AB044. AGE/RAGE/Akt pathway contributes to prostate cancer cell proliferation by promoting Rb phosphorylation and degradation

    PubMed Central

    Bao, Jiming; Bao, Yawei; Zhao, Shanchao; He, Minyi; Luo, Haihua; Ren, Zhonglu; Lv, Yongjie; Hong, Yingqia

    2016-01-01

    Objective Metabolomic research has revealed that metabolites play an important role in prostate cancer development and progression. Previous studies have suggested that prostate cancer cell proliferation is induced by advanced glycation end products (AGEs) exposure, but the mechanism of this induction remains unknown. This study aim to investigate the molecular mechanisms underlying the proliferative response of prostate cancer cell to the interaction of AGEs and the receptor for advanced glycation end products (RAGE). Methods To investigate this mechanism, we used Western blotting to evaluate the responses of the retinoblastoma (Rb), p-Rb and PI3K/Akt pathway to AGEs stimulation. We also examined the effect of knocking down Rb and blocking the PI3K/Akt pathway on AGEs induced PC-3 cell proliferation. Results Our results indicated that AGE-RAGE interaction enhanced Rb phosphorylation and subsequently decreased total Rb levels. Bioinformatics analysis further indicated a negative correlation between RAGE and RB1 expression in prostate cancer tissue. Furthermore, we observed that AGEs stimulation activated the PI3K/Akt signaling pathway and that blocking PI3K/Akt signaling abrogated AGEs-induced cell proliferation. Conclusions We report, for the first time, that AGE-RAGE interaction enhances prostate cancer cell proliferation by phosphorylation of Rb via the PI3K/Akt signaling pathway.

  4. Epidermal growth factor–stimulated Akt phosphorylation requires clathrin or ErbB2 but not receptor endocytosis

    PubMed Central

    Garay, Camilo; Judge, Gurjeet; Lucarelli, Stefanie; Bautista, Stephen; Pandey, Rohan; Singh, Tanveer; Antonescu, Costin N.

    2015-01-01

    Epidermal growth factor (EGF) binding to its receptor (EGFR) activates several signaling intermediates, including Akt, leading to control of cell survival and metabolism. Concomitantly, ligand-bound EGFR is incorporated into clathrin-coated pits—membrane structures containing clathrin and other proteins—eventually leading to receptor internalization. Whether clathrin might regulate EGFR signaling at the plasma membrane before vesicle scission is poorly understood. We compared the effect of clathrin perturbation (preventing formation of, or receptor recruitment to, clathrin structures) to that of dynamin2 (allowing formation of clathrin structures but preventing EGFR internalization) under conditions in which EGFR endocytosis is clathrin dependent. Clathrin perturbation by siRNA gene silencing, with the clathrin inhibitor pitstop2, or knocksideways silencing inhibited EGF-simulated Gab1 and Akt phosphorylation in ARPE-19 cells. In contrast, perturbation of dynamin2 with inhibitors or by siRNA gene silencing did not affect EGF-stimulated Gab1 or Akt phosphorylation. EGF stimulation enriched Gab1 and phospho-Gab1 within clathrin structures. ARPE-19 cells have low ErbB2 expression, and overexpression and knockdown experiments revealed that robust ErbB2 expression bypassed the requirement for clathrin for EGF-stimulated Akt phosphorylation. Thus clathrin scaffolds may represent unique plasma membrane signaling microdomains required for signaling by certain receptors, a function that can be separated from vesicle formation. PMID:26246598

  5. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Sorescu, George; Boyd, Nolan; Shiojima, Ichiro; Walsh, Kenneth; Du, Jie; Jo, Hanjoong

    2002-01-01

    Recently, we have shown that shear stress stimulates NO(*) production by the protein kinase B/Akt (Akt)-dependent mechanisms in bovine aortic endothelial cells (BAEC) (Go, Y. M., Boo, Y. C., Park, H., Maland, M. C., Patel, R., Pritchard, K. A., Jr., Fujio, Y., Walsh, K., Darley-Usmar, V., and Jo, H. (2001) J. Appl. Physiol. 91, 1574-1581). Akt has been believed to regulate shear-dependent production of NO(*) by directly phosphorylating endothelial nitric-oxide synthase (eNOS) at the Ser(1179) residue (eNOS-S(1179)), but a critical evaluation using specific inhibitors or dominant negative mutants (Akt(AA) or Akt(AAA)) has not been reported. In addition, other kinases, including protein kinase A (PKA) and AMP kinase have also shown to phosphorylate eNOS-S(1179). Here, we show that shear-dependent phosphorylation of eNOS-S(1179) is mediated by an Akt-independent, but a PKA-dependent, mechanism. Expression of Akt(AA) or Akt(AAA) in BAEC by using recombinant adenoviral constructs inhibited phosphorylation of eNOS-S(1179) if cells were stimulated by vascular endothelial growth factor (VEGF), but not by shear stress. As shown before, expression of Akt(AA) inhibited shear-dependent NO(*) production, suggesting that Akt is still an important regulator in NO production. Further studies showed that a selective inhibitor of PKA, H89, inhibited shear-dependent phosphorylation of eNOS-S(1179) and NO(*) production. In contrast, H89 did not inhibit phosphorylation of eNOS-S(1179) induced by expressing a constitutively active Akt mutant (Akt(Myr)) in BAEC, showing that the inhibitor did not affect the Akt pathway. 8-Bromo-cAMP alone phosphorylated eNOS-S(1179) within 5 min without activating Akt, in an H89-sensitive manner. Collectively, these results demonstrate that shear stimulates phosphorylation of eNOS-S(1179) in a PKA-dependent, but Aktindependent manner, whereas the NO(*) production is regulated by the mechanisms dependent on both PKA and Akt. A coordinated interaction

  6. Microcystin-LR promotes proliferation by activating Akt/S6K1 pathway and disordering apoptosis and cell cycle associated proteins phosphorylation in HL7702 cells.

    PubMed

    Liu, Jinghui; Wang, Hao; Wang, Beilei; Chen, Tao; Wang, Xiaofeng; Huang, Pu; Xu, Lihong; Guo, Zonglou

    2016-01-01

    Our previous studies had shown that MC-LR inhibited PP2A activity and hyperphosphorylated PP2A substrates at 24 h exposure in HL7702 cells. Although the cytoskeleton was rearranged, the cellular effects were not observed. The purpose of the present study with HL7702 cell exposed to MC-LR for 1-72 h was to further uncover the adverse effects of MC-LR comprehensively. The results showed that there were no obvious difference in apoptosis rate and cell-cycle distribution but the cell proliferation was changed since 36 h exposure while the uptake of MC-LR and its binding to PP2A/C kept unchanged since 1h exposure. PP2A activity had not manifested continued decline compare to 24h exposure and PP2A regulator α4 was found to release its associated PP2A/C since 1h exposure. The increasing of p-Akt-T308, p-Akt-S473, p-S6K1, p-S6, and p-4E-BP1 since 1h MC-LR exposure indicated that Akt/S6K1 cascade had been activated as early as 1h MC-LR treatment. And, PI3K/Akt inhibitor (LY294002) blocked MC-LR-induced Akt/S6K1 activation and proliferation. Besides, MC-LR also led to hyperphosphorylation of c-Myc, c-Jun, Bcl-2 and Bad and activation of Cdk1. Our study indicated that MC-LR exposure promoted HL7702 cell proliferation and the main mechanism was the activation of Akt/S6K1 cascade. Meanwhile, hyperphosphorylation of Bcl-2, Bad, c-Myc and c-Jun might also be involved. And, the inhibition of PP2A was the major reason for these molecular changes. PMID:26506538

  7. BRAF, KIT and NRAS mutations and expression of c-KIT, phosphorylated extracellular signal-regulated kinase and phosphorylated AKT in Japanese melanoma patients.

    PubMed

    Oyama, Satomi; Funasaka, Yoko; Watanabe, Atsushi; Takizawa, Toshihiro; Kawana, Seiji; Saeki, Hidehisa

    2015-05-01

    To clarify the status of gene mutation and activation of growth signal in melanoma of Japanese patients in vivo, we analyzed the mutation of BRAF exon 15, NRAS exon 2, and KIT exons 9, 11, 13, 17 and 18 in melanoma cells obtained by laser capture microdissection, and performed direct sequencing in 20 cases of acral lentiginous melanoma (ALM) and 17 cases of superficial spreading melanoma (SSM). In the study of the mutation of BRAF, pyrosequencing was also done. To examine the cell proliferation signaling, immunohistochemistry for phosphorylated extracellular signal-regulated kinase (pERK), phosphorylated AKT (phosphorylated AKT) and c-KIT was done. The mutation of BRAF p.V600E was detected in 13 cases of ALM (65.0%) and 12 cases of SSM (70.6%). No NRAS mutation was found in all cases. The mutation in exons 9, 11, and 18 of KIT was detected in nine cases. The mutation of BRAF and KIT showed no correlation with clinical stage, lymph node metastasis, tumor thickness, ulceration and histology. pERK and pAKT was observed in small population of melanoma cells and there was no correlation with gene mutation. Our results indicate that the mutations of BRAF and KIT exist in Japanese melanoma patients, however, the cell growth signaling may be regulated by not only these mutated genes, but by other unknown regulatory factors, which may affect the prognosis of melanoma. PMID:25766129

  8. Alternative splicing of Caspase 9 is modulated by the PI3K/Akt pathway via phosphorylation of SRp30a

    PubMed Central

    Shultz, Jacqueline C.; Goehe, Rachel W.; Wijesinghe, D. Shanaka; Murudkar, Charuta; Hawkins, Amy J.; Shay, Jerry W.; Minna, John D.; Chalfant, Charles E.

    2010-01-01

    Increasing evidence points to the functional importance of alternative splice variations in cancer pathophysiology. Two splice variants are derived from the CASP9 gene via the inclusion (Casp9a) or exclusion (Casp9b) of a four exon cassette. Here we show that alternative splicing of Casp9 is dysregulated in non-small cell lung cancers (NSCLC) regardless of their pathological classification. Based on these findings we hypothesized that survival pathways activated by oncogenic mutation regulated this mechanism. In contrast to K-RasV12 expression, EGFR overexpression or mutation dramatically lowered the Casp9a/9b splice isoform ratio. Moreover, Casp9b downregulation blocked the ability of EGFR mutations to induce anchorage-independent growth. Furthermore, Casp9b expression blocked inhibition of clonogenic colony formation by erlotinib. Interrogation of oncogenic signaling pathways showed that inhibition of PI3K or Akt dramatically increased the Casp9a/9b ratio in NSCLC cells. Finally, Akt was found to mediate exclusion of the exon 3,4,5,6 cassette of Casp9 via the phosphorylation state of the RNA splicing factor SRp30a via serines 199, 201, 227 and 234. Taken together, our findings demonstrate that oncogenic factors activating the PI3Kinase/Akt pathway can regulate alternative splicing of Casp9 via a coordinated mechanism involving the phosphorylation of SRp30a. PMID:21045158

  9. Hyaluronic acid regulates a key redox control factor Nrf2 via phosphorylation of Akt in bovine articular chondrocytes

    PubMed Central

    Onodera, Yuta; Teramura, Takeshi; Takehara, Toshiyuki; Fukuda, Kanji

    2015-01-01

    One important pharmacological function of hyaluronic acid (HA) in chondrocytes is reduction of cellular superoxide generation and accumulation. Here we demonstrated a relationship between HA supplementation and accumulation of Nuclear factor-erythroid-2-related factor 2 (Nrf2), which is a master transcription factor in cellular redox reactions, in cultured chondrocytes derived from bovine joint cartilage. In HA-treated chondrocytes, expression of Nrf2 and its downstream genes was upregulated. In HA-treated chondrocytes, Akt was phosphorylated, and inhibition of Akt activity or suppression of HA receptors CD44 and/or RHAMM with siRNAs prevented HA-mediated Nrf2 accumulation. Furthermore, Nrf2 siRNA inhibited the HA effect on antioxidant enzymes. These results show that HA might contribute to ROS reduction through Nrf2 regulation by activating Akt. Our study suggests a new mechanism for extracellular matrix (ECM)-mediated redox systems in chondrocytes. PMID:26106522

  10. Carboxyl-Terminal Modulator Protein Positively Acts as an Oncogenic Driver in Head and Neck Squamous Cell Carcinoma via Regulating Akt phosphorylation.

    PubMed

    Chang, Jae Won; Jung, Seung-Nam; Kim, Ju-Hee; Shim, Geun-Ae; Park, Hee Sung; Liu, Lihua; Kim, Jin Man; Park, Jongsun; Koo, Bon Seok

    2016-01-01

    The exact regulatory mechanisms of carboxyl-terminal modulator protein (CTMP) and its downstream pathways in cancer have been controversial and are not completely understood. Here, we report a new mechanism of regulation of Akt serine/threonine kinase, one of the most important dysregulated signals in head and neck squamous cell carcinoma (HNSCC) by the CTMP pathway and its clinical implications. We find that HNSCC tumor tissues and cell lines had relatively high levels of CTMP expression. Clinical data indicate that CTMP expression was significantly associated with positive lymph node metastasis (OR = 3.8, P = 0.033) and correlated with poor prognosis in patients with HNSCC. CTMP was also positively correlated with Akt/GSK-3β phosphorylation, Snail up-regulation and E-cadherin down-regulation, which lead to increased proliferation and epithelial-to-mesenchymal transition, suggesting that CTMP expression results in enhanced tumorigenic and metastatic properties of HNSCC cells. Moreover, CTMP suppression restores sensitivity to cisplatin chemotherapy. Intriguingly, all the molecular responses to CTMP regulation are identical regardless of p53 status in HNSCC cells. We conclude that CTMP promotes Akt phosphorylation and functions as an oncogenic driver and prognostic marker in HNSCC irrespective of p53. PMID:27328758

  11. Carboxyl-Terminal Modulator Protein Positively Acts as an Oncogenic Driver in Head and Neck Squamous Cell Carcinoma via Regulating Akt phosphorylation

    PubMed Central

    Chang, Jae Won; Jung, Seung-Nam; Kim, Ju-Hee; Shim, Geun-Ae; Park, Hee Sung; Liu, Lihua; Kim, Jin Man; Park, Jongsun; Koo, Bon Seok

    2016-01-01

    The exact regulatory mechanisms of carboxyl-terminal modulator protein (CTMP) and its downstream pathways in cancer have been controversial and are not completely understood. Here, we report a new mechanism of regulation of Akt serine/threonine kinase, one of the most important dysregulated signals in head and neck squamous cell carcinoma (HNSCC) by the CTMP pathway and its clinical implications. We find that HNSCC tumor tissues and cell lines had relatively high levels of CTMP expression. Clinical data indicate that CTMP expression was significantly associated with positive lymph node metastasis (OR = 3.8, P = 0.033) and correlated with poor prognosis in patients with HNSCC. CTMP was also positively correlated with Akt/GSK-3β phosphorylation, Snail up-regulation and E-cadherin down-regulation, which lead to increased proliferation and epithelial-to-mesenchymal transition, suggesting that CTMP expression results in enhanced tumorigenic and metastatic properties of HNSCC cells. Moreover, CTMP suppression restores sensitivity to cisplatin chemotherapy. Intriguingly, all the molecular responses to CTMP regulation are identical regardless of p53 status in HNSCC cells. We conclude that CTMP promotes Akt phosphorylation and functions as an oncogenic driver and prognostic marker in HNSCC irrespective of p53. PMID:27328758

  12. Leptin Effect on Acetylation and Phosphorylation of Pgc1α in Muscle Cells Associated With Ampk and Akt Activation in High-Glucose Medium.

    PubMed

    García-Carrizo, Francisco; Nozhenko, Yuriy; Palou, Andreu; Rodríguez, Ana M

    2016-03-01

    Leptin is crucial in energy metabolism, including muscle regulation. Peroxisome proliferator activated receptor gamma co-activator 1α (PGC1α) orchestrates energy metabolism and is tightly controlled by post-translational covalent modifications such as phosphorylation and acetylation. We aimed to further the knowledge of PGC1α control by leptin (at physiological levels) in muscle cells by time-sequentially analysing the activation of AMP activated protein kinase (AMPK), P38 mitogen-activated protein kinase (P38 MAPK) and Akt (Protein kinase B)--all known to phosphorylate PGC1α and to be involved in the regulation of its acetylation status--in C2C12 myotubes placed in a high-glucose serum-free medium. We also studied the protein levels of PGC1α, Sirtuin 1, adiponectin, COX IV, mitofusin 2 (Mfn2), and pyruvate dehydrogenase kinase 4 (PDK4). Our main findings suggest an important role of leptin regulating AMPK and Akt phosphorylation, Mfn2 induction and PGC1α acetylation status, with the novelty that the latter in transitorily increased in response to leptin, an effect dependent, at least in part, on AMPK regulation. These post-translational reversible changes in PGC1α in response to leptin, especially the increase in acetylation status, may be related to the physiological role of the hormone in modulating muscle cell response to the physiological/nutritional status. PMID:26218179

  13. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism

    PubMed Central

    Frampton, Gabriel; Invernizzi, Pietro; Bernuzzi, Francesca; Pae, Hae Yong; Quinn, Matthew; Horvat, Darijana; Galindo, Cheryl; Huang, Li; McMillin, Matthew; Cooper, Brandon; Rimassa, Lorenza; DeMorrow, Sharon

    2015-01-01

    Background and objectives Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. Methods The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. Results Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. Conclusions Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies. PMID:22068162

  14. AKT upregulates B-Raf Ser445 phosphorylation and ERK1/2 activation in prostate cancer cells in response to androgen depletion

    PubMed Central

    Hong, Seung-Keun; Jeong, Joseph H.; Chan, Andrew M.; Park, Jong-In

    2013-01-01

    Upregulated ERK1/2 activity is often correlated with AKT activation during prostate cancer (PCa) progression, yet their functional relation needs elucidation. Using androgen-deprived LNCaP cells, in which ERK1/2 activation occurs in strong correlation with AKT activation, we found that AKT-mediated B-Raf regulation is necessary for ERK1/2 activation. Specifically, in response to androgen deprivation, AKT upregulated B-Raf phosphorylation at Ser445 without affecting A-Raf or C-Raf-1. This effect of AKT was abolished by Arg25 to Ala mutation or truncating (Δ4-129) the pleckstrin homology domain of AKT, indicating that the canonical AKT regulation is important for this signaling. Intriguingly, although a constitutively active AKT containing N-terminal myristoylation signal could sufficiently upregulate B-Raf phosphorylation at Ser445 in LNCaP cells, subsequent MEK/ERK activation still required hormone deprivation. In contrast, AKT activity was sufficient to induce not only B-Raf phosphorylation but also MEK/ERK activation in the hormone refractory LNCaP variant, C4-2. These data indicate that androgen depletion may induce MEK/ERK activation through a synergy between AKT-dependent and -independent mechanisms and that the latter may become deregulated in association with castration resistance. In support, consistent AKT-mediated BRaf regulation was also detected in a panel of PCa lines derived from the cPten-/- L mice before and after castration. Our results also demonstrate that AKT regulates androgen receptor levels partly via the Raf/MEK/ERK pathway. This study reveals a novel crosstalk between ERK1/2 and AKT in PCa cells. PMID:23701950

  15. PFKL/miR-128 axis regulates glycolysis by inhibiting AKT phosphorylation and predicts poor survival in lung cancer.

    PubMed

    Yang, Jie; Li, Jingqiu; Le, Yanping; Zhou, Chengwei; Zhang, Shun; Gong, Zhaohui

    2016-01-01

    MicroRNAs (miRNAs) affect cancer cell glucose metabolism by targeting mRNAs of diverse enzymes that have been implicated in oxidative phosphorylation (OXPHOS) and glycolytic pathways. However, the mechanisms that underlie miRNA-mediated regulation of phosphofructokinase (PFK), a key rate-limiting enzyme in glycolysis, remain largely unknown. Here, we show that miR-128 directly targets PFK liver type (PFKL) in lung cancer cells and regulates endogenous expression of PFKL at both the mRNA and protein levels. In line with this, overexpression of miR-128 decreased glucose uptake and lactate production, as well as increased cellular ATP content. Interestingly, knockdown of miR-128 was shown to promote lung cancer cell growth and colony formation. Moreover, we observed that miR-128 expression inversely correlated with PFKL mRNA levels in clinic lung cancer samples and that increased PFKL expression predicted poor overall survival in lung cancer patients. Mechanistically, we showed that miR-128 regulates PFKL via a feedback loop that involves inhibition of the AKT signaling pathway. Together, our results suggest that miR-128 acts as a metabolic regulator in lung cancer cells that may be therapeutically exploited. PMID:27186417

  16. PFKL/miR-128 axis regulates glycolysis by inhibiting AKT phosphorylation and predicts poor survival in lung cancer

    PubMed Central

    Yang, Jie; Li, Jingqiu; Le, Yanping; Zhou, Chengwei; Zhang, Shun; Gong, Zhaohui

    2016-01-01

    MicroRNAs (miRNAs) affect cancer cell glucose metabolism by targeting mRNAs of diverse enzymes that have been implicated in oxidative phosphorylation (OXPHOS) and glycolytic pathways. However, the mechanisms that underlie miRNA-mediated regulation of phosphofructokinase (PFK), a key rate-limiting enzyme in glycolysis, remain largely unknown. Here, we show that miR-128 directly targets PFK liver type (PFKL) in lung cancer cells and regulates endogenous expression of PFKL at both the mRNA and protein levels. In line with this, overexpression of miR-128 decreased glucose uptake and lactate production, as well as increased cellular ATP content. Interestingly, knockdown of miR-128 was shown to promote lung cancer cell growth and colony formation. Moreover, we observed that miR-128 expression inversely correlated with PFKL mRNA levels in clinic lung cancer samples and that increased PFKL expression predicted poor overall survival in lung cancer patients. Mechanistically, we showed that miR-128 regulates PFKL via a feedback loop that involves inhibition of the AKT signaling pathway. Together, our results suggest that miR-128 acts as a metabolic regulator in lung cancer cells that may be therapeutically exploited. PMID:27186417

  17. Dual Targeting of Akt and mTORC1 Impairs Repair of DNA Double-Strand Breaks and Increases Radiation Sensitivity of Human Tumor Cells

    PubMed Central

    Holler, Marina; Grottke, Astrid; Mueck, Katharina; Manes, Julia; Jücker, Manfred

    2016-01-01

    Inhibition of mammalian target of rapamycin-complex 1 (mTORC1) induces activation of Akt. Because Akt activity mediates the repair of ionizing radiation-induced DNA double-strand breaks (DNA-DSBs) and consequently the radioresistance of solid tumors, we investigated whether dual targeting of mTORC1 and Akt impairs DNA-DSB repair and induces radiosensitization. Combining mTORC1 inhibitor rapamycin with ionizing radiation in human non-small cell lung cancer (NSCLC) cells (H661, H460, SK-MES-1, HTB-182, A549) and in the breast cancer cell line MDA-MB-231 resulted in radiosensitization of H661 and H460 cells (responders), whereas only a very slight effect was observed in A549 cells, and no effect was observed in SK-MES-1, HTB-182 or MDA-MB-231 cells (non-responders). In responder cells, rapamycin treatment did not activate Akt1 phosphorylation, whereas in non-responders, rapamycin mediated PI3K-dependent Akt activity. Molecular targeting of Akt by Akt inhibitor MK2206 or knockdown of Akt1 led to a rapamycin-induced radiosensitization of non-responder cells. Compared to the single targeting of Akt, the dual targeting of mTORC1 and Akt1 markedly enhanced the frequency of residual DNA-DSBs by inhibiting the non-homologous end joining repair pathway and increased radiation sensitivity. Together, lack of radiosensitization induced by rapamycin was associated with rapamycin-mediated Akt1 activation. Thus, dual targeting of mTORC1 and Akt1 inhibits repair of DNA-DSB leading to radiosensitization of solid tumor cells. PMID:27137757

  18. JNK and STAT3 signaling pathways converge on Akt-mediated phosphorylation of EZH2 in bronchial epithelial cells induced by arsenic

    PubMed Central

    Chen, Bailing; Liu, Jia; Chang, Qingshan; Beezhold, Kevin; Lu, Yongju; Chen, Fei

    2013-01-01

    The molecular mechanisms by which arsenic (As3+) causes human cancers remain to be fully elucidated. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb-repressive complexes 2 (PRC2) that promotes trimethylation of lysine 27 of histone H3, leading to altered expression of tumor suppressors or oncogenes. In the present study, we determined the effect of As3+ on EZH2 phosphorylation and the signaling pathways important for As3+-induced EZH2 phosphorylation in human bronchial epithelial cell line BEAS-2B. The involvement of kinases in As3+-induced EZH2 phosphorylation was validated by siRNA-based gene silencing. The data showed that As3+ can induce phosphorylation of EZH2 at serine 21 in human bronchial epithelial cells and that the phosphorylation of EZH2 requires an As3+-activated signaling cascade from JNK and STAT3 to Akt. Transfection of the cells with siRNA specific for JNK1 revealed that JNK silencing reduced serine727 phosphorylation of STAT3, Akt activation and EZH2 phosphorylation, suggesting that JNK is the upstream kinase involved in As3+-induced EZH2 phosphorylation. Because As3+ is capable of inducing miRNA-21 (miR-21), a STAT3-regulated miRNA that represses protein translation of PTEN or Spry2, we also tested the role of STAT3 and miR-21 in As3+-induced EZH2 phosphorylation. Ectopic overexpression of miR-21 promoted Akt activation and phosphorylation of EZH2, whereas inhibiting miR-21 by transfecting the cells with anti-miR-21 inhibited Akt activation and EZH2 phosphorylation. Taken together, these results demonstrate a contribution of the JNK, STAT3 and Akt signaling axis to As3+-induced EZH2 phosphorylation. Importantly, these findings may reveal new molecular mechanisms underlying As3+-induced carcinogenesis. PMID:23255093

  19. Sustained postexercise increases in AS160 Thr642 and Ser588 phosphorylation in skeletal muscle without sustained increases in kinase phosphorylation

    PubMed Central

    Schweitzer, George G.; Arias, Edward B.

    2012-01-01

    Prior exercise by rats can induce a sustained increase in muscle Akt substrate of 160 kDa (AS160) phosphorylation on Thr642 (pAS160Thr642). Because phosphorylation of AS160 on both AS160Thr642 and AS160Ser588 is important for insulin-stimulated glucose transport (GT), we determined if exercise would also induce a sustained increase in pAS160Ser588 concomitant with persistently elevated pAS160Thr642 and GT. Given that the mechanisms for sustained postexercise (PEX) effects on pAS160 were uncertain, we also studied the four kinases known to phosphorylate AS160 (Akt, AMPK, RSK, and SGK1). In addition, because the serine/threonine phosphatase(s) that dephosphorylate muscle AS160 were previously unidentified, we assessed the ability of four serine/threonine phosphatases (PP1, PP2A, PP2B, and PP2C) to dephosphorylate AS160. We also evaluated exercise effects on posttranslational modifications (Tyr307 and Leu309) that regulate PP2A. In isolated epitrochlearis muscles from rats, GT at 3hPEX with insulin significantly (P < 0.05) exceeded SED controls. Muscles from 0hPEX vs. 0hSED and 3hPEX vs. 3hSED rats had greater pAS160Thr642 and pAS160Ser588. AMPK was the only kinase with greater phosphorylation at 0hPEX vs. 0hSED, and none had greater phosphorylation at 3hPEX vs. 3hSED. Each phosphatase was able to dephosphorylate pAS160Thr642 and pAS160Ser588 in cell-free assays. Exercise did not alter posttranslational modifications of PP2A. Our results revealed: 1) pAMPK as a potential trigger for increased pAS160Thr642 and pAS160Ser588 at 0hPEX; 2) PP1, PP2A, PP2B, and PP2C were each able to dephosphorylate AS160; and 3) sustained PEX-induced elevations of pAS160Thr642 and pAS160Ser588 were attributable to mechanisms other than persistent phosphorylation of known AS160 kinases or altered posttranslational modifications of PP2A. PMID:22936728

  20. Akt attenuates apoptotic death through phosphorylation of H2A under hydrogen peroxide-induced oxidative stress in PC12 cells and hippocampal neurons

    PubMed Central

    Park, Ji Hye; Kim, Chung Kwon; Lee, Sang Bae; Lee, Kyung-Hoon; Cho, Sung-Woo; Ahn, Jee-Yin

    2016-01-01

    Although the essential role of protein kinase B (PKB)/Akt in cell survival signaling has been clearly established, the mechanism by which Akt mediates the cellular response to hydrogen peroxide (H2O2)-induced oxidative stress remains unclear. We demonstrated that Akt attenuated neuronal apoptosis through direct association with histone 2A (H2A) and phosphorylation of H2A at threonine 17. At early time points during H2O2 exposure of PC12 cells and primary hippocampal neurons, when the cells can tolerate the level of DNA damage, Akt was activated and phosphorylated H2A, leading to inhibition of apoptotic death. At later time points, Akt delivered the NAD+-dependent protein deacetylase Sirtuin 2 (Sirt 2) to the vicinity of phosphorylated H2A in response to irreversible DNA damage, thereby inducing H2A deacetylation and subsequently leading to apoptotic death. Ectopically expressed T17A-substituted H2A minimally interacted with Akt and failed to prevent apoptosis under oxidative stress. Thus Akt-mediated H2A phosphorylation has an anti-apoptotic function in conditions of H2O2-induced oxidative stress in neurons and PC12 cells. PMID:26899247

  1. Absence of the GPR37/PAEL receptor impairs striatal Akt and ERK2 phosphorylation, DeltaFosB expression, and conditioned place preference to amphetamine and cocaine.

    PubMed

    Marazziti, Daniela; Di Pietro, Chiara; Mandillo, Silvia; Golini, Elisabetta; Matteoni, Rafaele; Tocchini-Valentini, Glauco P

    2011-06-01

    The orphan G-protein-coupled receptor 37 (GPR37) colocalizes with the dopamine (DA) transporter (DAT) in mouse nigrostriatal presynaptic membranes, and its genetic ablation in homozygous null-mutant (GPR37-KO) mice provokes the marked increase of plasma membrane expression of DAT, alteration of psychostimulant-induced locomotor activity, and reduction of catalepsy induced by DA-receptor antagonists. We report that extracts from GPR37-KO mice displayed biochemical alterations of the nigrostriatal signaling pathways mediated by D1 and D2 dopaminergic receptors. Null-mutant mice showed an increase of the basal phosphorylation level of the D2-regulated Akt kinase. The basal phosphorylation of the D1-activated ERK2 kinase was not altered, but acute treatments with amphetamine or cocaine failed to produce its specific increase, as detected in samples from wild-type littermates. Furthermore, the chronic administration of cocaine to GPR37-KO mice did not increase the expression of the ΔFosB transcription factor isoforms. Consistently, behavioral analysis showed that null-mutant animals did not respond to the incentive properties of amphetamine or cocaine, in conditioned place preference tests. Thus, the lack of GPR37 affects both ERK2- and Akt-mediated striatal signaling pathways, impairing the biochemical and behavioral responses typically induced by acute and chronic administration of psychostimulant drugs. PMID:21372109

  2. Krüppel-like factor 14 increases insulin sensitivity through activation of PI3K/Akt signal pathway.

    PubMed

    Yang, Min; Ren, Yan; Lin, Zhimin; Tang, Chenchen; Jia, Yanjun; Lai, Yerui; Zhou, Tingting; Wu, Shaobo; Liu, Hua; Yang, Gangyi; Li, Ling

    2015-11-01

    Genome-wide association studies (GWAS) have shown that Krüppel-like factor 14 (KLF14) is associated with type 2 diabetes mellitus (T2DM). However, no report has demonstrated a relationship between KLF14 and glucose metabolism. The aim of this study was to determine whether KLF14 is associated with glucose metabolism and insulin signaling in vitro. The mRNA and protein expressions of KLF14 were determined by Real-time PCR and Western blotting. Glucose uptake was assessed by 2-[(3)H]-deoxyglucose (2-DG) uptake. Western blotting was used to identify the activation of insulin signaling proteins. KLF14 mRNA and protein in fat and muscle were significantly decreased in HFD-fed mice, db/db mice and T2DM patients. Overexpression of KLF14 enhanced insulin-stimulated glucose uptake and the activation of Akt kinase in Hepa1-6 cells. The phosphorylation of insulin receptor (InsR), insulin receptor substrate-1(IRS-1), glycogen synthase kinase-3β (GSK-3β) and Akt also elevated significantly by up-regulation of KLF14. KLF14 overexpression in Hepa1-6 cells prevented the inhibition of glucose uptake and Akt phosphorylation induced by high glucose and/or high insulin, or T2DM serum. However, KLF14's ability to increase glucose uptake and Akt activation was significantly attenuated by LY294002, a PI3-kinase inhibitor. These data suggested that KLF14 could increase insulin sensitivity probably through the PI3K/Akt pathway. PMID:26226221

  3. Activated α2-macroglobulin binding to cell surface GRP78 induces T-loop phosphorylation of Akt1 by PDK1 in association with Raptor.

    PubMed

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2014-01-01

    PDK1 phosphorylates multiple substrates including Akt by PIP3-dependent mechanisms. In this report we provide evidence that in prostate cancer cells stimulated with activated α2-macroglobulin (α2M*) PDK1 phosphorylates Akt in the T-loop at Thr(308) by using Raptor in the mTORC1 complex as a scaffold protein. First we demonstrate that PDK1, Raptor, and mTOR co-immunoprecipitate. Silencing the expression, not only of PDK1, but also Raptor by RNAi nearly abolished Akt phosphorylation at Akt(Thr308) in Raptor-immunoprecipitates of α2M*-stimulated prostate cancer cells. Immunodepleting Raptor or PDK from cell lysates of cells treated with α2M* drastically reduced Akt phosphorylation at Thr(308), which was recovered by adding the supernatant of Raptor- or PDK1-depleted cell lysates, respectively. Studies of insulin binding to its receptor on prostate cancer cells yielded similar results. We thus demonstrate that phosphorylating the T-loop Akt residue Thr(308) by PDK1 requires Raptor of the mTORC1 complex as a platform or scaffold protein. PMID:24516643

  4. Multikinase inhibitor sorafenib exerts cytocidal efficacy against Non-Hodgkin lymphomas associated with inhibition of MAPK14 and AKT phosphorylation.

    PubMed

    Chapuy, Bjoern; Schuelper, Nikolai; Panse, Melanie; Dohm, Andrea; Hand, Elisabeth; Schroers, Roland; Truemper, Lorenz; Wulf, Gerald G

    2011-02-01

    Intracellular signal transduction by kinase-mediated phosphorylation is essential for the survival and growth of lymphoma cells. This study analysed the multikinase inhibitor sorafenib for its cytotoxic activity against lymphoma cells. We found that sorafenib reduced cell viability at low micromolar concentrations in a time-dependent manner in cell lines and primary cell suspensions representing major types of aggressive B- and T-cell lymphomas. In cells surviving short term exposure, proliferative arrest occurred leading to complete loss of in vitro clonogenicity. Previously described sorafenib targets within the RAF kinase family were found to be expressed and phosphorylated in all cell lines, and sorafenib perturbed the activation of classical RAF/MEK/ERK pathway targets. However, using a global phoshoprotein array, the most consistent downstream effect of sorafenib in NHL cells was the inhibition of mitogen-activated protein kinase 14 (MAPK14) and panAKT phosphorylation. In conclusion, sorafenib has significant in vitro efficacy against aggressive B- and T-cell lymphoma cells, associated with inhibition of MAPK14 and panAKT. PMID:21689083

  5. Gentiopicroside and sweroside from Veratrilla baillonii Franch. induce phosphorylation of Akt and suppress Pck1 expression in hepatoma cells.

    PubMed

    Huang, Xian-Ju; Li, Jun; Mei, Zhi-Yi; Chen, Guoxun

    2016-06-01

    The use of phytochemicals and herbal medicines has accompanied human history. Advances in modern biomedical sciences have allowed us to investigate the functional mechanisms of herbal medicines and phytochemicals. Veratrilla baillonii Franch. has long been used as a medicinal herb in southwestern China. Here, we analyzed the effects of an ethanol extract from V. baillonii (VBFE) on the expression levels of the cytosolic form of the phosphoenolpyruvate carboxykinase gene (Pck1) mRNA and components of the insulin signalling cascade in HL1C hepatoma cells. Compared with the insulin control, VBFE treatment inhibited the expression of Pck1 mRNA in a dose-dependent manner. This was associated with the phosphorylation of Akt and Erk1/2 in a time-dependent manner. Further analysis of the purified components of VBFE indicated that gentiopicroside and sweroside from VBFE, alone and in combination, suppressed Pck1 expression and induced Akt and Erk1/2 phosphorylation. In conclusion, gentiopicroside and sweroside suppress Pck1 expression and induce phosphorylation of components in the insulin signalling cascade. This is the first study to demonstrate that gentiopicroside and sweroside show insulin-mimicking effects on the regulation of Pck1 expression. Further studies are warranted to explore the potential of gentiopicroside and sweroside in the control of blood glucose in animals. PMID:27248905

  6. Akt1-mediated Gata3 phosphorylation controls the repression of IFNγ in memory-type Th2 cells

    PubMed Central

    Hosokawa, Hiroyuki; Tanaka, Tomoaki; Endo, Yusuke; Kato, Miki; Shinoda, Kenta; Suzuki, Akane; Motohashi, Shinichiro; Matsumoto, Masaki; Nakayama, Keiichi I.; Nakayama, Toshinori

    2016-01-01

    Th2 cells produce Th2 cytokines such as IL-4, IL-5 and IL-13, but repress Th1 cytokine IFNγ. Recent studies have revealed various distinct memory-type Th2 cell subsets, one of which produces a substantial amount of IFNγ in addition to Th2 cytokines, however it remains unclear precisely how these Th2 cells produce IFNγ. We herein show that phosphorylation of Gata3 at Ser308, Thr315 and Ser316 induces dissociation of a histone deacetylase Hdac2 from the Gata3/Chd4 repressive complex in Th2 cells. We also identify Akt1 as a Gata3-phosphorylating kinase, and the activation of Akt1 induces derepression of Tbx21 and Ifng expression in Th2 cells. Moreover, T-bet-dependent IFNγ expression in IFNγ-producing memory Th2 cells appears to be controlled by the phosphorylation status of Gata3 in human and murine systems. Thus, this study highlights the molecular basis for posttranslational modifications of Gata3 that control the regulation of IFNγ expression in memory Th2 cells. PMID:27053161

  7. Akt1-mediated Gata3 phosphorylation controls the repression of IFNγ in memory-type Th2 cells.

    PubMed

    Hosokawa, Hiroyuki; Tanaka, Tomoaki; Endo, Yusuke; Kato, Miki; Shinoda, Kenta; Suzuki, Akane; Motohashi, Shinichiro; Matsumoto, Masaki; Nakayama, Keiichi I; Nakayama, Toshinori

    2016-01-01

    Th2 cells produce Th2 cytokines such as IL-4, IL-5 and IL-13, but repress Th1 cytokine IFNγ. Recent studies have revealed various distinct memory-type Th2 cell subsets, one of which produces a substantial amount of IFNγ in addition to Th2 cytokines, however it remains unclear precisely how these Th2 cells produce IFNγ. We herein show that phosphorylation of Gata3 at Ser308, Thr315 and Ser316 induces dissociation of a histone deacetylase Hdac2 from the Gata3/Chd4 repressive complex in Th2 cells. We also identify Akt1 as a Gata3-phosphorylating kinase, and the activation of Akt1 induces derepression of Tbx21 and Ifng expression in Th2 cells. Moreover, T-bet-dependent IFNγ expression in IFNγ-producing memory Th2 cells appears to be controlled by the phosphorylation status of Gata3 in human and murine systems. Thus, this study highlights the molecular basis for posttranslational modifications of Gata3 that control the regulation of IFNγ expression in memory Th2 cells. PMID:27053161

  8. Essential Opposite Roles of ERK and Akt Signaling in Cardiac Steroid-Induced Increase in Heart Contractility.

    PubMed

    Buzaglo, Nahum; Rosen, Haim; Ben Ami, Hagit Cohen; Inbal, Adi; Lichtstein, David

    2016-05-01

    Interaction of cardiac steroids (CS) with the Na(+), K(+)-ATPase elicits, in addition to inhibition of the enzyme's activity, the activation of intracellular signaling such as extracellular signal-regulated (ERK) and protein kinase B (Akt). We hypothesized that the activities of these pathways are involved in CS-induced increase in heart contractility. This hypothesis was tested using in vivo and ex vivo wild type (WT) and sarcoplasmic reticulum Ca(2+) atpase1a-deficient zebrafish (accordion, acc mutant) experimental model. Heart contractility was measured in vivo and in primary cardiomyocytes in WT zebrafish larvae and acc mutant. Ca(2+) transients were determined ex vivo in adult zebrafish hearts. CS dose dependently augmented the force of contraction of larvae heart muscle and cardiomyocytes and increased Ca(2+) transients in WT but not in acc mutant. CS in vivo increased the phosphorylation rate of ERK and Akt in the adult zebrafish heart of the two strains. Pretreatment of WT zebrafish larvae or cardiomyocytes with specific MAPK inhibitors completely abolished the CS-induced increase in contractility. On the contrary, pretreatment with Akt inhibitor significantly enhanced the CS-induced increase in heart contractility both in vivo and ex vivo without affecting CS-induced Ca(2+) transients. Furthermore, pretreatment of the acc mutant larvae or cardiomyocytes with Akt inhibitor restored the CS-induced increase in heart contractility also without affecting Ca(2+) transients. These results support the notion that the activity of MAPK pathway is obligatory for CS-induced increases in heart muscle contractility. Akt activity, on the other hand, plays a negative role, via Ca(2+) independent mechanisms, in CS action. These findings point to novel potential pharmacological intervention to increase CS efficacy. PMID:26941172

  9. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness.

    PubMed

    Müller, Anna E; Kreiner, Matthias; Kötter, Sebastian; Lassak, Philipp; Bloch, Wilhelm; Suhr, Frank; Krüger, Martina

    2014-01-01

    Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT) and PEVK (increases PT). Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15 min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively), and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively). Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length (SL) ranging from 1.9 to 2.4 μm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity. PMID:25477822

  10. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness

    PubMed Central

    Müller, Anna E.; Kreiner, Matthias; Kötter, Sebastian; Lassak, Philipp; Bloch, Wilhelm; Suhr, Frank; Krüger, Martina

    2014-01-01

    Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT) and PEVK (increases PT). Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15 min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively), and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively). Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length (SL) ranging from 1.9 to 2.4 μm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity. PMID:25477822

  11. A functional proteogenomic analysis of endometrioid and clear cell carcinomas using reverse phase protein array and mutation analysis: protein expression is histotype-specific and loss of ARID1A/BAF250a is associated with AKT phosphorylation

    PubMed Central

    2014-01-01

    Background Ovarian cancer is now recognized as a number of distinct diseases primarily defined by histological subtype. Both clear cell ovarian carcinomas (CCC) and ovarian endometrioid carcinomas (EC) may arise from endometriosis and frequently harbor mutations in the ARID1A tumor suppressor gene. We studied the influence of histological subtype on protein expression with reverse phase protein array (RPPA) and assessed proteomic changes associated with ARID1A mutation/BAF250a expression in EC and CCC. Methods Immunohistochemistry (IHC) for BAF250a expression was performed on 127 chemotherapy-naive ovarian carcinomas (33 CCC, 29 EC, and 65 high-grade serous ovarian carcinomas (HGSC)). Whole tumor lysates were prepared from frozen banked tumor samples and profiled by RPPA using 116 antibodies. ARID1A mutations were identified by exome sequencing, and PIK3CA mutations were characterized by MALDI-TOF mass spectrometry. SAM (Significance Analysis of Microarrays) was performed to determine differential protein expression by histological subtype and ARID1A mutation status. Multivariate logistic regression was used to assess the impact of ARID1A mutation status/BAF250a expression on AKT phosphorylation (pAKT). PIK3CA mutation type and PTEN expression were included in the model. BAF250a knockdown was performed in 3 clear cell lines using siRNA to ARID1A. Results Marked differences in protein expression were observed that are driven by histotype. Compared to HGSC, SAM identified over 50 proteins that are differentially expressed in CCC and EC. These included PI3K/AKT pathway proteins, those regulating the cell cycle, apoptosis, transcription, and other signaling pathways including steroid hormone signaling. Multivariate models showed that tumors with loss of BAF250a expression showed significantly higher levels of AKT-Thr308 and AKT-Ser473 phosphorylation (p < 0.05). In 31 CCC cases, pAKT was similarly significantly increased in tumors with BAF250a loss on IHC

  12. Grape seed extract enhances eNOS expression and NO production through regulating calcium-mediated AKT phosphorylation in H2O2-treated endothelium.

    PubMed

    Feng, Zhe; Wei, Ri-Bao; Hong, Quan; Cui, Shao-Yuan; Chen, Xiang-Mei

    2010-10-01

    GSE (grape seed extract) has been shown to exhibit protective effects against cardiovascular events and atherosclerosis, although the underlying molecular mechanisms of action are unknown. Herein, we assessed the ability of GSE to enhance eNOS (endothelial nitric oxide synthase) expression and NO (nitric oxide) production in H2O2 (hydrogen peroxide)-treated HUVECs (human umbilical vein endothelial cells). GSE enhanced eNOS expression and NO release in H2O2-treated cells in a dose-dependent manner. GSE inhibited intracellular ROS (reactive oxygen species) and reduced intracellular calcium in a dose-dependent manner in H2O2-treated cells, as shown by confocal microscopy. ROS was inhibited in cells pretreated with 5.0 microM GSE, 2.0 microM TG (thapsigargin) and 20.0 microM 2-APB (2-aminoethoxydiphenyl borate) instead of 0.25 microM extracellular calcium. In addition, GSE enhanced eNOS expression and reduced ROS production via increasing p-AKT (AKT phosphorylation) with high extracellular calcium (13 mM). In conclusion, GSE protected against endothelial injury by up-regulation of eNOS and NO expression via inhibiting InsP3Rs (inositol 1,4,5-trisphosphate receptors)-mediated intracellular excessive calcium release and by activating p-AKT in endothelial cells. PMID:20513234

  13. Augmenter of liver regeneration causes different kinetics of ERK1/2 and Akt/PKB phosphorylation than EGF and induces hepatocyte proliferation in an EGF receptor independent and liver specific manner

    SciTech Connect

    Ilowski, Maren; Putz, Christine; Weiss, Thomas S.; Brand, Stephan; Jauch, Karl-Walter; Hengstler, Jan G.; Thasler, Wolfgang Erwin

    2010-04-16

    Background/Aim: Augmenter of liver regeneration (ALR) is a potent growth factor which supports liver regeneration in experimental animals. The aim of this study was to compare proliferation as well as the kinetics of ERK1/2 and Akt/PKB phosphorylation by recombinant human ALR (rhALR) and EGF in human hepatocytes and extrahepatic cells. Methods: Kinetics of ERK1/2 and Akt/PKB phosphorylation were determined in primary human hepatocytes (phh) after stimulation with rhALR and EGF. Induction of proliferation was analyzed in phh and several cell lines of hepatic and extrahepatic origin by the MTT and [{sup 3}H]-thymidine assay. Results: The kinetics of ERK phosphorylation showed clear differences, whereby rhALR caused a transient and EGF a permanent increase during the observation period of 60 min. For both, Akt and ERK phosphorylation, EGF caused a faster effect with maximal levels observed already after 2 min, whereas rhALR caused maximal phosphorylation between 10 and 15 min. Using the EGF receptor inhibitor AG1478 we provide evidence of an EGF receptor independent induction of proliferation by rhALR. Furthermore, rhALR induced proliferation only in phh and the human liver derived cell lines HepG2 and Chang. In contrast, EGF enhanced proliferation in all analyzed cell types including cell lines of colon, bronchial, pancreatic and gastric origin (SW480, BC1, L36PL and GC1). Conclusion: rhALR and EGF induce different kinetics of ERK and Akt phosphorylation in human hepatocytes. The mitogenic effect of rhALR is liver specific and seems to be at least partially independent from EGF receptor mediated signaling.

  14. Downregulation of AKT3 Increases Migration and Metastasis in Triple Negative Breast Cancer Cells by Upregulating S100A4

    PubMed Central

    Lange, Tobias; Nörz, Dominik; Herzberger, Christiane; Bach, Johanna; Grabinski, Nicole; Gräser, Lareen; Höppner, Frank; Nashan, Björn; Schumacher, Udo; Jücker, Manfred

    2016-01-01

    Background Treatment of breast cancer patients with distant metastases represents one of the biggest challenges in today’s gynecological oncology. Therefore, a better understanding of mechanisms promoting the development of metastases is of paramount importance. The serine/threonine kinase AKT was shown to drive cancer progression and metastasis. However, there is emerging data that single AKT isoforms (i.e. AKT1, AKT2 and AKT3) have different or even opposing functions in the regulation of cancer cell migration in vitro, giving rise to the hypothesis that inhibition of distinct AKT isoforms might have undesirable effects on cancer dissemination in vivo. Methods The triple negative breast cancer cell line MDA-MB-231 was used to investigate the functional roles of AKT in migration and metastasis. AKT single and double knockdown cells were generated using isoform specific shRNAs. Migration was analyzed using live cell imaging, chemotaxis and transwell assays. The metastatic potential of AKT isoform knockdown cells was evaluated in a subcutaneous xenograft mouse model in vivo. Results Depletion of AKT3, but not AKT1 or AKT2, resulted in increased migration in vitro. This effect was even more prominent in AKT2,3 double knockdown cells. Furthermore, combined downregulation of AKT2 and AKT3, as well as AKT1 and AKT3 significantly increased metastasis formation in vivo. Screening for promigratory proteins revealed that downregulation of AKT3 increases the expression of S100A4 protein. In accordance, depletion of S100A4 by siRNA approach reverses the increased migration induced by knockdown of AKT3. Conclusions We demonstrated that knockdown of AKT3 can increase the metastatic potential of triple negative breast cancer cells. Therefore, our results provide a rationale for the development of AKT isoform specific inhibitors. PMID:26741489

  15. Effect of dehydroepiandrosterone (DHEA) on Akt and protein kinase C zeta (PKCζ) phosphorylation in different tissues of C57BL6, insulin receptor substrate (IRS)1(-/-), and IRS2(-/-) male mice fed a high-fat diet.

    PubMed

    Aoki, Kazutaka; Tajima, Kazuki; Taguri, Masataka; Terauchi, Yasuo

    2016-05-01

    We have previously reported that dehydroepiandrosterone (DHEA) suppresses the activity and mRNA expression of the hepatic gluconeogenic enzyme glucose-6-phosphatase (G6Pase), and hepatic glucose production in db/db mice. Tyrosine phosphorylation levels of Insulin receptor substrate (IRS)1 and IRS2 reportedly differ between the liver and muscle tissue and the effect of DHEA on insulin signaling has not been elucidated. Therefore, we examined DHEA's effect on the liver and muscle tissue of IRS1(-/-) and IRS2(-/-) mice. Eight-week-old male C57BL6, IRS1(-/-), and IRS2(-/-) mice were fed a high-fat diet (HFD), or an HFD containing 0.2% DHEA for 4 weeks. In a separate experiment, 8-week-old male C57BL6 mice were fed an HFD or an HFD containing 0.2% androstenedione for 4 weeks. In an insulin tolerance test, DHEA administration decreased the initial plasma glucose levels in the C57BL6, IRS1(-/-), and IRS2(-/-) mice but did not decrease the ratios to the basal blood glucose level. Although DHEA administration increased Akt phosphorylation in the liver of the C57BL6, IRS1(-/-), and IRS2(-/-) mice, androstenedione administration did not increase Akt phosphorylation in the liver of C57BL6 mice. DHEA administration did not increase Akt and PKCζ phosphorylation in the muscle tissue of C57BL6, IRS1(-/-), or IRS2(-/-) mice. However, androstenedione administration increased Akt and PKCζ phosphorylation in the muscle tissue of C57BL6 mice. These findings suggest that the effect of DHEA on insulin action in the liver is self-mediated by DHEA or DHEA sulfate (DHEA-S) in the presence of IRS1, IRS2, or both. PMID:26976654

  16. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes.

    PubMed

    Liu, Tong-Yan; Shi, Chang-Xiang; Gao, Run; Sun, Hai-Jian; Xiong, Xiao-Qing; Ding, Lei; Chen, Qi; Li, Yue-Hua; Wang, Jue-Jin; Kang, Yu-Ming; Zhu, Guo-Qing

    2015-11-01

    Increased glucose production and reduced hepatic glycogen storage contribute to metabolic abnormalities in diabetes. Irisin, a newly identified myokine, induces the browning of white adipose tissue, but its effects on gluconeogenesis and glycogenesis are unknown. In the present study, we investigated the effects and underlying mechanisms of irisin on gluconeogenesis and glycogenesis in hepatocytes with insulin resistance, and its therapeutic role in type 2 diabetic mice. Insulin resistance was induced by glucosamine (GlcN) or palmitate in human hepatocellular carcinoma (HepG2) cells and mouse primary hepatocytes. Type 2 diabetes was induced by streptozotocin/high-fat diet (STZ/HFD) in mice. In HepG2 cells, irisin ameliorated the GlcN-induced increases in glucose production, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) expression, and glycogen synthase (GS) phosphorylation; it prevented GlcN-induced decreases in glycogen content and the phosphoinositide 3-kinase (PI3K) p110α subunit level, and the phosphorylation of Akt/protein kinase B, forkhead box transcription factor O1 (FOXO1) and glycogen synthase kinase-3 (GSK3). These effects of irisin were abolished by the inhibition of PI3K or Akt. The effects of irisin were confirmed in mouse primary hepatocytes with GlcN-induced insulin resistance and in human HepG2 cells with palmitate-induced insulin resistance. In diabetic mice, persistent subcutaneous perfusion of irisin improved the insulin sensitivity, reduced fasting blood glucose, increased GSK3 and Akt phosphorylation, glycogen content and irisin level, and suppressed GS phosphorylation and PEPCK and G6Pase expression in the liver. Irisin improves glucose homoeostasis by reducing gluconeogenesis via PI3K/Akt/FOXO1-mediated PEPCK and G6Pase down-regulation and increasing glycogenesis via PI3K/Akt/GSK3-mediated GS activation. Irisin may be regarded as a novel therapeutic strategy for insulin resistance and type 2 diabetes. PMID

  17. Long chain n-3 polyunsaturated fatty acids increase the efficacy of docetaxel in mammary cancer cells by downregulating Akt and PKCε/δ-induced ERK pathways.

    PubMed

    Chauvin, Lucie; Goupille, Caroline; Blanc, Charly; Pinault, Michelle; Domingo, Isabelle; Guimaraes, Cyrille; Bougnoux, Philippe; Chevalier, Stephan; Mahéo, Karine

    2016-04-01

    Taxanes can induce drug resistance by increasing signaling pathways such as PI3K/Akt and ERK, which promote survival and cell growth in human cancer cells. We have previously shown that long chain n-3 polyunsaturated fatty acids, such as docosahexaenoic acid (DHA, 22:6n-3) decrease resistance of experimental mammary tumors to anticancer drugs. Our objective was to determine whether DHA could increase tumor sensitivity to docetaxel by down-regulating these survival pathways. In docetaxel-treated MDA-MB-231 cells, phosphorylated-ERK1/2 levels were increased by 60% in membrane and nuclear compartments, compared to untreated cells. Our data showed that ERK1/2 activation depended on PKC activation since: i) enzastaurin (a pan-PKC inhibitor) blocked docetaxel-induced ERK1/2 phosphorylation ii) docetaxel increased PKC activity by 30% and phosphatidic acid level by 1.6-fold iii) inhibition of PKCε and PKCδ by siRNA resulted in reduced phosphorylated ERK1/2 levels. In DHA-supplemented cells, docetaxel was unable to increase PKCε and δ levels in membrane and nuclear fractions, resulting in diminished ERK1/2 phosphorylation and increased docetaxel efficacy. Reduced membrane level of PKCε and PKCδ was associated with significant incorporation of DHA in all phospholipids, including phosphatidylcholine which is a major source of phosphatidic acid. Additionally, examination of the Akt pathway showed that DHA could repress docetaxel-induced Ser473Akt phosphorylation. In rat mammary tumors, dietary DHA supplementation during docetaxel chemotherapy repressed ERK and Akt survival pathways and in turn strongly improved taxane efficacy. The P-ERK level was negatively correlated with tumor regression. These findings are of potential clinical importance in treating chemotherapy-refractory cancer. PMID:26821209

  18. SRPK1 and Akt Protein Kinases Phosphorylate the RS Domain of Lamin B Receptor with Distinct Specificity: A Combined Biochemical and In Silico Approach

    PubMed Central

    Nikolakaki, Eleni; Vlassi, Metaxia; Giannakouros, Thomas

    2016-01-01

    Activated Akt has been previously implicated in acting on RS domain-containing proteins. However, it has been questioned whether its action is direct or it is mediated by co-existing SR kinase activity. To address this issue we studied in detail the phosphorylation of Lamin B Receptor (LBR) by Akt. Using synthetic peptides and a set of recombinant proteins expressing mutants of the LBR RS domain we now demonstrate that while all serines of the RS domain represent more or less equal phosphoacceptor sites for SRPK1, Ser80 and Ser82 are mainly targeted by Akt. 3D-modeling combined with molecular dynamics (MD) simulations show that amongst short, overlapping LBR RS-containing peptides complying with the minimum Akt recognition consensus sequence, only those bearing phosphosites either at Ser80 or Ser82 are able to fit into the active site of Akt, at least as effectively as its known substrate, GSK3-β. Combined our results provide evidence that Akt kinases directly phosphorylate an RS domain-containing protein and that both the residues N-terminal the phosphosite and at position +1 are essential for Akt specificity, with the latter substrate position being compatible with the arginine residue of RS-repeats. PMID:27105349

  19. Serine 1179 phosphorylation of endothelial nitric oxide synthase caused by 2,4,6-trinitrotoluene through PI3K/Akt signaling in endothelial cells

    SciTech Connect

    Sun Yang; Sumi, Daigo; Kumagai, Yoshito . E-mail: yk-em-tu@md.tsukuba.ac.jp

    2006-07-01

    Although 2,4,6-trinitrotoluene (TNT) has been found to uncouple nitric oxide synthase (NOS), thereby leading to reactive oxygen species (ROS), cellular response against TNT still remains unclear. Exposure of bovine aortic endothelial cells (BAECs) to TNT (100 {mu}M) resulted in serine 1179 phosphorylation of endothelial NOS (eNOS). With specific inhibitors (wortmannin and LY294002), we found that PI3K/Akt signaling participated in the eNOS phosphorylation caused by TNT, whereas the ERK pathway did not. ROS were generated following exposure of BAECs to TNT. However, TNT-mediated phosphorylation of either eNOS or Akt was drastically blocked by NAC and PEG-CAT. Interestingly, pretreatment with apocynin, a specific inhibitor for NADPH oxidase, diminished the phosphorylation of eNOS and Akt. These results suggest that TNT affects NADPH oxidase, thereby generating hydrogen peroxide, which is capable of activating PI3K/Akt signaling associated with eNOS Ser 1179 phosphorylation.

  20. The loss of NDRG2 expression improves depressive behavior through increased phosphorylation of GSK3β.

    PubMed

    Ichikawa, Tomonaga; Nakahata, Shingo; Tamura, Tomohiro; Manachai, Nawin; Morishita, Kazuhiro

    2015-10-01

    N-myc downstream-regulated gene 2 (NDRG2) is one of the important stress-inducible genes and plays a critical role in negatively regulating PI3K/AKT signaling during hypoxia and inflammation. Through recruitment of PP2A phosphatase, NDRG2 maintains the dephosphorylated status of PTEN to suppress excessive PI3K/AKT signaling, and loss of NDRG2 expression is frequently seen in various types of cancer with enhanced activation of PI3K/AKT signaling. Because NDRG2 is highly expressed in the nervous system, we investigated whether NDRG2 plays a functional role in the nervous system using Ndrg2-deficient mice. Ndrg2-deficient mice do not display any gross abnormalities in the nervous system, but they have a diminished behavioral response associated with anxiety. Ndrg2-deficient mice exhibited decreased immobility and increased head-dipping and rearing behavior in two behavioral models, indicating an improvement of emotional anxiety-like behavior. Moreover, treatment of wild-type mice with the antidepressant drug imipramine reduced the expression of Ndrg2 in the frontal cortex, which was due to the degradation of HIF-1α through reduced expression of HSP90 protein. Furthermore, we found that the down-regulation of Ndrg2 in Ndrg2-deficient mice and imipramine treatment improved mood behavior with enhanced phosphorylation of GSK3β through activation of PI3K/AKT signaling, suggesting that the expression level of NDRG2 has a causal influence on mood-related phenotypes. Collectively, these results suggest that NDRG2 may be a potential target for mood disorders such as depression and anxiety. PMID:26208882

  1. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients

    PubMed Central

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-01-01

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9–25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm), large aggregates (50–70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients. PMID:27187380

  2. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients.

    PubMed

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-01-01

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9-25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25-50 µm), large aggregates (50-70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients. PMID:27187380

  3. Vitamin B₂ Sensitizes Cancer Cells to Vitamin-C-Induced Cell Death via Modulation of Akt and Bad Phosphorylation.

    PubMed

    Chen, Ni; Yin, Shutao; Song, Xinhua; Fan, Lihong; Hu, Hongbo

    2015-08-01

    Vitamin C is an essential dietary nutrient that has a variety of biological functions. Recent studies have provided promising evidence for its additional health benefits, including anticancer activity. Vitamin B2, another essential dietary nutrient, often coexists with vitamin C in some fruits, vegetables, or dietary supplements. The objective of the present study is to determine whether the combination of vitamin C and B2 can achieve a synergistic anticancer activity. MDA-MB-231, MCF-7, and A549 cells were employed to evaluate the combinatory effects of vitamin C and B2. We found that the combination of vitamin C and B2 resulted in a synergistic cell death induction in all cell lines tested. Further mechanistic investigations revealed that vitamin B2 sensitized cancer cells to vitamin C through inhibition of Akt and Bad phosphorylation. Our findings identified vitamin B2 as a promising sensitizer for improving the efficacy of vitamin-C-based cancer chemoprevention and chemotherapy. PMID:26165392

  4. Lack of SIRPα phosphorylation and concomitantly reduced SHP-2-PI3K-Akt2 signaling decrease osteoblast differentiation.

    PubMed

    Holm, Cecilia Koskinen; Engman, Sara; Sulniute, Rima; Matozaki, Takashi; Oldenborg, Per-Arne; Lundberg, Pernilla

    2016-09-01

    Normal differentiation of bone forming osteoblasts is a prerequisite for maintenance of skeletal health and is dependent on intricate cellular signaling pathways, including the essential transcription factor Runx2. The cell surface glycoprotein CD47 and its receptor signal regulatory protein alpha (SIRPα) have both been suggested to regulate bone cell differentiation. Here we investigated osteoblastic differentiation of bone marrow stromal cells from SIRPα mutant mice lacking the cytoplasmic signaling domain of SIRPα. An impaired osteoblastogenesis in SIRPα-mutant cell cultures was demonstrated by lower alkaline phosphatase activity and less mineral formation compared to wild-type cultures. This reduced osteoblastic differentiation potential in SIRPα-mutant stromal cells was associated with a significantly reduced expression of Runx2, osterix, osteocalcin, and alkaline phosphatase mRNA, as well as a reduced phosphorylation of SHP-2 and Akt2, as compared with that in wild-type stromal cells. Addition of a PI3K-inhibitor to wild-type stromal cells could mimic the impaired osteoblastogenesis seen in SIRPα-mutant cells. In conclusion, our data suggest that SIRPα signaling through SHP-2-PI3K-Akt2 strongly influences osteoblast differentiation from bone marrow stromal cells. PMID:27422603

  5. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    PubMed

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway. PMID:26919807

  6. Changes in eNOS phosphorylation contribute to increased arteriolar NO release during juvenile growth

    PubMed Central

    Kang, Lori S.; Nurkiewicz, Timothy R.; Wu, Guoyao

    2012-01-01

    Nitric oxide (NO) mediates a major portion of arteriolar endothelium-dependent dilation in adults, but indirect evidence has suggested that NO contributes minimally to these responses in the young. Isolated segments of arterioles were studied in vitro to verify this age-related increase in NO release and investigate the mechanism by which it occurs. Directly measured NO release induced by ACh or the Ca2+ ionophore A-23187 was five- to sixfold higher in gracilis muscle arterioles from 42- to 46-day-old (juvenile) rats than in those from 25- to 28-day-old (weanling) rats. There were no differences between groups in arteriolar endothelial NO synthase (eNOS) expression or tetrahydrobiopterin levels, and arteriolar l-arginine levels were lower in juvenile vessels than in weanling vessels (104 ± 6 vs.126 ± 3 pmol/mg). In contrast, agonist-induced eNOS Thr495 dephosphorylation and eNOS Ser1177 phosphorylation (events required for maximal activity) were up to 30% and 65% greater, respectively, in juvenile vessels. Juvenile vessels did not show increased expression of enzymes that mediate these events [protein phosphatases 1 and 2A and PKA and PKB (Akt)] or heat shock protein 90, which facilitates Ser1177 phosphorylation. However, agonist-induced colocalization of heat shock protein 90 with eNOS was 34–66% greater in juvenile vessels than in weanling vessels, and abolition of this difference with geldanamycin also abolished the difference in Ser1177 phosphorylation between groups. These findings suggest that growth-related increases in arteriolar NO bioavailability may be due at least partially to changes in the regulation of eNOS phosphorylation and increased signaling activity, with no change in the abundance of eNOS signaling proteins. PMID:22140037

  7. Reduced RKIP enhances nasopharyngeal carcinoma radioresistance by increasing ERK and AKT activity

    PubMed Central

    Yuan, Li; Yi, Hong-Mei; Yi, Hong; Qu, Jia-Quan; Zhu, Jin-Feng; Li, Li-Na; Xiao, Ta; Zheng, Zhen; Lu, Shan-Shan; Xiao, Zhi-Qiang

    2016-01-01

    Raf kinase inhibitory protein (RKIP) functions as a chemo-immunotherapeutic sensitizer of cancers, but regulation of RKIP on tumor radiosensitivity remains largely unexplored. In this study, we investigate the role and mechanism of RKIP in nasopharyngeal carcinoma (NPC) radioresistance. The results showed that RKIP was frequently downregulated in the radioresistant NPC tissues compared with radiosensitive NPC tissues, and its reduction correlated with NPC radioresistance and poor patient survival, and was an independent prognostic factor. In vitro radioresponse assay showed that RKIP overexpression decreased while RKIP knockdown increased NPC cell radioresistance. In the NPC xenografts, RKIP overexpression decreased while RKIP knockdown increased tumor radioresistance. Mechanistically, RKIP reduction promoted NPC cell radioresistance by increasing ERK and AKT activity, and AKT may be a downstream transducer of ERK signaling. Moreover, the levels of phospho-ERK−1/2 and phospho-AKT were increased in the radioresistant NPC tissues compared with radiosensitive ones, and negatively associated with RKIP expression, indicating that RKIP-regulated NPC radioresponse is mediated by ERK and AKT signaling in the clinical samples. Our data demonstrate that RKIP is a critical determinant of NPC radioresponse, and its reduction enhances NPC radioresistance through increasing ERK and AKT signaling activity, highlighting the therapeutic potential of RKIP-ERK-AKT signaling axis in NPC radiosensitization. PMID:26862850

  8. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival

    PubMed Central

    Li, Xuezhi; Lavigne, Pierre; Lavoie, Christine

    2015-01-01

    Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses. PMID:26446845

  9. Akt-mediated regulation of NFκB and the essentialness of NFκB for the oncogenicity of PI3K and Akt

    PubMed Central

    Bai, Dong; Ueno, Lynn; Vogt, Peter K.

    2009-01-01

    The serine/threonine kinase Akt (cellular homolog of murine thymoma virus akt8 oncogene), also known as PKB (protein kinase B), is activated by lipid products of phosphatidylinositol 3-kinase (PI3K). Akt phosphorylates numerous protein targets that control cell survival, proliferation and motility. Previous studies suggest that Akt regulates transcriptional activity of the nuclear factor-κB (NFκB) by inducing phosphorylation and subsequent degradation of inhibitor of κB (IκB). We show here that NFκB-driven transcription increases in chicken embryonic fibroblasts (CEF) transformed by myristylated Akt (myrAkt). Accordingly, both a dominant negative mutant of Akt and Akt inhibitors repress NFκB-dependent transcription. The degradation of the IκB protein is strongly enhanced in Akt-transformed cells, and the loss of NFκB activity by introduction of a super-repressor of NFκB, IκBSR, interferes with PI3K- and Akt-induced oncogenic transformation of CEF. The phosphorylation of the p65 subunit of NFκB at serine 534 is also upregulated in Akt-transformed cells. Our data suggest that the stimulation of NFκB by Akt is dependent on the phosphorylation of p65 at S534, mediated by IKK (IκB kinase) α and β. Akt phosphorylates IKKα on T23, and this phosphorylation event is a prerequisite for the phosphorylation of p65 at S534 by IKKα and β. Our results demonstrate two separate functions of the IKK complex in NFκB activation in cells with constitutive Akt activity: the phosphorylation and consequent degradation of IκB and the phosphorylation of p65. The data further support the conclusion that NFκB activity is essential for PI3K- and Akt-induced oncogenic transformation. PMID:19609947

  10. Wall stretch and thromboxane A2 activate NO synthase (eNOS) in pulmonary arterial smooth muscle cells via H2O2 and Akt-dependent phosphorylation.

    PubMed

    Kim, Hae Jin; Yoo, Hae Young; Jang, Ji Hyun; Lin, Hai Yue; Seo, Eun Yeong; Zhang, Yin Hua; Kim, Sung Joon

    2016-04-01

    Pulmonary arteries (PAs) have high compliance, buffering the wide ranges of blood flow. Here, we addressed a hypothesis that PA smooth muscle cells (PASMCs) express nitric oxide synthases (NOS) that might be activated by mechanical stress and vasoactive agonists. In the myograph study of endothelium-denuded rat PAs, NOS inhibition (L-NAME) induced strong contraction (96 % of 80 mM KCl-induced contraction (80K)) in the presence of 5 nM U46619 (thromboxane A2 (TXA2) analogue) with relatively high basal stretch (2.94 mN, S(+)). With lower basal stretch (0.98 mN, S(-)), however, L-NAME application following U46619 (TXA2/L-NAME) induced weak contraction (27 % of 80K). Inhibitors of nNOS and iNOS had no such effect in S(+) PAs. In endothelium-denuded S(+) mesenteric and renal arteries, TXA2/L-NAME-induced contraction was only 18 and 21 % of 80K, respectively. Expression of endothelial-type NOS (eNOS) in rat PASMCs was confirmed by RT-PCR and immunohistochemistry. Even in S(-) PAs, pretreatment with H2O2 (0.1-10 μM) effectively increased the sensitivity to TXA2/L-NAME (105 % of 80K). Vice versa, NADPH oxidase inhibitors, reactive oxygen species scavengers, or an Akt inhibitor (SC-66) suppressed TXA2/L-NAME-induced contraction in S(+) PAs. In a human PASMC line, immunoblot analysis showed the following: (1) eNOS expression, (2) Ser(1177) phosphorylation by U46619 and H2O2, and (3) Akt activation (Ser(473) phosphorylation) by U46619. In the cell-attached patch clamp study, H2O2 facilitated membrane stretch-activated cation channels in rat PASMCs. Taken together, the muscular eNOS in PAs can be activated by TXA2 and mechanical stress via H2O2 and Akt-mediated signaling, which may counterbalance the contractile signals from TXA2 and mechanical stimuli. PMID:26729266

  11. Modulating Roles of Amiloride in Irradiation-Induced Antiproliferative Effects in Glioblastoma Multiforme Cells Involving Akt Phosphorylation and the Alternative Splicing of Apoptotic Genes

    PubMed Central

    Tang, Jen-Yang

    2013-01-01

    Apoptosis is a key mechanism for enhanced cellular radiosensitivity in radiation therapy. Studies suggest that Akt signaling may play a role in apoptosis and radioresistance. This study evaluates the possible modulating role of amiloride, an antihypertensive agent with a modulating effect to alternative splicing for regulating apoptosis, in the antiproliferative effects induced by ionizing radiation (IR) in glioblastoma multiforme (GBM) 8401 cells. Analysis of cell viability showed that amiloride treatment significantly inhibited cell proliferation in irradiated GBM8401 cells (p<0.05) in a time-dependent manner, especially in cells treated with amiloride with IR post-treatment. In comparison with GBM8401 cells treated with amiloride alone, with GBM8401 cells treated with IR alone, and with human embryonic lung fibroblast control cells (HEL 299), GBM8401 cells treated with IR combined with amiloride showed increased overexpression of phosphorylated Akt, regardless of whether IR treatment was performed before or after amiloride administration. The alternative splicing pattern of apoptotic protease-activating factor-1 (APAF1) in cells treated with amiloride alone, IR alone, and combined amiloride-IR treatments showed more consistent cell proliferation compared to that in other apoptosis-related genes such as baculoviral IAP repeat containing 5 (BIRC5), Bcl-X, and homeodomain interacting protein kinase-3 (HIPK3). In GBM8401 cells treated with amiloride with IR post-treatment, the ratio of prosurvival (-XL,-LC) to proapoptotic (-LN,-S) splice variants of APAF1 was lower than that seen in cells treated with amiloride with IR pretreatment, suggesting that proapoptotic splice variants of APAF1 (APAF1-LN,-S) were higher in the glioblastoma cells treated with amiloride with IR post-treatment, as compared to glioblastoma cells and fibroblast control cells that had received other treatments. Together, these results suggest that amiloride modulates cell radiosensitivity

  12. FV-429 induces apoptosis and inhibits glycolysis by inhibiting Akt-mediated phosphorylation of hexokinase II in MDA-MB-231 cells.

    PubMed

    Zhou, Yuxin; Lu, Na; Qiao, Chen; Ni, Ting; Li, Zhiyu; Yu, Boyang; Guo, Qinglong; Wei, Libin

    2016-09-01

    In this study, the anticancer effect of a newly synthesized flavonoid FV-429, against human breast cancer MDA-MB-231 cells, and the underlying mechanisms were investigated. FV-429 triggered the apoptosis and simultaneously inhibited the glycolysis of MDA-MB-231 cells. Both the HK II activity and its level in mitochondria were significantly down regulated by FV-429. Moreover, FV-429 weakened the interaction between HKII and VDAC, stimulated the detachment of HK II from the mitochondria, and resulted in the opening of the mitochondrial permeability transition pores. Thus FV-429 induced the mitochondrial-mediated apoptosis, showing increased Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (MMP) and activation of caspase-3 and -9, cytochrome c (Cyt c) release, and apoptosis inducing factor (AIF) transposition. Further research revealed that the phosphorylation of mitochondrial HKII via Akt was responsible for the dissociation of HKII and the decreased HKII activity induced by FV-429. Taken together, FV-429 inhibited the phosphorylation of HKII, down-regulated its activity, and stimulated the release of HKII from the mitochondria, resulting the inhibited glycolysis and mitochondrial-mediated apoptosis. The studies provide a molecular basis for the development of flavonoid compounds as novel anticancer agents for breast cancer. © 2015 Wiley Periodicals, Inc. PMID:26258875

  13. Akt2 and Akt3 play a pivotal role in malignant gliomas

    PubMed Central

    Mure, Hideo; Matsuzaki, Kazuhito; Kitazato, Keiko T.; Mizobuchi, Yoshifumi; Kuwayama, Kazuyuki; Kageji, Teruyoshi; Nagahiro, Shinji

    2010-01-01

    Akt, one of the major downstream effectors of phosphatidylinositol 3-kinase, is hyper-expressed and activated in a variety of cancers including glioblastoma. However, the expression profiles of the Akt isoforms Akt1/PKBα, Akt2/PKBβ, and Akt3/PKBγ and their functional roles in malignant glioma are not well understood. Therefore, we examined the protein and mRNA expression patterns of Akt isoforms in tissues from human astrocytomas, glioblastomas, and non-neoplastic regions. We also explored the biological role of each Akt isoform in malignant glioma cells using RNA interference-mediated knock-down and the over-expression of plasmid DNA of each isoform. The expression of Akt1 protein and mRNA was similar in glioma and normal control tissues. Although the protein and mRNA level of Akt2 increased with the pathological grade of malignancy, the expression of Akt3 mRNA and protein decreased as the malignancy grade increased. In U87MG, T98G, and TGB cells, the down-regulation of Akt2 or Akt3 by RNA interference reduced the expression of the phosphorylated form of Bad, resulting in the induction of caspase-dependent apoptosis. Akt1 knock-down did not affect cell growth or survival. We first demonstrate that the over-expression of Akt2 or Akt3 down-regulated the expression of the other protein and that endogenous Akt3 protein showed high kinase activity in U87MG cells. Our data suggest that Akt2 and Akt3 play an important role in the viability of human malignant glioma cells. Targeting Akt2 and Akt3 may hold promise for the treatment of patients with gliomas. PMID:20167810

  14. Hepatitis C virus NS5A promotes insulin resistance through IRS-1 serine phosphorylation and increased gluconeogenesis

    PubMed Central

    Parvaiz, Fahed; Manzoor, Sobia; Iqbal, Jawed; Sarkar-Dutta, Mehuli; Imran, Muhammad; Waris, Gulam

    2015-01-01

    AIM: To investigate the mechanisms of insulin resistance in human hepatoma cells expressing hepatitis C virus (HCV) nonstructural protein 5A (NS5A). METHODS: The human hepatoma cell lines, Huh7 and Huh7.5, were infected with HCV or transiently-transfected with a vector expressing HCV NS5A. The effect of HCV NS5A on the status of the critical players involved in insulin signaling was analyzed using real-time quantitative polymerase chain reaction and Western blot assays. Data were analyzed using Graph Pad Prism version 5.0. RESULTS: To investigate the effect of insulin treatment on the players involved in insulin signaling pathway, we analyzed the status of insulin receptor substrate-1 (IRS-1) phosphorylation in HCV infected cells or Huh7.5 cells transfected with an HCV NS5A expression vector. Our results indicated that there was an increased phosphorylation of IRS-1 (Ser307) in HCV infected or NS5A transfected Huh7.5 cells compared to their respective controls. Furthermore, an increased phosphorylation of Akt (Ser473) was observed in HCV infected and NS5A transfected cells compared to their mock infected cells. In contrast, we observed decreased phosphorylation of Akt Thr308 phosphorylation in HCV NS5A transfected cells. These results suggest that Huh7.5 cells either infected with HCV or ectopically expressing HCV NS5A alone have the potential to induce insulin resistance by the phosphorylation of IRS-1 at serine residue (Ser307) followed by decreased phosphorylation of Akt Thr308, Fox01 Ser256 and GSK3β Ser9, the downstream players of the insulin signaling pathway. Furthermore, increased expression of PECK and glucose-6-phosphatase, the molecules involved in gluconeogenesis, in HCV NS5A transfected cells was observed. CONCLUSION: Taken together, our results suggest the role of HCV NS5A in the induction of insulin resistance by modulating various cellular targets involved in the insulin signaling pathway. PMID:26604643

  15. Myostatin inhibits IGF-I-induced myotube hypertrophy through Akt

    PubMed Central

    Morissette, Michael R.; Cook, Stuart A.; Buranasombati, Cattleya; Rosenberg, Michael A.

    2009-01-01

    Myostatin is a highly conserved negative regulator of skeletal muscle growth. Loss of functional myostatin in cattle, mice, sheep, dogs, and humans results in increased muscle mass. The molecular mechanisms responsible for this increase in muscle growth are not fully understood. Previously, we have reported that phenylephrine-induced cardiac muscle growth and Akt activation are enhanced in myostatin knockout mice compared with controls. Here we report that skeletal muscle from myostatin knockout mice show increased Akt protein expression and overall activity at baseline secondary to an increase in Akt mRNA. We examined the functional role of myostatin modulation of Akt in C2C12 myotubes, a well-established in vitro model of skeletal muscle hypertrophy. Adenoviral overexpression of myostatin attenuated the insulin-like growth factor-I (IGF-I)-mediated increase in myotube diameter, as well as IGF-I-stimulated Akt phosphorylation. Inhibition of myostatin by overexpression of the NH2-terminal portion of myostatin was sufficient to increase myotube diameter and Akt phosphorylation. Coexpression of myostatin and constitutively active Akt (myr-Akt) restored the increase in myotube diameter. Conversely, expression of dominant negative Akt (dn-Akt) with the inhibitory myostatin propeptide blocked the increase in myotube diameter. Of note, ribosomal protein S6 phosphorylation and atrogin-1/muscle atrophy F box mRNA were increased in skeletal muscle from myostain knockout mice. Together, these data suggest myostatin regulates muscle growth at least in part through regulation of Akt. PMID:19759331

  16. Inactivation of the tuberous sclerosis complex-1 and -2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and -independent phosphorylation of tuberin.

    PubMed

    Tee, Andrew R; Anjum, Rana; Blenis, John

    2003-09-26

    The tuberous sclerosis complex (TSC) is a genetic disorder that is caused through mutations in either one of the two tumor suppressor genes, TSC1 and TSC2, that encode hamartin and tuberin, respectively. Interaction of hamartin with tuberin forms a heterodimer that inhibits signaling by the mammalian target of rapamycin to its downstream targets: eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). During mitogenic sufficiency, the phosphoinositide 3-kinase (PI3K)/Akt pathway phosphorylates tuberin on Ser-939 and Thr-1462 that inhibits the tumor suppressor function of the TSC complex. Here we show that tuberin-hamartin heterodimers block protein kinase C (PKC)/MAPK- and phosphatidic acid-mediated signaling toward mammalian target of rapamycin-dependent targets. We also show that two TSC2 mutants derived from TSC patients are defective in repressing phorbol 12-myristate 13-acetate-induced 4E-BP1 phosphorylation. PKC/MAPK signaling leads to phosphorylation of tuberin at sites that overlap with and are distinct from Akt phosphorylation sites. Phosphorylation of tuberin by phorbol 12-myristate 13-acetate was reduced by treatment of cells with either bisindolylmaleimide I or UO126, inhibitors of PKC and MAPK/MEK (MAPK/ERK kinase), respectively, but not by wortmannin (an inhibitor of PI3K). This work reveals that both PI3K-independent and -dependent mechanisms modulate tuberin phosphorylation in vivo. PMID:12867426

  17. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

    PubMed Central

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-01-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  18. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  19. 1,25-Dihydroxyvitamin D{sub 3} induces biphasic NF-{kappa}B responses during HL-60 leukemia cells differentiation through protein induction and PI3K/Akt-dependent phosphorylation/degradation of I{kappa}B

    SciTech Connect

    Tse, A.K.-W.; Wan, C.-K.; Shen, X.-L.; Zhu, G.-Y.; Cheung, H.-Y.; Yang, M.; Fong, W.-F. . E-mail: wffong@hkbu.edu.hk

    2007-05-01

    1,25-Dihydroxyvitamin D{sub 3} (VD{sub 3}) induces differentiation in a number of leukemia cell lines and under various conditions is able to either stimulate or inhibit nuclear factor kappa B (NF-{kappa}B) activity. Here we report a time-dependent biphasic regulation of NF-{kappa}B in VD{sub 3}-treated HL-60 leukemia cells. After VD{sub 3} treatment there was an early {approx} 4 h suppression and a late 8-72 h prolonged reactivation of NF-{kappa}B. The reactivation of NF-{kappa}B was concomitant with increased IKK activities, IKK-mediated I{kappa}B{alpha} phosphorylation, p65 phosphorylation at residues S276 and S536, p65 nuclear translocation and p65 recruitment to the NF-{kappa}B/vitamin D responsive element promoters. In parallel with NF-{kappa}B stimulation, there was an up-regulation of NF-{kappa}B controlled inflammatory and anti-apoptotic genes such as TNF{alpha}, IL-1{beta} and Bcl-xL. VD{sub 3}-triggered reactivation of NF-{kappa}B was associated with PI3K/Akt phosphorylation. PI3K/Akt antagonists suppressed VD{sub 3}-stimulated I{kappa}B{alpha} phosphorylation as well as NF-{kappa}B-controlled gene expression. The early {approx} 4 h VD{sub 3}-mediated NF-{kappa}B suppression coincided with a prolonged increase of I{kappa}B{alpha} protein which require de novo protein synthesis, lasted for as least 72 h and was insensitive to MAPK, IKK or PI3K/Akt inhibitors. Our data suggest a novel biphasic regulation of NF-{kappa}B in VD{sub 3}-treated leukemia cells and our results may have provided the first molecular explanation for the contradictory observations reported on VD{sub 3}-mediated immune-regulation.

  20. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS

    SciTech Connect

    Jee, Hye Jin; Kim, Hyun-Ju; Kim, Ae Jeong; Bae, Yoe-Sik; Bae, Sun Sik; Yun, Jeanho

    2009-06-05

    Akt/PKB plays a pivotal role in cell survival and proliferation. Previously, we reported that UV-irradiation induces extensive cell death in Akt2{sup -/-} mouse embryonic fibroblasts (MEFs) while Akt1{sup -/-} MEFs show cell cycle arrest. Here, we find that Akt1{sup -/-} MEFs exhibit phenotypic changes characteristics of senescence upon UV-irradiation. An enlarged and flattened morphology, a reduced cell proliferation and an increased senescence-associated {beta}-galactosidase (SA {beta}-gal) staining indicate that Akt1{sup -/-} MEFs undergo premature senescence after UV-irradiation. Restoring Akt1 expression in Akt1{sup -/-} MEFs suppressed SA {beta}-gal activity, indicating that UV-induced senescence is due to the absence of Akt1 function. Notably, levels of ROS were rapidly increased upon UV-irradiation and the ROS scavenger NAC inhibits UV-induced senescence of Akt1{sup -/-} MEFs, suggesting that UV light induces premature senescence in Akt1{sup -/-} MEFs by modulating intracellular levels of ROS. In conjunction with our previous work, this indicates that different isoforms of Akt have distinct function in response to UV-irradiation.

  1. Protective effect of rutin on LPS-induced acute lung injury via down-regulation of MIP-2 expression and MMP-9 activation through inhibition of Akt phosphorylation.

    PubMed

    Chen, Wen-Ying; Huang, Yi-Chun; Yang, Ming-Ling; Lee, Chien-Ying; Chen, Chun-Jung; Yeh, Chung-Hsin; Pan, Pin-Ho; Horng, Chi-Ting; Kuo, Wu-Hsien; Kuan, Yu-Hsiang

    2014-10-01

    Lipopolysaccharide (LPS), also called endotoxin, is the important pathogen of acute lung injury (ALI), which is a clinical syndrome that still lacks effective therapeutic medicine. Rutin belongs to vitamin P and possesses various beneficial effects. In this study, we investigate the potential protective effects and the mechanisms of rutin on LPS-induced ALI. Pre-administration with rutin inhibited LPS-induced arterial blood gas exchange and neutrophils infiltration in the lungs. LPS-induced expression of macrophage inflammatory protein (MIP)-2 and activation of matrix metalloproteinase (MMP)-9 were suppressed by rutin. In addition, the inhibitory concentration of rutin on phosphorylation of Akt was similar as MIP-2 expression and MMP-9 activation. In conclusion, rutin is a potential protective agent for ALI via suppressing the blood gas exchange and neutrophil infiltration. The mechanism of rutin is down-regulation of MIP-2 expression and MMP-9 activation through inhibition of Akt phosphorylation. PMID:25091621

  2. Cardamonin inhibits angiotensin II-induced vascular smooth muscle cell proliferation and migration by downregulating p38 MAPK, Akt, and ERK phosphorylation.

    PubMed

    Shen, Yan-Jing; Zhu, Xue-Xin; Yang, Xian; Jin, Bo; Lu, Jin-Jian; Ding, Bin; Ding, Zhi-Shan; Chen, Su-Hong

    2014-07-01

    Cardamonin is a chalconoid isolated from various herbs, such as Alpinia katsumadai and Carya cathayensis Sarg. This study examined the effect of cardamonin on angiotensin II (Ang II)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs) as well as its underlying mechanisms. The results showed that cardamonin significantly inhibited Ang II-induced proliferation and migration in rat VSMCs in a concentration-dependent manner. Moreover, cardamonin suppressed Ang II-induced phosphorylation of p38 MAPK, Akt, and extracellular regulated protein kinase (ERK). These findings indicate that the downregulation of p38 MAPK, Akt, and ERK phosphorylation might be, at least in part, involved in cardamonin-suppressed proliferation and migration induced by Ang II in rat VSMCs. As proliferation and migration of VSMCs play critical roles in the pathogenesis of atherosclerosis, cardamonin might be a potential candidate for atherosclerosis treatment. PMID:24595849

  3. Inhibition of akt phosphorylation diminishes mitochondrial biogenesis regulators, tricarboxylic acid cycle activity and exacerbates recognition memory deficit in rat model of Alzheimer's disease.

    PubMed

    Shaerzadeh, Fatemeh; Motamedi, Fereshteh; Khodagholi, Fariba

    2014-11-01

    3-Methyladenine (3-MA), as a PI3K inhibitor, is widely used for inhibition of autophagy. Inhibition of PI3K class I leads to inhibition of Akt phosphorylation, a central molecule involved in diverse arrays of intracellular cascades in nervous system. Accordingly, in the present study, we aimed to determine the alterations of specific mitochondrial biogenesis markers and mitochondrial function in 3-MA-injected rats following amyloid beta (Aβ) insult. Our data revealed that inhibition of Akt phosphorylation downregulates master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our data also showed that decrease in PGC-1α level presumably is due to decrease in the phosphorylation of cAMP-response element binding and AMP-activated kinase, two upstream activators of PGC-1α. As a consequence, the level of some mitochondrial biogenesis factors including nuclear respiratory factor-1, mitochondrial transcription factor A, and Cytochrome c decreased significantly. Also, activities of tricarboxylic acid cycle (TCA) enzymes such as Aconitase, a-ketoglutarate dehydrogenase, and malate dehydrogenase reduced in the presence of 3-MA with or without Aβ insult. Decrease in mitochondrial biogenesis factors and TCA enzyme activity in the rats receiving 3-MA and Aβ were more compared to the rats that received either alone; indicating the additive destructive effects of these two agents. In agreement with our molecular results, data obtained from behavioral test (using novel objective recognition test) indicated that inhibition of Akt phosphorylation with or without Aβ injection impaired novel recognition (non-spatial) memory. Our results suggest that 3-MA amplified deleterious effects of Aβ by targeting central molecule Akt. PMID:25135709

  4. Mouse hippocampal phosphorylation footprint induced by generalized seizures: Focus on ERK, mTORC1 and Akt/GSK-3 pathways.

    PubMed

    Gangarossa, Giuseppe; Sakkaki, Sophie; Lory, Philippe; Valjent, Emmanuel

    2015-12-17

    Exacerbated hippocampal activity has been associated to critical modifications of the intracellular signaling pathways. We have investigated rapid hippocampal adaptive responses induced by maximal electroshock seizure (MES). Here, we demonstrate that abnormal and exacerbated hippocampal activity induced by MES triggers specific and temporally distinct patterns of phosphorylation of extracellular signal-related kinase (ERK), mammalian target of rapamycin complex (mTORC) and Akt/glycogen synthase kinase-3 (Akt/GSK-3) pathways in the mouse hippocampus. While the ERK pathway is transiently activated, the mTORC1 cascade follows a rapid inhibition followed by a transient activation. This rebound of mTORC1 activity leads to the selective phosphorylation of p70S6K, which is accompanied by an enhanced phosphorylation of the ribosomal subunit S6. In contrast, the Akt/GSK-3 pathway is weakly altered. Finally, MES triggers a rapid upregulation of several plasticity-associated genes as a consequence exacerbated hippocampal activity. The results reported in the present study are reminiscent of the one observed in other models of generalized seizures, thus defining a common molecular footprint induced by intense and aberrant hippocampal activities. PMID:26545981

  5. A heteroglycan from the cyanobacterium Nostoc commune modulates LPS-induced inflammatory cytokine secretion by THP-1 monocytes through phosphorylation of ERK1/2 and Akt.

    PubMed

    Olafsdottir, Astridur; Thorlacius, Gudny Ella; Omarsdottir, Sesselja; Olafsdottir, Elin Soffia; Vikingsson, Arnor; Freysdottir, Jona; Hardardottir, Ingibjorg

    2014-09-25

    Cyanobacteria (blue-green algae) have been consumed as food and used in folk medicine since ancient times to alleviate a variety of diseases. Cyanobacteria of the genus Nostoc have been shown to produce complex exopolysaccharides with antioxidant and antiviral activity. Furthermore, Nostoc sp. are common in cyanolichen symbiosis and lichen polysaccharides are known to have immunomodulating effects. Nc-5-s is a heteroglycan isolated from free-living colonies of Nostoc commune and its structure has been characterized in detail. The aim of this study was to determine the effects of Nc-5-s on the inflammatory response of lipopolysaccharide (LPS)-stimulated human THP-1 monocytes and how the effects are mediated. THP-1 monocytes primed with interferon-γ and stimulated with LPS in the presence of Nc-5-s secreted less of the pro-inflammatory cytokine interleukin (IL)-6 and more of the anti-inflammatory cytokine IL-10 than THP-1 monocytes stimulated without Nc-5-s. In contrast, Nc-5-s increased LPS-induced secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and IL-8. Nc-5-s decreased LPS-induced phosphorylation of the extracellular regulated kinase (ERK)1/2 and Akt kinase, but did not affect phosphorylation of the p38 kinase, activation of the nuclear factor kappa B pathway, nor DNA binding of c-fos. These results show that Nc-5-s has anti-inflammatory effects on IL-6 and IL-10 secretion by THP-1 monocytes, but its effects are pro-inflammatory when it comes to TNF-α and IL-8. Furthermore, they show that the effects of Nc-5-s may be mediated through the ERK1/2 pathway and/or the Akt/phosphoinositide 3-kinase pathway and their downstream effectors. The ability of Nc-5-s to decrease IL-6 secretion, increase IL-10 secretion and moderate ERK1/2 activation indicates a potential for its development as an anti-inflammatory agent. PMID:24877713

  6. Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt.

    PubMed

    Chen, Jialin; Chen, Peng; Backman, Ludvig J; Zhou, Qingjun; Danielson, Patrik

    2016-01-01

    The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway. PMID:27174608

  7. Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt

    PubMed Central

    Chen, Jialin; Chen, Peng; Backman, Ludvig J.; Zhou, Qingjun; Danielson, Patrik

    2016-01-01

    The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway. PMID:27174608

  8. Cicletanine stimulates eNOS phosphorylation and NO production via Akt and MAP kinase/Erk signaling in sinusoidal endothelial cells.

    PubMed

    Liu, Songling; Rockey, Don C

    2013-07-15

    The function of the endothelial isoform of nitric oxide synthase (eNOS) and production of nitric oxide (NO) is altered in a number of disease states. Pharmacological approaches to enhancing NO synthesis and thus perhaps endothelial function could have substantial benefits in patients. We analyzed the effect of cicletanine, a synthetic pyridine with potent vasodilatory characteristics, on eNOS function and NO production in normal (liver) and injured rat sinusoidal endothelial cells, and we studied the effect of cicletanine-induced NO on stellate cell contraction and portal pressure in an in vivo model of liver injury. Sinusoidal endothelial cells were isolated from normal and injured rat livers. After exposure to cicletanine, eNOS phosphorylation, NO synthesis, and the signaling pathway regulating eNOS activation were measured. Cicletanine led to an increase in eNOS (Ser¹¹⁷⁷) phosphorylation, cytochrome c reductase activity, L-arginine conversion to L-citrulline, as well as NO production. The mechanism of the effect of cicletanine appeared to be via the protein kinase B (Akt) and MAP kinase/Erk signaling pathways. Additionally, cicletanine improved NO synthesis in injured sinusoidal endothelial cells. NO production induced by cicletanine in sinusoidal endothelial cells increased protein kinase G (PKG) activity as well as relaxation of stellate cells. Finally, administration of cicletanine to mice with portal hypertension induced by bile duct ligation led to reduction of portal pressure. The data indicate that cicletanine might improve eNOS activity in injured sinusoidal endothelial cells and likely activates hepatic stellate cell NO/PKG signaling. It raises the possibility that cicletanine could improve intrahepatic vascular function in portal hypertensive patients. PMID:23639812

  9. Linoleic acid permeabilizes gastric epithelial cells by increasing connexin 43 levels in the cell membrane via a GPR40- and Akt-dependent mechanism.

    PubMed

    Puebla, Carlos; Cisterna, Bruno A; Salas, Daniela P; Delgado-López, Fernando; Lampe, Paul D; Sáez, Juan C

    2016-05-01

    Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC activity of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintains the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt. PMID:26869446

  10. MAPKs (ERK1/2, p38) and AKT can be phosphorylated by shear stress independently of platelet endothelial cell adhesion molecule-1 (CD31) in vascular endothelial cells.

    PubMed

    Sumpio, Bauer E; Yun, Sangseob; Cordova, Alfredo C; Haga, Masae; Zhang, Jin; Koh, Yongbok; Madri, Joseph A

    2005-03-25

    PECAM-1 (CD31) is a member of the Ig superfamily of cell adhesion molecules and is expressed on endothelial cells (EC) as several circulating blood elements including platelets, polymorphonuclear leukocytes, monocytes, and lymphocytes. PECAM-1 tyrosine phosphorylation has been observed following mechanical stimulation of EC but its role in mechanosensing is still incompletely understood. The aim of this study was to investigate the involvement of PECAM-1 in signaling cascades in response to fluid shear stress (SS) in vascular ECs. PECAM-1-deficient (KO) and PECAM-reconstituted murine microvascular ECs, 50 and 100% confluent bovine aortic EC (BAEC), and human umbilical vein EC (HUVEC) transfected with antisense PECAM-1 oligonucleotides were exposed to oscillatory SS (14 dynes/cm2) for 0, 5, 10, 30 or 60 min. The tyrosine phosphorylation level of PECAM-1 immunoprecipitated from SS-stimulated PECAM-reconstituted, but not PECAM-1-KO, murine ECs increased. Although PECAM-1 was phosphorylated in 100% confluent BAEC and HUVEC, its phosphorylation level in 50% confluent BAECs or HUVEC was not detected by SS. Likewise PECAM-1 phosphorylation was robust in the wild type and scrambled-transfected HUVEC but not in the PECAM-1 antisense-HUVEC. ERK(1/2), p38 MAPK, and AKT were activated by SS in all cell types tested, including the PECAM-1-KO murine ECs, 50% confluent BAECs, and HUVEC transfected with antisense PECAM-1. This suggests that PECAM-1 may not function as a major mechanoreceptor for activation of MAPK and AKT in ECs and that there are likely to be other mechanoreceptors in ECs functioning to detect shear stress and trigger intercellular signals. PMID:15668248

  11. ROS-mediated EB1 phosphorylation through Akt/GSK3β pathway: implication in cancer cell response to microtubule-targeting agents

    PubMed Central

    Grand, Marion Le; Rovini, Amandine; Bourgarel-Rey, Veronique; Honore, Stephane; Bastonero, Sonia; Braguer, Diane; Carre, Manon

    2014-01-01

    Microtubule-targeting agents (MTAs) are largely administered in adults and children cancers. Better deciphering their mechanism of action is of prime importance to develop more convenient therapy strategies. Here, we addressed the question of how reactive oxygen species (ROS) generation by mitochondria can be necessary for MTA efficacy. We showed for the first time that EB1 associates with microtubules in a phosphorylation-dependent manner, under control of ROS. By using phospho-defective mutants, we further characterized the Serine 155 residue as critical for EB1 accumulation at microtubule plus-ends, and both cancer cell migration and proliferation. Phosphorylation of EB1 on the Threonine 166 residue triggered opposite effects, and was identified as a requisite molecular switch in MTA activities. We then showed that GSK3β activation was responsible for MTA-triggered EB1 phosphorylation, resulting from ROS-mediated inhibition of upstream Akt. We thus disclosed here a novel pathway by which generation of mitochondrial ROS modulates microtubule dynamics through phosphorylation of EB1, improving our fundamental knowledge about this oncogenic protein, and pointing out the need to re-examine the current dogma of microtubule targeting by MTAs. The present work also provides a strong mechanistic rational to the promising therapeutic strategies that currently combine MTAs with anti-Akt targeted therapies. PMID:24930764

  12. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response

    PubMed Central

    Chan, Tung O.; Zhang, Jin; Tiegs, Brian C.; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M.; Armen, Roger S.; Rodeck, Ulrich; Penn, Raymond B.

    2015-01-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr308 in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr308 dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser473) increased phosphatase resistance of the phosphorylated activation loop (pThr308) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr308 phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. PMID:26201515

  13. Enoxaparin sensitizes human non-small-cell lung carcinomas to gefitinib by inhibiting DOCK1 expression, vimentin phosphorylation, and Akt activation.

    PubMed

    Pan, Yan; Li, Xin; Duan, Jianhui; Yuan, Lan; Fan, Shengjun; Fan, Jingpu; Xiaokaiti, Yilixiati; Yang, Haopeng; Wang, Yefan; Li, Xuejun

    2015-01-01

    Gefitinib is widely used for the treatment of lung cancer in patients with sensitizing epidermal growth factor receptor mutations, but patients tend to develop resistance after an average of 10 months. Low molecular weight heparins, such as enoxaparin, potently inhibit experimental metastasis. This study aimed to determine the potential of combined enoxaparin and gefitinib (enoxaparin + gefitinib) treatment to inhibit tumor resistance to gefitinib both in vitro and in vivo. A549 and H1975 cell migration was analyzed in wound closure and Transwell assays. Akt and extracellular signal-related kinase 1/2 signaling pathways were identified, and a proteomics analysis was conducted using SDS-PAGE/liquid chromatography-tandem mass spectrometry analysis. Molecular interaction networks were visualized using the Cytoscape bioinformatics platform. Protein expression of dedicator of cytokinesis 1 (DOCK1) and cytoskeleton intermediate filament vimentin were identified using an enzyme-linked immunosorbent assay, Western blot, and small interfering RNA transfection of A549 cells. In xenograft A549-luc-C8 tumors in nude mice, enoxaparin + gefitinib inhibited tumor growth and reduced lung colony formation compared with gefitinib alone. Furthermore, the combination had stronger inhibitory effects on cell migration than either agent used individually. Additional enoxaparin administration resulted in better effective inhibition of Akt activity compared with gefitinib alone. Proteomics and network analysis implicated DOCK1 as the key node molecule. Western blot verified the effective inhibition of the expression of DOCK1 and vimentin phosphorylation by enoxaparin + gefitinib compared with gefitinib alone. DOCK1 knockdown confirmed its role in cell migration, Akt expression, and vimentin phosphorylation. Our data indicate that enoxaparin sensitizes gefitinib antitumor and antimigration activity in lung cancer by suppressing DOCK1 expression, Akt activity, and vimentin phosphorylation

  14. Phosphorylation state-dependent interaction between AKAP7δ/γ and phospholamban increases phospholamban phosphorylation.

    PubMed

    Rigatti, Marc; Le, Andrew V; Gerber, Claire; Moraru, Ion I; Dodge-Kafka, Kimberly L

    2015-09-01

    Changes in heart rate and contractility in response to sympathetic stimulation occur via activation of cAMP dependent protein kinase A (PKA), leading to phosphorylation of numerous substrates that alter Ca(2+) cycling. Phosphorylation of these substrates is coordinated by A-kinase anchoring proteins (AKAPs), which recruit PKA to specific substrates [1]. Phosphorylation of the PKA substrate phospholamban (PLB) is a critical determinant of Ca(2+) re-entry into the sarcoplasmic reticulum and is coordinated by AKAP7δ/γ [2,3]. Here, we further these findings by showing that phosphorylation of PLB requires interaction with AKAP7δ/γ and that this interaction occurs only when PLB is unphosphorylated. Additionally, we find that two mutants of PLB (R9C and Δ14), which are associated with dilated cardiomyopathy in humans, prevent association with AKAP7δ/γ and display reduced phosphorylation in vitro. This finding implicates the AKAP7δ/γ-PLB interaction in the pathology of the disease phenotype. Further exploration of the AKAP7δ/γ-PLB association demonstrated a phosphorylation state-dependence of the interaction. Computational modeling revealed that this mode of interaction allows for small amounts of AKAP and PKA (100-200nM) to regulate the phosphorylation of large quantities of PLB (50μM). Our results confirm that AKAP7γ/δ binding to PLB is important for phosphorylation of PLB, and describe a novel phosphorylation state-dependent binding mechanism that explains how phosphorylation of highly abundant PKA substrates can be regulated by AKAPs present at ~100-200 fold lower concentrations. PMID:26027516

  15. Temperature sensitivity of phospho-Ser{sup 473}-PKB/AKT

    SciTech Connect

    Oehler-Jaenne, Christoph; Bueren, Andre O. von; Vuong, Van; Hollenstein, Andreas; Grotzer, Michael A.; Pruschy, Martin

    2008-10-24

    The phospho-PKB/Akt status is often used as surrogate marker to measure activation of the PI3K/Akt/mTOR signal transduction pathway. Though, inconsistencies of the p-Ser{sup 473}-PKB/Akt status have raised doubts in the validity of p-Ser{sup 473}-PKB/Akt phosphorylation as endpoint. Here, we determined that p-Ser{sup 473}-PKB/Akt but not p-Thr{sup 308}-PKB/Akt phosphorylation is highly temperature sensitive. p-Ser{sup 473}-PKB/Akt phosphorylation was rapidly reduced to levels below 50% on exposure to 20-25 deg. C in murine and human cell lines including cells expressing constitutively active PI3K or lacking PTEN. Down-regulation of p-Ser{sup 473}-PKB/Akt was reversible and re-exposure to physiological temperature resulted in increased p-Ser{sup 473}-PKB/Akt phosphorylation levels. Phosphatase activity at low temperature was sustained at 75% baseline level and phosphatase inhibition prevented p-Ser{sup 473}-PKB/Akt dephosphorylation induced by the low temperature shift. Interestingly temperature-dependent deregulation of the p-Ser{sup 473}-PKB/Akt status was also observed in response to irradiation. Thus our data demonstrate that minimal additional stress factors deregulate the PI3K/Akt-survival pathway and the p-Ser{sup 473}-PKB/Akt status as experimental endpoint.

  16. Rho GTPase/Rho Kinase Negatively Regulates Endothelial Nitric Oxide Synthase Phosphorylation through the Inhibition of Protein Kinase B/Akt in Human Endothelial Cells

    PubMed Central

    Ming, Xiu-Fen; Viswambharan, Hema; Barandier, Christine; Ruffieux, Jean; Kaibuchi, Kozo; Rusconi, Sandro; Yang, Zhihong

    2002-01-01

    Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene transfer in human umbilical vein endothelial cells (HUVECs), we show here that both active RhoA and ROCK not only downregulate eNOS gene expression as reported previously but also inhibit eNOS phosphorylation at Ser-1177 and cellular NO production with concomitant suppression of PKB activation. Moreover, coexpression of a constitutive active form of PKB restores the phosphorylation but not gene expression of eNOS in the presence of active RhoA. Furthermore, we show that thrombin inhibits eNOS phosphorylation, as well as expression via Rho/ROCK pathway. Expression of the active PKB reverses eNOS phosphorylation but has no effect on downregulation of eNOS expression induced by thrombin. Taken together, these data demonstrate that Rho/ROCK pathway negatively regulates eNOS phosphorylation through inhibition of PKB, whereas it downregulates eNOS expression independent of PKB. PMID:12446767

  17. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    SciTech Connect

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung; Lee, Joo Young

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. Black-Right-Pointing-Pointer PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. Black-Right-Pointing-Pointer p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. Black-Right-Pointing-Pointer Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl{sub 2}. Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1{alpha}. A PI3K inhibitor (LY294002) attenuated CoCl{sub 2}-induced nuclear accumulation and transcriptional activation of HIF-1{alpha}. In addition, HIF-1{alpha}-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl{sub 2}-induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1{alpha}. However, p38 was not involved in HIF-1{alpha} activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K/Akt

  18. Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer

    PubMed Central

    Nacerddine, Karim; Beaudry, Jean-Bernard; Ginjala, Vasudeva; Westerman, Bart; Mattiroli, Francesca; Song, Ji-Ying; van der Poel, Henk; Ponz, Olga Balagué; Pritchard, Colin; Cornelissen-Steijger, Paulien; Zevenhoven, John; Tanger, Ellen; Sixma, Titia K.; Ganesan, Shridar; van Lohuizen, Maarten

    2012-01-01

    Prostate cancer (PCa) is a major lethal malignancy in men, but the molecular events and their interplay underlying prostate carcinogenesis remain poorly understood. Epigenetic events and the upregulation of polycomb group silencing proteins including Bmi1 have been described to occur during PCa progression. Here, we found that conditional overexpression of Bmi1 in mice induced prostatic intraepithelial neoplasia, and elicited invasive adenocarcinoma when combined with PTEN haploinsufficiency. In addition, Bmi1 and the PI3K/Akt pathway were coactivated in a substantial fraction of human high-grade tumors. We found that Akt mediated Bmi1 phosphorylation, enhancing its oncogenic potential in an Ink4a/Arf-independent manner. This process also modulated the DNA damage response and affected genomic stability. Together, our findings demonstrate the etiological role of Bmi1 in PCa, unravel an oncogenic collaboration between Bmi1 and the PI3K/Akt pathway, and provide mechanistic insights into the modulation of Bmi1 function by phosphorylation during prostate carcinogenesis. PMID:22505453

  19. The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) protects cells against cold-shock-induced apoptosis by maintaining phosphorylation of protein kinase B (AKT).

    PubMed

    Carpenter, Dale; Hsiang, Chinhui; Jiang, Xianzhi; Osorio, Nelson; BenMohamed, Lbachir; Jones, Clinton; Wechsler, Steven L

    2015-10-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) blocks apoptosis and inhibits caspase-3 activation. We previously showed that serum starvation (removal of serum from tissue culture media), which takes several days to induce apoptosis, results in decreased levels of both AKT (protein kinase B) and phosphorylated AKT (pAKT) in cells not expressing LAT. In contrast in mouse neuroblastoma cells expressing LAT, AKT, and pAKT levels remained high. AKT is a serine/threonine protein kinase that promotes cell survival. To examine the effect of LAT on AKT-pAKT using a different and more rapid method of inducing apoptosis, a stable cell line expressing LAT was compared to non-LAT expressing cells as soon as 15 min following recovery from cold-shock-induced apoptosis. Expression of LAT appeared to inhibit dephosphorylation of pAKT. This protection correlated with blocking numerous pro-apoptotic events that are inhibited by pAKT. These results support the hypothesis that inhibiting dephosphorylation of pAKT may be one of the pathways by which LAT protects cells against apoptosis. PMID:26071090

  20. Macrophage migration inhibitory factor induces phosphorylation of Mdm2 mediated by phosphatidylinositol 3-kinase/Akt kinase: Role of this pathway in decidual cell survival.

    PubMed

    Costa, Adriana Fraga; Gomes, Sara Zago; Lorenzon-Ojea, Aline R; Martucci, Mariane; Faria, Miriam Rubio; Pinto, Décio Dos Santos; Oliveira, Sergio F; Ietta, Francesca; Paulesu, Luana; Bevilacqua, Estela

    2016-05-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway has an anti-apoptotic effect through several downstream targets, which includes activation of the transformed mouse 3T3 cell double-minute 2 (Mdm2) protein, its translocation to the nucleus and degradation of the tumor suppressor p53. We show that Mif, the Macrophage Migration Inhibitory Factor, an important cytokine at the maternal fetal interface in several species, triggers phosphorylation of Mdm2 protein in a PI3K/Akt-dependent manner, thereby preventing apoptosis in cultured mouse decidual cells. Inhibition of Akt and PI3K suppresses the pathway. Mif treatment also changes the nuclear translocation of p53 and interferes with the apoptotic fate of these cells when challenged with reactive oxygen species. In conclusion, an important mechanism has been found underlying decidual cell survival through Akt signaling pathway activated by Mif, suggesting a role for this cytokine in decidual homeostasis and in the integrity of the maternal-fetal barrier that is essential for successful gestation. PMID:27208405

  1. MARCKSL1 exhibits anti-angiogenic effects through suppression of VEGFR-2-dependent Akt/PDK-1/mTOR phosphorylation.

    PubMed

    Kim, Boh-Ram; Lee, Seung-Hoon; Park, Mi-Sun; Seo, Seung-Hee; Park, Young-Min; Kwon, Young-Joo; Rho, Seung-Bae

    2016-02-01

    Myristoylated alanine-rich C kinase substrate-like 1 (MARCKSL1) plays a pivotal role in the regulation of apoptosis and has been shown to maintain antitumor and metastasis-suppressive properties. In the present study, we examined the effects of MARCKSL1 as a novel anti-angiogenic agent on the inhibition of angiogenesis-mediated cell migration. MARCKSL1 also reduced vascular endothelial growth factor (VEGF)-induced human umbilical vein endothelial cell (HUVEC) proliferation, as well as capillary-like tubular structure formation in vitro. MARCKSL1 disrupted phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2) in ovarian tumorigenesis. In addition, MARCKSL1 showed potent anti-angiogenic activity and reduced the levels of VEGF and hypoxia-inducible factor 1α (HIF-1α) expression, an essential regulator of angiogenesis. Consistently, MARCKSL1 decreased VEGF‑induced phosphorylation of the PI3K/Akt signaling pathway components, including phosphoinositide-dependent protein kinase 1 (PDK-1), mammalian target of rapamycin (mTOR), tuberous sclerosis complex 2 (TSC-2), p70 ribosomal protein S6 kinase (p70S6K), and glycogen synthase kinase 3β (GSK-3β) protein. Collectively, our results provide evidence for the physiological/biological function of an endothelial cell system involved in angiogenesis through suppression of Akt/PDK-1/mTOR phosphorylation by interaction with VEGFR-2. PMID:26555156

  2. AKT-p53 axis protect cancer cells from autophagic cell death during nutrition deprivation.

    PubMed

    Sudhagar, S; Sathya, S; Gokulapriya, G; Lakshmi, B S

    2016-03-18

    An altered metabolism supports growth of tumor. AKT, a major signal integrator plays a key role in cell metabolism. We have shown that nutritional deprivation activates AKT as observed by increased phosphorylation of both Thr308 and Ser473. Pharmacological inhibition or silencing of AKT by siRNA affects cell viability during starvation. The tumor suppressor, p53 is also observed to be elevated during nutritional deprivation due to AKT. Silencing of AKT and p53 enhanced autophagy as evidenced by increased acidic vesicular organelles and LC3B II levels, suggesting AKT-p53 to play a significant role in cell survival through regulating autophagy during nutritional deprivation. PMID:26903300

  3. AKT/mTOR substrate P70S6K is frequently phosphorylated in gallbladder cancer tissue and cell lines

    PubMed Central

    Leal, Pamela; Garcia, Patricia; Sandoval, Alejandra; Buchegger, Kurt; Weber, Helga; Tapia, Oscar; Roa, Juan C

    2013-01-01

    Background Gallbladder carcinoma is a highly malignant tumor and a public health problem in some parts of the world. It is characterized by a poor prognosis and its resistance to radio and chemotherapy. There is an urgent need to develop novel therapeutic alternatives for the treatment of gallbladder carcinoma. The mammalian target of the rapamycin (mTOR) signaling pathway is activated in about 50% of human malignancies, and its role in gallbladder carcinoma has previously been suggested. In the present study, we investigated the phosphorylation status of the mTOR substrate p70S6K in preneoplastic and neoplastic gallbladder tissues and evaluated the effect of three mTOR inhibitors on cell growth and migration in gallbladder carcinoma cell lines. Methods Immunohistochemical staining of phospho-p70S6K was analyzed in 181 gallbladder carcinoma cases, classified according to lesion type as dysplasia, early carcinoma, or advanced carcinoma. Protein expression of AKT/mTOR members was also evaluated in eight gallbladder carcinoma cell lines by Western blot analysis. We selected two gallbladder carcinoma cell lines (G415 and TGBC-2TKB) to evaluate the effect of rapamycin, RAD001, and AZD8055 on cell viability, cell migration, and protein expression. Results Our results showed that phospho-p70S6K is highly expressed in dysplasia (66.7%, 12/18), early cancer (84.6%, 22/26), and advanced cancer (88.3%, 121/137). No statistical correlation was observed between phospho-p70S6K status and any clinical or pathological features, including age, gender, ethnicity, wall infiltration level, or histological differentiation (P < 0.05). In vitro treatment with rapamycin, RAD001, and AZD8055 reduced cell growth, cell migration, and phospho-p70S6K expression significantly in G-415 and TGBC-2TKB cancer cells (P < 0.001). Conclusion Our findings confirm the upregulation of this signaling pathway in gallbladder carcinoma and provide a rationale for the potential use of mTOR inhibitors as a

  4. Phosphorylation and changes in the distribution of nucleolin promote tumor metastasis via the PI3K/Akt pathway in colorectal carcinoma.

    PubMed

    Wu, Dong-ming; Zhang, Peng; Liu, Ru-yan; Sang, Ya-xiong; Zhou, Cong; Xu, Guang-chao; Yang, Jin-liang; Tong, Ai-ping; Wang, Chun-ting

    2014-05-21

    Here, we investigated the molecular mechanism underlying the changes in the distribution of nucleolin. Our study identified PI3K/Akt signaling as an essential pathway regulating the distribution of nucleolin. Furthermore, nucleolin can interact with phospho-PI3K-p55, and changes in the distribution of nucleolin were related to its phosphorylation. Subsequently, we analyzed the correlation of VEGF and nucleolin, and found that distribution of nucleolin related to metastatic potential. Finally, blocking cell surface nucleolin influences the process of epithelial-mesenchymal transitions. This indicates that nucleolin may be a novel cancer therapy target and a predictive marker for tumor migration in colorectal carcinoma. PMID:24713430

  5. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway

    SciTech Connect

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji; Lee, Hui-Young; Hong, Suntaek; Kim, Seong-Jin; Kim, Byung-Chul

    2013-06-14

    Highlights: •H{sub 2}O{sub 2} inhibits TGF-β1-induced cell cycle arrest. •H{sub 2}O{sub 2} induces Smad3 linker phosphorylation through Akt-ERK1/2 pathway. •H{sub 2}O{sub 2}-mediated suppression of TGF-β signal requires Smad3 linker phosphorylation. •This is a first report about interplay between H{sub 2}O{sub 2} and growth inhibition pathway. -- Abstract: Hydrogen peroxide (H{sub 2}O{sub 2}) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H{sub 2}O{sub 2} are less understood. Here we report an important mechanism for antagonistic effects of H{sub 2}O{sub 2} on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H{sub 2}O{sub 2} (0.05–0.2 mM) completely blocked TGF-β1-mediated induction of p15{sup INK4B} expression and increase of its promoter activity. Interestingly, H{sub 2}O{sub 2} selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H{sub 2}O{sub 2} increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H{sub 2}O{sub 2} on TGF-β1-induced increase of p15{sup INK4B}-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H{sub 2}O{sub 2} as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing

  6. Repression of AKT signaling by ARQ 092 in cells and tissues from patients with Proteus syndrome

    PubMed Central

    Lindhurst, Marjorie J.; Yourick, Miranda R.; Yu, Yi; Savage, Ronald E.; Ferrari, Dora; Biesecker, Leslie G.

    2015-01-01

    A somatic activating mutation in AKT1, c.49G>A, pGlu17Lys, that results in elevated AKT signaling in mutation-positive cells, is responsible for the mosaic overgrowth condition, Proteus syndrome. ARQ 092 is an allosteric pan-AKT inhibitor under development for treatment in cancer. We tested the efficacy of this drug for suppressing AKT signaling in cells and tissues from patients with Proteus syndrome. ARQ 092 reduced phosphorylation of AKT and downstream targets of AKT in a concentration-dependent manner in as little as two hours. While AKT signaling was suppressed with ARQ 092 treatment, cells retained their ability to respond to growth factor stimulation by increasing pAKT levels proportionally to untreated cells. At concentrations sufficient to decrease AKT signaling, little reduction in cell viability was seen. These results indicate that ARQ 092 can suppress AKT signaling and warrants further development as a therapeutic option for patients with Proteus syndrome. PMID:26657992

  7. Expression of FLNa in human melanoma cells regulates the function of integrin α1β1 and phosphorylation and localisation of PKB/AKT/ERK1/2 kinases.

    PubMed

    Krebs, Kristi; Ruusmann, Anu; Simonlatser, Grethel; Velling, Teet

    2015-12-01

    FLNa is a ubiquitous cytoskeletal protein that links transmembrane receptors, including integrins, to F-actin and functions as a signalling intermediate. We investigated FLNa's role in the function of integrin-type collagen receptors, EGF-EGFR signalling and regulation of PKB/Akt and ERK1/2. Using FLNa-deficient M2 human melanoma cells, and same cells expressing EGFP-FLNa (M2F) or its Ig-like repeats 1-8+24, 8-15+24 and 16-24, we found that in M2F and M2 8-15+24 cells, EGF induced the increased phosphorylation of PKB/Akt and ERK1/2. In M2F cells EGF induced the localisation of these kinases to cell nucleus and lamellipodia, respectively, and the ERK1/2 phosphorylation-dependent co-immunoprecipitation of FLNa with ERK1/2. Only M2F and M2 8-15+24 cells adhered to and spread on type I collagen whereas on fibronectin all cells behaved similarly. α1β1 and α2β1 were the integrin-type collagen receptors expressed on these cells with primarily α1β1 localising to focal contacts and affecting cell adhesion and migration in a manner dependent on FLNa or its Ig-like repeats 8-15. Our results suggest a role for FLNa repeats 8-15 in the α1-subunit-dependent regulation of integrin α1β1 function, EGF-EGFR signalling to PKB/Akt and ERK1/2, identify ERK1/2 in EGF-induced FLNa-associated protein complexes, and show that the function of different integrins is subjected to differential regulation by FLNa. PMID:26572583

  8. The loss of telomerase activity in highly differentiated CD8+CD28-CD27- T cells is associated with decreased Akt (Ser473) phosphorylation.

    PubMed

    Plunkett, Fiona J; Franzese, Ornella; Finney, Helene M; Fletcher, Jean M; Belaramani, Lavina L; Salmon, Mike; Dokal, Inderjeet; Webster, David; Lawson, Alastair D G; Akbar, Arne N

    2007-06-15

    The enzyme telomerase is essential for maintaining the replicative capacity of memory T cells. Although CD28 costimulatory signals can up-regulate telomerase activity, human CD8(+) T cells lose CD28 expression after repeated activation. Nevertheless, telomerase is still inducible in CD8(+)CD28(-) T cells. To identify alternative costimulatory pathways that may be involved, we introduced chimeric receptors containing the signaling domains of CD28, CD27, CD137, CD134, and ICOS in series with the CD3 zeta (zeta) chain into primary human CD8(+) T cells. Although CD3 zeta-chain signals alone were ineffective, triggering of all the other constructs induced proliferation and telomerase activity. However, not all CD8(+)CD28(-) T cells could up-regulate this enzyme. The further fractionation of CD8(+)CD28(-) T cells into CD8(+)CD28(-) CD27(+) and CD8(+)CD28(-)CD27(-) subsets showed that the latter had significantly shorter telomeres and extremely poor telomerase activity. The restoration of CD28 signaling in CD8(+)CD28(-)CD27(-) T cells could not reverse the low telomerase activity that was not due to decreased expression of human telomerase reverse transcriptase, the enzyme catalytic subunit. Instead, the defect was associated with decreased phosphorylation of the kinase Akt, that phosphorylates human telomerase reverse transcriptase to induce telomerase activity. Furthermore, the defective Akt phosphorylation in these cells was specific for the Ser(473) but not the Thr(308) phosphorylation site of this molecule. Telomerase down-regulation in highly differentiated CD8(+)CD28(-)CD27(-) T cells marks their inexorable progress toward a replicative end stage after activation. This limits the ability of memory CD8(+) T cells to be maintained by continuous proliferation in vivo. PMID:17548608

  9. Low dose of IGF-I increases cell size of skeletal muscle satellite cells via Akt/S6K signaling pathway.

    PubMed

    Gao, Chun-qi; Zhi, Rui; Yang, Zhou; Li, Hai-chang; Yan, Hui-chao; Wang, Xiu-qi

    2015-11-01

    The objective of this study was to investigate the effect of insulin growth factor-I (IGF-I) on the size of pig skeletal muscle satellite cells (SCs). Using microarray, real-time RT-PCR, radioimmunoassay analysis and western blot, we first showed that supplementation of low-dose of IGF-I in culture medium resulted in enlarged cell size of Lantang SCs, only Akt and S6K were up-regulated at both the mRNA and protein levels among almost all of the mTOR pathway key genes, but had no effect on cell number. To elucidate the signaling mechanisms responsible for regulating cell size under low-dose of IGF-I treatment, we blocked Akt and S6K activity with the specific inhibitors MK2206 and PF4708671, respectively. Both inhibitors caused a decrease in cell size. In addition, MK2206 lowered the protein level of p-Akt (Ser473), p-S6K (Thr389), and p-rpS6 (Ser235/236), whereas PF4708671 lowered the protein level of p-S6K (Thr389) and p-rpS6 (Ser235/236). However, low dose of IGF-I didn't affect the protein level of p-mTOR (Ser2448) and p-mTOR (Ser2481). When both inhibitors were applied simultaneously, the effect was the same as that of the Akt inhibition alone. Taken together, we report for the first time that low-dose of IGF-I treatment increases cell size via Akt/S6K signaling pathway. PMID:25923195

  10. Combination of erythromycin and dexamethasone improves corticosteroid sensitivity induced by CSE through inhibiting PI3K-δ/Akt pathway and increasing GR expression.

    PubMed

    Sun, Xue-Jiao; Li, Zhan-Hua; Zhang, Yang; Zhou, Guang; Zhang, Jian-Quan; Deng, Jing-Min; Bai, Jing; Liu, Guang-Nan; Li, Mei-Hua; MacNee, William; Zhong, Xiao-Ning; He, Zhi-Yi

    2015-07-15

    Corticosteroid insensitivity, which is induced by cigarette smoke extract (CSE), is a significant barrier when treating chronic obstructive pulmonary disease (COPD). Erythromycin (EM) has been shown to have an anti-inflammatory role in some chronic airway inflammatory diseases, particularly diffuse panbronchiolitis and cystic fibrosis. Here, we explored whether the combination therapy of EM and dexamethasone (Dex) reverses corticosteroid insensitivity and investigated the molecular mechanism by which this occurs. We demonstrated that the combination of EM and Dex restored corticosteroid sensitivity in peripheral blood mononuclear cells (PBMCs) from COPD patients and U937 cells after CSE exposure. Moreover, pretreatment with 10, 50, or 100 μg/ml EM reversed the HDAC2 protein reduction induced by CSE exposure in a dose-dependent manner. U937 cells exposed to CSE show a reduction in histone deacetylase (HDAC) activity, which was potently reversed by EM or combination treatment. Although 10 and 17.5% CSE increased phosphorylated Akt (PAkt) expression in a concentration-dependent manner, preapplication of EM and the combination treatment in particular blocked this PAkt increase. Total Akt levels were unaffected by CSE or EM treatments. Furthermore, the combination treatment enhanced glucocorticoid receptor (GR)α expression. Our results demonstrate that the combination therapy of EM and Dex can restore corticosteroid sensitivity through inhibition of the PI3K-δ/Akt pathway and enhancing GRα expression. PMID:25957293

  11. Apigenin Attenuates Atherogenesis through Inducing Macrophage Apoptosis via Inhibition of AKT Ser473 Phosphorylation and Downregulation of Plasminogen Activator Inhibitor-2

    PubMed Central

    Zeng, Ping; Liu, Bin; Wang, Qun; Fan, Qin; Diao, Jian-Xin; Tang, Jing; Fu, Xiu-Qiong; Sun, Xue-Gang

    2015-01-01

    Macrophage survival is believed to be a contributing factor in the development of early atherosclerotic lesions. Dysregulated apoptosis of macrophages is involved in the inflammatory process of atherogenesis. Apigenin is a flavonoid that possesses various clinically relevant properties such as anti-inflammatory, antiplatelet, and antitumor activities. Here we showed that apigenin attenuated atherogenesis in apoE−/− mice in an in vivo test. In vitro experiments suggested that apigenin induced apoptosis of oxidized low density lipoprotein- (OxLDL-) loaded murine peritoneal macrophages (MPMs). Proteomic analysis showed that apigenin reduced the expression of plasminogen activator inhibitor 2 (PAI-2). PAI-2 has antiapoptotic effects in OxLDL-loaded MPMs. Enhancing PAI-2 expression significantly reduced the proapoptosis effects of apigenin. Molecular docking assay with AutoDock software predicted that residue Ser473 of Akt1 is a potential binding site for apigenin. Lentiviral-mediated overexpression of Akt1 wild type weakened the proapoptosis effect of apigenin in OxLDL-loaded MPMs. Collectively, apigenin executes its anti-atherogenic effects through inducing OxLDL-loaded MPMs apoptosis. The proapoptotic effects of apigenin were at least partly attributed to downregulation of PAI-2 through suppressing phosphorylation of AKT at Ser473. PMID:25960827

  12. The miR-130 family promotes cell migration and invasion in bladder cancer through FAK and Akt phosphorylation by regulating PTEN

    PubMed Central

    Egawa, Hiroshi; Jingushi, Kentaro; Hirono, Takayuki; Ueda, Yuko; Kitae, Kaori; Nakata, Wataru; Fujita, Kazutoshi; Uemura, Motohide; Nonomura, Norio; Tsujikawa, Kazutake

    2016-01-01

    Bladder cancer causes an estimated 150,000 deaths per year worldwide. Although 15% of the recurrent bladder cancer becomes an invasive type, currently used targeted therapy for malignant bladder cancer is still not efficient. We focused on the miR-130 family (miR-130b, miR-301a, and miR-301b) that was significantly upregulated in bladder cancer specimens than that of the normal urothelial specimens. We analyzed the functional significance of miR-130 family using a 5637 bladder cancer cell line and revealed that miR-130 family of inhibitors suppressed cell migration and invasion by downregulating focal adhesion kinase (FAK) and Akt phosphorylation. Mechanistic analyses indicate that the miR-130 family directly targets phosphatase and tensin homolog deleted from chromosome 10 (PTEN), resulting in the upregulation of FAK and Akt phosphorylation. In clinical bladder cancer specimens, downregulation of PTEN was found to be closely correlated with miR-130 family expression levels. Overall, the miR-130 family has a crucial role in malignant progression of bladder cancer and thus the miR-130 family could be a promising therapeutic target for invasive bladder cancer. PMID:26837847

  13. MK-2206 co-treatment with 5-fluorouracil or doxorubicin enhances chemosensitivity and apoptosis in gastric cancer by attenuation of Akt phosphorylation

    PubMed Central

    Jin, Piaopiao; Wong, Chi Chun; Mei, Sibin; He, Xingkang; Qian, Yun; Sun, Leimin

    2016-01-01

    The anticancer effect of MK-2206, an Akt inhibitor, has been explored in some types of cancers, but its effect on gastric cancer is unclear. In this study, we aimed to investigate its anticancer effect in gastric cancer cells. Cell viability and colony formation assays showed that MK-2206 effectively inhibited the proliferation of SGC-7901 and MKN45 cells. The 50% inhibitory concentration values after 24, 48, and 72 hours’ treatment were 22.92, 13.68, and 8.55 μM in SGC-7901 cells and 19.21, 13.10, and 9.11 μM in MKN45 cells, respectively. Treatment with MK-2206 induced apoptosis in SGC-7901 cells as indicated by flow cytometry assay. The combination indexes of MK-2206 and doxorubicin were 0.59 in SGC-7901 cells and 0.57 in MKN45 cells, whereas for 5-fluorouracil (5-FU) the indexes were 0.17 in SGC-7901 cells and 0.73 in MKN45 cells, indicating that MK-2206 could work synergistically with doxorubicin or 5-FU to inhibit cell growth. Furthermore, a small dose (1 μM) of MK-2206 co-treatment with doxorubicin or 5-FU was sufficient for complete inhibition of chemotherapeutic alteration of phosphorylated Akt expression and significant enhancement of pro-apoptosis effect through the activation of caspase pathway. Therefore, MK-2206 effectively inhibits gastric cancer cell growth by attenuation of Akt phosphorylation and synergistically enhances the antitumor effect of doxorubicin and 5-FU via caspase-dependent apoptosis. PMID:27499633

  14. miR-18a promotes cell proliferation of esophageal squamous cell carcinoma cells by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis.

    PubMed

    Zhang, Weiguo; Lei, Caipeng; Fan, Junli; Wang, Jing

    2016-08-12

    Esophageal squamous cell carcinoma (ESCC) is one of the lethal cancers with a high incidence rate in Asia. Cyclin D1 is overexpressed and plays an important role in the carcinogenesis of ESCC; however the mechanism of the deregulation of Cyclin D1 in ESCC remains to be determined. In the study, we found that miR-18a promotes the expression Cyclin D1 by targeting PTEN in eophageal squamous cell carcinoma TE13 and Eca109 cells. Transfection of miR-18a mimetics increased cyclin D1, while transfection of miR-18a antagomir decreased D1. Moreover, miR-18a-mediated upregulation of cyclin D1 was accompanied with downregulation of PTEN, which is a direct target of miR-18a, and increase of the phosphorylation of AKT and S6K1. In addition, pharmacologic inhibition of AKT or mTOR kinases abolished the increase of cyclinD1 by miR-18a, which was accompanied with decreased phosphorylation of RbS780 and inhibition of cell proliferation. Our results demonstrated the upregulation of miR-18a promoted cell proliferation by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis, suggesting that small molecule inhibitors of AKT-mTOR signaling are potential agents for the treatment of ESCC patients with upregulation of miR-17-92 cluster. PMID:27291152

  15. Shikonin Inhibits the Migration and Invasion of Human Glioblastoma Cells by Targeting Phosphorylated β-Catenin and Phosphorylated PI3K/Akt: A Potential Mechanism for the Anti-Glioma Efficacy of a Traditional Chinese Herbal Medicine

    PubMed Central

    Zhang, Feng-Ying; Hu, Yi; Que, Zhong-You; Wang, Ping; Liu, Yun-Hui; Wang, Zhen-Hua; Xue, Yi-Xue

    2015-01-01

    Shikonin is an anthraquinone derivative extracted from the root of lithospermum. Shikonin is traditionally used in the treatment of inflammatory and infectious diseases such as hepatitis. Shikonin also inhibits proliferation and induces apoptosis in various tumors. However, the effect of shikonin on gliomas has not been fully elucidated. In the present study, we aimed to investigate the effects of shikonin on the migration and invasion of human glioblastoma cells as well as the underlying mechanisms. U87 and U251 human glioblastoma cells were treated with shikonin at 2.5, 5, and 7.5 μmol/L and cell viability, migration and invasiveness were assessed with CCK8, scratch wound healing, in vitro Transwell migration, and invasion assays. The expression and activity of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) and the expression of phosphorylated β-catenin (p-β-catenin) and phosphorylated PI3K/Akt were also checked. Results showed that shikonin significantly inhibited the cell proliferation, migration, invasion, and expression of MMP-2 and MMP-9 in U87 and U251 cells. The expression of p-β-catenin showed contrary trends in two cell lines. It was significantly inhibited in U87 cells and promoted in U251 cells. Results in this work indicated that shikonin displayed an inhibitory effect on the migration and invasion of glioma cells by inhibiting the expression and activity of MMP-2 and -9. In addition, shikonin also inhibited the expression of p-PI3K and p-Akt to attenuate cell migration and invasion and MMP-2 and MMP-9 expression in both cell lines, which could be reversed by the PI3K/Akt pathway agonist, insulin-like growth factor-1 (IGF-1). PMID:26473829

  16. Muscarinic agonists and phorbol esters increase tyrosine phosphorylation of a 40-kilodalton protein in hippocampal slices

    SciTech Connect

    Stratton, K.R.; Worley, P.F.; Huganir, R.L.; Baraban, J.M. )

    1989-04-01

    The authors have used the hippocampal slice preparation to investigate the regulation of protein tyrosine phosphorylation in brain. After pharmacological treatment of intact slices, proteins were separated by electrophoresis, and levels of protein tyrosine phosphorylation were assessed by immunoblotting with specific anti-phosphotyrosine antibodies. Phorbol esters, activators of the serine- and threonine-phosphorylating enzyme protein kinase C, selectively increase tyrosine phosphorylation of a soluble protein with an apparent molecular mass of approximately 40 kilodaltons. Muscarinic agonists such as carbachol and oxotremorine M that strongly activate the inositol phospholipid system also increase tyrosine phosphorylation of this protein. Neurotransmitter activation of the inositol phospholipid system and protein kinase C appears to trigger a cascade leading to increased tyrosine phosphorylation.

  17. Akt isoform-dependent regulation of ATP-Binding cassette A1 expression by apolipoprotein E.

    PubMed

    Okoro, Emmanuel U; Guo, Zhongmao; Yang, Hong

    2016-08-12

    We previously reported that apolipoprotein E (apoE) upregulates ATP-binding cassette transporter A1 (ABCA1) transcription through phosphatidylinositol 3-kinase (PI3K). Here we demonstrate that treatment of murine macrophages with human apoE3 enhanced Akt phosphorylation, and upregulated ABCA1 protein and mRNA expression. Inhibition of PI3K weakened apoE3-induced Akt phosphorylation, and ABCA1 protein and mRNA increase. In contrast, inhibition of Akt only diminished apoE-induced ABCA1 protein but not the mRNA level. Suppression of protein synthesis did not erase the ability of apoE3 to increase ABCA1 protein level. Further, apoE3 increased the resistance of ABCA1 protein to calpain-mediated degradation without affecting calpain activity. Treatment of macrophages with apoE3 selectively enhanced the phosphorylation of Akt1 and Akt2, but not Akt3. Knockdown of Akt1 or Akt2 increased and decreased ABCA1 protein level, respectively; while overexpression of these Akt isoenzymes caused changes in ABCA1 protein level opposite to those induced by knockdown of the corresponding Akt. These data imply that apoE3 guards against calpain-mediated ABCA1 degradation through Akt2. PMID:27297104

  18. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway.

    PubMed

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji; Lee, Hui-Young; Hong, Suntaek; Kim, Seong-Jin; Kim, Byung-Chul

    2013-06-14

    Hydrogen peroxide (H2O2) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H2O2 are less understood. Here we report an important mechanism for antagonistic effects of H2O2 on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H2O2 (0.05-0.2 mM) completely blocked TGF-β1-mediated induction of p15(INK4B) expression and increase of its promoter activity. Interestingly, H2O2 selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H2O2 increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H2O2 on TGF-β1-induced increase of p15(INK4B)-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H2O2 as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing a potential mechanism whereby H2O2 antagonizes the cytostatic function of TGF-β1. PMID:23685151

  19. Metformin inhibits growth of eutopic stromal cells from adenomyotic endometrium via AMPK activation and subsequent inhibition of AKT phosphorylation: a possible role in the treatment of adenomyosis.

    PubMed

    Xue, Jing; Zhang, Hui; Liu, Wei; Liu, Ming; Shi, Min; Wen, Zeqing; Li, Changzhong

    2013-10-01

    Adenomyosis is a finding that is associated with dysmenorrhea and heavy menstrual bleeding, associated with PI3K/AKT signaling overactivity. To investigate the effect of metformin on the growth of eutopic endometrial stromal cells (ESCs) from patients with adenomyosis and to explore the involvement of AMP-activated protein kinase (AMPK) and PI3K/AKT pathways. Primary cultures of human ESCs were derived from normal endometrium (normal endometrial stromal cells (N-ESCs)) and adenomyotic eutopic endometrium (adenomyotic endometrial stroma cells (A-ESCs)). Expression of AMPK was determined using immunocytochemistry and western blot analysis. 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assays were used to determine the effects of metformin and compound C on ESCs and also to detect growth and proliferation of ESCs. AMPK and PI3K/AKT signaling was determined by western blotting. A-ECSs exhibited greater AMPK expression than N-ESCs. Metformin inhibited proliferation of ESCs in a concentration-dependent manner. The IC50 was 2.45 mmol/l for A-ESCs and 7.87 mmol/l for N-ESCs. Metformin increased AMPK activation levels (p-AMPK/AMPK) by 2.0±0.3-fold in A-ESCs, 2.3-fold in A-ESCs from the secretory phase, and 1.6-fold in the proliferation phase. The average reduction ratio of 17β-estradiol on A-ESCs was 2.1±0.8-fold in proliferative phase and 2.5±0.5-fold in secretory phase relative to the equivalent groups not treated with 17β-estradiol. The inhibitory effects of metformin on AKT activation (p-AKT/AKT) were more pronounced in A-ESCs from the secretory phase (3.2-fold inhibition vs control) than in those from the proliferation phase (2.3-fold inhibition vs control). Compound C, a selective AMPK inhibitor, abolished the effects of metformin on cell growth and PI3K/AKT signaling. Metformin inhibits cell growth via AMPK activation and subsequent inhibition of PI3K/AKT signaling in A-ESCs, particularly during the secretory phase, suggesting a greater

  20. Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser157) and dephosphorylation of PI3K and Akt

    PubMed Central

    Kwon, Hyuk-Woo; Shin, Jung-Hae; Cho, Hyun-Jeong; Rhee, Man Hee; Park, Hwa-Jin

    2015-01-01

    Background Binding of adhesive proteins (i.e., fibrinogen, fibronectin, vitronectin) to platelet integrin glycoprotein IIb/IIIa (αIIb/β3) by various agonists (thrombin, collagen, adenosine diphosphate) involve in strength of thrombus. This study was carried out to evaluate the antiplatelet effect of total saponin from Korean Red Ginseng (KRG-TS) by investigating whether KRG-TS inhibits thrombin-induced binding of fibrinogen and fibronectin to αIIb/β3. Methods We investigated the effect of KRG-TS on phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and dephosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt, affecting binding of fibrinogen and fibronectin to αIIb/β3, and clot retraction. Results KRG-TS had an antiplatelet effect by inhibiting the binding of fibrinogen and fibronectin to αIIb/β3 via phosphorylation of VASP (Ser157), and dephosphorylation of PI3K and Akt on thrombin-induced platelet aggregation. Moreover, A-kinase inhibitor Rp-8-Br-cyclic adenosine monophosphates (cAMPs) reduced KRG-TS-increased VASP (Ser157) phosphorylation, and increased KRG-TS-inhibited fibrinogen-, and fibronectin-binding to αIIb/β3. These findings indicate that KRG-TS interferes with the binding of fibrinogen and fibronectin to αIIb/β3 via cAMP-dependent phosphorylation of VASP (Ser157). In addition, KRG-TS decreased the rate of clot retraction, reflecting inhibition of αIIb/β3 activation. In this study, we clarified ginsenoside Ro (G-Ro) in KRG-TS inhibited thrombin-induced platelet aggregation via both inhibition of [Ca2+]i mobilization and increase of cAMP production. Conclusion These results strongly indicate that KRG-TS is a beneficial herbal substance inhibiting fibrinogen-, and fibronectin-binding to αIIb/β3, and clot retraction, and may prevent platelet αIIb/β3-mediated thrombotic disease. In addition, we demonstrate that G-Ro is a novel compound with antiplatelet characteristics of KRG-TS. PMID:26843825

  1. Exendin-4-loaded PLGA microspheres relieve cerebral ischemia/reperfusion injury and neurologic deficits through long-lasting bioactivity-mediated phosphorylated Akt/eNOS signaling in rats.

    PubMed

    Chien, Chiang-Ting; Jou, Ming-Jia; Cheng, Tai-Yu; Yang, Chih-Hui; Yu, Tzu-Ying; Li, Ping-Chia

    2015-11-01

    Glucagon-like peptide-1 (GLP-1) receptor activation in the brain provides neuroprotection. Exendin-4 (Ex-4), a GLP-1 analog, has seen limited clinical usage because of its short half-life. We developed long-lasting Ex-4-loaded poly(D,L-lactide-co-glycolide) microspheres (PEx-4) and explored its neuroprotective potential against cerebral ischemia in diabetic rats. Compared with Ex-4, PEx-4 in the gradually degraded microspheres sustained higher Ex-4 levels in the plasma and cerebrospinal fluid for at least 2 weeks and improved diabetes-induced glycemia after a single subcutaneous administration (20 μg/day). Ten minutes of bilateral carotid artery occlusion (CAO) combined with hemorrhage-induced hypotension (around 30 mm Hg) significantly decreased cerebral blood flow and microcirculation in male Wistar rats subjected to streptozotocin-induced diabetes. CAO increased cortical O2(-) levels by chemiluminescence amplification and prefrontal cortex edema by T2-weighted magnetic resonance imaging analysis. CAO significantly increased aquaporin 4 and glial fibrillary acidic protein expression and led to cognition deficits. CAO downregulated phosphorylated Akt/endothelial nitric oxide synthase (p-Akt/p-eNOS) signaling and enhanced nuclear factor (NF)-κBp65/intercellular adhesion molecule-1 (ICAM-1) expression, endoplasmic reticulum (ER) stress, and apoptosis in the cerebral cortex. PEx-4 was more effective than Ex-4 to improve CAO-induced oxidative injury and cognitive deficits. The neuroprotection provided by PEx-4 was through p-Akt/p-eNOS pathways, which suppressed CAO-enhanced NF-κB/ICAM-1 signaling, ER stress, and apoptosis. PMID:26058696

  2. Phosphorylated AKT inhibits the apoptosis induced by DRAM-mediated mitophagy in hepatocellular carcinoma by preventing the translocation of DRAM to mitochondria.

    PubMed

    Liu, K; Shi, Y; Guo, X H; Ouyang, Y B; Wang, S S; Liu, D J; Wang, A N; Li, N; Chen, D X

    2014-01-01

    Increasing autophagy is beneficial for curing hepatocellular carcinoma (HCC). Damage-regulated autophagy modulator (DRAM) was recently reported to induce apoptosis by mediating autophagy. However, the effects of DRAM-mediated autophagy on apoptosis in HCC cells remain unclear. In this study, normal hepatocytes (7702) and HCC cell lines (HepG2, Hep3B and Huh7) were starved for 48 h. Starvation induced apoptosis and autophagy in all cell lines. We determined that starvation also induced DRAM expression and DRAM-mediated autophagy in both normal hepatocytes and HCC cells. However, DRAM-mediated autophagy was involved in apoptosis in normal hepatocytes but not in HCC cells, suggesting that DRAM-mediated autophagy fails to induce apoptosis in hepatoma in response to starvation. Immunoblot and immunofluorescence assays demonstrated that DRAM translocated to mitochondria and induced mitophagy, which led to apoptosis in 7702 cells. In HCC cells, starvation also activated the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which blocks the translocation of DRAM to mitochondria through the binding of p-AKT to DRAM in the cytoplasm. Inactivation of the PI3K/AKT pathway rescued DRAM translocation to mitochondria; subsequently, mitochondrial DRAM induced apoptosis in HCC cells by mediating mitophagy. Our findings open new avenues for the investigation of the mechanisms of DRAM-mediated autophagy and suggest that promoting DRAM-mediated autophagy together with PI3K/AKT inhibition might be more effective for autophagy-based therapy in hepatoma. PMID:24556693

  3. Stimulation of EphB2 attenuates tau phosphorylation through PI3K/Akt-mediated inactivation of glycogen synthase kinase-3β

    PubMed Central

    Jiang, Jun; Wang, Zhi-Hao; Qu, Min; Gao, Di; Liu, Xiu-Ping; Zhu, Ling-Qiang; Wang, Jian-Zhi

    2015-01-01

    Abnormal tau hyperphosphorylation is an early pathological marker of Alzheimer’s disease (AD), however, the upstream factors that regulate tau phosphorylation are not illustrated and there is no efficient strategy to arrest tau hyperphosphorylation. Here, we find that activation of endogenous EphB2 receptor by ligand stimulation (ephrinB1/Fc) or by ectopic expression of EphB2 plus the ligand stimulation induces a remarkable tau dephosphorylation at multiple AD-associated sites in SK-N-SH cells and human embryonic kidney cells that stably express human tau (HEK293-tau). In cultured hippocampal neurons and the hippocampus of human tau transgenic mice, dephosphorylation of tau proteins was also detected by stimulation of EphB2 receptor. EphB2 activation inhibits glycogen synthase kinase-3β (GSK-3β), a crucial tau kinase, and activates phosphatidylinositol-3-kinase (PI3K)/Akt both in vitro and in vivo, whereas simultaneous inhibition of PI3K or upregulation of GSK-3β abolishes the EphB2 stimulation-induced tau dephosphorylation. Finally, we confirm that ephrinB1/Fc treatment induces tyrosine phosphorylation (activation) of EphB2, while deletion of the tyrosine kinase domain (VM) of EphB2 eliminates the receptor stimulation-induced GSK-3β inhibition and tau dephosphorylation. We conclude that activation of EphB2 receptor kinase arrests tau hyperphosphorylation through PI3K-/Akt-mediated GSK-3β inhibition. Our data provide a novel membranous target to antagonize AD-like tau pathology. PMID:26119563

  4. CXCR1 promotes malignant behavior of gastric cancer cells in vitro and in vivo in AKT and ERK1/2 phosphorylation.

    PubMed

    Wang, Junpu; Hu, Wanming; Wu, Xiaoying; Wang, Kuansong; Yu, Jun; Luo, Baihua; Luo, Gengqiu; Wang, Weiyuan; Wang, Huiling; Li, Jinghe; Wen, Jifang

    2016-05-01

    CXCR1 is a member of the chemokine receptor family, which was reported to play an important role in several cancers. The present study investigated the influence of CXCR1 stable knockdown or overexpression on the malignant behavior of gastric cancer cells in vitro and in vivo and the potential mechanisms. MKN45 and BGC823 cells were stably transfected with plasmid pYr-1.1-CXCR1-shRNA (knockdown) and pIRES2-ZsGreen1-CXCR1 (overexpression), respectively. Malignant behavior was evaluated in vitro for changes in proliferation by MTT and colony forming assays; cell cycle and apoptosis by flow cytometry; and migration and invasion using transwell and wound-healing assays. Proliferation, cell cycle, apoptosis, migration and invasion-related signaling molecule expression were measured by real-time RT-PCR and western blot analysis. CXCR1 knockdown and overexpressing xenografts were monitored for in vivo tumor growth. Stable knockdown of CXCR1 inhibited MKN45 cell proliferation, migration and invasion, but were reversed in BGC823 cells stably overexpressing CXCR1. In addition, MKN45 cells stably transfected with CXCR1 shRNA inhibited AKT and ERK1/2 phosphorylation, protein expression of cyclin D1, EGFR, VEGF, MMP-9, MMP-2 and Bcl-2, and increased protein expression of Bax and E-cadherin (all P<0.05). In vivo CXCR1-shRNA-MKN45 cells transplanted into nude mice formed smaller tumors than non-transfected or scrambled-shRNA cells (both P<0.05). In contrast BGC823 cells overexpressing CXCR1 formed larger tumors in mice than cells carrying an empty expression plasmid or non-transfected cells (both P<0.05). CXCR1 promoted gastric cancer cell proliferation, migration and invasion. The present study provides preclinical data to support CXCR1 as a novel therapeutic target for gastric cancer. PMID:26983663

  5. Modulation in Activation and Expression of PTEN, Akt1, and PDK1: Further Evidence Demonstrating Altered Phosphoinositide 3-kinase Signaling in Postmortem Brain of Suicide Subjects

    PubMed Central

    Dwivedi, Yogesh; Rizavi, Hooriyah S.; Zhang, Hui; Roberts, Rosalinda C.; Conley, Robert R.; Pandey, Ghanshyam N.

    2010-01-01

    Background Phosphoinositide 3-kinase (PI 3-K) signaling plays a crucial role in neuronal growth and plasticity. Recently, we demonstrated that suicide brain is associated with decreased activation and expression of selective catalytic and regulatory subunits of PI 3-K. The present investigation examined the regulation and functional significance of compromised PI 3-K in suicide brain at the level of upstream phosphatase and tensin homolog on chromosome ten (PTEN) and downstream substrates 3-phosphoinositide-dependent kinase 1 (PDK1) and Akt. Method mRNA expression of Akt1, Akt3, PTEN, and PDK1 by competitive RT-PCR; protein expression of Akt1, Akt3, PTEN, PDK1, phosphorylated-Akt1 (Ser473), phosphorylated-Akt1(Thr308), phosphorylated-PDK1, and phosphorylated-PTEN by Western blot; and catalytic activities of Akt1, Akt3, and PDK1 by enzymatic assays were determined in prefrontal cortex (PFC) and hippocampus obtained from suicide subjects and nonpsychiatric controls. Results No significant changes in the expression of Akt1 or Akt3 were observed; however, catalytic activity of Akt1, but not of Akt3, was decreased in PFC and hippocampus of suicide subjects, which was associated with decreased phosphorylation of Akt1 at Ser473 and Thr308. The catalytic activity of PDK1 and the level of phosphorylated-PDK1 were also decreased in both brain areas without any change in expression levels of PDK1. On the other hand, mRNA and protein expression of PTEN was increased, whereas the level of phosphorylated-PTEN was decreased. Conclusion Our study demonstrates abnormalities in PI 3-K signaling at several levels in brain of suicide subjects and suggests the possible involvement of aberrant PI 3-K/Akt signaling in the pathogenic mechanisms of suicide. PMID:20163786

  6. Regulation of Bax/mitochondria interaction by AKT.

    PubMed

    Simonyan, Lilit; Renault, Thibaud T; Novais, Maria João da Costa; Sousa, Maria João; Côrte-Real, Manuela; Camougrand, Nadine; Gonzalez, Cécile; Manon, Stéphen

    2016-01-01

    Bax-dependent mitochondrial permeabilization during apoptosis is controlled by multiple factors, including the phosphorylation by the protein kinase AKT. We used the heterologous co-expression of human Bax and AKT1 in yeast to investigate how the kinase modulates the different steps underlying Bax activation. We found that AKT activated Bax and increased its cellular content. Both effects were dependent on Ser184, but a phosphorylation of this residue did not fully explain the effects of AKT. Additional experiments with mutants substituted on Ser184 suggested that the regulation of Bax dynamic equilibrium between the cytosol and mitochondria might be more tightly regulated by Bcl-xL when Bax is phosphorylated. PMID:26763134

  7. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  8. Higher Levels of c-Met Expression and Phosphorylation Identify Cell Lines With Increased Sensitivity to AMG-458, a Novel Selective c-Met Inhibitor With Radiosensitizing Effects

    SciTech Connect

    Li Bo; Torossian, Artour; Sun, Yunguang; Du, Ruihong; Dicker, Adam P.; Lu Bo

    2012-11-15

    Purpose: c-Met is overexpressed in some non-small cell lung cancer (NSCLC) cell lines and tissues. Cell lines with higher levels of c-Met expression and phosphorylation depend on this receptor for survival. We studied the effects of AMG-458 on 2 NSCLC cell lines. Methods and Materials: 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium assays assessed the sensitivities of the cells to AMG-458. Clonogenic survival assays illustrated the radiosensitizing effects of AMG-458. Western blot for cleaved caspase 3 measured apoptosis. Immunoblotting for c-Met, phospho-Met (p-Met), Akt/p-Akt, and Erk/p-Erk was performed to observe downstream signaling. Results: AMG-458 enhanced radiosensitivity in H441 but not in A549. H441 showed constitutive phosphorylation of c-Met. A549 expressed low levels of c-Met, which were phosphorylated only in the presence of exogenous hepatocyte growth factor. The combination of radiation therapy and AMG-458 treatment was found to synergistically increase apoptosis in the H441 cell line but not in A549. Radiation therapy, AMG-458, and combination treatment were found to reduce p-Akt and p-Erk levels in H441 but not in A549. H441 became less sensitive to AMG-458 after small interfering RNA knockdown of c-Met; there was no change in A549. After overexpression of c-Met, A549 became more sensitive, while H441 became less sensitive to AMG-458. Conclusions: AMG-458 was more effective in cells that expressed higher levels of c-Met/p-Met, suggesting that higher levels of c-Met and p-Met in NSCLC tissue may classify a subset of tumors that are more sensitive to molecular therapies against this receptor.

  9. Antitumor effect of manumycin on colorectal cancer cells by increasing the reactive oxygen species production and blocking PI3K-AKT pathway

    PubMed Central

    Zhang, Jingyu; Jiang, Hua; Xie, Li; Hu, Jing; Li, Li; Yang, Mi; Cheng, Lei; Liu, Baorui; Qian, Xiaoping

    2016-01-01

    Manumycin is a natural, well-tolerated microbial metabolite and is regarded as a farnesyltransferase inhibitor. Some data suggest that manumycin inhibits proliferation of diverse cancer cells through various pathways. However, the antitumor effect of manumycin on colorectal cancer (CRC) remains unknown. In the present study, we investigated the antitumor effect of manumycin on CRC in vitro and in vivo. The results of cell viability assay revealed that the proliferation of the CRC cells was significantly inhibited by manumycin. Moreover, cell apoptosis induced by manumycin was also found in a time- and dose-dependent manner. Interestingly, treatment of the CRC cells with manumycin resulted in increased generation of reactive oxygen species. Subsequently, manumycin also decreased the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and AKT, as well as the expression of caspase-9 and poly(ADP-ribose) polymerase (PARP) in a time-dependent manner. In addition, we found that N-acetyl-l-cysteine (NAC) attenuated the effect of manumycin on the PI3K-AKT pathway, and wortmannin reduced the effect of manumycin on caspase-9 and PARP expression. More importantly, the anticancer effect of manumycin was also observed in established tumor xenografts. Taken together, these findings supported the potential application of manumycin against colorectal carcinoma. PMID:27307747

  10. A polysaccharide fraction from Achillea millefolium increases cytokine secretion and reduces activation of Akt, ERK and NF-κB in THP-1 monocytes.

    PubMed

    Freysdottir, Jona; Logadottir, Oddny T; Omarsdottir, Sesselja S; Vikingsson, Arnor; Hardardottir, Ingibjorg

    2016-06-01

    Achillea millefolium has been used in traditional medicine for a number of ailments, including skin inflammation and wounds. A polysaccharide fraction (Am-25-d) isolated from aqueous extract from A. millefolium had an average molecular weight of 270kDa and a monosaccharide composition of GalA, Gal, Ara, Xyl, Rha in molar ratio of 28:26:23:9:7. THP-1 cells primed with IFN-γ and stimulated with LPS in the presence of Am-25-d secreted more IL-1β, IL-8, IL-10, IL-12p40, IL-23 and TNF-α than THP-1 cells stimulated in the absence of Am-25-d. However, when added to unstimulated cells Am-25-d did not increase secretion of the cytokines examined. Stimulating THP-1 monocytes in the presence of Am-25-d led to decreased nuclear concentrations of NF-κB and phosphorylation of ERK1/2 and Akt kinases compared with that when the cells were stimulated without Am-25-d. These findings indicate that Am-25-d isolated from A. millefolium has immunoenhancing properties that may be mediated via the Akt pathway. PMID:27083352

  11. Brain-derived neurotrophic factor rapidly increases NMDA receptor channel activity through Fyn-mediated phosphorylation.

    PubMed

    Xu, Fei; Plummer, Mark R; Len, Guo-Wei; Nakazawa, Takanobu; Yamamoto, Tadashi; Black, Ira B; Wu, Kuo

    2006-11-22

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of hippocampal synaptic plasticity. Previously, we found that one of the targets of BDNF modulation is NR2B-containing NMDA receptors. Furthermore, exposure to the trophin rapidly increases NMDA receptor activity and enhances tyrosine phosphorylation of NR2B in cortical and hippocampal postsynaptic densities (PSDs), potentially linking receptor phosphorylation to synaptic plasticity. To define the specific NR2B residue(s) regulated by BDNF, we focused on tyrosine 1472, phosphorylation of which increases after LTP. BDNF rapidly increased phosphorylation in cortical PSDs. The tyrosine kinase Fyn is critical since BDNF-dependent phosphorylation was abolished in Fyn knockout mice. Single-channel patch clamp recordings showed that Fyn is required for the increase in NMDA receptor activity elicited by BDNF. Collectively, our results suggest that BDNF enhances phosphorylation of NR2B tyrosine 1472 through activation of Fyn, leading to alteration of NMDA receptor activity and increased synaptic transmission. PMID:17045972

  12. Nitric Oxide Synthase and Breast Cancer: Role of TIMP-1 in NO-mediated Akt Activation

    PubMed Central

    Ridnour, Lisa A.; Barasch, Kimberly M.; Windhausen, Alisha N.; Dorsey, Tiffany H.; Lizardo, Michael M.; Yfantis, Harris G.; Lee, Dong H.; Switzer, Christopher H.; Cheng, Robert Y. S.; Heinecke, Julie L.; Brueggemann, Ernst; Hines, Harry B.; Khanna, Chand; Glynn, Sharon A.; Ambs, Stefan; Wink, David A.

    2012-01-01

    Prediction of therapeutic response and cancer patient survival can be improved by the identification of molecular markers including tumor Akt status. A direct correlation between NOS2 expression and elevated Akt phosphorylation status has been observed in breast tumors. Tissue inhibitor matrix metalloproteinase-1 (TIMP-1) has been proposed to exert oncogenic properties through CD63 cell surface receptor pathway initiation of pro-survival PI3k/Akt signaling. We employed immunohistochemistry to examine the influence of TIMP-1 on the functional relationship between NOS2 and phosphorylated Akt in breast tumors and found that NOS2-associated Akt phosphorylation was significantly increased in tumors expressing high TIMP-1, indicating that TIMP-1 may further enhance NO-induced Akt pathway activation. Moreover, TIMP-1 silencing by antisense technology blocked NO-induced PI3k/Akt/BAD phosphorylation in cultured MDA-MB-231 human breast cancer cells. TIMP-1 protein nitration and TIMP-1/CD63 co-immunoprecipitation was observed at NO concentrations that induced PI3k/Akt/BAD pro-survival signaling. In the survival analysis, elevated tumor TIMP-1 predicted poor patient survival. This association appears to be mainly restricted to tumors with high NOS2 protein. In contrast, TIMP-1 did not predict poor survival in patient tumors with low NOS2 expression. In summary, our findings suggest that tumors with high TIMP-1 and NOS2 behave more aggressively by mechanisms that favor Akt pathway activation. PMID:22957045

  13. COMP-Ang1 enhances DNA synthesis and cell cycle progression in human periodontal ligament cells via Tie2-mediated phosphorylation of PI3K/Akt and MAPKs.

    PubMed

    Lim, Shin-Saeng; Kook, Sung-Ho; Lee, Jeong-Chae

    2016-05-01

    Recombinant COMP-Ang1, a chimera of angiopoietin-1 (Ang1), and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP) can stimulate multiple cellular processes. Proliferative capacity of periodontal ligament (PDL) fibroblasts (PLFs) is important for maintaining PDL integrity and homeostasis. In this study, we explored whether exogenous COMP-Ang1 addition enhances proliferation of human PLFs and the cellular mechanisms therein. We initially isolated and characterized PLFs, where the cells showed highly positive staining for surface markers, CD90, CD105, and CD146. COMP-Ang1 treatment increased proliferation of PLFs by stimulating migration of cells into S and G2/M phases. This increase was coupled with decreased p21(Cip) and p27(Kip) levels and enhanced cyclin D1, cyclin-dependent kinase (CDK) 2, and CDK4 induction. Transfection with si-Tie2 near completely blocked COMP-Ang1-stimulated cell cycle progression in PLFs. Tie2 knockdown also inhibited COMP-Ang1-induced phosphorylation of mitogen-activated protein kinases (MAPKs). In addition, COMP-Ang1-mediated activation of Akt and c-Jun was suppressed by treating each of pharmacological inhibitors specific to phosphoinositide 3-kinase (PI3K) (LY294002 and Wortmannin) or MAPKs (PD98059, SB203580, and SP600125). Similarly, COMP-Ang1-mediated increases in DNA synthesis and cyclin D1 induction were prevented by treating inhibitor of MAPKs and PI3K or by c-Jun knockdown. These results suggest that COMP-Ang1 enhances survival and proliferation of human PLFs through the activation of Tie2-mediated signaling, where PI3K/Akt and MAPK-c-Jun signaling pathways act as downstream effectors. Collectively, COMP-Ang1 may be a useful as a stimulator of human PLFs and therefore improves PDL integrity and homeostasis. PMID:27107990

  14. Ischemia/reperfusion-induced myosin light chain 1 phosphorylation increases its degradation by matrix metalloproteinase-2

    PubMed Central

    Cadete, Virgilio J. J.; Sawicka, Jolanta; Jaswal, Jagdip; Lopaschuk, Gary D.; Schulz, Richard; Szczesna-Cordary, Danuta; Sawicki, Grzegorz

    2012-01-01

    Summary Degradation of myosin light chain 1 (MLC1) by matrix metalloproteinase-2 (MMP-2) during myocardial ischemia/reperfusion (I/R) injury has been established. However, the exact mechanisms controlling this process remain unknown. I/R increases the phosphorylation of MLC1, but the consequences of this modification are not known. We hypothesized that phosphorylation of MLC1 plays an important role in its degradation by MMP-2. To examine this, isolated perfused rat hearts were subjected to 20 min global ischemia followed by 30 min of aerobic reperfusion. I/R increased phosphorylation of MLC1 (as measured by mass spectrometry). If hearts were subjected to I/R in the presence of ML-7 (a myosin light chain kinase (MLCK) inhibitor) or doxycycline (a MMP inhibitor) an improved recovery of contractile function was seen compared to aerobic hearts and MLC1 was protected from degradation. Enzyme kinetic studies revealed an increased affinity of MMP-2 for the phosphorylated form of MLC1 compared to non-phosphorylated MLC1. We conclude that MLC1 phosphorylation is important mechanism controlling the intracellular action of MMP-2 and promoting the degradation of MLC1. These results further support previous findings implicating posttranslational modifications of contractile proteins as a key factor in the pathology of cardiac dysfunction during and following ischemia. PMID:22564771

  15. Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC

    SciTech Connect

    Murakami, Hisashi; Murakami, Ryuichiro . E-mail: ryuichi@med.nagoya-u.ac.jp; Kambe, Fukushi; Cao, Xia; Takahashi, Ryotaro; Asai, Toru; Hirai, Toshihisa; Numaguchi, Yasushi; Okumura, Kenji; Seo, Hisao; Murohara, Toyoaki

    2006-03-24

    Fenofibrate improves endothelial function by lipid-lowering and anti-inflammatory effects. Additionally, fenofibrate has been demonstrated to upregulate endothelial nitric oxide synthase (eNOS). AMP-activated protein kinase (AMPK) has been reported to phosphorylate eNOS at Ser-1177 and stimulate vascular endothelium-derived nitric oxide (NO) production. We report here that fenofibrate activates AMPK and increases eNOS phosphorylation and NO production in human umbilical vein endothelial cells (HUVEC). Incubation of HUVEC with fenofibrate increased the phosphorylation of AMPK and acetyl-CoA carboxylase. Fenofibrate simultaneously increased eNOS phosphorylation and NO production. Inhibitors of protein kinase A and phosphatidylinositol 3-kinase failed to suppress the fenofibrate-induced eNOS phosphorylation. Neither bezafibrate nor WY-14643 activated AMPK in HUVEC. Furthermore, fenofibrate activated AMPK without requiring any transcriptional activities. These results indicate that fenofibrate stimulates eNOS phosphorylation and NO production through AMPK activation, which is suggested to be a novel characteristic of this agonist and unrelated to its effects on peroxisome proliferator-activated receptor {alpha}.

  16. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    SciTech Connect

    Xue, Peng; Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu; Sun, Guifan; Andersen, Melvin E.; Pi, Jingbo

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  17. Angiotensin II Signaling in Human Preadipose Cells: Participation of ERK1,2-Dependent Modulation of Akt

    PubMed Central

    Dünner, Natalia; Quezada, Carolina; Berndt, F. Andrés; Cánovas, José; Rojas, Cecilia V.

    2013-01-01

    The renin-angiotensin system expressed in adipose tissue has been implicated in the modulation of adipocyte formation, glucose metabolism, triglyceride accumulation, lipolysis, and the onset of the adverse metabolic consequences of obesity. As we investigated angiotensin II signal transduction mechanisms in human preadipose cells, an interplay of extracellular-signal-regulated kinases 1 and 2 (ERK1,2) and Akt/PKB became evident. Angiotensin II caused attenuation of phosphorylated Akt (p-Akt), at serine 473; the p-Akt/Akt ratio decreased to 0.5±0.2-fold the control value without angiotensin II (p<0.001). Here we report that the reduction of phosphorylated Akt associates with ERK1,2 activities. In the absence of angiotensin II, inhibition of ERK1,2 activation with U0126 or PD98059 resulted in a 2.1±0.5 (p<0.001) and 1.4±0.2-fold (p<0.05) increase in the p-Akt/Akt ratio, respectively. In addition, partial knockdown of ERK1 protein expression by the short hairpin RNA technique also raised phosphorylated Akt in these cells (the p-Akt/Akt ratio was 1.5±0.1-fold the corresponding control; p<0.05). Furthermore, inhibition of ERK1,2 activation with U0126 prevented the reduction of p-Akt/Akt by angiotensin II. An analogous effect was found on the phosphorylation status of Akt downstream effectors, the forkhead box (Fox) proteins O1 and O4. Altogether, these results indicate that angiotensin II signaling in human preadipose cells involves an ERK1,2-dependent attenuation of Akt activity, whose impact on the biological functions under its regulation is not fully understood. PMID:24098385

  18. Phosphorylation of a C-terminal auto-inhibitory domain increases SMARCAL1 activity.

    PubMed

    Carroll, Clinton; Bansbach, Carol E; Zhao, Runxiang; Jung, Sung Yun; Qin, Jun; Cortez, David

    2014-01-01

    SMARCAL1 promotes the repair and restart of damaged replication forks. Either overexpression or silencing SMARCAL1 causes the accumulation of replication-associated DNA damage. SMARCAL1 is heavily phosphorylated. Here we identify multiple phosphorylation sites, including S889, which is phosphorylated even in undamaged cells. S889 is highly conserved through evolution and it regulates SMARCAL1 activity. Specifically, S889 phosphorylation increases the DNA-stimulated ATPase activity of SMARCAL1 and increases its ability to catalyze replication fork regression. A phosphomimetic S889 mutant is also hyperactive when expressed in cells, while a non-phosphorylatable mutant is less active. S889 lies within a C-terminal region of the SMARCAL1 protein. Deletion of the C-terminal region also creates a hyperactive SMARCAL1 protein suggesting that S889 phosphorylation relieves an auto-inhibitory function of this SMARCAL1 domain. Thus, S889 phosphorylation is one mechanism by which SMARCAL1 activity is regulated to ensure the proper level of fork remodeling needed to maintain genome integrity during DNA synthesis. PMID:24150942

  19. AKT/SGK-sensitive phosphorylation of GSK3 in the regulation of L-selectin and perforin expression as well as activation induced cell death of T-lymphocytes

    SciTech Connect

    Bhavsar, Shefalee K.; Merches, Katja; Bobbala, Diwakar; Lang, Florian

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Akt/SGK dependent phosphorylation of GSK3{alpha},{beta} regulates T lymphocytes. Black-Right-Pointing-Pointer T cells from mice expressing Akt/SGK insensitive GSK3{alpha},{beta} (gsk3{sup KI}) release less IL-2. Black-Right-Pointing-Pointer CD4{sup +} cells from gsk3{sup KI} mice express less CD62L. Black-Right-Pointing-Pointer CD8{sup +} cells from gsk3{sup KI} mice are relatively resistant to activation induced cell death. Black-Right-Pointing-Pointer Perforin expression is enhanced in gsk3{sup KI} T cells. -- Abstract: Survival and function of T-lymphocytes critically depends on phosphoinositide (PI) 3 kinase. PI3 kinase signaling includes the PKB/Akt and SGK dependent phosphorylation and thus inhibition of glycogen synthase kinase GSK3{alpha},{beta}. Lithium, a known unspecific GSK3 inhibitor protects against experimental autoimmune encephalomyelitis. The present study explored, whether Akt/SGK-dependent regulation of GSK3 activity is a determinant of T cell survival and function. Experiments were performed in mutant mice in which Akt/SGK-dependent GSK3{alpha},{beta} inhibition was disrupted by replacement of the serine residue in the respective SGK/Akt-phosphorylation consensus sequence by alanine (gsk3{sup KI}). T cells from gsk3{sup KI} mice were compared to T cells from corresponding wild type mice (gsk3{sup WT}). As a result, in gsk3{sup KI} CD4{sup +} cells surface CD62L (L-selectin) was significantly less abundant than in gsk3{sup WT} CD4{sup +} cells. Upon activation in vitro T cells from gsk3{sup KI} mice reacted with enhanced perforin production and reduced activation induced cell death. Cytokine production was rather reduced in gsk3{sup KI} T cells, suggesting that GSK3 induces effector function in CD8{sup +} T cells. In conclusion, PKB/Akt and SGK sensitive phosphorylation of GSK3{alpha},{beta} is a potent regulator of perforin expression and activation induced cell death in T lymphocytes.

  20. Expression of a phosphorylated p130Cas substrate domain attenuates the phosphatidylinositol 3-kinase/Akt survival pathway in tamoxifen resistant breast cancer cells

    PubMed Central

    Soni, Shefali; Lin, Bor-Tyh; August, Avery; Nicholson, Robert I.; Kirsch, Kathrin H.

    2009-01-01

    Elevated expression of p130Cas/BCAR1 (breast cancer anti estrogen resistance 1) in human breast tumors is a marker of poor prognosis and poor overall survival. Specifically, p130Cas signaling has been associated with antiestrogen resistance, for which the mechanism is currently unknown. TAM-R cells, which were established by long-term exposure of estrogen (E2)-dependent MCF-7 cells to tamoxifen, displayed elevated levels of total and activated p130Cas. Here we have investigated the effects of p130Cas inhibition on growth factor signaling in tamoxifen resistance. To inhibit p130Cas, a phosphorylated substrate domain of p130Cas, that acts as a dominant-negative (DN) p130Cas molecule by blocking signal transduction downstream of the p130Cas substrate domain, as well as knockdown by siRNA was employed. Interference with p130Cas signaling/expression induced morphological changes, which were consistent with a more epithelial-like phenotype. The phenotypic reversion was accompanied by reduced migration, attenuation of the ERK and phosphatidylinositol 3-kinase/Akt pathways, and induction of apoptosis. Apoptosis was accompanied by downregulation of the expression of the anti-apoptotic protein Bcl-2. Importantly, these changes re-sensitized TAM-R cells to tamoxifen treatment by inducing cell death. Therefore, our findings suggest that targeting the product of the BCAR1 gene by a peptide which mimics the phosphorylated substrate domain may provide a new molecular avenue for treatment of antiestrogen resistant breast cancers. PMID:19330798

  1. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    PubMed

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. PMID:26297431

  2. Kaempferol Suppresses Transforming Growth Factor-β1–Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-1791

    PubMed Central

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-01-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non–small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1–induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1–mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1–mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1–induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1–mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1–induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1–induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. PMID:26297431

  3. Electrical stimulation increases phosphorylation of tyrosine hydroxylase in superior cervical ganglion of rat.

    PubMed Central

    Cahill, A L; Perlman, R L

    1984-01-01

    Electrical stimulation of the superior cervical ganglion of the rat increased the phosphorylation of tyrosine hydroxylase (tyrosine 3-monooxygenase, EC 1.14.16.2) in this tissue. Ganglia were incubated with [32P]Pi for 90 min and were then electrically stimulated via the preganglionic nerve. Tyrosine hydroxylase was isolated from homogenates of the ganglia by immunoprecipitation followed by polyacrylamide gel electrophoresis. 32P-labeled tyrosine hydroxylase was visualized by radioautography, and the incorporation of 32P into the enzyme was quantitated by densitometry of the radioautograms. Stimulation of ganglia at 20 Hz for 5 min increased the incorporation of 32P into tyrosine hydroxylase to a level 5-fold that found in unstimulated control ganglia. The increase in phosphorylation of tyrosine hydroxylase was dependent on the duration and frequency of stimulation. Preganglionic stimulation did not increase the phosphorylation of tyrosine hydroxylase in a medium that contained low Ca2+ and high Mg2+. Increases in phosphorylation were reversible; within 30 min after the cessation of stimulation, the incorporation of 32P into tyrosine hydroxylase decreased to the level found in unstimulated ganglia. The nicotinic antagonist hexamethonium reduced the increase in 32P incorporation into tyrosine hydroxylase by about 50%, while the muscarinic antagonist atropine had no effect. Thus, preganglionic stimulation appeared to increase the phosphorylation of tyrosine hydroxylase in part by a nicotinic mechanism and in part by a noncholinergic mechanism. Antidromic stimulation of ganglia also increased the phosphorylation of tyrosine hydroxylase. Two-dimensional gel electrophoresis revealed that electrical stimulation also increased the incorporation of 32P into at least six other phosphoproteins in the ganglion. Images PMID:6150485

  4. Antiplatelet Activity of Morus alba Leaves Extract, Mediated via Inhibiting Granule Secretion and Blocking the Phosphorylation of Extracellular-Signal-Regulated Kinase and Akt

    PubMed Central

    Rhee, Man Hee; Sung, Yoon-Young; Yang, Won-Kyung; Kim, Seung Hyung; Kim, Ho-Kyoung

    2014-01-01

    Ethnopharmacological Relevance. Morus alba L. leaves (MAE) have been used in fork medicine for the treatment of beriberi, edema, diabetes, hypertension, and atherosclerosis. However, underlying mechanism of MAE on cardiovascular protection remains to be elucidated. Therefore, we investigated whether MAE affect platelet aggregation and thrombosis. Materials and Methods. The anti-platelet activity of MAE was studied using rat platelets. The extent of anti-platelet activity of MAE was assayed in collagen-induced platelet aggregation. ATP and serotonin release was carried out. The activation of integrin αIIbβ3 and phosphorylation of signaling molecules, including MAPK and Akt, were investigated with cytofluorometer and immunoblotting, respectively. The thrombus formation in vivo was also evaluated in arteriovenous shunt model of rats. Results. HPLC chromatographic analysis revealed that MAE contained rutin and isoquercetin. MAE dose-dependently inhibited collagen-induced platelet aggregation. MAE also attenuated serotonin secretion and thromboxane A2 formation. In addition, the extract in vivo activity showed that MAE at 100, 200, and 400 mg/kg significantly and dose-dependently attenuated thrombus formation in rat arterio-venous shunt model by 52.3% (P < 0.001), 28.3% (P < 0.01), and 19.1% (P < 0.05), respectively. Conclusions. MAE inhibit platelet activation, TXB2 formation, serotonin secretion, aggregation, and thrombus formation. The plant extract could be considered as a candidate to anti-platelet and antithrombotic agent. PMID:24701244

  5. Antiplatelet Activity of Morus alba Leaves Extract, Mediated via Inhibiting Granule Secretion and Blocking the Phosphorylation of Extracellular-Signal-Regulated Kinase and Akt.

    PubMed

    Kim, Dong-Seon; Ji, Hyun Dong; Rhee, Man Hee; Sung, Yoon-Young; Yang, Won-Kyung; Kim, Seung Hyung; Kim, Ho-Kyoung

    2014-01-01

    Ethnopharmacological Relevance. Morus alba L. leaves (MAE) have been used in fork medicine for the treatment of beriberi, edema, diabetes, hypertension, and atherosclerosis. However, underlying mechanism of MAE on cardiovascular protection remains to be elucidated. Therefore, we investigated whether MAE affect platelet aggregation and thrombosis. Materials and Methods. The anti-platelet activity of MAE was studied using rat platelets. The extent of anti-platelet activity of MAE was assayed in collagen-induced platelet aggregation. ATP and serotonin release was carried out. The activation of integrin α IIb β 3 and phosphorylation of signaling molecules, including MAPK and Akt, were investigated with cytofluorometer and immunoblotting, respectively. The thrombus formation in vivo was also evaluated in arteriovenous shunt model of rats. Results. HPLC chromatographic analysis revealed that MAE contained rutin and isoquercetin. MAE dose-dependently inhibited collagen-induced platelet aggregation. MAE also attenuated serotonin secretion and thromboxane A2 formation. In addition, the extract in vivo activity showed that MAE at 100, 200, and 400 mg/kg significantly and dose-dependently attenuated thrombus formation in rat arterio-venous shunt model by 52.3% (P < 0.001), 28.3% (P < 0.01), and 19.1% (P < 0.05), respectively. Conclusions. MAE inhibit platelet activation, TXB2 formation, serotonin secretion, aggregation, and thrombus formation. The plant extract could be considered as a candidate to anti-platelet and antithrombotic agent. PMID:24701244

  6. Activation of the PI3K/Akt signal transduction pathway and increased levels of insulin receptor in protein repair-deficient mice.

    PubMed

    Farrar, Christine; Houser, Carolyn R; Clarke, Steven

    2005-02-01

    Protein L-isoaspartate (D-aspartate) O-methyltransferase is an enzyme that catalyses the repair of isoaspartyl damage in proteins. Mice lacking this enzyme (Pcmt1-/- mice) have a progressive increase in brain size compared with wild-type mice (Pcmt1+/+ mice), a phenotype that can be associated with alterations in the PI3K/Akt signal transduction pathway. Here we show that components of this pathway, including Akt, GSK3beta and PDK-1, are more highly phosphorylated in the brains of Pcmt1-/- mice, particularly in cells of the hippocampus, in comparison with Pcmt1+/+ mice. Examination of upstream elements of this pathway in the hippocampus revealed that Pcmt1-/- mice have increased activation of insulin-like growth factor-I (IGF-I) receptor and/or insulin receptor. Western blot analysis revealed an approximate 200% increase in insulin receptor protein levels and an approximate 50% increase in IGF-I receptor protein levels in the hippocampus of Pcmt1-/- mice. Higher levels of the insulin receptor protein were also found in other regions of the adult brain and in whole tissue extracts of brain, liver, heart and testes of both juvenile and adult Pcmt1-/- mice. There were no significant differences in plasma insulin levels for adult Pcmt1-/- mice during glucose tolerance tests. However, they did show higher peak levels of blood glucose, suggesting a mild impairment in glucose tolerance. We propose that Pcmt1-/- mice have altered regulation of the insulin pathway, possibly as a compensatory response to altered glucose uptake or metabolism or as an adaptive response to a general accumulation of isoaspartyl protein damage in the brain and other tissues. PMID:15659208

  7. Gastrointestinal growth factors and hormones have divergent effects on Akt activation

    PubMed Central

    Berna, Marc J.; Tapia, Jose A.; Sancho, Veronica; Thill, Michelle; Pace, Andrea; Hoffmann, K. Martin; Gonzalez-Fernandez, Lauro; Jensen, Robert T.

    2009-01-01

    Akt is a central regulator of apoptosis, cell growth and survival. Growth factors and some G-protein-coupled receptors (GPCR) regulate Akt. Whereas growth-factor activation of Akt has been extensively studied, the regulation of Akt by GPCR's, especially gastrointestinal hormones/neurotransmitters, remains unclear. To address this area, in this study the effects of GI growth factors and hormones/neurotransmitters were investigate in rat pancreatic acinar cells which are high responsive to these agents. Pancreatic acini expressed Akt and 5 of 7 known pancreatic growth-factors stimulate Akt phosphorylation (T308, S473) and translocation. These effects are mediated by p85 phosphorylation and activation of PI3K. GI hormones increasing intracellular cAMP had similar effects. However, GI-hormones/neurotransmitters[CCK, bombesin,carbachol] activating phospholipase C (PLC) inhibited basal and growth-factor-stimulated Akt activation. Detailed studies with CCK, which has both physiological and pathophysiological effects on pancreatic acinar cells at different concentrations, demonstrated CCK has a biphasic effect: at low concentrations(pM) stimulating Akt by a Src-dependent mechanism and at higher concentrations(nM) inhibited basal and stimulated Akt translocation, phosphorylation and activation, by de-phosphorylating p85 resulting in decreasing PI3K activity. This effect required activation of both limbs of the PLC-pathway and a protein tyrosine phosphatase, but was not mediated by p44/42 MAPK, Src or activation of a serine phosphatase. Akt inhibition by CCK was also found in vivo and in Panc-1 cancer cells where it inhibited serum-mediated rescue from apoptosis. These results demonstrate that GI growth factors as well as gastrointestinal hormones/neurotransmitters with different cellular basis of action can all regulate Akt phosphorylation in pancreatic acinar cells. This regulation is complex with phospholipase C agents such as CCK, because both stimulatory and inhibitory

  8. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: Essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase

    SciTech Connect

    Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj; Oh, Seok Jeong; Lee, Moo Yeol; Kang, Keon Wook

    2010-08-01

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10 {mu}g/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase were enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.

  9. Crosstalk Between MAPK/ERK and PI3K/AKT Signal Pathways During Brain Ischemia/Reperfusion

    PubMed Central

    Zhou, Jing; Du, Ting; Li, Baoman; Rong, Yan; Verkhratsky, Alexei

    2015-01-01

    The epidermal growth factor receptor (EGFR) is linked to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Raf/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling pathways. During brain ischemia/reperfusion, EGFR could be transactivated, which stimulates these intracellular signaling cascades that either protect cells or potentiate cell injury. In the present study, we investigated the activation of EGFR, PI3K/AKT, and Raf/MAPK/ERK1/2 during ischemia or reperfusion of the brain using the middle cerebral artery occlusion model. We found that EGFR was phosphorylated and transactivated during both ischemia and reperfusion periods. During ischemia, the activity of PI3K/AKT pathway was significantly increased, as judged from the strong phosphorylation of AKT; this activation was suppressed by the inhibitors of EGFR and Zn-dependent metalloproteinase. Ischemia, however, did not induce ERK1/2 phosphorylation, which was dependent on reperfusion. Coimmunoprecipitation of Son of sevenless 1 (SOS1) with EGFR showed increased association between the receptor and SOS1 in ischemia, indicating the inhibitory node downstream of SOS1. The inhibitory phosphorylation site of Raf-1 at Ser259, but not its stimulatory phosphorylation site at Ser338, was phosphorylated during ischemia. Furthermore, ischemia prompted the interaction between Raf-1 and AKT, while both the inhibitors of PI3K and AKT not only abolished AKT phosphorylation but also restored ERK1/2 phosphorylation. All these findings suggest that Raf/MAPK/ERK1/2 signal pathway is inhibited by AKT via direct phosphorylation and inhibition at Raf-1 node during ischemia. During reperfusion, we observed a significant increase of ERK1/2 phosphorylation but no change in AKT phosphorylation. Inhibitors of reactive oxygen species and phosphatase and tensin homolog restored AKT phosphorylation but abolished ERK1/2 phosphorylation, suggesting that the reactive oxygen species

  10. Calyculin and okadaic acid promote perilipin phosphorylation and increase lipolysis in primary rat adipocytes.

    PubMed

    He, Jinhan; Jiang, Hongfeng; Tansey, John T; Tang, Chaoshu; Pu, Shenshen; Xu, Guoheng

    2006-02-01

    Lipolysis is primarily regulated by protein kinase A (PKA), which phosphorylates perilipin and hormone-sensitive lipase (HSL), and causes translocation of HSL from cytosol to lipid droplets in adipocytes. Perilipin coats lipid droplet surface and assumes to prevent lipase access to triacylglycerols, thus inhibiting basal lipolysis; phosphorylated perilipin facilitates lipolysis on PKA activation. Here, we induced lipolysis in primary rat adipocytes by inhibiting protein serine/threonine phosphatase with specific inhibitors, okadaic acid and calyculin. The incubation with calyculin promotes incorporation of 32Pi into perilipins, thus, confirming that perilipin is hyperphosphorylated. The lipolysis response to calyculin is gradually accompanied by increased accumulation of phosphorylated perilipin A in a concentration- and time-responsive manner. When perilipin phosphorylation is abrogated by the addition of N-ethylmaleimide, lipolysis ceases. Different from a considerable translocation of HSL upon PKA activation with isoproterenol, calyculin does not alter HSL redistribution in primary or differentiated adipocytes, as confirmed by both immunostaining and immunoblotting. Thus, we suggest that inhibition of the phosphatase by calyculin activates lipolysis via promoting perilipin phosphorylation rather than eliciting HSL translocation in adipocytes. Further, we show that when the endogenous phosphatase is inhibited by calyculin, simultaneous PKA activation with isoproterenol converts most of the perilipin to the hyperphosphorylated species, and induces enhanced lipolysis. Apparently, as PKA phosphorylates perilipin and stimulates lipolysis, the phosphatase acts to dephosphorylate perilipin and attenuate lipolysis. This suggests a two-step strategy governed by a kinase and a phosphatase to modulate the steady state of perilipin phosphorylation and hence the lipolysis response to hormonal stimulation. PMID:16545598

  11. Increased apoptotic efficacy of lonidamine plus arsenic trioxide combination in human leukemia cells. Reactive oxygen species generation and defensive protein kinase (MEK/ERK, Akt/mTOR) modulation.

    PubMed

    Calviño, Eva; Estañ, María Cristina; Simón, Gloria P; Sancho, Pilar; Boyano-Adánez, María del Carmen; de Blas, Elena; Bréard, Jacqueline; Aller, Patricio

    2011-12-01

    Lonidamine is a safe, clinically useful anti-tumor drug, but its efficacy is generally low when used in monotherapy. We here demonstrate that lonidamine efficaciously cooperates with the anti-leukemic agent arsenic trioxide (ATO, Trisenox) to induce apoptosis in HL-60 and other human leukemia cell lines, with low toxicity in non-tumor peripheral blood lymphocytes. Apoptosis induction by lonidamine/ATO involves mitochondrial dysfunction, as indicated by early mitochondrial permeability transition pore opening and late mitochondrial transmembrane potential dissipation, as well as activation of the intrinsic apoptotic pathway, as indicated by Bcl-X(L) and Mcl-1 down-regulation, Bax translocation to mitochondria, cytochrome c and Omi/HtrA2 release to the cytosol, XIAP down-regulation, and caspase-9 and -3 cleavage/activation, with secondary (Bcl-2-inhibitable) activation of the caspase-8/Bid axis. Lonidamine stimulates reactive oxygen species production, and lonidamine/ATO toxicity is attenuated by antioxidants. Lonidamine/ATO stimulates JNK phosphorylation/activation, and apoptosis is attenuated by the JNK inhibitor SP600125. In addition, lonidamine elicits ERK and Akt/mTOR pathway activation, as indicated by increased ERK, Akt, p70S6K and rpS6 phosphorylation, and these effects are reduced by co-treatment with ATO. Importantly, co-treatment with MEK/ERK inhibitor (U0126) and PI3K/Akt (LY294002) or mTOR (rapamycin) inhibitors, instead of ATO, also potentiates lonidamine-provoked apoptosis. These results indicate that: (i) lonidamine efficacy is restrained by drug-provoked activation of MEK/ERK and Akt/mTOR defensive pathways, which therefore represent potential therapeutic targets. (ii) Co-treatment with ATO efficaciously potentiates lonidamine toxicity via defensive pathway inhibition and JNK activation. And (iii) conversely, the pro-oxidant action of lonidamine potentiates the apoptotic efficacy of ATO as an anti-leukemic agent. PMID:21889928

  12. Phosphorylation of calcipressin 1 increases its ability to inhibit calcineurin and decreases calcipressin half-life.

    PubMed Central

    Genescà, Lali; Aubareda, Anna; Fuentes, Juan J; Estivill, Xavier; De La Luna, Susana; Pérez-Riba, Mercè

    2003-01-01

    Calcipressin 1 is an endogenous inhibitor of calcineurin, which is a serine/threonine phosphatase under the control of Ca(2+) and calmodulin. Calcipressin 1 is encoded by DSCR1, a gene on human chromosome 21 with seven exons, exons 1-4 are alternative first exons (isoforms 1-4). We show that calcipressin 1 isoform 1 has an N-terminal coding region longer than that previously described, and this generates a new polypeptide of 252 amino acids. This polypeptide is able to interact with calcineurin A and to inhibit NF-AT-mediated transcriptional activation. We demonstrate for the first time that endogenous calcipressin 1 exists as a complex together with the calcineurin A and B heterodimer. Calcipressin 1 is a phosphoprotein that increases its capacity to inhibit calcineurin when phosphorylated at the FLISPP motif, and this phosphorylation also controls the half-life of calcipressin 1 by accelerating its degradation. Additionally, we have also detected further phosphorylation sites outside the FLISPP motif and these contribute to the complex phosphorylation pattern of calcipressin 1. Taking all these results into consideration we suggest that phosphorylation of calcipressin 1 is involved in the regulation of the phosphatase activity of calcineurin and can therefore act as a modulator of calcineurin-dependent cellular pathways. PMID:12809556

  13. Transforming growth factor-β1 regulated phosphorylated AKT and interferon gamma expressions are associated with epithelial cell survival in rhesus macaque colon explants.

    PubMed

    Pahar, Bapi; Pan, Diganta; Lala, Wendy; Kenway-Lynch, Carys S; Das, Arpita

    2015-05-01

    Transforming growth factor-β1 (TGF-β1) is an important immunoregulatory cytokine that plays an obligate role in regulating T-cell functions. Here, we demonstrated the role of TGF-β1 in regulating the survival of intestinal epithelial cells (ECs) in rhesus colon explant cultures using either anti-TGF-β1 antibody or recombinant TGF-β1 proteins. Neutralization of endogenous TGF-β1 using anti-TGF-β1 antibodies induced apoptosis of both intestinal ECs and lamina propria (LP) cells. Additionally, endogenous TGF-β1 blocking significantly increased expression of IFNγ, TNFα, CD107a and Perforin in LP cells compared to media and isotype controls. A significant decrease in pAKT expression was detected in anti-TGF-β1 MAbs treated explants compared to isotype and rTGF-β1 protein treated explants. Our results demonstrated TGF-β1 regulated pAKT and IFNγ expressions were associated with epithelial cell survival in rhesus macaque colon explants and suggest a potential role of mucosal TGF-β1 in regulating intestinal homeostasis and EC integrity. PMID:25769244

  14. Transforming growth factor-β1 regulated phosphorylated AKT and interferon gamma expressions are associated with epithelial cell survival in rhesus macaque colon explants

    PubMed Central

    Pahar, Bapi; Pan, Diganta; Lala, Wendy; Kenway-Lynch, Carys S.; Das, Arpita

    2015-01-01

    Transforming growth factor-β1 (TGF-β1) is an important immunoregulatory cytokine that plays an obligate role in regulating T-cell functions. Here, we demonstrated the role of TGF-β1 in regulating the survival of intestinal epithelial cells (ECs) in rhesus colon explant cultures using either anti-TGF-β1 antibody or recombinant TGF-β1 proteins. Neutralization of endogenous TGF-β1 using anti-TGF-β1 antibodies induced apoptosis of both intestinal ECs and lamina propria (LP) cells. Additionally, endogenous TGF-β1 blocking significantly increased expression of IFNγ, TNFα, CD107a and Perforin in LP cells compared to media and isotype controls. A significant decrease in pAKT expression was detected in anti-TGF-β1 MAbs treated explants compared to isotype and rTGF-β1 protein treated explants. Our results demonstrated TGF-β1 regulated pAKT and IFNγ expressions were associated with epithelial cell survival in rhesus macaque colon explants and suggest a potential role of mucosal TGF-β1 in regulating intestinal homeostasis and EC integrity. PMID:25769244

  15. The basal level of intracellular calcium gates the activation of phosphoinositide 3-kinase - Akt signaling by brain-derived neurotrophic factor in cortical neurons

    PubMed Central

    Zheng, Fei; Soellner, Deborah; Nunez, Joseph; Wang, Hongbing

    2008-01-01

    Brain derived neurotrophic factor (BDNF) mediates survival and neuroplasticity through the activation of phosphoinositide 3-kinase (PI3K)-Akt pathway. Although previous studies suggested the roles of MAPK, PLC-γ-mediated intra-cellular calcium ([Ca2+]i) increase, and extra-cellular calcium influx in regulating Akt activation, the cellular mechanisms are largely unknown. We demonstrated that sub-nanomolar BDNF significantly induced Akt activation in developing cortical neurons. The TrkB-dependent Akt phosphorylation at S473 and T308 required only PI3K, but not PLC and MAPK activity. Blocking NMDA receptors, L-type voltage-gated calcium channels, and chelating extra-cellular calcium by EGTA failed to block BDNF-induced Akt phosphorylation. In contrast, chelating [Ca2+]i by BAPTA-AM abolished Akt phosphorylation. Interestingly, sub-nanomolar BDNF did not stimulate [Ca2+]i increase under our culture conditions. Together with that NMDA- and membrane depolarization-induced [Ca2+]i increase did not activate Akt, we conclude that the basal level of [Ca2+]i gates BDNF function. Furthermore, inhibiting calmodulin by W13 suppressed Akt phosphorylation. On the other hand, inhibition of protein phosphatase 1 by okadaic acid and tautomycin rescued Akt phosphorylation in BAPTA- and W13-treated neurons. We further demonstrated that the phosphorylation of PDK1 did not correlate with Akt phosphorylation at T308. Our results suggested novel roles of basal [Ca2+]i, rather than activity-induced calcium elevation, in BDNF-Akt signaling. PMID:18485103

  16. PKC{eta} is a negative regulator of AKT inhibiting the IGF-I induced proliferation

    SciTech Connect

    Shahaf, Galit; Rotem-Dai, Noa; Koifman, Gabriela; Raveh-Amit, Hadas; Frost, Sigal A.; Livneh, Etta

    2012-04-15

    The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKC{eta} isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKC{eta}-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKC{eta}-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKT Ser473. While PKC{eta} exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKC{eta} and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKC{eta} expression, suggesting that PKC{eta} acts through a different route to increase cell survival. Hence, our studies show that PKC{eta} provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.

  17. Hypothermia mediates age-dependent increase of tau phosphorylation in db/db mice.

    PubMed

    El Khoury, Noura B; Gratuze, Maud; Petry, Franck; Papon, Marie-Amélie; Julien, Carl; Marcouiller, François; Morin, Françoise; Nicholls, Samantha B; Calon, Frédéric; Hébert, Sébastien S; Marette, André; Planel, Emmanuel

    2016-04-01

    Accumulating evidence from epidemiological studies suggest that type 2 diabetes is linked to an increased risk of Alzheimer's disease (AD). However, the consequences of type 2 diabetes on AD pathologies, such as tau hyperphosphorylation, are not well understood. Here, we evaluated the impact of type 2 diabetes on tau phosphorylation in db/db diabetic mice aged 4 and 26weeks. We found increased tau phosphorylation at the CP13 epitope correlating with a deregulation of c-Jun. N-terminal kinase (JNK) and Protein Phosphatase 2A (PP2A) in 4-week-old db/db mice. 26-week-old db/db mice displayed tau hyperphosphorylation at multiple epitopes (CP13, AT8, PHF-1), but no obvious change in kinases or phosphatases, no cleavage of tau, and no deregulation of central insulin signaling pathways. In contrast to younger animals, 26-week-old db/db mice were hypothermic and restoration of normothermia rescued phosphorylation at most epitopes. Our results suggest that, at early stages of type 2 diabetes, changes in tau phosphorylation may be due to deregulation of JNK and PP2A, while at later stages hyperphosphorylation is mostly a consequence of hypothermia. These results provide a novel link between diabetes and tau pathology, and underlie the importance of recording body temperature to better understand the relationship between diabetes and AD. PMID:26777665

  18. Interplay between Akt and p38 MAPK pathways in the regulation of renal tubular cell apoptosis associated with diabetic nephropathy

    PubMed Central

    Song, Ye; Jin, Shunying; Barati, Michelle T.; Wu, Rui; Kausar, Hina; Tan, Yi; Wang, Yuehui; Zhou, Guihua; Klein, Jon B.; Li, Xiaokun

    2010-01-01

    Hyperglycemia induces p38 MAPK-mediated renal proximal tubular cell (RPTC) apoptosis. The current study hypothesized that alteration of the Akt signaling pathway by hyperglycemia may contribute to p38 MAPK activation and development of diabetic nephropathy. Immunoblot analysis demonstrated a hyperglycemia-induced increase in Akt phosphorylation in diabetic kidneys at 1 mo, peaking at 3 mo, and dropping back to baseline by 6 mo. Immunohistochemical staining with anti-pAkt antisera localized Akt phosphorylation to renal tubules. Maximal p38 MAPK phosphorylation was detected concomitant with increase in terminal uridine deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells and caspase-3 activity in 6-mo diabetic kidneys. Exposure of cultured RPTCs to high glucose (HG; 22.5 mM) significantly increased Akt phosphorylation at 3, 6, and 9 h, and decreased thereafter. In contrast, p38 MAPK phosphorylation was detected between 9 and 48 h of HG treatment. Increased p38 MAPK activation at 24 and 48 h coincided with increased apoptosis, demonstrated by increased caspase-3 activity at 24 h and increased TUNEL-positive cells at 48 h of HG exposure. Blockade of p38 cascade with SB203850 inhibited HG-induced caspase-3 activation and TUNEL-positive cells. Overexpression of constitutively active Akt abrogated HG-induced p38 MAPK phosphorylation and RPTC apoptosis. In addition, blockade of the phosphatidylinositol-3 kinase/Akt pathway with LY294002 and silencing of Akt expression with Akt small interfering RNA induced p38 MAPK phosphorylation in the absence of HG. These results collectively suggest that downregulation of Akt activation during long-term hyperglycemia contributes to enhanced p38 MAPK activation and RPTC apoptosis. Mechanism of downregulation of Akt activation in 6-mo streptozotocin diabetic kidneys was attributed to decreased Akt-heat shock protein (Hsp) 25, Akt-p38 interaction, and decreased PTEN activity. Thus PTEN or Hsp25 could serve

  19. Interplay between Akt and p38 MAPK pathways in the regulation of renal tubular cell apoptosis associated with diabetic nephropathy.

    PubMed

    Rane, Madhavi J; Song, Ye; Jin, Shunying; Barati, Michelle T; Wu, Rui; Kausar, Hina; Tan, Yi; Wang, Yuehui; Zhou, Guihua; Klein, Jon B; Li, Xiaokun; Cai, Lu

    2010-01-01

    Hyperglycemia induces p38 MAPK-mediated renal proximal tubular cell (RPTC) apoptosis. The current study hypothesized that alteration of the Akt signaling pathway by hyperglycemia may contribute to p38 MAPK activation and development of diabetic nephropathy. Immunoblot analysis demonstrated a hyperglycemia-induced increase in Akt phosphorylation in diabetic kidneys at 1 mo, peaking at 3 mo, and dropping back to baseline by 6 mo. Immunohistochemical staining with anti-pAkt antisera localized Akt phosphorylation to renal tubules. Maximal p38 MAPK phosphorylation was detected concomitant with increase in terminal uridine deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells and caspase-3 activity in 6-mo diabetic kidneys. Exposure of cultured RPTCs to high glucose (HG; 22.5 mM) significantly increased Akt phosphorylation at 3, 6, and 9 h, and decreased thereafter. In contrast, p38 MAPK phosphorylation was detected between 9 and 48 h of HG treatment. Increased p38 MAPK activation at 24 and 48 h coincided with increased apoptosis, demonstrated by increased caspase-3 activity at 24 h and increased TUNEL-positive cells at 48 h of HG exposure. Blockade of p38 cascade with SB203850 inhibited HG-induced caspase-3 activation and TUNEL-positive cells. Overexpression of constitutively active Akt abrogated HG-induced p38 MAPK phosphorylation and RPTC apoptosis. In addition, blockade of the phosphatidylinositol-3 kinase/Akt pathway with LY294002 and silencing of Akt expression with Akt small interfering RNA induced p38 MAPK phosphorylation in the absence of HG. These results collectively suggest that downregulation of Akt activation during long-term hyperglycemia contributes to enhanced p38 MAPK activation and RPTC apoptosis. Mechanism of downregulation of Akt activation in 6-mo streptozotocin diabetic kidneys was attributed to decreased Akt-heat shock protein (Hsp) 25, Akt-p38 interaction, and decreased PTEN activity. Thus PTEN or Hsp25 could serve

  20. Akt1 binds focal adhesion kinase via the Akt1 kinase domain independently of the pleckstrin homology domain.

    PubMed

    Basson, M D; Zeng, B; Wang, S

    2015-10-01

    Akt1 and focal adhesion kinase (FAK) are protein kinases that play key roles in normal cell signaling. Individually, aberrant expression of these kinases has been linked to a variety of cancers. Together, Akt1/FAK interactions facilitate cancer metastasis by increasing cell adhesion under conditions of increased extracellular pressure. Pathological and iatrogenic sources of pressure arise from tumor growth against constraining stroma or direct perioperative manipulation. We previously reported that 15 mmHg increased extracellular pressure causes Akt1 to both directly interact with FAK and to phosphorylate and activate it. We investigated the nature of the Akt1/FAK binding by creating truncations of recombinant FAK, conjugated to glutathione S-transferase (GST), to pull down full-length Akt1. Western blots probing for Akt1 showed that FAK/Akt1 binding persisted in FAK truncations consisting of only amino acids 1-126, FAK(NT1), which contains the F1 subdomain of its band 4.1, ezrin, radixin, and moesin (FERM) domain. Using FAK(NT1) as bait, we then pulled down truncated versions of recombinant Akt1 conjugated to HA (human influenza hemagglutinin). Probes for GST-FAK(NT1) showed Akt1-FAK binding to occur in the absence of the both the Akt1 (N)-terminal pleckstrin homology (PH) domain and its adjacent hinge region. The Akt1 (C)-terminal regulatory domain was equally unnecessary for Akt1/FAK co-immunoprecipitation. Truncations involving the Akt1 catalytic domain showed that the domain by itself was enough to pull down FAK. Additionally, a fragment spanning from the PH domain to half way through the catalytic domain demonstrated increased FAK binding compared to full length Akt1. These results begin to delineate the Akt1/FAK interaction and can be used to manipulate their force-activated signal interactions. Furthermore, the finding that the N-terminal half of the Akt1 catalytic domain binds so strongly to FAK when cleaved from the rest of the protein may suggest a means

  1. Serine 1179 Phosphorylation of Endothelial Nitric Oxide Synthase Increases Superoxide Generation and Alters Cofactor Regulation

    PubMed Central

    Harbeck, Mark C.; He, Donghong; Xie, Lishi; Chen, Weiguo

    2015-01-01

    Endothelial nitric oxide synthase (eNOS) is responsible for maintaining systemic blood pressure, vascular remodeling and angiogenesis. In addition to producing NO, eNOS can also generate superoxide (O2-.) in the absence of the cofactor tetrahydrobiopterin (BH4). Previous studies have shown that bovine eNOS serine 1179 (Serine 1177/human) phosphorylation critically modulates NO synthesis. However, the effect of serine 1179 phosphorylation on eNOS superoxide generation is unknown. Here, we used the phosphomimetic form of eNOS (S1179D) to determine the effect of S1179 phosphorylation on superoxide generating activity, and its sensitivity to regulation by BH4, Ca2+, and calmodulin (CAM). S1179D eNOS exhibited significantly increased superoxide generating activity and NADPH consumption compared to wild-type eNOS (WT eNOS). The superoxide generating activities of S1179D eNOS and WT eNOS did not differ significantly in their sensitivity to regulation by either Ca2+ or CaM. The sensitivity of the superoxide generating activity of S1179D eNOS to inhibition by BH4 was significantly reduced compared to WT eNOS. In eNOS-overexpressing 293 cells, BH4 depletion with 10mM DAHP for 48 hours followed by 50ng/ml VEGF for 30 min to phosphorylate eNOS S1179 increased ROS accumulation compared to DAHP-only treated cells. Meanwhile, MTT assay indicated that overexpression of eNOS in HEK293 cells decreased cellular viability compared to control cells at BH4 depletion condition (P<0.01). VEGF-mediated Serine 1179 phosphorylation further decreased the cellular viability in eNOS-overexpressing 293 cells (P<0.01). Our data demonstrate that eNOS serine 1179 phosphorylation, in addition to enhancing NO production, also profoundly affects superoxide generation: S1179 phosphorylation increases superoxide production while decreasing sensitivity to the inhibitory effect of BH4 on this activity. PMID:26560496

  2. Increased phosphorylation of Cx36 gap junctions in the AII amacrine cells of RD retina

    PubMed Central

    Ivanova, Elena; Yee, Christopher W.; Sagdullaev, Botir T.

    2015-01-01

    Retinal degeneration (RD) encompasses a family of diseases that lead to photoreceptor death and visual impairment. Visual decline due to photoreceptor cell loss is further compromised by emerging spontaneous hyperactivity in inner retinal cells. This aberrant activity acts as a barrier to signals from the remaining photoreceptors, hindering therapeutic strategies to restore light sensitivity in RD. Gap junctions, particularly those expressed in AII amacrine cells, have been shown to be integral to the generation of aberrant activity. It is unclear whether gap junction expression and coupling are altered in RD. To test this, we evaluated the expression and phosphorylation state of connexin36 (Cx36), the gap junction subunit predominantly expressed in AII amacrine cells, in two mouse models of RD, rd10 (slow degeneration) and rd1 (fast degeneration). Using Ser293-P antibody, which recognizes a phosphorylated form of connexin36, we found that phosphorylation of connexin36 in both slow and fast RD models was significantly greater than in wildtype controls. This elevated phosphorylation may underlie the increased gap junction coupling of AII amacrine cells exhibited by RD retina. PMID:26483638

  3. Lipopolysaccharide-induced caveolin-1 phosphorylation-dependent increase in transcellular permeability precedes the increase in paracellular permeability

    PubMed Central

    Wang, Nan; Zhang, Dan; Sun, Gengyun; Zhang, Hong; You, Qinghai; Shao, Min; Yue, Yang

    2015-01-01

    Background Lipopolysaccharide (LPS) was shown to induce an increase in caveolin-1 (Cav-1) expression in endothelial cells; however, the mechanisms regarding this response and the consequences on caveolae-mediated transcellular transport have not been completely investigated. This study aims to investigate the role of LPS-induced Cav-1 phosphorylation in pulmonary microvascular permeability in pulmonary microvascular endothelial cells (PMVECs). Methods Rat PMVECs were isolated, cultured, and identified. Endocytosis experiments were employed to stain the nuclei by DAPI, and images were obtained with a fluorescence microscope. Permeability of endothelial cultures was measured to analyze the barrier function of endothelial monolayer. Western blot assay was used to examine the expression of Cav-1, pCav-1, triton-insoluble Cav-1, and triton-soluble Cav-1 protein. Results The LPS treatment induced phosphorylation of Cav-1, but did not alter the total Cav-1 level till 60 min in both rat and human PMVECs. LPS treatment also increased the triton-insoluble Cav-1 level, which peaked 15 min after LPS treatment in both rat and human PMVECs. LPS treatment increases the intercellular cell adhesion molecule-1 expression. Src inhibitors, including PP2, PP1, Saracatinib, and Quercetin, partially inhibited LPS-induced phosphorylation of Cav-1. In addition, both PP2 and caveolae disruptor MβCD inhibited LPS-induced increase of triton-insoluble Cav-1. LPS induces permeability by activating interleukin-8 and vascular endothelial growth factor and targeting other adhesion markers, such as ZO-1 and occludin. LPS treatment also significantly increased the endocytosis of albumin, which could be blocked by PP2 or MβCD. Furthermore, LPS treatment for 15 min significantly elevated Evans Blue-labeled BSA transport in advance of a decrease in transendothelial electrical resistance of PMVEC monolayer at this time point. After LPS treatment for 30 min, transendothelial electrical resistance

  4. PP2A inhibition results in hepatic insulin resistance despite Akt2 activation.

    PubMed

    Galbo, Thomas; Perry, Rachel J; Nishimura, Erica; Samuel, Varman T; Quistorff, Bjørn; Shulman, Gerald I

    2013-10-01

    In the liver, insulin suppresses hepatic gluconeogenesis by activating Akt, which inactivates the key gluconeogenic transcription factor FoxO1 (Forkhead Box O1). Recent studies have implicated hyperactivity of the Akt phosphatase Protein Phosphatase 2A (PP2A) and impaired Akt signaling as a molecular defect underlying insulin resistance. We therefore hypothesized that PP2A inhibition would enhance insulin-stimulated Akt activity and decrease glucose production. PP2A inhibitors increased hepatic Akt phosphorylation and inhibited FoxO1in vitro and in vivo, and suppressed gluconeogenesis in hepatocytes. Paradoxically, PP2A inhibition exacerbated insulin resistance in vivo. This was explained by phosphorylation of both hepatic glycogen synthase (GS) (inactivation) and phosphorylase (activation) resulting in impairment of glycogen storage. Our findings underline the significance of GS and Phosphorylase as hepatic PP2A substrates and importance of glycogen metabolism in acute plasma glucose regulation. PMID:24150286

  5. Activation of the PI3K/AKT Pathway in Merkel Cell Carcinoma

    PubMed Central

    Baeurle, Anne; Ritter, Cathrin; Schrama, David; Landthaler, Michael; Becker, Juergen C.

    2012-01-01

    Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with an increasing incidence. The understanding of the molecular carcinogenesis of MCC is limited. Here, we scrutinized the PI3K/AKT pathway, one of the major pathways activated in human cancer, in MCC. Immunohistochemical analysis of 41 tumor tissues and 9 MCC cell lines revealed high levels of AKT phosphorylation at threonine 308 in 88% of samples. Notably, the AKT phosphorylation was not correlated with the presence or absence of the Merkel cell polyoma virus (MCV). Accordingly, knock-down of the large and small T antigen by shRNA in MCV positive MCC cells did not affect phosphorylation of AKT. We also analyzed 46 MCC samples for activating PIK3CA and AKT1 mutations. Oncogenic PIK3CA mutations were found in 2/46 (4%) MCCs whereas mutations in exon 4 of AKT1 were absent. MCC cell lines demonstrated a high sensitivity towards the PI3K inhibitor LY-294002. This finding together with our observation that the PI3K/AKT pathway is activated in the majority of human MCCs identifies PI3K/AKT as a potential new therapeutic target for MCC patients. PMID:22363598

  6. Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation.

    PubMed

    Bijur, Gautam N; Jope, Richard S

    2003-12-01

    We describe here a new component of the phosphatidylinositol 3-kinase/Akt signaling pathway that directly impacts mitochondria. Akt (protein kinase B) was shown for the first time to be localized in mitochondria, where it was found to reside in the matrix and the inner and outer membranes, and the level of mitochondrial Akt was very dynamically regulated. Stimulation of a variety of cell types with insulin-like growth factor-1, insulin, or stress (induced by heat shock), induced translocation of Akt to the mitochondria within only several minutes of stimulation, causing increases of nearly eight- to 12-fold, and the mitochondrial Akt was in its phosphorylated, active state. Two mitochondrial proteins were identified to be phosphorylated following stimulation of mitochondrial Akt, the beta-subunit of ATP synthase and glycogen synthase kinase-3beta. The finding that mitochondrial glycogen synthase kinase-3beta was rapidly and substantially modified by Ser9 phosphorylation, which inhibits its activity, following translocation of Akt to the mitochondria is the first evidence for a regulatory mechanism affecting mitochondrial glycogen synthase kinase-3beta. These results demonstrate that signals emanating from plasma membrane receptors or generated by stress rapidly modulate Akt and glycogen synthase kinase-3beta in mitochondria. PMID:14713298

  7. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    SciTech Connect

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  8. Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA

    PubMed Central

    Nguyen, Le Xuan Truong; Mitchell, Beverly S.

    2013-01-01

    Transcription initiation factor I (TIF-IA) plays an essential role in regulating ribosomal RNA (rRNA) synthesis by tethering RNA polymerase I (Pol I) to the rDNA promoter. We have found that activated Akt enhances rRNA synthesis through the phosphorylation of casein kinase IIα (CK2α) on a threonine residue near its N terminus. CK2 in turn phosphorylates TIF-IA, thereby increasing rDNA transcription. Activated Akt also stabilizes TIF-IA, induces its translocation to the nucleolus, and enhances its interaction with Pol I. Treatment with AZD8055, an inhibitor of both Akt and mammalian target of rapamycin phosphorylation, but not with rapamycin, disrupts Akt-mediated TIF-IA stability, translocation, and activity. These data support a model in which activated Akt enhances rRNA synthesis both by preventing TIF-IA degradation and phosphorylating CK2α, which in turn phosphorylates TIF-IA. This model provides an explanation for the ability of activated Akt to promote cell proliferation and, potentially, transformation. PMID:24297901

  9. Calpain-2 activates Akt via TGF-β1-mTORC2 pathway in pulmonary artery smooth muscle cells.

    PubMed

    Abeyrathna, Prasanna; Kovacs, Laszlo; Han, Weihong; Su, Yunchao

    2016-07-01

    Calpain is a family of calcium-dependent nonlysosomal neutral cysteine endopeptidases. Akt is a serine/threonine kinase that belongs to AGC kinases and plays important roles in cell survival, growth, proliferation, angiogenesis, and cell metabolism. Both calpain and Akt are the downstream signaling molecules of platelet-derived growth factor (PDGF) and mediate PDGF-induced collagen synthesis and proliferation of pulmonary artery smooth muscle cells (PASMCs) in pulmonary vascular remodeling. We found that inhibitions of calpain-2 by using calpain inhibitor MDL28170 and calpain-2 small interfering RNA attenuated Akt phosphorylations at serine-473 (S473) and threonine-308 (T308), as well as collagen synthesis and cell proliferation of PASMCs induced by PDGF. Overexpression of calpain-2 in PASMCs induced dramatic increases in Akt phosphorylations at S473 and T308. Moreover, knockout of calpain attenuated Akt phosphorylations at S473 and T308 in smooth muscle of pulmonary arterioles of mice with chronic hypoxic pulmonary hypertension. The cell-permeable-specific transforming growth factor (TGF)-β receptor inhibitor SB431542 attenuated Akt phosphorylations at both S473 and T308 induced by PDGF and by overexpressed calpain-2 in PASMCs. Furthermore, SB-431452 and knocking down activin receptor-like kinase-5 significantly reduced PDGF-induced collagen synthesis and cell proliferation of PASMCs. Nevertheless, neutralizing extracellular TGF-β1 using a cell-impermeable TGF-β1 neutralizing antibody did not affect PDGF-induced Akt phosphorylations at S473 and T308. Furthermore, inhibition of mammalian target of rapamycin complex 2 (mTORC2) by knocking down its component protein Rictor prevented Akt phosphorylations at S473 and T308 induced by PDGF and by overexpressed calpain-2. These data provide first evidence supporting that calpain-2 upregulates PDGF-induced Akt phosphorylation in pulmonary vascular remodeling via an intracrine TGF-β1/mTORC2 mechanism. PMID:27099352

  10. EMT phenotype is induced by increased Src kinase activity via Src-mediated caspase-8 phosphorylation.

    PubMed

    Zhao, Yang; Li, XiaoJun; Sun, XiangFei; Zhang, YunFeng; Ren, Hong

    2012-01-01

    Caspase-8 governs multiple cell responses to the microenvironmental cues. However, its integration of "death-life" signalings remains elusive. In our study, the role of caspase-8-Src is well-established as a promoter for migration or metastasis in Casp8(+)Src(+) A549/H226 cells in vivo and in vitro. In particular for nude mice models, mice implanted with Casp8(+)Src(+) A459/H226 cells remarkably increased spontaneous tumor metastatic burden with a significant survival disadvantage. Additionally, we detect that Src-mediated caspase-8 phosphorylation stimulates Src phosphorylation at Tyr-416 via the linkage of Src SH2 domain with phosph-Tyr-380 site of caspase-8. In turn, activated Src can efficiently induce epithelial-mesenchymal transition (EMT) phenotypic features to promote tumor cells metastasis. Surprisingly, RXDLL motif deletion in the DEDa of caspase-8 attenuates tumor cell migration or metastasis via impairing the recruitment of caspase-8 into the cellular periphery where activated Src is subject to caspase-8 phosphorylation. Together, a simple model is that the peripherization of caspase-8 is well-poised to facilitate Src-mediated caspase-8 phosphrylation at Tyr-380, then binding of phospho-Tyr380 of caspase-8 to Src SH2 domain may maintain Src in an active conformation to induce EMT phenotype, a key step toward cancer metastasis. PMID:22508042

  11. Overexpression of α-synuclein simultaneously increases glutamate NMDA receptor phosphorylation and reduces glucocerebrosidase activity.

    PubMed

    Yang, Junfeng; Hertz, Ellen; Zhang, Xiaoqun; Leinartaité, Lina; Lundius, Ebba Gregorsson; Li, Jie; Svenningsson, Per

    2016-01-12

    Progressive accumulation of α-synuclein (α-syn)-containing protein aggregates throughout the nervous system is a pathological hallmark of Parkinson's disease (PD). The mechanisms whereby α-syn exerts neurodegeneration remain to be fully understood. Here we show that overexpression of α-syn in transgenic mice leads to increased phosphorylation of glutamate NMDA receptor (NMDAR) subunits NR1 and NR2B in substantia nigra and striatum as well as reduced glucocerebrosidase (GCase) levels. Similarly, molecular studies performed in mouse N2A cells stably overexpressing human α-syn ((α-syn)N2A) showed that phosphorylation states of the same NMDAR subunits were increased, whereas GCase levels and lysosomal GCase activity were reduced. (α-syn)N2A cells showed an increased sensitivity to neurotoxicity towards 6-hydroxydopamine and NMDA. However, wildtype N2A, but not (α-syn)N2A cells, showed a further reduction in viability when co-incubated with 6-hydroxydopamine and the lysosomal inhibitors NH4Cl and leupeptin, suggesting that α-syn per se perturbs lysosomal functions. NMDA treatment reduced lysosomal GCase activity to the same extent in (α-syn)N2A cells as in wildtype N2A cells, indicating that the α-syn-dependent difference in NMDA neurotoxicity is unrelated to an altered GCase activity. Nevertheless, these data provide molecular evidence that overexpression of α-syn simultaneously induces two potential neurotoxic hits by increasing glutamate NMDA receptor phosphorylation, consistent with increased NMDA receptors functionality, and reducing GCase activity. PMID:26610904

  12. β2-Glycoprotein I Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis by Suppressing the Phosphorylation of Extracellular Signal-Regulated Kinase 1/2, Akt, and Endothelial Nitric Oxide Synthase.

    PubMed

    Chiu, Wen-Chin; Chiou, Tzeon-Jye; Chung, Meng-Ju; Chiang, An-Na

    2016-01-01

    Angiogenesis is the process of new blood vessel formation, and it plays a key role in various physiological and pathological conditions. The β2-glycoprotein I (β2-GPI) is a plasma glycoprotein with multiple biological functions, some of which remain to be elucidated. This study aimed to identify the contribution of 2-GPI on the angiogenesis induced by vascular endothelial growth factor (VEGF), a pro-angiogenic factor that may regulate endothelial remodeling, and its underlying mechanism. Our results revealed that β2-GPI dose-dependently decreased the VEGF-induced increase in endothelial cell proliferation, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the bromodeoxyuridine (BrdU) incorporation assays. Furthermore, incubation with both β2-GPI and deglycosylated β2-GPI inhibited the VEGF-induced tube formation. Our results suggest that the carbohydrate residues of β2-GPI do not participate in the function of anti-angiogenesis. Using in vivo Matrigel plug and angioreactor assays, we show that β2-GPI remarkably inhibited the VEGF-induced angiogenesis at a physiological concentration. Moreover, β2-GPI inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS). In summary, our in vitro and in vivo data reveal for the first time that β2-GPI inhibits the VEGF-induced angiogenesis and highlights the potential for β2-GPI in anti-angiogenic therapy. PMID:27579889

  13. Cafestol, a coffee-specific diterpene, induces apoptosis in renal carcinoma Caki cells through down-regulation of anti-apoptotic proteins and Akt phosphorylation.

    PubMed

    Choi, Min Jung; Park, Eun Jung; Oh, Jung Hwa; Min, Kyoung-Jin; Yang, Eun Sun; Kim, Young Ho; Lee, Tae Jin; Kim, Sang Hyun; Choi, Yung Hyun; Park, Jong-Wook; Kwon, Taeg Kyu

    2011-04-25

    Cafestol, one of the major compounds in coffee beans, has been reported for its tumor cell growth inhibitory activity and anti-carcinogenic activity, although the mechanism of action is poorly understood. In the present study, we investigated the effect of cafestol on the apoptotic pathway in human renal Caki cells and other cancer cell lines. Cafestol treatment inhibited Caki cells viability a dose-dependent manner by inducing apoptosis, as evidenced by DNA fragmentation and the accumulation of sub-G1 phase. Cafestol-induced apoptosis is associated with the reduction of mitochondrial membrane potential (MMP), activation of caspase 3, cytochrome c release, and down-regulation of anti-apoptotic proteins (Bcl-2, Bcl-xL, Mcl-1 and cFLIP). Cafestol-induced apoptosis was blocked by pretreatment with broad caspase inhibitor z-VAD-fmk, showing its dependence on caspases. Ectopic expression of Bcl-2 or Mcl-1 in Caki cells attenuates cafestol-induced apoptosis. In addition, we have also shown that cafestol inhibits phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, and PI3K inhibitor LY29004 significantly increases cafestol-induced apoptosis in Caki cells. Taken together, our results show the activity of cafestol to modulate multiple components in apoptotic response of human renal Caki cells and a potential as a therapeutic agent for preventing cancers such as renal carcinoma. PMID:21334318

  14. Mechanical stimulation of cyclic tensile strain induces reduction of pluripotent related gene expressions via activation of Rho/ROCK and subsequent decreasing of AKT phosphorylation in human induced pluripotent stem cells

    SciTech Connect

    Teramura, Takeshi; Takehara, Toshiyuki; Onodera, Yuta; Nakagawa, Koichi; Hamanishi, Chiaki; Fukuda, Kanji

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mechanical stimulation is an important factor for regulation of stem cell fate. Black-Right-Pointing-Pointer Cyclic stretch to human induced pluripotent stem cells activated small GTPase Rho. Black-Right-Pointing-Pointer Rho-kinase activation attenuated pluripotency via inhibition of AKT activation. Black-Right-Pointing-Pointer This reaction could be reproduced only by transfection of dominant active Rho. Black-Right-Pointing-Pointer Rho/ROCK are important molecules in mechanotransduction and control of stemness. -- Abstract: Mechanical stimulation has been shown to regulate the proliferation and differentiation of stem cells. However, the effects of the mechanical stress on the stemness or related molecular mechanisms have not been well determined. Pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are used as good materials for cell transplantation therapy and research of mammalian development, since they can self-renew infinitely and differentiate into various cell lineages. Here we demonstrated that the mechanical stimulation to human iPS cells altered alignment of actin fibers and expressions of the pluripotent related genes Nanog, POU5f1 and Sox2. In the mechanically stimulated iPS cells, small GTPase Rho was activated and interestingly, AKT phosphorylation was decreased. Inhibition of Rho-associated kinase ROCK recovered the AKT phosphorylation and the gene expressions. These results clearly suggested that the Rho/ROCK is a potent primary effector of mechanical stress in the pluripotent stem cells and it participates to pluripotency-related signaling cascades as an upper stream regulator.

  15. A Switch in Akt Isoforms Is Required for Notch-Induced Snail1 Expression and Protection from Cell Death

    PubMed Central

    Frías, Alex; Lambies, Guillem; Viñas-Castells, Rosa; Martínez-Guillamon, Catalina; Dave, Natàlia

    2015-01-01

    Notch activation in aortic endothelial cells (ECs) takes place at embryonic stages during cardiac valve formation and induces endothelial-to-mesenchymal transition (EndMT). Using aortic ECs, we show here that active Notch expression promotes EndMT, resulting in downregulation of vascular endothelial cadherin (VE-cadherin) and upregulation of mesenchymal genes such as those for fibronectin and Snail1/2. In these cells, transforming growth factor β1 exacerbates Notch effects by increasing Snail1 and fibronectin activation. When Notch-downstream pathways were analyzed, we detected an increase in glycogen synthase kinase 3β (GSK-3β) phosphorylation and inactivation that facilitates Snail1 nuclear retention and protein stabilization. However, the total activity of Akt was downregulated. The discrepancy between Akt activity and GSK-3β phosphorylation is explained by a Notch-induced switch in the Akt isoforms, whereby Akt1, the predominant isoform expressed in ECs, is decreased and Akt2 transcription is upregulated. Mechanistically, Akt2 induction requires the stimulation of the β-catenin/TCF4 transcriptional complex, which activates the Akt2 promoter. Active, phosphorylated Akt2 translocates to the nucleus in Notch-expressing cells, resulting in GSK-3β inactivation in this compartment. Akt2, but not Akt1, colocalizes in the nucleus with lamin B in the nuclear envelope. In addition to promoting GSK-3β inactivation, Notch downregulates Forkhead box O1 (FoxO1), another Akt2 nuclear substrate. Moreover, Notch protects ECs from oxidative stress-induced apoptosis through an Akt2- and Snail1-dependent mechanism. PMID:26711268

  16. Phosphorylation of Transcription Factor Specificity Protein 4 Is Increased in Peripheral Blood Mononuclear Cells of First-Episode Psychosis

    PubMed Central

    Fusté, Montserrat; Meléndez-Pérez, Iria; Villalta-Gil, Victoria; Haro, Josep Maria; Gill, Grace; Ramos, Belén

    2015-01-01

    Background Altered expression of transcription factor specificity protein 4 (SP4) has been found in the postmortem brain of patients with psychiatric disorders including schizophrenia and bipolar disorder. Reduced levels of SP4 protein have recently been reported in peripheral blood mononuclear cells in first-episode psychosis. Also, SP4 levels are modulated by lithium treatment in cultured neurons. Phosphorylation of SP4 at S770 is increased in the cerebellum of bipolar disorder subjects and upon inhibition of NMDA receptor signaling in cultured neurons. The aim of this study was to investigate whether SP4 S770 phosphorylation is increased in lymphocytes of first-episode psychosis patients and the effect of lithium treatment on this phosphorylation. Methods A cross-sectional study of S770 phosphorylation relative to total SP4 immunoreactivity using specific antibodies in peripheral blood mononuclear cells in first-episode psychosis patients (n = 14, treated with lithium or not) and matched healthy controls (n = 14) by immunoblot was designed. We also determined the effects of the prescribed drugs lithium, olanzapine or valproic acid on SP4 phosphorylation in rat primary cultured cerebellar granule neurons. Results We found that SP4 S770 phosphorylation was significantly increased in lymphocytes in first-episode psychosis compared to controls and decreased in patients treated with lithium compared to patients who did not receive lithium. Moreover, incubation with lithium but not olanzapine or valproic acid reduced SP4 phosphorylation in rat cultured cerebellar granule neurons. Conclusions The findings presented here indicate that SP4 S770 phosphorylation is increased in lymphocytes in first-episode psychosis which may be reduced by lithium treatment in patients. Moreover, our study shows lithium treatment prevents this phosphorylation in vitro in neurons. This pilot study suggests that S770 SP4 phosphorylation could be a peripheral biomarker of psychosis, and may

  17. Increased Histone H3 Phosphorylation in Neurons in Specific Brain Structures after Induction of Status Epilepticus in Mice

    PubMed Central

    Mori, Tetsuji; Wakabayashi, Taketoshi; Ogawa, Haruyuki; Hirahara, Yukie; Koike, Taro; Yamada, Hisao

    2013-01-01

    Status epilepticus (SE) induces pathological and morphological changes in the brain. Recently, it has become clear that excessive neuronal excitation, stress and drug abuse induce chromatin remodeling in neurons, thereby altering gene expression. Chromatin remodeling is a key mechanism of epigenetic gene regulation. Histone H3 phosphorylation is frequently used as a marker of chromatin remodeling and is closely related to the upregulation of mRNA transcription. In the present study, we analyzed H3 phosphorylation levels in vivo using immunohistochemistry in the brains of mice with pilocarpine-induced SE. A substantial increase in H3 phosphorylation was detected in neurons in specific brain structures. Increased H3 phosphorylation was dependent on neuronal excitation. In particular, a robust upregulation of H3 phosphorylation was detected in the caudate putamen, and there was a gradient of phosphorylated H3+ (PH3+) neurons along the medio-lateral axis. After unilateral ablation of dopaminergic neurons in the substantia nigra by injection of 6-hydroxydopamine, the distribution of PH3+ neurons changed in the caudate putamen. Moreover, our histological analysis suggested that, in addition to the well-known MSK1 (mitogen and stress-activated kinase)/H3 phosphorylation/c-fos pathway, other signaling pathways were also activated. Together, our findings suggest that a number of genes involved in the pathology of epileptogenesis are upregulated in PH3+ brain regions, and that H3 phosphorylation is a suitable indicator of strong neuronal excitation. PMID:24147063

  18. Targeting cytosolic phospholipase A2 α in colorectal cancer cells inhibits constitutively activated protein kinase B (AKT) and cell proliferation

    PubMed Central

    Xie, Chanlu; Hua, Sheng; Li, Jianfang; Wang, Tingfeng; Yao, Mu; Vignarajan, Soma; Teng, Ying; Hejazi, Leila; Liu, Bingya; Dong, Qihan

    2014-01-01

    A constitutive activation of protein kinase B (AKT) in a hyper-phosphorylated status at Ser473 is one of the hallmarks of anti-EGFR therapy-resistant colorectal cancer (CRC). The aim of this study was to examine the role of cytosolic phospholipase A2α (cPLA2α) on AKT phosphorylation at Ser473 and cell proliferation in CRC cells with mutation in phosphoinositide 3-kinase (PI3K). AKT phosphorylation at Ser473 was resistant to EGF stimulation in CRC cell lines of DLD-1 (PIK3CAE545K mutation) and HT-29 (PIK3CAP499T mutation). Over-expression of cPLA2α by stable transfection increased basal and EGF-stimulated AKT phosphorylation and proliferation in DLD-1 cells. In contrast, silencing of cPLA2α with siRNA or inhibition with Efipladib decreased basal and EGF-stimulated AKT phosphorylation and proliferation in HT-29. Treating animals transplanted with DLD-1 with Efipladib (10 mg/kg, i.p. daily) over 14 days reduced xenograft growth by >90% with a concomitant decrease in AKT phosphorylation. In human CRC tissue, cPLA2α expression and phosphorylation were increased in 63% (77/120) compared with adjacent normal mucosa determined by immunohistochemistry. We conclude that cPLA2α is required for sustaining AKT phosphorylation at Ser473 and cell proliferation in CRC cells with PI3K mutation, and may serve as a potential therapeutic target for treatment of CRC resistant to anti-EGFR therapy. PMID:25365190

  19. Neutrophil AKT2 regulates heterotypic cell-cell interactions during vascular inflammation.

    PubMed

    Li, Jing; Kim, Kyungho; Hahm, Eunsil; Molokie, Robert; Hay, Nissim; Gordeuk, Victor R; Du, Xiaoping; Cho, Jaehyung

    2014-04-01

    Interactions between platelets, leukocytes, and activated endothelial cells are important during microvascular occlusion; however, the regulatory mechanisms of these heterotypic cell-cell interactions remain unclear. Here, using intravital microscopy to evaluate mice lacking specific isoforms of the serine/threonine kinase AKT and bone marrow chimeras, we found that hematopoietic cell-associated AKT2 is important for neutrophil adhesion and crawling and neutrophil-platelet interactions on activated endothelial cells during TNF-α-induced venular inflammation. Studies with an AKT2-specific inhibitor and cells isolated from WT and Akt KO mice revealed that platelet- and neutrophil-associated AKT2 regulates heterotypic neutrophil-platelet aggregation under shear conditions. In particular, neutrophil AKT2 was critical for membrane translocation of αMβ2 integrin, β2-talin1 interaction, and intracellular Ca2+ mobilization. We found that the basal phosphorylation levels of AKT isoforms were markedly increased in neutrophils and platelets isolated from patients with sickle cell disease (SCD), an inherited hematological disorder associated with vascular inflammation and occlusion. AKT2 inhibition reduced heterotypic aggregation of neutrophils and platelets isolated from SCD patients and diminished neutrophil adhesion and neutrophil-platelet aggregation in SCD mice, thereby improving blood flow rates. Our results provide evidence that neutrophil AKT2 regulates αMβ2 integrin function and suggest that AKT2 is important for neutrophil recruitment and neutrophil-platelet interactions under thromboinflammatory conditions such as SCD. PMID:24642468

  20. Dexmedetomidine increases tau phosphorylation under normothermic conditions in vivo and in vitro.

    PubMed

    Whittington, Robert A; Virág, László; Gratuze, Maud; Petry, Franck R; Noël, Anastasia; Poitras, Isabelle; Truchetti, Geoffrey; Marcouiller, François; Papon, Marie-Amélie; El Khoury, Noura; Wong, Kevin; Bretteville, Alexis; Morin, Françoise; Planel, Emmanuel

    2015-08-01

    There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have, thus, been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine (Dex), an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to nontransgenic mice, Dex-induced tau hyperphosphorylation persisting up to 6 hours in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor antagonist, blocked Dex-induced tau hyperphosphorylation. Furthermore, Dex dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that Dex: (1) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-adrenergic receptor activation, (2) promotes tau aggregation in a mouse model of tauopathy, and (3) impacts spatial reference memory. PMID:26058840

  1. Scopoletin from Cirsium setidens Increases Melanin Synthesis via CREB Phosphorylation in B16F10 Cells

    PubMed Central

    Ahn, Mi-Ja; Hur, Sun-Jung; Kim, Eun-Hyun; Lee, Seung Hoon; Shin, Jun Seob; Kim, Myo-Kyoung; Uchizono, James A.; Whang, Wan-Kyunn

    2014-01-01

    In this study, we isolated scopoletin from Cirsium setidens Nakai (Compositae) and tested its effects on melanogenesis. Scopoletin was not toxic to cells at concentrations less than 50 µM and increased melanin synthesis in a dose-dependent manner. As melanin synthesis increased, scopoletin stimulated the total tyrosinase activity, the rate-limiting enzyme of melanogenesis. In a cell-free system, however, scopoletin did not increase tyrosinase activity, indicating that scopoletin is not a direct activator of tyrosinase. Furthermore, Western blot analysis showed that scopoletin stimulated the production of microphthalmia-associated transcription factor (MITF) and tyrosinase expression via cAMP response element-binding protein (CREB) phosphorylation in a dose-dependent manner. Based on these results, preclinical and clinical studies are needed to assess the use of scopoletin for the treatment of vitiligo. PMID:25177162

  2. Hypoxia Increases IGFBP-1 Phosphorylation Mediated by mTOR Inhibition.

    PubMed

    Damerill, Ian; Biggar, Kyle K; Abu Shehab, Majida; Li, Shawn Shun-Cheng; Jansson, Thomas; Gupta, Madhulika B

    2016-02-01

    In fetal growth restriction (FGR), fetal growth is limited by reduced nutrient and oxygen supply. Insulin-like growth factor I (IGF-I) is a key regulator of fetal growth and IGF binding protein -1(IGFBP-1) is the principal regulator of fetal IGF-I bioavailability. Phosphorylation enhances IGFBP-1's affinity for IGF-I. Hypoxia induces IGFBP-1 hyperphosphorylation, markedly decreasing IGF-I bioavailability. We recently reported that fetal liver IGFBP-1 hyperphosphorylation is associated with inhibition of the mechanistic target of rapamycin (mTOR) in a nonhuman primate model of FGR. Here, we test the hypothesis that IGFBP-1 hyperphosphorylation in response to hypoxia is mediated by mTOR inhibition. We inhibited mTOR either by rapamycin or small interfering RNA (siRNA) targeting raptor (mTOR complex [mTORC]1) and/or rictor (mTORC2) in HepG2 cells cultured under hypoxia (1% O2) or basal (20% O2) conditions. Conversely, we activated mTORC1 or mTORC1+mTORC2 by silencing endogenous mTOR inhibitors (tuberous sclerosis complex 2/DEP-domain-containing and mTOR-interacting protein). Immunoblot analysis demonstrated that both hypoxia and inhibition of mTORC1 and/or mTORC2 induced similar degrees of IGFBP-1 phosphorylation at Ser101/119/169 and reduced IGF-I receptor autophosphorylation. Activation of mTORC1+mTORC2 or mTORC1 alone prevented IGFBP-1 hyperphosphorylation in response to hypoxia. Multiple reaction monitoring-mass spectrometry showed that rapamycin and/or hypoxia increased phosphorylation also at Ser98 and at a novel site Ser174. In silico structural analysis indicated that Ser174 was in close proximity to the IGF-binding site. Together, we demonstrate that signaling through the mTORC1 or mTORC2 pathway is sufficient to induce IGFBP-1 hyperphosphorylation in response to hypoxia. This study provides novel understanding of the cellular mechanism that controls fetal IGFBP-1 phosphorylation in hypoxia, and we propose that mTOR inhibition constitutes a mechanistic link

  3. Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt.

    PubMed

    Murata, Hiroaki; Ihara, Yoshito; Nakamura, Hajime; Yodoi, Junji; Sumikawa, Koji; Kondo, Takahito

    2003-12-12

    Glutaredoxin (GRX) is a small dithiol protein involved in various cellular functions, including the redox regulation of certain enzyme activities. GRX functions via a disulfide exchange reaction by utilizing the active site Cys-Pro-Tyr-Cys. Here we demonstrated that overexpression of GRX protected cells from hydrogen peroxide (H2O2)-induced apoptosis by regulating the redox state of Akt. Akt was transiently phosphorylated, dephosphorylated, and then degraded in cardiac H9c2 cells undergoing H2O2-induced apoptosis. Under stress, Akt underwent disulfide bond formation between Cys-297 and Cys-311 and dephosphorylation in accordance with an increased association with protein phosphatase 2A. Overexpression of GRX protected Akt from H2O2-induced oxidation and suppressed recruitment of protein phosphatase 2A to Akt, resulting in a sustained phosphorylation of Akt and inhibition of apoptosis. This effect was reversed by cadmium, an inhibitor of GRX. Furthermore an in vitro assay revealed that GRX reduced oxidized Akt in concert with glutathione, NADPH, and glutathione-disulfide reductase. Thus, GRX plays an important role in protecting cells from apoptosis by regulating the redox state of Akt. PMID:14522978

  4. HDAC Inhibition Elicits Myocardial Protective Effect through Modulation of MKK3/Akt-1

    PubMed Central

    Zhao, Ting C.; Du, Jianfeng; Zhuang, Shugang; Liu, Paul; Zhang, Ling X.

    2013-01-01

    We and others have demonstrated that HDAC inhibition protects the heart against myocardial injury. It is known that Akt-1 and MAP kinase play an essential role in modulation of myocardial protection and cardiac preconditioning. Our recent observations have shown that Akt-1 was activated in post-myocardial infarction following HDAC inhibition. However, it remains unknown whether MKK3 and Akt-1 are involved in HDAC inhibition-induced myocardial protection in acute myocardial ischemia and reperfusion injury. We sought to investigate whether the genetic disruption of Akt-1 and MKK3 eliminate cardioprotection elicited by HDAC inhibition and whether Akt-1 is associated with MKK3 to ultimately achieve protective effects. Adult wild type and MKK3−/−, Akt-1−/− mice received intraperitoneal injections of trichostatin A (0.1mg/kg), a potent inhibitor of HDACs. The hearts were subjected to 30 min myocardial ischemia/30 min reperfusion in the Langendorff perfused heart after twenty four hours to elicit pharmacologic preconditioning. Left ventricular function was measured, and infarct size was determined. Acetylation and phosphorylation of MKK3 were detected and disruption of Akt-1 abolished both acetylation and phosphorylation of MKK3. HDAC inhibition produces an improvement in left ventricular functional recovery, but these effects were abrogated by disruption of either Akt-1 or MKK3. Disruption of Akt-1 or MKK3 abolished the effects of HDAC inhibition-induced reduction of infarct size. Trichostatin A treatment resulted in an increase in MKK3 phosphorylation or acetylation in myocardium. Taken together, these results indicate that stimulation of the MKK3 and Akt-1 pathway is a novel approach to HDAC inhibition -induced cardioprotection. PMID:23762381

  5. Hunting Increases Phosphorylation of Calcium/Calmodulin-Dependent Protein Kinase Type II in Adult Barn Owls

    PubMed Central

    Nichols, Grant S.; DeBello, William M.

    2015-01-01

    Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB) provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII) in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII expression between prism-wearing and control juveniles within the external nucleus of the inferior colliculus (ICX), the major site of plasticity. For prism-wearing adults that hunted live mice and are capable of adaptation, expression of pCaMKII was increased relative to prism-wearing adults that fed passively on dead mice and are not capable of adaptation. This effect did not bear the hallmarks of instructive information: it was not localized to rostral ICX and did not exhibit a patchy distribution reflecting discrete bimodal stimuli. These data are consistent with a role for CaMKII as a permissive rather than an instructive factor. In addition, the paucity of pCaMKII expression in passively fed adults suggests that the permissive default setting is “off” in adults. PMID:25789177

  6. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes.

    PubMed

    Thomassen, Martin; Gunnarsson, Thomas P; Christensen, Peter M; Pavlovic, Davor; Shattock, Michael J; Bangsbo, Jens

    2016-04-01

    The present study examined the effect of intensive training in combination with marked reduction in training volume on phospholemman (FXYD1) expression and phosphorylation at rest and during exercise. Eight well-trained cyclists replaced their regular training with speed-endurance training (10-12 × ∼30-s sprints) two or three times per week and aerobic high-intensity training (4-5 × 3-4 min at 90-95% of peak aerobic power output) 1-2 times per week for 7 wk and reduced the training volume by 70%. Muscle biopsies were obtained before and during a repeated high-intensity exercise protocol, and protein expression and phosphorylation were determined by Western blot analysis. Expression of FXYD1 (30%), actin (40%), mammalian target of rapamycin (mTOR) (12%), phospholamban (PLN) (16%), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) γ/δ (25%) was higher (P< 0.05) than before the training intervention. In addition, after the intervention, nonspecific FXYD1 phosphorylation was higher (P< 0.05) at rest and during exercise, mainly achieved by an increased FXYD1 Ser-68 phosphorylation, compared with before the intervention. CaMKII, Thr-287, and eukaryotic elongation factor 2 Thr-56 phosphorylation at rest and during exercise, overall PKCα/β, Thr-638/641, and mTOR Ser-2448 phosphorylation during repeated intense exercise as well as resting PLN Thr-17 phosphorylation were also higher (P< 0.05) compared with before the intervention period. Thus, a period of high-intensity training with reduced training volume increases expression and phosphorylation levels of FXYD1, which may affect Na(+)/K(+)pump activity and muscle K(+)homeostasis during intense exercise. Furthermore, higher expression of CaMKII and PLN, as well as increased phosphorylation of CaMKII Thr-287 may have improved intracellular Ca(2+)handling. PMID:26791827

  7. The Akt switch model: Is location sufficient?

    PubMed

    Gray, Catheryn W; Coster, Adelle C F

    2016-06-01

    Akt/PKB is a biochemical regulator that functions as an important cross-talk node between several signalling pathways in the mammalian cell. In particular, Akt is a key mediator of glucose transport in response to insulin. The phosphorylation (activation) of only a small percentage of the Akt pool of insulin-sensitive cells results in maximal translocation of glucose transporter 4 (GLUT4) to the plasma membrane (PM). This enables the diffusion of glucose into the cell. The dysregulation of Akt signalling is associated with the development of diabetes, cancer and cardiovascular disease. Akt is synthesised in the cytoplasm in the inactive state. Under the influence of insulin, it moves to the PM, where it is phosphorylated to form pAkt. Although phosphorylation occurs only at the PM, pAkt is found in many cellular locations, including the PM, the cytoplasm, and the nucleus. Indeed, the spatial distribution of pAkt within the cell appears to be an important determinant of downstream regulation. Here we present a simple, linear, four-compartment ordinary differential equation (ODE) model of Akt activation that tracks both the biochemical state and the physical location of Akt. This model embodies the main features of the activation of this important cross-talk node and is consistent with the experimental data. In particular, it allows different downstream signalling motifs without invoking separate feedback pathways. Moreover, the model is computationally tractable, readily analysed, and elucidates some of the apparent anomalies in insulin signalling via Akt. PMID:26992575

  8. Drosophila tribbles antagonizes insulin signaling-mediated growth and metabolism via interactions with Akt kinase.

    PubMed

    Das, Rahul; Sebo, Zachary; Pence, Laramie; Dobens, Leonard L

    2014-01-01

    Drosophila Tribbles (Trbl) is the founding member of the Trib family of kinase-like docking proteins that modulate cell signaling during proliferation, migration and growth. In a wing misexpression screen for Trbl interacting proteins, we identified the Ser/Thr protein kinase Akt1. Given the central role of Akt1 in insulin signaling, we tested the function of Trbl in larval fat body, a tissue where rapid increases in size are exquisitely sensitive to insulin/insulin-like growth factor levels. Consistent with a role in antagonizing insulin-mediated growth, trbl RNAi knockdown in the fat body increased cell size, advanced the timing of pupation and increased levels of circulating triglyceride. Complementarily, overexpression of Trbl reduced fat body cell size, decreased overall larval size, delayed maturation and lowered levels of triglycerides, while circulating glucose levels increased. The conserved Trbl kinase domain is required for function in vivo and for interaction with Akt in a yeast two-hybrid assay. Consistent with direct regulation of Akt, overexpression of Trbl in the fat body decreased levels of activated Akt (pSer505-Akt) while misexpression of trbl RNAi increased phospho-Akt levels, and neither treatment affected total Akt levels. Trbl misexpression effectively suppressed Akt-mediated wing and muscle cell size increases and reduced phosphorylation of the Akt target FoxO (pSer256-FoxO). Taken together, these data show that Drosophila Trbl has a conserved role to bind Akt and block Akt-mediated insulin signaling, and implicate Trib proteins as novel sites of signaling pathway integration that link nutrient availability with cell growth and proliferation. PMID:25329475

  9. Drosophila Tribbles Antagonizes Insulin Signaling-Mediated Growth and Metabolism via Interactions with Akt Kinase

    PubMed Central

    Das, Rahul; Sebo, Zachary; Pence, Laramie; Dobens, Leonard L.

    2014-01-01

    Drosophila Tribbles (Trbl) is the founding member of the Trib family of kinase-like docking proteins that modulate cell signaling during proliferation, migration and growth. In a wing misexpression screen for Trbl interacting proteins, we identified the Ser/Thr protein kinase Akt1. Given the central role of Akt1 in insulin signaling, we tested the function of Trbl in larval fat body, a tissue where rapid increases in size are exquisitely sensitive to insulin/insulin-like growth factor levels. Consistent with a role in antagonizing insulin-mediated growth, trbl RNAi knockdown in the fat body increased cell size, advanced the timing of pupation and increased levels of circulating triglyceride. Complementarily, overexpression of Trbl reduced fat body cell size, decreased overall larval size, delayed maturation and lowered levels of triglycerides, while circulating glucose levels increased. The conserved Trbl kinase domain is required for function in vivo and for interaction with Akt in a yeast two-hybrid assay. Consistent with direct regulation of Akt, overexpression of Trbl in the fat body decreased levels of activated Akt (pSer505-Akt) while misexpression of trbl RNAi increased phospho-Akt levels, and neither treatment affected total Akt levels. Trbl misexpression effectively suppressed Akt-mediated wing and muscle cell size increases and reduced phosphorylation of the Akt target FoxO (pSer256-FoxO). Taken together, these data show that Drosophila Trbl has a conserved role to bind Akt and block Akt-mediated insulin signaling, and implicate Trib proteins as novel sites of signaling pathway integration that link nutrient availability with cell growth and proliferation. PMID:25329475

  10. The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm.

    PubMed

    Alvau, Antonio; Battistone, Maria Agustina; Gervasi, Maria Gracia; Navarrete, Felipe A; Xu, Xinran; Sánchez-Cárdenas, Claudia; De la Vega-Beltran, Jose Luis; Da Ros, Vanina G; Greer, Peter A; Darszon, Alberto; Krapf, Diego; Salicioni, Ana Maria; Cuasnicu, Patricia S; Visconti, Pablo E

    2016-07-01

    Sperm capacitation is required for fertilization. At the molecular level, this process is associated with fast activation of protein kinase A. Downstream of this event, capacitating conditions lead to an increase in tyrosine phosphorylation. The identity of the tyrosine kinase(s) mediating this process has not been conclusively demonstrated. Recent experiments using stallion and human sperm have suggested a role for PYK2 based on the use of small molecule inhibitors directed against this kinase. However, crucially, loss-of-function experiments have not been reported. Here, we used both pharmacological inhibitors and genetically modified mice models to investigate the identity of the tyrosine kinase(s) mediating the increase in tyrosine phosphorylation in mouse sperm. Similar to stallion and human, PF431396 blocks the capacitation-associated increase in tyrosine phosphorylation. Yet, sperm from Pyk2(-/-) mice displayed a normal increase in tyrosine phosphorylation, implying that PYK2 is not responsible for this phosphorylation process. Here, we show that PF431396 can also inhibit FER, a tyrosine kinase known to be present in sperm. Sperm from mice targeted with a kinase-inactivating mutation in Fer failed to undergo capacitation-associated increases in tyrosine phosphorylation. Although these mice are fertile, their sperm displayed a reduced ability to fertilize metaphase II-arrested eggs in vitro. PMID:27226326

  11. Dipeptidyl Peptidase-4 Inhibitor Increases Vascular Leakage in Retina through VE-cadherin Phosphorylation

    PubMed Central

    Lee, Choon-Soo; Kim, Yun Gi; Cho, Hyun-Jai; Park, Jonghanne; Jeong, Heewon; Lee, Sang-Eun; Lee, Seung-Pyo; Kang, Hyun-Jae; Kim, Hyo-Soo

    2016-01-01

    The inhibitors of CD26 (dipeptidyl peptidase-4; DPP4) have been widely prescribed to control glucose level in diabetic patients. DPP4-inhibitors, however, accumulate stromal cell-derived factor-1α (SDF-1α), a well-known inducer of vascular leakage and angiogenesis both of which are fundamental pathophysiology of diabetic retinopathy. The aim of this study was to investigate the effects of DPP4-inhibitors on vascular permeability and diabetic retinopathy. DPP4-inhibitor (diprotin A or sitagliptin) increased the phosphorylation of Src and vascular endothelial-cadherin (VE-cadherin) in human endothelial cells and disrupted endothelial cell-to-cell junctions, which were attenuated by CXCR4 (receptor of SDF-1α)-blocker or Src-inhibitor. Disruption of endothelial cell-to-cell junctions in the immuno-fluorescence images correlated with the actual leakage of the endothelial monolayer in the transwell endothelial permeability assay. In the Miles assay, vascular leakage was observed in the ears into which SDF-1α was injected, and this effect was aggravated by DPP4-inhibitor. In the model of retinopathy of prematurity, DPP4-inhibitor increased not only retinal vascularity but also leakage. Additionally, in the murine diabetic retinopathy model, DPP4-inhibitor increased the phosphorylation of Src and VE-cadherin and aggravated vascular leakage in the retinas. Collectively, DPP4-inhibitor induced vascular leakage by augmenting the SDF-1α/CXCR4/Src/VE-cadherin signaling pathway. These data highlight safety issues associated with the use of DPP4-inhibitors. PMID:27381080

  12. Dipeptidyl Peptidase-4 Inhibitor Increases Vascular Leakage in Retina through VE-cadherin Phosphorylation.

    PubMed

    Lee, Choon-Soo; Kim, Yun Gi; Cho, Hyun-Jai; Park, Jonghanne; Jeong, Heewon; Lee, Sang-Eun; Lee, Seung-Pyo; Kang, Hyun-Jae; Kim, Hyo-Soo

    2016-01-01

    The inhibitors of CD26 (dipeptidyl peptidase-4; DPP4) have been widely prescribed to control glucose level in diabetic patients. DPP4-inhibitors, however, accumulate stromal cell-derived factor-1α (SDF-1α), a well-known inducer of vascular leakage and angiogenesis both of which are fundamental pathophysiology of diabetic retinopathy. The aim of this study was to investigate the effects of DPP4-inhibitors on vascular permeability and diabetic retinopathy. DPP4-inhibitor (diprotin A or sitagliptin) increased the phosphorylation of Src and vascular endothelial-cadherin (VE-cadherin) in human endothelial cells and disrupted endothelial cell-to-cell junctions, which were attenuated by CXCR4 (receptor of SDF-1α)-blocker or Src-inhibitor. Disruption of endothelial cell-to-cell junctions in the immuno-fluorescence images correlated with the actual leakage of the endothelial monolayer in the transwell endothelial permeability assay. In the Miles assay, vascular leakage was observed in the ears into which SDF-1α was injected, and this effect was aggravated by DPP4-inhibitor. In the model of retinopathy of prematurity, DPP4-inhibitor increased not only retinal vascularity but also leakage. Additionally, in the murine diabetic retinopathy model, DPP4-inhibitor increased the phosphorylation of Src and VE-cadherin and aggravated vascular leakage in the retinas. Collectively, DPP4-inhibitor induced vascular leakage by augmenting the SDF-1α/CXCR4/Src/VE-cadherin signaling pathway. These data highlight safety issues associated with the use of DPP4-inhibitors. PMID:27381080

  13. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  14. Thyroid-Stimulating Hormone Increases HNF-4α Phosphorylation via cAMP/PKA Pathway in the Liver

    PubMed Central

    Song, Yongfeng; Zheng, Dongmei; Zhao, Meng; Qin, Yejun; Wang, Tingting; Xing, Wanjia; Gao, Ling; Zhao, Jiajun

    2015-01-01

    Hepatocyte nuclear factor-4 alpha (HNF-4α) is an orphan nuclear receptor with important roles in hepatic metabolism. Protein phosphorylation plays a functional role in its nuclear localization, DNA binding, and transactivation. Thyroid-stimulating hormone (TSH) is a hormone produced by the anterior pituitary gland, whose direct effect on the metabolic pathway has been observed. Our previous study demonstrated that TSH significantly decreases hepatic nuclear HNF-4α expression. However, whether TSH can influence HNF-4α phosphorylation is unclear. Here, we discovered that TSH can increase HNF-4α phosphorylation and modulate its subcellularlocalization. When HepG2 cells were treated with TSH, the phosphorylation of HNF-4α increased and its nuclear localization was interrupted. Cytoplasmic HNF-4α increased, while nuclear HNF-4α decreased. When the cAMP/PKA pathway was inhibited by the PKA inhibitor H89 and the adenylate cyclase (AC) inhibitor SQ22536, the TSH-mediated phosphorylation of HNF-4α was disrupted. When Tshr was silenced in mice, the phosphorylation of HNF-4α decreased, and cytoplasmic HNF-4α decreased while nuclear HNF-4α increased. In conclusion, our study revealed a novel mechanism by which TSH regulated the hepatic HNF-4α subcellular localization, suggesting the possibility that one of the effects of TSH is to reduce the expression of HNF-4α target genes. PMID:26302721

  15. Simvastatin prevents β-amyloid(25-35)-impaired neurogenesis in hippocampal dentate gyrus through α7nAChR-dependent cascading PI3K-Akt and increasing BDNF via reduction of farnesyl pyrophosphate.

    PubMed

    Wang, Conghui; Chen, Tingting; Li, Guoxi; Zhou, Libin; Sha, Sha; Chen, Ling

    2015-10-01

    Simvastatin (SV) is reported to improve cognition and slow progression of Alzheimer's disease (AD), however underlying mechanism still remains unclear. In hippocampal dentate gyrus (DG), β-amyloid (Aβ) selectively impairs survival and neurite growth of newborn neurons in the 2(nd) week after birth. The aim of this study was to examine the effects of SV on the impairment of neurogenesis and the spatial cognitive deficits in Aβ25-35 (3 nmol)-injected (i.c.v.) mice (Aβ25-35-mice). Herein, we reported that the SV-treatment (20 mg/kg) on days 2-14 after BrdU-injection could dose-dependently protect the survival and neurite growth of newborn neurons, which was blocked by the α7nAChR antagonist MLA or the farnesol (FOH) that can convert to farnesyl pyrophosphate (FPP), but not the α4β2nAChR antagonist DHβE. The SV-treatment in Aβ25-35-mice rescued the decline of Akt phosphorylation and increased the ERK1/2 phosphorylation in hippocampus, which was sensitive to MLA and FOH. The PI3K inhibitor LY294002 could abolish the SV-protected neurogenesis in Aβ25-35-mice, but the MEK inhibitor U0126 had no effects. The SV-treatment could correct the decline of hippocampal BDNF concentration in Aβ25-35-mice, which was blocked by MLA and FOH. Using Morris water maze and Y-maze tasks, we further observed that the SV-treatment in Aβ25-35-mice could improve their spatial cognitive deficits, which was sensitive to the application of FOH. The results indicate that the SV-treatment in Aβ25-35-mice via reduction of FPP can protect neurogenesis through α7nAChR-cascading PI3K-Akt and increasing BDNF, which may improve spatial cognitive function. PMID:26051402

  16. ALTERATION OF AKT ACTIVITY INCREASES CHEMOTHERAPEUTIC DRUG AND HORMONAL RESISTANCE IN BREAST CANCER YET CONFERS AN ACHILLES HEEL BY SENSITIZATION TO TARGETED THERAPY

    PubMed Central

    Sokolosky, Melissa L.; Lehmann, Brian D.; Taylor, Jackson R.; Navolanic, Patrick M.; Chappell, William H.; Abrams, Stephen L.; Stadelman, Kristin M.; Wong, Ellis WT; Misaghian, Negin; Horn, Stefan; Bäsecke, Jörg; Libra, Massimo; Stivala, Franca; Ligresti, Giovanni; Tafuri, Agostino; Milella, Michele; Zarzycki, Marek; Dzugaj, Andrzej; Chiarini, Francesca; Evangelisti, Camilla; Martelli, Alberto M.; Terrian, David M.; Franklin, Richard A.; Steelman, Linda S.

    2008-01-01

    The PI3K/PTEN/Akt/mTOR pathway plays critical roles in the regulation of cell growth. The effects of this pathway on drug resistance and cellular senescence of breast cancer cells has been a focus of our laboratory. Introduction of activated Akt or mutant PTEN constructs which lack lipid phosphatase [PTEN(G129E)] or lipid and protein phosphatase [PTEN(C124S)] activity increased the resistance of the cells to the chemotherapeutic drug doxorubicin, and the hormonal drug tamoxifen. Activated Akt and PTEN genes also inhibited the induction of senescence after doxorubicin treatment; a phenomenon associated with unrestrained proliferation and tumorigenesis. Interference with the lipid phosphatase domain of PTEN was sufficient to activate Akt/mTOR/p70S6K as MCF-7 cells transfected with the mutant PTEN gene lacking the lipid phosphatase activity [PTEN(G129E)] displayed elevated levels of activated Akt and p70S6K compared to empty vector transfected cells. Cells transfected with mutant PTEN or Akt constructs were hypersensitive to mTOR inhibitors when compared with the parental or empty vector transfected cells. Akt-transfected cells were cultured for over two months in tamoxifen from which tamoxifen and doxorubicin resistant cells were isolated that were >10-fold more resistant to tamoxifen and doxorubicin than the original Akt-transfected cells. These cells had a decreased induction of both activated p53 and total p21Cip1 upon doxorubicin treatment. Furthermore, these cells had an increased inactivation of GSK-3β and decreased expression of the estrogen receptor-α. In these drug resistant cells, there was an increased activation of ERK which is associated with proliferation. These drug resistant cells were hypersensitive to mTOR inhibitors and also sensitive to MEK inhibitors, indicating that the enhanced p70S6K and ERK expression was relevant to their drug and hormonal resistance. Given that Akt is overexpressed in greater than 50% of breast cancers, our results point

  17. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis

    PubMed Central

    Mancini, Maria L.; Lien, Evan C.; Toker, Alex

    2016-01-01

    One of the most frequently deregulated signaling pathways in breast cancer is the PI 3-K/Akt cascade. Genetic lesions are commonly found in PIK3CA, PTEN, and AKT, which lead to excessive and constitutive activation of Akt and downstream signaling that results in uncontrolled proliferation and increased cellular survival. One such genetic lesion is the somatic AKT1(E17K) mutation, which has been identified in 4-8% of breast cancer patients. To determine how this mutation contributes to mammary tumorigenesis, we constructed a genetically engineered mouse model that conditionally expresses human AKT1(E17K) in the mammary epithelium. Although AKT1(E17K) is only weakly constitutively active and does not promote proliferation in vitro, it is capable of escaping negative feedback inhibition to exhibit sustained signaling dynamics in vitro. Consistently, both virgin and multiparous AKT1(E17K) mice develop mammary gland hyperplasia that do not progress to carcinoma. This hyperplasia is accompanied by increased estrogen receptor expression, although exposure of the mice to estrogen does not promote tumor development. Moreover, AKT1(E17K) prevents HER2-driven mammary tumor formation, in part through negative feedback inhibition of RTK signaling. Analysis of TCGA breast cancer data revealed that the mRNA expression, total protein levels, and phosphorylation of various RTKs are decreased in human tumors harboring AKT1(E17K). PMID:27004402

  18. Blocking the PI3K/AKT pathway enhances mammalian reovirus replication by repressing IFN-stimulated genes

    PubMed Central

    Tian, Jin; Zhang, Xiaozhan; Wu, Hongxia; Liu, Chunguo; Li, Zhijie; Hu, Xiaoliang; Su, Shuo; Wang, Lin-Fa; Qu, Liandong

    2015-01-01

    Many host cellular signaling pathways were activated and exploited by virus infection for more efficient replication. The PI3K/Akt pathway has recently attracted considerable interest due to its role in regulating virus replication. This study demonstrated for the first time that the mammalian reovirus strains Masked Palm Civet/China/2004 (MPC/04) and Bat/China/2003 (B/03) can induce transient activation of the PI3K/Akt pathway early in infection in vitro. When UV-treated, both viruses activated PI3K/Akt signaling, indicating that the virus/receptor interaction was sufficient to activate PI3K/Akt. Reovirus virions can use both clathrin- and caveolae-mediated endocytosis, but only chlorpromazine, a specific inhibitor of clathrin-mediated endocytosis, or siRNA targeting clathrin suppressed Akt phosphorylation. We also identified the upstream molecules of the PI3K pathway. Virus infection induced phosphorylation of focal adhesion kinase (FAK) but not Gab1, and blockage of FAK phosphorylation suppressed Akt phosphorylation. Blockage of PI3K/Akt activation increased virus RNA synthesis and viral yield. We also found that reovirus infection activated the IFN-stimulated response element (ISRE) in an interferon-independent manner and up-regulated IFN-stimulated genes (ISGs) via the PI3K/Akt/EMSY pathway. Suppression of PI3K/Akt activation impaired the induction of ISRE and down-regulated the expression of ISGs. Overexpression of ISG15 and Viperin inhibited virus replication, and knockdown of either enhanced virus replication. Collectively, these results demonstrate that PI3K/Akt activated by mammalian reovirus serves as a pathway for sensing and then inhibiting virus replication/infection. PMID:26388843

  19. Phospholipid transfer protein (PLTP) reduces phosphorylation of tau in human neuronal cells (HCN2)

    PubMed Central

    Dong, Weijiang; Albers, John J.; Vuletic, Simona

    2009-01-01

    Tau function is regulated by phosphorylation, and abnormal tau phosphorylation in neurons is one of the key processes associated with development of Alzheimer’s disease and other tauopathies. In this study we provide evidence that phospholipid transfer protein (PLTP), one of the main lipid transfer proteins in the brain, significantly reduces levels of phosphorylated tau, and increases levels of the inactive form of glycogen synthase kinase-3β (GSK3β) in HCN2 cells. Furthermore, inhibition of the phosphatidylinositol-3 kinase (PI3K) reversed the PLTP-induced increase in levels of GSK3β phosphorylated at serine 9 (pGSK3βSer9) and partially reversed the PLTP-induced reduction in tau phosphorylation. We provide evidence that the PLTP-induced changes are not due to activation of Disabled-1 (Dab1), since PLTP reduced levels of total and phosphorylated Dab1 in HCN2 cells. We have also shown that inhibition of tyrosine kinase activity of insulin receptor (IR) and/or insulin-like growth factor 1 (IGF1) receptor (IGFR) reverses PLTP-induced increase in levels of phosphorylated Akt (pAktThr308 and pAktSer473), suggesting that PLTP-mediated activation of the PI3K/Akt pathway is dependent on IR/IGFR receptor tyrosine kinase activity. Our study suggests that PLTP may be an important modulator of signal transduction pathways in human neurons. PMID:19472218

  20. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  1. Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart.

    PubMed

    Xing, Yuan; Sun, Wanqing; Wang, Yishi; Gao, Feng; Ma, Heng

    2016-05-01

    Insulin protects cardiomyocytes from myocardial ischemia/reperfusion (MI/R) injury through activating Akt. However, phosphatase PHLPP-1 (PH domain leucine-rich repeat protein phosphatase-1) dephosphorylates and inactivates Akt. The balanced competitive interaction of insulin and PHLPP-1 has not been directly examined. In this study, we have identified the effect of mutual inhibition of insulin signaling and PHLPP-1 on the cardioprotective efficiency of Akt in aged heart. Young (3 months) and aged (20 months) Sprague Dawley (SD) rats were subjected to MI/Rin vivo. The PHLPP-1 level was higher in aged vs. young hearts at base. But, insulin treatment failed to decrease PHLPP-1 level during reperfusion in the aged hearts. Consequently, the cardioprotection of insulin-induced Akt activation was impaired in aged hearts, resulting in more susceptible to MI/R injury. In cultured rat ventricular myocytes, PHLPP-1 knockdown significantly enhanced insulin-induced Akt phosphorylation and reduced simulated hypoxia/reoxygenation-induced apoptosis. Contrary, PHLPP-1 overexpression terminated Akt phosphorylation and deteriorated myocytes apoptosis. Using in vivo aged animal models, we confirmed that cardiac PHLPP-1 knockdown or enhanced insulin sensitivity by exercise training dramatically increased insulin-induced Akt phosphorylation. Specifically, MI/R-induced cardiomyocyte apoptosis and infarct size were decreased and cardiac function was increased. More importantly, we found that insulin regulated the degradation of PHLPP-1 and insulin treatment could enhance the binding between PHLPP-1 and β-transducin repeat-containing protein (β-TrCP) to target for ubiquitin-dependent degradation. Altogether, we have identified a new mechanism by which insulin suppresses PHLPP-1 to enhance Akt activation. But, aged heart possesses lower insulin effectiveness and fails to decrease PHLPP-1 during MI/R, which subsequently limited Akt activity and cardioprotection. PHLPP-1 could be a

  2. Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart

    PubMed Central

    Xing, Yuan; Sun, Wanqing; Wang, Yishi; Gao, Feng; Ma, Heng

    2016-01-01

    Insulin protects cardiomyocytes from myocardial ischemia/reperfusion (MI/R) injury through activating Akt. However, phosphatase PHLPP-1 (PH domain leucine-rich repeat protein phosphatase-1) dephosphorylates and inactivates Akt. The balanced competitive interaction of insulin and PHLPP-1 has not been directly examined. In this study, we have identified the effect of mutual inhibition of insulin signaling and PHLPP-1 on the cardioprotective efficiency of Akt in aged heart. Young (3 mon) and aged (20 mon) Sprague Dawley (SD) rats were subjected to MI/R in vivo. The PHLPP-1 level was higher in aged vs. young hearts at base. But, insulin treatment failed to decrease PHLPP-1 level during reperfusion in the aged hearts. Consequently, the cardioprotection of insulin-induced Akt activation was impaired in aged hearts, resulting in more susceptible to MI/R injury. In cultured rat ventricular myocytes, PHLPP-1 knockdown significantly enhanced insulin-induced Akt phosphorylation and reduced simulated hypoxia/reoxygenation-induced apoptosis. Contrary, PHLPP-1 overexpression terminated Akt phosphorylation and deteriorated myocytes apoptosis. Using in vivo aged animal models, we confirmed that cardiac PHLPP-1 knockdown or enhanced insulin sensitivity by exercise training dramatically increased insulin-induced Akt phosphorylation. Specifically, MI/R-induced cardiomyocyte apoptosis and infarct size were decreased and cardiac function was increased. More importantly, we found that insulin regulated the degradation of PHLPP-1 and insulin treatment could enhance the binding between PHLPP-1 and β-transducin repeat-containing protein (β-TrCP) to target for ubiquitin-dependent degradation. Altogether, we have identified a new mechanism by which insulin suppresses PHLPP-1 to enhance Akt activation. But, aged heart possesses lower insulin effectiveness and fails to decrease PHLPP-1 during MI/R, which subsequently limited Akt activity and cardioprotection. PHLPP-1 could be a promising

  3. pGlcNAc Nanofiber Treatment of Cutaneous Wounds Stimulate Increased Tensile Strength and Reduced Scarring via Activation of Akt1

    PubMed Central

    Lindner, Haley Buff; Felmly, Lloyd McPherson; Demcheva, Marina; Seth, Arun; Norris, Russell; Bradshaw, Amy D.; Vournakis, John; Muise-Helmericks, Robin C.

    2015-01-01

    Treatment of cutaneous wounds with poly-N-acetyl-glucosamine containing nanofibers (pGlcNAc), a novel polysaccharide material derived from a marine diatom, results in increased wound closure, antibacterial activities and innate immune responses. We have shown that Akt1 plays a central role in the regulation of these activities. Here, we show that pGlcNAc treatment of cutaneous wounds results in a smaller scar that has increased tensile strength and elasticity. pGlcNAc treated wounds exhibit decreased collagen content, increased collagen organization and decreased myofibroblast content. A fibrin gel assay was used to assess the regulation of fibroblast alignment in vitro. In this assay, fibrin lattice is formed with two pins that provide focal points upon which the gel can exert force as the cells align from pole to pole. pGlcNAc stimulation of embedded fibroblasts results in cellular alignment as compared to untreated controls, by a process that is Akt1 dependent. We show that Akt1 is required in vivo for the pGlcNAc-induced increased tensile strength and elasticity. Taken together, our findings suggest that pGlcNAc nanofibers stimulate an Akt1 dependent pathway that results in the proper alignment of fibroblasts, decreased scarring, and increased tensile strength during cutaneous wound healing. PMID:25955155

  4. pGlcNAc Nanofiber Treatment of Cutaneous Wounds Stimulate Increased Tensile Strength and Reduced Scarring via Activation of Akt1.

    PubMed

    Lindner, Haley Buff; Felmly, Lloyd McPherson; Demcheva, Marina; Seth, Arun; Norris, Russell; Bradshaw, Amy D; Vournakis, John; Muise-Helmericks, Robin C

    2015-01-01

    Treatment of cutaneous wounds with poly-N-acetyl-glucosamine containing nanofibers (pGlcNAc), a novel polysaccharide material derived from a marine diatom, results in increased wound closure, antibacterial activities and innate immune responses. We have shown that Akt1 plays a central role in the regulation of these activities. Here, we show that pGlcNAc treatment of cutaneous wounds results in a smaller scar that has increased tensile strength and elasticity. pGlcNAc treated wounds exhibit decreased collagen content, increased collagen organization and decreased myofibroblast content. A fibrin gel assay was used to assess the regulation of fibroblast alignment in vitro. In this assay, fibrin lattice is formed with two pins that provide focal points upon which the gel can exert force as the cells align from pole to pole. pGlcNAc stimulation of embedded fibroblasts results in cellular alignment as compared to untreated controls, by a process that is Akt1 dependent. We show that Akt1 is required in vivo for the pGlcNAc-induced increased tensile strength and elasticity. Taken together, our findings suggest that pGlcNAc nanofibers stimulate an Akt1 dependent pathway that results in the proper alignment of fibroblasts, decreased scarring, and increased tensile strength during cutaneous wound healing. PMID:25955155

  5. NGF increases VEGF expression and promotes cell proliferation via ERK1/2 and AKT signaling in Müller cells

    PubMed Central

    Wang, Jing; He, Chang; Zhou, Tian; Huang, Zijing; Zhou, Lingli

    2016-01-01

    Purpose Nerve growth factor (NGF) is a classic neuroprotective factor that contributes to angiogenesis under pathological conditions, which might be mediated by the upregulation of vascular endothelial growth factor (VEGF). Retinal Müller cells are a critical source of growth factors, including NGF and VEGF, and express the receptor for NGF, indicating the functional significance of NGF signaling in Müller cells. The aim of this study is to explore the effect of NGF on the production of other growth factors and cellular proliferation in Müller cells and to further detect the potential mechanism of these effects. Methods Primary Müller cells from C57BL/6J mice were isolated and identified with glutamine synthetase (GS) immunofluorescence (IF), a specific marker for Müller cells. TrkA, a high affinity receptor for NGF, was detected with IF staining in the primary Müller cells. Then, the cultured cells were stimulated with recombinant mouse NGF, and the supernatants and the cellular lysate were collected at different time points. VEGF secretion in the supernatant was detected with an enzyme-linked immunosorbent assay (ELISA). The signaling activation in the Müller cells was accessed by western blot using specific phosphorylated antibodies. In addition, cell proliferation was analyzed with 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Furthermore, K252a, U0126, and LY294002, the inhibitors for TrkA, extracellular signal-regulated kinases 1/2 (ERK1/2), and phosphatidylinositol 3-kinase (PI3K)/AKT, respectively, were used in combination with NGF in the assays analyzing VEGF expression and cell proliferation. Results Primary mouse Müller cells were successfully cultured and confirmed with GS positive staining. The IF results showed that the TrkA receptor was abundantly expressed on Müller cells. The ELISA results revealed that NGF significantly promoted the production and secretion of VEGF in Müller cells after 12 or 24 h of

  6. COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways

    SciTech Connect

    Kook, Sung-Ho; Lim, Shin-Saeng; Cho, Eui-Sic; Lee, Young-Hoon; Han, Seong-Kyu; Lee, Kyung-Yeol; Kwon, Jungkee; Hwang, Jae-Won; Bae, Cheol-Hyeon; Seo, Young-Kwon; Lee, Jeong-Chae

    2014-12-12

    Highlights: • COMP-Ang1 induces Tie-2 activation in BMMSCs, but not in primary osteoblasts. • Tie-2 knockdown inhibits COMP-Ang1-stimulated proliferation and osteoblastogenesis. • Tie-2 knockdown prevents COMP-Ang1-induced activation of PI3K/Akt and p38 MAPK. • COMP-Ang1 induces migration of cells via activation of PI3K/Akt and CXCR4 pathways. • COMP-Ang1 stimulates in vivo migration of PDLSCs into a calvarial defect site of rats. - Abstract: Recombinant COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent capable of inducing the homing of cells with increased angiogenesis. However, the potentials of COMP-Ang1 to stimulate migration of mesenchymal stem cells (MSCs) and the associated mechanisms are not completely understood. We examined the potential of COMP-Ang1 on bone marrow (BM)-MSCs, human periodontal ligament stem cells (PDLSCs), and calvarial osteoblasts. COMP-Ang1 augmented Tie-2 induction at protein and mRNA levels and increased proliferation and expression of runt-related transcription factor 2 (Runx2), osterix, and CXCR4 in BMMSCs, but not in osteoblasts. The COMP-Ang1-mediated increases were inhibited by Tie-2 knockdown and by treating inhibitors of phosphoinositide 3-kinase (PI3K), LY294002, or p38 mitogen-activated protein kinase (MAPK), SB203580. Phosphorylation of p38 MAPK and Akt was prevented by siRNA-mediated silencing of Tie-2. COMP-Ang1 also induced in vitro migration of BMMSCs and PDLSCs. The induced migration was suppressed by Tie-2 knockdown and by CXCR4-specific peptide antagonist or LY294002, but not by SB203580. Furthermore, COMP-Ang1 stimulated the migration of PDLSCs into calvarial defect site of rats. Collectively, our results demonstrate that COMP-Ang1-stimulated proliferation, differentiation, and migration of progenitor cells may involve the Tie-2-mediated activation of p38 MAPK and PI3K/Akt pathways.

  7. Exendin-4 induces myocardial protection through MKK3 and Akt-1 in infarcted hearts.

    PubMed

    Du, Jianfeng; Zhang, Ling; Wang, Zhengke; Yano, Naohiro; Zhao, Yu Tina; Wei, Lei; Dubielecka-Szczerba, Patrycja; Liu, Paul Y; Zhuang, Shougang; Qin, Gangjian; Zhao, Ting C

    2016-02-15

    We have demonstrated that glucagon like peptide-1 (GLP-1) protects the heart against ischemic injury. However, the physiological mechanism by which GLP-1 receptor (GLP-1R) initiates cardioprotection remains to be determined. The objective of this study is to elucidate the functional roles of MAPK kinase 3 (MKK3) and Akt-1 in mediating exendin-4-elicited protection in the infarcted hearts. Adult mouse myocardial infarction (MI) was created by ligation of the left descending artery. Wild-type, MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice were divided into one of several groups: 1) sham: animals underwent thoracotomy without ligation; 2) MI: animals underwent MI and received a daily dose of intraperitoneal injection of vehicle (saline); 3) MI + exendin-4: infarcted mice received daily injections of exendin-4, a GLP-1R agonist (0.1 mg/kg, ip). Echocardiographic measurements indicate that exendin-4 treatment resulted in the preservation of ventricular function and increases in the survival rate, but these effects were diminished in MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice. Exendin-4 treatments suppressed cardiac hypotrophy and reduced scar size and cardiac interstitial fibrosis, respectively, but these beneficial effects were lost in genetic elimination of MKK3, Akt-1, or Akt-1(-/-);MKK3(-/-) mice. GLP-1R stimulation stimulated angiogenic responses, which were also mitigated by deletion of MKK3 and Akt-1. Exendin-4 treatment increased phosphorylation of MKK3, p38, and Akt-1 at Ser129 but decreased levels of active caspase-3 and cleaved poly (ADP-ribose) polymerase; these proteins were diminished in MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice. These results reveal that exendin-4 treatment improves cardiac function, attenuates cardiac remodeling, and promotes angiogenesis in the infarcted myocardium through MKK3 and Akt-1 pathway. PMID:26739490

  8. Effects of streptozotocin-induced type 1 maternal diabetes on PI3K/AKT signaling pathway in the hippocampus of rat neonates.

    PubMed

    Hami, Javad; Kerachian, Mohammad-Amin; Karimi, Razieh; Haghir, Hossein; Sadr-Nabavi, Ariane

    2016-06-01

    Diabetes in pregnancy impairs hippocampus development in offspring, leading to behavioral problems and learning deficits. Phosphatidylinositol 3-kinase/protein kinase B (PKB/Akt) signaling pathway plays a pivotal role in the regulation of neuronal proliferation, survival and death. The present study was designed to examine the effects of maternal diabetes on PKB/Akt expression and phosphorylation in the developing rat hippocampus. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was killed at first postnatal day (P1). The hippocampal expression and phosphorylation level of PKB/Akt, one of the key molecules in PI3K/AKT signaling pathway, was evaluated using real-time polymerase chain reaction (PCR) and western blot analysis. We found a significant bilateral downregulation of AKT1 gene expression in the hippocampus of pups born to diabetic mothers (p < 0.05). Interestingly, our results revealed a marked upregulation of Akt1 gene in insulin-treated group compared with other groups (p < 0.05). The western blot analysis also showed the reduction of phosphorylation level of all AKT isoforms in both diabetic and insulin-treated groups compared with control (p < 0.05). Moreover, the results showed a significant increase in phosphorylation level of AKT in insulin-treated group compared with the diabetic group. These results represent that diabetes during pregnancy strongly influences the regulation of PKB/AKT in the developing rat hippocampus. Furthermore, although the control of glycemia by insulin administration is not sufficient to prevent the alterations in PKB/Akt expression, it modulates the phosphorylation process, thus ultimately resulting in a situation comparable to that found in the normal condition. PMID:26479041

  9. Platelet-activating factor increases VE-cadherin tyrosine phosphorylation in mouse endothelial cells and its association with the PtdIns3'-kinase

    PubMed Central

    Hudry-Clergeon, Hélène; Stengel, Dominique; Ninio, Ewa; Vilgrain, Isabelle

    2005-01-01

    Platelet-activating-Factor (PAF), a potent inflammatory mediator, is involved in endothelial permeability. This study was designed to characterize PAF receptor (PAF-R) expression and its specific contribution to the modifications of adherens junctions in mouse endothelial cells. We demonstrated that PAF-R was expressed in mouse endothelial cells and was functionally active in stimulating p42/p44 MAPK and phosphatidylinositol 3-kinase (PtdIns3′-kinase)/Akt activities. Treatment of cells with PAF induced a rapid, time- and dose-dependent (10−7 to 10−10M) increase in tyrosine phosphorylation of a subset of proteins ranging from 90 kDa to 220 kDa, including the VE-cadherin, the latter effect being prevented by the tyrosine kinase inhibitors, herbimycin A and bis-tyrphostin. Furthermore, we demonstrated that PAF promoted formation of multimeric aggregates of VE-cadherin with PtdIns3′-kinase which was also inhibited by herbimycin and bis-tyrphostin. Finally, we showed by immunostaining of endothelial cells VE-cadherin, that PAF dissociated adherens junctions. The present data provide the first evidence that the treatment of endothelial cells with PAF promoted activation of tyrosine kinases and the VE-cadherin tyrosine phosphorylation and PtdIns3′-kinase association, that ultimately lead to the dissociation of adherens junctions. Physical association between PtdIns3′-kinase, serving as a docking protein, and VE-cadherin may thus provide an efficient mechanism for amplification and perpetuation of PAF-induced cellular activation. PMID:15791001

  10. Increased phospholipase A2 activity with phosphorylation of peroxiredoxin 6 requires a conformational change in the protein

    PubMed Central

    Rahaman, Hamidur; Zhou, Suiping; Dodia, Chandra; Feinstein, Sheldon I.; Huang, Shaohui; Speicher, David; Fisher, Aron B.

    2012-01-01

    We have shown previously and confirmed in the present study that the phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6) is markedly increased by phosphorylation. This report evaluated the conformation and thermodynamic stability of Prdx6 protein after phosphorylation to understand the physical basis for increased activity. Phosphorylation resulted in decreased negative far-UV CD, increased ANS binding, and lack of rigid tertiary structure, compatible with a change in conformation to that of a molten globule. The ΔGDo was 3.3 ± 0.3 kcal mol-1 for Prdx6 and 1.7 ± 0.7 kcal mol-1 for pPrdx6 suggesting that phosphorylation destabilizes the protein. Phosphorylation of Prdx6 changed the conformation of the N-terminal domain exposing Trp 33, as determined by tryptophan fluorescence and NaI fluorescence quenching. The kinetics of interaction of proteins with unilamellar liposomes (DPPC/egg PC/cholesterol/PG; 50:25:15:10, mol/mol) was evaluated with tryptophan fluorescence. pPrdx6 bound to liposomes with higher affinity (Kd, 5.6 ± 1.2 μM) in comparison to Prdx6 (Kd, 24.9 ± 4.5 μM). By isothermal titration calorimetry, pPrdx6 bound to liposomes with a large exothermic heat loss (ΔH = -31.49 ± 0.22 kcal mol-1). Correlating our conformation studies with the published crystal structure of oxidized Prdx6 suggests that phosphorylation results in exposure of hydrophobic residues, thereby providing accessibility to the sites for liposome binding. Because binding of the enzyme to the phospholipid substrate interface is a requirement for PLA2 activity, these results indicate that a change in the conformation of Prdx6 upon its phosphorylation is the basis for enhancement of PLA2 enzymatic activity. PMID:22663767

  11. DSePA Antagonizes High Glucose-Induced Neurotoxicity: Evidences for DNA Damage-Mediated p53 Phosphorylation and MAPKs and AKT Pathways.

    PubMed

    Wang, Kun; Fu, Xiao-Yan; Fu, Xiao-Ting; Hou, Ya-Jun; Fang, Jie; Zhang, Shuai; Yang, Ming-Feng; Li, Da-Wei; Mao, Lei-Lei; Sun, Jing-Yi; Yuan, Hui; Yang, Xiao-Yi; Fan, Cun-Dong; Zhang, Zong-Yong; Sun, Bao-Liang

    2016-09-01

    Hyperglycemia as the major hallmark of diabetic neuropathy severely limited its therapeutic efficiency. Evidences have revealed that selenium (Se) as an essential trace element could effectively reduce the risk of neurological diseases. In the present study, 3,3'-diselenodipropionic acid (DSePA), a derivative of selenocystine, was employed to investigate its protective effect against high glucose-induced neurotoxicity in PC12 cells and evaluate the underlying mechanism. The results suggested that high glucose showed significant cytotoxicity through launching mitochondria-mediated apoptosis in PC12 cells, accompanied by poly (ADP-ribose) polymerase (PARP) cleavage, caspase activation, and mitochondrial dysfunction. Moreover, high glucose also triggered DNA damage and dysregulation of MAPKs and AKT pathways through reactive oxygen species (ROS) overproduction. p53 RNA interference partially suppressed high glucose-induced cytotoxicity and apoptosis, indicating the role of p53 in high glucose-induced signal. However, DSePA pretreatment effectively attenuated high glucose-induced cytotoxicity, inhibited the mitochondrial dysfunction through regulation of Bcl-2 family, and ultimately reversed high glucose-induced apoptotic cell death in PC12 cells. Attenuation of caspase activation, PARP cleavage, DNA damage, and ROS accumulation all confirmed its protective effects. Moreover, DSePA markedly alleviated the dysregulation of AKT and MAPKs pathways induced by high glucose. Our findings revealed that the strategy of using DSePA to antagonize high glucose-induced neurotoxicity may be a highly effective strategy in combating high glucose-mediated neurological diseases. PMID:26232068

  12. Protein kinase B (AKT) regulates SYK activity and shuttling through 14-3-3 and importin 7.

    PubMed

    Mohammad, Dara K; Nore, Beston F; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2016-09-01

    The Protein kinase B (AKT) regulates a plethora of intracellular signaling proteins to fine-tune signaling of multiple pathways. Here, we found that following B-cell receptor (BCR)-induced tyrosine phosphorylation of the cytoplasmic tyrosine kinase SYK and the adaptor BLNK, the AKT/PKB enzyme strongly induced BLNK (>100-fold) and SYK (>100-fold) serine/threonine phosphorylation (pS/pT). Increased phosphorylation promoted 14-3-3 binding to BLNK (37-fold) and SYK (2.5-fold) in a pS/pT-concentration dependent manner. We also demonstrated that the AKT inhibitor MK2206 reduced pS/pT of both BLNK (3-fold) and SYK (2.5-fold). Notably, the AKT phosphatase, PHLPP2 maintained the activating phosphorylation of BLNK at Y84 and increased protein stability (8.5-fold). In addition, 14-3-3 was required for the regulation SYK's interaction with BLNK and attenuated SYK binding to Importin 7 (5-fold), thereby perturbing shuttling to the nucleus. Moreover, 14-3-3 proteins also sustained tyrosine phosphorylation of SYK and BLNK. Furthermore, substitution of S295 or S297 for alanine abrogated SYK's binding to Importin 7. SYK with S295A or S297A replacements showed intense pY525/526 phosphorylation, and BLNK pY84 phosphorylation correlated with the SYK pY525/526 phosphorylation level. Conversely, the corresponding mutations to aspartic acid in SYK reduced pY525/526 phosphorylation. Collectively, these and previous results suggest that AKT and 14-3-3 proteins down-regulate the activity of several BCR-associated components, including BTK, BLNK and SYK and also inhibit SYK's interaction with Importin 7. PMID:27381982

  13. Cofilin/Twinstar Phosphorylation Levels Increase in Response to Impaired Coenzyme A Metabolism

    PubMed Central

    Siudeja, Katarzyna; Grzeschik, Nicola A.; Rana, Anil; de Jong, Jannie; Sibon, Ody C. M.

    2012-01-01

    Coenzyme A (CoA) is a pantothenic acid-derived metabolite essential for many fundamental cellular processes including energy, lipid and amino acid metabolism. Pantothenate kinase (PANK), which catalyses the first step in the conversion of pantothenic acid to CoA, has been associated with a rare neurodegenerative disorder PKAN. However, the consequences of impaired PANK activity are poorly understood. Here we use Drosophila and human neuronal cell cultures to show how PANK deficiency leads to abnormalities in F-actin organization. Cells with reduced PANK activity are characterized by abnormally high levels of phosphorylated cofilin, a conserved actin filament severing protein. The increased levels of phospho-cofilin coincide with morphological changes of PANK-deficient Drosophila S2 cells and human neuronal SHSY-5Y cells. The latter exhibit also markedly reduced ability to form neurites in culture – a process that is strongly dependent on actin remodeling. Our results reveal a novel and conserved link between a metabolic biosynthesis pathway, and regulation of cellular actin dynamics. PMID:22912811

  14. Tert-butylhydroquinone lowers blood pressure in AngII-induced hypertension in mice via proteasome-PTEN-Akt-eNOS pathway.

    PubMed

    Xu, Bing-Can; Long, Hui-Bao; Luo, Ke-Qin

    2016-01-01

    Tert-butylhydroquinone (tBHQ), as an antioxidant, has been widely used for many years to prevent oxidization of food products. The aim of this study was to investigate whether tBHQ activates endothelial nitric oxide synthase (eNOS) to prevent endothelial dysfunction and lower blood pressure. The role of Akt in tBHQ-induced eNOS phosphorylation was examined in human umbilical vein endothelial cells (HUVEC) or in mice. tBHQ treatment of HUVEC increased both Akt-Ser473 phosphorylation, accompanied with increased eNOS-Ser1177 phosphorylation and NO release. Mechanically, pharmacologic or genetic inhibition of Akt abolished tBHQ-enhanced NO release and eNOS phosphorylation in HUVEC. Gain-function of PTEN or inhibition of 26S proteasome abolished tBHQ-enhanced Akt phosphorylation in HUVEC. Ex vivo analysis indicated that tBHQ improved Ach-induced endothelium-dependent relaxation in LPC-treated mice aortic arteries, which were abolished by inhibition of Akt or eNOS. In animal study, administration of tBHQ significantly increased eNOS-Ser1177 phosphorylation and acetylcholine-induced vasorelaxation, and lowered AngII-induced hypertension in wildtype mice, but not in mice deficient of Akt or eNOS. In conclusion, tBHQ via proteasome-dependent degradation of PTEN increases Akt phosphorylation, resulting in upregulation of eNOS-derived NO production and consequent improvement of endothelial function in vivo. In this way, tBHQ lowers blood pressure in hypertensive mice. PMID:27435826

  15. Tert-butylhydroquinone lowers blood pressure in AngII-induced hypertension in mice via proteasome-PTEN-Akt-eNOS pathway

    PubMed Central

    Xu, Bing-Can; Long, Hui-Bao; Luo, Ke-Qin

    2016-01-01

    Tert-butylhydroquinone (tBHQ), as an antioxidant, has been widely used for many years to prevent oxidization of food products. The aim of this study was to investigate whether tBHQ activates endothelial nitric oxide synthase (eNOS) to prevent endothelial dysfunction and lower blood pressure. The role of Akt in tBHQ-induced eNOS phosphorylation was examined in human umbilical vein endothelial cells (HUVEC) or in mice. tBHQ treatment of HUVEC increased both Akt-Ser473 phosphorylation, accompanied with increased eNOS-Ser1177 phosphorylation and NO release. Mechanically, pharmacologic or genetic inhibition of Akt abolished tBHQ-enhanced NO release and eNOS phosphorylation in HUVEC. Gain-function of PTEN or inhibition of 26S proteasome abolished tBHQ-enhanced Akt phosphorylation in HUVEC. Ex vivo analysis indicated that tBHQ improved Ach-induced endothelium-dependent relaxation in LPC-treated mice aortic arteries, which were abolished by inhibition of Akt or eNOS. In animal study, administration of tBHQ significantly increased eNOS-Ser1177 phosphorylation and acetylcholine-induced vasorelaxation, and lowered AngII-induced hypertension in wildtype mice, but not in mice deficient of Akt or eNOS. In conclusion, tBHQ via proteasome-dependent degradation of PTEN increases Akt phosphorylation, resulting in upregulation of eNOS-derived NO production and consequent improvement of endothelial function in vivo. In this way, tBHQ lowers blood pressure in hypertensive mice. PMID:27435826

  16. Akt is activated in chronic lymphocytic leukemia cells and delivers a pro-survival signal: the therapeutic potential of Akt inhibition

    PubMed Central

    Zhuang, Jianguo; Hawkins, Stephen F.; Glenn, Mark A.; Lin, Ke; Johnson, Gillian G.; Carter, Anthony; Cawley, John C.; Pettitt, Andrew R.

    2010-01-01

    Background The aims of the present study were to ascertain the activation status of Akt in the primary cells of chronic lymphocytic leukemia and to investigate the effects of specific Akt inhibition on chronic lymphocytic leukemia-cell survival. Design and Methods Anti-phospho-Akt (Ser473 or Thr308) antibodies and western blotting were used to establish the activation status of Akt. The effects of two different, specific small-molecule inhibitors (A-443654 or Akti-1/2) or small interfering RNA on cell survival and downstream targets of Akt were assessed. Apoptosis was determined by fluorescence-activated cell sorting analysis of phosphatidylserine exposure and by measurement of PARP cleavage. The phosphorylation status of GSK-3 and MDM2, two immediate downstream substrates of Akt, levels of the anti-apoptotic proteins BCL2 and MCL1, and expression of p53 and p21 were all measured by western blotting. Results Fully activated Akt was demonstrable in all chronic lymphocytic leukemia clones examined (n=26). These results were validated with extensive controls and it was shown that a harsh method of cell extraction is needed for detection of the active enzyme. Specific inhibition of Akt induced extensive apoptosis of chronic lymphocytic leukemia cells, which was associated with both a rapid loss of MCL1 through proteasomal degradation and increased expression of p53. Moreover, the Akt inhibitors, at concentrations that induced extensive apoptosis in chronic lymphocytic leukemia cells, had little or no effect on normal peripheral blood mononuclear cells. Conclusions Chronic lymphocytic leukemia clones consistently contain activated Akt which plays a pivotal role in maintaining cell survival. Inhibition of the Akt pathway may be of potential value as a novel therapeutic strategy in chronic lymphocytic leukemia. PMID:19713228

  17. Propofol protects hippocampal neurons from apoptosis in ischemic brain injury by increasing GLT-1 expression and inhibiting the activation of NMDAR via the JNK/Akt signaling pathway.

    PubMed

    Gong, Hong-Yan; Zheng, Fang; Zhang, Chao; Chen, Xi-Yan; Liu, Jing-Jing; Yue, Xiu-Qin

    2016-09-01

    Ischemic brain injury (IBI) can cause nerve injury and is a leading cause of morbidity and mortality worldwide. The neuroprotective effects of propofol against IBI have been previously demonstrated. However, the neuroprotective effects of propofol on hippocampal neurons are not yet entirely clear. In the present study, models of IBI were established in hypoxia-exposed hippocampal neuronal cells. Cell viability assay and apoptosis assay were performed to examine the neuroprotective effects of propofol on hippocampal neurons in IBI. A significant decrease in cell viability and a significant increase in cell apoptosis were observed in the IBI group compared with the control group, accompanied by a decrease in glial glutamate transporter-1 (GLT‑1) expression as determined by RT-qPCR and western blot analysis. The effects of IBI were reversed by propofol treatment. The siRNA-mediated knockdown of GLT‑1 in the hypoxia-exposed hippocampal neuronal cells led to an increase in cell apoptosis, Jun N-terminal kinase (JNK) activation and N-methyl-D‑aspartate (NMDA) receptor (NR1 and NR2B) activation, as well as to a decrease in cell viability and a decrease in Akt activation. The effects of RNA interference-mediated GLT‑1 gene silencing on cell viability, JNK activation, NMDAR activation, cell apoptosis and Akt activation in the hippocampal neuronal cells were slightly reversed by propofol treatment. The JNK agonist, anisomycin, and the Akt inhibitor, LY294002, both significantly blocked the effects of propofol on hippocampal neuronal cell viability and apoptosis in IBI. The decrease in JNK activation and the increase in Akt activation caused by GLT‑1 overexpression were reversed by NMDA. Collectively, our findings suggest that propofol treatment protects hippocampal neurons against IBI by enhancing GLT‑1 expression and inhibiting the activation of NMDAR via the JNK/Akt signaling pathway. PMID:27430327

  18. A positive feedback loop involving Erk5 and Akt turns on mesangial cell proliferation in response to PDGF.

    PubMed

    Bera, Amit; Das, Falguni; Ghosh-Choudhury, Nandini; Li, Xiaonan; Pal, Sanjay; Gorin, Yves; Kasinath, Balakuntalam S; Abboud, Hanna E; Ghosh Choudhury, Goutam

    2014-06-01

    Platelet-derived growth factor BB and its receptor (PDGFRβ) play a pivotal role in the development of renal glomerular mesangial cells. Their roles in increased mesangial cell proliferation during mesangioproliferative glomerulonephritis have long been noted, but the operating logic of signaling mechanisms regulating these changes remains poorly understood. We examined the role of a recently identified MAPK, Erk5, in this process. PDGF increased the activating phosphorylation of Erk5 and tyrosine phosphorylation of proteins in a time-dependent manner. A pharmacologic inhibitor of Erk5, XMD8-92, abrogated PDGF-induced DNA synthesis and mesangial cell proliferation. Similarly, expression of dominant negative Erk5 or siRNAs against Erk5 blocked PDGF-stimulated DNA synthesis and proliferation. Inhibition of Erk5 attenuated expression of cyclin D1 mRNA and protein, resulting in suppression of CDK4-mediated phosphorylation of the tumor suppressor protein pRb. Expression of cyclin D1 or CDK4 prevented the dominant negative Erk5- or siErk5-mediated inhibition of DNA synthesis and mesangial cell proliferation induced by PDGF. We have previously shown that phosphatidylinositol 3-kinase (PI3-kinase) contributes to PDGF-induced proliferation of mesangial cells. Inhibition of PI3-kinase blocked PDGF-induced phosphorylation of Erk5. Since PI3-kinase acts through Akt, we determined the role of Erk5 on Akt phosphorylation. XMD8-92, dominant negative Erk5, and siErk5 inhibited phosphorylation of Akt by PDGF. Interestingly, we found inhibition of PDGF-induced Erk5 phosphorylation by a pharmacological inhibitor of Akt kinase and kinase dead Akt in mesangial cells. Thus our data unfold the presence of a positive feedback microcircuit between Erk5 and Akt downstream of PI3-kinase nodal point for PDGF-induced mesangial cell proliferation. PMID:24740537

  19. Sphingosine-1-Phosphate Protects Intestinal Epithelial Cells from Apoptosis Through the Akt Signaling Pathway

    PubMed Central

    Greenspon, Jose; Li, Ruiyun; Xiao, Lan; Rao, Jaladanki N.; Marasa, Bernard S.; Strauch, Eric D.; Wang, Jian-Ying; Turner, Douglas J.

    2009-01-01

    Objective The regulation of apoptosis of intestinal mucosal cells is important in maintenance of normal intestinal physiology. Summary Sphingosine-1-phosphate (S1P) has been shown to play a critical role in cellular protection to otherwise lethal stimuli in several nonintestinal tissues. Methods The current study determines whether S1P protected normal intestinal epithelial cells (IECs) from apoptosis and whether Akt activation was the central pathway for this effect. Results S1P demonstrated significantly reduced levels of apoptosis induced by tumor necrosis factor-alpha (TNF-α)/cycloheximide (CHX). S1P induced increased levels of phosphorylated Akt and increased Akt activity, but did not affect total amounts of Akt. This activation of Akt was associated with decreased levels of both caspase-3 protein levels and of caspase-3 activity. Inactivation of Akt by treatment with the PI3K chemical inhibitor LY294002 or by overexpression of the dominant negative mutant of Akt (DNMAkt) prevented the protective effect of S1P on apoptosis. Additionally, silencing of the S1P-1 receptor by specific siRNA demonstrated a lesser decrease in apoptosis to S1P exposure. Conclusion These results indicate that S1P protects intestinal epithelial cells from apoptosis via an Akt-dependent pathway. PMID:18654850

  20. Resveratrol augments ER stress and the cytotoxic effects of glycolytic inhibition in neuroblastoma by downregulating Akt in a mechanism independent of SIRT1

    PubMed Central

    Graham, Regina M; Hernandez, Fiorela; Puerta, Nataly; De Angulo, Guillermo; Webster, Keith A; Vanni, Steven

    2016-01-01

    Cancer cells typically display increased rates of aerobic glycolysis that are correlated with tumor aggressiveness and a poor prognosis. Targeting the glycolytic pathway has emerged as an attractive therapeutic route mainly because it should spare normal cells. Here, we evaluate the effects of combining the inhibition of glycolysis with application of the polyphenolic compound resveratrol (RSV) in neuroblastoma (NB) cancer cell lines. Inhibiting glycolysis with 2-deoxy-D-glucose (2-DG) significantly reduced NB cell viability and was associated with increased endoplasmic reticulum (ER) stress and Akt activity. Administration of 2-DG increased the expression of the ER molecular chaperones GRP78 and GRP94, the prodeath protein C/EBP homology protein (CHOP) and the phosphorylation of Akt at S473, T450 and T308. Combined treatment with both RSV and 2-DG reduced GRP78, GRP94 and Akt phosphorylation but increased CHOP and NB cell death when compared with the administration of 2-DG alone. The selective inhibition of Akt activity also decreased 2-DG-induced GRP78 and GRP94 expression and increased CHOP expression, suggesting that Akt can modulate ER stress. Protein phosphatase 1α (PP1α) was activated by RSV, as indicated by a reduction in PP1α phosphorylation at T320. Pretreatment of cells with tautomycin, a selective PP1α inhibitor, prevented the RSV-mediated decrease in Akt phosphorylation, suggesting that RSV enhances 2-DG-induced cell death by activating PP1 and downregulating Akt. The RSV-mediated inhibition of Akt in the presence of 2-DG was not prevented by the selective inhibition of SIRT1, a known target of RSV, indicating that the effects of RSV on this pathway are independent of SIRT1. We propose that RSV inhibits Akt activity by increasing PP1α activity, thereby potentiating 2-DG-induced ER stress and NB cell death. PMID:26891914

  1. Polydatin improves glucose and lipid metabolism in experimental diabetes through activating the Akt signaling pathway.

    PubMed

    Hao, Jie; Chen, Cheng; Huang, Kaipeng; Huang, Junying; Li, Jie; Liu, Peiqing; Huang, Heqing

    2014-12-15

    Recently, the effect of polydatin on lipid regulation has gained considerable attention. And previous study has demonstrated that polydatin has hypoglycemic effect on experimental diabetic rats. Repressed Akt pathway contributes to glucose and lipid disorders in diabetes. Thus, whether polydatin regulates glucose and lipid metabolism in experimental diabetic models through the Akt pathway arouses interest. The purpose was to explore the regulatory mechanism of polydain on glucose and lipid through Akt pathway. We used a diabetic rat model induced by high-fat and -sugar diet with low-dose of streptozocin and an insulin resistant HepG2 cell model induced by palmitic acid to clarify the role of polydatin on glucose and lipid metabolism. Here, we found that polydatin significantly attenuated fasting blood–glucose, glycosylated hemoglobin, glycosylated serum protein, total cholesterol, triglyceride, and low-density lipoprotein cholesterol in diabetic rats. Furthermore, polydatin significantly increased glucose uptake and consumption and decreased lipid accumulation in insulin resistant HepG2 cells. Polydatin markedly increased serum insulin levels in diabetic rats, and obviously activated the Akt signaling pathway in diabetic rat livers and insulin resistant HepG2 cells. Polydatin markedly increased phosphorylated GSK-3β, decreased the protein levels of G6Pase and SREBP-1c, and increased protein levels of GCK, LDLR, and phosphorylated IRS in livers and HepG2 cells. Overall, the results indicate that polydatin regulates glucose and lipid metabolism in experimental diabetic models, the underlying mechanism is probably associated with regulating the Akt pathway. The effect of polydatin on increased Akt phosphorylation is independent of prompting insulin secretion, but dependent of increasing IRS phosphorylation. PMID:25310908

  2. Mutant SOD1 Increases APP Expression and Phosphorylation in Cellular and Animal Models of ALS

    PubMed Central

    Rabinovich-Toidman, Polina; Rabinovich-Nikitin, Inna; Ezra, Assaf; Barbiro, Beka; Fogel, Hilla; Slutsky, Inna; Solomon, Beka

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease and it is the most common adult onset neurodegenerative disorder affecting motor neurons. There is currently no effective treatment for ALS and our understanding of the pathological mechanism is still far away from prevention and/or treatment of this devastating disease. Amyloid precursor protein (APP) is a transmembrane protein that undergoes processing either by β-secretase or α-secretase, followed by γ-secretase. In the present study, we show that APP levels, and aberrant phosphorylation, which is associated with enhanced β-secretase cleavage, are increased in SOD1G93A ALS mouse model. Fluorescence resonance energy transfer (FRET) analysis suggests a close interaction between SOD1 and APP at hippocampal synapses. Notably, SOD1G93A mutation induces APP-SOD1 conformational changes, indicating a crosstalk between these two signaling proteins. Inhibition of APP processing via monoclonal antibody called BBS that blocks APP β-secretase cleavage site, resulted in reduction of mutant SOD1G93A levels in animal and cellular models of ALS, significantly prolonged life span of SOD1G93A mice and diminished inflammation. Beyond its effect on toxic mutant SOD1G93A, BBS treatment resulted in a reduction in the levels of APP, its processing product soluble APPβ and pro-apoptotic p53. This study demonstrates that APP and its processing products contribute to ALS pathology through several different pathways; thus BBS antibody could be a promising neuroprotective strategy for treatment of this disease. PMID:26600047

  3. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway

    SciTech Connect

    Wu, Jintao; Zhu, Dexiao; Zhang, Jing; Li, Guibao; Liu, Zengxun; Sun, Jinhao

    2015-09-25

    Methamphetamine (MA) is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to MA causes psychosis and increases the risk of Parkinson's disease. Lithium (Li) is a known mood stabilizer and has neuroprotective effects. Previous studies suggest that MA exposure decreases the phosphorylation of Akt/GSK3β pathway in vivo, whereas Li facilitates the phosphorylation of Akt/GSK3β pathway. Moreover, GSK3β and mTOR are implicated in the locomotor sensitization induced by psychostimulants and mTOR plays a critical role in MA induced toxicity. However, the effect of MA on Akt/GSK3β/mTOR pathway has not been fully investigated in vitro. Here, we found that MA exposure significantly dephosphorylated Akt/GSK3β/mTOR pathway in PC12 cells. In addition, Li remarkably attenuated the dephosphorylation effect of MA exposure on Akt/GSK3β/mTOR pathway. Furthermore, Li showed obvious protective effects against MA toxicity and LY294002 (Akt inhibitor) suppressed the protective effects of Li. Together, MA exposure dephosphorylates Akt/GSK3β/mTOR pathway in vitro, while lithium protects against MA-induced neurotoxicity via phosphorylation of Akt/GSK3β/mTOR pathway. - Highlights: • Lithium protects against methamphetamine-induced neurotoxicity in vitro. • Methamphetamine exposure dephosphorylates Akt/GSK3β/mTOR pathway. • Lithium attenuates methamphetamine-induced toxicity via phosphorylating Akt/GSK3β/mTOR pathway.

  4. Phenotypically Dormant and Immature Leukaemia Cells Display Increased Ribosomal Protein S6 Phosphorylation

    PubMed Central

    Pallis, Monica; Harvey, Tamsin; Russell, Nigel

    2016-01-01

    Mechanistic/mammalian target of rapamycin (mTOR) activity drives a number of key metabolic processes including growth and protein synthesis. Inhibition of the mTOR pathway promotes cellular dormancy. Since cells from patients with acute myeloid leukaemia (AML) can be phenotypically dormant (quiescent), we examined biomarkers of their mTOR pathway activity concurrently with Ki-67 and CD71 (indicators of cycling cells) by quantitative flow cytometry. Using antibodies to phosphorylated epitopes of mTOR (S2448) and its downstream targets ribosomal protein S6 (rpS6, S235/236) and 4E-BP1 (T36/45), we documented that these phosphorylations were negligible in lymphocytes, but evident in dormant as well as proliferating subsets of both mobilised normal stem cell harvest CD34+ cells and AML blasts. Although mTOR phosphorylation in AML blasts was lower than that of the normal CD34+ cells, p-4E-BP1 was 2.6-fold higher and p-rpS6 was 22-fold higher. Moreover, in contrast to 4E-BP1, rpS6 phosphorylation was higher in dormant than proliferating AML blasts, and was also higher in the immature CD34+CD38- blast subset. Data from the Cancer Genome Atlas show that rpS6 expression is associated with that of respiratory chain enzymes in AML. We conclude that phenotypic quiescence markers do not necessarily predict metabolic dormancy and that elevated rpS6 ser235/236 phosphorylation is characteristic of AML. PMID:26985829

  5. Phenotypically Dormant and Immature Leukaemia Cells Display Increased Ribosomal Protein S6 Phosphorylation.

    PubMed

    Pallis, Monica; Harvey, Tamsin; Russell, Nigel

    2016-01-01

    Mechanistic/mammalian target of rapamycin (mTOR) activity drives a number of key metabolic processes including growth and protein synthesis. Inhibition of the mTOR pathway promotes cellular dormancy. Since cells from patients with acute myeloid leukaemia (AML) can be phenotypically dormant (quiescent), we examined biomarkers of their mTOR pathway activity concurrently with Ki-67 and CD71 (indicators of cycling cells) by quantitative flow cytometry. Using antibodies to phosphorylated epitopes of mTOR (S2448) and its downstream targets ribosomal protein S6 (rpS6, S235/236) and 4E-BP1 (T36/45), we documented that these phosphorylations were negligible in lymphocytes, but evident in dormant as well as proliferating subsets of both mobilised normal stem cell harvest CD34+ cells and AML blasts. Although mTOR phosphorylation in AML blasts was lower than that of the normal CD34+ cells, p-4E-BP1 was 2.6-fold higher and p-rpS6 was 22-fold higher. Moreover, in contrast to 4E-BP1, rpS6 phosphorylation was higher in dormant than proliferating AML blasts, and was also higher in the immature CD34+CD38- blast subset. Data from the Cancer Genome Atlas show that rpS6 expression is associated with that of respiratory chain enzymes in AML. We conclude that phenotypic quiescence markers do not necessarily predict metabolic dormancy and that elevated rpS6 ser235/236 phosphorylation is characteristic of AML. PMID:26985829

  6. Repeated cocaine administration increases B-cell leukemia/lymphoma 2 phosphorylation in the rat dorsal striatum.

    PubMed

    Ahn, Sung Min; Jang, Dong Hye; Choe, Eun Sang

    2010-01-01

    Protein phosphorylation caused by drug administration is a critical step in the regulation of behavioral alterations. This study was conducted to determine how repeated exposure to cocaine phosphorylates B-cell leukemia/lymphoma 2 (Bcl2), which may be responsible for the regulation of behavioral alterations in the rat dorsal striatum. The results revealed that repeated systemic injections of cocaine (20 mg/kg) once a day for 7 consecutive days increased the phosphorylation of Bcl2 at serine 70 (Bcl2-S70). However, this increase was reduced by the blockade of dopamine D1 receptors, group I metabotropic glutamate receptors (mGluRs), and N-methyl-D-aspartate (NMDA) receptors. In addition, elevation of behavioral locomotor activity after repeated exposure to cocaine was partially reduced by the inhibition of Bcl2. These data suggest that stimulation of dopamine D1 receptors, group I mGluRs, and NMDA receptors following repeated cocaine administration is necessary for the induction of Bcl2-S70 phosphorylation, which contributes to the expression of behavioral sensitization. PMID:19879923

  7. SIRT1 increases YAP- and MKK3-dependent p38 phosphorylation in mouse liver and human hepatocellular carcinoma

    PubMed Central

    Zhang, Xiao; Qiao, Yongxia; Liu, Xiangfan; Chang, Yefei; Yu, Yongchun; Sun, Fenyong; Wang, Jiayi

    2016-01-01

    Both oncoprotein and tumor-suppressor activity have been reported for SIRTUIN1 (SIRT1) and p38 in many types of cancer. The effect of SIRT1 on p38 phosphorylation (p-p38) remains controversial and may be organ- and cell-specific. We found that SIRT1 is essential for maintaining liver size and weight in mice. SIRT1 levels were elevated in human HCC compared to adjacent normal liver tissue, and its expression correlated positively with p-p38 levels. Additionally, SIRT1-activated p38 increased liver cancer malignancy. SIRT1 increased phosphorylation and nuclear accumulation of p38, possibly by increasing MKK3 expression. SIRT1 also induced YAP expression, which in turn increased MKK3 transcription. Positive correlations between SIRT1, YAP, MKK3, and p-p38 levels indicate that blocking their activity may prove helpful in treating HCC. PMID:26824501

  8. Phosphatidylinositol 3-Kinase Couples Localised Calcium Influx to Activation of Akt in Central Nerve Terminals.

    PubMed

    Nicholson-Fish, Jessica C; Cousin, Michael A; Smillie, Karen J

    2016-03-01

    The efficient retrieval of synaptic vesicle membrane and cargo in central nerve terminals is dependent on the efficient recruitment of a series of endocytosis modes by different patterns of neuronal activity. During intense neuronal activity the dominant endocytosis mode is activity-dependent endocytosis (ADBE). Triggering of ADBE is linked to calcineurin-mediated dynamin I dephosphorylation since the same stimulation intensities trigger both. Dynamin I dephosphorylation is maximised by a simultaneous inhibition of its kinase glycogen synthase kinase 3 (GSK3) by the protein kinase Akt, however it is unknown how increased neuronal activity is transduced into Akt activation. To address this question we determined how the activity-dependent increases in intracellular free calcium ([Ca(2+)]i) control activation of Akt. This was achieved using either trains of high frequency action potentials to evoke localised [Ca(2+)]i increases at active zones, or a calcium ionophore to raise [Ca(2+)]i uniformly across the nerve terminal. Through the use of either non-specific calcium channel antagonists or intracellular calcium chelators we found that Akt phosphorylation (and subsequent GSK3 phosphorylation) was dependent on localised [Ca(2+)]i increases at the active zone. In an attempt to determine mechanism, we antagonised either phosphatidylinositol 3-kinase (PI3K) or calmodulin. Activity-dependent phosphorylation of both Akt and GSK3 was arrested on inhibition of PI3K, but not calmodulin. Thus localised calcium influx in central nerve terminals activates PI3K via an unknown calcium sensor to trigger the activity-dependent phosphorylation of Akt and GSK3. PMID:26198194

  9. Elevated intracellular calcium concentration increases secretory processing of the amyloid precursor protein by a tyrosine phosphorylation-dependent mechanism.

    PubMed Central

    Petryniak, M A; Wurtman, R J; Slack, B E

    1996-01-01

    Secretory cleavage of the amyloid precursor protein (APP), a process that releases soluble APP derivatives (APPs) into the extracellular space, is stimulated by the activation of muscarinic receptors coupled to phosphoinositide hydrolysis. The signalling pathways involved in the release process exhibit both protein kinase C- and protein tyrosine phosphorylation-dependent components [Slack, Breu, Petryniak, Srivastava and Wurtman (1995) J. Biol. Chem. 270, 8337-8344]. The possibility that elevations in intracellular Ca2+ concentration initiate the tyrosine phosphorylation-dependent release of APPs was examined in human embryonic kidney cells expressing muscarinic m3 receptors. Inhibition of protein kinase C with the bisindolylmaleimide GF 109203X decreased the carbachol-evoked release of APPs by approx. 30%, as shown previously. The residual response was further decreased, in an additive manner, by the Ca2+ chelator EGTA, or by the tyrosine kinase inhibitor tyrphostin A25. The Ca2+ ionophore, ionomycin, like carbachol, stimulated both the release of APPs and the tyrosine phosphorylation of several proteins, one of which was identified as paxillin, a component of focal adhesions. The effects of ionomycin on APPs release and on protein tyrosine phosphorylation were concentration-dependent, and occurred over similar concentration ranges; both effects were inhibited only partly by GF 109203X, but were abolished by EGTA or by tyrosine kinase inhibitors. The results demonstrate for the first time that ionophore-induced elevations in intracellular Ca2+ levels elicit APPs release via increased tyrosine phosphorylation. Part of the increase in APPs release evoked by muscarinic receptor activation might be attributable to a similar mechanism. PMID:9003386

  10. Increased glucose transport in response to phorbol ester growth factors, and insulin: relationship to phosphorylation of the glucose transporter

    SciTech Connect

    Allard, W.J.; Gibbs, E.M.; Witters, L.A.; Lienhard, G.E.

    1986-05-01

    The authors have examined the relationship between the increase in glucose transport induced by phorbol myristate acetate (PMA), EGF, PDGF, and insulin and the phosphorylation state of the glucose transporter in human fibroblasts. To assay transport, cells were cultured in medium with 10% serum for 5 days and then for 2 days in phosphate-free medium with 5% serum. Exposure to each agonist stimulated transport, as measured by the uptake of /sup 3/H-2-deoxyglucose over a 2 min period. Values for maximal percent stimulation, time needed to reach maximal stimulation, and concentration required to achieve half-maximal stimulation were as follows: PMA, 80%, 30 min, 2 nM; EGF, 30%, 10 min, 0.2 nM; Insulin, 45%, 10 min, 17 nM. In the case of PDGF, uptake was stimulated 65% by treatment with 0.7 or 1.4 nM for 20 min. Phosphorylation of the glucose transporter was measured in cells cultured for 5-7 days in medium with 10% serum and exposed to 670 ..mu..Ci/ml /sup 32/P/sub i/ for 100 min. The agonist was then added at a saturating dose for 20 min, and the glucose transporter was immunoprecipitated from cell lysates using a monoclonal antibody. Under these conditions, no basal phosphorylation of the transporter was detected, and only phorbol ester stimulated significant incorporation of phosphate into the transport protein. Experiments are currently in progress to quantitate transporter phosphorylation under conditions identical to those used for the assay of transport. These results suggest that while the transporter is a substrate for protein kinase C in vivo, phosphorylation of the transporter is not required for increased transport in response to growth factors and insulin.

  11. Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis

    PubMed Central

    Fritsche-Guenther, Raphaela; Witzel, Franziska; Kempa, Stefan; Brummer, Tilman; Sers, Christine; Blüthgen, Nils

    2016-01-01

    Targeted therapies within the RAS/RAF/MEK/ERK signalling axis become increasingly popular, yet cross-talk and feedbacks in the signalling network lead to unexpected effects. Here we look systematically into how inhibiting RAF and MEK with clinically relevant inhibitors result in changes in PI3K/AKT activation. We measure the signalling response using a bead-based ELISA, and use a panel of three cell lines, and isogenic cell lines that express mutant forms of the oncogenes KRAS and BRAF to interrogate the effects of the MEK and RAF inhibitors on signalling. We find that treatment with the RAF inhibitors have opposing effects on AKT phosphorylation depending on the mutational status of two important oncogenes, KRAS and BRAF. If these two genes are in wildtype configuration, RAF inhibitors reduce AKT phosphorylation. In contrast, if BRAF or KRAS are mutant, RAF inhibitors will leave AKT phosphorylation unaffected or lead to an increase of AKT phosphorylation. Down-regulation of phospho-AKT by RAF inhibitors also extends to downstream transcription factors, and correlates with apoptosis induction. Our results show that oncogenes rewire signalling such that targeted therapies can have opposing effects on parallel pathways, which depend on the mutational status of the cell. PMID:26799289

  12. Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis.

    PubMed

    Fritsche-Guenther, Raphaela; Witzel, Franziska; Kempa, Stefan; Brummer, Tilman; Sers, Christine; Blüthgen, Nils

    2016-02-16

    Targeted therapies within the RAS/RAF/MEK/ERK signalling axis become increasingly popular, yet cross-talk and feedbacks in the signalling network lead to unexpected effects. Here we look systematically into how inhibiting RAF and MEK with clinically relevant inhibitors result in changes in PI3K/AKT activation. We measure the signalling response using a bead-based ELISA, and use a panel of three cell lines, and isogenic cell lines that express mutant forms of the oncogenes KRAS and BRAF to interrogate the effects of the MEK and RAF inhibitors on signalling. We find that treatment with the RAF inhibitors have opposing effects on AKT phosphorylation depending on the mutational status of two important oncogenes, KRAS and BRAF. If these two genes are in wildtype configuration, RAF inhibitors reduce AKT phosphorylation. In contrast, if BRAF or KRAS are mutant, RAF inhibitors will leave AKT phosphorylation unaffected or lead to an increase of AKT phosphorylation. Down-regulation of phospho-AKT by RAF inhibitors also extends to downstream transcription factors, and correlates with apoptosis induction. Our results show that oncogenes rewire signalling such that targeted therapies can have opposing effects on parallel pathways, which depend on the mutational status of the cell. PMID:26799289

  13. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway

    PubMed Central

    Seo, Gil Ju; Yang, Aerin; Tan, Brandon; Kim, Sungyoon; Liang, Qiming; Choi, Younho; Yuan, Weiming; Feng, Pinghui; Park, Hee-Sung; Jung, Jae U.

    2015-01-01

    SUMMARY Upon DNA stimulation, cyclic GMP-AMP synthetase (cGAS) synthesizes the second messenger cyclic GMP-AMP (cGAMP) that binds to the STING, triggering antiviral interferon-β (IFN-β) production. However, it has remained undetermined how hosts regulate cGAS enzymatic activity after the resolution of DNA immunogen. Here, we show that Akt kinase plays a negative role in cGAS-mediated anti-viral immune response. Akt phosphorylated the S291 or S305 residue of the enzymatic domain of mouse or human cGAS, respectively, and this phosphorylation robustly suppressed its enzymatic activity. Consequently, expression of activated Akt led to the reduction of cGAMP and IFN-β production and the increase of herpes simplex virus 1 replication, whereas treatment with Akt inhibitor augmented cGAS-mediated IFN-β production. Furthermore, expression of the phosphorylation-resistant cGAS S291A mutant enhanced IFN-β production upon DNA stimulation, HSV-1 infection, and vaccinia virus infection. Our study identifies an Akt kinase-mediated checkpoint to fine-tune hosts’ immune responses to DNA stimulation. PMID:26440888

  14. Amelioration of carbon tetrachloride-induced cirrhosis and portal hypertension in rat using adenoviral gene transfer of Akt

    PubMed Central

    Deng, Gang; Huang, Xiang-Jun; Luo, Hong-Wu; Huang, Fei-Zhou; Liu, Xun-Yang; Wang, Yong-Heng

    2013-01-01

    AIM: To investigate whether a virus constitutively expressing active Akt is useful to prevent cirrhosis induced by carbon tetrachloride (CCl4). METHODS: Using cre-loxp technique, we created an Ad-myr-HA-Akt virus, in which Akt is labeled by a HA tag and its expression is driven by myr promoter. Further, through measuring enzyme levels and histological structure, we determined the efficacy of this Ad-myr-HA-Akt virus in inhibiting the development of cirrhosis induced by CCl4 in rats. Lastly, using western blotting, we examined the expression levels and/or phosphorylation status of Akt, apoptotic mediators, endothelial nitric oxide synthase (eNOS), and markers for hepatic stellate cells activation to understand the underlying mechanisms of protective role of this virus. RESULTS: The Ad-myr-HA-Akt virus was confirmed using polymerase chain reaction amplification of inserted Akt gene and sequencing for full length of inserted fragment, which was consistent with the sequence reported in the GenBank. The concentrations of Ad-myr-HA-Akt and adenoviral enhanced green fluorescent protein (Ad-EGFP) virus used in the current study were 5.5 × 1011 vp/mL. The portal vein diameter, peak velocity of blood flow, portal blood flow and congestion index were significantly increased in untreated, saline and Ad-EGFP cirrhosis groups when compared to normal control after the virus was introduced to animal through tail veil injection. In contrast, these parameters in the Akt cirrhosis group were comparable to normal control group. Compared to the normal control, the liver function (Alanine aminotransferase, Aspartate aminotransferase and Albumin) was significantly impaired in the untreated, saline and Ad-EGFP cirrhosis groups. The Akt cirrhosis group showed significant improvement of liver function when compared to the untreated, saline and Ad-EGFP cirrhosis groups. The Hyp level and portal vein pressure in Akt cirrhosis groups were also significantly lower than other cirrhosis groups

  15. Nitration of JAK-2 at the 1007Y-1008Y activation epitope impedes phosphorylation at this site: defining a GH, AKT/protein kinase B and nitric oxide synthase axis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Generalized liver protein tyrosine nitration (3’-nitrotyrosine, 3’-NT) increases in vivo after GH injection with immunohistocellular patterns strikingly similar to those we observed for a specific nitration of JAK2 at its 1007Y-1008Y regulatory phosphorylation epitope following proinflammatory chall...

  16. AKT activation controls cell survival in response to HDAC6 inhibition.

    PubMed

    Kaliszczak, M; Trousil, S; Ali, T; Aboagye, E O

    2016-01-01

    HDAC6 is emerging as an important therapeutic target for cancer. We investigated mechanisms responsible for survival of tumor cells treated with a HDAC6 inhibitor. Expression of the 20 000 genes examined did not change following HDAC6 treatment in vivo. We found that HDAC6 inhibition led to an increase of AKT activation (P-AKT) in vitro, and genetic knockdown of HDAC6 phenocopied drug-induced AKT activation. The activation of AKT was not observed in PTEN null cells; otherwise, PTEN/PIK3CA expression per se did not predict HDAC6 inhibitor sensitivity. Interestingly, HDAC6 inhibitor treatment led to inactivating phosphorylation of PTEN (P-PTEN Ser380), which likely led to the increased P-AKT in cells that express PTEN. Synergy was observed with phosphatidylinositol 3'-kinases (PI3K) inhibitor treatment in vitro, accompanied by increased caspase 3/7 activity. Furthermore, combination of HDAC6 inhibitor with a PI3K inhibitor caused substantial tumor growth inhibition in vivo compared with either treatment alone, also detectable by Ki-67 immunostaining and (18)F-FLT positron emission tomography (PET). In aggregate AKT activation appears to be a key survival mechanism for HDAC6 inhibitor treatment. Our findings indicate that dual inhibition of HDAC6 and P-AKT may be necessary to substantially inhibit growth of solid tumors. PMID:27362804

  17. O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling

    PubMed Central

    Shi, Jianhua; Gu, Jin-hua; Dai, Chun-ling; Gu, Jianlan; Jin, Xiaoxia; Sun, Jianming; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2015-01-01

    Apoptosis plays an important role in neural development and neurological disorders. In this study, we found that O-GlcNAcylation, a unique protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc), promoted apoptosis through attenuating phosphorylation/activation of AKT and Bad. By using co-immunoprecipitation and mutagenesis techniques, we identified O-GlcNAc modification at both Thr308 and Ser473 of AKT. O-GlcNAcylation-induced apoptosis was attenuated by over-expression of AKT. We also found a dynamic elevation of protein O-GlcNAcylation during the first four hours of cerebral ischemia, followed by continuous decline after middle cerebral artery occlusion (MCAO) in the mouse brain. The elevation of O-GlcNAcylation coincided with activation of cell apoptosis. Finally, we found a negative correlation between AKT phosphorylation and O-GlcNAcylation in ischemic brain tissue. These results indicate that cerebral ischemia induces a rapid increase of O-GlcNAcylation that promotes apoptosis through down-regulation of AKT activity. These findings provide a novel mechanism through which O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling. PMID:26412745

  18. Abamectin resistance in Drosophila is related to increased expression of P-glycoprotein via the dEGFR and dAkt pathways.

    PubMed

    Luo, Liang; Sun, Ying-Jian; Wu, Yi-Jun

    2013-08-01

    Many insects have evolved resistance to abamectin but the mechanisms involved in this resistance have not been well characterized. P-glycoprotein (P-gp), an ATP-dependent drug-efflux pump transmembrane protein, may be involved in abamectin resistance. We investigated the role of P-gp in abamectin (ABM) resistance in Drosophila using an ABM-resistant strain developed in the laboratory. A toxicity assay, Western blotting analysis and a vanadate-sensitive ATPase activity assay all demonstrated the existence of a direct relationship between P-gp expression and ABM resistance in these flies. Our observations indicate that P-gp levels in flies' heads were higher than in their thorax and abdomen, and that both P-gp levels and LC(50) values were higher in resistant than in susceptible and P-gp-deficient strains. In addition, P-gp levels in the blood-brain barrier (BBB) of resistant flies were higher than in susceptible and P-gp-deficient flies, which is further evidence that a high level of P-gp in the BBB is related to ABM resistance. Furthermore, we found greater expression of Drosophila EGFR (dEGFR) in the resistant strain than in the susceptible strain, and that the level of Drosophila Akt (dAkt) was much higher in resistant than in susceptible flies, whereas that in P-gp-deficient flies was very low. Compared to susceptible flies, P-gp levels in the resistant strain were markedly suppressed by the dEGFR and dAkt inhibitors lapatinib and wortmannin. These results suggest that the increased P-gp in resistant flies was regulated by the dEGFR and dAkt pathways and that increased expression of P-gp is an important component of ABM resistance in insects. PMID:23648830

  19. Runx1 Phosphorylation by Src Increases Trans-activation via Augmented Stability, Reduced Histone Deacetylase (HDAC) Binding, and Increased DNA Affinity, and Activated Runx1 Favors Granulopoiesis.

    PubMed

    Leong, Wan Yee; Guo, Hong; Ma, Ou; Huang, Hui; Cantor, Alan B; Friedman, Alan D

    2016-01-01

    Src phosphorylates Runx1 on one central and four C-terminal tyrosines. We find that activated Src synergizes with Runx1 to activate a Runx1 luciferase reporter. Mutation of the four Runx1 C-terminal tyrosines to aspartate or glutamate to mimic phosphorylation increases trans-activation of the reporter in 293T cells and allows induction of Cebpa or Pu.1 mRNAs in 32Dcl3 myeloid cells, whereas mutation of these residues to phenylalanine to prevent phosphorylation obviates these effects. Three mechanisms contribute to increased Runx1 activity upon tyrosine modification as follows: increased stability, reduced histone deacetylase (HDAC) interaction, and increased DNA binding. Mutation of the five modified Runx1 tyrosines to aspartate markedly reduced co-immunoprecipitation with HDAC1 and HDAC3, markedly increased stability in cycloheximide or in the presence of co-expressed Cdh1, an E3 ubiquitin ligase coactivator, with reduced ubiquitination, and allowed DNA-binding in gel shift assay similar to wild-type Runx1. In contrast, mutation of these residues to phenylalanine modestly increased HDAC interaction, modestly reduced stability, and markedly reduced DNA binding in gel shift assays and as assessed by chromatin immunoprecipitation with the -14-kb Pu.1 or +37-kb Cebpa enhancers after stable expression in 32Dcl3 cells. Affinity for CBFβ, the Runx1 DNA-binding partner, was not affected by these tyrosine modifications, and in vitro translated CBFβ markedly increased DNA affinity of both the translated phenylalanine and aspartate Runx1 variants. Finally, further supporting a positive role for Runx1 tyrosine phosphorylation during granulopoiesis, mutation of the five Src-modified residues to aspartate but not phenylalanine allows Runx1 to increase Cebpa and granulocyte colony formation by Runx1-deleted murine marrow. PMID:26598521

  20. Suppression of SPIN1-mediated PI3K-Akt pathway by miR-489 increases chemosensitivity in breast cancer.

    PubMed

    Chen, Xu; Wang, Ya-Wen; Xing, Ai-Yan; Xiang, Shuai; Shi, Duan-Bo; Liu, Lei; Li, Yan-Xiang; Gao, Peng

    2016-08-01

    Drug resistance is one of the major obstacles for improving the prognosis of breast cancer patients. Increasing evidence has linked the association of aberrantly expressed microRNAs (miRNAs) with tumour development and progression as well as chemoresistance. Despite recent advances, there is still little known about the potential role and mechanism of miRNAs in breast cancer chemoresistance. Here we describe that 16 miRNAs were found to be significantly down-regulated and 11 up-regulated in drug-resistant breast cancer tissues compared with drug-sensitive tissues, using a miRNA microarray. The results also showed miR-489 to be one of the most down-regulated miRNAs in drug-resistant tissues and cell lines, as confirmed by miRNA microarray screening and real-time quantitative PCR. A decrease in miR-489 expression was associated with chemoresistance as well as lymph node metastasis, increased tumour size, advanced pTNM stage and poor prognosis in breast cancer. Functional analysis revealed that miR-489 increased breast cancer chemosensitivity and inhibited cell proliferation, migration and invasion, both in vitro and in vivo. Furthermore, SPIN1, VAV3, BCL2 and AKT3 were found to be direct targets of miR-489. SPIN1 was significantly elevated in drug-resistant and metastatic breast cancer tissues and inversely correlated with miR-489 expression. High expression of SPIN1 was associated with higher histological grade, lymph node metastasis, advanced pTNM stage and positive progesterone receptor (PR) status. Increased SPIN1 expression enhanced cell migration and invasion, inhibited apoptosis and partially antagonized the effects of miR-489 in breast cancer. PIK3CA, AKT, CREB1 and BCL2 in the PI3K-Akt signalling pathway, demonstrated to be elevated in drug-resistant breast cancer tissues, were identified as downstream effectors of SPIN1. It was further found that either inhibition of SPIN1 or overexpression of miR-489 suppressed the PI3K-Akt signalling pathway. These data

  1. Combined inhibition of the EGFR/AKT pathways by a novel conjugate of quinazoline with isothiocyanate.

    PubMed

    Tarozzi, Andrea; Marchetti, Chiara; Nicolini, Benedetta; D'Amico, Massimo; Ticchi, Nicole; Pruccoli, Letizia; Tumiatti, Vincenzo; Simoni, Elena; Lodola, Alessio; Mor, Marco; Milelli, Andrea; Minarini, Anna

    2016-07-19

    Epidermal growth factor receptor inhibitors (EGFR-TKIs) represent a class of compounds widely used in anticancer therapy. An increasing number of studies reports on combination therapies in which the block of the EGFR-TK activity is associated with inhibition of its downstream pathways, as PI3K-Akt. Sulforaphane targets the PI3K-Akt pathway whose dysregulation is implicated in many functions of cancer cells. According to these considerations, a series of multitarget molecules have been designed by combining key structural features derived from an EGFR-TKI, PD168393, and the isothiocyanate sulforaphane. Among the obtained molecules 1-6, compound 6 emerges as a promising lead compound able to exert antiproliferative and proapoptotic effects in A431 epithelial cancer cell line by covalently binding to EGFR-TK, and reducing the phosphorylation of Akt without affecting the total Akt levels. PMID:27135370

  2. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia.

    PubMed

    Piovan, Erich; Yu, Jiyang; Tosello, Valeria; Herranz, Daniel; Ambesi-Impiombato, Alberto; Da Silva, Ana Carolina; Sanchez-Martin, Marta; Perez-Garcia, Arianne; Rigo, Isaura; Castillo, Mireia; Indraccolo, Stefano; Cross, Justin R; de Stanchina, Elisa; Paietta, Elisabeth; Racevskis, Janis; Rowe, Jacob M; Tallman, Martin S; Basso, Giuseppe; Meijerink, Jules P; Cordon-Cardo, Carlos; Califano, Andrea; Ferrando, Adolfo A

    2013-12-01

    Glucocorticoid resistance is a major driver of therapeutic failure in T cell acute lymphoblastic leukemia (T-ALL). Here, we identify the AKT1 kinase as a major negative regulator of the NR3C1 glucocorticoid receptor protein activity driving glucocorticoid resistance in T-ALL. Mechanistically, AKT1 impairs glucocorticoid-induced gene expression by direct phosphorylation of NR3C1 at position S134 and blocking glucocorticoid-induced NR3C1 translocation to the nucleus. Moreover, we demonstrate that loss of PTEN and consequent AKT1 activation can effectively block glucocorticoid-induced apoptosis and induce resistance to glucocorticoid therapy. Conversely, pharmacologic inhibition of AKT with MK2206 effectively restores glucocorticoid-induced NR3C1 translocation to the nucleus, increases the response of T-ALL cells to glucocorticoid therapy, and effectively reverses glucocorticoid resistance in vitro and in vivo. PMID:24291004

  3. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia

    PubMed Central

    Tosello, Valeria; Herranz, Daniel; Ambesi-Impiombato, Alberto; Da Silva, Ana Carolina; Sanchez-Martin, Marta; Perez-Garcia, Arianne; Rigo, Isaura; Castillo, Mireia; Indraccolo, Stefano; Cross, Justin R; de Stanchina, Elisa; Paietta, Elisabeth; Racevskis, Janis; Rowe, Jacob M; Tallman, Martin S; Basso, Giuseppe; Meijerink, Jules P; Cordon-Cardo, Carlos; Califano, Andrea; Ferrando, Adolfo A.

    2013-01-01

    SUMMARY Glucocorticoid resistance is a major driver of therapeutic failure in T-cell acute lymphoblastic leukemia (T-ALL). Here we identify the AKT1 kinase as a major negative regulator of the NR3C1 glucocorticoid receptor protein activity driving glucocorticoid resistance in T-ALL. Mechanistically, AKT1 impairs glucocorticoid-induced gene expression by direct phosphorylation of NR3C1 at position S134 and blocking glucocorticoid-induced NR3C1 translocation to the nucleus. Moreover, we demonstrate that loss of PTEN and consequent AKT1 activation can effectively block glucocorticoid induced apoptosis and induce resistance to glucocorticoid therapy. Conversely, pharmacologic inhibition of AKT with MK2206 effectively restores glucocorticoid-induced NR3C1 translocation to the nucleus, increases the response of T-ALL cells to glucocorticoid therapy and effectively reverses glucocorticoid resistance in vitro and in vivo. PMID:24291004

  4. Calorie restriction leads to greater Akt2 activity and glucose uptake by insulin-stimulated skeletal muscle from old rats.

    PubMed

    Wang, Haiyan; Arias, Edward B; Cartee, Gregory D

    2016-03-01

    Skeletal muscle insulin resistance is associated with many common age-related diseases, but moderate calorie restriction (CR) can substantially elevate glucose uptake by insulin-stimulated skeletal muscle from both young and old rats. The current study evaluated the isolated epitrochlearis muscle from ∼24.5-mo-old rats that were either fed ad libitum (AL) or subjected to CR (consuming ∼65% of ad libitum, AL, intake beginning at ∼22.5 mo old). Some muscles were also incubated with MK-2206, a potent and selective Akt inhibitor. The most important results were that in isolated muscles, CR vs. AL resulted in 1) greater insulin-stimulated glucose uptake 2) that was accompanied by significantly increased insulin-mediated activation of Akt2, as indicated by greater phosphorylation on both Thr(309) and Ser(474) along with greater Akt2 activity, 3) concomitant with enhanced phosphorylation of several Akt substrates, including an Akt substrate of 160 kDa on Thr(642) and Ser(588), filamin C on Ser(2213) and proline-rich Akt substrate of 40 kDa on Thr(246), but not TBC1D1 on Thr(596); and 4) each of the CR effects was eliminated by MK-2206. These data provide compelling new evidence linking greater Akt2 activation to the CR-induced elevation of insulin-stimulated glucose uptake by muscle from old animals. PMID:26739650

  5. Increased Tau Phosphorylation and Aggregation in Mice Overexpressing Corticotropin-Releasing Factor

    PubMed Central

    Campbell, Shannon N.; Zhang, Cheng; Monte, Louise; Roe, Allyson D.; Rice, Kenner C.; Taché, Yvette; Masliah, Eliezer; Rissman, Robert A.

    2014-01-01

    Clinical and basic science research suggests that stress and/or changes in central stress signaling intermediates may be involved in Alzheimer’s disease (AD) pathogenesis. Although the links between stress and AD remain unsettled, data from our group and others have established that stress exposure in rodents may confer susceptibility to AD pathology by inducing hippocampal tau phosphorylation (tau-P). Work in our lab has shown that stress-induced tau-P requires activation of the type-1 corticotropin-releasing factor receptor (CRFR1). CRF overexpressing (CRF-OE) mice are a model of chronic stress that display cognitive impairment at 9–10 month of age. In this study we used 6–7 month old CRF-OE mice to examine whether sustained exposure to CRF and stress steroids would impact hippocampal tau-P and kinase activity in the presence or absence of the CRFR1-specific antagonist, R121919, given daily for 30 days. CRF-OE mice had significantly elevated tau-P compared to wild type (WT) mice at the AT8 (S202/T204), PHF-1 (S396/404), S262, and S422 sites. Treating CRF-OE mice with R121919 blocked phosphorylation at the AT8 (S202/T204) and PHF-1 (S396/404) sites, but not at the S262 and S422 sites and reduced phosphorylation of c-Jun N Terminal Kinase (JNK). Examination of hippocampal extracts from CRF-OE mice at the ultrastructural level revealed negatively stained round/globular aggregates that were positively labeled by PHF-1. These data suggest critical roles for CRF and CRFR1 in tau-P and aggregation and may have implications for the development of AD cognitive decline. PMID:25125464

  6. Marine lipopeptide Iturin A inhibits Akt mediated GSK3β and FoxO3a signaling and triggers apoptosis in breast cancer.

    PubMed

    Dey, Goutam; Bharti, Rashmi; Dhanarajan, Gunaseelan; Das, Subhasis; Dey, Kaushik Kumar; Kumar, B N Prashanth; Sen, Ramkrishna; Mandal, Mahitosh

    2015-01-01

    Akt kinase is a critical component of the PI3K/Akt signaling pathway, which is frequently over expressed in human cancers including breast. Therapeutic regimens for inhibiting breast cancer with aberrant Akt activity are essential. Here, we evaluated antitumor effect of a marine bacteria derived lipopeptide 'Iturin A' on human breast cancer in vitro and in vivo through disrupting Akt pathway. Proliferation of MDA-MB-231 and MCF-7 breast cancer cells were significantly inhibited by Iturin A and it induced apoptosis as confirmed by increased Sub G1 populations, DNA fragmentation, morphological changes and western blot analysis. Furthermore, Iturin A inhibited EGF induced Akt phosphorylation (Ser473 and Thr308) and its downstream targets GSK3β and FoxO3a. Iturin A inactivated MAPK as well as Akt kinase leading to the translocation of FoxO3a to the nucleus. Gene silencing of Akt in MDA-MB-231 and MCF-7 cells reduced the sensitivity of cancer cells to Iturin A. Interestingly, overexpression of Akt with Akt plasmid in cancer cells caused highly susceptible to induce apoptosis by Iturin A treatment. In a xenograft model, Iturin A inhibited tumor growth with reduced expressions of Ki-67, CD-31, P-Akt, P-GSK3β, P-FoxO3a and P-MAPK. Collectively, these findings imply that Iturin A has potential anticancer effect on breast cancer. PMID:25974307

  7. Marine lipopeptide Iturin A inhibits Akt mediated GSK3β and FoxO3a signaling and triggers apoptosis in breast cancer

    PubMed Central

    Dey, Goutam; Bharti, Rashmi; Dhanarajan, Gunaseelan; Das, Subhasis; Dey, Kaushik Kumar; Kumar, B N Prashanth; Sen, Ramkrishna; Mandal, Mahitosh

    2015-01-01

    Akt kinase is a critical component of the PI3K/Akt signaling pathway, which is frequently over expressed in human cancers including breast. Therapeutic regimens for inhibiting breast cancer with aberrant Akt activity are essential. Here, we evaluated antitumor effect of a marine bacteria derived lipopeptide ‘Iturin A’ on human breast cancer in vitro and in vivo through disrupting Akt pathway. Proliferation of MDA-MB-231 and MCF-7 breast cancer cells were significantly inhibited by Iturin A and it induced apoptosis as confirmed by increased Sub G1 populations, DNA fragmentation, morphological changes and western blot analysis. Furthermore, Iturin A inhibited EGF induced Akt phosphorylation (Ser473 and Thr308) and its downstream targets GSK3β and FoxO3a. Iturin A inactivated MAPK as well as Akt kinase leading to the translocation of FoxO3a to the nucleus. Gene silencing of Akt in MDA-MB-231 and MCF-7 cells reduced the sensitivity of cancer cells to Iturin A. Interestingly, overexpression of Akt with Akt plasmid in cancer cells caused highly susceptible to induce apoptosis by Iturin A treatment. In a xenograft model, Iturin A inhibited tumor growth with reduced expressions of Ki-67, CD-31, P-Akt, P-GSK3β, P-FoxO3a and P-MAPK. Collectively, these findings imply that Iturin A has potential anticancer effect on breast cancer. PMID:25974307

  8. Progranulin reduction is associated with increased tau phosphorylation in P301L tau transgenic mice.

    PubMed

    Hosokawa, Masato; Arai, Tetsuaki; Masuda-Suzukake, Masami; Kondo, Hiromi; Matsuwaki, Takashi; Nishihara, Masugi; Hasegawa, Masato; Akiyama, Haruhiko

    2015-02-01

    Granulin (GRN) mutations have been identified in familial frontotemporal lobar degeneration patients with ubiquitin pathology. GRN transcript haploinsufficiency is proposed as a disease mechanism that leads to the loss of functional progranulin (PGRN) protein. Thus, these mutations are strongly involved in frontotemporal lobar degeneration pathogenesis. Moreover, recent findings indicate that GRN mutations are associated with other neurodegenerative disorders with tau pathology, including Alzheimer disease and corticobasal degeneration. To investigate the potential influence of a decline in PGRN protein on tau accumulation, P301L tau transgenic mice were interbred with GRN-deficient mice, producing P301L tau transgenic mice harboring the GRN hemizygote. Brains were collected from 13- and 19-month-old mice, and sequential extraction of proteins, immunoblotting, and immunohistochemical analyses were performed. Immunoblotting analysis revealed that tau phosphorylation was accelerated in the Tris-saline soluble fraction of 13-month-old and in the sarkosyl-insoluble fraction of 19-month-old P301L tau/GRN hemizygotes compared with those in fractions from P301L tau transgenic mice. Activity of cyclin-dependent kinases was also upregulated in the brains of P301L tau/GRN hemizygote mice. Although the mechanisms involved in these findings remain unknown, our data suggest that a reduction in PGRN protein might contribute to phosphorylation and intraneuronal accumulation of tau. PMID:25575133

  9. Activation of protein kinase Cα increases phosphorylation of the UT-A1 urea transporter at serine 494 in the inner medullary collecting duct.

    PubMed

    Blount, Mitsi A; Cipriani, Penelope; Redd, Sara K; Ordas, Ronald J; Black, Lauren N; Gumina, Diane L; Hoban, Carol A; Klein, Janet D; Sands, Jeff M

    2015-11-01

    Hypertonicity increases urea transport, as well as the phosphorylation and membrane accumulation of UT-A1, the transporter responsible for urea permeability in the inner medullary collect duct (IMCD). Hypertonicity stimulates urea transport through PKC-mediated phosphorylation. To determine whether PKC phosphorylates UT-A1, eight potential PKC phosphorylation sites were individually replaced with alanine and subsequently transfected into LLC-PK1 cells. Of the single mutants, only ablation of the S494 site dampened induction of total UT-A1 phosphorylation by the PKC activator phorbol dibutyrate (PDBu). This result was confirmed using a newly generated antibody that specifically detected phosphorylation of UT-A1 at S494. Hypertonicity increased UT-A1 phosphorylation at S494. In contrast, activators of cAMP pathways (PKA and Epac) did not increase UT-A1 phosphorylation at S494. Activation of both PKC and PKA pathways increased plasma membrane accumulation of UT-A1, although activation of PKC alone did not do so. However, ablating the PKC site S494 decreased UT-A1 abundance in the plasma membrane. This suggests that the cAMP pathway promotes UT-A1 trafficking to the apical membrane where the PKC pathway can phosphorylate the transporter, resulting in increased UT-A1 retention at the apical membrane. In summary, activation of PKC increases the phosphorylation of UT-A1 at a specific residue, S494. Although there is no cross talk with the cAMP-signaling pathway, phosphorylation of S494 through PKC may enhance vasopressin-stimulated urea permeability by retaining UT-A1 in the plasma membrane. PMID:26333598

  10. Increased tau phosphorylation and receptor for advanced glycation endproducts (RAGE) in the brain of mice infected with Leishmania amazonensis.

    PubMed

    Gasparotto, Juciano; Senger, Mario Roberto; Kunzler, Alice; Degrossoli, Adriana; de Simone, Salvatore Giovanni; Bortolin, Rafael Calixto; Somensi, Nauana; Girardi, Carolina Saibro; de Souza, Celeste da Silva Freitas; Calabrese, Kátia da Silva; Dal-Pizzol, Felipe; Moreira, José Claudio Fonseca; Silva-Jr, Floriano Paes; Gelain, Daniel Pens

    2015-01-01

    Leishmaniasis is a parasitosis caused by several species of the genus Leishmania, an obligate intramacrophagic parasite. Although neurologic symptoms have been observed in human cases of leishmaniasis, the manifestation of neurodegenerative processes is poorly studied. The aim of the present work was to investigate if peripheral infection of BALB/c mice with Leishmania amazonensis affects tau phosphorylation and RAGE protein content in the brain, which represent biochemical markers of neurodegenerative processes observed in diseases with a pro-inflammatory component, including Alzheimer's disease and Down syndrome. Four months after a single right hind footpad subcutaneous injection of L. amazonensis, the brain cortex of BALB/c mice was isolated. Western blot analysis indicated an increase in tau phosphorylation (Ser(396)) and RAGE immunocontent in infected animals. Brain tissue TNF-α, IL-1β, and IL-6 levels were not different from control animals; however, increased protein carbonylation, decreased IFN-γ levels and impairment in antioxidant defenses were detected. Systemic antioxidant treatment (NAC 20mg/kg, i.p.) inhibited tau phosphorylation and recovered IFN-γ levels. These data, altogether, indicate an association between impaired redox state, tau phosphorylation and RAGE up-regulation in the brain cortex of animals infected with L. amazonensis. In this context, it is possible that neurologic symptoms associated to chronic leishmaniasis are associated to disruptions in the homeostasis of CNS proteins, such as tau and RAGE, as consequence of oxidative stress. This is the first demonstration of alterations in biochemical parameters of neurodegeneration in an experimental model of Leishmania infection. PMID:25014011

  11. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    SciTech Connect

    Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.; Burgos, Patricia V.; Villanueva, Carolina I.; Figueroa, Carlos D.; González, Carlos B.

    2013-11-29

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. The AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.

  12. Exposure to Ionizing Radiation Causes Long-Term Increase in Serum Estradiol and Activation of PI3K-Akt Signaling Pathway in Mouse Mammary Gland

    SciTech Connect

    Suman, Shubhankar; Johnson, Michael D.; Fornace, Albert J.; Datta, Kamal

    2012-10-01

    Purpose: Exposure to ionizing radiation is an established risk factor for breast cancer. Radiation exposure during infancy, childhood, and adolescence confers the highest risk. Although radiation is a proven mammary carcinogen, it remains unclear where it acts in the complex multistage process of breast cancer development. In this study, we investigated the long-term pathophysiologic effects of ionizing radiation at a dose (2 Gy) relevant to fractionated radiotherapy. Methods and Materials: Adolescent (6-8 weeks old; n = 10) female C57BL/6J mice were exposed to 2 Gy total body {gamma}-radiation, the mammary glands were surgically removed, and serum and urine samples were collected 2 and 12 months after exposure. Molecular pathways involving estrogen receptor-{alpha} (ER{alpha}) and phosphatidylinositol-3-OH kinase (PI3K)-Akt signaling were investigated by immunohistochemistry and Western blot. Results: Serum estrogen and urinary levels of the oncogenic estrogen metabolite (16{alpha}OHE1) were significantly increased in irradiated animals. Immunostaining for the cellular proliferative marker Ki-67 and cyclin-D1 showed increased nuclear accumulation in sections of mammary glands from irradiated vs. control mice. Marked increase in p85{alpha}, a regulatory sub-unit of the PI3K was associated with increase in Akt, phospho-Akt, phospho-BAD, phospho-mTOR, and c-Myc in irradiated samples. Persistent increase in nuclear ER{alpha} in mammary tissues 2 and 12 months after radiation exposure was also observed. Conclusions: Taken together, our data not only support epidemiologic observations associating radiation and breast cancer but also, specify molecular events that could be involved in radiation-induced breast cancer.

  13. Site Specific Activation of AKT Protects Cells from Death Induced by Glucose Deprivation

    PubMed Central

    Gao, Meng; Liang, Jiyong; Lu, Yiling; Guo, Huifang; German, Peter; Bai, Shanshan; Jonasch, Eric; Yang, Xingsheng; Mills, Gordon B.; Ding, Zhiyong

    2013-01-01

    The serine/threonine kinase AKT is a key mediator of cancer cell survival. We demonstrate that transient glucose deprivation modestly induces AKT phosphorylation at both Thr308 and Ser473. In contrast, prolonged glucose deprivation induces selective AKTThr308 phosphorylation and phosphorylation of a distinct subset of AKT downstream targets leading to cell survival under metabolic stress. Glucose deprivation-induced AKTThr308 phosphorylation is dependent on PDK1 and PI3K but not EGFR or IGF1R. Prolonged glucose deprivation induces the formation of a complex of AKT, PDK1, and the GRP78 chaperone protein, directing phosphorylation of AKTThr308 but AKTSer473. Our results reveal a novel mechanism of AKT activation under prolonged glucose deprivation that protects cells from metabolic stress. The selective activation of AKTThr308 phosphorylation that occurs during prolonged nutrient deprivation may provide an unexpected opportunity for the development and implementation of drugs targeting cell metabolism and aberrant AKT signaling. PMID:23396361

  14. KCTD20, a relative of BTBD10, is a positive regulator of Akt

    PubMed Central

    2013-01-01

    Background BTBD10 binds to Akt and protein phosphatase 2A (PP2A) and inhibits the PP2A-mediated dephosphorylation of Akt, thereby keeping Akt activated. Previous studies have suggested that BTBD10 plays an important role in preventing motor neuronal death and accelerating the growth of pancreatic beta cells. Because levels of BTBD10 expression are much lower in many non-nervous tissues than nervous tissues, there may be a relative of BTBD10 that has BTBD10-like function in non-neuronal cells. Results A 419-amino-acid BTBD10-like protein, named KCTD20 (potassium channel tetramerization protein domain containing 20), was to found to bind to all Akt isoforms and PP2A. Overexpression of KCTD20 increased Akt phosphorylation at Thr308, as BTBD10 did, which suggests that KCTD20 as well as BTBD10 positively regulates the function of Akt. KCTD20 was ubiquitously expressed in non-nervous as well as nervous tissues. Conclusions KCTD20 is a positive regulator of Akt and may play an important role in regulating the death and growth of some non-nervous and nervous cells. PMID:24156551

  15. HEATR1 Negatively Regulates Akt to Help Sensitize Pancreatic Cancer Cells to Chemotherapy.

    PubMed

    Liu, Tongzheng; Fang, Yuan; Zhang, Haoxing; Deng, Min; Gao, Bowen; Niu, Nifang; Yu, Jia; Lee, SeungBaek; Kim, JungJin; Qin, Bo; Xie, Fang; Evans, Debra; Wang, Liewei; Lou, Wenhui; Lou, Zhenkun

    2016-02-01

    Elucidating mechanisms of chemoresistance is critical to improve cancer therapy, especially for the treatment of pancreatic ductal adenocarcinoma (PDAC). Genome-wide association studies have suggested the less studied gene HEAT repeat-containing protein 1 (HEATR1) as a possible determinant of cellular sensitivity to different chemotherapeutic drugs. In this study, we assessed this hypothesized link in PDAC, where HEATR1 expression is downregulated significantly. HEATR1 silencing in PDAC cells increased resistance to gemcitabine and other chemotherapeutics, where this effect was associated with increased AKT kinase phosphorylation at the Thr308 regulatory site. Mechanistically, HEATR1 enhanced cell responsiveness to gemcitabine by acting as a scaffold to facilitate interactions between AKT and the protein phosphatase PP2A, thereby promoting Thr308 dephosphorylation. Consistent with these findings, treatment with the AKT inhibitor triciribine sensitized HEATR1-depleted PDAC cells to gemcitabine, suggesting that this therapeutic combination may overcome gemcitabine resistance in patients with low HEATR1 expression. Clinically, we found that HEATR1 downregulation in PDAC patients was associated with increased AKT phosphorylation, poor response to tumor resection plus gemcitabine standard-of-care treatment, and shorter overall survival. Collectively, our findings establish HEATR1 as a novel regulator of AKT and a candidate predictive and prognostic indicator of drug responsiveness and outcome in PDAC patients. PMID:26676747

  16. Brain Intraventricular Injection of Amyloid-β in Zebrafish Embryo Impairs Cognition and Increases Tau Phosphorylation, Effects Reversed by Lithium

    PubMed Central

    Nery, Laura Roesler; Eltz, Natalia Silva; Hackman, Cristiana; Fonseca, Raphaela; Altenhofen, Stefani; Guerra, Heydi Noriega; Freitas, Vanessa Morais; Bonan, Carla Denise; Vianna, Monica Ryff Moreira Roca

    2014-01-01

    Alzheimer’s disease (AD) is a devastating neurodegenerative disorder with no effective treatment and commonly diagnosed only on late stages. Amyloid-β (Aβ) accumulation and exacerbated tau phosphorylation are molecular hallmarks of AD implicated in cognitive deficits and synaptic and neuronal loss. The Aβ and tau connection is beginning to be elucidated and attributed to interaction with different components of common signaling pathways. Recent evidences suggest that non-fibrillary Aβ forms bind to membrane receptors and modulate GSK-3β activity, which in turn phosphorylates the microtubule-associated tau protein leading to axonal disruption and toxic accumulation. Available AD animal models, ranging from rodent to invertebrates, significantly contributed to our current knowledge, but complementary platforms for mechanistic and candidate drug screenings remain critical for the identification of early stage biomarkers and potential disease-modifying therapies. Here we show that Aβ1–42 injection in the hindbrain ventricle of 24 hpf zebrafish embryos results in specific cognitive deficits and increased tau phosphorylation in GSK-3β target residues at 5dpf larvae. These effects are reversed by lithium incubation and not accompanied by apoptotic markers. We believe this may represent a straightforward platform useful to identification of cellular and molecular mechanisms of early stage AD-like symptoms and the effects of neuroactive molecules in pharmacological screenings. PMID:25187954

  17. Akt-1 mediates survival of chondrocytes from endoplasmic reticulum-induced stress.

    PubMed

    Price, Jeremy; Zaidi, Asifa K; Bohensky, Jolene; Srinivas, Vickram; Shapiro, Irving M; Ali, Hydar

    2010-03-01

    The unfolded protein response (UPR) is an evolutionary conserved adaptive mechanism that permits cells to react and adjust to conditions of endoplasmic reticulum (ER) stress. In addition to UPR, phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal regulated kinase (ERK) signaling pathways protect a variety of cells from ER stress. The goal of the present study was to assess the susceptibility of chondrocytes to ER stress and to determine the signaling pathways involved in their survival. We found that low concentration of thapsigargin (10 nM) reduced the viability of a chondrocyte cell line (N1511 cells) and that these cells were approximately 100 fold more susceptible to thapsigargin-induced stress than fibroblasts. Interestingly, in thapsigargin and tunicamycin-stressed chondrocytes induction of the proapoptotic transcription factor CHOP preceded that of the anti-apoptotic BiP by 12 h. Although both of these agents caused sustained Akt and ERK phosphorylation; inhibition of Akt phosphorylation sensitized chondrocytes to ER stress, while blocking ERK signaling by U0126 had no effect. We found that Akt-1, but not Akt-2 or Akt-3, is predominantly expressed in N1511 chondrocytes. Furthermore, siRNA-mediated knockdown of Akt-1 sensitized chondrocytes to ER stress, which was associated with increased capsase-3 activity and decreased Bcl(XL) expression. These data suggest that under condition of ER stress, multiple signaling processes regulate chondrocyte's survival-death decisions. Thus, rapid upregulation of CHOP likely contributes to chondrocyte death, while Akt-1-mediated inactivation of caspase 3 and induction of BclXL promotes survival. PMID:20020442

  18. Nanog Increases Focal Adhesion Kinase (FAK) Promoter Activity and Expression and Directly Binds to FAK Protein to Be Phosphorylated*

    PubMed Central

    Ho, Baotran; Olson, Gretchen; Figel, Sheila; Gelman, Irwin; Cance, William G.; Golubovskaya, Vita M.

    2012-01-01

    Nanog and FAK were shown to be overexpressed in cancer cells. In this report, the Nanog overexpression increased FAK expression in 293, SW480, and SW620 cancer cells. Nanog binds the FAK promoter and up-regulates its activity, whereas Nanog siRNA decreases FAK promoter activity and FAK mRNA. The FAK promoter contains four Nanog-binding sites. The site-directed mutagenesis of these sites significantly decreased up-regulation of FAK promoter activity by Nanog. EMSA showed the specific binding of Nanog to each of the four sites, and binding was confirmed by ChIP assay. Nanog directly binds the FAK protein by pulldown and immunoprecipitation assays, and proteins co-localize by confocal microscopy. Nanog binds the N-terminal domain of FAK. In addition, FAK directly phosphorylates Nanog in a dose-dependent manner by in vitro kinase assay and in cancer cells in vivo. The site-directed mutagenesis of Nanog tyrosines, Y35F and Y174F, blocked phosphorylation and binding by FAK. Moreover, overexpression of wild type Nanog increased filopodia/lamellipodia formation, whereas mutant Y35F and Y174F Nanog did not. The wild type Nanog increased cell invasion that was inhibited by the FAK inhibitor and increased by FAK more significantly than with the mutants Y35F and Y174F Nanog. Down-regulation of Nanog with siRNA decreased cell growth reversed by FAK overexpression. Thus, these data demonstrate the regulation of the FAK promoter by Nanog, the direct binding of the proteins, the phosphorylation of Nanog by FAK, and the effect of FAK and Nanog cross-regulation on cancer cell morphology, invasion, and growth that plays a significant role in carcinogenesis. PMID:22493428

  19. Nanog increases focal adhesion kinase (FAK) promoter activity and expression and directly binds to FAK protein to be phosphorylated.

    PubMed

    Ho, Baotran; Olson, Gretchen; Figel, Sheila; Gelman, Irwin; Cance, William G; Golubovskaya, Vita M

    2012-05-25

    Nanog and FAK were shown to be overexpressed in cancer cells. In this report, the Nanog overexpression increased FAK expression in 293, SW480, and SW620 cancer cells. Nanog binds the FAK promoter and up-regulates its activity, whereas Nanog siRNA decreases FAK promoter activity and FAK mRNA. The FAK promoter contains four Nanog-binding sites. The site-directed mutagenesis of these sites significantly decreased up-regulation of FAK promoter activity by Nanog. EMSA showed the specific binding of Nanog to each of the four sites, and binding was confirmed by ChIP assay. Nanog directly binds the FAK protein by pulldown and immunoprecipitation assays, and proteins co-localize by confocal microscopy. Nanog binds the N-terminal domain of FAK. In addition, FAK directly phosphorylates Nanog in a dose-dependent manner by in vitro kinase assay and in cancer cells in vivo. The site-directed mutagenesis of Nanog tyrosines, Y35F and Y174F, blocked phosphorylation and binding by FAK. Moreover, overexpression of wild type Nanog increased filopodia/lamellipodia formation, whereas mutant Y35F and Y174F Nanog did not. The wild type Nanog increased cell invasion that was inhibited by the FAK inhibitor and increased by FAK more significantly than with the mutants Y35F and Y174F Nanog. Down-regulation of Nanog with siRNA decreased cell growth reversed by FAK overexpression. Thus, these data demonstrate the regulation of the FAK promoter by Nanog, the direct binding of the proteins, the phosphorylation of Nanog by FAK, and the effect of FAK and Nanog cross-regulation on cancer cell morphology, invasion, and growth that plays a significant role in carcinogenesis. PMID:22493428

  20. Phosphatidylinositol 3-kinase/Akt signaling enhances nuclear localization and transcriptional activity of BRCA1

    SciTech Connect

    Hinton, Cimona V.; Fitzgerald, Latricia D.; Thompson, Marilyn E. . E-mail: methompson@mmc.edu

    2007-05-15

    Signaling pathways involved in regulating nuclear-cytoplasmic distribution of BRCA1 have not been previously reported. Here, we provide evidence that heregulin {beta}1-induced activation of the Akt pathway increases the nuclear content of BRCA1. First, treatment of T47D breast cancer cells with heregulin {beta}1 results in a two-fold increase in nuclear BRCA1 as assessed by FACS analysis, immunoblotting and immunofluorescence. This heregulin-induced increase in nuclear BRCA1 is blocked by siRNA-mediated down-regulation of Akt. Second, mutation of threonine 509 in BRCA1, the site of Akt phosphorylation, to an alanine, attenuates the ability of heregulin to induce BRCA1 nuclear accumulation. These data suggest that Akt-catalyzed phosphorylation of BRCA1 is required for the heregulin-regulated nuclear concentration of BRCA1. Because most functions ascribed to BRCA1 occur within the nucleus, we postulated that phosphorylation-dependent nuclear accumulation of BRCA1 would result in enhanced nuclear activity, specifically transcriptional activity, of BRCA1. This postulate is affirmed by our observation that the ability of BRCA1 to transactivate GADD45 promoter constructs was enhanced in T47D cells treated with heregulin {beta}1. Furthermore, the heterologous expression of BRCA1 in HCC1937 human breast cancer cells, which have constitutively active Akt, also induces GADD45 promoter activity, whereas the expression of BRCA1 in which threonine 509 has been mutated to an alanine is able to only minimally induce promoter activity. These findings implicate Akt in upstream events leading to BRCA1 nuclear localization and function.

  1. Phosphatidylinositol 3-kinase/Akt signaling enhances nuclear localization and transcriptional activity of BRCA1

    PubMed Central

    Hinton, Cimona V.; Fitzgerald, Latricia D.; Thompson, Marilyn E.

    2007-01-01

    Signaling pathways involved in regulating nuclear-cytoplasmic distribution of BRCA1 have not been previously reported. Here, we provide evidence that heregulin β1-induced activation of the Akt pathway increases the nuclear content of BRCA1. First, treatment of T47D breast cancer cells with heregulin β1 results in a two-fold increase in nuclear BRCA1 as assessed by FACS analysis, immunoblotting and immunofluorescence. This heregulin-induced increase in nuclear BRCA1 is blocked by siRNA-mediated down-regulation of Akt. Second, mutation of threonine 509 in BRCA1, the site of Akt phosphorylation, to an alanine, attenuates the ability of heregulin to induce BRCA1 nuclear accumulation. These data suggest that Akt-catalyzed phosphorylation of BRCA1 is required for the heregulin-regulated nuclear concentration of BRCA1. Because most functions ascribed to BRCA1 occur within the nucleus, we postulated that phosphorylation-dependent nuclear accumulation of BRCA1 would result in enhanced nuclear activity, specifically transcriptional activity, of BRCA1. This postulate is affirmed by our observation that the ability of BRCA1 to transactivate GADD45 promoter constructs was enhanced in T47D cells treated with heregulin β1. Furthermore, the heterologous expression of BRCA1 in HCC1937 human breast cancer cells, which have constitutively active Akt, also induces GADD45 promoter activity, whereas the expression of BRCA1 in which threonine 509 has been mutated to an alanine is able to only minimally induce promoter activity. These findings implicate Akt in upstream events leading to BRCA1 nuclear localization and function. PMID:17428466

  2. IL-13 Induces YY1 through the AKT Pathway in Lung Fibroblasts

    PubMed Central

    Guo, Jia; Yao, Hongwei; Lin, Xin; Xu, Haodong; Dean, David; Zhu, Zhou; Liu, Gang; Sime, Patricia

    2015-01-01

    A key feature of lung fibrosis is the accumulation of myofibroblasts. Interleukin 13 (IL-13) is a pro-fibrotic mediator that directly and indirectly influences the activation of myofibroblasts. Transforming growth factor beta (TGF-β) promotes the differentiation of fibroblasts into myofibroblasts, and can be regulated by IL-13. However, IL-13’s downstream signaling pathways are not completely understood. We previously reported that the transcription factor Yin Yang 1 (YY1) is upregulated in fibroblasts treated with TGF-β and in the lungs of mice and patients with pulmonary fibrosis. Moreover, YY1 directly regulates collagen and alpha smooth muscle actin (α-SMA) expression in fibroblasts. However, it is not known if IL-13 regulates fibroblast activation through YY1 expression. We hypothesize that IL-13 up-regulates YY1 expression through regulation of AKT activation, leading to fibroblast activation. In this study we found that YY1 was upregulated by IL-13 in lung fibroblasts in a dose- and time-dependent manner, resulting in increased α-SMA. Conversely, knockdown of YY1 blocked IL-13-induced α-SMA expression in fibroblasts. Furthermore, AKT phosphorylation was increased in fibroblasts treated with IL-13, and AKT overexpression upregulated YY1, whereas blockade of AKT phosphorylation suppressed the induction of YY1 by IL-13 in vitro. In vivo YY1 was upregulated in fibrotic lungs from CC10-IL-13 transgenic mice compared to that from wild-type littermates, which was associated with increased AKT phosphorylation. Taken together, these findings demonstrate that IL-13 is a potent stimulator and activator of fibroblasts, at least in part, through AKT-mediated YY1 activation. PMID:25775215

  3. Abrogation of p53 by its antisense in MCF-7 breast carcinoma cells increases cyclin D1 via activation of Akt and promotion of cell proliferation

    SciTech Connect

    Chhipa, Rishi Raj; Kumari, Ratna; Upadhyay, Ankur Kumar; Bhat, Manoj Kumar

    2007-11-15

    The p53 protein has been a subject of intense research interest since its discovery as about 50% of human cancers carry p53 mutations. Mutations in the p53 gene are the most frequent genetic lesions in breast cancers suggesting a critical role of p53 in breast cancer development, growth and chemosensitivity. This report describes the derivation and characterization of MCF-7As53, an isogenic cell line derived from MCF-7 breast carcinoma cells in which p53 was abrogated by antisense p53 cDNA. Similar to MCF-7 and simultaneously selected hygromycin resistant MCF-7H cells, MCF-7As53 cells have consistent basal epithelial phenotype, morphology, and estrogen receptor expression levels at normal growth conditions. Present work documents investigation of molecular variations, growth kinetics, and cell cycle related studies in relation to absence of wild-type p53 protein and its transactivation potential as well. Even though wild-type tumor suppressor p53 is an activator of cell growth arrest and apoptosis-mediator genes such as p21, Bax, and GADD45 in MCF-7As53 cells, no alterations in expression levels of these genes were detected. The doubling time of these cells decreased due to depletion of G0/G1 cell phase because of constitutive activation of Akt and increase in cyclin D1 protein levels. This proliferative property was abrogated by wortmannin, an inhibitor of PI3-K/Akt signaling pathway. Therefore this p53 null cell line indicates that p53 is an indispensable component of cellular signaling system which is regulated by caveolin-1 expression, involving Akt activation and increase in cyclin D1, thereby promoting proliferation of breast cancer cells.

  4. PTEN Overexpression Cooperates With Lithium to Reduce the Malignancy and to Increase Cell Death by Apoptosis via PI3K/Akt Suppression in Colorectal Cancer Cells.

    PubMed

    de Araujo, Wallace Martins; Robbs, Bruno Kaufmann; Bastos, Lilian G; de Souza, Waldemir F; Vidal, Flávia C B; Viola, João P B; Morgado-Diaz, Jose A

    2016-02-01

    Lithium is a well-established non-competitive inhibitor of glycogen synthase kinase-3β (GSK-3β), a kinase that is involved in several cellular processes related to cancer progression. GSK-3β is regulated upstream by PI3K/Akt, which is negatively modulated by PTEN. The role that lithium plays in cancer is controversial because lithium can activate or inhibit survival signaling pathways depending on the cell type. In this study, we analyzed the mechanisms by which lithium can modulate events related to colorectal cancer (CRC) progression and evaluated the role that survival signaling pathways such as PI3K/Akt and PTEN play in this context. We show that the administration of lithium decreased the proliferative potential of CRC cells in a GSK-3β-independent manner but induced the accumulation of cells in G2/M phase. Furthermore, high doses of lithium increased apoptosis, which was accompanied by decreased proteins levels of Akt and PTEN. Then, cells that were induced to overexpress PTEN were treated with lithium; we observed that low doses of lithium strongly increased apoptosis. Additionally, PTEN overexpression reduced proliferation, but this effect was minor compared with that in cells treated with lithium alone. Furthermore, we demonstrated that PTEN overexpression and lithium treatment separately reduced cell migration, colony formation, and invasion, and these effects were enhanced when lithium treatment and PTEN overexpression were combined. In conclusion, our findings indicate that PTEN overexpression and lithium treatment cooperate to reduce the malignancy of CRC cells and highlight lithium and PTEN as potential candidates for studies to identify new therapeutic approaches for CRC treatment. PMID:26224641

  5. Coniferyl Aldehyde Reduces Radiation Damage Through Increased Protein Stability of Heat Shock Transcriptional Factor 1 by Phosphorylation

    SciTech Connect

    Kim, Seo-Young; Lee, Hae-June; Nam, Joo-Won; Seo, Eun-Kyoung; Lee, Yun-Sil

    2015-03-15

    Purpose: We previously screened natural compounds and found that coniferyl aldehyde (CA) was identified as an inducer of HSF1. In this study, we further examined the protective effects of CA against ionizing radiation (IR) in normal cell system. Methods and Materials: Western blotting and reverse transcription-polymerase chain reaction tests were performed to evaluate expression of HSF1, HSP27, and HSP70 in response to CA. Cell death and cleavage of PARP and caspase-3 were analyzed to determine the protective effects of CA in the presence of IR or taxol. The protective effects of CA were also evaluated using animal models. Results: CA increased stability of the HSF1 protein by phosphorylation at Ser326, which was accompanied by increased expression of HSP27 and HSP70. HSF1 phosphorylation at Ser326 by CA was mediated by EKR1/2 activation. Cotreatment of CA with IR or taxol in normal cells induced protective effects with phosphorylation- dependent patterns at Ser326 of HSF1. The decrease in bone marrow (BM) cellularity and increase of terminal deoxynucleotidyl transferase dUTP nick end labeling–positive BM cells by IR were also significantly inhibited by CA in mice (30.6% and 56.0%, respectively). A549 lung orthotopic lung tumor model indicated that CA did not affect the IR-mediated reduction of lung tumor nodules, whereas CA protected normal lung tissues from the therapeutic irradiation. Conclusions: These results suggest that CA may be useful for inducing HSF1 to protect against normal cell damage after IR or chemotherapeutic agents.

  6. Increased Expression of Phosphorylated Polo-Like Kinase 1 and Histone in Bypass Vein Graft and Coronary Arteries following Angioplasty

    PubMed Central

    Sur, Swastika; Swier, Vicki J.; Radwan, Mohamed M.; Agrawal, Devendra K.

    2016-01-01

    Interventional procedures, including percutaneous transluminal coronary angioplasty (PTCA) and coronary artery bypass surgery (CABG) to re-vascularize occluded coronary arteries, injure the vascular wall and cause endothelial denudation and medial vascular smooth muscle cell (VSMCs) metaplasia. Proliferation of the phenotypically altered SMCs is the key event in the pathogenesis of intimal hyperplasia (IH). Several kinases and phosphatases regulate cell cycle in SMC proliferation. It is our hypothesis that increased expression and activity of polo-like kinase-1 (PLK1) in SMCs, following PTCA and CABG, contributes to greater SMC proliferation in the injured than uninjured blood vessels. Using immunofluorescence (IF), we assessed the expression of PLK1 and phosphorylated-PLK1 (pPLK1) in post-PTCA coronary arteries, and superficial epigastric vein grafts (SEV) and compared it with those in the corresponding uninjured vessels. We also compared the expressions of mitotic marker phospho-histone, synthetic-SMC marker, contractile SMC marker, IFN-γ and phosphorylated STAT-3 in the post-PTCA arteries, SEV-grafts, and the uninjured vessels. Immunostaining demonstrated an increase in the number of cells expressing PLK1 and pPLK1 in the neointima of post PTCA-coronary arteries and SEV-grafts compared to their uninjured counterparts. VSMCs in the neointima showed an increased expression of phospho-histone, synthetic and contractile SMC markers, IFN-γ and phosphorylated STAT-3. However, VSMCs of uninjured coronaries and SEV had no significant expression of the aforementioned proteins. These data suggest that PLK1 might play a critical role in VSMC mitosis in hyperplastic intima of the injured vessels. Thus, novel therapies to inhibit PLK1 could be developed to inhibit the mitogenesis of VSMCs and control neointimal hyperplasia. PMID:26820885

  7. The antioxidant compound tert-butylhydroquinone activates Akt in myocardium, suppresses apoptosis and ameliorates pressure overload-induced cardiac dysfunction

    PubMed Central

    Zhang, Yongtao; Fang Liu, Fang; Bi, Xiaolei; Wang, Shuangxi; Wu, Xiao; Jiang, Fan

    2015-01-01

    Tert-butylhydroquinone (TBHQ) is an antioxidant compound which shows multiple cytoprotective actions. We evaluated the effects of TBHQ on pathological cardiac remodeling and dysfunction induced by chronic overload. Pressure overload was created by transverse aortic constriction (TAC) in male C57BL/6 mice. TBHQ was incorporated in the diet and administered for 4 weeks. TBHQ treatment prevented left ventricular dilatation and cardiac dysfunction induced by TAC, and decreased the prevalence of myocardial apoptosis. The beneficial effects of TBHQ were associated with an increase in Akt activation, but not related to activations of Nrf2 or AMP-activated protein kinase. TBHQ-induced Akt activation was accompanied by increased phosphorylation of Bad, glycogen synthase kinase-3β (GSK-3β) and mammalian target of rapamycin (mTOR). Mechanistically, we showed that in cultured H9c2 cells and primary cardiac myocytes, TBHQ stimulated Akt phosphorylation and suppressed oxidant-induced apoptosis; this effect was abolished by wortmannin or an Akt inhibitor. Blockade of the Akt pathway in vivo accelerated cardiac dysfunction, and abrogated the protective effects of TBHQ. TBHQ also reduced the reactive aldehyde production and protein carbonylation in stressed myocardium. We suggest that TBHQ treatment may represent a novel strategy for timely activation of the cytoprotective Akt pathway in stressed myocardium. PMID:26260024

  8. Hepatic FOXO1 Target Genes Are Co-regulated by Thyroid Hormone via RICTOR Protein Deacetylation and MTORC2-AKT Protein Inhibition.

    PubMed

    Singh, Brijesh K; Sinha, Rohit A; Zhou, Jin; Tripathi, Madhulika; Ohba, Kenji; Wang, Mu-En; Astapova, Inna; Ghosh, Sujoy; Hollenberg, Anthony N; Gauthier, Karine; Yen, Paul M

    2016-01-01

    MTORC2-AKT is a key regulator of carbohydrate metabolism and insulin signaling due to its effects on FOXO1 phosphorylation. Interestingly, both FOXO1 and thyroid hormone (TH) have similar effects on carbohydrate and energy metabolism as well as overlapping transcriptional regulation of many target genes. Currently, little is known about the regulation of MTORC2-AKT or FOXO1 by TH. Accordingly, we performed hepatic transcriptome profiling in mice after FOXO1 knockdown in the absence or presence of TH, and we compared these results with hepatic FOXO1 and THRB1 (TRβ1) ChIP-Seq data. We identified a subset of TH-stimulated FOXO1 target genes that required co-regulation by FOXO1 and TH. TH activation of FOXO1 was directly linked to an increase in SIRT1-MTORC2 interaction and RICTOR deacetylation. This, in turn, led to decreased AKT and FOXO1 phosphorylation. Moreover, TH increased FOXO1 nuclear localization, DNA binding, and target gene transcription by reducing AKT-dependent FOXO1 phosphorylation in a THRB1-dependent manner. These events were associated with TH-mediated oxidative phosphorylation and NAD(+) production and suggested that downstream metabolic effects by TH can post-translationally activate other transcription factors. Our results showed that RICTOR/MTORC2-AKT can integrate convergent hormonal and metabolic signals to provide coordinated and sensitive regulation of hepatic FOXO1-target gene expression. PMID:26453307

  9. Caffeic Acid Phenethyl Ester Causes p21Cip1 Induction, Akt Signaling Reduction, and Growth Inhibition in PC-3 Human Prostate Cancer Cells

    PubMed Central

    Lin, Hui-Ping; Jiang, Shih Sheng; Chuu, Chih-Pin

    2012-01-01

    Caffeic acid phenethyl ester (CAPE) treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21Cip1. Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer. PMID:22347457

  10. Akt inactivation induces endoplasmic reticulum stress-independent autophagy in fibroblasts from patients with Pompe disease.

    PubMed

    Nishiyama, Yurika; Shimada, Yohta; Yokoi, Takayuki; Kobayashi, Hiroshi; Higuchi, Takashi; Eto, Yoshikatsu; Ida, Hiroyuki; Ohashi, Toya

    2012-11-01

    Pompe disease (glycogen storage disease type II) is an autosomal recessive neuromuscular disorder arising from a deficiency of lysosomal acid α-glucosidase (GAA). Accumulation of autophagosomes is a key pathological change in skeletal muscle fibers and fibroblasts from patients with Pompe disease and is implicated in the poor response to enzyme replacement therapy (ERT). We previously found that mutant GAA-induced endoplasmic reticulum (ER) stress initiated autophagy in patient fibroblasts. However, the mechanism of induction of autophagy in fibroblasts from Pompe disease patients lacking ER stress remains unclear. In this study, we show that inactivated Akt induces ER stress-independent autophagy via mTOR suppression in patient fibroblasts. Activated autophagy as evidenced by increased levels of LC3-II and autophagic vesicles was observed in patient fibroblasts, whereas PERK phosphorylation reflecting the presence of ER stress was not observed in them. These patient fibroblasts showed decreased levels of not only phosphorylated Akt, but also phosphorylated p70 S6 kinase. Treatment with insulin, which acts as an activator of the Akt signaling pathway, resulted in increased phosphorylation of both Akt and p70 S6 kinase and suppression of autophagy in patient fibroblasts. In addition, following combination treatment with recombinant human GAA plus insulin, enhanced localization of the enzymes with lysosomes was observed in patient fibroblasts. These findings define a critical role of Akt suppression in the induction of autophagy in fibroblasts from patients with Pompe disease carrying an ER stress non-inducible mutation, and they provide evidence that insulin may potentiate the effect of ERT. PMID:23041259

  11. Simvastatin improves the homing of BMSCs via the PI3K/AKT/miR-9 pathway.

    PubMed

    Bing, Weidong; Pang, Xinyan; Qu, Qingxi; Bai, Xiao; Yang, Wenwen; Bi, Yanwen; Bi, Xiaolu

    2016-05-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) have great therapeutic potential for many diseases. However, the homing of BMSCs to injury sites remains a difficult problem. Recent evidence indicates that simvastatin stimulates AKT phosphorylation, and p-AKT affects the expression of chemokine (CXC motif) receptor-4 (CXCR4). Therefore, simvastatin may improve the expression of CXCR4 in BMSCs, and microRNAs (miRs) may participate in this process. In this study, we demonstrated that simvastatin increased both the total and the surface expression of CXCR4 in BMSCs. Stromal cell-derived factor-1α (SDF-1α)-induced migration of BMSCs was also enhanced by simvastatin, and this action was inhibited by AMD 3100(a chemokine receptor antagonist for CXCR4). The PI3K/AKT pathway was activated by simvastatin in this process, and LY294002 reversed the overexpression of CXCR4 caused by simvastatin. MiR-9 directly targeted CXCR4 in rat BMSCs, and simvastatin decreased miR-9 expression. P-AKT affected the expression of miR-9; as the phosphorylation of AKT increased, miR-9 expression decreased. In addition, LY294002 increased miR-9 expression. Taken together, our results indicated that simvastatin improved the migration of BMSCs via the PI3K/AKT pathway. MiR-9 also participated in this process, and the phosphorylation of AKT affected miR-9 expression, suggesting that simvastatin might have beneficial effects in stem cell therapy. PMID:26871266

  12. Regulation of Akt during torpor in the hibernating ground squirrel, Ictidomys tridecemlineatus

    PubMed Central

    McMullen, David C.

    2010-01-01

    The 13-lined ground squirrel (Ictidomys tridecemlineatus) is capable of entering into extended periods of torpor during winter hibernation. The state of torpor represents a hypometabolic shift wherein the rate of oxygen consuming processes are strongly repressed in an effort to maintain cellular homeostasis as the availability of food energy becomes limited. We are interested in studying hibernation/torpor because of the robust state of tolerance to constrained oxygen delivery, oligemia, and hypothermia achieved by the tissues of hibernating mammals. The role of the serine/threonine kinase Akt (also known as PKB) has been examined in torpor in previous studies. However, this is the first study that examines the level of Akt phosphorylation in the liver during the two transition phases of the hibernation cycle: entrance into torpor, and the subsequent arousal from torpor. Our results indicate that Akt is activated in the squirrel liver by phosphorylation of two key residues (Thr308 and Ser473) during entrance into torpor and arousal from torpor. Moreover, we observed increased phosphorylation of key substrates of Akt during the two transition stages of torpor. Finally, this study reports the novel finding that PRAS40, a component of the TORC1 multi-protein complex and a potentially important modulator of metabolism, is regulated during torpor. PMID:20352231

  13. Loss of PTEN stabilizes the lipid modifying enzyme cytosolic phospholipase A2α via AKT in prostate cancer cells

    PubMed Central

    Vignarajan, Soma; Xie, Chanlu; Yao, Mu; Sun, Yuting; Simanainen, Ulla; Sved, Paul; Liu, Tao; Dong, Qihan

    2014-01-01

    Aberrant increase in pAKT, due to a gain-of-function mutation of PI3K or loss-of-function mutation or deletion of PTEN, occurs in prostate cancer and is associated with poor patient prognosis. Cytosolic phospholipase A2α (cPLA2α) is a lipid modifying enzyme by catalyzing the hydrolysis of membrane arachidonic acid. Arachidonic acid and its metabolites contribute to survival and proliferation of prostate cancer cells. We examined whether AKT plays a role in promoting cPLA2α action in prostate cancer cells. We found a concordant increase in pAKT and cPLA2α levels in prostate tissue of prostate epithelial-specific PTEN-knockout but not PTEN-wide type mice. Restoration of PTEN expression or inhibition of PI3K action decreased cPLA2α expression in PTEN-mutated or deleted prostate cancer cells. An increase in AKT by Myr-AKT elevated cPLA2α protein levels, which could be diminished by inhibition of AKT phosphorylation without noticeable change in total AKT levels. pAKT levels had no influence on cPLA2α at mRNA levels but reduced cPLA2α protein degradation. Anti-AKT antibody co-immunoprecipitated cPLA2α and vice versa. Hence, AKT plays a role in enhancing cPLA2α protein stability in PTEN-null prostate cancer cells, revealing a link between oncogenic pathway and lipid metabolism. PMID:25026288

  14. Anticancer effect of celastrol on human triple negative breast cancer: possible involvement of oxidative stress, mitochondrial dysfunction, apoptosis and PI3K/Akt pathways.

    PubMed

    Shrivastava, Shweta; Jeengar, Manish Kumar; Reddy, V Sudhakar; Reddy, G Bhanuprakash; Naidu, V G M

    2015-06-01

    Signaling via the phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is crucial for divergent physiological processes including transcription, translation, cell-cycle progression and apoptosis. The aim of work was to elucidate the anti-cancer effect of celastrol and the signal transduction pathways involved. Cytotoxic effect of celastrol was assessed by MTT assay on human triple negative breast cancer cells (TNBCs) and compared with that of MCF-7. Apoptosis induction was determined by AO/EtBr staining, mitochondrial membrane potential by JC-1, Annexin binding assays and modulation of apoptotic proteins and its effect on PI3K/Akt/mTOR pathway by western blotting. Celastrol induced apoptosis in TNBC cells, were supported by DNA fragmentation, caspase-3 activation and PARP cleavage. Meanwhile, celastrol triggered reactive oxygen species production with collapse of mitochondrial membrane potential, down-regulation of Bcl-2 and up-regulation of Bax expression. Celastrol effectively decreased PI3K 110α/85α enzyme activity, phosphorylation of Akt(ser473) and p70S6K1 and 4E-BP1. Although insulin treatment increased the phosphorylation of Akt(ser473), p70S6K1, 4E-BP1, celastrol abolished the insulin mediated phosphorylation. It clearly indicates that celastrol acts through PI3k/Akt/mTOR axis. We also found that celastrol inhibited the Akt/GSK3β and Akt/NFkB survival pathway. PI3K/Akt/mTOR inhibitor, PF-04691502 and mTOR inhibitor rapamycin enhanced the apoptosis-inducing effect of celastrol. These data demonstrated that celastrol induces apoptosis in TNBC cells and indicated that apoptosis might be mediated through mitochondrial dysfunction and PI3K/Akt signaling pathway. PMID:25818165

  15. PRAS40 deregulates apoptosis in Ewing sarcoma family tumors by enhancing the insulin receptor/Akt and mTOR signaling pathways

    PubMed Central

    Lv, Dan; Liu, Jinye; Guo, Lianying; Wu, Dawei; Matsumoto, Ken; Huang, Lin

    2016-01-01

    EWS expression in Ewing sarcoma family tumors (ESFTs) is decreased due to the haploinsufficiency elicited by chromosomal translocation. The abnormal expression levels of EWS and its downstream factors contribute to the manifestation of ESFTs. Previously, we reported that increased Proline-rich Akt substrate of 40 kDa (PRAS40), which is encoded by an EWS mRNA target, promotes the development of ESFTs. However, the mechanism remains elusive. To clarify the role of PRAS40 in ESFTs, we silenced PRAS40 expression in ESFT cells using siRNAs and found increased levels of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. Cleaved caspase 3 levels and cytochrome C release were increased simultaneously. Furthermore, with PRAS40 knockdown, the phosphorylation of Akt and mTOR downstream factors, i.e., S6K and S6, was attenuated notably. Ectopic expression of PRAS40 increased Akt and S6 phosphorylation. Activation of Akt only partially reversed the apoptosis induced by PRAS40 knockdown, and downregulation of S6 phosphorylation by PRAS40 silencing could not be sufficiently restored via Akt activation. Searching the upstream factors in this pathway, the autophosphorylation of insulin receptor (IR) was found to be inhibited significantly by PRAS40 silencing but increased by PRAS40 overexpression. Therefore, PRAS40 may enhance IR phosphorylation to facilitate Akt and mTOR signaling leading to the apoptosis deregulation in ESFTs. Moreover, in vivo results confirmed that PRAS40 deletion suppressed the growth of ESFT xenografts and downregulated IR and S6 phosphorylation. Our findings suggest a novel functioning model for PRAS40, which represents a novel therapeutic target for ESFTs. PMID:27186418

  16. Claudin-3 Overexpression Increases the Malignant Potential of Colorectal Cancer Cells: Roles of ERK1/2 and PI3K-Akt as Modulators of EGFR signaling

    PubMed Central

    de Souza, Waldemir F.; Fortunato-Miranda, Natalia; Robbs, Bruno K.; de Araujo, Wallace M.; de-Freitas-Junior, Julio C.; Bastos, Lilian G.; Viola, João P. B.; Morgado-Díaz, José A.

    2013-01-01

    The altered expressions of claudin proteins have been reported during the tumorigenesis of colorectal cancer. However, the molecular mechanisms that regulate these events in this cancer type are poorly understood. Here, we report that epidermal growth factor (EGF) increases the expression of claudin-3 in human colorectal adenocarcinoma HT-29 cells. This increase was related to increased cell migration and the formation of anchorage-dependent and anchorage-independent colonies. We further showed that the ERK1/2 and PI3K-Akt pathways were involved in the regulation of these effects because specific pharmacological inhibition blocked these events. Genetic manipulation of claudin-1 and claudin-3 in HT-29 cells showed that the overexpression of claudin-1 resulted in decreased cell migration; however, migration was not altered in cells that overexpressed claudin-3. Furthermore, the overexpression of claudin-3, but not that of claudin-1, increased the tight junction-related paracellular flux of macromolecules. Additionally, an increased formation of anchorage-dependent and anchorage-independent colonies were observed in cells that overexpressed claudin-3, while no such changes were observed when claudin-1 was overexpressed. Finally, claudin-3 silencing alone despite induce increase proliferation, and the formation of anchoragedependent and -independent colonies, it was able to prevent the EGF-induced increased malignant potential. In conclusion, our results show a novel role for claudin-3 overexpression in promoting the malignant potential of colorectal cancer cells, which is potentially regulated by the EGF-activated ERK1/2 and PI3K-Akt pathways. PMID:24069372

  17. Lycium barbarum Polysaccharides Protect against Trimethyltin Chloride-Induced Apoptosis via Sonic Hedgehog and PI3K/Akt Signaling Pathways in Mouse Neuro-2a Cells

    PubMed Central

    Zhao, Wanyun; Pan, Xiaoqi; Li, Tao; Zhang, Changchun; Shi, Nian

    2016-01-01

    Trimethyltin chloride (TMT) is a classic neurotoxicant that can cause severe neurodegenerative diseases. Some signaling pathways involving cell death play pivotal roles in the central nervous system. In this study, the role of Sonic Hedgehog (Shh) and PI3K/Akt pathways in TMT-induced apoptosis and protective effect of Lycium barbarum polysaccharides (LBP) on mouse neuro-2a (N2a) cells were investigated. Results showed that TMT treatment significantly enhanced apoptosis, upregulated proapoptotic Bax, downregulated antiapoptotic Bcl-2 expression, and increased caspase-3 activity in a dose-dependent manner in N2a cells. TMT induced oxidative stress in cells, performing reactive oxygen species (ROS) and malondialdehyde (MDA) excessive generation, and superoxide dismutase (SOD) activity reduction. TMT significantly decreased phosphorylated glycogen synthase kinase-3β (GSK-3β) and inhibited Shh and PI3K/Akt pathways. However, the addition of LBP upregulated GSK-3β phosphorylation, activated Shh and PI3K/Akt pathways, and eventually reduced apoptosis and oxidative stress caused by TMT. The interaction between Shh and PI3K/Akt pathways was clarified by specific PI3K inhibitor LY294002 or Shh inhibitor GDC-0449. Moreover, LY294002 and GDC-0449 pretreatment both induced phosphorylated GSK-3β downregulation and significantly promoted apoptosis induced by TMT. These results suggest that LBP could reduce TMT-induced N2a cells apoptosis by regulating GSK-3β phosphorylation, Shh, and PI3K/Akt signaling pathways. PMID:27143997

  18. Lycium barbarum Polysaccharides Protect against Trimethyltin Chloride-Induced Apoptosis via Sonic Hedgehog and PI3K/Akt Signaling Pathways in Mouse Neuro-2a Cells.

    PubMed

    Zhao, Wanyun; Pan, Xiaoqi; Li, Tao; Zhang, Changchun; Shi, Nian

    2016-01-01

    Trimethyltin chloride (TMT) is a classic neurotoxicant that can cause severe neurodegenerative diseases. Some signaling pathways involving cell death play pivotal roles in the central nervous system. In this study, the role of Sonic Hedgehog (Shh) and PI3K/Akt pathways in TMT-induced apoptosis and protective effect of Lycium barbarum polysaccharides (LBP) on mouse neuro-2a (N2a) cells were investigated. Results showed that TMT treatment significantly enhanced apoptosis, upregulated proapoptotic Bax, downregulated antiapoptotic Bcl-2 expression, and increased caspase-3 activity in a dose-dependent manner in N2a cells. TMT induced oxidative stress in cells, performing reactive oxygen species (ROS) and malondialdehyde (MDA) excessive generation, and superoxide dismutase (SOD) activity reduction. TMT significantly decreased phosphorylated glycogen synthase kinase-3β (GSK-3β) and inhibited Shh and PI3K/Akt pathways. However, the addition of LBP upregulated GSK-3β phosphorylation, activated Shh and PI3K/Akt pathways, and eventually reduced apoptosis and oxidative stress caused by TMT. The interaction between Shh and PI3K/Akt pathways was clarified by specific PI3K inhibitor LY294002 or Shh inhibitor GDC-0449. Moreover, LY294002 and GDC-0449 pretreatment both induced phosphorylated GSK-3β downregulation and significantly promoted apoptosis induced by TMT. These results suggest that LBP could reduce TMT-induced N2a cells apoptosis by regulating GSK-3β phosphorylation, Shh, and PI3K/Akt signaling pathways. PMID:27143997

  19. Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells

    PubMed Central

    Ceddia, Rolando B; Sweeney, Gary

    2004-01-01

    Recent observations have suggested that creatine supplementation might have a beneficial effect on glucoregulation in skeletal muscle. However, conclusive studies on the direct effects of creatine on glucose uptake and metabolism are lacking. The objective of this study was to investigate the effects of creatine supplementation on basal and insulin-stimulated glucose transporter (GLUT4) translocation, glucose uptake, glycogen content, glycogen synthesis, lactate production, glucose oxidation and AMP-activated protein kinase (AMPK) phosphorylation in L6 rat skeletal muscle cells. Four treatment groups were studied: control, insulin (100 nm), creatine (0.5 mm) and creatine + insulin. After 48 h of creatine supplementation the creatine and phosphocreatine contents of L6 myoblasts increased by ∼9.3- and ∼5.1-fold, respectively, but the ATP content of the cells was not affected. Insulin significantly increased 2-deoxyglucose uptake (∼1.9-fold), GLUT4 translocation (∼1.8-fold), the incorporation of D-[U-14C]glucose into glycogen (∼2.3-fold), lactate production (∼1.5-fold) and 14CO2 production (∼1.5-fold). Creatine neither altered the glycogen and GLUT4 contents of the cells nor the insulin-stimulated rates of 2-DG uptake, GLUT4 translocation, glycogen synthesis and glucose oxidation. However, creatine significantly reduced by ∼42% the basal rate of lactate production and increased by ∼40% the basal rate of 14CO2 production. This is in agreement with the ∼35% increase in citrate synthase activity and also with the ∼2-fold increase in the phosphorylation of both α-1 and α-2 isoforms of AMPK after creatine supplementation. We conclude that 48 h of creatine supplementation does not alter insulin-stimulated glucose uptake and glucose metabolism; however, it activates AMPK, shifts basal glucose metabolism towards oxidation and reduces lactate production in L6 rat skeletal muscle cells. PMID:14724211

  20. Feedback loops blockade potentiates apoptosis induction and antitumor activity of a novel AKT inhibitor DC120 in human liver cancer.

    PubMed

    Yang, F; Deng, R; Qian, X-J; Chang, S-H; Wu, X-Q; Qin, J; Feng, G-K; Ding, K; Zhu, X-F

    2014-01-01

    The serine/threonine kinase AKT is generally accepted as a promising anticancer therapeutic target. However, the relief of feedback inhibition and enhancement of other survival pathways often attenuate the anticancer effects of AKT inhibitors. These compensatory mechanisms are very complicated and remain poorly understood. In the present study, we found a novel 2-pyrimidyl-5-amidothiazole compound, DC120, as an ATP competitive AKT kinase inhibitor that suppressed proliferation and induced apoptosis in liver cancer cells both in vitro and in vivo. DC120 blocked the phosphorylation of downstream molecules in the AKT signal pathway in dose- and time-dependent manners both in vitro and in vivo. However, unexpectedly, DC120 activated mammalian target of rapamycin complex 1 (mTORC1) pathway that was suggested by increased phosphorylation of 70KD ribosomal protein S6 kinase (P70S6K) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1). The activated mTORC1 signal was because of increase of intracellular Ca(2+) via Ca(2+)/calmodulin (CaM)/ signaling to human vacuolar protein sorting 34 (hVps34) upon AKT inhibition. Meanwhile, DC120 attenuated the inhibitory effect of AKT on CRAF by decreasing phosphorylation of CRAF at Ser259 and thus activated the mitogen-activated protein kinase (MAPK) pathway. The activation of the mTORC1 and MAPK pathways by DC120 was not mutually dependent, and the combination of DC120 with mTORC1 inhibitor and/or MEK inhibitor induced significant apoptosis and growth inhibition both in vitro and in vivo. Taken together, the combination of AKT, mTORC1 and/or MEK inhibitors would be a promising therapeutic strategy for liver cancer treatment. PMID:24625973

  1. Increases in cAMP, MAPK Activity and CREB Phosphorylation during REM Sleep: Implications for REM Sleep and Memory Consolidation

    PubMed Central

    Luo, Jie; Phan, Trongha X.; Yang, Yimei; Garelick, Michael G.; Storm, Daniel R.

    2013-01-01

    The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Since mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK and phospho-CREB are higher in rapid eye movement (REM) sleep compared to awake mice but are not elevated in non-rapid eye movement (NREM) sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation. PMID:23575844

  2. Increases in cAMP, MAPK activity, and CREB phosphorylation during REM sleep: implications for REM sleep and memory consolidation.

    PubMed

    Luo, Jie; Phan, Trongha X; Yang, Yimei; Garelick, Michael G; Storm, Daniel R

    2013-04-10

    The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Because mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity, and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK, and phospho-CREB are higher in rapid eye movement (REM) sleep compared with awake mice but are not elevated in non-REM sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity, and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation. PMID:23575844

  3. 1,2-Naphthoquinone activates vanilloid receptor 1 through increased protein tyrosine phosphorylation, leading to contraction of guinea pig trachea

    SciTech Connect

    Kikuno, Shota; Taguchi, Keiko; Iwamoto, Noriko; Yamano, Shigeru; Cho, Arthur K.; Froines, John R.; Kumagai, Yoshito . E-mail: yk-em-tu@md.tsukuba.ac.jp

    2006-01-15

    1,2-Naphthoquinone (1,2-NQ) has recently been identified as an environmental quinone in diesel exhaust particles (DEP) and atmospheric PM{sub 2.5}. We have found that this quinone is capable of causing a concentration-dependent contraction of tracheal smooth muscle in guinea pigs with EC{sub 5} value of 18.7 {mu}M. The contraction required extracellular calcium and was suppressed by L-type calcium channel blockers nifedipine and diltiazem. It was found that 1,2-NQ activated phospholipase A2 (PLA2)/lipoxygenase (LO)/vanilloid receptor (VR1) signaling. Additionally, 1,2-NQ was capable of transactivating protein tyrosine kinases (PTKs) such as epidermal growth factor receptor (EGFR) in guinea pig trachea, suggesting that phosphorylation of PTKs contributes to 1,2-NQ-induced tracheal contraction. Consistent with this notion, this action was blocked by the PTKs inhibitor genistein and the EGFR antagonist PD153035, indicating that contraction was, at least in part, attributable to PTKs phosphorylation that activates VR1, resulting in increased intracellular calcium content in the smooth muscle cells.

  4. Induction of apoptosis by the ginsenoside Rh2 by internalization of lipid rafts and caveolae and inactivation of Akt

    PubMed Central

    Park, E-K; Lee, EJ; Lee, S-H; Koo, KH; Sung, JY; Hwang, EH; Park, JH; Kim, C-W; Jeong, K-C; Park, B-K; Kim, Y-N

    2010-01-01

    Background and purpose: Lipid rafts and caveolae are membrane microdomains with important roles in cell survival signalling involving the Akt pathway. Cholesterol is important for the structure and function of these microdomains. The ginsenoside Rh2 exhibits anti-tumour activity. Because Rh2 is structurally similar to cholesterol, we investigated the possibility that Rh2 exerted its anti-tumour effect by modulating rafts and caveolae. Experimental approach: A431 cells (human epidermoid carcinoma cell line) were treated with Rh2 and the effects on cell apoptosis, raft localization and Akt activation measured. We also examined the effects of over-expression of Akt and active-Akt on Rh2-induced cell death. Key results: Rh2 induced apoptosis concentration- and time-dependently. Rh2 reduced the levels of rafts and caveolae in the plasma membrane and increased their internalization. Furthermore, Akt activity was decreased and consequently, Akt-dependent phosphorylation of Bad, a pro-survival protein, was decreased whereas the pro-apoptotic proteins, Bim and Bax, were increased upon Rh2 treatment. Unlike microdomain internalization induce by cholesterol depletion, Rh2-mediated internalization of rafts and caveolae was not reversed by cholesterol addition. Also, cholesterol addition did not restore Akt activation or rescue cells from Rh2-induced cell death. Rh2-induced cell death was attenuated in MDA-MB-231 cells over-expressing either wild-type or dominant-active Akt. Conclusions and implications: Rh2 induced internalization of rafts and caveolae, leading to Akt inactivation, and ultimately apoptosis. Because elevated levels of membrane rafts and caveolae, and Akt activation have been correlated with cancer development, internalization of these microdomains by Rh2 could potentially be used as an anti-cancer therapy. PMID:20590613

  5. Akt inhibition attenuates rasfonin-induced autophagy and apoptosis through the glycolytic pathway in renal cancer cells

    PubMed Central

    Lu, Q; Yan, S; Sun, H; Wang, W; Li, Y; Yang, X; Jiang, X; Che, Y; Xi, Z

    2015-01-01

    Rasfonin is a fungal secondary metabolite with demonstrated antitumor effects. However, the underlying mechanism of the regulatory role in autophagy initiated by rasfonin is largely unknown. Moreover, the function of Akt to positively mediate the induced autophagy remains elusive. In the present study, we observed that rasfonin induced autophagy concomitant with the upregulation of Akt phosphorylation. Both the inhibition of Akt by small molecule inhibitors and genetic modification partially reduced rasfonin-dependent autophagic flux and PARP-1 cleavage. The overexpression of myrAkts (constant active form) promoted rasfonin-induced apoptosis and autophagy in a cell type- and Akt isoform-specific manner. Using quantitative PCR and immunoblotting, we observed that rasfonin increased the expression of glycolytic gene PFKFB3, and this increased expression can be suppressed in the presence of Akt inhibitor. The inhibition of PFKFB3 suppressed rasfonin-activated autophagy with enhanced PARP-1 cleavage. In the case of glucose uptake was disrupted, which mean the glycolytic pathway was fully blocked, the rasfonin-induced autophagy and PARP-1 cleavage were downregulated. Collectively, these results demonstrated that Akt positively regulated rasfonin-enhanced autophagy and caspase-dependent apoptosis primarily through affecting the glycolytic pathway. PMID:26633711

  6. Akt1 signaling coordinates BMP signaling and β-catenin activity to regulate second heart field progenitor development.

    PubMed

    Luo, Wen; Zhao, Xia; Jin, Hengwei; Tao, Lichan; Zhu, Jingai; Wang, Huijuan; Hemmings, Brian A; Yang, Zhongzhou

    2015-02-15

    Second heart field (SHF) progenitors exhibit continued proliferation and delayed differentiation, which are modulated by FGF4/8/10, BMP and canonical Wnt/β-catenin signaling. PTEN-Akt signaling regulates the stem cell/progenitor cell homeostasis in several systems, such as hematopoietic stem cells, intestinal stem cells and neural progenitor cells. To address whether PTEN-Akt signaling is involved in regulating cardiac progenitors, we deleted Pten in SHF progenitors. Deletion of Pten caused SHF expansion and increased the size of the SHF derivatives, the right ventricle and the outflow tract. Cell proliferation of cardiac progenitors was enhanced, whereas cardiac differentiation was unaffected by Pten deletion. Removal of Akt1 rescued the phenotype and early lethality of Pten deletion mice, suggesting that Akt1 was the key downstream target that was negatively regulated by PTEN in cardiac progenitors. Furthermore, we found that inhibition of FOXO by Akt1 suppressed the expression of the gene encoding the BMP ligand (BMP7), leading to dampened BMP signaling in the hearts of Pten deletion mice. Cardiac activation of Akt also increased the Ser552 phosphorylation of β-catenin, thus enhancing its activity. Reducing β-catenin levels could partially rescue heart defects of Pten deletion mice. We conclude that Akt signaling regulates the cell proliferation of SHF progenitors through coordination of BMP signaling and β-catenin activity. PMID:25670795

  7. Proteomic analysis of the oil palm fruit mesocarp reveals elevated oxidative phosphorylation activity is critical for increased storage oil production.

    PubMed

    Loei, Hendrick; Lim, Justin; Tan, Melvin; Lim, Teck Kwang; Lin, Qing Song; Chew, Fook Tim; Kulaveerasingam, Harikrishna; Chung, Maxey C M

    2013-11-01

    Palm oil is a highly versatile commodity with wide applications in the food, cosmetics, and biofuel industries. Storage oil in the oil palm mesocarp can make up a remarkable 80% of its dry mass, making it the oil crop with the richest oil content in the world. As such, there has been an ongoing interest in understanding the mechanism of oil production in oil palm fruits. To identify the proteome changes during oil palm fruit maturation and factors affecting oil yield in oil palm fruits, we examined the proteomic profiles of oil palm mesocarps at four developing stages--12, 16, 18, and 22 weeks after pollination--by 8-plex iTRAQ labeling coupled to 2D-LC and MALDI-TOF/TOF MS. It was found that proteins from several important metabolic processes, including starch and sucrose metabolism, glycolysis, pentose phosphate shunt, fatty acid biosynthesis, and oxidative phosphorylation, were differentially expressed in a concerted manner. These increases led to an increase in carbon flux and a diversion of resources such as ATP and NADH that are required for lipid biosynthesis. The temporal proteome profiles between the high-oil-yielding (HY) and low-oil-yielding (LY) fruits also showed significant differences in the levels of proteins involved in the regulation of the TCA cycle and oxidative phosphorylation. In particular, the expression level of the β subunit of the ATP synthase complex (complex IV of the electron transport chain) was found to be increased during fruit maturation in HY but decreased in the LY during the fruit maturation. These results suggested that increased energy supply is necessary for augmented oil yield in the HY oil palm trees. PMID:24083564

  8. Cross-talk between the Akt and NF-κB Signaling Pathways Inhibits MEHP-Induced Germ Cell Apoptosis

    PubMed Central

    Rogers, Rachel; Ouellet, Gregory; Moyer, Ben; Rasoulpour, Teresa; Hixon, Mary

    2008-01-01

    Phthalates are ubiquitous contaminants that target the testis during in utero and postnatal development. The PI3K/Akt and nuclear factor kappa B (NF-κB) signaling pathways have been implicated in germ cell survival following testicular injury. Here we observe that Akt kinase activity increases in the testes of postnatal day 28 wild-type mice following exposure to 500 mg/kg mono-(2-ethylhexyl) phthalate (MEHP), and that loss of Akt1 results in the premature onset of germ cell apoptosis. To further determine the basis for this sensitivity, we investigated the potential for cross-talk between the PI3K/Akt and NF-κB signaling pathways. We found a twofold increase in Akt1-dependent phosphorylation of the IκBα subunit following exposure to 500 mg/kg MEHP and decreased levels of the total IκBα protein. Examination of the expression of the NF-κB subunits, p50 and p65, in Akt1 wild-type testes following MEHP exposure revealed a twofold increase in p50 mRNA at 6 h. Interestingly, in Akt1-deficient testes, basal expression of both the p50 and p65 subunits was elevated 1.6- and 4-fold, respectively. This was due, at least in part, to increased levels of oxidative stress as measured by both superoxide anion formation and increased expression of SMAC/DIABLO, a proapoptotic mitochondrial protein. In wild-type testes, MEHP-induced Akt1-dependent transcription of the antiapoptotic mitochondrial target gene, Bcl-xL. Together, these results indicate that Akt1 plays a role in the initial protection of germ cells following MEHP-induced germ cell apoptosis and that this response is partially mediated by cross-talk with the NF-κB signaling pathway and an increased sensitivity to oxidative stress. PMID:18755736

  9. Greatwall promotes cell transformation by hyperactivating AKT in human malignancies

    PubMed Central

    Vera, Jorge; Lartigue, Lydia; Vigneron, Suzanne; Gadea, Gilles; Gire, Veronique; Del Rio, Maguy; Soubeyran, Isabelle; Chibon, Frederic; Lorca, Thierry; Castro, Anna

    2015-01-01

    The PP2A phosphatase is often inactivated in cancer and is considered as a tumour suppressor. A new pathway controlling PP2A activity in mitosis has been recently described. This pathway includes the Greatwall (GWL) kinase and its substrates endosulfines. At mitotic entry, GWL is activated and phosphorylates endosulfines that then bind and inhibit PP2A. We analysed whether GWL overexpression could participate in cancer development. We show that GWL overexpression promotes cell transformation and increases invasive capacities of cells through hyperphosphorylation of the oncogenic kinase AKT. Interestingly, AKT hyperphosphorylation induced by GWL is independent of endosulfines. Rather, GWL induces GSK3 kinase dephosphorylation in its inhibitory sites and subsequent SCF-dependent degradation of the PHLPP phosphatase responsible for AKT dephosphorylation. In line with its oncogenic activity, we find that GWL is often overexpressed in human colorectal tumoral tissues. Thus, GWL is a human oncoprotein that promotes the hyperactivation of AKT via the degradation of its phosphatase, PHLPP, in human malignancies. DOI: http://dx.doi.org/10.7554/eLife.10115.001 PMID:26613407

  10. The Novel Small Molecule Inhibitor, OSU-T315, Suppresses Vestibular Schwannoma and Meningioma Growth by Inhibiting PDK2 Function in the AKT Pathway Activation

    PubMed Central

    Mercado-Pimentel, ME; Igarashi, S; Dunn, AM; Behbahani, M; Miller, C; Read, CM; Jacob, A

    2016-01-01

    Activation of PKB/AKT signaling, which requires PDK1 and PDK2 function, drives Vestibular Schwannoma (VS) and meningioma growth. PDK2 function is defined as a molecule that phosphorylates AKT-Ser473. Integrin-Linked Kinase (ILK) functions as PDK2 in PKB/AKT activation in many cancers; therefore, we hypothesized that OSU-T315, a small molecule ILK inhibitor, will inhibit the ILK-PDK2 function in PKB/AKT signaling activation in VS and meningioma cell growth. OSU-T315 decreased cell viability at IC50 < 2μM in VS (HEI193) and meningioma (Ben-Men-1) cell lines, in primary cells at < 3.5μM, while in normal primary Schwann cells at 7.1μM. OSU-T315 inhibits AKT signaling by decreasing phosphorylation at AKT-Ser473, AKT-Thr308, ILK-Ser246 and ILK-Thr173. In addition, OSU-T315 affected the phosphorylation or expression levels of AKT downstream proliferation effectors as well as autophagy markers. Flow cytometry shows that OSU-T315 increased the percentage of cells arrested at G2/M for both, HEI193 (39.99%) and Ben-Men-1 (26.96%) cells, compared to controls (21.54%, 8.47%). Two hours of OSU-T315 treatment increased cell death in both cell lines (34.3%, 9.1%) versus untreated (12.1%, 8.1%). Though longer exposure increased cell death in Ben-Men-1, TUNEL assays showed that OSU-T315 does not induce apoptosis. OSU-T315 was primarily cytotoxic for HEI193 and Ben-Men-1 inducing a dysregulated autophagy. Our studies suggest that OSU-T315 has translational potential as a chemotherapeutic agent against VS and meningioma.

  11. Increased expression of phosphorylated forms of RNA-dependent protein kinase and eukaryotic initiation factor 2alpha may signal skeletal muscle atrophy in weight-losing cancer patients.

    PubMed

    Eley, H L; Skipworth, R J E; Deans, D A C; Fearon, K C H; Tisdale, M J

    2008-01-29

    Previous studies suggest that the activation (autophosphorylation) of dsRNA-dependent protein kinase (PKR) can stimulate protein degradation, and depress protein synthesis in skeletal muscle through phosphorylation of the translation initiation factor 2 (eIF2) on the alpha-subunit. To understand whether these mediators are important in muscle wasting in cancer patients, levels of the phospho forms of PKR and eIF2alpha have been determined in rectus abdominus muscle of weight losing patients with oesophago-gastric cancer, in comparison with healthy controls. Levels of both phospho PKR and phospho eIF2alpha were significantly enhanced in muscle of cancer patients with weight loss irrespective of the amount and there was a linear relationship between phosphorylation of PKR and phosphorylation of eIF2alpha (correlation coefficient 0.76, P=0.005). This suggests that phosphorylation of PKR led to phosphorylation of eIF2alpha. Myosin levels decreased as the weight loss increased, and there was a linear relationship between myosin expression and the extent of phosphorylation of eIF2alpha (correlation coefficient 0.77, P=0.004). These results suggest that phosphorylation of PKR may be an important initiator of muscle wasting in cancer patients. PMID:18087277

  12. Cross regulation between cGMP-dependent protein kinase and Akt in vasodilatation of porcine pulmonary artery.

    PubMed

    Liu, Juan; Liu, Huixia; Li, Yanjing; Xu, Xiaojian; Chen, Zhengju; Liu, Limei; Yu, Xiaoxing; Gao, Yuansheng; Dou, Dou

    2014-11-01

    cGMP-dependent protein kinase (PKG) plays a crucial role in vasodilatation induced by cGMP-elevating agents. Akt has been demonstrated to be involved in modulating vasoreactivity. The present study was to determine the interaction between PKG and Akt and their influences on nitric oxide (NO)-induced vasodilatation. Isolated fourth-generation porcine pulmonary arteries were dissected from the lung and cut into rings in ice-cold modified Krebs-Ringer bicarbonate buffer. The relaxant responses of vessels were determined by organ chamber technique, cGMP was assayed by using enzyme-linked immunosorbent assay kit, the protein levels of phosphorylated Akt were examined by Western blotting, and the activity of phosphodiesterase type 5 (PDE5) was assayed by measuring the rate of cGMP degradation. Incubation with DETA NONOate (a stable NO donor) and 8-Br-cGMP (a cell membrane permeable analog of cGMP) attenuated Akt phosphorylation at Ser-473, which was prevented by Rp-8-Br-PET-cGMPS (a specific inhibitor of PKG) and calyculin A (an inhibitor of protein phosphatase 1 and 2A) but not by okadaic acid (a selective inhibitor of protein phosphatase 2A). Inhibition of Akt enhanced the relaxation and cGMP elevation of porcine pulmonary arteries induced by DETA NONOate or sodium nitroprusside, which was prevented by zaprinast, a specific inhibitor of PDE5. Incubation with LY294002 or Akt inhibitor reduced PDE5 activity in porcine pulmonary arteries. The present study indicates that PKG may attenuate Akt phosphorylation through protein phosphatase 1, which leads to an augmented cGMP elevation by inhibition of PDE5. The increased cGMP in turn activates PKG. Such a positive feedback may play an important role in NO-induced pulmonary vasodilatation. PMID:24977346

  13. Neuregulin-1β promotes glucose uptake via PI3K/Akt in neonatal rat cardiomyocytes.

    PubMed

    Pentassuglia, Laura; Heim, Philippe; Lebboukh, Sonia; Morandi, Christian; Xu, Lifen; Brink, Marijke

    2016-05-01

    Nrg1β is critically involved in cardiac development and also maintains function of the adult heart. Studies conducted in animal models showed that it improves cardiac performance under a range of pathological conditions, which led to its introduction in clinical trials to treat heart failure. Recent work also implicated Nrg1β in the regenerative potential of neonatal and adult hearts. The molecular mechanisms whereby Nrg1β acts in cardiac cells are still poorly understood. In the present study, we analyzed the effects of Nrg1β on glucose uptake in neonatal rat ventricular myocytes and investigated to what extent mTOR/Akt signaling pathways are implicated. We show that Nrg1β enhances glucose uptake in cardiomyocytes as efficiently as IGF-I and insulin. Nrg1β causes phosphorylation of ErbB2 and ErbB4 and rapidly induces the phosphorylation of FAK (Tyr(861)), Akt (Thr(308) and Ser(473)), and its effector AS160 (Thr(642)). Knockdown of ErbB2 or ErbB4 reduces Akt phosphorylation and blocks the glucose uptake. The Akt inhibitor VIII and the PI3K inhibitors LY-294002 and Byl-719 abolish Nrg1β-induced phosphorylation and glucose uptake. Finally, specific mTORC2 inactivation after knockdown of rictor blocks the Nrg1β-induced increases in Akt-p-Ser(473) but does not modify AS160-p-Thr(642) or the glucose uptake responses to Nrg1β. In conclusion, our study demonstrates that Nrg1β enhances glucose uptake in cardiomyocytes via ErbB2/ErbB4 heterodimers, PI3Kα, and Akt. Furthermore, although Nrg1β activates mTORC2, the resulting Akt-Ser(473) phosphorylation is not essential for glucose uptake induction. These new insights into pathways whereby Nrg1β regulates glucose uptake in cardiomyocytes may contribute to the understanding of its regenerative capacity and protective function in heart failure. PMID:26979522

  14. Enhanced Cardiac Akt/Protein Kinase B Signaling Contributes to Pathological Cardiac Hypertrophy in Part by Impairing Mitochondrial Function via Transcriptional Repression of Mitochondrion-Targeted Nuclear Genes

    PubMed Central

    Wende, Adam R.; O'Neill, Brian T.; Bugger, Heiko; Riehle, Christian; Tuinei, Joseph; Buchanan, Jonathan; Tsushima, Kensuke; Wang, Li; Caro, Pilar; Guo, Aili; Sloan, Crystal; Kim, Bum Jun; Wang, Xiaohui; Pereira, Renata O.; McCrory, Mark A.; Nye, Brenna G.; Benavides, Gloria A.; Darley-Usmar, Victor M.; Shioi, Tetsuo; Weimer, Bart C.

    2014-01-01

    Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity. PMID:25535334

  15. Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats.

    PubMed

    Luo, Li; Lu, A-Ming; Wang, Yan; Hong, An; Chen, Yulan; Hu, Juan; Li, Xiaoning; Qin, Zheng-Hong

    2013-04-01

    Resistance exercise training (RET) remains the most effective treatment for the loss of muscle mass and strength in elderly people. However, the underlying cellular and molecular mechanisms are not well understood. Recent evidence suggests that autophagic signaling is altered in aged skeletal muscles. This study aimed to investigate if RET affects IGF-1 and its receptors, the Akt/mTOR, and Akt/FOXO3a signaling pathways and regulates autophagy and apoptosis in the gastrocnemius muscles of 18-20 month old rats. The results showed that 9 weeks of RET prevented the loss of muscle mass and improved muscle strength, accompanied by reduced LC3-II/LC3-I ratio, reduced p62 protein levels, and increased levels of autophagy regulatory proteins, including Beclin 1, Atg5/12, Atg7, and the lysosomal enzyme cathepsin L. RET also reduced cytochrome c level in the cytosol but increased its level in mitochondrial fraction, and inhibited cleaved caspase 3 production and apoptosis. Furthermore, RET upregulated the expression of IGF-1 and its receptors but downregulated the phosphorylation of Akt and mTOR. In addition, RET upregulated the expression of total AMPK, phosphorylated AMPK, and FOXO3a. Taken together, these results suggest that the benefits of RET are associated with increased autophagy activity and reduced apoptosis of muscle cells by modulating IGF-1 and its receptors, the Akt/mTOR and Akt/FOXO3a signaling pathways in aged skeletal muscles. PMID:23419688

  16. Histone deacetylase inhibitors valproic acid and depsipeptide sensitize retinoblastoma cells to radiotherapy by increasing H2AX phosphorylation and p53 acetylation-phosphorylation.

    PubMed

    Kawano, Takeshi; Akiyama, Masaharu; Agawa-Ohta, Miyuki; Mikami-Terao, Yoko; Iwase, Satsuki; Yanagisawa, Takaaki; Ida, Hiroyuki; Agata, Naoki; Yamada, Hisashi

    2010-10-01

    Although p53 is intact in most cases of retinoblastoma, it is largely inactivated by the ubiqutin-proteasome system through interaction with murine double minute 2 (MDM2) and murine double minute X (MDMX). The present study showed that the histone deacetylase (HDAC) inhibitors valproic acid (VPA) and depsipeptide (FK228) synergistically enhanced ionizing radiation (IR)-induced apoptosis, associated with activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase in Y79 and WER1-Rb1 human retinoblastoma cells. Both VPA and FK228 enhanced IR-induced phosphorylation of histone H2AX on Ser139 preceding apoptosis. Exposure of cells to IR in the presence of VPA or FK228 induced the accumulation of p53 acetylated at Lys382 and phosphorylated at Ser46 through the reduction of binding affinity with MDM2 and MDMX. These results suggest that acetylation of p53 by HDAC inhibitors is a promising new therapeutic target in refractory retinoblastoma. PMID:20811699

  17. Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model.

    PubMed

    Okada, Kiyoshi; Tanaka, Hiroyuki; Temporin, Ko; Okamoto, Michio; Kuroda, Yusuke; Moritomo, Hisao; Murase, Tsuyoshi; Yoshikawa, Hideki

    2010-04-01

    Methylcobalamin is a vitamin B12 analog and is necessary for the maintenance of the nervous system. Although some previous studies have referred to the effects of methylcobalamin on neurons, the precise mechanism of this effect remains obscure. Here we show that methylcobalamin at concentrations above 100 nM promotes neurite outgrowth and neuronal survival and that these effects are mediated by the methylation cycle, a metabolic pathway involving methylation reactions. We also demonstrate that methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle. In a rat sciatic nerve injury model, continuous administration of high doses of methylcobalamin improves nerve regeneration and functional recovery. Therefore, methylcobalamin may provide the basis for better treatments of nervous disorders through effective systemic or local delivery of high doses of methylcobalamin to target organs. PMID:20045411

  18. Increased CSF Levels of Phosphorylated Neurofilament Heavy Protein following Bout in Amateur Boxers

    PubMed Central

    Neselius, Sanna; Zetterberg, Henrik; Blennow, Kaj; Marcusson, Jan; Brisby, Helena

    2013-01-01

    Introduction Diagnosis of mild TBI is hampered by the lack of imaging or biochemical measurements for identifying or quantifying mild TBI in a clinical setting. We have previously shown increased biomarker levels of protein reflecting axonal (neurofilament light protein and tau) and glial (GFAP and S-100B) damage in cerebrospinal fluid (CSF) after a boxing bout. The aims of this study were to find other biomarkers of mild TBI, which may help clinicians diagnose and monitor mild TBI, and to calculate the role of APOE ε4 allele genotype which has been associated with poor outcome after TBI. Materials and Methods Thirty amateur boxers with a minimum of 45 bouts and 25 non-boxing matched controls were included in a prospective cohort study. CSF and blood were collected at one occasion between 1 and 6 days after a bout, and after a rest period for at least 14 days (follow up). The controls were tested once. CSF levels of neurofilament heavy (pNFH), amyloid precursor proteins (sAPPα and sAPPβ), ApoE and ApoA1 were analyzed. In blood, plasma levels of Aβ42 and ApoE genotype were analyzed. Results CSF levels of pNFH were significantly increased between 1 and 6 days after boxing as compared with controls (p<0.001). The concentrations decreased at follow up but were still significantly increased compared to controls (p = 0.018). CSF pNFH concentrations correlated with NFL (r =  0.57 after bout and 0.64 at follow up, p<0.001). No significant change was found in the other biomarkers, as compared to controls. Boxers carrying the APOE ε4 allele had similar biomarker concentrations as non-carriers. Conclusions Subconcussive repetitive trauma in amateur boxing causes a mild TBI that may be diagnosed by CSF analysis of pNFH, even without unconsciousness or concussion symptoms. Possession of the APOE ε4 allele was not found to influence biomarker levels after acute TBI. PMID:24260563

  19. Targeting FAK Radiosensitizes 3-Dimensional Grown Human HNSCC Cells Through Reduced Akt1 and MEK1/2 Signaling

    SciTech Connect

    Hehlgans, Stephanie; Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt am Main; Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden ; Eke, Iris; Cordes, Nils; Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden; Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden

    2012-08-01

    Purpose: Focal adhesion kinase (FAK), a main regulator of integrin signaling and cell migration, is frequently overexpressed and hyperphosphorylated in human head-and-neck squamous cell carcinoma (HNSCC). We have previously shown that pharmacologic FAK inhibition leads to radiosensitization of 3-dimensionally grown HNSCC cell lines. To further evaluate the role of FAK in radioresistance and as a potential cancer target, we examined FAK and FAK downstream signaling in HNSCC cell lines grown in more physiologic extracellular matrix-based 3-dimensional cell cultures. Methods and Materials: Seven HNSCC cell lines were grown in 3-dimensional extracellular matrix and the clonogenic radiation survival, expression, and phosphorylation of FAK, paxillin, Akt1, extracellular signal-regulated kinase (ERK)1/2, and MEK1/2 were analyzed after siRNA-mediated knockdown of FAK, Akt1, MEK1, FAK+Akt1, or FAK+MEK1 compared with controls or stable overexpression of FAK. The role of MEK1/2 for clonogenic survival and signaling was investigated using the MEK inhibitor U0126 with or without irradiation. Results: FAK knockdown moderately or significantly enhanced the cellular radiosensitivity of 3-dimensionally grown HNSCC cells. The FAK downstream targets paxillin, Akt1, and ERK1/2 were substantially dephosphorylated under FAK depletion. FAK overexpression, in contrast, increased radiation survival and paxillin, Akt1, and ERK1/2 phosphorylation. The degree of radiosensitization upon Akt1, ERK1/2, or MEK1 depletion or U0126 was superimposable to FAK knockdown. Combination knockdown conditions (ie, Akt1/FAK, MEK1/FAK, or U0126/FAK) failed to provide additional radiosensitization. Conclusions: Our data provide further evidence for FAK as important determinant of radiation survival, which acts in the same signaling axis as Akt1 and ERK1/2. These data strongly support our hypothesis that FAK is a relevant molecular target for HNSCC radiotherapy.

  20. Role of Akt and Ca2+ on cell permeabilization via connexin43 hemichannels induced by metabolic inhibition.

    PubMed

    Salas, Daniela; Puebla, Carlos; Lampe, Paul D; Lavandero, Sergio; Sáez, Juan C

    2015-07-01

    Connexin hemichannels are regulated under physiological and pathological conditions. Metabolic inhibition, a model of ischemia, promotes surface hemichannel activation associated, in part, with increased surface hemichannel levels, but little is known about its underlying mechanism. Here, we investigated the role of Akt on the connexin43 hemichannel's response induced by metabolic inhibition. In HeLa cells stably transfected with rat connexin43 fused to EGFP (HeLa43 cells), metabolic inhibition induced a transient Akt activation necessary to increase the amount of surface connexin43. The increase in levels of surface connexin43 was also found to depend on an intracellular Ca2+ signal increase that was partially mediated by Akt activation. However, the metabolic inhibition-induced Akt activation was not significantly affected by intracellular Ca2+ chelation. The Akt-dependent increase in connexin43 hemichannel activity in HeLa43 cells also occurred after oxygen-glucose deprivation, another ischemia-like condition, and in cultured cortical astrocytes (endogenous connexin43 expression system) under metabolic inhibition. Since opening of hemichannels has been shown to accelerate cell death, inhibition of Akt-dependent phosphorylation of connexin43 hemichannels could reduce cell death induced by ischemia/reperfusion. PMID:25779082

  1. Helicobacter pylori CagA induces tumor suppressor gene hypermethylation by upregulating DNMT1 via AKT-NFκB pathway in gastric cancer development.

    PubMed

    Zhang, Bao-Gui; Hu, Lei; Zang, Ming De; Wang, He-Xiao; Zhao, Wei; Li, Jian-Fang; Su, Li-Ping; Shao, Zhifeng; Zhao, Xiaodong; Zhu, Zheng-Gang; Yan, Min; Liu, Bingya

    2016-03-01

    Methylation of CpG islands in tumor suppressor gene prompter is one of the most characteristic abnormalities in Helicobacter pylori (HP)-associated gastric carcinoma (GC). Here, we investigated the pathogenic and molecular mechanisms underlying hypermethylation of tumor suppressor genes in HP induced GC development. We found that tumor suppressor genes hypermethylation, represented by MGMT, positively correlated with CagA in clinical specimens, gastric tissues from HP infected C57 mice and GC cell lines transfected by CagA or treated by HP infection. CagA enhanced PDK1 and AKT interaction and increased AKT phosphorylation. The P-AKT subsequent activated NFκB, which then bound to DNMT1 promoter and increased its expression. Finally, the upregulated DNMT1 promoted tumor suppressor genes hypermethylation with MGMT as a representative. In conclusion, CagA increased tumor suppressor genes hypermethylation via stimulating DNMT1 expression through the AKT-NFκB pathway. PMID:26848521

  2. Helicobacter pylori CagA induces tumor suppressor gene hypermethylation by upregulating DNMT1 via AKT-NFκB pathway in gastric cancer development

    PubMed Central

    Wang, He-xiao; Zhao, Wei; Li, Jian-fang; Su, Li-ping; Shao, Zhifeng; Zhao, Xiaodong; Zhu, Zheng-gang; Yan, Min; Liu, Bingya

    2016-01-01

    Methylation of CpG islands in tumor suppressor gene prompter is one of the most characteristic abnormalities in Helicobacter pylori (HP)-associated gastric carcinoma (GC). Here, we investigated the pathogenic and molecular mechanisms underlying hypermethylation of tumor suppressor genes in HP induced GC development. We found that tumor suppressor genes hypermethylation, represented by MGMT, positively correlated with CagA in clinical specimens, gastric tissues from HP infected C57 mice and GC cell lines transfected by CagA or treated by HP infection. CagA enhanced PDK1 and AKT interaction and increased AKT phosphorylation. The P-AKT subsequent activated NFκB, which then bound to DNMT1 promoter and increased its expression. Finally, the upregulated DNMT1 promoted tumor suppressor genes hypermethylation with MGMT as a representative. In conclusion, CagA increased tumor suppressor genes hypermethylation via stimulating DNMT1 expression through the AKT-NFκB pathway. PMID:26848521

  3. Diabetes Increases Cryoinjury Size with Associated Effects on Cx43 Gap Junction Function and Phosphorylation in the Mouse Heart

    PubMed Central

    Palatinus, Joseph A.; Gourdie, Robert G.

    2016-01-01

    Diabetic patients develop larger myocardial infarctions and have an increased risk of death following a heart attack. The poor response to myocardial injury in the diabetic heart is likely related to the many metabolic derangements from diabetes that create a poor substrate in general for wound healing, response to injury and infection. Studies in rodents have implicated a role for the gap junction protein connexin 43 (Cx43) in regulating the injury response in diabetic skin wounds. In this study, we sought to determine whether diabetes alters Cx43 molecular interactions or intracellular communication in the cryoinjured STZ type I diabetic mouse heart. We found that epicardial cryoinjury size is increased in diabetic mice and this increase is prevented by preinjury insulin administration. Consistent with these findings, we found that intercellular coupling via gap junctions is decreased after insulin administration in diabetic and nondiabetic mice. This decrease in coupling is associated with a concomitant increase in phosphorylation of Cx43 at serine 368, a residue known to decrease channel conductance. Taken together, our results suggest that insulin regulates both gap junction-mediated intercellular communication and injury propagation in the mouse heart. PMID:27034963

  4. Diabetes Increases Cryoinjury Size with Associated Effects on Cx43 Gap Junction Function and Phosphorylation in the Mouse Heart.

    PubMed

    Palatinus, Joseph A; Gourdie, Robert G

    2016-01-01

    Diabetic patients develop larger myocardial infarctions and have an increased risk of death following a heart attack. The poor response to myocardial injury in the diabetic heart is likely related to the many metabolic derangements from diabetes that create a poor substrate in general for wound healing, response to injury and infection. Studies in rodents have implicated a role for the gap junction protein connexin 43 (Cx43) in regulating the injury response in diabetic skin wounds. In this study, we sought to determine whether diabetes alters Cx43 molecular interactions or intracellular communication in the cryoinjured STZ type I diabetic mouse heart. We found that epicardial cryoinjury size is increased in diabetic mice and this increase is prevented by preinjury insulin administration. Consistent with these findings, we found that intercellular coupling via gap junctions is decreased after insulin administration in diabetic and nondiabetic mice. This decrease in coupling is associated with a concomitant increase in phosphorylation of Cx43 at serine 368, a residue known to decrease channel conductance. Taken together, our results suggest that insulin regulates both gap junction-mediated intercellular communication and injury propagation in the mouse heart. PMID:27034963

  5. Physiological activation of Akt by PHLPP1 deletion protects against pathological hypertrophy

    PubMed Central

    Moc, Courtney; Taylor, Amy E.; Chesini, Gino P.; Zambrano, Cristina M.; Barlow, Melissa S.; Zhang, Xiaoxue; Gustafsson, Åsa B.; Purcell, Nicole H.

    2015-01-01

    Aims To examine the role of physiological Akt signalling in pathological hypertrophy through analysis of PHLPP1 (PH domain leucine-rich repeat protein phosphatase) knock-out (KO) mice. Methods and results To investigate the in vivo requirement for ‘physiological’ control of Akt activation in cardiac growth, we examined the effect of deleting the Akt phosphatase, PHLPP, on the induction of cardiac hypertrophy. Basal Akt phosphorylation increased nearly two-fold in the cardiomyocytes from PHLPP1 KO mice and physiological hypertrophy induced by swimming exercise was accentuated as assessed by increased heart size and myocyte cell area. In contrast, the development of pathophysiological hypertrophy induced by pressure overload and assessed by increases in heart size, myocyte cell area, and hypertrophic gene expression was attenuated. This attenuation coincided with decreased fibrosis and cell death in the KO mice. Cast moulding revealed increased capillary density basally in the KO hearts, which was further elevated relative to wild-type mouse hearts in response to pressure overload. In vitro studies with isolated myocytes in co-culture also demonstrated that PHLPP1 deletion in cardiomyocytes can enhance endothelial tube formation. Expression of the pro-angiogenic factor VEGF was also elevated basally and accentuated in response to transverse aortic constriction in hearts from KO mice. Conclusion Our data suggest that enhancing Akt activity by inhibiting its PHLPP1-mediated dephosphorylation promotes processes associated with physiological hypertrophy that may be beneficial in attenuating the development of pathological hypertrophy. PMID:25411382

  6. Notch1 Receptor Regulates AKT Protein Activation Loop (Thr308) Dephosphorylation through Modulation of the PP2A Phosphatase in Phosphatase and Tensin Homolog (PTEN)-null T-cell Acute Lymphoblastic Leukemia Cells*

    PubMed Central

    Hales, Eric C.; Orr, Steven M.; Larson Gedman, Amanda; Taub, Jeffrey W.; Matherly, Larry H.

    2013-01-01

    Notch1 activating mutations occur in more than 50% of T-cell acute lymphoblastic leukemia (T-ALL) cases and increase expression of Notch1 target genes, some of which activate AKT. HES1 transcriptionally silences phosphatase and tensin homolog (PTEN), resulting in AKT activation, which is reversed by Notch1 inhibition with γ-secretase inhibitors (GSIs). Mutational loss of PTEN is frequent in T-ALL and promotes resistance to GSIs due to AKT activation. GSI treatments increased AKT-Thr308 phosphorylation and signaling in PTEN-deficient, GSI-resistant T-ALL cell lines (Jurkat, CCRF-CEM, and MOLT3), suggesting that Notch1 represses AKT independent of its PTEN transcriptional effects. AKT-Thr308 phosphorylation and downstream signaling were also increased by knocking down Notch1 in Jurkat (N1KD) cells. This was blocked by treatment with the AKT inhibitor perifosine. The PI3K inhibitor wortmannin and the protein phosphatase type 2A (PP2A) inhibitor okadaic acid both impacted AKT-Thr308 phosphorylation to a greater extent in nontargeted control than N1KD cells, suggesting decreased dephosphorylation of AKT-Thr308 by PP2A in the latter. Phosphorylations of AMP-activated protein kinaseα (AMPKα)-Thr172 and p70S6K-Thr389, both PP2A substrates, were also increased in both N1KD and GSI-treated cells and responded to okadaic acid treatment. A transcriptional regulatory mechanism was implied because ectopic expression of dominant-negative mastermind-like protein 1 increased and wild-type HES1 decreased phosphorylation of these PP2A targets. This was independent of changes in PP2A subunit levels or in vitro PP2A activity, but was accompanied by decreased association of PP2A with AKT in N1KD cells. These results suggest that Notch1 can regulate PP2A dephosphorylation of critical cellular regulators including AKT, AMPKα, and p70S6K. PMID:23788636

  7. Non-canonical Smads phosphorylation induced by the glutamate release inhibitor, riluzole, through GSK3 activation in melanoma.

    PubMed

    Abushahba, Walid; Olabisi, Oyenike O; Jeong, Byeong-Seon; Boregowda, Rajeev K; Wen, Yu; Liu, Fang; Goydos, James S; Lasfar, Ahmed; Cohen-Solal, Karine A

    2012-01-01

    Riluzole, an inhibitor of glutamate release, has shown the ability to inhibit melanoma cell xenograft growth. A phase 0 clinical trial of riluzole as a single agent in patients with melanoma resulted in involution of tumors associated with inhibition of both the mitogen-activated protein kinase (MAPK) and phophoinositide-3-kinase/AKT (PI3K/AKT) pathways in 34% of patients. In the present study, we demonstrate that riluzole inhibits AKT-mediated glycogen synthase kinase 3 (GSK3) phosphorylation in melanoma cell lines. Because we have demonstrated that GSK3 is involved in the phosphorylation of two downstream effectors of transforming growth factor beta (TGFβ), Smad2 and Smad3, at their linker domain, our aim was to determine whether riluzole could induce GSK3β-mediated linker phosphorylation of Smad2 and Smad3. We present evidence that riluzole increases Smad2 and Smad3 linker phosphorylation at the cluster of serines 245/250/255 and serine 204 respectively. Using GSK3 inhibitors and siRNA knock-down, we demonstrate that the mechanism of riluzole-induced Smad phosphorylation involved GSK3β. In addition, GSK3β could phosphorylate the same linker sites in vitro. The riluzole-induced Smad linker phosphorylation is mechanistically different from the Smad linker phosphorylation induced by TGFβ. We also demonstrate that riluzole-induced Smad linker phosphorylation is independent of the expression of the metabotropic glutamate receptor 1 (GRM1), which is one of the glutamate receptors whose involvement in human melanoma has been documented. We further show that riluzole upregulates the expression of INHBB and PLAU, two genes associated with the TGFβ signaling pathway. The non-canonical increase in Smad linker phosphorylation induced by riluzole could contribute to the modulation of the pro-oncogenic functions of Smads in late stage melanomas. PMID:23077590

  8. Decreased expression of nucleophosmin/B23 increases drug sensitivity of adriamycin-resistant Molt-4 leukemia cells through mdr-1 regulation and Akt/mTOR signaling.

    PubMed

    Wang, Lingyan; Chen, Buyuan; Lin, Minhui; Cao, Yanqin; Chen, Yingyu; Chen, Xinji; Liu, Tingbo; Hu, Jianda

    2015-03-01

    Nucleophosmin/B23 (NPM) is a nuclear protein with prosurvival and ribosomal RNA processing functions. However, the potential role of NPM involved in drug-resistance in leukemia has not been investigated clearly. In this study, we generated an adriamycin (ADM)-resistant lymphoblastic cell line Molt-4/ADR (MAR) by stepwise induction. Cell proliferation, sensitivity to chemotherapy agents and expressions of drug resistance related molecules were assessed. The IC50 of Molt-4 cells were 0.58±0.11μmol/L and MAR cells were 22.56±1.94μmol/L, meaning MAR cells were 38.63 fold resistant to Molt-4 cells. Furthermore, MAR cells gained an expression of mdr-1 (P-gp) and a higher expression of NPM compared to Molt-4 cells. Knockdown of NPM by RNA interference (RNAi) suppressed the viability of both Molt-4 and MAR cells. After NPM RNAi, the IC50 of MAR and Molt-4 cells were 3.83±0.38μmol/L and 0.19±0.02μmol/L respectively. Both of them revealed an increase of drug sensitivity with down-regulation of mdr-1 and Akt/mTOR signaling. Knockdown of mdr-1 could also reverse the drug resistance, with no change in NPM expression. It could be concluded that knockdown of NPM reversed the drug resistance by down-regulating P-gp and Akt/mTOR signal pathway, indicating that NPM may serve as a potential modulator in drug resistance. PMID:25457413

  9. Serum- and Glucocorticoid-induced Protein Kinase 1 (SGK1) Increases the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in Airway Epithelial Cells by Phosphorylating Shank2E Protein*

    PubMed Central

    Koeppen, Katja; Coutermarsh, Bonita A.; Madden, Dean R.; Stanton, Bruce A.

    2014-01-01

    The glucocorticoid dexamethasone increases cystic fibrosis transmembrane conductance regulator (CFTR) abundance in human airway epithelial cells by a mechanism that requires serum- and glucocorticoid-induced protein kinase 1 (SGK1) activity. The goal of this study was to determine whether SGK1 increases CFTR abundance by phosphorylating Shank2E, a PDZ domain protein that contains two SGK1 phosphorylation consensus sites. We found that SGK1 phosphorylates Shank2E as well as a peptide containing the first SGK1 consensus motif of Shank2E. The dexamethasone-induced increase in CFTR abundance was diminished by overexpression of a dominant-negative Shank2E in which the SGK1 phosphorylation sites had been mutated. siRNA-mediated reduction of Shank2E also reduced the dexamethasone-induced increase in CFTR abundance. Taken together, these data demonstrate that the glucocorticoid-induced increase in CFTR abundance requires phosphorylation of Shank2E at an SGK1 consensus site. PMID:24811177

  10. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization.

    PubMed

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. PMID:25770423

  11. MPL W515L expression induces TGFβ secretion and leads to an increase in chemokinesis via phosphorylation of THOC5

    PubMed Central

    Whetton, Anthony D.; Azmi, Norhaida Che; Pearson, Stella; Jaworska, Ewa; Zhang, Liqun; Blance, Rognvald; Kendall, Alexandra C.; Nicolaou, Anna; Taylor, Samuel; Williamson, Andrew J.K.; Pierce, Andrew

    2016-01-01

    The thrombopoietin receptor (MPL) has been shown to be mutated (MPL W515L) in myelofibrosis and thrombocytosis yet new approaches to treat this disorder are still required. We have previously shown that transcriptome and proteomic effects do not correlate well in oncogene-mediated leukemogenesis. We therefore investigated the effects of MPL W515L using proteomics. The consequences of MPL W515L expression on over 3300 nuclear and 3500 cytoplasmic proteins were assessed using relative quantification mass spectrometry. We demonstrate that MPL W515L expression markedly modulates the CXCL12/CXCR4/CD45 pathway associated with stem and progenitor cell chemotactic movement. We also demonstrated that MPL W515L expressing cells displayed increased chemokinesis which required the MPL W515L-mediated dysregulation of MYC expression via phosphorylation of the RNA transport protein THOC5 on tyrosine 225. In addition MPL W515L expression induced TGFβ secretion which is linked to sphingosine 1-phosphate production and the increased chemokinesis. These studies identify several pathways which offer potential targets for therapeutic intervention in the treatment of MPL W515L-driven malignancy. We validate our approach by showing that CD34+ cells from MPL W515L positive patients display increased chemokinesis and that treatment with a combination of MYC and sphingosine kinase inhibitors leads to the preferential killing of MPL W515L expressing cells. PMID:26919114

  12. Leucine minimizes denervation-induced skeletal muscle atrophy of rats through akt/mtor signaling pathways

    PubMed Central

    Ribeiro, Carolina B.; Christofoletti, Daiane C.; Pezolato, Vitor A.; de Cássia Marqueti Durigan, Rita; Prestes, Jonato; Tibana, Ramires A.; Pereira, Elaine C. L.; de Sousa Neto, Ivo V.; Durigan, João L. Q.; da Silva, Carlos A.

    2015-01-01

    The aim of the present study was to evaluate the effect of leucine treatment (0.30 mM) on muscle weight and signaling of myoproteins related to synthesis and degradation pathways of soleus muscle following seven days of complete sciatic nerve lesion. Wistar rats (n = 24) of 3–4 months of age (192 ± 23 g) were used. The animals were randomly distributed into four experimental groups (n = 6/group): control, treated with leucine (L), denervated (D) and denervated treated with leucine (DL). Dependent measures were proteins levels of AKT, AMPK, mTOR, and ACC performed by Western blot. Leucine induced a reduction in the phosphorylation of AMPK (p < 0.05) by 16% in the L and by 68% in the DL groups as compared with control group. Denervation increased AMPK by 24% in the D group as compared with the control group (p < 0.05). AKT was also modulated by denervation and leucine treatment, highlighted by the elevation of AKT phosphorylation in the D (65%), L (98%) and DL (146%) groups as compared with the control group (p < 0.05). AKT phosphorylation was 49% higher in the D group as compared with the DL group. Furthermore, denervation decreased mTOR phosphorylation by 29% in the D group as compared with the control group. However, leucine treatment induced an increase of 49% in the phosphorylation of mTOR in the L group as compared with the control group, and an increase of 154% in the DL as compared with the D group (p < 0.05). ACC phosphorylation was 20% greater in the D group than the control group. Furthermore, ACC in the soleus was 22% lower in the in the L group and 50% lower in the DL group than the respective control group (p < 0.05). In conclusion, leucine treatment minimized the deleterious effects of denervation on rat soleus muscle by increasing anabolic (AKT and mTOR) and decreasing catabolic (AMPK) pathways. These results may be interesting for muscle recovery following acute denervation, which may contribute to musculoskeletal rehabilitation after denervation

  13. A 32-kDa tyrosine-phosphorylated protein shows a protease-dependent increase in dead boar spermatozoa.

    PubMed

    Tabuchi, Tomohito; Shidara, Osamu; Harayama, Hiroshi

    2008-12-01

    Boar sperm TyrP32 is a 32-kDa tyrosine-phosphorylated protein that increases during the capacitation and acrosome reaction and during cryocapacitation. However, it is still unclear whether the increase in TyrP32 is an event that is limited to the process of sperm fertilization, including cryocapacitation. The aims of the present study were to demonstrate that TyrP32 is increased in dead spermatozoa after freeze-thawing without a cryoprotectant and to find the causal factors for this increase. Washed spermatozoa were resuspended in a salt solution and then frozen. The frozen samples were rapidly thawed in a warm water bath and then used for sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE)/Western blotting to detect TyrP32, SDS-PAGE/silver staining of sperm proteins and staining of acrosomal contents with fluorescein isothiocyanate (FITC)-conjugated peanut agglutinin (PNA). In the samples before freezing, TyrP32 was barely detectable, and the distribution of the acrosomal contents was normal in most spermatozoa. One cycle of freeze-thawing induced an increase in TyrP32, a decrease in major sperm proteins and disorder in the acrosomal contents. However, the addition of a protease inhibitor (APMSF, 1 mM) suppressed the increase in TyrP32 and the decrease in the major sperm proteins, although it did not have any influence on the disorder in the acrosomal contents. Additionally, the spermatozoa did not exhibit any flagellar movement after freeze-thawing, which showed that almost all of them were dead. These results indicate that TyrP32 can show a protease-dependent increase in dead spermatozoa after freeze-thawing without a cryoprotectant even though the dead spermatozoa do not undergo cryocapacitation. PMID:18787309

  14. The C2 Domain and Altered ATP-Binding Loop Phosphorylation at Ser359 Mediate the Redox-Dependent Increase in Protein Kinase C-δ Activity

    PubMed Central

    Gong, Jianli; Yao, Yongneng; Zhang, Pingbo; Udayasuryan, Barath; Komissarova, Elena V.; Chen, Ju; Sivaramakrishnan, Sivaraj; Van Eyk, Jennifer E.

    2015-01-01

    The diverse roles of protein kinase C-δ (PKCδ) in cellular growth, survival, and injury have been attributed to stimulus-specific differences in PKCδ signaling responses. PKCδ exerts membrane-delimited actions in cells activated by agonists that stimulate phosphoinositide hydrolysis. PKCδ is released from membranes as a Tyr313-phosphorylated enzyme that displays a high level of lipid-independent activity and altered substrate specificity during oxidative stress. This study identifies an interaction between PKCδ's Tyr313-phosphorylated hinge region and its phosphotyrosine-binding C2 domain that controls PKCδ's enzymology indirectly by decreasing phosphorylation in the kinase domain ATP-positioning loop at Ser359. We show that wild-type (WT) PKCδ displays a strong preference for substrates with serine as the phosphoacceptor residue at the active site when it harbors phosphomimetic or bulky substitutions at Ser359. In contrast, PKCδ-S359A displays lipid-independent activity toward substrates with either a serine or threonine as the phosphoacceptor residue. Additional studies in cardiomyocytes show that oxidative stress decreases Ser359 phosphorylation on native PKCδ and that PKCδ-S359A overexpression increases basal levels of phosphorylation on substrates with both phosphoacceptor site serine and threonine residues. Collectively, these studies identify a C2 domain-pTyr313 docking interaction that controls ATP-positioning loop phosphorylation as a novel, dynamically regulated, and physiologically relevant structural determinant of PKCδ catalytic activity. PMID:25755284

  15. Increased Phosphorylation of extracellular signal-regulated kinase in trigeminal nociceptive neurons following propofol administration in rats

    PubMed Central

    Shoda, Emi; Kitagawa, Junichi; Suzuki, Ikuko; Nitta-Kubota, Ieko; Miyamoto, Makiko; Tsuboi, Yoshiyuki; Kondo, Masahiro; Masuda, Yuji; Oi, Yoshiyuki; Ren, Ke; Iwata, Koichi

    2009-01-01

    Although propofol (PRO) is widely used in clinic as a hypnotic agent, the underlying mechanisms of its action on pain pathways is still unknown. Sprague-Dawley rats were assigned to receive PRO or pentobarbital (PEN) and were divided into two groups as LIGHT and DEEP hypnotic levels based on the EEG analysis. Rats in each hypnotic level received capsaicin injection into the face and phosphorylated extracellular regulated-kinase (pERK) immunohistochemistry were performed in subnucleus caudalis (Vc) and upper cervical spinal cord. A large number of pERK-like immunoreactive (LI) cells was observed in the trigeminal spinal subnuclei interpolaris and caudalis transition zone (Vi/Vc), middle Vc and transition zone between Vc and upper cervical spinal cord (Vc/C2) in the rats with PEN or PRO administration following capsaicin injection into the whisker pad region. The number of pERK-LI cells in Vi/Vc, middle Vc and Vc/C2 was significantly larger in rats with PRO injection than those with PEN injection. The number of pERK-LI cells was increased following an increase in the dose of PRO but not in PEN. The pERK-LI cells were dominantly distributed in the Vi/Vc, middle Vc and Vc/C2 after the bolus injections of PRO. The expression of pERK-LI cells was depressed after the intravenous lidocaine application before PRO injection. The present findings suggested that PRO induced an enhancement of the activity of trigeminal nociceptive pathways through nociceptors innervating the venous structure, as indicated by a lidocaine-sensitive increase in pERK. This may explain deep pain around the injection regions during intravenous bolus injection of PRO. Perspective: The effect of propofol administration on ERK phosphorylation in the subregions of the spinal trigeminal complex and upper cervical spinal cord neurons were precisely analyzed in rats with PRO injection. A large number of pERK-LI cells was observed following intravenous PRO administration, suggesting an enhancement of

  16. Cadmium Activates Multiple Signaling Pathways That Coordinately Stimulate Akt Activity to Enhance c-Myc mRNA Stability

    PubMed Central

    Tsai, Jia-Shiuan; Chao, Cheng-Han; Lin, Lih-Yuan

    2016-01-01

    Cadmium is a known environmental carcinogen. Exposure of Cd leads to the activation of several proto-oncogenes in cells. We investigated here the mechanism of c-Myc expression in hepatic cells under Cd treatment. The c-Myc protein and mRNA levels increased in dose- and time-dependent manners in HepG2 cells with Cd treatment. This increase was due to an increase in c-Myc mRNA stability. To explore the mechanism involved in enhancing the mRNA stability, several cellular signaling factors that evoked by Cd treatment were analyzed. PI3K, p38, ERK and JNK were activated by Cd. However, ERK did not participate in the Cd-induced c-Myc expression. Further analysis revealed that mTORC2 was a downstream factor of p38. PI3K, JNK and mTORC2 coordinately activated Akt. Akt was phosphorylated at Thr450 in the untreated cells. Cd treatment led to additional phosphorylation at Thr308 and Ser473. Blocking any of the three signaling factors resulted in the reduction of phosphorylation level at all three Akt sites. The activated Akt phosphorylated Foxo1 and allowed the modified protein to translocate into the cytoplasm. We conclude that Cd-induced accumulation of c-Myc requires the activation of several signaling pathways. The signals act coordinately for Akt activation and drive the Foxo1 from the nucleus to the cytoplasm. Reduction of Foxo1 in the nucleus reduces the transcription of its target genes that may affect c-Myc mRNA stability, resulting in a higher accumulation of the c-Myc proteins. PMID:26751215

  17. Pin1-mediated Sp1 phosphorylation by CDK1 increases Sp1 stability and decreases its DNA-binding activity during mitosis.

    PubMed

    Yang, Hang-Che; Chuang, Jian-Ying; Jeng, Wen-Yih; Liu, Chia-I; Wang, Andrew H-J; Lu, Pei-Jung; Chang, Wen-Chang; Hung, Jan-Jong

    2014-12-16

    We have shown that Sp1 phosphorylation at Thr739 decreases its DNA-binding activity. In this study, we found that phosphorylation of Sp1 at Thr739 alone is necessary, but not sufficient for the inhibition of its DNA-binding activity during mitosis. We demonstrated that Pin1 could be recruited to the Thr739(p)-Pro motif of Sp1 to modulate the interaction between phospho-Sp1 and CDK1, thereby facilitating CDK1-mediated phosphorylation of Sp1 at Ser720, Thr723 and Thr737 during mitosis. Loss of the C-terminal end of Sp1 (amino acids 741-785) significantly increased Sp1 phosphorylation, implying that the C-terminus inhibits CDK1-mediated Sp1 phosphorylation. Binding analysis of Sp1 peptides to Pin1 by isothermal titration calorimetry indicated that Pin1 interacts with Thr739(p)-Sp1 peptide but not with Thr739-Sp1 peptide. X-ray crystallography data showed that the Thr739(p)-Sp1 peptide occupies the active site of Pin1. Increased Sp1 phosphorylation by CDK1 during mitosis not only stabilized Sp1 levels by decreasing interaction with ubiquitin E3-ligase RNF4 but also caused Sp1 to move out of the chromosomes completely by decreasing its DNA-binding activity, thereby facilitating cell cycle progression. Thus, Pin1-mediated conformational changes in the C-terminal region of Sp1 are critical for increased CDK1-mediated Sp1 phosphorylation to facilitate cell cycle progression during mitosis. PMID:25398907

  18. Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMP-activated protein kinase suppression

    PubMed Central

    Osawa, Yosuke; Seki, Ekihiro; Kodama, Yuzo; Suetsugu, Atsushi; Miura, Kouichi; Adachi, Masayuki; Ito, Hiroyasu; Shiratori, Yoshimune; Banno, Yoshiko; Olefsky, Jerrold M.; Nagaki, Masahito; Moriwaki, Hisataka; Brenner, David A.; Seishima, Mitsuru

    2011-01-01

    Acid sphingomyelinase (ASM) regulates the homeostasis of sphingolipids, including ceramides and sphingosine-1-phosphate (S1P). Because sphingolipids regulate AKT activation, we investigated the role of ASM in hepatic glucose and lipid metabolism. Initially, we overexpressed ASM in the livers of wild-type and diabetic db/db mice by adenovirus vector (Ad5ASM). In these mice, glucose tolerance was improved, and glycogen and lipid accumulation in the liver were increased. Using primary cultured hepatocytes, we confirmed that ASM increased glucose uptake, glycogen deposition, and lipid accumulation through activation of AKT and glycogen synthase kinase-3β. In addition, ASM induced up-regulation of glucose transporter 2 accompanied by suppression of AMP-activated protein kinase (AMPK) phosphorylation. Loss of sphingosine kinase-1 (SphK1) diminished ASM-mediated AKT phosphorylation, but exogenous S1P induced AKT activation in hepatocytes. In contrast, SphK1 deficiency did not affect AMPK activation. These results suggest that the SphK/S1P pathway is required for ASM-mediated AKT activation but not for AMPK inactivation. Finally, we found that treatment with high-dose glucose increased glycogen deposition and lipid accumulation in wild-type hepatocytes but not in ASM−/− cells. This result is consistent with glucose intolerance in ASM−/− mice. In conclusion, ASM modulates AKT activation and AMPK inactivation, thus regulating glucose and lipid metabolism in the liver.—Osawa, Y., Seki, E., Kodama, Y., Suetsugu, A., Miura, K., Adachi, M., Ito, H., Shiratori, Y., Banno, Y., Olefsky, J. M., Nagaki, M., Moriwaki, H., Brenner, D. A., Seishima, M. Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMP-activated protein kinase suppression. PMID:21163859

  19. Neuronal Ablation of p-Akt at Ser473 Leads to Altered 5-HT1A/2A Receptor Function

    PubMed Central

    Saunders, Christine; Siuta, Michael; Robertson, Sabrina D.; Davis, Adeola R.; Sauer, Jennifer; Matthies, Heinrich J.G.; Gresch, Paul J.; Airey, David; Lindsley, Craig W.; Schetz, John A.; Niswender, Kevin D.

    2014-01-01

    The serotonergic system regulates a wide range of behavior, including mood and impulsivity, and its dysregulation has been associated with mood disorders, autism spectrum disorder, and addiction. Diabetes is a risk factor for these conditions. Insulin resistance in the brain is specifically associated with susceptibility to psychostimulant abuse. Here, we examined whether phosphorylation of Akt, a key regulator of the insulin signaling pathway, controls serotonin (5-HT) signaling. To explore how impairment in Akt function regulates 5-HT homeostasis, we used a brain-specific rictor knockout (KO) mouse model of impaired neuronal phosphorylation of Akt at Ser473. Cortical 5-HT1A and 5-HT2A receptor binding was significantly elevated in rictor KO mice. Concomitant with this elevated receptor expression, the 5-HT1A receptor agonist 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) led to an increased hypothermic response in rictor KO mice. The increased cortical 5-HT1A receptor density was associated with higher 5-HT1A receptor levels on the cortical cell surface. In contrast, rictor KO mice displayed significantly reduced head-twitch response (HTR) to the 5-HT2A/C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI), with evidence of impaired 5-HT2A/C receptor signaling. In vitro, pharmacological inhibition of Akt significantly increased 5-HT1A receptor expression and attenuated DOI-induced 5-HT2A receptor signaling, thereby lending credence to the observed in vivo cross-talk between neuronal Akt signaling and 5-HT receptor regulation. These data reveal that defective central Akt function alters 5-HT signaling as well as 5-HT-associated behaviors, demonstrating a novel role for Akt in maintaining neuronal 5-HT receptor function. PMID:24090638

  20. Increased Hepatic Fatty Acids Uptake and Oxidation by LRPPRC-Driven Oxidative Phosphorylation Reduces Blood Lipid Levels

    PubMed Central

    Lei, Shi; Sun, Run-zhu; Wang, Di; Gong, Mei-zhen; Su, Xiang-ping; Yi, Fei; Peng, Zheng-wu

    2016-01-01

    Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC)-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc). Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation (OxPhos) complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using 14C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, OxPhos, and lipid metabolism. Increased OxPhos in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic OxPhos could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels. PMID:27462273

  1. Increased Hepatic Fatty Acids Uptake and Oxidation by LRPPRC-Driven Oxidative Phosphorylation Reduces Blood Lipid Levels.

    PubMed

    Lei, Shi; Sun, Run-Zhu; Wang, Di; Gong, Mei-Zhen; Su, Xiang-Ping; Yi, Fei; Peng, Zheng-Wu

    2016-01-01

    Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC)-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc). Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation (OxPhos) complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using (14)C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, OxPhos, and lipid metabolism. Increased OxPhos in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic OxPhos could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels. PMID:27462273

  2. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation.

    PubMed

    Nisr, Raid B; Affourtit, Charles

    2014-02-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. PMID:24212054

  3. Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells.

    PubMed

    Zakikhani, Mahvash; Blouin, Marie-José; Piura, Esther; Pollak, Michael N

    2010-08-01

    Rapamycin and its analogues inhibit mTOR, which leads to decreased protein synthesis and decreased cancer cell proliferation in many experimental systems. Adenosine 5'- monophosphate-activated protein kinase (AMPK) activators such as metformin have similar actions, in keeping with the TSC2/1 pathway linking activation of AMPK to inhibition of mTOR. As mTOR inhibition by rapamycin is associated with attenuation of negative feedback to IRS-1, rapamycin is known to increase activation of AKT, which may reduce its anti-neoplastic activity. We observed that metformin exposure decreases AKT activation, an action opposite to that of rapamycin. We show that metformin (but not rapamycin) exposure leads to increased phosphorylation of IRS-1 at Ser(789), a site previously reported to inhibit downstream signaling and to be an AMPK substrate phosphorylated under conditions of cellular energy depletion. siRNA methods confirmed that reduction of AMPK levels attenuates both the IRS-1 Ser(789) phosphorylation and the inhibition of AKT activation associated with metformin exposure. Although both rapamycin and metformin inhibit mTOR (the former directly and the latter through AMPK signaling), our results demonstrate previously unrecognized differences between these agents. The data are consistent with the observation that maximal induction of apoptosis and inhibition of proliferation are greater for metformin than rapamycin. PMID:20135346

  4. Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation.

    PubMed

    Chung, Eunhee; Yeung, Fan; Leinwand, Leslie A

    2012-05-01

    Although the signaling pathways underlying exercise-induced cardiac adaptation have been extensively studied, little is known about the molecular mechanisms that result in the response of the heart to pregnancy. The objective of this study was to define the morphological, functional, and gene expression patterns that define the hearts of pregnant mice, and to identify the signaling pathways that mediate this response. Mice were divided into three groups: nonpregnant diestrus control, midpregnancy, and late pregnancy. Both time points of pregnancy were associated with significant cardiac hypertrophy. The prosurvival signaling cascades of Akt and ERK1/2 were activated in the hearts of pregnant mice, while the stress kinase, p38, was decreased. Given the activation of Akt in pregnancy and its known role in cardiac hypertrophy, the hypertrophic response to pregnancy was tested in mice expressing a cardiac-specific activated (myristoylated) form of Akt (myrAkt) or a cardiac-specific constitutively active (antipathologic hypertrophic) form of its downstream target, glycogen synthase kinase 3β (caGSK3β). The pregnancy-induced hypertrophic responses of hearts from these mice were significantly attenuated. Finally, we tested whether pregnancy-associated sex hormones could induce hypertrophy and alter signaling pathways in isolated neonatal rat ventricular myocytes (NRVMs). In fact, progesterone, but not estradiol treatment increased NRVM cell size via phosphorylation of ERK1/2. Inhibition of MEK1 effectively blocked progesterone-induced cellular hypertrophy. Taken together, our study demonstrates that pregnancy-induced cardiac hypertrophy is mediated by activation of Akt and ERK1/2 pathways. PMID:22345431

  5. Isoflurane Is More Deleterious to Developing Brain Than Desflurane: The Role of the Akt/GSK3β Signaling Pathway

    PubMed Central

    Tao, Guorong; Xue, Qingsheng; Luo, Yan; Li, Guohui; Xia, Yimeng; Yu, Buwei

    2016-01-01

    Demand is increasing for safer inhalational anesthetics for use in pediatric anesthesia. In this regard, researchers have debated whether isoflurane is more toxic to the developing brain than desflurane. In the present study, we compared the effects of postnatal exposure to isoflurane with those of desflurane on long-term cognitive performance and investigated the role of the Akt/GSK3β signaling pathway. Postnatal day 6 (P6) mice were exposed to either isoflurane or desflurane, after which the phosphorylation levels of Akt/GSK3β and learning and memory were assessed at P8 or P31. The phosphorylation levels of Akt/GSK3β and learning and memory were examined after intervention with lithium. We found that isoflurane, but not desflurane, impaired spatial learning and memory at P31. Accompanied by behavioral change, only isoflurane decreased p-Akt (ser473) and p-GSK3β (ser9) expressions, which led to GSK3β overactivation. Lithium prevented GSK3β overactivation and alleviated isoflurane-induced cognitive deficits. These results suggest that isoflurane is more likely to induce developmental neurotoxicity than desflurane in context of multiple exposures and that the Akt/GSK3β signaling pathway partly participates in this process. GSK3β inhibition might be an effective way to protect against developmental neurotoxicity. PMID:27057548

  6. miR-382 targeting PTEN-Akt axis promotes liver regeneration

    PubMed Central

    Wang, Fei; Dimitrova-Shumkovska, Jasmina; Xiang, Yang; Zhao, Yingying; Liu, Jingqi; Xiao, Junjie; Yang, Changqing

    2016-01-01

    Liver regeneration is a highly orchestrated process which can be regulated by microRNAs (miRNAs, miRs), though the mechanisms are largely unclear. This study was aimed to identify miRNAs responsible for hepatocyte proliferation during liver regeneration. Here we detected a marked elevation of miR-382 in the mouse liver at 48 hrs after partial hepatectomy (PH-48h) using microarray analysis and qRT-PCRs. miR-382 overexpression accelerated the proliferation and the G1 to S phase transition of the cell cycle both in mouse NCTC1469 and human HL7702 normal liver cells, while miR-382 downregulation had inverse effects. Moreover, miR-382 negatively regulated PTEN expression and increased Akt phosphorylation both in vitro and in vivo. Using PTEN siRNA and Akt activator/inhibitor, we further found that PTEN inhibition and Akt phosphorylation were essential for mediating the promotive effect of miR-382 in the proliferation and cell growth of hepatocytes. Collectively, our findings identify miR-382 as a promoter for hepatocyte proliferation and cell growth via targeting PTEN-Akt axis which might be a novel therapeutic target to enhance liver regeneration capability. PMID:26636539

  7. Crosstalking between Androgen and PI3K/AKT Signaling Pathways in Prostate Cancer Cells*

    PubMed Central

    Lee, Suk Hyung; Johnson, Daniel; Luong, Richard; Sun, Zijie

    2015-01-01

    Both androgen action and PI3K medicated signaling pathways have been implicated in prostate tumorigenesis. Our androgen receptor (AR) conditional transgenic mice developed murine prostatic intraepithelial neoplasia (mPIN) and prostatic adenocarcinoma lesions recapitulating human prostate cancer development and progression. Role of transgenic AR contributing to malignancy was demonstrated by high degree of transgenic AR expression in atypical and tumor cells in mPIN as well as prostatic adenocarcinoma lesions of the transgenic mice, but not in adjacent normal tissue. Interestingly, reduced PI3K/Akt activation also appeared in these mouse atypical and tumor cells, suggesting an interaction between androgen and PI3K/AKT pathways. In this study, we further investigated this interaction. We showed that the androgen depletion or knockdown of AR expression results in elevated levels of active phosphorylated AKT in prostate cancer cells. Castration of conditional Pten knock-out mice showed increased Akt, phosphorylated Akt, and pS6 expression in the mouse prostate. Using a series of newly generated Ar reporter and Pten knock-out compound mice, we showed that Pten loss directly represses endogenous Ar expression in prostatic epithelial cells. Moreover, Pten loss and PI3K/Akt activation reduced Ar-mediated transcription in purified Pten-null cells. This study provides novel evidence demonstrating interplay between androgen and PI3K pathways, as well as introduces unique and relevant mouse models for further studies of PI3K and AR pathways in the context of prostate tumorigenesis. PMID:25527506

  8. Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium

    SciTech Connect

    Liu Zhiwei; Yu Xinyuan; Shaikh, Zahir A.

    2008-05-01

    Cadmium (Cd), an endocrine disruptor, can induce a variety of signaling events including the activation of ERK1/2 and AKT. In this study, the involvement of estrogen receptors (ER) in these events was evaluated in three human breast caner cell lines, MCF-7, MDA-MB-231, and SK-BR-3. The Cd-induced signal activation patterns in the three cell lines mimicked those exhibited in response to 17{beta}-estradiol. Specifically, treatment of MCF-7 cells, that express ER{alpha}, ER{beta} and GPR30, to 0.5-10 {mu}M Cd for only 2.5 min resulted in transient phosphorylation of ERK1/2. Cd also triggered a gradual increase and sustained activation of AKT during the 60 min treatment period. In SK-BR-3 cells, that express only GPR30, Cd also caused a transient activation of ERK1/2, but not of AKT. In contrast, in MDA-MB-231 cells, that express only ER{beta}, Cd was unable to cause rapid activation of either ERK1/2 or AKT. A transient phosphorylation of ER{alpha} was also observed within 2.5 min of Cd exposure in the MCF-7 cells. While the estrogen receptor antagonist, ICI 182,780, did not prevent the effect of Cd on these signals, specific siRNA against hER{alpha} significantly reduced Cd-induced activation of ERK1/2 and completely blocked the activation of AKT. It is concluded that Cd, like estradiol, can cause rapid activation of ERK1/2 and AKT and that these signaling events are mediated by possible interaction with membrane ER{alpha} and GPR30, but not ER{beta}.

  9. HC toxin (a HDAC inhibitor) enhances IRS1-Akt signalling and metabolism in mouse myotubes.

    PubMed

    Tan, Hayden Weng Siong; Sim, Arthur Yi Loong; Huang, Su Ling; Leng, Ying; Long, Yun Chau

    2015-12-01

    Exercise enhances numerous signalling pathways and activates substrate metabolism in skeletal muscle. Small molecule compounds that activate these cellular responses have been shown to recapitulate the metabolic benefits of exercise. In this study, a histone deacetylase (HDAC) inhibitor, HC toxin, was investigated as a small molecule compound that activates exercise-induced adaptations. In C2C12 myotubes, HC toxin treatment activated two exercise-stimulated pathways: AMP-activated protein kinase (AMPK) and Akt pathways. HC toxin increased the protein content and phosphorylation of insulin receptor substrate 1 as well as the activation of downstream Akt signalling. The effects of HC toxin on IRS1-Akt signalling were PI3K-dependent as wortmannin abolishes its effects on IRS1 protein accumulation and Akt phosphorylation. HC toxin-induced Akt activation was sufficient to enhance downstream mTOR complex 1 (mTORC1) signalling including p70S6K and S6, which were consistently abolished by PI3K inhibition. Insulin-stimulated glucose uptake, glycolysis, mitochondrial respiration and fatty acid oxidation were also enhanced in HC toxin-treated myotubes. When myotubes were challenged with serum starvation for the induction of atrophy, HC toxin treatment prevented the induction of genes that are involved in autophagy and proteasomal proteolysis. Conversely, IRS1-Akt signalling was not induced by HC toxin in several hepatoma cell lines, providing evidence for a favourable safety profile of this small molecule. These data highlight the potential of HDAC inhibitors as a novel class of small molecules for the induction of exercise-like signalling pathways and metabolism. PMID:26373795

  10. Sex-Specific and Estrous Cycle-Dependent Antidepressant-Like Effects and Hippocampal Akt Signaling of Leptin.

    PubMed

    Carrier, Nicole; Wang, Xuezhen; Sun, Linshan; Lu, Xin-Yun

    2015-10-01

    Sex differences in the incidence of depression and antidepressant treatment responses are well documented. Depression is twice as common in women as in men. Recent studies indicate that low levels of leptin, an adipocyte-derived hormone, are associated with increased symptoms of depression in women. Leptin has been shown to produce antidepressant-like effects in male rodents. In the present study, we examined sex differences and estrous cycle variations in antidepressant-like responses to leptin. Leptin administration significantly reduced immobility, a putative measure of behavioral despair, in the forced swim test in intact female mice in the proestrus phase but not in the diestrus phase of the estrous cycle. Moreover, leptin administration stimulated Akt phosphorylation in the hippocampus of female mice in proestrus but not in diestrus, in correlation with its differential behavioral effects in these two phases of the cycle. Leptin-induced behavioral responses and stimulation of hippocampal Akt phosphorylation in female mice were abolished by ovariectomy. By contrast, the antidepressant-like effect of leptin in male mice was not affected by gonadectomy (castration). Pretreatment with 17β-estradiol restored sensitivity to the effects of leptin on behavior and hippocampal Akt phosphorylation in ovariectomized female mice. These results suggest leptin regulates depression-like behavior and hippocampal Akt signaling in a sex-specific and estrous cycle-dependent manner. PMID:26181103

  11. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport

    PubMed Central

    Satoh, Nobuhiko; Nakamura, Motonobu; Suzuki, Masashi; Suzuki, Atsushi; Seki, George; Horita, Shoko

    2015-01-01

    A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2) and stimulates sodium-bicarbonate cotransporter (NBCe1), resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC) and epithelial sodium channel (ENaC) activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1) mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK). Moreover, sodium-proton exchanger 3 (NHE3) in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport. PMID:26491696

  12. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport.

    PubMed

    Satoh, Nobuhiko; Nakamura, Motonobu; Suzuki, Masashi; Suzuki, Atsushi; Seki, George; Horita, Shoko

    2015-01-01

    A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2) and stimulates sodium-bicarbonate cotransporter (NBCe1), resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC) and epithelial sodium channel (ENaC) activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1) mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK). Moreover, sodium-proton exchanger 3 (NHE3) in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport. PMID:26491696

  13. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide

    PubMed Central

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase—protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton’s lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism. PMID:27494022

  14. Selective and potent Akt inhibition triggers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition

    PubMed Central

    Mimura, Naoya; Hideshima, Teru; Shimomura, Toshiyasu; Suzuki, Rikio; Ohguchi, Hiroto; Rizq, Ola; Kikuchi, Shohei; Yoshida, Yasuhiro; Cottini, Francesca; Jakubikova, Jana; Cirstea, Diana; Gorgun, Gullu; Minami, Jiro; Tai, Yu-Tzu; Richardson, Paul G.; Utsugi, Teruhiro; Iwama, Atsushi; Anderson, Kenneth C.

    2014-01-01

    The PI3K/Akt pathway plays a crucial role in the pathogenesis of multiple myeloma (MM) in the bone marrow (BM) milieu. However, efficacy of selective and potent Akt inhibition has not yet been fully elucidated. In this study, we therefore examined the biologic impact of selective and potent Akt inhibition by a novel allosteric inhibitor TAS-117. TAS-117 induced significant growth inhibition, associated with downregulation of phosphorylated Akt (p-Akt), selectively in MM cell lines with high baseline p-Akt. Cytotoxicity of TAS-117 was also observed in patients MM cells, but not in normal peripheral blood mononuclear cells. Importantly, TAS-117 induced significant cytotoxicity in MM cells even in the presence of BM stromal cells, associated with inhibition of IL-6 secretion. Oral administration of TAS-117 significantly inhibited human MM cell growth in murine xenograft models. TAS-117 triggered apoptosis and autophagy, as well as induction of endoplasmic reticulum (ER) stress response with minimal expression of CHOP, a fatal ER-stress marker. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity, associated with increased CHOP and PARP cleavage and blockade of bortezomib-induced p-Akt, suggesting that TAS-117 augments bortezomib-induced ER stress and apoptotic signaling. Carfilzomib-induced cytotoxicity was similarly enhanced by TAS-117. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity in vivo, associated with prolonged host survival. Our results show that selective and potent Akt inhibition by TAS-117 triggers anti-MM activities in vitro and in vivo, as well as enhances cytotoxicity of proteasome inhibition, providing the preclinical framework for clinical evaluation of selective Akt inhibitors, alone and in combination with proteasome inhibitors in MM. PMID:24934808

  15. Selective and potent Akt inhibition triggers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition.

    PubMed

    Mimura, Naoya; Hideshima, Teru; Shimomura, Toshiyasu; Suzuki, Rikio; Ohguchi, Hiroto; Rizq, Ola; Kikuchi, Shohei; Yoshida, Yasuhiro; Cottini, Francesca; Jakubikova, Jana; Cirstea, Diana; Gorgun, Gullu; Minami, Jiro; Tai, Yu-Tzu; Richardson, Paul G; Utsugi, Teruhiro; Iwama, Atsushi; Anderson, Kenneth C

    2014-08-15

    The PI3K/Akt pathway plays a crucial role in the pathogenesis of multiple myeloma (MM) in the bone marrow (BM) milieu. However, efficacy of selective and potent Akt inhibition has not yet been fully elucidated. In this study, we, therefore, examined the biologic impact of selective and potent Akt inhibition by a novel allosteric inhibitor TAS-117. TAS-117 induced significant growth inhibition, associated with downregulation of phosphorylated Akt (p-Akt), selectively in MM cell lines with high baseline p-Akt. Cytotoxicity of TAS-117 was also observed in patient MM cells, but not in normal peripheral blood mononuclear cells. Importantly, TAS-117 induced significant cytotoxicity in MM cells even in the presence of BM stromal cells, associated with inhibition of IL6 secretion. Oral administration of TAS-117 significantly inhibited human MM cell growth in murine xenograft models. TAS-117 triggered apoptosis and autophagy, as well as induction of endoplasmic reticulum (ER) stress response with minimal expression of C/EBP homologous protein (CHOP), a fatal ER stress marker. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity, associated with increased CHOP and PARP cleavage and blockade of bortezomib-induced p-Akt, suggesting that TAS-117 augments bortezomib-induced ER stress and apoptotic signaling. Carfilzomib-induced cytotoxicity was similarly enhanced by TAS-117. Importantly, TAS-117 enhanced bortezomib-induced cytotoxicity in vivo, associated with prolonged host survival. Our results show that selective and potent Akt inhibition by TAS-117 triggers anti-MM activities in vitro and in vivo, as well as enhances cytotoxicity of proteasome inhibition, providing the preclinical framework for clinical evaluation of selective Akt inhibitors, alone and in combination with proteasome inhibitors in MM. PMID:24934808

  16. Targeting AKT1-E17K and the PI3K/AKT Pathway with an Allosteric AKT Inhibitor, ARQ 092

    PubMed Central

    Yu, Yi; Savage, Ronald E.; Eathiraj, Sudharshan; Meade, Justin; Wick, Michael J.; Hall, Terence; Abbadessa, Giovanni; Schwartz, Brian

    2015-01-01

    As a critical component in the PI3K/AKT/mTOR pathway, AKT has become an attractive target for therapeutic intervention. ARQ 092 and a next generation AKT inhibitor, ARQ 751 are selective, allosteric, pan-AKT and AKT1-E17K mutant inhibitors that potently inhibit phosphorylation of AKT. Biochemical and cellular analysis showed that ARQ 092 and ARQ 751 inhibited AKT activation not only by dephosphorylating the membrane-associated active form, but also by preventing the inactive form from localizing into plasma membrane. In endometrial PDX models harboring mutant AKT1-E17K and other tumor models with an activated AKT pathway, both compounds exhibited strong anti-tumor activity. Combination studies conducted in in vivo breast tumor models demonstrated that ARQ 092 enhanced tumor inhibition of a common chemotherapeutic agent (paclitaxel). In a large panel of diverse cancer cell lines, ARQ 092 and ARQ 751 inhibited proliferation across multiple tumor types but were most potent in leukemia, breast, endometrial, and colorectal cancer cell lines. Moreover, inhibition by ARQ 092 and ARQ 751 was more prevalent in cancer cell lines containing PIK3CA/PIK3R1 mutations compared to those with wt-PIK3CA/PIK3R1 or PTEN mutations. For both ARQ 092 and ARQ 751, PIK3CA/PIK3R1 and AKT1-E17K mutations can potentially be used as predictive biomarkers for patient selection in clinical studies. PMID:26469692

  17. The chemopreventive agent myoinositol inhibits Akt and extracellular signal-regulated kinase in bronchial lesions from heavy smokers.

    PubMed

    Han, Wei; Gills, Joell J; Memmott, Regan M; Lam, Stephen; Dennis, Phillip A

    2009-04-01

    Myoinositol is an isomer of glucose that has chemopreventive activity in animal models of cancer. In a recent phase I clinical trial, myoinositol administration correlated with a statistically significant regression of preexisting bronchial dysplastic lesions in heavy smokers. To shed light on the potential mechanisms involved, activation of Akt and extracellular signal-regulated kinase (ERK), two kinases that control cellular proliferation and survival, was assessed in 206 paired bronchial biopsies from 21 patients who participated in this clinical trial. Before myoinositol treatment, strongly positive staining for activation of Akt was detected in 27% of hyperplastic/metaplastic lesions and 58% of dysplastic lesions (P = 0.05, chi(2) test). There was also a trend toward increased activation of ERK (28% in regions of hyperplasia/metaplasia to 42% of dysplastic lesions). Following myoinositol treatment, significant decreases in Akt and ERK phosphorylation were observed in dysplastic (P < 0.01 and 0.05, respectively) but not hyperplastic/metaplastic lesions (P > 0.05). In vitro, myoinositol decreased endogenous and tobacco carcinogen-induced activation of Akt and ERK in immortalized human bronchial epithelial cells, which decreased cell proliferation and induced a G(1)-S cell cycle arrest. These results show that the phenotypic progression of premalignant bronchial lesions from smokers correlates with increased activation of Akt and ERK and that these kinases are targets of myoinositol. Moreover, they suggest that myoinositol might cause regression of bronchial dysplastic lesions through inhibition of active Akt and ERK. PMID:19336734

  18. Increased phosphorylation of collapsin response mediator protein-2 at Thr514 correlates with β-amyloid burden and synaptic deficits in Lewy body dementias.

    PubMed

    Xing, Huayang; Lim, Yun-An; Chong, Joyce R; Lee, Jasinda H; Aarsland, Dag; Ballard, Clive G; Francis, Paul T; Chen, Christopher P; Lai, Mitchell K P

    2016-01-01

    Collapsin response mediator protein-2 (CRMP2) regulates axonal growth cone extension, and increased CRMP2 phosphorylation may lead to axonal degeneration. Axonal and synaptic pathology is an important feature of Lewy body dementias (LBD), but the state of CRMP2 phosphorylation (pCRMP2) as well as its correlations with markers of neurodegeneration have not been studied in these dementias. Hence, we measured CRMP2 phosphorylation at Thr509, Thr514 and Ser522, as well as markers of β-amyloid (Aβ), tau-phosphorylation, α-synuclein and synaptic function in the postmortem neocortex of a longitudinally assessed cohort of LBD patients characterized by low (Parkinson's disease dementia, PDD) and high (dementia with Lewy bodies, DLB) burden of Alzheimer type pathology. We found specific increases of pCRMP2 at Thr514 in DLB, but not PDD. The increased CRMP2 phosphorylation correlated with fibrillogenic Aβ as well as with losses of markers for axon regeneration (β-III-tubulin) and synaptic integrity (synaptophysin) in LBD. In contrast, pCRMP2 alterations did not correlate with tau-phosphorylation or α-synuclein, and also appear unrelated to immunoreactivities of putative upstream kinases glycogen synthase kinase 3β and cyclin-dependent kinase 5, as well as to protein phosphatase 2A. In conclusion, increased pCRMP2 may underlie the axonal pathology of DLB, and may be a novel therapeutic target. However, antecedent signaling events as well as the nature of pCRMP2 association with Aβ and other neuropathologic markers require further study. PMID:27609071

  19. Computational Model of Gab1/2-Dependent VEGFR2 Pathway to Akt Activation

    PubMed Central

    Tan, Wan Hua; Popel, Aleksander S.; Mac Gabhann, Feilim

    2013-01-01

    Vascular endothelial growth factor (VEGF) signal transduction is central to angiogenesis in development and in pathological conditions such as cancer, retinopathy and ischemic diseases. However, no detailed mass-action models of VEGF receptor signaling have been developed. We constructed and validated the first computational model of VEGFR2 trafficking and signaling, to study the opposing roles of Gab1 and Gab2 in regulation of Akt phosphorylation in VEGF-stimulated endothelial cells. Trafficking parameters were optimized against 5 previously published in vitro experiments, and the model was validated against six independent published datasets. The model showed agreement at several key nodes, involving scaffolding proteins Gab1, Gab2 and their complexes with Shp2. VEGFR2 recruitment of Gab1 is greater in magnitude, slower, and more sustained than that of Gab2. As Gab2 binds VEGFR2 complexes more transiently than Gab1, VEGFR2 complexes can recycle and continue to participate in other signaling pathways. Correspondingly, the simulation results show a log-linear relationship between a decrease in Akt phosphorylation and Gab1 knockdown while a linear relationship was observed between an increase in Akt phosphorylation and Gab2 knockdown. Global sensitivity analysis demonstrated the importance of initial-concentration ratios of antagonistic molecular species (Gab1/Gab2 and PI3K/Shp2) in determining Akt phosphorylation profiles. It also showed that kinetic parameters responsible for transient Gab2 binding affect the system at specific nodes. This model can be expanded to study multiple signaling contexts and receptor crosstalk and can form a basis for investigation of therapeutic approaches, such as tyrosine kinase inhibitors (TKIs), overexpression of key signaling proteins or knockdown experiments. PMID:23805312

  20. Protein kinase C (PKC) phosphorylates human platelet inositol trisphosphate 5/sup +/-/-phosphomonoesterase (IP/sub 3/ 5'-p'tase) increasing phosphatase activity

    SciTech Connect

    Connolly, T.M.; Majerus, P.W.

    1986-05-01

    Phosphoinositide breakdown in response to thrombin stimulation of human platelets generates messenger molecules that activate PKC (diglyceride) and mobilize Ca/sup + +/ (inositol tris-phosphates). The water soluble products of phospholipase C-mediated metabolism of phosphatidylinositol 4,5-diphosphate are inositol 1,4,5 P/sub 3/ (IP/sub 3/) and inositol 1:2-cyclic 4,5 P/sub 3/ (cIP/sub 3/). A specific phosphatase, IP/sub 3/ 5'-p'tase, cleaves the 5 phosphate from IP/sub 3/ or cIP/sub 3/ to form IP/sub 2/ or cIP/sub 2/ and P/sub i/, none of which mobilizes Ca/sup + +/. Thus, the IP/sub 3/ 5'-p'tase may regulate cellular responses to IP/sub 3/ or cIP/sub 3/. The authors find that IP/sub 3/ 5'-p'tase isolated from human platelets is phosphorylated by rat brain PKC, resulting in a 4-fold increase in IP/sub 3/ 5'-p'tase activity. The authors phosphorylated IP/sub 3/ 5'-p'tase using ..gamma.. /sup 32/P-ATP and found that the labeled enzyme comigrated on SDS-PAGE with the previously described 40K protein phosphorylated in response to thrombin stimulation of platelets. The similarity of the PKC-phosphorylated IP/sub 3/ 5'-p'tase observed in vitro and the thrombin-stimulated phosphorylated 40K protein known to be phosphorylated by PKC in vivo, suggests that these proteins may be the same. These results suggest that platelet Ca/sup + +/ mobilization maybe regulated by PKC phosphorylation of the IP/sub 3/ 5'-p'tase and can explain the observation that phorbol ester treatment of intact human platelets results in decreased production of IP/sub 3/ and decreased Ca/sup + +/ mobilization upon subsequent thrombin addition.

  1. Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells.

    PubMed

    Kuo, Po-Lin; Hsu, Ya-Ling; Cho, Chien-Yu

    2006-12-01

    This study is the first to investigate the anticancer effect of plumbagin in human breast cancer cells. Plumbagin exhibited cell proliferation inhibition by inducing cells to undergo G2-M arrest and autophagic cell death. Blockade of the cell cycle was associated with increased p21/WAF1 expression and Chk2 activation, and reduced amounts of cyclin B1, cyclin A, Cdc2, and Cdc25C. Plumbagin also reduced Cdc2 function by increasing the association of p21/WAF1/Cdc2 complex and the levels of inactivated phospho-Cdc2 and phospho-Cdc25C by Chk2 activation. Plumbagin triggered autophagic cell death but not predominantly apoptosis. Pretreatment of cells with autophagy inhibitor bafilomycin suppressed plumbagin-mediated cell death. We also found that plumbagin inhibited survival signaling through the phosphatidylinositol 3-kinase/AKT signaling pathway by blocking the activation of AKT and downstream targets, including the mammalian target of rapamycin, forkhead transcription factors, and glycogen synthase kinase 3beta. Phosphorylation of both of mammalian target of rapamycin downstream targets, p70 ribosomal protein S6 kinase and 4E-BP1, was also diminished. Overexpression of AKT by AKT cDNA transfection decreased plumbagin-mediated autophagic cell death, whereas reduction of AKT expression by small interfering RNA potentiated the effect of plumbagin, supporting the inhibition of AKT being beneficial to autophagy. Furthermore, suppression of AKT by plumbagin enhanced the activation of Chk2, resulting in increased inactive phosphorylation of Cdc25C and Cdc2. Further investigation revealed that plumbagin inhibition of cell growth was also evident in a nude mouse model. Taken together, these results imply a critical role for AKT inhibition in plumbagin-induced G2-M arrest and autophagy of human breast cancer cells. PMID:17172425

  2. Antagonism of EGFR and HER3 Enhances the Response to Inhibitors of the PI3K-Akt Pathway in Triple-Negative Breast Cancer

    PubMed Central

    Tao, Jessica J.; Castel, Pau; Radosevic-Robin, Nina; Elkabets, Moshe; Auricchio, Neil; Aceto, Nicola; Weitsman, Gregory; Barber, Paul; Vojnovic, Borivoj; Ellis, Haley; Morse, Natasha; Viola-Villegas, Nerissa Therese; Bosch, Ana; Juric, Dejan; Hazra, Saswati; Singh, Sharat; Kim, Phillip; Bergamaschi, Anna; Maheswaran, Shyamala; Ng, Tony; Penault-Llorca, Frédérique; Lewis, Jason S.; Carey, Lisa A.; Perou, Charles M.; Baselga, José; Scaltriti, Maurizio

    2014-01-01

    Both abundant epidermal growth factor receptor (EGFR or ErbB1) and high activity of the phosphatidyl-inositol 3-kinase (PI3K)–Akt pathway are common and therapeutically targeted in triple-negative breast cancer (TNBC). However, activation of another EGFR family member [human epidermal growth factor receptor 3 (HER3) (or ErbB3)] may limit the antitumor effects of these drugs. We found that TNBC cell lines cultured with the EGFR or HER3 ligand EGF or heregulin, respectively, and treated with either an Akt inhibitor (GDC-0068) or a PI3K inhibitor (GDC-0941) had increased abundance and phosphorylation of HER3. The phosphorylation of HER3 and EGFR in response to these treatments was reduced by the addition of a dual EGFR and HER3 inhibitor (MEHD7945A). MEHD7945A also decreased the phosphorylation (and activation) of EGFR and HER3 and the phosphorylation of downstream targets that occurred in response to the combination of EGFR ligands and PI3K-Akt pathway inhibitors. In culture, inhibition of the PI3K-Akt pathway combined with either MEHD7945A or knockdown of HER3 decreased cell proliferation compared with inhibition of the PI3K-Akt pathway alone. Combining either GDC-0068 or GDC-0941 with MEHD7945A inhibited the growth of xenografts derived from TNBC cell lines or from TNBC patient tumors, and this combination treatment was also more effective than combining either GDC-0068 or GDC-0941 with cetuximab, an EGFR-targeted antibody. After therapy with EGFR-targeted antibodies, some patients had residual tumors with increased HER3 abundance and EGFR/HER3 dimerization (an activating interaction). Thus, we propose that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting. PMID:24667376

  3. Chronic hyperammonemia reduces the activity of neuronal nitric oxide synthase in cerebellum by altering its localization and increasing its phosphorylation by calcium-calmodulin kinase II.

    PubMed

    El-Mlili, Nisrin; Rodrigo, Regina; Naghizadeh, Bahareh; Cauli, Omar; Felipo, Vicente

    2008-08-01

    Impaired function of the glutamate-nitric oxide-cGMP pathway contributes to cognitive impairment in hyperammonemia and hepatic encephalopathy. The mechanisms by which hyperammonemia impairs this pathway remain unclear. Understanding these mechanisms would allow designing clinical treatments for cognitive deficits in hepatic encephalopathy. The aims of this work were: (i) to assess whether chronic hyperammonemia in vivo alters basal activity of neuronal nitric oxide synthase (nNOS) in cerebellum and/or its activation in response to NMDA receptor activation and (ii) to analyse the molecular mechanisms by which hyperammonemia induces these alterations. It is shown that hyperammonemia reduces both basal activity of nNOS and its activation following NMDA receptor activation. Reduced basal activity is because of increased phosphorylation in Ser847 (by 69%) which reduces basal activity of nNOS by about 40%. Increased phosphorylation of nNOS in Ser847 is because of increased activity of calcium-calmodulin-dependent protein kinases (CaMKII) which in turn is because of increased phosphorylation at Thr286. Inhibiting CaMKII with KN-62 normalizes phosphorylation of Ser847 and basal NOS activity in hyperammonemic rats, returning to values similar to controls. Reduced activation of nNOS in response to NMDA receptor activation in hyperammonemia is because of altered subcellular localization of nNOS, with reduced amount in post-synaptic membranes and increased amount in the cytosol. PMID:18498443

  4. Agmatine Protects Against 6-OHDA-Induced Apoptosis, and ERK and Akt/GSK Disruption in SH-SY5Y Cells.

    PubMed

    Amiri, Esmat; Ghasemi, Rasoul; Moosavi, Maryam

    2016-08-01

    6-Hydroxydopamine (6-OHDA), a metabolite of dopamine is known to induce dopaminergic cell toxicity which makes that a suitable agent inducing an experimental model of Parkinson's disease (PD). Agmatine has been shown to protect against some cellular and animal PD models. This study was aimed to assess whether agmatine prevents 6-OHDA-induced SH-SY5Y cell death and if yes, then how it affects Akt/glycogen synthesis kinase-3β (GSK-3β) and extracellular signal-regulated kinases (ERK) signals. The cells were treated with different drugs, and their viability was examined via MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay and morphological observation. Western blot studies were done to assess cleaved caspase-3, Akt/GSK-3β, and ERK proteins. 6-OHDA-induced cell death and caspase-3 cleavage, while agmatine prevented those changes. 6-OHDA also decreased the amount of phosphorylated Akt (pAkt)/Akt while increased GSK-3β activity which was prevented by agmatine. Additionally, this toxin increased pERK/ERK ratio which was averted again by agmatine. The PI3/Akt inhibitor, LY294002, impeded the changes induced by agmatine, while ERK inhibitor (PD98059) did not disturb the effects of agmatine, and by itself, it preserved the cells against 6-OHDA toxicity. This study revealed that agmatine is protective in 6-OHDA model of PD and affects Akt/GSK-3β and ERK pathways. PMID:26346882

  5. Guggulsterone Targets Smokeless Tobacco Induced PI3K/Akt Pathway in Head and Neck Cancer Cells

    PubMed Central

    Macha, Muzafar A.; Matta, Ajay; Chauhan, Shyam Singh; Siu, K. W. Michael; Ralhan, Ranju

    2011-01-01

    Background Epidemiological association of head and neck cancer with smokeless tobacco (ST) emphasizes the need to unravel the molecular mechanisms implicated in cancer development, and identify pharmacologically safe agents for early intervention and prevention of disease recurrence. Guggulsterone (GS), a biosafe nutraceutical, inhibits the PI3K/Akt pathway that plays a critical role in HNSCC development. However, the potential of GS to suppress ST and nicotine (major component of ST) induced HNSCC remains unexplored. We hypothesized GS can abrogate the effects of ST and nicotine on apoptosis in HNSCC cells, in part by activation of PI3K/Akt pathway and its downstream targets, Bax and Bad. Methods and Results Our results showed ST and nicotine treatment resulted in activation of PI3K, PDK1, Akt, and its downstream proteins - Raf, GSK3β and pS6 while GS induced a time dependent decrease in activation of PI3K/Akt pathway. ST and nicotine treatment also resulted in induction of Bad and Bax phosphorylation, increased the association of Bad with 14-3-3ζresulting in its sequestration in the cytoplasm of head and neck cancer cells, thus blocking its pro-apoptotic function. Notably, GS pre-treatment inhibited ST/nicotine induced activation of PI3K/Akt pathway, and inhibited the Akt mediated phosphorylation of Bax and Bad. Conclusions In conclusion, GS treatment not only inhibited proliferation, but also induced apoptosis by abrogating the effects of ST / nicotine on PI3K/Akt pathway in head and neck cancer cells. These findings provide a rationale for designing future studies to evaluate the chemopreventive potential of GS in ST / nicotine associated head and neck cancer. PMID:21383988

  6. Mechanism of Akt1 inhibition of breast cancer cell invasionreveals a protumorigenic role for TSC2

    SciTech Connect

    Liu, Hong; Radisky, Derek C.; Nelson, Celeste M.; Zhang, Hui; Fata, Jimmie; Roth, Richard A.; Bissell, Mina J.

    2006-02-07

    Akt1 is frequently upregulated in human tumors, and has been shown to accelerate cell proliferation and to suppress programmed cell death; consequently, inhibiting the activity of Akt1 has been seen as an attractive target for therapeutic intervention. Paradoxically, hyperactivation of the Akt1 oncogene can also prevent the invasive behavior that underlies progression to metastasis. Here we show that overexpression of activated myr-Akt1 in human breast cancer cells phosphorylates and thereby targets the tumor suppressor tuberous sclerosis complex 2 (TSC2) for degradation, leading to reduced Rho-GTPase activity, decreased actin stress fibers and focal adhesions, and reduced motility and invasion. Overexpression of TSC2 rescues the migration phenotype of myr-Akt1-expressing tumor cells, and high levels of TSC2 in breast cancer patients correlate with increased metastasis and reduced survival. These data indicate that the functional properties of genes designated as oncogenes or tumor suppressor genes depends on the context of the cell type and the tissues studied, and suggest the need for caution in designing therapies targeting the function of individual genes in epithelial tissues.

  7. Overexpression of KAI1 induces autophagy and increases MiaPaCa-2 cell survival through the phosphorylation of extracellular signal-regulated kinases

    SciTech Connect

    Wu, Chun-Yan; Yan, Jun; Yang, Yue-Feng; Xiao, Feng-Jun; Li, Qing-Fang; Zhang, Qun-Wei; Wang, Li-Sheng; Guo, Xiao-Zhong; Wang, Hua

    2011-01-21

    Research highlights: {yields} We first investigate the effects of KAI1 on autophagy in MiaPaCa-2 cells. {yields} Our findings demonstrate that KAI1 induces autophagy, which in turn inhibits KAI1-induced apoptosis. {yields} This study also supplies a possible novel therapeutic method for the treatment of pancreatic cancer using autophagy inhibitors. -- Abstract: KAI1, a metastasis-suppressor gene belonging to the tetraspanin family, is known to inhibit cancer metastasis without affecting the primary tumorigenicity by inhibiting the epidermal growth factor (EGF) signaling pathway. Recent studies have shown that hypoxic conditions of solid tumors induce high-level autophagy and KAI1 expression. However, the relationship between autophagy and KAI1 remains unclear. By using transmission electron microscopy, confocal microscopy, and Western blotting, we found that KAI1 can induce autophagy in a dose- and time-dependent manner in the human pancreatic cell line MiaPaCa-2. KAI1-induced autophagy was confirmed by the expression of autophagy-related proteins LC3 and Beclin 1. KAI1 induces autophagy through phosphorylation of extracellular signal-related kinases rather than that of AKT. KAI1-induced autophagy protects MiaPaCa-2 cells from apoptosis and proliferation inhibition partially through the downregulation of poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP) cleavage and caspase-3 activation.

  8. DNA–PKcs–SIN1 complexation mediates low-dose X-ray irradiation (LDI)-induced Akt activation and osteoblast differentiation

    SciTech Connect

    Xu, Yong; Fang, Shi-ji; Zhu, Li-juan; Zhu, Lun-qing; Zhou, Xiao-zhong

    2014-10-24

    H