Science.gov

Sample records for akt phosphorylation levels

  1. Akt phosphorylates and regulates the osteogenic activity of Osterix.

    PubMed

    Choi, You Hee; Jeong, Hyung Min; Jin, Yun-Hye; Li, Hongyan; Yeo, Chang-Yeol; Lee, Kwang-Youl

    2011-08-05

    Osterix (Osx), a zinc-finger transcription factor is required for osteoblast differentiation and new bone formation during embryonic development. Akt is a member of the serine/threonine-specific protein kinase and plays important roles in osteoblast differentiation. The function of Osterix can be also modulated by post-translational modification. But, the precise molecular signaling mechanisms between Osterix and Akt are not known. In this study, we investigated the potential regulation of Osterix function by Akt in osteoblast differentiation. We found that Akt phosphorylates Osterix and that Akt activation increases protein stability, osteogenic activity and transcriptional activity of Osterix. We also found that BMP-2 increases the protein level of Osterix in an Akt activity-dependent manner. These results suggest that Akt activity enhances the osteogenic function of Osterix, at least in part, through protein stabilization and that BMP-2 regulates the osteogenic function of Osterix, at least in part, through Akt.

  2. Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action.

    PubMed

    Trencia, Alessandra; Perfetti, Anna; Cassese, Angela; Vigliotta, Giovanni; Miele, Claudia; Oriente, Francesco; Santopietro, Stefania; Giacco, Ferdinando; Condorelli, Gerolama; Formisano, Pietro; Beguinot, Francesco

    2003-07-01

    The antiapoptotic protein PED/PEA-15 features an Akt phosphorylation motif upstream from Ser(116). In vitro, recombinant PED/PEA-15 was phosphorylated by Akt with a stoichiometry close to 1. Based on Western blotting with specific phospho-Ser(116) PED/PEA-15 antibodies, Akt phosphorylation of PED/PEA-15 occurred mainly at Ser(116). In addition, a mutant of PED/PEA-15 featuring the substitution of Ser(116)-->Gly (PED(S116-->G)) showed 10-fold-decreased phosphorylation by Akt. In intact 293 cells, Akt also induced phosphorylation of PED/PEA-15 at Ser(116). Based on pull-down and coprecipitation assays, PED/PEA-15 specifically bound Akt, independently of Akt activity. Serum activation of Akt as well as BAD phosphorylation by Akt showed no difference in 293 cells transfected with PED/PEA-15 and in untransfected cells (which express no endogenous PED/PEA-15). However, the antiapoptotic action of PED/PEA-15 was almost twofold reduced in PED(S116-->G) compared to that in PED/PEA-15(WT) cells. PED/PEA-15 stability closely paralleled Akt activation by serum in 293 cells. In these cells, the nonphosphorylatable PED(S116-->G) mutant exhibited a degradation rate threefold greater than that observed with wild-type PED/PEA-15. In the U373MG glioma cells, blocking Akt also reduced PED/PEA-15 levels and induced sensitivity to tumor necrosis factor-related apoptosis-inducing ligand apoptosis. Thus, phosphorylation by Akt regulates the antiapoptotic function of PED/PEA-15 at least in part by controlling the stability of PED/PEA-15. In part, Akt survival signaling may be mediated by PED/PEA-15.

  3. Nik-related kinase regulates trophoblast proliferation and placental development by modulating AKT phosphorylation.

    PubMed

    Morioka, Yuka; Nam, Jin-Min; Ohashi, Takashi

    2017-01-01

    Nik-related kinase (Nrk) is a Ser/Thr kinase and was initially discovered as a molecule that was predominantly detected in skeletal muscles during development. A recent study using Nrk-null mice suggested the importance of Nrk in proper placental development; however, the molecular mechanism remains unknown. In this study, we demonstrated that differentiated trophoblasts from murine embryonic stem cells (ESCs) endogenously expressed Nrk and that Nrk disruption led to the enhanced proliferation of differentiated trophoblasts. This phenomenon may reflect the overproliferation of trophoblasts that has been reported in enlarged placentas of Nrk-null mice. Furthermore, we demonstrated that AKT phosphorylation at Ser473 was upregulated in Nrk-null trophoblasts and that inhibition of AKT phosphorylation cancelled the enhanced proliferation observed in differentiated Nrk-null trophoblasts. These results indicated that the upregulation of AKT phosphorylation was the possible cause of enhanced proliferation observed in Nrk-null trophoblasts. The upregulation of AKT phosphorylation was also confirmed in enlarged Nrk-null placentas in vivo, suggesting that proper regulation of AKT by Nrk was important for normal placental development. In addition, our detailed analysis on phosphorylation status of AKT isoforms in newly established trophoblast stem cells (TSCs) revealed that different levels of upregulation of AKT phosphorylation were occurred in Nrk-null TSCs depending on AKT isoforms. These results further support the importance of Nrk in proper development of trophoblast lineage cells and indicate the possible application of TSCs for the analysis of differently regulated activation mechanisms of AKT isoforms.

  4. Akt phosphorylates Tal1 oncoprotein and inhibits its repressor activity.

    PubMed

    Palamarchuk, Alexey; Efanov, Alexey; Maximov, Vadim; Aqeilan, Rami I; Croce, Carlo M; Pekarsky, Yuri

    2005-06-01

    The helix-loop-helix transcription factor Tal1 is required for blood cell development and its activation is a frequent event in T-cell acute lymphoblastic leukemia. The Akt (protein kinase B) kinase is a key player in transduction of antiapoptotic and proliferative signals in T cells. Because Tal1 has a putative Akt phosphorylation site at Thr90, we investigated whether Akt regulates Tal1. Our results show that Akt specifically phosphorylates Thr90 of the Tal1 protein within its transactivation domain in vitro and in vivo. Coimmunoprecipitation experiments showed the presence of Tal1 in Akt immune complexes, suggesting that Tal1 and Akt physically interact. We further showed that phosphorylation of Tal1 by Akt causes redistribution of Tal1 within the nucleus. Using luciferase assay, we showed that phosphorylation of Tal1 by Akt decreased repressor activity of Tal1 on EpB42 (P4.2) promoter. Thus, these data indicate that Akt interacts with Tal1 and regulates Tal1 by phosphorylation at Thr90 in a phosphatidylinositol 3-kinase-dependent manner.

  5. UBE2C induces EMT through Wnt/β-catenin and PI3K/Akt signaling pathways by regulating phosphorylation levels of Aurora-A

    PubMed Central

    Wang, Rui; Song, Yue; Liu, Xi; Wang, Qixue; Wang, Yunfei; Li, Liwei; Kang, Chunsheng; Zhang, Qingyu

    2017-01-01

    The ubiquitin-conjugating enzyme 2C (UBE2C) is the key component in the ubiquitin proteasome system (UPS) by partnering with the anaphase-promoting complex (APC/C). A high UBE2C protein expression level has been reported in various types of human tumors. However, little is known about the precise mechanism by which UBE2C expression is downregulated in gastric cancer. We found in MGC-803 and SGC-7901 gastric cancer cells UBE2C-deficient G2/M phase arrest in the cell cycle and subsequently decreased gastric adenocarcinoma tumorigenesis. In the previous study, we identified Aurora-A (AURKA) as the hub gene of the gastric cancer linkage network based genome-wide association study (eGWAS). Furthermore, knockdown of UBE2C using siRNA markedly reduced the level of phosphorylation AURKA (p-AURKA) via Wnt/β-catenin and PI3K/Akt signaling pathways suppressed the occurrence and development of gastric cancer. Additionally, the expression of E-cadherin was up-regulated and N-cadherin was down-regulated in response to UBE2C knockdown and inhibits epithelial-mesenchymal transition (EMT). Collectively, our data suggest that the activity of AURKA might be regulated by UBE2C through regulating the activity of APC/C. UBE2C may be a new marker in the diagnosis of gastric cancer and may be a potential therapeutic target for the treatment of gastric adenocarcinoma. PMID:28260026

  6. P2X7 receptors stimulate AKT phosphorylation in astrocytes

    PubMed Central

    Jacques-Silva, Maria C; Rodnight, Richard; Lenz, Guido; Liao, Zhongji; Kong, Qiongman; Tran, Minh; Kang, Yuan; Gonzalez, Fernando A; Weisman, Gary A; Neary, Joseph T

    2004-01-01

    Emerging evidence indicates that nucleotide receptors are widely expressed in the nervous system. Here, we present evidence that P2Y and P2X receptors, particularly the P2X7 subtype, are coupled to the phosphoinositide 3-kinase (PI3K)/Akt pathway in astrocytes. P2Y and P2X receptor agonists ATP, uridine 5′-triphosphate (UTP) and 2′,3′-O-(4-benzoyl)-benzoyl ATP (BzATP) stimulated Akt phosphorylation in primary cultures of rat cortical astrocytes. BzATP induced Akt phosphorylation in a concentration- and time-dependent manner, similar to the effect of BzATP on Akt phosphorylation in 1321N1 astrocytoma cells stably transfected with the rat P2X7 receptor. Activation was maximal at 5 – 10 min and was sustained for 60 min; the EC50 for BzATP was approximately 50 μM. In rat cortical astrocytes, the positive effect of BzATP on Akt phosphorylation was independent of glutamate release. The effect of BzATP on Akt phosphorylation in rat cortical astrocytes was significantly reduced by the P2X7 receptor antagonist Brilliant Blue G and the P2X receptor antagonist iso-pyridoxal-5′-phosphate-6-azophenyl-2′,4′-disulfonic acid, but was unaffected by trinitrophenyl-ATP, oxidized ATP, suramin and reactive blue 2. Results with specific inhibitors of signal transduction pathways suggest that extracellular and intracellular calcium, PI3K and a Src family kinase are involved in the BzATP-induced Akt phosphorylation pathway. In conclusion, our data indicate that stimulation of astrocytic P2X7 receptors, as well as other P2 receptors, leads to Akt activation. Thus, signaling by nucleotide receptors in astrocytes may be important in several cellular downstream effects related to the Akt pathway, such as cell cycle and apoptosis regulation, protein synthesis, differentiation and glucose metabolism. PMID:15023862

  7. Akt phosphorylates and regulates Pdcd4 tumor suppressor protein.

    PubMed

    Palamarchuk, Alexey; Efanov, Alexey; Maximov, Vadim; Aqeilan, Rami I; Croce, Carlo M; Pekarsky, Yuri

    2005-12-15

    Programmed cell death 4 (Pdcd4) is a tumor suppressor protein that interacts with eukaryotic initiation factor 4A and inhibits protein synthesis. Pdcd4 also suppresses the transactivation of activator protein-1 (AP-1)-responsive promoters by c-Jun. The Akt (protein kinase B) serine/threonine kinase is a key mediator of phosphoinositide 3-kinase pathway involved in the regulation of cell proliferation, survival, and growth. Because Pdcd4 has two putative Akt phosphorylation sites at Ser(67) and Ser(457), we investigated whether Akt phosphorylates and regulates Pdcd4. Our results show that Akt specifically phosphorylates Ser(67) and Ser(457) residues of Pdcd4 in vitro and in vivo. We further show that phosphorylation of Pdcd4 by Akt causes nuclear translocation of Pdcd4. Using luciferase assay, we show that phosphorylation of Pdcd4 by Akt also causes a significant decrease of the ability of Pdcd4 to interfere with the transactivation of AP-1-responsive promoter by c-Jun.

  8. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    NASA Astrophysics Data System (ADS)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  9. Nik-related kinase regulates trophoblast proliferation and placental development by modulating AKT phosphorylation

    PubMed Central

    Morioka, Yuka; Nam, Jin-Min; Ohashi, Takashi

    2017-01-01

    Nik-related kinase (Nrk) is a Ser/Thr kinase and was initially discovered as a molecule that was predominantly detected in skeletal muscles during development. A recent study using Nrk-null mice suggested the importance of Nrk in proper placental development; however, the molecular mechanism remains unknown. In this study, we demonstrated that differentiated trophoblasts from murine embryonic stem cells (ESCs) endogenously expressed Nrk and that Nrk disruption led to the enhanced proliferation of differentiated trophoblasts. This phenomenon may reflect the overproliferation of trophoblasts that has been reported in enlarged placentas of Nrk-null mice. Furthermore, we demonstrated that AKT phosphorylation at Ser473 was upregulated in Nrk-null trophoblasts and that inhibition of AKT phosphorylation cancelled the enhanced proliferation observed in differentiated Nrk-null trophoblasts. These results indicated that the upregulation of AKT phosphorylation was the possible cause of enhanced proliferation observed in Nrk-null trophoblasts. The upregulation of AKT phosphorylation was also confirmed in enlarged Nrk-null placentas in vivo, suggesting that proper regulation of AKT by Nrk was important for normal placental development. In addition, our detailed analysis on phosphorylation status of AKT isoforms in newly established trophoblast stem cells (TSCs) revealed that different levels of upregulation of AKT phosphorylation were occurred in Nrk-null TSCs depending on AKT isoforms. These results further support the importance of Nrk in proper development of trophoblast lineage cells and indicate the possible application of TSCs for the analysis of differently regulated activation mechanisms of AKT isoforms. PMID:28152035

  10. UBE2C induces EMT through Wnt/β‑catenin and PI3K/Akt signaling pathways by regulating phosphorylation levels of Aurora-A.

    PubMed

    Wang, Rui; Song, Yue; Liu, Xi; Wang, Qixue; Wang, Yunfei; Li, Liwei; Kang, Chunsheng; Zhang, Qingyu

    2017-04-01

    The ubiquitin-conjugating enzyme 2C (UBE2C) is the key component in the ubiquitin proteasome system (UPS) by partnering with the anaphase‑promoting complex (APC/C). A high UBE2C protein expression level has been reported in various types of human tumors. However, little is known about the precise mechanism by which UBE2C expression is downregulated in gastric cancer. We found in MGC‑803 and SGC‑7901 gastric cancer cells UBE2C‑deficient G2/M phase arrest in the cell cycle and subsequently decreased gastric adenocarcinoma tumorigenesis. In the previous study, we identified Aurora-A (AURKA) as the hub gene of the gastric cancer linkage network based genome‑wide association study (eGWAS). Furthermore, knockdown of UBE2C using siRNA markedly reduced the level of phosphorylation AURKA (p‑AURKA) via Wnt/β‑catenin and PI3K/Akt signaling pathways suppressed the occurrence and development of gastric cancer. Additionally, the expression of E‑cadherin was up‑regulated and N-cadherin was downregulated in response to UBE2C knockdown and inhibits epithelial-mesenchymal transition (EMT). Collectively, our data suggest that the activity of AURKA might be regulated by UBE2C through regulating the activity of APC/C. UBE2C may be a new marker in the diagnosis of gastric cancer and may be a potential therapeutic target for the treatment of gastric adenocarcinoma.

  11. Bisdemethoxycurcumin protects endothelial cells against t-BHP-induced cell damage by regulating the phosphorylation level of ERK1/2 and Akt.

    PubMed

    Li, Ying-Bo; Gao, Jian-Li; Lee, Simon Ming-Yuen; Zhang, Qing-Wen; Hoi, Pui-Man; Wang, Yi-Tao

    2011-02-01

    Curcuminoids are the major active components extracted from Curcuma longa and are well known for their antioxidant effects. Previous studies have reported that the antioxidant properties of curcuminoids are mainly attributed to their free radical scavenging abilities. However, whether there are other mechanisms besides the non-enzymatic process and how they are involved, still remains unknown. In the present study, we explored the protective effects of bisdemethoxycurcumin (Cur3) against tert-butyl hydroperoxide (t-BHP)-induced cytotoxicity in human umbilical vein endothelial cells (HUVECs), focusing on the effect of Cur3 on the regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways. The pre-treatment with Cur3 inhibited t-BHP-induced cell damage dose-dependently, which was evident by the increased cell viability and the corresponding decrease in lactate dehydrogenase release. The pre-treatment with Cur3 also attenuated t-BHP-induced cell morphological changes and apoptosis. MAPKs, including p38, c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase 1/2 (ERK1/2), as well as PI3K/Akt have been reported to be involved in proliferation, apoptosis and differentiation under various stress stimulations. The pre-treatment with Cur3 decreased t-BHP-induced ERK1/2 phosphorylation and increased t-BHP-induced Akt phosporylation but did not affect the phosphorylation of p38 or JNK. In addition, the Cur3-induced increase in cell viability was attenuated by the treatment with wortmannin or LY294002, the upstream inhibitors of Akt, and was enhanced by the treatment with 2-[2'-amino-3'-methoxyphenyl]-oxanaphthalen-4-one (PD98059), an upstream inhibitor of ERK1/2. These results suggest that the ERK1/2 and PI3K/Akt signaling pathways could be involved in the protective effects of Cur3 against t-BHP-induced damage in HUVECs.

  12. Akt phosphorylation is essential for nuclear translocation and retention in NGF-stimulated PC12 cells

    SciTech Connect

    Truong Le Xuan Nguyen; Choi, Joung Woo; Lee, Sang Bae; Ye, Keqiang; Woo, Soo-Dong; Lee, Kyung-Hoon; Ahn, Jee-Yin . E-mail: jyahn@med.skku.ac.kr

    2006-10-20

    Nerve growth factor (NGF) elicits Akt translocation into the nucleus, where it phosphorylates nuclear targets. Here, we describe that Akt phosphorylation can promote the nuclear translocation of Akt and is necessary for its nuclear retention. Overexpression of Akt-K179A, T308A, S473A-mutant failed to show either nuclear translocation or nuclear Akt phosphorylation, whereas expression of wild-type counterpart elicited profound Akt phosphorylation and induced nuclear translocation under NGF stimulation. Employing the PI3K inhibitor and a variety of mutants PI3K, we showed that nuclear translocation of Akt was mediated by activation of PI3K, and Akt phosphorylation status in the nucleus required PI3K activity. Thus the activity of PI3K might contribute to the nuclear translocation of Akt, and that Akt phosphorylation is essential for its nuclear retention under NGF stimulation conditions.

  13. Long-term effects of rapamycin treatment on insulin mediated phosphorylation of Akt/PKB and glycogen synthase activity

    SciTech Connect

    Varma, Shailly; Shrivastav, Anuraag; Changela, Sheena; Khandelwal, Ramji L.

    2008-04-01

    Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3{beta} (GSK-3{beta}) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-{alpha} (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.

  14. Phosphorylation-dependent regulation cytosolic localization and oncogenic function of Skp2 by Akt/PKB

    PubMed Central

    Lin, Hui-Kuan; Wang, Guocan; Chen, Zhenbang; Teruya-Feldstein, Julie; Liu, Yan; Chan, Chia-Hsin; Yang, Wei-Lei; Erdjument-Bromage, Hediye; Nakayama, Keiichi I.; Nimer, Stephen; Tempst, Paul; Pandolfi, Pier Paolo

    2010-01-01

    Skp2 is an F-box protein that forms the SCF complex with Skp1 and Cullin-1 to constitute an E3 ligase for ubiquitylation. Ubiquitylation and degradation of the p27 is critical for Skp2-mediated cell cycle entry, and overexpression and cytosolic accumulation of Skp2 have been clearly associated with tumorigenesis although the functional significance of the latter has remained elusive. Here we show that the Akt/PKB interacts with and directly phosphorylates Skp2. We find that Skp2 phosphorylation by Akt triggers SCF complex formation and E3 ligase activity. Importantly, a phosphorylation-defective Skp2 mutant is drastically impaired in its ability to promote cell proliferation and tumorigenesis. Furthermore, we show that Akt-mediated phosphorylation triggers 14-3-3-β-dependent Skp2 relocalization to the cytosol, and we attribute a specific role to cytosolic Skp2 in the positive regulation of cell migration. Finally, we demonstrate that high levels of Akt activation correlate with Skp2 cytosolic accumulation in human cancer specimens. Our results therefore define a novel proto-oncogenic Akt/PKB-dependent signaling pathway. PMID:19270694

  15. TCR-induced Akt serine 473 phosphorylation is regulated by protein kinase C-alpha

    SciTech Connect

    Yang, Lifen; Qiao, Guilin; Ying, Haiyan; Zhang, Jian; Yin, Fei

    2010-09-10

    Research highlights: {yields} Conventional PKC positively regulates TCR-induced phosphorylation of Akt. {yields} PKC-alpha is the PDK-2 responsible for phosphorylating Akt at Ser{sup 473} upon TCR stimulation. {yields} Knockdown of PKC-alpha decreases TCR-induced Akt phosphorylation. -- Abstract: Akt signaling plays a central role in T cell functions, such as proliferation, apoptosis, and regulatory T cell development. Phosphorylation at Ser{sup 473} in the hydrophobic motif, along with Thr{sup 308} in its activation loop, is considered necessary for Akt function. It is widely accepted that phosphoinositide-dependent kinase 1 (PDK-1) phosphorylates Akt at Thr{sup 308}, but the kinase(s) responsible for phosphorylating Akt at Ser{sup 473} (PDK-2) remains elusive. The existence of PDK-2 is considered to be specific to cell type and stimulus. PDK-2 in T cells in response to TCR stimulation has not been clearly defined. In this study, we found that conventional PKC positively regulated TCR-induced Akt Ser{sup 473} phosphorylation. PKC-alpha purified from T cells can phosphorylate Akt at Ser{sup 473} in vitro upon TCR stimulation. Knockdown of PKC-alpha in T-cell-line Jurkat cells reduced TCR-induced phosphorylation of Akt as well as its downstream targets. Thus our results suggest that PKC-alpha is a candidate for PDK-2 in T cells upon TCR stimulation.

  16. HDAC10 promotes lung cancer proliferation via AKT phosphorylation

    PubMed Central

    Wang, Zhantong; Wang, Hsin-tzu; Duan, Baoyu; Ye, Dan; Wang, Chenxin; Jing, Ruiqi; Leng, Ye; Xi, Jiajie; Chen, Wen; Wang, Guiying; Jia, Wenwen; Zhu, Songcheng; Kang, Jiuhong

    2016-01-01

    Histone deacetylase 10 (HDAC10) is a member of the class II HDACs, and its role in cancer is emerging. In this study, we found that HDAC10 is highly expressed in lung cancer tissues. It resides mainly in the cytoplasm of lung cancer cells but resides in the nucleus of adjacent normal cells. Further examinations revealed that HDAC10 resides in the cytoplasm in multiple lung cancer cell lines, including the A549, H358 and H460 cell lines, but mainly resides in the nucleus of normal lung epithelial 16HBE cells. A leucine-rich motif, R505L506L507C508V509A510L511, was identified as its nuclear localization signal (NLS), and a mutant (Mut-505-511) featuring mutations to A at each of its original R and L positions was found to be nuclear-localization defective. Functional analysis revealed that HDAC10 promoted lung cancer cell growth and that its knockdown induced cell cycle arrest and apoptosis. Mechanistic studies showed that HDAC10 knockdown significantly decreased the phosphorylation of AKT at Ser473 and that AKT expression significantly rescued the cell cycle arrest and apoptosis elicited by HDAC10 knockdown. A co-immunoprecipitation assay suggested that HDAC10 interacts with AKT and that inhibition of HDAC10 activity decreases its interaction with and phosphorylation of AKT. Finally, we confirmed that HDAC10 promoted lung cancer proliferation in a mouse model. Our study demonstrated that HDAC10 localizes and functions in the cytoplasm of lung cancer cells, thereby underscoring its potential role in the diagnosis and treatment of lung cancer. PMID:27449083

  17. PARP1 inhibitors attenuate AKT phosphorylation via the upregulation of PHLPP1

    SciTech Connect

    Wang, Shuai; Wang, Huibo; Davis, Ben C.; Liang, Jiyong; Cui, Rutao; Chen, Sai-Juan; Xu, Zhi-Xiang

    2011-08-26

    Highlights: {yields} PARP1 inhibitors cause a cytotoxic effect independent of DNA repair impairment. {yields} PARP1 inhibitors attenuated AKT-FOXO3A signaling by activating PHLPP1. {yields} PHLPP1 regulates the sensitivity of cancer cells to PARP1 inhibitors. -- Abstract: Poly(ADP-ribose) polymerase-1 (PARP1) inhibitors are emerging as an important class of drugs for treating BRCA-deficient cancers. Recent discoveries have shown that PARP1 inhibitors may treat other cancer patients in addition to the relatively small proportion of patients carrying BRCA mutations. However, the additional targets by which PARP1 inhibitor-mediated tumor suppression remain poorly understood. In this study, we show that two PARP1 inhibitors, PJ-34 and 3-AB, attenuate AKT phosphorylation at serine 473 (S473) independent of DNA repair impairment. These inhibitors decrease the AKT-associated phosphorylation of FOXO3A, enhance the nuclear retention of FOXO3A, and activate its transcriptional activity. We further demonstrate that treatment with PJ-34 or 3-AB dramatically increases the level of PHLPP1. Overexpression of PHLPP1 enhances the PARP1 inhibitor-induced downregulation of AKT phosphorylation and increases tumor cell death. In contrast, knockdown of PHLPP1 abrogates the PARP1 inhibitor-mediated AKT inhibition and desensitizes cells to its treatment. Therefore, our findings not only show the robust role of PARP1 inhibitors in AKT inhibition but also develop a novel strategy to increase the effectiveness of cancer treatment via PARP1 inhibitor-induced PHLPP1 upregulation.

  18. A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation.

    PubMed

    Yang, Guang; Murashige, Danielle S; Humphrey, Sean J; James, David E

    2015-08-11

    The mechanistic target of rapamycin complex 2 (mTORC2) regulates cell survival and cytoskeletal organization by phosphorylating its AGC kinase substrates; however, little is known about the regulation of mTORC2 itself. It was previously reported that Akt phosphorylates the mTORC2 subunit SIN1 at T86, activating mTORC2 through a positive feedback loop, though another study reported that S6K phosphorylates SIN1 at the same site, inhibiting mTORC2 activity. We performed extensive analysis of SIN1 phosphorylation upon inhibition of Akt, S6K, and mTOR under diverse cellular contexts, and we found that, in all cell lines and conditions studied, Akt is the major kinase responsible for SIN1 phosphorylation. These findings refine the activation mechanism of the Akt-mTORC2 signaling branch as follows: PDK1 phosphorylates Akt at T308, increasing Akt kinase activity. Akt phosphorylates SIN1 at T86, enhancing mTORC2 kinase activity, which leads to phosphorylation of Akt S473 by mTORC2, thereby catalyzing full activation of Akt.

  19. AKT-phosphorylated FOXO1 suppresses ERK activation and chemoresistance by disrupting IQGAP1-MAPK interaction.

    PubMed

    Pan, Chun-Wu; Jin, Xin; Zhao, Yu; Pan, Yunqian; Yang, Jing; Karnes, R Jeffrey; Zhang, Jun; Wang, Liguo; Huang, Haojie

    2017-03-09

    Nuclear FOXO proteins act as tumor suppressors by transcriptionally activating genes involved in apoptosis and cell cycle arrest, and these anticancer functions are inhibited by AKT-induced phosphorylation and cytoplasmic sequestration of FOXOs. We found that, after AKT-mediated phosphorylation at serine 319, FOXO1 binds to IQGAP1, a hub for activation of the MAPK pathway, and impedes IQGAP1-dependent phosphorylation of ERK1/2 (pERK1/2). Conversely, decreased FOXO1 expression increases pERK1/2 in cancer cell lines and correlates with increased pERK1/2 levels in patient specimens and disease progression. Treatment of cancer cells with PI3K inhibitors or taxane causes FOXO1 localization in the nucleus, increased expression of pERK1/2, and drug resistance. These effects are reversed by administering a small FOXO1-derived phospho-mimicking peptide inhibitor in vitro and in mice. Our results show a tumor suppressor role of AKT-phosphorylated FOXO1 in the cytoplasm and suggest that this function of FOXO1 can be harnessed to overcome chemoresistance in cancer.

  20. Mitomycin C treatment induces resistance and enhanced migration via phosphorylated Akt in aggressive lung cancer cells

    PubMed Central

    Lai, Liang-Chuan; Chuang, Eric Y.; Tsai, Mong-Hsun

    2016-01-01

    Since 1984, mitomycin C (MMC) has been applied in the treatment of non-small-cell lung cancer (NSCLC). MMC-based chemotherapeutic regimens are still under consideration owing to the efficacy and low cost as compared with other second-line regimens in patients with advanced NSCLC. Hence, it is important to investigate whether MMC induces potential negative effects in NSCLC. Here, we found that the malignant lung cancer cells, CL1-2 and CL1-5, were more resistant to MMC than were the parental CL1-0 cells and pre-malignant CL1-1 cells. CL1-2 and CL1-5 cells consistently showed lower sub-G1 fractions post MMC treatment. DNA repair-related proteins were not induced more in CL1-5 than in CL1-0 cells, but the levels of endogenous and MMC-induced phosphorylated Akt (p-Akt) were higher in CL1-5 cells. Administering a p-Akt inhibitor reduced the MMC resistance, demonstrating that p-Akt is important in the MMC resistance of CL1-5 cells. Furthermore, we revealed that cell migration was enhanced by MMC but lowered by a p-Akt inhibitor in CL1-5 cells. This study suggests that in CL1-5 cells, the activity of p-Akt, rather than DNA repair mechanisms, may underlie the resistance to MMC and enhance the cells' migration abilities after MMC treatment. PMID:27833080

  1. Increased levels of conditioned fear and avoidance behavior coincide with changes in phosphorylation of the protein kinase B (AKT) within the amygdala in a mouse model of extremes in trait anxiety.

    PubMed

    Yen, Yi-Chun; Mauch, Christoph P; Dahlhoff, Maik; Micale, Vincenzo; Bunck, Mirjam; Sartori, Simone B; Singewald, Nicolas; Landgraf, Rainer; Wotjak, Carsten T

    2012-07-01

    Patients diagnosed for anxiety disorders often display faster acquisition and slower extinction of learned fear. To gain further insights into the mechanisms underlying these phenomenona, we studied conditioned fear in mice originating form a bi-directional selective breeding approach, which is based on elevated plus-maze behavior and results in CD1-derived high (HAB), normal (NAB), and low (LAB) anxiety-related behavior mice. HAB mice displayed pronounced cued-conditioned fear compared to NAB/CD1 and LAB mice that coincided with increased phosphorylation of the protein kinase B (AKT) in the basolateral amygdala 45 min after conditioning. No similar changes were observed after non-associative immediate shock presentations. Fear extinction of recent but not older fear memories was preserved. However, HAB mice were more prone to relapse of conditioned fear with the passage of time. HAB mice also displayed higher levels of contextual fear compared to NAB and LAB mice and exaggerated avoidance following step-down avoidance training. Interestingly, HAB mice showed lower and LAB mice higher levels of acoustic startle responses compared to NAB controls. The increase in arousal observed in LAB mice coincided with the general absence of conditioned freezing. Taken together, our results suggest that the genetic predisposition to high anxiety-related behavior may increase the risk of forming traumatic memories, phobic-like fear and avoidance behavior following aversive encounters, with a clear bias towards passive coping styles. In contrast, genetic predisposition to low anxiety-related and high risk-taking behavior seems to be associated with an increase in active coping styles. Our data imply changes in AKT phosphorylation as a therapeutic target for the prevention of exaggerated fear memories.

  2. High constitutive Akt2 activity in U937 promonocytes: effective reduction of Akt2 phosphorylation by the histamine H2-receptor and the β2-adrenergic receptor.

    PubMed

    Werner, Kristin; Neumann, Detlef; Seifert, Roland

    2016-01-01

    Histamine (HA) is approved for the treatment of acute myeloid leukemia (AML). Its antileukemic activity is related to histamine H2-receptor (H2R)-mediated inhibition of reactive oxygen species (ROS) production in myeloid cells facilitating survival of antineoplastic lymphocytes. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which plays a crucial role in cell survival and proliferation, is constitutively activated in leukemic cells of most AML patients resulting in poor survival prognosis. In a proof-of-principle experiment using a human phosphorylated mitogen-activated protein kinase (MAPK) array, we found high phosphorylation levels of Akt2 in U937 promonocytes that was abrogated by HA or selective H2R agonists. The H2R and the β2-adrenergic receptor (β2AR) are Gs-protein-coupled receptors. Stimulation results in adenylyl cyclase activation followed by generation of the second messenger adenosine 3′,5′-cyclic monophosphate (cAMP). In our present study, we evaluated the pharmacological profile of the H2R and the β2AR regarding Akt2 phosphorylation at Ser474 via western blot analysis and ELISA and cAMP accumulation via HPLC-MS/MS in U937 promonocytes. H2R and β2AR agonists concentration-dependently decreased Akt2 phosphorylation at Ser474. Deviations of potencies and efficacies of agonists in Akt2 phosphorylation and cAMP accumulation assays indicated participation of cAMP-independent signaling in GPCR-induced reduction of Akt2 phosphorylation. Accordingly, our study supports the concept of functional selectivity of the H2R and the β2AR in U937 promonocytes. In summary, we extended the antileukemic mechanism of HA via H2R and revealed the potential of β2AR agonists, which are already approved in the treatment of bronchial asthma and chronic obstructive pulmonary disease, as antileukemic drugs.

  3. Capillary Isoelectric Focusing of Akt Isoforms Identifies Highly Dynamic Phosphorylation in Neuronal Cells and Brain Tissue*

    PubMed Central

    Schrötter, Sandra; Leondaritis, George; Eickholt, Britta J.

    2016-01-01

    The PI3K/PTEN/Akt pathway has been established as a core signaling pathway that is crucial for the integration of neurons into neuronal circuits and the maintenance of the architecture and function of neurons in the adult brain. Akt1–3 kinases are specifically activated by two phosphorylation events on residues Thr308 and Ser473 upon growth factor signaling, which subsequently phosphorylate a vast cohort of downstream targets. However, we still lack a clear understanding of the complexity and regulation of isoform specificity within the PI3K/PTEN/Akt pathway. We utilized a capillary-based isoelectric focusing method to study dynamics of Akt phosphorylation in neuronal cells and the developing brain and identify previously undescribed features of Akt phosphorylation and activation. First, we show that the accumulation of multiple phosphorylation events on Akt forms occur concurrently with Ser473 and Thr308 phosphorylation upon acute PI3K activation and provide evidence for uncoupling of Ser473 and Thr308 phosphorylation, as well as differential sensitivities of Akt1 forms upon PI3K inhibition. Second, we detect a transient shift in Akt isoform phosphorylation and activation pattern during early postnatal brain development, at stages corresponding to synapse development and maturation. Third, we show differential sensitivities of Ser473-Akt species to PTEN deletion in mature neurons, which suggests inherent differences in the Akt pools that are accessible to growth factors as compared with the pools that are controlled by PTEN. Our study demonstrates the presence of complex phosphorylation events of Akt in a time- and signal-dependent manner in neurons. PMID:26945062

  4. Capillary Isoelectric Focusing of Akt Isoforms Identifies Highly Dynamic Phosphorylation in Neuronal Cells and Brain Tissue.

    PubMed

    Schrötter, Sandra; Leondaritis, George; Eickholt, Britta J

    2016-05-06

    The PI3K/PTEN/Akt pathway has been established as a core signaling pathway that is crucial for the integration of neurons into neuronal circuits and the maintenance of the architecture and function of neurons in the adult brain. Akt1-3 kinases are specifically activated by two phosphorylation events on residues Thr(308) and Ser(473) upon growth factor signaling, which subsequently phosphorylate a vast cohort of downstream targets. However, we still lack a clear understanding of the complexity and regulation of isoform specificity within the PI3K/PTEN/Akt pathway. We utilized a capillary-based isoelectric focusing method to study dynamics of Akt phosphorylation in neuronal cells and the developing brain and identify previously undescribed features of Akt phosphorylation and activation. First, we show that the accumulation of multiple phosphorylation events on Akt forms occur concurrently with Ser(473) and Thr(308) phosphorylation upon acute PI3K activation and provide evidence for uncoupling of Ser(473) and Thr(308) phosphorylation, as well as differential sensitivities of Akt1 forms upon PI3K inhibition. Second, we detect a transient shift in Akt isoform phosphorylation and activation pattern during early postnatal brain development, at stages corresponding to synapse development and maturation. Third, we show differential sensitivities of Ser(473)-Akt species to PTEN deletion in mature neurons, which suggests inherent differences in the Akt pools that are accessible to growth factors as compared with the pools that are controlled by PTEN. Our study demonstrates the presence of complex phosphorylation events of Akt in a time- and signal-dependent manner in neurons.

  5. PDK1 selectively phosphorylates Thr(308) on Akt and contributes to human platelet functional responses

    PubMed Central

    Dangelmaier, Carol; Manne, Bhanu Kanth; Liverani, Elizabetta; Jin, Jianguo; Bray, Paul; Kunapuli, Satya P.

    2014-01-01

    Summary 3-phosphoinositide-dependent protein kinase 1 (PDK1), a member of the protein A,G and C (AGC) family of proteins, is a Ser/Thr protein kinase that can phosphorylate and activate other protein kinases from the AGC family, including Akt at Thr308, all of which play important roles in mediating cellular responses. The functional role of PDK1 or the importance of phosphorylation of Akt on Thr308 for its activity has not been investigated in human platelets. In this study, we tested two pharmacological inhibitors of PDK1, BX795 and BX912, to assess the role of Thr308 phosphorylation on Akt. PAR4-induced phosphorylation of Akt onThr308 was inhibited by BX795 without affecting phosphorylation of Akt on Ser473. The lack of Thr308 phosphorylation on Akt also led to the inhibition of PAR4-induced phosphorylation of two downstream substrates of Akt, viz. GSK3β and PRAS40. In vitro kinase activity of Akt was completely abolished if Thr308 on Akt was not phosphorylated. BX795 caused inhibition of 2-MeSADP-induced or collagen-induced aggregation, ATP secretion and thromboxane generation. Primary aggregation induced by 2-MeSADP was also inhibited in the presence of BX795. PDK1 inhibition also resulted in reduced clot retraction indicating its role in outside-in signalling. These results demonstrate that PDK1 selectively phosphorylates Thr308 on Akt thereby regulating its activity and plays a positive regulatory role in platelet physiological responses. PMID:24352480

  6. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    SciTech Connect

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li{sub 2}CO{sub 3} significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li{sub 2}CO{sub 3} did not affect PI3K-mediated PI(3,4,5)P{sub 3} production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li{sub 2}CO{sub 3} on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li{sub 2}CO{sub 3} significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li{sub 2}CO{sub 3} significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity.

  7. PTEN-inhibition by zinc ions augments interleukin-2-mediated Akt phosphorylation.

    PubMed

    Plum, Laura Marie; Brieger, Anne; Engelhardt, Gabriela; Hebel, Silke; Nessel, Andreas; Arlt, Marcus; Kaltenberg, Jennifer; Schwaneberg, Ulrich; Huber, Michael; Rink, Lothar; Haase, Hajo

    2014-07-01

    Free zinc ions (Zn(2+)) participate in several signaling pathways. The aim of the present study was to investigate a potential involvement of Zn(2+) in the PI3K/Akt pathway of interleukin (IL)-2 signaling in T-cells. The IL-2 receptor triggers three major pathways, ERK1/2, JAK/STAT5, and PI3K/Akt. We have previously shown that an IL-2-mediated release of lysosomal Zn(2+) into the cytoplasm activates ERK1/2, but not STAT5. In the present study, Akt phosphorylation in response to IL-2 was abrogated by the Zn(2+) chelator N,N,N',N'-tetrakis-2(pyridyl-methyl)ethylenediamine, and was induced by treatment with Zn(2+) and the ionophore pyrithione. The latter were ineffective in cells that were treated with siRNA against the phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a phosphatase that degrades the lipid second messenger PI(3,4,5)P3, which is produced by PI3K and leads to activation of Akt. Inhibition of recombinant PTEN by Zn(2+)in vitro yielded an IC50 of 0.59 nM. Considering a resting free cytoplasmic Zn(2+) level of 0.2 nM in the T-cell line CTLL-2, this seems ideally suited for dynamic regulation by cellular Zn(2+). Oxidation with H2O2 and supplementation with Zn(2+) led to similar changes in the CD spectrum of PTEN. Moreover, Zn(2+) partially prevented the oxidation of cysteines 71 and 124. Hence, we hypothesize that zinc signals affect the IL-2-dependent PI3K/Akt pathway by inhibiting the negative regulator PTEN through binding with a sub-nanomolar affinity to cysteine residues that are essential for its catalytic activity.

  8. Akt Phosphorylates Wnt Coactivator and Chromatin Effector Pygo2 at Serine 48 to Antagonize Its Ubiquitin/Proteasome-mediated Degradation*

    PubMed Central

    Li, Qiuling; Li, Yuewei; Gu, Bingnan; Fang, Lei; Zhou, Pengbo; Bao, Shilai; Huang, Lan; Dai, Xing

    2015-01-01

    Pygopus 2 (Pygo2/PYGO2) is an evolutionarily conserved coactivator and chromatin effector in the Wnt/β-catenin signaling pathway that regulates cell growth and differentiation in various normal and malignant tissues. Although PYGO2 is highly overexpressed in a number of human cancers, the molecular mechanism underlying its deregulation is largely unknown. Here we report that Pygo2 protein is degraded through the ubiquitin/proteasome pathway and is posttranslationally stabilized through phosphorylation by activated phosphatidylinositol 3-kinase/Akt signaling. Specifically, Pygo2 is stabilized upon inhibition of the proteasome, and its intracellular level is regulated by Cullin 4 (Cul4) and DNA damage-binding protein 1 (DDB1), components of the Cul4-DDB1 E3 ubiquitin ligase complex. Furthermore, Pygo2 is phosphorylated at multiple residues, and Akt-mediated phosphorylation at serine 48 leads to its decreased ubiquitylation and increased stability. Finally, we provide evidence that Akt and its upstream growth factors act in parallel with Wnt to stabilize Pygo2. Taken together, our findings highlight chromatin regulator Pygo2 as a common node downstream of oncogenic Wnt and Akt signaling pathways and underscore posttranslational modification, particularly phosphorylation and ubiquitylation, as a significant mode of regulation of Pygo2 protein expression. PMID:26170450

  9. Simvastatin Attenuation of Cerebral Vasospasm After Subarachnoid Hemorrhage in Rats Via Increased Phosphorylation of Akt and Endothelial Nitric Oxide Synthase

    PubMed Central

    Sugawara, Takashi; Ayer, Robert; Jadhav, Vikram; Chen, Wanqiu; Tsubokawa, Tamiji; Zhang, John H.

    2009-01-01

    The mechanisms involved in simvastatin-mediated attenuation of cerebral vasospasm after subarachnoid hemorrhage (SAH) are unclear. We investigated the role of the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway and endothelial nitric oxide synthase (eNOS) in the cerebral vasculature in statin-mediated attenuation of cerebral vasospasm using wortmannin, an irreversible pharmacological PI3K inhibitor, and a rat SAH endovascular perforation model. Simvastatin was administered intraperitoneally in two dosages (1 mg/kg and 20 mg/kg) at 0.5, 24, and 48 hr after SAH and histological parameters of ipsilateral intracranial carotid artery (ICA) were assessed at 24 and 72 hr. SAH significantly decreased ICA diameter and perimeter while increasing wall thickness at both 24 and 72 hr. High-dosage simvastatin prevented the reduction of ICA diameter and perimeter following SAH, whereas both high and low dosages reduced wall thickness significantly at 24 and 72 hr. The effects of simvastatin were significantly reversed by wortmannin. High-dosage simvastatin increased pAkt and peNOS (phosphorylated forms) levels without increasing Akt and eNOS expression compared with the SAH group and also improved neurological deficits at 24 and 72 hr. Simvastatin did not affect protein levels by itself compared with untreated sham group. The present study elucidates the critical role of the PI3K activation leading to phosphorylation of Akt and eNOS in simvastatin-mediated attenuation of cerebral vasospasm after SAH. PMID:18683242

  10. Akt-dependent Girdin phosphorylation regulates repair processes after acute myocardial infarction.

    PubMed

    Hayano, Shinji; Takefuji, Mikito; Maeda, Kengo; Noda, Tomonori; Ichimiya, Hitoshi; Kobayashi, Koichi; Enomoto, Atsushi; Asai, Naoya; Takahashi, Masahide; Murohara, Toyoaki

    2015-11-01

    Myocardial infarction is a leading cause of death, and cardiac rupture following myocardial infarction leads to extremely poor prognostic feature. A large body of evidence suggests that Akt is involved in several cardiac diseases. We previously reported that Akt-mediated Girdin phosphorylation is essential for angiogenesis and neointima formation. The role of Girdin expression and phosphorylation in myocardial infarction, however, is not understood. Therefore, we employed Girdin-deficient mice and Girdin S1416A knock-in (Girdin(SA/SA)) mice, replacing the Akt phosphorylation site with alanine, to address this question. We found that Girdin was expressed and phosphorylated in cardiac fibroblasts in vitro and that its phosphorylation was crucial for the proliferation and migration of cardiac fibroblasts. In vivo, Girdin was localized in non-cardiomyocyte interstitial cells and phosphorylated in α-smooth muscle actin-positive cells, which are likely to be cardiac myofibroblasts. In an acute myocardial infarction model, Girdin(SA/SA) suppressed the accumulation and proliferation of cardiac myofibroblasts in the infarcted area. Furthermore, lower collagen deposition in Girdin(SA/SA) mice impaired cardiac repair and resulted in increased mortality attributed to cardiac rupture. These findings suggest an important role of Girdin phosphorylation at serine 1416 in cardiac repair after acute myocardial infarction and provide insights into the complex mechanism of cardiac rupture through the Akt/Girdin-mediated regulation of cardiac myofibroblasts.

  11. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    SciTech Connect

    Roffe, Suzy; Hagai, Yosey; Pines, Mark; Halevy, Orna

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  12. Insulin-like growth factor-I-stimulated Akt phosphorylation and oligodendrocyte progenitor cell survival require cholesterol-enriched membranes.

    PubMed

    Romanelli, Robert J; Mahajan, Kedar R; Fulmer, Clifton G; Wood, Teresa L

    2009-11-15

    Previously we showed that insulin-like growth factor-I (IGF-I) promotes sustained phosphorylation of Akt in oligodendrocyte progenitor cells (OPCs) and that Akt phosphorylation is required for survival of these cells. The direct mechanisms, however, by which IGF-I promotes Akt phosphorylation are currently undefined. Recently, cholesterol-enriched membranes (CEMs) have been implicated in regulation of growth factor-mediated activation of the PI3K/Akt pathway and survival of mature oligodendrocytes; however, less is know about their role in OPC survival. In the present study, we investigate the role of CEMs in IGF-I-mediated Akt phosphorylation and OPC survival. We report that acute disruption of membrane cholesterol with methyl-beta-cyclodextrin results in altered OPC morphology and inhibition of IGF-I-mediated Akt phosphorylation. We also report that long-term inhibition of cholesterol biosynthesis with 25-hydroxycholesterol blocks IGF-I stimulated Akt phosphorylation and cell survival. Moreover, we show that the PI3K regulatory subunit, p85, Akt, and the IGF-IR are sequestered within cholesterol-enriched fractions in steady-state stimulation of the IGF-IR and that phosphorylated Akt and IGF-IR are present in cholesterol-enriched fractions with IGF-I stimulation. Together, the results of these studies support a role for CEMs or "lipid rafts" in IGF-I-mediated Akt phosphorylation and provide a better understanding of the mechanisms by which IGF-I promotes OPC survival.

  13. AGE/RAGE/Akt pathway contributes to prostate cancer cell proliferation by promoting Rb phosphorylation and degradation.

    PubMed

    Bao, Ji-Ming; He, Min-Yi; Liu, Ya-Wei; Lu, Yong-Jie; Hong, Ying-Qia; Luo, Hai-Hua; Ren, Zhong-Lu; Zhao, Shan-Chao; Jiang, Yong

    2015-01-01

    Metabolomic research has revealed that metabolites play an important role in prostate cancer development and progression. Previous studies have suggested that prostate cancer cell proliferation is induced by advanced glycation end products (AGEs) exposure, but the mechanism of this induction remains unknown. This study investigated the molecular mechanisms underlying the proliferative response of prostate cancer cell to the interaction of AGEs and the receptor for advanced glycation end products (RAGE). To investigate this mechanism, we used Western blotting to evaluate the responses of the retinoblastoma (Rb), p-Rb and PI3K/Akt pathway to AGEs stimulation. We also examined the effect of knocking down Rb and blocking the PI3K/Akt pathway on AGEs induced PC-3 cell proliferation. Our results indicated that AGE-RAGE interaction enhanced Rb phosphorylation and subsequently decreased total Rb levels. Bioinformatics analysis further indicated a negative correlation between RAGE and RB1 expression in prostate cancer tissue. Furthermore, we observed that AGEs stimulation activated the PI3K/Akt signaling pathway and that blocking PI3K/Akt signaling abrogated AGEs-induced cell proliferation. We report, for the first time, that AGE-RAGE interaction enhances prostate cancer cell proliferation by phosphorylation of Rb via the PI3K/Akt signaling pathway.

  14. The myocardial response to adrenomedullin involves increased cAMP generation as well as augmented Akt phosphorylation.

    PubMed

    Pan, Chun Shui; Jin, Shao Ju; Cao, Chang Qi; Zhao, Jing; Zhang, Jing; Wang, Xian; Tang, Chao Shu; Qi, Yong Fen

    2007-04-01

    In this work we aimed to observe (1) the changes in adrenomedullin (AM) and its receptor system - calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) - in myocardial ischemic injury and (2) the response of injuried myocardia to AM and the phosphorylation of Akt to illustrate the protective mechanism of AM in ischemic myocardia. Male SD rats were subcutaneously injected with isoproterenol (ISO) to induce myocardial ischemia. The mRNA levels of AM, CRLR, RAMP1, RAMP2 and RAMP3 were determined by RT-PCR. Protein levels of Akt, phosphor-Akt, CRLR, RAMP1, RAMP2 and RAMP3 were assayed by Western blot. Results showed that, compared with that of the controls, ISO-treated rats showed lower cardiac function and myocardial injury. The mRNA relative amount of AM, CRLR, RAMP1, RAMP2 and RAMP3 in the myocardia of ISO-treated rats was increased. The elevated mRNA levels of CRLR, RAMP1, RAMP2 and RAMP3 were positively correlated with AM content in injured myocardia. The protein levels of CRLR, RAMP1, RAMP2 and RAMP3 in injured myocardia were increased compared with that of control myocardia. AM-stimulated cAMP generation in myocardia was elevated in the ISO group, and was antagonized by AM(22-52) and CGRP(8-37). Western blot analyses revealed that AM significantly enhanced Akt phosphorylation in injured myocardia, which was blocked by pretreatment with AM(22-52) or CGRP(8-37). Ischemia-injured myocardia hyper-expressed AM and its receptors - CRLR, RAMP1, RAMP2 and RAMP3 - and the response of ischemic myocardia to AM was potentiated, and the level of Akt phosphorylation was also increased, which suggests that changes in cardiac AM/AM receptor might play an important role in the pathogenesis of myocardial ischemic injury.

  15. Akt attenuates apoptotic death through phosphorylation of H2A under hydrogen peroxide-induced oxidative stress in PC12 cells and hippocampal neurons

    PubMed Central

    Park, Ji Hye; Kim, Chung Kwon; Lee, Sang Bae; Lee, Kyung-Hoon; Cho, Sung-Woo; Ahn, Jee-Yin

    2016-01-01

    Although the essential role of protein kinase B (PKB)/Akt in cell survival signaling has been clearly established, the mechanism by which Akt mediates the cellular response to hydrogen peroxide (H2O2)-induced oxidative stress remains unclear. We demonstrated that Akt attenuated neuronal apoptosis through direct association with histone 2A (H2A) and phosphorylation of H2A at threonine 17. At early time points during H2O2 exposure of PC12 cells and primary hippocampal neurons, when the cells can tolerate the level of DNA damage, Akt was activated and phosphorylated H2A, leading to inhibition of apoptotic death. At later time points, Akt delivered the NAD+-dependent protein deacetylase Sirtuin 2 (Sirt 2) to the vicinity of phosphorylated H2A in response to irreversible DNA damage, thereby inducing H2A deacetylation and subsequently leading to apoptotic death. Ectopically expressed T17A-substituted H2A minimally interacted with Akt and failed to prevent apoptosis under oxidative stress. Thus Akt-mediated H2A phosphorylation has an anti-apoptotic function in conditions of H2O2-induced oxidative stress in neurons and PC12 cells. PMID:26899247

  16. Phosphorylation of GSK3α/β correlates with activation of AKT and is prognostic for poor overall survival in acute myeloid leukemia patients

    PubMed Central

    Ruvolo, Peter P.; Qiu, YiHua; Coombes, Kevin R.; Zhang, Nianxiang; Neeley, E. Shannon; Ruvolo, Vivian R.; Hail, Numsen; Borthakur, Gautam; Konopleva, Marina; Andreeff, Michael; Kornblau, Steven M.

    2015-01-01

    Background Acute myeloid leukemia (AML) patients with highly active AKT tend to do poorly. Cell cycle arrest and apoptosis are tightly regulated by AKT via phosphorylation of GSK3α and β isoforms which inactivates these kinases. In the current study we examine the prognostic role of AKT mediated GSK3 phosphorylation in AML. Methods We analyzed GSK3α/β phosphorylation by reverse phase protein analysis (RPPA) in a cohort of 511 acute myeloid leukemia (AML) patients. Levels of phosphorylated GSK3 were correlated with patient characteristics including survival and with expression of other proteins important in AML cell survival. Results High levels of p-GSK3α/β correlated with adverse overall survival and a lower incidence of complete remission duration in patients with intermediate cytogenetics, but not in those with unfavorable cytogenetics. Intermediate cytogenetic patients with FLT3 mutation also fared better respectively when p-GSK3α/β levels were lower. Phosphorylated GSK3α/β expression was compared and contrasted with that of 229 related cell cycle arrest and/or apoptosis proteins. Consistent with p-GSK3α/β as an indicator of AKT activation, RPPA revealed that p-GSK3α/β positively correlated with phosphorylation of AKT, BAD, and P70S6K, and negatively correlated with β-catenin and FOXO3A. PKCδ also positively correlated with p-GSK3α/β expression, suggesting crosstalk between the AKT and PKC signaling pathways in AML cells. Conclusions These findings suggest that AKT-mediated phosphorylation of GSK3α/β may be beneficial to AML cell survival, and hence detrimental to the overall survival of AML patients. Intrinsically, p-GSK3α/β may serve as an important adverse prognostic factor for a subset of AML patients. PMID:26674329

  17. Coffee improves insulin-stimulated Akt phosphorylation in liver and skeletal muscle in diabetic KK-A(y) mice.

    PubMed

    Kobayashi, Misato; Matsuda, Yuji; Iwai, Hiroshi; Hiramitsu, Masanori; Inoue, Takashi; Katagiri, Takao; Yamashita, Yoko; Ashida, Hitoshi; Murai, Atsushi; Horio, Fumihiko

    2012-01-01

    Coffee has an anti-diabetic effect, specifically the amelioration of both hyperglycemia and insulin resistance, in KK-A(y) mice, a type 2 diabetes animal model. To investigate coffee's effect on insulin signaling in liver, skeletal muscle, and adipose tissue (epididymal fat), we assayed the tyrosine phosphorylation of insulin receptor (IR) and serine phosphorylation of Akt. In Expt. 1, we assayed insulin signaling under nonfasting conditions in KK-A(y) mice that ingested water or coffee for 4 wk. Coffee ingestion ameliorated the development of hyperglycemia but did not affect insulin signaling in liver or skeletal muscle under such conditions. In Expt. 2, we assayed insulin signaling under basal and insulin-stimulated conditions in KK-A(y) mice that ingested water or coffee for 3 wk. The levels of tyrosine phosphorylation of insulin receptor in response to insulin injection in insulin-sensitive tissues were not different between mice that drank water and those that drank coffee. Coffee ingestion significantly increased the insulin-induced serine phosphorylation of Akt in liver and skeletal muscle, but not in epididymal fat, of KK-A(y) mice. Our results also indicated that coffee ingestion may contribute to the improvement of insulin resistance and hyperglycemia in KK-A(y) mice via the activation of Akt in insulin signaling in liver and skeletal muscle.

  18. Hepcidin inhibits Smad3 phosphorylation in hepatic stellate cells by impeding ferroportin-mediated regulation of Akt

    PubMed Central

    Han, Chang Yeob; Koo, Ja Hyun; Kim, Sung Hoon; Gardenghi, Sara; Rivella, Stefano; Strnad, Pavel; Hwang, Se Jin; Kim, Sang Geon

    2016-01-01

    Hepatic stellate cell (HSC) activation on liver injury facilitates fibrosis. Hepatokines affecting HSCs are largely unknown. Here we show that hepcidin inhibits HSC activation and ameliorates liver fibrosis. We observe that hepcidin levels are inversely correlated with exacerbation of fibrosis in patients, and also confirm the relationship in animal models. Adenoviral delivery of hepcidin to mice attenuates liver fibrosis induced by CCl4 treatment or bile duct ligation. In cell-based assays, either hepcidin from hepatocytes or exogenous hepcidin suppresses HSC activation by inhibiting TGFβ1-mediated Smad3 phosphorylation via Akt. In activated HSCs, ferroportin is upregulated, which can be prevented by hepcidin treatment. Similarly, ferroportin knockdown in HSCs prohibits TGFβ1-inducible Smad3 phosphorylation and increases Akt phosphorylation, whereas ferroportin over-expression has the opposite effect. HSC-specific ferroportin deletion also ameliorates liver fibrosis. In summary, hepcidin suppresses liver fibrosis by impeding TGFβ1-induced Smad3 phosphorylation in HSCs, which depends on Akt activated by a deficiency of ferroportin. PMID:28004654

  19. Aspirin enhances the cytotoxic activity of bortezomib against myeloma cells via suppression of Bcl-2, survivin and phosphorylation of AKT

    PubMed Central

    Ding, Jiang-Hua; Yuan, Li-Ya; Chen, Guo-An

    2017-01-01

    In our previous study, it was found that aspirin (ASA) exerted antimyeloma actions in vivo and in vitro. The resistance to bortezomib (BTZ) in multiple myeloma (MM) is partly due to AKT activation and the upregulation of survivin induced by BTZ, which are the targets of ASA in gastric and ovarian cancer, respectively. Thus, the present study investigated the interaction between ASA and BTZ in MM and further clarified the underlying mechanisms. MM1.S and RPMI-8226 cell lines harboring the N- and K-Ras mutations, respectively, were treated with 2.5 mM ASA, 10 nM BTZ and ASA+BTZ for different durations. The proliferation and apoptosis of the cells were determined, and the underlying mechanisms governing the interaction of ASA and BTZ were examined in the MM cells. Treatment with ASA+BTZ caused higher rates of proliferative inhibition and apoptosis in the MM1.S and RPMI-8226 cells in time-dependent manner, compared with either agent alone. A drug interaction assay revealed the additive effect of ASA and BTZ on the myeloma cells. ASA alone inhibited the levels of phosphorylated AKT (p-AKT) and survivin, whereas BTZ alone augmented the levels of p-AKT and survivin. Of note, ASA markedly decreased the upregulation of p-AKT and survivin induced by BTZ. Treatment with ASA+BTZ significantly suppressed the level of Bcl-2, compared with either agent alone. ASA may potentiate the antimyeloma activity of BTZ against myeloma cells via suppression of AKT phosphorylation, survivin and Bcl-2, indicating the potential of ASA+BTZ in treating MM, particularly for cases of BTZ-refractory/relapsed MM. PMID:28356941

  20. Low Phosphorylated AKT Expression in Laryngeal Cancer: Indications for a Higher Metastatic Risk

    SciTech Connect

    Nijkamp, Monique M.; Span, Paul N.; Stegeman, Hanneke; Grénman, Reidar; Kaanders, Johannes H.A.M.; Bussink, Johan

    2013-10-01

    Purpose: To validate the association of phosphorylated (p)AKT with lymph node metastasis in an independent, homogeneous cohort of patients with larynx cancer. Methods and Materials: Seventy-eight patients with laryngeal cancer were included. Epidermal growth factor receptor, pAKT, vimentin, E-cadherin, hypoxia, and blood vessels were visualized in biopsy material using immunohistochemistry. Positive tumor areas and spatial relationships between markers were assessed by automated image analysis. In 6 laryngeal cancer cell lines, E-cadherin and vimentin messenger RNA was quantified by real-time polymerase chain reaction and by immunohistochemistry before and after treatment with the pAKT inhibitor MK-2206. Results: A significant correlation was found between low pAKT in the primary tumor and positive lymph node status (P=.0005). Tumors with lymph node metastases had an approximately 10-fold lower median pAKT value compared with tumors without lymph node metastases, albeit with large intertumor variations, validating our previous results. After inhibition of pAKT in laryngeal cancer cells with MK-2206, up-regulation of vimentin and a downregulation of E-cadherin occurred, consistent with epithelial–mesenchymal transition. Conclusion: Low pAKT expression in larynx tumors is associated with lymph node metastases. Further, inhibition of pAKT in laryngeal cancer induces epithelial–mesenchymal transition, predisposing for an increased metastatic risk.

  1. Inhibition of Rb Phosphorylation Leads to mTORC2-Mediated Activation of Akt.

    PubMed

    Zhang, Jinfang; Xu, Kai; Liu, Pengda; Geng, Yan; Wang, Bin; Gan, Wenjian; Guo, Jianping; Wu, Fei; Chin, Y Rebecca; Berrios, Christian; Lien, Evan C; Toker, Alex; DeCaprio, James A; Sicinski, Piotr; Wei, Wenyi

    2016-06-16

    The retinoblastoma (Rb) protein exerts its tumor suppressor function primarily by inhibiting the E2F family of transcription factors that govern cell-cycle progression. However, it remains largely elusive whether the hyper-phosphorylated, non-E2F1-interacting form of Rb has any physiological role. Here we report that hyper-phosphorylated Rb directly binds to and suppresses the function of mTORC2 but not mTORC1. Mechanistically, Rb, but not p107 or p130, interacts with Sin1 and blocks the access of Akt to mTORC2, leading to attenuated Akt activation and increased sensitivity to chemotherapeutic drugs. As such, inhibition of Rb phosphorylation by depleting cyclin D or using CDK4/6 inhibitors releases Rb-mediated mTORC2 suppression. This, in turn, leads to elevated Akt activation to confer resistance to chemotherapeutic drugs in Rb-proficient cells, which can be attenuated with Akt inhibitors. Therefore, our work provides a molecular basis for the synergistic usage of CDK4/6 and Akt inhibitors in treating Rb-proficient cancer.

  2. Aloe-emodin suppresses esophageal cancer cell TE1 proliferation by inhibiting AKT and ERK phosphorylation.

    PubMed

    Chang, Xiaobin; Zhao, Jimin; Tian, Fang; Jiang, Yanan; Lu, Jing; Ma, Junfen; Zhang, Xiaoyan; Jin, Guoguo; Huang, Youtian; Dong, Zigang; Liu, Kangdong; Dong, Ziming

    2016-09-01

    Aberrant AKT and extracellular signal-regulated kinase (ERK) activation is often observed in various human cancers. Both AKT and ERK are important in the phosphoinositide 3-kinase/AKT and mitogen-activated protein kinase kinase/ERK signaling pathways, which play vital roles in cell proliferation, differentiation and survival. Compounds that are able to block these pathways have therefore a promising use in cancer treatment and prevention. The present study revealed that AKT and ERK are activated in esophageal cancer TE1 cells. Aloe-emodin, an anthraquinone present in aloe latex, can suppress TE1 cell proliferation and anchor-independent cell growth. Aloe-emodin can also reduce the number of TE1 cells in S phase. Protein analysis indicated that aloe-emodin inhibits the phosphorylation of AKT and ERK in a dose-dependent manner. Overall, the present data indicate that aloe-emodin can suppress TE1 cell growth by inhibiting AKT and ERK phosphorylation, and suggest its clinical use for cancer therapy.

  3. Akt Phosphorylation and Regulation of Transketolase Is a Nodal Point for Amino Acid Control of Purine Synthesis

    PubMed Central

    Saha, Arindam; Connelly, Stephen; Jiang, Jingjing; Zhuang, Shunhui; Amador, Deron T.; Phan, Tony; Pilz, Renate B.; Boss, Gerry R.

    2014-01-01

    SUMMARY The phosphatidylinositol 3-kinase (PI3K)/Akt pathway integrates environmental clues to regulate cell growth and survival. We showed previously that depriving cells of a single essential amino acid rapidly and reversibly arrests purine synthesis. Here we demonstrate that amino acids via mTORC2 and IκB kinase regulate Akt activity, and Akt association and phosphorylation of transketolase (TKT), a key enzyme of the non-oxidative pentose phosphate pathway (PPP). Akt phosphorylates TKT on Thr382, markedly enhancing enzyme activity and increasing carbon flow through the non-oxidative PPP, thereby increasing purine synthesis. Mice fed a lysine-deficient diet for two days show decreased Akt activity, TKT activity, and purine synthesis in multiple organs. These results provide a new mechanism whereby Akt coordinates amino acid availability with glucose utilization, purine synthesis, and RNA and DNA synthesis. PMID:24981175

  4. Tocotrienol suppresses adipocyte differentiation and Akt phosphorylation in 3T3-L1 preadipocytes.

    PubMed

    Uto-Kondo, Harumi; Ohmori, Reiko; Kiyose, Chikako; Kishimoto, Yoshimi; Saito, Hisako; Igarashi, Osamu; Kondo, Kazuo

    2009-01-01

    In vivo studies show that alpha-tocotrienol and gamma-tocotrienol accumulate in adipose tissue. Furthermore, a recent study reports that the oral administration of gamma-tocotrienol from a tocotrienol-rich fraction from palm oil (TRF) decreases body fat levels in rats. The objective of this study was to evaluate the effect of TRF and its components on adipocyte differentiation in 3T3-L1 preadipocytes, which differentiated into adipocytes in the presence of 1.8 micromol/L insulin. TRF suppressed the insulin-induced mRNA expression of adipocyte-specific genes such as PPARgamma, adipocyte fatty acid-binding protein (aP2), and CCAAT/enhancer-binding protein-alpha (C/EBPalpha) compared with the differentiation of 3T3-L1 preadipocytes into adipocytes only in the presence of insulin. To confirm the suppressive effect of TRF, the major components of TRF, such as alpha-tocotrienol, gamma-tocotrienol, and alpha-tocopherol, were investigated. Alpha-tocotrienol and gamma-tocotrienol decreased the insulin-induced PPARgamma mRNA expression by 55 and 90%, respectively, compared with insulin, whereas alpha-tocopherol increased the mRNA expression. In addition, gamma-tocotrienol suppressed the insulin-induced aP2 and C/EBPalpha mRNA expression, triglyceride accumulation, and PPARgamma protein levels compared with insulin. The current results also revealed that gamma-tocotrienol inhibited the insulin-stimulated phosphorylation of Akt but not extracellular signal-regulated kinase (ERK)1/2 in the insulin signaling pathway of 3T3-L1 preadipocytes. Thus, the antiadipogenic effect of TRF depends on alpha-tocotrienol and gamma-tocotrienol, and gamma-tocotrienol may be a more potent inhibitor of adipogenesis than alpha-tocotrienol. Therefore, the results of this study suggest that tocotrienol suppresses insulin-induced differentiation and Akt phosphorylation in 3T3-L1 preadipocytes. Furthermore, tocotrienol could act as an antiadipogenic vitamin in the nutrient-mediated regulation of body

  5. Novel B55α-PP2A mutations in AML promote AKT T308 phosphorylation and sensitivity to AKT inhibitor-induced growth arrest

    PubMed Central

    Shouse, Geoffrey; de Necochea-Campion, Rosalia; Mirshahidi, Saied; Liu, Xuan; Chen, Chien-Shing

    2016-01-01

    Activation of the Protein Kinase B (PKB), or AKT pathway has been shown to correlate with acute myeloid leukemia (AML) prognosis. B55α-Protein Phosphatase 2A (PP2A) has been shown to dephosphorylate AKT at Thr-308 rendering it inactive. In fact, low expression of the PP2A regulatory subunit B55α was associated with activated phospho-AKT and correlated with inferior outcomes in AML. Despite this fact, no studies have specifically demonstrated a mechanism whereby B55α expression is regulated in AML. In this study, we demonstrate novel loss of function mutations in the PPP2R2A gene identified in leukemic blasts from three AML patients. These mutations eliminate B55α protein expression thereby allowing constitutive AKT activation. In addition, leukemic blasts with PPP2R2A gene mutation were more sensitive to treatment with the AKT inhibitor MK2206, but less responsive to the PP2A activator FTY720. Using leukemia cell lines, we further demonstrate that B55α expression correlates with AKT Thr-308 phosphorylation and predicts responsiveness to AKT inhibition and PP2A activation. Together our data illustrate the importance of the B55α-PP2A-AKT pathway in leukemogenesis. Screening for disruptions in this pathway at initial AML diagnosis may predict response to targeted therapies against AKT and PP2A. PMID:27531894

  6. AKT phosphorylates H3-threonine 45 to facilitate termination of gene transcription in response to DNA damage

    PubMed Central

    Lee, Jong-Hyuk; Kang, Byung-Hee; Jang, Hyonchol; Kim, Tae Wan; Choi, Jinmi; Kwak, Sojung; Han, Jungwon; Cho, Eun-Jung; Youn, Hong-Duk

    2015-01-01

    Post-translational modifications of core histones affect various cellular processes, primarily through transcription. However, their relationship with the termination of transcription has remained largely unknown. In this study, we show that DNA damage-activated AKT phosphorylates threonine 45 of core histone H3 (H3-T45). By genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis, H3-T45 phosphorylation was distributed throughout DNA damage-responsive gene loci, particularly immediately after the transcription termination site. H3-T45 phosphorylation pattern showed close-resemblance to that of RNA polymerase II C-terminal domain (CTD) serine 2 phosphorylation, which establishes the transcription termination signal. AKT1 was more effective than AKT2 in phosphorylating H3-T45. Blocking H3-T45 phosphorylation by inhibiting AKT or through amino acid substitution limited RNA decay downstream of mRNA cleavage sites and decreased RNA polymerase II release from chromatin. Our findings suggest that AKT-mediated phosphorylation of H3-T45 regulates the processing of the 3′ end of DNA damage-activated genes to facilitate transcriptional termination. PMID:25813038

  7. Caffeine modulates tau phosphorylation and affects Akt signaling in postmitotic neurons.

    PubMed

    Currais, Antonio; Kato, Kiyoko; Canuet, Leonides; Ishii, Ryouhei; Tanaka, Toshihisa; Takeda, Masatoshi; Soriano, Salvador

    2011-03-01

    Neuronal cell cycle reentry, which is associated with aberrant tau phosphorylation, is thought to be a mechanism of neurodegeneration in AD. Caffeine is a neuroprotective drug known to inhibit the cell cycle, suggesting that its neuroprotective nature may rely, at least in part, on preventing tau abnormalities secondary to its inhibitory effect on neuronal cell cycle-related pathways. Accordingly, we have explored in the present study the impact of caffeine on cell cycle-linked parameters and tau phosphorylation patterns in an attempt to identify molecular clues to its neuroprotective effect. We show that caffeine blocks the cell cycle at G1 phase in neuroblastoma cells and leads to a decrease in tau phosphorylation; similarly, exposure of postmitotic neurons to caffeine led to changes in tau phosphorylation concomitantly with downregulation of Akt signaling. Taken together, our results show a unique impact of caffeine on tau phosphorylation and warrant further investigation to address whether caffeine may help prevent neuronal death by preventing tau abnormalities secondary to aberrant entry into the cell cycle.

  8. RASSF4 promotes EV71 replication to accelerate the inhibition of the phosphorylation of AKT.

    PubMed

    Zhang, Fengfeng; Liu, Yongjuan; Chen, Xiong; Dong, Lanlan; Zhou, Bingfei; Cheng, Qingqing; Han, Song; Liu, Zhongchun; Peng, Biwen; He, Xiaohua; Liu, Wanhong

    2015-03-20

    Enterovirus 71 (EV71) is a neurotropic virus that causes hand, foot and mouth disease (HFMD), occasionally leading to death. As a member of the RAS association domain family (RASSFs), RASSF4 plays important roles in cell death, tumor development and signal transduction. However, little is known about the relationship between RASSF4 and EV71. Our study reveals for the first time that RASSF4 promotes EV71 replication and then accelerates AKT phosphorylation inhibition in EV71-infected 293T cells, suggesting that RASSF4 may be a potential new target for designing therapeutic measures to prevent and control EV71 infection.

  9. SiO2@antisense molecules covered by nepetalactone, extracted from Nepeta gloeocephala, inhibits ILK phosphorylation and downstream PKB/AKT signaling in HeLa cells.

    PubMed

    Dehghany Ashkezary, M; Aboee-Mehrizi, F; Moradi, P

    2017-01-01

    In this study, the anticancer property of SiO2@antisense molecules (SiO2@AMs) and SiO2@AM covered by nepetalactone (SiO2@AM/CN), extracted from Nepeta gloeocephala, was investigated. Here integrin-linked kinase (ILK) phosphorylation and protein kinase B/AKT (PKB/AKT) signaling was studied when HeLa cells were exposed to SiO2@AM and SiO2@AM/CN. First, N. gloeocephala was identified at the Iranian National Herbarium. Then, its essential oil (EO) was obtained by the hydrodistillation method. In the next step, 4aα,7α,7aα-nepetalactone was extracted from the EO, based on the spectroscopic data. To obtain SiO2@AM/CN, 1 ml of SiO2@AM was mixed with extracted nepetalactone and then strongly shaken for 30 min. Finally, serial concentrations (100, 50, 25 and 12.5 μg ml(-1)) of SiO2@AM and SiO2@AM/CN were prepared and then exposed to HeLa cells (2 × 10(5) cells per ml) for 24 h at 37 °C. After incubation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell-cycle analysis, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and western blots were carried out. To find ILK phosphorylation and PKB/AKT signaling, the expression of threonine-173 (Thr-173), serine-246 (Ser-246), total ILK, AKT-Ser473, AKT-Thr308 and total AKT was investigated. HeLa cells that were treated with SiO2@AM/CN had G2/M arrest. Based on the TUNEL assay, many apoptotic cells have been shown when they were exposed to SiO2@AM/CN. Importantly, SiO2@AM/CN decreased ILK phosphorylation at Thr-173 and Ser-246 without affecting total ILK levels. Moreover, SiO2@AM/CN decreased AKT-Ser473 and AKT-Thr308 phosphorylation without affecting total PKB/AKT protein.

  10. The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) protects cells against cold-shock-induced apoptosis by maintaining phosphorylation of protein kinase B (AKT)

    PubMed Central

    Carpenter, Dale; Hsiang, Chinhui; Jiang, Xianzhi; Osorio, Nelson; BenMohamed, Lbachir; Jones, Clinton

    2017-01-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) blocks apoptosis and inhibits caspase-3 activation. We previously showed that serum starvation (removal of serum from tissue culture media), which takes several days to induce apoptosis, results in decreased levels of both AKT (protein kinase B) and phosphorylated AKT (pAKT) in cells not expressing LAT. In contrast in mouse neuroblastoma cells expressing LAT, AKT, and pAKT levels remained high. AKT is a serine/threonine protein kinase that promotes cell survival. To examine the effect of LAT on AKT-pAKT using a different and more rapid method of inducing apoptosis, a stable cell line expressing LAT was compared to non-LAT expressing cells as soon as 15 min following recovery from cold-shock-induced apoptosis. Expression of LAT appeared to inhibit dephosphorylation of pAKT. This protection correlated with blocking numerous pro-apoptotic events that are inhibited by pAKT. These results support the hypothesis that inhibiting dephosphorylation of pAKT may be one of the pathways by which LAT protects cells against apoptosis. PMID:26071090

  11. CCN1 acutely increases nitric oxide production via integrin αvβ3-Akt-S6K-phosphorylation of endothelial nitric oxide synthase at the serine 1177 signaling axis.

    PubMed

    Hwang, Soojin; Lee, Hyeon-Ju; Kim, Gyungah; Won, Kyung-Jong; Park, Yoon Shin; Jo, Inho

    2015-12-01

    Although CCN1 (also known as cysteine-rich, angiogenic inducer 61, CYR61) has been reported to promote angiogenesis and neovascularization in endothelial cells (ECs), its effects on endothelial nitric oxide (NO) production have never been studied. Using human umbilical vein ECs, we investigated whether and how CCN1 regulates NO production. CCN1 acutely increased NO production in a time- and dose-dependent manner, which was accompanied by increased phosphorylation of endothelial NO synthase (eNOS) at serine 1177 (eNOS-Ser(1177)), but not that of eNOS-Thr(495) or eNOS-Ser(114). The level of total eNOS expression was unaltered. Treatment with either LY294002, a selective inhibitor of phosphoinositide 3-kinase known as an upstream kinase of Akt, or H-89, an inhibitor of protein kinase A, mitogen- and stress-activated protein kinase 1, Rho-associated protein kinase 2, and ribosomal protein S6 kinase (S6K), inhibited CCN1-stimulated eNOS-Ser(1177) phosphorylation and subsequent NO production. Ectopic expression of small interfering RNA against Akt and S6K significantly inhibited the effects of CCN1. Consistently, CCN1 increased the phosphorylation of Akt-Ser(473) and S6K-Thr(389). However, CCN1 did not alter the expression or secretion of VEGF, a known downstream factor of CCN1 and a potential upstream factor of Akt-mediated eNOS-Ser(1177) phosphorylation. Furthermore, neutralization of integrin αvβ3 with corresponding antibody completely reversed all of the observed effects of CCN1. Moreover, CCN1 increased acetylcholine-induced relaxation in the rat aortas. Finally, we also found that CCN1-stimulated eNOS-Ser(1177) phosphorylation and NO production are true for other types of EC tested. In conclusion, CCN1 acutely increases NO production via activation of a signaling axis in integrin αvβ3-Akt-S6K-eNOS-Ser(1177) phosphorylation, suggesting an important role for CCN1 in vasodilation.

  12. AKT1 inhibits epithelial-to-mesenchymal transition in breast cancer through phosphorylation-dependent Twist1 degradation

    PubMed Central

    Li, Chia-Wei; Xia, Weiya; Lim, Seung-Oe; Hsu, Jennifer L.; Huo, Longfei; Wu, Yun; Li, Long-Yuan; Lai, Chien-Chen; Chang, Shih-Shin; Hsu, Yi-Hsin; Sun, Hui-Lung; Kim, Jongchan; Yamaguchi, Hirohito; Lee, Dung-Fang; Wang, Hongmei; Wang, Yan; Chou, Chao-Kai; Hsu, Jung-Mao; Lai, Yun-Ju; LaBaff, Adam M.; Ding, Qingqing; Ko, How-Wen; Tsai, Fuu-Jen; Tsai, Chang-Hai; Hortobagyi, Gabriel N.; Hung, Mien-Chie

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) is an essential physiological process that promotes cancer cell migration, invasion, and metastasis. Several lines of evidence from both cellular and genetic studies suggest that AKT1/PKBα, but not AKT2 or AKT3, serves as a negative regulator of EMT and breast cancer metastasis. However, the underlying mechanism by which AKT1 suppresses EMT remains poorly defined. Here, we demonstrate that phosphorylation of Twist1 by AKT1 is required for β-TrCP-mediated Twist1 ubiquitination and degradation. The clinically used AKT inhibitor MK-2206, which possesses higher specificity toward AKT1, stabilized Twist1 and enhanced EMT in breast cancer cells. However, we discovered that resveratrol, a naturally occurring compound, induced β-TrCP-mediated Twist1 degradation to attenuate MK-2206-induced EMT in breast cancer cells. Taken together, our findings demonstrate that resveratrol counteracts the unexpected metastatic potential induced by anti-AKT therapy, and therefore suggest that the addition of resveratrol to an anti-AKT therapeutic regimen may provide extra support for limiting EMT. PMID:26759241

  13. A novel AKT inhibitor, AZD5363, inhibits phosphorylation of AKT downstream molecules, and activates phosphorylation of mTOR and SMG-1 dependent on the liver cancer cell type

    PubMed Central

    ZHANG, YUNCHENG; ZHENG, YUANWEN; FAHEEM, ALI; SUN, TIANTONG; LI, CHUNYOU; LI, ZHE; ZHAO, DIANTANG; WU, CHAO; LIU, JUN

    2016-01-01

    Due to frequent phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway dysregulation, AKT is typically accepted as a promising anticancer therapeutic target. mTOR, in particular, represents a suitable therapeutic target for hepatocellular carcinoma, whilst suppressor with morphogenetic effect on genitalia family member-1 (SMG-1) is believed to serve a potential tumor suppressor role in human cancer. Despite SMG-1 and mTOR belonging to the same PI3K-related kinase family, the interactions between them are not yet fully understood. In the present study, a novel pyrrolopyrimidine-derived compound, AZD5363, was observed to suppress proliferation in liver cancer Hep-G2 and Huh-7 cells by inhibiting the phosphorylation of downstream molecules in the AKT signal pathway, in a dose- and time-dependent manner. AZD5363 activated the phosphorylation of mTOR, dependent on the liver cancer cell type, as it may have differing effects in various liver cancer cell lines. Additionally, AZD5363 also activated SMG-1 within the same liver cancer cells types, which subsequently activated the phosphorylation of mTOR. In conclusion, the present study indicates that AZD5363 inhibited phosphorylation of AKT downstream molecules, and activated phosphorylation of mTOR and SMG-1, dependent on the liver cancer type. PMID:26998062

  14. KIF14 Promotes AKT Phosphorylation and Contributes to Chemoresistance in Triple-Negative Breast Cancer12

    PubMed Central

    Singel, Stina M.; Cornelius, Crystal; Zaganjor, Elma; Batten, Kimberly; Sarode, Venetia R.; Buckley, Dennis L.; Peng, Yan; John, George B.; Li, Hsiao C.; Sadeghi, Navid; Wright, Woodring E.; Lum, Lawrence; Corson, Timothy W.; Shay, Jerry W.

    2014-01-01

    Despite evidence that kinesin family member 14 (KIF14) can serve as a prognostic biomarker in various solid tumors, how it contributes to tumorigenesis remains unclear. We observed that experimental decrease in KIF14 expression increases docetaxel chemosensitivity in estrogen receptor–negative/progesterone receptor–negative/human epidermal growth factor receptor 2-negative, “triple-negative” breast cancers (TNBC). To investigate the oncogenic role of KIF14, we used noncancerous human mammary epithelial cells and ectopically expressed KIF14 and found increased proliferative capacity, increased anchorage-independent grown in vitro, and increased resistance to docetaxel but not to doxorubicin, carboplatin, or gemcitabine. Seventeen benign breast biopsies of BRCA1 or BRCA2 mutation carriers showed increased KIF14 mRNA expression by fluorescence in situ hybridization compared to controls with no known mutations in BRCA1 or BRCA2, suggesting increased KIF14 expression as a biomarker of high-risk breast tissue. Evaluation of 34 cases of locally advanced TNBC showed that KIF14 expression significantly correlates with chemotherapy-resistant breast cancer. KIF14 knockdown also correlates with decreased AKT phosphorylation and activity. Live-cell imaging confirmed an insulin-induced temporal colocalization of KIF14 and AKT at the plasma membrane, suggesting a potential role of KIF14 in promoting activation of AKT. An experimental small-molecule inhibitor of KIF14 was then used to evaluate the potential anticancer benefits of downregulating KIF14 activity. Inhibition of KIF14 shows a chemosensitizing effect and correlates with decreasing activation of AKT. Together, these findings show an early and critical role for KIF14 in the tumorigenic potential of TNBC, and therapeutic targeting of KIF14 is feasible and effective for TNBC. PMID:24784001

  15. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    SciTech Connect

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra; Galadari, Sehamuddin

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  16. Amoxicillin and amoxicillin/clavulanate reduce ethanol intake and increase GLT-1 expression as well as AKT phosphorylation in mesocorticolimbic regions

    PubMed Central

    Goodwani, Sunil; Rao, P.S.S.; Bell, Richard L.; Sari, Youssef

    2015-01-01

    Studies have shown that administration of the β-lactam antibiotic, ceftriaxone (CEF) attenuates ethanol consumption and cocaine seeking behavior as well as preventing ethanol-induced downregulation of glutamate transporter 1 (GLT-1) expression in central reward brain regions. However, it is not known if these effects are compound-specific. Therefore, the present study examined the effects of two other β-lactam antibiotics, amoxicillin (AMOX) and amoxicillin/clavulanate (Augmentin, AUG), on ethanol drinking, as well as GLT-1 and phosphorylated-AKT (pAKT) levels in the nucleus accumbens (Acb) and medial prefrontal cortex (mPFC) of alcohol-preferring (P) rats. P rats were exposed to free-choice of ethanol (15% and 30%) for five weeks and were given five consecutive daily i.p. injections of saline vehicle, 100 mg/kg AMOX or 100 mg/kg AUG. Both compounds significantly decreased ethanol intake and significantly increased GLT-1 expression in the Acb. AUG also increased GLT-1 expression in the mPFC. Results for changes in pAKT levels matched those for GLT-1, indicating that β-lactam antibiotic-induced reductions in ethanol intake are negatively associated with increases in GLT-1 and pAKT levels within two critical brains regions mediating drug reward and reinforcement. These findings add to a growing literature that pharmacological increases in GLT-1 expression are associated with decreases in ethanol intake and suggest that one mechanism mediating this effect may be increased phosphorylation of AKT. Thus, GLT-1 and pAKT may serve as molecular targets for the treatment of alcohol and drug abuse/dependence. PMID:26168897

  17. Amoxicillin and amoxicillin/clavulanate reduce ethanol intake and increase GLT-1 expression as well as AKT phosphorylation in mesocorticolimbic regions.

    PubMed

    Goodwani, Sunil; Rao, P S S; Bell, Richard L; Sari, Youssef

    2015-10-05

    Studies have shown that administration of the β-lactam antibiotic ceftriaxone (CEF) attenuates ethanol consumption and cocaine seeking behavior as well as prevents ethanol-induced downregulation of glutamate transporter 1 (GLT-1) expression in central reward brain regions. However, it is not known if these effects are compound-specific. Therefore, the present study examined the effects of two other β-lactam antibiotics, amoxicillin (AMOX) and amoxicillin/clavulanate (Augmentin, AUG), on ethanol drinking, as well as GLT-1 and phosphorylated-AKT (pAKT) levels in the nucleus accumbens (Acb) and medial prefrontal cortex (mPFC) of alcohol-preferring (P) rats. P rats were exposed to free-choice of ethanol (15% and 30%) for five weeks and were given five consecutive daily i.p. injections of saline vehicle, 100 mg/kg AMOX or 100mg/kg AUG. Both compounds significantly decreased ethanol intake and significantly increased GLT-1 expression in the Acb. AUG also increased GLT-1 expression in the mPFC. Results for changes in pAKT levels matched those for GLT-1, indicating that β-lactam antibiotic-induced reductions in ethanol intake are negatively associated with increases in GLT-1 and pAKT levels within two critical brains regions mediating drug reward and reinforcement. These findings add to a growing literature that pharmacological increases in GLT-1 expression are associated with decreases in ethanol intake and suggest that one mechanism mediating this effect may be increased phosphorylation of AKT. Thus, GLT-1 and pAKT may serve as molecular targets for the treatment of alcohol and drug abuse/dependence.

  18. PIP3 but not PIP2 increases GLUT4 surface expression and glucose metabolism mediated by AKT/PKCζ/λ phosphorylation in 3T3L1 adipocytes.

    PubMed

    Manna, Prasenjit; Jain, Sushil K

    2013-09-01

    Phosphatidylinositol-3,4,5-triphosphate (PIP3) and phosphatidylinositol-4,5-biphosphate (PIP2) are two well-known membrane bound polyphosphoinositides. Diabetes is associated with impaired glucose metabolism. Using a 3T3L1 adipocyte cell model, this study investigated the role of PIP3 and PIP2 on insulin stimulated glucose metabolism in high glucose (HG) treated cells. Exogenous PIP3 supplementation (1, 5, or 10 nM) increased the phosphorylation of AKT and PKCζ/λ, which in turn upregulated GLUT4 total protein expression as well as its surface expression, glucose uptake, and glucose utilization in cells exposed to HG (25 mM); however, PIP2 had no effect. Comparative signal silencing studies with antisense AKT2 and antisense PKCζ revealed that phosphorylation of PKCζ/λ is more effective in PIP3 mediated GLUT4 activation and glucose utilization than in AKT phosphorylation. Supplementation with PIP3 in combination with insulin enhanced glucose uptake and glucose utilization compared to PIP2 with insulin, or insulin alone, in HG-treated adipocytes. This suggests that a decrease in cellular PIP3 levels may cause impaired insulin sensitivity in diabetes. PIP3 supplementation also prevented HG-induced MCP-1 and resistin secretion and lowered adiponectin levels. This study for the first time demonstrates that PIP3 but not PIP2 plays an important role in GLUT4 upregulation and glucose metabolism mediated by AKT/PKCζ/λ phosphorylation. Whether PIP3 levels in blood can be used as a biomarker of insulin resistance in diabetes needs further investigation.

  19. Inhibition of Akt2 phosphorylation abolishes the calorie restriction-induced improvement in insulin-stimulated glucose uptake by rat soleus muscle

    PubMed Central

    Sharma, Naveen; Arias, Edward B.; Cartee, Gregory D.

    2017-01-01

    Calorie restriction (CR; ~60–65% of ad libitum, AL, consumption) can enhance insulin-stimulated glucose uptake (ISGU) in predominantly slow-twitch skeletal muscles (e.g., soleus) by an incompletely understood mechanism. We used an Akt inhibitor (MK-2206) to eliminate CR’s effect on insulin-stimulated Akt2 phosphorylation in isolated rat soleus muscles. We found long-term CR-enhanced ISGU was abolished by eliminating the CR-effect on Akt2 phosphorylation, suggesting the CR-induced benefit on ISGU in the predominantly slow-twitch soleus relies on enhanced Akt2 phosphorylation. PMID:27786542

  20. Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase

    PubMed Central

    Hoyal, Carolyn R.; Gutierrez, Abel; Young, Brandon M.; Catz, Sergio D.; Lin, Jun-Hsiang; Tsichlis, Philip N.; Babior, Bernard M.

    2003-01-01

    The leukocyte NADPH oxidase catalyzes the reduction of oxygen to O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document} at the expense of NADPH. Extensive phosphorylation of the oxidase subunit p47PHOX occurs during the activation of the enzyme in intact cells. p47PHOX carrying certain serine-to-alanine mutations fails to support NADPH oxidase activity in intact cells, suggesting that the phosphorylation of specific serines on p47PHOX is required for the activation of the oxidase. Earlier studies with both intact cells and a kinase-dependent, cell-free system have suggested that protein kinase C can phosphorylate those serines of p47PHOX whose phosphorylation is necessary for its activity. Work with inhibitors suggested that a phosphatidylinositol 3-kinase-dependent pathway also can activate the oxidase. Phosphorylation of p47PHOX by Akt (protein kinase B), whose activation depends on phosphatidylinositol 3-kinase, could be the final step in such a pathway. We now find that Akt activates the oxidase in vitro by phosphorylating serines S304 and S328 of p47PHOX. These results suggest that Akt could participate in the activation of the leukocyte NADPH oxidase. PMID:12704229

  1. Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt

    PubMed Central

    Chen, Jialin; Chen, Peng; Backman, Ludvig J.; Zhou, Qingjun; Danielson, Patrik

    2016-01-01

    The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway. PMID:27174608

  2. Susceptibility to simvastatin-induced toxicity is partly determined by mitochondrial respiration and phosphorylation state of Akt.

    PubMed

    Mullen, Peter J; Zahno, Anja; Lindinger, Peter; Maseneni, Swarna; Felser, Andrea; Krähenbühl, Stephan; Brecht, Karin

    2011-12-01

    Statins are widely used to prevent cardiovascular diseases. They are well-tolerated, with side-effects mainly seen in skeletal muscle. How these side-effects are caused is unknown. We compared isolated primary mouse skeletal muscle myocytes, C2C12 myotubes and liver HepG2 cells to detect differences that could uncover why statins are toxic in skeletal muscle but less so in the liver. 10μM simvastatin caused a decrease in mitochondrial respiration in the primary mouse myocytes and C2C12 myotubes, but had no effect in the HepG2 cells. Mitochondrial integrity is maintained by multiple signaling pathways. One of these pathways, Igf-1/Akt signaling, is also heavily implicated in causing statin-induced toxicity by upregulating atrogin-1. We found that phosphorylated Akt was reduced in C2C12 myotubes but not in HepG2 cells. HepG2 mitochondrial respiration became susceptible to simvastatin-treatment after Akt inhibition, and mitochondrial respiration was rescued in Igf-1-treated C2C12 myotubes. These results suggest that disruption of Igf-1/Akt signaling is a causative factor in simvastatin-induced mitochondrial dysfunction in C2C12 myotubes, whereas HepG2 cells are protected by maintaining Igf-1/Akt signaling. We conclude that phosphorylation of Akt is a key indicator of susceptibility to statin-induced toxicity. How statins can disrupt Igf-1/Akt signaling is unknown. Statins reduce geranylgeranylation of small GTPases, such as Rap1. Previous studies implicate Rap1 as a link between cAMP/Epac and Igf-1/Akt signaling. Transient transfection of constitutively active Rap1 into C2C12 myotubes led to a partial rescue of simvastatin-induced inhibition of mitochondrial respiration, providing a novel link between signaling and respiration.

  3. Human recombinant H2 relaxin induces AKT and GSK3β phosphorylation and HTR-8/SVneo cell proliferation.

    PubMed

    Astuti, Yoni; Nakabayashi, Koji; Deguchi, Masashi; Ebina, Yasuhiko; Yamada, Hideto

    2015-03-24

    Relaxin is essential for trophoblast development during pregnancy. Evidence shows that relaxin increases trophoblast cell migration capacity. Here, we show the effect of relaxin on protein kinase B (AKT) activation and glycogen synthase kinase 3-beta (GSK3β) inactivation as well as on the proliferation of HTR-8/SVneo cells, a model of human extravillous trophoblast (EVT). HTR-8/SVneo cells were treated with different doses of human recombinant (rH2) relaxin in serum-deprived conditions and treated for increasing time with 1 ng/mL of rH2 relaxin. Western blot analysis was performed to detect pAKT, AKT, pGSK3β, GSK3β, and actin expression. Proliferation of HTR-8/SVneo cells was analyzed by MTS assay. rH2 relaxin treatment increased the ratio of pAKT/AKT, pGSK3β/GSK3β, and proliferation in HTR-8/SVneo cells. Furthermore, AKT and GSK3β activation by rH2 relaxin was inhibited by a phosphoinositide 3-kinase (PI3K) inhibitor. This study suggests that rH2 relaxin induces AKT and GSK3β phosphorylation as well as proliferation in HTR-8/SVneo cells.

  4. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation

    PubMed Central

    Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation. PMID:28072855

  5. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation.

    PubMed

    Ohtsuka, Hiroko; Iguchi, Tomohiro; Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation.

  6. Mechanisms for increased insulin-stimulated Akt phosphorylation and glucose uptake in fast- and slow-twitch skeletal muscles of calorie-restricted rats.

    PubMed

    Sharma, Naveen; Arias, Edward B; Bhat, Abhijit D; Sequea, Donel A; Ho, Steve; Croff, Kelsey K; Sajan, Mini P; Farese, Robert V; Cartee, Gregory D

    2011-06-01

    Calorie restriction [CR; ~65% of ad libitum (AL) intake] improves insulin-stimulated glucose uptake (GU) and Akt phosphorylation in skeletal muscle. We aimed to elucidate the effects of CR on 1) processes that regulate Akt phosphorylation [insulin receptor (IR) tyrosine phosphorylation, IR substrate 1-phosphatidylinositol 3-kinase (IRS-PI3K) activity, and Akt binding to regulatory proteins (heat shock protein 90, Appl1, protein phosphatase 2A)]; 2) Akt substrate of 160-kDa (AS160) phosphorylation on key phosphorylation sites; and 3) atypical PKC (aPKC) activity. Isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from AL or CR (6 mo duration) 9-mo-old male F344BN rats were incubated with 0, 1.2, or 30 nM insulin and 2-deoxy-[(3)H]glucose. Some CR effects were independent of insulin dose or muscle type: CR caused activation of Akt (Thr(308) and Ser(473)) and GU in both muscles at both insulin doses without CR effects on IRS1-PI3K, Akt-PP2A, or Akt-Appl1. Several muscle- and insulin dose-specific CR effects were revealed. Akt-HSP90 binding was increased in the epitrochlearis; AS160 phosphorylation (Ser(588) and Thr(642)) was greater for CR epitrochlearis at 1.2 nM insulin; and IR phosphorylation and aPKC activity were greater for CR in both muscles with 30 nM insulin. On the basis of these data, our working hypothesis for improved insulin-stimulated GU with CR is as follows: 1) elevated Akt phosphorylation is fundamental, regardless of muscle or insulin dose; 2) altered Akt binding to regulatory proteins (HSP90 and unidentified Akt partners) is involved in the effects of CR on Akt phosphorylation; 3) Akt effects on GU depend on muscle- and insulin dose-specific elevation in phosphorylation of Akt substrates, including, but not limited to, AS160; and 4) greater IR phosphorylation and aPKC activity may contribute at higher insulin doses.

  7. Phosphorylation by Akt1 Promotes Skp2 Cytoplasmic Localization and Impairs APC/Cdh1-mediated Skp2 Destruction

    PubMed Central

    Gao, Daming; Inuzuka, Hiroyuki; Tseng, Alan; Chin, Rebecca Y.; Toker, Alex; Wei, Wenyi

    2010-01-01

    Deregulated Skp2 function promotes cell transformation, and this is consistent with observations of Skp2 over-expression in many human cancers. However, the mechanisms underlying elevated Skp2 expression remain elusive. Here we report that the serine/threonine protein kinase Akt1, but not Akt2, directly controls Skp2 stability by a mechanism that involves degradation by the APC/Cdh1 ubiquitin ligase complex. We further show that Akt1 phosphorylates Skp2 at Ser72, which is required to disrupt the interaction between Cdh1 and Skp2. In addition, we show that Ser72 is localized within a putative Nuclear Localization Sequence (NLS) and that phosphorylation of Ser72 by Akt leads to Skp2 cytoplasmic translocation. This finding expands our knowledge of how specific signaling kinase cascades influence proteolysis governed by APC/Cdh1 complexes, and provides evidence that elevated Akt activity and cytoplasmic Skp2 expression may be causative for cancer progression. PMID:19270695

  8. Involvement of PI 3 kinase/Akt-dependent Bad phosphorylation in Toxoplasma gondii-mediated inhibition of host cell apoptosis.

    PubMed

    Quan, Juan-Hua; Cha, Guang-Ho; Zhou, Wei; Chu, Jia-Qi; Nishikawa, Yoshifumi; Lee, Young-Ha

    2013-04-01

    Toxoplasma gondii-infected cells are resistant to various apoptotic stimuli, however, the role of the pro-apoptotic BH3-only Bad protein in T. gondii-imposed inhibition of host cell apoptosis in connection with the phosphoinositide 3-kinase (PI3K)-PKB/Akt pathway was not well delineated. Here, we investigated the signaling patterns of Bad, Bax and PKB/Akt in T. gondii-infected and uninfected THP-1 cells treated with staurosporine (STS) or PI3K inhibitors. STS treatment, without T. gondii infection, reduced the viability of THP-1 cells in proportion to STS concentration and triggered many cellular death events such as caspase-3 and -9 activation, Bax translocation, cytochrome c release from host cell mitochondria into cytosol, and PARP cleavage in the host cell. However, T. gondii infection eliminated the STS-triggered mitochondrial apoptotic events described above. Additionally, T. gondii infection in vitro and in vivo induced the phosphorylation of PKB/Akt and Bad in a parasite-load-dependent manner which subsequently inhibited Bax translocation. The PI3K inhibitors, LY294002 and Wortmannin, both blocked parasite-induced phosphorylation of PKB/Akt and Bad. Furthermore, THP-1 cells pretreated with these PI3K inhibitors showed reduced phosphorylation of Bad in a dose-dependent manner and subsequently failed to inhibit the Bax translocation, also these cells also failed to overcome the T. gondii-imposed inhibition of host cell apoptosis. These data demonstrate that the PI3K-PKB/Akt pathway may be one of the major route for T. gondii in the prevention of host cell apoptosis and T. gondii phosphorylates the pro-apoptotic Bad protein to prevent apoptosis.

  9. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Sorescu, George; Boyd, Nolan; Shiojima, Ichiro; Walsh, Kenneth; Du, Jie; Jo, Hanjoong

    2002-01-01

    Recently, we have shown that shear stress stimulates NO(*) production by the protein kinase B/Akt (Akt)-dependent mechanisms in bovine aortic endothelial cells (BAEC) (Go, Y. M., Boo, Y. C., Park, H., Maland, M. C., Patel, R., Pritchard, K. A., Jr., Fujio, Y., Walsh, K., Darley-Usmar, V., and Jo, H. (2001) J. Appl. Physiol. 91, 1574-1581). Akt has been believed to regulate shear-dependent production of NO(*) by directly phosphorylating endothelial nitric-oxide synthase (eNOS) at the Ser(1179) residue (eNOS-S(1179)), but a critical evaluation using specific inhibitors or dominant negative mutants (Akt(AA) or Akt(AAA)) has not been reported. In addition, other kinases, including protein kinase A (PKA) and AMP kinase have also shown to phosphorylate eNOS-S(1179). Here, we show that shear-dependent phosphorylation of eNOS-S(1179) is mediated by an Akt-independent, but a PKA-dependent, mechanism. Expression of Akt(AA) or Akt(AAA) in BAEC by using recombinant adenoviral constructs inhibited phosphorylation of eNOS-S(1179) if cells were stimulated by vascular endothelial growth factor (VEGF), but not by shear stress. As shown before, expression of Akt(AA) inhibited shear-dependent NO(*) production, suggesting that Akt is still an important regulator in NO production. Further studies showed that a selective inhibitor of PKA, H89, inhibited shear-dependent phosphorylation of eNOS-S(1179) and NO(*) production. In contrast, H89 did not inhibit phosphorylation of eNOS-S(1179) induced by expressing a constitutively active Akt mutant (Akt(Myr)) in BAEC, showing that the inhibitor did not affect the Akt pathway. 8-Bromo-cAMP alone phosphorylated eNOS-S(1179) within 5 min without activating Akt, in an H89-sensitive manner. Collectively, these results demonstrate that shear stimulates phosphorylation of eNOS-S(1179) in a PKA-dependent, but Aktindependent manner, whereas the NO(*) production is regulated by the mechanisms dependent on both PKA and Akt. A coordinated interaction

  10. BRAF, KIT and NRAS mutations and expression of c-KIT, phosphorylated extracellular signal-regulated kinase and phosphorylated AKT in Japanese melanoma patients.

    PubMed

    Oyama, Satomi; Funasaka, Yoko; Watanabe, Atsushi; Takizawa, Toshihiro; Kawana, Seiji; Saeki, Hidehisa

    2015-05-01

    To clarify the status of gene mutation and activation of growth signal in melanoma of Japanese patients in vivo, we analyzed the mutation of BRAF exon 15, NRAS exon 2, and KIT exons 9, 11, 13, 17 and 18 in melanoma cells obtained by laser capture microdissection, and performed direct sequencing in 20 cases of acral lentiginous melanoma (ALM) and 17 cases of superficial spreading melanoma (SSM). In the study of the mutation of BRAF, pyrosequencing was also done. To examine the cell proliferation signaling, immunohistochemistry for phosphorylated extracellular signal-regulated kinase (pERK), phosphorylated AKT (phosphorylated AKT) and c-KIT was done. The mutation of BRAF p.V600E was detected in 13 cases of ALM (65.0%) and 12 cases of SSM (70.6%). No NRAS mutation was found in all cases. The mutation in exons 9, 11, and 18 of KIT was detected in nine cases. The mutation of BRAF and KIT showed no correlation with clinical stage, lymph node metastasis, tumor thickness, ulceration and histology. pERK and pAKT was observed in small population of melanoma cells and there was no correlation with gene mutation. Our results indicate that the mutations of BRAF and KIT exist in Japanese melanoma patients, however, the cell growth signaling may be regulated by not only these mutated genes, but by other unknown regulatory factors, which may affect the prognosis of melanoma.

  11. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    PubMed

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.

  12. Growth hormone suppresses the expression of IGFBP-5, and promotes the IGF-I-induced phosphorylation of Akt in bovine mammary epithelial cells.

    PubMed

    Sakamoto, Kazuhito; Yano, Tomoki; Kobayashi, Takuya; Hagino, Akihiko; Aso, Hisashi; Obara, Yoshiaki

    2007-05-01

    Growth hormone (GH) plays a specific role to inhibit apoptosis in the bovine mammary gland through the insulin-like growth factor (IGF)-I system, however, the mechanism of GH action is poorly understood. In this study, we show that GH dramatically inhibits the expression of IGFBP-5, and GH along with IGF-I enhanced the phosphorylation of Akt through the reduction of IGF binding protein (IGFBP)-5. To determine how GH affects Akt through IGF-I in bovine mammary epithelial cells (BMECs), we examined the phosphorylation of Akt in GH treated BMECs and found that IGF-I induced phosphorylation of Akt was significantly enhanced by the treatment with GH. We demonstrated that GH reduces mRNA and protein expression of IGFBP-5 in BMECs, but it does not affect the expression of IGFBP-3. To determine that the enhanced effect of the Akt phosphorylation by the treatment of GH is due to the inhibition of the expression of IGFBP-5, we examined the effect of IGFBP-3 and -5 on the phosphorylation of Akt through IGF-I in the GH-treated BMECs. The phosphorylation of Akt was inhibited in a dose-dependent manner when IGFBP-5 was added at varying concentrations and was also inhibited in the presence of IGFBP-3. The results of this study suggest that GH plays an important role on mammary gland involution in bovine mammary epithelial cells.

  13. Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle.

    PubMed

    Tan, Pearl Lin; Shavlakadze, Tea; Grounds, Miranda D; Arthur, Peter G

    2015-05-01

    Oxidative stress, caused by excess reactive oxygen species (ROS), has been hypothesized to cause or exacerbate skeletal muscle wasting in a number of diseases and chronic conditions. ROS, such as hydrogen peroxide, have the potential to affect signal transduction pathways such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt pathway that regulates protein synthesis. Previous studies have found contradictory outcomes for the effect of ROS on the PI3K/Akt signaling pathway, where oxidative stress can either enhance or inhibit Akt phosphorylation. The apparent contradictions could reflect differences in experimental cell types or types of ROS treatments. We replicate both effects in myotubes of cultured skeletal muscle C2C12 cells, and show that increased oxidative stress can either inhibit or enhance Akt phosphorylation. This differential response could be explained: thiol oxidation of Akt, but not the phosphatases PTEN or PP2A, caused a decline in Akt phosphorylation; whereas the thiol oxidation of Akt, PTEN and PP2A increased Akt phosphorylation. These observations indicate that a more complete understanding of the effects of oxidative stress on a signal transduction pathway comes not only from identifying the proteins susceptible to thiol oxidation, but also their relative sensitivity to ROS.

  14. Claudin-5, -7, and -18 suppress proliferation mediated by inhibition of phosphorylation of Akt in human lung squamous cell carcinoma.

    PubMed

    Akizuki, Risa; Shimobaba, Shun; Matsunaga, Toshiyuki; Endo, Satoshi; Ikari, Akira

    2017-02-01

    Abnormal expression of claudin (CLDN) subtypes has been reported in various solid cancers. However, it is unknown which subtype plays a key role in the regulation of proliferation in cancer cells. The expression of CLDN3-5, 7, and 18 in human lung squamous carcinoma tissues was lower than that in normal tissue. Here, we examined which combination of exogenous CLDNs expression inhibits proliferation and the molecular mechanism using human lung squamous RERF-LC-AI cells. Real-time polymerase chain reaction and western blotting showed that CLDN3-5, 7, and 18 are little expressed in RERF-LC-AI cells. In the exogenously transfected cells, CLDN5, 7, and 18 were distributed in the cell-cell contact areas concomitant with ZO-1, a tight junctional scaffolding protein, whereas CLDN3 and 4 were not. Cell proliferation was individually and additively suppressed by CLDN5, 7, and 18. The expression of these CLDNs showed no cytotoxicity compared with mock cells. CLDN5, 7, and 18 increased p21 and decreased cyclin D1, resulting in the suppression of cell cycle G1-S transition. The expression of these CLDNs inhibited phosphorylation of Akt without affecting phosphorylated ERK1/2. Furthermore, these CLDNs inhibited the nuclear localization of Akt and its association with 3-phosphoinositide-dependent protein kinase-1 (PDK1). The suppression of G1-S transition caused by CLDN5, 7, and 18 was rescued by the expression of constitutively active-Akt. We suggest that the reduction of CLDN5, 7, and 18 expression loses the suppressive ability of interaction between PDK1 and Akt and causes sustained phosphorylation of Akt, resulting in the disordered proliferation in lung squamous carcinoma cells.

  15. Leptin Effect on Acetylation and Phosphorylation of Pgc1α in Muscle Cells Associated With Ampk and Akt Activation in High-Glucose Medium.

    PubMed

    García-Carrizo, Francisco; Nozhenko, Yuriy; Palou, Andreu; Rodríguez, Ana M

    2016-03-01

    Leptin is crucial in energy metabolism, including muscle regulation. Peroxisome proliferator activated receptor gamma co-activator 1α (PGC1α) orchestrates energy metabolism and is tightly controlled by post-translational covalent modifications such as phosphorylation and acetylation. We aimed to further the knowledge of PGC1α control by leptin (at physiological levels) in muscle cells by time-sequentially analysing the activation of AMP activated protein kinase (AMPK), P38 mitogen-activated protein kinase (P38 MAPK) and Akt (Protein kinase B)--all known to phosphorylate PGC1α and to be involved in the regulation of its acetylation status--in C2C12 myotubes placed in a high-glucose serum-free medium. We also studied the protein levels of PGC1α, Sirtuin 1, adiponectin, COX IV, mitofusin 2 (Mfn2), and pyruvate dehydrogenase kinase 4 (PDK4). Our main findings suggest an important role of leptin regulating AMPK and Akt phosphorylation, Mfn2 induction and PGC1α acetylation status, with the novelty that the latter in transitorily increased in response to leptin, an effect dependent, at least in part, on AMPK regulation. These post-translational reversible changes in PGC1α in response to leptin, especially the increase in acetylation status, may be related to the physiological role of the hormone in modulating muscle cell response to the physiological/nutritional status.

  16. The MYC-Associated Protein CDCA7 Is Phosphorylated by AKT To Regulate MYC-Dependent Apoptosis and Transformation

    PubMed Central

    Gill, R. Montgomery; Gabor, Timothy V.; Couzens, Amber L.

    2013-01-01

    Cell division control protein A7 (CDCA7) is a recently identified target of MYC-dependent transcriptional regulation. We have discovered that CDCA7 associates with MYC and that this association is modulated in a phosphorylation-dependent manner. The prosurvival kinase AKT phosphorylates CDCA7 at threonine 163, promoting binding to 14-3-3, dissociation from MYC, and sequestration to the cytoplasm. Upon serum withdrawal, induction of CDCA7 expression in the presence of MYC sensitized cells to apoptosis, whereas CDCA7 knockdown reduced MYC-dependent apoptosis. The transformation of fibroblasts by MYC was reduced by coexpression of CDCA7, while the non-MYC-interacting protein Δ(156–187)-CDCA7 largely inhibited MYC-induced transformation. These studies provide insight into a new mechanism by which AKT signaling to CDCA7 could alter MYC-dependent growth and transformation, contributing to tumorigenesis. PMID:23166294

  17. Akt-phosphorylated mitogen-activated kinase-activating death domain protein (MADD) inhibits TRAIL-induced apoptosis by blocking Fas-associated death domain (FADD) association with death receptor 4.

    PubMed

    Li, Peifeng; Jayarama, Shankar; Ganesh, Lakshmy; Mordi, David; Carr, Ryan; Kanteti, Prasad; Hay, Nissim; Prabhakar, Bellur S

    2010-07-16

    MADD plays an essential role in cancer cell survival. Abrogation of endogenous MADD expression results in significant spontaneous apoptosis and enhanced susceptibility to tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. However, the regulation of MADD function is largely unknown. Here, we demonstrate that endogenous MADD is phosphorylated at three highly conserved sites by Akt, and only the phosphorylated MADD can directly interact with the TRAIL receptor DR4 thereby preventing Fas-associated death domain recruitment. However, in cells susceptible to TRAIL treatment, TRAIL induces a reduction in MADD phosphorylation levels resulting in MADD dissociation from, and Fas-associated death domain association with DR4, which allows death-inducing signaling complex (DISC) formation leading to apoptosis. Thus, the pro-survival function of MADD is dependent upon its phosphorylation by Akt. Because Akt is active in most cancer cells and phosphorylated MADD confers resistance to TRAIL-induced apoptosis, co-targeting Akt-MADD axis is likely to increase efficacy of TRAIL-based therapies.

  18. Insulin Resistance Prevents AMPK-induced Tau Dephosphorylation through Akt-mediated Increase in AMPKSer-485 Phosphorylation*

    PubMed Central

    Kim, Bhumsoo; Figueroa-Romero, Claudia; Pacut, Crystal; Backus, Carey; Feldman, Eva L.

    2015-01-01

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, diabetes, and dyslipidemia, and insulin resistance (IR) is the central feature of MetS. Recent studies suggest that MetS is a risk factor for Alzheimer disease (AD). AMP-activated kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme and a key player in regulating energy metabolism. In this report, we examined the role of IR on the regulation of AMPK phosphorylation and AMPK-mediated Tau phosphorylation. We found that AMPKSer-485, but not AMPKThr-172, phosphorylation is increased in the cortex of db/db and high fat diet-fed obese mice, two mouse models of IR. In vitro, treatment of human cortical stem cell line (HK-5320) and primary mouse embryonic cortical neurons with the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR), induced AMPK phosphorylation at both Thr-172 and Ser-485. AMPK activation also triggered Tau dephosphorylation. When IR was mimicked in vitro by chronically treating the cells with insulin, AICAR specifically induced AMPKSer-485, but not AMPKThr-172, hyperphosphorylation whereas AICAR-induced Tau dephosphorylation was inhibited. IR also resulted in the overactivation of Akt by AICAR treatment; however, preventing Akt overactivation during IR prevented AMPKSer-485 hyperphosphorylation and restored AMPK-mediated Tau dephosphorylation. Transfection of AMPKS485A mutant caused similar results. Therefore, our results suggest the following mechanism for the adverse effect of IR on AD pathology: IR → chronic overactivation of Akt → AMPKSer-485 hyperphosphorylation → inhibition of AMPK-mediated Tau dephosphorylation. Together, our results show for the first time a possible contribution of IR-induced AMPKSer-485 phosphorylation to the increased risk of AD in obesity and diabetes. PMID:26100639

  19. Direct binding of MEK1 and MEK2 to AKT induces Foxo1 phosphorylation, cellular migration and metastasis

    PubMed Central

    Procaccia, Shiri; Ordan, Merav; Cohen, Izel; Bendetz-Nezer, Sarit; Seger, Rony

    2017-01-01

    Crosstalk between the ERK cascade and other signaling pathways is one of the means by which it acquires its signaling specificity. Here we identified a direct interaction of both MEK1 and MEK2 with AKT. The interaction is mediated by the proline rich domain of MEK1/2 and regulated by phosphorylation of Ser298 in MEK1, or Ser306 in MEK2, which we identified here as a novel regulatory site. We further developed a blocking peptide, which inhibits the interaction between MEK and AKT, and when applied to cells, affects migration and adhesion, but not proliferation. The specific mechanism of action of the MEK-AKT complex involves phosphorylation of the migration-related transcription factor FoxO1. Importantly, prevention of the interaction results in a decreased metastasis formation in a breast cancer mouse model. Thus, the identified interaction both sheds light on how signaling specificity is determined, and represents a possible new therapeutic target for metastatic cancer. PMID:28225038

  20. 8-Prenylnaringenin promotes recovery from immobilization-induced disuse muscle atrophy through activation of the Akt phosphorylation pathway in mice.

    PubMed

    Mukai, Rie; Horikawa, Hitomi; Lin, Pei-Yi; Tsukumo, Nao; Nikawa, Takeshi; Kawamura, Tomoyuki; Nemoto, Hisao; Terao, Junji

    2016-12-01

    8-Prenylnaringenin (8-PN) is a prenylflavonoid that originates from hop extracts and is thought to help prevent disuse muscle atrophy. We hypothesized that 8-PN affects muscle plasticity by promoting muscle recovery under disuse muscle atrophy. To test the promoting effect of 8-PN on muscle recovery, we administered an 8-PN mixed diet to mice that had been immobilized with a cast to one leg for 14 days. Intake of the 8-PN mixed diet accelerated recovery from muscle atrophy, and prevented reductions in Akt phosphorylation. Studies on cell cultures of mouse myotubes in vitro demonstrated that 8-PN activated the PI3K/Akt/P70S6K1 pathway at physiological concentrations. A cell-culture study using an inhibitor of estrogen receptors and an in vivo experiment with ovariectomized mice suggested that the estrogenic activity of 8-PN contributed to recovery from disuse muscle atrophy through activation of an Akt phosphorylation pathway. These data strongly suggest that 8-PN is a naturally occurring compound that could be used as a nutritional supplement to aid recovery from disuse muscle atrophy.

  1. Estrogen rapidly phosphorylates AMPK, Akt, and AS160 in isolated rat soleus muscles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogen status is positively correlated with whole body insulin sensitivity, however direct effects of estrogen on skeletal muscle glucose uptake have not been demonstrated. The aim of this study was to determine if estrogen can acutely activate Akt, AMP-activated protein kinase (AMPK), and/or Akt...

  2. Targeted deletion of Kif18a protects from colitis-associated colorectal (CAC) tumors in mice through impairing Akt phosphorylation.

    PubMed

    Zhu, Houbao; Xu, Wangyang; Zhang, Hongxin; Liu, Jianbing; Xu, Haimin; Lu, Shunyuan; Dang, Suying; Kuang, Ying; Jin, Xiaolong; Wang, Zhugang

    2013-08-16

    Kinesins are a superfamily of molecular motors involved in cell division or intracellular transport. They are becoming important targets for chemotherapeutic intervention of cancer due to their crucial role in mitosis. Here, we demonstrate that the kinesin-8 Kif18a is overexpressed in murine CAC and is a crucial promoter during early CAC carcinogenesis. Kif18a-deficient mice are evidently protected from AOM-DSS-induced colon carcinogenesis. Kif18A is responsible for proliferation of colonic tumor cells, while Kif18a ablation in mice promotes cell apoptosis. Mechanistically, Kif18a is responsible for induction of Akt phosphorylation, which is known to be associated with cell survival regulation. In conclusion, Kif18a is critical for colorectal carcinogenesis in the setting of inflammation by mechanisms of increased PI3K-AKT signaling. Inhibition of Kif18A activity may be useful in the prevention or chemotherapeutic intervention of CAC.

  3. Akt1-mediated Gata3 phosphorylation controls the repression of IFNγ in memory-type Th2 cells

    PubMed Central

    Hosokawa, Hiroyuki; Tanaka, Tomoaki; Endo, Yusuke; Kato, Miki; Shinoda, Kenta; Suzuki, Akane; Motohashi, Shinichiro; Matsumoto, Masaki; Nakayama, Keiichi I.; Nakayama, Toshinori

    2016-01-01

    Th2 cells produce Th2 cytokines such as IL-4, IL-5 and IL-13, but repress Th1 cytokine IFNγ. Recent studies have revealed various distinct memory-type Th2 cell subsets, one of which produces a substantial amount of IFNγ in addition to Th2 cytokines, however it remains unclear precisely how these Th2 cells produce IFNγ. We herein show that phosphorylation of Gata3 at Ser308, Thr315 and Ser316 induces dissociation of a histone deacetylase Hdac2 from the Gata3/Chd4 repressive complex in Th2 cells. We also identify Akt1 as a Gata3-phosphorylating kinase, and the activation of Akt1 induces derepression of Tbx21 and Ifng expression in Th2 cells. Moreover, T-bet-dependent IFNγ expression in IFNγ-producing memory Th2 cells appears to be controlled by the phosphorylation status of Gata3 in human and murine systems. Thus, this study highlights the molecular basis for posttranslational modifications of Gata3 that control the regulation of IFNγ expression in memory Th2 cells. PMID:27053161

  4. Medium-chain triacylglycerol suppresses the decrease of plasma albumin level through the insulin-Akt-mTOR pathway in the livers of malnourished rats.

    PubMed

    Sekine, Seiji; Terada, Shin; Aoyama, Toshiaki

    2013-01-01

    Recent studies have shown that medium-chain triacylglycerol (MCT) improved serum albumin concentration in elderly people with protein-energy malnutrition (PEM) and in malnourished rats. However, the mechanism for this effect has not been clarified. Dietary MCT promotes insulin secretion from the pancreas, and insulin activates mammalian target of rapamycin (mTOR) complex 1 (mTORC1) via the activation of phosphoinositide 3-kinase (PI3K) and its downstream effecter, Akt. mTORC1 promotes mRNA translation through S6K and 4E-BP1. Therefore, we hypothesized that dietary MCT elevates albumin synthesis through promotion of insulin-Akt-mTOR transduction in the liver. To test this hypothesis, we measured phosphorylated Akt, mTOR and albumin in the livers of malnourished rats. In the present study we examined rats fed low-protein diets containing either MCT or long-chain triacylglycerol (LCT) with energy restriction. The plasma and liver albumin levels were significantly higher in the MCT-fed group than in the LCT-fed group. In addition, plasma insulin concentration, liver phosphorylated Akt/Akt and phosphorylated mTOR/mTOR levels were significantly higher in the MCT-fed group than in the LCT-fed group. These results suggest that one of the mechanisms for the albumin improvement effect of dietary MCT is the promotion of albumin synthesis through the insulin-Akt-mTOR signaling pathway of the liver.

  5. Akt Phosphorylation and PI (3, 4, 5) P3 Binding Coordinately Inhibit the Tumor Suppressive Activity of Merlin

    DTIC Science & Technology

    2010-02-01

    K76R K364R K455R K543R FITC DAPI Merge EQLNE LKTE IEALK R KEADQ LKQD LQEARR RRLLQ MKEE ATMAN R DTAVW LKMD KKVLD R Figure 4 0 In te rc el lu la... Xiaoling Tang, 1 Luca M. Neri, 2 and Keqiang Ye 1 1Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia...l e t t e r s Akt phosphorylation regulates the tumour-suppressor merlin through ubiquitination and degradation Xiaoling Tang1, Sung-Wuk Jang1

  6. mTORC2-PKBα/Akt1 Serine 473 phosphorylation axis is essential for regulation of FOXP3 Stability by chemokine CCL3 in psoriasis.

    PubMed

    Chen, Ling; Wu, Jinjin; Pier, Eric; Zhao, Yun; Shen, Zhu

    2013-02-01

    The connection between infections and acute guttate psoriasis (AGP) outbreaks/chronic plaque psoriasis (CPP) exacerbation has been known for years. Impaired function of FOXP3+Tregs in psoriasis has been identified. However, the mechanisms behind these two observations have not been fully interpreted. In the present study, we provide evidence to support chemokine CCL3 as one of the vital links between infections and FOXP3 stability in the psoriatic microenvironment. We found that serum CCL3, strongly induced by microorganism infections including streptococcus, was closely correlated with FOXP3 levels in CD4+CD25+T cells of patients with psoriasis. CCL3 manipulated FOXP3 stability in a concentration-dependent bidirectional manner. High-concentration CCL3 decreased FOXP3 stability by promoting FOXP3's degradation through K48-linkage ubiquitination. This degradation was mainly dependent on upregulation of Serine 473 phosphorylation of the PKBα/Akt1 isoform, and almost independent of mTORC1 (mammalian target of rapamycin complex 1) activity. On the other hand, low-concentration CCL3 could enhance FOXP3 stability by the maintenance of the PKC pathway and the restriction of the PKB/Akt pathway. We further demonstrated that enhancing FOXP3 stability by low-concentration CCL3 attributed, at least partly, to the prevention of cytoplasmic Sin1, a vital component of mTORC2, nuclear translocation. Our results suggest vital roles for CCL3-mTORC2-isoform PKB/Akt1 S473 phosphorylation axis in FOXP3+Tregs and the development of psoriasis.

  7. Effect of dehydroepiandrosterone (DHEA) on Akt and protein kinase C zeta (PKCζ) phosphorylation in different tissues of C57BL6, insulin receptor substrate (IRS)1(-/-), and IRS2(-/-) male mice fed a high-fat diet.

    PubMed

    Aoki, Kazutaka; Tajima, Kazuki; Taguri, Masataka; Terauchi, Yasuo

    2016-05-01

    We have previously reported that dehydroepiandrosterone (DHEA) suppresses the activity and mRNA expression of the hepatic gluconeogenic enzyme glucose-6-phosphatase (G6Pase), and hepatic glucose production in db/db mice. Tyrosine phosphorylation levels of Insulin receptor substrate (IRS)1 and IRS2 reportedly differ between the liver and muscle tissue and the effect of DHEA on insulin signaling has not been elucidated. Therefore, we examined DHEA's effect on the liver and muscle tissue of IRS1(-/-) and IRS2(-/-) mice. Eight-week-old male C57BL6, IRS1(-/-), and IRS2(-/-) mice were fed a high-fat diet (HFD), or an HFD containing 0.2% DHEA for 4 weeks. In a separate experiment, 8-week-old male C57BL6 mice were fed an HFD or an HFD containing 0.2% androstenedione for 4 weeks. In an insulin tolerance test, DHEA administration decreased the initial plasma glucose levels in the C57BL6, IRS1(-/-), and IRS2(-/-) mice but did not decrease the ratios to the basal blood glucose level. Although DHEA administration increased Akt phosphorylation in the liver of the C57BL6, IRS1(-/-), and IRS2(-/-) mice, androstenedione administration did not increase Akt phosphorylation in the liver of C57BL6 mice. DHEA administration did not increase Akt and PKCζ phosphorylation in the muscle tissue of C57BL6, IRS1(-/-), or IRS2(-/-) mice. However, androstenedione administration increased Akt and PKCζ phosphorylation in the muscle tissue of C57BL6 mice. These findings suggest that the effect of DHEA on insulin action in the liver is self-mediated by DHEA or DHEA sulfate (DHEA-S) in the presence of IRS1, IRS2, or both.

  8. Phosphorylated Ribosomal Protein S6 Is Required for Akt-Driven Hyperplasia and Malignant Transformation, but Not for Hypertrophy, Aneuploidy and Hyperfunction of Pancreatic β-Cells.

    PubMed

    Wittenberg, Avigail Dreazen; Azar, Shahar; Klochendler, Agnes; Stolovich-Rain, Miri; Avraham, Shlomit; Birnbaum, Lea; Binder Gallimidi, Adi; Katz, Maximiliano; Dor, Yuval; Meyuhas, Oded

    2016-01-01

    Constitutive expression of active Akt (Akttg) drives hyperplasia and hypertrophy of pancreatic β-cells, concomitantly with increased insulin secretion and improved glucose tolerance, and at a later stage the development of insulinoma. To determine which functions of Akt are mediated by ribosomal protein S6 (rpS6), an Akt effector, we generated mice that express constitutive Akt in β-cells in the background of unphosphorylatable ribosomal protein S6 (rpS6P-/-). rpS6 phosphorylation deficiency failed to block Akttg-induced hypertrophy and aneuploidy in β-cells, as well as the improved glucose homeostasis, indicating that Akt carries out these functions independently of rpS6 phosphorylation. In contrast, rpS6 phosphorylation deficiency efficiently restrained the reduction in nuclear localization of the cell cycle inhibitor p27, as well as the development of Akttg-driven hyperplasia and tumor formation in β-cells. In vitro experiments with Akttg and rpS6P-/-;Akttg fibroblasts demonstrated that rpS6 phosphorylation deficiency leads to reduced translation fidelity, which might underlie its anti-tumorigenic effect in the pancreas. However, the role of translation infidelity in tumor suppression cannot simply be inferred from this heterologous experimental model, as rpS6 phosphorylation deficiency unexpectedly elevated the resistance of Akttg fibroblasts to proteotoxic, genotoxic as well as autophagic stresses. In contrast, rpS6P-/- fibroblasts exhibited a higher sensitivity to these stresses upon constitutive expression of oncogenic Kras. The latter result provides a possible mechanistic explanation for the ability of rpS6 phosphorylation deficiency to enhance DNA damage and protect mice from Kras-induced neoplastic transformation in the exocrine pancreas. We propose that Akt1 and Kras exert their oncogenic properties through distinct mechanisms, even though both show addiction to rpS6 phosphorylation.

  9. Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases.

    PubMed

    Mistafa, Oras; Ghalali, Aram; Kadekar, Sandeep; Högberg, Johan; Stenius, Ulla

    2010-09-03

    Akt is an important oncoprotein, and data suggest a critical role for nuclear Akt in cancer development. We have previously described a rapid (3-5 min) and P2X7-dependent depletion of nuclear phosphorylated Akt (pAkt) and effects on downstream targets, and here we studied mechanisms behind the pAkt depletion. We show that cholesterol-lowering drugs, statins, or extracellular ATP, induced a complex and coordinated response in insulin-stimulated A549 cells leading to depletion of nuclear pAkt. It involved protein/lipid phosphatases PTEN, pleckstrin homology domain leucine-rich repeat phosphatase (PHLPP1 and -2), protein phosphatase 2A (PP2A), and calcineurin. We employed immunocytology, immunoprecipitation, and proximity ligation assay techniques and show that PHLPP and calcineurin translocated to the nucleus and formed complexes with Akt within 3 min. Also PTEN translocated to the nucleus and then co-localized with pAkt close to the nuclear membrane. An inhibitor of the scaffolding immunophilin FK506-binding protein 51 (FKBP51) and calcineurin, FK506, prevented depletion of nuclear pAkt. Furthermore, okadaic acid, an inhibitor of PP2A, prevented the nuclear pAkt depletion. Chemical inhibition and siRNA indicated that PHLPP, PP2A, and PTEN were required for a robust depletion of nuclear pAkt, and in prostate cancer cells lacking PTEN, transfection of PTEN restored the statin-induced pAkt depletion. The activation of protein and lipid phosphatases was paralleled by a rapid proliferating cell nuclear antigen (PCNA) translocation to the nucleus, a PCNA-p21(cip1) complex formation, and cyclin D1 degradation. We conclude that these effects reflect a signaling pathway for rapid depletion of pAkt that may stop the cell cycle.

  10. p38 MAPK- and Akt-mediated p300 phosphorylation regulates its degradation to facilitate nucleotide excision repair

    PubMed Central

    Wang, Qi-En; Han, Chunhua; Zhao, Ran; Wani, Gulzar; Zhu, Qianzheng; Gong, Li; Battu, Aruna; Racoma, Ira; Sharma, Nidhi; Wani, Altaf A.

    2013-01-01

    Besides the primary histone acetyltransferase (HAT)-mediated chromatin remodeling function, co-transcriptional factor, p300, is also known to play a distinct role in DNA repair. However, the exact mechanism of p300 function in DNA repair has remained unclear and difficult to discern due to the phosphorylation and degradation of p300 in response to DNA damage. Here, we have demonstrated that p300 is only degraded in the presence of specific DNA lesions, which are the substrates of nucleotide excision repair (NER) pathway. In contrast, DNA double-strand breaks fail to degrade p300. Degradation is initiated by phosphorylation of p300 at serine 1834, which is catalyzed by the cooperative action of p38 mitogen-activated protein kinases and Akt kinases. In depth, functional analysis revealed that (i) p300 and CBP act redundantly in repairing ultraviolet (UV) lesions, (ii) the phosphorylation of p300 at S1834 is critical for efficient removal of UV-induced cyclobutane pyrimidine dimers and (iii) p300 is recruited to DNA damage sites located within heterochromatin. Taken together, we conclude that phosphorylated p300 initially acetylates histones to relax heterochromatin to allow damage recognition factors access to damage DNA. Thereupon, p300 is promptly degraded to allow the sequential recruitment of downstream repair proteins for successful execution of NER. PMID:23275565

  11. Targeted deletion of Kif18a protects from colitis-associated colorectal (CAC) tumors in mice through impairing Akt phosphorylation

    SciTech Connect

    Zhu, Houbao; Xu, Wangyang; Zhang, Hongxin; Liu, Jianbing; Xu, Haimin; Lu, Shunyuan; Dang, Suying; Kuang, Ying; Jin, Xiaolong; Wang, Zhugang

    2013-08-16

    Highlights: •Kif18A is up-regulated in CAC of mouse model. •Kif18a{sup −/−} mice are protected from CAC. •Tumor cells from Kif18a{sup −/−} mice undergo more apoptosis. •Kif18A deficiency induces poor Atk phosphorylation. -- Abstract: Kinesins are a superfamily of molecular motors involved in cell division or intracellular transport. They are becoming important targets for chemotherapeutic intervention of cancer due to their crucial role in mitosis. Here, we demonstrate that the kinesin-8 Kif18a is overexpressed in murine CAC and is a crucial promoter during early CAC carcinogenesis. Kif18a-deficient mice are evidently protected from AOM–DSS-induced colon carcinogenesis. Kif18A is responsible for proliferation of colonic tumor cells, while Kif18a ablation in mice promotes cell apoptosis. Mechanistically, Kif18a is responsible for induction of Akt phosphorylation, which is known to be associated with cell survival regulation. In conclusion, Kif18a is critical for colorectal carcinogenesis in the setting of inflammation by mechanisms of increased PI3K-AKT signaling. Inhibition of Kif18A activity may be useful in the prevention or chemotherapeutic intervention of CAC.

  12. Akt phosphorylates myc-associated zinc finger protein (MAZ), releases P-MAZ from the p53 promoter, and activates p53 transcription.

    PubMed

    Lee, Wei-Ping; Lan, Keng-Hsin; Li, Chung-Pin; Chao, Yee; Lin, Han-Chieh; Lee, Shou-Dong

    2016-05-28

    The p53 protein is a cell cycle regulator. When the cell cycle progresses, p53 plays an important role in putting a brake on the G1 phase to prevent unwanted errors during cell division. Akt is a downstream kinase of receptor tyrosine kinase. Upon activation, Akt phorphorylates IKK that then phosphorylates IκB and releases NF-κB, leading to transcriptional activation of Dmp1. Dmp1 is a transcriptional activator of Arf. It has been known that oncogene activation stabilizes p53 through transcriptional activation of Arf, which then binds and inhibits Mdm2. In the current study, we show that myc-associated zinc finger protein (MAZ) is a transcriptional repressor of the p53 promoter. Akt phosphorylates MAZ at Thr385, and the phosphorylated MAZ is released from the p53 promoter, leading to transcriptional activation of p53, a new mechanism that contributes to increased p53 protein pool during oncogene activation.

  13. Protein kinase B/Akt phosphorylates and inhibits the cardiac Na+/H+ exchanger NHE1.

    PubMed

    Snabaitis, Andrew K; Cuello, Friederike; Avkiran, Metin

    2008-10-10

    Sarcolemmal Na(+)/H(+) exchanger (NHE) activity is mediated by NHE isoform 1 (NHE1), which is subject to regulation by protein kinases. Our objectives were to determine whether NHE1 is phosphorylated by protein kinase B (PKB), identify any pertinent phosphorylation site(s), and delineate the functional consequences of such phosphorylation. Active PKBalpha phosphorylated in vitro a glutathione S-transferase (GST)-NHE1 fusion protein comprising amino acids 516 to 815 of the NHE1 carboxyl-terminal regulatory domain. PKBalpha-mediated phosphorylation of GST-NHE1 fusion proteins containing overlapping segments of this region localized the targeted residues to the carboxyl-terminal 190 amino acids (625 to 815) of NHE1. Mass spectrometry and phosphorylation analysis of mutated (Ser-->Ala) GST-NHE1 fusion proteins revealed that PKBalpha-mediated phosphorylation of NHE1 occurred principally at Ser648. Far-Western assays demonstrated that PKBalpha-mediated Ser648 phosphorylation abrogated calcium-activated calmodulin (CaM) binding to the regulatory domain of NHE1. In adult rat ventricular myocytes, adenovirus-mediated expression of myristoylated PKBalpha (myr-PKBalpha) increased cellular PKB activity, as confirmed by increased glycogen synthase kinase 3beta phosphorylation. Heterologously expressed myr-PKBalpha was present in the sarcolemma, colocalized with NHE1 at the intercalated disc regions, increased NHE1 phosphorylation, and reduced NHE1 activity following intracellular acidosis. Conversely, pharmacological inhibition of endogenous PKB increased NHE1 activity following intracellular acidosis. Our data suggest that NHE1 is a novel PKB substrate and that its PKB-mediated phosphorylation at Ser648 inhibits sarcolemmal NHE activity during intracellular acidosis, most likely by interfering with CaM binding and reducing affinity for intracellular H(+).

  14. SRPK1 and Akt Protein Kinases Phosphorylate the RS Domain of Lamin B Receptor with Distinct Specificity: A Combined Biochemical and In Silico Approach

    PubMed Central

    Nikolakaki, Eleni; Vlassi, Metaxia; Giannakouros, Thomas

    2016-01-01

    Activated Akt has been previously implicated in acting on RS domain-containing proteins. However, it has been questioned whether its action is direct or it is mediated by co-existing SR kinase activity. To address this issue we studied in detail the phosphorylation of Lamin B Receptor (LBR) by Akt. Using synthetic peptides and a set of recombinant proteins expressing mutants of the LBR RS domain we now demonstrate that while all serines of the RS domain represent more or less equal phosphoacceptor sites for SRPK1, Ser80 and Ser82 are mainly targeted by Akt. 3D-modeling combined with molecular dynamics (MD) simulations show that amongst short, overlapping LBR RS-containing peptides complying with the minimum Akt recognition consensus sequence, only those bearing phosphosites either at Ser80 or Ser82 are able to fit into the active site of Akt, at least as effectively as its known substrate, GSK3-β. Combined our results provide evidence that Akt kinases directly phosphorylate an RS domain-containing protein and that both the residues N-terminal the phosphosite and at position +1 are essential for Akt specificity, with the latter substrate position being compatible with the arginine residue of RS-repeats. PMID:27105349

  15. Suppression of Akt1 phosphorylation by adenoviral transfer of the PTEN gene inhibits hypoxia-induced proliferation of rat pulmonary arterial smooth muscle cells

    SciTech Connect

    Luo, Chunxia; Yi, Bin; Bai, Li; Xia, Yongzhi; Wang, Guansong; Qian, Guisheng; Feng, Hua

    2010-07-02

    Recent findings identify the role of proliferation of pulmonary artery smooth muscle cells (PASMCs) in pulmonary vascular remodeling. Phosphoinositide 3 kinase (PI3K) and serine/threonine kinase (Akt) proteins are expressed in vascular smooth muscle cells. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been identified as a negative regulator of cytokine signaling that inhibits the PI3K-Akt pathway. However, little is known about the role of PTEN/Akt signaling in hypoxia-associated vascular remodeling. In this study, we found that hypoxia-induced the expression of Akt1 mRNA and phosphorylated protein by at least twofold in rat PASMCs. Phospho-PTEN significantly decreased in the nuclei of PASMCs after hypoxic stimulation. After forcing over-expression of PTEN by adenovirus-mediated PTEN (Ad-PTEN) transfection, the expression of phospho-Akt1 was significantly suppressed in PASMCs at all time-points measured. Additionally, we showed here that hypoxia increased proliferation of PASMCs by nearly twofold and over-expression of PTEN significantly inhibited hypoxia-induced PASMCs proliferation. These findings suggest that phospho-PTEN loss in the nuclei of PASMCs under hypoxic conditions may be the major cause of aberrant activation of Akt1 and may, therefore, play an important role in hypoxia-associated pulmonary arterial remodeling. Finally, the fact that transfection with Ad-PTEN inhibits the phosphorylation of Akt1 in PASMCs suggests a potential therapeutic effect on hypoxia-associated pulmonary arterial remodeling.

  16. Serine 1179 phosphorylation of endothelial nitric oxide synthase caused by 2,4,6-trinitrotoluene through PI3K/Akt signaling in endothelial cells

    SciTech Connect

    Sun Yang; Sumi, Daigo; Kumagai, Yoshito . E-mail: yk-em-tu@md.tsukuba.ac.jp

    2006-07-01

    Although 2,4,6-trinitrotoluene (TNT) has been found to uncouple nitric oxide synthase (NOS), thereby leading to reactive oxygen species (ROS), cellular response against TNT still remains unclear. Exposure of bovine aortic endothelial cells (BAECs) to TNT (100 {mu}M) resulted in serine 1179 phosphorylation of endothelial NOS (eNOS). With specific inhibitors (wortmannin and LY294002), we found that PI3K/Akt signaling participated in the eNOS phosphorylation caused by TNT, whereas the ERK pathway did not. ROS were generated following exposure of BAECs to TNT. However, TNT-mediated phosphorylation of either eNOS or Akt was drastically blocked by NAC and PEG-CAT. Interestingly, pretreatment with apocynin, a specific inhibitor for NADPH oxidase, diminished the phosphorylation of eNOS and Akt. These results suggest that TNT affects NADPH oxidase, thereby generating hydrogen peroxide, which is capable of activating PI3K/Akt signaling associated with eNOS Ser 1179 phosphorylation.

  17. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    PubMed

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway.

  18. Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells.

    PubMed

    Carpenter, R L; Paw, I; Dewhirst, M W; Lo, H-W

    2015-01-29

    Epithelial-mesenchymal transition (EMT) is an essential step for tumor progression, although the mechanisms driving EMT are still not fully understood. In an effort to investigate these mechanisms, we observed that heregulin (HRG)-mediated activation of HER2, or HER2 overexpression, resulted in EMT, which is accompanied with increased expression of a known EMT regulator Slug, but not TWIST or Snail. We then investigated how HER2 induced Slug expression and found, for the first time, that there are four consensus HSF sequence-binding elements (HSEs), the binding sites for heat shock factor-1 (HSF-1), located in the Slug promoter. HSF-1 bound to and transactivated the Slug promoter independent of heat shock, leading to Slug expression in breast cancer cells. Mutation of the putative HSEs ablated Slug transcriptional activation induced by HRG or HSF-1 overexpression. Knockdown of HSF-1 expression by siRNA reduced Slug expression and HRG-induced EMT. The positive association between HSF-1 and Slug was confirmed by immunohistochemical staining of a cohort of 100 invasive breast carcinoma specimens. While investigating how HER2 activated HSF-1 independent of heat shock, we observed that HER2 activation resulted in concurrent phosphorylation of Akt and HSF-1. We then observed, also for the first time, that Akt directly interacted with HSF-1 and phosphorylated HSF-1 at S326. Inhibition of Akt using siRNA, dominant-negative Akt mutant, or small molecule inhibitors prevented HRG-induced HSF-1 activation and Slug expression. Conversely, constitutively active Akt induced HSF-1 phosphorylation and Slug expression. HSF-1 knockdown reduced the ability of Akt to induce Slug expression, indicating an essential role that HSF-1 plays in Akt-induced Slug upregulation. Altogether, our study uncovered the existence of a novel Akt-HSF-1 signaling axis that leads to Slug upregulation and EMT, and potentially contributes to progression of HER2-positive breast cancer.

  19. The critical role of Akt in cardiovascular function.

    PubMed

    Abeyrathna, Prasanna; Su, Yunchao

    2015-11-01

    Akt kinase, a member of AGC kinases, is important in many cellular functions including proliferation, migration, cell growth and metabolism. There are three known Akt isoforms which play critical and diverse roles in the cardiovascular system. Akt activity is regulated by its upstream regulatory pathways at transcriptional and post-translational levels. Beta-catenin/Tcf-4, GLI1 and Stat-3 are some of few known transcriptional regulators of AKT gene. Threonine 308 and serine 473 are the two critical phosphorylation sites of Akt1. Translocation of Akt to the cell membrane facilitates PDK1 phosphorylation of the threonine site. The serine site is phosphorylated by mTORC2. Ack1, Src, PTK6, TBK1, IKBKE and IKKε are some of the non-canonical pathways which affect the Akt activity. Protein-protein interactions of Akt to actin and Hsp90 increase the Akt activity while Akt binding to other proteins such as CTMP and TRB3 reduces the Akt activity. The action of Akt on its downstream targets determines its function in cardiovascular processes such as cell survival, growth, proliferation, angiogenesis, vasorelaxation, and cell metabolism. Akt promotes cell survival via caspase-9, YAP, Bcl-2, and Bcl-x activities. Inhibition of FoxO proteins by Akt also increases cell survival by transcriptional mechanisms. Akt stimulates cell growth and proliferation through mTORC1. Akt also increases VEGF secretion and mediates eNOS phosphorylation, vasorelaxation and angiogenesis. Akt can increase cellular metabolism through its downstream targets GSK3 and GLUT4. The alterations of Akt signaling play an important role in many cardiovascular pathological processes such as atherosclerosis, cardiac hypertrophy, and vascular remodeling. Several Akt inhibitors have been developed and tested as anti-tumor agents. They could be potential novel therapeutics for the cardiovascular diseases.

  20. Inhibition of phosphorylated Ser473-Akt from translocating into the nucleus contributes to 2-cell arrest and defective zygotic genome activation in mouse preimplantation embryogenesis.

    PubMed

    Chen, Junming; Lian, Xiuli; Du, Juan; Xu, Songhua; Wei, Jianen; Pang, Lili; Song, Chanchan; He, Lin; Wang, Shie

    2016-04-01

    Phosphorylated Ser473-Akt (p-Ser473-Akt) is extensively studied as a correlate for the activity of Akt, which plays an important role in mouse oogenesis and preimplantation embryogenesis. However, little progress has been made about its effect on the mouse zygotic genome activation (ZGA) of 2-cell stage in mouse preimplantation embryos. In this study, we confirmed its localization in the pronuclei of 1-cell embryos and found that p-Ser473-Akt acquired prominent nucleus localization in 2-cell embryos physiologically. Akt specific inhibitors API-2 and MK2206 could inhibit the development of mouse preimplantation embryos in vitro, and induce 2-cell arrest at certain concentrations. 2-cell embryos exposed to 2.0 μmol/L API-2 or 30 μmol/L MK2206 displayed attenuated immunofluorescence intensity of p-Ser473-Akt in the nucleus. Simultaneously, qRT-PCR results revealed that 2.0 μmol/L API-2 treatment significantly downregulated the mRNA pattern of MuERV-L and eIF-1A, two marker genes of ZGA, suggesting a defect in ZGA compared with that of control group. Collectively, our work demonstrated the nuclear localization of p-Ser473-Akt during major ZGA, and Akt specific inhibitors API-2 and MK2206 which led to 2-cell arrest inhibited p-Ser473-Akt from translocating into the nucleus of 2-cell embryos with defective ZGA as well, implying p-Ser473-Akt may be a potential player in the major ZGA of 2-cell mouse embryos.

  1. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival

    PubMed Central

    Li, Xuezhi; Lavigne, Pierre; Lavoie, Christine

    2015-01-01

    Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses. PMID:26446845

  2. Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation.

    PubMed

    Chiang, Chun-Te; Way, Tzong-Der; Tsai, Shang-Jie; Lin, Jen-Kun

    2007-12-22

    Fatty acid synthase (FAS) expression is markedly elevated in HER2-overexpressing breast cancer cells. In this study, diosgenin, a plant-derived steroid, was found to be effective in suppressing FAS expression in HER2-overexpressing breast cancer cells. Diosgenin preferentially inhibited proliferation and induced apoptosis in HER2-overexpressing cancer cells. Furthermore, diosgenin inhibited the phosphorylation of Akt and mTOR, and enhanced phosphorylation of JNK. The use of pharmacological inhibitors revealed that the modulation of Akt, mTOR and JNK phosphorylation was required for diosgenin-induced FAS suppression. Finally, we showed that diosgenin could enhance paclitaxel-induced cytotoxicity in HER2-overexpressing cancer cells. These results suggested that diosgenin has the potential to advance as chemopreventive or chemotherapeutic agent for cancers that overexpress HER2.

  3. Impaired translocation and activation of mitochondrial Akt1 mitigated mitochondrial oxidative phosphorylation Complex V activity in diabetic myocardium.

    PubMed

    Yang, Jia-Ying; Deng, Wu; Chen, Yumay; Fan, Weiwei; Baldwin, Kenneth M; Jope, Richard S; Wallace, Douglas C; Wang, Ping H

    2013-06-01

    Insulin can translocate Akt to mitochondria in cardiac muscle. The goals of this study were to define sub-mitochondrial localization of the translocated Akt, to dissect the effects of insulin on Akt isoform translocation, and to determine the direct effect of mitochondrial Akt activation on Complex V activity in normal and diabetic myocardium. The translocated Akt sequentially localized to the mitochondrial intermembrane space, inner membrane, and matrix. To confirm Akt translocation, in vitro import assay showed rapid entry of Akt into mitochondria. Akt isoforms were differentially regulated by insulin stimulation, only Akt1 translocated into mitochondria. In the insulin-resistant Type 2 diabetes model, Akt1 translocation was blunted. Mitochondrial activation of Akt1 increased Complex V activity by 24% in normal myocardium in vivo and restored Complex V activity in diabetic myocardium. Basal mitochondrial Complex V activity was lower by 22% in the Akt1(-/-) myocardium. Insulin-stimulated Complex V activity was not impaired in the Akt1(-/-) myocardium, due to compensatory translocation of Akt2 to mitochondria. Akt1 is the primary isoform that relayed insulin signaling to mitochondria and modulated mitochondrial Complex V activity. Activation of mitochondrial Akt1 enhanced ATP production and increased phosphocreatine in cardiac muscle cells. Dysregulation of this signal pathway might impair mitochondrial bioenergetics in diabetic myocardium.

  4. Aristolochic Acid I Causes Testis Toxicity by Inhibiting Akt and ERK1/2 Phosphorylation.

    PubMed

    Kwak, Dong Hoon; Lee, Seoul

    2016-01-19

    Aristolochic acid (AA) is a natural bioactive substance found in Chinese herbs that induce toxicity during ovarian maturation of animals and humans. Apoptosis is induced by various types of damage and governs the progression of biological cell removal that controls the equilibrium between cell growth and death. However, the AA toxicity mechanism during testis maturation in mouse has not been elucidated and was thus the focus of the present study. This study used TM4 Sertoli cells and an ICR mouse model, both of which were injected with aristolochic acid I (AAI) for 4 weeks. Testis dimensions and weight were surveyed to define AAI cytotoxicity in the mice testis. The MTT assay was used to analyze the cytotoxicity of AAI in TM4 Sertoli cells. An apoptosis expression mediator was analyzed through Western blotting, while the measure of apoptosis-induced cell death of TM4 Sertoli cells and testis tissues was analyzed by the TUNEL assay. We found that AAI strongly inhibits survival in TM4 cells and that AAI significantly activated apoptosis-induced cell death in TM4 Sertoli cells and mice testis tissue. In addition, AAI suppressed the expression of B-cell lymphoma 2 (Bcl-2), a factor related to anti-apoptosis. It markedly improved pro-apoptotic protein expression, including Bcl-2-associated X protein, poly(ADP-ribose) polymerase, and caspase-3 and -9. Furthermore, we observed that AAI significantly reduced the size and weight of mouse testis. Moreover, germ cells and somatic cells in testis were markedly damaged by AAI. In addition, we found that AAI significantly inhibits ERK1/2 and Akt activation in TM4 Sertoli cells and testis tissue. The data obtained in this study indicate that AAI causes severe injury for the period of testis development by impeding apoptosis related to the Akt and ERK1/2 pathway.

  5. Increased phosphorylation of Ser473-Akt, Ser9-GSK-3beta and Ser133-CREB in the rat frontal cortex after MK-801 intraperitoneal injection.

    PubMed

    Ahn, Yong Min; Seo, Myoung Suk; Kim, Se Hyun; Kim, Yeni; Yoon, Se Chang; Juhnn, Yong-Sung; Kim, Yong Sik

    2005-12-01

    GSK-3beta is regarded as playing an important part in the pathogenesis of schizophrenia and the action of psychotomimetic agents. We observed phosphorylation of molecules associated with the GSK-3beta signalling pathway in the rat brain after MK-801 injection, which induces a schizophrenia-like state in humans. Ser9-GSK-3beta phosphorylation was increased after injection of 1 mg/kg MK-801 in the rat frontal cortex but not in the hippocampus or cerebellum. This increase peaked at 30 min and was maintained until 90 min after injection. The phosphorylation showed a dose-dependent increase up to 1 mg/kg MK-801, followed by a decrease at higher dosage. Furthermore, phosphorylation of Ser473-Akt and Ser133-CREB showed similar temporal, dose-dependent and regionally specific patterns with those of Ser9-GSK-3beta. However, phosphorylation of Dvl and Ser33-beta-catenin was not affected by MK-801. These results suggest that GSK-3beta phosphorylation by MK-801 may be associated with the Akt-GSK-3beta pathway rather than with the Wnt-Dvl-GSK3beta pathway.

  6. Increased basal level of Akt-dependent insulin signaling may be responsible for the development of insulin resistance

    PubMed Central

    Liu, Hui-Yu; Hong, Tao; Wen, Ge-Bo; Han, Jianmin; Zuo, Degen; Liu, Zhenqi

    2009-01-01

    A majority of subjects with insulin resistance and hyperinsulinemia can maintain their blood glucose levels normal for the whole life presumably through protein kinase B (Akt)-dependent insulin signaling. In this study, we found that the basal Akt phosphorylation level was increased in liver and gastrocnemius of mice under the high-fat diet (HFD). Levels of mitochondrial DNA and expression of some mitochondrion-associated genes were decreased by the HFD primarily in liver. Triglyceride content was increased in both liver and gastrocnemius by the HFD. Oxidative stress was induced by the HFD in both liver and gastrocnemius. Insulin sensitivity was decreased by the HFD. All of these changes were largely or completely reversed by treatment of animals with the phosphatidylinositol 3-kinase inhibitor LY-294002 during the time when animals usually do not eat. Consequently, the overall insulin sensitivity was increased by treatment with LY-294002. Together, our results indicate that increased basal Akt-dependent insulin signaling suppresses mitochondrial production, increases ectopic fat accumulation, induces oxidative stress, and desensitizes insulin signaling in subjects with insulin resistance and hyperinsulinemia. PMID:19638508

  7. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    SciTech Connect

    Xue, Peng; Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu; Sun, Guifan; Andersen, Melvin E.; Pi, Jingbo

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  8. A PP2A regulatory subunit PPTR-1 regulates the C. elegans Insulin/IGF-1 signaling pathway by modulating AKT-1 phosphorylation

    PubMed Central

    Padmanabhan, Srivatsan; Mukhopadhyay, Arnab; Narasimhan, Sri Devi; Tesz, Gregory; Czech, Michael P.; Tissenbaum, Heidi A.

    2009-01-01

    Summary The C. elegans insulin/IGF-1 signaling (IIS) cascade plays a central role in the regulation of lifespan, dauer diapause, metabolism and stress response. The major regulatory control of IIS is through phosphorylation of its components by serine/threonine-specific protein kinases. In a RNAi screen for serine/threonine protein phosphatases that counter-balance the effect of the kinases in the IIS pathway, we identified pptr-1, a B56 regulatory subunit of the PP2A holoenzyme. Modulation of pptr-1 affects phenotypes associated with the IIS pathway including lifespan, dauer, stress resistance and fat storage. We show that PPTR-1 functions by regulating worm AKT-1 phosphorylation at Thr 350. With striking conservation, mammalian B56β regulates Akt phosphorylation at Thr 308 in 3T3-L1 adipocytes. In C. elegans, this modulation ultimately leads to changes in subcellular localization and transcriptional activity of the forkhead transcription factor DAF-16. This study reveals a conserved role for the B56 regulatory subunit in modulating insulin signaling through AKT dephosphorylation and thereby has widespread implications in cancer and diabetes research. PMID:19249087

  9. 8-Amino-adenosine induces loss of phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2, and Akt kinase: role in induction of apoptosis in multiple myeloma.

    PubMed

    Ghias, Kulsoom; Ma, Chunguang; Gandhi, Varsha; Platanias, Leonidas C; Krett, Nancy L; Rosen, Steven T

    2005-04-01

    Multiple myeloma is a slowly proliferating B-cell malignancy that accumulates apoptosis-resistant and replication-quiescent cell populations, posing a challenge for current chemotherapeutics that target rapidly replicating cells. Multiple myeloma remains an incurable disease in need of new therapeutic approaches. The purine nucleoside analogue, 8-amino-adenosine (8-NH2-Ado), exhibits potent activity in preclinical studies, inducing apoptosis in several multiple myeloma cell lines. This cytotoxic effect requires phosphorylation of 8-NH2-Ado to its triphosphate form, 8-amino-ATP, and results in a concomitant loss of endogenous ATP levels. Here, we show the novel effect of 8-NH2-Ado on the phosphorylation status of key cellular signaling molecules. Multiple myeloma cells treated with 8-NH2-Ado exhibit a dramatic loss of phosphorylation of several important signaling proteins, including extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and Akt kinase. Cells depleted of ATP independent of 8-NH2-Ado do not exhibit the same decrease in phosphorylation of vital cellular proteins. Therefore, the significant shifts in endogenous ATP pools caused by 8-NH2-Ado treatment cannot account for the changes in phosphorylation levels. Instead, 8-NH2-Ado may influence the activity of select regulatory protein kinases and/or phosphatases, with preliminary data suggesting that protein phophatase 2A activity is affected by 8-NH2-Ado. The distinctive effect of 8-NH2-Ado on the phosphorylation status of cellular proteins is a novel phenomenon for a nucleoside analogue drug and is unique to 8-NH2-Ado among this class of drugs. The kinetics of 8-NH2-Ado-mediated changes in phosphorylation levels of critical prosurvival and apoptosis-regulating proteins suggests that the modulation of these proteins by dephosphorylation at early time points may be an important mechanistic step in 8-NH2-Ado-induced apoptosis.

  10. beta1-integrin mediates asbestos-induced phosphorylation of AKT and ERK1/2 in a rat pleural mesothelial cell line.

    PubMed

    Berken, Antje; Abel, Josef; Unfried, Klaus

    2003-11-20

    Integrin-mediated signalling has been implicated in asbestos-induced carcinogenesis. In studies here, we examined signal transduction events associated with integrin-directed cell reactions triggered by crocidolite asbestos in the pleural mesothelial cell line 4/4 RM-4. Crocidolite fibres induced a significant time- and dose-dependent activation of the extracellular-signal-regulated kinases ERK1 and ERK2. ERK activation was specifically inhibited by integrin-blocking agents, that are integrin-binding peptides containing the sequence arginine-glycine-aspartic acid (RGD), and monoclonal antibodies against the integrin beta1-chain. Integrin-dependent activation of ERK1/2 in response to asbestos appeared to be independent of focal adhesion kinase pp125FAK (FAK) since FAK autophosphorylation remained unaffected in crocidolite-exposed mesothelial cells. Instead, we observed striking similarities in the kinetics of asbestos-induced ERK1/2 responses and phosphorylation of protein kinase B (AKT) at serine 473, a possible target residue for integrin-linked kinase. As with ERK activation, asbestos-induced AKT stimulation was significantly blocked by both the RGD-peptide and the beta1-integrin antibodies. These studies are the first to establish that in mesothelial cells ERK1/2 and AKT are simultaneously phosphorylated upon asbestos exposure in a beta1-integrin-dependent manner.

  11. Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer

    PubMed Central

    Nacerddine, Karim; Beaudry, Jean-Bernard; Ginjala, Vasudeva; Westerman, Bart; Mattiroli, Francesca; Song, Ji-Ying; van der Poel, Henk; Ponz, Olga Balagué; Pritchard, Colin; Cornelissen-Steijger, Paulien; Zevenhoven, John; Tanger, Ellen; Sixma, Titia K.; Ganesan, Shridar; van Lohuizen, Maarten

    2012-01-01

    Prostate cancer (PCa) is a major lethal malignancy in men, but the molecular events and their interplay underlying prostate carcinogenesis remain poorly understood. Epigenetic events and the upregulation of polycomb group silencing proteins including Bmi1 have been described to occur during PCa progression. Here, we found that conditional overexpression of Bmi1 in mice induced prostatic intraepithelial neoplasia, and elicited invasive adenocarcinoma when combined with PTEN haploinsufficiency. In addition, Bmi1 and the PI3K/Akt pathway were coactivated in a substantial fraction of human high-grade tumors. We found that Akt mediated Bmi1 phosphorylation, enhancing its oncogenic potential in an Ink4a/Arf-independent manner. This process also modulated the DNA damage response and affected genomic stability. Together, our findings demonstrate the etiological role of Bmi1 in PCa, unravel an oncogenic collaboration between Bmi1 and the PI3K/Akt pathway, and provide mechanistic insights into the modulation of Bmi1 function by phosphorylation during prostate carcinogenesis. PMID:22505453

  12. PROTEIN KINASE B/AKT IS A NOVEL CYSTEINE STRING PROTEIN KINASE THAT REGULATES EXOCYTOSIS RELEASE KINETICS AND QUANTAL SIZE

    PubMed Central

    Evans, Gareth J. O.; Barclay, Jeff W.; Prescott, Gerald R.; Jo, Sung-Ro; Burgoyne, Robert D.; Birnbaum, Morris J.; Morgan, Alan

    2008-01-01

    Protein kinase B/Akt has been implicated in the insulin-dependent exocytosis of GLUT4-containing vesicles, and, more recently, insulin secretion. To determine if Akt also regulates insulin-independent exocytosis, we used adrenal chromaffin cells, a popular neuronal model. Akt1 was the predominant isoform expressed in chromaffin cells, although lower levels of Akt2 and Akt3 were also found. Secretory stimuli in both intact and permeabilized cells induced Akt phosphorylation on serine-473, and the time course of Ca2+-induced Akt phosphorylation was similar to that of exocytosis in permeabilized cells. To determine if Akt modulated exocytosis, we transfected chromaffin cells with Akt constructs and monitored catecholamine release by amperometry. Wild-type Akt had no effect on the overall number of exocytotic events, but slowed the kinetics of catecholamine release from individual vesicles, resulting in an increased quantal size. This effect was due to phosphorylation by Akt, as it was not seen in cells transfected with kinase-dead mutant Akt. As overexpression of cysteine string protein (CSP) results in a similar alteration in release kinetics and quantal size, we determined if CSP was an Akt substrate. In vitro 32P-phosphorylation studies revealed that Akt phosphorylates CSP on serine-10. Using phospho-serine10-specific antisera, we found that both transfected and endogenous cellular CSP is phosphorylated by Akt on this residue. Taken together, these findings reveal a novel role for Akt phosphorylation in regulating the late stages of exocytosis and suggest that this is achieved via the phosphorylation of CSP on serine-10. PMID:16243840

  13. Phosphatidylserine is a critical modulator for Akt activation

    PubMed Central

    Huang, Bill X.; Akbar, Mohammed; Kevala, Karl

    2011-01-01

    Akt activation relies on the binding of Akt to phosphatidylinositol-3,4,5-trisphosphate (PIP3) in the membrane. Here, we demonstrate that Akt activation requires not only PIP3 but also membrane phosphatidylserine (PS). The extent of insulin-like growth factor–induced Akt activation and downstream signaling as well as cell survival under serum starvation conditions positively correlates with plasma membrane PS levels in living cells. PS promotes Akt-PIP3 binding, participates in PIP3-induced Akt interdomain conformational changes for T308 phosphorylation, and causes an open conformation that allows for S473 phosphorylation by mTORC2. PS interacts with specific residues in the pleckstrin homology (PH) and regulatory (RD) domains of Akt. Disruption of PS–Akt interaction by mutation impairs Akt signaling and increases susceptibility to cell death. These data identify a critical function of PS for Akt activation and cell survival, particularly in conditions with limited PIP3 availability. The novel molecular interaction mechanism for Akt activation suggests potential new targets for controlling Akt-dependent cell survival and proliferation. PMID:21402788

  14. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS

    SciTech Connect

    Jee, Hye Jin; Kim, Hyun-Ju; Kim, Ae Jeong; Bae, Yoe-Sik; Bae, Sun Sik; Yun, Jeanho

    2009-06-05

    Akt/PKB plays a pivotal role in cell survival and proliferation. Previously, we reported that UV-irradiation induces extensive cell death in Akt2{sup -/-} mouse embryonic fibroblasts (MEFs) while Akt1{sup -/-} MEFs show cell cycle arrest. Here, we find that Akt1{sup -/-} MEFs exhibit phenotypic changes characteristics of senescence upon UV-irradiation. An enlarged and flattened morphology, a reduced cell proliferation and an increased senescence-associated {beta}-galactosidase (SA {beta}-gal) staining indicate that Akt1{sup -/-} MEFs undergo premature senescence after UV-irradiation. Restoring Akt1 expression in Akt1{sup -/-} MEFs suppressed SA {beta}-gal activity, indicating that UV-induced senescence is due to the absence of Akt1 function. Notably, levels of ROS were rapidly increased upon UV-irradiation and the ROS scavenger NAC inhibits UV-induced senescence of Akt1{sup -/-} MEFs, suggesting that UV light induces premature senescence in Akt1{sup -/-} MEFs by modulating intracellular levels of ROS. In conjunction with our previous work, this indicates that different isoforms of Akt have distinct function in response to UV-irradiation.

  15. Apigenin Attenuates Atherogenesis through Inducing Macrophage Apoptosis via Inhibition of AKT Ser473 Phosphorylation and Downregulation of Plasminogen Activator Inhibitor-2.

    PubMed

    Zeng, Ping; Liu, Bin; Wang, Qun; Fan, Qin; Diao, Jian-Xin; Tang, Jing; Fu, Xiu-Qiong; Sun, Xue-Gang

    2015-01-01

    Macrophage survival is believed to be a contributing factor in the development of early atherosclerotic lesions. Dysregulated apoptosis of macrophages is involved in the inflammatory process of atherogenesis. Apigenin is a flavonoid that possesses various clinically relevant properties such as anti-inflammatory, antiplatelet, and antitumor activities. Here we showed that apigenin attenuated atherogenesis in apoE (-/-) mice in an in vivo test. In vitro experiments suggested that apigenin induced apoptosis of oxidized low density lipoprotein- (OxLDL-) loaded murine peritoneal macrophages (MPMs). Proteomic analysis showed that apigenin reduced the expression of plasminogen activator inhibitor 2 (PAI-2). PAI-2 has antiapoptotic effects in OxLDL-loaded MPMs. Enhancing PAI-2 expression significantly reduced the proapoptosis effects of apigenin. Molecular docking assay with AutoDock software predicted that residue Ser473 of Akt1 is a potential binding site for apigenin. Lentiviral-mediated overexpression of Akt1 wild type weakened the proapoptosis effect of apigenin in OxLDL-loaded MPMs. Collectively, apigenin executes its anti-atherogenic effects through inducing OxLDL-loaded MPMs apoptosis. The proapoptotic effects of apigenin were at least partly attributed to downregulation of PAI-2 through suppressing phosphorylation of AKT at Ser473.

  16. Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt.

    PubMed

    McDaneld, T G; Spurlock, D M

    2008-11-01

    Ankyrin repeat and suppressor of cytokine signaling box-containing protein (ASB) 15 is a novel ASB gene family member predominantly expressed in skeletal muscle. We have previously reported that overexpression of ASB15 delays differentiation and alters protein turnover in mouse C(2)C(12) myoblasts. However, the extent of ASB15 regulation of differentiation and molecular pathways underlying this activity are unknown. The extracellular signal-regulated kinase (Erk) 1/2 and phosphatidylinositol-3 kinase-Akt (PI3K/Akt; Akt is also known as protein kinase B) signaling pathways have a role in skeletal muscle growth. Activation (phosphorylation) of the Erk1/2 signaling pathway promotes proliferation, whereas activation of the PI3K/Akt signaling pathway promotes myoblast differentiation. Accordingly, we tested the hypothesis that ASB15 controls myoblast differentiation through its regulation of these kinases. Stably transfected myoblasts overexpressing ASB15 (ASB15+) demonstrated decreased differentiation, whereas attenuation of ASB15 expression (ASB15-) increased differentiation. However, ASB15+ cells had less abundance of the phosphorylated mitogen-activated protein kinase (active) form, despite decreased differentiation relative to control myoblasts (ASB15Con). The mitogen-activated protein kinase kinase inhibitor, U0126, effectively decreased mitogen-activated protein kinase phosphorylation and stimulated differentiation in ASB15- and ASB15Con cells. However, inhibition of the Erk1/2 pathway was unable to overcome the inhibitory effect of overexpressing ASB15 on differentiation (ASB15+), suggesting that the Erk1/2 pathway is likely not the predominant mediator of ASB15 activity on differentiation. Expression of ASB15 also altered phosphorylation of the PI3K/Akt pathway, as ASB15+ and ASB15- cells had decreased and increased Akt phosphorylation, respectively. These data were consistent with observed differences in differentiation. Administration of IGF-I, a PI3K/Akt

  17. Shikonin Inhibits the Migration and Invasion of Human Glioblastoma Cells by Targeting Phosphorylated β-Catenin and Phosphorylated PI3K/Akt: A Potential Mechanism for the Anti-Glioma Efficacy of a Traditional Chinese Herbal Medicine.

    PubMed

    Zhang, Feng-Ying; Hu, Yi; Que, Zhong-You; Wang, Ping; Liu, Yun-Hui; Wang, Zhen-Hua; Xue, Yi-Xue

    2015-10-09

    Shikonin is an anthraquinone derivative extracted from the root of lithospermum. Shikonin is traditionally used in the treatment of inflammatory and infectious diseases such as hepatitis. Shikonin also inhibits proliferation and induces apoptosis in various tumors. However, the effect of shikonin on gliomas has not been fully elucidated. In the present study, we aimed to investigate the effects of shikonin on the migration and invasion of human glioblastoma cells as well as the underlying mechanisms. U87 and U251 human glioblastoma cells were treated with shikonin at 2.5, 5, and 7.5 μmol/L and cell viability, migration and invasiveness were assessed with CCK8, scratch wound healing, in vitro Transwell migration, and invasion assays. The expression and activity of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) and the expression of phosphorylated β-catenin (p-β-catenin) and phosphorylated PI3K/Akt were also checked. Results showed that shikonin significantly inhibited the cell proliferation, migration, invasion, and expression of MMP-2 and MMP-9 in U87 and U251 cells. The expression of p-β-catenin showed contrary trends in two cell lines. It was significantly inhibited in U87 cells and promoted in U251 cells. Results in this work indicated that shikonin displayed an inhibitory effect on the migration and invasion of glioma cells by inhibiting the expression and activity of MMP-2 and -9. In addition, shikonin also inhibited the expression of p-PI3K and p-Akt to attenuate cell migration and invasion and MMP-2 and MMP-9 expression in both cell lines, which could be reversed by the PI3K/Akt pathway agonist, insulin-like growth factor-1 (IGF-1).

  18. Shikonin Inhibits the Migration and Invasion of Human Glioblastoma Cells by Targeting Phosphorylated β-Catenin and Phosphorylated PI3K/Akt: A Potential Mechanism for the Anti-Glioma Efficacy of a Traditional Chinese Herbal Medicine

    PubMed Central

    Zhang, Feng-Ying; Hu, Yi; Que, Zhong-You; Wang, Ping; Liu, Yun-Hui; Wang, Zhen-Hua; Xue, Yi-Xue

    2015-01-01

    Shikonin is an anthraquinone derivative extracted from the root of lithospermum. Shikonin is traditionally used in the treatment of inflammatory and infectious diseases such as hepatitis. Shikonin also inhibits proliferation and induces apoptosis in various tumors. However, the effect of shikonin on gliomas has not been fully elucidated. In the present study, we aimed to investigate the effects of shikonin on the migration and invasion of human glioblastoma cells as well as the underlying mechanisms. U87 and U251 human glioblastoma cells were treated with shikonin at 2.5, 5, and 7.5 μmol/L and cell viability, migration and invasiveness were assessed with CCK8, scratch wound healing, in vitro Transwell migration, and invasion assays. The expression and activity of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) and the expression of phosphorylated β-catenin (p-β-catenin) and phosphorylated PI3K/Akt were also checked. Results showed that shikonin significantly inhibited the cell proliferation, migration, invasion, and expression of MMP-2 and MMP-9 in U87 and U251 cells. The expression of p-β-catenin showed contrary trends in two cell lines. It was significantly inhibited in U87 cells and promoted in U251 cells. Results in this work indicated that shikonin displayed an inhibitory effect on the migration and invasion of glioma cells by inhibiting the expression and activity of MMP-2 and -9. In addition, shikonin also inhibited the expression of p-PI3K and p-Akt to attenuate cell migration and invasion and MMP-2 and MMP-9 expression in both cell lines, which could be reversed by the PI3K/Akt pathway agonist, insulin-like growth factor-1 (IGF-1). PMID:26473829

  19. Modulation in Activation and Expression of PTEN, Akt1, and PDK1: Further Evidence Demonstrating Altered Phosphoinositide 3-kinase Signaling in Postmortem Brain of Suicide Subjects

    PubMed Central

    Dwivedi, Yogesh; Rizavi, Hooriyah S.; Zhang, Hui; Roberts, Rosalinda C.; Conley, Robert R.; Pandey, Ghanshyam N.

    2010-01-01

    Background Phosphoinositide 3-kinase (PI 3-K) signaling plays a crucial role in neuronal growth and plasticity. Recently, we demonstrated that suicide brain is associated with decreased activation and expression of selective catalytic and regulatory subunits of PI 3-K. The present investigation examined the regulation and functional significance of compromised PI 3-K in suicide brain at the level of upstream phosphatase and tensin homolog on chromosome ten (PTEN) and downstream substrates 3-phosphoinositide-dependent kinase 1 (PDK1) and Akt. Method mRNA expression of Akt1, Akt3, PTEN, and PDK1 by competitive RT-PCR; protein expression of Akt1, Akt3, PTEN, PDK1, phosphorylated-Akt1 (Ser473), phosphorylated-Akt1(Thr308), phosphorylated-PDK1, and phosphorylated-PTEN by Western blot; and catalytic activities of Akt1, Akt3, and PDK1 by enzymatic assays were determined in prefrontal cortex (PFC) and hippocampus obtained from suicide subjects and nonpsychiatric controls. Results No significant changes in the expression of Akt1 or Akt3 were observed; however, catalytic activity of Akt1, but not of Akt3, was decreased in PFC and hippocampus of suicide subjects, which was associated with decreased phosphorylation of Akt1 at Ser473 and Thr308. The catalytic activity of PDK1 and the level of phosphorylated-PDK1 were also decreased in both brain areas without any change in expression levels of PDK1. On the other hand, mRNA and protein expression of PTEN was increased, whereas the level of phosphorylated-PTEN was decreased. Conclusion Our study demonstrates abnormalities in PI 3-K signaling at several levels in brain of suicide subjects and suggests the possible involvement of aberrant PI 3-K/Akt signaling in the pathogenic mechanisms of suicide. PMID:20163786

  20. Linoleic acid permeabilizes gastric epithelial cells by increasing connexin 43 levels in the cell membrane via a GPR40- and Akt-dependent mechanism.

    PubMed

    Puebla, Carlos; Cisterna, Bruno A; Salas, Daniela P; Delgado-López, Fernando; Lampe, Paul D; Sáez, Juan C

    2016-05-01

    Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC activity of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintains the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt.

  1. Exendin-4-loaded PLGA microspheres relieve cerebral ischemia/reperfusion injury and neurologic deficits through long-lasting bioactivity-mediated phosphorylated Akt/eNOS signaling in rats

    PubMed Central

    Chien, Chiang-Ting; Jou, Ming-Jia; Cheng, Tai-Yu; Yang, Chih-Hui; Yu, Tzu-Ying; Li, Ping-Chia

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) receptor activation in the brain provides neuroprotection. Exendin-4 (Ex-4), a GLP-1 analog, has seen limited clinical usage because of its short half-life. We developed long-lasting Ex-4-loaded poly(D,L-lactide-co-glycolide) microspheres (PEx-4) and explored its neuroprotective potential against cerebral ischemia in diabetic rats. Compared with Ex-4, PEx-4 in the gradually degraded microspheres sustained higher Ex-4 levels in the plasma and cerebrospinal fluid for at least 2 weeks and improved diabetes-induced glycemia after a single subcutaneous administration (20 μg/day). Ten minutes of bilateral carotid artery occlusion (CAO) combined with hemorrhage-induced hypotension (around 30 mm Hg) significantly decreased cerebral blood flow and microcirculation in male Wistar rats subjected to streptozotocin-induced diabetes. CAO increased cortical O2− levels by chemiluminescence amplification and prefrontal cortex edema by T2-weighted magnetic resonance imaging analysis. CAO significantly increased aquaporin 4 and glial fibrillary acidic protein expression and led to cognition deficits. CAO downregulated phosphorylated Akt/endothelial nitric oxide synthase (p-Akt/p-eNOS) signaling and enhanced nuclear factor (NF)-κBp65/intercellular adhesion molecule-1 (ICAM-1) expression, endoplasmic reticulum (ER) stress, and apoptosis in the cerebral cortex. PEx-4 was more effective than Ex-4 to improve CAO-induced oxidative injury and cognitive deficits. The neuroprotection provided by PEx-4 was through p-Akt/p-eNOS pathways, which suppressed CAO-enhanced NF-κB/ICAM-1 signaling, ER stress, and apoptosis. PMID:26058696

  2. Redox-Sensitive Oxidation and Phosphorylation of PTEN Contribute to Enhanced Activation of PI3K/Akt Signaling in Rostral Ventrolateral Medulla and Neurogenic Hypertension in Spontaneously Hypertensive Rats

    PubMed Central

    Wu, Kay L.H.; Wu, Chiung-Ai; Wu, Chih-Wei; Chan, Samuel H.H.; Chang, Alice Y.W.

    2013-01-01

    Abstract Aims: The activity of phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (Akt) is enhanced under hypertension. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a negative regulator of PI3K signaling, and its activity is redox-sensitive. In the rostral ventrolateral medulla (RVLM), which is responsible for the maintenance of blood pressure, oxidative stress plays a pivotal role in neurogenic hypertension. The present study evaluated the hypothesis that redox-sensitive inactivation of PTEN results in enhanced PI3K/Akt signaling in RVLM, leading to neurogenic hypertension. Results: Compared to age-matched normotensive Wistar-Kyoto (WKY) rats, PTEN inactivation in the form of oxidation and phosphorylation were greater in RVLM of spontaneously hypertensive rats (SHR). PTEN inactivation was accompanied by augmented PI3K activity and PI3K/Akt signaling, as reflected by the increase in phosphorylation of Akt and mammalian target of rapamycin. Intracisternal infusion of tempol or microinjection into the bilateral RVLM of adenovirus encoding superoxide dismutase significantly antagonized the PTEN inactivation and blunted the enhanced PI3K/Akt signaling in SHR. Gene transfer of PTEN to RVLM in SHR also abrogated the enhanced Akt activation and promoted antihypertension. Silencing PTEN expression in RVLM with small-interfering RNA, on the other hand, augmented PI3K/Akt signaling and promoted long-term pressor response in normotensive WKY rats. Innovation: The present study demonstrated for the first time that the redox-sensitive check-and-balance process between PTEN and PI3K/Akt signaling is engaged in the pathogenesis of hypertension. Conclusion: We conclude that an aberrant interplay between the redox-sensitive PTEN and PI3k/Akt signaling in RVLM underpins neural mechanism of hypertension. Antioxid. Redox Signal. 18, 36–50. PMID:22746319

  3. Adrenocorticotropic Hormone and PI3K/Akt Inhibition Reduce eNOS Phosphorylation and Increase Cortisol Biosynthesis in Long-Term Hypoxic Ovine Fetal Adrenal Cortical Cells.

    PubMed

    Newby, Elizabeth A; Kaushal, Kanchan M; Myers, Dean A; Ducsay, Charles A

    2015-08-01

    This study was designed to determine the role of the MEK/ERK1/2 and PI3K/Akt pathways in cortisol production and endothelial nitric oxide synthase (eNOS) phosphorylation (peNOS) in the ovine fetal adrenal in response to long-term hypoxia (LTH). Pregnant ewes were maintained at high altitude (3820 m) for the last 100 days of gestation (dGa). At 138 to 142 dGa, fetal adrenal cortical cells (FACs) were collected from LTH and age-matched normoxic fetuses. Cortisol production and peNOS were measured in response to pretreatment with the MEK/ERK1/2 pathway inhibitor UO126 (UO) and adrenocorticotropic hormone (ACTH) stimulation. UO126 reduced ACTH-stimulated cortisol in both normoxic and LTH FACs. UO126 alone or in combination with ACTH reduced peNOS in the normoxic group, while ACTH alone or ACTH + UO inhibited peNOS in LTH FACs. Additionally, cortisol was measured in response to pretreatment with UO and treatment with 22R-hydroxycholesterol (22R-OHC) or water-soluble cholesterol (WSC) with and without ACTH stimulation. UO126 had no effect on 22R-OHC-treated cells, but reduced cortisol in cells treated with WSC and/or ACTH. Cortisol and peNOS were also measured in response to pretreatment with PI3K/Akt pathway inhibitor Wortmannin (WT) and ACTH stimulation. Wortmannin further increased cortisol under ACTH-stimulated conditions and, like ACTH, reduced peNOS in LTH but not normoxic FACs. Together, these data suggest that in LTH FACs MEK/ERK1/2 does not regulate peNOS but that UO acts downstream from eNOS, possibly at cholesterol transport, to affect cortisol production in LTH FACs, while the PI3K/Akt pathway, along with ACTH, regulates peNOS and plays a role in the fetal adaptation to LTH in FACs.

  4. Green tea catechins inhibit VEGF-induced angiogenesis in vitro through suppression of VE-cadherin phosphorylation and inactivation of Akt molecule.

    PubMed

    Tang, Feng-Yao; Nguyen, Nhan; Meydani, Mohsen

    2003-10-10

    Studies have indicated that the consumption of green tea is associated with a reduced risk of developing certain forms of cancer and angiogenesis. The mechanism of inhibition of angiogenesis by green tea or its catechins, however, has not been well-established. Vascular endothelial (VE)-cadherin, an adhesive molecule located at the site of intercellular contact, is involved in cell-cell recognition during vascular morphogenesis. The extracellular domain of VE-cadherin mediates initial cell adhesion, whereas the cytosolic tail binding with beta-catenin is required for interaction with the cytoskeleton and junctional strength. Therefore, the cadherin-catenin adhesion system is implicated in cell recognition, differentiation, growth and migration of capillary endothelium. Using tube formation of human microvascular endothelial cells (HMVEC) in culture as an in vitro model of angiogenesis, we reported that vascular endothelial growth factor (VEGF)-induced tube formation is inhibited by anti-VE-cadherin antibody and dose-dependently by green tea catechins. We also demonstrated here that inhibition of tube formation by epigallocatechin gallate (EGCG), one of the green tea catechins, is in part mediated through suppression of VE-cadherin tyrosine phosphorylation and inhibition of Akt activation during VEGF-induced tube formation. These findings indicate that VE-cadherin and Akt, known downstream proteins in VEGFR-2-mediated cascade, are the new-targeted proteins by which green tea catechins inhibit angiogenesis.

  5. Investigating the Role of Akt1 in Prostate Cancer Development Through Phosphorylation-Dependent Regulation of Skp2 Stability and Oncogenic Function

    DTIC Science & Technology

    2010-09-01

    SGK3/CISK impairs postnatal hair follicle develop- ment. Mol. Biol. Cell 15, 4278–4288. Nakayama, K.I., and Nakayama, K. (2005). Regulation of the...developing Akt1-specific inhibitors as efficient anti-cancer drugs for prostate cancer patients. References: 1. Andreu, E. J., E. Lledo, E...mechanism for the selective degradation of Cdh1 downstream targets. In all the known Cdh1 substrates tested so far, only Skp2 expression levels are affected

  6. Long Coding RNA XIST Contributes to Neuronal Apoptosis through the Downregulation of AKT Phosphorylation and Is Negatively Regulated by miR-494 in Rat Spinal Cord Injury.

    PubMed

    Gu, Shixin; Xie, Rong; Liu, Xiaodong; Shou, Jiajun; Gu, Wentao; Che, Xiaoming

    2017-04-01

    Recent evidence has suggested that long non-coding RNAs (lncRNAs) may play a significant role in the pathogenesis of several neurological diseases, including spinal cord injury (SCI). However, little is known about the role of lncRNAs in SCI. The aim of the present study was to evaluate the potential functions of lncRNAs in SCI and to identify the underlying mechanisms of action. We firstly analyzed Gene Expression Omnibus (GEO) datasets to investigate aberrantly-expressed lncRNAs which might be involved in the pathogenesis of SCI. The long non-coding RNA X-inactive specific transcript (XIST) was found to be one of the most significantly upregulated lncRNAs in the GEO dataset analysis, and is associated with apoptosis. We, therefore, selected this as a candidate lncRNA and investigated its function. We found that knockdown of lncRNA-XIST by Lv-shRNA had a prominent protective effect on SCI recovery by suppressing apoptosis through reactivation of the PI3K/AKT signaling pathway in rat spinal cord tissue. In particular, our results suggested that lncRNA-XIST may act as a competitive endogenous RNA, effectively becoming a sink for miR-494, leading to derepression of its target gene, phosphatase and tensin homolog deleted on chromosome ten (PTEN). In addition, an inverse relationship between lncRNA-XIST and miR-494 was observed in spinal cord tissues of SCI rats. Further study demonstrated that antagomiR-494 could reverse the protective effects of lncRNA-XIST knockdown on SCI rats through blocking the PTEN/PI3K/AKT signaling pathway. These results suggested that lncRNA-XIST knockdown may play an important role in limiting neuronal apoptosis in rats following SCI, and that the observed protective effects of lncRNA-XIST knockdown might have been mediated by its regulation on the phosphorylation of AKT by competitively binding miR-494. These findings have revealed, for the first time, the importance of the XIST/miR-494/PTEN/AKT signaling axis in the pathogenesis of SCI

  7. Platelet-derived growth factor-C (PDGF-C) induces anti-apoptotic effects on macrophages through Akt and Bad phosphorylation.

    PubMed

    Son, Dain; Na, Yi Rang; Hwang, Eung-Soo; Seok, Seung Hyeok

    2014-02-28

    PDGF-C, which is abundant in the malignant breast tumor microenvironment, plays an important role in cell growth and survival. Because tumor-associated macrophages (TAMs) contribute to cancer malignancy, macrophage survival mechanisms are an attractive area of research into controlling tumor progression. In this study, we investigated PDGF-C-mediated signaling pathways involved in anti-apoptotic effects in macrophages. We found that the human malignant breast cancer cell line MDA-MB-231 produced high quantities of PDGF-C, whereas benign MCF-7 cells did not. Recombinant PDGF-C induced PDGF receptor α chain phosphorylation, followed by Akt and Bad phosphorylation in THP-1-derived macrophages. MDA-MB-231 culture supernatants also activated macrophage PDGF-Rα. PDGF-C prevented staurosporine-induced macrophage apoptosis by inhibiting the activation of caspase-3, -7, -8, and -9 and cleavage of poly(ADP-ribose) polymerase. Finally, TAMs isolated from the PDGF-C knockdown murine breast cancer cell line 4T1 and PDGF-C knockdown MDA-MB-231-derived tumor mass showed higher rates of apoptosis than the respective WT controls. Collectively, our results suggest that tumor cell-derived PDGF-C enhances TAM survival, promoting tumor malignancy.

  8. SMYD3-mediated lysine methylation in the PH domain is critical for activation of AKT1

    PubMed Central

    Yoshioka, Yuichiro; Suzuki, Takehiro; Matsuo, Yo; Nakakido, Makoto; Tsurita, Giichiro; Simone, Cristiano; Watanabe, Toshiaki; Dohmae, Naoshi; Nakamura, Yusuke; Hamamoto, Ryuji

    2016-01-01

    AKT1 is a cytosolic serine/threonine kinase that is overexpressed in various types of cancer and has a central role in human tumorigenesis. Although it is known that AKT1 is post-translationally modified in various ways including phosphorylation and ubiquitination, methylation has not been reported so far. Here we demonstrate that the protein lysine methyltransferase SMYD3 methylates lysine 14 in the PH domain of AKT1 both in vitro and in vivo. Lysine 14-substituted AKT1 shows significantly lower levels of phosphorylation at threonine 308 than wild-type AKT1, and knockdown of SMYD3 as well as treatment with a SMYD3 inhibitor significantly attenuates this phosphorylation in cancer cells. Furthermore, substitution of lysine 14 diminishes the plasma membrane accumulation of AKT1, and cancer cells overexpressing lysine 14-substiuted AKT1 shows lower growth rate than those overexpressing wild-type AKT1. These results imply that SMYD3-mediated methylation of AKT1 at lysine 14 is essential for AKT1 activation and that SMYD3-mediated AKT1 methylation appears to be a good target for development of anti-cancer therapy. PMID:27626683

  9. Gastrin induces sodium-hydrogen exchanger 3 phosphorylation and mTOR activation via a phosphoinositide 3-kinase-/protein kinase C-dependent but AKT-independent pathway in renal proximal tubule cells derived from a normotensive male human.

    PubMed

    Liu, Tianbing; Jose, Pedro A

    2013-02-01

    Gastrin is natriuretic, but its renal molecular targets and signal transduction pathways are not fully known. In this study, we confirmed the existence of CCKBR (a gastrin receptor) in male human renal proximal tubule cells and discovered that gastrin induced S6 phosphorylation, a downstream component of the phosphatidylinositol 3 kinase (PI3 kinase)-mammalian target of rapamycin pathway. Gastrin also increased the phosphorylation of sodium-hydrogen exchanger 3 (NHE3) at serine 552, caused its internalization, and decreased its expression at the cell surface and NHE activity. The phosphorylation of NHE3 and S6 was dependent on PI3 kinases because it was blocked by 2 different PI3-kinase inhibitors, wortmannin and LY294,002. The phosphorylation of NHE3 and S6 was not affected by the protein kinase A inhibitor H-89 but was blocked by a pan-PKC (chelerythrine) and a conventional PKC (cPKC) inhibitor (Gö6976) (10 μM) and an intracellular calcium chelator, 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)-ester, suggesting the importance of cPKC and intracellular calcium in the gastrin signaling pathway. The cPKC involved was probably PKCα because it was phosphorylated by gastrin. The gastrin-mediated phosphorylation of NHE3, S6, and PKCα was via phospholipase C because it was blocked by a phospholipase C inhibitor, U73122 (10 μM). The phosphorylation (activation) of AKT, which is usually upstream of mammalian target of rapamycin in the classic PI3 kinase-AKT-p70S6K signaling pathway, was not affected, suggesting that the gastrin-induced phosphorylation of NHE3 and S6 is dependent on both PI3 kinase and PKCα but not AKT.

  10. Higher Levels of c-Met Expression and Phosphorylation Identify Cell Lines With Increased Sensitivity to AMG-458, a Novel Selective c-Met Inhibitor With Radiosensitizing Effects

    SciTech Connect

    Li Bo; Torossian, Artour; Sun, Yunguang; Du, Ruihong; Dicker, Adam P.; Lu Bo

    2012-11-15

    Purpose: c-Met is overexpressed in some non-small cell lung cancer (NSCLC) cell lines and tissues. Cell lines with higher levels of c-Met expression and phosphorylation depend on this receptor for survival. We studied the effects of AMG-458 on 2 NSCLC cell lines. Methods and Materials: 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium assays assessed the sensitivities of the cells to AMG-458. Clonogenic survival assays illustrated the radiosensitizing effects of AMG-458. Western blot for cleaved caspase 3 measured apoptosis. Immunoblotting for c-Met, phospho-Met (p-Met), Akt/p-Akt, and Erk/p-Erk was performed to observe downstream signaling. Results: AMG-458 enhanced radiosensitivity in H441 but not in A549. H441 showed constitutive phosphorylation of c-Met. A549 expressed low levels of c-Met, which were phosphorylated only in the presence of exogenous hepatocyte growth factor. The combination of radiation therapy and AMG-458 treatment was found to synergistically increase apoptosis in the H441 cell line but not in A549. Radiation therapy, AMG-458, and combination treatment were found to reduce p-Akt and p-Erk levels in H441 but not in A549. H441 became less sensitive to AMG-458 after small interfering RNA knockdown of c-Met; there was no change in A549. After overexpression of c-Met, A549 became more sensitive, while H441 became less sensitive to AMG-458. Conclusions: AMG-458 was more effective in cells that expressed higher levels of c-Met/p-Met, suggesting that higher levels of c-Met and p-Met in NSCLC tissue may classify a subset of tumors that are more sensitive to molecular therapies against this receptor.

  11. Particles from the Echinococcus granulosus laminated layer inhibit IL-4 and growth factor-driven Akt phosphorylation and proliferative responses in macrophages

    PubMed Central

    Seoane, Paula I.; Rückerl, Dominik; Casaravilla, Cecilia; Barrios, Anabella A.; Pittini, Álvaro; MacDonald, Andrew S.; Allen, Judith E.; Díaz, Alvaro

    2016-01-01

    Proliferation of macrophages is a hallmark of inflammation in many type 2 settings including helminth infections. The cellular expansion is driven by the type 2 cytokine interleukin-4 (IL-4), as well as by M-CSF, which also controls homeostatic levels of tissue resident macrophages. Cystic echinococcosis, caused by the tissue-dwelling larval stage of the cestode Echinococcus granulosus, is characterised by normally subdued local inflammation. Infiltrating host cells make contact only with the acellular protective coat of the parasite, called laminated layer, particles of which can be ingested by phagocytic cells. Here we report that a particulate preparation from this layer (pLL) strongly inhibits the proliferation of macrophages in response to IL-4 or M-CSF. In addition, pLL also inhibits IL-4-driven up-regulation of Relm-α, without similarly affecting Chitinase-like 3 (Chil3/Ym1). IL-4-driven cell proliferation and up-regulation of Relm-α are both known to depend on the phosphatidylinositol (PI3K)/Akt pathway, which is dispensable for induction of Chil3/Ym1. Exposure to pLL in vitro inhibited Akt activation in response to proliferative stimuli, providing a potential mechanism for its activities. Our results suggest that the E. granulosus laminated layer exerts some of its anti-inflammatory properties through inhibition of PI3K/Akt activation and consequent limitation of macrophage proliferation. PMID:27966637

  12. Binding of Galectin-3, a β-Galactoside-binding Lectin, to MUC1 Protein Enhances Phosphorylation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) and Akt, Promoting Tumor Cell Malignancy.

    PubMed

    Mori, Yugo; Akita, Kaoru; Yashiro, Masakazu; Sawada, Tetsuji; Hirakawa, Kosei; Murata, Takeomi; Nakada, Hiroshi

    2015-10-23

    Both mucin 1 (MUC1) and galectin-3 are known to be overexpressed in various malignant tumors and associated with a poor prognosis. It has been extensively reported that MUC1 is involved in potentiation of growth factor-dependent signal transduction. Because some carbohydrate moieties carried on MUC1 change to preferable ones for binding of galectin-3 in cancer cells, we speculated that MUC1-mediated signaling may occur through direct binding of galectin-3. Immunochemical studies showed that the distribution of galectin-3 coincided with that of MUC1 in various human tumor tissues but not in human nonmalignant tissues, and the level of galectin-3 retained on the surface of various cancer cells paralleled that of MUC1. Treatment of MUC1-expressing cells with galectin-3 induced phosphorylation of ERK1/2 and Akt following enhanced phosphorylation of MUC1 C-terminal domain, consistently promoting tumor cell malignancy. It is also noted that this enhanced phosphorylation occurred independently of EGF receptor-mediated signaling in both EGF receptor- and MUC1-expressing cells, and multivalency of galectin-3 was important for initiation of MUC1-mediated signaling. Expectedly, both silencing of endogenous galectin-3 and treatment with galectin-3 antagonists down-regulated cell proliferation of MUC1-expressing cells. These results suggest that the binding of galectin-3 to MUC1 plays a key role in MUC1-mediated signaling. Thus, constitutive activation of MUC1-mediated signaling in an autocrine/paracrine manner caused by ligation of galectin-3 promotes uncontrolled tumor cell malignancy. This signaling may be another MUC1-mediated pathway and function in parallel with a growth factor-dependent MUC1-mediated signaling pathway.

  13. Thioredoxin Binding Protein-2 Regulates Autophagy of Human Lens Epithelial Cells under Oxidative Stress via Inhibition of Akt Phosphorylation

    PubMed Central

    Yao, Ke; Zhang, Yidong; Chen, Guangdi; Lai, Kairan; Yin, Houfa

    2016-01-01

    Oxidative stress plays an essential role in the development of age-related cataract. Thioredoxin binding protein-2 (TBP-2) is a negative regulator of thioredoxin (Trx), which deteriorates cellular antioxidant system. Our study focused on the autophagy-regulating effect of TBP-2 under oxidative stress in human lens epithelial cells (LECs). Human lens epithelial cells were used for cell culture and treatment. Lentiviral-based transfection system was used for overexpression of TBP-2. Cytotoxicity assay, western blot analysis, GFP/mCherry-fused LC3 plasmid, immunofluorescence, and transmission electronic microscopy were performed. The results showed that autophagic response of LECs with increased LC3-II, p62, and GFP/mCherry-LC3 puncta (P < 0.01) was induced by oxidative stress. Overexpression of TBP-2 further strengthens this response and worsens the cell viability (P < 0.01). Knockdown of TBP-2 attenuates the autophagic response and cell viability loss induced by oxidative stress. TBP-2 mainly regulates autophagy in the initiation stage, which is mTOR-independent and probably caused by the dephosphorylation of Akt under oxidative stress. These findings suggest a novel role of TBP-2 in human LECs under oxidative stress. Oxidative stress can cause cell injury and autophagy in LECs, and TBP-2 regulates this response. Hence, this study provides evidence regarding the role of TBP-2 in lens and the possible mechanism of cataract development. PMID:27656263

  14. AKT/SGK-sensitive phosphorylation of GSK3 in the regulation of L-selectin and perforin expression as well as activation induced cell death of T-lymphocytes

    SciTech Connect

    Bhavsar, Shefalee K.; Merches, Katja; Bobbala, Diwakar; Lang, Florian

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Akt/SGK dependent phosphorylation of GSK3{alpha},{beta} regulates T lymphocytes. Black-Right-Pointing-Pointer T cells from mice expressing Akt/SGK insensitive GSK3{alpha},{beta} (gsk3{sup KI}) release less IL-2. Black-Right-Pointing-Pointer CD4{sup +} cells from gsk3{sup KI} mice express less CD62L. Black-Right-Pointing-Pointer CD8{sup +} cells from gsk3{sup KI} mice are relatively resistant to activation induced cell death. Black-Right-Pointing-Pointer Perforin expression is enhanced in gsk3{sup KI} T cells. -- Abstract: Survival and function of T-lymphocytes critically depends on phosphoinositide (PI) 3 kinase. PI3 kinase signaling includes the PKB/Akt and SGK dependent phosphorylation and thus inhibition of glycogen synthase kinase GSK3{alpha},{beta}. Lithium, a known unspecific GSK3 inhibitor protects against experimental autoimmune encephalomyelitis. The present study explored, whether Akt/SGK-dependent regulation of GSK3 activity is a determinant of T cell survival and function. Experiments were performed in mutant mice in which Akt/SGK-dependent GSK3{alpha},{beta} inhibition was disrupted by replacement of the serine residue in the respective SGK/Akt-phosphorylation consensus sequence by alanine (gsk3{sup KI}). T cells from gsk3{sup KI} mice were compared to T cells from corresponding wild type mice (gsk3{sup WT}). As a result, in gsk3{sup KI} CD4{sup +} cells surface CD62L (L-selectin) was significantly less abundant than in gsk3{sup WT} CD4{sup +} cells. Upon activation in vitro T cells from gsk3{sup KI} mice reacted with enhanced perforin production and reduced activation induced cell death. Cytokine production was rather reduced in gsk3{sup KI} T cells, suggesting that GSK3 induces effector function in CD8{sup +} T cells. In conclusion, PKB/Akt and SGK sensitive phosphorylation of GSK3{alpha},{beta} is a potent regulator of perforin expression and activation induced cell death in T lymphocytes.

  15. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    PubMed

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol.

  16. Galangin attenuates airway remodelling by inhibiting TGF-β1-mediated ROS generation and MAPK/Akt phosphorylation in asthma.

    PubMed

    Liu, Ya-Nan; Zha, Wang-Jian; Ma, Yuan; Chen, Fei-Fei; Zhu, Wen; Ge, Ai; Zeng, Xiao-Ning; Huang, Mao

    2015-07-09

    Galangin, a natural flavonol, has attracted much attention for its potential anti-inflammatory properties. However, its role in the regulation of airway remodelling in asthma has not been explored. The present study aimed to elucidate the effects of galangin on chronic inflammation and airway remodelling and to investigate the underlying mechanisms both in vivo and in vitro. Ovalbumin (OVA)-sensitised mice were administered with galangin 30 min before challenge. Our results showed that severe inflammatory responses and airway remodelling occurred in OVA-induced mice. Treatment with galangin markedly attenuated the leakage of inflammatory cells into bronchoalveolar lavage fluid (BALF) and decreased the level of OVA-specific IgE in serum. Galangin significantly inhibited goblet cell hyperplasia, collagen deposition and α-SMA expression. Lowered level of TGF-β1 and suppressed expression of VEGF and MMP-9 were observed in BALF or lung tissue, implying that galangin has an optimal anti-remodelling effect in vivo. Consistently, the TGF-β1-induced proliferation of airway smooth muscle cells was reduced by galangin in vitro, which might be due to the alleviation of ROS levels and inhibition of MAPK pathway. Taken together, the present findings highlight a novel role for galangin as a promising anti-remodelling agent in asthma, which likely involves the TGF-β1-ROS-MAPK pathway.

  17. Inhibitory Effects of Hwangryunhaedok-Tang in 3T3-L1 Adipogenesis by Regulation of Raf/MEK1/ERK1/2 Pathway and PDK1/Akt Phosphorylation

    PubMed Central

    Lee, Ji-Hye; Kim, Dong-Gun; Kim, Taesoo; Lee, Kwang Jin; Ma, Jin Yeul

    2013-01-01

    Hwangryunhaedok-tang (HRT) has been long used as traditional medicine in Asia. However, inhibitory role of HRT is unclear in early stage of 3T3-L1 adipocyte differentiation related to signaling. In the present study, we investigated the inhibitory effects of HRT on upstream signaling of peroxisome proliferation-activity receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein-β (C/EBP-β) expression in differentiation of 3T3-L1 preadipocytes. We found that HRT significantly inhibited the adipocyte differentiation by downregulating several adipocyte-specific transcription factors including PPAR-γ, C/EBP-α, and C/EBP-β in 3T3-L1 preadipocytes. Furthermore, we observed that HRT markedly inhibited the differentiation media-mediated phosphorylation of Raf/extracellular mitogen-activated protein kinase 1 (MEK1)/signal-regulated protein kinase 1/2 (ERK1/2) and phosphorylation of phosphoinositide-dependent kinase 1 (PDK1)/Akt. These results indicate that anti-adipogenesis mechanism involves the downregulation of the major transcription factors of adipogenesis including PPAR-γ and C/EBP-α through inhibition of Raf/MEK1/ERK1/2 phosphorylation and PDK1/Akt phosphorylation by HRT. Furthermore, high performance liquid chromatography (HPLC) analysis showed HRT contains active antiobesity constituents such as palmatine, berberine, geniposide, baicalin, baicalein, and wogonin. Taken together, this study suggested that anti-adipogenesis effects of HRT were accounted by downregulation of Raf/MEK1/ERK1/2 pathway and PDK1/Akt pathway during 3T3-L1 adipocyte differentiation. PMID:23762131

  18. Modification of Akt by SUMO conjugation regulates alternative splicing and cell cycle

    PubMed Central

    Risso, Guillermo; Pelisch, Federico; Pozzi, Berta; Mammi, Pablo; Blaustein, Matías; Colman-Lerner, Alejandro; Srebrow, Anabella

    2013-01-01

    Akt/PKB is a key signaling molecule in higher eukaryotes and a crucial protein kinase in human health and disease. Phosphorylation, acetylation, and ubiquitylation have been reported as important regulatory post-translational modifications of this kinase. We describe here that Akt is modified by SUMO conjugation, and show that lysine residues 276 and 301 are the major SUMO attachment sites within this protein. We found that phosphorylation and SUMOylation of Akt appear as independent events. However, decreasing Akt SUMOylation levels severely affects the role of this kinase as a regulator of fibronectin and Bcl-x alternative splicing. Moreover, we observed that the Akt mutant (Akt E17K) found in several human tumors displays increased levels of SUMOylation and also an enhanced capacity to regulate fibronectin splicing patterns. This splicing regulatory activity is completely abolished by decreasing Akt E17K SUMO conjugation levels. Additionally, we found that SUMOylation controls Akt regulatory function at G₁/S transition during cell cycle progression. These findings reveal SUMO conjugation as a novel level of regulation for Akt activity, opening new areas of exploration related to the molecular mechanisms involved in the diverse cellular functions of this kinase. PMID:24013425

  19. AKT/GSK3 signaling pathway and schizophrenia

    PubMed Central

    Emamian, Effat S.

    2012-01-01

    Schizophrenia is a prevalent complex trait disorder manifested by severe neurocognitive dysfunctions and lifelong disability. During the past few years several studies have provided direct evidence for the involvement of different signaling pathways in schizophrenia. In this review, we mainly focus on AKT/GSK3 signaling pathway in schizophrenia. The original study on the involvement of this pathway in schizophrenia was published by Emamian et al. in 2004. This study reported convergent evidence for a decrease in AKT1 protein levels and levels of phosphorylation of GSK-3β in the peripheral lymphocytes and brains of individuals with schizophrenia; a significant association between schizophrenia and an AKT1 haplotype; and a greater sensitivity to the sensorimotor gating-disruptive effect of amphetamine, conferred by AKT1 deficiency. It also showed that haloperidol can induce a stepwise increase in regulatory phosphorylation of AKT1 in the brains of treated mice that could compensate for the impaired function of this signaling pathway in schizophrenia. Following this study, several independent studies were published that not only confirmed the association of this signaling pathway with schizophrenia across different populations, but also shed light on the mechanisms by which AKT/GSK3 pathway may contribute to the development of this complex disorder. In this review, following an introduction on the role of AKT in human diseases and its functions in neuronal and non-neuronal cells, a review on the results of studies published on AKT/GSK3 signaling pathway in schizophrenia after the original 2004 paper will be provided. A brief review on other signaling pathways involved in schizophrenia and the possible connections with AKT/GSK3 signaling pathway will be discussed. Moreover, some possible molecular mechanisms acting through this pathway will be discussed besides the mechanisms by which they may contribute to the pathogenesis of schizophrenia. Finally, different

  20. Antiangiogenic Treatment Diminishes Renal Injury and Dysfunction via Regulation of Local AKT in Early Experimental Diabetes

    PubMed Central

    Zhou, Zhanmei

    2014-01-01

    In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin was administered in 12 week-old streptozotocin-induced male Sprague Dawley rats. The levels of VEGF-A, AKT, phosphorylated Ser473-AKT, phosphorylated Thr308-AKT, nephrin, angiotensin II (Ang II), angiotensin type II receptor 1 (ATR1) were examined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemistry. Interactions between phosphorylated Thr308-AKT and either nephrin in podocytes or Ang II in renal tubules were studied, respectively, using confocal immunofluorescence microscopy and immunoprecipitation. Silencing VEGF-A in podocytes upregulated phosphorylated Thr308-AKT and nephrin. Silencing VEGF-A in NRK-52E cells upregulated phosphorylated Thr308-AKT while downregulated Ang II and ATR1. MK-2206 enhanced VEGF-A expression in both podocytes and NRK-52E cells by inhibiting AKT activities. In diabetic rat kidneys, VEGF-A was upregulated and phosphorylated Thr308-AKT colocalized with either nephrin in podocytes or Ang II in renal tubules. With the endostatin treatment, the level of VEGF-A decreased while phosphorylated Thr308-AKT increased in both glomeruli and renal tubules. Treatment with endostatin upregulated nephrin in podocytes while downregulated Ang II and AT1R in renal tubules. Glomerular mesangial expansion was attenuated by the endostatin treatment, however, differences did not reach statistical significance. Endostatin ameliorated the interstitial fibrosis, urine albumin excretion rate

  1. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    NASA Astrophysics Data System (ADS)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  2. Anesthetic Isoflurane Increases Phosphorylated Tau Levels Mediated by Caspase Activation and Aβ Generation

    PubMed Central

    Dong, Yuanlin; Wu, Xu; Xu, Zhipeng; Zhang, Yiying; Xie, Zhongcong

    2012-01-01

    Anesthetic isoflurane has been shown to promote Alzheimer’s disease (AD) neuropathogenesis by inducing caspase activation and accumulation of β-amyloid (Aβ). Phosphorylation of tau protein is another important feature of AD neuropathogenesis. However, the effects of isoflurane on phosphorylated tau levels remain largely to be determined. We therefore set out to determine whether isoflurane can increase phosphorylated tau levels. 5 to 8 month-old wild-type and AD transgenic mice [B6.Cg-Tg (APPswe, PSEN1dE9)85Dbo/J] were treated with 1.4% isoflurane for two hours. The mice brain tissues were harvested at six, 12 and 24 hours after the anesthesia. For the in vitro studies, primary neurons from wild-type and the AD transgenic mice were exposed to 2% isoflurane for six hours, and were harvested at the end of anesthesia. The harvested brain tissues and neurons were subjected to Western blot analysis by which the levels of phosphorylated tau protein at Serine 262 (Tau-PS262) were determined. Here we show that the isoflurane anesthesia increased Tau-PS262 levels in brain tissues and primary neurons from the wild-type and AD transgenic mice. Moreover, the isoflurane anesthesia may induce a greater increase in Tau-PS262 levels in primary neurons and brain tissues from the AD transgenic mice. Finally, caspase activation inhibitor Z-VAD and Aβ generation inhibitor L-685,458 attenuated the isoflurane-induced increases in Tau-PS262 levels. In conclusion, clinically relevant isoflurane anesthesia increases phosphorylated tau levels, which may result from the isoflurane-induced caspase activation and Aβ generation. These findings will promote more studies to determine the effects of anesthetics on tau phosphorylation. PMID:22745746

  3. A Low-Level Carbon Dioxide Laser Promotes Fibroblast Proliferation and Migration through Activation of Akt, ERK, and JNK

    PubMed Central

    Shingyochi, Yoshiaki; Kanazawa, Shigeyuki; Tajima, Satoshi; Tanaka, Rica; Mizuno, Hiroshi; Tobita, Morikuni

    2017-01-01

    Background Low-level laser therapy (LLLT) with various types of lasers promotes fibroblast proliferation and migration during the process of wound healing. Although LLLT with a carbon dioxide (CO2) laser was also reported to promote wound healing, the underlying mechanisms at the cellular level have not been previously described. Herein, we investigated the effect of LLLT with a CO2 laser on fibroblast proliferation and migration. Materials and Methods Cultured human dermal fibroblasts were prepared. MTS and cell migration assays were performed with fibroblasts after LLLT with a CO2 laser at various doses (0.1, 0.5, 1.0, 2.0, or 5.0 J/cm2) to observe the effects of LLLT with a CO2 laser on the proliferation and migration of fibroblasts. The non-irradiated group served as the control. Moreover, western blot analysis was performed using fibroblasts after LLLT with a CO2 laser to analyze changes in the activities of Akt, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK), which are signaling molecules associated with cell proliferation and migration. Finally, the MTS assay, a cell migration assay, and western blot analysis were performed using fibroblasts treated with inhibitors of Akt, ERK, or JNK before LLLT with a CO2 laser. Results In MTS and cell migration assays, fibroblast proliferation and migration were promoted after LLLT with a CO2 laser at 1.0 J/cm2. Western blot analysis revealed that Akt, ERK, and JNK activities were promoted in fibroblasts after LLLT with a CO2 laser at 1.0 J/cm2. Moreover, inhibition of Akt, ERK, or JNK significantly blocked fibroblast proliferation and migration. Conclusions These findings suggested that LLLT with a CO2 laser would accelerate wound healing by promoting the proliferation and migration of fibroblasts. Activation of Akt, ERK, and JNK was essential for CO2 laser-induced proliferation and migration of fibroblasts. PMID:28045948

  4. Phosphorylation of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) by Akt promotes stability and mitogenic function of S-phase kinase-associated protein-2 (Skp2).

    PubMed

    Song, Gyun Jee; Leslie, Kristen L; Barrick, Stacey; Mamonova, Tatyana; Fitzpatrick, Jeremy M; Drombosky, Kenneth W; Peyser, Noah; Wang, Bin; Pellegrini, Maria; Bauer, Philip M; Friedman, Peter A; Mierke, Dale F; Bisello, Alessandro

    2015-01-30

    The regulation of the cell cycle by the ubiquitin-proteasome system is dependent on the activity of E3 ligases. Skp2 (S-phase kinase associated protein-2) is the substrate recognition subunit of the E3 ligase that ubiquitylates the cell cycle inhibitors p21(cip1) and p27(kip1) thus promoting cell cycle progression. Increased expression of Skp2 is frequently observed in diseases characterized by excessive cell proliferation, such as cancer and neointima hyperplasia. The stability and cellular localization of Skp2 are regulated by Akt, but the molecular mechanisms underlying these effects remain only partly understood. The scaffolding protein Ezrin-Binding Phosphoprotein of 50 kDa (EBP50) contains two PDZ domains and plays a critical role in the development of neointimal hyperplasia. Here we report that EBP50 directly binds Skp2 via its first PDZ domain. Moreover, EBP50 is phosphorylated by Akt on Thr-156 within the second PDZ domain, an event that allosterically promotes binding to Skp2. The interaction with EBP50 causes cytoplasmic localization of Skp2, increases Skp2 stability and promotes proliferation of primary vascular smooth muscle cells. Collectively, these studies define a novel regulatory mechanism contributing to aberrant cell growth and highlight the importance of scaffolding function of EBP50 in Akt-dependent cell proliferation.

  5. Inhibitory effect of butein on tumor necrosis factor-α-induced expression of cell adhesion molecules in human lung epithelial cells via inhibition of reactive oxygen species generation, NF-κB activation and Akt phosphorylation.

    PubMed

    Jang, Ji Hoon; Yang, Eun Sun; Min, Kyoung-Jin; Kwon, Taeg Kyu

    2012-12-01

    Cell adhesion molecules play an important role in inflammatory response, angiogenesis and tumor progression. Butein (tetrahydroxychalcone) is a small molecule from natural sources, known to be a potential therapeutic drug with anti-inflammatory, anticancer and antioxidant activities. In the present study, we investigated the inhibitory effect of butein on tumor necrosis factor (TNF)-α-induced adhesion molecule expression and its molecular mechanism of action. Butein significantly decreased TNF-α-induced monocyte (U937) cell adhesion to lung epithelial cells in a dose-dependent manner. Butein also inhibited the protein and mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-stimulated A549 human lung epithelial cells in a dose-dependent manner. Butein inhibited TNF-α-induced reactive oxygen species (ROS) generation and nuclear factor-κB (NF-κB) activation in A549 cells; it also inhibited the phosphorylation of MAPKs and Akt, suggesting that the MAPK/Akt signaling pathway may be involved in the butein-mediated inhibition of TNF-α-induced leukocyte adhesion to A549 cells. Collectively, our results suggest that butein affects cell adhesion through the inhibition of TNF-α-induced ICAM-1 and VCAM-1 expression by inhibiting the NF-κB/MAPK/Akt signaling pathway and ROS generation, thereby, elucidating the role of butein in the anti-inflammatory response.

  6. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    SciTech Connect

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  7. Resveratrol rescues hyperglycemia-induced endothelial dysfunction via activation of Akt

    PubMed Central

    Li, Jin-yi; Huang, Wei-qiang; Tu, Rong-hui; Zhong, Guo-qiang; Luo, Bei-bei; He, Yan

    2017-01-01

    Resveratrol (RSV), a phytoalexin, has shown to prevent endothelial dysfunction and reduce diabetic vascular complications and the risk of cardiovascular diseases. The aim of this study was to investigate the signaling mechanisms underlying the protecting effects of RSV against endothelial dysfunction during hyperglycemia in vitro and in vivo. Human umbilical vein endothelial cells (HUVECs) were treated with RSV, and then exposed to high glucose (HG, 30 mmol/L). Akt-Ser473 phosphorylation, eNOS-Ser1177 phosphorylation, and PTEN protein levels in the cells were detected using Western blot. For in vivo studies, WT and Akt−/− mice were fed a normal diet containing RSV (400 mg·kg−1·d−1) for 2 weeks, then followed by injection of STZ to induce hyperglycemia (300 mg/dL). Endothelial function was evaluated using aortic rings by assessing ACh-induced vasorelaxation. RSV (5–20 μmol/L) dose-dependently increased Akt-Ser473 phosphorylation, accompanied by increased eNOS-Ser1177 phosphorylation in HUVECs; these effects were more prominent under HG stimulation. Transfection with Akt siRNA abolished RSV-enhanced eNOS phosphorylation and NO release. Furthermore, RSV (5–20 μmol/L) dose-dependently decreased the levels of PTEN, which was significantly increased under HG stimulation, and PTEN overexpression abolished RSV-stimulated Akt phosphorylation in HG-treated HUVECs. Moreover, RSV dramatically increased 26S proteasome activity, which induced degradation of PTEN. In in vivo studies, pretreatment with RSV significantly increased Akt and eNOS phosphorylation in aortic tissues and ACh-induced vasorelaxation, and improved diabetes-induced endothelial dysfunction in wild-type mice but not in Akt−/− mice. RSV attenuates endothelial function during hyperglycemia via activating proteasome-dependent degradation of PTEN, which increases Akt phosphorylation, and consequentially upregulation of eNOS-derived NO production. PMID:27941804

  8. Deubiquitinating enzyme Usp12 regulates the interaction between the androgen receptor and the Akt pathway

    PubMed Central

    McClurg, Urszula L.; Summerscales, Emma E.; Harle, Victoria J.; Gaughan, Luke; Robson, Craig N.

    2014-01-01

    The androgen receptor (AR) is a transcription factor involved in prostate cell growth, homeostasis and transformation regulated by post-translational modifications, including ubiquitination. We have recently reported that AR is deubiquitinated and stabilised by Usp12 resulting in increased transcriptional activity. In this study we have investigated the relationship between Usp12, PHLPP and PHLPPL tumour suppressors in the regulation of AR transcriptional activity in prostate cancer (PC). PHLPP and PHLPPL are pro-apoptotic phosphatases that dephosphorylate and subsequently deactivate Akt. Phosphorylated Akt is reported to deactivate AR in PC by phosphorylation at Ser213 and Ser791 leading to ligand dissociation and AR degradation. In contrast, PHLPP- and PHLPPL-mediated dephosphorylation and inactivation of Akt elevates the levels of active AR. In this report we demonstrate that Usp12, in complex with Uaf-1 and WDR20, directly deubiquitinates and stabilises the Akt phosphatases PHLPP and PHLPPL resulting in decreased levels of active pAkt. Decreased pAkt in turn down-regulates AR Ser213 phosphorylation resulting in enhanced receptor stability and transcriptional activity. Additionally, we observe that depleting Usp12 sensitises PC cells to therapies aimed at Akt inhibition irrespectively of their sensitivity to androgen ablation therapy. We propose that Usp12 inhibition could offer a therapeutic alternative for castration resistant prostate cancer. PMID:25216524

  9. Selective elimination of neuroblastoma cells by synergistic effect of Akt kinase inhibitor and tetrathiomolybdate.

    PubMed

    Navrátilová, Jarmila; Karasová, Martina; Kohutková Lánová, Martina; Jiráková, Ludmila; Budková, Zuzana; Pacherník, Jiří; Šmarda, Jan; Beneš, Petr

    2017-02-28

    Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis-activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti-cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down-regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells.

  10. Mechanical stimulation of cyclic tensile strain induces reduction of pluripotent related gene expressions via activation of Rho/ROCK and subsequent decreasing of AKT phosphorylation in human induced pluripotent stem cells

    SciTech Connect

    Teramura, Takeshi; Takehara, Toshiyuki; Onodera, Yuta; Nakagawa, Koichi; Hamanishi, Chiaki; Fukuda, Kanji

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mechanical stimulation is an important factor for regulation of stem cell fate. Black-Right-Pointing-Pointer Cyclic stretch to human induced pluripotent stem cells activated small GTPase Rho. Black-Right-Pointing-Pointer Rho-kinase activation attenuated pluripotency via inhibition of AKT activation. Black-Right-Pointing-Pointer This reaction could be reproduced only by transfection of dominant active Rho. Black-Right-Pointing-Pointer Rho/ROCK are important molecules in mechanotransduction and control of stemness. -- Abstract: Mechanical stimulation has been shown to regulate the proliferation and differentiation of stem cells. However, the effects of the mechanical stress on the stemness or related molecular mechanisms have not been well determined. Pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are used as good materials for cell transplantation therapy and research of mammalian development, since they can self-renew infinitely and differentiate into various cell lineages. Here we demonstrated that the mechanical stimulation to human iPS cells altered alignment of actin fibers and expressions of the pluripotent related genes Nanog, POU5f1 and Sox2. In the mechanically stimulated iPS cells, small GTPase Rho was activated and interestingly, AKT phosphorylation was decreased. Inhibition of Rho-associated kinase ROCK recovered the AKT phosphorylation and the gene expressions. These results clearly suggested that the Rho/ROCK is a potent primary effector of mechanical stress in the pluripotent stem cells and it participates to pluripotency-related signaling cascades as an upper stream regulator.

  11. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway

    SciTech Connect

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji; Lee, Hui-Young; Hong, Suntaek; Kim, Seong-Jin; Kim, Byung-Chul

    2013-06-14

    Highlights: •H{sub 2}O{sub 2} inhibits TGF-β1-induced cell cycle arrest. •H{sub 2}O{sub 2} induces Smad3 linker phosphorylation through Akt-ERK1/2 pathway. •H{sub 2}O{sub 2}-mediated suppression of TGF-β signal requires Smad3 linker phosphorylation. •This is a first report about interplay between H{sub 2}O{sub 2} and growth inhibition pathway. -- Abstract: Hydrogen peroxide (H{sub 2}O{sub 2}) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H{sub 2}O{sub 2} are less understood. Here we report an important mechanism for antagonistic effects of H{sub 2}O{sub 2} on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H{sub 2}O{sub 2} (0.05–0.2 mM) completely blocked TGF-β1-mediated induction of p15{sup INK4B} expression and increase of its promoter activity. Interestingly, H{sub 2}O{sub 2} selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H{sub 2}O{sub 2} increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H{sub 2}O{sub 2} on TGF-β1-induced increase of p15{sup INK4B}-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H{sub 2}O{sub 2} as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing

  12. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation

    PubMed Central

    Kiss, Gergely; Konrad, Csaba; Doczi, Judit; Starkov, Anatoly A.; Kawamata, Hibiki; Manfredi, Giovanni; Zhang, Steven F.; Gibson, Gary E.; Beal, M. Flint; Adam-Vizi, Vera; Chinopoulos, Christos

    2013-01-01

    A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20–48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ∼30% higher ADP-ATP exchange rates compared to those obtained from DLST+/− or DLD+/− littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on “in-house” mitochondrial ATP reserves.—Kiss, G., Konrad, C., Doczi, J., Starkov, A. A., Kawamata, H., Manfredi, G., Zhang, S. F., Gibson, G. E., Beal, M. F., Adam-Vizi, V., Chinopoulos, C. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation. PMID:23475850

  13. Cross Talk between the Akt and p38α Pathways in Macrophages Downstream of Toll-Like Receptor Signaling

    PubMed Central

    McGuire, Victoria A.; Gray, Alexander; Monk, Claire E.; Santos, Susana G.; Lee, Keunwook; Aubareda, Anna; Crowe, Jonathan; Ronkina, Natalia; Schwermann, Jessica; Batty, Ian H.; Leslie, Nick R.; Dean, Jonathan L. E.; O'Keefe, Stephen J.; Boothby, Mark; Gaestel, Matthias

    2013-01-01

    The stimulation of Toll-like receptors (TLRs) on macrophages by pathogen-associated molecular patterns (PAMPs) results in the activation of intracellular signaling pathways that are required for initiating a host immune response. Both phosphatidylinositol 3-kinase (PI3K)–Akt and p38 mitogen-activated protein kinase (MAPK) signaling pathways are activated rapidly in response to TLR activation and are required to coordinate effective host responses to pathogen invasion. In this study, we analyzed the role of the p38-dependent kinases MK2/3 in the activation of Akt and show that lipopolysaccharide (LPS)-induced phosphorylation of Akt on Thr308 and Ser473 requires p38α and MK2/3. In cells treated with p38 inhibitors or an MK2/3 inhibitor, phosphorylation of Akt on Ser473 and Thr308 is reduced and Akt activity is inhibited. Furthermore, BMDMs deficient in MK2/3 display greatly reduced phosphorylation of Ser473 and Thr308 following TLR stimulation. However, MK2/3 do not directly phosphorylate Akt in macrophages but act upstream of PDK1 and mTORC2 to regulate Akt phosphorylation. Akt is recruited to phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the membrane, where it is activated by PDK1 and mTORC2. Analysis of lipid levels in MK2/3-deficient bone marrow-derived macrophages (BMDMs) revealed a role for MK2/3 in regulating Akt activity by affecting availability of PIP3 at the membrane. These data describe a novel role for p38α-MK2/3 in regulating TLR-induced Akt activation in macrophages. PMID:23979601

  14. AKT Regulates BRCA1 Stability in Response to Hormone Signaling

    PubMed Central

    Nelson, Andrew C.; Lyons, Traci R.; Young, Christian D.; Hansen, Kirk C.; Anderson, Steven M.; Holt, Jeffrey T.

    2015-01-01

    BRCA1, with its binding partner BARD1, regulates the cellular response to DNA damage in multiple tissues, yet inherited mutations within BRCA1 result specifically in breast and ovarian cancers. This observation, along with several other lines of evidence, suggests a functional relationship may exist between hormone signaling and BRCA1 function. Our data demonstrates that AKT activation promotes the expression of BRCA1 in response to estrogen and IGF-1 receptor signaling. Further, we have identified a novel AKT phosphorylation site in BRCA1 at S694 which is responsive to activation of these signaling pathways. This rapid increase in BRCA1 protein levels appears to occur independently of new protein synthesis and treatment with the clinically utilized proteasome inhibitor bortezomib similarly leads to a rapid increase in BRCA1 protein levels. Together, these data suggest that AKT phosphorylation of BRCA1 increases total protein expression by preventing proteasomal degradation. AKT activation also appears to support nuclear localization of BRCA1, and co-expression of activated AKT with BRCA1 decreases radiation sensitivity, suggesting this interaction has functional consequences for BRCA1's role in DNA repair. We conclude that AKT regulates BRCA1 protein stability and function through direct phosphorylation of BRCA1. Further, the responsiveness of the AKT-BRCA1 regulatory pathway to hormone signaling may, in part, underlie the tissue specificity of BRCA1 mutant cancers. Pharmacological targets within this pathway could provide strategies for modulation of BRCA1 protein, which may prove therapeutically beneficial for the treatment of breast and ovarian cancers. PMID:20085797

  15. Investigating the Role of Akt1 in Prostate Cancer Development through Phosphorylation-dependent Regulation of Skp2 Stability and Oncogenic Function

    DTIC Science & Technology

    2012-09-01

    SKBR3 cells were infected with indicated lenti -viral shRNA vectors, and then incubated with 2 ug/ml puromycin for at least four days to eliminate...cells although further studies such as lenti -viral based-Akt depletion are required to validate this hypothesis. c. Milestone: We will perform

  16. Reconsideration of the significance of substrate-level phosphorylation in the citric acid cycle*.

    PubMed

    Lambeth, David O

    2006-01-01

    For nearly 50 years, students of metabolism in animals have been taught that a substrate-level phosphorylation in the Krebs citric acid cycle produces GTP that subsequently undergoes a transphosphorylation with ADP catalyzed by nucleoside diphosphate kinase. Research in the past decade has revealed that animals also express an ADP-forming succinate-CoA ligase whose activity exceeds that of the GDP-forming enzyme in some tissues. Here I argue that the primary fate of GTP is unlikely to be transphosphorylation with ADP. Rather, two succinate-CoA ligases with different nucleotide specificities have evolved to better integrate and regulate the central metabolic pathways that involve the citric acid cycle. The products of substrate-level phosphorylation, ATP and/or GTP, may represent a pool of nucleotide that has a different phosphorylation potential than the ATP made by oxidative phosphorylation and may be channeled to meet specific needs within mitochondria and the cell. Further research is needed to determine the applicable mechanisms and how they vary in tissues.

  17. Metastasis and AKT activation.

    PubMed

    Qiao, Meng; Sheng, Shijie; Pardee, Arthur B

    2008-10-01

    Metastasis is responsible for 90% of cancer patient deaths. More information is needed about the molecular basis for its potential detection and treatment. The activated AKT kinase is necessary for many events of the metastatic pathway including escape of cells from the tumor's environment, into and then out of the circulation, activation of proliferation, blockage of apoptosis, and activation of angiogenesis. A series of steps leading to metastatic properties can be initiated upon activation of AKT by phosphorylation on Ser-473. These findings lead to the question of how this activation is connected to metastasis. Activated AKT phosphorylates GSK-3beta causing its proteolytic removal. This increases stability of the negative transcription factor SNAIL, thereby decreasing transcription of the transmembrane protein E-cadherin that forms adhesions between adjacent cells, thereby permitting their detachment. How is AKT hyperactivated in metastatic cells? Increased PI3K or TORC2 kinase activity- or decreased PHLPP phosphatase could be responsible. Furthermore, a positive feedback mechanism is that the decrease of E-cadherin lowers PTEN and thereby increases PIP3, further activating AKT and metastasis.

  18. ROS-mediated Activation of AKT Induces Apoptosis Via pVHL in Prostate Cancer Cells

    PubMed Central

    Chetram, Mahandranauth A.; Bethea, Danaya A.; Jones, Kia J.; Don-Salu-Hewage, Ayesha S.; Odero-Marah, Valerie A.; Hinton, Cimona V.

    2013-01-01

    Reactive oxygen species (ROS) play a central role in oxidative stress, which leads to the onset of diseases, such as cancer. Furthermore, ROS contributes to the delicate balance between tumor cell survival and death. However, the mechanisms by which tumor cells decide to elicit survival or death signals during oxidative stress are not completely understood. We have previously reported that ROS enhanced tumorigenic functions in prostate cancer cells, such as transendothelial migration and invasion, which depended on CXCR4 and AKT signaling. Here, we report a novel mechanism by which ROS facilitated cell death through activation of AKT. We initially observed that ROS increased expression of phosphorylated AKT (p-AKT) in 22Rv1 human prostate cancer cells. The tumor suppressor PTEN, a negative regulator of AKT signaling, was rendered catalytically inactive through oxidation by ROS, although the expression levels remained consistent. Despite these events, cells still underwent apoptosis. Further investigation into apoptosis revealed that expression of the tumor suppressor pVHL increased, and contains a target site for p-AKT phosphorylation. pVHL and p-AKT associated in vitro, and knockdown of pVHL rescued HIF1α expression and the cells from apoptosis. Collectively, our study suggests that in the context of oxidative stress, p-AKT facilitated apoptosis by inducing pVHL function. PMID:23315288

  19. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells

    PubMed Central

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-01-01

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC. PMID:26486080

  20. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells.

    PubMed

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-12-15

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC.

  1. Splicing inhibition decreases phosphorylation level of Ser2 in Pol II CTD

    PubMed Central

    Koga, Mitsunori; Hayashi, Megumi; Kaida, Daisuke

    2015-01-01

    Phosphorylation of the C-terminal domain of the largest subunit of RNA polymerase II (Pol II), especially Ser2 and Ser5 residues, plays important roles in transcription and mRNA processing, including 5′ end capping, splicing and 3′ end processing. These phosphorylation events stimulate mRNA processing, however, it is not clear whether splicing activity affects the phosphorylation status of Pol II. In this study, we found that splicing inhibition by potent splicing inhibitors spliceostatin A (SSA) and pladienolide B or by antisense oligos against snRNAs decreased phospho-Ser2 level, but had little or no effects on phospho-Ser5 level. In contrast, transcription and translation inhibitors did not decrease phospho-Ser2 level, therefore inhibition of not all the gene expression processes cause the decrease of phospho-Ser2. SSA treatment caused early dissociation of Pol II and decrease in phospho-Ser2 level of chromatin-bound Pol II, suggesting that splicing inhibition causes downregulation of phospho-Ser2 through at least these two mechanisms. PMID:26202968

  2. Heavy metals chromium and neodymium reduced phosphorylation level of heat shock protein 27 in human keratinocytes.

    PubMed

    Zhang, Qihao; Zhang, Lei; Xiao, Xue; Su, Zhijian; Zou, Ping; Hu, Hao; Huang, Yadong; He, Qing-Yu

    2010-06-01

    Heavy metals may exert their acute and chronic effects on the human skin through stress signals. In the present study, 2DE-based proteomics was used to analyze the protein expression in human keratinocytes exposed to heavy metals, chromium and neodymium, and 10 proteins with altered expression were identified. Among these proteins, small heat shock protein 27 (HSP27) was up-regulated significantly and the up-regulation was validated by Western blot and immunofluorescence. In addition, the mRNA expression level of HSP27 markedly increased as detected by quantitative PCR. More interestingly, the ratio of phosphorylated HSP27 and total HSP27 significantly decreased in keratinocytes treated with the heavy metals. These findings suggested that heavy metals reduced the phosphorylation level of HSP27, and that the ratio of p-HSP27 and HSP27 may represent a potential marker or additional endpoint for the hazard assessment of skin irritation caused by chemical products.

  3. Loss of Akt activity increases circulating soluble endoglin release in preeclampsia: identification of inter-dependency between Akt-1 and heme oxygenase-1

    PubMed Central

    Cudmore, Melissa J.; Ahmad, Shakil; Sissaoui, Samir; Ramma, Wenda; Ma, Bin; Fujisawa, Takeshi; Al-Ani, Bahjat; Wang, Keqing; Cai, Meng; Crispi, Fatima; Hewett, Peter W.; Gratacós, Eduard; Egginton, Stuart; Ahmed, Asif

    2012-01-01

    Aims Endothelial dysfunction is a hallmark of preeclampsia. Desensitization of the phosphoinositide 3-kinase (PI3K)/Akt pathway underlies endothelial dysfunction and haeme oxygenase-1 (HO-1) is decreased in preeclampsia. To identify therapeutic targets, we sought to assess whether these two regulators act to suppress soluble endoglin (sEng), an antagonist of transforming growth factor-β (TGF-β) signalling, which is known to be elevated in preeclampsia. Methods and results Vascular endothelial growth factor-A (VEGF-A), fibroblast growth factor (FGF-2), angiopoietin-1 (Ang-1), and insulin, which all activate the PI3K/Akt pathway, inhibited the release of sEng from endothelial cells. Inhibition of the PI3K/Akt pathway, by overexpression of phosphatase and tensin homolog (PTEN) or a dominant-negative isoform of Akt (Aktdn) induced sEng release from endothelial cells and prevented the inhibitory effect of VEGF-A. Conversely, overexpression of a constitutively active Akt (Aktmyr) inhibited PTEN and cytokine-induced sEng release. Systemic delivery of Aktmyr to mice significantly reduced circulating sEng, whereas Aktdn promoted sEng release. Phosphorylation of Akt was reduced in preeclamptic placenta and this correlated with the elevated level of circulating sEng. Knock-down of Akt using siRNA prevented HO-1-mediated inhibition of sEng release and reduced HO-1 expression. Furthermore, HO-1 null mice have reduced phosphorylated Akt in their organs and overexpression of Aktmyr failed to suppress the elevated levels of sEng detected in HO-1 null mice, indicating that HO-1 is required for the Akt-mediated inhibition of sEng. Conclusion The loss of PI3K/Akt and/or HO-1 activity promotes sEng release and positive manipulation of these pathways offers a strategy to circumvent endothelial dysfunction. PMID:21411816

  4. Effects of streptozotocin-induced type 1 maternal diabetes on PI3K/AKT signaling pathway in the hippocampus of rat neonates.

    PubMed

    Hami, Javad; Kerachian, Mohammad-Amin; Karimi, Razieh; Haghir, Hossein; Sadr-Nabavi, Ariane

    2016-01-01

    Diabetes in pregnancy impairs hippocampus development in offspring, leading to behavioral problems and learning deficits. Phosphatidylinositol 3-kinase/protein kinase B (PKB/Akt) signaling pathway plays a pivotal role in the regulation of neuronal proliferation, survival and death. The present study was designed to examine the effects of maternal diabetes on PKB/Akt expression and phosphorylation in the developing rat hippocampus. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was killed at first postnatal day (P1). The hippocampal expression and phosphorylation level of PKB/Akt, one of the key molecules in PI3K/AKT signaling pathway, was evaluated using real-time polymerase chain reaction (PCR) and western blot analysis. We found a significant bilateral downregulation of AKT1 gene expression in the hippocampus of pups born to diabetic mothers (p < 0.05). Interestingly, our results revealed a marked upregulation of Akt1 gene in insulin-treated group compared with other groups (p < 0.05). The western blot analysis also showed the reduction of phosphorylation level of all AKT isoforms in both diabetic and insulin-treated groups compared with control (p < 0.05). Moreover, the results showed a significant increase in phosphorylation level of AKT in insulin-treated group compared with the diabetic group. These results represent that diabetes during pregnancy strongly influences the regulation of PKB/AKT in the developing rat hippocampus. Furthermore, although the control of glycemia by insulin administration is not sufficient to prevent the alterations in PKB/Akt expression, it modulates the phosphorylation process, thus ultimately resulting in a situation comparable to that found in the normal condition.

  5. Analysis of AKT and ERK1/2 protein kinases in extracellular vesicles isolated from blood of patients with cancer

    PubMed Central

    van der Mijn, Johannes C.; Sol, Nik; Mellema, Wouter; Jimenez, Connie R.; Piersma, Sander R.; Dekker, Henk; Schutte, Lisette M.; Smit, Egbert F.; Broxterman, Henk J.; Skog, Johan; Tannous, Bakhos A.; Wurdinger, Thomas; Verheul, Henk M. W.

    2014-01-01

    Background Extracellular vesicles (EVs) are small nanometre-sized vesicles that are circulating in blood. They are released by multiple cells, including tumour cells. We hypothesized that circulating EVs contain protein kinases that may be assessed as biomarkers during treatment with tyrosine kinase inhibitors. Methods EVs released by U87 glioma cells, H3255 and H1650 non-small-cell lung cancer (NSCLC) cells were profiled by tandem mass spectrometry. Total AKT/protein kinase B and extracellular signal regulated kinase 1/2 (ERK1/2) levels as well as their relative phosphorylation were measured by western blot in isogenic U87 cells with or without mutant epidermal growth factor receptor (EGFRvIII) and their corresponding EVs. To assess biomarker potential, plasma samples from 24 healthy volunteers and 42 patients with cancer were used. Results In total, 130 different protein kinases were found to be released in EVs including multiple drug targets, such as mammalian target of rapamycin (mTOR), AKT, ERK1/2, AXL and EGFR. Overexpression of EGFRvIII in U87 cells results in increased phosphorylation of EGFR, AKT and ERK1/2 in cells and EVs, whereas a decreased phosphorylation was noted upon treatment with the EGFR inhibitor erlotinib. EV samples derived from patients with cancer contained significantly more protein (p=0.0067) compared to healthy donors. Phosphorylation of AKT and ERK1/2 in plasma EVs from both healthy donors and patients with cancer was relatively low compared to levels in cancer cells. Preliminary analysis of total AKT and ERK1/2 levels in plasma EVs from patients with NSCLC before and after sorafenib/metformin treatment (n=12) shows a significant decrease in AKT levels among patients with a favourable treatment response (p<0.005). Conclusion Phosphorylation of protein kinases in EVs reflects their phosphorylation in tumour cells. Total AKT protein levels may allow monitoring of kinase inhibitor responses in patients with cancer. PMID:25491250

  6. Cobalt chloride stimulates phosphoinositide 3-kinase/Akt signaling through the epidermal growth factor receptor in oral squamous cell carcinoma.

    PubMed

    Ryu, Mi Heon; Park, Jeong Hee; Park, Ji Eun; Chung, Jin; Lee, Chang Hun; Park, Hae Ryoun

    2010-04-01

    Tumor cells are often found under hypoxic conditions due to the rapid outgrowth of their vascular supply, and, in order to survive hypoxia, these cells induce numerous signaling factors. Akt is an important kinase in cell survival, and its activity is regulated by the upstream phosphoinositide 3-kinase (PI3K) and receptor tyrosine kinases (RTKs). In this study, we examined Akt activation and RTKs/PI3K/Akt signaling using the hypoxia-mimetic cobalt chloride in oral squamous carcinoma cells. Cobalt chloride increases Akt phosphorylation in both a dose- and time-dependent manner. Blocking the activation of the PI3K/Akt pathway using LY294002 abolished Akt activation in response to cobalt chloride, suggesting that Akt phosphorylation by cobalt chloride is dependent on PI3K. In addition, activation of the PI3K/Akt pathway seems to rely on the epidermal growth factor receptor (EGFR), since the inhibition of EGFR attenuated cobalt chloride-induced Akt activation. The results in this study also demonstrate that cobalt chloride increases EGFR protein levels and induces oral squamous cell carcinoma cells to enter S phase.

  7. Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser157) and dephosphorylation of PI3K and Akt

    PubMed Central

    Kwon, Hyuk-Woo; Shin, Jung-Hae; Cho, Hyun-Jeong; Rhee, Man Hee; Park, Hwa-Jin

    2015-01-01

    Background Binding of adhesive proteins (i.e., fibrinogen, fibronectin, vitronectin) to platelet integrin glycoprotein IIb/IIIa (αIIb/β3) by various agonists (thrombin, collagen, adenosine diphosphate) involve in strength of thrombus. This study was carried out to evaluate the antiplatelet effect of total saponin from Korean Red Ginseng (KRG-TS) by investigating whether KRG-TS inhibits thrombin-induced binding of fibrinogen and fibronectin to αIIb/β3. Methods We investigated the effect of KRG-TS on phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and dephosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt, affecting binding of fibrinogen and fibronectin to αIIb/β3, and clot retraction. Results KRG-TS had an antiplatelet effect by inhibiting the binding of fibrinogen and fibronectin to αIIb/β3 via phosphorylation of VASP (Ser157), and dephosphorylation of PI3K and Akt on thrombin-induced platelet aggregation. Moreover, A-kinase inhibitor Rp-8-Br-cyclic adenosine monophosphates (cAMPs) reduced KRG-TS-increased VASP (Ser157) phosphorylation, and increased KRG-TS-inhibited fibrinogen-, and fibronectin-binding to αIIb/β3. These findings indicate that KRG-TS interferes with the binding of fibrinogen and fibronectin to αIIb/β3 via cAMP-dependent phosphorylation of VASP (Ser157). In addition, KRG-TS decreased the rate of clot retraction, reflecting inhibition of αIIb/β3 activation. In this study, we clarified ginsenoside Ro (G-Ro) in KRG-TS inhibited thrombin-induced platelet aggregation via both inhibition of [Ca2+]i mobilization and increase of cAMP production. Conclusion These results strongly indicate that KRG-TS is a beneficial herbal substance inhibiting fibrinogen-, and fibronectin-binding to αIIb/β3, and clot retraction, and may prevent platelet αIIb/β3-mediated thrombotic disease. In addition, we demonstrate that G-Ro is a novel compound with antiplatelet characteristics of KRG-TS. PMID:26843825

  8. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway.

    PubMed

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji; Lee, Hui-Young; Hong, Suntaek; Kim, Seong-Jin; Kim, Byung-Chul

    2013-06-14

    Hydrogen peroxide (H2O2) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H2O2 are less understood. Here we report an important mechanism for antagonistic effects of H2O2 on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H2O2 (0.05-0.2 mM) completely blocked TGF-β1-mediated induction of p15(INK4B) expression and increase of its promoter activity. Interestingly, H2O2 selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H2O2 increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H2O2 on TGF-β1-induced increase of p15(INK4B)-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H2O2 as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing a potential mechanism whereby H2O2 antagonizes the cytostatic function of TGF-β1.

  9. Insulin-induced Effects on the Subcellular Localization of AKT1, AKT2 and AS160 in Rat Skeletal Muscle

    PubMed Central

    Zheng, Xiaohua; Cartee, Gregory D.

    2016-01-01

    AKT1 and AKT2, the AKT isoforms that are highly expressed in skeletal muscle, have distinct and overlapping functions, with AKT2 more important for insulin-stimulated glucose metabolism. In adipocytes, AKT2 versus AKT1 has greater susceptibility for insulin-mediated redistribution from cytosolic to membrane localization, and insulin also causes subcellular redistribution of AKT Substrate of 160 kDa (AS160), an AKT2 substrate and crucial mediator of insulin-stimulated glucose transport. Although skeletal muscle is the major tissue for insulin-mediated glucose disposal, little is known about AKT1, AKT2 or AS160 subcellular localization in skeletal muscle. The major aim of this study was to determine insulin’s effects on the subcellular localization and phosphorylation of AKT1, AKT2 and AS160 in skeletal muscle. Rat skeletal muscles were incubated ex vivo ± insulin, and differential centrifugation was used to isolate cytosolic and membrane fractions. The results revealed that: 1) insulin increased muscle membrane localization of AKT2, but not AKT1; 2) insulin increased AKT2 phosphorylation in the cytosol and membrane fractions; 3) insulin increased AS160 localization to the cytosol and membranes; and 4) insulin increased AS160 phosphorylation in the cytosol, but not membranes. These results demonstrate distinctive insulin effects on the subcellular redistribution of AKT2 and its substrate AS160 in skeletal muscle. PMID:27966646

  10. Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart

    PubMed Central

    Xing, Yuan; Sun, Wanqing; Wang, Yishi; Gao, Feng; Ma, Heng

    2016-01-01

    Insulin protects cardiomyocytes from myocardial ischemia/reperfusion (MI/R) injury through activating Akt. However, phosphatase PHLPP-1 (PH domain leucine-rich repeat protein phosphatase-1) dephosphorylates and inactivates Akt. The balanced competitive interaction of insulin and PHLPP-1 has not been directly examined. In this study, we have identified the effect of mutual inhibition of insulin signaling and PHLPP-1 on the cardioprotective efficiency of Akt in aged heart. Young (3 mon) and aged (20 mon) Sprague Dawley (SD) rats were subjected to MI/R in vivo. The PHLPP-1 level was higher in aged vs. young hearts at base. But, insulin treatment failed to decrease PHLPP-1 level during reperfusion in the aged hearts. Consequently, the cardioprotection of insulin-induced Akt activation was impaired in aged hearts, resulting in more susceptible to MI/R injury. In cultured rat ventricular myocytes, PHLPP-1 knockdown significantly enhanced insulin-induced Akt phosphorylation and reduced simulated hypoxia/reoxygenation-induced apoptosis. Contrary, PHLPP-1 overexpression terminated Akt phosphorylation and deteriorated myocytes apoptosis. Using in vivo aged animal models, we confirmed that cardiac PHLPP-1 knockdown or enhanced insulin sensitivity by exercise training dramatically increased insulin-induced Akt phosphorylation. Specifically, MI/R-induced cardiomyocyte apoptosis and infarct size were decreased and cardiac function was increased. More importantly, we found that insulin regulated the degradation of PHLPP-1 and insulin treatment could enhance the binding between PHLPP-1 and β-transducin repeat-containing protein (β-TrCP) to target for ubiquitin-dependent degradation. Altogether, we have identified a new mechanism by which insulin suppresses PHLPP-1 to enhance Akt activation. But, aged heart possesses lower insulin effectiveness and fails to decrease PHLPP-1 during MI/R, which subsequently limited Akt activity and cardioprotection. PHLPP-1 could be a promising

  11. Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation.

    PubMed

    Hoy, Andrew J; Brandon, Amanda E; Turner, Nigel; Watt, Matthew J; Bruce, Clinton R; Cooney, Gregory J; Kraegen, Edward W

    2009-07-01

    Type 2 diabetes is characterized by hyperlipidemia, hyperinsulinemia, and insulin resistance. The aim of this study was to investigate whether acute hyperlipidemia-induced insulin resistance in the presence of hyperinsulinemia was due to defective insulin signaling. Hyperinsulinemia (approximately 300 mU/l) with hyperlipidemia or glycerol (control) was produced in cannulated male Wistar rats for 0.5, 1 h, 3 h, or 5 h. The glucose infusion rate required to maintain euglycemia was significantly reduced by 3 h with lipid infusion and was further reduced after 5 h of infusion, with no difference in plasma insulin levels, indicating development of insulin resistance. Consistent with this finding, in vivo skeletal muscle glucose uptake (31%, P < 0.05) and glycogen synthesis rate (38%, P < 0.02) were significantly reduced after 5 h compared with 3 h of lipid infusion. Despite the development of insulin resistance, there was no difference in the phosphorylation state of multiple insulin-signaling intermediates or muscle diacylglyceride and ceramide content over the same time course. However, there was an increase in cumulative exposure to long-chain acyl-CoA (70%) with lipid infusion. Interestingly, although muscle pyruvate dehydrogenase kinase 4 protein content was decreased in hyperinsulinemic glycerol-infused rats, this decrease was blunted in muscle from hyperinsulinemic lipid-infused rats. Decreased pyruvate dehydrogenase complex activity was also observed in lipid- and insulin-infused animals (43%). Overall, these results suggest that acute reductions in muscle glucose metabolism in rats with hyperlipidemia and hyperinsulinemia are more likely a result of substrate competition than a significant early defect in insulin action or signaling.

  12. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis.

    PubMed

    Mancini, Maria L; Lien, Evan C; Toker, Alex

    2016-04-05

    One of the most frequently deregulated signaling pathways in breast cancer is the PI 3-K/Akt cascade. Genetic lesions are commonly found in PIK3CA, PTEN, and AKT, which lead to excessive and constitutive activation of Akt and downstream signaling that results in uncontrolled proliferation and increased cellular survival. One such genetic lesion is the somatic AKT1(E17K) mutation, which has been identified in 4-8% of breast cancer patients. To determine how this mutation contributes to mammary tumorigenesis, we constructed a genetically engineered mouse model that conditionally expresses human AKT1(E17K) in the mammary epithelium. Although AKT1(E17K) is only weakly constitutively active and does not promote proliferation in vitro, it is capable of escaping negative feedback inhibition to exhibit sustained signaling dynamics in vitro. Consistently, both virgin and multiparous AKT1(E17K) mice develop mammary gland hyperplasia that do not progress to carcinoma. This hyperplasia is accompanied by increased estrogen receptor expression, although exposure of the mice to estrogen does not promote tumor development. Moreover, AKT1(E17K) prevents HER2-driven mammary tumor formation, in part through negative feedback inhibition of RTK signaling. Analysis of TCGA breast cancer data revealed that the mRNA expression, total protein levels, and phosphorylation of various RTKs are decreased in human tumors harboring AKT1(E17K).

  13. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    SciTech Connect

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa; Shin, Incheol

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  14. Active form of AKT controls cell proliferation and response to apoptosis in hepatocellular carcinoma

    PubMed Central

    KUNTER, IMGE; ERDAL, ESRA; NART, DENIZ; YILMAZ, FUNDA; KARADEMIR, SEDAT; SAGOL, OZGUL; ATABEY, NESE

    2014-01-01

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide. Deregulation of the AKT signaling pathway has been found in HCC. However, the effect of AKT activation on the proliferation and apoptosis in HCC is not clear. Herein, expression of phosphorylated form of AKT (Ser 473) was investigated in HCC tumor (n=73), cirrhosis (n=17), normal liver (n=22) samples and in HCC cell lines (n=8). The results showed that expression of p-AKT was higher in tumor (53%) than in cirrhotic tissues (12%) while it was absent in normal liver (p<0.0001). p-AKT expression was also associated with number of tumor nodules and differentiation status (p<0.05). LY294002 induced cell cycle arrest at G0/G1 in SNU-449 and Mahlavu cells by decreasing expression of CDK2, CDK4, CycD1, CycD3, CycE, CycA and increasing expression of p21 and p27 as well; it also caused a decrease in the E2F1 transcriptional activity through declining phosphorylated Rb. LY294002 did not affect the basal level of apoptosis; however, it amplified cisplatin-induced apoptosis in SNU-449 cells. When the p-AKT level was decreased specifically after transfection with the DN-AKT plasmid, SNU-449 cells became more sensitive to cisplatin-induced apoptosis. HuH-7 cells with no basal p-AKT, were markedly affected by the treatment of doxorubicin. Thus, Akt signaling controls growth and chemical-induced apoptosis in HCC and p-AKT may be a potential target for therapeutic interventions in HCC patients. PMID:24337632

  15. PI3K/AKT inhibition induces caspase-dependent apoptosis in HTLV-1-transformed cells.

    PubMed

    Jeong, Soo-Jin; Dasgupta, Arindam; Jung, Kyung-Jin; Um, Jee-Hyun; Burke, Aileen; Park, Hyeon Ung; Brady, John N

    2008-01-20

    The phosphatidylinositol-3-kinase (PI3K) and AKT (protein kinase B) signaling pathways play an important role in regulating cell cycle progression and cell survival. In previous studies, we demonstrated that AKT is activated in HTLV-1-transformed cells and that Tax activation of AKT is linked to p53 inhibition and cell survival. In the present study, we extend these observations to identify regulatory pathways affected by AKT in HTLV-1-transformed cells. We demonstrate that inhibition of AKT reduces the level of phosphorylated Bad, an important member of the pro-apoptotic family of proteins. Consistent with the decrease of phosphorylated Bad, cytochrome c is released from the mitochondria and caspase-9 is activated. Pretreatment of the cells with caspase-9 specific inhibitor z-LEHD-FMK or pan caspase inhibitor Ac-DEVD-CHO prevented LY294002-induced apoptosis. Of interest, p53 siRNA prevents LY294002-induced apoptosis in HTLV-1-transformed cells, suggesting that p53 reactivation is linked to apoptosis. In conclusion, the AKT pathway is involved in targeting multiple proteins which regulate caspase- and p53-dependent apoptosis in HTLV-1-transformed cells. Since AKT inhibitors simultaneously inhibit NF-kappaB and activate p53, these drugs should be promising candidates for HTLV-1-associated cancer therapy.

  16. IFNγ-induced suppression of β-catenin signaling: evidence for roles of Akt and 14.3.3ζ

    PubMed Central

    Nava, Porfirio; Kamekura, Ryuta; Quirós, Miguel; Medina-Contreras, Oscar; Hamilton, Ross W.; Kolegraff, Keli N.; Koch, Stefan; Candelario, Aurora; Romo-Parra, Hector; Laur, Oskar; Hilgarth, Roland S.; Denning, Timothy L.; Parkos, Charles A.; Nusrat, Asma

    2014-01-01

    The proinflammatory cytokine interferon γ (IFNγ ) influences intestinal epithelial cell (IEC) homeostasis in a biphasic manner by acutely stimulating proliferation that is followed by sustained inhibition of proliferation despite continued mucosal injury. β-Catenin activation has been classically associated with increased IEC proliferation. However, we observed that IFNγ inhibits IEC proliferation despite sustained activation of Akt/β-catenin signaling. Here we show that inhibition of Akt/β-catenin–mediated cell proliferation by IFNγ is associated with the formation of a protein complex containing phosphorylated β-catenin 552 (pβ-cat552) and 14.3.3ζ. Akt1 served as a bimodal switch that promotes or inhibits β-catenin transactivation in response to IFNγ stimulation. IFNγ initially promotes β-catenin transactivation through Akt-dependent C-terminal phosphorylation of β-catenin to promote its association with 14.3.3ζ. Augmented β-catenin transactivation leads to increased Akt1 protein levels, and active Akt1 accumulates in the nucleus, where it phosphorylates 14.3.3ζ to translocate 14.3.3ζ/β-catenin from the nucleus, thereby inhibiting β-catenin transactivation and IEC proliferation. These results outline a dual function of Akt1 that suppresses IEC proliferation during intestinal inflammation. PMID:25079689

  17. Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells.

    PubMed

    Fleming, Ingrid; Fisslthaler, Beate; Dixit, Madhulika; Busse, Rudi

    2005-09-15

    The application of fluid shear stress to endothelial cells elicits the formation of nitric oxide (NO) and phosphorylation of the endothelial NO synthase (eNOS). Shear stress also elicits the enhanced tyrosine phosphorylation of endothelial proteins, especially of those situated in the vicinity of cell-cell contacts. Since a major constituent of these endothelial cell-cell contacts is the platelet endothelial cell adhesion molecule-1 (PECAM-1) we assessed the role of PECAM-1 in the activation of eNOS. In human endothelial cells, shear stress induced the tyrosine phosphorylation of PECAM-1 and enhanced the association of PECAM-1 with eNOS. Endothelial cell stimulation with shear stress elicited the phosphorylation of Akt and eNOS as well as of the AMP-activated protein kinase (AMPK). While the shear-stress-induced tyrosine phosphorylation of PECAM-1 as well as the serine phosphorylation of Akt and eNOS were abolished by the pre-treatment of cells with the tyrosine kinase inhibitor PP1 the phosphorylation of AMPK was unaffected. Down-regulation of PECAM-1 using a siRNA approach attenuated the shear-stress-induced phosphorylation of Akt and eNOS, as well as the shear-stress-induced accumulation of cyclic GMP levels while the shear-stress-induced phosphorylation of AMPK remained intact. A comparable attenuation of Akt and eNOS (but not AMPK) phosphorylation and NO production was also observed in endothelial cells generated from PECAM-1-deficient mice. These data indicate that the shear-stress-induced activation of Akt and eNOS in endothelial cells is modulated by the tyrosine phosphorylation of PECAM-1 whereas the shear-stress-induced phosphorylation of AMPK is controlled by an alternative signaling pathway.

  18. Testosterone regulation of Akt/mTORC1/FoxO3a Signaling in Skeletal Muscle

    PubMed Central

    White, James P.; Gao, Song; Puppa, Melissa J.; Sato, Shuichi; Welle, Stephen L.; Carson, James A.

    2012-01-01

    Low endogenous testosterone production, known as hypogonadism is commonly associated with conditions inducing muscle wasting. Akt signaling can control skeletal muscle mass through mTOR regulation of protein synthesis and FoxO regulation of protein degradation, and this pathway has been previously identified as a target of androgen signaling. However, the testosterone sensitivity of Akt/mTOR signaling requires further understanding in order to grasp the significance of varied testosterone levels seen with wasting disease on muscle protein turnover regulation. Therefore, the purpose of this study is to determine the effect of androgen availability on muscle Akt/mTORC1/FoxO3a regulation in skeletal muscle and cultured C2C12 myotubes. C57BL/6 mice were either castrated for 42 days or castrated and treated with the nandrolone decanoate (ND) (6 mg/kg bw/wk). Testosterone loss (TL) significantly decreased volitional grip strength, body weight, and gastrocnemius (GAS) muscle mass, and ND reversed these changes. Related to muscle mass regulation, TL decreased muscle IGF-1 mRNA, the rate of myofibrillar protein synthesis, Akt phosphorylation, and the phosphorylation of Akt targets, GSK3β, PRAS40 and FoxO3a. TL induced expression of FoxO transcriptional targets, MuRF1, atrogin1 and REDD1. Muscle AMPK and raptor phosphorylation, mTOR inhibitors, were not altered by low testosterone. ND restored IGF-1 expression and Akt/mTORC1 signaling while repressing expression of FoxO transcriptional targets. Testosterone (T) sensitivity of Akt/mTORC1 signaling was examined in C2C12 myotubes, and mTOR phosphorylation was induced independent of Akt activation at low T concentrations, while a higher T concentration was required to activate Akt signaling. Interestingly, low concentration T was sufficient to amplify myotube mTOR and Akt signaling after 24h of T withdrawal, demonstrating the potential in cultured myotubes for a T initiated positive feedback mechanism to amplify Akt

  19. Pharmacological manipulation of the akt signaling pathway regulates myxoma virus replication and tropism in human cancer cells.

    PubMed

    Werden, Steven J; McFadden, Grant

    2010-04-01

    Viruses have evolved an assortment of mechanisms for regulating the Akt signaling pathway to establish a cellular environment more favorable for viral replication. Myxoma virus (MYXV) is a rabbit-specific poxvirus that encodes many immunomodulatory factors, including an ankyrin repeat-containing host range protein termed M-T5 that functions to regulate tropism of MYXV for rabbit lymphocytes and certain human cancer cells. MYXV permissiveness in these human cancer cells is dependent upon the direct interaction between M-T5 and Akt, which has been shown to induce the kinase activity of Akt. In this study, an array of compounds that selectively manipulate Akt signaling was screened and we show that only a subset of Akt inhibitors significantly decreased the ability of MYXV to replicate in previously permissive human cancer cells. Furthermore, reduced viral replication efficiency was correlated with lower levels of phosphorylated Akt. In contrast, the PP2A-specific phosphatase inhibitor okadaic acid promoted increased Akt kinase activation and rescued MYXV replication in human cancer cells that did not previously support viral replication. Finally, phosphorylation of Akt at residue Thr308 was shown to dictate the physical interaction between Akt and M-T5, which then leads to phosphorylation of Ser473 and permits productive MYXV replication in these human cancer cells. The results of this study further characterize the mechanism by which M-T5 exploits the Akt signaling cascade and affirms this interaction as a major tropism determinant that regulates the replication efficiency of MYXV in human cancer cells.

  20. Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism.

    PubMed

    An, Rui; Zhao, Lei; Xi, Cong; Li, Haixun; Shen, Guohong; Liu, Haixiao; Zhang, Shumiao; Sun, Lijun

    2016-01-01

    Myocardial dysfunction is an important manifestation of sepsis. Previous studies suggest that melatonin is protective against sepsis. In addition, activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway has been reported to be beneficial in sepsis. However, the role of PI3K/Akt signaling in the protective effect of melatonin against sepsis-induced myocardial dysfunction remains unclear. Here, LY294002, a PI3K inhibitor, was used to investigate the role of PI3K/Akt signaling in mediating the effects of melatonin on sepsis-induced myocardial injury. Cecal ligation and puncture (CLP) surgery was used to establish a rat model of sepsis. Melatonin was administrated to rats intraperitoneally (30 mg/kg). The survival rate, measures of myocardial injury and cardiac performance, serum lactate dehydrogenase level, inflammatory cytokine levels, oxidative stress level, and the extent of myocardial apoptosis were assessed. The results suggest that melatonin administration after CLP surgery improved survival rates and cardiac function, attenuated myocardial injury and apoptosis, and decreased the serum lactate dehydrogenase level. Melatonin decreased the production of the inflammatory cytokines TNF-α, IL-1β, and HMGB1, increased anti-oxidant enzyme activity, and decreased the expression of markers of oxidative damage. Levels of phosphorylated Akt (p-Akt), unphosphorylated Akt (Akt), Bcl-2, and Bax were measured by Western blot. Melatonin increased p-Akt levels, which suggests Akt pathway activation. Melatonin induced higher Bcl-2 expression and lower Bax expression, suggesting inhibition of apoptosis. All protective effects of melatonin were abolished by LY294002, the PI3K inhibitor. In conclusion, our results demonstrate that melatonin mitigates myocardial injury in sepsis via PI3K/Akt signaling activation.

  1. Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in Proliferating Muscle Progenitors

    PubMed Central

    González, Natalia; Moresco, James J.; Bustos, Francisco; Yates, John R.; Olguín, Hugo C.

    2016-01-01

    Skeletal muscle regeneration and long term maintenance is directly link to the balance between self-renewal and differentiation of resident adult stem cells known as satellite cells. In turn, satellite cell fate is influenced by a functional interaction between the transcription factor Pax7 and members of the MyoD family of muscle regulatory factors. Thus, changes in the Pax7-to-MyoD protein ratio may act as a molecular rheostat fine-tuning acquisition of lineage identity while preventing precocious terminal differentiation. Pax7 is expressed in quiescent and proliferating satellite cells, while its levels decrease sharply in differentiating progenitors Pax7 is maintained in cells (re)acquiring quiescence. While the mechanisms regulating Pax7 levels based on differentiation status are not well understood, we have recently described that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4, thus promoting proteasome-dependent Pax7 degradation in differentiating satellite cells. Here we show that Pax7 levels are maintained in proliferating muscle progenitors by a mechanism involving casein kinase 2-dependent Pax7 phosphorylation at S201. Point mutations preventing S201 phosphorylation or casein kinase 2 inhibition result in decreased Pax7 protein in proliferating muscle progenitors. Accordingly, this correlates directly with increased Pax7 ubiquitination. Finally, Pax7 down regulation induced by casein kinase 2 inhibition results in precocious myogenic induction, indicating early commitment to terminal differentiation. These observations highlight the critical role of post translational regulation of Pax7 as a molecular switch controlling muscle progenitor fate. PMID:27144531

  2. Regulation of Smoothened Phosphorylation and High-Level Hedgehog Signaling Activity by a Plasma Membrane Associated Kinase.

    PubMed

    Li, Shuangxi; Li, Shuang; Han, Yuhong; Tong, Chao; Wang, Bing; Chen, Yongbin; Jiang, Jin

    2016-06-01

    Hedgehog (Hh) signaling controls embryonic development and adult tissue homeostasis through the G protein coupled receptor (GPCR)-family protein Smoothened (Smo). Upon stimulation, Smo accumulates on the cell surface in Drosophila or primary cilia in vertebrates, which is thought to be essential for its activation and function, but the underlying mechanisms remain poorly understood. Here we show that Hh stimulates the binding of Smo to a plasma membrane-associated kinase Gilgamesh (Gish)/CK1γ and that Gish fine-tunes Hh pathway activity by phosphorylating a Ser/Thr cluster (CL-II) in the juxtamembrane region of Smo carboxyl-terminal intracellular tail (C-tail). We find that CL-II phosphorylation is promoted by protein kinase A (PKA)-mediated phosphorylation of Smo C-tail and depends on cell surface localization of both Gish and Smo. Consistent with CL-II being critical for high-threshold Hh target gene expression, its phosphorylation appears to require higher levels of Hh or longer exposure to the same level of Hh than PKA-site phosphorylation on Smo. Furthermore, we find that vertebrate CK1γ is localized at the primary cilium to promote Smo phosphorylation and Sonic hedgehog (Shh) pathway activation. Our study reveals a conserved mechanism whereby Hh induces a change in Smo subcellular localization to promote its association with and activation by a plasma membrane localized kinase, and provides new insight into how Hh morphogen progressively activates Smo.

  3. The Phosphatidylinositol 3-Kinase/Akt Pathway Regulates Transforming Growth Factor-β Signaling by Destabilizing Ski and Inducing Smad7*

    PubMed Central

    Band, Arja M.; Björklund, Mia; Laiho, Marikki

    2009-01-01

    Ski is an oncoprotein that negatively regulates transforming growth factor (TGF)-β signaling. It acts as a transcriptional co-repressor by binding to TGF-β signaling molecules, Smads. Efficient TGF-β signaling is facilitated by rapid proteasome-mediated degradation of Ski by TGF-β. Here we report that Ski is phosphorylated by Akt/PKB kinase. Akt phosphorylates Ski on a highly conserved Akt motif at threonine 458 both in vitro and in vivo. The phosphorylation of Ski at threonine 458 is induced by Akt pathway activators including insulin, insulin-like growth factor-1, and hepatocyte growth factor. The phosphorylation of Ski causes its destabilization and reduces Ski-mediated inhibition of expression of another negative regulator of TGF-β, Smad7. Induction of Smad7 levels leads to inactivation of TGF-β receptors and TGF-β signaling cascade, as indicated by reduced induction of TGF-β target p15. Therefore, Akt modulates TGF-β signaling by temporarily adjusting the levels of two TGF-β pathway negative regulators, Ski and Smad7. These novel findings demonstrate that Akt pathway activation directly impacts TGF-β pathway. PMID:19875456

  4. Rapamycin induces Bad phosphorylation in association with its resistance to human lung cancer cells.

    PubMed

    Liu, Yan; Sun, Shi-Yong; Owonikoko, Taofeek K; Sica, Gabriel L; Curran, Walter J; Khuri, Fadlo R; Deng, Xingming

    2012-01-01

    Inhibition of mTOR signaling by rapamycin has been shown to activate extracellular signal-regulated kinase 1 or 2 (ERK1/2) and Akt in various types of cancer cells, which contributes to rapamycin resistance. However, the downstream effect of rapamycin-activated ERKs and Akt on survival or death substrate(s) remains unclear. We discovered that treatment of human lung cancer cells with rapamycin results in enhanced phosphorylation of Bad at serine (S) 112 and S136 but not S155 in association with activation of ERK1/2 and Akt. A higher level of Bad phosphorylation was observed in rapamycin-resistant cells compared with parental rapamycin-sensitive cells. Thus, Bad phosphorylation may contribute to rapamycin resistance. Mechanistically, rapamycin promotes Bad accumulation in the cytosol, enhances Bad/14-3-3 interaction, and reduces Bad/Bcl-XL binding. Rapamycin-induced Bad phosphorylation promotes its ubiquitination and degradation, with a significant reduction of its half-life (i.e., from 53.3-37.5 hours). Inhibition of MEK/ERK by PD98059 or depletion of Akt by RNA interference blocks rapamycin-induced Bad phosphorylation at S112 or S136, respectively. Simultaneous blockage of S112 and S136 phosphorylation of Bad by PD98059 and silencing of Akt significantly enhances rapamycin-induced growth inhibition in vitro and synergistically increases the antitumor efficacy of rapamycin in lung cancer xenografts. Intriguingly, either suppression of Bad phosphorylation at S112 and S136 sites or expression of the nonphosphorylatable Bad mutant (S112A/S136A) can reverse rapamycin resistance. These findings uncover a novel mechanism of rapamycin resistance, which may promote the development of new strategies for overcoming rapamycin resistance by manipulating Bad phosphorylation at S112 and S136 in human lung cancer.

  5. Constitutively expressed COX-2 in osteoblasts positively regulates Akt signal transduction via suppression of PTEN activity.

    PubMed

    Li, Ching-Ju; Chang, Je-Ken; Wang, Gwo-Jaw; Ho, Mei-Ling

    2011-02-01

    Cyclooxygenase-2 (COX-2) is thought to be an inducible enzyme, but increasing reports indicate that COX-2 is constitutively expressed in several organs. The status of COX-2 expression in bone and its physiological role remains undefined. Non-selective non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, which commonly suppress COX-2 activity, were reported to suppress osteoblast proliferation via Akt/FOXO3a/p27(Kip1) signaling, suggesting that COX-2 may be the key factor of the suppressive effects of NSAIDs on proliferation. Although Akt activation correlates with PTEN deficiency and cell viability, the role of COX-2 on PTEN/Akt regulation remains unclear. In this study, we hypothesized that COX-2 may be constitutively expressed in osteoblasts and regulate PTEN/Akt-related proliferation. We examined the localization and co-expression of COX-2 and p-Akt in normal mouse femurs and in cultured mouse (mOBs) and human osteoblasts (hOBs). Our results showed that osteoblasts adjacent to the trabeculae, periosteum and endosteum in mouse femurs constitutively expressed COX-2, while COX-2 co-expressed with p-Akt in osteoblasts sitting adjacent to trabeculae in vivo, and in mOBs and hOBs in vitro. We further used COX-2 siRNA to test the role of COX-2 in Akt signaling in hOBs; COX-2 silencing significantly inhibited PTEN phosphorylation, enhanced PTEN activity, and suppressed p-Akt level and proliferation. However, replenishment of the COX-2 enzymatic product, PGE2, failed to reverse COX-2-dependent Akt phosphorylation. Furthermore, transfection with recombinant human COX-2 (rhCOX-2) significantly reversed COX-2 siRNA-suppressed PTEN phosphorylation, but this effect was reduced when the enzymatic activity of rhCOX-2 was blocked. This finding indicated that the effect of COX-2 on PTEN/Akt signaling is not related to PGE2 but still dependent on COX-2 enzymatic activity. Conversely, COX-1 silencing did not affect PTEN/Akt signaling. Our findings provide

  6. Testosterone and Voluntary Exercise, Alone or Together Increase Cardiac Activation of AKT and ERK1/2 in Diabetic Rats

    PubMed Central

    Chodari, Leila; Mohammadi, Mustafa; Mohaddes, Gisou; Alipour, Mohammad Reza; Ghorbanzade, Vajiheh; Dariushnejad, Hassan; Mohammadi, Shima

    2016-01-01

    Background Impaired angiogenesis in cardiac tissue is a major complication of diabetes. Protein kinase B (AKT) and extracellular signal regulated kinase (ERK) signaling pathways play important role during capillary-like network formation in angiogenesis process. Objectives To determine the effects of testosterone and voluntary exercise on levels of vascularity, phosphorylated Akt (P- AKT) and phosphorylated ERK (P-ERK) in heart tissue of diabetic and castrated diabetic rats. Methods Type I diabetes was induced by i.p injection of 50 mg/kg of streptozotocin in animals. After 42 days of treatment with testosterone (2mg/kg/day) or voluntary exercise alone or in combination, heart tissue samples were collected and used for histological evaluation and determination of P-AKT and P-ERK levels by ELISA method. Results Our results showed that either testosterone or exercise increased capillarity, P-AKT, and P-ERK levels in the heart of diabetic rats. Treatment of diabetic rats with testosterone and exercise had a synergistic effect on capillarity, P-AKT, and P-ERK levels in heart. Furthermore, in the castrated diabetes group, capillarity, P-AKT, and P-ERK levels significantly decreased in the heart, whereas either testosterone treatment or exercise training reversed these effects. Also, simultaneous treatment of castrated diabetic rats with testosterone and exercise had an additive effect on P-AKT and P-ERK levels. Conclusion Our findings suggest that testosterone and exercise alone or together can increase angiogenesis in the heart of diabetic and castrated diabetic rats. The proangiogenesis effects of testosterone and exercise are associated with the enhanced activation of AKT and ERK1/2 in heart tissue.

  7. HBV core promoter mutations and AKT upregulate S-phase kinase-associated protein 2 to promote postoperative hepatocellular carcinoma progression

    PubMed Central

    Chen, Lubiao; Gu, Lin; Gu, Yurong; Wang, Hongbo; Deng, Meihai; Stamataki, Zania; Oo, Ye Htun; Huang, Yuehua

    2016-01-01

    Mutations in the hepatitis B virus (HBV) core promoter (CP) have been shown to be associated with hepatocellular carcinoma (HCC). The CP region overlaps HBV X gene, which activates AKT to regulate hepatocyte survival. However, the cooperation between these two cascades in HCC progression remains poorly understood. Here, we assayed virological factors and AKT expression in liver tissues from 56 HCC patients with better prognoses (BHCC, ≥5-year survival) and 58 with poor prognoses (PHCC, <5-year survival) after partial liver resection. Results showed double mutation A1762T/G1764A (TA) combined with other mutation(s) (TACO) in HBV genome and phosphorylated AKT (pAKT) were more common in PHCC than BHCC. TACO and pAKT levels correlated with proliferation and microvascularization but inversely correlated with apoptosis in HCC samples. These were more pronounced when TACO and pAKT co-expressed. Levels of p21 and p27 were decreased in TACO or pAKT overexpressing HCC due to SKP2 upregulation. Levels of E2F1 and both mRNA and protein of SKP2 were increased in TACO expressing HCC. Levels of 4EBP1/2 decreased and SKP2 mRNA level remained constant in pAKT-overexpressing HCC. Therefore, TACO and AKT are two independent predictors of postoperative survival in HCC. Their co-target, SKP2 may be a diagnostic or therapeutic marker. PMID:27779207

  8. Acidic Fibroblast Growth Factor Promotes Endothelial Progenitor Cells Function via Akt/FOXO3a Pathway

    PubMed Central

    Wang, Yuqiang; Cao, Qing; Sang, Tiantian; Liu, Fang; Chen, Shuyan

    2015-01-01

    Acidic fibroblast growth factor (FGF1) has been suggested to enhance the functional activities of endothelial progenitor cells (EPCs). The Forkhead homeobox type O transcription factors (FOXOs), a key substrate of the survival kinase Akt, play important roles in regulation of various cellular processes. We previously have shown that FOXO3a is the main subtype of FOXOs expressed in EPCs. Here, we aim to determine whether FGF1 promotes EPC function through Akt/FOXO3a pathway. Human peripheral blood derived EPCs were transduced with adenoviral vectors either expressing a non-phosphorylable, constitutively active triple mutant of FOXO3a (Ad-TM-FOXO3a) or a GFP control (Ad-GFP). FGF1 treatment improved functional activities of Ad-GFP transduced EPCs, including cell viability, proliferation, antiapoptosis, migration and tube formation, whereas these beneficial effects disappeared by Akt inhibitor pretreatment. Moreover, EPC function was declined by Ad-TM-FOXO3a transduction and failed to be attenuated even with FGF1 treatment. FGF1 upregulated phosphorylation levels of Akt and FOXO3a in Ad-GFP transduced EPCs, which were repressed by Akt inhibitor pretreatment. However, FGF1 failed to recover Ad-TM-FOXO3a transduced EPCs from dysfunction. These data indicate that FGF1 promoting EPC function is at least in part mediated through Akt/FOXO3a pathway. Our study may provide novel ideas for enhancing EPC angiogenic ability and optimizing EPC transplantation therapy in the future. PMID:26061278

  9. Effect of 2-hydroxyethyl methacrylate on human pulp cell survival pathways ERK and AKT.

    PubMed

    Spagnuolo, Gianrico; D'Antò, Vincenzo; Valletta, Rosa; Strisciuglio, Caterina; Schmalz, Gottfried; Schweikl, Helmut; Rengo, Sandro

    2008-06-01

    Previous investigations have revealed that dental monomers could affect intracellular pathways leading to cell survival or cell death. Mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) might mediate cell responses as well as cell survival and apoptosis. The purpose of this study was to evaluate the effects of 2-hydroxyethyl methacrylate (HEMA) on the ERK1/2 and AKT pathways in human primary pulp fibroblasts (HPCs). HPCs were treated with various concentrations of HEMA, after which viability and reactive oxygen species levels were determined by flow cytometry with Annexin V-PI staining and 2,7-dichlorofluorescine diacetate, respectively. Whole-cell extracts were immunoblotted with anti-P-Akt or anti-P-ERK1/2. Cell viability decreased in a dose-dependent manner after HEMA exposure, showing a significant decrease with 10 mmol/L HEMA (p < .05). HEMA treatment resulted in a 4-fold increase in reactive oxygen species formation (p < .05). A short HEMA exposure (30-90 minutes) increased ERK1/2 phosphorylation, whereas a decrease in the AKT phosphorylation was observed. Selective inhibitors of the ERK (PD98059) and AKT (LY294002) pathways amplified HPC cell damage after HEMA exposure. Our findings demonstrated that HEMA exposure modulates the ERK and AKT pathways in different manners, and that in turn, they function in parallel to mediate pro-survival signaling in pulp cells subjected to HEMA cytotoxicity.

  10. Kinetic analysis of platelet-derived growth factor receptor/phosphoinositide 3-kinase/Akt signaling in fibroblasts.

    PubMed

    Park, Chang Shin; Schneider, Ian C; Haugh, Jason M

    2003-09-26

    Isoforms of the serine-threonine kinase Akt coordinate multiple cell survival pathways in response to stimuli such as platelet-derived growth factor (PDGF). Activation of Akt is a multistep process, which relies on the production of 3'-phosphorylated phosphoinositide (PI) lipids by PI 3-kinases. To quantitatively assess the kinetics of PDGF receptor/PI 3-kinase/Akt signaling in fibroblasts, a systematic study of this pathway was performed, and a mechanistic mathematical model that describes its operation was formulated. We find that PDGF receptor phosphorylation exhibits positive cooperativity with respect to PDGF concentration, and its kinetics are quantitatively consistent with a mechanism in which receptor dimerization is initially mediated by the association of two 1:1 PDGF/PDGF receptor complexes. Receptor phosphorylation is transient at high concentrations of PDGF, consistent with the loss of activated receptors upon endocytosis. By comparison, Akt activation responds to lower PDGF concentrations and exhibits more sustained kinetics. Further analysis and modeling suggest that the pathway is saturated at the level of PI 3-kinase activation, and that the p110alpha catalytic subunit of PI 3-kinase contributes most to PDGF-stimulated 3'-PI production. Thus, at high concentrations of PDGF the kinetics of 3'-PI production are limited by the turnover rate of these lipids, while the Akt response is additionally influenced by the rate of Akt deactivation.

  11. Increasing effect of Tangzhiqing formula on IRS-1-dependent PI3K/AKT signaling in muscle

    PubMed Central

    2014-01-01

    Background Tangzhiqing fomula (TZQ-F), the mixture of Red Paeony root, Mulberry leaf, Lotus leaf, Danshen root and Hawthorn leaf, regulates the abnormal glucose and lipids in prediabetic patients. In this study, we focus on the mechanism of TZQ-F and its fractions on glucose metabolism. Methods After orally administration of TZQ-F for 4 weeks in KK-Ay mice, we dissected out the liver and muscle, and employed PCR and western blotting to screening the PI3K/AKT pathway. The following PI3K/AKT signaling pathway were performed in L-6 myotube and HepG2 cells. Results In the liver of KK-Ay mice, no significance was observed on PI3K, AKT and their phosphorylation between TZQ-F and controls , while, in the muscle, up-regulation of PI3K, AKT, Glycogen synthase (GYS) and their phosphorylation type, as well as GluT4, was deteced in TZQ-F. In HepG2 cells, TZQ-F increased IRS-2 by 10 folds, without interrupting AKT, IRS-1 and GluT4. In L-6 myotube cells, TZQ-F and its fractions treatment significantly increased IRS-1 and AKT at mRNA level. Conclusion TZQ-F prevents pre-diabetes through increasing effect on IRS-1-dependent PI3K/AKT signaling pathway in muscle. PMID:24952587

  12. Restoration of Akt activity by the bisperoxovanadium compound bpV(pic) attenuates hippocampal apoptosis in experimental neonatal pneumococcal meningitis.

    PubMed

    Sury, Matthias D; Vorlet-Fawer, Lorianne; Agarinis, Claudia; Yousefi, Shida; Grandgirard, Denis; Leib, Stephen L; Christen, Stephan

    2011-01-01

    Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP(3) and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed the restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis.

  13. Monitoring Cellular Phosphorylation Signaling Pathways into Chromatin and Down to the Gene Level*

    PubMed Central

    Han, Yumiao; Yuan, Zuo-Fei; Molden, Rosalynn C.; Garcia, Benjamin A.

    2016-01-01

    Protein phosphorylation, one of the most common and important modifications of acute and reversible regulation of protein function, plays a dominant role in almost all cellular processes. These signaling events regulate cellular responses, including proliferation, differentiation, metabolism, survival, and apoptosis. Several studies have been successfully used to identify phosphorylated proteins and dynamic changes in phosphorylation status after stimulation. Nevertheless, it is still rather difficult to elucidate precise complex phosphorylation signaling pathways. In particular, how signal transduction pathways directly communicate from the outer cell surface through cytoplasmic space and then directly into chromatin networks to change the transcriptional and epigenetic landscape remains poorly understood. Here, we describe the optimization and comparison of methods based on thiophosphorylation affinity enrichment, which can be utilized to monitor phosphorylation signaling into chromatin by isolation of phosphoprotein containing nucleosomes, a method we term phosphorylation-specific chromatin affinity purification (PS-ChAP). We utilized this PS-ChAP1 approach in combination with quantitative proteomics to identify changes in the phosphorylation status of chromatin-bound proteins on nucleosomes following perturbation of transcriptional processes. We also demonstrate that this method can be employed to map phosphoprotein signaling into chromatin containing nucleosomes through identifying the genes those phosphorylated proteins are found on via thiophosphate PS-ChAP-qPCR. Thus, our results showed that PS-ChAP offers a new strategy for studying cellular signaling and chromatin biology, allowing us to directly and comprehensively investigate phosphorylation signaling into chromatin to investigate if these pathways are involved in altering gene expression. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set

  14. Direct Regulation of Osteocytic Connexin 43 Hemichannels through AKT Kinase Activated by Mechanical Stimulation*

    PubMed Central

    Batra, Nidhi; Riquelme, Manuel A.; Burra, Sirisha; Kar, Rekha; Gu, Sumin; Jiang, Jean X.

    2014-01-01

    Connexin (Cx) 43 hemichannels in osteocytes are thought to play a critical role in releasing bone modulators in response to mechanical loading, a process important for bone formation and remodeling. However, the underlying mechanism that regulates the opening of mechanosensitive hemichannels is largely unknown. We have recently shown that Cx43 and integrin α5 interact directly with each other, and activation of PI3K appears to be required for Cx43 hemichannel opening by mechanical stimulation. Here, we show that mechanical loading through fluid flow shear stress (FFSS) increased the level of active AKT, a downstream effector of PI3K, which is correlated with the opening of hemichannels. Both Cx43 and integrin α5 are directly phosphorylated by AKT. Inhibition of AKT activation significantly reduced FFSS-induced opening of hemichannels and disrupted the interaction between Cx43 and integrin α5. Moreover, AKT phosphorylation on Cx43 and integrin α5 enhanced their interaction. In contrast to the C terminus of wild-type Cx43, overexpression of the C-terminal mutant containing S373A, a consensus site previously shown to be phosphorylated by AKT, failed to bind with α5 and hence could not inhibit hemichannel opening. Together, our results suggest that AKT activated by FFSS directly phosphorylates Cx43 and integrin α5, and Ser-373 of Cx43 plays a predominant role in mediating the interaction between these two proteins and Cx43 hemichannel opening, a crucial step to mediate the anabolic function of mechanical loading in the bone. PMID:24563481

  15. A Low-Frequency Inactivating Akt2 Variant Enriched in the Finnish Population is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk.

    PubMed

    Manning, Alisa; Highland, Heather M; Gasser, Jessica; Sim, Xueling; Tukiainen, Taru; Fontanillas, Pierre; Grarup, Niels; Rivas, Manuel A; Mahajan, Anubha; Locke, Adam E; Cingolani, Pablo; Pers, Tune H; Viñuela, Ana; Brown, Andrew A; Wu, Ying; Flannick, Jason; Fuchsberger, Christian; Gamazon, Eric R; Gaulton, Kyle J; Im, Hae Kyung; Teslovich, Tanya M; Blackwell, Thomas W; Bork-Jensen, Jette; Burtt, Noël P; Chen, Yuhui; Green, Todd; Hartl, Christopher; Kang, Hyun Min; Kumar, Ashish; Ladenvall, Claes; Ma, Clement; Moutsianas, Loukas; Pearson, Richard D; Perry, John R B; Rayner, N William; Robertson, Neil R; Scott, Laura J; van de Bunt, Martijn; Eriksson, Johan G; Jula, Antti; Koskinen, Seppo; Lehtimäki, Terho; Palotie, Aarno; Raitakari, Olli T; Jacobs, Suzanne Br; Wessel, Jennifer; Chu, Audrey Y; Scott, Robert A; Goodarzi, Mark O; Blancher, Christine; Buck, Gemma; Buck, David; Chines, Peter S; Gabriel, Stacey; Gjesing, Anette P; Groves, Christopher J; Hollensted, Mette; Huyghe, Jeroen R; Jackson, Anne U; Jun, Goo; Justesen, Johanne Marie; Mangino, Massimo; Murphy, Jacquelyn; Neville, Matt; Onofrio, Robert; Small, Kerrin S; Stringham, Heather M; Trakalo, Joseph; Banks, Eric; Carey, Jason; Carneiro, Mauricio O; DePristo, Mark; Farjoun, Yossi; Fennell, Timothy; Goldstein, Jacqueline I; Grant, George; Hrabé de Angelis, Martin; Maguire, Jared; Neale, Benjamin M; Poplin, Ryan; Purcell, Shaun; Schwarzmayr, Thomas; Shakir, Khalid; Smith, Joshua D; Strom, Tim M; Wieland, Thomas; Lindstrom, Jaana; Brandslund, Ivan; Christensen, Cramer; Surdulescu, Gabriela L; Lakka, Timo A; Doney, Alex S F; Nilsson, Peter; Wareham, Nicholas J; Langenberg, Claudia; Varga, Tibor V; Franks, Paul W; Rolandsson, Olov; Rosengren, Anders H; Farook, Vidya S; Thameem, Farook; Puppala, Sobha; Kumar, Satish; Lehman, Donna M; Jenkinson, Christopher P; Curran, Joanne E; Hale, Daniel Esten; Fowler, Sharon P; Arya, Rector; DeFronzo, Ralph A; Abboud, Hanna E; Syvänen, Ann-Christine; Hicks, Pamela J; Palmer, Nicholette D; Ng, Maggie C Y; Bowden, Donald W; Freedman, Barry I; Esko, Tõnu; Mägi, Reedik; Milani, Lili; Mihailov, Evelin; Metspalu, Andres; Narisu, Narisu; Kinnunen, Leena; Bonnycastle, Lori L; Swift, Amy; Pasko, Dorota; Wood, Andrew R; Fadista, João; Pollin, Toni I; Barzilai, Nir; Atzmon, Gil; Glaser, Benjamin; Thorand, Barbara; Strauch, Konstantin; Peters, Annette; Roden, Michael; Müller-Nurasyid, Martina; Liang, Liming; Kriebel, Jennifer; Illig, Thomas; Grallert, Harald; Gieger, Christian; Meisinger, Christa; Lannfelt, Lars; Musani, Solomon K; Griswold, Michael; Taylor, Herman A; Wilson, Gregory; Correa, Adolfo; Oksa, Heikki; Scott, William R; Afzal, Uzma; Tan, Sian-Tsung; Loh, Marie; Chambers, John C; Sehmi, Jobanpreet; Kooner, Jaspal Singh; Lehne, Benjamin; Cho, Yoon Shin; Lee, Jong-Young; Han, Bok-Ghee; Käräjämäki, Annemari; Qi, Qibin; Qi, Lu; Huang, Jinyan; Hu, Frank B; Melander, Olle; Orho-Melander, Marju; Below, Jennifer E; Aguilar, David; Wong, Tien Yin; Liu, Jianjun; Khor, Chiea-Chuen; Chia, Kee Seng; Lim, Wei Yen; Cheng, Ching-Yu; Chan, Edmund; Tai, E Shyong; Aung, Tin; Linneberg, Allan; Isomaa, Bo; Meitinger, Thomas; Tuomi, Tiinamaija; Hakaste, Liisa; Kravic, Jasmina; Jørgensen, Marit E; Lauritzen, Torsten; Deloukas, Panos; Stirrups, Kathleen E; Owen, Katharine R; Farmer, Andrew J; Frayling, Timothy M; O'Rahilly, Stephen P; Walker, Mark; Levy, Jonathan C; Hodgkiss, Dylan; Hattersley, Andrew T; Kuulasmaa, Teemu; Stančáková, Alena; Barroso, Inês; Bharadwaj, Dwaipayan; Chan, Juliana; Chandak, Giriraj R; Daly, Mark J; Donnelly, Peter J; Ebrahim, Shah B; Elliott, Paul; Fingerlin, Tasha; Froguel, Philippe; Hu, Cheng; Jia, Weiping; Ma, Ronald C W; McVean, Gilean; Park, Taesung; Prabhakaran, Dorairaj; Sandhu, Manjinder; Scott, James; Sladek, Rob; Tandon, Nikhil; Teo, Yik Ying; Zeggini, Eleftheria; Watanabe, Richard M; Koistinen, Heikki A; Kesaniemi, Y Antero; Uusitupa, Matti; Spector, Timothy D; Salomaa, Veikko; Rauramaa, Rainer; Palmer, Colin N A; Prokopenko, Inga; Morris, Andrew D; Bergman, Richard N; Collins, Francis S; Lind, Lars; Ingelsson, Erik; Tuomilehto, Jaakko; Karpe, Fredrik; Groop, Leif; Jørgensen, Torben; Hansen, Torben; Pedersen, Oluf; Kuusisto, Johanna; Abecasis, Gonçalo; Bell, Graeme I; Blangero, John; Cox, Nancy J; Duggirala, Ravindranath; Seielstad, Mark; Wilson, James G; Dupuis, Josee; Ripatti, Samuli; Hanis, Craig L; Florez, Jose C; Mohlke, Karen L; Meigs, James B; Laakso, Markku; Morris, Andrew P; Boehnke, Michael; Altshuler, David; McCarthy, Mark I; Gloyn, Anna L; Lindgren, Cecilia M

    2017-03-24

    To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting insulin, a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in fasting plasma insulin (FI) levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-hour insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio=1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.

  16. Association of HOTAIR expression with PI3K/Akt pathway activation in adenocarcinoma of esophagogastric junction

    PubMed Central

    Hui, Zhang

    2016-01-01

    Abstract Objectives Although the Hox transcript antisense intergenic RNA (HOTAIR), a vital long non-coding RNA, is known to participate in the development and progression of a wide range of carcinomas, there are still no published reports regarding its expression in adenocarcinoma of esophagogastric junction (AEJ). The aims of this study were to investigate the expression of HOTAIR, and to analyze the association of its expression with PI3K/Akt pathway activation in clinical AEJ patients. Methods Nine normal epithelial tissues and 41 samples of AEJ were studied comparably. The expression of HOTAIR was detected by real-time PCR according to the different tumor grades in these AEJ tissues. Western blot was performed to reveal the Ser473-phosphorylated Akt and total Akt levels. Results: HOTAIR was found to be up-regulated in higher grades of AEJ tissues compared to low grades and/or noncancerous tissues. pAkt expression was also found to be up-regulated in tissues of higher tumor stages. We found that the overexpression of HOTAIR finely correlated with elevated Ser473-phosphorylated Akt levels. Conclusion: Upregulated HOTAIR was associated with abnormal activated PI3K/Akt pathway, which might serve as a promising therapeutic strategy for AEJ treatment.

  17. High-level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis.

    PubMed

    Hajdu, Anita; Ádám, Éva; Sheerin, David J; Dobos, Orsolya; Bernula, Péter; Hiltbrunner, Andreas; Kozma-Bognár, László; Nagy, Ferenc

    2015-09-01

    Optimal timing of flowering in higher plants is crucial for successful reproduction and is coordinated by external and internal factors, including light and the circadian clock. In Arabidopsis, light-dependent stabilization of the rhythmically expressed CONSTANS (CO) is required for the activation of FLOWERING LOCUS T (FT), resulting in the initiation of flowering. Phytochrome A and cryptochrome photoreceptors stabilize CO in the evening by attenuating the activity of the CONSTITUTIVE PHOTOMORPHOGENIC 1-SUPPRESSOR OF PHYA-105 1 (COP1-SPA1) ubiquitin ligase complex, which promotes turnover of CO. In contrast, phytochrome B (phyB) facilitates degradation of CO in the morning and delays flowering. Accordingly, flowering is accelerated in phyB mutants. Paradoxically, plants overexpressing phyB also show early flowering, which may arise from an early phase of rhythmic CO expression. Here we demonstrate that overexpression of phyB induces FT transcription at dusk and in the night without affecting the phase or level of CO transcription. This response depends on the light-activated Pfr form of phyB that inhibits the function of the COP1-SPA1 complex by direct interactions. Our data suggest that attenuation of COP1 activity results in the accumulation of CO protein and subsequent induction of FT. We show that phosphorylation of Ser-86 inhibits this function of phyB by accelerating dark reversion and thus depletion of Pfr forms in the night. Our results explain the early flowering phenotype of phyB overexpression and reveal additional features of the molecular machinery by which photoreceptors mediate photoperiodism.

  18. Dissociation between the translocation and the activation of Akt in fMLP-stimulated human neutrophils--effect of prostaglandin E2.

    PubMed

    Burelout, Chantal; Naccache, Paul H; Bourgoin, Sylvain G

    2007-06-01

    PGE(2) and other cAMP-elevating agents are known to down-regulate most functions stimulated by fMLP in human polymorphonuclear neutrophils. We reported previously that the inhibitory potential of PGE(2) resides in its capacity to suppress fMLP-stimulated PI-3Kgamma activation via the PGE(2) receptor EP(2) and hence, to decrease phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P(3)] formation. Akt activity is stimulated by fMLP through phosphorylation on threonine 308 (Thr308) and serine 473 (Ser473) by 3-phosphoinositide-dependent kinase 1 (PDK1) and MAPK-AP kinase (APK)-APK-2 (MAPKAPK-2), respectively, in a PI-3K-dependent manner. Despite the suppression of fMLP-induced PI-3Kgamma activation observed in the presence of PGE(2), we show that Akt is fully phosphorylated on Thr308 and Ser473. However, fMLP-induced Akt translocation is decreased markedly in this context. PGE(2) does not affect the phosphorylation of MAPKAPK-2 but decreases the translocation of PDK1 induced by fMLP. Other cAMP-elevating agents such as adenosine (Ado) similarly block the fMLP-induced PI-3Kgamma activation process but do not inhibit Akt phosphorylation. However, Akt activity stimulated by fMLP is down-regulated slightly by agonists that elevate cAMP levels. Whereas protein kinase A is not involved in the maintenance of Akt phosphorylation, it is required for the inhibition of Akt translocation by PGE(2). Moreover, inhibition of fMLP-stimulated PI-3Kdelta activity by the selective inhibitor IC87114 only partially affects the late phase of Akt phosphorylation in the presence of PGE(2). Taken together, these results suggest that cAMP-elevating agents, such as PGE(2) or Ado, are able to induce an alternative mechanism of Akt activation by fMLP in which the translocation of Akt to PI(3,4,5)P(3)-enriched membranes is not required prior to its phosphorylation.

  19. Activation of the EGFR/Akt/NF-κB/cyclinD1 survival signaling pathway in human cholesteatoma epithelium.

    PubMed

    Liu, Wei; Yin, Tuanfang; Ren, Jihao; Li, Lihua; Xiao, Zian; Chen, Xing; Xie, Dinghua

    2014-02-01

    Cholesteatoma is a benign keratinizing squamous epithelial lesion characterized by the hyper-proliferation of keratinocytes with abundant production of keratin debris in the middle ear. The epidermal growth factor receptor (EGFR)/Akt/nuclear factor-kappa B (NF-κB)/cyclinD1 signaling pathway is one of the most important pathways in regulating cell survival and proliferation. We hypothesized that the EGFR/Akt/NF-κB/cyclinD1 signaling pathway may be activated and involved in the cellular hyperplasia mechanism in acquired cholesteatoma epithelium. Immunohistochemical staining of phosphorylated EGFR (p-EGFR), phosphorylated Akt (p-Akt), activated NF-κB and cyclinD1 protein was performed in 40 cholesteatoma samples and 20 samples of normal external auditory canal (EAC) epithelium. Protein expression of p-EGFR, p-Akt, activated NF-κB and cyclinD1 in cholesteatoma epithelium was significantly increased when compared with normal EAC epithelium (p < 0.01). In cholesteatoma epithelium, a significant positive association was observed between p-EGFR and p-Akt expression and between the expressions of p-Akt and NF-κB, NF-κB and cyclinD1, respectively (p < 0.01). No significant relationships were observed between the levels of investigated proteins and the degree of bone destruction (p > 0.05). The increased protein expression of p-EGFR, p-Akt, NF-κB and cyclinD1 and their associations in cholesteatoma epithelium suggest that the EGFR/Akt/NF-κB/cyclinD1 survival signaling pathway is active and may be involved in the regulatory mechanisms of cellular hyperplasia in cholesteatoma epithelium.

  20. Inactivation of fatty acid synthase impairs hepatocarcinogenesis driven by AKT in mice and humans

    PubMed Central

    Li, Lei; Pilo, Giulia M.; Li, Xiaolei; Cigliano, Antonio; Latte, Gavinella; Che, Li; Joseph, Christy; Mela, Marta; Wang, Chunmei; Jiang, Lijie; Ribback, Silvia; Simile, Maria M.; Pascale, Rosa M.; Dombrowski, Frank; Evert, Matthias; Semenkovich, Clay F.; Chen, Xin; Calvisi, Diego F.

    2015-01-01

    Background & Aims Cumulating evidence underlines the crucial role of aberrant lipogenesis in human hepatocellular carcinoma (HCC). Here, we investigated the oncogenic potential of fatty acid synthase (FASN), the master regulator of de novo lipogenesis, in the mouse liver. Methods FASN was overexpressed in the mouse liver, either alone or in combination with activated N-Ras, c-Met, or SCD1, via hydrodynamic injection. Activated AKT was overexpressed via hydrodynamic injection in livers of conditional FASN or Rictor knockout mice. FASN was suppressed in human hepatoma cell lines via specific small interfering RNA. Results Overexpression of FASN, either alone or in combination with other genes associated with hepatocarcinogenesis, did not induce histological liver alterations. In contrast, genetic ablation of FASN resulted in the complete inhibition of hepatocarcinogenesis in AKT-overexpressing mice. In human HCC cell lines, FASN inactivation led to a decline in cell proliferation and a rise in apoptosis, which were paralleled by a decrease in the levels of phosphorylated/activated AKT, an event controlled by the mammalian target of rapamycin complex 2 (mTORC2). Downregulation of AKT phosphorylation/activation following FASN inactivation was associated with strong inhibition of rapamycin-insensitive companion of mTOR (Rictor), the major component of mTORC2, at post-transcriptional level. Finally, genetic ablation of Rictor impaired AKT-driven hepatocarcinogenesis in mice. Conclusions FASN is not oncogenic per se in the mouse liver, but is necessary for AKT-driven hepatocarcinogenesis. Pharmacological blockade of FASN might be highly useful in the treatment of human HCC characterized by activation of the AKT pathway. PMID:26476289

  1. Regulation of Akt during torpor in the hibernating ground squirrel, Ictidomys tridecemlineatus.

    PubMed

    McMullen, David C; Hallenbeck, John M

    2010-08-01

    The 13-lined ground squirrel (Ictidomys tridecemlineatus) is capable of entering into extended periods of torpor during winter hibernation. The state of torpor represents a hypometabolic shift wherein the rate of oxygen consuming processes are strongly repressed in an effort to maintain cellular homeostasis as the availability of food energy becomes limited. We are interested in studying hibernation/torpor because of the robust state of tolerance to constrained oxygen delivery, oligemia, and hypothermia achieved by the tissues of hibernating mammals. The role of the serine/threonine kinase Akt (also known as PKB) has been examined in torpor in previous studies. However, this is the first study that examines the level of Akt phosphorylation in the liver during the two transition phases of the hibernation cycle: entrance into torpor, and the subsequent arousal from torpor. Our results indicate that Akt is activated in the squirrel liver by phosphorylation of two key residues (Thr(308) and Ser(473)) during entrance into torpor and arousal from torpor. Moreover, we observed increased phosphorylation of key substrates of Akt during the two transition stages of torpor. Finally, this study reports the novel finding that PRAS40, a component of the TORC1 multi-protein complex and a potentially important modulator of metabolism, is regulated during torpor.

  2. PI3K/AKT Signaling Regulates Bioenergetics in Immortalized Hepatocytes

    PubMed Central

    Li, Chen; Li, Yang; He, Lina; Agarwal, Amit R.; Zeng, Ni; Cadenas, Enrique; Stiles, Bangyan L.

    2013-01-01

    Regulation of cellular bioenergetics by PI3K/AKT signaling was examined in isogenic hepatocyte cell lines lacking the major inhibitor of PI3K/AKT signaling, PTEN (phosphatase and tensin homolog deleted on Chromosome 10). PI3K/AKT signaling was manipulated using the activator (IGF-1) and the inhibitor (LY 294002) of the PI3K/AKT pathway. Activation of PI3K/AKT signaling resulted in an enhanced anaerobic glycolysis and mitochondrial respiration. AKT, when phosphorylated and activated, translocated to mitochondria and localized within the membrane structure of mitochondria, where it phosphorylated a number of mitochondrial residence proteins including the subunits α and β of ATP synthase. Inhibition of GSK3β by either phosphorylation by AKT or lithium chloride resulted in activation of pyruvate dehydrogenase, i.e., decrease of its phosphorylated form. AKT-dependent phosphorylation of ATP synthase subunits α and β resulted in an increased complex activity. AKT translocation to mitochondria was associated with an increased expression and activity of complex I. These data suggest that the mitochondrial signaling pathway AKT-GSK3β-PDH, AKT-dependent phosphorylation of ATP synthase, and upregulation of mitochondrial complex I expression and activity are involved in the control of mitochondrial bioenergetics by increasing substrate availability and regulating the mitochondrial catalytic/energy-transducing capacity. PMID:23376468

  3. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response

    PubMed Central

    Chan, Tung O.; Zhang, Jin; Tiegs, Brian C.; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M.; Armen, Roger S.; Rodeck, Ulrich; Penn, Raymond B.

    2015-01-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr308 in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr308 dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser473) increased phosphatase resistance of the phosphorylated activation loop (pThr308) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr308 phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. PMID:26201515

  4. Action of methyl-, propyl- and butylparaben on GPR30 gene and protein expression, cAMP levels and activation of ERK1/2 and PI3K/Akt signaling pathways in MCF-7 breast cancer cells and MCF-10A non-transformed breast epithelial cells.

    PubMed

    Wróbel, Anna Maria; Gregoraszczuk, Ewa Łucja

    2015-10-14

    In the present study, we examined cAMP levels and activation of the MAPK/ERK1/2 and PI3K/Akt signaling pathways in response to the actions of parabens on GPR30 in MCF-7 and MCF-10A cells. Cells were exposed to methyl-, propyl- or butylparaben at a concentration of 20nM; 17-β-estradiol (10nM) was used as a positive control. 17β-estradiol and all tested parabens increased GPR30 gene and protein expression in MCF-7 and MCF-10A cells. No parabens affected cAMP levels in either cell line, with the exception of propylparaben in MCF-10A cells. 17β-estradiol, propylparaben, and butylparaben increased phosphorylation of ERK1/2 in MCF-7 cells, whereas 17β-estradiol, methyl- and butylparaben, but not propylparaben, increased phosphorylation of ERK1/2 in MCF-10A cells. Akt activation was noted only in MCF-7 cells and only with propylparaben treatment. Collectively, the data presented here point to a nongenomic mechanism of action of parabens in activation GPR30 in both cancer and non-cancer breast cell lines through βγ dimer-mediated activation of the ERK1/2 pathway, but not the cAMP/PKA pathway. Moreover, among investigated parabens, propylparaben appears to inhibit apoptosis in cancer cells through activation of Akt kinases, confirming conclusions suggested by our previously published data. Nevertheless, continuing research on the carcinogenic action of parabens is warranted.

  5. microRNA-21-induced Dissociation of PDCD4 from Rictor Contributes to Akt-IKKβ-mTORC1 axis to Regulate Select Renal Cancer Cell Invasion

    PubMed Central

    Bera, Amit; Das, Falguni; Ghosh-Choudhury, Nandini; Kasinath, Balakuntalam S.; Abboud, Hanna E.; Choudhury, Goutam Ghosh

    2014-01-01

    Renal cancer metastasis may result from oncogenic forces that contribute to the primary tumor. We have recently identified microRNA-21 as an oncogenic driver of renal cancer cells. The mechanism by which miR-21 controls renal cancer cell invasion is poorly understood. We show that miR-21 directly downregulates the proapoptotic protein PDCD4 to increase migration and invasion of ACHN and 786-O renal cancer cells as a result of phosphorylation/activation of Akt and IKKβ, which activate NFκB-dependent transcription. Constitutively active (CA) Akt or CA IKKβ blocks PDCD4-mediated inhibition and restores renal cancer cell migration and invasion. PDCD4 inhibits mTORC1 activity, which was reversed by CA IKKβ. Moreover, CA mTORC1 restores cell migration and invasion inhibited by PDCD4- and dominant negative IKKβ. Moreover, PDCD4 negatively regulates mTORC2-dependent Akt phosphorylation upstream of this cascade. We show that PDCD4 forms a complex with rictor, an exclusive component of mTORC2, and that this complex formation is reduced in renal cancer cells due to increased miR-21 expression resulting in enhanced phosphorylation of Akt. Thus our results identify a previously unrecognized signaling node where high miR-21 levels reduce rictor-PDCD4 interaction to increase phosphorylation of Akt and contribute to metastatic fitness of renal cancer cells. PMID:25016284

  6. FAM83B-mediated activation of PI3K/AKT and MAPK signaling cooperates to promote epithelial cell transformation and resistance to targeted therapies

    PubMed Central

    Cipriano, Rocky; Miskimen, Kristy L.S.; Bryson, Benjamin L.; Foy, Chase R.; Bartel, Courtney A.; Jackson, Mark W.

    2013-01-01

    Therapies targeting MAPK and AKT/mTOR signaling are currently being evaluated in clinical trials for several tumor types. However, recent studies suggest that these therapies may be limited due to acquired cancer cell resistance and a small therapeutic index between normal and cancer cells. The identification of novel proteins that are involved in MAPK or AKT/mTOR signaling and differentially expressed between normal and cancer cells will provide mechanistically distinct therapeutic targets with the potential to inhibit these key cancer-associated pathways. We recently identified FAM83B as a novel, previously uncharacterized oncogene capable of hyperactivating MAPK and mTOR signaling and driving the tumorigenicity of immortalized human mammary epithelial cells (HMEC). We show here that elevated FAM83B expression also activates the PI3K/AKT signaling pathway and confers a decreased sensitivity to PI3K, AKT, and mTOR inhibitors. FAM83B co-precipitated with the p85α and p110α subunits of PI3K, as well as AKT, and increased p110α and AKT membrane localization, consistent with elevated PI3K/AKT signaling. In tumor-derived cells harboring elevated FAM83B expression, ablation of FAM83B decreased p110α and AKT membrane localization, suppressed AKT phosphorylation, and diminished proliferation, AIG, and tumorigenicity in vivo. We propose that the level of FAM83B expression may be an important factor to consider when combined therapies targeting MAPK and AKT/mTOR signaling are used. Moreover, the identification of FAM83B as a novel oncogene and its integral involvement in activating PI3K/AKT and MAPK provides a foundation for future therapies aimed at targeting FAM83B in order to suppress the growth of PI3K/AKT- and MAPK-driven cancers. PMID:23676467

  7. PI3K/Akt/mTOR signaling & its regulator tumour suppressor genes PTEN & LKB1 in human uterine leiomyomas

    PubMed Central

    Makker, Annu; Goel, Madhu Mati; Mahdi, Abbas Ali; Bhatia, Vikram; Das, Vinita; Agarwal, Anjoo; Pandey, Amita

    2016-01-01

    Background & objectives: Despite their high occurrence and associated significant level of morbidity manifesting as spectrum of clinical symptoms, the pathogenesis of uterine leiomyomas (ULs) remains unclear. We investigated expression profile of tumour suppressor genes PTEN (phosphatase and tensin homolog deleted on chromosome ten) and LKB1 (liver kinase B1), and key signaling components of P13K (phosphatidylinositol 3-kinase)/Akt (protein kinase B)/mTOR (mammalian target of rapamycin) pathway in leiomyomas and adjacent normal myometrium in women of reproductive age, to explore the possibility of targeting this pathway for future therapeutic implications. Methods: Real time PCR (qPCR) was used to quantify relative gene expression levels of PTEN, Akt1, Akt2, mTOR, LKB1 and VEGFA (vascular endothelial growth factor A) in leiomyoma as compared to adjacent normal myometrium. Immunohistochemistry was subsequently performed to analyze expression of PTEN, phospho-Akt, phospho-mTOR, phospho-S6, LKB1 and VEGFA in leiomyoma and adjacent normal myometrium. Results: Significant upregulation of PTEN (2.52 fold; P=0.03) and LKB1 (3.93 fold; P=0.01), and downregulation of VEGFA (2.95 fold; P=0.01) genes were observed in leiomyoma as compared to normal myometrium. Transcript levels of Akt1, Akt2 and mTOR did not vary significantly between leiomyoma and myometrium. An increased immunoexpression of PTEN (P=0.015) and LKB1 (P<0.001) and decreased expression of VEGFA (P=0.01) was observed in leiomyoma as compared to myometrium. Immunostaining for activated (phosphorylated) Akt, mTOR and S6 was absent or low in majority of leiomyoma and myometrium. Interpretation & conclusions: Upregulation of PTEN and LKB1 in concert with negative or low levels of activated Akt, mTOR and S6 indicates that PI3K/Akt/mTOR pathway may not play a significant role in pathogenesis of leiomyoma. PMID:27748285

  8. Intracellular calcium promotes radioresistance of non-small cell lung cancer A549 cells through activating Akt signaling.

    PubMed

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo

    2017-03-01

    Radiotherapy is a major therapeutic approach in non-small cell lung cancer but is restricted by radioresistance. Although Akt signaling promotes radioresistance in non-small cell lung cancer, it is not well understood how Akt signaling is activated. Since intracellular calcium (Ca(2+)) could activate Akt in A549 cells, we investigated the relationship between intracellular calcium (Ca(2+)) and Akt signaling in radioresistant A549 cells by establishing radioresistant non-small cell lung cancer A549 cells. The radioresistant cell line A549 was generated by dose-gradient irradiation of the parental A549 cells. The cell viability, proliferation, and apoptosis were, respectively, assessed using the cell counting kit-8, EdU labeling, and flow cytometry analysis. The phosphorylation of Akt was evaluated by Western blotting, and the intracellular Ca(2+) concentration was assessed by Fluo 4-AM. The radioresistant A549 cells displayed mesenchymal morphology. After additional irradiation, the radioresistant A549 cells showed decreased cell viability and proliferation but increased apoptosis. Moreover, the intracellular Ca(2+) concentration and the phosphorylation level on the Akt473 site in radioresistant A549 cells were higher than those in original cells, whereas the percentage of apoptosis in radioresistant A549 cells was less. All these results could be reversed by verapamil. In conclusion, our study found that intracellular Ca(2+) could promote radioresistance of non-small cell lung cancer cells through phosphorylating of Akt on the 473 site, which contributes to a better understanding on the non-small cell lung cancer radioresistance, and may provide a new target for radioresistance management.

  9. Pancreas-specific Pten deficiency causes partial resistance to diabetes and elevated hepatic AKT signaling.

    PubMed

    Tong, Zan; Fan, Yan; Zhang, Weiqi; Xu, Jun; Cheng, Jing; Ding, Mingxiao; Deng, Hongkui

    2009-06-01

    PTEN, a negative regulator of the phosphatidylinositol-3-kinase/AKT pathway, is an important modulator of insulin signaling. To determine the metabolic function of pancreatic Pten, we generated pancreas-specific Pten knockout (PPKO) mice. PPKO mice had enlarged pancreas and elevated proliferation of acinar cells. They also exhibited hypoglycemia, hypoinsulinemia, and altered amino metabolism. Notably, PPKO mice showed delayed onset of streptozotocin (STZ)-induced diabetes and sex-biased resistance to high-fat-diet (HFD)-induced diabetes. To investigate the mechanism for the resistance to HFD-induced hyperglycemia in PPKO mice, we evaluated AKT phosphorylation in major insulin-responsive tissues: the liver, muscle, and fat. We found that Pten loss in the pancreas causes the elevation of AKT signaling in the liver. The phosphorylation of AKT and its downstream substrate GSK3beta was increased in the liver of PPKO mice, while PTEN level was decreased without detectable excision of Pten allele in the liver of PPKO mice. Proteomics analysis revealed dramatically decreased level of 78-kDa glucose-regulated protein (GRP78) in the liver of PPKO mice, which may also contribute to the lower blood glucose level of PPKO mice fed with HFD. Together, our findings reveal a novel response in the liver to pancreatic defect in metabolic regulation, adding a new dimension to understanding diabetes resistance.

  10. Akt1 signaling coordinates BMP signaling and β-catenin activity to regulate second heart field progenitor development.

    PubMed

    Luo, Wen; Zhao, Xia; Jin, Hengwei; Tao, Lichan; Zhu, Jingai; Wang, Huijuan; Hemmings, Brian A; Yang, Zhongzhou

    2015-02-15

    Second heart field (SHF) progenitors exhibit continued proliferation and delayed differentiation, which are modulated by FGF4/8/10, BMP and canonical Wnt/β-catenin signaling. PTEN-Akt signaling regulates the stem cell/progenitor cell homeostasis in several systems, such as hematopoietic stem cells, intestinal stem cells and neural progenitor cells. To address whether PTEN-Akt signaling is involved in regulating cardiac progenitors, we deleted Pten in SHF progenitors. Deletion of Pten caused SHF expansion and increased the size of the SHF derivatives, the right ventricle and the outflow tract. Cell proliferation of cardiac progenitors was enhanced, whereas cardiac differentiation was unaffected by Pten deletion. Removal of Akt1 rescued the phenotype and early lethality of Pten deletion mice, suggesting that Akt1 was the key downstream target that was negatively regulated by PTEN in cardiac progenitors. Furthermore, we found that inhibition of FOXO by Akt1 suppressed the expression of the gene encoding the BMP ligand (BMP7), leading to dampened BMP signaling in the hearts of Pten deletion mice. Cardiac activation of Akt also increased the Ser552 phosphorylation of β-catenin, thus enhancing its activity. Reducing β-catenin levels could partially rescue heart defects of Pten deletion mice. We conclude that Akt signaling regulates the cell proliferation of SHF progenitors through coordination of BMP signaling and β-catenin activity.

  11. Long isoform of ErbB3 binding protein, p48, mediates protein kinase B/Akt-dependent HDM2 stabilization and nuclear localization

    SciTech Connect

    Kim, Chung Kwon; Lee, Sang Bae; Nguyen, Truong L.X.; Lee, Kyung-Hoon; Um, Sung Hee; Kim, Jihoe; Ahn, Jee-Yin

    2012-01-15

    p48 is a long isoform of the ErbB3 binding protein that has oncogenic functions including promotion of carcinogenesis and induction of malignant transformation through negative regulation of tumor suppressor p53. Here, we show that high level of p48 protein expression leads to enhance HDM2 phosphorylation by Akt and inhibits the self-ubiquitination of HDM2 by up-regulation of Akt activity, thereby promoting its protein stability. Moreover, p48 expression leads to accumulated nuclear localization of HDM2, whereas p48 depletion disturbs its nuclear localization. Hence, higher expression of p48 in cancer cells reduces p53 levels through modulation of HDM2 nuclear localization and protein stability via regulation of its Akt-mediated phosphorylation.

  12. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide

    PubMed Central

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase—protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton’s lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism. PMID:27494022

  13. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide.

    PubMed

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase-protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton's lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism.

  14. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells.

    PubMed

    Ribeiro, Márcio; Rosenstock, Tatiana R; Oliveira, Ana M; Oliveira, Catarina R; Rego, A Cristina

    2014-09-01

    Oxidative stress and mitochondrial dysfunction have been described in Huntington's disease, a disorder caused by expression of mutant huntingtin (mHtt). IGF-1 was previously shown to protect HD cells, whereas insulin prevented neuronal oxidative stress. In this work we analyzed the role of insulin and IGF-1 in striatal cells derived from HD knock-in mice on mitochondrial production of reactive oxygen species (ROS) and related antioxidant and signaling pathways influencing mitochondrial function. Insulin and IGF-1 decreased mitochondrial ROS induced by mHtt and normalized mitochondrial SOD activity, without affecting intracellular glutathione levels. IGF-1 and insulin promoted Akt phosphorylation without changing the nuclear levels of phosphorylated Nrf2 or Nrf2/ARE activity. Insulin and IGF-1 treatment also decreased mitochondrial Drp1 phosphorylation, suggesting reduced mitochondrial fragmentation, and ameliorated mitochondrial function in HD cells in a PI-3K/Akt-dependent manner. This was accompanied by increased total and phosphorylated Akt, Tfam, and mitochondrial-encoded cytochrome c oxidase II, as well as Tom20 and Tom40 in mitochondria of insulin- and IGF-1-treated mutant striatal cells. Concomitantly, insulin/IGF-1-treated mutant cells showed reduced apoptotic features. Hence, insulin and IGF-1 improve mitochondrial function and reduce mitochondrial ROS caused by mHtt by activating the PI-3K/Akt signaling pathway, in a process independent of Nrf2 transcriptional activity, but involving enhanced mitochondrial levels of Akt and mitochondrial-encoded complex IV subunit.

  15. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1.

    PubMed

    Hunt, Kristopher A; Flynn, Jeffrey M; Naranjo, Belén; Shikhare, Indraneel D; Gralnick, Jeffrey A

    2010-07-01

    It is well established that respiratory organisms use proton motive force to produce ATP via F-type ATP synthase aerobically and that this process may reverse during anaerobiosis to produce proton motive force. Here, we show that Shewanella oneidensis strain MR-1, a nonfermentative, facultative anaerobe known to respire exogenous electron acceptors, generates ATP primarily from substrate-level phosphorylation under anaerobic conditions. Mutant strains lacking ackA (SO2915) and pta (SO2916), genes required for acetate production and a significant portion of substrate-level ATP produced anaerobically, were tested for growth. These mutant strains were unable to grow anaerobically with lactate and fumarate as the electron acceptor, consistent with substrate-level phosphorylation yielding a significant amount of ATP. Mutant strains lacking ackA and pta were also shown to grow slowly using N-acetylglucosamine as the carbon source and fumarate as the electron acceptor, consistent with some ATP generation deriving from the Entner-Doudoroff pathway with this substrate. A deletion strain lacking the sole F-type ATP synthase (SO4746 to SO4754) demonstrated enhanced growth on N-acetylglucosamine and a minor defect with lactate under anaerobic conditions. ATP synthase mutants grown anaerobically on lactate while expressing proteorhodopsin, a light-dependent proton pump, exhibited restored growth when exposed to light, consistent with a proton-pumping role for ATP synthase under anaerobic conditions. Although S. oneidensis requires external electron acceptors to balance redox reactions and is not fermentative, we find that substrate-level phosphorylation is its primary anaerobic energy conservation strategy. Phenotypic characterization of an ackA deletion in Shewanella sp. strain MR-4 and genomic analysis of other sequenced strains suggest that this strategy is a common feature of Shewanella.

  16. The protooncogene TCL1 is an Akt kinase coactivator.

    PubMed

    Laine, J; Künstle, G; Obata, T; Sha, M; Noguchi, M

    2000-08-01

    Human T cell prolymphocytic leukemia can result from chromosomal translocations involving 14q32.1 or Xq28 regions. The regions encode a family of protooncogenes (TCL1, MTCP1, and TCL1b) of unknown function. In yeast two-hybrid screening, we found that TCL1 interacts with Akt. All TCL1 isoforms bind to the Akt pleckstrin homology domain. Both in vitro and in vivo TCL1 increases Akt kinase activity and as a consequence enhances substrate phosphorylation. In vivo, TCL1 stabilizes the mitochondrial transmembrane potential and enhances cell proliferation and survival. In vivo, TCL1 forms trimers, which associate with Akt. TCL1 facilitates the oligomerization and activation of Akt. Our data show that TCL1 is a novel Akt kinase coactivator, which promotes Akt-induced cell survival and proliferation.

  17. Cancer Stem Cells in Small Cell Lung Cancer Cell Line H446: Higher Dependency on Oxidative Phosphorylation and Mitochondrial Substrate-Level Phosphorylation than Non-Stem Cancer Cells

    PubMed Central

    Jin, Fang; Miao, Yajing; Qiu, Xiaofei

    2016-01-01

    Recently, targeting cancer stem cells (CSCs) metabolism is becoming a promising therapeutic approach to improve cancer treatment outcomes. However, knowledge of the metabolic state of CSCs in small cell lung cancer is still lacking. In this study, we found that CSCs had significantly lower oxygen consumption rate and extracellular acidification rate than non-stem cancer cells. Meanwhile, this subpopulation of cells consumed less glucose, produced less lactate and maintained lower ATP levels. We also revealed that CSCs could produce more ATP through mitochondrial substrate-level phosphorylation during respiratory inhibition compared with non-stem cancer cells. Furthermore, they were more sensitive to suppression of oxidative phosphorylation. Therefore, oligomycin (inhibitor of oxidative phosphorylation) could severely impair sphere-forming and tumor-initiating abilities of CSCs. Our work suggests that CSCs represent metabolically inactive tumor subpopulations which sustain in a state showing low metabolic activity. However, mitochondrial substrate-level phosphorylation of CSCs may be more active than that of non-stem cancer cells. Moreover, CSCs showed preferential use of oxidative phosphorylation over glycolysis to meet their energy demand. These results extend our understanding of CSCs metabolism, potentially providing novel treatment strategies targeting metabolic pathways in small cell lung cancer. PMID:27167619

  18. IL-10 Protects Neurites in Oxygen-Glucose-Deprived Cortical Neurons through the PI3K/Akt Pathway.

    PubMed

    Lin, Longzai; Chen, Hongbin; Zhang, Yixian; Lin, Wei; Liu, Yong; Li, Tin; Zeng, Yongping; Chen, Jianhao; Du, Houwei; Chen, Ronghua; Tan, Yi; Liu, Nan

    2015-01-01

    IL-10, as a cytokine, has an anti-inflammatory cascade following various injuries, but it remains blurred whether IL-10 protects neurites of cortical neurons after oxygen-glucose deprivation injury. Here, we reported that IL-10, in a concentration-dependent manner, reduced neuronal apoptosis and increased neuronal survival in oxygen-glucose-deprived primary cortical neurons, producing an optimal protective effect at 20ng/ml. After staining NF-H and GAP-43, we found that IL-10 significantly protected neurites in terms of axon length and dendrite number by confocal microscopy. Furthermore, it induced the phosphorylation of AKT, suppressed the activation of caspase-3, and up-regulated the protein expression of GAP-43. In contrast, LY294002, a specific inhibitor of PI3K/AKT, reduced the level of AKT phosphorylation and GAP-43 expression, increased active caspase-3 expression and thus significantly weakened IL-10-mediated protective effect in the OGD-induced injury model. IL-10NA, the IL-10 neutralizing antibody, reduced the level of p-PI3K phosphorylation and increased the expression of active caspase-3. These findings suggest that IL-10 provides neuroprotective effects by protecting neurites through PI3K/AKT signaling pathway in oxygen-glucose-deprived primary cortical neurons.

  19. Correlation between phosphorylation level of a hippocampal 86kDa protein and extinction of a behaviour in a model of Wernicke-Korsakoff syndrome.

    PubMed

    Pires, Rita G W; Pereira, Sílvia R C; Carvalho, Fabiana M; Oliveira-Silva, Ieda F; Ferraz, Vany P; Ribeiro, Angela M

    2007-06-04

    The effects of chronic ethanol and thiamine deficiency, alone or associated, on hippocampal protein phosphorylation profiles ranging in molecular weight from 30 to 250kDa molecular weight, in stimulated (high K(+) concentration) and unstimulated (basal) conditions were investigated. These treatments significantly changed the phosphorylation level of an 86kDa phosphoprotein. Thiamine deficiency, but not chronic ethanol, induced a decrease in a behavioural extinction index, which is significantly correlated to the phosphorylation level of the p86 protein. These data add to and extend previous findings by our laboratory implicating the involvement of hippocampal neurotransmission components in extinction of a behaviour which involves learning of environmental spatial cues.

  20. Sericin can reduce hippocampal neuronal apoptosis by activating the Akt signal transduction pathway in a rat model of diabetes mellitus☆

    PubMed Central

    Chen, Zhihong; He, Yaqiang; Song, Chengjun; Dong, Zhijun; Su, Zhejun; Xue, Jingfeng

    2012-01-01

    In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, but Bcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway. PMID:25767499

  1. The Role of Akt and its Substrates in Resistance of Breast Cancer to Trastuzumab

    DTIC Science & Technology

    2008-03-01

    activity was quenched with 1% hydrogen peroxide followed by secondary antibody (goat anti-rabbit) then tertiary Vector ABC (Vector Laboratories, Burlingame...animals (Figure 2B). The myr-Akt1 transgene in the bitransgenic tumors was phosphorylated at Ser473, indicating enzymatic activity , and can be...phosphorylated at Ser473, indicating enzymatic activity , and can be distinguished from endogenous Akt because the myr-Akt1 transgene has a higher molecular

  2. Targeting nasopharyngeal carcinoma by artesunate through inhibiting Akt/mTOR and inducing oxidative stress.

    PubMed

    Li, Qin; Ni, Wei; Deng, Zhifeng; Liu, Minghe; She, Lazhi; Xie, Qiong

    2017-01-11

    Drug repurposing has become an alternative therapeutic strategy for cancer treatment given the known pharmacokinetics and toxicity. The inhibitory effects of artesunate have been reported in various cancers. In this work, we investigated the effects of artesunate in nasopharyngeal carcinoma (NPC). We demonstrate that artesunate significantly inhibits proliferation via arresting NPC cells at G2/M phase. It also induces apoptosis through caspase-dependent and mitochondria-independent pathways in multiple NPC cell lines. The combination of artesunate and cisplatin is synergistic in targeting NPC cells in in vitro cellular culture system and in vivo xenograft tumor models. Artesunate inhibits phosphorylation of essential molecules involved in Akt/mTOR pathway in NPC cells, such as Akt, mTOR, and 4EBP1, and its inhibitory effects are partially abolished by overexpression of constitutively active Akt. In addition, artesunate also induces mitochondrial dysfunction and oxidative stress via inhibiting mitochondrial respiration, increasing levels of mitochondrial superoxide and cellular reactive oxygen species (ROS), leading to decreased ATP levels. Two ROS scavengers partially abolish the inhibitory effects of artesunate in NPC cells. These data suggest that both inhibition of Akt/mTOR pathway and induction of ROS are required for the action of artesunate in NPC cells. Our work demonstrates that artesunate is a potential candidate for NPC treatment. Our work also highlights the critical roles of Akt/mTOR pathway and mitochondrial function in NPC cells.

  3. Inhibition of EGFR-AKT Axis Results in the Suppression of Ovarian Tumors In Vitro and in Preclinical Mouse Model

    PubMed Central

    Gupta, Parul; Srivastava, Sanjay K.

    2012-01-01

    Ovarian cancer is the leading cause of cancer related deaths in women. Genetic alterations including overexpression of EGFR play a crucial role in ovarian carcinogenesis. Here we evaluated the effect of phenethyl isothiocyanate (PEITC) in ovarian tumor cells in vitro and in vivo. Oral administration of 12 µmol PEITC resulted in drastically suppressing ovarian tumor growth in a preclinical mouse model. Our in vitro studies demonstrated that PEITC suppress the growth of SKOV-3, OVCAR-3 and TOV-21G human ovarian cancer cells by inducing apoptosis in a concentration-dependent manner. Growth inhibitory effects of PEITC were mediated by inhibition of EGFR and AKT, which are known to be overexpressed in ovarian tumors. PEITC treatment caused significant down regulation of constitutive protein levels as well as phosphorylation of EGFR at Tyr1068 in various ovarian cancer cells. In addition, PEITC treatment drastically reduced the phosphorylation of AKT which is downstream to EGFR and disrupted mTOR signaling. PEITC treatment also inhibited the kinase activity of AKT as observed by the down regulation of p-GSK in OVCAR-3 and TOV-21G cells. AKT overexpression or TGF treatment blocked PEITC induced apoptosis in ovarian cancer cells. These results suggest that PEITC targets EGFR/AKT pathway in our model. In conclusion, our study suggests that PEITC could be used alone or in combination with other therapeutic agents to treat ovarian cancer. PMID:22952709

  4. Akt Activation Correlates with Snail Expression and Potentially Determines the Recurrence of Prostate Cancer in Patients at Stage T2 after a Radical Prostatectomy

    PubMed Central

    Chen, Wei-Yu; Hua, Kuo-Tai; Lee, Wei-Jiunn; Lin, Yung-Wei; Liu, Yen-Nien; Chen, Chi-Long; Wen, Yu-Ching; Chien, Ming-Hsien

    2016-01-01

    Our previous work demonstrated the epithelial-mesenchymal transition factor, Snail, is a potential marker for predicting the recurrence of localized prostate cancer (PCa). Akt activation is important for Snail stabilization and transcription in PCa. The purpose of this study was to retrospectively investigate the relationship between the phosphorylated level of Akt (p-Akt) in radical prostatectomy (RP) specimens and cancer biochemical recurrence (BCR). Using a tissue microarray and immunohistochemistry, the expression of p-Akt was measured in benign and neoplastic tissues from RP specimens in 53 patients whose cancer was pathologically defined as T2 without positive margins. Herein, we observed that the p-Akt level was higher in PCa than in benign tissues and was significantly associated with the Snail level. A high p-Akt image score (≥8) was significantly correlated with a higher histological Gleason sum, Snail image score, and preoperative prostate-specific antigen (PSA) value. Moreover, the high p-Akt image score and Gleason score sum (≥7) showed similar discriminatory abilities for BCR according to a receiver-operator characteristic curve analysis and were correlated with worse recurrence-free survival according to a log-rank test (p < 0.05). To further determine whether a high p-Akt image score could predict the risk of BCR, a Cox proportional hazard model showed that only a high p-Akt image score (hazard ratio (HR): 3.12, p = 0.05) and a high Gleason score sum (≥7) (HR: 1.18, p = 0.05) but not a high preoperative PSA value (HR: 0.62, p = 0.57) were significantly associated with a higher risk of developing BCR. Our data indicate that, for localized PCa patients after an RP, p-Akt can serve as a potential prognostic marker that improves predictions of BCR-free survival. PMID:27455254

  5. Role of Akt and Ca2+ on cell permeabilization via connexin43 hemichannels induced by metabolic inhibition.

    PubMed

    Salas, Daniela; Puebla, Carlos; Lampe, Paul D; Lavandero, Sergio; Sáez, Juan C

    2015-07-01

    Connexin hemichannels are regulated under physiological and pathological conditions. Metabolic inhibition, a model of ischemia, promotes surface hemichannel activation associated, in part, with increased surface hemichannel levels, but little is known about its underlying mechanism. Here, we investigated the role of Akt on the connexin43 hemichannel's response induced by metabolic inhibition. In HeLa cells stably transfected with rat connexin43 fused to EGFP (HeLa43 cells), metabolic inhibition induced a transient Akt activation necessary to increase the amount of surface connexin43. The increase in levels of surface connexin43 was also found to depend on an intracellular Ca2+ signal increase that was partially mediated by Akt activation. However, the metabolic inhibition-induced Akt activation was not significantly affected by intracellular Ca2+ chelation. The Akt-dependent increase in connexin43 hemichannel activity in HeLa43 cells also occurred after oxygen-glucose deprivation, another ischemia-like condition, and in cultured cortical astrocytes (endogenous connexin43 expression system) under metabolic inhibition. Since opening of hemichannels has been shown to accelerate cell death, inhibition of Akt-dependent phosphorylation of connexin43 hemichannels could reduce cell death induced by ischemia/reperfusion.

  6. Quercetin Attenuates Cell Survival, Inflammation, and Angiogenesis via Modulation of AKT Signaling in Murine T-Cell Lymphoma.

    PubMed

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2017-04-01

    AKT signaling is important to maintaining normal physiology. Hyperactivation of AKT signaling is frequent in cancer, which maintains a high oxidative state in a tumor microenvironment that is needed for tumor adaptation. Therefore, antioxidants are proposed to exhibit anticancer properties by interfering with the tumor microenvironment. Quercetin is an ubiquitous bioactive antioxidant rich in vegetables and beverages. The present study aimed to analyze cancer preventive property of quercetin in ascite cells of Dalton's lymphoma-bearing mice. Protein level was determined by Western blotting. Nitric oxide (NO) level was estimated spectrophotometrically using Griess reagent. Results show downregulation in phosphorylation of AKT and PDK1 by quercetin, which was consistent with decreased phosphorylation of downstream survival factors such as BAD, GSK-3β, mTOR, and IkBα. Further, quercetin attenuated the levels of angiogenic factor VEGF-A and inflammatory enzymes COX-2 and iNOS as well as NO levels, whereas it increased the levels of phosphatase PTEN. Overall results suggest that quercetin modulates AKT signaling leading to attenuation of cell survival, inflammation, and angiogenesis in lymphoma-bearing mice.

  7. Activation of phosphatidylinositol 3-kinase/Akt-mammalian target of Rapamycin signaling pathway in the hippocampus is essential for the acquisition of morphine-induced place preference in rats.

    PubMed

    Cui, Yue; Zhang, X Q; Cui, Y; Xin, W J; Jing, J; Liu, X G

    2010-11-24

    Hippocampus is a critical structure for the acquisition of morphine-induced conditioned place preference (CPP), which is a usual learning paradigm for assessing drug reward. However, the precise mechanisms remain largely unknown. Phosphatidylinositol 3-kinase (PI3K) and its downstream targets, including Akt, mammalian target of Rapamycin (mTOR) and 70-kDa ribosomal S6 kinase (p70S6K), are critical molecules implicated in learning and memory. Here, we tested the role of PI3K/Akt-mTOR-p70S6K signaling pathway in morphine-induced CPP in the hippocampus. Our results showed that the acquisition of morphine CPP increased phosphorylation of Akt in the hippocampal CA3, but not in the nucleus accumbens (NAc), the ventral tegmental area (VTA) or the CA1. Moreover, the phosphorylated Akt exclusively expressed in the CA3 neurons. Likewise, levels of phosphorylated mTOR and p70S6K were significantly enhanced in the CA3 following morphine CPP. The alterations of these phosphorylated proteins are positively correlated with the acquisition of morphine CPP. More importantly, microinjection of PI3K inhibitor (LY294002) or mTOR inhibitor (Rapamycin) into the CA3 prevented the acquisition of CPP and inhibited the activation of PI3K-Akt signaling pathway. In addition, pre-infusion of β-FNA (β-funaltrexamine hydrochloride), a selective irreversible μ opioid receptor antagonist, into CA3 significantly prevented the acquisition of CPP and impaired Akt phosphorylation. All these results strongly implied that the PI3K-Akt signaling pathway activated by μ opioid receptor in hippocampal CA3 plays an important role in acquisition of morphine-induced CPP.

  8. Activation of GRs-Akt-nNOs-NR2B signaling pathway by second dose GR agonist contributes to exacerbated hyperalgesia in a rat model of radicular pain.

    PubMed

    Zhang, Jing; Zhang, Wei; Sun, Yu'e; Liu, Yue; Song, Lihua; Ma, Zhengliang; Gu, Xiaoping

    2014-06-01

    Central Akt, neuronal nitric oxide synthase (nNOS) and N-methyl-D-aspartate receptor subunit 2B (NR2B) play key roles in the development of neuropathic pain. Here we investigate the effects of glucocorticoid receptors (GRs) on the expression and activation of spinal Akt, nNOS and NR2B after chronic compression of dorsal root ganglia (CCD). Thermal hyperalgesia test and mechanical allodynia test were used to measure rats after intrathecal injection of GR antagonist mifepristone or GR agonist dexamethasone for 21 days postoperatively. Expression of spinal Akt, nNOS, NR2B and their phosphorylation state after CCD was examined by western blot. The effects of intrathecal treatment with dexamethasone or mifepristone on nociceptive behaviors and the corresponding expression of Akt, nNOS and NR2B in spinal cord were also investigated. Intrathecal injection of mifepristone or dexamethasone inhibited PWMT and PWTL in CCD rats. However, hyperalgesia was induced by intrathecal injection of dexamethasone on days 12 to 14 after surgery. Treatment of dexamethasone increased the expression and phosphorylation levels of spinal Akt, nNOS, GR and NR2B time dependently, whereas administration of mifepristone downregulated the expression of these proteins significantly. GRs activated spinal Akt-nNOS/NR2B pathway play important roles in the development of neuropathic pain in a time-dependent manner.

  9. Identification of novel in vivo phosphorylation sites of the human proapoptotic protein BAD: pore-forming activity of BAD is regulated by phosphorylation.

    PubMed

    Polzien, Lisa; Baljuls, Angela; Rennefahrt, Ulrike E E; Fischer, Andreas; Schmitz, Werner; Zahedi, Rene P; Sickmann, Albert; Metz, Renate; Albert, Stefan; Benz, Roland; Hekman, Mirko; Rapp, Ulf R

    2009-10-09

    BAD is a proapoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Although much attention has been devoted to the identification of phosphorylation sites in murine BAD, little data are available with respect to phosphorylation of human BAD protein. Using mass spectrometry, we identified here besides the established phosphorylation sites at serines 75, 99, and 118 several novel in vivo phosphorylation sites within human BAD (serines 25, 32/34, 97, and 124). Furthermore, we investigated the quantitative contribution of BAD targeting kinases in phosphorylating serine residues 75, 99, and 118. Our results indicate that RAF kinases represent, besides protein kinase A, PAK, and Akt/protein kinase B, in vivo BAD-phosphorylating kinases. RAF-induced phosphorylation of BAD was reduced to control levels using the RAF inhibitor BAY 43-9006. This phosphorylation was not prevented by MEK inhibitors. Consistently, expression of constitutively active RAF suppressed apoptosis induced by BAD and the inhibition of colony formation caused by BAD could be prevented by RAF. In addition, using the surface plasmon resonance technique, we analyzed the direct consequences of BAD phosphorylation by RAF with respect to association with 14-3-3 and Bcl-2/Bcl-X(L) proteins. Phosphorylation of BAD by active RAF promotes 14-3-3 protein association, in which the phosphoserine 99 represented the major binding site. Finally, we show here that BAD forms channels in planar bilayer membranes in vitro. This pore-forming capacity was dependent on phosphorylation status and interaction with 14-3-3 proteins. Collectively, our findings provide new insights into the regulation of BAD function by phosphorylation.

  10. A novel 7-bromoindirubin with potent anticancer activity suppresses survival of human melanoma cells associated with inhibition of STAT3 and Akt signaling.

    PubMed

    Liu, Lucy; Kritsanida, Marina; Magiatis, Prokopios; Gaboriaud, Nicolas; Wang, Yan; Wu, Jun; Buettner, Ralf; Yang, Fan; Nam, Sangkil; Skaltsounis, Leandros; Jove, Richard

    2012-11-01

    STAT3 and Akt signaling have been validated as potential molecular targets for treatment of cancers including melanoma. These small molecule inhibitors of STAT3 or Akt signaling are promising for developing anti-melanoma therapeutic agents. MLS-2438, a novel 7-bromoindirubin, a derivative of the natural product indirubin, was synthesized with a bromo-group at the 7-position on one indole ring and a hydrophilic group at the 3'-position on the other indole ring. We tested the anticancer activity of MLS-2438 and investigated its mechanism of action in human melanoma cell lines. Here, we show that MLS-2438 inhibits viability and induces apoptosis of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Several pro-apoptotic Bcl-2 family proteins are involved in the MLS-2438 mediated apoptosis. MLS-2438 inhibits Src kinase activity in vitro and phosphorylation of JAK2, Src, STAT3 and Akt in cultured cancer cells. In contrast to the decreased phosphorylation levels of JAK2, Src, STAT3 and Akt, phosphorylation levels of the MAPK (Erk1/2) signaling protein were not reduced in cells treated with MLS-2438. These results demonstrate that MLS-2438, a novel natural product derivative, is a Src inhibitor and potentially regulates kinase activity of JAK2 and Akt in cancer cells. Importantly, MLS-2438 suppressed tumor growth with low toxicity in a mouse xenograft model of human melanoma. Our findings support further development of MLS-2438 as a potential small-molecule therapeutic agent that targets both STAT3 and Akt signaling in human melanoma cells.

  11. Targeting AKT1-E17K and the PI3K/AKT Pathway with an Allosteric AKT Inhibitor, ARQ 092

    PubMed Central

    Yu, Yi; Savage, Ronald E.; Eathiraj, Sudharshan; Meade, Justin; Wick, Michael J.; Hall, Terence; Abbadessa, Giovanni; Schwartz, Brian

    2015-01-01

    As a critical component in the PI3K/AKT/mTOR pathway, AKT has become an attractive target for therapeutic intervention. ARQ 092 and a next generation AKT inhibitor, ARQ 751 are selective, allosteric, pan-AKT and AKT1-E17K mutant inhibitors that potently inhibit phosphorylation of AKT. Biochemical and cellular analysis showed that ARQ 092 and ARQ 751 inhibited AKT activation not only by dephosphorylating the membrane-associated active form, but also by preventing the inactive form from localizing into plasma membrane. In endometrial PDX models harboring mutant AKT1-E17K and other tumor models with an activated AKT pathway, both compounds exhibited strong anti-tumor activity. Combination studies conducted in in vivo breast tumor models demonstrated that ARQ 092 enhanced tumor inhibition of a common chemotherapeutic agent (paclitaxel). In a large panel of diverse cancer cell lines, ARQ 092 and ARQ 751 inhibited proliferation across multiple tumor types but were most potent in leukemia, breast, endometrial, and colorectal cancer cell lines. Moreover, inhibition by ARQ 092 and ARQ 751 was more prevalent in cancer cell lines containing PIK3CA/PIK3R1 mutations compared to those with wt-PIK3CA/PIK3R1 or PTEN mutations. For both ARQ 092 and ARQ 751, PIK3CA/PIK3R1 and AKT1-E17K mutations can potentially be used as predictive biomarkers for patient selection in clinical studies. PMID:26469692

  12. FANCI is a negative regulator of Akt activation.

    PubMed

    Zhang, Xiaoshan; Lu, Xiaoyan; Akhter, Shamima; Georgescu, Maria-Magdalena; Legerski, Randy J

    2016-01-01

    Akt is a critical mediator of the oncogenic PI3K pathway, and its activation is regulated by kinases and phosphatases acting in opposition. We report here the existence of a novel protein complex that is composed minimally of Akt, PHLPP1, PHLPP2, FANCI, FANCD2, USP1 and UAF1. Our studies show that depletion of FANCI, but not FANCD2 or USP1, results in increased phosphorylation and activation of Akt. This activation is due to a reduction in the interaction between PHLPP1 and Akt in the absence of FANCI. In response to DNA damage or growth factor treatment, the interactions between Akt, PHLPP1 and FANCI are reduced consistent with the known phosphorylation of Akt in response to these stimuli. Furthermore, depletion of FANCI results in reduced apoptosis after DNA damage in accord with its role as a negative regular of Akt. Our findings describe an unexpected function for FANCI in the regulation of Akt and define a previously unrecognized intersection between the PI3K-Akt and FA pathways.

  13. Increased Hepatic Fatty Acids Uptake and Oxidation by LRPPRC-Driven Oxidative Phosphorylation Reduces Blood Lipid Levels

    PubMed Central

    Lei, Shi; Sun, Run-zhu; Wang, Di; Gong, Mei-zhen; Su, Xiang-ping; Yi, Fei; Peng, Zheng-wu

    2016-01-01

    Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC)-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc). Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation (OxPhos) complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using 14C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, OxPhos, and lipid metabolism. Increased OxPhos in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic OxPhos could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels. PMID:27462273

  14. Interleukin 15 activates Akt to protect astrocytes from oxygen glucose deprivation-induced cell death.

    PubMed

    Lee, Gilbert Aaron; Lai, Yein-Gei; Chen, Ray-Jade; Liao, Nan-Shih

    2017-04-01

    Astrocytes play a pivotal role in neuronal survival under the condition of post-ischemic brain inflammation, but the relevant astrocyte-derived mediators of ischemic brain injury remain to be defined. IL-15 supports survival of multiple lymphocyte lineages in the peripheral immune system, but the role of IL-15 in inflammatory disease of the central nervous system is not well defined. Recent research has shown an increase of IL-15-expressing astrocytes in the ischemic brain. Since astrocytes promote neuron survival under cerebral ischemia by buffering excess extracellular glutamate and producing growth factors, recovery of astrocyte function could be of benefit for stroke therapy. Here, we report that IL-15 is the pro-survival cytokine that prevents astrocyte death from oxygen glucose deprivation (OGD)-induced damage. Astrocytes up-regulate expression of the IL-15/IL-15Rα complex under OGD, whereas OGD down-regulates the levels of pSTAT5 and pAkt in astrocytes. IL-15 treatment ameliorates the decline of pAkt, decreases the percentage of annexin V(+) cells, inhibits the activation of caspase-3, and activates the Akt pathway to promote astrocyte survival in response to OGD. We further identified that activation of Akt, but not PKCα/βI, is essential for astrocyte survival under OGD. Taken together, this study reveals the function of IL-15 in astrocyte survival via Akt phosphorylation in response to OGD-induced damage.

  15. Mechanism of Akt1 inhibition of breast cancer cell invasionreveals a protumorigenic role for TSC2

    SciTech Connect

    Liu, Hong; Radisky, Derek C.; Nelson, Celeste M.; Zhang, Hui; Fata, Jimmie; Roth, Richard A.; Bissell, Mina J.

    2006-02-07

    Akt1 is frequently upregulated in human tumors, and has been shown to accelerate cell proliferation and to suppress programmed cell death; consequently, inhibiting the activity of Akt1 has been seen as an attractive target for therapeutic intervention. Paradoxically, hyperactivation of the Akt1 oncogene can also prevent the invasive behavior that underlies progression to metastasis. Here we show that overexpression of activated myr-Akt1 in human breast cancer cells phosphorylates and thereby targets the tumor suppressor tuberous sclerosis complex 2 (TSC2) for degradation, leading to reduced Rho-GTPase activity, decreased actin stress fibers and focal adhesions, and reduced motility and invasion. Overexpression of TSC2 rescues the migration phenotype of myr-Akt1-expressing tumor cells, and high levels of TSC2 in breast cancer patients correlate with increased metastasis and reduced survival. These data indicate that the functional properties of genes designated as oncogenes or tumor suppressor genes depends on the context of the cell type and the tissues studied, and suggest the need for caution in designing therapies targeting the function of individual genes in epithelial tissues.

  16. Akt Pathway Activation by Human T-cell Leukemia Virus Type 1 Tax Oncoprotein.

    PubMed

    Cherian, Mathew A; Baydoun, Hicham H; Al-Saleem, Jacob; Shkriabai, Nikoloz; Kvaratskhelia, Mamuka; Green, Patrick; Ratner, Lee

    2015-10-23

    Human T-cell leukemia virus (HTLV) type 1, the etiological agent of adult T-cell leukemia, expresses the viral oncoprotein Tax1. In contrast, HTLV-2, which expresses Tax2, is non-leukemogenic. One difference between these homologous proteins is the presence of a C-terminal PDZ domain-binding motif (PBM) in Tax1, previously reported to be important for non-canonical NFκB activation. In contrast, this study finds no defect in non-canonical NFκB activity by deletion of the Tax1 PBM. Instead, Tax1 PBM was found to be important for Akt activation. Tax1 attenuates the effects of negative regulators of the PI3K-Akt-mammalian target of rapamycin pathway, phosphatase and tensin homologue (PTEN), and PHLPP. Tax1 competes with PTEN for binding to DLG-1, unlike a PBM deletion mutant of Tax1. Forced membrane expression of PTEN or PHLPP overcame the effects of Tax1, as measured by levels of Akt phosphorylation, and rates of Akt dephosphorylation. The current findings suggest that Akt activation may explain the differences in transforming activity of HTLV-1 and -2.

  17. Agmatine protects against scopolamine-induced water maze performance impairment and hippocampal ERK and Akt inactivation.

    PubMed

    Moosavi, Maryam; Khales, Golnaz Yadollahi; Abbasi, Leila; Zarifkar, Asadollah; Rastegar, Karim

    2012-04-01

    Cholinergic brain activity plays a significant role in memory. Scopolamine a muscarinic cholinergic antagonist is known to induce impairment in Morris water maze performance, the task which is mainly dependent on the hippocampus. It is suggested that hippocampal ERK and Akt activation play roles in synaptic plasticity and some types of learning and memory. Agmatine, a polyamine derived from l-arginine decarboxylation, is recently shown to exert some neuroprotective effects. This study was aimed to investigate if agmatine could reverse scopolamine-induced memory impairment and possible hippocampal ERK and Akt activity alteration. Adult male Sprague-Dawley rats weighing 200-250 g were randomly assigned into 5 groups. The animals were trained for 3 days in Morris water maze and in day 4 their memory retention was assessed in probe trial which was consisted of a 60 s trial with no platform. Scopolamine (1 mg/kg/ip) or saline were injected 30 min and agmatine (20 or 40 mg/kg/ip) was administered 60 min before each session. The hippocampi were isolated after behavioral studies and western blotting studies on hippocampal lysates were done to determine the levels of activated ERK and Akt. Scopolamine treatment not only impaired water maze learning and memory, but also decreased the amount of phosphorylated (activated) ERK and Akt. Agmatine pre-treatment prevented both the learning impairment and hippocampal ERK and Akt inactivation induced by scopolamine. It seems that agmatine may act as a candidate substance against amnesia.

  18. Notch1 receptor regulates AKT protein activation loop (Thr308) dephosphorylation through modulation of the PP2A phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell acute lymphoblastic leukemia cells.

    PubMed

    Hales, Eric C; Orr, Steven M; Larson Gedman, Amanda; Taub, Jeffrey W; Matherly, Larry H

    2013-08-02

    Notch1 activating mutations occur in more than 50% of T-cell acute lymphoblastic leukemia (T-ALL) cases and increase expression of Notch1 target genes, some of which activate AKT. HES1 transcriptionally silences phosphatase and tensin homolog (PTEN), resulting in AKT activation, which is reversed by Notch1 inhibition with γ-secretase inhibitors (GSIs). Mutational loss of PTEN is frequent in T-ALL and promotes resistance to GSIs due to AKT activation. GSI treatments increased AKT-Thr(308) phosphorylation and signaling in PTEN-deficient, GSI-resistant T-ALL cell lines (Jurkat, CCRF-CEM, and MOLT3), suggesting that Notch1 represses AKT independent of its PTEN transcriptional effects. AKT-Thr(308) phosphorylation and downstream signaling were also increased by knocking down Notch1 in Jurkat (N1KD) cells. This was blocked by treatment with the AKT inhibitor perifosine. The PI3K inhibitor wortmannin and the protein phosphatase type 2A (PP2A) inhibitor okadaic acid both impacted AKT-Thr(308) phosphorylation to a greater extent in nontargeted control than N1KD cells, suggesting decreased dephosphorylation of AKT-Thr(308) by PP2A in the latter. Phosphorylations of AMP-activated protein kinaseα (AMPKα)-Thr(172) and p70S6K-Thr(389), both PP2A substrates, were also increased in both N1KD and GSI-treated cells and responded to okadaic acid treatment. A transcriptional regulatory mechanism was implied because ectopic expression of dominant-negative mastermind-like protein 1 increased and wild-type HES1 decreased phosphorylation of these PP2A targets. This was independent of changes in PP2A subunit levels or in vitro PP2A activity, but was accompanied by decreased association of PP2A with AKT in N1KD cells. These results suggest that Notch1 can regulate PP2A dephosphorylation of critical cellular regulators including AKT, AMPKα, and p70S6K.

  19. Analysis of Extracellular Superoxide Dismutase and Akt in Ascending Aortic Aneurysm With Tricuspid or Bicuspid Aortic Valve

    PubMed Central

    Arcucci, A.; Ruocco, M.R.; Albano, F.; Granato, G.; Romano, V.; Corso, G.; Bancone, C.; De Vendittis, E.; Corte, A. Della

    2014-01-01

    Ascending aortic aneurysm (AsAA) is a consequence of medial degeneration (MD), deriving from apoptotic loss of smooth muscle cells (SMC) and fragmentation of elastin and collagen fibers. Alterations of extracellular matrix structure and protein composition, typical of medial degeneration, can modulate intracellular pathways. In this study we examined the relevance of extracellular superoxide dismutase (SOD3) and Akt in AsAA pathogenesis, evaluating their tissue distribution and protein levels in ascending aortic tissues from controls (n=6), patients affected by AsAA associated to tricuspid aortic valve (TAV, n=9) or bicuspid aortic valve (BAV, n=9). The results showed a significant reduction of SOD3, phospho-Akt and Akt protein levels in AsAA tissues from patients with BAV, compared to controls, whereas the differences observed between controls and patients with TAV were not significant. The decreased levels of SOD3 and Akt in BAV aortic tissues are associated with decreased Erk1/Erk2 phosphorylation and MMP-9 levels increase. The authors suggest a role of decreased SOD3 protein levels in the progression of AsAA with BAV and a link between ECM modifications of aortic media layer and impaired Erk1/Erk2 and Akt signaling in the late stages of the aortopathy associated with BAV. PMID:25308842

  20. A Hot-spot of In-frame Duplications Activates the Oncoprotein AKT1 in Juvenile Granulosa Cell Tumors

    PubMed Central

    Bessière, Laurianne; Todeschini, Anne-Laure; Auguste, Aurélie; Sarnacki, Sabine; Flatters, Delphine; Legois, Bérangère; Sultan, Charles; Kalfa, Nicolas; Galmiche, Louise; Veitia, Reiner A.

    2015-01-01

    Background Ovarian granulosa cell tumors are the most common sex-cord stromal tumors and have juvenile (JGCTs) and adult forms. In a previous study we reported the occurrence of activating somatic mutations of Gαs, which transduces mitogenic signals, in 30% of the analyzed JGCTs. Methods We have searched for alterations in other proteins involved in ovarian mitogenic signaling. We focused on the PI3K–AKT axis. As we found mutations in AKT1, we analyzed the subcellular localization of the mutated proteins and performed functional explorations using Western-blot and luciferase assays. Findings We detected in-frame duplications affecting the pleckstrin-homology domain of AKT1 in more than 60% of the tumors occurring in girls under 15 years of age. The somatic status of the mutations was confirmed when peritumoral DNA was available. The JGCTs without duplications carried point mutations affecting highly conserved residues. Several of these substitutions were somatic lesions. The mutated proteins carrying the duplications had a non-wild-type subcellular distribution, with a marked enrichment at the plasma membrane. This led to a striking degree of AKT1 activation demonstrated by a strong phosphorylation level and by reporter assays. Interpretation Our study incriminates somatic mutations of AKT1 as a major event in the pathogenesis of JGCTs. The existence of AKT inhibitors currently tested in clinical trials opens new perspectives for targeted therapies for these tumors, which are currently treated with standard non-specific chemotherapy protocols. PMID:26137586

  1. Stat5 Promotes Survival of Mammary Epithelial Cells through Transcriptional Activation of a Distinct Promoter in Akt1▿

    PubMed Central

    Creamer, Bradley A.; Sakamoto, Kazuhito; Schmidt, Jeffrey W.; Triplett, Aleata A.; Moriggl, Richard; Wagner, Kay-Uwe

    2010-01-01

    The signal transducer and activator of transcription 5 (Stat5) plays a pivotal role in the proliferation, secretory differentiation, and survival of mammary epithelial cells. However, there is little information about Stat5 target genes that facilitate these biological processes. We provide here experimental evidence that the prolactin-mediated phosphorylation of Stat5 regulates the transcriptional activation of the Akt1 gene. Stat5 binds to consensus sequences within the Akt1 locus in a growth factor-dependent manner to initiate transcription of a unique Akt1 mRNA from a distinct promoter, which is only active in the mammary gland. Elevating the levels of active Akt1 restores the expression of cyclin D1 and proliferation of Jak2-deficient mammary epithelial cells, which provides evidence that Akt1 acts downstream of Jak/Stat signaling. The ligand-inducible expression of Stat5 in transgenic females mediates a sustained upregulation of Akt1 in mammary epithelial cells during the onset of postlactational involution. Stat5-expressing mammary glands exhibit a delay in involution despite induction of proapoptotic signaling events. Collectively, the results of the present study elucidate an underlying mechanism by which active Stat5 mediates evasion from apoptosis and self-sufficiency in growth signals. PMID:20385773

  2. High Dietary Lipid Level Is Associated with Persistent Hyperglycaemia and Downregulation of Muscle Akt-mTOR Pathway in Senegalese Sole (Solea senegalensis)

    PubMed Central

    Borges, Pedro; Valente, Luísa M. P.; Véron, Vincent; Dias, Karine; Panserat, Stéphane; Médale, Françoise

    2014-01-01

    High levels of dietary lipids are incorporated in feeds for most teleost fish to promote growth and reduce nitrogen waste. However, in Senegalese sole (Solea senegalensis) previous studies revealed that increasing the level of dietary lipids above 8% negatively affect growth and nutrient utilization regardless of dietary protein content. It has been shown that glucose regulation and metabolism can be impaired by high dietary fat intake in mammals, but information in teleost fish is scarce. The aim of this study was to assess the possible effect of dietary lipids on glucose metabolism in Senegalese sole with special emphasis on the regulation of proteins involved in the muscle insulin-signalling pathway. Senegalese sole juveniles (29 g) were fed two isonitrogenous diets (53% dry matter) for 88 days. These two diets were one with a high lipid level (∼17%, HL) and a moderate starch content (∼14%, LC), and the other being devoid of fish oil (4% lipid, LL) and with high starch content (∼23%, HC). Surprisingly, feeding Senegalese sole the HL/LC diet resulted in prolonged hyperglycaemia, while fish fed on LL/HC diet restored basal glycaemia 2 h after feeding. The hyperglycaemic phenotype was associated with greater glucose-6-phosphatase activity (a key enzyme of hepatic glucose production) and lower citrate synthase activity in the liver, with significantly higher liver glycogen content. Sole fed on HL/LC diet also had significantly lower hexokinase activity in muscle, although hexokinase activity was low with both dietary treatments. The HL/LC diet was associated with significant reductions in muscle AKT, p70 ribosomal S6-K1 Kinase (S6K-1) and ribosomal protein S6 (S6) 2 h after feeding, suggesting down regulation of the AKT-mTOR nutrient signalling pathway in these fish. The results of this study show for the first time that high level of dietary lipids strongly affects glucose metabolism in Senegalese sole. PMID:25036091

  3. PI 3-kinase-dependent phosphorylation of Plk1–Ser99 promotes association with 14-3-3γ and is required for metaphase–anaphase transition

    PubMed Central

    Kasahara, Kousuke; Goto, Hidemasa; Izawa, Ichiro; Kiyono, Tohru; Watanabe, Nobumoto; Elowe, Sabine; Nigg, Erich A; Inagaki, Masaki

    2013-01-01

    Polo-like kinase 1 (Plk1) controls multiple aspects of mitosis and is activated through its phosphorylation at Thr210. Here we identify Ser99 on Plk1 as a novel mitosis-specific phosphorylation site, which operates independently of Plk1–Thr210 phosphorylation. Plk1–Ser99 phosphorylation creates a docking site for 14-3-3γ, and this interaction stimulates the catalytic activity of Plk1. Knockdown of 14-3-3γ or replacement of wild-type (WT) Plk1 by a Ser99-phospho-blocking mutant leads to a prometaphase/metaphase-like arrest due to the activation of the spindle assembly checkpoint. Inhibition of phosphatidylinositol 3-kinase (PI3K) and Akt significantly reduces the level of Plk1–Ser99 phosphorylation and delays metaphase to anaphase transition. Plk1–Ser99 phosphorylation requires not only Akt activity but also protein(s) associated with Plk1 in a mitosis-specific manner. Therefore, mitotic Plk1 activity is regulated not only by Plk1–Thr210 phosphorylation, but also by Plk1 binding to 14-3-3γ following Plk1–Ser99 phosphorylation downstream of the PI3K–Akt signalling pathway. This novel Plk1 activation pathway controls proper progression from metaphase to anaphase. PMID:23695676

  4. Akt recruits Dab2 to albumin endocytosis in the proximal tubule.

    PubMed

    Koral, Kelly; Li, Hui; Ganesh, Nandita; Birnbaum, Morris J; Hallows, Kenneth R; Erkan, Elif

    2014-12-15

    Proximal tubule epithelial cells have a highly sophisticated endocytic machinery to retrieve the albumin in the glomerular filtrate. The megalin-cubilin complex and the endocytic adaptor disabled-2 (Dab2) play a pivotal role in albumin endocytosis. We previously demonstrated that protein kinase B (Akt) regulates albumin endocytosis in the proximal tubule through an interaction with Dab2. Here, we examined the nature of Akt-Dab2 interaction. The pleckstrin homology (PH) and catalytic domains (CD) of Akt interacted with the proline-rich domain (PRD) of Dab2 based on yeast-two hybrid (Y2H) experiments. Pull-down experiments utilizing the truncated constructs of Dab2 demonstrated that the initial 11 amino acids of Dab2-PRD were sufficient to mediate the interaction between Akt and Dab2. Endocytosis experiments utilizing Akt1- and Akt2-silencing RNA revealed that both Akt1 and Akt2 mediate albumin endocytosis in proximal tubule epithelial cells; therefore, Akt1 and Akt2 may play a compensatory role in albumin endocytosis. Furthermore, both Akt isoforms phosphorylated Dab2 at Ser residues 448 and 449. Ser-to-Ala mutations of these Dab2 residues inhibited albumin endocytosis and resulted in a shift in location of Dab2 from the peripheral to the perinuclear area, suggesting the physiological relevance of these phosphorylation sites in albumin endocytosis. We conclude that both Akt1 and Akt2 are involved in albumin endocytosis, and phosphorylation of Dab2 by Akt induces albumin endocytosis in proximal tubule epithelial cells. Further delineation of how Akt affects expression/phosphorylation of endocytic adaptors and receptors will enhance our understanding of the molecular network triggered by albumin overload in the proximal tubule.

  5. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain

    PubMed Central

    Lima, V.V.; Lobato, N.S.; Filgueira, F.P.; Webb, R.C.; Tostes, R.C.; Giachini, F.R.

    2014-01-01

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca2+/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction. PMID:25140811

  6. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain.

    PubMed

    Lima, V V; Lobato, N S; Filgueira, F P; Webb, R C; Tostes, R C; Giachini, F R

    2014-10-01

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2 ± 2 vs 7.9 ± 1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4 ± 2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3 ± 2 vs 7.5 ± 2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1 ± 2 vs 7.4 ± 2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca(2+)/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.

  7. Dissecting the EGFR-PI3K-AKT pathway in oral cancer highlights the role of the EGFR variant III and its clinical relevance

    PubMed Central

    2013-01-01

    Background Dysregulated epidermal growth factor receptor (EGFR)-phosphoinositide-3-kinase (PI3K)-AKT signaling is considered pivotal for oral cancer, and the pathway is a potential candidate for therapeutic targeting. Results A total of 108 archival samples which were from surgically resected oral cancer were examined. Immunohistochemical staining showed the protein expression of membranous wild-type EGFR and cytoplasmic phosphorylated AKT was detected in 63.9% and 86.9% of the specimens, respectively. In 49.1% of the samples, no phosphatase and tensin homolog (PTEN) expression was detected. With regard to the EGFR variant III (EGFRvIII), 75.0% of the samples showed positive expression for moderate to severe staining, 31.5% of which had high expression levels. Real-time polymerase chain reaction assays for gene copy number assessment of PIK3CA revealed that 24.8% of the samples had alterations, and of EGFR showed that 49.0% had amplification. Direct sequencing of PIK3CA gene showed 2.3% of the samples had a hotspot point mutation. Statistical assessment showed the expression of the EGFRvIII correlated with the T classification and TNM stage. The Kaplan-Meier analyses for patient survival showed that the individual status of phosphorylated AKT and EGFRvIII led to significant differences in survival outcome. The multivariate analysis indicated that phosphorylated AKT, EGFRvIII expression and disease stage were patient survival determinants. Conclusions Aberrations in the EGFR-PI3K-AKT pathway were frequently found in oral cancers. EGFRvIII and phosphorylated AKT were predictors for the patient survival and clinical outcome. PMID:23806066

  8. ROS mediates interferon gamma induced phosphorylation of Src, through the Raf/ERK pathway, in MCF-7 human breast cancer cell line.

    PubMed

    Zibara, Kazem; Zeidan, Asad; Bjeije, Hassan; Kassem, Nouhad; Badran, Bassam; El-Zein, Nabil

    2017-03-01

    Interferon gamma (IFN-ɣ) is a pleiotropic cytokine which plays dual contrasting roles in cancer. Although IFN-ɣ has been clinically used to treat various malignancies, it was recently shown to have protumorigenic activities. Reactive oxygen species (ROS) are overproduced in cancer cells, mainly due to NADPH oxidase activity, which results into several changes in signaling pathways. In this study, we examined IFN-ɣ effect on the phosphorylation levels of key signaling proteins, through ROS production, in the human breast cancer cell line MCF-7. After treatment by IFN-ɣ, results showed a significant increase in the phosphorylation of STAT1, Src, raf, AKT, ERK1/2 and p38 signaling molecules, in a time specific manner. Src and Raf were found to be involved in early stages of IFN-ɣ signaling since their phosphorylation increased very rapidly. Selective inhibition of Src-family kinases resulted in an immediate significant decrease in the phosphorylation status of Raf and ERK1/2, but not p38 and AKT. On the other hand, IFN-ɣ resulted in ROS generation, through H2O2 production, whereas pre-treatment with the ROS inhibitor NAC caused ROS inhibition and a significant decrease in the phosphorylation levels of AKT, ERK1/2, p38 and STAT1. Moreover, pretreatment with a selective NOX1 inhibitor resulted in a significant decrease of AKT phosphorylation. Finally, no direct relationship was found between ROS production and calcium mobilization. In summary, IFN-ɣ signaling in MCF-7 cell line is ROS-dependent and follows the Src/Raf/ERK pathway whereas its signaling through the AKT pathway is highly dependent on NOX1.

  9. Thr308 determines Akt1 nuclear localization in insulin-stimulated keratinocytes

    SciTech Connect

    Goren, Itamar; Mueller, Elke; Pfeilschifter, Josef

    2008-07-18

    Here, we determined the localization and activation of protein kinase B (Akt) in acute cutaneous wound tissue in mice. Akt1 represented the major Akt isoform that was expressed and activated in wound margin keratinocytes and also in the cultured human keratinocyte line HaCaT. Mutation of Akt1 protein, exchanging the activation-essential Ser473 and Thr308 residues for inactive Ala or phosphorylation-mimicking Asp and Glu residues, revealed that phosphorylation of Ser473 represented an essential prerequisite for auto-phosphorylation of Thr308 within the Akt1 protein in keratinocytes. Moreover, cell culture experiments and transfection studies using Thr308 mutated Akt1 proteins demonstrated that phosphorylation of Akt1 at Thr308 appeared to selectively exclude the active kinase from the nucleus and direct the kinase to the cytoplasmic compartment in keratinocytes upon insulin stimulation. In summary, our data show that phosphorylation of Thr308 during insulin-mediated Akt1 activation is an essential prerequisite to exclude Akt1 from the nuclear compartment.

  10. Indoor air pollution from biomass burning activates Akt in airway cells and peripheral blood lymphocytes: a study among premenopausal women in rural India.

    PubMed

    Mondal, Nandan K; Roy, Amrita; Mukherjee, Bidisha; Das, Debangshu; Ray, Manas R

    2010-12-01

    Biomass burning is a major source of indoor air pollution in rural India. The authors investigated in this study whether cumulative exposures to biomass smoke cause activation of the serine/threonine kinase Akt in airway cells and peripheral blood lymphocytes (PBL). For this, the authors enrolled 87 premenopausal (median age 34 years), nonsmoking women who used to cook with biomass (wood, dung, crop wastes) and 85 age-matched control women who cooked with cleaner fuel liquefied petroleum gas. Immunocytochemical and immunoblotting assays revealed significantly higher levels of phosphorylated forms of Akt protein (p-Akt(ser473) and p-Akt(thr308)) in PBL, airway epithelial cells, alveolar macrophages, and neutrophils in sputum of biomass-using women than control. Akt activation in biomass users was associated with marked rise in generation of reactive oxygen species and concomitant depletion of superoxide dismutase. Measurement of particulate matter having a diameter of less than 10 and 2.5 µm in indoor air by real-time aerosol monitor showed 2 to 4 times more particulate pollution in biomass-using households, and Akt activation was positively associated with particulate pollution after controlling potential confounders. The findings suggest that chronic exposure to biomass smoke activates Akt, possibly via generation of oxidative stress.

  11. Juglanthraquinone C Induces Intracellular ROS Increase and Apoptosis by Activating the Akt/Foxo Signal Pathway in HCC Cells.

    PubMed

    Hou, Ya-Qin; Yao, Yao; Bao, Yong-Li; Song, Zhen-Bo; Yang, Cheng; Gao, Xiu-Li; Zhang, Wen-Jing; Sun, Lu-Guo; Yu, Chun-Lei; Huang, Yan-Xin; Wang, Guan-Nan; Li, Yu-Xin

    2016-01-01

    Juglanthraquinone C (JC), a naturally occurring anthraquinone extracted from Juglans mandshurica, could induce apoptosis of cancer cells. This study aims to investigate the detailed cytotoxicity mechanism of JC in HepG2 and BEL-7402 cells. The Affymetrix HG-U133 Plus 2.0 arrays were first used to analyze the mRNA expression exposed to JC or DMSO in HepG2 cells. Consistent with the previous results, the data indicated that JC could induce apoptosis and hyperactivated Akt. The Western blot analysis further revealed that Akt, a well-known survival protein, was strongly activated in HepG2 and BEL-7402 cells. Furthermore, an obvious inhibitory effect on JC-induced apoptosis was observed when the Akt levels were decreased, while the overexpression of constitutively active mutant Akt greatly accelerated JC-induced apoptosis. The subsequent results suggested that JC treatment suppressed nuclear localization and increased phosphorylated levels of Foxo3a, and the overexpression of Foxo3a abrogated JC-induced apoptosis. Most importantly, the inactivation of Foxo3a induced by JC further led to an increase of intracellular ROS levels by suppressing ROS scavenging enzymes, and the antioxidant N-acetyl-L-cysteine and catalase successfully decreased JC-induced apoptosis. Collectively, this study demonstrated that JC induced the apoptosis of hepatocellular carcinoma (HCC) cells by activating Akt/Foxo signaling pathway and increasing intracellular ROS levels.

  12. Mitochondrial Akt Regulation of Hypoxic Tumor Reprogramming.

    PubMed

    Chae, Young Chan; Vaira, Valentina; Caino, M Cecilia; Tang, Hsin-Yao; Seo, Jae Ho; Kossenkov, Andrew V; Ottobrini, Luisa; Martelli, Cristina; Lucignani, Giovanni; Bertolini, Irene; Locatelli, Marco; Bryant, Kelly G; Ghosh, Jagadish C; Lisanti, Sofia; Ku, Bonsu; Bosari, Silvano; Languino, Lucia R; Speicher, David W; Altieri, Dario C

    2016-08-08

    Hypoxia is a universal driver of aggressive tumor behavior, but the underlying mechanisms are not completely understood. Using a phosphoproteomics screen, we now show that active Akt accumulates in the mitochondria during hypoxia and phosphorylates pyruvate dehydrogenase kinase 1 (PDK1) on Thr346 to inactivate the pyruvate dehydrogenase complex. In turn, this pathway switches tumor metabolism toward glycolysis, antagonizes apoptosis and autophagy, dampens oxidative stress, and maintains tumor cell proliferation in the face of severe hypoxia. Mitochondrial Akt-PDK1 signaling correlates with unfavorable prognostic markers and shorter survival in glioma patients and may provide an "actionable" therapeutic target in cancer.

  13. Essential role of AKT in tumor cells addicted to FGFR.

    PubMed

    Hu, Yi; Lu, Huiru; Zhang, Jinchao; Chen, Jun; Chai, Zhifang; Zhang, Jingxin

    2014-02-01

    Tumor cells with genetic amplifications or mutations in the fibroblast growth factor receptor (FGFR) family are often addicted to FGFR and heavily dependent on its signaling to survive. Although it is critical to understand which signaling pathway downstream of FGFR plays an essential role to guide the research and development of FGFR inhibitors, it has remained unclear partly because the tool compounds used in the literature also hit many other kinases, making the results difficult to interpret. With the development of a potent FGFR-specific inhibitor, BGJ398, we are now able to dissect various pathways with low drug concentrations to minimize multiple-target effects. Importantly, here, we show that inhibition of FGFR signaling by BGJ398 leads to only transient inhibition of ERK1/2 phosphorylation, whereas the inhibitory effect on AKT phosphorylation is sustainable, indicating that AKT, not ERK as commonly believed, serves as an appropriate pharmacodynamic biomarker for BGJ398. Although AKT inhibition by a pan-PI3K inhibitor alone has almost no effect on cell growth, heterologous expression of myr-AKT, an active form of AKT, rescues BGJ398-mediated suppression of tumor cell proliferation. These results indicate that AKT is an essential component downstream of FGFR. Finally, combination of the FGFR inhibitor BGJ398 with rapamycin significantly inhibits AKT phosphorylation and enhances their antiproliferative effects in FGFR-addicted cells, suggesting an effective combination strategy for clinical development of FGFR inhibitors.

  14. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    SciTech Connect

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  15. AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins

    PubMed Central

    Riggio, Marina; Perrone, María C.; Polo, María L.; Rodriguez, María J.; May, María; Abba, Martín; Lanari, Claudia; Novaro, Virginia

    2017-01-01

    The purpose of this study was to elucidate the mechanisms associated with the specific effects of AKT1 and AKT2 isoforms in breast cancer progression. We modulated the abundance of specific AKT isoforms in IBH-6 and T47D human breast cancer cell lines and showed that AKT1 promoted cell proliferation, through S6 and cyclin D1 upregulation, but it inhibited cell migration and invasion through β1-integrin and focal adhesion kinase (FAK) downregulation. In contrast, AKT2 promoted cell migration and invasion through F-actin and vimentin induction. Thus, while overexpression of AKT1 promoted local tumor growth, downregulation of AKT1 or overexpression of AKT2 promoted peritumoral invasion and lung metastasis. Furthermore, we evaluated The Cancer Genome Atlas (TCGA) dataset for invasive breast carcinomas and found that increased AKT2 but not AKT1 mRNA levels correlated with a worse clinical outcome. We conclude that AKT isoforms play specific roles in different steps of breast cancer progression, with AKT1 involved in the local tumor growth and AKT2 involved in the distant tumor dissemination, having AKT2 a poorer prognostic value and consequently being a worthwhile target for therapy. PMID:28287129

  16. Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells

    SciTech Connect

    Mistafa, Oras; Hoegberg, Johan; Stenius, Ulla

    2008-01-04

    Many studies have documented P2X7 receptor functions in cells of mesenchymal origin. P2X7 is also expressed in epithelial cells and its role in these cells remains largely unknown. Our data indicate that P2X7 regulate nuclear pAkt in epithelial cells. We show that low concentration of atorvastatin, a drug inhibiting HMG-CoA reductase and cholesterol metabolism, or the natural agonist extracellular ATP rapidly decreased the level of insulin-induced phosphorylated Akt in the nucleus. This effect was seen within minutes and was inhibited by P2X7 inhibitors. Experiments employing P2X7 siRNA and HEK293 cells heterologously expressing P2X7 and in vivo experiments further supported an involvement of P2X7. These data indicate that extracellular ATP and statins via the P2X7 receptor modulate insulin-induced Akt signaling in epithelial cells.

  17. PDGF inactivates forkhead family transcription factor by activation of Akt in glomerular mesangial cells.

    PubMed

    Ghosh Choudhury, Goutam; Lenin, Mahimainathan; Calhaun, Cheresa; Zhang, Jian-Hua; Abboud, Hanna E

    2003-02-01

    Regulation of the forkhead domain transcription factors by PDGF has not been studied. In this report, we investigated the role of PDGF-induced Akt in regulating forkhead domain protein FKHRL1 in glomerular mesangial cells. PDGF increased phosphorylation of FKHRL1 in a time- and PI 3 kinase-dependent manner. Expression of dominant negative Akt by adenovirus-mediated gene transfer blocked PDGF-induced FKHRL1 phosphorylation. PDGF inhibited transcription of a forkhead DNA binding element-driven reporter gene. This inhibition was mimicked by constitutively active myristoylated Akt. Moreover, FKHR1-mediated transcription of the reporter gene was completely attenuated by both PDGF and Myr-Akt. One of the targets of forkhead transcription factors is the proapoptotic Fas ligand (FasL) gene. PDGF, as well as Myr-Akt, inhibited transcription of FasL. In contrast, inhibition of PI 3 kinase and dominant negative Akt increased FasL gene transcription, suggesting that suppression of PI 3 kinase/Akt signalling may induce apoptosis in mesangial cells via upregulation of FasL expression. However, expression of dominant negative Akt by adenovirus did not induce apoptosis in mesangial cells, suggesting that Akt-independent antiapoptotic mechanisms also exist. Together, our data demonstrate for the first time that PDGF inactivates forkhead domain transcription factor by Akt-dependent phosphorylation and that suppression of Akt signalling is not sufficient to induce apoptosis in mesangial cells.

  18. Crop milk protein is synthesised following activation of the IRS1/Akt/TOR signalling pathway in the domestic pigeon (Columba livia).

    PubMed

    Hu, X-C; Gao, C-Q; Wang, X-H; Yan, H-C; Chen, Z-S; Wang, X-Q

    2016-12-01

    The experiment was conducted to study whether insulin receptor substance 1 (IRS1) / Protein kinase B (Akt)/target of the rapamycin (TOR) signalling pathway activation stimulates crop milk protein synthesis in the domestic pigeon (Columba livia). Crop milk was collected from ten 1-d-old squabs and analysed for nutrient content. During the non-breeding period and the first day of lactation, blood samples were collected from 5 pairs of breeding pigeons and the levels of prolactin and insulin were determined. Crop samples were collected from 5 pairs of breeders at d 14 and 16 of the incubation period and d 1, 3 and 7 of the lactation period. Crop samples were evaluated for changes in crop weight and thickness and changes in the expression patterns of IRS1/Akt/TOR signalling pathway-related proteins. The results demonstrated that prolactin induces a gradual increase in the relative weight and thickness of the crop, with crops reaching a maximum size at the third day of lactation. Pigeon crop milk contains 64.1% crude protein and 29.7% crude fat based on dry weight. Serum prolactin and insulin levels in the lactation period were significantly higher than those in the non-breeding period. Compared with non-breeding pigeons, the expression of the phosphorylated IRS1 phosphorylated Akt, phosphorylated TOR, phosphorylated ribosomal protein S6 kinase, phosphorylated S6, phosphorylated eukaryotic initiation factor 4E binding protein 1 and eukaryotic initiation factor 4E were significantly up-regulated in the crop of pigeons in the lactation period. In conclusion, prolactin might induce changes in crop tissue and form the physiological structure for crop milk synthesis. Furthermore, the synthesis of crop milk protein is regulated by activation of the IRS1/Akt/TOR signalling pathway.

  19. Inhibition of PI3K/Akt pathway impairs G2/M transition of cell cycle in late developing progenitors of the avian embryo retina.

    PubMed

    Ornelas, Isis Moraes; Silva, Thayane Martins; Fragel-Madeira, Lucianne; Ventura, Ana Lucia Marques

    2013-01-01

    PI3K/Akt is an important pathway implicated in the proliferation and survival of cells in the CNS. Here we investigated the participation of the PI3K/Akt signal pathway in cell cycle of developing retinal progenitors. Immunofluorescence assays performed in cultures of chick embryo retinal cells and intact tissues revealed the presence of phosphorylated Akt and 4E-BP1 in cells with typical mitotic profiles. Blockade of PI3K activity with the chemical inhibitor LY 294002 (LY) in retinal explants blocked the progression of proliferating cells through G2/M transition, indicated by an expressive increase in the number of cells labeled for phosphorylated histone H3 in the ventricular margin of the retina. No significant level of cell death could be detected at this region. Retinal explants treated with LY for 24 h also showed a significant decrease in the expression of phospho-Akt, phospho-GSK-3 and the hyperphosphorylated form of 4E-BP1. Although no change in the expression of cyclin B1 was detected, a significant decrease in CDK1 expression was noticed after 24 h of LY treatment both in retinal explants and monolayer cultures. Our results suggest that PI3K/Akt is an active pathway during proliferation of retinal progenitors and its activity appears to be required for proper CDK1 expression levels and mitosis progression of these cells.

  20. AKT and oxidative stress team up to kill cancer cells.

    PubMed

    Dolado, Ignacio; Nebreda, Angel R

    2008-12-09

    AKT, a protein kinase frequently hyperactivated in cancer, plays an important role in cell survival and contributes to tumor cell resistance to cytotoxic therapies. A new study in this issue of Cancer Cell shows that AKT also induces the accumulation of oxygen radicals, which can be exploited to selectively kill cancer cells containing high levels of AKT activity.

  1. High-level amikacin resistance in Escherichia coli due to phosphorylation and impaired aminoglycoside uptake.

    PubMed Central

    Perlin, M H; Lerner, S A

    1986-01-01

    Plasmid pMP1-1 in Escherichia coli L-0 encodes aminoglycoside (AG) 3'-phosphotransferase II [APH(3')-II]. This enzyme modifies and confers high-level resistance to kanamycin. Although amikacin is a substrate for APH(3')-II, strain L-0(pMP1-1) is susceptible to amikacin. Plasmid pMP1-2 is a spontaneous mutant of pMP1-1 which determines increased APH(3')-II activity for amikacin, apparently as a result of an increase in the copy number of the plasmid. From amikacin-susceptible, gentamicin-susceptible transformants and transconjugants that bear the APH(3')-II gene on plasmid pMP1-1 or pMP1-2 or cloned into multicopy plasmid pBR322, we selected spontaneous mutants at concentrations of amikacin or gentamicin that were two to four times higher than the MICs of these antibiotics. In each case, whether they were selected by using amikacin or gentamicin, the mutants exhibited modest (two- to eightfold) increases in the MIC of gentamicin and major (64- to 128-fold) increases in the MIC of amikacin. Using these laboratory strains of E. coli, we examined the effects on AG susceptibility of the interaction of AG-modifying enzyme activity and generalized AG uptake. Increasing the level of activity of an AG phosphotransferase in these strains lowered their susceptibility to AGs which were substrates for which the enzyme had low Kms. However, an increase in AG-modifying activity alone did not result in large increases in the MICs for poor substrates of the enzyme. In strains which lacked AG-modifying enzymes, a decrease in the rate of AG uptake increased the MICs modestly for a broad spectrum of AGs. When a strain bore the phosphotransferase, a decrease in generalized AG uptake could raise the MIC further, not only for low-Km substrates, but even for AG substrates for which the enzyme had high Kms. Thus, increased modifying activity, together with a diminished rate of uptake, could produce even higher MICs for poor AG substrates. PMID:2424366

  2. Bilirubin exerts pro-angiogenic property through Akt-eNOS-dependent pathway.

    PubMed

    Ikeda, Yasumasa; Hamano, Hirofumi; Satoh, Akiho; Horinouchi, Yuya; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Ishizawa, Keisuke; Aihara, Ken-Ichi; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2015-11-01

    Low serum bilirubin levels are associated with the risk of cardiovascular diseases including peripheral artery disease. Bilirubin is known to exert its property such as antioxidant effect or the enhancement of flow-mediated vasodilation, however, bilirubin action on angiogenesis remains unclear. To investigate the molecular mechanism of bilirubin on angiogenic effect, we first employed C57BL/6J mice with unilateral hindlimb ischemia surgery and divided the mice into two groups (vehicle-treated group and bilirubin-treated group). The analysis of laser speckle blood flow demonstrated the enhancement of blood flow recovery in response to ischemia of mice with bilirubin treatment. The density of capillaries was significantly higher in ischemic-adductor muscles of bilirubin-treated mice. The phosphorylated levels of endothelial nitric oxide synthase (eNOS) and Akt were increased in ischemic skeletal muscles of mice with bilirubin treatment compared with vehicle treatment. In in vitro experiments by using human aortic endothelial cells, bilirubin augmented eNOS and Akt phosphorylation, cell proliferation, cell migration and tube formation. These bilirubin actions on endothelial cell activation were inhibited by LY294002, a phosphatidylinositol 3-kinase inhibitor. In conclusion, bilirubin promotes angiogenesis through endothelial cells activation via Akt-eNOS-dependent manner.

  3. Galactose-1 phosphate uridylyltransferase (GalT) gene: a novel positive regulator of the PI3K/Akt signaling pathway in mouse fibroblasts

    PubMed Central

    Balakrishnan, Bijina; Chen, Wyman; Tang, Manshu; Huang, Xiaoping; Cakici, Didem Demirbas; Siddiqi, Anwer; Berry, Gerard; Lai, Kent

    2016-01-01

    The vital importance of the Leloir pathway of galactose metabolism has been repeatedly demonstrated by various uni-/multicellular model organisms, as well human patients who have inherited deficiencies of the key GAL enzymes. Yet, other than the obvious links to the glycolytic pathway and glycan biosynthetic pathways, little is known about how this metabolic pathway interacts with the rest of the metabolic and signaling networks. In this study, we compared the growth and the expression levels of the key components of the PI3K/Akt growth signaling pathway in primary fibroblasts derived from normal and galactose-1 phosphate uridylyltransferase (GalT)-deficient mice, the latter exhibited a subfertility phenotype in adult females and growth restriction in both sexes. The growth potential and the protein levels of the pAkt(Thr308), pAkt(Ser473), pan-Akt, pPdk1, and Hsp90 proteins were significantly reduced by 62.5%, 60.3%, 66%, 66%, and 50%, respectively in the GalT-deficient cells. Reduced expression of phosphorylated Akt proteins in the mutant cells led to diminished phosphorylation of Gsk-3β (−74%). Protein expression of BiP and pPten were 276% and 176% higher respectively in cells with GalT-deficiency. Of the 24 genes interrogated using QIAGEN RT2 Profiler PCR Custom Arrays, the mRNA abundance of Akt1, Pdpk1, Hsp90aa1 and Pi3kca genes were significantly reduced at least 2.03-, 1.37-, 2.45-, and 1.78-fold respectively in mutant fibroblasts. Both serum-fasted normal and GalT-deficient cells responded to Igf-1-induced activation of Akt phosphorylation at +15 minutes, but the mutant cells have lower phosphorylation levels. The steady-state protein abundance of Igf-1 receptor was also significantly reduced in mutant cells. Our results thus demonstrated that GalT deficiency can effect down-regulation of the PI3K/Akt growth signaling pathway in mouse fibroblasts through distinct mechanisms targeting both gene and protein expression levels. PMID:26773505

  4. Galactose-1 phosphate uridylyltransferase (GalT) gene: A novel positive regulator of the PI3K/Akt signaling pathway in mouse fibroblasts.

    PubMed

    Balakrishnan, Bijina; Chen, Wyman; Tang, Manshu; Huang, Xiaoping; Cakici, Didem Demirbas; Siddiqi, Anwer; Berry, Gerard; Lai, Kent

    2016-01-29

    The vital importance of the Leloir pathway of galactose metabolism has been repeatedly demonstrated by various uni-/multicellular model organisms, as well human patients who have inherited deficiencies of the key GAL enzymes. Yet, other than the obvious links to the glycolytic pathway and glycan biosynthetic pathways, little is known about how this metabolic pathway interacts with the rest of the metabolic and signaling networks. In this study, we compared the growth and the expression levels of the key components of the PI3K/Akt growth signaling pathway in primary fibroblasts derived from normal and galactose-1 phosphate uridylyltransferase (GalT)-deficient mice, the latter exhibited a subfertility phenotype in adult females and growth restriction in both sexes. The growth potential and the protein levels of the pAkt(Thr308), pAkt(Ser473), pan-Akt, pPdk1, and Hsp90 proteins were significantly reduced by 62.5%, 60.3%, 66%, 66%, and 50%, respectively in the GalT-deficient cells. Reduced expression of phosphorylated Akt proteins in the mutant cells led to diminished phosphorylation of Gsk-3β (-74%). Protein expression of BiP and pPten were 276% and 176% higher respectively in cells with GalT-deficiency. Of the 24 genes interrogated using QIAGEN RT(2) Profiler PCR Custom Arrays, the mRNA abundance of Akt1, Pdpk1, Hsp90aa1 and Pi3kca genes were significantly reduced at least 2.03-, 1.37-, 2.45-, and 1.78-fold respectively in mutant fibroblasts. Both serum-fasted normal and GalT-deficient cells responded to Igf-1-induced activation of Akt phosphorylation at +15 min, but the mutant cells have lower phosphorylation levels. The steady-state protein abundance of Igf-1 receptor was also significantly reduced in mutant cells. Our results thus demonstrated that GalT deficiency can effect down-regulation of the PI3K/Akt growth signaling pathway in mouse fibroblasts through distinct mechanisms targeting both gene and protein expression levels.

  5. Evaluation of intramitochondrial ATP levels identifies G0/G1 switch gene 2 as a positive regulator of oxidative phosphorylation

    PubMed Central

    Kioka, Hidetaka; Kato, Hisakazu; Fujikawa, Makoto; Tsukamoto, Osamu; Suzuki, Toshiharu; Imamura, Hiromi; Nakano, Atsushi; Higo, Shuichiro; Yamazaki, Satoru; Matsuzaki, Takashi; Takafuji, Kazuaki; Asanuma, Hiroshi; Asakura, Masanori; Minamino, Tetsuo; Shintani, Yasunori; Yoshida, Masasuke; Noji, Hiroyuki; Kitakaze, Masafumi; Komuro, Issei; Asano, Yoshihiro; Takashima, Seiji

    2014-01-01

    The oxidative phosphorylation (OXPHOS) system generates most of the ATP in respiring cells. ATP-depleting conditions, such as hypoxia, trigger responses that promote ATP production. However, how OXPHOS is regulated during hypoxia has yet to be elucidated. In this study, selective measurement of intramitochondrial ATP levels identified the hypoxia-inducible protein G0/G1 switch gene 2 (G0s2) as a positive regulator of OXPHOS. A mitochondria-targeted, FRET-based ATP biosensor enabled us to assess OXPHOS activity in living cells. Mitochondria-targeted, FRET-based ATP biosensor and ATP production assay in a semiintact cell system revealed that G0s2 increases mitochondrial ATP production. The expression of G0s2 was rapidly and transiently induced by hypoxic stimuli, and G0s2 interacts with OXPHOS complex V (FoF1-ATP synthase). Furthermore, physiological enhancement of G0s2 expression prevented cells from ATP depletion and induced a cellular tolerance for hypoxic stress. These results show that G0s2 positively regulates OXPHOS activity by interacting with FoF1-ATP synthase, which causes an increase in ATP production in response to hypoxic stress and protects cells from a critical energy crisis. These findings contribute to the understanding of a unique stress response to energy depletion. Additionally, this study shows the importance of assessing intramitochondrial ATP levels to evaluate OXPHOS activity in living cells. PMID:24344269

  6. JNK/PI3K/Akt signaling pathway is involved in myocardial ischemia/reperfusion injury in diabetic rats: effects of salvianolic acid A intervention.

    PubMed

    Chen, Qiuping; Xu, Tongda; Li, Dongye; Pan, Defeng; Wu, Pei; Luo, Yuanyuan; Ma, Yanfeng; Liu, Yang

    2016-01-01

    Recent studies have demonstrated that diabetes impairs the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway, while insulin resistance syndrome has been associated with alterations of this pathway in diabetic rats after ischemia/reperfusion (I/R), and activation of C-jun N-terminal kinase (JNK) is involved. The present study was designed to investigate whether inhibiting JNK activity would partially restore the PI3K/Akt signaling pathway and protect against myocardial I/R injury in diabetic rats, and to explore the effect of intervention with salvianolic acid A (Sal A). The inhibitor of JNK (SP600125) and Sal A were used in type 2 diabetic (T2D) rats, outcome measures included heart hemodynamic data, myocardial infarct size, the release of lactate dehydrogenase (LDH), SERCA2a activity, cardiomyocyte apotosis, expression levels of Bcl-2, Bax and cleaved caspase-3, and the phosphorylation status of Akt and JNK. The p-Akt levels were increased after myocardial I/R in non-diabetic rats, while there was no change in diabetic rats. Pretreatment with the SP600125 and Sal A decreased the p-JNK levels and increased the p-Akt levels in diabetic rats with I/R, and heart hemodynamic data improved, infarct size and LDH release decreased, SERCA2a activity increased, Bax and cleaved caspase-3 expression levels decreased, and the expression of Bcl-2 and the Bcl-2/Bax ratio increased. Our results suggest that the JNK/PI3K/Akt signaling pathway is involved in myocardial I/R injury in diabetic rats and Sal A exerts an anti-apoptotic effect and improves cardiac function following I/R injury through the JNK/PI3K/Akt signaling pathway in this model.

  7. JNK/PI3K/Akt signaling pathway is involved in myocardial ischemia/reperfusion injury in diabetic rats: effects of salvianolic acid A intervention

    PubMed Central

    Chen, Qiuping; Xu, Tongda; Li, Dongye; Pan, Defeng; Wu, Pei; Luo, Yuanyuan; Ma, Yanfeng; Liu, Yang

    2016-01-01

    Recent studies have demonstrated that diabetes impairs the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway, while insulin resistance syndrome has been associated with alterations of this pathway in diabetic rats after ischemia/reperfusion (I/R), and activation of C-jun N-terminal kinase (JNK) is involved. The present study was designed to investigate whether inhibiting JNK activity would partially restore the PI3K/Akt signaling pathway and protect against myocardial I/R injury in diabetic rats, and to explore the effect of intervention with salvianolic acid A (Sal A). The inhibitor of JNK (SP600125) and Sal A were used in type 2 diabetic (T2D) rats, outcome measures included heart hemodynamic data, myocardial infarct size, the release of lactate dehydrogenase (LDH), SERCA2a activity, cardiomyocyte apotosis, expression levels of Bcl-2, Bax and cleaved caspase-3, and the phosphorylation status of Akt and JNK. The p-Akt levels were increased after myocardial I/R in non-diabetic rats, while there was no change in diabetic rats. Pretreatment with the SP600125 and Sal A decreased the p-JNK levels and increased the p-Akt levels in diabetic rats with I/R, and heart hemodynamic data improved, infarct size and LDH release decreased, SERCA2a activity increased, Bax and cleaved caspase-3 expression levels decreased, and the expression of Bcl-2 and the Bcl-2/Bax ratio increased. Our results suggest that the JNK/PI3K/Akt signaling pathway is involved in myocardial I/R injury in diabetic rats and Sal A exerts an anti-apoptotic effect and improves cardiac function following I/R injury through the JNK/PI3K/Akt signaling pathway in this model. PMID:27398138

  8. Cyclic Compressive Stress Regulates Apoptosis in Rat Osteoblasts: Involvement of PI3K/Akt and JNK MAPK Signaling Pathways

    PubMed Central

    Jiang, Dawei; Wang, Tianchen; Zhang, Yinquan; Ma, Hui

    2016-01-01

    It is widely accepted that physiological mechanical stimulation suppresses apoptosis and induces synthesis of extracellular matrix by osteoblasts; however, the effect of stress overloading on osteoblasts has not been fully illustrated. In the present study, we investigated the effect of cyclic compressive stress on rat osteoblasts apoptosis, using a novel liquid drop method to generate mechanical stress on osteoblast monolayers. After treatment with different levels of mechanical stress, apoptosis of osteoblasts and activations of mitogen-activated protein kinases (MAPKs) and PI3-kinase (PI3K)/Akt signaling pathways were investigated. Osteoblasts apoptosis was observed after treated with specific inhibitors prior to mechanical stimulation. Protein levels of Bax/Bcl-2/caspase-3 signaling were determined using western blot with or without inhibitors of PI3K/Akt and phosphorylation of c-jun N-terminal kinase (JNK) MAPK. Results showed that mechanical stimulation led to osteoblasts apoptosis in a dose-dependent manner and a remarkable activation of MAPKs and PI3K/Akt signaling pathways. Activation of PI3K/Akt protected against apoptosis, whereas JNK MAPK increased apoptosis via regulation of Bax/Bcl-2/caspase-3 activation. In summary, the PI3K/Akt and JNK MAPK signaling pathways played opposing roles in osteoblasts apoptosis, resulting in inhibition of apoptosis upon small-magnitude stress and increased apoptosis upon large-magnitude stress. PMID:27806136

  9. The influences of reproductive status and acute stress on the levels of phosphorylated mu opioid receptor immunoreactivity in rat hippocampus.

    PubMed

    Gonzales, Keith L; Chapleau, Jeanette D; Pierce, Joseph P; Kelter, David T; Williams, Tanya J; Torres-Reveron, Annelyn; McEwen, Bruce S; Waters, Elizabeth M; Milner, Teresa A

    2011-08-19

    Opioids play a critical role in hippocampally dependent behavior and plasticity. In the hippocampal formation, mu opioid receptors (MOR) are prominent in parvalbumin (PARV) containing interneurons. Previously we found that gonadal hormones modulate the trafficking of MORs in PARV interneurons. Although sex differences in response to stress are well documented, the point at which opioids, sex and stress interact to influence hippocampal function remains elusive. Thus, we used quantitative immunocytochemistry in combination with light and electron microscopy for the phosphorylated MOR at the SER375 carboxy-terminal residue (pMOR) in male and female rats to assess these interactions. In both sexes, pMOR-immunoreactivity (ir) was prominent in axons and terminals and in a few neuronal somata and dendrites, some of which contained PARV in the mossy fiber pathway region of the dentate gyrus (DG) hilus and CA3 stratum lucidum. In unstressed rats, the levels of pMOR-ir in the DG or CA3 were not affected by sex or estrous cycle stage. However, immediately following 30 minutes of acute immobilization stress (AIS), males had higher levels of pMOR-ir whereas females at proestrus and estrus (high estrogen stages) had lower levels of pMOR-ir within the DG. In contrast, the number and types of neuronal profiles with pMOR-ir were not altered by AIS in either males or proestrus females. These data demonstrate that although gonadal steroids do not affect pMOR levels at resting conditions, they are differentially activated both pre- and post-synaptic MORs following stress. These interactions may contribute to the reported sex differences in hippocampally dependent behaviors in stressed animals.

  10. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes.

    PubMed

    Liu, Tong-Yan; Shi, Chang-Xiang; Gao, Run; Sun, Hai-Jian; Xiong, Xiao-Qing; Ding, Lei; Chen, Qi; Li, Yue-Hua; Wang, Jue-Jin; Kang, Yu-Ming; Zhu, Guo-Qing

    2015-11-01

    Increased glucose production and reduced hepatic glycogen storage contribute to metabolic abnormalities in diabetes. Irisin, a newly identified myokine, induces the browning of white adipose tissue, but its effects on gluconeogenesis and glycogenesis are unknown. In the present study, we investigated the effects and underlying mechanisms of irisin on gluconeogenesis and glycogenesis in hepatocytes with insulin resistance, and its therapeutic role in type 2 diabetic mice. Insulin resistance was induced by glucosamine (GlcN) or palmitate in human hepatocellular carcinoma (HepG2) cells and mouse primary hepatocytes. Type 2 diabetes was induced by streptozotocin/high-fat diet (STZ/HFD) in mice. In HepG2 cells, irisin ameliorated the GlcN-induced increases in glucose production, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) expression, and glycogen synthase (GS) phosphorylation; it prevented GlcN-induced decreases in glycogen content and the phosphoinositide 3-kinase (PI3K) p110α subunit level, and the phosphorylation of Akt/protein kinase B, forkhead box transcription factor O1 (FOXO1) and glycogen synthase kinase-3 (GSK3). These effects of irisin were abolished by the inhibition of PI3K or Akt. The effects of irisin were confirmed in mouse primary hepatocytes with GlcN-induced insulin resistance and in human HepG2 cells with palmitate-induced insulin resistance. In diabetic mice, persistent subcutaneous perfusion of irisin improved the insulin sensitivity, reduced fasting blood glucose, increased GSK3 and Akt phosphorylation, glycogen content and irisin level, and suppressed GS phosphorylation and PEPCK and G6Pase expression in the liver. Irisin improves glucose homoeostasis by reducing gluconeogenesis via PI3K/Akt/FOXO1-mediated PEPCK and G6Pase down-regulation and increasing glycogenesis via PI3K/Akt/GSK3-mediated GS activation. Irisin may be regarded as a novel therapeutic strategy for insulin resistance and type 2 diabetes.

  11. Astrocyte-conditioned medium protecting hippocampal neurons in primary cultures against corticosterone-induced damages via PI3-K/Akt signal pathway.

    PubMed

    Zhu, Ze-Hua; Yang, Ru; Fu, Xin; Wang, Yan-Qing; Wu, Gen-Cheng

    2006-10-09

    Prolonged or excessive exposure to corticosterone leads to neuronal damages in the brain regions, including hippocampus. We reported that astrocyte-conditioned medium (ACM) protected the neurons of the primary hippocampal cultures against the corticosterone-induced damages. Corticosterone added to the cultures resulted in a significant number of TUNEL-positive cells. However, corticosterone-induced TUNEL labeling was suppressed as for ACM-cultured neurons. To delineate the molecular basis underlying the neuroprotection of ACM, we assessed the activation of ERK1/2 and (PI3-K)/Akt signal pathways in response to corticosterone-induced neuronal damages. Western blot test revealed that corticosterone increased the phosphorylation of ERK1/2 and PI3-K/Akt in hippocampal neurons grown in Neurobasal medium supplemented with B27 and 500 microm L-glutamine (NBM+). Interestingly, the increase of phospho-ERK1/2 and Akt levels was much pronounced and the time course of phosphorylation was altered in ACM, suggesting that both signaling pathways might participate in ACM protection. Furthermore, the selective inhibitor of Akt, rather than ERK1/2, blocked the neuroprotective activity against corticosterone in ACM-cultured neurons. In summary, our data showed that ACM had a potent neuroprotective effect in cultured neurons. PI3-K/Akt signal pathway, but not ERK1/2, was involved in the protective activity against the corticosterone-induced damages.

  12. Nitric Oxide Synthase and Breast Cancer: Role of TIMP-1 in NO-mediated Akt Activation

    PubMed Central

    Ridnour, Lisa A.; Barasch, Kimberly M.; Windhausen, Alisha N.; Dorsey, Tiffany H.; Lizardo, Michael M.; Yfantis, Harris G.; Lee, Dong H.; Switzer, Christopher H.; Cheng, Robert Y. S.; Heinecke, Julie L.; Brueggemann, Ernst; Hines, Harry B.; Khanna, Chand; Glynn, Sharon A.; Ambs, Stefan; Wink, David A.

    2012-01-01

    Prediction of therapeutic response and cancer patient survival can be improved by the identification of molecular markers including tumor Akt status. A direct correlation between NOS2 expression and elevated Akt phosphorylation status has been observed in breast tumors. Tissue inhibitor matrix metalloproteinase-1 (TIMP-1) has been proposed to exert oncogenic properties through CD63 cell surface receptor pathway initiation of pro-survival PI3k/Akt signaling. We employed immunohistochemistry to examine the influence of TIMP-1 on the functional relationship between NOS2 and phosphorylated Akt in breast tumors and found that NOS2-associated Akt phosphorylation was significantly increased in tumors expressing high TIMP-1, indicating that TIMP-1 may further enhance NO-induced Akt pathway activation. Moreover, TIMP-1 silencing by antisense technology blocked NO-induced PI3k/Akt/BAD phosphorylation in cultured MDA-MB-231 human breast cancer cells. TIMP-1 protein nitration and TIMP-1/CD63 co-immunoprecipitation was observed at NO concentrations that induced PI3k/Akt/BAD pro-survival signaling. In the survival analysis, elevated tumor TIMP-1 predicted poor patient survival. This association appears to be mainly restricted to tumors with high NOS2 protein. In contrast, TIMP-1 did not predict poor survival in patient tumors with low NOS2 expression. In summary, our findings suggest that tumors with high TIMP-1 and NOS2 behave more aggressively by mechanisms that favor Akt pathway activation. PMID:22957045

  13. Morphine Suppresses T helper Lymphocyte Differentiation to Th1 Type Through PI3K/AKT Pathway.

    PubMed

    Mao, Mao; Qian, Yanning; Sun, Jie

    2016-04-01

    To investigate the effect of morphine on T helper lymphocyte differentiation and PI3K/AKT pathway mechanism, CD4+ lymphocytes were treated by phorbol-myristate-acetate (25 ng/ml) (PMA) plus ionomycin (1 μg/ml) in the presence of various concentrations of morphine (25, 50, 100, 200 ng/ml) for 4 h. Th1 and Th2 subsets, supernatant cytokines, and PI3K, AKT, and protein kinase C-theta (PKC-θ) levels were detected. The Th1 cell percentage, Th1-derived cytokines, and ratio of Th1/Th2 decreased in the presence of morphine in a concentration-dependent manner. However, Th2 cell percentage kept stable after morphine treatment. The phosphorylation of PI3K and AKT decreased, but the phosphorylation of PKC-θ did not change in the presence of morphine. The decreased percentage of Th1 cells and ratio of Th1/Th2 was recovered by naloxone concentration-dependently. Morphine can inhibit the differentiation of Th1 lymphocytes and decrease the ratio of Th1/Th2 via the pathway of PI3K/AKT. The effect can be inhibited by naloxone.

  14. 2,3,7,8-Tetrachlorodibenzo-p-dioxin stimulates proliferation of HAPI microglia by affecting the Akt/GSK-3β/cyclin D1 signaling pathway.

    PubMed

    Xu, Guangfei; Li, Yuanye; Yoshimoto, Katsuhiko; Wu, Qiyun; Chen, Gang; Iwata, Takeo; Mizusawa, Noriko; Wan, Chunhua; Nie, Xiaoke

    2014-01-30

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental toxin that induces apoptosis of neurons and a pro-inflammatory response in microglial cells. First, we found that TCDD induced proliferation of HAPI microglial cells in a dose- and time-dependent manner. Flow cytometry analysis showed that this proliferation by TCDD was due to mainly enhancing the G1 to S phase transition. Next, it was found that TCDD treatment led to up-regulation of cyclin D1, which induces cell cycle progression from G1 to S phase, in a time-dependent manner. As for molecular mechanism, we revealed that TCDD was capable of inducing Akt phosphorylation and activation, resulting in phosphorylation and inactivation of glycogen synthase kinase-3β (GSK-3β). Inactivated GSK-3β attenuated proteasomal degradation of cyclin D1 by reducing Thr(286)-phosphorylated cyclin D1 levels. Moreover, inactivated GSK-3β increased cyclin D1 gene transcription by increasing its transcription factor β-catenin in the nucleus. Further, blockage of phosphoinositide 3-kinase/Akt kinase with their specific inhibitors, LY294002 and Akt 1/2 kinase inhibitor, significantly reduced TCDD-enhanced proliferation of HAPI microglial cells. In conclusion, TCDD stimulates proliferation of HAPI microglial cells by affecting the Akt/GSK-3β/cyclin D1 signaling pathway.

  15. ets-2 Is a Target for an Akt (Protein Kinase B)/Jun N-Terminal Kinase Signaling Pathway in Macrophages of motheaten-viable Mutant Mice

    PubMed Central

    Smith, James L.; Schaffner, Alicia E.; Hofmeister, Joseph K.; Hartman, Matthew; Wei, Guo; Forsthoefel, David; Hume, David A.; Ostrowski, Michael C.

    2000-01-01

    The transcription factor ets-2 was phosphorylated at residue threonine 72 in a colony-stimulating factor 1 (CSF-1)- and mitogen-activated protein kinase-independent manner in macrophages isolated from motheaten-viable (me-v) mice. The CSF-1 and ets-2 target genes coding for Bcl-x, urokinase plasminogen activator, and scavenger receptor were also expressed at high levels independent of CSF-1 addition to me-v cells. Akt (protein kinase B) was constitutively active in me-v macrophages, and an Akt immunoprecipitate catalyzed phosphorylation of ets-2 at threonine 72. The p54 isoform of c-jun N-terminal kinase–stress-activated kinase (JNK- SAPK) coimmunoprecipitated with Akt from me-v macrophages, and treatment of me-v cells with the specific phosphatidylinositol 3-kinase inhibitor LY294002 decreased cell survival, Akt and JNK kinase activities, ets-2 phosphorylation, and Bcl-x mRNA expression. Therefore, ets-2 is a target for phosphatidylinositol 3-kinase–Akt–JNK action, and the JNK p54 isoform is an ets-2 kinase in macrophages. Constitutive ets-2 activity may contribute to the pathology of me-v mice by increasing expression of genes like the Bcl-x gene that promote macrophage survival. PMID:11027273

  16. Effects of different intensities of physical exercise on insulin sensitivity and protein kinase B/Akt activity in skeletal muscle of obese mice

    PubMed Central

    Marinho, Rodolfo; de Moura, Leandro Pereira; Rodrigues, Bárbara de Almeida; Pauli, Luciana Santos Souza; da Silva, Adelino Sanchez Ramos; Ropelle, Eloize Cristina Chiarreotto; de Souza, Claudio Teodoro; Cintra, Dennys Esper Corrêa; Ropelle, Eduardo Rochete; Pauli, José Rodrigo

    2014-01-01

    ABSTRACT Objective: To investigate the effects of different intensities of acute exercise on insulin sensitivity and protein kinase B/Akt activity in skeletal muscle of obese mice. Methods: Swiss mice were randomly divided into four groups, and fed either a standard diet (control group) or high fat diet (obese sedentary group and obese exercise group 1 and 2) for 12 weeks. Two different exercise protocols were used: swimming for 1 hour with or without an overload of 5% body weight. The insulin tolerance test was performed to estimate whole-body sensitivity. Western blot technique was used to determine protein levels of protein kinase B/Akt and phosphorylation by protein Kinase B/Akt in mice skeletal muscle. Results: A single bout of exercise inhibited the high fat diet-induced insulin resistance. There was increase in phosphorylation by protein kinase B/Akt serine, improve in insulin signaling and reduce of fasting glucose in mice that swam for 1 hour without overload and mice that swan for 1 hour with overload of 5%. However, no significant differences were seen between exercised groups. Conclusion: Regardless of intensity, aerobic exercise was able to improve insulin sensitivity and phosphorylation by protein kinase B/Ak, and proved to be a good form of treatment and prevention of type 2 diabetes. PMID:24728251

  17. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia.

    PubMed

    Jansen, Laura A; Mirzaa, Ghayda M; Ishak, Gisele E; O'Roak, Brian J; Hiatt, Joseph B; Roden, William H; Gunter, Sonya A; Christian, Susan L; Collins, Sarah; Adams, Carissa; Rivière, Jean-Baptiste; St-Onge, Judith; Ojemann, Jeffrey G; Shendure, Jay; Hevner, Robert F; Dobyns, William B

    2015-06-01

    Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum.

  18. Activation of PI3K/Akt/mTOR signaling in the tumor stroma drives endocrine therapy-dependent breast tumor regression

    PubMed Central

    Polo, María Laura; Riggio, Marina; May, María; Rodríguez, María Jimena; Perrone, María Cecilia; Stallings-Mann, Melody; Kaen, Diego; Frost, Marlene; Goetz, Matthew; Boughey, Judy; Lanari, Claudia; Radisky, Derek; Novaro, Virginia

    2015-01-01

    Improved efficacy of neoadjuvant endocrine-targeting therapies in luminal breast carcinomas could be achieved with optimal use of pathway targeting agents. In a mouse model of ductal breast carcinoma we identify a tumor regressive stromal reaction that is induced by neoadjuvant endocrine therapy. This reparative reaction is characterized by tumor neovascularization accompanied by infiltration of immune cells and carcinoma-associated fibroblasts that stain for phosphorylated ribosomal protein S6 (pS6), downstream the PI3K/Akt/mTOR pathway. While tumor variants with higher PI3K/Akt/mTOR activity respond well to a combination of endocrine and PI3K/Akt/mTOR inhibitors, tumor variants with lower PI3K/Akt/mTOR activity respond more poorly to the combination therapy than to the endocrine therapy alone, associated with inhibition of stromal pS6 and the reparative reaction. In human breast cancer xenografts we confirm that such differential sensitivity to therapy is primarily determined by the level of PI3K/Akt/mTOR in tumor cells. We further show that the clinical response of breast cancer patients undergoing neoadjuvant endocrine therapy is associated with the reparative stromal reaction. We conclude that tumor level and localization of pS6 are associated with therapeutic response in breast cancer and represent biomarkers to distinguish which tumors will benefit from the incorporation of PI3K/Akt/mTOR inhibitors with neoadjuvant endocrine therapy. PMID:26098779

  19. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway

    SciTech Connect

    Cheng, Chi-Chih; Hsueh, Chi-Mei; Chen, Chiu-Yuan; Chen, Tzu-Hsiu; Hsu, Shih-Lan

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-κB protein expression and NF-κB-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-κB pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-induced PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.

  20. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits

    PubMed Central

    WANG, YAN; LI, YIGANG; SONG, LEI; LI, YANYAN; JIANG, SHAN; ZHANG, SONG

    2016-01-01

    Amniotic fluid-derived mesenchymal stem cells (AFMSCs) are an attractive cell source for applications in regenerative medicine, due to characteristics such as proliferative capacity and multipotency. In addition, Akt, a serine-threonine kinase, maintains stem cells by promoting viability and proliferation. Whether the transplantation of Akt-overexpressing AFMSCs protects the heart against ischemia-reperfusion (I/R) injury has yet to be elucidated. Accordingly, the Akt gene was overexpressed in AFMSCs using lentiviral transduction, and Akt-AFMSCs were transplanted into the ischemic myocardium of rabbits prior to reperfusion. Any protective effects resulting from this procedure were subsequently sought after three weeks later. A histological examination revealed that there was a decrease in intramyocardial inflammation and ultrastructural damage, and an increase in capillary density and in the levels of GATA binding protein 4, connexin 43 and cardiac troponin T in the Akt-AFMSC group compared with the control group. A significant decrease in cardiomyocyte apoptosis, accompanying an increase in phosphorylated Akt and B-cell lymphoma 2 (Bcl-2) and a decrease in caspase-3, was also observed. Furthermore, the left ventricular function was markedly augmented in the Akt-AFMSC group compared with the control group. These observations suggested that the protective effect of AFMSCs may be due to the delivery of secreted cytokines, promotion of neoangiogenesis, prevention of cardiomyocyte apoptosis, transdifferentiation into cardiomyocytes and promotion of the viability of AFMSCs, which are assisted by Akt gene modification. Taken together, the results of the present study have indicated that transplantation of Akt-AFMSCs is able to alleviate myocardial I/R injury and improve cardiac function. PMID:27151366

  1. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling.

    PubMed

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and AKT. MMP-2 activation was also significantly increased. Specific inhibitors of p38 (SB203580) and JNK (SP600125) inhibited tube formation and wound healing, while an ERK inhibitor (PD98059) did not. MMP-2 activation and AKT phosphorylation were also attenuated and associated with the suppression of p38 and JNK phosphorylation, but not with that of ERK. These results indicate that fucoidan, in the presence of FGF-2, induces angiogenesis through AKT/MMP-2 signalling by activating p38 and JNK. These findings provide basic molecular information on the effect of fucoidan on angiogenesis in the presence of FGF-2.

  2. Sustained Activation of Akt Elicits Mitochondrial Dysfunction to Block Plasmodium falciparum Infection in the Mosquito Host

    PubMed Central

    Drexler, Anna L.; Antonova-Koch, Yevgeniya; Sakaguchi, Danielle; Napoli, Eleonora; Wong, Sarah; Price, Mark S.; Eigenheer, Richard; Phinney, Brett S.; Pakpour, Nazzy; Pietri, Jose E.; Cheung, Kong; Georgis, Martha; Riehle, Michael

    2013-01-01

    The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3–5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the

  3. Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells.

    PubMed

    Jeong, Soo-Jin; Pise-Masison, Cynthia A; Radonovich, Michael F; Park, Hyeon Ung; Brady, John N

    2005-10-06

    AKT activation enhances resistance to apoptosis and induces cell survival signaling through multiple downstream pathways. We now present evidence that AKT is activated in HTLV-1-transformed cells and that Tax activation of AKT is linked to NF-kappaB activation, p53 inhibition and cell survival. Overexpression of AKT wild type (WT), but not a kinase dead (KD) mutant, resulted in increased Tax-mediated NF-kappaB activation. Blocking AKT with the PI3K/AKT inhibitor LY294002 or AKT SiRNA prevented NF-kappaB activation and inhibition of p53. Treatment of C81 cells with LY294002 resulted in an increase in the p53-responsive gene MDM2, suggesting a role for AKT in the Tax-mediated regulation of p53 transcriptional activity. Further, we show that LY294002 treatment of C81 cells abrogates in vitro IKKbeta phosphorylation of p65 and causes a reduction of p65 Ser-536 phosphorylation in vivo, steps critical to p53 inhibition. Interestingly, blockage of AKT function did not affect IKKbeta phosphorylation of IkappaBalpha in vitro suggesting selective activity of AKT on the IKKbeta complex. Finally, AKT prosurvival function in HTLV-1-transformed cells is linked to expression of Bcl-xL. We suggest that AKT plays a role in the activation of prosurvival pathways in HTLV-1-transformed cells, possibly through NF-kappaB activation and inhibition of p53 transcription activity.

  4. Mitochondrial diaphorases as NAD+ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition

    PubMed Central

    Kiss, Gergely; Konrad, Csaba; Pour-Ghaz, Issa; Mansour, Josef J.; Németh, Beáta; Starkov, Anatoly A.; Adam-Vizi, Vera; Chinopoulos, Christos

    2014-01-01

    Substrate-level phosphorylation mediated by succinyl-CoA ligase in the mitochondrial matrix produces high-energy phosphates in the absence of oxidative phosphorylation. Furthermore, when the electron transport chain is dysfunctional, provision of succinyl-CoA by the α-ketoglutarate dehydrogenase complex (KGDHC) is crucial for maintaining the function of succinyl-CoA ligase yielding ATP, preventing the adenine nucleotide translocase from reversing. We addressed the source of the NAD+ supply for KGDHC under anoxic conditions and inhibition of complex I. Using pharmacologic tools and specific substrates and by examining tissues from pigeon liver exhibiting no diaphorase activity, we showed that mitochondrial diaphorases in the mouse liver contribute up to 81% to the NAD+ pool during respiratory inhibition. Under these conditions, KGDHC's function, essential for the provision of succinyl-CoA to succinyl-CoA ligase, is supported by NAD+ derived from diaphorases. Through this process, diaphorases contribute to the maintenance of substrate-level phosphorylation during respiratory inhibition, which is manifested in the forward operation of adenine nucleotide translocase. Finally, we show that reoxidation of the reducible substrates for the diaphorases is mediated by complex III of the respiratory chain.—Kiss, G., Konrad, C., Pour-Ghaz, I., Mansour, J. J., Németh, B., Starkov, A. A., Adam-Vizi, V., Chinopoulos, C. Mitochondrial diaphorases as NAD+ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition. PMID:24391134

  5. Allicin protects traumatic spinal cord injury through regulating the HSP70/Akt/iNOS pathway in mice

    PubMed Central

    Wang, Shunyi; Ren, Dongliang

    2016-01-01

    Allicin is a major component of garlic, extracted as an oily liquid. The present study was designed to investigate the beneficial effects of allicin on traumatic spinal cord injury (TSCI) in mice, and whether the effects are mediated via regulation of the heat shock protein 70 (HSP70), v-akt murine thymoma viral oncogene homolog 1 (Akt) and inducible nitric oxide synthase (iNOS) pathways. Adult BALB/c mice (30–40 g) received a laminectomy at the T9 vertebral level as a model of TSCI. In the present study, treatment of the TSCI mice with allicin significantly increased their Basso, Beattie and Bresnahan (BBB) scores (P<0.01) and reduced the spinal cord water content (P<0.01). This protective effect was associated with the inhibition of oxidative stress and inflammatory responses in TSCI mice. Western blot analysis demonstrated that allicin increased the protein levels of HSP70, increased the phosphorylation of Akt and reduced the iNOS protein expression levels in TSCI mice. Additionally, treatment with allicin significantly reduced the levels of ROS and enhanced the NADH levels in TSCI mice. Collectively, these data demonstrate that the effects of allicin on TSCI are mediated via regulation of the HSP70, Akt and iNOS pathways in mice. PMID:27573340

  6. Gastrointestinal growth factors and hormones have divergent effects on Akt activation

    PubMed Central

    Berna, Marc J.; Tapia, Jose A.; Sancho, Veronica; Thill, Michelle; Pace, Andrea; Hoffmann, K. Martin; Gonzalez-Fernandez, Lauro; Jensen, Robert T.

    2009-01-01

    Akt is a central regulator of apoptosis, cell growth and survival. Growth factors and some G-protein-coupled receptors (GPCR) regulate Akt. Whereas growth-factor activation of Akt has been extensively studied, the regulation of Akt by GPCR's, especially gastrointestinal hormones/neurotransmitters, remains unclear. To address this area, in this study the effects of GI growth factors and hormones/neurotransmitters were investigate in rat pancreatic acinar cells which are high responsive to these agents. Pancreatic acini expressed Akt and 5 of 7 known pancreatic growth-factors stimulate Akt phosphorylation (T308, S473) and translocation. These effects are mediated by p85 phosphorylation and activation of PI3K. GI hormones increasing intracellular cAMP had similar effects. However, GI-hormones/neurotransmitters[CCK, bombesin,carbachol] activating phospholipase C (PLC) inhibited basal and growth-factor-stimulated Akt activation. Detailed studies with CCK, which has both physiological and pathophysiological effects on pancreatic acinar cells at different concentrations, demonstrated CCK has a biphasic effect: at low concentrations(pM) stimulating Akt by a Src-dependent mechanism and at higher concentrations(nM) inhibited basal and stimulated Akt translocation, phosphorylation and activation, by de-phosphorylating p85 resulting in decreasing PI3K activity. This effect required activation of both limbs of the PLC-pathway and a protein tyrosine phosphatase, but was not mediated by p44/42 MAPK, Src or activation of a serine phosphatase. Akt inhibition by CCK was also found in vivo and in Panc-1 cancer cells where it inhibited serum-mediated rescue from apoptosis. These results demonstrate that GI growth factors as well as gastrointestinal hormones/neurotransmitters with different cellular basis of action can all regulate Akt phosphorylation in pancreatic acinar cells. This regulation is complex with phospholipase C agents such as CCK, because both stimulatory and inhibitory

  7. Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels

    SciTech Connect

    Mertins, Philipp; Yang, Feng; Liu, Tao; Mani, DR; Petyuk, Vladislav A.; Gillette, Michael; Clauser, Karl; Qiao, Jana; Gritsenko, Marina A.; Moore, Ronald J.; Levine, Douglas; Townsend, Reid; Erdmann-Gilmore, Petra; Snider, Jacqueline E.; Davies, Sherri; Ruggles, Kelly; Fenyo, David; Kitchens, R. T.; Li, Shunqiang; Olvera, Narcisco; Dao, Fanny; Rodriguez, Henry; Chan, Daniel W.; Liebler, Daniel; White, Forest; Rodland, Karin D.; Mills, Gordon; Smith, Richard D.; Paulovich, Amanda G.; Ellis, Matthew; Carr, Steven A.

    2014-07-01

    Advances in quantitative mass spectrometry (MS)-based proteomics have sparked efforts to characterize the proteomes of tumor samples to provide complementary and unique information inaccessible by genomics. Tumor samples are usually not accrued with proteomic characterization in mind, raising concerns regarding effects of undocumented sample ischemia on protein abundance and phosphosite stoichiometry. Here we report the effects of cold ischemia time on clinical ovarian cancer samples and patient-derived basal and luminal breast cancer xenografts. Tumor tissues were excised and collected prior to vascular ligation, subjected to accurately defined ischemia times up to 60 min, and analyzed by quantitative proteomics and phosphoproteomics using isobaric tags and high-performance, multidimensional LC-MS/MS. No significant changes were detected at the protein level in each tumor type after 60 minutes of ischemia, and the majority of the >25,000 phosphosites detected were also stable. However, large, reproducible increases and decreases in protein phosphorylation at specific sites were observed in up to 24% of the phosphoproteome starting as early as 5 minutes post-excision. Early and sustained activation of stress response, transcriptional regulation and cell death pathways were observed in common across tumor types. Tissue-specific changes in phosphosite stability were also observed suggesting idiosyncratic effects of ischemia in particular lineages. Our study provides insights into the information that may be obtained by proteomic characterization of tumor samples after undocumented periods of ischemia, and suggests caution especially in interpreting activation of stress pathways in such samples as they may reflect sample handling rather than tumor physiology.

  8. Catabolism of GABA, succinic semialdehyde or gamma-hydroxybutyrate through the GABA shunt impair mitochondrial substrate-level phosphorylation.

    PubMed

    Ravasz, Dora; Kacso, Gergely; Fodor, Viktoria; Horvath, Kata; Adam-Vizi, Vera; Chinopoulos, Christos

    2017-03-11

    GABA is catabolized in the mitochondrial matrix through the GABA shunt, encompassing transamination to succinic semialdehyde followed by oxidation to succinate by the concerted actions of GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH), respectively. Gamma-hydroxybutyrate (GHB) is a neurotransmitter and a psychoactive drug that could enter the citric acid cycle through transhydrogenation with α-ketoglutarate to succinic semialdehyde and d-hydroxyglutarate, a reaction catalyzed by hydroxyacid-oxoacid transhydrogenase (HOT). Here, we tested the hypothesis that the elevation in matrix succinate concentration caused by exogenous addition of GABA, succinic semialdehyde or GHB shifts the equilibrium of the reversible reaction catalyzed by succinate-CoA ligase towards ATP (or GTP) hydrolysis, effectively negating substrate-level phosphorylation (SLP). Mitochondrial SLP was addressed by interrogating the directionality of the adenine nucleotide translocase during anoxia in isolated mouse brain and liver mitochondria. GABA eliminated SLP, and this was rescued by the GABA-T inhibitors vigabatrin and aminooxyacetic acid. Succinic semialdehyde was an extremely efficient substrate energizing mitochondria during normoxia but mimicked GABA in abolishing SLP in anoxia, in a manner refractory to vigabatrin and aminooxyacetic acid. GHB could moderately energize liver but not brain mitochondria consistent with the scarcity of HOT expression in the latter. In line with these results, GHB abolished SLP in liver but not brain mitochondria during anoxia and this was unaffected by either vigabatrin or aminooxyacetic acid. It is concluded that when mitochondria catabolize GABA or succinic semialdehyde or GHB through the GABA shunt, their ability to perform SLP is impaired.

  9. Angiotensin II Signaling in Human Preadipose Cells: Participation of ERK1,2-Dependent Modulation of Akt

    PubMed Central

    Dünner, Natalia; Quezada, Carolina; Berndt, F. Andrés; Cánovas, José; Rojas, Cecilia V.

    2013-01-01

    The renin-angiotensin system expressed in adipose tissue has been implicated in the modulation of adipocyte formation, glucose metabolism, triglyceride accumulation, lipolysis, and the onset of the adverse metabolic consequences of obesity. As we investigated angiotensin II signal transduction mechanisms in human preadipose cells, an interplay of extracellular-signal-regulated kinases 1 and 2 (ERK1,2) and Akt/PKB became evident. Angiotensin II caused attenuation of phosphorylated Akt (p-Akt), at serine 473; the p-Akt/Akt ratio decreased to 0.5±0.2-fold the control value without angiotensin II (p<0.001). Here we report that the reduction of phosphorylated Akt associates with ERK1,2 activities. In the absence of angiotensin II, inhibition of ERK1,2 activation with U0126 or PD98059 resulted in a 2.1±0.5 (p<0.001) and 1.4±0.2-fold (p<0.05) increase in the p-Akt/Akt ratio, respectively. In addition, partial knockdown of ERK1 protein expression by the short hairpin RNA technique also raised phosphorylated Akt in these cells (the p-Akt/Akt ratio was 1.5±0.1-fold the corresponding control; p<0.05). Furthermore, inhibition of ERK1,2 activation with U0126 prevented the reduction of p-Akt/Akt by angiotensin II. An analogous effect was found on the phosphorylation status of Akt downstream effectors, the forkhead box (Fox) proteins O1 and O4. Altogether, these results indicate that angiotensin II signaling in human preadipose cells involves an ERK1,2-dependent attenuation of Akt activity, whose impact on the biological functions under its regulation is not fully understood. PMID:24098385

  10. Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis.

    PubMed

    Giacoppo, Sabrina; Pollastro, Federica; Grassi, Gianpaolo; Bramanti, Placido; Mazzon, Emanuela

    2017-01-01

    This study was aimed to investigate whether treatment with purified cannabidiol (CBD) may counteract the development of experimental multiple sclerosis (MS), by targeting the PI3K/Akt/mTOR pathway. Although the PI3K/Akt/mTOR pathway was found to be activated by cannabinoids in several immune and non-immune cells, currently, there is no data about the effects of CBD in the PI3K/Akt/mTOR activity in MS. Experimental Autoimmune Encephalomyelitis (EAE), the most common model of MS, was induced in C57BL/6 mice by immunization with myelin oligodendroglial glycoprotein peptide (MOG)35-55. After EAE onset, which occurs approximately 14days after disease induction, mice were daily intraperitoneally treated with CBD (10mg/kg mouse) and observed for clinical signs of EAE. At 28days from EAE-induction, mice were euthanized and spinal cord tissues were sampled to perform immunohistochemical evaluations and western blot analysis. Our results showed a clear downregulation of the PI3K/Akt/mTOR pathway following EAE induction. CBD treatment was able to restore it, increasing significantly the phosphorylation of PI3K, Akt and mTOR. Also, an increased level of BNDF in CBD-treated mice seems to be involved in the activation of PI3K/Akt/mTOR pathway. In addition, our data demonstrated that therapeutic efficacy of CBD treatment is due to reduction of pro-inflammatory cytokines, like IFN-γ and IL-17 together with an up-regulation of PPARγ. Finally, CBD was found to promote neuronal survival by inhibiting JNK and p38 MAP kinases. These results provide an interesting discovery about the regulation of the PI3K/Akt/mTOR pathway by cannabidiol administration, that could be a new potential therapeutic target for MS management.

  11. Curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway.

    PubMed

    Tian, Binqiang; Zhao, Yingmei; Liang, Tao; Ye, Xuxiao; Li, Zuowei; Yan, Dongliang; Fu, Qiang; Li, Yonghui

    2017-03-26

    We have previously reported that curcumin inhibits urothelial tumor development in a rat bladder carcinogenesis model. In this study, we report that curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. Curcumin inhibits IGF2 expression at the transcriptional level and decreases the phosphorylation levels of IGF1R and IRS-1 in bladder cancer cells and N-methyl-N-nitrosourea (MNU)-induced urothelial tumor tissue. Ectopic expression of IGF2 and IGF1R, but not IGF1, in bladder cancer cells restored this process, suggesting that IGF2 is a target of curcumin. Moreover, introduction of constitutively active AKT1 abolished the inhibitory effect of curcumin on cell proliferation, migration, and restored the phosphorylation levels of 4E-BP1 and S6K1, suggesting that curcumin functions via suppressing IGF2-mediated AKT/mTOR signaling pathway. In summary, our results reveal that suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway is one of the mechanisms of action of curcumin. Our findings suggest a new therapeutic strategy against human bladder cancer caused by aberrant activation of IGF2, which are useful for translational application of curcumin.

  12. High STAT1 mRNA levels but not its tyrosine phosphorylation are associated with macrophage infiltration and bad prognosis in breast cancer

    PubMed Central

    2014-01-01

    Background STAT1 has been attributed a function as tumor suppressor. However, in breast cancer data from microarray analysis indicated a predictive value of high mRNA expression levels of STAT1 and STAT1 target genes belonging to the interferon-related signature for a poor response to therapy. To clarify this issue we have determined STAT1 expression levels and activation by different methods, and investigated their association with tumor infiltration by immune cells. Additionally, we evaluated the interrelationship of these parameters and their significance for predicting disease outcome. Methods Expression of STAT1, its target genes SOCS1, IRF1, CXCL9, CXCL10, CXCL11, IFIT1, IFITM1, MX1 and genes characteristic for immune cell infiltration (CD68, CD163, PD-L1, PD-L2, PD-1, CD45, IFN-γ, FOXP3) was determined by RT-PCR in two independent cohorts comprising 132 breast cancer patients. For a subset of patients, protein levels of total as well as serine and tyrosine-phosphorylated STAT1 were ascertained by immunohistochemistry or immunoblotting and protein levels of CXCL10 by ELISA. Results mRNA expression levels of STAT1 and STAT1 target genes, as well as protein levels of total and serine-phosphorylated STAT1 correlated with each other in neoplastic tissue. However, there was no association between tumor levels of STAT1 mRNA and tyrosine-phosphorylated STAT1 and between CXCL10 serum levels and CXCL10 expression in the tumor. Tumors with increased STAT1 mRNA amounts exhibited elevated expression of genes characteristic for tumor-associated macrophages and immunosuppressive T lymphocytes. Survival analysis revealed an association of high STAT1 mRNA levels and bad prognosis in both cohorts. A similar prognostically relevant correlation with unfavorable outcome was evident for CXCL10, MX1, CD68, CD163, IFN-γ, and PD-L2 expression in at least one collective. By contrast, activation of STAT1 as assessed by the level of STAT1-Y701 phosphorylation was linked to positive

  13. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma.

    PubMed

    Chang, Liang; Zhao, Dan; Liu, Hui-Bin; Wang, Qiu-Shi; Zhang, Ping; Li, Chen-Long; Du, Wen-Zhong; Wang, Hong-Jun; Liu, Xing; Zhang, Zhi-Ren; Jiang, Chuan-Lu

    2015-11-01

    Aberrant hedgehog signaling contributes to the development of various malignancies, including glioblastoma (GBM). However, the potential mechanism of hedgehog signaling in GBM migration and invasion has remained to be elucidated. The present study showed that enhanced hedgehog signaling by recombinant human sonic hedgehog N‑terminal peptide (rhSHH) promoted the adhesion, invasion and migration of GBM cells, accompanied by increases in mRNA and protein levels of matrix metalloproteinase‑2 (MMP‑2) and MMP‑9. However, inhibition of hedgehog signaling with cyclopamine suppressed the adhesion, invasion and migration of GBM cells, accompanied by decreases in mRNA and protein levels of MMP‑2 and ‑9. Furthermore, it was found that MMP‑2- and MMP‑9-neutralizing antibodies or GAM6001 reversed the inductive effects of rhSHH on cell migration and invasion. In addition, enhanced hedgehog signaling by rhSHH increased AKT phosphorylation, whereas blockade of hedgehog signaling decreased AKT phosphorylations. Further experiments showed that LY294002, an inhibitor of phosphoinositide-3 kinase (PI3K), decreased rhSHH‑induced upregulation of MMP‑2 and ‑9. Finally, the protein expression of glioblastoma-associated oncogene 1 was positively correlated with levels of phosphorylated AKT as well as protein expressions of MMP‑2 and ‑9 in GBM tissue samples. In conclusion, the present study indicated that the hedgehog pathway regulates GBM-cell migration and invasion by increasing MMP-2 and MMP-9 production via the PI3K/AKT pathway.

  14. The PI3K/Akt signal hyperactivates Eya1 via the SUMOylation pathway

    PubMed Central

    Sun, Ye; Kaneko, Satoshi; Li, Xiaokun; Li, Xue

    2014-01-01

    Eya1 is a conserved critical regulator of organ-specific stem cells. Ectopic Eya1 activities, however, promote transformation of mammary epithelial cells. Signals that instigate Eya1 oncogenic activities remain to be determined. Here, we show that Akt1 kinase physically interacts with Eya1 and phosphorylates a conserved consensus site of the Akt kinase. PI3K/Akt signaling enhances Eya1 transcription activity, which largely attributes to the phosphorylation-induced reduction of Eya1 SUMOylation. Indeed, SUMOylation inhibits Eya1 transcription activity; and pharmacologic and genetic activation of PI3K/Akt robustly reduces Eya1 SUMOylation. Wild type but not Akt phosphorylation site mutant Eya1 variant rescues the cell migratory phenotype of EYA1-silenced breast cancer cells, highlighting the importance of Eya1 phosphorylation. Furthermore, knockdown EYA1 sensitizes breast cancer cells to the PI3K/Akt1 inhibitor and irradiation treatments. Thus, the PI3K/Akt signal pathway activates Eya1. These findings further suggest that regulation of SUMOylation by PI3K/Akt signaling is likely an important aspect of tumorigenesis. PMID:24954506

  15. Impact of oncogenic K-RAS on YB-1 phosphorylation induced by ionizing radiation

    PubMed Central

    2011-01-01

    Introduction Expression of Y-box binding protein-1 (YB-1) is associated with tumor progression and drug resistance. Phosphorylation of YB-1 at serine residue 102 (S102) in response to growth factors is required for its transcriptional activity and is thought to be regulated by cytoplasmic signaling phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. These pathways can be activated by growth factors and by exposure to ionizing radiation (IR). So far, however, no studies have been conducted on IR-induced YB-1 phosphorylation. Methods IR-induced YB-1 phosphorylation in K-RAS wild-type (K-RASwt) and K-RAS-mutated (K-RASmt) breast cancer cell lines was investigated. Using pharmacological inhibitors, small interfering RNA (siRNA) and plasmid-based overexpression approaches, we analyzed pathways involved in YB-1 phosphorylation by IR. Using γ-H2AX foci and standard colony formation assays, we investigated the function of YB-1 in repair of IR-induced DNA double-stranded breaks (DNA-DSB) and postirradiation survival was investigated. Results The average level of phosphorylation of YB-1 in the breast cancer cell lines SKBr3, MCF-7, HBL100 and MDA-MB-231 was significantly higher than that in normal cells. Exposure to IR and stimulation with erbB1 ligands resulted in phosphorylation of YB-1 in K-RASwt SKBr3, MCF-7 and HBL100 cells, which was shown to be K-Ras-independent. In contrast, lack of YB-1 phosphorylation after stimulation with either IR or erbB1 ligands was observed in K-RASmt MDA-MB-231 cells. Similarly to MDA-MB-231 cells, YB-1 became constitutively phosphorylated in K-RASwt cells following the overexpression of mutated K-RAS, and its phosphorylation was not further enhanced by IR. Phosphorylation of YB-1 as a result of irradiation or K-RAS mutation was dependent on erbB1 and its downstream pathways, PI3K and MAPK/ERK. In K-RASmt cells K-RAS siRNA as well as YB-1 siRNA blocked

  16. Manipulating the Lateral Diffusion of Surface-Anchored EGF Demonstrates that Receptor Clustering Modulates its Phosphorylation Levels

    SciTech Connect

    Stabley, Daniel; Retterer, Scott T; Marshal, Stephen; Salaita, Khalid

    2013-01-01

    Upon activation, the epidermal growth factor (EGF) receptor becomes phosphorylated and triggers a vast signaling network that has profound effects on cell growth. The EGF receptor is observed to assemble into clusters after ligand binding and tyrosine kinase autophosphorylation, but the role of these assemblies in the receptor signaling pathway remains unclear. To address this question, we measured the phosphorylation of EGFR when the EGF ligand was anchored onto laterally mobile and immobile surfaces. We found that cells generated clusters of ligand-receptor complex on mobile EGF surfaces, and generated a lower ratio of phosphorylated EGFR to EGF than when compared to immobilized EGF that is unable to cluster. This result was verified by tuning the lateral assembly of ligand-receptor complexes on the surface of living cells using patterned supported lipid bilayers. Nanoscale metal lines fabricated into the supported membrane constrained lipid diffusion and EGF receptor assembly into micron and sub-micron scale corrals. Single cell analysis indicated that clustering impacts EGF receptor activation, and larger clusters (> 1 m2) of ligand-receptor complex generated lower EGF receptor phosphorylation per ligand than smaller assemblies (< 1 m2) in HCC1143 cells that were engaged to ligand-functionalized surfaces. We investigated EGFR clustering by treating cells with compounds that disrupt the cytoskeleton (Latrunculin-B), clathrin-mediated endocytosis (Pitstop2), and inhibit EGFR activation (Gefitinib). These results help elucidate the nature of large-scale EGFR clustering, thus underscoring the general significance of receptor spatial organization in tuning function.

  17. NecroX-5 protects mitochondrial oxidative phosphorylation capacity and preserves PGC1α expression levels during hypoxia/reoxygenation injury

    PubMed Central

    Thu, Vu Thi; Kim, Hyoung Kyu; Long, Le Thanh; Nyamaa, Bayalagmaa; Song, In-Sung; Thuy, To Thanh; Huy, Nguyen Quang; Marquez, Jubert; Kim, Soon Ha; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo

    2016-01-01

    Although the antioxidant and cardioprotective effects of NecroX-5 on various in vitro and in vivo models have been demonstrated, the action of this compound on the mitochondrial oxidative phosphorylation system remains unclear. Here we verify the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity during hypoxia-reoxygenation (HR). Necrox-5 treatment (10 µM) and non-treatment were employed on isolated rat hearts during hypoxia/reoxygenation treatment using an ex vivo Langendorff system. Proteomic analysis was performed using liquid chromatography-mass spectrometry (LC-MS) and non-labeling peptide count protein quantification. Real-time PCR, western blot, citrate synthases and mitochondrial complex activity assays were then performed to assess heart function. Treatment with NecroX-5 during hypoxia significantly preserved electron transport chain proteins involved in oxidative phosphorylation and metabolic functions. NecroX-5 also improved mitochondrial complex I, II, and V function. Additionally, markedly higher peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC1α) expression levels were observed in NecroX-5-treated rat hearts. These novel results provide convincing evidence for the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity and in preserving PGC1α during cardiac HR injuries. PMID:26937217

  18. Dodeca-2(E),4(E)-dienoic acid isobutylamide enhances glucose uptake in 3T3-L1 cells via activation of Akt signaling.

    PubMed

    Choi, Kyeong-Mi; Kim, Wonkyun; Hong, Jin Tae; Yoo, Hwan-Soo

    2017-02-01

    Dodeca-2(E),4(E)-dienoic acid isobutylamide (DDI), an alkamide derived from the plant Echinacea purpurea, promotes adipocyte differentiation and activates peroxisome proliferator-activated receptor γ, which is associated with enhanced insulin sensitivity. In the present study, we investigated whether DDI may increase glucose uptake through activation of the insulin signaling pathway in 3T3-L1 adipocytes. DDI increased insulin-stimulated glucose uptake, and expression and translocation of glucose transporter 4 in adipocytes treated with sub-optimal levels of insulin. Additionally, DDI enhanced Akt phosphorylation, whereas phosphoinositide 3-kinase/Akt inhibitors suppressed DDI-induced glucose uptake. These results suggest that DDI may improve insulin sensitivity through the activation of Akt signaling, which leads to enhanced glucose uptake.

  19. Metastasis and AKT activation.

    PubMed

    Sheng, Shijie; Qiao, Meng; Pardee, Arthur B

    2009-03-01

    Metastasis, responsible for 90% of cancer patient deaths, is an inefficient process because many tumor cells die. The survival of metastatic tumor cells should be considered as a critical therapeutic target. This review provides a new perspective regarding the role of AKT in tumor survival, and the rationale to target AKT in anti-metastasis therapies.

  20. Lapatinib-resistant cancer cells possessing epithelial cancer stem cell properties develop sensitivity during sphere formation by activation of the ErbB/AKT/cyclin D2 pathway.

    PubMed

    Ohnishi, Yuichi; Yasui, Hiroki; Kakudo, Kenji; Nozaki, Masami

    2016-11-01

    Lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR)/ErbB2, has antiproliferative effects and is used to treat patients with ErbB2-positive metastatic breast cancer. In the present study, we examined the effects of lapatinib on growth of oral and prostate cancer cells. Oral squamous cell carcinoma (OSCC) cell lines HSC3, HSC4 and Ca9-22 were sensitive to the antiproliferative effects of lapatinib in anchorage-dependent culture, but the OSCC cell lines KB and SAS and the prostate cancer cell line DU145 were resistant to lapatinib. Phosphorylation levels of EGFR in all cell lines decreased during lapatinib treatment in anchorage‑dependent culture. Furthermore, the phosphorylation levels of ErbB2, ErbB3 and Akt and the protein levels of cyclin D1 were decreased by lapatinib treatment of HSC3, HSC4 and Ca9-22 cells. ErbB3 was not expressed and cyclin D1 protein levels were not altered by lapatinib treatment in KB, DU145 and SAS cells. The phosphorylation of ErbB2 and AKT was not affected by lapatinib in SAS cells and was not detected in KB and DU145 cells. Lapatinib-resistant cell lines exhibited sphere-forming ability, and SAS cells developed sensitivity to lapatinib during sphere formation. The phosphorylation levels of ErbB2 and AKT and protein levels of cyclin D2 increased during sphere formation of SAS cells and decreased with lapatinib treatment. In addition, sphere formation of SAS cells was inhibited by the AKT inhibitor MK2206. AKT phosphorylation and cyclin D2 levels in SAS spheres were decreased by MK2206 treatment. SAS cells expressed E-cadherin, but not vimentin and KB cells expressed vimentin, but not E-cadherin. DU145 cells expressed vimentin and E-cadherin. These results suggested that phosphorylation of EGFR and ErbB2 by cell detachment from the substratum induces the AKT pathway/cyclin D2-dependent sphere growth in SAS epithelial cancer stem-like cells, thereby rendering SAS spheres sensitive to lapatinib treatment.

  1. Editing VEGFR2 Blocks VEGF-Induced Activation of Akt and Tube Formation

    PubMed Central

    Huang, Xionggao; Zhou, Guohong; Wu, Wenyi; Ma, Gaoen; D'Amore, Patricia A.; Mukai, Shizuo; Lei, Hetian

    2017-01-01

    Purpose Vascular endothelial growth factor receptor 2 (VEGFR2) plays a key role in VEGF-induced angiogenesis. The goal of this project was to test the hypothesis that editing genomic VEGFR2 loci using the technology of clustered regularly interspaced palindromic repeats (CRISPR)-associated DNA endonuclease (Cas)9 in Streptococcus pyogenes (SpCas9) was able to block VEGF-induced activation of Akt and tube formation. Methods Four 20 nucleotides for synthesizing single-guide RNAs based on human genomic VEGFR2 exon 3 loci were selected and cloned into a lentiCRISPR v2 vector, respectively. The DNA fragments from the genomic VEGFR2 exon 3 of transduced primary human retinal microvascular endothelial cells (HRECs) were analyzed by Sanger DNA sequencing, surveyor nuclease assay, and next-generation sequencing (NGS). In the transduced cells, expression of VEGFR2 and VEGF-stimulated signaling events (e.g., Akt phosphorylation) were determined by Western blot analyses; VEGF-induced cellular responses (proliferation, migration, and tube formation) were examined. Results In the VEGFR2-sgRNA/SpCas9–transduced HRECs, Sanger DNA sequencing indicated that there were mutations, and NGS demonstrated that there were 83.57% insertion and deletions in the genomic VEGFR2 locus; expression of VEGFR2 was depleted in the VEGFR2-sgRNA/SpCas9–transduced HRECs. In addition, there were lower levels of Akt phosphorylation in HRECs with VEGFR2-sgRNA/SpCas9 than those with LacZ-sgRNA/SpCas9, and there was less VEGF-stimulated Akt activation, proliferation, migration, or tube formation in the VEGFR2-depleted HRECs than those treated with aflibercept or ranibizumab. Conclusions The CRISPR-SpCas9 technology is a potential novel approach to prevention of pathologic angiogenesis. PMID:28241310

  2. DARPP-32 and Akt regulation in ethanol-preferring AA and ethanol-avoiding ANA rats.

    PubMed

    Nuutinen, Saara; Kiianmaa, Kalervo; Panula, Pertti

    2011-09-26

    Ethanol and other addictive drugs affect many intracellular phosphorylation and dephosphorylation cascades. These cascades are thought to be highly important in the regulation of neuronal activity. The present experiments characterized the regulation of three key signaling molecules, DARPP-32 (dopamine and cAMP regulated phosphoprotein, 32kDa), Akt kinase and ERK1/2 (extracellular signal-regulated kinase 1 and 2) in ethanol-preferring AA (Alko, alcohol) and ethanol-avoiding ANA (Alko, non-alcohol) rat lines. Radioactive in situ hybridization was used in drug naïve animals and Western blotting after acute ethanol administration in striatum, hippocampus and prefrontal cortex. The mRNA levels of DARPP-32 in striatal areas were higher in ANA rats than in AA rats. There was no difference in the striatal enriched phosphatase (STEP61), the downstream target of DARPP-32 expression between the rat lines. Ethanol (1.5g/kg) increased phosphorylation of DARPP-32 at threonine 34 in both AA and in ANA rats indicating that acute ethanol activates DARPP-32 similarly in these rat lines. The expression of Akt kinase was higher in the CA1 of hippocampus in ANA than in AA rats and acute ethanol activated Akt in hippocampus in ANA but not in AA rats. No significant alterations in the regulation of ERK1/2 were found in either rat line. Our findings suggest that DARPP-32 and Akt are regulated by ethanol and differences in the regulation of these molecules might contribute to the dramatically different ethanol drinking patterns seen in AA and ANA rats.

  3. Functional Effects of AKT3 on Aurora Kinase Inhibitor-induced Aneuploidy.

    PubMed

    Noguchi, Kohji; Hongama, Keita; Hariki, Shiori; Nonomiya, Yuma; Katayama, Kazuhiro; Sugimoto, Yoshikazu

    2017-02-03

    The suppression of mitotic Aurora kinases (AURKs) by AURK inhibitors frequently causes cytokinetic failure, leading to polyploidy or aneuploidy, indicating the critical role of AURK-mediated phosphorylation during cytokinesis. We demonstrate the deregulated expression of AKT3 in Aurora kinase inhibitor (AURKi)-resistant cells, which we established from human colorectal cancer HCT 116 cells. The AKT family, which includes AKT1, -2, and -3, plays multiple roles in antiapoptotic functions and drug resistance and is involved in cell growth and survival pathways. We found that an AKT inhibitor, AZD5363, showed synergistic effect with an AURKi, VX-680, on two AKT3-expressing AURKi-resistant cell lines, and AKT3 knockdown sensitized cells to VX-680. Consistent with these activities, AKT3 expression suppressed AURKi-induced apoptosis and conferred resistance to AURKi. Thus, AKT3 expression affects cell sensitivity to AURKi. Moreover, we found that AKT3 expression suppressed AURKi-induced aneuploidy, and inversely AKT3 knockdown enhanced it. In addition, partial co-localization of AKT3 with AURKB was observed during anaphase. Overall, this study suggests that AKT3 could repress the antiproliferative effects of AURKi, with a novel activity particularly suppressing the aneuploidy induction.

  4. PKC{eta} is a negative regulator of AKT inhibiting the IGF-I induced proliferation

    SciTech Connect

    Shahaf, Galit; Rotem-Dai, Noa; Koifman, Gabriela; Raveh-Amit, Hadas; Frost, Sigal A.; Livneh, Etta

    2012-04-15

    The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKC{eta} isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKC{eta}-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKC{eta}-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKT Ser473. While PKC{eta} exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKC{eta} and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKC{eta} expression, suggesting that PKC{eta} acts through a different route to increase cell survival. Hence, our studies show that PKC{eta} provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.

  5. Electrostimulation during hindlimb unloading modulates PI3K-AKT downstream targets without preventing soleus atrophy and restores slow phenotype through ERK.

    PubMed

    Dupont, Erwan; Cieniewski-Bernard, Caroline; Bastide, Bruno; Stevens, Laurence

    2011-02-01

    Our aim was to analyze the role of phosphatidylinositol 3-kinase (PI3K)-AKT and MAPK signaling pathways in the regulation of muscle mass and slow-to-fast phenotype transition during hindlimb unloading (HU). For that purpose, we studied, in rat slow soleus and fast extensor digitorum longus muscles, the time course of anabolic PI3K-AKT-mammalian target of rapamycin, catabolic PI3K-AKT-forkhead box O (FOXO), and MAPK signaling pathway activation after 7, 14, and 28 days of HU. Moreover, we performed chronic low-frequency soleus electrostimulation during HU to maintain exclusively contractile phenotype and so to determine more precisely the role of these signaling pathways in the modulation of muscle mass. HU induced a downregulation of the anabolic AKT, mammalian target of rapamycin, 70-kDa ribosomal protein S6 kinase, 4E-binding protein 1, and glycogen synthase kinase-3β targets, and an upregulation of the catabolic FOXO1 and muscle-specific RING finger protein-1 targets correlated with soleus muscle atrophy. Unexpectedly, soleus electrostimulation maintained 70-kDa ribosomal protein S6 kinase, 4E-binding protein 1, FOXO1, and muscle-specific RING finger protein-1 to control levels, but failed to reduce muscle atrophy. HU decreased ERK phosphorylation, while electrostimulation enabled the maintenance of ERK phosphorylation similar to control level. Moreover, slow-to-fast myosin heavy chain phenotype transition and upregulated glycolytic metabolism were prevented by soleus electrostimulation during HU. Taken together, our data demonstrated that the processes responsible for gradual disuse muscle plasticity in HU conditions involved both PI3-AKT and MAPK pathways. Moreover, electrostimulation during HU restored PI3K-AKT activation without counteracting soleus atrophy, suggesting the involvement of other signaling pathways. Finally, electrostimulation maintained initial contractile and metabolism properties in parallel to ERK activation, reinforcing the idea of a

  6. Ischemia in Tumors Induces Early and Sustained Phosphorylation Changes in Stress Kinase Pathways but Does Not Affect Global Protein Levels*

    PubMed Central

    Mertins, Philipp; Yang, Feng; Liu, Tao; Mani, D. R.; Petyuk, Vladislav A.; Gillette, Michael A.; Clauser, Karl R.; Qiao, Jana W.; Gritsenko, Marina A.; Moore, Ronald J.; Levine, Douglas A.; Townsend, Reid; Erdmann-Gilmore, Petra; Snider, Jacqueline E.; Davies, Sherri R.; Ruggles, Kelly V.; Fenyo, David; Kitchens, R. Thomas; Li, Shunqiang; Olvera, Narciso; Dao, Fanny; Rodriguez, Henry; Chan, Daniel W.; Liebler, Daniel; White, Forest; Rodland, Karin D.; Mills, Gordon B.; Smith, Richard D.; Paulovich, Amanda G.; Ellis, Matthew; Carr, Steven A.

    2014-01-01

    Protein abundance and phosphorylation convey important information about pathway activity and molecular pathophysiology in diseases including cancer, providing biological insight, informing drug and diagnostic development, and guiding therapeutic intervention. Analyzed tissues are usually collected without tight regulation or documentation of ischemic time. To evaluate the impact of ischemia, we collected human ovarian tumor and breast cancer xenograft tissue without vascular interruption and performed quantitative proteomics and phosphoproteomics after defined ischemic intervals. Although the global expressed proteome and most of the >25,000 quantified phosphosites were unchanged after 60 min, rapid phosphorylation changes were observed in up to 24% of the phosphoproteome, representing activation of critical cancer pathways related to stress response, transcriptional regulation, and cell death. Both pan-tumor and tissue-specific changes were observed. The demonstrated impact of pre-analytical tissue ischemia on tumor biology mandates caution in interpreting stress-pathway activation in such samples and motivates reexamination of collection protocols for phosphoprotein analysis. PMID:24719451

  7. A Gammaherpesvirus Complement Regulatory Protein Promotes Initiation of Infection by Activation of Protein Kinase Akt/PKB

    PubMed Central

    Steer, Beatrix; Adler, Barbara; Jonjic, Stipan; Stewart, James P.; Adler, Heiko

    2010-01-01

    Background Viruses have evolved to evade the host's complement system. The open reading frames 4 (ORF4) of gammaherpesviruses encode homologs of regulators of complement activation (RCA) proteins, which inhibit complement activation at the level of C3 and C4 deposition. Besides complement regulation, these proteins are involved in heparan sulfate and glycosaminoglycan binding, and in case of MHV-68, also in viral DNA synthesis in macrophages. Methodology/Principal Findings Here, we made use of MHV-68 to study the role of ORF4 during infection of fibroblasts. While attachment and penetration of virions lacking the RCA protein were not affected, we observed a delayed delivery of the viral genome to the nucleus of infected cells. Analysis of the phosphorylation status of a variety of kinases revealed a significant reduction in phosphorylation of the protein kinase Akt in cells infected with ORF4 mutant virus, when compared to cells infected with wt virus. Consistent with a role of Akt activation in initial stages of infection, inhibition of Akt signaling in wt virus infected cells resulted in a phenotype resembling the phenotype of the ORF4 mutant virus, and activation of Akt by addition of insulin partially reversed the phenotype of the ORF4 mutant virus. Importantly, the homologous ORF4 of KSHV was able to rescue the phenotype of the MHV-68 ORF4 mutant, indicating that ORF4 is functionally conserved and that ORF4 of KSHV might have a similar function in infection initiation. Conclusions/Significance In summary, our studies demonstrate that ORF4 contributes to efficient infection by activation of the protein kinase Akt and thus reveal a novel function of a gammaherpesvirus RCA protein. PMID:20657771

  8. Mitochondrial diaphorases as NAD⁺ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition.

    PubMed

    Kiss, Gergely; Konrad, Csaba; Pour-Ghaz, Issa; Mansour, Josef J; Németh, Beáta; Starkov, Anatoly A; Adam-Vizi, Vera; Chinopoulos, Christos

    2014-04-01

    Substrate-level phosphorylation mediated by succinyl-CoA ligase in the mitochondrial matrix produces high-energy phosphates in the absence of oxidative phosphorylation. Furthermore, when the electron transport chain is dysfunctional, provision of succinyl-CoA by the α-ketoglutarate dehydrogenase complex (KGDHC) is crucial for maintaining the function of succinyl-CoA ligase yielding ATP, preventing the adenine nucleotide translocase from reversing. We addressed the source of the NAD(+) supply for KGDHC under anoxic conditions and inhibition of complex I. Using pharmacologic tools and specific substrates and by examining tissues from pigeon liver exhibiting no diaphorase activity, we showed that mitochondrial diaphorases in the mouse liver contribute up to 81% to the NAD(+) pool during respiratory inhibition. Under these conditions, KGDHC's function, essential for the provision of succinyl-CoA to succinyl-CoA ligase, is supported by NAD(+) derived from diaphorases. Through this process, diaphorases contribute to the maintenance of substrate-level phosphorylation during respiratory inhibition, which is manifested in the forward operation of adenine nucleotide translocase. Finally, we show that reoxidation of the reducible substrates for the diaphorases is mediated by complex III of the respiratory chain.

  9. Inhibition of Aurora-B suppresses HepG2 cell invasion and migration via the PI3K/Akt/NF-κB signaling pathway in vitro.

    PubMed

    Shan, Ren Feng; Zhou, Yun Fei; Peng, Ai Fen; Jie, Zhi Gang

    2014-09-01

    In the present study, the effect of Aurora-B inhibition on HepG2 cell invasion and migration in vitro was investigated. A recombinant plasmid targeting the Aurora-B gene (MiR-Aurora-B) was used to inhibit Aurora-B expression in HepG2 cells. Cell migration and invasion were investigated using Transwell migration and invasion assays. The results demonstrated that cell invasion and migration were suppressed by inhibiting Aurora-B. In addition, the effect of Aurora-B inhibition on the activity of the phosphoinositide 3-kinase (PI3K)/Akt/nuclear factor (NF)-κB signaling pathway was investigated by analyzing the protein expression levels of phosphorylated (p)-Akt, Akt, NF-κB p65, matrix metalloproteinase (MMP)-2 and MMP-9 using western blot analysis. The results demonstrated that the protein expression levels of p-Akt, NF-κB p65, MMP-2 and MMP-9 were reduced significantly by inhibiting Aurora-B. Therefore, inhibition of Aurora-B was shown to suppress hepatocellular carcinoma cell migration and invasion by decreasing the activity of the PI3K/Akt/NF-κB signaling pathway in vitro.

  10. PKC and AKT Modulate cGMP/PKG Signaling Pathway on Platelet Aggregation in Experimental Sepsis

    PubMed Central

    Lopes-Pires, M. Elisa; Naime, Ana C. Antunes; Almeida Cardelli, Nádia J.; Anjos, Débora J.; Antunes, Edson; Marcondes, Sisi

    2015-01-01

    Sepsis severity has been positively correlated with platelet dysfunction, which may be due to elevations in nitric oxide (NO) and cGMP levels. Protein kinase C, Src kinases, PI3K and AKT modulate platelet activity in physiological conditions, but no studies evaluated the role of these enzymes in platelet aggregation in sepsis. In the present study we tested the hypothesis that in sepsis these enzymes positively modulate upstream the NO-cGMP pathway resulting in platelet inhibition. Rats were injected with lipopolysaccharide (LPS, 1 mg/kg, i.p.) and blood was collected after 6 h. Platelet aggregation was induced by ADP (10 μM). Western blotting assays were carried out to analyze c-Src and AKT activation in platelets. Intraplatelet cGMP levels were determined by enzyme immunoassay kit. Phosphorylation of c-SRC at Tyr416 was the same magnitude in platelets of control and LPS group. Incubation of the non-selective Src inhibitor PP2 (10 μM) had no effect on platelet aggregation of LPS-treated rats. LPS increased intraplatelet cGMP levels by 5-fold compared with control group, which was accompanied by 76% of reduction in ADP-induced platelet aggregation. The guanylyl cyclase inhibitor ODQ (25 μM) and the PKG inhibitor Rp-8-Br-PET-cGMPS (25 μM) fully reversed the inhibitory effect of LPS on platelet aggregation. Likewise, the PKC inhibitor GF109203X (10 μM) reversed the inhibition by LPS of platelet aggregation and decreased cGMP levels in platelets. AKT phosphorylation at Thr308 was significantly higher in platelets of LPS compared with control group, which was not reduced by PI3K inhibition. The AKT inhibitor API-1 (20 μM) significantly increased aggregation and reduced cGMP levels in platelets of LPS group. However, the PI3K inhibitor wortmannin and LY29004 had no effect on platelet aggregation of LPS-treated rats. Therefore, inhibition of ADP-induced platelet aggregation after LPS injection is mediated by cGMP/PKG-dependent mechanisms, and PKC and AKT act

  11. Cancer Associated Fibroblast-Derived Hepatocyte Growth Factor Inhibits the Paclitaxel-Induced Apoptosis of Lung Cancer A549 Cells by Up-Regulating the PI3K/Akt and GRP78 Signaling on a Microfluidic Platform

    PubMed Central

    Xu, Zhiyun; He, Tianrui; Li, Encheng; Guo, Zhe; Liu, Fen; Jiang, Chunmeng; Wang, Qi

    2015-01-01

    Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening. PMID:26115510

  12. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    SciTech Connect

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  13. Low level phosphorylation of histone H2AX on serine 139 (γH2AX) is not associated with DNA double-strand breaks

    PubMed Central

    Rybak, Paulina; Hoang, Agnieszka; Bujnowicz, Lukasz; Bernas, Tytus; Berniak, Krzysztof; Zarębski, Mirosław; Darzynkiewicz, Zbigniew; Dobrucki, Jerzy

    2016-01-01

    Phosphorylation of histone H2AX on serine 139 (γH2AX) is an early step in cellular response to a DNA double-strand break (DSB). γH2AX foci are generally regarded as markers of DSBs. A growing body of evidence demonstrates, however, that while induction of DSBs always brings about phosphorylation of histone H2AX, the reverse is not true - the presence of γH2AX foci should not be considered an unequivocal marker of DNA double-strand breaks. We studied DNA damage induced in A549 human lung adenocarcinoma cells by topoisomerase type I and II inhibitors (0.2 μM camptothecin, 10 μM etoposide or 0.2 μM mitoxantrone for 1 h), and using 3D high resolution quantitative confocal microscopy, assessed the number, size and the integrated intensity of immunofluorescence signals of individual γH2AX foci induced by these drugs. Also, investigated was spatial association between γH2AX foci and foci of 53BP1, the protein involved in DSB repair, both in relation to DNA replication sites (factories) as revealed by labeling nascent DNA with EdU. Extensive 3D and correlation data analysis demonstrated that γH2AX foci exhibit a wide range of sizes and levels of H2AX phosphorylation, and correlate differently with 53BP1 and DNA replication. This is the first report showing lack of a link between low level phosphorylation γH2AX sites and double-strand DNA breaks in cells exposed to topoisomerase I or II inhibitors. The data are discussed in terms of mechanisms that may be involved in formation of γH2AX sites of different sizes and intensities. PMID:27391338

  14. Akt isoforms in vascular disease

    PubMed Central

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-01-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease. PMID:25929188

  15. Hyperbaric oxygen protects mandibular condylar chondrocytes from interleukin-1β-induced apoptosis via the PI3K/AKT signaling pathway

    PubMed Central

    Chen, Hang; Wu, Gaoyi; Sun, Qi; Dong, Yabing; Zhao, Huaqiang

    2016-01-01

    Objectives: Mandibular condylar chondrocyte apoptosis is mainly responsible for the development and progression of temporomandibular joint osteoarthritis (TMJ-OA). Interleukin-1β (IL-1β) generally serves an agent that induces chondrocyte apoptosis. Hyperbaric oxygen (HBO) treatment increases proteoglycan synthesis in vivo. We explore the protective effect of HBO on IL-1β-induced mandibular condylar chondrocyte apoptosis in rats and the potential molecular mechanisms. Methods: Chondrocytes were isolated from the TMJ of 3-4-week old Sprague-Dawley rats. The Cell Counting Kit-8 (CCK-8) assay was used to determine cell viability. The phosphorylated phosphoinositide-3 kinase (p-PI3K), phosphorylated AKT (p-Akt), type II collagen (COL2), and aggrecan (AGG) content was detected by immunofluorescence, immunocytochemistry and western blotting. The expression of Pi3k, Akt, Col2 and Agg mRNA was measured using real-time quantitative polymerase chain reaction (RT-qPCR). Results: HBO inhibited the cytotoxicity and apoptosis induced by IL-1β (10 ng/mL) in the mandibular condylar chondrocytes. HBO also decreased the IL-1β activity that decreased p-PI3K and p-AKT levels, and increased COL2 and AGG expression, with the net effect of suppressing extracellular matrix degradation. Conclusions: These data suggest that HBO may protect mandibular condylar chondrocytes against IL-1β-induced apoptosis via the PI3K/AKT signaling pathway, and that it may promote the expression of mandibular condylar chondrocyte extracellular matrix through the PI3K/AKT signaling pathway. PMID:27904712

  16. AKT/mTOR and c-Jun N-terminal kinase signaling pathways are required for chrysotile asbestos-induced autophagy.

    PubMed

    Lin, Ziying; Liu, Tie; Kamp, David W; Wang, Yahong; He, Huijuan; Zhou, Xu; Li, Donghong; Yang, Lawei; Zhao, Bin; Liu, Gang

    2014-07-01

    Chrysotile asbestos is closely associated with excess mortality from pulmonary diseases such as lung cancer, mesothelioma, and asbestosis. Although multiple mechanisms in which chrysotile asbestos fibers induce pulmonary disease have been identified, the role of autophagy in human lung epithelial cells has not been examined. In this study, we evaluated whether chrysotile asbestos induces autophagy in A549 human lung epithelial cells and then analyzed the possible underlying molecular mechanism. Chrysotile asbestos induced autophagy in A549 cells based on a series of biochemical and microscopic autophagy markers. We observed that asbestos increased expression of A549 cell microtubule-associated protein 1 light chain 3 (LC3-II), an autophagy marker, in conjunction with dephosphorylation of phospho-AKT, phospho-mTOR, and phospho-p70S6K. Notably, AKT1/AKT2 double-knockout murine embryonic fibroblasts (MEFs) had negligible asbestos-induced LC3-II expression, supporting a crucial role for AKT signaling. Chrysotile asbestos also led to the phosphorylation/activation of Jun N-terminal kinase (JNK) and p38 MAPK. Pharmacologic inhibition of JNK, but not p38 MAPK, dramatically inhibited the protein expression of LC3-II. Moreover, JNK2(-/-) MEFs but not JNK1(-/-) MEFs blocked LC3-II levels induced by chrysotile asbestos. In addition, N-acetylcysteine, an antioxidant, attenuated chrysotile asbestos-induced dephosphorylation of P-AKT and completely abolished phosphorylation/activation of JNK. Finally, we demonstrated that chrysotile asbestos-induced apoptosis was not affected by the presence of the autophagy inhibitor 3-methyladenine or autophagy-related gene 5 siRNA, indicating that the chrysotile asbestos-induced autophagy may be adaptive rather than prosurvival. Our findings demonstrate that AKT/mTOR and JNK2 signaling pathways are required for chrysotile asbestos-induced autophagy. These data provide a mechanistic basis for possible future clinical applications targeting

  17. Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA.

    PubMed

    Nguyen, Le Xuan Truong; Mitchell, Beverly S

    2013-12-17

    Transcription initiation factor I (TIF-IA) plays an essential role in regulating ribosomal RNA (rRNA) synthesis by tethering RNA polymerase I (Pol I) to the rDNA promoter. We have found that activated Akt enhances rRNA synthesis through the phosphorylation of casein kinase IIα (CK2α) on a threonine residue near its N terminus. CK2 in turn phosphorylates TIF-IA, thereby increasing rDNA transcription. Activated Akt also stabilizes TIF-IA, induces its translocation to the nucleolus, and enhances its interaction with Pol I. Treatment with AZD8055, an inhibitor of both Akt and mammalian target of rapamycin phosphorylation, but not with rapamycin, disrupts Akt-mediated TIF-IA stability, translocation, and activity. These data support a model in which activated Akt enhances rRNA synthesis both by preventing TIF-IA degradation and phosphorylating CK2α, which in turn phosphorylates TIF-IA. This model provides an explanation for the ability of activated Akt to promote cell proliferation and, potentially, transformation.

  18. Cyclophilin A as a downstream effector of PI3K/Akt signalling pathway in multiple myeloma cells.

    PubMed

    Lin, Zuo-Lin; Wu, Hsin-Jou; Chen, Jin-An; Lin, Kuo-Chih; Hsu, Jung-Hsin

    2015-12-01

    Cyclophilin A (Cyp A), a member of the peptidyl-prolyl isomerase (PPI) family, may function as a molecular signalling switch. Comparative proteomic studies have identified Cyp A as a potential downstream target of protein kinase B (Akt). This study confirmed that Cyp A is a downstream effector of the phosphatidylinositide 3-kinase (PI3K)/Akt signalling pathway. Cyp A was highly phosphorylated in response to interleukin-6 treatment, which was consistent with the accumulation of phosphorylated Akt, suggesting that Cyp A is a phosphorylation target of Akt and downstream effector of the PI3K/Akt pathway. Cyclosporine A (CsA), a PPI inhibitor, inhibited the growth of multiple myeloma (MM) U266 cells. Moreover, CsA treatment inhibited the activation of the signal transducer and activator of transcription 3 (STAT3) in MM U266 cells. Several Cyp A mutants were generated. Mutants with mutated AKT phosphorylation sites increased the G1 phase arrest in MM U266 cells. The other mutants that mimicked the phosphorylated state of Cyp A decreased the percentage of G1 phase. These results demonstrated that the states of phosphorylation of Cyp A by Akt can influence the progress of the cell cycle in MM U266 cells and that this effect is probably mediated through the Janus-activated kinase 2/STAT3 signalling pathway.

  19. Activation of PI3K/Akt pathway limits JNK-mediated apoptosis during EV71 infection.

    PubMed

    Zhang, Hua; Li, Fengqi; Pan, Ziye; Wu, Zhijun; Wang, Yanhong; Cui, Yudong

    2014-11-04

    Apoptosis is frequently induced to inhibit virus replication during infection of Enterovirus 71 (EV71). On the contrary, anti-apoptotic pathway, such as PI3K/Akt pathway, is simultaneously exploited by EV71 to accomplish the viral life cycle. The relationship by which EV71-induced apoptosis and PI3K/Akt signaling pathway remains to be elucidated. In this study, we demonstrated that EV71 infection altered Bax conformation and triggered its redistribution from the cytosol to mitochondria in RD cells. Subsequently, cytochrome c was released from mitochondria to cytosol. We also found that c-Jun NH2-terminal kinase (JNK) was activated during EV71 infection. The JNK specific inhibitor significantly inhibited Bax activation and cytochrome c release, suggesting that EV71-induced apoptosis was involved into a JNK-dependent manner. Meanwhile, EV71-induced Akt phosphorylation involved a PI3K-dependent mechanism. Inhibition of the PI3K/Akt pathway enhanced JNK phosphorylation and the JNK-mediated apoptosis upon EV71 infection. Moreover, PI3K/Akt pathway phosphorylated apoptosis signal-regulating kinase 1 (ASK1) and negatively regulated the ASK1 activity. Knockdown of ASK1 significantly decreased JNK phosphorylation, which implied that ASK1 phosphorylation by Akt inhibited ASK1-mediated JNK activation. Collectively, these data reveal that activation of the PI3K/Akt pathway limits JNK-mediated apoptosis by phosphorylating and inactivating ASK1 during EV71 infection.

  20. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway.

    PubMed

    Sivagurunathan, Suganya; Palanisamy, Karthikka; Arunachalam, Jayamuruga Pandian; Chidambaram, Subbulakshmi

    2017-03-01

    PIWI subfamily of proteins is shown to be primarily expressed in germline cells. They maintain the genomic integrity by silencing the transposable elements. Although the role of PIWI proteins in germ cells has been documented, their presence and function in somatic cells remains unclear. Intriguingly, we detected all four members of PIWI-like proteins in human ocular tissues and somatic cell lines. When HIWI2 was knocked down in retinal pigment epithelial cells, the typical honeycomb morphology was affected. Further analysis showed that the expression of tight junction (TJ) proteins, CLDN1, and TJP1 were altered in HIWI2 knockdown. Moreover, confocal imaging revealed disrupted TJP1 assembly at the TJ. Previous studies report the role of GSK3β in regulating TJ proteins. Accordingly, phospho-kinase proteome profiler array indicated increased phosphorylation of Akt and GSK3α/β in HIWI2 knockdown, suggesting that HIWI2 might affect TJ proteins through Akt-GSK3α/β signaling axis. Moreover, treating the HIWI2 knockdown cells with wortmannin increased the levels of TJP1 and CLDN1. Taken together, our study demonstrates the presence of PIWI-like proteins in somatic cells and the possible role of HIWI2 in preserving the functional integrity of epithelial cells probably by modulating the phosphorylation status of Akt.

  1. Lowered Expression of Tumor Suppressor Candidate MYO1C Stimulates Cell Proliferation, Suppresses Cell Adhesion and Activates AKT

    PubMed Central

    Visuttijai, Kittichate; Pettersson, Jennifer; Mehrbani Azar, Yashar; van den Bout, Iman; Örndal, Charlotte; Marcickiewicz, Janusz; Nilsson, Staffan; Hörnquist, Michael; Olsson, Björn; Ejeskär, Katarina

    2016-01-01

    Myosin-1C (MYO1C) is a tumor suppressor candidate located in a region of recurrent losses distal to TP53. Myo1c can tightly and specifically bind to PIP2, the substrate of Phosphoinositide 3-kinase (PI3K), and to Rictor, suggesting a role for MYO1C in the PI3K pathway. This study was designed to examine MYO1C expression status in a panel of well-stratified endometrial carcinomas as well as to assess the biological significance of MYO1C as a tumor suppressor in vitro. We found a significant correlation between the tumor stage and lowered expression of MYO1C in endometrial carcinoma samples. In cell transfection experiments, we found a negative correlation between MYO1C expression and cell proliferation, and MYO1C silencing resulted in diminished cell migration and adhesion. Cells expressing excess of MYO1C had low basal level of phosphorylated protein kinase B (PKB, a.k.a. AKT) and cells with knocked down MYO1C expression showed a quicker phosphorylated AKT (pAKT) response in reaction to serum stimulation. Taken together the present study gives further evidence for tumor suppressor activity of MYO1C and suggests MYO1C mediates its tumor suppressor function through inhibition of PI3K pathway and its involvement in loss of contact inhibition. PMID:27716847

  2. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity.

    PubMed

    Oeck, S; Al-Refae, K; Riffkin, H; Wiel, G; Handrick, R; Klein, D; Iliakis, G; Jendrossek, V

    2017-02-17

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition.

  3. Isoform-specific regulation of adipocyte differentiation by Akt/protein kinase B{alpha}

    SciTech Connect

    Yun, Sung-Ji; Kim, Eun-Kyoung; Tucker, David F.; Kim, Chi Dae; Birnbaum, Morris J.; Bae, Sun Sik

    2008-06-20

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway tightly regulates adipose cell differentiation. Here we show that loss of Akt1/PKB{alpha} in primary mouse embryo fibroblast (MEF) cells results in a defect of adipocyte differentiation. Adipocyte differentiation in vitro and ex vivo was restored in cells lacking both Akt1/PKB{alpha} and Akt2/PKB{beta} by ectopic expression of Akt1/PKB{alpha} but not Akt2/PKB{beta}. Akt1/PKB{alpha} was found to be the major regulator of phosphorylation and nuclear export of FoxO1, whose presence in the nucleus strongly attenuates adipocyte differentiation. Differentiation-induced cell division was significantly abrogated in Akt1/PKB{alpha}-deficient cells, but was restored after forced expression of Akt1/PKB{alpha}. Moreover, expression of p27{sup Kip1}, an inhibitor of the cell cycle, was down regulated in an Akt1/PKB{alpha}-specific manner during adipocyte differentiation. Based on these data, we suggest that the Akt1/PKB{alpha} isoform plays a major role in adipocyte differentiation by regulating FoxO1 and p27{sup Kip1}.

  4. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity

    PubMed Central

    Oeck, S.; Al-Refae, K.; Riffkin, H.; Wiel, G.; Handrick, R.; Klein, D.; Iliakis, G.; Jendrossek, V.

    2017-01-01

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition. PMID:28209968

  5. Ischemic post-conditioning facilitates brain recovery after stroke by promoting Akt/mTOR activity in nude rats.

    PubMed

    Xie, Rong; Wang, Peng; Ji, Xunming; Zhao, Heng

    2013-12-01

    While pre-conditioning is induced before stroke onset, ischemic post-conditioning (IPostC) is performed after reperfusion, which typically refers to a series of mechanical interruption of blood reperfusion after stroke. IPostC is known to reduce infarction in wild-type animals. We investigated if IPostC protects against brain injury induced by focal ischemia in Tcell-deficient nude rats and to examine its effects on Akt and the mammalian target of rapamycin (mTOR) pathway. Although IPostC reduced infarct size at 2 days post-stroke in wild-type rats, it did not attenuate infarction in nude rats. Despite the unaltered infarct size in nude rats, IPostC increased levels of phosphorylated Akt (p-Akt) and Akt isoforms (Akt1, Akt2, Akt3), and p-mTOR, p-S6K and p-4EBP1 in the mTOR pathway, as well as growth associated Protein 43 (GAP43), both in the peri-infarct area and core, 24 h after stroke. IPostC improved neurological function in nude rats 1-30 days after stroke and reduced the extent of brain damage 30 days after stroke. The mTOR inhibitor rapamycin abolished the long-term protective effects of IPostC. We determined that IPostC did not inhibit acute infarction in nude rats but did provide long-term protection by enhancing Akt and mTOR activity during the acute post-stroke phase. Post-conditioning did not attenuate infarction in nude rats measured 2 days post-stroke, but improved neurological function in nude rats and reduced brain damage 30 days after stroke. It resulted in increased-activities of Akt and mTOR, S6K and p-4EBP1. The mTOR inhibitor rapamycin abolished the long-term protective effects of IPostC.

  6. Effects of ginkgolide A on okadaic acid-induced tau hyperphosphorylation and the PI3K-Akt signaling pathway in N2a cells.

    PubMed

    Chen, Yan; Wang, Cui; Hu, Meili; Pan, Jian; Chen, Jianhua; Duan, Peilu; Zhai, Tianlong; Ding, Jingna; Xu, Cunji

    2012-08-01

    Alzheimer's disease is the most common form of dementia leading to the irreversible loss of neurons, and Tau hyperphosphorylation has an important role in the pathology of Alzheimer's disease. Ginkgolide A is one of the active components of Ginkgo biloba extracts which has been proven to have neuroprotective effects, but the effect of ginkgolide A on Tau hyperphosphorylation has not yet been reported. In this study, the effects of ginkgolide A on cell viability, Tau hyperphosphorylation, and the PI3K-Akt signaling pathway in N2a cell lines were explored, and methods such as the MTT assay, ELISA, and Western blots techniques were used. The results showed that ginkgolide A could increase cell viability and suppress the phosphorylation level of Tau in cell lysates, meanwhile, GSK3β was inhibited with phosphorylation at Ser9. Moreover, treatment of the cells with ginkgolide A promoted phosphorylation of PI3K and Akt, suggesting that the activation of the PI3K-Akt signaling pathway may be the mechanism for ginkgolide A to prevent the intracellular accumulation of p-Tau induced by okadaic acid and to protect the cells from Tau hyperphosphorylation-related toxicity.

  7. Impairment of insulin-stimulated Akt/GLUT4 signaling is associated with cardiac contractile dysfunction and aggravates I/R injury in STZ-diabetic Rats

    PubMed Central

    Huang, Jiung-Pang; Huang, Shiang-Suo; Deng, Jen-Ying; Hung, Li-Man

    2009-01-01

    In this study, we established systemic in-vivo evidence from molecular to organism level to explain how diabetes can aggravate myocardial ischemia-reperfusion (I/R) injury and revealed the role of insulin signaling (with specific focus on Akt/GLUT4 signaling molecules). The myocardial I/R injury was induced by the left main coronary artery occlusion for 1 hr and then 3 hr reperfusion in control, streptozotocin (STZ)-induced insulinopenic diabetes, and insulin-treated diabetic rats. The diabetic rats showed a significant decrease in heart rate, and a prolonged isovolumic relaxation (tau) which lead to decrease in cardiac output (CO) without changing total peripheral resistance (TPR). The phosphorylated Akt and glucose transporter 4 (GLUT 4) protein levels were dramatically reduced in both I/R and non-I/R diabetic rat hearts. Insulin treatment in diabetes showed improvement of contractile function as well as partially increased Akt phosphorylation and GLUT 4 protein levels. In the animals subjected to I/R, the mortality rates were 25%, 65%, and 33% in the control, diabetic, and insulin-treated diabetic group respectively. The I/R-induced arrhythmias and myocardial infarction did not differ significantly between the control and the diabetic groups. Consistent with its anti-hyperglycemic effects, insulin significantly reduced I/R-induced arrhythmias but had no effect on I/R-induced infarctions. Diabetic rat with I/R exhibited the worse hemodynamic outcome, which included systolic and diastolic dysfunctions. Insulin treatment only partially improved diastolic functions and elevated P-Akt and GLUT 4 protein levels. Our results indicate that cardiac contractile dysfunction caused by a defect in insulin-stimulated Akt/GLUT4 may be a major reason for the high mortality rate in I/R injured diabetic rats. PMID:19706162

  8. Protein kinase Ymr291w/Tda1 is essential for glucose signaling in saccharomyces cerevisiae on the level of hexokinase isoenzyme ScHxk2 phosphorylation*.

    PubMed

    Kaps, Sonja; Kettner, Karina; Migotti, Rebekka; Kanashova, Tamara; Krause, Udo; Rödel, Gerhard; Dittmar, Gunnar; Kriegel, Thomas M

    2015-03-06

    The enzyme ScHxk2 of Saccharomyces cerevisiae is a dual-function hexokinase that besides its catalytic role in glycolysis is involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by the phosphorylation of the nuclear fraction of ScHxk2 at serine 15 and the translocation of the phosphoenzyme into the cytosol. Different studies suggest different serine/threonine protein kinases, Ymr291w/Tda1 or Snf1, to accomplish ScHxk2-S15 phosphorylation. The current paper provides evidence that Ymr291w/Tda1 is essential for that modification, whereas protein kinases Ydr477w/Snf1, Ynl307c/Mck1, Yfr014c/Cmk1, and Ykl126w/Ypk1, which are co-purified during Ymr291w/Tda1 tandem affinity purification, as well as protein kinase PKA and PKB homolog Sch9 are dispensable. Taking into account the detection of a significantly higher amount of the Ymr291w/Tda1 protein in cells grown in low-glucose media as compared with a high-glucose environment, Ymr291w/Tda1 is likely to contribute to glucose signaling in S. cerevisiae on the level of ScHxk2-S15 phosphorylation in a situation of limited external glucose availability. The evolutionary conservation of amino acid residue serine 15 in yeast hexokinases and its phosphorylation is illustrated by the finding that YMR291W/TDA1 of S. cerevisiae and the homologous KLLA0A09713 gene of Kluyveromyces lactis allow for cross-complementation of the respective protein kinase single-gene deletion strains.

  9. Circulating levels of non-phosphorylated undercarboxylated matrix Gla protein are associated with disease severity in patients with chronic heart failure.

    PubMed

    Ueland, Thor; Dahl, Christen P; Gullestad, Lars; Aakhus, Svend; Broch, Kaspar; Skårdal, Rita; Vermeer, Cees; Aukrust, Pål; Schurgers, Leon J

    2011-08-01

    We recently demonstrated that circulating MGP [matrix Gla (γ-carboxylated glutamate) protein] levels were associated with left ventricular dysfunction and increased mortality in patients with symptomatic aortic stenosis. We hypothesized that patients with chronic HF (heart failure) would have dysregulated MGP levels. We examined plasma dp-cMGP (non-phosphorylated carboxylated MGP) and dp-ucMGP (non-phosphorylated undercarboxylated MGP) in 179 patients with chronic HF and matched healthy controls as well as the relationship between MGP and cardiac dysfunction as assessed by echocardiographic measurements, inflammation [CRP (C-reactive protein)] and neurohormonal activation [NT-proBNP (N-terminal proB-type natriuretic peptide)] and the prognostic value of MGP levels in relation to mortality in these patients. We found markedly enhanced plasma dp-cMGP and, in particular, of dp-ucMGP in chronic HF with increasing levels with disease severity. Elevated MGP species were associated with ischaemic aetiology, increased CRP and NT-proBNP levels, as well as systolic and diastolic dysfunction. Finally, dp-ucMGP was associated with long-term heart transplant-free survival (n=48) in univariate, but not in multivariate, analysis. However, plasma dp-ucMGP was markedly higher in patients who died because of progression of HF (n=12) and gave prognostic information also in multivariate analysis. In conclusion, a dysregulated MGP system could be involved in left ventricular dysfunction in patients with chronic HF.

  10. Real-time imaging nuclear translocation of Akt1 in HCC cells

    SciTech Connect

    Zhu, Li; Li, Jinjun; He, Xianghuo

    2007-05-18

    Akt is one of the critical mediators in cellular signaling, and overactivation of Akt related pathway frequently occurs in hepatocellular carcinoma (HCC). In this study, we presented that Akt was upregulated in HCC cell lines, and its active phosphorylated form was mainly located in the nucleus. Employing the laser confocal techniques for imaging intracellular protein dynamics, we monitored the transnuclear movement of GFP-tagged wild-type Akt1 (Akt1-WT-GFP) and its inactive mutant (Akt1-T308A/S473A-GFP) in live SMMC-7721 HCC cells, and both of fusion proteins were found to distribute over the cytoplasm and nucleus. Moreover, it was found that platelet derived growth factor (PDGF) was able to accelerate the nuclear translocation of wild-type Akt1 in HCC cells but failed to speed up the motion of the mutant. It was demonstrated that activation of phosphatidylinositol 3-kinase (PI3K) and Akt1 facilitated the nuclear translocation of Akt1, but the phosphorylation at threonine 308 and serine 473 was not prerequisite.

  11. Saw palmetto extract suppresses insulin-like growth factor-I signaling and induces stress-activated protein kinase/c-Jun N-terminal kinase phosphorylation in human prostate epithelial cells.

    PubMed

    Wadsworth, Teri L; Carroll, Julie M; Mallinson, Rebecca A; Roberts, Charles T; Roselli, Charles E

    2004-07-01

    A common alternative therapy for benign prostatic hyperplasia (BPH) is the extract from the fruit of saw palmetto (SPE). BPH is caused by nonmalignant growth of epithelial and stromal elements of the prostate. IGF action is important for prostate growth and development, and changes in the IGF system have been documented in BPH tissues. The main signaling pathways activated by the binding of IGF-I to the IGF-I receptor (IGF-IR) are the ERK arm of the MAPK cascade and the phosphoinositol-3-kinase (PI3K)/protein kinase B (PKB/Akt) cascade. We tested the hypothesis that SPE suppresses growth and induces apoptosis in the P69 prostate epithelial cell line by inhibiting IGF-I signaling. Treatment with 150 microg/ml SPE for 24 h decreased IGF-I-induced proliferation of P69 cells and induced cleavage of the enzyme poly(ADP-ribose)polymerase (PARP), an index of apoptosis. Treatment of serum-starved P69 cells with 150 microg/ml SPE for 6 h reduced IGF-I-induced phosphorylation of Akt (assessed by Western blot) and Akt activity (assessed by an Akt kinase assay). Western blot analysis showed that SPE reduced IGF-I-induced phosphorylation of the adapter protein insulin receptor substrate-1 and decreased downstream effects of Akt activation, including increased cyclin D1 levels and phosphorylation of glycogen synthase kinase-3 and p70(s6k). There was no effect on IGF-I-induced phosphorylation of MAPK, IGF-IR, or Shc. Treatment of starved cells with SPE alone induced phosphorylation the proapoptotic protein JNK. SPE treatment may relieve symptoms of BPH, in part, by inhibiting specific components of the IGF-I signaling pathway and inducing JNK activation, thus mediating antiproliferative and proapoptotic effects on prostate epithelia.

  12. Galangin Activates the ERK/AKT-Driven Nrf2 Signaling Pathway to Increase the Level of Reduced Glutathione in Human Keratinocytes.

    PubMed

    Madduma Hewage, Susara Ruwan Kumara; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Fernando, Pattage Madushan Dilhara Jayatissa; Oh, Min Chang; Park, Jeong Eon; Shilnikova, Kristina; Moon, Yu Jin; Shin, Dae O; Hyun, Jin Won

    2016-11-08

    Previously, we demonstrated that galangin (3,5,7-trihydroxyflavone) protects human keratinocytes against ultraviolet B (UVB)-induced oxidative damage. In this study, we investigated the effect of galangin on induction of antioxidant enzymes involved in synthesis of reduced glutathione (GSH), and investigated the associated upstream signaling cascades. By activating nuclear factor-erythroid 2-related factor (Nrf2), galangin treatment significantly increased expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS). This activation of Nrf2 depended on extracellular signal-regulated kinases (ERKs) and protein kinase B (AKT) signaling. Inhibition of GSH in galangin-treated cells attenuated the protective effect of galangin against the deleterious effects of UVB. Our results reveal that galangin protects human keratinocytes by activating ERK/AKT-Nrf2, leading to elevated expression of GSH-synthesizing enzymes.

  13. TCN, an AKT inhibitor, exhibits potent antitumor activity and enhances radiosensitivity in hypoxic esophageal squamous cell carcinoma in vitro and in vivo

    PubMed Central

    Guo, Qing; He, Jia; Shen, Feng; Zhang, Wei; Yang, Xi; Zhang, Chi; Zhang, Qu; Huang, Jun-Xing; Wu, Zheng-Dong; Sun, Xin-Chen; Dai, Sheng-Bin

    2017-01-01

    The aim of the present study was to investigate the radiosensitization effect of triciribine (TCN) on human esophageal squamous cell carcinoma (ESCC) in normoxia or hypoxia and its mechanism. The cytotoxicity and radiosensitization mechanism of TCN were investigated by Cell Counting Kit 8, clonogenic assay, flow cytometry, western blotting (WB) and immunofluorescence staining of phospho-histone H2A.X, Ser139 (γ-H2AX) in ESCC in vitro, while the protein expression levels of AKT, phosphorylated (p)-AKT, hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) were evaluated by WB in vivo. The cytotoxicity of TCN was dose dependent. Upon exposure to TCN, ESCC cells in hypoxia treated with 4-Gy radiotherapy exhibited an evidently higher apoptotic rate than cells subjected to other treatments. TCN could significantly inhibit the protein expression of p-AKT, HIF-1α and VEGF in vitro and in vivo. The present results suggested that TCN can effectively inhibit AKT, p-AKT, HIF-1α and VEGF, thus conferring radiosensitivity to ESCC in vitro and vivo. TCN is considered as an adjuvant in radiotherapy of ESCC in clinical application. PMID:28356983

  14. STC2 promotes head and neck squamous cell carcinoma metastasis through modulating the PI3K/AKT/Snail signaling

    PubMed Central

    Yang, Shuwen; Ji, Qinghai; Chang, Bin; Wang, Yan; Zhu, Yongxue; Li, Duanshu; Huang, Caiping; Wang, Yulong; Sun, Guohua; Zhang, Ling; Guan, Qing; Xiang, Jun; Wei, Wenjun; Lu, Zhongwu; Liao, Tian; Meng, Jiao; Wang, Ziliang; Ma, Ben; Zhou, Li; Wang, Yu; Yang, Gong

    2017-01-01

    The mammalian peptide hormone stanniocalcin 2 (STC2) plays an oncogenic role in many human cancers. However, the exact function of STC2 in human head and neck squamous cell carcinoma (HNSCC) is unclear. We aimed to examine the function and clinical significance of STC2 in HNSCC. Using in vitro and in vivo assays, we show that overexpression of STC2 suppressed cell apoptosis, promoted cell proliferation, migration, invasion, and cell cycle arrest at the G1/S transition. By contrast, silencing of STC2 inhibited these activities. We further show that STC2 upregulated the phosphorylation of AKT and enhanced HNSCC metastasis via Snail-mediated increase of vimentin and decrease of E-cadherin. These responses were blocked by silencing of STC2/Snail expression or inhibition of pAKT activity. Furthermore, clinical data indicate that high STC2 expression was associated with high levels of pAKT and Snail in tumor samples from HNSCC patients with regional lymph node metastasis (P < 0.01). Thus, we conclude that STC2 controls HNSCC metastasis via the PI3K/AKT/Snail signaling axis and that targeted therapy against STC2 may be a novel strategy to effectively treat patients with metastatic HNSCC. PMID:27863406

  15. Alpha-fetoprotein activates AKT/mTOR signaling to promote CXCR4 expression and migration of hepatoma cells.

    PubMed

    Zhu, Mingyue; Guo, Junli; Xia, Hua; Li, Wei; Lu, Yan; Dong, Xu; Chen, Yi; Xie, Xieju; Fu, Shigan; Li, Mengsen

    2015-01-01

    CXCR4, stromal cell-derived factor-1α(SDF 1α) receptor, stimulates growth and metastasis of hepatocellular carcinoma (HCC). Alpha-fetoprotein(AFP) governs the expression of some metastasis-related genes. Here we report that AFP and CXCR4 levels correlated in HCC tissues. AFP-expressing vectors induced CXCR4. In agreement, AFP depletion by siRNA decreased CXCR4. AFP co-localized and interacted with PTEN, thus inducing CXCR4 by activating AKT(Ser473) phosphorylation. In turn, phospho-mTOR(Ser2448) entered the nucleus and bound the CXCR4 gene promoter. Thus, AFP promoted migration of HCC cells. In concusion, AFP induced CXCR4 by activating the AKT/mTOR signal pathway.

  16. Alpha-fetoprotein activates AKT/mTOR signaling to promote CXCR4 expression and migration of hepatoma cells

    PubMed Central

    Li, Wei; Lu, Yan; Dong, Xu; Chen, Yi; Xie, Xieju; Fu, Shigan; Li, Mengsen

    2015-01-01

    CXCR4, stromal cell-derived factor-1α(SDF 1α) receptor, stimulates growth and metastasis of hepatocellular carcinoma (HCC). Alpha-fetoprotein(AFP) governs the expression of some metastasis-related genes. Here we report that AFP and CXCR4 levels correlated in HCC tissues. AFP-expressing vectors induced CXCR4. In agreement, AFP depletion by siRNA decreased CXCR4. AFP co-localized and interacted with PTEN, thus inducing CXCR4 by activating AKT(Ser473) phosphorylation. In turn, phospho-mTOR(Ser2448) entered the nucleus and bound the CXCR4 gene promoter. Thus, AFP promoted migration of HCC cells. In concusion, AFP induced CXCR4 by activating the AKT/mTOR signal pathway. PMID:25815363

  17. Upregulation of AKT1 protein expression in forskolin-stimulated macrophage: evidence from ChIP analysis that CREB binds to and activates the AKT1 promoter.

    PubMed

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2007-03-01

    Recently, we reported that silencing CREB gene expression by RNAi significantly attenuates forskolin-induced activation of Akt1. We now provide evidence that forskolin-treatment causes transcriptional and translational upregulation of Akt1 in macrophages. Akt synthesis was demonstrated by [(14)C]leucine or [(35)S] incorporation into newly synthesized Akt1 protein. Akt protein levels increased by approximately 1.5-fold after only a 5 min exposure of macrophages to forskolin. Akt1 levels thereafter rapidly returned to basal values (t(1/2) approximately 15 min). Maximal upregulation of Akt1 occurred in cells treated with 10 microM forskolin. Forskolin-dependent Akt1 synthesis was abolished by pretreating the cells with CREB-directed dsRNA as demonstrated at both the message and protein level, as well as by determining the synthesis of [(35)S]-labeled Akt1 protein. The PKA inhibitor H-89, greatly attenuated forskolin-induced Akt1 synthesis. Transcriptional and translational inhibitors also greatly reduced Akt1 synthesis in forskolin-stimulated [(14)C]leucine-labeled macrophages. Using a chromatin immunoprecipitation assay, we demonstrate that CREB binds to a CRE binding domain of the Akt1 gene promoter. In conclusion, we show here for the first time transcriptional upregulation of Akt1 by CREB, based upon Akt1 protein synthesis and its modulation by transitional and translational inhibitors in forskolin-stimulated cells, Akt1 protein. and mRNA levels upon silencing CREB gene expression, and binding of CREB to the Akt1 gene promoter.

  18. Seasonal changes in isoform composition of giant proteins of thick and thin filaments and titin (connectin) phosphorylation level in striated muscles of bears (Ursidae, Mammalia).

    PubMed

    Salmov, N N; Vikhlyantsev, I M; Ulanova, A D; Gritsyna, Yu V; Bobylev, A G; Saveljev, A P; Makariushchenko, V V; Maksudov, G Yu; Podlubnaya, Z A

    2015-03-01

    Seasonal changes in the isoform composition of thick and thin filament proteins (titin, myosin heavy chains (MyHCs), nebulin), as well as in the phosphorylation level of titin in striated muscles of brown bear (Ursus arctos) and hibernating Himalayan black bear (Ursus thibetanus ussuricus) were studied. We found that the changes that lead to skeletal muscle atrophy in bears during hibernation are not accompanied by a decrease in the content of nebulin and intact titin-1 (T1) isoforms. However, a decrease (2.1-3.4-fold) in the content of T2 fragments of titin was observed in bear skeletal muscles (m. gastrocnemius, m. longissimus dorsi, m. biceps) during hibernation. The content of the stiffer N2B titin isoform was observed to increase relative to the content of its more compliant N2BA isoform in the left ventricles of hibernating bears. At the same time, in spite of the absence of decrease in the total content of T1 in the myocardium of hibernating brown bear, the content of T2 fragments decreased ~1.6-fold. The level of titin phosphorylation only slightly increased in the cardiac muscle of hibernating brown bear. In the skeletal muscles of brown bear, the level of titin phosphorylation did not vary between seasons. However, changes in the composition of MyHCs aimed at increasing the content of slow (I) and decreasing the content of fast (IIa) isoforms of this protein during hibernation of brown bear were detected. Content of MyHCs I and IIa in the skeletal muscles of hibernating Himalayan black bear corresponded to that in the skeletal muscles of hibernating brown bear.

  19. Spilanthol from Acmella Oleracea Lowers the Intracellular Levels of cAMP Impairing NKCC2 Phosphorylation and Water Channel AQP2 Membrane Expression in Mouse Kidney.

    PubMed

    Gerbino, Andrea; Schena, Giorgia; Milano, Serena; Milella, Luigi; Barbosa, Alan Franco; Armentano, Francesca; Procino, Giuseppe; Svelto, Maria; Carmosino, Monica

    2016-01-01

    Acmella oleracea is well recognized in Brazilian traditional medicine as diuretic, although few scientific data have been published to support this effect. Aim of this study was to determine the molecular effect of Acmella oleracea extract and its main alkylamide spilanthol on two major processes involved in the urine concentrating mechanism: Na-K-2Cl symporter (NKCC2) activity in the thick ascending limb and water channel aquaporin 2 accumulation at the apical plasma membrane of collecting duct cells. Phosphorylation of NKCC2 was evaluated as index of its activation by Western blotting. Rate of aquaporin 2 apical expression was analyzed by confocal laser microscopy. Spilanthol-induced intracellular signalling events were dissected by video-imaging experiments. Exposure to spilanthol reduced the basal phosphorylation level of NKCC2 both in freshly isolated mouse kidney slices and in NKCC2-expresing HEK293 cells. In addition, exposure to spilanthol strongly reduced both desmopressin and low Cl--dependent increase in NKCC2 phosphorylation in mouse kidney slices and NKCC2-expressing HEK293 cells, respectively. Similarly, spilanthol reduced both desmopressin- and forskolin-stimulated aquaporin 2 accumulation at the apical plasma membrane of collecting duct in mouse kidney slice and MCD4 cells, respectively. Of note, when orally administered, spilanthol induced a significant increase in both urine output and salt urinary excretion associated with a markedly reduced urine osmolality compared with control mice. Finally, at cellular level, spilanthol rapidly reduced or reversed basal and agonist-increased cAMP levels through a mechanism involving increases in intracellular [Ca2+]. In conclusion, spilanthol-induced inhibition of cAMP production negatively modulates urine-concentrating mechanisms thus holding great promise for its use as diuretic.

  20. Spilanthol from Acmella Oleracea Lowers the Intracellular Levels of cAMP Impairing NKCC2 Phosphorylation and Water Channel AQP2 Membrane Expression in Mouse Kidney

    PubMed Central

    Gerbino, Andrea; Schena, Giorgia; Milano, Serena; Milella, Luigi; Barbosa, Alan Franco; Armentano, Francesca; Procino, Giuseppe; Svelto, Maria; Carmosino, Monica

    2016-01-01

    Acmella oleracea is well recognized in Brazilian traditional medicine as diuretic, although few scientific data have been published to support this effect. Aim of this study was to determine the molecular effect of Acmella oleracea extract and its main alkylamide spilanthol on two major processes involved in the urine concentrating mechanism: Na-K-2Cl symporter (NKCC2) activity in the thick ascending limb and water channel aquaporin 2 accumulation at the apical plasma membrane of collecting duct cells. Phosphorylation of NKCC2 was evaluated as index of its activation by Western blotting. Rate of aquaporin 2 apical expression was analyzed by confocal laser microscopy. Spilanthol-induced intracellular signalling events were dissected by video-imaging experiments. Exposure to spilanthol reduced the basal phosphorylation level of NKCC2 both in freshly isolated mouse kidney slices and in NKCC2-expresing HEK293 cells. In addition, exposure to spilanthol strongly reduced both desmopressin and low Cl−-dependent increase in NKCC2 phosphorylation in mouse kidney slices and NKCC2-expressing HEK293 cells, respectively. Similarly, spilanthol reduced both desmopressin- and forskolin-stimulated aquaporin 2 accumulation at the apical plasma membrane of collecting duct in mouse kidney slice and MCD4 cells, respectively. Of note, when orally administered, spilanthol induced a significant increase in both urine output and salt urinary excretion associated with a markedly reduced urine osmolality compared with control mice. Finally, at cellular level, spilanthol rapidly reduced or reversed basal and agonist-increased cAMP levels through a mechanism involving increases in intracellular [Ca2+]. In conclusion, spilanthol-induced inhibition of cAMP production negatively modulates urine-concentrating mechanisms thus holding great promise for its use as diuretic. PMID:27213818

  1. Forward operation of adenine nucleotide translocase during F0F1-ATPase reversal: critical role of matrix substrate-level phosphorylation

    PubMed Central

    Chinopoulos, Christos; Gerencser, Akos A.; Mandi, Miklos; Mathe, Katalin; Töröcsik, Beata; Doczi, Judit; Turiak, Lilla; Kiss, Gergely; Konràd, Csaba; Vajda, Szilvia; Vereczki, Viktoria; Oh, Richard J.; Adam-Vizi, Vera

    2010-01-01

    In pathological conditions, F0F1-ATPase hydrolyzes ATP in an attempt to maintain mitochondrial membrane potential. Using thermodynamic assumptions and computer modeling, we established that mitochondrial membrane potential can be more negative than the reversal potential of the adenine nucleotide translocase (ANT) but more positive than that of the F0F1-ATPase. Experiments on isolated mitochondria demonstrated that, when the electron transport chain is compromised, the F0F1-ATPase reverses, and the membrane potential is maintained as long as matrix substrate-level phosphorylation is functional, without a concomitant reversal of the ANT. Consistently, no cytosolic ATP consumption was observed using plasmalemmal KATP channels as cytosolic ATP biosensors in cultured neurons, in which their in situ mitochondria were compromised by respiratory chain inhibitors. This finding was further corroborated by quantitative measurements of mitochondrial membrane potential, oxygen consumption, and extracellular acidification rates, indicating nonreversal of ANT of compromised in situ neuronal and astrocytic mitochondria; and by bioluminescence ATP measurements in COS-7 cells transfected with cytosolic- or nuclear-targeted luciferases and treated with mitochondrial respiratory chain inhibitors in the presence of glycolytic plus mitochondrial vs. only mitochondrial substrates. Our findings imply the possibility of a rescue mechanism that is protecting against cytosolic/nuclear ATP depletion under pathological conditions involving impaired respiration. This mechanism comes into play when mitochondria respire on substrates that support matrix substrate-level phosphorylation.—Chinopoulos, C., Gerencser, A. A., Mandi, M., Mathe, K., Töröcsik, B., Doczi, J., Turiak, L., Kiss, G., Konràd, C., Vajda, S., Vereczki, V., Oh, R. J., Adam-Vizi, V. Forward operation of adenine nucleotide translocase during F0F1-ATPase reversal: critical role of matrix substrate-level phosphorylation. PMID

  2. PRL-3 promotes the peritoneal metastasis of gastric cancer through the PI3K/Akt signaling pathway by regulating PTEN.

    PubMed

    Xiong, Jianbo; Li, Zhengrong; Zhang, Yang; Li, Daojiang; Zhang, Guoyang; Luo, Xianshi; Jie, Zhigang; Liu, Yi; Cao, Yi; Le, Zhibiao; Tan, Shengxing; Zou, Wenyu; Gong, Peitao; Qiu, Lingyu; Li, Yuanyuan; Wang, Huan; Chen, Heping

    2016-10-01

    Peritoneal metastasis is the most frequent cause of death in patients with advanced gastric carcinoma (GC). The phosphatase of regenerating liver-3 (PRL-3) is recognized as an oncogene and plays an important role in GC peritoneal metastasis. However, the mechanism of how PRL-3 regulates GC invasion and metastasis is unknown. In the present study, we found that PRL-3 presented with high expression in GC with peritoneal metastasis, but phosphatase and tensin homologue (PTEN) was weakly expressed. The p-PTEN/PTEN ratio was also higher in GC with peritoneal metastasis than that in the normal gastric tissues. We also found the same phenomenon when comparing the gastric mucosa cell line with the GC cell lines. After constructing a wild-type and a mutant-type plasmid without enzyme activity and transfecting them into GC SGC7901 cells, we showed that only PRL-3 had enzyme activity to downregulate PTEN and cause PTEN phosphorylation. The results also showed that PRL-3 increased the expression levels of MMP-2/MMP-9 and promoted the migration and invasion of the SGC7901 cells. Knockdown of PRL-3 decreased the expression levels of MMP-2/MMP-9 significantly, which further inhibited the migration and invasion of the GC cells. PRL-3 also increased the expression ratio of p-Akt/Akt, which indicated that PRL-3 may mediate the PI3K/Akt pathway to promote GC metastasis. When we transfected the PTEN siRNA plasmid into the PRL-3 stable low expression GC cells, the expression of p-Akt, MMP-2 and MMP-9 was reversed. In conclusion, our results provide a bridge between PRL-3 and PTEN; PRL-3 decreased the expression of PTEN as well as increased the level of PTEN phosphorylation and inactivated it, consequently activating the PI3K/Akt signaling pathway, and upregulating MMP-2/MMP-9 expression to promote GC cell peritoneal metastasis.

  3. Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling.

    PubMed

    Lai, Jinsheng; Chen, Fuqiong; Chen, Jing; Ruan, Guoran; He, Mengying; Chen, Chen; Tang, Jiarong; Wang, Dao Wen

    2017-03-14

    Microcirculatory dysfunction is believed to play an important role in diabetic cardiomyopathy. The small leucine-rich proteoglycan decorin is generally considered a pro-angiogenic factor. Here, we investigate whether overexpression of decorin ameliorates diabetic cardiomyopathy and its effects on angiogenesis in vivo and in vitro. Diabetes was induced through intraperitoneal injection with streptozotocin combined with a high-fat diet, and decorin was overexpressed via recombinant adeno-associated virus in Wistar rats. Six months later, cardiac function was determined using an echocardiography and cardiac catheter system. The results showed that cardiac function was decreased in diabetic rats and restored by overexpression of decorin. In addition, overexpression of decorin upregulated the expression of VEGF and attenuated the reduction in the cardiac capillary density. In the in vitro study, high glucose induced apoptosis and inhibited the capabilities of tube formation, migration and proliferation, which were all ameliorated by decorin overexpression. Meanwhile, decorin overexpression increased the expression of VEGF and IGF1R, as well as the phosphorylation level of AKT and AP-1. Nonetheless, all of these effects were abolished by pretreatment with the IGF1R antibody or AKT inhibitor. In conclusion, overexpression of decorin ameliorated diabetic cardiomyopathy and promoted angiogenesis through the IGF1R-AKT-VEGF signaling pathway in vivo and in vitro.

  4. Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling

    PubMed Central

    Lai, Jinsheng; Chen, Fuqiong; Chen, Jing; Ruan, Guoran; He, Mengying; Chen, Chen; Tang, Jiarong; Wang, Dao Wen

    2017-01-01

    Microcirculatory dysfunction is believed to play an important role in diabetic cardiomyopathy. The small leucine-rich proteoglycan decorin is generally considered a pro-angiogenic factor. Here, we investigate whether overexpression of decorin ameliorates diabetic cardiomyopathy and its effects on angiogenesis in vivo and in vitro. Diabetes was induced through intraperitoneal injection with streptozotocin combined with a high-fat diet, and decorin was overexpressed via recombinant adeno-associated virus in Wistar rats. Six months later, cardiac function was determined using an echocardiography and cardiac catheter system. The results showed that cardiac function was decreased in diabetic rats and restored by overexpression of decorin. In addition, overexpression of decorin upregulated the expression of VEGF and attenuated the reduction in the cardiac capillary density. In the in vitro study, high glucose induced apoptosis and inhibited the capabilities of tube formation, migration and proliferation, which were all ameliorated by decorin overexpression. Meanwhile, decorin overexpression increased the expression of VEGF and IGF1R, as well as the phosphorylation level of AKT and AP-1. Nonetheless, all of these effects were abolished by pretreatment with the IGF1R antibody or AKT inhibitor. In conclusion, overexpression of decorin ameliorated diabetic cardiomyopathy and promoted angiogenesis through the IGF1R-AKT-VEGF signaling pathway in vivo and in vitro. PMID:28290552

  5. The PTEN/PI3K/AKT Pathway in vivo, Cancer Mouse Models

    PubMed Central

    Carnero, Amancio; Paramio, Jesus M.

    2014-01-01

    When PI3K (phosphatidylinositol-3 kinase) is activated by receptor tyrosine kinases, it phosphorylates PIP2 to generate PIP3 and activates the signaling pathway. Phosphatase and tensin homolog deleted on chromosome 10 dephosphorylates PIP3 to PIP2, and thus, negatively regulates the pathway. AKT (v-akt murine thymoma viral oncogene homolog; protein kinase B) is activated downstream of PIP3 and mediates physiological processes. Furthermore, substantial crosstalk exists with other signaling networks at all levels of the PI3K pathway. Because of its diverse array, gene mutations, and amplifications and also as a consequence of its central role in several signal transduction pathways, the PI3K-dependent axis is frequently activated in many tumors and is an attractive therapeutic target. The preclinical testing and analysis of these novel therapies requires appropriate and well-tailored systems. Mouse models in which this pathway has been genetically modified have been essential in understanding the role that this pathway plays in the tumorigenesis process. Here, we review cancer mouse models in which the PI3K/AKT pathway has been genetically modified. PMID:25295225

  6. Coprinus comatus Cap Inhibits Adipocyte Differentiation via Regulation of PPARγ and Akt Signaling Pathway

    PubMed Central

    Jang, Sun-Hee; Kang, Suk Nam; Jeon, Beong-Sam; Ko, Yeoung-Gyu; Kim, Hong-Duck; Won, Chung-Kil; Kim, Gon-Sup; Cho, Jae-Hyeon

    2014-01-01

    This study assessed the effects of Coprinus comatus cap (CCC) on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD) and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the Akt pathway in 3T3

  7. Dissociation of ERK and Akt signaling in endothelial cell angiogenic responses to {beta}-amyloid

    SciTech Connect

    Magrane, Jordi; Christensen, Rial A.; Rosen, Kenneth M.; Veereshwarayya, Vimal; Querfurth, Henry W. . E-mail: hquerf01@granite.tufts.edu

    2006-04-15

    Cerebrovascular deposits of {beta}-amyloid (A{beta}) peptides are found in Alzheimer's disease and cerebral amyloid angiopathy with stroke or dementia. Dysregulations of angiogenesis, the blood-brain barrier and other critical endothelial cell (EC) functions have been implicated in aggravating chronic hypoperfusion in AD brain. We have used cultured ECs to model the effects of {beta}-amyloid on the activated phosphorylation states of multifunctional serine/threonine kinases since these are differentially involved in the survival, proliferation and migration aspects of angiogenesis. Serum-starved EC cultures containing amyloid-{beta} peptides underwent a 2- to 3-fold increase in nuclear pyknosis. Under growth conditions with sublethal doses of {beta}-amyloid, loss of cell membrane integrity and inhibition of cell proliferation were observed. By contrast, cell migration was the most sensitive to A{beta} since inhibition was significant already at 1 {mu}M (P = 0.01, migration vs. proliferation). In previous work, intracellular A{beta} accumulation was shown toxic to ECs and Akt function. Here, extracellular A{beta} peptides do not alter Akt activation, resulting instead in proportionate decreases in the phosphorylations of the MAPKs: ERK1/2 and p38 (starting at 1 {mu}M). This inhibitory action occurs proximal to MEK1/2 activation, possibly through interference with growth factor receptor coupling. Levels of phospho-JNK remained unchanged. Addition of PD98059, but not LY294002, resulted in a similar decrease in activated ERK1/2 levels and inhibition of EC migration. Transfection of ERK1/2 into A{beta}-poisoned ECs functionally rescued migration. The marked effect of extracellular A{beta} on the migration component of angiogenesis is associated with inhibition of MAPK signaling, while Akt-dependent cell survival appears more affected by cellular A{beta}.

  8. MicroRNA-542-3p Suppresses Tumor Cell Invasion via Targeting AKT Pathway in Human Astrocytoma*

    PubMed Central

    Cai, Junchao; Zhao, JingJing; Zhang, Nu; Xu, Xiaonan; Li, Rong; Yi, Yang; Fang, Lishan; Zhang, Le; Li, Mengfeng; Wu, Jueheng; Zhang, Heng

    2015-01-01

    The molecular mechanism underlying constitutive activation of AKT signaling, which plays essential roles in astrocytoma progression, is not fully characterized. Increasing numbers of studies have reported that microRNAs are involved in the malignant behavior of astrocytoma cells via directly targeting multiple oncogenes or tumor suppressors. Here, we found that microRNA (miR)-542-3p expression was decreased in glioblastoma cell lines and astrocytoma tissues, and reduced levels of miR-542-3p expression correlated with high histopathological grades and poor prognosis of astrocytoma patients. Exogenous miR-542-3p suppressed glioblastoma cell invasion through not only targeting AKT1 itself but also directly down-regulating its two important upstream regulators, namely, integrin-linked kinase and PIK3R1. Notably, overexpressing miR-542-3p decreased AKT1 phosphorylation and directly and indirectly repressed nuclear translocation and transactivation activity of β-catenin to exert its anti-invasive effect. Furthermore, the miR-542-3p expression level negatively correlated with AKT activity as well as levels of integrin-linked kinase and PIK3R1 in human astrocytoma specimens. These findings suggest that miR-542-3p acts as a negative regulator in astrocytoma progression and that miR-542-3p down-regulation contributes to aberrant activation of AKT signaling, leaving open the possibility that miR-542-3p may be a potential therapeutic target for high grade astrocytoma. PMID:26286747

  9. Basal Levels of eIF2α Phosphorylation Determine Cellular Antioxidant Status by Regulating ATF4 and xCT Expression*S⃞

    PubMed Central

    Lewerenz, Jan; Maher, Pamela

    2009-01-01

    eIF2α is part of a multimeric complex that regulates cap-dependent translation. Phosphorylation of eIF2α (phospho-eIF2α) is induced by various forms of cell stress, resulting in changes to the proteome of the cell with two diametrically opposed consequences, adaptation to stress or initiation of programmed cell death. In contrast to the robust eIF2α phosphorylation seen in response to acute insults, less is known about the functional role of basal levels of eIF2α phosphorylation. Here we show that mouse embryonic fibroblasts expressing a nonphosphorylatable eIF2α have enhanced sensitivity to diverse toxic insults, including amyloid β-(1–42) peptide (Aβ), a key factor in the pathogenesis of Alzheimer disease. This correlates with impaired glutathione metabolism because of down-regulation of the light chain, xCT, of the cystine/glutamate antiporter system X-c. The mechanistic link between the absence of phospho-eIF2α and xCT expression is nuclear factor ATF4. Consistent with these findings, long term activation of the phospho-eIF2α/ATF4/xCT signaling module by the specific eIF2α phosphatase inhibitor, salubrinal, induces resistance against oxidative glutamate toxicity in the hippocampal cell line HT22 and primary cortical neurons. Furthermore, in PC12 cells selected for resistance against Aβ, increased activity of the phospho-eIF2α/ATF4/xCT module contributes to the resistant phenotype. In wild-type PC12 cells, activation of this module by salubrinal ameliorates the response to Aβ. Furthermore, in human brains, ATF4 and phospho-eIF2α levels are tightly correlated and up-regulated in Alzheimer disease, most probably representing an adaptive response against disease-related cellular stress rather than a correlate of neurodegeneration. PMID:19017641

  10. Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain.

    PubMed

    Réus, Gislaine Z; Stringari, Roberto B; Ribeiro, Karine F; Ferraro, Ana K; Vitto, Marcelo F; Cesconetto, Patrícia; Souza, Claúdio T; Quevedo, João

    2011-08-01

    A growing body of evidence has pointed to the N-methyl-d-aspartate (NMDA) receptor antagonists as a potential therapeutic target for the treatment of major depression. The present study investigated the possibility of synergistic interactions between antidepressant imipramine with the uncompetitive NMDA receptor antagonist ketamine. Wistar rats were acutely treated with ketamine (5 and 10mg/kg) and imipramine (10 and 20mg/kg) and then subjected to forced swimming tests. The cAMP response element bindig (CREB) and brain-derived neurotrophic factor (BDNF) protein levels and protein kinase C (PKC) and protein kinase A (PKA) phosphorylation were assessed in the prefrontal cortex, hippocampus and amygdala by imunoblot. Imipramine at the dose of 10mg/kg and ketamine at the dose of 5mg/kg did not have effect on the immobility time; however, the effect of imipramine (10 and 20mg/kg) was enhanced by both doses of ketamine. Ketamine and imipramine alone or in combination at all doses tested did not modify locomotor activity. Combined treatment with ketamine and imipramine produced stronger increases of CREB and BDNF protein levels in the prefrontal cortex, hippocampus and amygdala, and PKA phosphorylation in the hippocampus and amygdala and PKC phosphorylation in prefrontal cortex. The results described indicate that co-administration of antidepressant imipramine with ketamine may induce a more pronounced antidepressant activity than treatment with each antidepressant alone. This finding may be of particular importance in the case of drug-resistant patients and could suggest a method of obtaining significant antidepressant actions whilst limiting side effects.

  11. The protective effects of Chinese herb-Taikong Yangxin Prescription on the atrophic remodeling of cardiac muscle in rats induced by hindlimb unloading through activating Akt/GSK-3beta signaling pathway

    NASA Astrophysics Data System (ADS)

    Ming, Yuan; Min, Yuan; Jianfeng, Zhang; Zhili, Li; Huijuan, Wang; Desheng, Wang; Yinghui, Li; Yongzhi, Li; Shizhong, Jiang

    Objective To test the hypothesis that traditional Chinese herb-TaiKong Yangxin Prescrip-tion can activate the Akt/GSK-3β signaling pathway and alleviate the atrophic remodeling of cardiac muscle in rats induced by hindlimb unloading. Methods The physiological effects of simulated microgravity was induced by 7d hindlimb unloading in rats. TaiKong Yangxin Pre-scription was given daily by gastric irrigation as countermeasure against effects of simulated microgravity. The frozen sections of left ventricular cardiac muscles were stained by FITC la-beled lectin and visualized by laser scanning confocal microscopy, the cross section areas(CSA) of cardiomyocytes were calculated by IPP6.0 Image software. The protein expression of TnI, phosphorylation level of Akt and GSK-3β were measured by Western blot. Results Simulated microgravity decreased the CSA of cardiomyocytes and protein expression of TnI in left ven-tricular cardiac muscles, inhibited the phosphorylation level of Akt at serine 473 and GSK-3β at serine 9. The traditional Chinese herb-TaiKong Yangxin Prescription alleviated the atrophic remodeling of cardiac muscles, reversed the declined protein expression of TnI and phosphoryla-tion levels of Akt at serine 473 and GSK-3β at serine 9 in hindlimb-unloading rats. Conclusion The traditional Chinese herb-TaiKong Yangxin Prescription has significant countermeasure effects on the atrophic remodeling of cardiac muscle induced by hindlimb unloading in rats, in which activating Akt/GSK-3β signaling pathway plays an important role.(Funded by Advanced space medico-engineering research project of China, grant NO. 2005SY5206005 and SJ200801)

  12. The human parasite Leishmania amazonensis downregulates iNOS expression via NF-κB p50/p50 homodimer: role of the PI3K/Akt pathway

    PubMed Central

    Calegari-Silva, Teresa C.; Vivarini, Áislan C.; Miqueline, Marina; Dos Santos, Guilherme R. R. M.; Teixeira, Karina Luiza; Saliba, Alessandra Mattos; Nunes de Carvalho, Simone; de Carvalho, Laís; Lopes, Ulisses G.

    2015-01-01

    Leishmania amazonensis activates the NF-κB transcriptional repressor homodimer (p50/p50) and promotes nitric oxide synthase (iNOS) downregulation. We investigated the role of PI3K/Akt in p50/p50 NF-κB activation and the effect on iNOS expression in L. amazonensis infection. The increased occupancy of p50/p50 on the iNOS promoter of infected macrophages was observed and we demonstrated that both p50/p50 NF-κB induction and iNOS downregulation in infected macrophages depended on PI3K/Akt activation. Importantly, the intracellular growth of the parasite was also impaired during PI3K/Akt signalling inhibition and in macrophages knocked-down for Akt 1 expression. It was also observed that the increased nuclear levels of p50/p50 in L. amazonensis-infected macrophages were associated with reduced phosphorylation of 907 Ser p105, the precursor of p50. Corroborating these data, we demonstrated the increased levels of phospho-9 Ser GSK3β in infected macrophages, which is associated with GSK3β inhibition and, consequently, its inability to phosphorylate p105. Remarkably, we found that the levels of pPTEN 370 Ser, a negative regulator of PI3K, increased due to L. amazonensis infection. Our data support the notion that PI3K/Akt activity is sustained during the parasite infection, leading to NF-κB 105 phosphorylation and further processing to originate p50/p50 homodimers and the consequent downregulation of iNOS expression. PMID:26400473

  13. Bamboo leaf extract ameliorates diabetic nephropathy through activating the AKT signaling pathway in rats.

    PubMed

    Ying, Changjiang; Mao, Yizhen; Chen, Lei; Wang, Shanshan; Ling, Hongwei; Li, Wei; Zhou, Xiaoyan

    2017-03-27

    Diabetic nephropathy (DN) is one of the most severe diabetic complication and it is becoming become a worldwide epidemic, accounting for approximately one-third of all case of end-stage renal disease. However, the underlying mechanism and strategy to alleviate renal injury remain unclear. In the present study, we assessed the protective effect of bamboo leaf extract on the DN, and investigated the underlying mechanism by which bamboo leaf extract ameliorating DN. Diabetic rats were induced by 4 weeks high sugar and high fat diet, and then injected a single dose of STZ (35mg/kg) into abdominal cavity. Different dose of bamboo extract (50mg/kg, 100mg/kg and 200mg/kg) were orally administered every day for a period of 12 weeks. Body weight, blood glucose, glycosylated hemoglobin A1c (HbAlc), blood urea nitrogen (BUN), serum creatinine (Scr), and 24-hour urinary protein (24 h-UP) were assessed. Total superoxide dismutase (T-SOD) activity and MDA (methane dicarboxylic aldehyde, MDA) level were tested by assay kit. Microstructural changes were observed by hematoxylin-eosin (HE) staining and electron microscopy. Expression of phosphorylated ser/thr protein kinase (P-AKT), phosphorylated glycogen synthase kinase-3 beta (P-GSK-3β), B cell lymphoma/leukemia 2-associated X protein (BAX) and cleaved-cysteinyl aspartate-specific proteinase-3 (Cleaved Caspase-3) were measured by Western-Blotting (WB). Results showed that diabetic rats had weight loss, high blood glucose, HbAlc, BUN, Scr and 24-UP and T-SOD activity were increased and MDA level was decreased in diabetic rats. Moreover, hyperglycemia could injury renal tissue ultrastructure, inhibit P-AKT level and increase P-GSK-3β, BAX and Cleaved Caspase-3 levels in rats. However, bamboo leaf extract treatment could reduce body weight loss, BUN, Scr, 24 h-UP and MDA level, improve T-SOD activity and alleviate renal injury in diabetic rats. Furthermore, bamboo leaf extract increased P-AKT level, decreased P-GSK-3β, BAX and

  14. Tyrosine phosphorylation of Rab7 by Src kinase.

    PubMed

    Lin, Xiaosi; Zhang, Jiaming; Chen, Lingqiu; Chen, Yongjun; Xu, Xiaohui; Hong, Wanjin; Wang, Tuanlao

    2017-03-20

    The small molecular weight GTPase Rab7 is a key regulator for late endosomal/lysosomal membrane trafficking, it was known that Rab7 is phosphorylated, but the corresponding kinase and the functional regulation of Rab7 phosphorylation remain unclear. We provide evidence here that Rab7 is a substrate of Src kinase, and is tyrosine-phosphorylated by Src, withY183 residue of Rab7 being the optimal phosphorylation site for Src. Further investigations demonstrated that the tyrosine phosphorylation of Rab7 depends on the guanine nucleotide binding activity of Rab7 and the activity of Src kinase. The tyrosine phosphorylation of Rab7 is physiologically induced by EGF, and impairs the interaction of Rab7 with RILP, consequently inhibiting EGFR degradation and sustaining Akt signaling. These results suggest that the tyrosine phosphorylation of Rab7 may be involved in coordinating membrane trafficking and cell signaling.

  15. Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer.

    PubMed

    Gao, Ning; Zhang, Zhuo; Jiang, Bing-Hua; Shi, Xianglin

    2003-10-31

    Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.

  16. Effects of ageing on expression of the muscle-specific E3 ubiquitin ligases and Akt-dependent regulation of Foxo transcription factors in skeletal muscle.

    PubMed

    Wagatsuma, Akira; Shiozuka, Masataka; Takayama, Yuzo; Hoshino, Takayuki; Mabuchi, Kunihiko; Matsuda, Ryoichi

    2016-01-01

    Controversy exists as to whether the muscle-specific E3 ubiquitin ligases MAFbx and MuRF1 are transcriptionally upregulated in the process of sarcopenia. In the present study, we investigated the effects of ageing on mRNA/protein expression of muscle-specific E3 ubiquitin ligases and Akt/Foxo signalling in gastrocnemius muscles of female mice. Old mice exhibited a typical sarcopenic phenotype, characterized by loss of muscle mass and strength, decreased amount of myofibrillar proteins, incidence of aberrant muscle fibres, and genetic signature to sarcopenia. Activation levels of Akt were lower in adult and old mice than in young mice. Consequently, Akt-mediated phosphorylation levels of Foxo1 and Foxo3 proteins were decreased. Nuclear levels of Foxo1 and Foxo3 proteins showed an overall increasing trend in old mice. MAFbx mRNA expression was decreased in old mice relative to adult mice, whereas MuRF1 mRNA expression was less affected by ageing. At the protein level, MAFbx was less affected by ageing, whereas MuRF1 was increased in old mice relative to adult mice, with ubiquitin-protein conjugates being increased with ageing. In conclusion, we provided evidence for no mRNA upregulation of muscle-specific E3 ubiquitin ligases and disconnection between their expression and Akt/Foxo signalling in sarcopenic mice. Their different responsiveness to ageing may reflect different roles in sarcopenia.

  17. Prohibitin confers cytoprotection against ISO-induced hypertrophy in H9c2 cells via attenuation of oxidative stress and modulation of Akt/Gsk-3β signaling.

    PubMed

    Chowdhury, Debabrata; Kumar, Dinesh; Bhadra, Utpal; Devi, Tangutur Anjana; Bhadra, Manika Pal

    2017-01-01

    Numerous hypertrophic stimuli, including β-adrenergic agonists such as isoproterenol (ISO), result in generation of reactive oxygen species (ROS) and alteration in the mitochondrial membrane potential (Δψ) leading to oxidative stress. This process is well associated with phosphorylation of thymoma viral proto-oncogene Akt (Ser473) and glycogen synthase kinase-3β (Gsk-3β) (Ser9), with resultant inactivation of Gsk-3β. In the present study, we found that the protective defensive role of prohibitin (PHB) against ISO-induced hypertrophic response in rat H9c2 cells is via attenuation of oxidative stress-dependent signaling pathways. The intracellular levels of mitochondrial membrane potential along with cellular ROS levels and mitochondrial superoxide generation were determined. In order to understand the regulation of Akt/Gsk-3β signaling pathway, we carried out immmunoblotting for key proteins of the pathway such as PTEN, PI3K, phosphorylated, and unphosphorylated forms of Akt, Gsk-3β, and immunofluorescence experiments of p-Gsk-3β. Enforced expression of PHB in ISO-treated H9c2 cells suppressed cellular ROS production with mitochondrial superoxide generation and enhanced the mitochondrial membrane potential resulting in suppression of oxidative stress which likely offered potent cellular protection, led to the availability of more healthy cells, and also, significant constitutive activation of Gsk-3β via inactivation of Akt was observed. Knockdown of PHB expression using PHB siRNA in control H9c2 cells reversed these effects. Overall, our results demonstrate that PHB confers cytoprotection against oxidative stress in ISO-induced hypertrophy and this process is associated with modulation of Akt/Gsk-3β signaling mechanisms as evident from our PHB overexpression and knockdown experiments.

  18. Tomosyn is a novel Akt substrate mediating insulin-dependent GLUT4 exocytosis.

    PubMed

    Nagano, Koki; Takeuchi, Hiroshi; Gao, Jing; Mori, Yoshihide; Otani, Takahito; Wang, DaGuang; Hirata, Masato

    2015-05-01

    Insulin triggers glucose uptake into skeletal muscle and adipose tissues by gaining the available number of glucose transporter 4 (GLUT4) on the cell surface. GLUT4-loaded vesicles are targeted to plasma membrane from the intracellular reservoir through multiple trafficking and fusion processes that are mainly regulated by Akt. However, it is still largely unknown how GLUT4 expression in the cell surface is promoted by insulin. In the present study, we identified tomosyn at Ser-783 as a possible Akt-substrate motif and examined whether the phosphorylation at Ser-783 is involved in the regulation of GLUT4 expression. Both Akt1 and Akt2 phosphorylated the wild-type tomosyn, but not the mutant tomosyn in which Ser-783 was replaced with Ala. Phosphorylation of tomosyn at Ser-783 was also observed in the intact cells by insulin stimulation, which was blocked by PI3K inhibitor, LY294002. In vitro pull-down assay showed that phosphorylation of tomosyn at Ser-783 by Akt inhibited the interaction with syntaxin 4. Insulin stimulation increased GLUT4 in the cell surface of CHO-K1 cells to promote glucose uptake, however exogenous expression of the mutant tomosyn attenuated the increase by insulin. These results suggest that Ser-783 of tomosyn is a target of Akt and is implicated in the interaction with syntaxin 4.

  19. Targeting the Akt/mTOR pathway in Brca1-deficient cancers.

    PubMed

    Xiang, T; Jia, Y; Sherris, D; Li, S; Wang, H; Lu, D; Yang, Q

    2011-05-26

    The breast cancer susceptibility gene 1 (Brca1) has a key role in both hereditary and sporadic mammary tumorigenesis. However, the reasons why Brca1-deficiency leads to the development of cancer are not clearly understood. Activation of Akt kinase is one of the most common molecular alterations associated with human malignancy. Increased Akt kinase activity has been reported in most breast cancers. We previously found that downregulation of Brca1 expression or mutations of the Brca1 gene activate the Akt oncogenic pathway. To further investigate the role of Brca1/Akt in tumorigenesis, we analyzed Brca1/Akt expression in human breast cancer samples and found that reduced expression of Brca1 was highly correlated with increased phosphorylation of Akt. Consistent with the clinical data, knockdown of Akt1 by short-hairpin RNA inhibited cellular proliferation of Brca1 mutant cells. Importantly, depletion of Akt1 significantly reduced tumor formation induced by Brca1-deficiency in mice. The third generation inhibitor of mammalian target of rapamycin (mTOR), Palomid 529, significantly suppressed Brca1-deficient tumor growth in mice through inhibition of both Akt and mTOR signaling. Our results indicate that activation of Akt is involved in Brca1-deficiency mediated tumorigenesis and that the mTOR pathway can be used as a novel target for treatment of Brca1-deficient cancers.

  20. Targeting the Akt/mTOR pathway in Brca1-deficient cancers

    PubMed Central

    Xiang, T; Jia, Y; Sherris, D; Li, S; Wang, H; Lu, D; Yang, Q

    2011-01-01

    The breast cancer susceptibility gene 1 (Brca1) has a key role in both hereditary and sporadic mammary tumorigenesis. However, the reasons why Brca1-deficiency leads to the development of cancer are not clearly understood. Activation of Akt kinase is one of the most common molecular alterations associated with human malignancy. Increased Akt kinase activity has been reported in most breast cancers. We previously found that downregulation of Brca1 expression or mutations of the Brca1 gene activate the Akt oncogenic pathway. To further investigate the role of Brca1/Akt in tumorigenesis, we analyzed Brca1/Akt expression in human breast cancer samples and found that reduced expression of Brca1 was highly correlated with increased phosphorylation of Akt. Consistent with the clinical data, knockdown of Akt1 by short-hairpin RNA inhibited cellular proliferation of Brca1 mutant cells. Importantly, depletion of Akt1 significantly reduced tumor formation induced by Brca1-deficiency in mice. The third generation inhibitor of mammalian target of rapamycin (mTOR), Palomid 529, significantly suppressed Brca1-deficient tumor growth in mice through inhibition of both Akt and mTOR signaling. Our results indicate that activation of Akt is involved in Brca1-deficiency mediated tumorigenesis and that the mTOR pathway can be used as a novel target for treatment of Brca1-deficient cancers. PMID:21242970

  1. The phosphoinositide 3-kinase/Akt-signal pathway mediates proliferation and secretory function of hepatic sinusoidal endothelial cells in rats after partial hepatectomy

    SciTech Connect

    Chen Ping . E-mail: chenping@263.net; Zhang Lin; Ding Jiming; Zhu Jin; Li Ying; Duan Shigang; Yan Hongtao; Huan Yongwei; Dong Jiahong

    2006-04-14

    Objective: To investigate the role of AKT signaling pathway in hepatic sinusoidal endothelial cells (SECs) early after partial hepatectomy in rats and the regulatory mechanisms involved. Methods: The animal model of 70% hepatectomy was made. Hepatic SECs were isolated and cultured according to Braet et al.'s method with some modifications. The cultured hepatic SECs were divided into two groups: 70% partial hepatectomy groups and LY294002 group (LY). We observed the expressions of AKT and NF-{kappa}B in cultured hepatic SECs by Western blot, measured the levels of NO, NOs, IL-6, and HGF in the supernatants of hepatic SEC cultures and [{sup 3}H]thymidine incorporation, and analyzed cell cycle of cultured hepatic SECs by flow cytometer. The relationship of the Akt pathway with secretions and proliferation of hepatic SECs after partial hepatectomy was probed. Results: The levels of Akt protein expression increased significantly after partial hepatectomy in OG group and with a peak at 24 h post operation. Meanwhile, there was a markedly increase in phosphorylated Akt protein during 2-72 h after operation. But the expression and activity of Akt protein did not change significantly after partial hepatectomy in the LY group. So, partial hepatectomy can marked induce Akt expression and result in rapid and marked phosphorylation of Akt from 2 to 72 h thereafter. The changes of NF-{kappa}B expression in cultured hepatic SECs were similar to those of Akt expression after operation. The concentrations of HGF and IL-6 in the supernatants of cultured hepatic SECs were relatively low in the LY group, and were markedly increased after partial hepatectomy, with a peak at 24 h in the OG group. There were significant differences between the OG and LY groups at 6 and 24 h (P < 0.05). Both NO and NOS secretion was increased in the OG group compared to the LY group within 24 h after partial hepatectomy. But the secretion of NO and NOS was increased more markedly in the LY group than that

  2. Euphorbia fischeriana Steud inhibits malignant melanoma via modulation of the phosphoinositide-3-kinase/Akt signaling pathway

    PubMed Central

    DONG, MENG-HUA; ZHANG, QIAN; WANG, YUAN-YUAN; ZHOU, BAI-SUI; SUN, YU-FEI; FU, QIANG

    2016-01-01

    Euphorbia fischeriana Steud, a traditional Chinese medicine, has been shown to inhibit the growth of various cancers by the induction of apoptosis and cell cycle arrest. The purpose of the present study was to investigate the association between the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway and the inhibitory effect of Euphorbia fischeriana Steud on the growth and metastasis of melanoma B16 cells in vitro, and the underlying mechanisms. MTT assay results indicated that Euphorbia fischeriana Steud inhibited the growth of B16 cells in a time- and dose-dependent manner. Flow cytometric analysis revealed that Euphorbia fischeriana Steud markedly induced apoptosis of the B16 cells, with arrest at the G0/G1 phase of the cell cycle. In addition, in a Transwell assay Euphorbia fischeriana Steud significantly suppressed the migration of B16 cells. Western blot analysis revealed that the expression levels of phosphatase and tensin homolog (PTEN) were upregulated, and the phosphorylation of Akt was downregulated, which resulted in inhibition of the PI3K/Akt signaling pathway and the eventual suppression of its downstream targets, such as matrix metalloproteinase-2 mRNA, in B16 cells. The results demonstrated that Euphorbia fischeriana Steud inhibited the growth and migration of B16 cells, possibly via modulation of the PI3K/Akt signaling pathway and upregulation of PTEN expression levels, in addition to downregulation of p-Akt expression. The aforementioned findings suggest that Euphorbia fischeriana Steud may have broad therapeutic applications in the treatment of malignant melanoma. PMID:27073468

  3. Insulin receptor kinase-independent signaling via tyrosine phosphorylation of phosphatase PHLPP1.

    PubMed

    Zhang, Manchao; Riedel, Heimo

    2009-05-01

    Most insulin responses correlate well with insulin receptor (IR) Tyr kinase activation; however, critical exceptions to this concept have been presented. Specific IR mutants and stimulatory IR antibodies demonstrate a lack of correlation between IR kinase activity and specific insulin responses in numerous independent studies. IR conformation changes in response to insulin observed with various IR antibodies define an IR kinase-independent signal that alters the C-terminus. IR-related receptors in lower eukaryotes that lack a Tyr kinase point to an alternative mechanism of IR signaling earlier in evolution. However, the implied IR kinase-independent signaling mechanism remained obscure at the molecular level. Here we begin to define the molecular basis of an IR-dependent but IR kinase-independent insulin signal that is equally transmitted by a kinase-inactive mutant IR. This insulin signal results in Tyr phosphorylation and catalytic activation of phosphatase PHLPP1 via a PI 3-kinase-independent, wortmannin-insensitive signaling pathway. Dimerized SH2B1/PSM is a critical activator of the IR kinase and the resulting established insulin signal. In contrast it is an inhibitor of the IR kinase-independent insulin signal and disruption of SH2B1/PSM dimer binding to IR potentiates this signal. Dephosphorylation of Akt2 by PHLPP1 provides an alternative, SH2B1/PSM-regulated insulin-signaling pathway from IR to Akt2 of opposite polarity and distinct from the established PI 3-kinase-dependent signaling pathway via IRS proteins. In combination, both pathways should allow the opposing regulation of Akt2 activity at two phosphorylation sites to specifically define the insulin signal in the background of interfering Akt-regulating signals, such as those controlling cell proliferation and survival.

  4. Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt.

    PubMed

    Murata, Hiroaki; Ihara, Yoshito; Nakamura, Hajime; Yodoi, Junji; Sumikawa, Koji; Kondo, Takahito

    2003-12-12

    Glutaredoxin (GRX) is a small dithiol protein involved in various cellular functions, including the redox regulation of certain enzyme activities. GRX functions via a disulfide exchange reaction by utilizing the active site Cys-Pro-Tyr-Cys. Here we demonstrated that overexpression of GRX protected cells from hydrogen peroxide (H2O2)-induced apoptosis by regulating the redox state of Akt. Akt was transiently phosphorylated, dephosphorylated, and then degraded in cardiac H9c2 cells undergoing H2O2-induced apoptosis. Under stress, Akt underwent disulfide bond formation between Cys-297 and Cys-311 and dephosphorylation in accordance with an increased association with protein phosphatase 2A. Overexpression of GRX protected Akt from H2O2-induced oxidation and suppressed recruitment of protein phosphatase 2A to Akt, resulting in a sustained phosphorylation of Akt and inhibition of apoptosis. This effect was reversed by cadmium, an inhibitor of GRX. Furthermore an in vitro assay revealed that GRX reduced oxidized Akt in concert with glutathione, NADPH, and glutathione-disulfide reductase. Thus, GRX plays an important role in protecting cells from apoptosis by regulating the redox state of Akt.

  5. Syringaresinol causes vasorelaxation by elevating nitric oxide production through the phosphorylation and dimerization of endothelial nitric oxide synthase

    PubMed Central

    Chung, Byung-Hee; Kim, Sookon; Kim, Jong-Dai; Lee, Jung Joon; Baek, Yi-Yong; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Ha, Kwon-Soo; Won, Moo-Ho; Kwon, Young-Guen

    2012-01-01

    Nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays an important role in vascular functions, including vasorelaxation. We here investigated the pharmacological effect of the natural product syringaresinol on vascular relaxation and eNOS-mediated NO production as well as its underlying biochemical mechanism in endothelial cells. Treatment of aortic rings from wild type, but not eNOS-/- mice, with syringaresinol induced endothelium-dependent relaxation, which was abolished by addition of the NOS inhibitor NG-monomethyl-L-arginine. Treatment of human endothelial cells and mouse aortic rings with syringaresinol increased NO production, which was correlated with eNOS phosphorylation via the activation of Akt and AMP kinase (AMPK) as well as elevation of intracellular Ca2+ levels. A phospholipase C (PLC) inhibitor blocked the increases in intracellular Ca2+ levels, AMPK-dependent eNOS phosphorylation, and NO production, but not Akt activation, in syringaresinol-treated endothelial cells. Syringaresinol-induced AMPK activation was inhibited by co-treatment with PLC inhibitor, Ca2+ chelator, calmodulin antagonist, and CaMKKβ siRNA. This compound also increased eNOS dimerization, which was inhibited by a PLC inhibitor and a Ca2+-chelator. The chemicals that inhibit eNOS phosphorylation and dimerization attenuated vasorelaxation and cGMP production. These results suggest that syringaresinol induces vasorelaxation by enhancing NO production in endothelial cells via two distinct mechanisms, phosphatidylinositol 3-kinase/Akt- and PLC/Ca2+/CaMKKβ-dependent eNOS phosphorylation and Ca2+-dependent eNOS dimerization. PMID:22170035

  6. TGF-β effects on prostate cancer cell migration and invasion are mediated by PGE2 through activation of PI3K/AKT/mTOR pathway.

    PubMed

    Vo, Baohan T; Morton, Derrick; Komaragiri, Shravan; Millena, Ana C; Leath, Chelesie; Khan, Shafiq A

    2013-05-01

    TGF-β plays an important role in the progression of prostate cancer. It exhibits both tumor suppressor and tumor-promoting activities. Correlations between cyclooxygenase (COX)-2 overexpression and enhanced production of prostaglandin (PG)E2 have been implicated in cancer progression; however, there are no studies indicating that TGF-β effects in prostate cancer cells involve PGE2 synthesis. In this study, we investigated TGF-β regulation of COX-1 and COX-2 expression in prostate cancer cells and whether the effects of TGF-β on cell proliferation and migration are mediated by PGE2. COX-1 protein was ubiquitously expressed in prostate cells; however, COX-2 protein levels were detected only in prostate cancer cells. TGF-β treatment increased COX-2 protein levels and PGE2 secretion in PC3 cells. Exogenous PGE2 and PGF2α had no effects on cell proliferation in LNCaP, DU145, and PC3 cells whereas PGE2 and TGF-β induced migration and invasive behavior in PC3 cells. Only EP2 and EP4 receptors were detected at mRNA levels in prostate cells. The EP4-targeting small interfering RNA inhibited PGE2 and TGF-β-induced migration of PC3 cells. TGF-β and PGE2 induce activation of PI3K/AKT/mammalian target of rapamycin pathway as indicated by increased AKT, p70S6K, and S6 phosphorylation. Rapamycin completely blocked the effects of TGF-β and PGE2 on phosphorylation of p70S6K and S6 but not on AKT phosphorylation. PGE2 and TGF-β induced phosphorylation of AKT, which was blocked by antagonists of PGE2 (EP4) receptors (L161982, AH23848) and PI3K inhibitor (LY294002) in PC3 cells. Pretreatment with L161982 or AH23848 blocked the stimulatory effects of PGE2 and TGF-β on cell migration, whereas LY294002 or rapamycin completely eliminated PGE2, TGF-β, and epidermal growth factor-induced migration in PC3 cells. We conclude that TGF-β increases COX-2 levels and PGE2 secretion in prostate cancer cells which, in turn, mediate TGF-β effects on cell migration and invasion through

  7. Effect of glatiramer acetate on peripheral blood brain-derived neurotrophic factor and phosphorylated TrkB levels in relapsing-remitting multiple sclerosis.

    PubMed

    Vacaras, Vitalie; Major, Zsigmond Z; Muresanu, Dafin F; Krausz, Tibor L; Marginean, Ioan; Buzoianu, Dana A

    2014-01-01

    Glatiramer acetate (GA) is one of the most widely used disease-modifying drugs for the treatment of relapsing-remitting multiple sclerosis; is assumed to have inductor effects on neurotrophic factor expression. One of these neurotrophic factor systems is the brain-derived neurotrophic factor (BDNF)/receptor tyrosine kinase B (TrkB) pathway. Peripheral blood is thought to contain soluble BDNF, and some blood cells express TrkB. We attempted to determine whether GA treatment leads to changes in plasma BDNF levels and TrkB activation. Such a phenomenon are relapsing-remitting multiple sclerosis patients is significantly reduced; GA treatment is not influencing peripheral BDNF levels, after one year of sustained therapy, not from the point of view of total free BDNF nor the phosphorylated TrkB.

  8. Involvement of PI3K/Akt/FoxO3a and PKA/CREB Signaling Pathways in the Protective Effect of Fluoxetine Against Corticosterone-Induced Cytotoxicity in PC12 Cells.

    PubMed

    Zeng, Bingqing; Li, Yiwen; Niu, Bo; Wang, Xinyi; Cheng, Yufang; Zhou, Zhongzhen; You, Tingting; Liu, Yonggang; Wang, Haitao; Xu, Jiangping

    2016-08-01

    The selective serotonin reuptake inhibitor fluoxetine is neuroprotective in several brain injury models. It is commonly used to treat major depressive disorder and related conditions, but its mechanism of action remains incompletely understood. Activation of the phosphatidylinositol-3-kinase/protein kinase B/forkhead box O3a (PI3K/Akt/FoxO3a) and protein kinase A/cAMP-response element binding protein (PKA/CREB) signaling pathways has been strongly implicated in the pathogenesis of depression and might be the downstream target of fluoxetine. Here, we used PC12 cells exposed to corticosterone (CORT) to study the neuroprotective effects of fluoxetine and the involvement of the PI3K/Akt/FoxO3a and PKA/CREB signaling pathways. Our results show that CORT reduced PC12 cells viability by 70 %, and that fluoxetine showed a concentration-dependent neuroprotective effect. Neuroprotective effects of fluoxetine were abolished by inhibition of PI3K, Akt, and PKA using LY294002, KRX-0401, and H89, respectively. Treatment of PC12 cells with fluoxetine resulted in increased phosphorylation of Akt, FoxO3a, and CREB. Fluoxetine also dose-dependently rescued the phosphorylation levels of Akt, FoxO3a, and CREB, following administration of CORT (from 99 to 110, 56 to 170, 80 to 170 %, respectively). In addition, inhibition of PKA and PI3K/Akt resulted in decreased levels of p-CREB, p-Akt, and p-FoxO3a in the presence of fluoxetine. Furthermore, fluoxetine reversed CORT-induced upregulation of p53-upregulated modulator of apoptosis (Puma) and Bcl-2-interacting mediator of cell death (Bim) via the PI3K/Akt/FoxO3a signaling pathway. H89 treatment reversed the effect of fluoxetine on the mRNA level of brain-derived neurotrophic factor, which was decreased in the presence of CORT. Our data indicate that fluoxetine elicited neuroprotection toward CORT-induced cell death that involves dual regulation from PI3K/Akt/FoxO3a and PKA/CREB pathways.

  9. Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway.

    PubMed

    Zheng, Jianjian; Wu, Cunzao; Xu, Ziqiang; Xia, Peng; Dong, Peihong; Chen, Bicheng; Yu, Fujun

    2015-01-01

    Activation of hepatic stellate cells (HSCs) is an essential event in the initiation and progression of liver fibrosis. MicroRNAs have been shown to play a pivotal role in regulating HSC functions such as cell proliferation, differentiation, and apoptosis. Recently, miR-181b has been reported to promote HSCs proliferation by targeting p27. But whether alpha-smooth muscle actin (α-SMA) or collagens could be promoted by miR-181b in activated HSCs is still not clear. Therefore, the understanding of the role of miR-181b in liver fibrosis remains limited. Our results showed that miR-181b expression was increased much higher than miR-181a expression in vitro in transforming growth factor-β1-induced HSC activation as well as in vivo in carbon tetrachloride-induced rat liver fibrosis. Of note, overexpression of miR-181b significantly increased the expressions level of α-SMA and type I collagen, and further promoted HSCs proliferation. Furthermore, phosphatase and tensin homologs deleted on chromosome 10 (PTEN), a negative regulator of PI3K/Akt pathway, were confirmed as a direct target of miR-181b. We demonstrated that miR-181b could suppress PTEN expression and increase Akt phosphorylation in HSCs. Interestingly, the effects of miR-181b on the activation of HSCs were blocked down by Akt inhibitor LY294002. Our results revealed a profibrotic role of miR-181b in HSC activation and demonstrated that miR-181b could activate HSCs, at least in part, via PTEN/Akt pathway.

  10. Shikonin inhibits inflammation and chondrocyte apoptosis by regulation of the PI3K/Akt signaling pathway in a rat model of osteoarthritis

    PubMed Central

    Fu, Daijie; Shang, Xifu; Ni, Zhe; Shi, Guoguang

    2016-01-01

    Shikonin has previously been shown to have antitumor, anti-inflammatory, antiviral and extensive pharmacological effects. The aim of the present study was to explore whether the protective effect of shikonin is mediated via the inhibition of inflammation and chondrocyte apoptosis, and to elucidate the potential molecular mechanisms in a rat model of osteoarthritis. A model of osteoarthritis was established in healthy male Sprague-Dawley rats and 10 mg/kg/day shikonin was administered intraperitoneally for 4 days. It was found that shikonin treatment significantly inhibited inflammatory reactions in the rats with osteoarthritis. Osteoarthritis was found to significantly increase interleukin (IL)-1β, tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) levels compared with those in the sham group. However, shikonin treatment significantly inhibited the increases in IL-1β, TNF-α and iNOS levels in the rats with osteoarthritis. Furthermore, caspase-3 activity and cyclooxygenase (COX)-2 protein expression were significantly increased and phosphorylated Akt protein expression was greatly suppressed in rats with osteoarthritis when compared with the sham group. Shikonin administration attenuated the changes in caspase-3 activity and COX-2 expression and Akt phosphorylation in rats with osteoarthritis. These results indicate that shikonin inhibits inflammation and chondrocyte apoptosis by regulating the phosphoinositide 3-kinase/Akt signaling pathway in a rat model of osteoarthritis. PMID:27703516

  11. The PI3K/Akt signaling pathway exerts effects on the implantation of mouse embryos by regulating the expression of RhoA

    PubMed Central

    LIU, LIYUAN; WANG, YINGXIONG; YU, QIUBO

    2014-01-01

    The aim of this study was to investigate whether the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway affects the implantation of mouse embryos by regulating the expression of RhoA. The expression of PI3K, Akt, phosphorylated (p-)Akt, phosphatase and tensin homolog (PTEN) and RhoA in the uterus of mice on day 5 of pregnancy (D5) and in pseudopregnant mice was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry and western blot analysis. A functional analysis of these genes was also performed by the intrauterine injection with the PI3K inhibitor, LY294002, on day 2 of pregnancy (D2). The expression levels of PI3K, p-Akt, RhoA at the implantation site were higher than those at the inter-implantation site in the endometrium; however, opposite effects were observed for PTEN expression. The expression levels of the above genes in the pseudopregnant group and in the group injected with the PI3K/Akt inhibitor, LY294002, were markedly lower than those in the pregnant group. Functional experiments revealed that the number of implantation sites had been significantly decreased (P<0.05) following the intrauterine injection of the PI3K inhibitor, LY294002, on day 2 of gestation compared with the contralateral injection of phosphate-buffered saline (PBS). These results suggest that the PI3K/Akt signaling pathway affects embryo implantation by regulating the expression of RhoA. PMID:24638941

  12. Tetrandrine inhibits migration and invasion of human renal cell carcinoma by regulating Akt/NF-κB/MMP-9 signaling

    PubMed Central

    Wang, Ke; Fan, Yizeng; Chen, Jiaqi; Ma, Jianbin; Wang, Xinyang; He, Dalin; Zeng, Jin; Li, Lei

    2017-01-01

    Renal cell carcinoma (RCC) is known as one of the most lethal malignancies in the urological system because of its high incidence of metastasis. Tetrandrine (Tet), a traditional Chinese herbal medicine, exerts a potent anti-cancer effect in a variety of cancer cells. However, the anti-metastatic effect of Tet and its possible mechanism in RCC is still unclear. The present study revealed that Tet significantly suppressed the migration and invasion of RCC 786-O and 769-P cells in vitro. Mechanistically, the protein levels of matrix metalloproteinases 9 (MMP-9), phosphorylated PI3K, PDK1, Akt and NF-κB were markedly reduced after Tet treatment. Moreover, co-treatment with LY294002 (PI3K inhibitor) could further enhance the Tet-inhibited migration and invasion, and the NF-κB and MMP-9 protein levels were further decreased. Similar results were observed after PDTC (NF-κB inhibitor) co-treatment. Conversely, SC79, an Akt activator, could partially reverse the anti-metastatic effects of Tet, accompanied by the restoration of NF-κB and MMP-9 protein levels. In conclusion, the current results indicated that Tet inhibited migration and invasion of RCC partially by regulating Akt/NF-κB/MMP-9 signaling pathway, suggesting that Tet may be a potential therapeutic candidate against metastatic RCC. PMID:28288190

  13. Tetrandrine inhibits migration and invasion of human renal cell carcinoma by regulating Akt/NF-κB/MMP-9 signaling.

    PubMed

    Chen, Shurui; Liu, Wei; Wang, Ke; Fan, Yizeng; Chen, Jiaqi; Ma, Jianbin; Wang, Xinyang; He, Dalin; Zeng, Jin; Li, Lei

    2017-01-01

    Renal cell carcinoma (RCC) is known as one of the most lethal malignancies in the urological system because of its high incidence of metastasis. Tetrandrine (Tet), a traditional Chinese herbal medicine, exerts a potent anti-cancer effect in a variety of cancer cells. However, the anti-metastatic effect of Tet and its possible mechanism in RCC is still unclear. The present study revealed that Tet significantly suppressed the migration and invasion of RCC 786-O and 769-P cells in vitro. Mechanistically, the protein levels of matrix metalloproteinases 9 (MMP-9), phosphorylated PI3K, PDK1, Akt and NF-κB were markedly reduced after Tet treatment. Moreover, co-treatment with LY294002 (PI3K inhibitor) could further enhance the Tet-inhibited migration and invasion, and the NF-κB and MMP-9 protein levels were further decreased. Similar results were observed after PDTC (NF-κB inhibitor) co-treatment. Conversely, SC79, an Akt activator, could partially reverse the anti-metastatic effects of Tet, accompanied by the restoration of NF-κB and MMP-9 protein levels. In conclusion, the current results indicated that Tet inhibited migration and invasion of RCC partially by regulating Akt/NF-κB/MMP-9 signaling pathway, suggesting that Tet may be a potential therapeutic candidate against metastatic RCC.

  14. MicroRNA-486-dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms.

    PubMed

    Alexander, Matthew S; Casar, Juan Carlos; Motohashi, Norio; Vieira, Natássia M; Eisenberg, Iris; Marshall, Jamie L; Gasperini, Molly J; Lek, Angela; Myers, Jennifer A; Estrella, Elicia A; Kang, Peter B; Shapiro, Frederic; Rahimov, Fedik; Kawahara, Genri; Widrick, Jeffrey J; Kunkel, Louis M

    2014-06-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, which results in dysfunctional signaling pathways within muscle. Previously, we identified microRNA-486 (miR-486) as a muscle-enriched microRNA that is markedly reduced in the muscles of dystrophin-deficient mice (Dmdmdx-5Cv mice) and in DMD patient muscles. Here, we determined that muscle-specific transgenic overexpression of miR-486 in muscle of Dmdmdx-5Cv mice results in reduced serum creatine kinase levels, improved sarcolemmal integrity, fewer centralized myonuclei, increased myofiber size, and improved muscle physiology and performance. Additionally, we identified dedicator of cytokinesis 3 (DOCK3) as a miR-486 target in skeletal muscle and determined that DOCK3 expression is induced in dystrophic muscles. DOCK3 overexpression in human myotubes modulated PTEN/AKT signaling, which regulates muscle hypertrophy and growth, and induced apoptosis. Furthermore, several components of the PTEN/AKT pathway were markedly modulated by miR-486 in dystrophin-deficient muscle. Skeletal muscle-specific miR-486 overexpression in Dmdmdx-5Cv animals decreased levels of DOCK3, reduced PTEN expression, and subsequently increased levels of phosphorylated AKT, which resulted in an overall beneficial effect. Together, these studies demonstrate that stable overexpression of miR-486 ameliorates the disease progression of dystrophin-deficient skeletal muscle.

  15. Effect of lithium on ventricular remodelling in infarcted rats via the Akt/mTOR signalling pathways.

    PubMed

    Lee, Tsung-Ming; Lin, Shinn-Zong; Chang, Nen-Chung

    2017-04-28

    Activation of phosphoinositide 3-kinase (PI3K)/Akt signalling is the molecular pathway driving physiological hypertrophy. As lithium, a PI3K agonist, is highly toxic at regular doses, we assessed the effect of lithium at a lower dose on ventricular hypertrophy after myocardial infarction (MI). Male Wistar rats after induction of MI were randomized to either vehicle or lithium (1 mmol/kg per day) for 4 weeks. The dose of lithium led to a mean serum level of 0.39 mM, substantially lower than the therapeutic concentrations (0.8-1.2 mM). Infarction in the vehicle was characterized by pathological hypertrophy in the remote zone; histologically, by increased cardiomyocyte sizes, interstitial fibrosis and left ventricular dilatation; functionally, by impaired cardiac contractility; and molecularly, by an increase of p-extracellular-signal-regulated kinase (ERK) levels, nuclear factor of activated T cells (NFAT) activity, GATA4 expression and foetal gene expressions. Lithium administration mitigated pathological remodelling. Furthermore, lithium caused increased phosphorylation of eukaryotic initiation factor 4E binding protein 1 (p-4E-BP1), the downstream target of mammalian target of rapamycin (mTOR). Blockade of the Akt and mTOR signalling pathway with deguelin and rapamycin resulted in markedly diminished levels of p-4E-BP1, but not ERK. The present study demonstrated that chronic lithium treatment at low doses mitigates pathological hypertrophy through an Akt/mTOR dependent pathway.

  16. DNA-PK inhibition causes a low level of H2AX phosphorylation and homologous recombination repair in Medaka (Oryzias latipes) cells

    SciTech Connect

    Urushihara, Yusuke; Kobayashi, Junya; Matsumoto, Yoshihisa; Komatsu, Kenshi; Oda, Shoji; Mitani, Hiroshi

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer We investigated the effect of DNA-PK inhibition on DSB repair using fish cells. Black-Right-Pointing-Pointer A radiation sensitive mutant RIC1 strain showed a low level of DNA-PK activity. Black-Right-Pointing-Pointer DNA-PK dysfunction leads defects in HR repair and DNA-PKcs autophosphorylation. Black-Right-Pointing-Pointer DNA-PK dysfunction leads a slight increase in the number of 53BP1 foci after DSBs. Black-Right-Pointing-Pointer DNA-PK dysfunction leads an alternative NHEJ that depends on 53BP1. -- Abstract: Nonhomologous end joining (NHEJ) and homologous recombination (HR) are known as DNA double-strand break (DSB) repair pathways. It has been reported that DNA-PK, a member of PI3 kinase family, promotes NHEJ and aberrant DNA-PK causes NHEJ deficiency. However, in this study, we demonstrate that a wild-type cell line treated with DNA-PK inhibitor and a mutant cell line with dysfunctional DNA-PK showed decreased HR efficiency in fish cells (Medaka, Oryzias latipes). Previously, we reported that the radiation-sensitive mutant RIC1 strain has a defect in the Histone H2AX phosphorylation after {gamma}-irradiation. Here, we showed that a DNA-PK inhibitor, NU7026, treatment resulted in significant reduction in the number of {gamma}H2AX foci after {gamma}-irradiation in wild-type cells, but had no significant effect in RIC1 cells. In addition, RIC1 cells showed significantly lower levels of DNA-PK kinase activity compared with wild-type cells. We investigated NHEJ and HR efficiency after induction of DSBs. Wild-type cells treated with NU7026 and RIC1 cells showed decreased HR efficiency. These results indicated that aberrant DNA-PK causes the reduction in the number of {gamma}H2AX foci and HR efficiency in RIC1 cells. We performed phosphorylated DNA-PKcs (Thr2609) and 53BP1 focus assay after {gamma}-irradiation. RIC1 cells showed significant reduction in the number of phosphorylated DNA-PKcs foci and no deference in the

  17. A Switch in Akt Isoforms Is Required for Notch-Induced Snail1 Expression and Protection from Cell Death

    PubMed Central

    Frías, Alex; Lambies, Guillem; Viñas-Castells, Rosa; Martínez-Guillamon, Catalina; Dave, Natàlia

    2015-01-01

    Notch activation in aortic endothelial cells (ECs) takes place at embryonic stages during cardiac valve formation and induces endothelial-to-mesenchymal transition (EndMT). Using aortic ECs, we show here that active Notch expression promotes EndMT, resulting in downregulation of vascular endothelial cadherin (VE-cadherin) and upregulation of mesenchymal genes such as those for fibronectin and Snail1/2. In these cells, transforming growth factor β1 exacerbates Notch effects by increasing Snail1 and fibronectin activation. When Notch-downstream pathways were analyzed, we detected an increase in glycogen synthase kinase 3β (GSK-3β) phosphorylation and inactivation that facilitates Snail1 nuclear retention and protein stabilization. However, the total activity of Akt was downregulated. The discrepancy between Akt activity and GSK-3β phosphorylation is explained by a Notch-induced switch in the Akt isoforms, whereby Akt1, the predominant isoform expressed in ECs, is decreased and Akt2 transcription is upregulated. Mechanistically, Akt2 induction requires the stimulation of the β-catenin/TCF4 transcriptional complex, which activates the Akt2 promoter. Active, phosphorylated Akt2 translocates to the nucleus in Notch-expressing cells, resulting in GSK-3β inactivation in this compartment. Akt2, but not Akt1, colocalizes in the nucleus with lamin B in the nuclear envelope. In addition to promoting GSK-3β inactivation, Notch downregulates Forkhead box O1 (FoxO1), another Akt2 nuclear substrate. Moreover, Notch protects ECs from oxidative stress-induced apoptosis through an Akt2- and Snail1-dependent mechanism. PMID:26711268

  18. Anti-diabetic effect of citrus pectin in diabetic rats and potential mechanism via PI3K/Akt signaling pathway.

    PubMed

    Liu, Yanlong; Dong, Man; Yang, Ziyu; Pan, Siyi

    2016-08-01

    This study was performed to investigate the anti-diabetic effect of citrus pectin in type 2 diabetic rats and its potential mechanism of action. The results showed that fasting blood glucose levels were significantly decreased after 4 weeks of citrus pectin administration. Citrus pectin improved glucose tolerance, hepatic glycogen content and blood lipid levels (TG, TC, LDL-c and HDL-c) in diabetic rats. Citrus pectin also significantly reduced insulin resistance, which played an important role in the resulting anti-diabetic effect. Moreover, after the pectin treatment, phosphorylated Akt expression was upregulated and GSK3β expression was downregulated, indicating that the potential anti-diabetic mechanism of citrus pectin might occur through regulation of the PI3K/Akt signaling pathway. Together, these results suggested that citrus pectin could ameliorate type 2 diabetes and potentially be used as an adjuvant treatment.

  19. SHIP2 on pI3K/Akt pathway in palmitic acid stimulated islet β cell.

    PubMed

    Liu, Qingjuan; Wang, Ruiying; Zhou, Hong; Zhang, Lihui; Cao, Yanping; Wang, Xianjuan; Hao, Yongmei

    2015-01-01

    This study is to investigate the influence of SHIP2 on palmitic acid stimulated islet β cell and insulin secretion, as well as its role in pI3K/Akt pathway. We defined four groups: control, acid group, acid + NC siRNA group and acid + siRNA transfection group. The control was neither treated by palmitic acid nor transfection. The acid group was subjected to palmitic acid incubation. The acid + NC siRNA group was transiently transfected by NC siRNA, then was stimulated by palmitic acid. The acid + siRNA group was transiently transfected by siRNA, then was stimulated by palmitic acid. Cell proliferation and apoptosis were measured by MTT and flow cytometry. Immunocytochemistry, Western Blot and QPCR were designed to detect the expression of SHIP2, Akt, p-Akt protein and mRNA. Insulin secretion was tested by radioimmunoassay. The apoptosis rate in the acid + siRNA group was non-significantly lower than the acid group and the acid + NC siRNA group (P > 0.05). The expression levels of Akt phosphorylation in the acid + siRNA group was significantly higher than in the acid + NC siRNA group and the acid group (P < 0.05). And under 22.4 mmol/L glucose KRB, insulin secretion in the acid + siRNA group was significantly more than the acid + NC siRNA group and the acid group (P < 0.05). SHIP2 silencing probably stimulates insulin secretion, which may be associated with the enhanced proliferation in the pI3K/Akt pathway.

  20. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    PubMed Central

    ZHANG, Zong-Kang; LI, Jie; LIU, Jin; GUO, Baosheng; LEUNG, Albert; ZHANG, Ge; ZHANG, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment could significantly attenuate the decreases in the phosphorylation level of PI3K at p110 catalytic subunit and its downstream markers related to protein synthesis, and inhibit the increases in protein degradation markers at mRNA and protein levels in rat soleus muscle following 28-day hindlimb unloading. In addition, the decreases in soleus muscle mass, muscle fiber cross-sectional area, twitch force, specific force, contraction time and half relaxation time could be significantly attenuated by the high dose ICT treatment. The low dose ICT treatment could moderately attenuate the above changes induced by unloading. Wortmannin, a specific inhibitor of PI3K at p110 catalytic subunit, could abolish the above effects of ICT in vitro and in vivo, indicating that PI3K/Akt signaling could be required by ICT to counteract skeletal muscle atrophy following mechanical unloading. PMID:26831566

  1. Serine phosphorylation and arginine methylation at the crossroads to neurodegeneration.

    PubMed

    Basso, Manuela; Pennuto, Maria

    2015-09-01

    Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, polyglutamine diseases and motor neuron diseases, are late-onset and progressive disorders characterized by the accumulation of misfolded proteins inside and outside neurons. No effective therapies exist to delay the onset or arrest the progression of these diseases. One novel and promising therapeutic approach consists of targeting disease-causing proteins at the post-translational level. Here we illustrate this concept using the example of spinal and bulbar muscular atrophy, a neurodegenerative disease caused by polyglutamine expansion in the androgen receptor. Emerging evidence suggests that two key post-translational modifications of polyglutamine-expanded androgen receptor, namely serine phosphorylation by protein kinase B/Akt and arginine methylation by protein arginine methyltransferases, occur at the same consensus site, are mutually exclusive, and have opposing effects on neurotoxicity. Because several proteins linked to neurodegenerative diseases have canonical Akt consensus site motifs, these findings may have a broad impact in the field of neurological diseases caused by misfolded proteins.

  2. PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway

    SciTech Connect

    Hinoi, Eiichi; Iezaki, Takashi; Fujita, Hiroyuki; Watanabe, Takumi; Odaka, Yoshiaki; Ozaki, Kakeru; Yoneda, Yukio

    2014-07-18

    Highlights: • Akt is preferentially phosphorylated in BAT and sWAT of aP2-GDF5 mice. • PI3K/Akt signaling is involved in GDF5-induced brown adipogenesis. • PI3K/Akt signaling regulates GDF5-induced Smad5 phosphorylation. - Abstract: We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylation of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5{sup Rgsc451} mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.

  3. Lysophosphatidic acid induces cell migration through the selective activation of Akt1

    PubMed Central

    Kim, Eun Kyoung; Yun, Sung Ji; Do, Kee Hun; Kim, Min Sung; Cho, Mong; Suh, Dong-Soo; Kim, Chi Dae; Kim, Jae Ho; Birnbaum, Morris J.

    2008-01-01

    Akt plays pivotal roles in many physiological responses including growth, proliferation, survival, metabolism, and migration. In the current studies, we have evaluated the isoform-specific role of akt in lysophosphatidic acid (LPA)-induced cell migration. Ascites from ovarian cancer patients (AOCP) induced mouse embryo fibroblast (MEF) cell migration in a dose-dependent manner. On the other hand, ascites from liver cirrhosis patients (ALCP) did not induce MEF cell migration. AOCP-induced MEF cell migration was completely blocked by pre-treatment of cells with LPA receptor antagonist, Ki16425. Both LPA- and AOCP-induced MEF cell migration was completely attenuated by PI3K inhibitor, LY294002. Furthermore, cells lacking Akt1 displayed defect in LPA-induced cell migration. Re-expression of Akt1 in DKO (Akt1-/-Akt2-/-) cells restored LPA-induced cell migration, whereas re-expression of Akt2 in DKO cells could not restore the LPA-induced cell migration. Finally, Akt1 was selectively phosphorylated by LPA and AOCP stimulation. These results suggest that LPA is a major factor responsible for AOCP-induced cell migration and signaling specificity of Akt1 may dictate LPA-induced cell migration. PMID:18779657

  4. Fibroblast growth factor 4-induced migration of porcine trophectoderm cells is mediated via the AKT cell signaling pathway.

    PubMed

    Jeong, Wooyoung; Lee, Jieun; Bazer, Fuller W; Song, Gwonhwa; Kim, Jinyoung

    2016-01-05

    During early pregnancy, a well-coordinated communication network between the conceptus and maternal uterus is especially crucial in pigs in which there is a protracted pre-attachment phase prior to implantation. This network is regulated by an astonishing number of molecules such as growth factors. Fibroblast growth factor 4 (FGF4) is a multipotent growth factor that elicits diverse biological actions on various types of cells and tissues. In pigs, FGF4 and its receptors are expressed in the uterine endometrium and conceptus during early pregnancy, but less is known about the FGF4-mediated regulation of conceptus growth during peri-implantation period of pregnancy. Therefore, the aims of the present study were to investigate: 1) expression of endometrial FGF4 mRNA during early pregnancy; 2) up-regulation of FGF receptor expression in porcine trophectoderm (pTr) cells in response to FGF4; and 3) FGF-induced intracellular signaling and cellular activities in pTr cells. In vitro cultured pTr cells incubated with different concentrations of recombinant FGF4 (0-50 ng/ml) responded with a dose-dependent increase in AKT phosphorylation of 2.9-fold at 20 ng/ml FGF4. Within 30 min after treatment with 20 ng/ml FGF4, the abundances of p-AKT, p-P90RSK and p-RPS6 proteins increased 2.1-, 5.2- and 3.2-fold, respectively, and then returned to basal levels by 120 min. To ensure that the stimulatory effect of FGF4 on AKT signaling was p-AKT-dependent, pTr cells were pre-incubated with an AKT inhibitor (LY294002) for 1 h prior to FGF4 treatment. 20 μM of LY294002 decreased FGF4-induced p-AKT, p-P90RSK and p-RPS6 proteins. Immunofluorescence analyses revealed that p-RPS6 proteins were abundant within the cytoplasm of FGF4-treated cells, but present at basal levels in the presence of LY294002. Furthermore, FGF4 increased migration of pTr cells and LY294002 significantly reduced this effect. Results of the present study suggest that activation of the FGF receptor(s) on trophectoderm

  5. Prohibitin 2 represents a novel nuclear AKT substrate during all-trans retinoic acid-induced differentiation of acute promyelocytic leukemia cells.

    PubMed

    Bavelloni, Alberto; Piazzi, Manuela; Faenza, Irene; Raffini, Mirco; D'Angelo, Antonietta; Cattini, Luca; Cocco, Lucio; Blalock, William L

    2014-05-01

    The AKT/PKB kinase is essential for cell survival, proliferation, and differentiation; however, aberrant AKT activation leads to the aggressiveness and drug resistance of many human neoplasias. In the human acute promyelocytic leukemia cell line NB4, nuclear AKT activity increases during all-trans retinoic acid (ATRA)-mediated differentiation. As nuclear AKT activity is associated with differentiation, we sought to identify the nuclear substrates of AKT that were phosphorylated after ATRA treatment. A proteomics-based search for nuclear substrates of AKT in ATRA-treated NB4 cells was undertaken by using 2D-electrophoresis/mass spectrometry (MS) in combination with an anti-AKT phospho-substrate antibody. Western blot analysis, an in vitro kinase assay, and/or site-directed mutagenesis were performed to further characterize the MS findings. MS analysis revealed prohibitin (PHB)-2, a multifunctional protein involved in cell cycle progression and the suppression of oxidative stress, to be a putative nuclear substrate of AKT. Follow-up studies confirmed that AKT phosphorylates PHB2 on Ser-91 and that forced expression of the PHB2(S91A) mutant results in a rapid loss of viability and apoptotic cell death. Activation of nuclear AKT during ATRA-mediated differentiation results in the phosphorylation of several proteins, including PHB2, which may serve to coordinate nuclear-mitochondrial events during differentiation.

  6. Leptin promotes endothelial dysfunction in chronic kidney disease through AKT/GSK3β and β-catenin signals.

    PubMed

    Ding, Nannan; Liu, Bing; Song, Jiaguang; Bao, Shougang; Zhen, Junhui; Lv, Zhimei; Wang, Rong

    2016-11-25

    Endothelial dysfunction (ED) is a well-recognized instigator of cardiovascular diseases and develops in chronic kidney disease (CKD) with high rate. Recent studies have implicated that leptin is associated with endothelial dysfunction. We investigated the relationship between leptin and markers of ED in CKD patients and how leptin contributed to endothelial damage. 140 CKD patients and 140 healthy subjects were studied. Serum leptin levels were significantly higher in CKD than in controls and displayed significantly positive association with the increase levels of sICAM-1 and sVCAM-1 but negative correlation with flow-mediated dilatation (FMD) reduction in patients. Our in vitro study demonstrated that leptin induced overexpression of ICAM-1 and VCAM-1, led to f-actin reorganization and vinculin assembly, increased endothelial monolayer permeability for FITC-dextran, and accelerated endothelial cell migration; these changes were markedly reversed when the cells were transfected with AKT or β-catenin shRNA vectors. Notably, high leptin resulted in hyper-phosphorylation of AKT and GSK3β, along with nuclear accumulation of β-catenin. In conclusion, serum leptin was elevated in CKD patients and it might contribute to endothelial dysfunction by disarrangement of f-actin cytoskeleton via a mechanism involving the AKT/GSK3β and β-catenin pathway.

  7. Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle.

    PubMed

    Sakamoto, Kei; Arnolds, David E W; Ekberg, Ingvar; Thorell, Anders; Goodyear, Laurie J

    2004-06-25

    Activation of Akt and deactivation of GSK3 are critical signals regulating a number of cellular processes in multiple systems. Whether physical exercise alters Akt and GSK3 activity in human skeletal muscle is controversial. beta-Catenin, a GSK3 substrate and important Wnt signaling protein that alters gene transcription, has not been investigated in human skeletal muscle. In the present study, eight healthy human subjects performed 30min of cycling exercise at 75% of maximum workload (submaximal) followed by 6 bouts of 60s at 125% maximum workload (maximal). Biopsies of vastus lateralis muscle were taken at rest (basal), and within 15s following cessation of the submaximal and maximal exercise bouts. Exercise at both submaximal and maximal intensities significantly increased Akt activity (40% and 110%, respectively). Increases in Akt activity were accompanied by increases in Akt Thr(308) and Ser(473) phosphorylation, decreased GSK3alpha activity ( approximately 30% at both intensities), and increased phosphorylation of GSK3alpha Ser(21). Exercise at both intensities also decreased beta-catenin Ser(33/37)Thr(41) phosphorylation (50-60% at both intensities). These results demonstrate that Akt, GSK3, and beta-catenin signaling are regulated by exercise in human skeletal muscle, and as such identify them as possible molecular mediators of exercise's effect on metabolic and transcriptional processes in skeletal muscle.

  8. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  9. Wisp2/CCN5 up-regulated in the central nervous system of GM3-only mice facilitates neurite formation in Neuro2a cells via integrin-Akt signaling

    SciTech Connect

    Ohkawa, Yuki; Ohmi, Yuhsuke; Tajima, Orie; Yamauchi, Yoshio; Furukawa, Keiko; Furukawa, Koichi

    2011-08-05

    Highlights: {yields} Wisp2/CCN5 was up-regulated in nervous tissues of GM3-only mutant mice. {yields} Wisp2/CCN5 was found in neurons more strongly in the mutant mice. {yields} Wisp2/CCN5 induces Akt phosphorylation via integrins and facilitates neurite formation. {yields} Wisp2/CCN5 conferred resistance to H{sub 2}O{sub 2}-induced apoptosis. {yields} Up-regulation of Wisp2/CCN5 in GM3-only mice seemed for protection of brains from neurodegeneration. -- Abstract: Wisp2/CCN5 belongs to CCN family proteins which are involved in cell proliferation, angiogenesis, tumorigenesis and wound healing. Although a number of studies on the roles of Wisp2/CCN5 in cancers have been reported, no study on the expression and function of Wisp2/CCN5 in the central nervous system has been reported. In this study, we focused on Wisp2/CCN5 that was up-regulated in nervous tissues in GM3-only mice. Over-expression of Wisp2/CCN5 enhanced neurite outgrowth potently after serum withdrawal with increased phosphorylation levels of Akt and ERKs. When cells were cultured with recombinant Wisp2/CCN5 proteins, more and longer neurites were formed than in the controls. Thus, we demonstrated for the first time that Wisp2/CCN5 facilitates neurite formation in a mouse neuroblastoma cell line, Neuro2a. Akt phosphorylation induced by recombinant Wisp2/CCN5 was suppressed after knockdown of integrin {beta}1. Moreover, Wisp2/CCN5-over-expressing cells were resistant to apoptosis induced by H{sub 2}O{sub 2}. These results suggested that secreted Wisp2/CCN5 induces Akt and ERK phosphorylation via integrins, and consequently facilitates neurite formation and conferred resistance to apoptosis. Up-regulation of Wisp2/CCN5 in GM3-only mice should be, therefore, a reaction to protect nervous tissues from neurodegeneration caused by ganglioside deficiency.

  10. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer.

    PubMed

    Shayan, Gulidanna; Srivastava, Raghvendra; Li, Jing; Schmitt, Nicole; Kane, Lawrence P; Ferris, Robert L

    2017-01-01

    Programmed Death 1 (PD-1) and T cell Ig and mucin domain-3 protein (Tim-3) are immune checkpoint receptors that are expressed on tumor-infiltrating lymphocytes (TIL) in tumor-bearing mice and humans. As anti-PD-1 single agent response rates are only <20% in head and neck squamous cell carcinoma (HNSCC) patients, it is important to understand how multiple inhibitory checkpoint receptors maintain suppressed cellular immunity. One such receptor, Tim-3, activates downstream proliferative pathways through Akt/S6, and is highly expressed in dysfunctional TIL. We observed that PD-1 and Tim-3 co-expression was associated with a more exhausted phenotype, with the highest PD-1 levels on TIL co-expressing Tim-3. Dampened Akt/S6 phosphorylation in these PD-1(+)Tim-3(+) TIL, when the PD-1 pathway was ligated, suggested that signaling cross-talk could lead to escape through Tim-3 expression. Indeed, PD-1 blockade of human HNSCC TIL led to further Tim-3 upregulation, supporting a circuit of compensatory signaling and potentially permitting escape from anti-PD-1 blockade in the tumor microenvironment. Also, in a murine HNC tumor model that is partially responsive to anti-PD-1 therapy, Tim-3 was upregulated in TIL from persistently growing tumors. Significant antitumor activity was observed after sequential addition of anti-Tim-3 mAb to overcome adaptive resistance to anti-PD-1 mAb. This increased Tim-3-mediated escape of exhausted TIL from PD-1 inhibition that was mediated by phospho-inositol-3 kinase (PI3K)/Akt complex downstream of TCR signaling but not cytokine-mediated pathways. Taken together, we conclude that during PD-1 blockade, TIL upregulate Tim-3 in a PI3K/Akt-dependent manner, providing further support for dual targeting of these molecules for more effective cancer immunotherapy.

  11. PI3K/Akt/FoxO3a signaling mediates cardioprotection of FGF-2 against hydrogen peroxide-induced apoptosis in H9c2 cells.

    PubMed

    Liu, Mi-Hua; Li, Guo-Hua; Peng, Li-Jun; Qu, Shun-Lin; Zhang, Yuan; Peng, Juan; Luo, Xin-Yuan; Hu, Heng-Jing; Ren, Zhong; Liu, Yao; Tang, Hui; Liu, Lu-Shan; Tang, Zhi-Han; Jiang, Zhi-Sheng

    2016-03-01

    Cardiovascular disease is a growing major global public health problem. Oxidative stress is regarded as one of the key regulators of pathological physiology, which eventually leads to cardiovascular disease. However, mechanisms by which FGF-2 rescues cells from oxidative stress damage in cardiovascular disease is not fully elucidated. Herein this study was designed to investigate the protective effects of FGF-2 in H2O2-induced apoptosis of H9c2 cardiomyocytes, as well as the possible signaling pathway involved. Apoptosis of H9c2 cardiomyocytes was induced by H2O2 and assessed using methyl thiazolyl tetrazolium assay, Hoechst, and TUNEL staining. Cells were pretreated with PI3K/Akt inhibitor LY294002 to investigate the possible PI3K/Akt pathways involved in the protection of FGF-2. The levels of p-Akt, p-FoxO3a, and Bim were detected by immunoblotting. Stimulation with H2O2 decreased the phosphorylation of Akt and FoxO3a, and induced nuclear localization of FoxO3a and apoptosis of H9c2 cells. These effects of H2O2 were abrogated by pretreatment with FGF-2. Furthermore, the protective effects of FGF-2 were abolished by PI3K/Akt inhibitor LY294002. In conclusion, our data suggest that FGF-2 protects against H2O2-induced apoptosis of H9c2 cardiomyocytes via activation of the PI3K/Akt/FoxO3a pathway.

  12. Ginkgolide B Exerts Cardioprotective Properties against Doxorubicin-Induced Cardiotoxicity by Regulating Reactive Oxygen Species, Akt and Calcium Signaling Pathways In Vitro and In Vivo

    PubMed Central

    Zhao, Deqiang; Zheng, Jianpu; Liu, Zongjun

    2016-01-01

    The aim of this study was to evaluate the effect of Ginkgolide B (GB) on doxorubicin (DOX) induced cardiotoxicity in vitro and in vivo. Rat cardiomyocyte cell line H9c2 was pretreated with GB and subsequently subjected to doxorubicin treatment. Cell viability and cell apoptosis were assessed by MTT assay and Hoechst staining, respectively. Reactive oxygen species (ROS), Akt phosphorylation and intracellular calcium were equally determined in order to explore the underlying molecular mechanism. To verify the in vivo therapeutic effect of GB, we established a mouse model of cardiotoxicity and determined left ventricle ejection fraction (LVEF) and left ventricular mass (LVM). The in vitro experimental results indicated that pretreatment with GB significantly decreases the viability and apoptosis of H9c2 cells by decreasing ROS and intracellular calcium levels and activating Akt phosphorylation. In the in vivo study, we recorded an improved LVEF and a decreased LVM in the group of cardiotoxic rats treated with GB. Altogether, our findings anticipate that GB exerts a cardioprotective effect through possible regulation of the ROS, Akt and calcium pathways. The findings suggest that combination of GB with DOX in chemotherapy could help avoid the cardiotoxic side effects of GB. PMID:27973574

  13. Thymosin β4 induces invasion and migration of human colorectal cancer cells through the ILK/AKT/β-catenin signaling pathway

    SciTech Connect

    Piao, Zhengri; Hong, Chang-Soo; Jung, Mi-Ran; Choi, Chan; Park, Young-Kyu

    2014-09-26

    Highlights: • Tβ4 is overexpressed in human colorectal cancer cells. • The overexpression of Tβ4 is correlated with stage of colorectal cancer. • Tβ4 stimulates cell adhesion, invasion, migration and EMT. • Tβ4 activates the ILK/AKT/β-catenin signaling pathway. - Abstract: Thymosin β4 (Tβ4) is a 43-amino-acid peptide involved in many biological processes. However, the precise molecular signaling mechanism(s) of Tβ4 in cell invasion and migration remain unclear. In this study, we show that Tβ4 was significantly overexpressed in colorectal cancer tissues compared to adjacent normal tissues and high levels of Tβ4 were correlated with stage of colorectal cancer, and that Tβ4 expression was associated with morphogenesis and EMT. Tβ4-upregulated cancer cells showed increased adhesion, invasion and migration activity, whereas Tβ4-downregulated cells showed decreased activities. We also demonstrated that Tβ4 interacts with ILK, which promoted the phosphorylation and activation of AKT, the phosphorylation and inactivation of GSK3β, the expression and nuclear localization of β-catenin, and integrin receptor activation. These results suggest that Tβ4 is an important regulator of the ILK/AKT/β-catenin/Integrin signaling cascade to induce cell invasion and migration in colorectal cancer cells, and is a potential target for cancer treatment.

  14. Naoxintong Protects Primary Neurons from Oxygen-Glucose Deprivation/Reoxygenation Induced Injury through PI3K-Akt Signaling Pathway

    PubMed Central

    Zhao, Pei; Zhu, Jinqiang; Yan, Chen; Li, Lin; Zhang, Han; Zhang, Meng; Gao, Xiumei

    2016-01-01

    Naoxintong capsule (NXT), developed from Buyang Huanwu Decoction, has shown the neuroprotective effects in cerebrovascular diseases, but the neuroprotection mechanisms of NXT on ischemia/reperfusion injured neurons have not yet been well known. In this study, we established the oxygen-glucose deprivation/reoxygenation (OGD/R) induced neurons injury model and treat the neurons with cerebrospinal fluid containing NXT (BNC) to investigate the effects of NXT on OGD/R induced neurons injury and potential mechanisms. BNC improved neuron viability and decreased apoptotic rate induced by OGD/R. BNC attenuated OGD/R induced cytosolic and mitochondrial Ca2+ overload, ROS generation, intracellular NO levels and nNOS mRNA increase, and cytochrome-c release when compared with OGD/R group. BNC significantly inhibited both mPTP opening and ΔΨm depolarization. BNC increased Bcl-2 expression and decreased Bax expression, upregulated the Bcl-2/Bax ratio, downregulated caspase-3 mRNA and caspase-9 mRNA expression, and decreased cleaved caspase-3 expression and caspase-3 activity. BNC increased phosphorylation of Akt following OGD/R, while LY294002 attenuated BNC induced increase of phosphorylated Akt expression. Our study demonstrated that NXT protected primary neurons from OGD/R induced injury by inhibiting calcium overload and ROS generation, protecting mitochondria, and inhibiting mitochondrial apoptotic pathway which was mediated partially by PI3K-Akt signaling pathway activation. PMID:26949405

  15. Alpha-chaconine-reduced metastasis involves a PI3K/Akt signaling pathway with downregulation of NF-kappaB in human lung adenocarcinoma A549 cells.

    PubMed

    Shih, Yuan-Wei; Chen, Pin-Shern; Wu, Cheng-Hsun; Jeng, Ya-Fang; Wang, Chau-Jong

    2007-12-26

    Alpha-chaconine, isolated from Solanum tuberosum Linn., is a naturally occurring steroidal glycoalkaloid in potato sprouts. Some reports demonstrated that alpha-chaconine had various anticarcinogenic properties. The aim of this study is to investigate the inhibitory effect of alpha-chaconine on lung adenocarcinoma cell metastasis in vitro. We chose the highly metastatic A549 cells, which were treated with various concentrations of alpha-chaconine to clarify the potential of inhibiting A549 cells invasion and migration. Data showed that alpha-chaconine inhibited A549 cell invasion/migration according to wound healing assay and Boyden chamber assay. Our results also showed that alpha-chaconine could inhibit phosphorylation of c-Jun N-terminal kinase (JNK) and Akt, whereas it did not affected phosphorylation of extracellular signal regulating kinase (ERK) and p38. In addition, alpha-chaconine significantly decreased the nuclear level of nuclear factor kappa B (NF-kappaB) and the binding ability of NF-kappaB. These results suggested that alpha-chaconine inhibited A549 cell metastasis by a reduction of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) activities involving suppression of phosphoinositide 3-kinase/Akt/NF-kappaB (PI3K/Akt/NF-kappaB) signaling pathway. Inhibiting metastasis by alpha-chaconine might offer a pivotal mechanism for its effective chemotherapeutic action.

  16. Insulin-like growth factor-1 improves diabetic cardiomyopathy through antioxidative and anti-inflammatory processes along with modulation of Akt/GSK-3β signaling in rats

    PubMed Central

    Wang, Cheng Yu; Li, Xiang Dan; Hao, Zhi Hong

    2016-01-01

    Diabetic cardiomyopathy (DCM), a serious complication of diabetes mellitus, is associated with changes in myocardial structure and function. This study sought to explore the ability of insulin-like growth factor-1 (IGF-1) to modulate DCM and its related mechanisms. Twenty-four male Wistar rats were injected with streptozotocin (STZ, 60 mg/kg) to mimic diabetes mellitus. Myocardial fibrosis and apoptosis were evaluated by histopathologic analyses, and relevant proteins were analyzed by Western blotting. Inflammatory factors were assessed by ELISA. Markers of oxidative stress were tested by colorimetric analysis. Rats with DCM displayed decreased body weight, metabolic abnormalities, elevated apoptosis (as assessed by the bcl-2/bax ratio and TUNEL assays), increased fibrosis, increased markers of oxidative stress (MDA and SOD) and inflammatory factors (TNF-α and IL-1β), and decreased phosphorylation of Akt and glycogen synthase kinase (GSK-3β). IGF-1 treatment, however, attenuated the metabolic abnormalities and myocardial apoptosis, interstitial fibrosis, oxidative stress and inflammation seen in diabetic rats, while also increasing the phosphorylation levels of Akt and GSK-3β. These findings suggest that IGF-1 ameliorates the pathophysiological progress of DCM along with an activation of the Akt/GSK-3β signaling pathway. Our findings suggest that IGF-1 could be a potential therapeutic choice for controlling DCM. PMID:27847438

  17. Functional proteomic analysis of a three-tier PKCepsilon-Akt-eNOS signaling module in cardiac protection.

    PubMed

    Zhang, Jun; Baines, Christopher P; Zong, Chenggong; Cardwell, Ernest M; Wang, Guangwu; Vondriska, Thomas M; Ping, Peipei

    2005-02-01

    Cardiac protective signaling networks have been shown to involve PKCepsilon. However, the molecular mechanisms by which PKCepsilon interacts with other members of these networks to form task-specific modules remain unknown. Among 93 different PKCepsilon-associated proteins that have been identified, Akt and endothelial nitric oxide (NO) synthase (eNOS) are of importance because of their independent abilities to promote cell survival and prevent cell death. The simultaneous association of PKCepsilon, Akt, and eNOS has not been examined, and, in particular, the formation of a module containing these three proteins and the role of such a module in the regulation of NO production and cardiac protection are unknown. The present study was undertaken to determine whether these molecules form a signaling module and, thereby, play a collective role in cardiac signaling. Using recombinant proteins in vitro and PKCepsilon transgenic mouse hearts, we demonstrate the following: 1) PKCepsilon, Akt, and eNOS interact and form signaling modules in vitro and in the mouse heart. Activation of either PKCepsilon or Akt enhances the formation of PKCepsilon-Akt-eNOS signaling modules. 2) PKCepsilon directly phosphorylates and enhances activation of Akt in vitro, and PKCepsilon activation increases phosphorylation and activation of Akt in PKCepsilon transgenic mouse hearts. 3) PKCepsilon directly phosphorylates eNOS in vitro, and this phosphorylation enhances eNOS activity. Activation of PKCepsilon in vivo increased phosphorylation of eNOS at Ser(1177), indicating eNOS activation. This study characterizes, for the first time, the physical, as well as functional, coupling of PKCepsilon, Akt, and eNOS in the heart and implicates these PKCepsilon-Akt-eNOS signaling modules as critical signaling elements during PKCepsilon-induced cardiac protection.

  18. Deoxycholyltaurine Rescues Human Colon Cancer Cells From Apoptosis by Activating EGFR-Dependent PI3K/Akt Signaling

    PubMed Central

    Raufman, Jean-Pierre; Shant, Jasleen; Guo, Chang Yue; Roy, Sanjit; Cheng, Kunrong

    2010-01-01

    Recent studies indicate that secondary bile acids promote colon cancer cell proliferation but their role in maintaining cell survival has not been explored. We found that deoxycholyltaurine (DCT) markedly attenuated both unstimulated and TNF-α-stimulated programmed cell death in colon cancer cells by a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. To examine the role of bile acids and PI3K signaling in maintaining colon cancer cell survival, we explored the role of signaling downstream of bile acid-induced activation of the epidermal growth factor receptor (EGFR) in regulating both apoptosis and proliferation of HT-29 and H508 human colon cancer cells. DCT caused dose- and time-dependent Akt (Ser473) phosphorylation, a commonly used marker of activated PI3K/Akt signaling. Both EGFR kinase and PI3K inhibitors attenuated DCT-induced Akt phosphorylation and Akt activation, as demonstrated by reduced phosphorylation of a GSK-3-paramyosin substrate. Transfection of HT-29 cells with kinase-dead EGFR (K721M) reduced DCT-induced Akt phosphorylation. In HT-29 cells, EGFR and PI3K inhibitors as well as transfection with dominant negative AKT attenuated DCT-induced cell proliferation. DCT-induced PI3K/Akt activation resulted in downstream phosphorylation of GSK-3 (Ser21/9) and BAD (Ser136), and nuclear translocation (activation) of NF-κB, thereby confirming that DCT-induced activation of PI3K/Akt signaling regulates both proproliferative and prosurvival signals. Collectively, these results indicate that DCT-induced activation of post-EGFR PI3K/Akt signaling stimulates both colon cancer cell survival and proliferation. PMID:18064605

  19. Detection of novelty, but not memory of spatial habituation, is associated with an increase in phosphorylated cAMP response element-binding protein levels in the hippocampus.

    PubMed

    Winograd, Milena; Viola, Haydée

    2004-01-01

    There is a growing body of evidence showing that the formation of associative memories is associated with an increase in phosphorylated cAMP response element-binding protein (pCREB) levels. We recently reported increased pCREB levels in the rat hippocampus after an exploration to a novel environment. In the present work, we studied whether this increment in CREB activation is associated with the formation of memory of habituation to a novel environment or with the detection of novelty. Rats were submitted to consecutive open field sessions at 3-h intervals. Measurement of the hippocampal pCREB level, carried out 1 h after each training session, showed that (1) it did not increase when rats explored a familiar environment; (2) it did not increase after a reexposure that improves the memory of habituation; (3) it increased after a brief novel exploration unable to form memory of habituation; and (4) it increased in amnesic rats for spatial habituation. Taken as a whole, our results suggest that the elevated pCREB level after a single open field exploration is not associated with the memory formation of habituation. It is indeed associated with the detection of a novel environment.

  20. Oxidized LDL at low concentration promotes in-vitro angiogenesis and activates nitric oxide synthase through PI3K/Akt/eNOS pathway in human coronary artery endothelial cells

    SciTech Connect

    Yu, Shan; Wong, Siu Ling; Lau, Chi Wai; Huang, Yu; Yu, Cheuk-Man

    2011-04-01

    Research highlights: {yields} Low-concentration oxidized LDL enhances angiogenesis through nitric oxide (NO). {yields} Oxidized LDL increases intracellular NO levels via eNOS phosphorylation. {yields} Akt/PI3K signaling mediates oxidized LDL-induced eNOS phosphorylation. -- Abstract: It has long been considered that oxidized low-density lipoprotein (oxLDL) causes endothelial dysfunction and is remarkably related to the development of atherosclerosis. However, the effect of oxLDL at very low concentration (<10 {mu}g/ml) on the endothelial cells remains speculative. Nitric oxide (NO) has a crucial role in the endothelial cell function. In this study, we investigated the effect of oxLDL at low concentration on NO production and proliferation, migration, tube formation of the human coronary artery endothelial cells (HCAEC). Results showed that oxLDL at 5 {mu}g/ml enhanced HCAEC proliferation, migration and tube formation. These phenomena were accompanied by an increased intracellular NO production. L-NAME (a NOS inhibitor), LY294002 and wortmannin (PI3K inhibitors) could abolish oxLDL-induced angiogenic effects and prevent NO production in the HCAEC. The phosphorylation of Akt, PI3K and eNOS were up-regulated by oxLDL, which was attenuated by LY294002. Our results suggested that oxLDL at low concentration could promote in-vitro angiogenesis and activate nitric oxide synthesis through PI3K/Akt/eNOS pathway in HCAEC.