Science.gov

Sample records for akt protein kinase

  1. Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway

    DTIC Science & Technology

    2014-10-01

    kinase . This grant proposal will explore the resistance to small molecule AKT protein kinase inhibitors mediated by the... molecule AKT protein kinase inhibitors is potentially mediated by the Pim-1 protein kinase , and that unique Pim protein kinase inhibitors that can in...application is essential for the development of this combined chemotherapeutic strategy. 15. SUBJECT TERMS Small Molecule AKT Inhibitors ,

  2. PROTEIN KINASE B/AKT IS A NOVEL CYSTEINE STRING PROTEIN KINASE THAT REGULATES EXOCYTOSIS RELEASE KINETICS AND QUANTAL SIZE

    PubMed Central

    Evans, Gareth J. O.; Barclay, Jeff W.; Prescott, Gerald R.; Jo, Sung-Ro; Burgoyne, Robert D.; Birnbaum, Morris J.; Morgan, Alan

    2008-01-01

    Protein kinase B/Akt has been implicated in the insulin-dependent exocytosis of GLUT4-containing vesicles, and, more recently, insulin secretion. To determine if Akt also regulates insulin-independent exocytosis, we used adrenal chromaffin cells, a popular neuronal model. Akt1 was the predominant isoform expressed in chromaffin cells, although lower levels of Akt2 and Akt3 were also found. Secretory stimuli in both intact and permeabilized cells induced Akt phosphorylation on serine-473, and the time course of Ca2+-induced Akt phosphorylation was similar to that of exocytosis in permeabilized cells. To determine if Akt modulated exocytosis, we transfected chromaffin cells with Akt constructs and monitored catecholamine release by amperometry. Wild-type Akt had no effect on the overall number of exocytotic events, but slowed the kinetics of catecholamine release from individual vesicles, resulting in an increased quantal size. This effect was due to phosphorylation by Akt, as it was not seen in cells transfected with kinase-dead mutant Akt. As overexpression of cysteine string protein (CSP) results in a similar alteration in release kinetics and quantal size, we determined if CSP was an Akt substrate. In vitro 32P-phosphorylation studies revealed that Akt phosphorylates CSP on serine-10. Using phospho-serine10-specific antisera, we found that both transfected and endogenous cellular CSP is phosphorylated by Akt on this residue. Taken together, these findings reveal a novel role for Akt phosphorylation in regulating the late stages of exocytosis and suggest that this is achieved via the phosphorylation of CSP on serine-10. PMID:16243840

  3. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    SciTech Connect

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa; Shin, Incheol

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  4. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation.

    PubMed Central

    King, W G; Mattaliano, M D; Chan, T O; Tsichlis, P N; Brugge, J S

    1997-01-01

    Cell attachment to fibronectin stimulates the integrin-dependent interaction of p85-associated phosphatidylinositol (PI) 3-kinase with integrin-dependent focal adhesion kinase (FAK) as well as activation of the Ras/mitogen-activated protein (MAP) kinase pathway. However, it is not known if this PI 3-kinase-FAK interaction increases the synthesis of the 3-phosphorylated phosphoinositides (3-PPIs) or what role, if any, is played by activated PI 3-kinase in integrin signaling. We demonstrate here the integrin-dependent accumulation of the PI 3-kinase products, PI 3,4-bisphosphate [PI(3,4)P2] and PI(3,4,5)P3, as well as activation of AKT kinase, a serine/threonine kinase that can be stimulated by binding of PI(3,4)P2. The PI 3-kinase inhibitors wortmannin and LY294002 significantly decreased the integrin-induced accumulation of the 3-PPIs and activation of AKT kinase, without having significant effects on the levels of PI(4,5)P2 or tyrosine phosphorylation of paxillin. These inhibitors also reduced cell adhesion/spreading onto fibronectin but had no effect on attachment to polylysine. Interestingly, integrin-mediated Erk-2, Mek-1, and Raf-1 activation, but not Ras-GTP loading, was inhibited at least 80% by wortmannin and LY294002. In support of the pharmacologic results, fibronectin activation of Erk-2 and AKT kinases was completely inhibited by overexpression of a dominant interfering p85 subunit of PI 3-kinase. We conclude that integrin-mediated adhesion to fibronectin results in the accumulation of the PI 3-kinase products PI(3,4)P2 and PI(3,4,5)P3 as well as the PI 3-kinase-dependent activation of the kinases Raf-1, Mek-1, Erk-2, and AKT and that PI 3-kinase may function upstream of Raf-1 but downstream of Ras in integrin activation of Erk-2 MAP and AKT kinases. PMID:9234699

  5. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes.

    PubMed

    Zhou, Huanyu; Dickson, Matthew E; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N

    2015-09-22

    Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique.

  6. Synthesis and biological evaluation of analogues of AKT (protein kinase B) inhibitor-IV.

    PubMed

    Sun, Qi; Wu, Runzhi; Cai, Sutang; Lin, Yuan; Sellers, Llewlyn; Sakamoto, Kaori; He, Biao; Peterson, Blake R

    2011-03-10

    Inhibitors of the PI3-kinase/AKT (protein kinase B) pathway are under investigation as anticancer and antiviral agents. The benzimidazole derivative AKT inhibitor-IV (ChemBridge 5233705) affects this pathway and exhibits potent anticancer and antiviral activity. To probe its biological activity, we synthesized AKT inhibitor-IV and 21 analogues using a novel six-step route based on ZrCl(4)-catalyzed cyclization of 1,2-arylenediamines with α,β-unsaturated aldehydes. We examined effects on viability of HeLa carcinoma cells, viability of normal human cells (NHBE), replication of recombinant parainfluenza virus 5 (PIV5) in HeLa cells, and replication of the intracellular bacterium Mycobacterium fortuitum in HeLa cells. Replacement of the benzimidazole N-ethyl substitutent of AKT inhibitor-IV with N-hexyl and N-dodecyl groups enhanced antiviral activity and cytotoxicity against the cancer cell line, but these compounds showed substantially lower toxicity (from 6-fold to >20-fold) against NHBE cells and no effect on M. fortuitum, suggesting inhibition of one or more host protein(s) required for proliferation of cancer cells and PIV5. The key structural elements identified here may facilitate identification of targets of this highly biologically active scaffold.

  7. Analysis of AKT and ERK1/2 protein kinases in extracellular vesicles isolated from blood of patients with cancer

    PubMed Central

    van der Mijn, Johannes C.; Sol, Nik; Mellema, Wouter; Jimenez, Connie R.; Piersma, Sander R.; Dekker, Henk; Schutte, Lisette M.; Smit, Egbert F.; Broxterman, Henk J.; Skog, Johan; Tannous, Bakhos A.; Wurdinger, Thomas; Verheul, Henk M. W.

    2014-01-01

    Background Extracellular vesicles (EVs) are small nanometre-sized vesicles that are circulating in blood. They are released by multiple cells, including tumour cells. We hypothesized that circulating EVs contain protein kinases that may be assessed as biomarkers during treatment with tyrosine kinase inhibitors. Methods EVs released by U87 glioma cells, H3255 and H1650 non-small-cell lung cancer (NSCLC) cells were profiled by tandem mass spectrometry. Total AKT/protein kinase B and extracellular signal regulated kinase 1/2 (ERK1/2) levels as well as their relative phosphorylation were measured by western blot in isogenic U87 cells with or without mutant epidermal growth factor receptor (EGFRvIII) and their corresponding EVs. To assess biomarker potential, plasma samples from 24 healthy volunteers and 42 patients with cancer were used. Results In total, 130 different protein kinases were found to be released in EVs including multiple drug targets, such as mammalian target of rapamycin (mTOR), AKT, ERK1/2, AXL and EGFR. Overexpression of EGFRvIII in U87 cells results in increased phosphorylation of EGFR, AKT and ERK1/2 in cells and EVs, whereas a decreased phosphorylation was noted upon treatment with the EGFR inhibitor erlotinib. EV samples derived from patients with cancer contained significantly more protein (p=0.0067) compared to healthy donors. Phosphorylation of AKT and ERK1/2 in plasma EVs from both healthy donors and patients with cancer was relatively low compared to levels in cancer cells. Preliminary analysis of total AKT and ERK1/2 levels in plasma EVs from patients with NSCLC before and after sorafenib/metformin treatment (n=12) shows a significant decrease in AKT levels among patients with a favourable treatment response (p<0.005). Conclusion Phosphorylation of protein kinases in EVs reflects their phosphorylation in tumour cells. Total AKT protein levels may allow monitoring of kinase inhibitor responses in patients with cancer. PMID:25491250

  8. TCR-induced Akt serine 473 phosphorylation is regulated by protein kinase C-alpha

    SciTech Connect

    Yang, Lifen; Qiao, Guilin; Ying, Haiyan; Zhang, Jian; Yin, Fei

    2010-09-10

    Research highlights: {yields} Conventional PKC positively regulates TCR-induced phosphorylation of Akt. {yields} PKC-alpha is the PDK-2 responsible for phosphorylating Akt at Ser{sup 473} upon TCR stimulation. {yields} Knockdown of PKC-alpha decreases TCR-induced Akt phosphorylation. -- Abstract: Akt signaling plays a central role in T cell functions, such as proliferation, apoptosis, and regulatory T cell development. Phosphorylation at Ser{sup 473} in the hydrophobic motif, along with Thr{sup 308} in its activation loop, is considered necessary for Akt function. It is widely accepted that phosphoinositide-dependent kinase 1 (PDK-1) phosphorylates Akt at Thr{sup 308}, but the kinase(s) responsible for phosphorylating Akt at Ser{sup 473} (PDK-2) remains elusive. The existence of PDK-2 is considered to be specific to cell type and stimulus. PDK-2 in T cells in response to TCR stimulation has not been clearly defined. In this study, we found that conventional PKC positively regulated TCR-induced Akt Ser{sup 473} phosphorylation. PKC-alpha purified from T cells can phosphorylate Akt at Ser{sup 473} in vitro upon TCR stimulation. Knockdown of PKC-alpha in T-cell-line Jurkat cells reduced TCR-induced phosphorylation of Akt as well as its downstream targets. Thus our results suggest that PKC-alpha is a candidate for PDK-2 in T cells upon TCR stimulation.

  9. A Gammaherpesvirus Complement Regulatory Protein Promotes Initiation of Infection by Activation of Protein Kinase Akt/PKB

    PubMed Central

    Steer, Beatrix; Adler, Barbara; Jonjic, Stipan; Stewart, James P.; Adler, Heiko

    2010-01-01

    Background Viruses have evolved to evade the host's complement system. The open reading frames 4 (ORF4) of gammaherpesviruses encode homologs of regulators of complement activation (RCA) proteins, which inhibit complement activation at the level of C3 and C4 deposition. Besides complement regulation, these proteins are involved in heparan sulfate and glycosaminoglycan binding, and in case of MHV-68, also in viral DNA synthesis in macrophages. Methodology/Principal Findings Here, we made use of MHV-68 to study the role of ORF4 during infection of fibroblasts. While attachment and penetration of virions lacking the RCA protein were not affected, we observed a delayed delivery of the viral genome to the nucleus of infected cells. Analysis of the phosphorylation status of a variety of kinases revealed a significant reduction in phosphorylation of the protein kinase Akt in cells infected with ORF4 mutant virus, when compared to cells infected with wt virus. Consistent with a role of Akt activation in initial stages of infection, inhibition of Akt signaling in wt virus infected cells resulted in a phenotype resembling the phenotype of the ORF4 mutant virus, and activation of Akt by addition of insulin partially reversed the phenotype of the ORF4 mutant virus. Importantly, the homologous ORF4 of KSHV was able to rescue the phenotype of the MHV-68 ORF4 mutant, indicating that ORF4 is functionally conserved and that ORF4 of KSHV might have a similar function in infection initiation. Conclusions/Significance In summary, our studies demonstrate that ORF4 contributes to efficient infection by activation of the protein kinase Akt and thus reveal a novel function of a gammaherpesvirus RCA protein. PMID:20657771

  10. Insulin inhibits AMPA-induced neuronal damage via stimulation of protein kinase B (Akt).

    PubMed

    Kim, S-J; Han, Y

    2005-02-01

    We designed a series of experiments to explore the neuroprotective effects of insulin. Insulin significantly inhibited the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced neuronal cell damage as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay. However, insulin had little affect on the AMPA-induced glial cell damage. To determine whether insulin inhibits AMPA-induced excitotoxicity, we performed grease-gap recording assays using rat brain slices. In these experiments, insulin also significantly inhibited AMPA-induced depolarization. Flow cytometry and DNA fragmentation assays showed that insulin inhibits AMPA-induced apoptosis and DNA fragmentation, respectively. Insulin stimulated protein kinase B (Akt) activity, whereas AMPA pretreatment did not alter the insulin-stimulated Akt activity. On the contrary, insulin blocked induction of SAPK/JNK, which AMPA stimulated. Taken together, these results suggest that insulin exerts neuroprotective effects by inhibiting AMPA-induced excitotoxicity and apoptosis, possibly by activating Akt and blocking SAPK/JNK.

  11. Isoform-specific regulation of adipocyte differentiation by Akt/protein kinase B{alpha}

    SciTech Connect

    Yun, Sung-Ji; Kim, Eun-Kyoung; Tucker, David F.; Kim, Chi Dae; Birnbaum, Morris J.; Bae, Sun Sik

    2008-06-20

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway tightly regulates adipose cell differentiation. Here we show that loss of Akt1/PKB{alpha} in primary mouse embryo fibroblast (MEF) cells results in a defect of adipocyte differentiation. Adipocyte differentiation in vitro and ex vivo was restored in cells lacking both Akt1/PKB{alpha} and Akt2/PKB{beta} by ectopic expression of Akt1/PKB{alpha} but not Akt2/PKB{beta}. Akt1/PKB{alpha} was found to be the major regulator of phosphorylation and nuclear export of FoxO1, whose presence in the nucleus strongly attenuates adipocyte differentiation. Differentiation-induced cell division was significantly abrogated in Akt1/PKB{alpha}-deficient cells, but was restored after forced expression of Akt1/PKB{alpha}. Moreover, expression of p27{sup Kip1}, an inhibitor of the cell cycle, was down regulated in an Akt1/PKB{alpha}-specific manner during adipocyte differentiation. Based on these data, we suggest that the Akt1/PKB{alpha} isoform plays a major role in adipocyte differentiation by regulating FoxO1 and p27{sup Kip1}.

  12. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals

    PubMed Central

    Kureishi, Yasuko; Luo, Zhengyu; Shiojima, Ichiro; Bialik, Ann; Fulton, David; Lefer, David J.; Sessa, William C.; Walsh, Kenneth

    2010-01-01

    Recent studies suggest that statins can function to protect the vasculature in a manner that is independent of their lipid-lowering activity. We show here that statins rapidly activate the protein kinase Akt/PKB in endothelial cells. Accordingly, simvastatin enhanced phosphorylation of the endogenous Akt substrate endothelial nitric oxide synthase (eNOS), inhibited apoptosis and accelerated vascular structure formation in vitro in an Akt-dependent manner. Similar to vascular endothelial growth factor (VEGF) treatment, both simvastatin administration and enhanced Akt signaling in the endothelium promoted angiogenesis in ischemic limbs of normocholesterolemic rabbits. Therefore, activation of Akt represents a mechanism that can account for some of the beneficial side effects of statins, including the promotion of new blood vessel growth. PMID:10973320

  13. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  14. Inhibition of Protein Kinase Akt1 by Apoptosis Signal-regulating Kinase-1 (ASK1) Is Involved in Apoptotic Inhibition of Regulatory Volume Increase*

    PubMed Central

    Subramanyam, Muthangi; Takahashi, Nobuyuki; Hasegawa, Yuichi; Mohri, Tatsuma; Okada, Yasunobu

    2010-01-01

    Most animal cell types regulate their cell volume after an osmotic volume change. The regulatory volume increase (RVI) occurs through uptake of NaCl and osmotically obliged water after osmotic shrinkage. However, apoptotic cells undergo persistent cell shrinkage without showing signs of RVI. Persistence of the apoptotic volume decrease is a prerequisite to apoptosis induction. We previously demonstrated that volume regulation is inhibited in human epithelial HeLa cells stimulated with the apoptosis inducer. Here, we studied signaling mechanisms underlying the apoptotic inhibition of RVI in HeLa cells. Hypertonic stimulation was found to induce phosphorylation of a Ser/Thr protein kinase Akt (protein kinase B). Shrinkage-induced Akt activation was essential for RVI induction because RVI was suppressed by an Akt inhibitor, expression of a dominant negative form of Akt, or small interfering RNA-mediated knockdown of Akt1 (but not Akt2). Staurosporine, tumor necrosis factor-α, or a Fas ligand inhibited both RVI and hypertonicity-induced Akt activation in a manner sensitive to a scavenger for reactive oxygen species (ROS). Any of apoptosis inducers also induced phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) in a ROS-dependent manner. Suppression of (ASK1) expression blocked the effects of apoptosis, in hypertonic conditions, on both RVI induction and Akt activation. Thus, it is concluded that in human epithelial cells, shrinkage-induced activation of Akt1 is involved in the RVI process and that apoptotic inhibition of RVI is caused by inhibition of Akt activation, which results from ROS-mediated activation of ASK1. PMID:20048146

  15. Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action.

    PubMed

    Trencia, Alessandra; Perfetti, Anna; Cassese, Angela; Vigliotta, Giovanni; Miele, Claudia; Oriente, Francesco; Santopietro, Stefania; Giacco, Ferdinando; Condorelli, Gerolama; Formisano, Pietro; Beguinot, Francesco

    2003-07-01

    The antiapoptotic protein PED/PEA-15 features an Akt phosphorylation motif upstream from Ser(116). In vitro, recombinant PED/PEA-15 was phosphorylated by Akt with a stoichiometry close to 1. Based on Western blotting with specific phospho-Ser(116) PED/PEA-15 antibodies, Akt phosphorylation of PED/PEA-15 occurred mainly at Ser(116). In addition, a mutant of PED/PEA-15 featuring the substitution of Ser(116)-->Gly (PED(S116-->G)) showed 10-fold-decreased phosphorylation by Akt. In intact 293 cells, Akt also induced phosphorylation of PED/PEA-15 at Ser(116). Based on pull-down and coprecipitation assays, PED/PEA-15 specifically bound Akt, independently of Akt activity. Serum activation of Akt as well as BAD phosphorylation by Akt showed no difference in 293 cells transfected with PED/PEA-15 and in untransfected cells (which express no endogenous PED/PEA-15). However, the antiapoptotic action of PED/PEA-15 was almost twofold reduced in PED(S116-->G) compared to that in PED/PEA-15(WT) cells. PED/PEA-15 stability closely paralleled Akt activation by serum in 293 cells. In these cells, the nonphosphorylatable PED(S116-->G) mutant exhibited a degradation rate threefold greater than that observed with wild-type PED/PEA-15. In the U373MG glioma cells, blocking Akt also reduced PED/PEA-15 levels and induced sensitivity to tumor necrosis factor-related apoptosis-inducing ligand apoptosis. Thus, phosphorylation by Akt regulates the antiapoptotic function of PED/PEA-15 at least in part by controlling the stability of PED/PEA-15. In part, Akt survival signaling may be mediated by PED/PEA-15.

  16. ets-2 Is a Target for an Akt (Protein Kinase B)/Jun N-Terminal Kinase Signaling Pathway in Macrophages of motheaten-viable Mutant Mice

    PubMed Central

    Smith, James L.; Schaffner, Alicia E.; Hofmeister, Joseph K.; Hartman, Matthew; Wei, Guo; Forsthoefel, David; Hume, David A.; Ostrowski, Michael C.

    2000-01-01

    The transcription factor ets-2 was phosphorylated at residue threonine 72 in a colony-stimulating factor 1 (CSF-1)- and mitogen-activated protein kinase-independent manner in macrophages isolated from motheaten-viable (me-v) mice. The CSF-1 and ets-2 target genes coding for Bcl-x, urokinase plasminogen activator, and scavenger receptor were also expressed at high levels independent of CSF-1 addition to me-v cells. Akt (protein kinase B) was constitutively active in me-v macrophages, and an Akt immunoprecipitate catalyzed phosphorylation of ets-2 at threonine 72. The p54 isoform of c-jun N-terminal kinase–stress-activated kinase (JNK- SAPK) coimmunoprecipitated with Akt from me-v macrophages, and treatment of me-v cells with the specific phosphatidylinositol 3-kinase inhibitor LY294002 decreased cell survival, Akt and JNK kinase activities, ets-2 phosphorylation, and Bcl-x mRNA expression. Therefore, ets-2 is a target for phosphatidylinositol 3-kinase–Akt–JNK action, and the JNK p54 isoform is an ets-2 kinase in macrophages. Constitutive ets-2 activity may contribute to the pathology of me-v mice by increasing expression of genes like the Bcl-x gene that promote macrophage survival. PMID:11027273

  17. Activation of Akt/protein kinase B mediates the protective effects of mechanical stretching against myocardial ischemia-reperfusion injury

    PubMed Central

    Hao, Jia; Ahn, Hee-Yul

    2012-01-01

    Akt/protein kinase B is a well-known cell survival factor and activated by many stimuli including mechanical stretching. Therefore, we evaluated the cardioprotective effect of a brief mechanical stretching of rat hearts and determined whether activation of Akt through phosphatidylinositol 3-kinase (PI3K) is involved in stretch-induced cardioprotection (SIC). Stretch preconditioning reduced infarct size and improved post-ischemic cardiac function compared to the control group. Phosphorylation of Akt and its downstream substrate, GSK-3β, was increased by mechanical stretching and completely blocked by wortmannin, a PI3K inhibitor. Treatment with lithium or SB216763 (GSK-3β inhibitors) before ischemia induction mimicked the protective effects of SIC on rat heart. Gadolinium (Gd3+), a blocker of stretch-activated ion channels (SACs), inhibited the stretch-induced phosphorylation of Akt and GSK-3β. Furthermore, SIC was abrogated by wortmannin and Gd3+. In vivo stretching induced by an aorto-caval shunt increased Akt phosphorylation and reduced myocardial infarction; these effects were diminished by wortmannin and Gd3+ pretreatment. Our results showed that mechanical stretching can provide cardioprotection against ischemia-reperfusion injury. Additionally, the activation of Akt, which might be regulated by SACs and the PI3K pathway, plays an important role in SIC. PMID:23000580

  18. Activation of Akt/protein kinase B mediates the protective effects of mechanical stretching against myocardial ischemia-reperfusion injury.

    PubMed

    Kim, Chan-Hyung; Hao, Jia; Ahn, Hee-Yul; Kim, Si Wook

    2012-09-01

    Akt/protein kinase B is a well-known cell survival factor and activated by many stimuli including mechanical stretching. Therefore, we evaluated the cardioprotective effect of a brief mechanical stretching of rat hearts and determined whether activation of Akt through phosphatidylinositol 3-kinase(PI3K) is involved in stretch-induced cardioprotection (SIC). Stretch preconditioning reduced infarct size and improved postischemic cardiac function compared to the control group. Phosphorylation of Akt and its downstream substrate, GSK-3β, was increased by mechanical stretching and completely blocked by wortmannin, a PI3K inhibitor. Treatment with lithium or SB216763 (GSK-3β inhibitors) before ischemia induction mimicked the protective effects of SIC on rat heart. Gadolinium (Gd3(+)), a blocker of stretch-activated ion channels (SACs), inhibited the stretch-induced phosphorylation of Akt and GSK-3β. Furthermore, SIC was abrogated by wortmannin and Gd3(+). In vivo stretching induced by an aorto-caval shunt increased Akt phosphorylation and reduced myocardial infarction; these effects were diminished by wortmannin and Gd3(+) pretreatment. Our results showed that mechanical stretching can provide cardioprotection against ischemia-reperfusion injury. Additionally, the activation of Akt, which might be regulated by SACs and the PI3K pathway, plays an important role in SIC.

  19. Gecko Proteins Exert Anti-Tumor Effect against Cervical Cancer Cells Via PI3-Kinase/Akt Pathway

    PubMed Central

    Jeong, Ae-Jin; Chung, Chung-Nam; Kim, Hye-Jin; Bae, Kil Soo; Choi, Song; Jun, Woo Jin; Shim, Sang In; Kang, Tae-Hong; Leem, Sun-Hee

    2012-01-01

    Anti-tumor activity of the proteins from Gecko (GP) on cervical cancer cells, and its signaling mechanisms were assessed by viable cell counting, propidium iodide (PI) staining, and Western blot analysis. GP induced the cell death of HeLa cells in a dose-dependent manner while it did not affect the viability of normal cells. Western blot analysis showed that GP decreased the activation of Akt, and co-administration of GP and Akt inhibitors synergistically exerted anti-tumor activities on HeLa cells, suggesting the involvement of PI3-kinase/Akt pathway in GP-induced cell death of the cancer cells. Indeed, the cytotoxic effect of GP against HeLa cells was inhibited by overexpression of constituvely active form of Akt in HeLa cells. The candidates of the functional proteins in GP were analyzed by Mass-spectrum. Taken together, our results suggest that GP elicits anti-tumor activity against HeLa cells by inhibition of PI3-kinase/Akt pathway. PMID:23118562

  20. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen-activated protein kinase kinase signaling pathways

    PubMed Central

    HU, SHAN; HUANG, LIMING; MENG, LIWEI; SUN, HE; ZHANG, WEI; XU, YINGCHUN

    2015-01-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways. PMID:26502751

  1. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen‑activated protein kinase kinase signaling pathways.

    PubMed

    Hu, Shan; Huang, Liming; Meng, Liwei; Sun, He; Zhang, Wei; Xu, Yingchun

    2015-11-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways.

  2. Overcoming Resistance to Inhibitors of the AKT Protein Kinase by Modulation of the Pim Kinase Pathway

    DTIC Science & Technology

    2013-10-01

    translation of the MET receptor tyrosine kinase in prostate cancer. This regulates the activity of the MET/ HGF axis and potentially can affect the...on culture of wild-type DU145 cells in the presence of HGF was enhanced in the Pim-1-overexpressing cells (Fig 6a). This effect was specific as there...was no difference in ERK phosphorylation between the over expressor and wild-type cell lines cultured in HGF . Conversely, in PC3-LN4 cells in

  3. Cell cycle regulation of breast cancer cells through estrogen-induced activities of ERK and Akt protein kinases.

    PubMed

    Geffroy, Nancy; Guédin, Aurore; Dacquet, Catherine; Lefebvre, Philippe

    2005-06-15

    The proliferative effect of estrogens on breast cancer cell (BCC) is mainly mediated through estrogen receptors (ER). Non-transcriptional effects of estrogens, exerted through activation of several protein kinases, may also contribute to BCC proliferation. However, the relative contribution of these two responses to BCC proliferation is not known. We characterized a novel estrogenic receptor ligand which possess Akt and ERK activating properties distinct from that of 17beta-estradiol. Early and delayed waves of activation of these kinases were detected upon estrogenic challenge of BCC, but only molecules able to promote a significant, delayed activation of ERK-induced BCC proliferation. Estrogen-induced cell cycle progression was not sensitive to the inhibition of ERK-regulating kinases MEK1 and 2. ERalpha was found to be necessary, but not sufficient for kinases activation. Thus, estrogens elicit a distinct pattern of early and delayed activation of ERK and Akt, and early protein kinase activation is probably not involved in BCC proliferation. Structural variations in the estrogen molecule may confer novel biological properties unrelated to estrogen-dependent transcriptional activation.

  4. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells

    SciTech Connect

    Kim, Hye-Mi; Kang, Dong-Ku; Kim, Hak Yong; Kang, Sang Sun; Chang, Soo-Ik . E-mail: sichang@cbnu.ac.kr

    2007-01-12

    Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells.

  5. AKT serine/threonine protein kinase modulates baicalin-triggered autophagy in human bladder cancer T24 cells.

    PubMed

    Lin, Chingju; Tsai, Shih-Chang; Tseng, Michael T; Peng, Shu-Fen; Kuo, Sheng-Chu; Lin, Meng-Wei; Hsu, Yuan-Man; Lee, Miau-Rong; Amagaya, Sakae; Huang, Wen-Wen; Wu, Tian-Shung; Yang, Jai-Sing

    2013-03-01

    Baicalin is one of the major compounds in the traditional Chinese medicinal herb from Scutellaria baicalensis Georgi. We investigated the molecular mechanisms of cell autophagy induced by baicalin in human bladder cancer T24 cells. Baicalin inhibited cell survival as shown by MTT assay and increased cell death by trypan blue exclusion assay in a concentration-dependent manner. Baicalin did not induce apoptotic cell death in T24 cells by TUNEL and caspase-3 activity assay. Baicalin induced the acidic vesicular organelle cell autophagy marker, manifested by acridine orange (AO) and monodansylcadaverine (MDC) staining and cleavage of microtubule-associated protein 1 light chain 3 (LC3). The protein expression levels of the Atg 5, Atg 7, Atg 12, Beclin-1 and LC3-II were upregulated in T24 cells after baicalin treatment. Inhibition of autophagy by 3-methyl-adenine (an inhibitor of class III phosphatidylinositol-3 kinase; 3-MA) reduced the cleavage of LC3 in T24 cells after baicalin treatment. Furthermore, protein expression levels of phospho-AKT (Ser473) and enzyme activity of AKT were downregulated in T24 cells after baicalin treatment. In conclusion, baicalin triggered cell autophagy through the AKT signaling pathway in T24 cells.

  6. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Sorescu, George; Boyd, Nolan; Shiojima, Ichiro; Walsh, Kenneth; Du, Jie; Jo, Hanjoong

    2002-01-01

    Recently, we have shown that shear stress stimulates NO(*) production by the protein kinase B/Akt (Akt)-dependent mechanisms in bovine aortic endothelial cells (BAEC) (Go, Y. M., Boo, Y. C., Park, H., Maland, M. C., Patel, R., Pritchard, K. A., Jr., Fujio, Y., Walsh, K., Darley-Usmar, V., and Jo, H. (2001) J. Appl. Physiol. 91, 1574-1581). Akt has been believed to regulate shear-dependent production of NO(*) by directly phosphorylating endothelial nitric-oxide synthase (eNOS) at the Ser(1179) residue (eNOS-S(1179)), but a critical evaluation using specific inhibitors or dominant negative mutants (Akt(AA) or Akt(AAA)) has not been reported. In addition, other kinases, including protein kinase A (PKA) and AMP kinase have also shown to phosphorylate eNOS-S(1179). Here, we show that shear-dependent phosphorylation of eNOS-S(1179) is mediated by an Akt-independent, but a PKA-dependent, mechanism. Expression of Akt(AA) or Akt(AAA) in BAEC by using recombinant adenoviral constructs inhibited phosphorylation of eNOS-S(1179) if cells were stimulated by vascular endothelial growth factor (VEGF), but not by shear stress. As shown before, expression of Akt(AA) inhibited shear-dependent NO(*) production, suggesting that Akt is still an important regulator in NO production. Further studies showed that a selective inhibitor of PKA, H89, inhibited shear-dependent phosphorylation of eNOS-S(1179) and NO(*) production. In contrast, H89 did not inhibit phosphorylation of eNOS-S(1179) induced by expressing a constitutively active Akt mutant (Akt(Myr)) in BAEC, showing that the inhibitor did not affect the Akt pathway. 8-Bromo-cAMP alone phosphorylated eNOS-S(1179) within 5 min without activating Akt, in an H89-sensitive manner. Collectively, these results demonstrate that shear stimulates phosphorylation of eNOS-S(1179) in a PKA-dependent, but Aktindependent manner, whereas the NO(*) production is regulated by the mechanisms dependent on both PKA and Akt. A coordinated interaction

  7. Syntheses of potent, selective, and orally bioavailable indazole-pyridine series of protein kinase B/Akt inhibitors with reduced hypotension.

    PubMed

    Zhu, Gui-Dong; Gandhi, Viraj B; Gong, Jianchun; Thomas, Sheela; Woods, Keith W; Song, Xiaohong; Li, Tongmei; Diebold, R Bruce; Luo, Yan; Liu, Xuesong; Guan, Ran; Klinghofer, Vered; Johnson, Eric F; Bouska, Jennifer; Olson, Amanda; Marsh, Kennan C; Stoll, Vincent S; Mamo, Mulugeta; Polakowski, James; Campbell, Thomas J; Martin, Ruth L; Gintant, Gary A; Penning, Thomas D; Li, Qun; Rosenberg, Saul H; Giranda, Vincent L

    2007-06-28

    Compound 7 was identified as a potent (IC50 = 14 nM), selective, and orally bioavailable (F = 70% in mouse) inhibitor of protein kinase B/Akt. While promising efficacy was observed in vivo, this compound showed effects on depolarization of Purkinje fibers in an in vitro assay and CV hypotension in vivo. Guided by an X-ray structure of 7 bound to protein kinase A, which has 80% homology with Akt in the kinase domain, our efforts have focused on structure-activity relationship (SAR) studies of the phenyl moiety, in an attempt to address the cardiovascular liability and further improve the Akt potency. A novel and efficient synthetic route toward diversely substituted phenyl derivatives of 7 was developed utilizing a copper-mediated aziridine ring-opening reaction as the key step. To improve the selectivity of these Akt inhibitors over other protein kinases, a nitrogen atom was incorporated into selected phenyl analogues of 7 at the C-6 position of the methyl indazole scaffold. These modifications resulted in the discovery of inhibitor 37c with greater potency (IC50 = 0.6 nM vs Akt), selectivity, and improved cardiovascular safety profile. The SARs, pharmacokinetic profile, and CV safety of selected Akt inhibitors will be discussed.

  8. Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung.

    PubMed

    Malanga, Donatella; Scrima, Marianna; De Marco, Carmela; Fabiani, Fernanda; De Rosa, Nicla; De Gisi, Silvia; Malara, Natalia; Savino, Rocco; Rocco, Gaetano; Chiappetta, Gennaro; Franco, Renato; Tirino, Virginia; Pirozzi, Giuseppe; Viglietto, Giuseppe

    2008-03-01

    Somatic mutation (E17K) that constitutively activates the protein kinase AKT1 has been found in human cancer patients. We determined the role of the E17K mutation of AKT1 in lung cancer, through sequencing of AKT1 exon 4 in 105 resected, clinically annotated non-small cell lung cancer specimens. We detected a missense mutations G-->A transition at nucleotide 49 (that results in the E17K substitution) in two squamous cell carcinoma (2/36) but not in adenocarcinoma (0/53). The activity of the endogenous kinase carrying the E17K mutation immunoprecipitated by tumour tissue was significantly higher compared with the wild-type kinase immunoprecipitated by the adjacent normal tissue as determined both by in vitro kinase assay using a consensus peptide as substrate and by in vivo analysis of the phosphorylation status of AKT1 itself (pT308, pS473) or of known downstream substrates such as GSK3 (pS9/S22) and p27 (T198). Immunostaining or immunoblot analysis on membrane-enriched extracts indicated that the enhanced membrane localization exhibited by the endogenous E17K-AKT1 may account for the observed increased activity of mutant E17K kinase in comparison with the wild-type AKT1 from adjacent normal tissue. In conclusion, this is the first report of AKT1 mutation in lung cancer. Our data provide evidence that, although AKT1 mutations are apparently rare in lung cancer (1.9%), the oncogenic properties of E17K-AKT1 may contribute to the development of a fraction of lung carcinoma with squamous histotype (5.5%).

  9. Effects of different intensities of physical exercise on insulin sensitivity and protein kinase B/Akt activity in skeletal muscle of obese mice

    PubMed Central

    Marinho, Rodolfo; de Moura, Leandro Pereira; Rodrigues, Bárbara de Almeida; Pauli, Luciana Santos Souza; da Silva, Adelino Sanchez Ramos; Ropelle, Eloize Cristina Chiarreotto; de Souza, Claudio Teodoro; Cintra, Dennys Esper Corrêa; Ropelle, Eduardo Rochete; Pauli, José Rodrigo

    2014-01-01

    ABSTRACT Objective: To investigate the effects of different intensities of acute exercise on insulin sensitivity and protein kinase B/Akt activity in skeletal muscle of obese mice. Methods: Swiss mice were randomly divided into four groups, and fed either a standard diet (control group) or high fat diet (obese sedentary group and obese exercise group 1 and 2) for 12 weeks. Two different exercise protocols were used: swimming for 1 hour with or without an overload of 5% body weight. The insulin tolerance test was performed to estimate whole-body sensitivity. Western blot technique was used to determine protein levels of protein kinase B/Akt and phosphorylation by protein Kinase B/Akt in mice skeletal muscle. Results: A single bout of exercise inhibited the high fat diet-induced insulin resistance. There was increase in phosphorylation by protein kinase B/Akt serine, improve in insulin signaling and reduce of fasting glucose in mice that swam for 1 hour without overload and mice that swan for 1 hour with overload of 5%. However, no significant differences were seen between exercised groups. Conclusion: Regardless of intensity, aerobic exercise was able to improve insulin sensitivity and phosphorylation by protein kinase B/Ak, and proved to be a good form of treatment and prevention of type 2 diabetes. PMID:24728251

  10. SRPK1 and Akt Protein Kinases Phosphorylate the RS Domain of Lamin B Receptor with Distinct Specificity: A Combined Biochemical and In Silico Approach

    PubMed Central

    Nikolakaki, Eleni; Vlassi, Metaxia; Giannakouros, Thomas

    2016-01-01

    Activated Akt has been previously implicated in acting on RS domain-containing proteins. However, it has been questioned whether its action is direct or it is mediated by co-existing SR kinase activity. To address this issue we studied in detail the phosphorylation of Lamin B Receptor (LBR) by Akt. Using synthetic peptides and a set of recombinant proteins expressing mutants of the LBR RS domain we now demonstrate that while all serines of the RS domain represent more or less equal phosphoacceptor sites for SRPK1, Ser80 and Ser82 are mainly targeted by Akt. 3D-modeling combined with molecular dynamics (MD) simulations show that amongst short, overlapping LBR RS-containing peptides complying with the minimum Akt recognition consensus sequence, only those bearing phosphosites either at Ser80 or Ser82 are able to fit into the active site of Akt, at least as effectively as its known substrate, GSK3-β. Combined our results provide evidence that Akt kinases directly phosphorylate an RS domain-containing protein and that both the residues N-terminal the phosphosite and at position +1 are essential for Akt specificity, with the latter substrate position being compatible with the arginine residue of RS-repeats. PMID:27105349

  11. Protein kinase B/Akt phosphorylates and inhibits the cardiac Na+/H+ exchanger NHE1.

    PubMed

    Snabaitis, Andrew K; Cuello, Friederike; Avkiran, Metin

    2008-10-10

    Sarcolemmal Na(+)/H(+) exchanger (NHE) activity is mediated by NHE isoform 1 (NHE1), which is subject to regulation by protein kinases. Our objectives were to determine whether NHE1 is phosphorylated by protein kinase B (PKB), identify any pertinent phosphorylation site(s), and delineate the functional consequences of such phosphorylation. Active PKBalpha phosphorylated in vitro a glutathione S-transferase (GST)-NHE1 fusion protein comprising amino acids 516 to 815 of the NHE1 carboxyl-terminal regulatory domain. PKBalpha-mediated phosphorylation of GST-NHE1 fusion proteins containing overlapping segments of this region localized the targeted residues to the carboxyl-terminal 190 amino acids (625 to 815) of NHE1. Mass spectrometry and phosphorylation analysis of mutated (Ser-->Ala) GST-NHE1 fusion proteins revealed that PKBalpha-mediated phosphorylation of NHE1 occurred principally at Ser648. Far-Western assays demonstrated that PKBalpha-mediated Ser648 phosphorylation abrogated calcium-activated calmodulin (CaM) binding to the regulatory domain of NHE1. In adult rat ventricular myocytes, adenovirus-mediated expression of myristoylated PKBalpha (myr-PKBalpha) increased cellular PKB activity, as confirmed by increased glycogen synthase kinase 3beta phosphorylation. Heterologously expressed myr-PKBalpha was present in the sarcolemma, colocalized with NHE1 at the intercalated disc regions, increased NHE1 phosphorylation, and reduced NHE1 activity following intracellular acidosis. Conversely, pharmacological inhibition of endogenous PKB increased NHE1 activity following intracellular acidosis. Our data suggest that NHE1 is a novel PKB substrate and that its PKB-mediated phosphorylation at Ser648 inhibits sarcolemmal NHE activity during intracellular acidosis, most likely by interfering with CaM binding and reducing affinity for intracellular H(+).

  12. Interleukin-1-receptor-associated kinase 2 (IRAK2)-mediated interleukin-1-dependent nuclear factor kappaB transactivation in Saos2 cells requires the Akt/protein kinase B kinase.

    PubMed Central

    Cenni, Vittoria; Sirri, Alessandra; De Pol, Anto; Maraldi, Nadir Mario; Marmiroli, Sandra

    2003-01-01

    The post-receptor pathway that leads to nuclear factor kappaB (NF-kappaB) activation begins with the assembly of a membrane-proximal complex among the interleukin 1 (IL-1) receptors and the adaptor molecules, myeloid differentiation protein 88 (MyD88), IL-1-receptor-associated kinases (IRAKs) and tumour-necrosis-factor-receptor-associated factor 6. Eventually, phosphorylation of the inhibitor of NF-kappaB (IkappaB) by the IkappaB kinases releases NF-kappaB, which translocates to the nucleus and modulates gene expression. In this paper, we report that IRAK2 and MyD88, but not IRAK1, interact physically with Akt, as demonstrated by co-immunoprecipitation and pull-down experiments. Interestingly, the association of Akt with recombinant IRAK2 is decreased by stimulation with IL-1, and is favoured by pre-treatment with phosphatase. Likewise, Akt association with IRAK2 is increased considerably by overexpression of PTEN (phosphatase and tensin homologue deleted on chromosome 10), while it is completely abrogated by overexpression of phosphoinositide-dependent protein kinase 1. These data indicate that Akt takes part in the formation of the signalling complex that conveys the signal from the IL-1 receptors to NF-kappaB, a step that is much more membrane-proximal than was reported previously. We also demonstrate that Akt activity is necessary for IL-1-dependent NF-kappaB transactivation, since a kinase-defective mutant of Akt impairs IRAK2- and MyD88-dependent, but not IRAK1-dependent, NF-kappaB activity, as monitored by a gene reporter assay. Accordingly, IRAK2 failed to trigger inducible nitric oxide synthase and IL-1beta production in cells expressing dominant-negative Akt. However, NF-kappaB binding to DNA was not affected by inhibition of Akt, indicating that Akt regulates NF-kappaB at a level distinct from the dissociation of p65 from IkappaBalpha and its translocation to the nucleus, possibly involving phosphorylation of the p65 transactivation domain. PMID:12906710

  13. Multiple host kinases contribute to Akt activation during Salmonella infection.

    PubMed

    Roppenser, Bernhard; Kwon, Hyunwoo; Canadien, Veronica; Xu, Risheng; Devreotes, Peter N; Grinstein, Sergio; Brumell, John H

    2013-01-01

    SopB is a type 3 secreted effector with phosphatase activity that Salmonella employs to manipulate host cellular processes, allowing the bacteria to establish their intracellular niche. One important function of SopB is activation of the pro-survival kinase Akt/protein kinase B in the infected host cell. Here, we examine the mechanism of Akt activation by SopB during Salmonella infection. We show that SopB-mediated Akt activation is only partially sensitive to PI3-kinase inhibitors LY294002 and wortmannin in HeLa cells, suggesting that Class I PI3-kinases play only a minor role in this process. However, depletion of PI(3,4) P2/PI(3-5) P3 by expression of the phosphoinositide 3-phosphatase PTEN inhibits Akt activation during Salmonella invasion. Therefore, production of PI(3,4) P2/PI(3-5) P3 appears to be a necessary event for Akt activation by SopB and suggests that non-canonical kinases mediate production of these phosphoinositides during Salmonella infection. We report that Class II PI3-kinase beta isoform, IPMK and other kinases identified from a kinase screen all contribute to Akt activation during Salmonella infection. In addition, the kinases required for SopB-mediated activation of Akt vary depending on the type of infected host cell. Together, our data suggest that Salmonella has evolved to use a single effector, SopB, to manipulate a remarkably large repertoire of host kinases to activate Akt for the purpose of optimizing bacterial replication in its host.

  14. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    SciTech Connect

    Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji; Kim, Eun Kyoung; Chung, Sung Woon; Hong, Ki Whan; Kim, Chi Dae; Bae, Sun Sik

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.

  15. Putative Phosphatidylinositol 3-Kinase (PI3K) Binding Motifs in Ovine Betaretrovirus Env Proteins Are Not Essential for Rodent Fibroblast Transformation and PI3K/Akt Activation

    PubMed Central

    Liu, Shan-Lu; Lerman, Michael I.; Miller, A. Dusty

    2003-01-01

    Jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV) are simple betaretroviruses that cause epithelial cell tumors in the lower and upper airways of sheep and goats. The envelope (Env) glycoproteins of both viruses can transform rodent and chicken fibroblasts, indicating that they play an essential role in oncogenesis. Previous studies found that a YXXM motif in the Env cytoplasmic tail, a putative docking site for phosphatidylinositol 3-kinase (PI3K) after tyrosine phosphorylation, was necessary for rodent cell transformation but was not required for transformation of DF-1 chicken fibroblasts. Here we show that JSRV and ENTV Env proteins with tyrosine or methionine mutations in the YXXM motif can still transform rodent fibroblasts, albeit with reduced efficiency. Akt was activated in cells transformed by JSRV or ENTV Env proteins and in cells transformed by the proteins with tyrosine mutations. Furthermore, the PI3K-specific inhibitor LY294002 could inhibit Akt activation and cell transformation in all cases, indicating that Akt activation and transformation is PI3K dependent. However, we could not detect tyrosine phosphorylation of JSRV or ENTV Env proteins or an interaction between the Env proteins and PI3K in the transformed cells. We found no evidence for mitogen-activated protein kinase activation in cells that were transformed by the JSRV or ENTV Env proteins. We conclude that ovine betaretrovirus Env proteins transform the rodent fibroblasts by indirectly activating the PI3K/Akt pathway. PMID:12829832

  16. E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway

    SciTech Connect

    Contreras-Paredes, Adriana

    2009-01-05

    Intra-type genome variations of high risk Human papillomavirus (HPV) have been associated with a differential threat for cervical cancer development. In this work, the effect of HPV18 E6 isolates in Akt/PKB and Mitogen-associated protein kinase (MAPKs) signaling pathways and its implication in cell proliferation were analyzed. E6 from HPV types 16 and 18 are able to bind and promote degradation of Human disc large (hDlg). Our results show that E6 variants differentially modulate hDlg degradation, rebounding in levels of activated PTEN and PKB. HPV18 E6 variants are also able to upregulate phospho-PI3K protein, strongly correlating with activated MAPKs and cell proliferation. Data was supported by the effect of E6 silencing in HPV18-containing HeLa cells, as well as hDlg silencing in the tested cells. Results suggest that HPV18 intra-type variations may derive in differential abilities to activate cell-signaling pathways such as Akt/PKB and MAPKs, directly involved in cell survival and proliferation.

  17. Dephosphorylation and inactivation of Akt/PKB is counteracted by protein kinase CK2 in HEK 293T cells.

    PubMed

    Di Maira, Giovanni; Brustolon, Francesca; Pinna, Lorenzo A; Ruzzene, Maria

    2009-10-01

    Akt (PKB) is a critical kinase in cell-survival pathways. Its activity depends on the phosphorylation of Thr308 and Ser473, by PDK1 and mTORC2, respectively. We found that Akt can be further stimulated through phosphorylation of Ser129 by another kinase, CK2. Here we show that phosphorylation of Akt at Ser129 also facilitates its association with Hsp90 chaperone, thus preventing Thr308 dephosphorylation. This is supported by the following observations: (1) phospho-Thr308 decreases when Ser129 is mutated to alanine, (2) this decrease is abolished by cell treatment with okadaic acid (to inactivate PP2A) or geldanamycin (to inactivate Hsp90), (3) phosphorylation of Ser129 neither enhances the activity of PDK1 nor hampers the in vitro activity of PP2A on Thr308, but increases the Hsp90 association to Akt. These data support the view that the antiapoptotic potential of CK2 is at least in part mediated by its ability to maintain Akt in its active form.

  18. Differential Role of β1C and β1A Integrin Cytoplasmic Variants in Modulating Focal Adhesion Kinase, Protein Kinase B/AKT, and Ras/Mitogen-activated Protein Kinase Pathways

    PubMed Central

    Fornaro, Mara; Steger, Craig A.; Bennett, Anton M.; Wu, J. Julie; Languino, Lucia R.

    2000-01-01

    The integrin cytoplasmic domain modulates cell proliferation, adhesion, migration, and intracellular signaling. The β1 integrin subunits, β1C and β1A, that contain variant cytoplasmic domains differentially affect cell proliferation; β1C inhibits proliferation, whereas β1A promotes it. We investigated the ability of β1C and β1A to modulate integrin-mediated signaling events that affect cell proliferation and survival in Chinese hamster ovary stable cell lines expressing either human β1C or human β1A. The different cytodomains of either β1C or β1A did not affect either association with the endogenous α2, αV, and α5 subunits or cell adhesion to fibronectin or TS2/16, a mAb to human β1. Upon engagement of endogenous and exogenous integrins by fibronectin, cells expressing β1C showed significantly inhibited extracellular signal–regulated kinase (ERK) 2 activation compared with β1A stable cell lines. In contrast, focal adhesion kinase phosphorylation and Protein Kinase B/AKT activity were not affected. Selective engagement of the exogenously expressed β1C by TS2/16 led to stimulation of Protein Kinase B/AKT phosphorylation but not of ERK2 activation; in contrast, β1A engagement induced activation of both proteins. We show that Ras activation was strongly reduced in β1C stable cell lines in response to fibronectin adhesion and that expression of constitutively active Ras, Ras 61 (L), rescued β1C-mediated down-regulation of ERK2 activation. Inhibition of cell proliferation in β1C stable cell lines was attributable to an inhibitory effect of β1C on the Ras/MAP kinase pathway because expression of activated MAPK kinase rescued β1C antiproliferative effect. These findings show that the β1C variant, by means of a unique signaling mechanism, selectively inhibits the MAP kinase pathway by preventing Ras activation without affecting either survival signals stimulated by integrins or cellular interactions with the extracellular matrix. These findings

  19. Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt.

    PubMed

    McDaneld, T G; Spurlock, D M

    2008-11-01

    Ankyrin repeat and suppressor of cytokine signaling box-containing protein (ASB) 15 is a novel ASB gene family member predominantly expressed in skeletal muscle. We have previously reported that overexpression of ASB15 delays differentiation and alters protein turnover in mouse C(2)C(12) myoblasts. However, the extent of ASB15 regulation of differentiation and molecular pathways underlying this activity are unknown. The extracellular signal-regulated kinase (Erk) 1/2 and phosphatidylinositol-3 kinase-Akt (PI3K/Akt; Akt is also known as protein kinase B) signaling pathways have a role in skeletal muscle growth. Activation (phosphorylation) of the Erk1/2 signaling pathway promotes proliferation, whereas activation of the PI3K/Akt signaling pathway promotes myoblast differentiation. Accordingly, we tested the hypothesis that ASB15 controls myoblast differentiation through its regulation of these kinases. Stably transfected myoblasts overexpressing ASB15 (ASB15+) demonstrated decreased differentiation, whereas attenuation of ASB15 expression (ASB15-) increased differentiation. However, ASB15+ cells had less abundance of the phosphorylated mitogen-activated protein kinase (active) form, despite decreased differentiation relative to control myoblasts (ASB15Con). The mitogen-activated protein kinase kinase inhibitor, U0126, effectively decreased mitogen-activated protein kinase phosphorylation and stimulated differentiation in ASB15- and ASB15Con cells. However, inhibition of the Erk1/2 pathway was unable to overcome the inhibitory effect of overexpressing ASB15 on differentiation (ASB15+), suggesting that the Erk1/2 pathway is likely not the predominant mediator of ASB15 activity on differentiation. Expression of ASB15 also altered phosphorylation of the PI3K/Akt pathway, as ASB15+ and ASB15- cells had decreased and increased Akt phosphorylation, respectively. These data were consistent with observed differences in differentiation. Administration of IGF-I, a PI3K/Akt

  20. Molecular pharmacology and antitumor activity of PHT-427, a novel Akt/phosphatidylinositide-dependent protein kinase 1 pleckstrin homology domain inhibitor.

    PubMed

    Meuillet, Emmanuelle J; Zuohe, Song; Lemos, Robert; Ihle, Nathan; Kingston, John; Watkins, Ryan; Moses, Sylvestor A; Zhang, Shuxing; Du-Cuny, Lei; Herbst, Roy; Jacoby, Jörg J; Zhou, Li Li; Ahad, Ali M; Mash, Eugene A; Kirkpatrick, D Lynn; Powis, Garth

    2010-03-01

    Phosphatidylinositol 3-kinase/phosphatidylinositide-dependent protein kinase 1 (PDPK1)/Akt signaling plays a critical role in activating proliferation and survival pathways within cancer cells. We report the molecular pharmacology and antitumor activity of PHT-427, a compound designed to bind to the pleckstrin homology (PH) binding domain of signaling molecules important in cancer. Although originally designed to bind the PH domain of Akt, we now report that PHT-427 also binds to the PH domain of PDPK1. A series of PHT-427 analogues with variable C-4 to C-16 alkyl chain length were synthesized and tested. PHT-427 itself (C-12 chain) bound with the highest affinity to the PH domains of both PDPK1 and Akt. PHT-427 inhibited Akt and PDPK1 signaling and their downstream targets in sensitive but not resistant cells and tumor xenografts. When given orally, PHT-427 inhibited the growth of human tumor xenografts in immunodeficient mice, with up to 80% inhibition in the most sensitive tumors, and showed greater activity than analogues with C4, C6, or C8 alkyl chains. Inhibition of PDPK1 was more closely correlated to antitumor activity than Akt inhibition. Tumors with PIK3CA mutation were the most sensitive, and K-Ras mutant tumors were the least sensitive. Combination studies showed that PHT-427 has greater than additive antitumor activity with paclitaxel in breast cancer and with erlotinib in non-small cell lung cancer. When given >5 days, PHT-427 caused no weight loss or change in blood chemistry. Thus, we report a novel PH domain binding inhibitor of PDPK1/Akt signaling with significant in vivo antitumor activity and minimal toxicity.

  1. The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) protects cells against cold-shock-induced apoptosis by maintaining phosphorylation of protein kinase B (AKT)

    PubMed Central

    Carpenter, Dale; Hsiang, Chinhui; Jiang, Xianzhi; Osorio, Nelson; BenMohamed, Lbachir; Jones, Clinton

    2017-01-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) blocks apoptosis and inhibits caspase-3 activation. We previously showed that serum starvation (removal of serum from tissue culture media), which takes several days to induce apoptosis, results in decreased levels of both AKT (protein kinase B) and phosphorylated AKT (pAKT) in cells not expressing LAT. In contrast in mouse neuroblastoma cells expressing LAT, AKT, and pAKT levels remained high. AKT is a serine/threonine protein kinase that promotes cell survival. To examine the effect of LAT on AKT-pAKT using a different and more rapid method of inducing apoptosis, a stable cell line expressing LAT was compared to non-LAT expressing cells as soon as 15 min following recovery from cold-shock-induced apoptosis. Expression of LAT appeared to inhibit dephosphorylation of pAKT. This protection correlated with blocking numerous pro-apoptotic events that are inhibited by pAKT. These results support the hypothesis that inhibiting dephosphorylation of pAKT may be one of the pathways by which LAT protects cells against apoptosis. PMID:26071090

  2. Effects of doxepin on brain-derived neurotrophic factor, tumor necrosis factor alpha, mitogen-activated protein kinase 14, and AKT1 genes expression in rat hippocampus

    PubMed Central

    Eidelkhani, Nastaran; Radahmadi, Maryam; Kazemi, Mohammad; Rafiee, Laleh; Alaei, Hojjatallah; Reisi, Parham

    2015-01-01

    Background: It has been suggested that doxepin in addition to enhancement of noradrenaline and serotonin levels may have neuroprotective effects. Therefore, this study investigated the effect of doxepin on gene expression of brain-derived neurotrophic factor (BDNF), tumor necrosis factor alpha (TNF-α), mitogen-activated protein kinase 14 (MAPK14), and serine-threonine protein kinase AKT1 in rat hippocampus. Materials and Methods: Male rats were divided randomly into three groups: Control, doxepin 1 mg/kg, and doxepin 5 mg/kg. Rats received an i.p injection of doxepin for 21 days. Then the hippocampi were dissected for the measurement of the expression of BDNF, TNF-α, MAPK14, and AKT1 genes. Results: Our results showed no significant effects of doxepin on gene expression of BDNF, TNF-α, MAPK14, and AKT1 genes in the hippocampus. Conclusions: These results did not show significant effects of doxepin on the genes that affect the neuronal survival in intact animals. However, more studies need to be done, especially in models associated with neuronal damage. PMID:26601091

  3. 8-Amino-adenosine induces loss of phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2, and Akt kinase: role in induction of apoptosis in multiple myeloma.

    PubMed

    Ghias, Kulsoom; Ma, Chunguang; Gandhi, Varsha; Platanias, Leonidas C; Krett, Nancy L; Rosen, Steven T

    2005-04-01

    Multiple myeloma is a slowly proliferating B-cell malignancy that accumulates apoptosis-resistant and replication-quiescent cell populations, posing a challenge for current chemotherapeutics that target rapidly replicating cells. Multiple myeloma remains an incurable disease in need of new therapeutic approaches. The purine nucleoside analogue, 8-amino-adenosine (8-NH2-Ado), exhibits potent activity in preclinical studies, inducing apoptosis in several multiple myeloma cell lines. This cytotoxic effect requires phosphorylation of 8-NH2-Ado to its triphosphate form, 8-amino-ATP, and results in a concomitant loss of endogenous ATP levels. Here, we show the novel effect of 8-NH2-Ado on the phosphorylation status of key cellular signaling molecules. Multiple myeloma cells treated with 8-NH2-Ado exhibit a dramatic loss of phosphorylation of several important signaling proteins, including extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and Akt kinase. Cells depleted of ATP independent of 8-NH2-Ado do not exhibit the same decrease in phosphorylation of vital cellular proteins. Therefore, the significant shifts in endogenous ATP pools caused by 8-NH2-Ado treatment cannot account for the changes in phosphorylation levels. Instead, 8-NH2-Ado may influence the activity of select regulatory protein kinases and/or phosphatases, with preliminary data suggesting that protein phophatase 2A activity is affected by 8-NH2-Ado. The distinctive effect of 8-NH2-Ado on the phosphorylation status of cellular proteins is a novel phenomenon for a nucleoside analogue drug and is unique to 8-NH2-Ado among this class of drugs. The kinetics of 8-NH2-Ado-mediated changes in phosphorylation levels of critical prosurvival and apoptosis-regulating proteins suggests that the modulation of these proteins by dephosphorylation at early time points may be an important mechanistic step in 8-NH2-Ado-induced apoptosis.

  4. TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKT

    PubMed Central

    Hill, Richard; Madureira, Patricia A.; Ferreira, Bibiana; Baptista, Inês; Machado, Susana; Colaço, Laura; dos Santos, Marta; Liu, Ningshu; Dopazo, Ana; Ugurel, Selma; Adrienn, Angyal; Kiss-Toth, Endre; Isbilen, Murat; Gure, Ali O.; Link, Wolfgang

    2017-01-01

    Intrinsic and acquired resistance to chemotherapy is the fundamental reason for treatment failure for many cancer patients. The identification of molecular mechanisms involved in drug resistance or sensitization is imperative. Here we report that tribbles homologue 2 (TRIB2) ablates forkhead box O activation and disrupts the p53/MDM2 regulatory axis, conferring resistance to various chemotherapeutics. TRIB2 suppression is exerted via direct interaction with AKT a key signalling protein in cell proliferation, survival and metabolism pathways. Ectopic or intrinsic high expression of TRIB2 induces drug resistance by promoting phospho-AKT (at Ser473) via its COP1 domain. TRIB2 expression is significantly increased in tumour tissues from patients correlating with an increased phosphorylation of AKT, FOXO3a, MDM2 and an impaired therapeutic response. This culminates in an extremely poor clinical outcome. Our study reveals a novel regulatory mechanism underlying drug resistance and suggests that TRIB2 functions as a regulatory component of the PI3K network, activating AKT in cancer cells. PMID:28276427

  5. Advanced glycation end products impair function of late endothelial progenitor cells through effects on protein kinase Akt and cyclooxygenase-2

    SciTech Connect

    Chen Qin; Dong Li; Wang Lian; Kang Lina; Xu Biao

    2009-04-03

    Endothelial progenitor cells (EPCs) exhibit impaired function in the context of diabetes, and advanced glycation end products (AGEs), which accumulate in diabetes, may contribute to this. In the present study, we investigated the mechanism by which AGEs impair late EPC function. EPCs from human umbilical cord blood were isolated, and incubated with AGE-modified albumin (AGE-albumin) at different concentrations found physiologically in plasma. Apoptosis, migration, and tube formation assays were used to evaluate EPC function including capacity for vasculogenesis, and expression of the receptor for AGEs (RAGE), Akt, endothelial nitric oxide synthase (eNOS), and cycloxygenase-2 (COX-2) were determined. Anti-RAGE antibody was used to block RAGE function. AGE-albumin concentration-dependently enhanced apoptosis and depressed migration and tube formation, but did not affect proliferation, of late EPCs. High AGE-albumin increased RAGE mRNA and protein expression, and decreased Akt and COX-2 protein expression, whilst having no effect on eNOS mRNA or protein in these cells. These effects were inhibited by co-incubation with anti-RAGE antibody. These results suggest that RAGE mediates the AGE-induced impairment of late EPC function, through down-regulation of Akt and COX-2 in these cells.

  6. Mutation of the PDK1 PH Domain Inhibits Protein Kinase B/Akt, Leading to Small Size and Insulin Resistance▿ †

    PubMed Central

    Bayascas, Jose R.; Wullschleger, Stephan; Sakamoto, Kei; García-Martínez, Juan M.; Clacher, Carol; Komander, David; van Aalten, Daan M. F.; Boini, Krishna M.; Lang, Florian; Lipina, Christopher; Logie, Lisa; Sutherland, Calum; Chudek, John A.; van Diepen, Janna A.; Voshol, Peter J.; Lucocq, John M.; Alessi, Dario R.

    2008-01-01

    PDK1 activates a group of kinases, including protein kinase B (PKB)/Akt, p70 ribosomal S6 kinase (S6K), and serum and glucocorticoid-induced protein kinase (SGK), that mediate many of the effects of insulin as well as other agonists. PDK1 interacts with phosphoinositides through a pleckstrin homology (PH) domain. To study the role of this interaction, we generated knock-in mice expressing a mutant of PDK1 incapable of binding phosphoinositides. The knock-in mice are significantly small, insulin resistant, and hyperinsulinemic. Activation of PKB is markedly reduced in knock-in mice as a result of lower phosphorylation of PKB at Thr308, the residue phosphorylated by PDK1. This results in the inhibition of the downstream mTOR complex 1 and S6K1 signaling pathways. In contrast, activation of SGK1 or p90 ribosomal S6 kinase or stimulation of S6K1 induced by feeding is unaffected by the PDK1 PH domain mutation. These observations establish the importance of the PDK1-phosphoinositide interaction in enabling PKB to be efficiently activated with an animal model. Our findings reveal how reduced activation of PKB isoforms impinges on downstream signaling pathways, causing diminution of size as well as insulin resistance. PMID:18347057

  7. Gastrin induces sodium-hydrogen exchanger 3 phosphorylation and mTOR activation via a phosphoinositide 3-kinase-/protein kinase C-dependent but AKT-independent pathway in renal proximal tubule cells derived from a normotensive male human.

    PubMed

    Liu, Tianbing; Jose, Pedro A

    2013-02-01

    Gastrin is natriuretic, but its renal molecular targets and signal transduction pathways are not fully known. In this study, we confirmed the existence of CCKBR (a gastrin receptor) in male human renal proximal tubule cells and discovered that gastrin induced S6 phosphorylation, a downstream component of the phosphatidylinositol 3 kinase (PI3 kinase)-mammalian target of rapamycin pathway. Gastrin also increased the phosphorylation of sodium-hydrogen exchanger 3 (NHE3) at serine 552, caused its internalization, and decreased its expression at the cell surface and NHE activity. The phosphorylation of NHE3 and S6 was dependent on PI3 kinases because it was blocked by 2 different PI3-kinase inhibitors, wortmannin and LY294,002. The phosphorylation of NHE3 and S6 was not affected by the protein kinase A inhibitor H-89 but was blocked by a pan-PKC (chelerythrine) and a conventional PKC (cPKC) inhibitor (Gö6976) (10 μM) and an intracellular calcium chelator, 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)-ester, suggesting the importance of cPKC and intracellular calcium in the gastrin signaling pathway. The cPKC involved was probably PKCα because it was phosphorylated by gastrin. The gastrin-mediated phosphorylation of NHE3, S6, and PKCα was via phospholipase C because it was blocked by a phospholipase C inhibitor, U73122 (10 μM). The phosphorylation (activation) of AKT, which is usually upstream of mammalian target of rapamycin in the classic PI3 kinase-AKT-p70S6K signaling pathway, was not affected, suggesting that the gastrin-induced phosphorylation of NHE3 and S6 is dependent on both PI3 kinase and PKCα but not AKT.

  8. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response

    PubMed Central

    Chan, Tung O.; Zhang, Jin; Tiegs, Brian C.; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M.; Armen, Roger S.; Rodeck, Ulrich; Penn, Raymond B.

    2015-01-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr308 in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr308 dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser473) increased phosphatase resistance of the phosphorylated activation loop (pThr308) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr308 phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. PMID:26201515

  9. Regulation of Akt/Protein Kinase B Signaling by a Novel Protein Phosphatase in Breast Cancer Cells

    DTIC Science & Technology

    2008-01-01

    acid 1016 (L1016S)) in the PP2C domain of thephosphatase, where the a copy of the Ser allele is present in 15% of the population. Four breast cancer...PHLPP2 preferentially dephosphorylates Akt at Ser 473, unique from the isolated PP2C domain of PHLPP2, which dephosphorylates both Ser 473 and Thr 308 of...codon 1016 in the PP2C phosphatase domain. We observed that four breast cancer cell lines possessed only the Ser allele, one breast cancer cell line

  10. Protein kinase C promotes apoptosis in LNCaP prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway.

    PubMed

    Tanaka, Yuichi; Gavrielides, M Veronica; Mitsuuchi, Yasuhiro; Fujii, Teruhiko; Kazanietz, Marcelo G

    2003-09-05

    Activation of protein kinase C (PKC) by phorbol esters or diacylglycerol mimetics induces apoptosis in androgen-dependent prostate cancer cells, an effect that involves both the activation of the classic PKC alpha and the novel PKC delta isozymes (Fujii, T., García-Bermejo, M. L., Bernabó, J. L., Caamaño, J., Ohba, M., Kuroki, T., Li, L., Yuspa, S. H., and Kazanietz, M. G. (2000) J. Biol. Chem. 275, 7574-7582 and Garcia-Bermejo, M. L., Leskow, F. C., Fujii, T., Wang, Q., Blumberg, P. M., Ohba, M., Kuroki, T., Han, K. C., Lee, J., Marquez, V. E., and Kazanietz, M. G. (2002) J. Biol. Chem. 277, 645-655). In the present study we explored the signaling events involved in this PKC-mediated effect, using the androgen-dependent LNCaP cell line as a model. Stimulation of PKC by phorbol 12-myristate 13-acetate (PMA) leads to the activation of ERK1/2, p38 MAPK, and JNK in LNCaP cells. Here we present evidence that p38 MAPK, but not JNK, mediates PKC-induced apoptosis. Because LNCaP cells have hyperactivated Akt function due to PTEN inactivation, we examined whether this survival pathway could be affected by PKC activation. Interestingly, activation of PKC leads to a rapid and reversible dephosphorylation of Akt, an effect that was prevented by the pan-PKC inhibitor GF109302X and the cPKC inhibitor Gö6976. In addition, the diacylglycerol mimetic agent HK654, which selectively stimulates PKC alpha in LNCaP cells, also induced the dephosphorylation of Akt in LNCaP cells. Inactivation of Akt function by PKC does not involve the inhibition of PI3K, and it is prevented by okadaic acid, suggesting the involvement of a phosphatase 2A in PMA-induced Akt dephosphorylation. Finally, we show that, when an activated form of Akt is delivered into LNCaP cells by either transient transfection or adenoviral infection, the apoptotic effect of PMA is significantly reduced. Our results highlight a complex array of signaling pathways regulated by PKC isozymes in LNCaP prostate cancer cells

  11. Long isoform of ErbB3 binding protein, p48, mediates protein kinase B/Akt-dependent HDM2 stabilization and nuclear localization

    SciTech Connect

    Kim, Chung Kwon; Lee, Sang Bae; Nguyen, Truong L.X.; Lee, Kyung-Hoon; Um, Sung Hee; Kim, Jihoe; Ahn, Jee-Yin

    2012-01-15

    p48 is a long isoform of the ErbB3 binding protein that has oncogenic functions including promotion of carcinogenesis and induction of malignant transformation through negative regulation of tumor suppressor p53. Here, we show that high level of p48 protein expression leads to enhance HDM2 phosphorylation by Akt and inhibits the self-ubiquitination of HDM2 by up-regulation of Akt activity, thereby promoting its protein stability. Moreover, p48 expression leads to accumulated nuclear localization of HDM2, whereas p48 depletion disturbs its nuclear localization. Hence, higher expression of p48 in cancer cells reduces p53 levels through modulation of HDM2 nuclear localization and protein stability via regulation of its Akt-mediated phosphorylation.

  12. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway.

    PubMed

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D

    2006-01-01

    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway.

  13. In vitro and in vivo activity of novel small-molecule inhibitors targeting the pleckstrin homology domain of protein kinase B/AKT.

    PubMed

    Moses, Sylvestor A; Ali, M Ahad; Zuohe, Song; Du-Cuny, Lei; Zhou, Li Li; Lemos, Robert; Ihle, Nathan; Skillman, A Geoffrey; Zhang, Shuxing; Mash, Eugene A; Powis, Garth; Meuillet, Emmanuelle J

    2009-06-15

    The phosphatidylinositol 3-kinase/AKT signaling pathway plays a critical role in activating survival and antiapoptotic pathways within cancer cells. Several studies have shown that this pathway is constitutively activated in many different cancer types. The goal of this study was to discover novel compounds that bind to the pleckstrin homology (PH) domain of AKT, thereby inhibiting AKT activation. Using proprietary docking software, 22 potential PH domain inhibitors were identified. Surface plasmon resonance spectroscopy was used to measure the binding of the compounds to the expressed PH domain of AKT followed by an in vitro activity screen in Panc-1 and MiaPaCa-2 pancreatic cancer cell lines. We identified a novel chemical scaffold in several of the compounds that binds selectively to the PH domain of AKT, inducing a decrease in AKT activation and causing apoptosis at low micromolar concentrations. Structural modifications of the scaffold led to compounds with enhanced inhibitory activity in cells. One compound, 4-dodecyl-N-(1,3,4-thiadiazol-2-yl)benzenesulfonamide, inhibited AKT and its downstream targets in cells as well as in pancreatic cancer cell xenografts in immunocompromised mice; it also exhibited good antitumor activity. In summary, a pharmacophore for PH domain inhibitors targeting AKT function was developed. Computer-aided modeling, synthesis, and testing produced novel AKT PH domain inhibitors that exhibit promising preclinical properties.

  14. Integration of Apoptosis Signal-Regulating Kinase 1-Mediated Stress Signaling with the Akt/Protein Kinase B-IκB Kinase Cascade

    PubMed Central

    Puckett, Mary C.; Goldman, Erinn H.; Cockrell, Lisa M.; Huang, Bei; Kasinski, Andrea L.; Du, Yuhong; Wang, Cun-Yu; Lin, Anning; Ichijo, Hidenori; Khuri, Fadlo

    2013-01-01

    Cellular processes are tightly controlled through well-coordinated signaling networks that respond to conflicting cues, such as reactive oxygen species (ROS), endoplasmic reticulum (ER) stress signals, and survival factors to ensure proper cell function. We report here a direct interaction between inhibitor of κB kinase (IKK) and apoptosis signal-regulating kinase 1 (ASK1), unveiling a critical node at the junction of survival, inflammation, and stress signaling networks. IKK can be activated by growth factor stimulation or tumor necrosis factor alpha engagement. IKK forms a complex with and phosphorylates ASK1 at a sensor site, Ser967, leading to the recruitment of 14-3-3, counteracts stress signal-triggered ASK1 activation, and suppresses ASK1-mediated functions. An inhibitory role of IKK in JNK signaling has been previously reported to depend on NF-κB-mediated gene expression. Our data suggest that IKK has a dual role: a transcription-dependent and a transcription-independent action in controlling the ASK1-JNK axis, coupling IKK to ROS and ER stress response. Direct phosphorylation of ASK1 by IKK also defines a novel IKK phosphorylation motif. Because of the intimate involvement of ASK1 in diverse diseases, the IKK/ASK1 interface offers a promising target for therapeutic development. PMID:23530055

  15. Estrogen Receptor β Signaling through Phosphatase and Tensin Homolog/Phosphoinositide 3-Kinase/Akt/Glycogen Synthase Kinase 3 Down-Regulates Blood-Brain Barrier Breast Cancer Resistance Protein

    PubMed Central

    Hartz, A. M. S.; Madole, E. K.; Miller, D. S.

    2010-01-01

    Breast cancer resistance protein (BCRP) is an ATP-driven efflux pump at the blood-brain barrier that limits central nervous system pharmacotherapy. Our previous studies showed rapid loss of BCRP transport activity in rat brain capillaries exposed to low concentrations of 17-β-estradiol (E2); this occurred without acute change in BCRP protein expression. Here, we describe a pathway through which sustained, extended exposure to E2 signals down-regulation of BCRP at the blood-brain barrier. Six-hour exposure of isolated rat and mouse brain capillaries to E2 reduced BCRP transport activity and BCRP monomer and dimer expression. Experiments with brain capillaries from estrogen receptor (ER)α and ERβ knockout mice and with ER agonists and antagonists showed that E2 signaled through ERβ to down-regulate BCRP expression. In rat brain capillaries, E2 increased unphosphorylated, active phosphatase and tensin homolog (PTEN); decreased phosphorylated, active Akt; and increased phosphorylated, active glycogen synthase kinase (GSK)3. Consistent with this, inhibition of phosphoinositide 3-kinase (PI3K) or Akt decreased BCRP activity and protein expression, and inhibition of PTEN or GSK3 reversed the E2 effect on BCRP. Lactacystin, a proteasome inhibitor, abolished E2-mediated BCRP down-regulation, suggesting internalization followed by transporter degradation. Dosing mice with E2 reduced BCRP activity in brain capillaries within 1 h; this reduction persisted for 24 h. BCRP protein expression in brain capillaries was unchanged 1 h after E2 dosing but was substantially reduced 6 and 24 h after dosing. Thus, E2 signals through ERβ, PTEN/PI3K/Akt/GSK3 to stimulate proteasomal degradation of BCRP. These in vitro and in vivo findings imply that E2-mediated down-regulation of blood-brain barrier BCRP has the potential to increase brain uptake of chemotherapeutics that are BCRP substrates. PMID:20460386

  16. Bis(hinokitiolato)zinc complex ([Zn(hkt)2]) activates Akt/protein kinase B independent of insulin signal transduction.

    PubMed

    Naito, Yuki; Yoshikawa, Yutaka; Masuda, Kazufumi; Yasui, Hiroyuki

    2016-07-01

    Since many Zn complexes have been developed to enhance the insulin-like activity and increase the exposure and residence of Zn in the animal body, these complexes are recognized as one of the new candidates with action mechanism different from existing anti-diabetic drugs. However, the molecular mechanism by which Zn complexes exert an anti-DM effect is unknown. Therefore, we evaluated the activity of Zn complexes, especially related to the phosphorylation of insulin signaling pathway components. We focused on the insulin-like effects of the bis(hinokitiolato)zinc complex, [Zn(hkt)2], using 3T3-L1 adipocytes. [Zn(hkt)2] was taken up by cells and induced Akt phosphorylation in a time-dependent manner. Additionally, it showed inhibitory activity against PTP1B and PTEN, which are major negative regulators of insulin signaling. It did not promote the phosphorylation of IR (insulin receptor)-β or IRS (insulin receptor substrate)-1 by itself, but in combination with insulin, it enhanced the phosphorylation of IRβ. We conclude that [Zn(hkt)2] has effects on the proteins of insulin signaling pathway without insulin receptor mediation, and [Zn(hkt)2] promotes insulin function and shows the anti-DM effects. Thus, [Zn(hkt)2] may be the basis for improved DM treatments.

  17. Cellular context–mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis

    PubMed Central

    Hellesøy, Monica; Lorens, James B.

    2015-01-01

    The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis. PMID:26023089

  18. The protooncogene TCL1 is an Akt kinase coactivator.

    PubMed

    Laine, J; Künstle, G; Obata, T; Sha, M; Noguchi, M

    2000-08-01

    Human T cell prolymphocytic leukemia can result from chromosomal translocations involving 14q32.1 or Xq28 regions. The regions encode a family of protooncogenes (TCL1, MTCP1, and TCL1b) of unknown function. In yeast two-hybrid screening, we found that TCL1 interacts with Akt. All TCL1 isoforms bind to the Akt pleckstrin homology domain. Both in vitro and in vivo TCL1 increases Akt kinase activity and as a consequence enhances substrate phosphorylation. In vivo, TCL1 stabilizes the mitochondrial transmembrane potential and enhances cell proliferation and survival. In vivo, TCL1 forms trimers, which associate with Akt. TCL1 facilitates the oligomerization and activation of Akt. Our data show that TCL1 is a novel Akt kinase coactivator, which promotes Akt-induced cell survival and proliferation.

  19. HBV core promoter mutations and AKT upregulate S-phase kinase-associated protein 2 to promote postoperative hepatocellular carcinoma progression

    PubMed Central

    Chen, Lubiao; Gu, Lin; Gu, Yurong; Wang, Hongbo; Deng, Meihai; Stamataki, Zania; Oo, Ye Htun; Huang, Yuehua

    2016-01-01

    Mutations in the hepatitis B virus (HBV) core promoter (CP) have been shown to be associated with hepatocellular carcinoma (HCC). The CP region overlaps HBV X gene, which activates AKT to regulate hepatocyte survival. However, the cooperation between these two cascades in HCC progression remains poorly understood. Here, we assayed virological factors and AKT expression in liver tissues from 56 HCC patients with better prognoses (BHCC, ≥5-year survival) and 58 with poor prognoses (PHCC, <5-year survival) after partial liver resection. Results showed double mutation A1762T/G1764A (TA) combined with other mutation(s) (TACO) in HBV genome and phosphorylated AKT (pAKT) were more common in PHCC than BHCC. TACO and pAKT levels correlated with proliferation and microvascularization but inversely correlated with apoptosis in HCC samples. These were more pronounced when TACO and pAKT co-expressed. Levels of p21 and p27 were decreased in TACO or pAKT overexpressing HCC due to SKP2 upregulation. Levels of E2F1 and both mRNA and protein of SKP2 were increased in TACO expressing HCC. Levels of 4EBP1/2 decreased and SKP2 mRNA level remained constant in pAKT-overexpressing HCC. Therefore, TACO and AKT are two independent predictors of postoperative survival in HCC. Their co-target, SKP2 may be a diagnostic or therapeutic marker. PMID:27779207

  20. CREB is a regulatory target for the protein kinase Akt/PKB in the differentiation of pancreatic ductal cells into islet {beta}-cells mediated by hepatocyte growth factor

    SciTech Connect

    Li, Xin-Yu; Zhan, Xiao-Rong; Liu, Xiao-Min; Wang, Xiao-Chen

    2011-01-14

    Research highlights: {yields} CREB is a regulatory target for the protein kinase Akt/PKB in pancreatic duct cells. {yields} Activation of the PI3K/AKT/CREB pathway plays a critical role in the HGF-mediated differentiation of pancreatic duct cells in vivo. {yields} CREB was causally linked to the expression of transcription factors during PDEC differentiation induced by HGF. -- Abstract: We have previously reported that the PI3K/Akt signaling pathway is involved in hepatocyte growth factor (HGF)-induced differentiation of adult rat pancreatic ductal epithelial cells (PDECs) into islet {beta}-cells in vitro. The transcription factor CREB is one of the downstream key effectors of the PI3K/Akt signaling pathway. Recent studies showing that CREB is required for the survival of certain cell types prompted us to examine whether CREB is a nuclear target for activation via the HGF-dependent Ser/Thr kinase Akt/PKB in the differentiation of pancreatic duct cell into islet {beta}-cells. In this study, we first attempted to examine whether HGF modulates the Akt-dependent activation of target gene CREB and then investigated whether CREB activity affects the differentiation of HGF-induced PDECs. Finally, we studied the role of CREB in modulating the expression of transcription factors in PDECs during the differentiation of HGF-induced PDECs. Our results demonstrated that CREB is a regulatory target for the protein kinase Akt/PKB in the differentiation of pancreatic ductal cells into islet {beta}-cells mediated by HGF.

  1. G protein-coupled receptors (GPCRs) That Signal via Protein Kinase A (PKA) Cross-talk at Insulin Receptor Substrate 1 (IRS1) to Activate the phosphatidylinositol 3-kinase (PI3K)/AKT Pathway.

    PubMed

    Law, Nathan C; White, Morris F; Hunzicker-Dunn, Mary E

    2016-12-30

    G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser(318), Ser(346), Ser(612), and Ser(789), and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R.

  2. N-(4-bromophenethyl) Caffeamide Inhibits Melanogenesis by Regulating AKT/Glycogen Synthase Kinase 3 Beta/Microphthalmia-associated Transcription Factor and Tyrosinase-related Protein 1/Tyrosinase.

    PubMed

    Kuo, Yueh-Hsiung; Chen, Chien-Chia; Lin, Ping; You, Ya-Jhen; Chiang, Hsiu-Mei

    2015-01-01

    Skin color is primarily produced by melanin, which is a crucial pigment that protects the skin from UV-induced damage and prevents carcinogenesis. However, accumulated melanin in the skin may cause hyperpigmentation and related disorders. Melanin synthesis comprises consecutive oxidative reactions, and tyrosinase is the enzyme that catalyzes the rate-limiting process of melanogenesis. In this study, tyrosinase-related protein 1 (TRP-1) and TRP-2 contributed to melanin formation. N-(4-bromophenethyl) caffeamide ((E)-N-(4-bromophenethyl)-3-(3,4-dihydroxyphenyl)acrylamide; K36H), a caffeic acid phenyl amide derivative, inhibited α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity in B16F0 cells. In addition, K36H reduced the protein expression of the phospho-cAMP response element binding protein (p-CREB), microphthalmia-associated transcription factor (MITF), tyrosinase, and TRP-1. Moreover, K36H promoted AKT and glycogen synthase kinase 3 beta (GSK3β) phosphorylation, thereby inhibiting MITF transcription activity. Thus, K36H attenuated α-MSH-induced cAMP pathways, contributing to hypopigmentation. The results of a safety assay revealed that K36H did not exhibit cytotoxicity or irritate the skin or eyes. According to these results, K36H may have the potential to be used as a whitening agent in the cosmetic and pharmaceutical industries.

  3. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    PubMed

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.

  4. Degradation of Akt Using Protein Catalyzed Capture Agents

    PubMed Central

    Das, Samir; Nag, Arundhati; Tang, Grace; Tang, Kevin; Sutherland, Alexander M.; Heath, James R.

    2016-01-01

    Abnormal signaling of the protein kinase Akt has been shown to contribute to human diseases such as diabetes and cancer, but Akt has proven to be a challenging target for drugging. Using iterative in situ click chemistry we recently developed multiple protein catalyzed capture (PCC) agents that allosterically modulate Akt enzymatic activity in a protein based assay. Here we utilize similar PCCs to exploit endogenous protein degradation pathways. We use the modularity of the anti-Akt PCCs to prepare Proteolysis Targeting Chimeric molecules (PROTACs) that are shown to promote the rapid degradation of Akt in live cancer cells. These novel PROTACs demonstrate that the epitope targeting selectivity of PCCs can be coupled with non-traditional drugging moieties to inhibit challenging targets. PMID:26880702

  5. Protein kinase CK2 regulates AKT, NF-κB and STAT3 activation, stem cell viability and proliferation in acute myeloid leukemia.

    PubMed

    Quotti Tubi, L; Canovas Nunes, S; Brancalion, A; Doriguzzi Breatta, E; Manni, S; Mandato, E; Zaffino, F; Macaccaro, P; Carrino, M; Gianesin, K; Trentin, L; Binotto, G; Zambello, R; Semenzato, G; Gurrieri, C; Piazza, F

    2017-02-01

    Protein kinase CK2 sustains acute myeloid leukemia cell growth, but its role in leukemia stem cells is largely unknown. Here, we discovered that the CK2 catalytic α and regulatory β subunits are consistently expressed in leukemia stem cells isolated from acute myeloid leukemia patients and cell lines. CK2 inactivation with the selective inhibitor CX-4945 or RNA interference induced an accumulation of leukemia stem cells in the late S-G2-M phases of the cell cycle and triggered late-onset apoptosis. As a result, leukemia stem cells displayed an increased sensitivity to the chemotherapeutic agent doxorubicin. From a molecular standpoint, CK2 blockade was associated with a downmodulation of the stem cell-regulating protein BMI-1 and a marked impairment of AKT, nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) activation, whereas FOXO3a nuclear activity was induced. Notably, combined CK2 and either NF-κB or STAT3 inhibition resulted in a superior cytotoxic effect on leukemia stem cells. This study suggests that CK2 blockade could be a rational approach to minimize the persistence of residual leukemia cells.

  6. Phosphoinositide 3-kinase targeting by the β galactoside binding protein cytokine negates akt gene expression and leads aggressive breast cancer cells to apoptotic death

    PubMed Central

    Wells, Valerie; Mallucci, Livio

    2009-01-01

    Introduction Phosphoinositide 3-kinase (PI3K)-activated signalling has a critical role in the evolution of aggressive tumourigenesis and is therefore a prime target for anticancer therapy. Previously we have shown that the β galactoside binding protein (βGBP) cytokine, an antiproliferative molecule, induces functional inhibition of class 1A and class 1B PI3K. Here, we have investigated whether, by targeting PI3K, βGBP has therapeutic efficacy in aggressive breast cancer cells where strong mitogenic input is fuelled by overexpression of the ErbB2 (also known as HER/neu, for human epidermal growth factor receptor 2) oncoprotein receptor and have used immortalised ductal cells and non-aggressive mammary cancer cells, which express ErbB2 at low levels, as controls. Methods Aggressive BT474 and SKBR3 cancer cells where ErbB2 is overexpressed, MCF10A immortalised ductal cells and non-invasive MCF-7 cancer cells which express low levels of ErbB2, both in their naive state and when forced to mimic aggressive behaviour, were used. Class IA PI3K was immunoprecipitated and the conversion of phosphatidylinositol (4,5)-biphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3) assessed by ELISA. The consequences of PI3K inhibition by βGBP were analysed at proliferation level, by extracellular signal-regulated kinase (ERK) activation, by akt gene expression and by apoptosis. Apoptosis was documented by changes in mitochondrial membrane potential, alteration of the plasma membrane, caspase 3 activation and DNA fragmentation. Phosphorylated and total ERK were measured by Western blot analysis and akt mRNA levels by Northern blot analysis. The results obtained with the BT474 and SKBR3 cells were validated in the MCF10A ductal cells and in non-invasive MCF-7 breast cancer cells forced into mimicking the in vitro behaviour of the BT474 and SKBR3 cells. Results In aggressive breast cancer cells, where mitogenic signalling is enforced by the ErbB2 oncoprotein receptor

  7. Allosteric Small-Molecule Inhibitors of the AKT Kinase

    NASA Astrophysics Data System (ADS)

    Dalafave, D. S.

    This research addresses computational design of small druglike molecules for possible anticancer applications. AKT and SGK are kinases that control important cellular functions. They are highly homologous, having similar activators and targets. Cancers with increased SGK activity may develop resistance to AKT-specific inhibitors. Our goal was to design new molecules that would bind both AKT and SGK, thus preventing the development of drug resistance. Most kinase inhibitors target the kinase ATP-binding site. However, the high similarity in this site among kinases makes it difficult to target specifically. Furthermore, mutations in this site can cause resistance to ATP-competitive kinase inhibitors. We used existing AKT inhibitors as initial templates to design molecules that could potentially bind the allosteric sites of both AKT and SGK. Molecules with no implicit toxicities and optimal drug-like properties were used for docking studies. Binding energies of the stable complexes that the designed molecules formed with AKT and SGK were calculated. Possible applications of the designed putative inhibitors against cancers with overexpressed AKT/SGK is discussed.

  8. Hyaluronan Activates Cell Motility of v-Src-transformed Cells via Ras-Mitogen–activated Protein Kinase and Phosphoinositide 3-Kinase-Akt in a Tumor-specific Manner

    PubMed Central

    Sohara, Yasuyoshi; Ishiguro, Naoki; Machida, Kazuya; Kurata, Hisashi; Thant, Aye Aye; Senga, Takeshi; Matsuda, Satoru; Kimata, Koji; Iwata, Hisashi; Hamaguchi, Michinari

    2001-01-01

    We investigated the production of hyaluronan (HA) and its effect on cell motility in cells expressing the v-src mutants. Transformation of 3Y1 by v-src virtually activated HA secretion, whereas G2A v-src, a nonmyristoylated form of v-src defective in cell transformation, had no effect. In cells expressing the temperature-sensitive mutant of v-Src, HA secretion was temperature dependent. In addition, HA as small as 1 nM, on the other side, activated cell motility in a tumor-specific manner. HA treatment strongly activated the motility of v-Src–transformed 3Y1, whereas it showed no effect on 3Y1- and 3Y1-expressing G2A v-src. HA-dependent cell locomotion was strongly blocked by either expression of dominant-negative Ras or treatment with a Ras farnesyltransferase inhibitor. Similarly, both the MEK1 inhibitor and the kinase inhibitor clearly inhibited HA-dependent cell locomotion. In contrast, cells transformed with an active MEK1 did not respond to the HA. Finally, an anti-CD44–neutralizing antibody could block the activation of cell motility by HA as well as the HA-dependent phosphorylation of mitogen-activated protein kinase and Akt. Taken together, these results suggest that simultaneous activation of the Ras-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway by the HA-CD44 interaction is required for the activation of HA-dependent cell locomotion in v-Src–transformed cells. PMID:11408591

  9. Overexpression of protein-tyrosine phosphatase-1B in adipocytes inhibits insulin-stimulated phosphoinositide 3-kinase activity without altering glucose transport or Akt/Protein kinase B activation.

    PubMed

    Venable, C L; Frevert, E U; Kim, Y B; Fischer, B M; Kamatkar, S; Neel, B G; Kahn, B B

    2000-06-16

    Previous studies suggested that protein-tyrosine phosphatase 1B (PTP1B) antagonizes insulin action by catalyzing dephosphorylation of the insulin receptor (IR) and/or other key proteins in the insulin signaling pathway. In adipose tissue and muscle of obese humans and rodents, PTP1B expression is increased, which led to the hypothesis that PTP1B plays a role in the pathogenesis of insulin resistance. Consistent with this, mice in which the PTP1B gene was disrupted exhibit increased insulin sensitivity. To test whether increased expression of PTP1B in an insulin-sensitive cell type could contribute to insulin resistance, we overexpressed wild-type PTP1B in 3T3L1 adipocytes using adenovirus-mediated gene delivery. PTP1B expression was increased approximately 3-5-fold above endogenous levels at 16 h, approximately 14-fold at 40 h, and approximately 20-fold at 72 h post-transduction. Total protein-tyrosine phosphatase activity was increased by 50% at 16 h, 3-4-fold at 40 h, and 5-6-fold at 72 h post-transduction. Compared with control cells, cells expressing high levels of PTP1B showed a 50-60% decrease in maximally insulin-stimulated tyrosyl phosphorylation of IR and insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K) activity associated with IRS-1 or with phosphotyrosine. Akt phosphorylation and activity were unchanged. Phosphorylation of p42 and p44 MAP kinase (MAPK) was reduced approximately 32%. Overexpression of PTP1B had no effect on basal, submaximally or maximally (100 nm) insulin-stimulated glucose transport or on the EC(50) for transport. Our results suggest that: 1) insulin stimulation of glucose transport in adipocytes requires

  10. Protective Role of PI3-kinase/Akt/eNOS Signaling in Mechanical Stress Through Inhibition of p38 Mitogen-Activated Protein Kinase in Mouse Lung

    DTIC Science & Technology

    2010-01-01

    81. 6 Iwakiri Y. Tsai MH. McCabe TJ. Gratton JP. Fulton D. Groszmann RJ. et al. Phosphorylation of eNOS initiates excessive NO production in early...Crit care Med 2008; 177(Abstracts issue): A760. 21 Gratton JP. Morales-Ruiz M. Kureishi Y. Fulton D. Walsh K. Sessa WC. Akt down-regulation of p38

  11. Akt phosphorylates and regulates Pdcd4 tumor suppressor protein.

    PubMed

    Palamarchuk, Alexey; Efanov, Alexey; Maximov, Vadim; Aqeilan, Rami I; Croce, Carlo M; Pekarsky, Yuri

    2005-12-15

    Programmed cell death 4 (Pdcd4) is a tumor suppressor protein that interacts with eukaryotic initiation factor 4A and inhibits protein synthesis. Pdcd4 also suppresses the transactivation of activator protein-1 (AP-1)-responsive promoters by c-Jun. The Akt (protein kinase B) serine/threonine kinase is a key mediator of phosphoinositide 3-kinase pathway involved in the regulation of cell proliferation, survival, and growth. Because Pdcd4 has two putative Akt phosphorylation sites at Ser(67) and Ser(457), we investigated whether Akt phosphorylates and regulates Pdcd4. Our results show that Akt specifically phosphorylates Ser(67) and Ser(457) residues of Pdcd4 in vitro and in vivo. We further show that phosphorylation of Pdcd4 by Akt causes nuclear translocation of Pdcd4. Using luciferase assay, we show that phosphorylation of Pdcd4 by Akt also causes a significant decrease of the ability of Pdcd4 to interfere with the transactivation of AP-1-responsive promoter by c-Jun.

  12. Expression of constitutively active Akt/protein kinase B signals GLUT4 translocation in the absence of an intact actin cytoskeleton.

    PubMed

    Eyster, Craig A; Duggins, Quwanza S; Olson, Ann Louise

    2005-05-06

    The actin cytoskeleton has been shown to be required for insulin-dependent GLUT4 translocation; however, the role that the actin network plays is unknown. Actin may play a role in formation of an active signaling complex, or actin may be required for movement of vesicles to the plasma membrane surface. To distinguish between these possibilities, we examined the ability of myr-Akt, a constitutively active form of Akt that signals GLUT4 translocation to the plasma membrane in the absence of insulin, to signal translocation of an HA-GLUT4-GFP reporter protein in the presence or absence of an intact cytoskeleton in 3T3-L1 adipocytes. Expression of myr-Akt signaled the redistribution of the GLUT4 reporter protein to the cell surface in the absence or presence of 10 microm latrunculin B, a concentration sufficient to completely inhibit insulin-dependent redistribution of the GLUT4 reporter to the cell surface. These data suggest that the actin network plays a primary role in organization of the insulin-signaling complex. To further support this conclusion, we measured the activation of known signaling proteins using a saturating concentration of insulin in cells pretreated without or with 10 microm latrunculin B. We found that latrunculin treatment did not affect insulin-dependent tyrosine phosphorylation of the insulin receptor beta-subunit and IRS-1 but completely inhibited activation of Akt/PKB enzymatic activity. Phosphorylation of Akt/PKB at Ser-473 and Thr-308 was inhibited by latrunculin B treatment, indicating that the defect in signaling lies prior to Akt/PKB activation. In summary, our data support the hypothesis that the actin network plays a role in organization of the insulin-signaling complex but is not required for vesicle trafficking and/or fusion.

  13. Fraxetin Induces Heme Oxygenase-1 Expression by Activation of Akt/Nrf2 or AMP-activated Protein Kinase α/Nrf2 Pathway in HaCaT Cells

    PubMed Central

    Kundu, Juthika; Chae, In Gyeong; Chun, Kyung-Soo

    2016-01-01

    Background Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a coumarin derivative, has been reported to possess antioxidative, anti-inflammatory and neuroprotective effects. A number of recent observations suggest that the induction of heme oxygenase-1 (HO-1) inhibits inflammation and tumorigenesis. In the present study, we determined the effect of fraxetin on HO-1 expression in HaCaT human keratinocytes and investigated its underlying molecular mechanisms. Methods Reverse transcriptase-PCR and Western blot analysis were performed to detect HO-1 mRNA and protein expression, respectively. Cell viability was measured by the MTS test. The induction of intracellular reactive oxygen species (ROS) by fraxetin was evaluated by 2′,7′-dichlorofluorescin diacetate staining. Results Fraxetin upregulated mRNA and protein expression of HO-1. Incubation with fraxetin induced the localization of nuclear factor-erythroid-2-related factor-2 (Nrf2) in the nucleus and increased the antioxidant response element-reporter gene activity. Fraxetin also induced the phosphorylation of Akt and AMP-activated protein kinase (AMPK)α and diminished the expression of phosphatase and tensin homolog, a negative regulator of Akt. Pharmacological inhibition of Akt and AMPKα abrogated fraxetin-induced expression of HO-1 and nuclear localization of Nrf2. Furthermore, fraxetin generated ROS in a concentration-dependent manner. Conclusions Fraxetin induces HO-1 expression through activation of Akt/Nrf2 or AMPKα/Nrf2 pathway in HaCaT cells. PMID:27722139

  14. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways.

    PubMed

    Chuang, Wan-Ling; Su, Chin-Cheng; Lin, Ping-Yi; Lin, Chi-Chen; Chen, Yao-Li

    2015-08-01

    Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicine, was previously reported to induce autophagy and inhibit the proliferation of the human HepG2 hepatocellular carcinoma cell line via an extrinsic pathway. In the present study, the effects of SJKJT-induced autophagy and the cytotoxic mechanisms mediating these effects were investigated in HepG2 cells. The cytotoxicity of SJKJT in the HepG2 cells was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results demonstrated that the half-maximal inhibitory concentration of SJKJT was 2.91 mg/ml at 24 h, 1.64 mg/ml at 48 h and 1.26 mg/ml at 72 h. The results of confocal fluorescence microscopy indicated that SJKJT resulted in the accumulation of green fluorescent protein-LC3 and vacuolation of the cytoplasm. Flow cytometric analysis revealed the accumulation of acidic vesicular organelles. Furthermore, western blot analysis, used to determine the expression levels of autophagy-associated proteins, demonstrated that the HepG2 cells treated with SJKJT exhibited LC3B-I/LC3B-II conversion, increased expression levels of Beclin, Atg-3 and Atg-5 and reduced expression levels of p62 and decreased signaling of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and the p38 mitogen-activated protein kinase pathways. Taken together, these findings may assist in the development of novel chemotherapeutic agents for the treatment of malignant types of liver cancer.

  15. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways

    PubMed Central

    CHUANG, WAN-LING; SU, CHIN-CHENG; LIN, PING-YI; LIN, CHI-CHEN; CHEN, YAO-LI

    2015-01-01

    Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicine, was previously reported to induce autophagy and inhibit the proliferation of the human HepG2 hepatocellular carcinoma cell line via an extrinsic pathway. In the present study, the effects of SJKJT-induced autophagy and the cytotoxic mechanisms mediating these effects were investigated in HepG2 cells. The cytotoxicity of SJKJT in the HepG2 cells was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results demonstrated that the half-maximal inhibitory concentration of SJKJT was 2.91 mg/ml at 24 h, 1.64 mg/ml at 48 h and 1.26 mg/ml at 72 h. The results of confocal fluorescence microscopy indicated that SJKJT resulted in the accumulation of green fluorescent protein-LC3 and vacuolation of the cytoplasm. Flow cytometric analysis revealed the accumulation of acidic vesicular organelles. Furthermore, western blot analysis, used to determine the expression levels of autophagy-associated proteins, demonstrated that the HepG2 cells treated with SJKJT exhibited LC3B-I/LC3B-II conversion, increased expression levels of Beclin, Atg-3 and Atg-5 and reduced expression levels of p62 and decreased signaling of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and the p38 mitogen-activated protein kinase pathways. Taken together, these findings may assist in the development of novel chemotherapeutic agents for the treatment of malignant types of liver cancer. PMID:25847489

  16. Akt Regulates TNFα Synthesis Downstream of RIP1 Kinase Activation during Necroptosis

    PubMed Central

    McNamara, Colleen R.; Ahuja, Ruchita; Osafo-Addo, Awo D.; Barrows, Douglas; Kettenbach, Arminja; Skidan, Igor; Teng, Xin; Cuny, Gregory D.; Gerber, Scott; Degterev, Alexei

    2013-01-01

    Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation. PMID:23469174

  17. Akt Regulates TNFα synthesis downstream of RIP1 kinase activation during necroptosis.

    PubMed

    McNamara, Colleen R; Ahuja, Ruchita; Osafo-Addo, Awo D; Barrows, Douglas; Kettenbach, Arminja; Skidan, Igor; Teng, Xin; Cuny, Gregory D; Gerber, Scott; Degterev, Alexei

    2013-01-01

    Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation.

  18. Activation of protein kinase B (PKB/Akt) and risk of lung cancer among rural women in India who cook with biomass fuel.

    PubMed

    Roychoudhury, Sanghita; Mondal, Nandan Kumar; Mukherjee, Sayali; Dutta, Anindita; Siddique, Shabana; Ray, Manas Ranjan

    2012-02-15

    The impact of indoor air pollution (IAP) from biomass fuel burning on the risk of carcinogenesis in the airways has been investigated in 187 pre-menopausal women (median age 34years) from eastern India who cooked exclusively with biomass and 155 age-matched control women from same locality who cooked with cleaner fuel liquefied petroleum gas. Compared with control, Papanicolau-stained sputum samples showed 3-times higher prevalence of metaplasia and 7-times higher prevalence of dysplasia in airway epithelial cell (AEC) of biomass users. Immunocytochemistry showed up-regulation of phosphorylated Akt (p-Akt(ser473) and p-Akt(thr308)) proteins in AEC of biomass users, especially in metaplastic and dysplastic cells. Compared with LPG users, biomass-using women showed marked rise in reactive oxygen species (ROS) generation and depletion of antioxidant enzyme, superoxide dismutase (SOD) indicating oxidative stress. There were 2-5 times more particulate pollutants (PM(10) and PM(2.5)), 72% more nitrogen dioxide and 4-times more particulate-laden benzo(a)pyrene, but no change in sulfur dioxide in indoor air of biomass-using households, and high performance liquid chromatography estimated 6-fold rise in the concentration of benzene metabolite trans,trans-muconic acid (t,t-MA) in urine of biomass users. Metaplasia and dysplasia, p-Akt expression and ROS generation were positively associated with PM and t,t-MA levels. It appears that cumulative exposure to biomass smoke increases the risk of lung carcinogenesis via oxidative stress-mediated activation of Akt signal transduction pathway.

  19. Infectious bursal disease virus activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by interaction of VP5 protein with the p85{alpha} subunit of PI3K

    SciTech Connect

    Wei Li; Hou Lei; Zhu Shanshan; Wang Jing; Zhou Jiao; Liu Jue

    2011-08-15

    Phosphatidylinositol 3-kinase (PI3K)/Akt signaling is commonly activated upon virus infection and has been implicated in the regulation of diverse cellular functions such as proliferation and apoptosis. The present study demonstrated for the first time that infectious bursal disease virus (IBDV), the causative agent of a highly contagious disease in chickens, can induce Akt phosphorylation in cultured cells, by a mechanism that is dependent on PI3K. Inhibition of PI3K activation greatly enhanced virus-induced cytopathic effect and apoptotic cell death as evidenced by cleavage of poly-ADP ribose polymerase and activation of caspase-3. Investigations into the mechanism of PI3K/Akt activation revealed that IBDV activates PI3K/Akt signaling through binding of the non-structural protein VP5 to regulatory subunit p85{alpha} of PI3K resulting in the suppression of premature apoptosis and improved virus growth after infection. The results presented here provide a basis for understanding molecular mechanism of IBDV infection.

  20. Activation of protein kinase B (PKB/Akt) and risk of lung cancer among rural women in India who cook with biomass fuel

    SciTech Connect

    Roychoudhury, Sanghita; Mondal, Nandan Kumar; Mukherjee, Sayali; Dutta, Anindita; Siddique, Shabana; Ray, Manas Ranjan

    2012-02-15

    The impact of indoor air pollution (IAP) from biomass fuel burning on the risk of carcinogenesis in the airways has been investigated in 187 pre-menopausal women (median age 34 years) from eastern India who cooked exclusively with biomass and 155 age-matched control women from same locality who cooked with cleaner fuel liquefied petroleum gas. Compared with control, Papanicolau-stained sputum samples showed 3-times higher prevalence of metaplasia and 7-times higher prevalence of dysplasia in airway epithelial cell (AEC) of biomass users. Immunocytochemistry showed up-regulation of phosphorylated Akt (p-Akt{sup ser473} and p-Akt{sup thr308}) proteins in AEC of biomass users, especially in metaplastic and dysplastic cells. Compared with LPG users, biomass-using women showed marked rise in reactive oxygen species (ROS) generation and depletion of antioxidant enzyme, superoxide dismutase (SOD) indicating oxidative stress. There were 2–5 times more particulate pollutants (PM{sub 10} and PM{sub 2.5}), 72% more nitrogen dioxide and 4-times more particulate-laden benzo(a)pyrene, but no change in sulfur dioxide in indoor air of biomass-using households, and high performance liquid chromatography estimated 6-fold rise in the concentration of benzene metabolite trans,trans-muconic acid (t,t-MA) in urine of biomass users. Metaplasia and dysplasia, p-Akt expression and ROS generation were positively associated with PM and t,t-MA levels. It appears that cumulative exposure to biomass smoke increases the risk of lung carcinogenesis via oxidative stress-mediated activation of Akt signal transduction pathway. -- Highlights: ► Carcinogenesis in airway cells was examined in biomass and LPG using women. ► Metaplasia and dysplasia of epithelial cells were more prevalent in biomass users. ► Change in airway cytology was associated with oxidative stress and Akt activation. ► Biomass users had greater exposure to respirable PM, B(a)P and benzene. ► Cooking with biomass

  1. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    SciTech Connect

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li{sub 2}CO{sub 3} significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li{sub 2}CO{sub 3} did not affect PI3K-mediated PI(3,4,5)P{sub 3} production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li{sub 2}CO{sub 3} on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li{sub 2}CO{sub 3} significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li{sub 2}CO{sub 3} significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity.

  2. Both mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinases (ERK) 1/2 and phosphatidylinositide-3-OH kinase (PI3K)/Akt pathways regulate activation of E-twenty-six (ETS)-like transcription factor 1 (Elk-1) in U138 glioblastoma cells.

    PubMed

    Mut, Melike; Lule, Sevda; Demir, Ozlem; Kurnaz, Isil Aksan; Vural, Imran

    2012-02-01

    Epidermal growth factor (EGF) and its receptor (EGFR) have been shown to play a significant role in the pathogenesis of glioblastoma. In our study, the EGFR was stimulated with EGF in human U138 glioblastoma cells. We show that the activated mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinases (ERK) 1/2 pathway phosphorylated the E twenty-six (ETS)-like transcription factor 1 (Elk-1) mainly at serine 383 residue. Mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, UO126 and ERK inhibitor II, FR180204 blocked the Elk-1 phosphorylation and activation. The phosphatidylinositide-3-OH kinase (PI3K)/Akt pathway was also involved in the Elk-1 activation. Activation of the Elk-1 led to an increased survival and a proliferative response with the EGF stimulation in the U138 glioblastoma cells. Knocking-down the Elk-1 using an RNA interference technique caused a decrease in survival of the unstimulated U138 glioblastoma cells and also decreased the proliferative response to the EGF stimulation. The Elk-1 transcription factor was important for the survival and proliferation of U138 glioblastoma cells upon the stimulation of EGFR with EGF. The MAPK/ERK1/2 and PI3K/Akt pathways regulated this response via activation of the Elk-1 transcription factor. The Elk-1 may be one of the convergence points for pathways located downstream of EGFR in glioblastoma cells. Utilization of the Elk-1 as a therapeutic target may lead to a novel strategy in treatment of glioblastoma.

  3. Phosphorylation of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) by Akt promotes stability and mitogenic function of S-phase kinase-associated protein-2 (Skp2).

    PubMed

    Song, Gyun Jee; Leslie, Kristen L; Barrick, Stacey; Mamonova, Tatyana; Fitzpatrick, Jeremy M; Drombosky, Kenneth W; Peyser, Noah; Wang, Bin; Pellegrini, Maria; Bauer, Philip M; Friedman, Peter A; Mierke, Dale F; Bisello, Alessandro

    2015-01-30

    The regulation of the cell cycle by the ubiquitin-proteasome system is dependent on the activity of E3 ligases. Skp2 (S-phase kinase associated protein-2) is the substrate recognition subunit of the E3 ligase that ubiquitylates the cell cycle inhibitors p21(cip1) and p27(kip1) thus promoting cell cycle progression. Increased expression of Skp2 is frequently observed in diseases characterized by excessive cell proliferation, such as cancer and neointima hyperplasia. The stability and cellular localization of Skp2 are regulated by Akt, but the molecular mechanisms underlying these effects remain only partly understood. The scaffolding protein Ezrin-Binding Phosphoprotein of 50 kDa (EBP50) contains two PDZ domains and plays a critical role in the development of neointimal hyperplasia. Here we report that EBP50 directly binds Skp2 via its first PDZ domain. Moreover, EBP50 is phosphorylated by Akt on Thr-156 within the second PDZ domain, an event that allosterically promotes binding to Skp2. The interaction with EBP50 causes cytoplasmic localization of Skp2, increases Skp2 stability and promotes proliferation of primary vascular smooth muscle cells. Collectively, these studies define a novel regulatory mechanism contributing to aberrant cell growth and highlight the importance of scaffolding function of EBP50 in Akt-dependent cell proliferation.

  4. Epicatechin induces NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells.

    PubMed

    Granado-Serrano, Ana Belén; Martín, María Angeles; Haegeman, Guy; Goya, Luis; Bravo, Laura; Ramos, Sonia

    2010-01-01

    The dietary flavonoid epicatechin has been reported to exhibit a wide range of biological activities. The objective of the present study was to investigate the time-dependent regulation by epicatechin on the activity of the main transcription factors (NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor (Nrf2)) related to antioxidant defence and survival and proliferation pathways in HepG2 cells. Treatment of cells with 10 microm-epicatechin induced the NF-kappaB pathway in a time-dependent manner characterised by increased levels of IkappaB kinase (IKK) and phosphorylated inhibitor of kappaB subunit-alpha (p-IkappaBalpha) and proteolytic degradation of IkappaB, which was consistent with an up-regulation of the NF-kappaB-binding activity. Time-dependent activation of the AP-1 pathway, in concert with enhanced c-Jun nuclear levels and induction of Nrf2 translocation and phosphorylation were also demonstrated. Additionally, epicatechin-induced NF-kappaB and Nrf2 were connected to reactive oxygen species intracellular levels and to the activation of cell survival and proliferation pathways, being phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) associated to Nrf2 modulation and ERK to NF-kappaB induction. These data suggest that the epicatechin-induced survival effect occurs by the induction of redox-sensitive transcription factors through a tight regulation of survival and proliferation pathways.

  5. Cobalt chloride stimulates phosphoinositide 3-kinase/Akt signaling through the epidermal growth factor receptor in oral squamous cell carcinoma.

    PubMed

    Ryu, Mi Heon; Park, Jeong Hee; Park, Ji Eun; Chung, Jin; Lee, Chang Hun; Park, Hae Ryoun

    2010-04-01

    Tumor cells are often found under hypoxic conditions due to the rapid outgrowth of their vascular supply, and, in order to survive hypoxia, these cells induce numerous signaling factors. Akt is an important kinase in cell survival, and its activity is regulated by the upstream phosphoinositide 3-kinase (PI3K) and receptor tyrosine kinases (RTKs). In this study, we examined Akt activation and RTKs/PI3K/Akt signaling using the hypoxia-mimetic cobalt chloride in oral squamous carcinoma cells. Cobalt chloride increases Akt phosphorylation in both a dose- and time-dependent manner. Blocking the activation of the PI3K/Akt pathway using LY294002 abolished Akt activation in response to cobalt chloride, suggesting that Akt phosphorylation by cobalt chloride is dependent on PI3K. In addition, activation of the PI3K/Akt pathway seems to rely on the epidermal growth factor receptor (EGFR), since the inhibition of EGFR attenuated cobalt chloride-induced Akt activation. The results in this study also demonstrate that cobalt chloride increases EGFR protein levels and induces oral squamous cell carcinoma cells to enter S phase.

  6. Polyphyllin G induce apoptosis and autophagy in human nasopharyngeal cancer cells by modulation of AKT and mitogen-activated protein kinase pathways in vitro and in vivo.

    PubMed

    Chen, Jui-Chieh; Hsieh, Ming-Ju; Chen, Chih-Jung; Lin, Jen-Tsun; Lo, Yu-Sheng; Chuang, Yi-Ching; Chien, Su-Yu; Chen, Mu-Kuan

    2016-10-25

    Polyphyllin G (also call polyphyllin VII), extract from rhizomes of Paris yunnanensis Franch, has been demonstrated to have strong anticancer activities in a wide variety of human cancer cell lines. Previous studies found that Polyphyllin G induced apoptotic cell death in human hepatoblastoma cancer and lung cancer cells. However, the underlying mechanisms of autophagy in human nasopharyngeal carcinoma (NPC) remain unclear. In this study, Polyphyllin G can potently induced apoptosis dependent on the activations of caspase-8, -3, and -9 and the changes of Bcl-2, Bcl-xL and Bax protein expression in different human NPC cell lines (HONE-1 and NPC-039). The amount of both LC3-II and Beclin-1 was intriguingly increased suggest that autophagy was induced in Polyphyllin G-treated NPC cells. To further clarify whether Polyphyllin G-induced apoptosis and autophagy depended on AKT/ERK/JNK/p38 MAPK signaling pathways, cells were combined treated with AKT inhibitor (LY294002), ERK1/2 inhibitor (U0126), p38 MAPK inhibitor (SB203580), or JNK inhibitor (SP600125). These results demonstrated that Polyphyllin G induced apoptosis in NPC cells through activation of ERK, while AKT, p38 MAPK and JNK were responsible for Polyphyllin G-induced autophagy. Finally, an administration of Polyphyllin G effectively suppressed the tumor growth in the NPC carcinoma xenograft model in vivo. In conclusion, our results reveal that Polyphyllin G inhibits cell viability and induces apoptosis and autophagy in NPC cancer cells, suggesting that Polyphyllin G is an attractive candidate for tumor therapies. Polyphyllin G may promise candidate for development of antitumor drugs targeting nasopharyngeal carcinoma.

  7. Polyphyllin G induce apoptosis and autophagy in human nasopharyngeal cancer cells by modulation of AKT and mitogen-activated protein kinase pathways in vitro and in vivo

    PubMed Central

    Chen, Chih-Jung; Lin, Jen-Tsun; Lo, Yu-Sheng; Chuang, Yi-Ching; Chien, Su-Yu; Chen, Mu-Kuan

    2016-01-01

    Polyphyllin G (also call polyphyllin VII), extract from rhizomes of Paris yunnanensis Franch, has been demonstrated to have strong anticancer activities in a wide variety of human cancer cell lines. Previous studies found that Polyphyllin G induced apoptotic cell death in human hepatoblastoma cancer and lung cancer cells. However, the underlying mechanisms of autophagy in human nasopharyngeal carcinoma (NPC) remain unclear. In this study, Polyphyllin G can potently induced apoptosis dependent on the activations of caspase-8, -3, and -9 and the changes of Bcl-2, Bcl-xL and Bax protein expression in different human NPC cell lines (HONE-1 and NPC-039). The amount of both LC3-II and Beclin-1 was intriguingly increased suggest that autophagy was induced in Polyphyllin G-treated NPC cells. To further clarify whether Polyphyllin G-induced apoptosis and autophagy depended on AKT/ERK/JNK/p38 MAPK signaling pathways, cells were combined treated with AKT inhibitor (LY294002), ERK1/2 inhibitor (U0126), p38 MAPK inhibitor (SB203580), or JNK inhibitor (SP600125). These results demonstrated that Polyphyllin G induced apoptosis in NPC cells through activation of ERK, while AKT, p38 MAPK and JNK were responsible for Polyphyllin G-induced autophagy. Finally, an administration of Polyphyllin G effectively suppressed the tumor growth in the NPC carcinoma xenograft model in vivo. In conclusion, our results reveal that Polyphyllin G inhibits cell viability and induces apoptosis and autophagy in NPC cancer cells, suggesting that Polyphyllin G is an attractive candidate for tumor therapies. Polyphyllin G may promise candidate for development of antitumor drugs targeting nasopharyngeal carcinoma. PMID:27602962

  8. Follicle-stimulating hormone and insulin-like growth factor I synergistically induce up-regulation of cartilage link protein (Crtl1) via activation of phosphatidylinositol-dependent kinase/Akt in rat granulosa cells.

    PubMed

    Sun, Guang Wei; Kobayashi, Hiroshi; Suzuki, Mika; Kanayama, Naohiro; Terao, Toshihiko

    2003-03-01

    FSH and IGF-I are both important determinants of follicle development and the process of cumulus cell-oocyte complex expansion. FSH stimulates the phosphorylation of Akt by mechanisms involving phosphatidylinositol 3-kinase (PI3-K), a pattern of response mimicking that of IGF-I. Cartilage link protein (Crtl1) is confined to the cartilaginous lineage and is assembled into a macroaggregate complex essential for hyaluronan-rich matrix stabilization. The present studies were performed to determine the actions of FSH and IGF-I on Crtl1 production in rat granulosa cells. Primary cultures of granulosa cells were prepared from 24-d-old rats. After treatments, cell extracts and media were prepared, and the Crtl1 level was determined by immunoblotting analysis using anti-Crtl1 antibodies. Here we showed that 1) treatment with FSH (> or = 25 ng/ml) or IGF-I (> or = 25 ng/ml) for 4 h increased Crtl1 production; 2) maximal stimulatory effects of FSH or IGF-I were observed at 100 or 50 ng/ml, respectively; 3) FSH caused a concentration-dependent increase in IGF-I-induced Crtl1 production and vice versa; 4) FSH and IGF-I also up-regulate the expression of Crtl1 mRNA; 5) FSH- and IGF-I-dependent Crtl1 production were abrogated by PI3-K inhibitors (LY294002 and wortmannin), and inhibition of Crtl1 production by p38 mitogen-activated protein kinase inhibitor (SB202190) was partial (approximately 30%), suggesting that PI3-K and, to a lesser extent, p38 mitogen-activated protein kinase are critical for the response. Our study represents the first report that FSH amplifies IGF-I-mediated Crtl1 production, possibly via PI3-K-Akt signaling cascades in rat granulosa cells.

  9. Protein Kinases and Addiction

    PubMed Central

    Lee, Anna M.; Messing, Robert O.

    2011-01-01

    Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharma-cotherapies to treat drug addiction. PMID:18991950

  10. Teaching resources. Protein kinases.

    PubMed

    Caplan, Avrom

    2005-02-22

    This Teaching Resource provides lecture notes and slides for a class covering the structure and function of protein kinases and is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture begins with a discussion of the genomics and evolutionary relationships among kinases and then proceeds to describe the structure-function relationships of specific kinases, the molecular mechanisms underlying substrate specificity, and selected issues in regulation of kinase activity.

  11. Enhanced Cardiac Akt/Protein Kinase B Signaling Contributes to Pathological Cardiac Hypertrophy in Part by Impairing Mitochondrial Function via Transcriptional Repression of Mitochondrion-Targeted Nuclear Genes

    PubMed Central

    Wende, Adam R.; O'Neill, Brian T.; Bugger, Heiko; Riehle, Christian; Tuinei, Joseph; Buchanan, Jonathan; Tsushima, Kensuke; Wang, Li; Caro, Pilar; Guo, Aili; Sloan, Crystal; Kim, Bum Jun; Wang, Xiaohui; Pereira, Renata O.; McCrory, Mark A.; Nye, Brenna G.; Benavides, Gloria A.; Darley-Usmar, Victor M.; Shioi, Tetsuo; Weimer, Bart C.

    2014-01-01

    Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity. PMID:25535334

  12. Andrographolide suppresses endothelial cell apoptosis via activation of phosphatidyl inositol-3-kinase/Akt pathway.

    PubMed

    Chen, Jiun-Han; Hsiao, George; Lee, An-Rong; Wu, Chin-Chen; Yen, Mao-Hsiung

    2004-04-01

    Andrographolide (Andro), an active component isolated from the Chinese official herbal Andrographis paniculata, which has been reported to prevent oxygen radical production and thus prevent inflammatory diseases. In this study, we investigated the molecular mechanisms and signaling pathways by which Andro protects human umbilical vein endothelial cells (HUVECs) from growth factor (GF) deprivation-induced apoptosis. Results demonstrated that HUVECs undergo apoptosis after 18 hr of GF deprivation but that this cell death was suppressed by the addition of Andro in a concentration-dependent manner (1-100 microM). Andro suppresses the mitochondrial pathway of apoptosis by inhibiting release of cytochrome c into the cytoplasm and dissipation of mitochondrial potential (Deltapsi(m)), as a consequence, prevented caspase-3 and -9 activation. Treatment of endothelial cells with Andro-induced activation of the protein kinase Akt, an anti-apoptotic signal, and phosphorylation of BAD, a down-stream target of Akt. Suppression of Akt activity by wortmannin, by LY-294002 and by using a dominant negative Akt mutant abolished the anti-apoptotic effect of Andro. In contrast, the ERK1/2 activities were not affected by Andro. The ERK1/2 inhibitor, PD98059 failed to antagonize the protective effect of Andro. In conclusion, Andro exerts its anti-apoptotic potential via activation of the Akt-BAD pathway in HUVECs and thus may represent a candidate of therapeutic agent for atherosclerosis.

  13. Dihydrotestosterone differentially modulates the mitogen-activated protein kinase and the phosphoinositide 3-kinase/Akt pathways through the nuclear and novel membrane androgen receptor in C6 cells.

    PubMed

    Gatson, Joshua W; Kaur, Paramjit; Singh, Meharvan

    2006-04-01

    Androgens such as dihydrotestosterone (DHT) are known to exert their effects through the activation of intracellular receptors that regulate the transcription of target genes. Alternatively, nongenomic mechanisms, including the activation of such signaling pathways as the MAPK pathways, have been described. It is unclear, however, whether this latter mechanism of action is mediated by the classical androgen receptor (AR) or some alternative mechanism. In this study, using a glial cell model (C6 cells) that we found to express the AR, we identified that DHT increased the phosphorylation of both ERK and Akt, key effectors of the neuroprotection-associated MAPK and phosphoinositide 3-kinase signaling pathways, respectively, and ERK phosphorylation was blocked by the AR antagonist, flutamide. In contrast, the membrane-impermeable, BSA-conjugated androgen (DHT-BSA) caused a dose-dependent suppression of ERK and Akt phosphorylation, suggesting the existence of a novel membrane-associated AR that mediates this opposite effect on neuroprotective signaling. This is also supported by the observation of DHT-displaceable binding sites on the cell surface of live C6 cells. Collectively, these data support the existence of a novel membrane-associated AR in glial cells and argue for the existence of two, potentially competing, pathways in a given cell or tissue. This mutual antagonism was supported by the ability of DHT-BSA to attenuate DHT-induced ERK phosphorylation. Thus, depending on the predominance of one receptor mechanism over another, the outcome of androgen treatment may be very different and, as such, could help explain existing discrepancies as to whether androgens are protective or damage inducing.

  14. Hepatitis C Virus RNA-Dependent RNA Polymerase Interacts with the Akt/PKB Kinase and Induces Its Subcellular Relocalization

    PubMed Central

    Valero, María Llanos; Sabariegos, Rosario; Cimas, Francisco J.; Perales, Celia; Domingo, Esteban; Sánchez-Prieto, Ricardo

    2016-01-01

    Hepatitis C virus (HCV) interacts with cellular components and modulates their activities for its own benefit. These interactions have been postulated as a target for antiviral treatment, and some candidate molecules are currently in clinical trials. The multifunctional cellular kinase Akt/protein kinase B (PKB) must be activated to increase the efficacy of HCV entry but is rapidly inactivated as the viral replication cycle progresses. Viral components have been postulated to be responsible for Akt/PKB inactivation, but the underlying mechanism remained elusive. In this study, we show that HCV polymerase NS5B interacts with Akt/PKB. In the presence of transiently expressed NS5B or in replicon- or virus-infected cells, NS5B changes the cellular localization of Akt/PKB from the cytoplasm to the perinuclear region. Sequestration of Akt/PKB by NS5B could explain its exclusion from its participation in early Akt/PKB inactivation. The NS5B-Akt/PKB interaction represents a new regulatory step in the HCV infection cycle, opening possibilities for new therapeutic options. PMID:27021315

  15. Modulation in Activation and Expression of PTEN, Akt1, and PDK1: Further Evidence Demonstrating Altered Phosphoinositide 3-kinase Signaling in Postmortem Brain of Suicide Subjects

    PubMed Central

    Dwivedi, Yogesh; Rizavi, Hooriyah S.; Zhang, Hui; Roberts, Rosalinda C.; Conley, Robert R.; Pandey, Ghanshyam N.

    2010-01-01

    Background Phosphoinositide 3-kinase (PI 3-K) signaling plays a crucial role in neuronal growth and plasticity. Recently, we demonstrated that suicide brain is associated with decreased activation and expression of selective catalytic and regulatory subunits of PI 3-K. The present investigation examined the regulation and functional significance of compromised PI 3-K in suicide brain at the level of upstream phosphatase and tensin homolog on chromosome ten (PTEN) and downstream substrates 3-phosphoinositide-dependent kinase 1 (PDK1) and Akt. Method mRNA expression of Akt1, Akt3, PTEN, and PDK1 by competitive RT-PCR; protein expression of Akt1, Akt3, PTEN, PDK1, phosphorylated-Akt1 (Ser473), phosphorylated-Akt1(Thr308), phosphorylated-PDK1, and phosphorylated-PTEN by Western blot; and catalytic activities of Akt1, Akt3, and PDK1 by enzymatic assays were determined in prefrontal cortex (PFC) and hippocampus obtained from suicide subjects and nonpsychiatric controls. Results No significant changes in the expression of Akt1 or Akt3 were observed; however, catalytic activity of Akt1, but not of Akt3, was decreased in PFC and hippocampus of suicide subjects, which was associated with decreased phosphorylation of Akt1 at Ser473 and Thr308. The catalytic activity of PDK1 and the level of phosphorylated-PDK1 were also decreased in both brain areas without any change in expression levels of PDK1. On the other hand, mRNA and protein expression of PTEN was increased, whereas the level of phosphorylated-PTEN was decreased. Conclusion Our study demonstrates abnormalities in PI 3-K signaling at several levels in brain of suicide subjects and suggests the possible involvement of aberrant PI 3-K/Akt signaling in the pathogenic mechanisms of suicide. PMID:20163786

  16. Increased levels of conditioned fear and avoidance behavior coincide with changes in phosphorylation of the protein kinase B (AKT) within the amygdala in a mouse model of extremes in trait anxiety.

    PubMed

    Yen, Yi-Chun; Mauch, Christoph P; Dahlhoff, Maik; Micale, Vincenzo; Bunck, Mirjam; Sartori, Simone B; Singewald, Nicolas; Landgraf, Rainer; Wotjak, Carsten T

    2012-07-01

    Patients diagnosed for anxiety disorders often display faster acquisition and slower extinction of learned fear. To gain further insights into the mechanisms underlying these phenomenona, we studied conditioned fear in mice originating form a bi-directional selective breeding approach, which is based on elevated plus-maze behavior and results in CD1-derived high (HAB), normal (NAB), and low (LAB) anxiety-related behavior mice. HAB mice displayed pronounced cued-conditioned fear compared to NAB/CD1 and LAB mice that coincided with increased phosphorylation of the protein kinase B (AKT) in the basolateral amygdala 45 min after conditioning. No similar changes were observed after non-associative immediate shock presentations. Fear extinction of recent but not older fear memories was preserved. However, HAB mice were more prone to relapse of conditioned fear with the passage of time. HAB mice also displayed higher levels of contextual fear compared to NAB and LAB mice and exaggerated avoidance following step-down avoidance training. Interestingly, HAB mice showed lower and LAB mice higher levels of acoustic startle responses compared to NAB controls. The increase in arousal observed in LAB mice coincided with the general absence of conditioned freezing. Taken together, our results suggest that the genetic predisposition to high anxiety-related behavior may increase the risk of forming traumatic memories, phobic-like fear and avoidance behavior following aversive encounters, with a clear bias towards passive coping styles. In contrast, genetic predisposition to low anxiety-related and high risk-taking behavior seems to be associated with an increase in active coping styles. Our data imply changes in AKT phosphorylation as a therapeutic target for the prevention of exaggerated fear memories.

  17. Functional Effects of AKT3 on Aurora Kinase Inhibitor-induced Aneuploidy.

    PubMed

    Noguchi, Kohji; Hongama, Keita; Hariki, Shiori; Nonomiya, Yuma; Katayama, Kazuhiro; Sugimoto, Yoshikazu

    2017-02-03

    The suppression of mitotic Aurora kinases (AURKs) by AURK inhibitors frequently causes cytokinetic failure, leading to polyploidy or aneuploidy, indicating the critical role of AURK-mediated phosphorylation during cytokinesis. We demonstrate the deregulated expression of AKT3 in Aurora kinase inhibitor (AURKi)-resistant cells, which we established from human colorectal cancer HCT 116 cells. The AKT family, which includes AKT1, -2, and -3, plays multiple roles in antiapoptotic functions and drug resistance and is involved in cell growth and survival pathways. We found that an AKT inhibitor, AZD5363, showed synergistic effect with an AURKi, VX-680, on two AKT3-expressing AURKi-resistant cell lines, and AKT3 knockdown sensitized cells to VX-680. Consistent with these activities, AKT3 expression suppressed AURKi-induced apoptosis and conferred resistance to AURKi. Thus, AKT3 expression affects cell sensitivity to AURKi. Moreover, we found that AKT3 expression suppressed AURKi-induced aneuploidy, and inversely AKT3 knockdown enhanced it. In addition, partial co-localization of AKT3 with AURKB was observed during anaphase. Overall, this study suggests that AKT3 could repress the antiproliferative effects of AURKi, with a novel activity particularly suppressing the aneuploidy induction.

  18. Polycystin-1 Induces Resistance to Apoptosis through the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway

    PubMed Central

    Boca, Manila; Distefano, Gianfranco; Boletta, Alessandra; Qian, Feng; Bhunia, Anil K.; Germino, Gregory G.

    2006-01-01

    Polycystin-1 (PC-1), the PKD1 gene product, is a large receptor whose expression in renal epithelial cells results in resistance to apoptosis and tubulogenesis, a model consistent with the phenotype observed in patients. This study links PC-1 expression to a signaling pathway that is known to be both antiapoptotic and important for normal tubulogenesis. This study found that PC-1 expression results in phosphorylation of Akt and downstream effectors and that phosphatidylinositol 3-kinase (PI3-K) inhibitors prevent this process. In addition, it is shown that dominant negative Akt can revert PC-1-induced protection from apoptosis. Furthermore, it was observed that increased PI3-K β activity in PC-1- expressing MDCK cells seems to be dependent on both tyrosine-kinase activity and heterotrimeric G proteins. It also was found that PC-1-induced tubulogenesis is inhibited by PI3-K inhibitors. Taken together, these data suggest that the PI3-K/Akt cascade may be a central modulator of PC-1 function and that its deregulation might be important in autosomal dominant polycystic kidney disease. PMID:16452497

  19. Conserved herpesvirus protein kinases

    PubMed Central

    Gershburg, Edward; Pagano, Joseph S.

    2008-01-01

    Conserved herpesviral protein kinases (CHPKs) are a group of enzymes conserved throughout all subfamilies of Herpesviridae. Members of this group are serine/threonine protein kinases that are likely to play a conserved role in viral infection by interacting with common host cellular and viral factors; however along with a conserved role, individual kinases may have unique functions in the context of viral infection in such a way that they are only partially replaceable even by close homologues. Recent studies demonstrated that CHPKs are crucial for viral infection and suggested their involvement in regulation of numerous processes at various infection steps (primary infection, nuclear egress, tegumentation), although the mechanisms of this regulation remain unknown. Notwithstanding, recent advances in discovery of new CHPK targets, and studies of CHPK knockout phenotypes have raised their attractiveness as targets for antiviral therapy. A number of compounds have been shown to inhibit the activity of human cytomegalovirus (HCMV)-encoded UL97 protein kinase and exhibit a pronounced antiviral effect, although the same compounds are inactive against Epstein-Barr Virus (EBV)-encoded protein kinase BGLF4, illustrating the fact that low homology between the members of this group complicates development of compounds targeting the whole group, and suggesting that individualized, structure-based inhibitor design will be more effective. Determination of CHPK structures will greatly facilitate this task. PMID:17881303

  20. A novel signaling pathway associated with Lyn, PI 3-kinase and Akt supports the proliferation of myeloma cells

    SciTech Connect

    Iqbal, Mohd S.; Tsuyama, Naohiro; Obata, Masanori; Ishikawa, Hideaki

    2010-02-12

    Interleukin-6 (IL-6) is a growth factor for human myeloma cells. We have recently found that in myeloma cells the activation of both signal transducer and activator of transcription (STAT) 3 and extracellular signal-regulated kinase (ERK) 1/2 is not sufficient for the IL-6-induced proliferation, which further requires the activation of the src family kinases, such as Lyn. Here we showed that the Lyn-overexpressed myeloma cell lines had the higher proliferative rate with IL-6 and the enhanced activation of the phosphatidylinositol (PI) 3-kinase and Akt. The IL-6-induced phosphorylation of STAT3 and ERK1/2 was not up-regulated in the Lyn-overexpressed cells, indicating that the Lyn-PI 3-kinase-Akt pathway is independent of these pathways. The PI 3-kinase was co-precipitated with Lyn in the Lyn-overexpressed cells of which proliferation with IL-6 was abrogated by the specific inhibitors for PI 3-kinase or Akt, suggesting that the activation of the PI 3-kinase-Akt pathway associated with Lyn is indeed related to the concomitant augmentation of myeloma cell growth. Furthermore, the decreased expression of p53 and p21{sup Cip1} proteins was observed in the Lyn-overexpressed cells, implicating a possible downstream target of Akt. This study identifies a novel IL-6-mediated signaling pathway that certainly plays a role in the proliferation of myeloma cells and this novel mechanism of MM tumor cell growth associated with Lyn would eventually contribute to the development of MM treatment.

  1. Acadesine Inhibits Tissue Factor Induction and Thrombus Formation by Activating the Phosphoinositide 3-Kinase/Akt Signaling Pathway

    PubMed Central

    Zhang, Weiyu; Wang, Jianguo; Wang, Huan; Tang, Rong; Belcher, John D.; Viollet, Benoit; Geng, Jian-Guo; Zhang, Chunxiang; Wu, Chaodong; Slungaard, Arne; Zhu, Chuhong; Huo, Yuqing

    2013-01-01

    Objective Acadesine, an adenosine-regulating agent and activator of AMP-activated protein kinase, has been shown to possess antiinflammatory activity. This study investigated whether and how acadesine inhibits tissue factor (TF) expression and thrombus formation. Methods and Results Human umbilical vein endothelial cells and human peripheral blood monocytes were stimulated with lipopolysaccharide to induce TF expression. Pretreatment with acadesine dramatically suppressed the clotting activity and expression of TF (protein and mRNA). These inhibitory effects of acadesine were unchanged for endothelial cells treated with ZM241385 (a specific adenosine A2A receptor antagonist) or AMP-activated protein kinase inhibitor compound C, and in macrophages lacking adenosine A2A receptor or α1–AMP-activated protein kinase. In endothelial cells and macrophages, acadesine activated the phosphoinositide 3-kinase/Akt signaling pathway, reduced the activity of mitogen-activated protein kinases, and consequently suppressed TF expression by inhibiting the activator protein-1 and NF-κB pathways. In mice, acadesine suppressed lipopolysaccharide-mediated increases in blood coagulation, decreased TF expression in atherosclerotic lesions, and reduced deep vein thrombus formation. Conclusion Acadesine inhibits TF expression and thrombus formation by activating the phosphoinositide 3-kinase/Akt pathway. This novel finding implicates acadesine as a potentially useful treatment for many disorders associated with thrombotic pathology, such as angina pain, deep vein thrombosis, and sepsis. PMID:20185792

  2. Identification of natural allosteric inhibitor for Akt1 protein through computational approaches and in vitro evaluation.

    PubMed

    Pragna Lakshmi, T; Kumar, Amit; Vijaykumar, Veena; Natarajan, Sakthivel; Krishna, Ramadas

    2017-03-01

    Akt, a serine/threonine protein kinase, is often hyper activated in breast and prostate cancers, but with poor prognosis. Allosteric inhibitors regulate aberrant kinase activity by stabilizing the protein in inactive conformation. Several natural compounds have been reported as inhibitors for kinases. In this study, to identify potential natural allosteric inhibitor for Akt1, we generated a seven-point pharmacophore model and screened it through natural compound library. Quercetin-7-O-β-d-glucopyranoside or Q7G was found to be the best among selected molecules based on its hydrogen bond occupancy with key allosteric residues, persistent polar contacts and salt bridges that stabilize Akt1 in inactive conformation and minimum binding free energy during molecular dynamics simulation. Q7G induced dose-dependent inhibition of breast cancer cells (MDA MB-231) and arrested them in G1 and sub-G phase. This was associated with down-regulation of anti-apoptotic protein Bcl-2, up-regulation of cleaved caspase-3 and PARP. Expression of p-Akt (Ser473) was also down-regulated which might be due to Akt1 inhibition in inactive conformation. We further confirmed the Akt1 and Q7G interaction which was observed to have a dissociation constant (Kd) of 0.246μM. With these computational, biological and thermodynamic studies, we suggest Q7G as a lead molecule and propose for its further optimization.

  3. The nuts and bolts of AGC protein kinases.

    PubMed

    Pearce, Laura R; Komander, David; Alessi, Dario R

    2010-01-01

    The AGC kinase subfamily of protein kinases contains 60 members, including PKA, PKG and PKC. The family comprises some intensely examined protein kinases (such as Akt, S6K, RSK, MSK, PDK1 and GRK) as well as many less well-studied enzymes (such as SGK, NDR, LATS, CRIK, SGK494, PRKX, PRKY and MAST). Research has shed new light onto the architecture and regulatory mechanisms of these kinases. In addition, AGC kinases mediate diverse and important cellular functions, and their mutation and/or dysregulation contributes to the pathogenesis of many human diseases, including cancer and diabetes.

  4. The tumor suppressor protein menin inhibits AKT activation by regulating its cellular localization

    PubMed Central

    Wang, Yan; Ozawa, Atsushi; Zaman, Shadia; Prasad, Nijaguna B.; Chandrasekharappa, Settara C.; Agarwal, Sunita K.; Marx, Stephen J.

    2010-01-01

    Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder associated mainly with tumors of multiple endocrine organs. Mutations in the MEN1 gene that encodes for the menin protein are the predominant cause for hereditary MEN1 syndrome. Though menin is a tumor suppressor, its molecular mechanism of action has not been defined. Here we report that menin interacts with AKT1 in vitro and in vivo. Menin downregulates the level of active AKT and its kinase activity. Through interaction with AKT1, menin suppresses both AKT1 induced proliferation and anti-apoptosis in non-endocrine and endocrine cells. Confocal microscopy analysis revealed that menin regulates AKT1 in part by reducing the translocation of AKT1 from the cytoplasm to the plasma membrane during growth factor stimulation. Our findings may be generalizable to other cancers, insofar as we found that loss of menin expression was also associated with AKT activation in a mouse model of pancreatic islet adenoma. Together, our results suggest menin as an important novel negative regulator of AKT kinase activity. PMID:21127195

  5. Differential role of reactive oxygen species in the activation of mitogen-activated protein kinases and Akt by key receptors on B-lymphocytes: CD40, the B cell antigen receptor, and CXCR4

    PubMed Central

    Lee, Rosaline L.; Westendorf, Jens

    2007-01-01

    Background Antibodies produced by B-lymphocytes play a key role in the host defense against infection. The development, survival, and activation of B cell is regulated by multiple receptors including the B cell antigen receptor (BCR), which detects the presence of pathogens, CD40, which binds co-stimulatory molecules on activated T cells, and chemokines such as SDF-1 (CXCL12) that play key roles in B cell development and trafficking. Signaling by many receptors results in the generation of reactive oxygen species (ROS) that function as second messengers by regulating the activity of redox-sensitive kinases and phosphatases. We investigated the role of ROS in signaling by the BCR, CD40, and CXCR4, the receptor for SDF-1. We focused on activation of ERK, JNK, p38, and Akt, kinases that regulate multiple processes including cell survival, proliferation, and migration. Results Using the anti-oxidants N-acetyl L-cysteine (NAC) and ebselen to deplete intracellular ROS, we identified a differential requirement for ROS in the activation of ERK, JNK, p38, and Akt by these receptors. We found that CD40 activated JNK, p38, and Akt via redox-dependent pathways that were sensitive to ROS depletion by NAC and ebselen. In contrast, BCR-induced activation of ERK, JNK, p38, and Akt was not affected by ROS depletion. We also found that CXCR4-induced Akt activation was ROS-dependent even though activation of the ERK, JNK, and p38 MAP kinases by CXCR4 occurred via ROS-independent pathways. Conclusion The differential requirement for ROS in the activation of ERK, JNK, p38, and Akt by the BCR, CD40, and CXCR4 likely reflects the multiplicity of upstream activators for each of these kinases, only some of which may be regulated in a redox-dependent manner. These findings support the idea that ROS are important second messengers in B cells and suggest that oxidants or anti-oxidants could be used to modulate B cell activation. PMID:18481208

  6. Neuroprotective Role of the PI3 Kinase/Akt Signaling Pathway in Zebrafish

    PubMed Central

    Chen, Shuang; Liu, Yunzhang; Rong, Xiaozhi; Li, Yun; Zhou, Jianfeng; Lu, Ling

    2017-01-01

    Neuronal survival and growth in the embryo is controlled partly by trophic factors. For most trophic factors (such as Insulin-like growth factor-1), the ability to regulate cell survival has been attributed to the phosphoinositide 3-kinase (PI3K)/Akt kinase cascade. This study presents data illustrating the role of PI3K/Akt in attainment of normal brain size during zebrafish embryogenesis. Blocking PI3K with inhibitor LY294002 caused a significant reduction in brain size (in addition to global growth retardation) during zebrafish embryogenesis. This PI3 Kinase inhibition-induced brain size decrease was recovered by the overexpression of myristoylated Akt (myr-Akt), a constitutive form of Akt. Further analysis reveals that expressing exogenous myr-Akt significantly augmented brain size. Whole mount in situ hybridization analysis of several marker genes showed that myr-Akt overexpression did not alter brain patterning. Furthermore, the expression of myr-Akt was found to protect neuronal cells from apoptosis induced by heat shock and UV light, suggesting that inhibition of neuronal cell death may be part of the underlying cause of the increased brain size. These data provide a foundation for addressing the role of PI3K/Akt in brain growth during zebrafish embryogenesis. PMID:28228749

  7. Selective elimination of neuroblastoma cells by synergistic effect of Akt kinase inhibitor and tetrathiomolybdate.

    PubMed

    Navrátilová, Jarmila; Karasová, Martina; Kohutková Lánová, Martina; Jiráková, Ludmila; Budková, Zuzana; Pacherník, Jiří; Šmarda, Jan; Beneš, Petr

    2017-02-28

    Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis-activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti-cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down-regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells.

  8. Feedback regulation on PTEN/AKT pathway by the ER stress kinase PERK mediated by interaction with the Vault complex.

    PubMed

    Zhang, Wei; Neo, Suat Peng; Gunaratne, Jayantha; Poulsen, Anders; Boping, Liu; Ong, Esther Hongqian; Sangthongpitag, Kanda; Pendharkar, Vishal; Hill, Jeffrey; Cohen, Stephen M

    2015-03-01

    The high proliferation rate of cancer cells, together with environmental factors such as hypoxia and nutrient deprivation can cause Endoplasmic Reticulum (ER) stress. The protein kinase PERK is an essential mediator in one of the three ER stress response pathways. Genetic and pharmacological inhibition of PERK has been reported to limit tumor growth in xenograft models. Here we provide evidence that inactive PERK interacts with the nuclear pore-associated Vault complex protein and that this compromises Vault-mediated nuclear transport of PTEN. Pharmacological inhibition of PERK under ER stress results is abnormal sequestration of the Vault complex, leading to increased cytoplasmic PTEN activity and lower AKT activation. As the PI3K/PTEN/AKT pathway is crucial for many aspects of cell growth and survival, this unexpected effect of PERK inhibitors on AKT activity may have implications for their potential use as therapeutic agents.

  9. Nik-related kinase regulates trophoblast proliferation and placental development by modulating AKT phosphorylation.

    PubMed

    Morioka, Yuka; Nam, Jin-Min; Ohashi, Takashi

    2017-01-01

    Nik-related kinase (Nrk) is a Ser/Thr kinase and was initially discovered as a molecule that was predominantly detected in skeletal muscles during development. A recent study using Nrk-null mice suggested the importance of Nrk in proper placental development; however, the molecular mechanism remains unknown. In this study, we demonstrated that differentiated trophoblasts from murine embryonic stem cells (ESCs) endogenously expressed Nrk and that Nrk disruption led to the enhanced proliferation of differentiated trophoblasts. This phenomenon may reflect the overproliferation of trophoblasts that has been reported in enlarged placentas of Nrk-null mice. Furthermore, we demonstrated that AKT phosphorylation at Ser473 was upregulated in Nrk-null trophoblasts and that inhibition of AKT phosphorylation cancelled the enhanced proliferation observed in differentiated Nrk-null trophoblasts. These results indicated that the upregulation of AKT phosphorylation was the possible cause of enhanced proliferation observed in Nrk-null trophoblasts. The upregulation of AKT phosphorylation was also confirmed in enlarged Nrk-null placentas in vivo, suggesting that proper regulation of AKT by Nrk was important for normal placental development. In addition, our detailed analysis on phosphorylation status of AKT isoforms in newly established trophoblast stem cells (TSCs) revealed that different levels of upregulation of AKT phosphorylation were occurred in Nrk-null TSCs depending on AKT isoforms. These results further support the importance of Nrk in proper development of trophoblast lineage cells and indicate the possible application of TSCs for the analysis of differently regulated activation mechanisms of AKT isoforms.

  10. Protein kinase C phosphorylates AMP-activated protein kinase α1 Ser487

    PubMed Central

    Heathcote, Helen R.; Mancini, Sarah J.; Strembitska, Anastasiya; Jamal, Kunzah; Reihill, James A.; Palmer, Timothy M.; Gould, Gwyn W.; Salt, Ian P.

    2016-01-01

    The key metabolic regulator, AMP-activated protein kinase (AMPK), is reported to be down-regulated in metabolic disorders, but the mechanisms are poorly characterised. Recent studies have identified phosphorylation of the AMPKα1/α2 catalytic subunit isoforms at Ser487/491, respectively, as an inhibitory regulation mechanism. Vascular endothelial growth factor (VEGF) stimulates AMPK and protein kinase B (Akt) in cultured human endothelial cells. As Akt has been demonstrated to be an AMPKα1 Ser487 kinase, the effect of VEGF on inhibitory AMPK phosphorylation in cultured primary human endothelial cells was examined. Stimulation of endothelial cells with VEGF rapidly increased AMPKα1 Ser487 phosphorylation in an Akt-independent manner, without altering AMPKα2 Ser491 phosphorylation. In contrast, VEGF-stimulated AMPKα1 Ser487 phosphorylation was sensitive to inhibitors of protein kinase C (PKC) and PKC activation using phorbol esters or overexpression of PKC-stimulated AMPKα1 Ser487 phosphorylation. Purified PKC and Akt both phosphorylated AMPKα1 Ser487 in vitro with similar efficiency. PKC activation was associated with reduced AMPK activity, as inhibition of PKC increased AMPK activity and phorbol esters inhibited AMPK, an effect lost in cells expressing mutant AMPKα1 Ser487Ala. Consistent with a pathophysiological role for this modification, AMPKα1 Ser487 phosphorylation was inversely correlated with insulin sensitivity in human muscle. These data indicate a novel regulatory role of PKC to inhibit AMPKα1 in human cells. As PKC activation is associated with insulin resistance and obesity, PKC may underlie the reduced AMPK activity reported in response to overnutrition in insulin-resistant metabolic and vascular tissues. PMID:27784766

  11. Regulation of PI-3-Kinase and Akt Signaling in T Lymphocytes and Other Cells by TNFR Family Molecules

    PubMed Central

    So, Takanori; Croft, Michael

    2013-01-01

    Activation of phosphoinositide 3-kinase (PI3K) and Akt (protein kinase B) is a common response triggered by a range of membrane-bound receptors on many cell types. In T lymphocytes, the PI3K-Akt pathway promotes clonal expansion, differentiation, and survival of effector cells and suppresses the generation of regulatory T cells. PI3K activation is tightly controlled by signals through the T cell receptor (TCR) and the co-stimulatory receptor CD28, however sustained and periodic signals from additional co-receptors are now being recognized as critical contributors to the activation of this pathway. Accumulating evidence suggests that many members of the Tumor Necrosis Factor receptor (TNFR) superfamily, TNFR2 (TNFRSF1B), OX40 (TNFRSF4), 4-1BB (TNFRSF9), HVEM (TNFRSF14), and DR3 (TNFRSF25), that are constitutive or inducible on T cells, can directly or indirectly promote activity in the PI3K-Akt pathway. We discuss recent data which suggests that ligation of one TNFR family molecule organizes a signalosome, via TNFR-associated factor (TRAF) adapter proteins in T cell membrane lipid microdomains, that results in the subsequent accumulation of highly concentrated depots of PI3K and Akt in close proximity to TCR signaling units. We propose this may be a generalizable mechanism applicable to other TNFR family molecules that will result in a quantitative contribution of these signalosomes to enhancing and sustaining PI3K and Akt activation triggered by the TCR. We also review data that other TNFR molecules, such as CD40 (TNFRSF5), RANK (TNFRSF11A), FN14 (TNFRSF12A), TACI (TNFRSF13B), BAFFR (TNFRSF13C), and NGFR (TNFRSF16), contribute to the activation of this pathway in diverse cell types through a similar ability to recruit PI3K or Akt into their signaling complexes. PMID:23760533

  12. AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins

    PubMed Central

    Riggio, Marina; Perrone, María C.; Polo, María L.; Rodriguez, María J.; May, María; Abba, Martín; Lanari, Claudia; Novaro, Virginia

    2017-01-01

    The purpose of this study was to elucidate the mechanisms associated with the specific effects of AKT1 and AKT2 isoforms in breast cancer progression. We modulated the abundance of specific AKT isoforms in IBH-6 and T47D human breast cancer cell lines and showed that AKT1 promoted cell proliferation, through S6 and cyclin D1 upregulation, but it inhibited cell migration and invasion through β1-integrin and focal adhesion kinase (FAK) downregulation. In contrast, AKT2 promoted cell migration and invasion through F-actin and vimentin induction. Thus, while overexpression of AKT1 promoted local tumor growth, downregulation of AKT1 or overexpression of AKT2 promoted peritumoral invasion and lung metastasis. Furthermore, we evaluated The Cancer Genome Atlas (TCGA) dataset for invasive breast carcinomas and found that increased AKT2 but not AKT1 mRNA levels correlated with a worse clinical outcome. We conclude that AKT isoforms play specific roles in different steps of breast cancer progression, with AKT1 involved in the local tumor growth and AKT2 involved in the distant tumor dissemination, having AKT2 a poorer prognostic value and consequently being a worthwhile target for therapy. PMID:28287129

  13. Dystrophin glycoprotein complex-associated Gbetagamma subunits activate phosphatidylinositol-3-kinase/Akt signaling in skeletal muscle in a laminin-dependent manner.

    PubMed

    Xiong, Yongmin; Zhou, Yanwen; Jarrett, Harry W

    2009-05-01

    Previously, we showed that laminin-binding to the dystrophin glycoprotein complex (DGC) of skeletal muscle causes a heterotrimeric G-protein (Galphabetagamma) to bind, changing the activation state of the Gsalpha subunit. Others have shown that laminin-binding to the DGC also leads to Akt activation. Gbetagamma, released when Gsalpha is activated, is known to bind phosphatidylinositol-3-kinase (PI3K), which activates Akt in other cells. Here, we investigate whether muscle Akt activation results from Gbetagamma, using immunoprecipitation and immunoblotting, and purified Gbetagamma. In the presence of laminin, PI3K-binding to the DGC increases and Akt becomes phosphorylated and activated (pAkt), and glycogen synthase kinase is phosphorylated. Antibodies, which specifically block laminin-binding to alpha-dystroglycan, prevent PI3K-binding to the DGC. Purified bovine brain Gbetagamma also caused PI3K and Akt activation. These results show that DGC-Gbetagamma is binding PI3K and activating pAkt in a laminin-dependent manner. Mdx mice, which have greatly diminished amounts of DGC proteins, display elevated pAkt signaling and increased expression of integrin beta1 compared to normal muscle. This integrin binds laminin, Gbetagamma, and PI3K. Collectively, these suggest that PI3K is an important target for the Gbetagamma, which normally binds to DGC syntrophin, and activates PI3K/Akt signaling. Disruption of the DGC in mdx mouse is causing dis-regulation of the laminin-DGC-Gbetagamma-PI3K-Akt signaling and is likely to be important to the pathogenesis of muscular dystrophy. Upregulating integrin beta1 expression and activating the PI3K/Akt pathway in muscular dystrophy may partially compensate for the loss of the DGC. The results suggest new therapeutic approaches to muscle disease.

  14. Genetic obesity alters recruitment of TANK-binding kinase 1 and AKT into hypothalamic lipid rafts domains.

    PubMed

    Delint-Ramirez, Ilse; Maldonado Ruiz, Roger; Torre-Villalvazo, Ivan; Fuentes-Mera, Lizeth; Garza Ocañas, Lourdes; Tovar, Armando; Camacho, Alberto

    2015-01-01

    Lipid rafts (LRs) are membrane subdomains enriched in cholesterol, glycosphingolipids and sphingolipids containing saturated fatty acid. Signaling proteins become concentrated in these microdomains mainly by saturated fatty acid modification, thus facilitating formation of protein complexes and activation of specific signaling pathways. High intake of saturated fatty acids promotes inflammation and insulin resistance, in part by disrupting insulin signaling pathway. Here we investigate whether lipid-induced toxicity in obesity correlates with altered composition of insulin signaling proteins in LRs in the brain. Our results showed that insulin receptor (IR) is highly concentrated in LRs fraction in comparison with soluble or postsynaptic density (PSD) fractions. Analysis of LRs domains from hippocampus of obese mouse showed a significant decrease of IR and its downstream signaling protein AKT, while in the PSD fraction we detected partial decrease of AKT and no changes in the IR concentration. No changes were shown in the soluble extract. In hypothalamus, genetic obesity also decreases interaction of AKT, but we did not detect changes in the IR distribution. However, in this structure genetic obesity increases recruitment of the IR negative regulator TANK-binding kinase 1 (TBK1) into LRs and PSD fraction. No changes of AKT, IR and TBK1 were found in soluble fractions of obese in comparison with lean mice. In vitro studies showed that incubation with saturated palmitic acid but not with unsaturated docosahexaenoic acid (DHA) or palmitoleic acid decreases association of IR and AKT and increases TBK1 recruitment into LRs and PSD domains, emulating what happens in the obese mice. TBK1 recruitment to insoluble domains correlates with decreases of IR tyrosine phosphorylation and ser473 AKT phosphorylation, markers of insulin resistance. These data support the hypothesis that hyperlipidemia associated with genetic obesity alters targeting of TBK1 and insulin signaling

  15. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation

    PubMed Central

    Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation. PMID:28072855

  16. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation.

    PubMed

    Ohtsuka, Hiroko; Iguchi, Tomohiro; Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation.

  17. Compound library screening identified Akt/PKB kinase pathway inhibitors as potential key molecules for the development of new chemotherapeutics against schistosomiasis.

    PubMed

    Morel, Marion; Vanderstraete, Mathieu; Cailliau, Katia; Lescuyer, Arlette; Lancelot, Julien; Dissous, Colette

    2014-12-01

    Protein kinases (PKs) are one of the largest protein families in most eukaryotic organisms. These enzymes are involved in the control of cell proliferation, differentiation and metabolism and a large number of the anticancer drugs currently used are directed against PKs. The structure and function of PKs are well conserved throughout evolution. In schistosome parasites, PKs were shown to be involved in essential functions at every stage of the parasite life cycle, making these enzymes promising anti-parasite drug targets. In this study, we tested a panel of commercial inhibitors for various PKs and analyzed their effects on pairing and egg production by schistosomes as well as their toxicity towards schistosomula larvae. Results obtained confirmed the deleterious effect of PK targeting on Schistosoma mansoni physiology and the important function of different tyrosine and serine/threonine kinases in the biology and reproduction of this parasite. They also indicated for the first time that the Protein kinase B (also called Akt) which is a major downstream target of many receptor tyrosine kinases and a central player at the crossroads of signal transduction pathways activated in response to growth factors and insulin, can constitute a novel target for anti-schistosome chemotherapy. Structural and functional studies have shown that SmAkt is a conserved kinase and that its activity can be inhibited by commercially available Akt inhibitors. In treated adult worms, Akt/PKB kinase pathway inhibitors induced profound alterations in pairing and egg laying and they also greatly affected the viability of schistosomula larvae.

  18. Protein Kinase A: A Master Kinase of Granulosa Cell Differentiation

    PubMed Central

    Puri, Pawan; Little-Ihrig, Lynda; Chandran, Uma; Law, Nathan C.; Hunzicker-Dunn, Mary; Zeleznik, Anthony J.

    2016-01-01

    Activation of protein kinase A (PKA) by follicle stimulating hormone (FSH) transduces the signal that drives differentiation of ovarian granulosa cells (GCs). An unresolved question is whether PKA is sufficient to initiate the complex program of GC responses to FSH. We compared signaling pathways and gene expression profiles of GCs stimulated with FSH or expressing PKA-CQR, a constitutively active mutant of PKA. Both FSH and PKA-CQR stimulated the phosphorylation of proteins known to be involved in GC differentiation including CREB, ß-catenin, AKT, p42/44 MAPK, GAB2, GSK-3ß, FOXO1, and YAP. In contrast, FSH stimulated the phosphorylation of p38 MAP kinase but PKA-CQR did not. Microarray analysis revealed that 85% of transcripts that were up-regulated by FSH were increased to a comparable extent by PKA-CQR and of the transcripts that were down-regulated by FSH, 76% were also down-regulated by PKA-CQR. Transcripts regulated similarly by FSH and PKA-CQR are involved in steroidogenesis and differentiation, while transcripts more robustly up-regulated by PKA-CQR are involved in ovulation. Thus, PKA, under the conditions of our experimental approach appears to function as a master upstream kinase that is sufficient to initiate the complex pattern of intracellular signaling pathway and gene expression profiles that accompany GC differentiation. PMID:27324437

  19. Combination treatment of prostate cancer with FGF receptor and AKT kinase inhibitors

    PubMed Central

    Feng, Shu; Shao, Longjiang; Castro, Patricia; Coleman, Ilsa; Nelson, Peter S; Smith, Paul D; Davies, Barry R; Ittmann, Michael

    2017-01-01

    Activation of the PI3K/AKT pathway occurs in the vast majority of advanced prostate cancers (PCas). Activation of fibroblast growth factor receptor (FGFR) signaling occurs in a wide variety of malignancies, including PCa. RNA-Seq of castration resistant PCa revealed expression of multiple FGFR signaling components compatible with FGFR signaling in all cases, with multiple FGF ligands expressed in 90% of cases. Immunohistochemistry confirmed FGFR signaling in the majority of xenografts and advanced PCas. AZD5363, an AKT kinase inhibitor and AZD4547, a FGFR kinase inhibitor are under active clinical development. We therefore sought to determine if these two drugs have additive effects in PCa models. The effect of both agents, singly and in combination was evaluated in a variety of PCa cell lines in vitro and in vivo. All cell lines tested responded to both drugs with decreased invasion, soft agar colony formation and growth in vivo, with additive effects seen with combination treatment. Activation of the FGFR, AKT, ERK and STAT3 pathways was examined in treated cells. AZD5363 inhibited AKT signaling and increased FGFR1 signaling, which partially compensated for decreased AKT kinase activity. While AZD4547 could effectively block the ERK pathway, combination treatment was needed to completely block STAT3 activation. Thus combination treatment with AKT and FGFR kinase inhibitors have additive effects on malignant phenotypes in vitro and in vivo by inhibiting multiple signaling pathways and mitigating the compensatory upregulation of FGFR signaling induced by AKT kinase inhibition. Our studies suggest that co-targeting these pathways may be efficacious in advanced PCa. PMID:28008155

  20. Tyrosine 1101 of Tie2 Is the Major Site of Association of p85 and Is Required for Activation of Phosphatidylinositol 3-Kinase and Akt

    PubMed Central

    Kontos, Christopher D.; Stauffer, Thomas P.; Yang, Wen-Pin; York, John D.; Huang, Liwen; Blanar, Michael A.; Meyer, Tobias; Peters, Kevin G.

    1998-01-01

    Tie2 is an endothelium-specific receptor tyrosine kinase that is required for both normal embryonic vascular development and tumor angiogenesis and is thought to play a role in vascular maintenance. However, the signaling pathways responsible for the function of Tie2 remain unknown. In this report, we demonstrate that the p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase) associates with Tie2 and that this association confers functional lipid kinase activity. Mutation of tyrosine 1101 of Tie2 abrogated p85 association both in vitro and in vivo in yeast. Tie2 was found to activate PI3-kinase in vivo as demonstrated by direct measurement of increases in cellular phosphatidylinositol 3-phosphate and phosphatidylinositol 3,4-bisphosphate, by plasma membrane translocation of a green fluorescent protein-Akt pleckstrin homology domain fusion protein, and by downstream activation of the Akt kinase. Activation of PI3-kinase was abrogated in these assays by mutation of Y1101 to phenylalanine, consistent with a requirement for this residue for p85 association with Tie2. These results suggest that activation of PI3-kinase and Akt may in part account for Tie2’s role in both embryonic vascular development and pathologic angiogenesis, and they are consistent with a role for Tie2 in endothelial cell survival. PMID:9632797

  1. Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and Akt.

    PubMed

    Kontos, C D; Stauffer, T P; Yang, W P; York, J D; Huang, L; Blanar, M A; Meyer, T; Peters, K G

    1998-07-01

    Tie2 is an endothelium-specific receptor tyrosine kinase that is required for both normal embryonic vascular development and tumor angiogenesis and is thought to play a role in vascular maintenance. However, the signaling pathways responsible for the function of Tie2 remain unknown. In this report, we demonstrate that the p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase) associates with Tie2 and that this association confers functional lipid kinase activity. Mutation of tyrosine 1101 of Tie2 abrogated p85 association both in vitro and in vivo in yeast. Tie2 was found to activate PI3-kinase in vivo as demonstrated by direct measurement of increases in cellular phosphatidylinositol 3-phosphate and phosphatidylinositol 3, 4-bisphosphate, by plasma membrane translocation of a green fluorescent protein-Akt pleckstrin homology domain fusion protein, and by downstream activation of the Akt kinase. Activation of PI3-kinase was abrogated in these assays by mutation of Y1101 to phenylalanine, consistent with a requirement for this residue for p85 association with Tie2. These results suggest that activation of PI3-kinase and Akt may in part account for Tie2's role in both embryonic vascular development and pathologic angiogenesis, and they are consistent with a role for Tie2 in endothelial cell survival.

  2. Role of a Novel PH-Kinase Domain Interface in PKB/Akt Regulation: Structural Mechanism for Allosteric Inhibition

    PubMed Central

    Parker, Peter J; Larijani, Banafshé

    2009-01-01

    Protein kinase B (PKB/Akt) belongs to the AGC superfamily of related serine/threonine protein kinases. It is a key regulator downstream of various growth factors and hormones and is involved in malignant transformation and chemo-resistance. Full-length PKB protein has not been crystallised, thus studying the molecular mechanisms that are involved in its regulation in relation to its structure have not been simple. Recently, the dynamics between the inactive and active conformer at the molecular level have been described. The maintenance of PKB's inactive state via the interaction of the PH and kinase domains prevents its activation loop to be phosphorylated by its upstream activator, phosphoinositide-dependent protein kinase-1 (PDK1). By using a multidisciplinary approach including molecular modelling, classical biochemical assays, and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM), a detailed model depicting the interaction between the different domains of PKB in its inactive conformation was demonstrated. These findings in turn clarified the molecular mechanism of PKB inhibition by AKT inhibitor VIII (a specific allosteric inhibitor) and illustrated at the molecular level its selectivity towards different PKB isoforms. Furthermore, these findings allude to the possible function of the C-terminus in sustaining the inactive conformer of PKB. This study presents essential insights into the quaternary structure of PKB in its inactive conformation. An understanding of PKB structure in relation to its function is critical for elucidating its mode of activation and discovering how to modulate its activity. The molecular mechanism of inhibition of PKB activation by the specific drug AKT inhibitor VIII has critical implications for determining the mechanism of inhibition of other allosteric inhibitors and for opening up opportunities for the design of new generations of modulator drugs. PMID:19166270

  3. Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein.

    PubMed

    Menges, Craig W; Baglia, Laurel A; Lapoint, Randi; McCance, Dennis J

    2006-06-01

    Human papillomaviruses (HPV) are small DNA tumor viruses causally associated with cervical cancer. The early gene product E7 from high-risk HPV is considered the major transforming protein expressed by the virus. Although many functions have been described for E7 in disrupting normal cellular processes, we describe in this study a new cellular target in primary human foreskin keratinocytes (HFK), the serine/threonine kinase AKT. Expression of HPV type 16 E7 in HFK caused inhibition of differentiation, hyperproliferation, and up-regulation of AKT activity in organotypic raft cultures. The ability of E7 to up-regulate AKT activity is dependent on its ability to bind to and inactivate the retinoblastoma (Rb) gene product family of proteins. Furthermore, we show that knocking down Rb alone, with short hairpin RNAs, was sufficient to up-regulate AKT activity in differentiated keratinocytes. Up-regulation of AKT activity and loss of Rb was also observed in HPV-positive cervical high-grade squamous intraepithelial lesions when compared with normal cervical tissue. Together, these data provide evidence linking inactivation of Rb by E7 in the up-regulation of AKT activity during cervical cancer progression.

  4. Nik-related kinase regulates trophoblast proliferation and placental development by modulating AKT phosphorylation

    PubMed Central

    Morioka, Yuka; Nam, Jin-Min; Ohashi, Takashi

    2017-01-01

    Nik-related kinase (Nrk) is a Ser/Thr kinase and was initially discovered as a molecule that was predominantly detected in skeletal muscles during development. A recent study using Nrk-null mice suggested the importance of Nrk in proper placental development; however, the molecular mechanism remains unknown. In this study, we demonstrated that differentiated trophoblasts from murine embryonic stem cells (ESCs) endogenously expressed Nrk and that Nrk disruption led to the enhanced proliferation of differentiated trophoblasts. This phenomenon may reflect the overproliferation of trophoblasts that has been reported in enlarged placentas of Nrk-null mice. Furthermore, we demonstrated that AKT phosphorylation at Ser473 was upregulated in Nrk-null trophoblasts and that inhibition of AKT phosphorylation cancelled the enhanced proliferation observed in differentiated Nrk-null trophoblasts. These results indicated that the upregulation of AKT phosphorylation was the possible cause of enhanced proliferation observed in Nrk-null trophoblasts. The upregulation of AKT phosphorylation was also confirmed in enlarged Nrk-null placentas in vivo, suggesting that proper regulation of AKT by Nrk was important for normal placental development. In addition, our detailed analysis on phosphorylation status of AKT isoforms in newly established trophoblast stem cells (TSCs) revealed that different levels of upregulation of AKT phosphorylation were occurred in Nrk-null TSCs depending on AKT isoforms. These results further support the importance of Nrk in proper development of trophoblast lineage cells and indicate the possible application of TSCs for the analysis of differently regulated activation mechanisms of AKT isoforms. PMID:28152035

  5. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    SciTech Connect

    Heiss, Anika; Ammer, Hermann; Eisinger, Daniela A.

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  6. Redox Regulation of Protein Kinases

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2015-01-01

    Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous H2O2 by membrane-bound NADPH oxidases. In turn, H2O2 can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H2O2 regarding kinase activity, as well as the components involved in H2O2 production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H2O2 through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiologic and pathological H2O2 responses. PMID:23639002

  7. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase.

    PubMed Central

    Stokoe, D; Campbell, D G; Nakielny, S; Hidaka, H; Leevers, S J; Marshall, C; Cohen, P

    1992-01-01

    A novel protein kinase, which was only active when phosphorylated by the mitogen-activated protein kinase (MAP kinase), has been purified 85,000-fold to homogeneity from rabbit skeletal muscle. This MAP kinase activated protein kinase, termed MAPKAP kinase-2, was distinguished from S6 kinase-II (MAPKAP kinase-1) by its response to inhibitors, lack of phosphorylation of S6 peptides and amino acid sequence. MAPKAP kinase-2 phosphorylated glycogen synthase at Ser7 and the equivalent serine (*) in the peptide KKPLNRTLS*VASLPGLamide whose sequence is similar to the N terminus of glycogen synthase. MAPKAP kinase-2 was resolved into two monomeric species of apparent molecular mass 60 and 53 kDa that had similar specific activities and substrate specificities. Peptide sequences of the 60 and 53 kDa species were identical, indicating that they are either closely related isoforms or derived from the same gene. MAP kinase activated the 60 and 53 kDa forms of MAPKAP kinase-2 by phosphorylating the first threonine residue in the sequence VPQTPLHTSR. Furthermore, Mono Q chromatography of extracts from rat phaeochromocytoma and skeletal muscle demonstrated that two MAP kinase isoforms (p42mapk and p44mapk) were the only enzymes in these cells that were capable of reactivating MAPKAP kinase-2. These results indicate that MAP kinase activates at least two distinct protein kinases, suggesting that it represents a point at which the growth factor-stimulated protein kinase cascade bifurcates. Images PMID:1327754

  8. Euphorbia fischeriana Steud inhibits malignant melanoma via modulation of the phosphoinositide-3-kinase/Akt signaling pathway

    PubMed Central

    DONG, MENG-HUA; ZHANG, QIAN; WANG, YUAN-YUAN; ZHOU, BAI-SUI; SUN, YU-FEI; FU, QIANG

    2016-01-01

    Euphorbia fischeriana Steud, a traditional Chinese medicine, has been shown to inhibit the growth of various cancers by the induction of apoptosis and cell cycle arrest. The purpose of the present study was to investigate the association between the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway and the inhibitory effect of Euphorbia fischeriana Steud on the growth and metastasis of melanoma B16 cells in vitro, and the underlying mechanisms. MTT assay results indicated that Euphorbia fischeriana Steud inhibited the growth of B16 cells in a time- and dose-dependent manner. Flow cytometric analysis revealed that Euphorbia fischeriana Steud markedly induced apoptosis of the B16 cells, with arrest at the G0/G1 phase of the cell cycle. In addition, in a Transwell assay Euphorbia fischeriana Steud significantly suppressed the migration of B16 cells. Western blot analysis revealed that the expression levels of phosphatase and tensin homolog (PTEN) were upregulated, and the phosphorylation of Akt was downregulated, which resulted in inhibition of the PI3K/Akt signaling pathway and the eventual suppression of its downstream targets, such as matrix metalloproteinase-2 mRNA, in B16 cells. The results demonstrated that Euphorbia fischeriana Steud inhibited the growth and migration of B16 cells, possibly via modulation of the PI3K/Akt signaling pathway and upregulation of PTEN expression levels, in addition to downregulation of p-Akt expression. The aforementioned findings suggest that Euphorbia fischeriana Steud may have broad therapeutic applications in the treatment of malignant melanoma. PMID:27073468

  9. δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.

    PubMed

    Wang, Hong; Hong, Jungil; Yang, Chung S

    2016-11-01

    The cancer preventive activity of vitamin E is suggested by epidemiological studies and supported by animal studies with vitamin E forms, γ-tocopherol and δ-tocopherol (δ-T). Several recent large-scale cancer prevention trials with high dose of α-tocopherol, however, yielded disappointing results. Whether vitamin E prevents or promotes cancer is a serious concern. A better understanding of the molecular mechanisms of action of the different forms of tocopherols would enhance our understanding of this topic. In this study, we demonstrated that δ-T was the most effective tocopherol form in inhibiting prostate cancer cell growth, by inducing cell cycle arrest and apoptosis. By profiling the effects of δ-T on the cell signaling using the phospho-kinase array, we found that the most inhibited target was the phosphorylation of AKT on T308. Further study on the activation of AKT by EGFR and IGFR revealed that δ-T attenuated the EGF/IGF-induced activation of AKT (via the phosphorylation of AKT on T308 induced by the activation of PIK3). Expression of dominant active PIK3 and AKT in prostate cancer cell line DU145 in which PIK3, AKT, and PTEN are wild type caused the cells to be reflectory to the inhibition of δ-T, supporting that δ-T inhibits the PIK3-mediated activation of AKT. Our data also suggest that δ-T interferes with the EGF-induced EGFR internalization, which leads to the inhibition of the receptor tyrosine kinase-dependent activation of AKT. In summary, our results revealed a novel mechanism of δ-T in inhibiting prostate cancer cell growth, supporting the cancer preventive activity δ-T. © 2015 Wiley Periodicals, Inc.

  10. Neuronal migration and protein kinases

    PubMed Central

    Ohshima, Toshio

    2015-01-01

    The formation of the six-layered structure of the mammalian cortex via the inside-out pattern of neuronal migration is fundamental to neocortical functions. Extracellular cues such as Reelin induce intracellular signaling cascades through the protein phosphorylation. Migrating neurons also have intrinsic machineries to regulate cytoskeletal proteins and adhesion properties. Protein phosphorylation regulates these processes. Moreover, the balance between phosphorylation and dephosphorylation is modified by extracellular cues. Multipolar-bipolar transition, radial glia-guided locomotion and terminal translocation are critical steps of radial migration of cortical pyramidal neurons. Protein kinases such as Cyclin-dependent kinase 5 (Cdk5) and c-Jun N-terminal kinases (JNKs) involve these steps. In this review, I shall give an overview the roles of protein kinases in neuronal migration. PMID:25628530

  11. Ribonuclease 5 facilitates corneal endothelial wound healing via activation of PI3-kinase/Akt pathway

    PubMed Central

    Kim, Kyoung Woo; Park, Soo Hyun; Lee, Soo Jin; Kim, Jae Chan

    2016-01-01

    To maintain corneal transparency, corneal endothelial cells (CECs) exert a pump function against aqueous inflow. However, human CECs are arrested in the G1-phase and non-proliferative in vivo. Thus, treatment of corneal endothelial decompensation is limited to corneal transplantation, and grafts are vulnerable to immune rejection. Here, we show that ribonuclease (RNase) 5 is more highly expressed in normal human CECs compared to decompensated tissues. Furthermore, RNase 5 up-regulated survival of CECs and accelerated corneal endothelial wound healing in an in vitro wound of human CECs and an in vivo cryo-damaged rabbit model. RNase 5 treatment rapidly induced accumulation of cytoplasmic RNase 5 into the nucleus, and activated PI3-kinase/Akt pathway in human CECs. Moreover, inhibition of nuclear translocation of RNase 5 using neomycin reversed RNase 5-induced Akt activation. As a potential strategy for proliferation enhancement, RNase 5 increased the population of 5-bromo-2′-deoxyuridine (BrdU)-incorporated proliferating CECs with concomitant PI3-kinase/Akt activation, especially in CECs deprived of contact-inhibition. Specifically, RNase 5 suppressed p27 and up-regulated cyclin D1, D3, and E by activating PI3-kinase/Akt in CECs to initiate cell cycle progression. Together, our data indicate that RNase 5 facilitates corneal endothelial wound healing, and identify RNase 5 as a novel target for therapeutic exploitation. PMID:27526633

  12. Involvement of PI 3 kinase/Akt-dependent Bad phosphorylation in Toxoplasma gondii-mediated inhibition of host cell apoptosis.

    PubMed

    Quan, Juan-Hua; Cha, Guang-Ho; Zhou, Wei; Chu, Jia-Qi; Nishikawa, Yoshifumi; Lee, Young-Ha

    2013-04-01

    Toxoplasma gondii-infected cells are resistant to various apoptotic stimuli, however, the role of the pro-apoptotic BH3-only Bad protein in T. gondii-imposed inhibition of host cell apoptosis in connection with the phosphoinositide 3-kinase (PI3K)-PKB/Akt pathway was not well delineated. Here, we investigated the signaling patterns of Bad, Bax and PKB/Akt in T. gondii-infected and uninfected THP-1 cells treated with staurosporine (STS) or PI3K inhibitors. STS treatment, without T. gondii infection, reduced the viability of THP-1 cells in proportion to STS concentration and triggered many cellular death events such as caspase-3 and -9 activation, Bax translocation, cytochrome c release from host cell mitochondria into cytosol, and PARP cleavage in the host cell. However, T. gondii infection eliminated the STS-triggered mitochondrial apoptotic events described above. Additionally, T. gondii infection in vitro and in vivo induced the phosphorylation of PKB/Akt and Bad in a parasite-load-dependent manner which subsequently inhibited Bax translocation. The PI3K inhibitors, LY294002 and Wortmannin, both blocked parasite-induced phosphorylation of PKB/Akt and Bad. Furthermore, THP-1 cells pretreated with these PI3K inhibitors showed reduced phosphorylation of Bad in a dose-dependent manner and subsequently failed to inhibit the Bax translocation, also these cells also failed to overcome the T. gondii-imposed inhibition of host cell apoptosis. These data demonstrate that the PI3K-PKB/Akt pathway may be one of the major route for T. gondii in the prevention of host cell apoptosis and T. gondii phosphorylates the pro-apoptotic Bad protein to prevent apoptosis.

  13. Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA.

    PubMed

    Nguyen, Le Xuan Truong; Mitchell, Beverly S

    2013-12-17

    Transcription initiation factor I (TIF-IA) plays an essential role in regulating ribosomal RNA (rRNA) synthesis by tethering RNA polymerase I (Pol I) to the rDNA promoter. We have found that activated Akt enhances rRNA synthesis through the phosphorylation of casein kinase IIα (CK2α) on a threonine residue near its N terminus. CK2 in turn phosphorylates TIF-IA, thereby increasing rDNA transcription. Activated Akt also stabilizes TIF-IA, induces its translocation to the nucleolus, and enhances its interaction with Pol I. Treatment with AZD8055, an inhibitor of both Akt and mammalian target of rapamycin phosphorylation, but not with rapamycin, disrupts Akt-mediated TIF-IA stability, translocation, and activity. These data support a model in which activated Akt enhances rRNA synthesis both by preventing TIF-IA degradation and phosphorylating CK2α, which in turn phosphorylates TIF-IA. This model provides an explanation for the ability of activated Akt to promote cell proliferation and, potentially, transformation.

  14. CUL3 and protein kinases

    PubMed Central

    Metzger, Thibaud; Kleiss, Charlotte; Sumara, Izabela

    2013-01-01

    Posttranslational mechanisms drive fidelity of cellular processes. Phosphorylation and ubiquitination of substrates represent very common, covalent, posttranslational modifications and are often co-regulated. Phosphorylation may play a critical role both by directly regulating E3-ubiquitin ligases and/or by ensuring specificity of the ubiquitination substrate. Importantly, many kinases are not only critical regulatory components of these pathways but also represent themselves the direct ubiquitination substrates. Recent data suggest the role of CUL3-based ligases in both proteolytic and non-proteolytic regulation of protein kinases. Our own recent study identified the mitotic kinase PLK1 as a direct target of the CUL3 E3-ligase complex containing BTB-KELCH adaptor protein KLHL22.1 In this study, we aim at gaining mechanistic insights into CUL3-mediated regulation of the substrates, in particular protein kinases, by analyzing mechanisms of interaction between KLHL22 and PLK1. We find that kinase activity of PLK1 is redundant for its targeting for CUL3-ubiquitination. Moreover, CUL3/KLHL22 may contact 2 distinct motifs within PLK1 protein, consistent with the bivalent mode of substrate targeting found in other CUL3-based complexes. We discuss these findings in the context of the existing knowledge on other protein kinases and substrates targeted by CUL3-based E3-ligases. PMID:24067371

  15. Role of the Phosphoinositide 3-Kinase-Akt-Mammalian Target of the Rapamycin Signaling Pathway in Long-Term Potentiation and Trace Fear Conditioning Memory in Rat Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Sui, Li; Wang, Jing; Li, Bao-Ming

    2008-01-01

    Phosphatidylinositol 3-kinase (PI3K) and its downstream targets, including Akt (also known as protein kinase B, PKB), mammalian target of rapamycin (mTOR), the 70-kDa ribosomal S6 kinase (p70S6k), and the eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), may play important roles in long-term synaptic plasticity and memory in many…

  16. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation.

    PubMed

    Diez, Héctor; Benitez, Ma José; Fernandez, Silvia; Torres-Aleman, Ignacio; Garrido, Juan José; Wandosell, Francisco

    2016-11-01

    PI3K proteins family have multiple and essential functions in most cellular events. This family is composed of class I, class II and class III PI3Ks, which upstream and downstream elements are not completely elucidated. Previous studies using the broad PI3K inhibitor, LY294002 allowed to propose that PI3 kinase>Akt pathway is a key element in the determination of axonal polarity in hippocampal neurons. Recently, new inhibitors with a higher selectivity for class I PI3K have been characterized. In the present study we have examined this widely accepted theory using a new class I PI3K inhibitor (GDC-0941), as well as Akt inhibitors, and PTEN phosphatase constructs to reduce PIP3 levels. Our present data show that both, class I PI3K inhibitor and Akt inhibitor did not alter axon specification in hippocampal neurons, but greatly reduced axon length. However, in the same experiments LY294002 effectively impeded axonal polarization, as previously reported. Our biochemical data show that both, class I PI3K and Akt inhibitors, effectively block downstream elements from Akt to S6K1 activity. Both inhibitors are stable in culture medium along the time period analysed, maintaining the inhibition better than LY294002. Besides, we found evidence that LY294002 directly inhibits mTORC1. However, further analysis using an mTORC1 inhibitor showed no change in neuron polarity. Same result was obtained using a general class III PI3K inhibitor. Interestingly, we found that either, wild-type PTEN, or a phosphatase-dead form of PTEN, disrupted axonal polarization, strongly suggesting that the role of PTEN in axonal polarity can be independent of PIP3.

  17. Protein kinase d in the cardiovascular system: emerging roles in health and disease.

    PubMed

    Avkiran, Metin; Rowland, Alexandra J; Cuello, Friederike; Haworth, Robert S

    2008-02-01

    The protein kinase D (PKD) family is a recent addition to the calcium/calmodulin-dependent protein kinase group of serine/threonine kinases, within the protein kinase complement of the mammalian genome. Relative to their alphabetically superior cousins in the AGC group of kinases, namely the various isoforms of protein kinase A, protein kinase B/Akt, and protein kinase C, PKD family members have to date received limited attention from cardiovascular investigators. Nevertheless, increasing evidence now points toward important roles for PKD-mediated signaling pathways in the cardiovascular system, particularly in the regulation of myocardial contraction, hypertrophy and remodeling. This review provides a primer on PKD signaling, using information gained from studies in multiple cell types, and discusses recent data that suggest novel functions for PKD-mediated pathways in the heart and the circulation.

  18. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1999-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  19. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  20. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Lin, Anning

    1999-11-30

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  1. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2004-03-16

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  2. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  3. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2005-03-08

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  4. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  5. Oncoprotein protein kinase

    DOEpatents

    Davis, Roger; Derijard, Benoit; Karin, Michael; Hibi, Masahiko; Lin, Anning

    2005-01-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  6. Oncoprotein protein kinase

    DOEpatents

    Karin, M.; Hibi, M.; Lin, A.

    1997-02-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.

  7. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1998-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  8. Compound library screening identified Akt/PKB kinase pathway inhibitors as potential key molecules for the development of new chemotherapeutics against schistosomiasis

    PubMed Central

    Morel, Marion; Vanderstraete, Mathieu; Cailliau, Katia; Lescuyer, Arlette; Lancelot, Julien; Dissous, Colette

    2014-01-01

    Protein kinases (PKs) are one of the largest protein families in most eukaryotic organisms. These enzymes are involved in the control of cell proliferation, differentiation and metabolism and a large number of the anticancer drugs currently used are directed against PKs. The structure and function of PKs are well conserved throughout evolution. In schistosome parasites, PKs were shown to be involved in essential functions at every stage of the parasite life cycle, making these enzymes promising anti-parasite drug targets. In this study, we tested a panel of commercial inhibitors for various PKs and analyzed their effects on pairing and egg production by schistosomes as well as their toxicity towards schistosomula larvae. Results obtained confirmed the deleterious effect of PK targeting on Schistosoma mansoni physiology and the important function of different tyrosine and serine/threonine kinases in the biology and reproduction of this parasite. They also indicated for the first time that the Protein kinase B (also called Akt) which is a major downstream target of many receptor tyrosine kinases and a central player at the crossroads of signal transduction pathways activated in response to growth factors and insulin, can constitute a novel target for anti-schistosome chemotherapy. Structural and functional studies have shown that SmAkt is a conserved kinase and that its activity can be inhibited by commercially available Akt inhibitors. In treated adult worms, Akt/PKB kinase pathway inhibitors induced profound alterations in pairing and egg laying and they also greatly affected the viability of schistosomula larvae. PMID:25516836

  9. Novel Kinase Inhibitors Targeting the PH Domain of AKT for Preventing and Treating Cancer | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Medical Oncology Branch is seeking statements of capability or interest from parties interested in licensing and co-development collaborative research to further develop, evaluate, or commercialize novel kinase inhibitors targeting the PH domain of AKT.

  10. Biliverdin Reductase Mediates Hypoxia-Induced EMT via PI3-Kinase and Akt

    PubMed Central

    Zeng, Rui; Yao, Ying; Han, Min; Zhao, Xiaoqin; Liu, Xiao-Cheng; Wei, Juncheng; Luo, Yun; Zhang, Juan; Zhou, Jianfeng; Wang, Shixuan; Ma, Ding; Xu, Gang

    2008-01-01

    Chronic hypoxia in the renal parenchyma is thought to induce epithelial-to-mesenchymal transition (EMT), leading to fibrogenesis and ultimately end-stage renal failure. Biliverdin reductase, recently identified as a serine/threonine/tyrosine kinase that may activate phosphatidylinositol 3-kinase (PI3K) and Akt, is upregulated in response to reactive oxygen species that may accompany hypoxia. We investigated this potential role of biliverdin reductase in hypoxia-induced renal tubular EMT. Expression of biliverdin reductase was upregulated in a human proximal tubule cell line (HK-2) cultured in hypoxic conditions (1% O2), and this was accompanied by reduced expression of E-cadherin and increased expression of the mesenchymal marker vimentin. Inhibiting PI3K reversed these changes, consistent with EMT. In normoxic conditions, overexpression of biliverdin reductase promoted similar characteristics of EMT, which were also reversed by inhibiting PI3K. Furthermore, using small interfering RNA (siRNA) to knockdown biliverdin reductase, we demonstrated that the enzyme associates with phosphorylated Akt and mediates the hypoxia-induced EMT phenotype. In vivo, expression of biliverdin reductase increased in the tubular epithelia of 5/6-nephrectomized rats, and immunohistochemistry of serial sections demonstrated similar localization of phosphorylated Akt and biliverdin reductase. In conclusion, biliverdin reductase mediates hypoxia-induced EMT through a PI3K/Akt-dependent pathway. PMID:18184861

  11. Protein Kinase B Controls Transcriptional Programs that Direct Cytotoxic T Cell Fate but Is Dispensable for T Cell Metabolism

    PubMed Central

    Macintyre, Andrew N.; Finlay, David; Preston, Gavin; Sinclair, Linda V.; Waugh, Caryll M.; Tamas, Peter; Feijoo, Carmen; Okkenhaug, Klaus; Cantrell, Doreen A.

    2011-01-01

    Summary In cytotoxic T cells (CTL), Akt, also known as protein kinase B, is activated by the T cell antigen receptor (TCR) and the cytokine interleukin 2 (IL-2). Akt can control cell metabolism in many cell types but whether this role is important for CTL function has not been determined. Here we have shown that Akt does not mediate IL-2- or TCR-induced cell metabolic responses; rather, this role is assumed by other Akt-related kinases. There is, however, a nonredundant role for sustained and strong activation of Akt in CTL to coordinate the TCR- and IL-2-induced transcriptional programs that control expression of key cytolytic effector molecules, adhesion molecules, and cytokine and chemokine receptors that distinguish effector versus memory and naive T cells. Akt is thus dispensable for metabolism, but the strength and duration of Akt activity dictates the CTL transcriptional program and determines CTL fate. PMID:21295499

  12. A Molecular Connection Between Cancer Proliferation and Metastasis Mediated by Akt Kinase

    DTIC Science & Technology

    2006-08-01

    Tcf-4. Cancer Res. 61:5619–5629. 20 . El-Tanani, M. K., R. Barraclough, M. C. Wilkinson, and P. S. Rudland. 2001. Regulatory region of metastasis...translated exons ( exons 4 or 5, because exon 1 is untranslated (Behrend et al., 1993)). Other invasive cell lines tested, including cancers of diverse...02-1-0510 TITLE: A Molecular Connection between Breast Cancer Proliferation and Metastasis Mediated by Akt Kinase PRINCIPAL

  13. Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle.

    PubMed

    Sakamoto, Kei; Arnolds, David E W; Ekberg, Ingvar; Thorell, Anders; Goodyear, Laurie J

    2004-06-25

    Activation of Akt and deactivation of GSK3 are critical signals regulating a number of cellular processes in multiple systems. Whether physical exercise alters Akt and GSK3 activity in human skeletal muscle is controversial. beta-Catenin, a GSK3 substrate and important Wnt signaling protein that alters gene transcription, has not been investigated in human skeletal muscle. In the present study, eight healthy human subjects performed 30min of cycling exercise at 75% of maximum workload (submaximal) followed by 6 bouts of 60s at 125% maximum workload (maximal). Biopsies of vastus lateralis muscle were taken at rest (basal), and within 15s following cessation of the submaximal and maximal exercise bouts. Exercise at both submaximal and maximal intensities significantly increased Akt activity (40% and 110%, respectively). Increases in Akt activity were accompanied by increases in Akt Thr(308) and Ser(473) phosphorylation, decreased GSK3alpha activity ( approximately 30% at both intensities), and increased phosphorylation of GSK3alpha Ser(21). Exercise at both intensities also decreased beta-catenin Ser(33/37)Thr(41) phosphorylation (50-60% at both intensities). These results demonstrate that Akt, GSK3, and beta-catenin signaling are regulated by exercise in human skeletal muscle, and as such identify them as possible molecular mediators of exercise's effect on metabolic and transcriptional processes in skeletal muscle.

  14. Kinetic analysis of platelet-derived growth factor receptor/phosphoinositide 3-kinase/Akt signaling in fibroblasts.

    PubMed

    Park, Chang Shin; Schneider, Ian C; Haugh, Jason M

    2003-09-26

    Isoforms of the serine-threonine kinase Akt coordinate multiple cell survival pathways in response to stimuli such as platelet-derived growth factor (PDGF). Activation of Akt is a multistep process, which relies on the production of 3'-phosphorylated phosphoinositide (PI) lipids by PI 3-kinases. To quantitatively assess the kinetics of PDGF receptor/PI 3-kinase/Akt signaling in fibroblasts, a systematic study of this pathway was performed, and a mechanistic mathematical model that describes its operation was formulated. We find that PDGF receptor phosphorylation exhibits positive cooperativity with respect to PDGF concentration, and its kinetics are quantitatively consistent with a mechanism in which receptor dimerization is initially mediated by the association of two 1:1 PDGF/PDGF receptor complexes. Receptor phosphorylation is transient at high concentrations of PDGF, consistent with the loss of activated receptors upon endocytosis. By comparison, Akt activation responds to lower PDGF concentrations and exhibits more sustained kinetics. Further analysis and modeling suggest that the pathway is saturated at the level of PI 3-kinase activation, and that the p110alpha catalytic subunit of PI 3-kinase contributes most to PDGF-stimulated 3'-PI production. Thus, at high concentrations of PDGF the kinetics of 3'-PI production are limited by the turnover rate of these lipids, while the Akt response is additionally influenced by the rate of Akt deactivation.

  15. Inhibition of constitutively activated phosphoinositide 3-kinase/AKT pathway enhances antitumor activity of chemotherapeutic agents in breast cancer susceptibility gene 1-defective breast cancer cells.

    PubMed

    Yi, Yong Weon; Kang, Hyo Jin; Kim, Hee Jeong; Hwang, Jae Seok; Wang, Antai; Bae, Insoo

    2013-09-01

    Loss or decrease of wild type BRCA1 function, by either mutation or reduced expression, has a role in hereditary and sporadic human breast and ovarian cancers. We report here that the PI3K/AKT pathway is constitutively active in BRCA1-defective human breast cancer cells. Levels of phospho-AKT are sustained even after serum starvation in breast cancer cells carrying deleterious BRCA1 mutations. Knockdown of BRCA1 in MCF7 cells increases the amount of phospho-AKT and sensitizes cells to small molecule protein kinase inhibitors (PKIs) targeting the PI3K/AKT pathway. Restoration of wild type BRCA1 inhibits the activated PI3K/AKT pathway and de-sensitizes cells to PKIs targeting this pathway in BRCA1 mutant breast cancer cells, regardless of PTEN mutations. In addition, clinical PI3K/mTOR inhibitors, PI-103, and BEZ235, showed anti-proliferative effects on BRCA1 mutant breast cancer cell lines and synergism in combination with chemotherapeutic drugs, cisplatin, doxorubicin, topotecan, and gemcitabine. BEZ235 synergizes with the anti-proliferative effects of gemcitabine by enhancing caspase-3/7 activity. Our results suggest that the PI3K/AKT pathway can be an important signaling pathway for the survival of BRCA1-defective breast cancer cells and pharmacological inhibition of this pathway is a plausible treatment for a subset of breast cancers.

  16. PI3 kinase/Akt activation mediates estrogen and IGF-1 nigral DA neuronal neuroprotection against a unilateral rat model of Parkinson's disease.

    PubMed

    Quesada, Arnulfo; Lee, Becky Y; Micevych, Paul E

    2008-04-01

    Recently, using the medial forebrain bundle (MFB) 6-hydroxydopmaine (6-OHDA) lesion rat model of Parkinson's disease (PD), we have demonstrated that blockade of central IGF-1 receptors (IGF-1R) attenuated estrogen neuroprotection of substantia nigra pars compacta (SNpc) DA neurons, but exacerbated 6-OHDA lesions in IGF-1 only treated rats (Quesada and Micevych [2004]: J Neurosci Res 75:107-116). This suggested that the IGF-1 system is a central mechanism through which estrogen acts to protect the nigrostriatal DA system. Moreover, these results also suggest that IGF-1R-induced intracellular signaling pathways are involved in the estrogen mechanism that promotes neuronal survival. In vitro, two convergent intracellular signaling pathways used by estrogen and IGF-1, the mitogen-activated protein kinase (MAPK/ERK), and phosphatidyl-inositol-3-kinase/Akt (PI3K/Akt), have been demonstrated to be neuroprotective. Continuous central infusions of MAPK/ERK and PI3K/Akt inhibitors were used to test the hypothesis that one or both of these signal transduction pathways mediates estrogen and/or IGF-1 neuroprotection of SNpc DA neurons after a unilateral administration of 6-OHDA into the MFB of rats. Motor behavior tests and tyrosine hydroxylase immunoreactivity revealed that the inhibitor of the PI3K/Akt pathway (LY294002) blocked the survival effects of both estrogen and IGF-1, while an inhibitor of the MAPK/ERK signaling (PD98059) was ineffective. Western blot analyses showed that estrogen and IGF-1 treatments increased PI3K/Akt activation in the SN; however, MAPK/ERK activation was decreased in the SN. Indeed, continuous infusions of inhibitors blocked phosphorylation of PI3K/Akt and MAPK/ERK. These findings indicate that estrogen and IGF-1-mediated SNpc DA neuronal protection is dependent on PI3K/Akt signaling, but not on the MAPK/ERK pathway.

  17. Promotion of melanoma cell invasion and tumor metastasis by microcystin-LR via phosphatidylinositol 3-kinase/AKT pathway.

    PubMed

    Xu, Pengfei; Zhang, Xu-Xiang; Miao, Chen; Fu, Ziyi; Li, Zhengrong; Zhang, Gen; Zheng, Maqing; Liu, Yuefang; Yang, Liuyan; Wang, Ting

    2013-08-06

    Recently, we have indicated that microcystin-LR, a cyanobacterial toxin produced in eutrophic lakes or reservoirs, can increase invasive ability of melanoma MDA-MB-435 cells; however, the stimulatory effect needs identification by in vivo experiment and the related molecular mechanism is poorly understood. In this study, in vitro and in vivo experiments were conducted to investigate the effect of microcystin-LR on invasion and metastasis of human melanoma cells, and the underlying molecular mechanism was also explored. MDA-MB-435 xenograft model assay showed that oral administration of nude mice with microcystin-LR at 0.001-0.1 mg/kg/d posed no significant effect on tumor weight. Histological examination demonstrated that microcystin-LR could promote lung metastasis, which is confirmed by Matrigel chamber assay suggesting that microcystin-LR treatment at 25 nM can increase the invasiveness of MDA-MB-435 cells. In vitro and in vivo experiments consistently showed that microcystin-LR exposure increased mRNA and protein levels of matrix metalloproteinases (MMP-2/-9) by activating phosphatidylinositol 3-kinase (PI3-K)/AKT. Additionally, microcystin-LR treatment at low doses (≤25 nM) decreased lipid phosphatase PTEN expression, and the microcystin-induced invasiveness enhancement and MMP-2/-9 overexpression were reversed by the PI3-K/AKT chemical inhibitor LY294002 and AKT siRNA, indicating that microcystin-LR promotes invasion and metastasis of MDA-MB-435 cells via the PI3-K/AKT pathway.

  18. Heregulin-dependent activation of phosphoinositide 3-kinase and Akt via the ErbB2/ErbB3 co-receptor.

    PubMed

    Hellyer, N J; Kim, M S; Koland, J G

    2001-11-09

    The ErbB2/ErbB3 heregulin co-receptor has been shown to couple to phosphoinositide (PI) 3-kinase in a heregulin-dependent manner. The recruitment and activation of PI 3-kinase by this co-receptor is presumed to occur via its interaction with phosphorylated Tyr-Xaa-Xaa-Met (YXXM) motifs occurring in the ErbB3 C terminus. In this study, mutant ErbB3 receptor proteins expressed in COS7 cells were used to investigate PI 3-kinase-dependent signaling pathways activated by the ErbB2/ErbB3 co-receptor. We observed that a mutant ErbB3 protein with each of its six YXXM motifs containing a Tyr --> Phe substitution was unable to bind either the p85 regulatory or p110 catalytic subunit of PI 3-kinase. However, restoration of a single YXXM motif was sufficient to mediate association with the PI 3-kinase holoenzyme, although at a lower level than wild-type ErbB3. When ErbB3 YXXM motifs were restored in pairs, evidence for cooperativity between two, those incorporating Tyr-1273 and Tyr-1286, was observed. Interestingly, we have shown that an apparent association of PI 3-kinase activity with ErbB2/Neu was due to the residual presence of ErbB3 in ErbB2 immunoprecipitates. The necessity of ErbB3 association with PI 3-kinase for downstream signaling to the effector kinase Akt was also investigated. Here, the heregulin-dependent translocation of Akt to the plasma membrane and its subsequent activation was observed in intact NIH-3T3 fibroblasts. Recruitment of PI 3-kinase to ErbB3 was required for both activities, and it appeared that ErbB2 activation alone was not sufficient to activate PI 3-kinase signaling in these cells.

  19. Endoglin regulates PI3-kinase/Akt trafficking and signaling to alter endothelial capillary stability during angiogenesis

    PubMed Central

    Lee, Nam Y.; Golzio, Christelle; Gatza, Catherine E.; Sharma, Arun; Katsanis, Nicholas; Blobe, Gerard C.

    2012-01-01

    Endoglin (CD105) is an endothelial-specific transforming growth factor β (TGF-β) coreceptor essential for angiogenesis and vascular homeostasis. Although endoglin dysfunction contributes to numerous vascular conditions, the mechanism of endoglin action remains poorly understood. Here we report a novel mechanism in which endoglin and Gα-interacting protein C-terminus–interacting protein (GIPC)–mediated trafficking of phosphatidylinositol 3-kinase (PI3K) regulates endothelial signaling and function. We demonstrate that endoglin interacts with the PI3K subunits p110α and p85 via GIPC to recruit and activate PI3K and Akt at the cell membrane. Opposing ligand-induced effects are observed in which TGF-β1 attenuates, whereas bone morphogenetic protein-9 enhances, endoglin/GIPC-mediated membrane scaffolding of PI3K and Akt to alter endothelial capillary tube stability in vitro. Moreover, we employ the first transgenic zebrafish model for endoglin to demonstrate that GIPC is a critical component of endoglin function during developmental angiogenesis in vivo. These studies define a novel non-Smad function for endoglin and GIPC in regulating endothelial cell function during angiogenesis. PMID:22593212

  20. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    PubMed Central

    ZHANG, Zong-Kang; LI, Jie; LIU, Jin; GUO, Baosheng; LEUNG, Albert; ZHANG, Ge; ZHANG, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment could significantly attenuate the decreases in the phosphorylation level of PI3K at p110 catalytic subunit and its downstream markers related to protein synthesis, and inhibit the increases in protein degradation markers at mRNA and protein levels in rat soleus muscle following 28-day hindlimb unloading. In addition, the decreases in soleus muscle mass, muscle fiber cross-sectional area, twitch force, specific force, contraction time and half relaxation time could be significantly attenuated by the high dose ICT treatment. The low dose ICT treatment could moderately attenuate the above changes induced by unloading. Wortmannin, a specific inhibitor of PI3K at p110 catalytic subunit, could abolish the above effects of ICT in vitro and in vivo, indicating that PI3K/Akt signaling could be required by ICT to counteract skeletal muscle atrophy following mechanical unloading. PMID:26831566

  1. Degradation of Activated Protein Kinases by Ubiquitination

    PubMed Central

    Lu, Zhimin; Hunter, Tony

    2009-01-01

    Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases. PMID:19489726

  2. Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle.

    PubMed

    Tan, Pearl Lin; Shavlakadze, Tea; Grounds, Miranda D; Arthur, Peter G

    2015-05-01

    Oxidative stress, caused by excess reactive oxygen species (ROS), has been hypothesized to cause or exacerbate skeletal muscle wasting in a number of diseases and chronic conditions. ROS, such as hydrogen peroxide, have the potential to affect signal transduction pathways such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt pathway that regulates protein synthesis. Previous studies have found contradictory outcomes for the effect of ROS on the PI3K/Akt signaling pathway, where oxidative stress can either enhance or inhibit Akt phosphorylation. The apparent contradictions could reflect differences in experimental cell types or types of ROS treatments. We replicate both effects in myotubes of cultured skeletal muscle C2C12 cells, and show that increased oxidative stress can either inhibit or enhance Akt phosphorylation. This differential response could be explained: thiol oxidation of Akt, but not the phosphatases PTEN or PP2A, caused a decline in Akt phosphorylation; whereas the thiol oxidation of Akt, PTEN and PP2A increased Akt phosphorylation. These observations indicate that a more complete understanding of the effects of oxidative stress on a signal transduction pathway comes not only from identifying the proteins susceptible to thiol oxidation, but also their relative sensitivity to ROS.

  3. Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma.

    PubMed

    Pene, Frédéric; Claessens, Yann-Erick; Muller, Odile; Viguié, Franck; Mayeux, Patrick; Dreyfus, François; Lacombe, Catherine; Bouscary, Didier

    2002-09-26

    Multiple myeloma (MM) is a plasma cell malignancy preliminary localized in the bone marrow and characterized by its capacity to disseminate. IL-6 and IGF-1 have been shown to mediate proliferative and anti-apoptotic signals in plasmocytes. However, in primary plasma-cell leukemia (PCL) and in end-stage aggressive extramedullar disease, the cytokine requirement for both effects may be not mandatory. This suggests that constitutive activation of signaling pathways occurs. One of the signaling pathways whose deregulation may play an oncogenic role in MM is the phosphatidylinositol 3-kinase (PI 3-K) pathway. In human growth factor-independent MM cell lines OPM2 and RPMI8226, we show that the PI 3-K inhibitors LY294002 and Wortmannin strongly inhibited cell proliferation, whereas inhibition of the mammalian Target Of Rapamycin (mTOR)/P70-S6-kinase (P70(S6K)) pathway with rapamycin or of the Mitogen-Activated Protein Kinase (MAPK) pathway with PD98059 had minimal effect on proliferation. In both cell lines, constitutive activation of the PI 3-K/Akt/FKHRL-1, mTOR/P70(S6K) and MAPK pathways was detected. LY294002 inhibited phosphorylation of Akt, FKHRL-1 and P70(S6K) but had no effect on ERK1/2 phosphorylation, indicating that the PI 3-K and MAPK pathways are independent. IGF-1 but not IL-6 increased phosphorylation of Akt, FKHRL-1 and P70(S6K). Purified plasmocytes from four patients with MM and two patients with primary PCL were studied. In three of them including the two patients with PCL, constitutive phosphorylation of Akt, FKHRL-1 and P70(S6K) was present, inhibited by LY294002 and enhanced by IGF-1. In these patients with constitutive Akt activation, normal PTEN expression was detected. PI 3-K inhibition induced caspase-dependent apoptosis as confirmed by inhibition with the large spectrum caspase inhibitor Z-VAD-FMK and cleavage of pro-caspase-3. Both cell lines spontaneously expressed Skp2 and cyclin D1 proteins at high levels but no p27(Kip1) protein. In the

  4. Laminar shear stress upregulates endothelial Ca²⁺-activated K⁺ channels KCa2.3 and KCa3.1 via a Ca²⁺/calmodulin-dependent protein kinase kinase/Akt/p300 cascade.

    PubMed

    Takai, Jun; Santu, Alexandra; Zheng, Haifeng; Koh, Sang Don; Ohta, Masanori; Filimban, Linda M; Lemaître, Vincent; Teraoka, Ryutaro; Jo, Hanjoong; Miura, Hiroto

    2013-08-15

    In endothelial cells (ECs), Ca²⁺-activated K⁺ channels KCa2.3 and KCa3.1 play a crucial role in the regulation of arterial tone via producing NO and endothelium-derived hyperpolarizing factors. Since a rise in intracellular Ca²⁺ levels and activation of p300 histone acetyltransferase are early EC responses to laminar shear stress (LS) for the transcriptional activation of genes, we examined the role of Ca²⁺/calmodulin-dependent kinase kinase (CaMKK), the most upstream element of a Ca²⁺/calmodulin-kinase cascade, and p300 in LS-dependent regulation of KCa2.3 and KCa3.1 in ECs. Exposure to LS (15 dyn/cm²) for 24 h markedly increased KCa2.3 and KCa3.1 mRNA expression in cultured human coronary artery ECs (3.2 ± 0.4 and 45 ± 10 fold increase, respectively; P < 0.05 vs. static condition; n = 8-30), whereas oscillatory shear (OS; ± 5 dyn/cm² × 1 Hz) moderately increased KCa3.1 but did not affect KCa2.3. Expression of KCa2.1 and KCa2.2 was suppressed under both LS and OS conditions, whereas KCa1.1 was slightly elevated in LS and unchanged in OS. Inhibition of CaMKK attenuated LS-induced increases in the expression and channel activity of KCa2.3 and KCa3.1, and in phosphorylation of Akt (Ser473) and p300 (Ser1834). Inhibition of Akt abolished the upregulation of these channels by diminishing p300 phosphorylation. Consistently, disruption of the interaction of p300 with transcription factors eliminated the induction of these channels. Thus a CaMKK/Akt/p300 cascade plays an important role in LS-dependent induction of KCa2.3 and KCa3.1 expression, thereby regulating EC function and adaptation to hemodynamic changes.

  5. Pleckstrin Homology Domain of Akt Kinase: A Proof of Principle for Highly Specific and Effective Non-Enzymatic Anti-Cancer Target

    PubMed Central

    Joh, Eun-Ha; Hollenbaugh, Joseph A.; Kim, Baek; Kim, Dong-Hyun

    2012-01-01

    While pharmacological inhibition of Akt kinase has been regarded as a promising anti-cancer strategy, most of the Akt inhibitors that have been developed are enzymatic inhibitors that target the kinase active site of Akt. Another key cellular regulatory event for Akt activation is the translocation of Akt kinase to the cell membrane from the cytoplasm, which is accomplished through the pleckstrin homology (PH) domain of Akt. However, compounds specifically interacting with the PH domain of Akt to inhibit Akt activation are currently limited. Here we identified a compound, lancemaside A (LAN-A), which specifically binds to the PH domain of Akt kinase. First, our mass spectra analysis of cellular Akt kinase isolated from cells treated with LAN-A revealed that LAN-A specifically binds to the PH domain of cellular Akt kinase. Second, we observed that LAN-A inhibits the translocation of Akt kinase to the membrane and thus Akt activation, as examined by the phosphorylation of various downstream targets of Akt such as GSK3β, mTOR and BAD. Third, in a co-cultured cell model containing human lung epithelial cancer cells (A549) and normal human primary lung fibroblasts, LAN-A specifically restricts the growth of the A549 cells. LAN-A also displayed anti-proliferative effects on various human cancer cell lines. Finally, in the A549-luciferase mouse transplant model, LAN-A effectively inhibited A549 cell growth with little evident cytotoxicity. Indeed, the therapeutic index of LAN-A in this mouse model was >250, supporting that LAN-A is a potential lead compound for PH domain targeting as a safe anti-cancer Akt inhibitor. PMID:23189201

  6. Endurance exercise training increases insulin responsiveness in isolated adipocytes through IRS/PI3-kinase/Akt pathway.

    PubMed

    Peres, Sidney B; de Moraes, Solange M Franzói; Costa, Cecilia E M; Brito, Luciana C; Takada, Julie; Andreotti, Sandra; Machado, Magaly A; Alonso-Vale, Maria Isabel C; Borges-Silva, Cristina N; Lima, Fabio B

    2005-03-01

    Endurance exercise training promotes important metabolic adaptations, and the adipose tissue is particularly affected. The aim of this study was to investigate how endurance exercise training modulates some aspects of insulin action in isolated adipocytes and in intact adipose tissue. Male Wistar rats were submitted to daily treadmill running (1 h/day) for 7 wk. Sedentary age-matched rats were used as controls. Final body weight, body weight gain, and epididymal fat pad weight did not show any statistical differences between groups. Adipocytes from trained rats were smaller than those from sedentary rats (205 +/- 16.8 vs. 286 +/- 26.4 pl; P < 0.05). Trained rats showed decreased plasma glucose (4.9 +/- 0.13 vs. 5.3 +/- 0.07 mM; P < 0.05) and insulin levels (0.24 +/- 0.012 vs. 0.41 +/- 0.049 mM; P < 0.05) and increased insulin-stimulated glucose uptake (23.1 +/- 3.1 vs. 12.1 +/- 2.9 pmol/cm(2); P < 0.05) compared with sedentary rats. The number of insulin receptors and the insulin-induced tyrosine phosphorylation of insulin receptor-beta subunit did not change between groups. Insulin-induced tyrosine phosphorylation insulin receptor substrates (IRS)-1 and -2 increased significantly (1.57- and 2.38-fold, respectively) in trained rats. Insulin-induced IRS-1/phosphatidylinositol 3 (PI3)-kinase (but not IRS-2/PI3-kinase) association and serine Akt phosphorylation also increased (2.06- and 3.15-fold, respectively) after training. The protein content of insulin receptor-beta subunit, IRS-1 and -2, did not differ between groups. Taken together, these data support the hypothesis that the increased adipocyte responsiveness to insulin observed after endurance exercise training is modulated by IRS/PI3-kinase/Akt pathway.

  7. Extracellular signal-regulated kinases 1/2 and Akt contribute to triclosan-stimulated proliferation of JB6 Cl 41-5a cells.

    PubMed

    Wu, Yuanfeng; Beland, Frederick A; Chen, Si; Fang, Jia-Long

    2015-08-01

    Triclosan is a broad spectrum anti-bacterial agent widely used in many personal care products, household items, medical devices, and clinical settings. Human exposure to triclosan is mainly through oral and dermal routes. In previous studies, we found that sub-chronic dermal exposure of B6C3F1 mice to triclosan induced epidermal hyperplasia and focal necrosis; however, the mechanisms for these responses remain elusive. In this study, using mouse epidermis-derived JB6 Cl 41-5a cells, we found that triclosan stimulated cell growth in a concentration- and time-dependent manner. Enhanced cell proliferation was demonstrated by a substantial increase in the percentage of BrdU-positive cells, an elevation in the protein levels of cyclin D1 and cyclin A, and a reduction in the protein level of p27(Kip1). Western blotting analysis revealed that triclosan induced the activation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK), p38, and Akt. Pre-treatment of the cells with PD184352, an inhibitor of the upstream kinase MEK1/2, or with wortmannin, an inhibitor of phosphoinositide 3-kinase, blocked triclosan-mediated phosphorylation of ERK1/2 and Akt, respectively, and substantially suppressed triclosan-stimulated cell proliferation, whereas the JNK inhibitor SP600125 or the p38 inhibitor SB203580 had little to no effect on triclosan-stimulated cell proliferation. The phosphorylation activation of ERK1/2 and Akt was further confirmed on the skin of mice dermally administered triclosan. These data suggest that the activation of ERK1/2 and Akt is involved in triclosan-stimulated proliferation of JB6 Cl 41-5a cells.

  8. AKT/PKB Signaling: Navigating Downstream

    PubMed Central

    Manning, Brendan D.; Cantley, Lewis C.

    2009-01-01

    The serine/threonine kinase Akt, also known as protein kinase B (PKB), is a central node in cell signaling downstream of growth factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt activation underlies the pathophysiological properties of a variety of complex diseases, including type-2 diabetes and cancer. Here, we review the molecular properties of Akt and the approaches used to characterize its true cellular targets. In addition, we discuss those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. PMID:17604717

  9. Dual inhibitory roles of geldanamycin on the c-Jun NH2-terminal kinase 3 signal pathway through suppressing the expression of mixed-lineage kinase 3 and attenuating the activation of apoptosis signal-regulating kinase 1 via facilitating the activation of Akt in ischemic brain injury.

    PubMed

    Wen, X-R; Li, C; Zong, Y-Y; Yu, C-Z; Xu, J; Han, D; Zhang, G-Y

    2008-10-15

    It is well documented that heat-shock protein (hsp90) plays an essential role in maintaining stability and activity of its clients. Recent studies have shown that geldanamycin (GA), an inhibitor of hsp90, could decrease the protein of mixed-lineage kinase (MLK) 3 and activate Akt; our previous research documented that MLK3 and Akt and subsequent c-Jun N-terminal kinase (JNK) were involved in neuronal cell death in ischemic brain injury. Here, we investigated whether GA could decrease the protein of MLK3 and activate Akt in rat four-vessel occlusion ischemic model. Our results showed that global cerebral ischemia followed by reperfusion could enhance the association of hsp90 with MLK3, the association of hsp90 with Src, and JNK3 activation. As a result, GA decreased the protein of MLK3 and down-regulated JNK activation. On the other hand, Src kinase was activated and phosphorylated Cbl, which then recruited the p85 subunit of phosphatidylinositol 3-kinase (PI-3K), resulting in PI-3K activation, and as a consequence increased Akt activation, which inhibited ASK1 activation and down-regulated JNK3 activation. In summary, our results indicated that GA showed a dual inhibitory role on JNK3 activation and exerted strong neuroprotection in vivo and in vitro, which provides a new possible approach for stroke therapy.

  10. Direct Regulation of Osteocytic Connexin 43 Hemichannels through AKT Kinase Activated by Mechanical Stimulation*

    PubMed Central

    Batra, Nidhi; Riquelme, Manuel A.; Burra, Sirisha; Kar, Rekha; Gu, Sumin; Jiang, Jean X.

    2014-01-01

    Connexin (Cx) 43 hemichannels in osteocytes are thought to play a critical role in releasing bone modulators in response to mechanical loading, a process important for bone formation and remodeling. However, the underlying mechanism that regulates the opening of mechanosensitive hemichannels is largely unknown. We have recently shown that Cx43 and integrin α5 interact directly with each other, and activation of PI3K appears to be required for Cx43 hemichannel opening by mechanical stimulation. Here, we show that mechanical loading through fluid flow shear stress (FFSS) increased the level of active AKT, a downstream effector of PI3K, which is correlated with the opening of hemichannels. Both Cx43 and integrin α5 are directly phosphorylated by AKT. Inhibition of AKT activation significantly reduced FFSS-induced opening of hemichannels and disrupted the interaction between Cx43 and integrin α5. Moreover, AKT phosphorylation on Cx43 and integrin α5 enhanced their interaction. In contrast to the C terminus of wild-type Cx43, overexpression of the C-terminal mutant containing S373A, a consensus site previously shown to be phosphorylated by AKT, failed to bind with α5 and hence could not inhibit hemichannel opening. Together, our results suggest that AKT activated by FFSS directly phosphorylates Cx43 and integrin α5, and Ser-373 of Cx43 plays a predominant role in mediating the interaction between these two proteins and Cx43 hemichannel opening, a crucial step to mediate the anabolic function of mechanical loading in the bone. PMID:24563481

  11. Akt-phosphorylated mitogen-activated kinase-activating death domain protein (MADD) inhibits TRAIL-induced apoptosis by blocking Fas-associated death domain (FADD) association with death receptor 4.

    PubMed

    Li, Peifeng; Jayarama, Shankar; Ganesh, Lakshmy; Mordi, David; Carr, Ryan; Kanteti, Prasad; Hay, Nissim; Prabhakar, Bellur S

    2010-07-16

    MADD plays an essential role in cancer cell survival. Abrogation of endogenous MADD expression results in significant spontaneous apoptosis and enhanced susceptibility to tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. However, the regulation of MADD function is largely unknown. Here, we demonstrate that endogenous MADD is phosphorylated at three highly conserved sites by Akt, and only the phosphorylated MADD can directly interact with the TRAIL receptor DR4 thereby preventing Fas-associated death domain recruitment. However, in cells susceptible to TRAIL treatment, TRAIL induces a reduction in MADD phosphorylation levels resulting in MADD dissociation from, and Fas-associated death domain association with DR4, which allows death-inducing signaling complex (DISC) formation leading to apoptosis. Thus, the pro-survival function of MADD is dependent upon its phosphorylation by Akt. Because Akt is active in most cancer cells and phosphorylated MADD confers resistance to TRAIL-induced apoptosis, co-targeting Akt-MADD axis is likely to increase efficacy of TRAIL-based therapies.

  12. Neuron membrane trafficking and protein kinases involved in autism and ADHD.

    PubMed

    Kitagishi, Yasuko; Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Matsuda, Satoru

    2015-01-30

    A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1) are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD) is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT). AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  13. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    SciTech Connect

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  14. REDD1 enhances protein phosphatase 2A-mediated dephosphorylation of Akt to repress mTORC1 signaling

    PubMed Central

    Dennis, Michael D.; Coleman, Catherine S.; Berg, Arthur; Jefferson, Leonard S.; Kimball, Scot R.

    2014-01-01

    The protein kinase mTOR (mechanistic target of rapamycin) in complex 1 (mTORC1) promotes cell growth and proliferation in response to anabolic stimuli, including growth factors and nutrients. Growth factors activate mTORC1 by stimulating the kinase Akt, which phosphorylates and inhibits the tuberous sclerosis complex (TSC; which is comprised of TSC1, TSC2, and TBC1D7), thereby stimulating the mTORC1 activator Rheb. Here, we identified the mechanism through which REDD1 (regulated in DNA damage and development 1) represses the mTORC1 signaling pathway. We found that REDD1 promoted the protein phosphatase 2A (PP2A)-dependent dephosphorylation of Akt at Thr308 but not at Ser473. Consistent with previous studies showing that phosphorylation of Akt on Thr308, but not Ser473, is necessary for phosphorylation of TSC2, we observed a REDD1-dependent reduction in the phosphorylation of TSC2 and subsequently in the activity of Rheb. REDD1 and PP2A coimmunoprecipitated with Akt from wild-type but not REDD1-knockout mouse embryonic fibroblasts, suggesting that REDD1 may act as a targeting protein for the catalytic subunit of PP2A. Furthermore, binding to both Akt and PP2A was essential for REDD1 to repress signaling to mTORC1. Overall, the results demonstrate that REDD1 acts not just as a repressor of mTORC1, but also as a constant modulator of the phosphorylation of Akt in response to growth factors and nutrients. PMID:25056877

  15. Tissue kallikrein promotes neovascularization and improves cardiac function by the Akt-glycogen synthase kinase-3β pathway

    PubMed Central

    Yao, Yu-Yu; Yin, Hang; Shen, Bo; Smith, Robert S.; Liu, Yuying; Gao, Lin; Chao, Lee; Chao, Julie

    2008-01-01

    Aims We investigated the role of the Akt-glycogen synthase kinase (GSK)-3β signalling pathway in mediating the protective effects of tissue kallikrein on myocardial injury by promoting angiogenesis and blood flow in rats after myocardial infarction (MI). Methods and results Human tissue kallikrein gene in an adenoviral vector, with or without co-administration of dominant-negative Akt (Ad.DN-Akt) or constitutively active GSK-3β (Ad.GSK-3βS9A), was injected into rat myocardium after MI. The expression of recombinant human kallikrein in rat heart significantly improved cardiac function and reduced infarct size 10 days after gene delivery. Kallikrein administration significantly increased myocardial blood flow as well as capillary and arteriole densities in the infarcted myocardium. Kallikrein increased cardiac Akt and GSK-3β phosphorylation in conjunction with decreased GSK-3β activity and the upregulation of vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2). All of kallikrein’s effects on the myocardium were abrogated by Ad.DN-Akt and Ad.GSK-3βS9A. Moreover, in cultured human aortic endothelial cells, tissue kallikrein stimulated capillary tube formation and promoted cell migration; however, these effects were blocked by Ad.DN-Akt, Ad.GSK-3βS9A, icatibant (a kinin B2 receptor antagonist), Tki (a VEGF receptor tyrosine kinase inhibitor), and a neutralizing VEGF antibody. In addition, tissue kallikrein decreased GSK-3β activity via the phosphatidylinositol 3-kinase-Akt pathway and enhanced VEGF and VEGFR-2 expression in endothelial cells. Conclusion These data provide the first direct evidence that tissue kallikrein protects against acute-phase MI by promoting neovascularization, restoring regional blood flow and improving cardiac function through the kinin B2 receptor-Akt-GSK-3β and VEGF signalling pathways. PMID:18689794

  16. Effect of dehydroepiandrosterone (DHEA) on Akt and protein kinase C zeta (PKCζ) phosphorylation in different tissues of C57BL6, insulin receptor substrate (IRS)1(-/-), and IRS2(-/-) male mice fed a high-fat diet.

    PubMed

    Aoki, Kazutaka; Tajima, Kazuki; Taguri, Masataka; Terauchi, Yasuo

    2016-05-01

    We have previously reported that dehydroepiandrosterone (DHEA) suppresses the activity and mRNA expression of the hepatic gluconeogenic enzyme glucose-6-phosphatase (G6Pase), and hepatic glucose production in db/db mice. Tyrosine phosphorylation levels of Insulin receptor substrate (IRS)1 and IRS2 reportedly differ between the liver and muscle tissue and the effect of DHEA on insulin signaling has not been elucidated. Therefore, we examined DHEA's effect on the liver and muscle tissue of IRS1(-/-) and IRS2(-/-) mice. Eight-week-old male C57BL6, IRS1(-/-), and IRS2(-/-) mice were fed a high-fat diet (HFD), or an HFD containing 0.2% DHEA for 4 weeks. In a separate experiment, 8-week-old male C57BL6 mice were fed an HFD or an HFD containing 0.2% androstenedione for 4 weeks. In an insulin tolerance test, DHEA administration decreased the initial plasma glucose levels in the C57BL6, IRS1(-/-), and IRS2(-/-) mice but did not decrease the ratios to the basal blood glucose level. Although DHEA administration increased Akt phosphorylation in the liver of the C57BL6, IRS1(-/-), and IRS2(-/-) mice, androstenedione administration did not increase Akt phosphorylation in the liver of C57BL6 mice. DHEA administration did not increase Akt and PKCζ phosphorylation in the muscle tissue of C57BL6, IRS1(-/-), or IRS2(-/-) mice. However, androstenedione administration increased Akt and PKCζ phosphorylation in the muscle tissue of C57BL6 mice. These findings suggest that the effect of DHEA on insulin action in the liver is self-mediated by DHEA or DHEA sulfate (DHEA-S) in the presence of IRS1, IRS2, or both.

  17. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia*

    PubMed Central

    Roth Flach, Rachel J.; Danai, Laura V.; DiStefano, Marina T.; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B.; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K.; Bortell, Rita; Alonso, Laura C.; Czech, Michael P.

    2016-01-01

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo. After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. PMID:27226575

  18. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    PubMed

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC.

  19. AKT/mTOR and c-Jun N-terminal kinase signaling pathways are required for chrysotile asbestos-induced autophagy.

    PubMed

    Lin, Ziying; Liu, Tie; Kamp, David W; Wang, Yahong; He, Huijuan; Zhou, Xu; Li, Donghong; Yang, Lawei; Zhao, Bin; Liu, Gang

    2014-07-01

    Chrysotile asbestos is closely associated with excess mortality from pulmonary diseases such as lung cancer, mesothelioma, and asbestosis. Although multiple mechanisms in which chrysotile asbestos fibers induce pulmonary disease have been identified, the role of autophagy in human lung epithelial cells has not been examined. In this study, we evaluated whether chrysotile asbestos induces autophagy in A549 human lung epithelial cells and then analyzed the possible underlying molecular mechanism. Chrysotile asbestos induced autophagy in A549 cells based on a series of biochemical and microscopic autophagy markers. We observed that asbestos increased expression of A549 cell microtubule-associated protein 1 light chain 3 (LC3-II), an autophagy marker, in conjunction with dephosphorylation of phospho-AKT, phospho-mTOR, and phospho-p70S6K. Notably, AKT1/AKT2 double-knockout murine embryonic fibroblasts (MEFs) had negligible asbestos-induced LC3-II expression, supporting a crucial role for AKT signaling. Chrysotile asbestos also led to the phosphorylation/activation of Jun N-terminal kinase (JNK) and p38 MAPK. Pharmacologic inhibition of JNK, but not p38 MAPK, dramatically inhibited the protein expression of LC3-II. Moreover, JNK2(-/-) MEFs but not JNK1(-/-) MEFs blocked LC3-II levels induced by chrysotile asbestos. In addition, N-acetylcysteine, an antioxidant, attenuated chrysotile asbestos-induced dephosphorylation of P-AKT and completely abolished phosphorylation/activation of JNK. Finally, we demonstrated that chrysotile asbestos-induced apoptosis was not affected by the presence of the autophagy inhibitor 3-methyladenine or autophagy-related gene 5 siRNA, indicating that the chrysotile asbestos-induced autophagy may be adaptive rather than prosurvival. Our findings demonstrate that AKT/mTOR and JNK2 signaling pathways are required for chrysotile asbestos-induced autophagy. These data provide a mechanistic basis for possible future clinical applications targeting

  20. Pathway illuminated: visualizing protein kinase C signaling.

    PubMed

    Violin, Jonathan D; Newton, Alexandra C

    2003-12-01

    Protein kinase C has been at the center of cell signaling since the discovery 25 years ago that it transduces signals that promote phospholipid hydrolysis. In recent years, the use of genetically encoded fluorescent reporters has enabled studies of the regulation of protein kinase C signaling in living cells. Advances in imaging techniques have unveiled unprecedented detail of the signal processing mechanics of protein kinase C, from the second messengers calcium and diacylglycerol that regulate protein kinase C activity, to the locations and kinetics of different protein kinase C isozymes, to the spatial and temporal dynamics of substrate phosphorylation by this key enzyme. This review discusses how fluorescence imaging studies have illuminated the fidelity with which protein kinase C transduces rapidly changing extracellular information into intracellular phosphorylation signals.

  1. Upregulation of AKT1 protein expression in forskolin-stimulated macrophage: evidence from ChIP analysis that CREB binds to and activates the AKT1 promoter.

    PubMed

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2007-03-01

    Recently, we reported that silencing CREB gene expression by RNAi significantly attenuates forskolin-induced activation of Akt1. We now provide evidence that forskolin-treatment causes transcriptional and translational upregulation of Akt1 in macrophages. Akt synthesis was demonstrated by [(14)C]leucine or [(35)S] incorporation into newly synthesized Akt1 protein. Akt protein levels increased by approximately 1.5-fold after only a 5 min exposure of macrophages to forskolin. Akt1 levels thereafter rapidly returned to basal values (t(1/2) approximately 15 min). Maximal upregulation of Akt1 occurred in cells treated with 10 microM forskolin. Forskolin-dependent Akt1 synthesis was abolished by pretreating the cells with CREB-directed dsRNA as demonstrated at both the message and protein level, as well as by determining the synthesis of [(35)S]-labeled Akt1 protein. The PKA inhibitor H-89, greatly attenuated forskolin-induced Akt1 synthesis. Transcriptional and translational inhibitors also greatly reduced Akt1 synthesis in forskolin-stimulated [(14)C]leucine-labeled macrophages. Using a chromatin immunoprecipitation assay, we demonstrate that CREB binds to a CRE binding domain of the Akt1 gene promoter. In conclusion, we show here for the first time transcriptional upregulation of Akt1 by CREB, based upon Akt1 protein synthesis and its modulation by transitional and translational inhibitors in forskolin-stimulated cells, Akt1 protein. and mRNA levels upon silencing CREB gene expression, and binding of CREB to the Akt1 gene promoter.

  2. Pivotal Role of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 in Inflammatory Pulmonary Diseases

    PubMed Central

    Qian, Feng; Deng, Jing; Wang, Gang; Ye, Richard D.; Christman, John W.

    2016-01-01

    Mitogen-activated protein kinase (MAPK)-activated protein kinase (MK2) is exclusively regulated by p38 MAPK in vivo. Upon activation of p38 MAPK, MK2 binds with p38 MAPK, leading to phosphorylation of TTP, Hsp27, Akt and Cdc25 that are involved in regulation of various essential cellular functions. In this review, we discuss current knowledge about molecular mechanisms of MK2 in regulation of TNF-α production, NADPH oxidase activation, neutrophil migration, and DNA-damage-induced cell cycle arrest which are involved in the molecular pathogenesis of acute lung injury, pulmonary fibrosis, and non-small-cell lung cancer. Collectively current and emerging new information indicate that developing MK2 inhibitors and blocking MK2-mediated signal pathways is a potential therapeutic strategy for treatment of inflammatory and fibrotic lung diseases and lung cancer. PMID:26119506

  3. Akt phosphorylates myc-associated zinc finger protein (MAZ), releases P-MAZ from the p53 promoter, and activates p53 transcription.

    PubMed

    Lee, Wei-Ping; Lan, Keng-Hsin; Li, Chung-Pin; Chao, Yee; Lin, Han-Chieh; Lee, Shou-Dong

    2016-05-28

    The p53 protein is a cell cycle regulator. When the cell cycle progresses, p53 plays an important role in putting a brake on the G1 phase to prevent unwanted errors during cell division. Akt is a downstream kinase of receptor tyrosine kinase. Upon activation, Akt phorphorylates IKK that then phosphorylates IκB and releases NF-κB, leading to transcriptional activation of Dmp1. Dmp1 is a transcriptional activator of Arf. It has been known that oncogene activation stabilizes p53 through transcriptional activation of Arf, which then binds and inhibits Mdm2. In the current study, we show that myc-associated zinc finger protein (MAZ) is a transcriptional repressor of the p53 promoter. Akt phosphorylates MAZ at Thr385, and the phosphorylated MAZ is released from the p53 promoter, leading to transcriptional activation of p53, a new mechanism that contributes to increased p53 protein pool during oncogene activation.

  4. Effects of protein tyrosine phosphatase-PEST are reversed by Akt in T cells.

    PubMed

    Arimura, Yutaka; Shimizu, Kazuhiko; Koyanagi, Madoka; Yagi, Junji

    2014-12-01

    T cell activation is regulated by a balance between phosphorylation and dephosphorylation that is under the control of kinases and phosphatases. Here, we examined the role of a non-receptor-type protein tyrosine phosphatase, PTP-PEST, using retrovirus-mediated gene transduction into murine T cells. Based on observations of vector markers (GFP or Thy1.1), exogenous PTP-PEST-positive CD4(+) T cells appeared within 2 days after gene transduction; the percentage of PTP-PEST-positive cells tended to decrease during a resting period in the presence of IL-2 over the next 2 days. These vector markers also showed much lower expression intensities, compared with control cells, suggesting a correlation between the percent reduction and the low marker expression intensity. A catalytically inactive PTP-PEST mutant also showed the same tendency, and stepwise deletion mutants gradually lost their ability to induce the above phenomenon. On the other hand, these PTP-PEST-transduced cells did not have an apoptotic phenotype. No difference in the total cell numbers was found in the wells of a culture plate containing VEC- and PTP-PEST-transduced T cells. Moreover, serine/threonine kinase Akt, but not the anti-apoptotic molecules Bcl-2 and Bcl-XL, reversed the phenotype induced by PTP-PEST. We discuss the novel mechanism by which Akt interferes with PTP-PEST.

  5. Novel pathway in Bcr-Abl signal transduction involves Akt-independent, PLC-gamma1-driven activation of mTOR/p70S6-kinase pathway.

    PubMed

    Markova, B; Albers, C; Breitenbuecher, F; Melo, J V; Brümmendorf, T H; Heidel, F; Lipka, D; Duyster, J; Huber, C; Fischer, T

    2010-02-04

    In chronic myeloid leukemia, activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway is crucial for survival and proliferation of leukemic cells. Essential downstream molecules involve mammalian target of rapamycin (mTOR) and S6-kinase. Here, we present a comprehensive analysis of the molecular events involved in activation of these key signaling pathways. We provide evidence for a previously unrecognized phospholipase C-gamma1 (PLC-gamma1)-controlled mechanism of mTOR/p70S6-kinase activation, which operates in parallel to the classical Akt-dependent machinery. Short-term imatinib treatment of Bcr-Abl-positive cells caused dephosphorylation of p70S6-K and S6-protein without inactivation of Akt. Suppression of Akt activity alone did not affect phosphorylation of p70-S6K and S6. These results suggested the existence of an alternative mechanism for mTOR/p70S6-K activation. In Bcr-Abl-expressing cells, we detected strong PLC-gamma1 activation, which was suppressed by imatinib. Pharmacological inhibition and siRNA knockdown of PLC-gamma1 blocked p70S6-K and S6 phosphorylation. By inhibiting the Ca-signaling, CaMK and PKCs we demonstrated participation of these molecules in the pathway. Suppression of PLC-gamma1 led to inhibition of cell proliferation and enhanced apoptosis. The novel pathway proved to be essential for survival and proliferation of leukemic cells and almost complete cell death was observed upon combined PLC-gamma1 and Bcr-Abl inhibition. The pivotal role of PLC-gamma1 was further confirmed in a mouse leukemogenesis model.

  6. In search of AKT kinase inhibitors as anticancer agents: structure-based design, docking and molecular dynamics studies of 2,4,6-trisubstituted pyridines.

    PubMed

    Trejo-Soto, Pedro Josué; Hernández-Campos, Alicia; Romo-Mancillas, Antonio; Medina-Franco, José L; Castillo, Rafael

    2017-02-02

    The AKT isoforms are a group of key kinases that play a critical role in tumorigenesis. These enzymes are overexpressed in different types of cancers, such as breast, colon, prostate, ovarian and lung. Because of its relevance the AKT isoforms are attractive targets for the design of anticancer molecules. However, it has been found that AKT1 and AKT3 isoforms have a main role in tumor progression and metastasis; thus, the identification of AKT isoforms specific inhibitors seems to be a challenge. Previously, we identified an ATP binding pocket pan-AKT inhibitor, this compound is a 2,4,6-trisubstituted pyridine (compound 11), which represents a new interesting scaffold for the developing of AKT inhibitors. Starting from the 2,4,6-trisubstituted pyridine scaffold, and guided by structure-based design technique, 42 new inhibitors were designed and further evaluated in the three AKT isoforms by multiple docking approach and molecular dynamics. Results showed that seven compounds presented binding selectivity for AKT1 and AKT3, better than for AKT2. The binding affinities of these seven compounds on AKT1 and AKT3 isoforms were mainly determined by hydrophobic contributions between the aromatic portion at position 4 of the pyridine ring with residues Phe236/234, Phe237/235, Phe438/435 and Phe442/439 in the ATP binding pocket. Results presented in this work provide an addition knowledge leading to promising selective AKT inhibitors.

  7. HspB8 mediates neuroprotection against OGD/R in N2A cells through the phosphoinositide 3-kinase/Akt pathway.

    PubMed

    Hu, Zhiping; Yang, Binbin; Mo, Xiaoye; Zhou, Fangfang

    2016-08-01

    In a previous study, we found that Heat shock protein B8 (HspB8) overexpression could prevent the apoptosis and reduced cell viability induced by OGD/R and showed that the neuroprotective effect of HspB8 was mediated by inhibition of the mitochondrial apoptotic pathway. In recent study, HspB8 has been shown to protect the heart against ischemia/reperfusion (I/R) injury via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. However, whether this protective effect applied to brain I/R injury remained unexplored. To further test the mechanism of HspB8's effects in brain, we used oxygen-glucose deprivation followed by reperfusion (OGD/R), an in vitro model of ischemia to examine the involvement of PI3K/Akt signaling by treating mouse neuroblastoma cells (N2A cells) (untransfected or transfected with an HspB8 expression vector) with the PI3K inhibitor LY294002 before OGD/R. Our results revealed that the apoptosis-suppressing effect of HspB8 was mediated by the PI3K/Akt pathway. Therefore, HspB8 protected the N2A cells against OGD/R insult, possibly by activating the PI3K/Akt signaling pathway.

  8. Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain.

    PubMed

    Deak, M; Casamayor, A; Currie, R A; Downes, C P; Alessi, D R

    1999-05-28

    A plant homologue of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1) has been identified in Arabidopsis and rice which displays 40% overall identity with human 3-phosphoinositide-dependent protein kinase-1. Like the mammalian 3-phosphoinositide-dependent protein kinase-1, Arabidopsis 3-phosphoinositide-dependent protein kinase-1 and rice 3-phosphoinositide-dependent protein kinase-1 possess a kinase domain at N-termini and a pleckstrin homology domain at their C-termini. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 can rescue lethality in Saccharomyces cerevisiae caused by disruption of the genes encoding yeast 3-phosphoinositide-dependent protein kinase-1 homologues. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 interacts via its pleckstrin homology domain with phosphatidic acid, PtdIns3P, PtdIns(3,4,5)P3 and PtdIns(3,4)P2 and to a lesser extent with PtdIns(4,5)P2 and PtdIns4P. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is able to activate human protein kinase B alpha (PKB/AKT) in the presence of PtdIns(3,4,5)P3. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is only the second plant protein reported to possess a pleckstrin homology domain and the first plant protein shown to bind 3-phosphoinositides.

  9. AKT and oxidative stress team up to kill cancer cells.

    PubMed

    Dolado, Ignacio; Nebreda, Angel R

    2008-12-09

    AKT, a protein kinase frequently hyperactivated in cancer, plays an important role in cell survival and contributes to tumor cell resistance to cytotoxic therapies. A new study in this issue of Cancer Cell shows that AKT also induces the accumulation of oxygen radicals, which can be exploited to selectively kill cancer cells containing high levels of AKT activity.

  10. Short-term low-protein diet during pregnancy alters islet area and protein content of phosphatidylinositol 3-kinase pathway in rats.

    PubMed

    Salvatierra, Cristiana S B; Reis, Sílvia R L; Pessoa, Ana F M; De Souza, Letícia M I; Stoppiglia, Luiz F; Veloso, Roberto V; Reis, Marise A B; Carneiro, Everardo M; Boschero, Antonio C; Colodel, Edson M; Arantes, Vanessa C; Latorraca, Márcia Q

    2015-01-01

    The phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways mediate β cell growth, proliferation, survival and death. We investigated whether protein restriction during pregnancy alters islet morphometry or the expression and phosphorylation of several proteins involved in the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. As controls, adult pregnant and non-pregnant rats were fed a normal-protein diet (17%). Pregnant and non-pregnant rats in the experimental groups were fed a low-protein diet (6%) for 15 days. Low protein diet during pregnancy increased serum prolactin level, reduced serum corticosterone concentration and the expression of both protein kinase B/AKT1 (AKT1) and p70 ribosomal protein S6 kinase (p70S6K), as well as the islets area, but did not alter the insulin content of pancreatic islets. Pregnancy increased the expression of the Src homology/collagen (SHC) protein and the extracellular signal-regulated kinases 1/2 (ERK1/2) independent of diet. ERK1/2 phosphorylation (pERK1/2) was similar in islets from pregnant and non-pregnant rats fed a low-protein diet, and was higher in islets from pregnant rats than in islets from non-pregnant rats fed a normal-protein diet. Thus, a short-term, low-protein diet during pregnancy was sufficient to reduce the levels of proteins in the phosphatidylinositol 3-kinase pathway and affect islet morphometry.

  11. Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway in non-small cell lung cancer

    PubMed Central

    2015-01-01

    Non-small cell lung cancer (NSCLC) is a devastating disease with poor prognosis. Systemic chemotherapy has been the mainstay of treatment in advanced disease for many decades. Personalized targeted therapy such as epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) and crizotinib has significantly changed the treatment paradigm in NSCLC. The future success of development of molecular targeted therapy relies on the understanding of signal transduction pathways. The PI3K-Akt-mTOR pathway is commonly deregulated in human malignancy including NSCLC. Therefore, this pathway is a target for many therapeutic developments. This review will provide an overview of PI3K-Akt-mTOR signaling pathway, genetic alterations activating the pathway and clinical therapeutic development of pathway inhibitors. PMID:25870799

  12. Protein kinase biochemistry and drug discovery.

    PubMed

    Schwartz, Phillip A; Murray, Brion W

    2011-12-01

    Protein kinases are fascinating biological catalysts with a rapidly expanding knowledge base, a growing appreciation in cell regulatory control, and an ascendant role in successful therapeutic intervention. To better understand protein kinases, the molecular underpinnings of phosphoryl group transfer, protein phosphorylation, and inhibitor interactions are examined. This analysis begins with a survey of phosphate group and phosphoprotein properties which provide context to the evolutionary selection of phosphorylation as a central mechanism for biological regulation of most cellular processes. Next, the kinetic and catalytic mechanisms of protein kinases are examined with respect to model aqueous systems to define the elements of catalysis. A brief structural biology overview further delves into the molecular basis of catalysis and regulation of catalytic activity. Concomitant with a prominent role in normal physiology, protein kinases have important roles in the disease state. To facilitate effective kinase drug discovery, classic and emerging approaches for characterizing kinase inhibitors are evaluated including biochemical assay design, inhibitor mechanism of action analysis, and proper kinetic treatment of irreversible inhibitors. As the resulting protein kinase inhibitors can modulate intended and unintended targets, profiling methods are discussed which can illuminate a more complete range of an inhibitor's biological activities to enable more meaningful cellular studies and more effective clinical studies. Taken as a whole, a wealth of protein kinase biochemistry knowledge is available, yet it is clear that a substantial extent of our understanding in this field remains to be discovered which should yield many new opportunities for therapeutic intervention.

  13. Molecular cloning and characterization of a threonine/serine protein kinase lvakt from Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Ruan, Lingwei; Liu, Rongdiao; Xu, Xun; Shi, Hong

    2014-07-01

    The phosphatidylinositol 3-kinase (PI3K)-AKT pathway is involved in various cellular functions, including anti-apoptosis, protein synthesis, glucose metabolism and cell cycling. However, the role of the PI3K-AKT pathway in crustaceans remains unclear. In the present study, we cloned and characterized the AKT gene lvakt from Litopenaeus vannamei. The 511-residue LVAKT was highly conserved; contained a PH domain, a catalytic domain and a hydrophobic domain; and was highly expressed in the heart and gills of L. vannamei. We found, using Real-Time Quantitative PCR (Q-PCR) analysis, that lvakt was up-regulated during early white spot syndrome virus (WSSV) infection. Moreover, the PI3K-specific inhibitor, LY294002, reduced viral gene transcription, implying that the PI3K-AKT pathway might be hijacked by WSSV. Our results therefore suggest that LVAKT may play an important role in the shrimp immune response against WSSV.

  14. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway.

    PubMed

    Sivagurunathan, Suganya; Palanisamy, Karthikka; Arunachalam, Jayamuruga Pandian; Chidambaram, Subbulakshmi

    2017-03-01

    PIWI subfamily of proteins is shown to be primarily expressed in germline cells. They maintain the genomic integrity by silencing the transposable elements. Although the role of PIWI proteins in germ cells has been documented, their presence and function in somatic cells remains unclear. Intriguingly, we detected all four members of PIWI-like proteins in human ocular tissues and somatic cell lines. When HIWI2 was knocked down in retinal pigment epithelial cells, the typical honeycomb morphology was affected. Further analysis showed that the expression of tight junction (TJ) proteins, CLDN1, and TJP1 were altered in HIWI2 knockdown. Moreover, confocal imaging revealed disrupted TJP1 assembly at the TJ. Previous studies report the role of GSK3β in regulating TJ proteins. Accordingly, phospho-kinase proteome profiler array indicated increased phosphorylation of Akt and GSK3α/β in HIWI2 knockdown, suggesting that HIWI2 might affect TJ proteins through Akt-GSK3α/β signaling axis. Moreover, treating the HIWI2 knockdown cells with wortmannin increased the levels of TJP1 and CLDN1. Taken together, our study demonstrates the presence of PIWI-like proteins in somatic cells and the possible role of HIWI2 in preserving the functional integrity of epithelial cells probably by modulating the phosphorylation status of Akt.

  15. Cyclic-GMP-dependent protein kinase inhibits the Ras/Mitogen-activated protein kinase pathway.

    PubMed

    Suhasini, M; Li, H; Lohmann, S M; Boss, G R; Pilz, R B

    1998-12-01

    Agents which increase the intracellular cyclic GMP (cGMP) concentration and cGMP analogs inhibit cell growth in several different cell types, but it is not known which of the intracellular target proteins of cGMP is (are) responsible for the growth-suppressive effects of cGMP. Using baby hamster kidney (BHK) cells, which are deficient in cGMP-dependent protein kinase (G-kinase), we show that 8-(4-chlorophenylthio)guanosine-3', 5'-cyclic monophosphate and 8-bromoguanosine-3',5'-cyclic monophosphate inhibit cell growth in cells stably transfected with a G-kinase Ibeta expression vector but not in untransfected cells or in cells transfected with a catalytically inactive G-kinase. We found that the cGMP analogs inhibited epidermal growth factor (EGF)-induced activation of mitogen-activated protein (MAP) kinase and nuclear translocation of MAP kinase in G-kinase-expressing cells but not in G-kinase-deficient cells. Ras activation by EGF was not impaired in G-kinase-expressing cells treated with cGMP analogs. We show that activation of G-kinase inhibited c-Raf kinase activation and that G-kinase phosphorylated c-Raf kinase on Ser43, both in vitro and in vivo; phosphorylation of c-Raf kinase on Ser43 uncouples the Ras-Raf kinase interaction. A mutant c-Raf kinase with an Ala substitution for Ser43 was insensitive to inhibition by cGMP and G-kinase, and expression of this mutant kinase protected cells from inhibition of EGF-induced MAP kinase activity by cGMP and G-kinase, suggesting that Ser43 in c-Raf is the major target for regulation by G-kinase. Similarly, B-Raf kinase was not inhibited by G-kinase; the Ser43 phosphorylation site of c-Raf is not conserved in B-Raf. Activation of G-kinase induced MAP kinase phosphatase 1 expression, but this occurred later than the inhibition of MAP kinase activation. Thus, in BHK cells, inhibition of cell growth by cGMP analogs is strictly dependent on G-kinase and G-kinase activation inhibits the Ras/MAP kinase pathway (i) by

  16. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  17. Probing the PI3K/Akt/mTor pathway using 31P-NMR spectroscopy: routes to glycogen synthase kinase 3

    PubMed Central

    Phyu, Su M.; Tseng, Chih-Chung; Fleming, Ian N.; Smith, Tim A. D.

    2016-01-01

    Akt is an intracellular signalling pathway that serves as an essential link between cell surface receptors and cellular processes including proliferation, development and survival. The pathway has many downstream targets including glycogen synthase kinase3 which is a major regulatory kinase for cell cycle transit as well as controlling glycogen synthase activity. The Akt pathway is frequently up-regulated in cancer due to overexpression of receptors such as the epidermal growth factor receptor, or mutation of signalling pathway kinases resulting in inappropriate survival and proliferation. Consequently anticancer drugs have been developed that target this pathway. MDA-MB-468 breast and HCT8 colorectal cancer cells were treated with inhibitors including LY294002, MK2206, rapamycin, AZD8055 targeting key kinases in/associated with Akt pathway and the consistency of changes in 31P-NMR-detecatable metabolite content of tumour cells was examined. Treatment with the Akt inhibitor MK2206 reduced phosphocholine levels in MDA-MB-468 cells. Treatment with either the phosphoinositide-3-kinase inhibitor, LY294002 and pan-mTOR inhibitor, AZD8055 but not pan-Akt inhibitor MK2206 increased uridine-5′-diphosphate-hexose cell content which was suppressed by co-treatment with glycogen synthase kinase 3 inhibitor SB216763. This suggests that there is an Akt-independent link between phosphoinositol-3-kinase and glycogen synthase kinase3 and demonstrates the potential of 31P-NMR to probe intracellular signalling pathways. PMID:27811956

  18. Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymal stem cells potentially through activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway.

    PubMed

    Marędziak, Monika; Tomaszewski, Krzysztof; Polinceusz, Paulina; Lewandowski, Daniel; Marycz, Krzysztof

    2017-01-01

    The aim of this work was to investigate the effects of 0.5T static magnetic field (sMF) on the viability and proliferation rate of human adipose-derived mesenchymal stromal stem cells (hASCs) via activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathway. In a 7-d culture we examined cell growth kinetic and population doubling time (PDT). We also examined cell morphology and the cellular senescence markers level. Exposure to sMF enhanced the viability of these cells. However, the effect was blocked by treating the cells with LY294002, a P13K inhibitor. We compared this effect by Western Blot analysis of Akt protein expression. We also examined whether the cell response on sMF stimulation is dependent on integrin engagement and we measured integrin gene expression. Our results suggest that stimulation using sMF is a viable method to improve hASC viability. sMF is involved in mechanisms associated with controlling cell proliferative potential signaling events.

  19. Paclitaxel resistance in MCF-7/PTX cells is reversed by paeonol through suppression of the SET/phosphatidylinositol 3-kinase/Akt pathway.

    PubMed

    Zhang, Weipeng; Cai, Jiangxia; Chen, Siying; Zheng, Xiaowei; Hu, Sasa; Dong, Weihua; Lu, Jun; Xing, Jianfeng; Dong, Yalin

    2015-07-01

    Breast cancer is one of the most prevalent types of malignant tumor. Paclitaxel is widely used in the treatment of breast cancer; however, the major problem contributing to the failure of chemotherapy in breast cancer is the development of drug resistance. Therefore, it is necessary to identify novel therapeutic targets and reversal agents for breast cancer. In the present study, the protein expression levels of SET, protein phosphatase 2A (PP2A) and phosphatidylinositol 3-kinase (PI3K)/Akt pathway were determined in MCF-7/PTX human breast carcinoma paclitaxel-resistant cells using western blot analysis. Small interference RNAs (siRNAs) were used to knock down the gene expression of SET in MCF-7/PTX cells and the cell viability was assessed following treatment with paclitaxel, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays and flow cytometry. In addition, western blot analysis was used to determined PI3K/Akt pathway activity following SET knockdown. Furthermore, the reversal effects of paeonol on paclitaxel, and its underlying mechanisms of action, were investigated using western blot analysis and reverse transcription-quantitative polymerase chain reaction. The results demonstrated that increased levels of SET and PI3K/Akt pathway proteins were present in the MCF-7/PTX cells, compared with normal MCF-7 cells. Knockdown of SET significantly sensitized MCF-7/PTX cells to paclitaxel and induced cell apoptosis. In addition, the expression levels of the adenosine triphosphate binding cassette (ABC) transporter proteins were significantly reduced in the MCF-7/PTX cells compared with the normal MCF-7 cells. SET-induced paclitaxel resistance was found to be associated with the activation of the PI3K/Akt pathway. Paeonol significantly reduced the mRNA and protein expression levels of SET in the MCF-7/PTX cells. Furthermore, paeonol significantly sensitized the MCF-7/PTX to paclitaxel via regulation of ABC transporters, B cell lymphoma-2 (Bcl-2

  20. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation

    PubMed Central

    Moens, Ugo; Kostenko, Sergiy; Sveinbjørnsson, Baldur

    2013-01-01

    Mitogen-activated protein kinase (MAPK) pathways are implicated in several cellular processes including proliferation, differentiation, apoptosis, cell survival, cell motility, metabolism, stress response and inflammation. MAPK pathways transmit and convert a plethora of extracellular signals by three consecutive phosphorylation events involving a MAPK kinase kinase, a MAPK kinase, and a MAPK. In turn MAPKs phosphorylate substrates, including other protein kinases referred to as MAPK-activated protein kinases (MAPKAPKs). Eleven mammalian MAPKAPKs have been identified: ribosomal-S6-kinases (RSK1-4), mitogen- and stress-activated kinases (MSK1-2), MAPK-interacting kinases (MNK1-2), MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and MAPKAPK-5 (MK5). The role of these MAPKAPKs in inflammation will be reviewed. PMID:24705157

  1. Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth

    PubMed Central

    Li, Jie; Zhang, Chao; Jiang, Hongchuan; Cheng, Jiao

    2015-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a master regulator of the transcriptional response to hypoxia. HIF-1α is one of the most compelling anticancer targets. Andrographolide (Andro) was newly identified to inhibit HIF-1 in T47D cells (a half maximal effective concentration [EC50] of 1.03×10−7 mol/L), by a dual-luciferase reporter assay. It suppressed HIF-1α protein and gene accumulation, which was dependent on the inhibition of upstream phosphatidylinositol 3-kinase (PI3K)/AKT pathway. It also abrogated the expression of HIF-1 target vascular endothelial growth factor (VEGF) gene and protein. Further, Andro inhibited T47D and MDA-MB-231 cell proliferation and colony formation. In addition, it exhibited significant in vivo efficacy and antitumor potential against the MDA-MB-231 xenograft in nude mice. In conclusion, these results highlighted the potential effects of Andro, which inhibits HIF-1, and hence may be developed as an antitumor agent for breast cancer therapy in future. PMID:25709476

  2. The MYC-Associated Protein CDCA7 Is Phosphorylated by AKT To Regulate MYC-Dependent Apoptosis and Transformation

    PubMed Central

    Gill, R. Montgomery; Gabor, Timothy V.; Couzens, Amber L.

    2013-01-01

    Cell division control protein A7 (CDCA7) is a recently identified target of MYC-dependent transcriptional regulation. We have discovered that CDCA7 associates with MYC and that this association is modulated in a phosphorylation-dependent manner. The prosurvival kinase AKT phosphorylates CDCA7 at threonine 163, promoting binding to 14-3-3, dissociation from MYC, and sequestration to the cytoplasm. Upon serum withdrawal, induction of CDCA7 expression in the presence of MYC sensitized cells to apoptosis, whereas CDCA7 knockdown reduced MYC-dependent apoptosis. The transformation of fibroblasts by MYC was reduced by coexpression of CDCA7, while the non-MYC-interacting protein Δ(156–187)-CDCA7 largely inhibited MYC-induced transformation. These studies provide insight into a new mechanism by which AKT signaling to CDCA7 could alter MYC-dependent growth and transformation, contributing to tumorigenesis. PMID:23166294

  3. Src kinase integrates PI3K/Akt and MAPK/ERK1/2 pathways in T3-induced Na-K-ATPase activity in adult rat alveolar cells.

    PubMed

    Lei, Jianxun; Ingbar, David H

    2011-11-01

    We previously reported that the 3,5,3'-triiodo-L-thyronine (T3)-induced increase of Na-K-ATPase activity in rat alveolar epithelial cells (AECs) required activation of Src kinase, PI3K, and MAPK/ERK1/2. In the present study, we assessed the role of Akt in Na-K-ATPase activity and the interaction between the PI3K and MAPK in response to T3 by using MP48 cells, inhibitors, and constitutively active mutants in the MP48 (alveolar type II-like) cell line. The Akt inhibitor VIII blocked T3-induced increases in Na-K-ATPase activity and amount of plasma membrane Na-K-ATPase protein. The Akt inhibitor VIII also abolished the increase in Na-K-ATPase activity induced by constitutively active mutants of either Src kinase or PI3K. Moreover, constitutively active mutants of Akt increased Na-K-ATPase activity in the absence of T3. Thus activation of Akt was required for T3-induced Na-K-ATPase activity in AECs and is sufficient in the absence of T3. Inhibitors of Src kinase (PP1), PI3K (wortmannin), and ERK1/2 (U0126) all blocked the T3-induced Na-K-ATPase activity. PP1 blocked the activation of PI3K and also ERK1/2 by T3, whereas U0126 did not prevent T3 activation of Src kinase or PI3K activity. Wortmannin did not significantly alter T3-increased MAPK/ERK1/2 activity, suggesting that T3-activated PI3K/Akt and MAPK/ERK1/2 pathways acted downstream of the Src kinase. Furthermore, in the absence of T3, a constitutively active mutant of Src kinase increased activities of Na-K-ATPase, PI3K, and MAPK/ERK1/2. A constitutively active mutant of PI3K enhanced Na-K-ATPase activity but did not alter the MAPK/ERK1/2 activity significantly. In summary, in adult rat AECs T3-stimulated Src kinase activity can activate both PI3K/Akt and MAPK/ERK1/2, and activation of Akt is necessary for T3-induced Na-K-ATPase activity.

  4. RNA interference-mediated knockdown of Aurora-B alters the metastatic behavior of A549 cells via modulation of the phosphoinositide 3-kinase/Akt signaling pathway.

    PubMed

    Zhou, Long Dian; Xiong, Xu; Long, Xin Hua; Liu, Zhi Li; Huang, Shan Hu; Zhang, Wei

    2014-11-01

    Accumulating evidence has revealed that an elevated expression level of Aurora-B is associated with metastasis in various types of malignant tumor. However, it is currently unclear whether this molecule is involved in non-small lung cancer (NSCLC) metastasis, and the molecular mechanisms associated with Aurora-B and metastasis remain unknown. In the present study, in order to investigate whether Aurora-B is involved in the development and metastasis of NSCLC, the Aurora-B protein expression in NSCLC tissues was detected by immunohistochemistry and its association with metastasis was analyzed. The results revealed that the expression levels of the Aurora-B protein in tissues obtained from NSCLC patients with lymph node metastasis were significantly higher than those without metastatic disease. Furthermore, the effect of Aurora-B inhibition on A549 cell migration and invasion, as well as the activity of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was evaluated. Aurora-B was inhibited in the A549 cells using short hairpin RNA, and the cell migration and invasion rates were investigated using wound healing and Transwell invasion assays. In addition, the expression of the main proteins in the PI3K/Akt/nuclear factor-κB (NF-κB) signaling pathway, and matrix metalloproteinase (MMP)-2 and -9 were measured by western blot analysis. The results demonstrated that cell migration and invasion were decreased as a result of silencing Aurora-B. Furthermore, the activity of the PI3K/Akt/NF-κB signaling pathway and the expression of MMP-2 and -9 protein were suppressed by silencing Aurora-B. The results of the present study indicate that the knockdown of Aurora-B suppresses A549 cell invasion and migration via the inhibition of the PI3K/Akt signaling pathway in vitro and thus, targeting Aurora-B may present a potential treatment strategy for NSCLC.

  5. RNA interference-mediated knockdown of Aurora-B alters the metastatic behavior of A549 cells via modulation of the phosphoinositide 3-kinase/Akt signaling pathway

    PubMed Central

    ZHOU, LONG DIAN; XIONG, XU; LONG, XIN HUA; LIU, ZHI LI; HUANG, SHAN HU; ZHANG, WEI

    2014-01-01

    Accumulating evidence has revealed that an elevated expression level of Aurora-B is associated with metastasis in various types of malignant tumor. However, it is currently unclear whether this molecule is involved in non-small lung cancer (NSCLC) metastasis, and the molecular mechanisms associated with Aurora-B and metastasis remain unknown. In the present study, in order to investigate whether Aurora-B is involved in the development and metastasis of NSCLC, the Aurora-B protein expression in NSCLC tissues was detected by immunohistochemistry and its association with metastasis was analyzed. The results revealed that the expression levels of the Aurora-B protein in tissues obtained from NSCLC patients with lymph node metastasis were significantly higher than those without metastatic disease. Furthermore, the effect of Aurora-B inhibition on A549 cell migration and invasion, as well as the activity of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was evaluated. Aurora-B was inhibited in the A549 cells using short hairpin RNA, and the cell migration and invasion rates were investigated using wound healing and Transwell invasion assays. In addition, the expression of the main proteins in the PI3K/Akt/nuclear factor-κB (NF-κB) signaling pathway, and matrix metalloproteinase (MMP)-2 and -9 were measured by western blot analysis. The results demonstrated that cell migration and invasion were decreased as a result of silencing Aurora-B. Furthermore, the activity of the PI3K/Akt/NF-κB signaling pathway and the expression of MMP-2 and -9 protein were suppressed by silencing Aurora-B. The results of the present study indicate that the knockdown of Aurora-B suppresses A549 cell invasion and migration via the inhibition of the PI3K/Akt signaling pathway in vitro and thus, targeting Aurora-B may present a potential treatment strategy for NSCLC. PMID:25295091

  6. Evolutionary Ancestry of Eukaryotic Protein Kinases and Choline Kinases*

    PubMed Central

    Lai, Shenshen; Safaei, Javad

    2016-01-01

    The reversible phosphorylation of proteins catalyzed by protein kinases in eukaryotes supports an important role for eukaryotic protein kinases (ePKs) in the emergence of nucleated cells in the third superkingdom of life. Choline kinases (ChKs) could also be critical in the early evolution of eukaryotes, because of their function in the biosynthesis of phosphatidylcholine, which is unique to eukaryotic membranes. However, the genomic origins of ePKs and ChKs are unclear. The high degeneracy of protein sequences and broad expansion of ePK families have made this fundamental question difficult to answer. In this study, we identified two class-I aminoacyl-tRNA synthetases with high similarities to consensus amino acid sequences of human protein-serine/threonine kinases. Comparisons of primary and tertiary structures supported that ePKs and ChKs evolved from a common ancestor related to glutaminyl aminoacyl-tRNA synthetases, which may have been one of the key factors in the successful of emergence of ancient eukaryotic cells from bacterial colonies. PMID:26742849

  7. Development of Certain Protein Kinase Inhibitors with the Components from Traditional Chinese Medicine

    PubMed Central

    Liu, Minghua; Zhao, Ge; Cao, Shousong; Zhang, Yangyang; Li, Xiaofang; Lin, Xiukun

    2017-01-01

    Traditional Chinese medicines (TCMs) have been used in China for more than two thousand years, and some of them have been confirmed to be effective in cancer treatment. Protein kinases play critical roles in control of cell growth, proliferation, migration, survival, and angiogenesis and mediate their biological effects through their catalytic activity. In recent years, numerous protein kinase inhibitors have been developed and are being used clinically. Anticancer TCMs represent a large class of bioactive substances, and some of them display anticancer activity via inhibiting protein kinases to affect the phosphoinositide 3-kinase, serine/threonine-specific protein kinases, pechanistic target of rapamycin (PI3K/AKT/mTOR), P38, mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) pathways. In the present article, we comprehensively reviewed several components isolated from anticancer TCMs that exhibited significantly inhibitory activity toward a range of protein kinases. These components, which belong to diverse structural classes, are reviewed herein, based upon the kinases that they inhibit. The prospects and problems in development of the anticancer TCMs are also discussed. PMID:28119606

  8. Binding of Galectin-3, a β-Galactoside-binding Lectin, to MUC1 Protein Enhances Phosphorylation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) and Akt, Promoting Tumor Cell Malignancy.

    PubMed

    Mori, Yugo; Akita, Kaoru; Yashiro, Masakazu; Sawada, Tetsuji; Hirakawa, Kosei; Murata, Takeomi; Nakada, Hiroshi

    2015-10-23

    Both mucin 1 (MUC1) and galectin-3 are known to be overexpressed in various malignant tumors and associated with a poor prognosis. It has been extensively reported that MUC1 is involved in potentiation of growth factor-dependent signal transduction. Because some carbohydrate moieties carried on MUC1 change to preferable ones for binding of galectin-3 in cancer cells, we speculated that MUC1-mediated signaling may occur through direct binding of galectin-3. Immunochemical studies showed that the distribution of galectin-3 coincided with that of MUC1 in various human tumor tissues but not in human nonmalignant tissues, and the level of galectin-3 retained on the surface of various cancer cells paralleled that of MUC1. Treatment of MUC1-expressing cells with galectin-3 induced phosphorylation of ERK1/2 and Akt following enhanced phosphorylation of MUC1 C-terminal domain, consistently promoting tumor cell malignancy. It is also noted that this enhanced phosphorylation occurred independently of EGF receptor-mediated signaling in both EGF receptor- and MUC1-expressing cells, and multivalency of galectin-3 was important for initiation of MUC1-mediated signaling. Expectedly, both silencing of endogenous galectin-3 and treatment with galectin-3 antagonists down-regulated cell proliferation of MUC1-expressing cells. These results suggest that the binding of galectin-3 to MUC1 plays a key role in MUC1-mediated signaling. Thus, constitutive activation of MUC1-mediated signaling in an autocrine/paracrine manner caused by ligation of galectin-3 promotes uncontrolled tumor cell malignancy. This signaling may be another MUC1-mediated pathway and function in parallel with a growth factor-dependent MUC1-mediated signaling pathway.

  9. AKT/mTOR and C-Jun N-terminal Kinase (JNK) Signaling Pathways Are Required for Chrysotile Asbestos-Induced Autophagy

    PubMed Central

    Lin, Ziying; Liu, Tie; Kamp, David W; Wang, Yahong; He, Huijuan; Zhou, Xu; Li, Donghong; Yang, Lawei; Zhao, Bin; Liu, Gang

    2014-01-01

    Chrysotile asbestos is closely associated with excess mortality from pulmonary diseases such as lung cancer, mesothelioma, and asbestosis. Although multiple mechanisms in which chrysotile asbestos fibers induce pulmonary disease have been identified, the role of autophagy in human lung epithelial cells has not been examined. In the present study, we evaluated whether chrysotile asbestos induces autophagy in A549 human lung epithelial cells, and then analyzed the possible underlying molecular mechanism. Chrysotile asbestos-induced autophagy in A549 cells based on a series of biochemical and microscopic autophagy markers. We observed that asbestos increased A549 cell microtubule-associated protein 2 light chains 3 (LC3-II) expression, an autophagy marker, in conjunction with dephosphorylation of phospho-AKT, phospho-mTOR, and phospho-P70s6k. Notably, AKT1/AKT2 double knockout (AKT DKO) murine embryonic fibroblasts (MEFs) had negligible asbestos-induced LC3-II expression supporting a crucial role for AKT signaling. Chrysotile asbestos also led to the phosphorylation/activation of Jun N-terminal kinase (JNK) and p38 MAPK. Pharmacologic inhibition of JNK, but not p38 MAPK, dramatically inhibited the protein expression of LC3-II. Moreover, JNK2−/− MEFs but not JNK1−/− MEFs blocked LC3-II levels induced by chrysotile asbestos. In addition, NAC, an antioxidant, attenuated chrysotile asbestos-induced dephosphorylation of p-AKT and completely abolished phosphorylation/activation of JNK. Finally, we demonstrated that chrysotile asbestos-induced apoptosis was not affected by the presence of the autophagy inhibitors 3-methyladenine (3-MA) or ATG5 (autophagy-related gene 5) siRNA, indicating that chrysotile asbestos-induced autophagy may be adaptive rather than prosurvival. Our findings demonstrate that AKT/mTOR and JNK2 signaling pathways are required for chrysotile asbestos-induced autophagy. These data provide a mechanistic basis for possible future clinical

  10. AKT capture by feline leukemia virus.

    PubMed

    Kawamura, Maki; Umehara, Daigo; Odahara, Yuka; Miyake, Ariko; Ngo, Minh Ha; Ohsato, Yoshiharu; Hisasue, Masaharu; Nakaya, Masa-Aki; Watanabe, Shinya; Nishigaki, Kazuo

    2016-12-22

    Oncogene-containing retroviruses are generated by recombination events between viral and cellular sequences, a phenomenon called "oncogene capture". The captured cellular genes, referred to as "v-onc" genes, then acquire new oncogenic properties. We report a novel feline leukemia virus (FeLV), designated "FeLV-AKT", that has captured feline c-AKT1 in feline lymphoma. FeLV-AKT contains a gag-AKT fusion gene that encodes the myristoylated Gag matrix protein and the kinase domain of feline c-AKT1, but not its pleckstrin homology domain. Therefore, it differs structurally from the v-Akt gene of murine retrovirus AKT8. AKT may be involved in the mechanisms underlying malignant diseases in cats.

  11. Breast Cancer Chemoresistance Mechanisms Through PI 3-Kinase and Akt Signaling

    DTIC Science & Technology

    2014-05-01

    discovered that the Akt pathway modulates breast cancer cell survival in response to genotoxic agents, and discovered a new substrate of Akt, MERIT40, that...12 3         INTRODUCTION Genotoxic chemotherapy agents are used to...resistance to genotoxic chemotherapy agents is activation of the PI3K/Akt signaling cascade. We proposed that genotoxic drugs induce the activation of

  12. Breast Cancer Chemoresistance Mechanisms Through PI 3-Kinase and Akt Signaling

    DTIC Science & Technology

    2015-07-01

    PI3K/Akt pathway inhibitors including the PI3K inhibitor (BKM120) and the Akt inhibitor (MK2206) (Figure 13). Figure 12. Hyperactive (A) PI3K or...The PI3K/Akt pathway is hyperactive in more than 70% of breast tumors and is critical for tumor progression and resistance to anti-cancer drugs

  13. Preliminary crystallographic analysis of the ankyrin-repeat domain of Arabidopsis thaliana AKT1: identification of the domain boundaries for protein crystallization

    PubMed Central

    Chaves-Sanjuán, Antonio; Sánchez-Barrena, María José; González-Rubio, Juana María; Albert, Armando

    2014-01-01

    The Arabidopsis thaliana K+ transporter 1 (AKT1) participates in the maintenance of an adequate cell potassium (K+) concentration. The CBL-interacting protein kinase 23 (CIPK23) activates AKT1 for K+ uptake under low-K+ conditions. This process is mediated by the interaction between the cytosolic ankyrin-repeat (AR) domain of AKT1 and the kinase domain of CIPK23. However, the precise boundaries of the AR domain and the residues responsible for the interaction are still unknown. Here, the optimization procedure to obtain an AR domain construct suitable for crystallization and the preliminary crystallographic analysis of the obtained crystals are reported. The crystals belonged to space group P21212, with unit-cell parameters a = 34.83, b = 65.89, c = 85.44 Å, and diffracted to 1.98 Å resolution. PMID:24699751

  14. Preliminary crystallographic analysis of the ankyrin-repeat domain of Arabidopsis thaliana AKT1: identification of the domain boundaries for protein crystallization.

    PubMed

    Chaves-Sanjuán, Antonio; Sánchez-Barrena, María José; González-Rubio, Juana María; Albert, Armando

    2014-04-01

    The Arabidopsis thaliana K(+) transporter 1 (AKT1) participates in the maintenance of an adequate cell potassium (K(+)) concentration. The CBL-interacting protein kinase 23 (CIPK23) activates AKT1 for K(+) uptake under low-K(+) conditions. This process is mediated by the interaction between the cytosolic ankyrin-repeat (AR) domain of AKT1 and the kinase domain of CIPK23. However, the precise boundaries of the AR domain and the residues responsible for the interaction are still unknown. Here, the optimization procedure to obtain an AR domain construct suitable for crystallization and the preliminary crystallographic analysis of the obtained crystals are reported. The crystals belonged to space group P21212, with unit-cell parameters a = 34.83, b = 65.89, c = 85.44 Å, and diffracted to 1.98 Å resolution.

  15. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    PubMed Central

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  16. AR-v7 protein expression is regulated by protein kinase and phosphatase.

    PubMed

    Li, Yinan; Xie, Ning; Gleave, Martin E; Rennie, Paul S; Dong, Xuesen

    2015-10-20

    Failure of androgen-targeted therapy and progression of castration-resistant prostate cancer (CRPC) are often attributed to sustained expression of the androgen receptor (AR) and its major splice variant, AR-v7. Although the new generation of anti-androgens such as enzalutamide effectively inhibits AR activity, accumulating pre-clinical and clinical evidence indicates that AR-v7 remains constitutively active in driving CRPC progression. However, molecular mechanisms which control AR-v7 protein expression remain unclear. We apply multiple prostate cancer cell models to demonstrate that enzalutamide induces differential activation of protein phosphatase-1 (PP-1) and Akt kinase depending on the gene context of cancer cells. The balance between PP-1 and Akt activation governs AR phosphorylation status and activation of the Mdm2 ubiquitin ligase. Mdm2 recognizes phosphorylated serine 213 of AR-v7, and induces AR-v7 ubiquitination and protein degradation. These findings highlight the decisive roles of PP-1 and Akt for AR-v7 protein expression and activities when AR is functionally blocked.

  17. The critical role of Akt in cardiovascular function.

    PubMed

    Abeyrathna, Prasanna; Su, Yunchao

    2015-11-01

    Akt kinase, a member of AGC kinases, is important in many cellular functions including proliferation, migration, cell growth and metabolism. There are three known Akt isoforms which play critical and diverse roles in the cardiovascular system. Akt activity is regulated by its upstream regulatory pathways at transcriptional and post-translational levels. Beta-catenin/Tcf-4, GLI1 and Stat-3 are some of few known transcriptional regulators of AKT gene. Threonine 308 and serine 473 are the two critical phosphorylation sites of Akt1. Translocation of Akt to the cell membrane facilitates PDK1 phosphorylation of the threonine site. The serine site is phosphorylated by mTORC2. Ack1, Src, PTK6, TBK1, IKBKE and IKKε are some of the non-canonical pathways which affect the Akt activity. Protein-protein interactions of Akt to actin and Hsp90 increase the Akt activity while Akt binding to other proteins such as CTMP and TRB3 reduces the Akt activity. The action of Akt on its downstream targets determines its function in cardiovascular processes such as cell survival, growth, proliferation, angiogenesis, vasorelaxation, and cell metabolism. Akt promotes cell survival via caspase-9, YAP, Bcl-2, and Bcl-x activities. Inhibition of FoxO proteins by Akt also increases cell survival by transcriptional mechanisms. Akt stimulates cell growth and proliferation through mTORC1. Akt also increases VEGF secretion and mediates eNOS phosphorylation, vasorelaxation and angiogenesis. Akt can increase cellular metabolism through its downstream targets GSK3 and GLUT4. The alterations of Akt signaling play an important role in many cardiovascular pathological processes such as atherosclerosis, cardiac hypertrophy, and vascular remodeling. Several Akt inhibitors have been developed and tested as anti-tumor agents. They could be potential novel therapeutics for the cardiovascular diseases.

  18. Protein Phosphatase 2A Reactivates FOXO3a through a Dynamic Interplay with 14-3-3 and AKT

    PubMed Central

    Singh, Amrik; Ye, Min; Bucur, Octavian; Zhu, Shudong; Tanya Santos, Maria; Rabinovitz, Isaac; Wei, Wenyi; Gao, Daming; Hahn, William C.

    2010-01-01

    Forkhead box transcription factor FOXO3a, a key regulator of cell survival, is regulated by reversible phosphorylation and subcellular localization. Although the kinases regulating FOXO3a activity have been characterized, the role of protein phosphatases (PP) in the control of FOXO3a subcellular localization and function is unknown. In this study, we detected a robust interaction between FOXO3a and PP2A. We further demonstrate that 14-3-3, while not impeding the interaction between PP2A and FOXO3a, restrains its activity toward AKT phosphorylation sites T32/S253. Disruption of PP2A function revealed that after AKT inhibition, PP2A-mediated dephosphorylation of T32/S253 is required for dissociation of 14-3-3, nuclear translocation, and transcriptional activation of FOXO3a. Our findings reveal that distinct phosphatases dephosphorylate conserved AKT motifs within the FOXO family and that PP2A is entwined in a dynamic interplay with AKT and 14-3-3 to directly regulate FOXO3a subcellular localization and transcriptional activation. PMID:20110348

  19. Differential Modulation of Brainstem Phosphatidylinositol 3-Kinase/Akt and Extracellular Signal-Regulated Kinase 1/2 Signaling Underlies WIN55,212-2 Centrally Mediated Pressor Response in Conscious Rats

    PubMed Central

    Ibrahim, Badr Mostafa

    2012-01-01

    Our recent study demonstrated that central cannabinoid receptor 1 (CB1R) activation caused dose-related pressor response in conscious rats, and reported studies implicated the brainstem phosphatidylinositol 3-kinase (PI3K)/Akt-extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in blood pressure control. Therefore, in this study, we tested the hypothesis that the modulation of brainstem PI3K/Akt-ERK1/2 signaling plays a critical role in the central CB1R-mediated pressor response. In conscious freely moving rats, the pressor response elicited by intracisternal (i.c.) (R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate salt (WIN55,212-2) (15 μg) was associated with significant increases in ERK1/2 phosphorylation in the rostral ventrolateral medulla (RVLM) and the nucleus tractus solitarius (NTS). In contrast, Akt phosphorylation was significantly reduced in the same neuronal pools. Pretreatment with the selective CB1R antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) (30 μg i.c.) attenuated the neurochemical responses elicited by central CB1R activation. Furthermore, pretreatment with the ERK/mitogen-activated protein kinase kinase inhibitor 2′-amino-3′-methoxyflavone (PD98059) (5 μg i.c.) abrogated WIN55,212-2-evoked increases in blood pressure and neuronal ERK1/2 phosphorylation but not the reduction in Akt phosphorylation. On the other hand, prior PI3K inhibition with wortmannin (0.4 μg i.c.) exacerbated the WIN55,212-2 (7.5 and 15 μg i.c.) dose-related increases in blood pressure and ERK1/2 phosphorylation in the RVLM. The present neurochemical and integrative studies yield new insight into the critical role of two brainstem kinases, PI3K and ERK1/2, in the pressor response elicited by central CB1R activation in conscious rats. PMID:21946192

  20. Expression pattern of ataxia telangiectasia mutated (ATM), p53, Akt, and glycogen synthase kinase-3β in the striatum of rats treated with 3-nitropropionic acid.

    PubMed

    Duran-Vilaregut, Joaquim; Manich, Gemma; Del Valle, Jaume; Camins, Antoni; Pallàs, Mercè; Vilaplana, Jordi; Pelegrí, Carme

    2012-09-01

    3-Nitropropionic acid (3-NPA) is a mitochondrial toxin used in the laboratory to replicate neurodegenerative conditions that are accompanied by degeneration of the caudate-putamen. 3-NPA induces depletion in ATP production, reactive oxygen species production, and secondary excitotoxicity mediated by activation of N-methyl-D-aspartate receptors that culminates in the triggering of cell death mechanisms, including apoptosis. We here examined by immunohistochemical methods whether cellular expression of phospho(Ser1981) -ataxia telangiectasia mutated (ATM), phospho(Ser15) -p53, phospho(Ser473) -Akt, and phospho(Ser9) -glycogen synthase kinase-3β (GSK3β), which are key signal molecules that play a critical role in regulating cellular processes related to cell survival and demise, were involved in the striatal neurodegeneration in the brains of rats treated with 3-NPA. Our results indicate that the toxin induced the activation of ATM and p53 only in astrocytes, and a role for these proteins in neuronal degeneration was ruled out. On the other hand, striatal neurons lost the active form of Akt as soon as they began to appear pyknotic, indicating impairment of the PI3K/Akt/GSK3 pathway in their degenerative process. The inactive form of GSK3β was detected extensively, mainly in the rim of the striatal lesions around degenerating neurons, which could be attributed to a cell death or cell survival response.

  1. Akt phosphorylates and regulates the osteogenic activity of Osterix.

    PubMed

    Choi, You Hee; Jeong, Hyung Min; Jin, Yun-Hye; Li, Hongyan; Yeo, Chang-Yeol; Lee, Kwang-Youl

    2011-08-05

    Osterix (Osx), a zinc-finger transcription factor is required for osteoblast differentiation and new bone formation during embryonic development. Akt is a member of the serine/threonine-specific protein kinase and plays important roles in osteoblast differentiation. The function of Osterix can be also modulated by post-translational modification. But, the precise molecular signaling mechanisms between Osterix and Akt are not known. In this study, we investigated the potential regulation of Osterix function by Akt in osteoblast differentiation. We found that Akt phosphorylates Osterix and that Akt activation increases protein stability, osteogenic activity and transcriptional activity of Osterix. We also found that BMP-2 increases the protein level of Osterix in an Akt activity-dependent manner. These results suggest that Akt activity enhances the osteogenic function of Osterix, at least in part, through protein stabilization and that BMP-2 regulates the osteogenic function of Osterix, at least in part, through Akt.

  2. Differential Phosphatidylinositol-3-Kinase-Akt-mTOR Activation by Semliki Forest and Chikungunya Viruses Is Dependent on nsP3 and Connected to Replication Complex Internalization

    PubMed Central

    Biasiotto, Roberta; Eng, Kai; Neuvonen, Maarit; Götte, Benjamin; Rheinemann, Lara; Mutso, Margit; Utt, Age; Varghese, Finny; Balistreri, Giuseppe; Merits, Andres; Ahola, Tero; McInerney, Gerald M.

    2015-01-01

    ABSTRACT Many viruses affect or exploit the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, a crucial prosurvival signaling cascade. We report that this pathway was strongly activated in cells upon infection with the Old World alphavirus Semliki Forest virus (SFV), even under conditions of complete nutrient starvation. We mapped this activation to the hyperphosphorylated/acidic domain in the C-terminal tail of SFV nonstructural protein nsP3. Viruses with a deletion of this domain (SFV-Δ50) but not of other regions in nsP3 displayed a clearly delayed and reduced capacity of Akt stimulation. Ectopic expression of the nsP3 of SFV wild type (nsP3-wt), but not nsP3-Δ50, equipped with a membrane anchor was sufficient to activate Akt. We linked PI3K-Akt-mTOR stimulation to the intracellular dynamics of viral replication complexes, which are formed at the plasma membrane and subsequently internalized in a process blocked by the PI3K inhibitor wortmannin. Replication complex internalization was observed upon infection of cells with SFV-wt and SFV mutants with deletions in nsP3 but not with SFV-Δ50, where replication complexes were typically accumulated at the cell periphery. In cells infected with the closely related chikungunya virus (CHIKV), the PI3K-Akt-mTOR pathway was only moderately activated. Replication complexes of CHIKV were predominantly located at the cell periphery. Exchanging the hypervariable C-terminal tail of nsP3 between SFV and CHIKV induced the phenotype of strong PI3K-Akt-mTOR activation and replication complex internalization in CHIKV. In conclusion, infection with SFV but not CHIKV boosts PI3K-Akt-mTOR through the hyperphosphorylated/acidic domain of nsP3 to drive replication complex internalization. IMPORTANCE SFV and CHIKV are very similar in terms of molecular and cell biology, e.g., regarding replication and molecular interactions, but are strikingly different regarding pathology: CHIKV is a relevant human

  3. Novel protein kinase C inhibitors: alpha-terthiophene derivatives.

    PubMed

    Kim, D S; Ashendel, C L; Zhou, Q; Chang, C T; Lee, E S; Chang, C J

    1998-10-06

    A series of alpha-terthiophene derivatives were prepared and their protein kinase C inhibitory activity were evaluated. The aldehyde derivatives were most potent inhibitors (IC50 < 1 microM). alpha-Terthiophene monoaldehyde was inactive in the inhibitions of protein kinase A, mitogen activated protein kinase and protein tyrosine kinase.

  4. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  5. Dual regulation of glucocorticoid-induced leucine zipper (GILZ) by the glucocorticoid receptor and the PI3-kinase/AKT pathways in multiple myeloma.

    PubMed

    Grugan, Katharine D; Ma, Chunguang; Singhal, Seema; Krett, Nancy L; Rosen, Steven T

    2008-06-01

    Glucocorticoids (GCs) are effective therapeutics commonly used in multiple myeloma (MM) treatment. Clarifying the pathway of GC-induced apoptosis is crucial to understanding the process of drug resistance and to the development of new targets for MM treatment. We have previously published results of a micro-array identifying glucocorticoid-induced leucine zipper (GILZ) as GC-regulated gene in MM.1S cells. Consistent with those results, GCs increased GILZ in MM cell lines and patient samples. Reducing the levels of GILZ with siRNA decreased GC-induced cell death suggesting GILZ may mediate GC-killing. We conducted a screen to identify other pathways that affect GILZ regulation and report that inhibitors of PI3-kinase/AKT enhanced GILZ expression in MM cell lines and clinical samples. The combination of dexamethasone (Dex) and LY294002, wortmannin, triciribine, or AKT inhibitor VIII dramatically up regulated GILZ levels and enhanced apoptosis. Addition of interleukin-6 (IL-6) or insulin-like growth factor (IGF1), both which activate the PI3-kinase/AKT pathway and inhibit GC killing, blocked up regulation of GILZ by GC and PI3-kinase/AKT inhibitors. In summary, these results identify GILZ as a mediator of GC killing, indicate a role of PI3-kinase/AKT in controlling GILZ regulation and suggest that the combination of PI3-kinase/AKT inhibitors and GCs may be a beneficial MM treatment.

  6. Dynamics driven allostery in protein kinases

    PubMed Central

    Kornev, Alexandr P.; Taylor, Susan S.

    2015-01-01

    Protein kinases have very dynamic structures and their functionality strongly depends on their dynamic state. Active kinases reveal a dynamic pattern with residues clustering into semirigid communities that move in µs-ms timescale. Previously detected hydrophobic spines serve as connectors between communities. Communities do not follow the traditional subdomain structure of the kinase core or its secondary structure elements. Instead they are organized around main functional units. Integration of the communities depends on the assembly of the hydrophobic spine and phosphorylation of the activation loop. Single mutations can significantly disrupt the dynamic infrastructure and thereby interfere with long distance allosteric signaling that propagates throughout the whole molecule. Dynamics is proposed to be the underlying mechanism for allosteric regulation in protein kinases. PMID:26481499

  7. Cudraflavone C Induces Tumor-Specific Apoptosis in Colorectal Cancer Cells through Inhibition of the Phosphoinositide 3-Kinase (PI3K)-AKT Pathway

    PubMed Central

    Soo, Hsien-Chuen; Chung, Felicia Fei-Lei; Lim, Kuan-Hon; Yap, Veronica Alicia; Bradshaw, Tracey D.; Hii, Ling-Wei; Tan, Si-Hoey; See, Sze-Jia; Tan, Yuen-Fen; Leong, Chee-Onn

    2017-01-01

    Cudraflavone C (Cud C) is a naturally-occurring flavonol with reported anti-proliferative activities. However, the mechanisms by which Cud C induced cytotoxicity have yet to be fully elucidated. Here, we investigated the effects of Cud C on cell proliferation, caspase activation andapoptosis induction in colorectal cancer cells (CRC). We show that Cud C inhibits cell proliferation in KM12, Caco-2, HT29, HCC2998, HCT116 and SW48 CRC but not in the non-transformed colorectal epithelial cells, CCD CoN 841. Cud C induces tumor-selective apoptosis via mitochondrial depolarization and activation of the intrinsic caspase pathway. Gene expression profiling by microarray analyses revealed that tumor suppressor genes EGR1, HUWE1 and SMG1 were significantly up-regulated while oncogenes such as MYB1, CCNB1 and GPX2 were down-regulated following treatment with Cud C. Further analyses using Connectivity Map revealed that Cud C induced a gene signature highly similar to that of protein synthesis inhibitors and phosphoinositide 3-kinase (PI3K)-AKT inhibitors, suggesting that Cud C might inhibit PI3K-AKT signaling. A luminescent cell free PI3K lipid kinase assay revealed that Cud C significantly inhibited p110β/p85α PI3K activity, followed by p120γ, p110δ/p85α, and p110α/p85α PI3K activities. The inhibition by Cud C on p110β/p85α PI3K activity was comparable to LY-294002, a known PI3K inhibitor. Cud C also inhibited phosphorylation of AKT independent of NFκB activity in CRC cells, while ectopic expression of myristoylated AKT completely abrogated the anti-proliferative effects, and apoptosis induced by Cud C in CRC. These findings demonstrate that Cud C induces tumor-selective cytotoxicity by targeting the PI3K-AKT pathway. These findings provide novel insights into the mechanism of action of Cud C, and indicate that Cud C further development of Cud C derivatives as potential therapeutic agents is warranted. PMID:28107519

  8. Activation of phosphatidylinositol 3-kinase/Akt-mammalian target of Rapamycin signaling pathway in the hippocampus is essential for the acquisition of morphine-induced place preference in rats.

    PubMed

    Cui, Yue; Zhang, X Q; Cui, Y; Xin, W J; Jing, J; Liu, X G

    2010-11-24

    Hippocampus is a critical structure for the acquisition of morphine-induced conditioned place preference (CPP), which is a usual learning paradigm for assessing drug reward. However, the precise mechanisms remain largely unknown. Phosphatidylinositol 3-kinase (PI3K) and its downstream targets, including Akt, mammalian target of Rapamycin (mTOR) and 70-kDa ribosomal S6 kinase (p70S6K), are critical molecules implicated in learning and memory. Here, we tested the role of PI3K/Akt-mTOR-p70S6K signaling pathway in morphine-induced CPP in the hippocampus. Our results showed that the acquisition of morphine CPP increased phosphorylation of Akt in the hippocampal CA3, but not in the nucleus accumbens (NAc), the ventral tegmental area (VTA) or the CA1. Moreover, the phosphorylated Akt exclusively expressed in the CA3 neurons. Likewise, levels of phosphorylated mTOR and p70S6K were significantly enhanced in the CA3 following morphine CPP. The alterations of these phosphorylated proteins are positively correlated with the acquisition of morphine CPP. More importantly, microinjection of PI3K inhibitor (LY294002) or mTOR inhibitor (Rapamycin) into the CA3 prevented the acquisition of CPP and inhibited the activation of PI3K-Akt signaling pathway. In addition, pre-infusion of β-FNA (β-funaltrexamine hydrochloride), a selective irreversible μ opioid receptor antagonist, into CA3 significantly prevented the acquisition of CPP and impaired Akt phosphorylation. All these results strongly implied that the PI3K-Akt signaling pathway activated by μ opioid receptor in hippocampal CA3 plays an important role in acquisition of morphine-induced CPP.

  9. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells.

    PubMed

    Martelli, A M; Evangelisti, C; Follo, M Y; Ramazzotti, G; Fini, M; Giardino, R; Manzoli, L; McCubrey, J A; Cocco, L

    2011-01-01

    Cancer stem cells (CSCs) comprise a subset of hierarchically organized, rare cancer cells with the ability to initiate cancer in xenografts of genetically modified murine models. CSCs are thought to be responsible for tumor onset, self-renewal/maintenance, mutation accumulation, and metastasis. The existence of CSCs could explain the high frequency of neoplasia relapse and resistance to all of currently available therapies, including chemotherapy. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway is a key regulator of physiological cell processes which include proliferation, differentiation, apoptosis, motility, metabolism, and autophagy. Nevertheless, aberrantly upregulated PI3K/Akt/mTOR signaling characterizes many types of cancers where it negatively influences prognosis. Several lines of evidence indicate that this signaling system plays a key role also in CSC biology. Of note, CSCs are more sensitive to pathway inhibition with small molecules when compared to healthy stem cells. This observation provides the proof-of-principle that functional differences in signaling transduction pathways between CSCs and healthy stem cells can be identified. Here, we review the evidence which links the signals deriving from the PI3K/Akt/mTOR network with CSC biology, both in hematological and solid tumors. We then highlight how therapeutic targeting of PI3K/Akt/mTOR signaling with small molecule inhibitors could improve cancer patient outcome, by eliminating CSCs.

  10. Ellagic acid prevents rat colon carcinogenesis induced by 1, 2 dimethyl hydrazine through inhibition of AKT-phosphoinositide-3 kinase pathway.

    PubMed

    Umesalma, Syed; Sudhandiran, Ganapasam

    2011-06-25

    Colon cancer is the third most malignant neoplasm in the world and chemoprevention through dietary intervention is an emerging option to reduce its mortality. Ellagic acid (EA) a major component of berries possesses attractive biological deeds. This study is aimed to investigate the effect of ellagic acid in fostering apoptosis in 1,2-dimethyl hydrazine (DMH) mediated experimental colon carcinogenesis model. Wistar male rats were segregated into four groups: group I-control rats, group II-rats received ellagic acid (60 mg/kg body weight p.o. every day), rats in group III-induced with DMH (20 mg/kg body weight, s.c.) for 15 weeks, DMH-induced group IV rats were initiated with ellagic acid treatment. The present study is designed to explore the significance of phosphoinositide-3-kinase (PI3K)/Akt molecular pathway as well as ellagic acid's chemopreventive effect in colon cancer. DMH-induced rats exhibited elevated expressions of PI3K and Akt as confirmed by immunofluorescence, immunoblot and confocal microscopic analysis. Mechanistically, ellagic acid was found to prevent PI3K/Akt activation that in turn, results in modulation of its downstream Bcl-2 family proteins. Bax expression and caspase-3 activation was noted after ellagic acid supplementation leading to elevation of cytochrome c (cyt c) levels and finally cell death. These observations were supported by the DNA fragmentation results, which showed the occurrence of apoptosis. This study reveals the involvement of PI3K-Akt signaling through which ellagic acid induces apoptosis and subsequently suppresses colon cancer during DMH-induced rat colon carcinogenesis. In conclusion, our findings demonstrate that ellagic acid begets apoptosis in DMH-induced colon carcinoma.

  11. Oncoprotein protein kinase antibody kit

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  12. Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein.

    PubMed

    Hong, Shin Yee; Yu, Fa-Xing; Luo, Yan; Hagen, Thilo

    2016-05-01

    Oncogenic activation of the PI3K/Akt pathway is known to play an important role to promote glucose metabolism in cancer cells. However, the molecular mechanism through which the PI3K/Akt signalling pathway promotes glucose utilisation in cancer cells is still not well understood. It has recently been shown that the oncogenic activation of the PI3K/Akt/mTOR signalling in lung adenocarcinoma is important in promoting the localisation of glucose transporter 1 (GLUT1) at the plasma membrane. We thus hypothesised that the effect of constitutive activation of the PI3K/AKT signalling on glucose metabolism is mediated by thioredoxin interacting protein (TXNIP), a known regulator of the GLUT1 plasma membrane localisation. Consistent with previous studies, inhibition of the PI3K/Akt pathway decreased cellular glucose uptake. Furthermore, inhibition of PI3K/Akt signalling in non-small cell lung cancer (NSCLC) cell lines using clinically used tyrosine kinase inhibitors (TKIs) resulted in a decrease in GLUT1 membrane localisation. We also observed that inhibition of the PI3K/Akt pathway in various cell lines, including NSCLC cells, resulted in an increase in TXNIP expression. Importantly, knockdown of TXNIP using siRNA in the NSCLC cells promoted GLUT1 to be localised at the plasma membrane and reversed the effect of PI3K/Akt inhibitors. Together, our results suggest that the oncogenic activation of PI3K/Akt signalling promotes cellular glucose uptake, at least in part, through the regulation of TXNIP expression. This mechanism may contribute to the Warburg effect in cancer cells.

  13. Investigation of the Akt/Pkb Kinase in the Development of Hormone-Independent Prostate Cancer

    DTIC Science & Technology

    2007-02-01

    synthetic androgen R1881 (R1881, pink bar), or 10 µM of the Calbiochem Akt inhibitor (Akt I, yellow bar). Shown is the combination of 3 independent...Facility Name: UT Health Science Center at San Antonio Principal Investigator: Address: _7703 Floyd Curl Drive_ (Signature) _San

  14. Non-degradative Ubiquitination of Protein Kinases

    PubMed Central

    Ball, K. Aurelia; Johnson, Jeffrey R.; Lewinski, Mary K.; Guatelli, John; Verschueren, Erik; Krogan, Nevan J.; Jacobson, Matthew P.

    2016-01-01

    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well. PMID:27253329

  15. Escitalopram Ameliorates Tau Hyperphosphorylation and Spatial Memory Deficits Induced by Protein Kinase A Activation in Sprague Dawley Rats.

    PubMed

    Ren, Qing-Guo; Wang, Yan-Juan; Gong, Wei-Gang; Xu, Lin; Zhang, Zhi-Jun

    2015-01-01

    Here, we investigated the effect of escitalopram pretreatment on protein kinase A (PKA)-induced tau hyperphosphorylation and spatial memory deficits in rats using western blot and behavioral tests, respectively. We demonstrated that escitalopram effectively ameliorated tau hyperphosphorylation and the spatial memory deficits induced by PKA activation. We measured the total and activity-dependent Ser9-phosphorylated levels of glycogen synthase kinase (GSK)-3β in hippocampal extracts. No significant change in the total level of GSK-3β was observed between the different groups. However, compared with forskolin injection alone, pretreatment with escitalopram increased the level of Ser9-phosphorylated GSK-3β. We also demonstrated that escitalopram increased Akt phosphorylation at Ser473 (the active form of Akt). Furthermore, we identified other important kinases and phosphatases, such as protein phosphatase 2A, extracellular signal-regulated kinases 1 and 2, and MAP kinase kinase-1/2, that have previously been reported to play a crucial role in tau phosphorylation; however, we did not detect any significant change in the activation of these kinases or phosphatases in our study. We unexpectedly demonstrated that forskolin caused anxiety-like behavior in rats, and pretreatment with escitalopram did not significantly ameliorate the anxiety-like behavior induced by forskolin. These data provide the first evidence that escitalopram ameliorates forskolin-induced tau hyperphosphorylation and spatial memory impairment in rats; these effects do not occur via the anti-anxiety activity of escitalopram but may involve the Akt/GSK-3β signaling pathway.

  16. Silencing of Receptor Tyrosine Kinase ROR1 Inhibits Tumor-Cell Proliferation via PI3K/AKT/mTOR Signaling Pathway in Lung Adenocarcinoma

    PubMed Central

    Liu, Yanchun; Yang, Hui; Chen, Tianxing; Luo, Yongbin; Xu, Zheyuan; Li, Ying; Yang, Jiahui

    2015-01-01

    Receptor tyrosine kinase ROR1, an embryonic protein involved in organogenesis, is expressed in certain hematological malignancies and solid tumors, but is generally absent in adult tissues. This makes the protein an ideal drug target for cancer therapy. In order to assess the suitability of ROR1 as a cell surface antigen for targeted therapy of lung adenocarcinoma, we carried out a comprehensive analysis of ROR1 protein expression in human lung adenocarcinoma tissues and cell lines. Our data show that ROR1 protein is selectively expressed on lung adenocarcinoma cells, but do not support the hypothesis that expression levels of ROR1 are associated with aggressive disease. However silencing of ROR1 via siRNA treatment significantly down-regulates the activity of the PI3K/AKT/mTOR signaling pathway. This is associated with significant apoptosis and anti-proliferation of tumor cells. We found ROR1 protein expressed in lung adenocarcinoma but almost absent in tumor-adjacent tissues of the patients. The finding of ROR1-mediated proliferation signals in both tyrosine kinase inhibitor (TKI)-sensitive and -resistant tumor cells provides encouragement to develop ROR1-directed targeted therapy in lung adenocarcinoma, especially those with TKI resistance. PMID:25978653

  17. Requirement of protein kinase C zeta for stimulation of protein synthesis by insulin.

    PubMed Central

    Mendez, R; Kollmorgen, G; White, M F; Rhoads, R E

    1997-01-01

    The ability of insulin to stimulate protein synthesis and cellular growth is mediated through the insulin receptor (IR), which phosphorylates Tyr residues in the insulin receptor substrate-signaling proteins (IRS-1 and IRS-2), Gab-1, and Shc. These phosphorylated substrates directly bind and activate enzymes such as phosphatidylinositol 3'-kinase (PI3K) and the guanine nucleotide exchange factor for p21Ras (GRB-2/SOS), which are in turn required for insulin-stimulated protein synthesis, cell cycle progression, and prevention of apoptosis. We have now shown that one or more members of the atypical protein kinase C group, as exemplified by the zeta isoform (PKC zeta), are downstream of IRS-1 and P13K and mediate the effect of insulin on general protein synthesis. Ectopic expression of constitutively activated PKC zeta eliminates the requirement of IRS-1 for general protein synthesis but not for insulin-stimulated activation of 70-kDa S6 kinase (p70S6K), synthesis of growth-regulated proteins (e.g., c-Myc), or mitogenesis. The fact that PKC zeta stimulates general protein synthesis but not activation of p70S6K indicates that PKC zeta activation does not involve the proto-oncogene Akt, which is also activated by PI3K. Yet insulin is still required for the stimulation of general protein synthesis in the presence of constitutively active PKC zeta and in the absence of IRS-1, suggesting a requirement for the convergence of the IRS-1/PI3K/PKC zeta pathway with one or more additional pathways emanating from the IR, e.g., Shc/SOS/p21Ras/mitogen-activated protein kinase. Thus, PI3K appears to represent a bifurcation in the insulin signaling pathway, one branch leading through PKC zeta to general protein synthesis and one, through Akt and the target of rapamycin (mTOR), to growth-regulated protein synthesis and cell cycle progression. PMID:9271396

  18. AMP-activated protein kinase--an archetypal protein kinase cascade?

    PubMed

    Hardie, D G; MacKintosh, R W

    1992-10-01

    Mammalian AMP-activated protein kinase is the central component of a protein kinase cascade which inactivates three key enzymes involved in the synthesis or release of free fatty acids and cholesterol inside the cell. The kinase cascade is activated by elevation of AMP, and perhaps also by fatty acid and cholesterol metabolites. The system may fulfil a protective function, preventing damage caused by depletion of ATP or excessive intracellular release of free lipids, a type of stress response. Recent evidence suggests that it may have been in existence for at least a billion years, since a very similar protein kinase cascade is present in higher plants. This system therefore represents an early eukaryotic protein kinase cascade, which is unique in that it is regulated by intracellular metabolites rather than extracellular signals or cell cycle events.

  19. Lithium blocks ethanol-induced modulation of protein kinases in the developing brain

    SciTech Connect

    Chakraborty, Goutam; Saito, Mitsuo; Mao, Rui-Fen; Wang, Ray; Vadasz, Csaba; Saito, Mariko

    2008-03-14

    Lithium has been shown to be neuroprotective against various insults including ethanol exposure. We previously reported that ethanol-induced apoptotic neurodegeneration in the postnatal day 7 (P7) mice is associated with decreases in phosphorylation levels of Akt, glycogen synthase kinase-3{beta} (GSK-3{beta}), and AMP-activated protein kinase (AMPK), and alteration in lipid profiles in the brain. Here, P7 mice were injected with ethanol and lithium, and the effects of lithium on ethanol-induced alterations in phosphorylation levels of protein kinases and lipid profiles in the brain were examined. Immunoblot and immunohistochemical analyses showed that lithium significantly blocked ethanol-induced caspase-3 activation and reduction in phosphorylation levels of Akt, GSK-3{beta}, and AMPK. Further, lithium inhibited accumulation of cholesterol ester (ChE) and N-acylphosphatidylethanolamine (NAPE) triggered by ethanol in the brain. These results suggest that Akt, GSK-3{beta}, and AMPK are involved in ethanol-induced neurodegeneration and the neuroprotective effects of lithium by modulating both apoptotic and survival pathways.

  20. Metastasis and AKT activation.

    PubMed

    Qiao, Meng; Sheng, Shijie; Pardee, Arthur B

    2008-10-01

    Metastasis is responsible for 90% of cancer patient deaths. More information is needed about the molecular basis for its potential detection and treatment. The activated AKT kinase is necessary for many events of the metastatic pathway including escape of cells from the tumor's environment, into and then out of the circulation, activation of proliferation, blockage of apoptosis, and activation of angiogenesis. A series of steps leading to metastatic properties can be initiated upon activation of AKT by phosphorylation on Ser-473. These findings lead to the question of how this activation is connected to metastasis. Activated AKT phosphorylates GSK-3beta causing its proteolytic removal. This increases stability of the negative transcription factor SNAIL, thereby decreasing transcription of the transmembrane protein E-cadherin that forms adhesions between adjacent cells, thereby permitting their detachment. How is AKT hyperactivated in metastatic cells? Increased PI3K or TORC2 kinase activity- or decreased PHLPP phosphatase could be responsible. Furthermore, a positive feedback mechanism is that the decrease of E-cadherin lowers PTEN and thereby increases PIP3, further activating AKT and metastasis.

  1. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma.

    PubMed

    Chang, Liang; Zhao, Dan; Liu, Hui-Bin; Wang, Qiu-Shi; Zhang, Ping; Li, Chen-Long; Du, Wen-Zhong; Wang, Hong-Jun; Liu, Xing; Zhang, Zhi-Ren; Jiang, Chuan-Lu

    2015-11-01

    Aberrant hedgehog signaling contributes to the development of various malignancies, including glioblastoma (GBM). However, the potential mechanism of hedgehog signaling in GBM migration and invasion has remained to be elucidated. The present study showed that enhanced hedgehog signaling by recombinant human sonic hedgehog N‑terminal peptide (rhSHH) promoted the adhesion, invasion and migration of GBM cells, accompanied by increases in mRNA and protein levels of matrix metalloproteinase‑2 (MMP‑2) and MMP‑9. However, inhibition of hedgehog signaling with cyclopamine suppressed the adhesion, invasion and migration of GBM cells, accompanied by decreases in mRNA and protein levels of MMP‑2 and ‑9. Furthermore, it was found that MMP‑2- and MMP‑9-neutralizing antibodies or GAM6001 reversed the inductive effects of rhSHH on cell migration and invasion. In addition, enhanced hedgehog signaling by rhSHH increased AKT phosphorylation, whereas blockade of hedgehog signaling decreased AKT phosphorylations. Further experiments showed that LY294002, an inhibitor of phosphoinositide-3 kinase (PI3K), decreased rhSHH‑induced upregulation of MMP‑2 and ‑9. Finally, the protein expression of glioblastoma-associated oncogene 1 was positively correlated with levels of phosphorylated AKT as well as protein expressions of MMP‑2 and ‑9 in GBM tissue samples. In conclusion, the present study indicated that the hedgehog pathway regulates GBM-cell migration and invasion by increasing MMP-2 and MMP-9 production via the PI3K/AKT pathway.

  2. Problem-Solving Test: "In Vitro" Protein Kinase A Reaction

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Phosphorylation of proteins by protein kinases is an important mechanism in the regulation of protein activity. Among hundreds of protein kinases present in human cells, PKA, the first kinase discovered, belongs to the most important and best characterized group of these enzymes. The author presents an experiment that analyzes the "in vitro"…

  3. Blockade of the phosphatidylinositol-3-kinase-Akt signaling pathway enhances the induction of apoptosis by microtubule-destabilizing agents in tumor cells in which the pathway is constitutively activated.

    PubMed

    Fujiwara, Yusuke; Hosokawa, Yoshihisa; Watanabe, Kazushi; Tanimura, Susumu; Ozaki, Kei-ichi; Kohno, Michiaki

    2007-03-01

    Constitutive activation of the phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway is associated with the neoplastic phenotype in many human tumor cell types. Given the antiapoptotic role of this pathway, we examined whether its specific blockade might sensitize human tumor cells to the induction of apoptosis by various anticancer drugs. Although specific blockade of the PI3K-Akt pathway alone with inhibitors such as LY294002 did not induce cell death, it resulted in marked and selective enhancement of the induction of apoptosis by microtubule-destabilizing agents such as vincristine. This effect was apparent only in tumor cells in which the PI3K-Akt pathway is constitutively activated. Blockade of the PI3K-Akt pathway induced the activation of glycogen synthase kinase-3beta, which phosphorylates microtubule-associated proteins such as tau and thereby reduces their ability to bind and stabilize microtubules. The consequent destabilization of microtubules induced by the inhibition of PI3K-Akt signaling appeared to increase their sensitivity to low concentrations of microtubule-destabilizing agents that alone do not lead to the disruption of cytoplasmic microtubules in tumor cells. Such a synergistic effect on microtubule integrity was not apparent for stable microtubules in the neurites of neuronal cells. These results suggest that the administration of a combination of a PI3K-Akt pathway inhibitor and a microtubule-destabilizing agent is a potential chemotherapeutic strategy for the treatment of tumor cells in which this signaling pathway is constitutively activated.

  4. Crosstalk and Signaling Switches in Mitogen-Activated Protein Kinase Cascades

    PubMed Central

    Fey, Dirk; Croucher, David R.; Kolch, Walter; Kholodenko, Boris N.

    2012-01-01

    Mitogen-activated protein kinase (MAPK) cascades control cell fate decisions, such as proliferation, differentiation, and apoptosis by integrating and processing intra- and extracellular cues. However, similar MAPK kinetic profiles can be associated with opposing cellular decisions depending on cell type, signal strength, and dynamics. This implies that signaling by each individual MAPK cascade has to be considered in the context of the entire MAPK network. Here, we develop a dynamic model of feedback and crosstalk for the three major MAPK cascades; extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38), c-Jun N-terminal kinase (JNK), and also include input from protein kinase B (AKT) signaling. Focusing on the bistable activation characteristics of the JNK pathway, this model explains how pathway crosstalk harmonizes different MAPK responses resulting in pivotal cell fate decisions. We show that JNK can switch from a transient to sustained activity due to multiple positive feedback loops. Once activated, positive feedback locks JNK in a highly active state and promotes cell death. The switch is modulated by the ERK, p38, and AKT pathways. ERK activation enhances the dual specificity phosphatase (DUSP) mediated dephosphorylation of JNK and shifts the threshold of the apoptotic switch to higher inputs. Activation of p38 restores the threshold by inhibiting ERK activity via the PP1 or PP2A phosphatases. Finally, AKT activation inhibits the JNK positive feedback, thus abrogating the apoptotic switch and allowing only proliferative signaling. Our model facilitates understanding of how cancerous deregulations disturb MAPK signal processing and provides explanations for certain drug resistances. We highlight a critical role of DUSP1 and DUSP2 expression patterns in facilitating the switching of JNK activity and show how oncogene induced ERK hyperactivity prevents the normal apoptotic switch explaining the failure of certain drugs to

  5. The protein interaction landscape of the human CMGC kinase group.

    PubMed

    Varjosalo, Markku; Keskitalo, Salla; Van Drogen, Audrey; Nurkkala, Helka; Vichalkovski, Anton; Aebersold, Ruedi; Gstaiger, Matthias

    2013-04-25

    Cellular information processing via reversible protein phosphorylation requires tight control of the localization, activity, and substrate specificity of protein kinases, which to a large extent is accomplished by complex formation with other proteins. Despite their critical role in cellular regulation and pathogenesis, protein interaction information is available for only a subset of the 518 human protein kinases. Here we present a global proteomic analysis of complexes of the human CMGC kinase group. In addition to subgroup-specific functional enrichment and modularity, the identified 652 high-confidence kinase-protein interactions provide a specific biochemical context for many poorly studied CMGC kinases. Furthermore, the analysis revealed a kinase-kinase subnetwork and candidate substrates for CMGC kinases. Finally, the presented interaction proteome uncovered a large set of interactions with proteins genetically linked to a range of human diseases, including cancer, suggesting additional routes for analyzing the role of CMGC kinases in controlling human disease pathways.

  6. PI3-kinase/Akt pathway-regulated membrane insertion of acid-sensing ion channel 1a underlies BDNF-induced pain hypersensitivity.

    PubMed

    Duan, Bo; Liu, Di-Shi; Huang, Yu; Zeng, Wei-Zheng; Wang, Xiang; Yu, Hui; Zhu, Michael X; Chen, Zhe-Yu; Xu, Tian-Le

    2012-05-02

    Central neural plasticity plays a key role in pain hypersensitivity. This process is modulated by brain-derived neurotrophic factor (BDNF) and also involves the type 1a acid-sensing ion channel (ASIC1a). However, the interactions between the BDNF receptor, tropomyosin-related kinase B (TrkB), and ASIC1a are unclear. Here, we show that deletion of ASIC1 gene suppressed the sustained mechanical hyperalgesia induced by intrathecal BDNF application in mice. In both rat spinal dorsal horn neurons and heterologous cell cultures, the BDNF/TrkB pathway enhanced ASIC1a currents via phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB/Akt) cascade and phosphorylation of cytoplasmic residue Ser-25 of ASIC1a, resulting in enhanced forward trafficking and increased surface expression. Moreover, in both rats and mice, this enhanced ASIC1a activity was required for BDNF-mediated hypersensitivity of spinal dorsal horn nociceptive neurons and central mechanical hyperalgesia, a process that was abolished by intrathecal application of a peptide representing the N-terminal region of ASIC1a encompassing Ser-25. Thus, our results reveal a novel mechanism underlying central sensitization and pain hypersensitivity, and reinforce the critical role of ASIC1a channels in these processes.

  7. Effects of doxepin on gene expressions of Bcl-2 family, TNF-α, MAP kinase 14, and Akt1 in the hippocampus of rats exposed to stress.

    PubMed

    Reisi, Parham; Eidelkhani, Nastaran; Rafiee, Laleh; Kazemi, Mohammad; Radahmadi, Maryam; Alaei, Hojjatallah

    2017-02-01

    Stress is one of the effective factors in the development of depressive disorders that performs some parts of its effects by affecting hippocampus. Since doxepin has been shown to have neuroprotective effects, in this study, we focused on the effects of doxepin on the expression of involved genes in neuronal survival and plasticity in the rat hippocampus following chronic stress. Male Wistar rats were divided into four groups, the control, the stress, the stress-doxepin 1 mg/kg and the stress-doxepin 5 mg/kg, respectively. To induce stress, the rats were placed within adjustable restraint chambers for 6 h/day, for 21 days. Before daily induction of the stress, rats received an i.p. injection of doxepin. At the end of experiments, expression of Bax, Bad, Bcl-2, tumor necrosis factor alpha (TNF-α), mitogen-activated protein kinase 14 (MAPK14) and serine-threonine protein kinase AKT1 genes were detected by reverse transcription polymerase chain reaction (RT-PCR) in the hippocampus. Results showed significant enhancements in expression of Bax, Bad and Bcl-2 genes in the stressed rats, whereas expression of TNF-α, MAPK14, and AKT1 genes didn't show significant differences. Doxepin could decrease the expression of Bax and Bad genes in the stress group, but had no significant effects on the expression of other genes. The present findings indicated that doxepin can probably change the pattern of gene expression in the hippocampus to maintain neurons against destructive effects of stress.

  8. Effects of doxepin on gene expressions of Bcl-2 family, TNF-α, MAP kinase 14, and Akt1 in the hippocampus of rats exposed to stress

    PubMed Central

    Reisi, Parham; Eidelkhani, Nastaran; Rafiee, Laleh; Kazemi, Mohammad; Radahmadi, Maryam; Alaei, Hojjatallah

    2017-01-01

    Stress is one of the effective factors in the development of depressive disorders that performs some parts of its effects by affecting hippocampus. Since doxepin has been shown to have neuroprotective effects, in this study, we focused on the effects of doxepin on the expression of involved genes in neuronal survival and plasticity in the rat hippocampus following chronic stress. Male Wistar rats were divided into four groups, the control, the stress, the stress-doxepin 1 mg/kg and the stress-doxepin 5 mg/kg, respectively. To induce stress, the rats were placed within adjustable restraint chambers for 6 h/day, for 21 days. Before daily induction of the stress, rats received an i.p. injection of doxepin. At the end of experiments, expression of Bax, Bad, Bcl-2, tumor necrosis factor alpha (TNF-α), mitogen-activated protein kinase 14 (MAPK14) and serine-threonine protein kinase AKT1 genes were detected by reverse transcription polymerase chain reaction (RT-PCR) in the hippocampus. Results showed significant enhancements in expression of Bax, Bad and Bcl-2 genes in the stressed rats, whereas expression of TNF-α, MAPK14, and AKT1 genes didn’t show significant differences. Doxepin could decrease the expression of Bax and Bad genes in the stress group, but had no significant effects on the expression of other genes. The present findings indicated that doxepin can probably change the pattern of gene expression in the hippocampus to maintain neurons against destructive effects of stress. PMID:28255309

  9. Association of AKT1 gene variants and protein expression in both schizophrenia and bipolar disorder.

    PubMed

    Karege, F; Perroud, N; Schürhoff, F; Méary, A; Marillier, G; Burkhardt, S; Ballmann, E; Fernandez, R; Jamain, S; Leboyer, M; La Harpe, R; Malafosse, A

    2010-07-01

    The AKT1 gene has been associated with the genetic aetiology of schizophrenia. Following the overlap model of bipolar disorder and schizophrenia, we aimed to investigate AKT1 genetic variants and protein expression in both diseases. A total of 679 subjects with European ancestry were included: 384 with schizophrenia, 130 with bipolar disorder and 165 controls. Six single nucleotide polymorphisms (SNPs) were investigated for association with the diseases using single- and multi-locus analyses. AKT1 and AKT2 protein levels were measured in post-mortem brain tissues from ante-mortem diagnosed schizophrenia (n = 30) and bipolar disorder subjects (n = 12) and matched controls. The analysis identified a significant global distortion in schizophrenia (P = 0.0026) and a weak association in bipolar disorder (P = 0.046). A sliding window procedure showed a five-SNP haplotype (TCGAG) to be associated with schizophrenia (P = 1.22 x 10(-4)) and bipolar disorder (P = 0.0041) and a four-SNP haplotype (TCGA) with the combined sample (1.73 x 10(-5)). On the basis of selected genotypes, a significant difference in protein expression emerged between subjects (P < 0.02). In conclusion, our findings, by showing the involvement of the AKT1 gene in both schizophrenia and bipolar disorder, support the role of AKT1 in the genetics of both disorders and add support to the view that there is some genetic overlap between them.

  10. Mycobacterium tuberculosis Serine/Threonine Protein Kinases

    PubMed Central

    PRISIC, SLADJANA; HUSSON, ROBERT N.

    2014-01-01

    The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs). A similar number of two-component systems are also present, indicating that these two signal transduction mechanisms are both important in the adaptation of this bacterial pathogen to its environment. The M. tuberculosis phosphoproteome includes hundreds of Ser- and Thr-phosphorylated proteins that participate in all aspects of M. tuberculosis biology, supporting a critical role for the STPKs in regulating M. tuberculosis physiology. Nine of the STPKs are receptor type kinases, with an extracytoplasmic sensor domain and an intracellular kinase domain, indicating that these kinases transduce external signals. Two other STPKs are cytoplasmic and have regulatory domains that sense changes within the cell. Structural analysis of some of the STPKs has led to advances in our understanding of the mechanisms by which these STPKs are activated and regulated. Functional analysis has provided insights into the effects of phosphorylation on the activity of several proteins, but for most phosphoproteins the role of phosphorylation in regulating function is unknown. Major future challenges include characterizing the functional effects of phosphorylation for this large number of phosphoproteins, identifying the cognate STPKs for these phosphoproteins, and determining the signals that the STPKs sense. Ultimately, combining these STPK-regulated processes into larger, integrated regulatory networks will provide deeper insight into M. tuberculosis adaptive mechanisms that contribute to tuberculosis pathogenesis. Finally, the STPKs offer attractive targets for inhibitor development that may lead to new therapies for drug-susceptible and drug-resistant tuberculosis. PMID:25429354

  11. A retroviral-derived peptide phosphorylates protein kinase D/protein kinase Cmu involving phospholipase C and protein kinase C.

    PubMed

    Luangwedchakarn, Voravich; Day, Noorbibi K; Hitchcock, Remi; Brown, Pam G; Lerner, Danica L; Rucker, Rajivi P; Cianciolo, George J; Good, Robert A; Haraguchi, Soichi

    2003-05-01

    CKS-17, a synthetic peptide representing a unique amino acid motif which is highly conserved in retroviral transmembrane proteins and other immunoregulatory proteins, induces selective immunomodulatory functions, both in vitro and in vivo, and activates intracellular signaling molecules such as cAMP and extracellular signal-regulated kinases. In the present study, using Jurkat T-cells, we report that CKS-17 phosphorylates protein kinase D (PKD)/protein kinase C (PKC) mu. Total cell extracts from CKS-17-stimulated Jurkat cells were immunoblotted with an anti-phospho-PKCmu antibody. The results show that CKS-17 significantly phosphorylates PKD/PKCmu in a dose- and time-dependent manner. Treatment of cells with the PKC inhibitors GF 109203X and Ro 31-8220, which do not act directly on PKD/PKCmu, attenuates CKS-17-induced phosphorylation of PKD/PKCmu. In contrast, the selective protein kinase A inhibitor H-89 does not reverse the action of CKS-17. Furthermore, a phospholipase C (PLC) selective inhibitor, U-73122, completely blocks the phosphorylation of PKD/PKCmu by CKS-17 while a negative control U-73343 does not. In addition, substitution of lysine for arginine residues in the CKS-17 sequence completely abrogates the ability of CKS-17 to phosphorylate PKD/PKCmu. These results clearly indicate that CKS-17 phosphorylates PKD/PKCmu through a PLC- and PKC-dependent mechanism and that arginine residues play an essential role in this activity of CKS-17, presenting a novel modality of the retroviral peptide CKS-17 and molecular interaction of this compound with target cells.

  12. WNT16B is a new marker of cellular senescence that regulates p53 activity and the phosphoinositide 3-kinase/AKT pathway.

    PubMed

    Binet, Romuald; Ythier, Damien; Robles, Ana I; Collado, Manuel; Larrieu, Delphine; Fonti, Claire; Brambilla, Elisabeth; Brambilla, Christian; Serrano, Manuel; Harris, Curtis C; Pedeux, Rémy

    2009-12-15

    Senescence is a tumor suppression mechanism that is induced by several stimuli, including oncogenic signaling and telomere shortening, and controlled by the p53/p21(WAF1) signaling pathway. Recently, a critical role for secreted factors has emerged, suggesting that extracellular signals are necessary for the onset and maintenance of senescence. Conversely, factors secreted by senescent cells may promote tumor growth. By using expression profiling techniques, we searched for secreted factors that were overexpressed in fibroblasts undergoing replicative senescence. We identified WNT16B, a member of the WNT family of secreted proteins. We found that WNT16B is overexpressed in cells undergoing stress-induced premature senescence and oncogene-induced senescence in both MRC5 cell line and the in vivo murine model of K-Ras(V12)-induced senescence. By small interfering RNA experiments, we observed that both p53 and WNT16B are necessary for the onset of replicative senescence. WNT16B expression is required for the full transcriptional activation of p21(WAF1). Moreover, WNT16B regulates activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Overall, we identified WNT16B as a new marker of senescence that regulates p53 activity and the PI3K/AKT pathway and is necessary for the onset of replicative senescence.

  13. Mining protein kinases regulation using graphical models.

    PubMed

    Chen, Qingfeng; Chen, Yi-Ping Phoebe

    2011-03-01

    Abnormal kinase activity is a frequent cause of diseases, which makes kinases a promising pharmacological target. Thus, it is critical to identify the characteristics of protein kinases regulation by studying the activation and inhibition of kinase subunits in response to varied stimuli. Bayesian network (BN) is a formalism for probabilistic reasoning that has been widely used for learning dependency models. However, for high-dimensional discrete random vectors the set of plausible models becomes large and a full comparison of all the posterior probabilities related to the competing models becomes infeasible. A solution to this problem is based on the Markov Chain Monte Carlo (MCMC) method. This paper proposes a BN-based framework to discover the dependency correlations of kinase regulation. Our approach is to apply the MCMC method to generate a sequence of samples from a probability distribution, by which to approximate the distribution. The frequent connections (edges) are identified from the obtained sampling graphical models. Our results point to a number of novel candidate regulation patterns that are interesting in biology and include inferred associations that were unknown.

  14. Phosphatidylinositol 3-kinase/Akt signaling enhances nuclear localization and transcriptional activity of BRCA1

    SciTech Connect

    Hinton, Cimona V.; Fitzgerald, Latricia D.; Thompson, Marilyn E. . E-mail: methompson@mmc.edu

    2007-05-15

    Signaling pathways involved in regulating nuclear-cytoplasmic distribution of BRCA1 have not been previously reported. Here, we provide evidence that heregulin {beta}1-induced activation of the Akt pathway increases the nuclear content of BRCA1. First, treatment of T47D breast cancer cells with heregulin {beta}1 results in a two-fold increase in nuclear BRCA1 as assessed by FACS analysis, immunoblotting and immunofluorescence. This heregulin-induced increase in nuclear BRCA1 is blocked by siRNA-mediated down-regulation of Akt. Second, mutation of threonine 509 in BRCA1, the site of Akt phosphorylation, to an alanine, attenuates the ability of heregulin to induce BRCA1 nuclear accumulation. These data suggest that Akt-catalyzed phosphorylation of BRCA1 is required for the heregulin-regulated nuclear concentration of BRCA1. Because most functions ascribed to BRCA1 occur within the nucleus, we postulated that phosphorylation-dependent nuclear accumulation of BRCA1 would result in enhanced nuclear activity, specifically transcriptional activity, of BRCA1. This postulate is affirmed by our observation that the ability of BRCA1 to transactivate GADD45 promoter constructs was enhanced in T47D cells treated with heregulin {beta}1. Furthermore, the heterologous expression of BRCA1 in HCC1937 human breast cancer cells, which have constitutively active Akt, also induces GADD45 promoter activity, whereas the expression of BRCA1 in which threonine 509 has been mutated to an alanine is able to only minimally induce promoter activity. These findings implicate Akt in upstream events leading to BRCA1 nuclear localization and function.

  15. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Jo, Hanjoong

    2003-01-01

    Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS), the underlying molecular mechanisms remain unclear and controversial. Shear-induced production of NO involves Ca2+/calmodulin-independent mechanisms, including phosphorylation of eNOS at several sites and its interaction with other proteins, including caveolin and heat shock protein-90. There have been conflicting results as to which protein kinases-protein kinase A, protein kinase B (Akt), other Ser/Thr protein kinases, or tyrosine kinases-are responsible for shear-dependent eNOS regulation. The functional significance of each phosphorylation site is still unclear. We have attempted to summarize the current status of understanding in shear-dependent eNOS regulation.

  16. Crystal Structure of the Protein Kinase Domain of Yeast AMP-Activated Protein Kinase Snf1

    SciTech Connect

    Rudolph,M.; Amodeo, G.; Bai, Y.; Tong, L.

    2005-01-01

    AMP-activated protein kinase (AMPK) is a master metabolic regulator, and is an important target for drug development against diabetes, obesity, and other diseases. AMPK is a hetero-trimeric enzyme, with a catalytic ({alpha}) subunit, and two regulatory ({beta} and {gamma}) subunits. Here we report the crystal structure at 2.2 Angstrom resolution of the protein kinase domain (KD) of the catalytic subunit of yeast AMPK (commonly known as SNF1). The Snf1-KD structure shares strong similarity to other protein kinases, with a small N-terminal lobe and a large C-terminal lobe. Two negative surface patches in the structure may be important for the recognition of the substrates of this kinase.

  17. PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs).

    PubMed

    Barrows, Douglas; He, John Z; Parsons, Ramon

    2016-09-16

    Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gβγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer.

  18. Crop milk protein is synthesised following activation of the IRS1/Akt/TOR signalling pathway in the domestic pigeon (Columba livia).

    PubMed

    Hu, X-C; Gao, C-Q; Wang, X-H; Yan, H-C; Chen, Z-S; Wang, X-Q

    2016-12-01

    The experiment was conducted to study whether insulin receptor substance 1 (IRS1) / Protein kinase B (Akt)/target of the rapamycin (TOR) signalling pathway activation stimulates crop milk protein synthesis in the domestic pigeon (Columba livia). Crop milk was collected from ten 1-d-old squabs and analysed for nutrient content. During the non-breeding period and the first day of lactation, blood samples were collected from 5 pairs of breeding pigeons and the levels of prolactin and insulin were determined. Crop samples were collected from 5 pairs of breeders at d 14 and 16 of the incubation period and d 1, 3 and 7 of the lactation period. Crop samples were evaluated for changes in crop weight and thickness and changes in the expression patterns of IRS1/Akt/TOR signalling pathway-related proteins. The results demonstrated that prolactin induces a gradual increase in the relative weight and thickness of the crop, with crops reaching a maximum size at the third day of lactation. Pigeon crop milk contains 64.1% crude protein and 29.7% crude fat based on dry weight. Serum prolactin and insulin levels in the lactation period were significantly higher than those in the non-breeding period. Compared with non-breeding pigeons, the expression of the phosphorylated IRS1 phosphorylated Akt, phosphorylated TOR, phosphorylated ribosomal protein S6 kinase, phosphorylated S6, phosphorylated eukaryotic initiation factor 4E binding protein 1 and eukaryotic initiation factor 4E were significantly up-regulated in the crop of pigeons in the lactation period. In conclusion, prolactin might induce changes in crop tissue and form the physiological structure for crop milk synthesis. Furthermore, the synthesis of crop milk protein is regulated by activation of the IRS1/Akt/TOR signalling pathway.

  19. Non-CDK-bound p27 (p27{sup NCDK}) is a marker for cell stress and is regulated through the Akt/PKB and AMPK-kinase pathways

    SciTech Connect

    Bjoerklund, Mia A.; Vaahtomeri, Kari; Peltonen, Karita; Viollet, Benoit; Maekelae, Tomi P.; Band, Arja M.; Laiho, Marikki

    2010-03-10

    p27Kip1 (p27) tumour suppressor protein is regulated by multiple mechanisms including its turnover, localization and complex formation with its key targets, cyclin-dependent kinases (CDK) and cyclins. We have earlier shown that p27 exists in cells in a form that lacks cyclin/CDK interactions (hence non-CDK, p27{sup NCDK}) but the nature of p27{sup NCDK} has remained unresolved. Here we demonstrate that the epitope recognized by the p27{sup NCDK}-specific antibody resides in the p27 CDK-interaction domain and that p27{sup NCDK} is regulated by the balance of CDK inhibitors and cyclin-CDK complexes. We find that signalling by cellular growth promoting pathways, like phosphoinositol 3-kinase (PI3K) and specifically Akt/PKB kinase, inversely correlates with p27{sup NCDK} levels whereas total p27 levels are unaffected. p27{sup NCDK}, but not total p27, is increased by cellular perturbations such as hyperosmotic and metabolic stress and activation of AMP-activated protein kinase (AMPK). By using AMPK catalytic subunit proficient and deficient cells we further demonstrate that the AMPK pathway governs p27{sup NCDK} responses to metabolic stress and PI3K inhibition. These results indicate that p27{sup NCDK} is a sensitive marker for both cell stress and proliferation over and above p27 and is regulated by Akt/PKB and AMPK pathways.

  20. A-kinase Anchoring Protein 79/150 Recruits Protein Kinase C to Phosphorylate Roundabout Receptors.

    PubMed

    Samelson, Bret K; Gore, Bryan B; Whiting, Jennifer L; Nygren, Patrick J; Purkey, Alicia M; Colledge, Marcie; Langeberg, Lorene K; Dell'Acqua, Mark L; Zweifel, Larry S; Scott, John D

    2015-05-29

    Anchoring proteins direct protein kinases and phosphoprotein phosphatases toward selected substrates to control the efficacy, context, and duration of neuronal phosphorylation events. The A-kinase anchoring protein AKAP79/150 interacts with protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (calcineurin) to modulate second messenger signaling events. In a mass spectrometry-based screen for additional AKAP79/150 binding partners, we have identified the Roundabout axonal guidance receptor Robo2 and its ligands Slit2 and Slit3. Biochemical and cellular approaches confirm that a linear sequence located in the cytoplasmic tail of Robo2 (residues 991-1070) interfaces directly with sites on the anchoring protein. Parallel studies show that AKAP79/150 interacts with the Robo3 receptor in a similar manner. Immunofluorescent staining detects overlapping expression patterns for murine AKAP150, Robo2, and Robo3 in a variety of brain regions, including hippocampal region CA1 and the islands of Calleja. In vitro kinase assays, peptide spot array mapping, and proximity ligation assay staining approaches establish that human AKAP79-anchored PKC selectively phosphorylates the Robo3.1 receptor subtype on serine 1330. These findings imply that anchored PKC locally modulates the phosphorylation status of Robo3.1 in brain regions governing learning and memory and reward.

  1. Use of LC-MS/MS and Bayes' theorem to identify protein kinases that phosphorylate aquaporin-2 at Ser256.

    PubMed

    Bradford, Davis; Raghuram, Viswanathan; Wilson, Justin L L; Chou, Chung-Lin; Hoffert, Jason D; Knepper, Mark A; Pisitkun, Trairak

    2014-07-15

    In the renal collecting duct, binding of AVP to the V2 receptor triggers signaling changes that regulate osmotic water transport. Short-term regulation of water transport is dependent on vasopressin-induced phosphorylation of aquaporin-2 (AQP2) at Ser256. The protein kinase that phosphorylates this site is not known. We use Bayes' theorem to rank all 521 rat protein kinases with regard to the likelihood of a role in Ser256 phosphorylation on the basis of prior data and new experimental data. First, prior probabilities were estimated from previous transcriptomic and proteomic profiling data, kinase substrate specificity data, and evidence for kinase regulation by vasopressin. This ranking was updated using new experimental data describing the effects of several small-molecule kinase inhibitors with known inhibitory spectra (H-89, KN-62, KN-93, and GSK-650394) on AQP2 phosphorylation at Ser256 in inner medullary collecting duct suspensions. The top-ranked kinase was Ca2+/calmodulin-dependent protein kinase II (CAMK2), followed by protein kinase A (PKA) and protein kinase B (AKT). Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based in vitro phosphorylation studies compared the ability of three highly ranked kinases to phosphorylate AQP2 and other inner medullary collecting duct proteins, PKA, CAMK2, and serum/glucocorticoid-regulated kinase (SGK). All three proved capable of phosphorylating AQP2 at Ser256, although CAMK2 and PKA were more potent than SGK. The in vitro phosphorylation experiments also identified candidate protein kinases for several additional phosphoproteins with likely roles in collecting duct regulation, including Nedd4-2, Map4k4, and 3-phosphoinositide-dependent protein kinase 1. We conclude that Bayes' theorem is an effective means of integrating data from multiple data sets in physiology.

  2. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway

    PubMed Central

    Hermkens, Dorien; Wlodarski, Marcin W.; Da Costa, Lydie; MacInnes, Alyson W.

    2015-01-01

    Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. PMID:26132763

  3. Spatiotemporal Analysis of Differential Akt Regulation in Plasma Membrane Microdomains

    PubMed Central

    Gao, Xinxin

    2008-01-01

    As a central kinase in the phosphatidylinositol 3-kinase pathway, Akt has been the subject of extensive research; yet, spatiotemporal regulation of Akt in different membrane microdomains remains largely unknown. To examine dynamic Akt activity in membrane microdomains in living cells, we developed a specific and sensitive fluorescence resonance energy transfer-based Akt activity reporter, AktAR, through systematic testing of different substrates and fluorescent proteins. Targeted AktAR reported higher Akt activity with faster activation kinetics within lipid rafts compared with nonraft regions of plasma membrane. Disruption of rafts attenuated platelet-derived growth factor (PDGF)-stimulated Akt activity in rafts without affecting that in nonraft regions. However, in insulin-like growth factor-1 (IGF)-1 stimulation, Akt signaling in nonraft regions is dependent on that in raft regions. As a result, cholesterol depletion diminishes Akt activity in both regions. Thus, Akt activities are differentially regulated in different membrane microdomains, and the overall activity of this oncogenic pathway is dependent on raft function. Given the increased abundance of lipid rafts in some cancer cells, the distinct Akt-activating characteristics of PDGF and IGF-1, in terms of both effectiveness and raft dependence, demonstrate the capabilities of different growth factor signaling pathways to transduce differential oncogenic signals across plasma membrane. PMID:18701703

  4. Protein Kinase C Isozyme in Mammary Carcinogenesis.

    DTIC Science & Technology

    1996-10-01

    11 A B Clone 72 Clone 34 AKAP 86 Clone 35H CInn 72 lonn 4 P 95 lone 351 9. 5J 4.4- 688 431 Clone 45 Clone 35F Clone 64 Annexln 1 Clone 45 Clone 35F...purified antibodies directed against a variety of PKC substrates and an A-kinase anchoring protein, AKAP 95. (B) PolyA+ mRNAs isolated from confluent cell

  5. Aurora kinase A is a possible target of OSU‑03012 to destabilize MYC family proteins.

    PubMed

    Silva, Andres; Wang, Jennie; Lomahan, Sarah; Tran, Tuan-Anh; Grenlin, Laura; Suganami, Akiko; Tamura, Yutaka; Ikegaki, Naohiko

    2014-09-01

    OSU-03012, a 3-phosphoinositide-dependent kinase-1 (PDK1) inhibitor, destabilizes MYCN and MYC proteins in neuroblastoma cells. However, AKT phosphorylation is barely detectable in neuroblastoma cells under normal culture conditions whether treated with OSU-03012 or not. This observation suggests that PDK1 is not the main target of OSU-03012 to destabilize MYC and MYCN in neuroblastoma cells. In the present study, we explored one of the possible mechanisms by which OSU-03012 destabilizes MYC and MYCN. Since Aurora kinase A is reported to phosphorylate GSK3β, leading to its inactivation, we hypothesized that one of the targets of OSU-03012 is Aurora kinase A. Comparative analysis of OSU-03012 and VX-680, a potent and specific inhibitor of Aurora kinases, showed that both inhibitors destabilized MYC and MYCN and were significantly growth suppressive to neuroblastoma cell lines. In silico molecular docking analysis further showed that the calculated interaction energy between Aurora kinase A and OSU-03012 was -109.901 kcal/mol, which was lower than that (-89.273 kcal/mol) between Aurora kinase A and FXG, an Aurora kinase-specific inhibitor. Finally, an in vitro Aurora kinase A inhibition assay using a recombinant Aurora kinase A showed that OSU-03012 significantly inhibited Aurora kinase A, although it was weaker in potency than that of VX-680. Thus, OSU-03012 has a likelihood of binding to and inhibiting Aurora kinase A in vivo. These results suggest that OSU-03012 affects multiple cellular targets, including Aurora kinase A, to exhibit its growth suppressive and MYC and MYCN-destabilizing effects on neuroblastoma and other cancer cells.

  6. MAP kinase activator from insulin-stimulated skeletal muscle is a protein threonine/tyrosine kinase.

    PubMed Central

    Nakielny, S; Cohen, P; Wu, J; Sturgill, T

    1992-01-01

    A 'MAP kinase activator' was purified several thousand-fold from insulin-stimulated rabbit skeletal muscle, which resembled the 'activator' from nerve growth factor-stimulated PC12 cells in that it could be inactivated by incubation with protein phosphatase 2A, but not by protein tyrosine phosphatases and its apparent molecular mass was 45-50 kDa. In the presence of MgATP, 'MAP kinase activator' converted the normal 'wild-type' 42 kDa MAP kinase from an inactive dephosphorylated form to the fully active diphosphorylated species. Phosphorylation occurred on the same threonine and tyrosine residues which are phosphorylated in vivo in response to growth factors or phorbol esters. A mutant MAP kinase produced by changing a lysine at the active centre to arginine was phosphorylated in an identical manner by the 'MAP kinase activator', but no activity was generated. The results demonstrate that 'MAP kinase activator' is a protein kinase (MAP kinase kinase) and not a protein that stimulates the autophosphorylation of MAP kinase. MAP kinase kinase is the first established example of a protein kinase that can phosphorylate an exogenous protein on threonine as well as tyrosine residues. Images PMID:1318193

  7. Differential AMP-activated Protein Kinase (AMPK) Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms.

    PubMed

    Fujiwara, Yuya; Kawaguchi, Yoshinori; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2016-06-24

    Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a known activating kinase for AMP-activated protein kinase (AMPK). In vitro, CaMKKβ phosphorylates Thr(172) in the AMPKα subunit more efficiently than CaMKKα, with a lower Km (∼2 μm) for AMPK, whereas the CaMKIα phosphorylation efficiencies by both CaMKKs are indistinguishable. Here we found that subdomain VIII of CaMKK is involved in the discrimination of AMPK as a native substrate by measuring the activities of various CaMKKα/CaMKKβ chimera mutants. Site-directed mutagenesis analysis revealed that Leu(358) in CaMKKβ/Ile(322) in CaMKKα confer, at least in part, a distinct recognition of AMPK but not of CaMKIα.

  8. Serine/Threonine Kinase 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) as a Key Regulator of Cell Migration and Cancer Dissemination

    PubMed Central

    Di Blasio, Laura; Gagliardi, Paolo A.; Puliafito, Alberto; Primo, Luca

    2017-01-01

    Dissecting the cellular signaling that governs the motility of eukaryotic cells is one of the fundamental tasks of modern cell biology, not only because of the large number of physiological processes in which cell migration is crucial, but even more so because of the pathological ones, in particular tumor invasion and metastasis. Cell migration requires the coordination of at least four major processes: polarization of intracellular signaling, regulation of the actin cytoskeleton and membrane extension, focal adhesion and integrin signaling and contractile forces generation and rear retraction. Among the molecular components involved in the regulation of locomotion, the phosphatidylinositol-3-kinase (PI3K) pathway has been shown to exert fundamental role. A pivotal node of such pathway is represented by the serine/threonine kinase 3-phosphoinositide-dependent protein kinase-1 (PDPK1 or PDK1). PDK1, and the majority of its substrates, belong to the AGC family of kinases (related to cAMP-dependent protein kinase 1, cyclic Guanosine monophosphate-dependent protein kinase and protein kinase C), and control a plethora of cellular processes, downstream either to PI3K or to other pathways, such as RAS GTPase-MAPK (mitogen-activated protein kinase). Interestingly, PDK1 has been demonstrated to be crucial for the regulation of each step of cell migration, by activating several proteins such as protein kinase B/Akt (PKB/Akt), myotonic dystrophy-related CDC42-binding kinases alpha (MRCKα), Rho associated coiled-coil containing protein kinase 1 (ROCK1), phospholipase C gamma 1 (PLCγ1) and β3 integrin. Moreover, PDK1 regulates cancer cell invasion as well, thus representing a possible target to prevent cancer metastasis in human patients. The aim of this review is to summarize the various mechanisms by which PDK1 controls the cell migration process, from cell polarization to actin cytoskeleton and focal adhesion regulation, and finally, to discuss the evidence supporting a

  9. A Regulatory Mechanism Involving TBP-1/Tat-Binding Protein 1 and Akt/PKB in the Control of Cell Proliferation

    PubMed Central

    Tolino, Fabio; Bellucci, Luca; Sisto, Luca; Alfano, Daniela; Ragno, Pia; Calabrò, Viola; de Franciscis, Vittorio; La Mantia, Girolama; Pollice, Alessandra

    2011-01-01

    TBP-1 /Tat-Binding Protein 1 (also named Rpt-5, S6a or PSMC3) is a multifunctional protein, originally identified as a regulator of HIV-1-Tat mediated transcription. It is an AAA-ATPase component of the 19S regulative subunit of the proteasome and, as other members of this protein family, fulfils different cellular functions including proteolysis and transcriptional regulation. We and others reported that over expression of TBP-1 diminishes cell proliferation in different cellular contexts with mechanisms yet to be defined. Accordingly, we demonstrated that TBP-1 binds to and stabilizes the p14ARF oncosuppressor increasing its anti-oncogenic functions. However, TBP-1 restrains cell proliferation also in the absence of ARF, raising the question of what are the molecular pathways involved. Herein we demonstrate that stable knock-down of TBP-1 in human immortalized fibroblasts increases cell proliferation, migration and resistance to apoptosis induced by serum deprivation. We observe that TBP-1 silencing causes activation of the Akt/PKB kinase and that in turn TBP-1, itself, is a downstream target of Akt/PKB. Moreover, MDM2, a known Akt target, plays a major role in this regulation. Altogether, our data suggest the existence of a negative feedback loop involving Akt/PKB that might act as a sensor to modulate TBP-1 levels in proliferating cells. PMID:21991300

  10. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2).

    PubMed

    Anderson, David R; Meyers, Marvin J; Vernier, William F; Mahoney, Matthew W; Kurumbail, Ravi G; Caspers, Nicole; Poda, Gennadiy I; Schindler, John F; Reitz, David B; Mourey, Robert J

    2007-05-31

    A new class of potent kinase inhibitors selective for mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK-2) for the treatment of rheumatoid arthritis has been prepared and evaluated. These inhibitors have IC50 values as low as 10 nM against the target and have good selectivity profiles against a number of kinases including CDK2, ERK, JNK, and p38. These MK-2 inhibitors have been shown to suppress TNFalpha production in U397 cells and to be efficacious in an acute inflammation model. The structure-activity relationships of this series, the selectivity for MK-2 and their activity in both in vitro and in vivo models are discussed. The observed selectivity is discussed with the aid of an MK-2/inhibitor crystal structure.

  11. A novel Drosophila Girdin-like protein is involved in Akt pathway control of cell size

    SciTech Connect

    Puseenam, Aekkachai; Yoshioka, Yasuhide; Nagai, Rika; Hashimoto, Reina; Suyari, Osamu; Itoh, Masanobu; Enomoto, Atsushi; Takahashi, Masahide; Yamaguchi, Masamitsu

    2009-11-15

    The Akt signaling pathway is well known to regulate cell proliferation and growth. Girdin, a novel substrate of Akt, plays a crucial role in organization of the actin cytoskeleton and cell motility under the control of Akt. We here identified a novel Girdin-like protein in Drosophila (dGirdin), which has two isoforms, dGirdin PA and dGirdin PB. dGirdin shows high homology with human Girdin in the N-terminal and coiled-coil domains, while diverging at the C-terminal domain. On establishment of transgenic fly lines, featuring knockdown or overexpression of dGirdin in vivo, overexpression in the wing disc cells induced ectopic apoptosis, implying a role in directing apoptosis. Knockdown of dGirdin in the Drosophila wing imaginal disc cells resulted in reduction of cell size. Furthermore, this was enhanced by half reduction of the Akt gene dose, suggesting that Akt positively regulates dGirdin. In the wing disc, cells in which dGirdin was knocked down exhibited disruption of actin filaments. From these in vivo analyses, we conclude that dGirdin is required for actin organization and regulation of appropriate cell size under control of the Akt signaling pathway.

  12. Kinase Pathway Database: An Integrated Protein-Kinase and NLP-Based Protein-Interaction Resource

    PubMed Central

    Koike, Asako; Kobayashi, Yoshiyuki; Takagi, Toshihisa

    2003-01-01

    Protein kinases play a crucial role in the regulation of cellular functions. Various kinds of information about these molecules are important for understanding signaling pathways and organism characteristics. We have developed the Kinase Pathway Database, an integrated database involving major completely sequenced eukaryotes. It contains the classification of protein kinases and their functional conservation, ortholog tables among species, protein–protein, protein–gene, and protein–compound interaction data, domain information, and structural information. It also provides an automatic pathway graphic image interface. The protein, gene, and compound interactions are automatically extracted from abstracts for all genes and proteins by natural-language processing (NLP).The method of automatic extraction uses phrase patterns and the GENA protein, gene, and compound name dictionary, which was developed by our group. With this database, pathways are easily compared among species using data with more than 47,000 protein interactions and protein kinase ortholog tables. The database is available for querying and browsing at http://kinasedb.ontology.ims.u-tokyo.ac.jp/. PMID:12799355

  13. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle.

    PubMed

    Lai, Yu-Chiang; Liu, Yang; Jacobs, Roxane; Rider, Mark H

    2012-10-01

    PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40 kDa and Akt substrate of 160 kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206 in a dose-dependent manner. Incubation with high doses of MK-2206 (10 μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle.

  14. Endothelial Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Is Critical for Lymphatic Vascular Development and Function

    PubMed Central

    Guo, Chang-An; Danai, Laura V.; Yawe, Joseph C.; Gujja, Sharvari; Edwards, Yvonne J. K.

    2016-01-01

    The molecular mechanisms underlying lymphatic vascular development and function are not well understood. Recent studies have suggested a role for endothelial cell (EC) mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) in developmental angiogenesis and atherosclerosis. Here, we show that constitutive loss of EC Map4k4 in mice causes postnatal lethality due to chylothorax, suggesting that Map4k4 is required for normal lymphatic vascular function. Mice constitutively lacking EC Map4k4 displayed dilated lymphatic capillaries, insufficient lymphatic valves, and impaired lymphatic flow; furthermore, primary ECs derived from these animals displayed enhanced proliferation compared with controls. Yeast 2-hybrid analyses identified the Ras GTPase-activating protein Rasa1, a known regulator of lymphatic development and lymphatic endothelial cell fate, as a direct interacting partner for Map4k4. Map4k4 silencing in ECs enhanced basal Ras and extracellular signal-regulated kinase (Erk) activities, and primary ECs lacking Map4k4 displayed enhanced lymphatic EC marker expression. Taken together, these results reveal that EC Map4k4 is critical for lymphatic vascular development by regulating EC quiescence and lymphatic EC fate. PMID:27044870

  15. Integrin β1, myosin light chain kinase and myosin IIA are required for activation of PI3K-AKT signaling following MEK inhibition in metastatic triple negative breast cancer

    PubMed Central

    Choi, Cheolwon; Kwon, Junyeob; Lim, Sunyoung; Helfman, David M.

    2016-01-01

    The effectiveness of targeted therapies against the Ras-ERK signaling pathway are limited due to adaptive resistance of tumor cells. Inhibition of the Ras-ERK pathway can result in activation of the PI3K-AKT pathway, thereby diminishing the therapeutic effects of targeting ERK signaling. Here we investigated the crosstalk between the Ras-ERK and PI3K-AKT pathways in MDA-MB-231 breast cancer cell lines that have a preference to metastasize to lung (LM2), brain (BrM2) or bone (BoM2). Inhibition of the Ras-ERK pathway reduced motility in both parental and BoM2 cells. In contrast, inhibition of the Ras-ERK pathway in BrM2 and LM2 cells resulted in activation of PI3K-AKT signaling that was responsible for continued cell motility. Analysis of the cross talk between Ras-ERK and PI3K-AKT signaling pathways revealed integrin β1, myosin light chain kinase (MLCK) and myosin IIA are required for the activation of PI3K-AKT following inhibition of the Ras-ERK pathway. Furthermore, feedback activation of the PI3K-AKT pathway following MEK suppression was independent of the epidermal growth factor receptor. Thus, integrin β1, MLCK, and myosin IIA are factors in the development of resistance to MEK inhibitors. These proteins could provide an opportunity to develop markers and therapeutic targets in a subgroup of triple negative breast cancer (TNBC) that exhibit resistance against MEK inhibition. PMID:27563827

  16. Akt1 promotes stimuli-induced endothelial-barrier protection through FoxO-mediated tight-junction protein turnover.

    PubMed

    Gao, Fei; Artham, Sandeep; Sabbineni, Harika; Al-Azayzih, Ahmad; Peng, Xiao-Ding; Hay, Nissim; Adams, Ralf H; Byzova, Tatiana V; Somanath, Payaningal R

    2016-10-01

    Vascular permeability regulated by the vascular endothelial growth factor (VEGF) through endothelial-barrier junctions is essential for inflammation. Mechanisms regulating vascular permeability remain elusive. Although 'Akt' and 'Src' have been implicated in the endothelial-barrier regulation, it is puzzling how both agents that protect and disrupt the endothelial-barrier activate these kinases to reciprocally regulate vascular permeability. To delineate the role of Akt1 in endothelial-barrier regulation, we created endothelial-specific, tamoxifen-inducible Akt1 knockout mice and stable ShRNA-mediated Akt1 knockdown in human microvascular endothelial cells. Akt1 loss leads to decreased basal and angiopoietin1-induced endothelial-barrier resistance, and enhanced VEGF-induced endothelial-barrier breakdown. Endothelial Akt1 deficiency resulted in enhanced VEGF-induced vascular leakage in mice ears, which was rescued upon re-expression with Adeno-myrAkt1. Furthermore, co-treatment with angiopoietin1 reversed VEGF-induced vascular leakage in an Akt1-dependent manner. Mechanistically, our study revealed that while VEGF-induced short-term vascular permeability is independent of Akt1, its recovery is reliant on Akt1 and FoxO-mediated claudin expression. Pharmacological inhibition of FoxO transcription factors rescued the defective endothelial barrier due to Akt1 deficiency. Here we provide novel insights on the endothelial-barrier protective role of VEGF in the long term and the importance of Akt1-FoxO signaling on tight-junction stabilization and prevention of vascular leakage through claudin expression.

  17. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7.

    PubMed

    Taylor, Kathryn M; Hiscox, Stephen; Nicholson, Robert I; Hogstrand, Christer; Kille, Peter

    2012-02-07

    The transition element zinc, which has recently been identified as an intracellular second messenger, has been implicated in various signaling pathways, including those leading to cell proliferation. Zinc channels of the ZIP (ZRT1- and IRT1-like protein) family [also known as solute carrier family 39A (SLC39A)] transiently increase the cytosolic free zinc (Zn(2+)) concentration in response to extracellular signals. We show that phosphorylation of evolutionarily conserved residues in endoplasmic reticulum zinc channel ZIP7 is associated with the gated release of Zn(2+) from intracellular stores, leading to activation of tyrosine kinases and the phosphorylation of AKT and extracellular signal-regulated kinases 1 and 2. Through pharmacological manipulation, proximity ligation assay, and mutagenesis, we identified protein kinase CK2 as the kinase responsible for ZIP7 activation. Together, the present results show that transition element channels in eukaryotes can be activated posttranslationally by phosphorylation, as part of a cell signaling cascade. Our study links the regulated release of zinc from intracellular stores to phosphorylation of kinases involved in proliferative responses and cell migration, suggesting a functional role for ZIP7 and zinc signals in these events. The connection with proliferation and migration, as well as the activation of ZIP7 by CK2, a kinase that is antiapoptotic and promotes cell division, suggests that ZIP7 may provide a target for anticancer drug development.

  18. Glycogen Synthase Kinase 3β Interaction Protein Functions as an A-kinase Anchoring Protein*

    PubMed Central

    Hundsrucker, Christian; Skroblin, Philipp; Christian, Frank; Zenn, Hans-Michael; Popara, Viola; Joshi, Mangesh; Eichhorst, Jenny; Wiesner, Burkhard; Herberg, Friedrich W.; Reif, Bernd; Rosenthal, Walter; Klussmann, Enno

    2010-01-01

    A-kinase anchoring proteins (AKAPs) include a family of scaffolding proteins that target protein kinase A (PKA) and other signaling proteins to cellular compartments and thereby confine the activities of the associated proteins to distinct regions within cells. AKAPs bind PKA directly. The interaction is mediated by the dimerization and docking domain of regulatory subunits of PKA and the PKA-binding domain of AKAPs. Analysis of the interactions between the dimerization and docking domain and various PKA-binding domains yielded a generalized motif allowing the identification of AKAPs. Our bioinformatics and peptide array screening approaches based on this signature motif identified GSKIP (glycogen synthase kinase 3β interaction protein) as an AKAP. GSKIP directly interacts with PKA and GSK3β (glycogen synthase kinase 3β). It is widely expressed and facilitates phosphorylation and thus inactivation of GSK3β by PKA. GSKIP contains the evolutionarily conserved domain of unknown function 727. We show here that this domain of GSKIP and its vertebrate orthologues binds both PKA and GSK3β and thereby provides a mechanism for the integration of PKA and GSK3β signaling pathways. PMID:20007971

  19. Photoinduced structural changes to protein kinase A

    NASA Astrophysics Data System (ADS)

    Rozinek, Sarah C.; Thomas, Robert J.; Brancaleon, Lorenzo

    2014-03-01

    The importance of porphyrins in organisms is underscored by the ubiquitous biological and biochemical functions that are mediated by these compounds and by their potential biomedical and biotechnological applications. Protoporphyrin IX (PPIX) is the precursor to heme and has biomedical applications such as its use as a photosensitizer in phototherapy and photodetection of cancer. Among other applications, our group has demonstrated that low-irradiance exposure to laser irradiation of PPIX, Fe-PPIX, or meso-tetrakis (4-sulfonatophenyl) porphyrin (TSPP) non-covalently docked to a protein causes conformational changes in the polypeptide. Such approach can have remarkable consequences in the study of protein structure/function relationship and can be used to prompt non-native protein properties. Therefore we have investigated protein kinase A (PKA), a more relevant protein model towards the photo-treatment of cancer. PKA's enzymatic functions are regulated by the presence of cyclic adenosine monophosphate for intracellular signal transduction involved in, among other things, stimulation of transcription, tumorigenesis in Carney complex and migration of breast carcinoma cells. Since phosphorylation is a necessary step in some cancers and inflammatory diseases, inhibiting the protein kinase, and therefore phosphorylation, may serve to treat these diseases. Changes in absorption, steady-state fluorescence, and fluorescence lifetime indicate: 1) both TSPP and PPIX non-covalently bind to PKA where they maintain photoreactivity; 2) absorptive photoproduct formation occurs only when PKA is bound to TSPP and irradiated; and 3) PKA undergoes secondary structural changes after irradiation with either porphyrin bound. These photoinduced changes could affect the protein's enzymatic and signaling capabilities.

  20. Regulation of anti-apoptotic Bcl-2 family protein Mcl-1 by S6 kinase 2

    PubMed Central

    Sridharan, Savitha

    2017-01-01

    The anti-apoptotic Bcl-2 family protein myeloid cell leukemia-1 (Mcl-1) plays an important role in breast cancer cell survival and chemoresistance. We have previously shown that knockdown of the 40S ribosomal protein S6 kinase-2 (S6K2), which acts downstream of the mechanistic target of rapamycin complex 1 (mTORC1), enhanced breast cancer cell death by apoptotic stimuli. The increase in cell death by S6K2 depletion was partly due to inactivation of Akt. In the present study, we investigated if S6K2 regulates Mcl-1, which acts downstream of Akt. Silencing of S6K2 but not S6K1 in T47D cells decreased Mcl-1 level, and potentiated apoptosis induced by TRAIL and doxorubicin. Knockdown of S6K2 also decreased the level of anti-apoptotic Bcl-xl. Depletion of the tumor suppressor protein PDCD4 (programmed cell death 4), which regulates translation of several anti-apoptotic proteins, reversed downregulation of Bcl-xl but not Mcl-1 and failed to reverse the effect of S6K2 knockdown on potentiation of doxorubicin-induced apoptosis. Downregulation of Mcl-1 by S6K2 knockdown was partly restored by the proteasome inhibitor MG132. Overexpression of catalytically-active Akt or knockdown of glycogen synthase kinase-3 (GSK3)-β, a substrate for Akt, had little effect on Mcl-1 downregulation caused by S6K2 deficiency. Silencing of S6K2 increased the level of c-Jun N-terminal kinase (JNK) and knockdown of JNK1 increased basal Mcl-1 level and partly reversed the effect of S6K2 knockdown on Mcl-1 downregulation. JNK1 knockdown also had a modest effect in attenuating the increase in doxorubicin-induced apoptosis caused by S6K2 deficiency. These results suggest that S6K2 regulates apoptosis via multiple mechanisms, and involves both Akt and JNK. PMID:28301598

  1. Protein Kinases in Mammary Gland Development and Carcinogenesis

    DTIC Science & Technology

    1999-09-01

    differ among CaM kinase family members include their subcellular localization , regulation by autophosphorylation, and regulation by other proteins. In...addition, CaM kinases have unique amino- and carboxyl- terminal domains that contribute to kinase-specific differences in subcellular localization ...chromosomal localization of Punc, a calcium/calmodulin-dependent protein kinase, (Submitted). 14. Hennings, H., Glick, A., Lowry, D., Krsmanovic, L

  2. Restoration of SHIP activity in a human leukemia cell line downregulates constitutively activated phosphatidylinositol 3-kinase/Akt/GSK-3beta signaling and leads to an increased transit time through the G1 phase of the cell cycle.

    PubMed

    Horn, S; Endl, E; Fehse, B; Weck, M M; Mayr, G W; Jücker, M

    2004-11-01

    The inositol 5-phosphatase SHIP (SHIP-1) is a negative regulator of signal transduction in hematopoietic cells and targeted disruption of SHIP in mice leads to a myeloproliferative disorder. We analyzed the effects of SHIP on the human leukemia cell line Jurkat in which expression of endogenous SHIP protein is not detectable. Restoration of SHIP expression in Jurkat cells with an inducible expression system caused a 69% reduction of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and a 65% reduction of Akt kinase activity, which was associated with reduced phosphorylation of glycogen synthase kinase 3beta (GSK-3beta) (Ser-9) without changing the phosphorylation of Bad (Ser-136), FKHR (Ser-256) or MAPK (Thr-202/Tyr-204). SHIP-expressing Jurkat cells showed an increased transit time through the G1 phase of the cell cycle, but SHIP did not cause a complete cell cycle arrest or apoptosis. Extension of the G1 phase was associated with an increased stability of the cell cycle inhibitor p27(Kip1) and reduced phosphorylation of the retinoblastoma protein Rb at serine residue 780. Our data indicate that restoration of SHIP activity in a human leukemia cell line, which has lost expression of endogenous SHIP, downregulates constitutively activated phosphatidylinositol 3-kinase/Akt/GSK-3beta signaling and leads to an increased transit time through the G1 phase of the cell cycle.

  3. Protein kinase C alpha-dependent phosphorylation of Golgi proteins.

    PubMed

    Radau, B; Otto, A; Müller, E C; Westermann, P

    2000-07-01

    Golgi-enriched membranes were phosphorylated in order to understand the mechanism for protein kinase C (PKC) regulation of exocytic vesicle formation at the trans-Golgi network. Two of the main PKC substrates were identified as MARCKS and Mac-MARCKS by two-dimensional electrophoresis (2-DE) and mass spectrometric sequencing. Annexin IV and profilin I, two other Golgi-associated proteins--although known as in vitro PKC substrates--were not phosphorylated in the Golgi-bound state.

  4. Akt phosphorylates Tal1 oncoprotein and inhibits its repressor activity.

    PubMed

    Palamarchuk, Alexey; Efanov, Alexey; Maximov, Vadim; Aqeilan, Rami I; Croce, Carlo M; Pekarsky, Yuri

    2005-06-01

    The helix-loop-helix transcription factor Tal1 is required for blood cell development and its activation is a frequent event in T-cell acute lymphoblastic leukemia. The Akt (protein kinase B) kinase is a key player in transduction of antiapoptotic and proliferative signals in T cells. Because Tal1 has a putative Akt phosphorylation site at Thr90, we investigated whether Akt regulates Tal1. Our results show that Akt specifically phosphorylates Thr90 of the Tal1 protein within its transactivation domain in vitro and in vivo. Coimmunoprecipitation experiments showed the presence of Tal1 in Akt immune complexes, suggesting that Tal1 and Akt physically interact. We further showed that phosphorylation of Tal1 by Akt causes redistribution of Tal1 within the nucleus. Using luciferase assay, we showed that phosphorylation of Tal1 by Akt decreased repressor activity of Tal1 on EpB42 (P4.2) promoter. Thus, these data indicate that Akt interacts with Tal1 and regulates Tal1 by phosphorylation at Thr90 in a phosphatidylinositol 3-kinase-dependent manner.

  5. Protein Kinases in Zucchini (Characterization of Calcium-Requiring Plasma Membrane Kinases).

    PubMed Central

    Verhey, S. D.; Gaiser, J. C.; Lomax, T. L.

    1993-01-01

    Using an in situ phosphorylation assay with zucchini (Cucurbita pepo L. cv Dark Green) seedling tissue, we have identified numerous polypeptides that are capable of acting as protein kinases. Total protein preparations from different organs contain different kinase profiles, but all are within the range of 55 to 70 kD. At least four kinases are associated with highly purified plasma membranes from etiolated zucchini hypocotyls. The major phosphorylated polypeptides from plasma membranes range in apparent molecular mass from 58 to 68 kD. The plasma membrane kinases are activated by micromolar concentrations of calcium and phosphorylate serine, and, to a lesser extent, threonine residues. These characteristics are similar to those of a soluble calcium-dependent protein kinase that has been purified to homogeneity from soybean suspension cultures. Three of the zucchini plasma membrane kinases share antigenic epitopes with the soluble soybean kinase. The presence of kinase activity at different apparent molecular masses may be indicative of separate kinases with similar characteristics. The zucchini hypocotyl protein kinases are not removed from plasma membrane vesicles by 0.5 M NaCl/5 mM ethylenediaminetetraacetate or by detergent concentrations below the critical micelle concentration of two types of detergent. This indicates that the plasma membrane protein kinases are tightly associated with the membrane in zucchini seedlings. PMID:12231949

  6. Methylglyoxal activates the target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae.

    PubMed

    Nomura, Wataru; Inoue, Yoshiharu

    2015-04-01

    Methylglyoxal is a typical 2-oxoaldehyde derived from glycolysis. We show here that methylglyoxal activates the Pkc1-Mpk1 mitogen-activated protein (MAP) kinase cascade in a target of rapamycin complex 2 (TORC2)-dependent manner in the budding yeast Saccharomyces cerevisiae. We demonstrate that TORC2 phosphorylates Pkc1 at Thr(1125) and Ser(1143). Methylglyoxal enhanced the phosphorylation of Pkc1 at Ser(1143), which transmitted the signal to the downstream Mpk1 MAP kinase cascade. We found that the phosphorylation status of Pkc1(T1125) affected the phosphorylation of Pkc1 at Ser(1143), in addition to its protein levels. Methylglyoxal activated mammalian TORC2 signaling, which, in turn, phosphorylated Akt at Ser(473). Our results suggest that methylglyoxal is a conserved initiator of TORC2 signaling among eukaryotes.

  7. Methylglyoxal Activates the Target of Rapamycin Complex 2-Protein Kinase C Signaling Pathway in Saccharomyces cerevisiae

    PubMed Central

    Nomura, Wataru

    2015-01-01

    Methylglyoxal is a typical 2-oxoaldehyde derived from glycolysis. We show here that methylglyoxal activates the Pkc1-Mpk1 mitogen-activated protein (MAP) kinase cascade in a target of rapamycin complex 2 (TORC2)-dependent manner in the budding yeast Saccharomyces cerevisiae. We demonstrate that TORC2 phosphorylates Pkc1 at Thr1125 and Ser1143. Methylglyoxal enhanced the phosphorylation of Pkc1 at Ser1143, which transmitted the signal to the downstream Mpk1 MAP kinase cascade. We found that the phosphorylation status of Pkc1T1125 affected the phosphorylation of Pkc1 at Ser1143, in addition to its protein levels. Methylglyoxal activated mammalian TORC2 signaling, which, in turn, phosphorylated Akt at Ser473. Our results suggest that methylglyoxal is a conserved initiator of TORC2 signaling among eukaryotes. PMID:25624345

  8. Protein kinase C Theta inhibits insulin signaling by phosphorylating IRS1 at Ser(1101).

    PubMed

    Li, Yu; Soos, Timothy J; Li, Xinghai; Wu, Jiong; Degennaro, Matthew; Sun, Xiaojian; Littman, Dan R; Birnbaum, Morris J; Polakiewicz, Roberto D

    2004-10-29

    Obesity and stress inhibit insulin action by activating protein kinases that enhance serine phosphorylation of IRS1 and have been thus associated to insulin resistance and the development of type II diabetes. The protein kinase C (PKC) is activated by free-fatty acids, and its activity is higher in muscle from obese diabetic patients. However, a molecular link between PKC and insulin resistance has not been defined yet. Here we show that PKC phosphorylates IRS1 at serine 1101 blocking IRS1 tyrosine phosphorylation and downstream activation of the Akt pathway. Mutation of Ser(1101) to alanine makes IRS1 insensitive to the effect of PKC and restores insulin signaling in culture cells. These results provide a novel mechanism linking the activation of PKC to the inhibition of insulin signaling.

  9. The Phosphatidylinositol 3-Kinase/Akt Pathway Regulates Transforming Growth Factor-β Signaling by Destabilizing Ski and Inducing Smad7*

    PubMed Central

    Band, Arja M.; Björklund, Mia; Laiho, Marikki

    2009-01-01

    Ski is an oncoprotein that negatively regulates transforming growth factor (TGF)-β signaling. It acts as a transcriptional co-repressor by binding to TGF-β signaling molecules, Smads. Efficient TGF-β signaling is facilitated by rapid proteasome-mediated degradation of Ski by TGF-β. Here we report that Ski is phosphorylated by Akt/PKB kinase. Akt phosphorylates Ski on a highly conserved Akt motif at threonine 458 both in vitro and in vivo. The phosphorylation of Ski at threonine 458 is induced by Akt pathway activators including insulin, insulin-like growth factor-1, and hepatocyte growth factor. The phosphorylation of Ski causes its destabilization and reduces Ski-mediated inhibition of expression of another negative regulator of TGF-β, Smad7. Induction of Smad7 levels leads to inactivation of TGF-β receptors and TGF-β signaling cascade, as indicated by reduced induction of TGF-β target p15. Therefore, Akt modulates TGF-β signaling by temporarily adjusting the levels of two TGF-β pathway negative regulators, Ski and Smad7. These novel findings demonstrate that Akt pathway activation directly impacts TGF-β pathway. PMID:19875456

  10. Phosphoregulators: Protein Kinases and Protein Phosphatases of Mouse

    PubMed Central

    Forrest, Alistair R.R.; Ravasi, Timothy; Taylor, Darrin; Huber, Thomas; Hume, David A.; Grimmond, Sean

    2003-01-01

    With the completion of the human and mouse genome sequences, the task now turns to identifying their encoded transcripts and assigning gene function. In this study, we have undertaken a computational approach to identify and classify all of the protein kinases and phosphatases present in the mouse gene complement. A nonredundant set of these sequences was produced by mining Ensembl gene predictions and publicly available cDNA sequences with a panel of InterPro domains. This approach identified 561 candidate protein kinases and 162 candidate protein phosphatases. This cohort was then analyzed using TribeMCL protein sequence similarity clustering followed by CLUSTALV alignment and hierarchical tree generation. This approach allowed us to (1) distinguish between true members of the protein kinase and phosphatase families and enzymes of related biochemistry, (2) determine the structure of the families, and (3) suggest functions for previously uncharacterized members. The classifications obtained by this approach were in good agreement with previous schemes and allowed us to demonstrate domain associations with a number of clusters. Finally, we comment on the complementary nature of cDNA and genome-based gene detection and the impact of the FANTOM2 transcriptome project. PMID:12819143

  11. Cross-Talk between NFkB and the PI3-Kinase/AKT Pathway Can Be Targeted in Primary Effusion Lymphoma (PEL) Cell Lines for Efficient Apoptosis

    PubMed Central

    Hussain, Azhar R.; Ahmed, Saeeda O.; Ahmed, Maqbool; Khan, Omar S.; Al AbdulMohsen, Sally; Platanias, Leonidas C.; Al-Kuraya, Khawla S.; Uddin, Shahab

    2012-01-01

    Background A number of constitutively activated signaling pathways play critical roles in the survival and growth of primary effusion lymphoma cells (PELs) including NFkB and PI3/AKT kinase cascades. NFkBis constitutively activated in a number of malignancies, including multiple myeloma, Burkitt’s lymphoma and diffuse large cell B-cell lymphoma. However, its role in primary effusion lymphoma has not been fully explored. Methodology/Principal Findings We used pharmacological inhibition and gene silencing to define the role of NFkB in growth and survival of PEL cells. Inhibition of NFkB activity by Bay11-7085 resulted in decreased expression of p65 in the nuclear compartment as detected by EMSA assays. In addition, Bay11-7085 treatment caused de-phosphorylation of AKT and its downstream targets suggesting a cross-talk between NFkB and the PI3-kinase/AKT pathway. Importantly, treatment of PEL cells with Bay11-7085 led to inhibition of cell viability and induced apoptosis in a dose dependent manner. Similar apoptotic effects were found when p65 was knocked down using specific small interference RNA. Finally, co-treatment of PEL cells with suboptimal doses of Bay11-7085 and LY294002 led to synergistic apoptotic responses in PEL cells. Conclusion/Significance These data support a strong biological-link between NFkB and the PI3-kinase/AKT pathway in the modulation of anti-apoptotic effects in PEL cells. Synergistic targeting of these pathways using NFKB- and PI3-kinase/AKT- inhibitors may have a therapeutic potential for the treatment of PEL and possibly other malignancies with constitutive activation of these pathways. PMID:22768179

  12. Protein kinase C activity in boar sperm.

    PubMed

    Teijeiro, J M; Marini, P E; Bragado, M J; Garcia-Marin, L J

    2017-03-01

    Male germ cells undergo different processes within the female reproductive tract to successfully fertilize the oocyte. These processes are triggered by different extracellular stimuli leading to activation of protein phosphorylation. Protein kinase C (PKC) is a key regulatory enzyme in signal transduction mechanisms involved in many cellular processes. Studies in boar sperm demonstrated a role for PKC in the intracellular signaling involved in motility and cellular volume regulation. Experiments using phorbol 12-myristate 13-acetate (PMA) showed increases in the Serine/Threonine phosphorylation of substrates downstream of PKC in boar sperm. In order to gain knowledge about those cellular processes regulated by PKC, we evaluate the effects of PMA on boar sperm motility, lipid organization of plasma membrane, integrity of acrosome membrane and sperm agglutination. Also, we investigate the crosstalk between PKA and PKC intracellular pathways in spermatozoa from this species. The results presented here reveal a participation of PKC in sperm motility regulation and membrane fluidity changes, which is probably associated to acrosome reaction and to agglutination. Also, we show the existence of a hierarchy in the kinases pathway. Previous works on boar sperm suggest a pathway in which PKA is positioned upstream to PKC and this new results support such model.

  13. Mechanism of activation of protein kinase B by insulin and IGF-1.

    PubMed Central

    Alessi, D R; Andjelkovic, M; Caudwell, B; Cron, P; Morrice, N; Cohen, P; Hemmings, B A

    1996-01-01

    Insulin activated endogenous protein kinase B alpha (also known as RAC/Akt kinase) activity 12-fold in L6 myotubes, while after transfection into 293 cells PKBalpha was activated 20- and 50-fold in response to insulin and IGF-1 respectively. In both cells, the activation of PKBalpha was accompanied by its phosphorylation at Thr308 and Ser473 and, like activation, phosphorylation of both of these residues was prevented by the phosphatidylinositol 3-kinase inhibitor wortmannin. Thr308 and/or Ser473 were mutated to Ala or Asp and activities of mutant PKBalpha molecules were analysed after transfection into 293 cells. The activity of wild-type and mutant PKBalpha was also measured in vitro after stoichiometric phosphorylation of Ser473 by MAPKAP kinase-2. These experiments demonstrated that activation of PKBalpha by insulin or insulin-like growth factor-1 (IGF-1) results from phosphorylation of both Thr308 and Ser473, that phosphorylation of both residues is critical to generate a high level of PKBalpha activity and that the phosphorylation of Thr308 in vivo is not dependent on phosphorylation of Ser473 or vice versa. We propose a model whereby PKBalpha becomes phosphorylated and activated in insulin/IGF-1-stimulated cells by an upstream kinase(s). Images PMID:8978681

  14. [Protein kinases role in adaptive phenomenon of heart ischemic postconditioning development].

    PubMed

    Maslov, L N; Mrochek, A G; Shchepetkin, I A; Headrick, J P; Hanus, L; Barzakh, E I; Lishmanov, A Iu; Gorbunov, A S; Tsybul'nikov, S Iu; Baĭkov, A N

    2013-04-01

    Authors submitted an analysis of papers given up an involvement of protein kinases in heart ischemic postconditioning. This analysis of literature source allowed to authors affirms that signaling system of postconditioning can involve kinases: PKC, PI3K, Akt, MEKl/2, ERK1/2, MTOR, p70s6K, GSK3b, PKG and also eNOS, NO, GC, motoKATP channel, ROS, MPT pore. At the same time it is unclear a real contributions of kinases mTOR, p70s6, AMPK and GSK3b in the mechanism of infarct limiting impact of postconditioning. It is required a further study of the chain of signaling events following JAK2 and p38 kinase activation. The knowledge of Ras and Raf-1 role in postconditioning has hypothetical character. The tyrosine kinase significance in postcondi-tioning is unclear, particular Src kinase, which plays an important role in the regulation of cardiac tolerance to an impact of ischemia and reperfusion.

  15. Suppression of Heregulin-β1/HER2-Modulated Invasive and Aggressive Phenotype of Breast Carcinoma by Pterostilbene via Inhibition of Matrix Metalloproteinase-9, p38 Kinase Cascade and Akt Activation

    PubMed Central

    Pan, Min-Hsiung; Lin, Ying-Ting; Lin, Chih-Li; Wei, Chi-Shiang; Ho, Chi-Tang; Chen, Wei-Jen

    2011-01-01

    Invasive breast cancer is the major cause of death among females and its incidence is closely linked to HER2 (human epidermal growth factor receptor 2) overexpression. Pterostilbene, a natural analog of resveratrol, exerts its cancer chemopreventive activity similar to resveratrol by inhibiting cancer cell proliferation and inducing apoptosis. However, the anti-invasive effect of pterostilbene on HER2-bearing breast cancer has not been evaluated. Here, we used heregulin-β1 (HRG-β1), a ligand for HER3, to transactivate HER2 signaling. We found that pterostilbene was able to suppress HRG-β1-mediated cell invasion, motility and cell transformation of MCF-7 human breast carcinoma through down-regulation of matrix metalloproteinase-9 (MMP-9) activity and growth inhibition. In parallel, pterostilbene also inhibited protein and mRNA expression of MMP-9 driven by HRG-β1, suggesting that pterostilbene decreased HRG-β1-mediated MMP-9 induction via transcriptional regulation. Examining the signaling pathways responsible for HRG-β1-associated MMP-9 induction and growth inhibition, we observed that pterostilbene, as well as SB203580 (p38 kinase inhibitor), can abolish the phosphorylation of p38 mitogen-activated protein kinase (p38 kinase), a downstream HRG-β1-responsive kinase responsible for MMP-9 induction. In addition, HRG-β1-driven Akt phosphorylation required for cell proliferation was also suppressed by pterostilbene. Taken together, our present results suggest that pterostilbene may serve as a chemopreventive agent to inhibit HRG-β1/HER2-mediated aggressive and invasive phenotype of breast carcinoma through down-regulation of MMP-9, p38 kinase and Akt activation. PMID:19617202

  16. Genomic analysis of the eukaryotic protein kinase superfamily: a perspective

    PubMed Central

    Hanks, Steven K

    2003-01-01

    Protein kinases with a conserved catalytic domain make up one of the largest 'superfamilies' of eukaryotic proteins and play many key roles in biology and disease. Efforts to identify and classify all the members of the eukaryotic protein kinase superfamily have recently culminated in the mining of essentially complete human genome data. PMID:12734000

  17. Mitogen-activated protein kinase cascades in Vitis vinifera

    PubMed Central

    Çakır, Birsen; Kılıçkaya, Ozan

    2015-01-01

    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera. PMID:26257761

  18. The Roles of Protein Kinases in Learning and Memory

    ERIC Educational Resources Information Center

    Giese, Karl Peter; Mizuno, Keiko

    2013-01-01

    In the adult mammalian brain, more than 250 protein kinases are expressed, but only a few of these kinases are currently known to enable learning and memory. Based on this information it appears that learning and memory-related kinases either impact on synaptic transmission by altering ion channel properties or ion channel density, or regulate…

  19. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells.

    PubMed

    Yuan, Chun-Xiu; Zhou, Zhi-Wei; Yang, Yin-Xue; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Tianxing; Pan, Si-Yuan; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Gastric cancer is the second leading cause of cancer-related death worldwide, with a poor response to current chemotherapy. Danusertib is a pan-inhibitor of the Aurora kinases and a third-generation Bcr-Abl tyrosine kinase inhibitor with potent anticancer effects, but its antitumor effect and underlying mechanisms in the treatment of human gastric cancer are unknown. This study aimed to investigate the effects of danusertib on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition and the molecular mechanisms involved in human gastric cancer AGS and NCI-N78 cells. The results showed that danusertib had potent growth-inhibitory, apoptosis-inducing, and autophagy-inducing effects on AGS and NCI-N78 cells. Danusertib arrested AGS and NCI-N78 cells in G2/M phase, with downregulation of expression of cyclin B1 and cyclin-dependent kinase 1 and upregulation of expression of p21 Waf1/Cip1, p27 Kip1, and p53. Danusertib induced mitochondria-mediated apoptosis, with an increase in expression of proapoptotic protein and a decrease in antiapoptotic proteins in both cell lines. Danusertib induced release of cytochrome c from the mitochondria to the cytosol and triggered activation of caspase 9 and caspase 3 in AGS and NCI-N78 cells. Further, danusertib induced autophagy, with an increase in expression of beclin 1 and conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) to LC3-II in both cell lines. Inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways as well as activation of 5' AMP-activated protein kinase contributed to the proautophagic effect of danusertib in AGS and NCI-N78 cells. SB202191 and wortmannin enhanced the autophagy-inducing effect of danusertib in AGS and NCI-N78 cells. In addition, danusertib inhibited epithelial to mesenchymal transition with an increase in expression of E-cadherin and a decrease in expression of

  20. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells

    PubMed Central

    Yuan, Chun-Xiu; Zhou, Zhi-Wei; Yang, Yin-Xue; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Tianxing; Pan, Si-Yuan; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Gastric cancer is the second leading cause of cancer-related death worldwide, with a poor response to current chemotherapy. Danusertib is a pan-inhibitor of the Aurora kinases and a third-generation Bcr-Abl tyrosine kinase inhibitor with potent anticancer effects, but its antitumor effect and underlying mechanisms in the treatment of human gastric cancer are unknown. This study aimed to investigate the effects of danusertib on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition and the molecular mechanisms involved in human gastric cancer AGS and NCI-N78 cells. The results showed that danusertib had potent growth-inhibitory, apoptosis-inducing, and autophagy-inducing effects on AGS and NCI-N78 cells. Danusertib arrested AGS and NCI-N78 cells in G2/M phase, with downregulation of expression of cyclin B1 and cyclin-dependent kinase 1 and upregulation of expression of p21 Waf1/Cip1, p27 Kip1, and p53. Danusertib induced mitochondria-mediated apoptosis, with an increase in expression of proapoptotic protein and a decrease in antiapoptotic proteins in both cell lines. Danusertib induced release of cytochrome c from the mitochondria to the cytosol and triggered activation of caspase 9 and caspase 3 in AGS and NCI-N78 cells. Further, danusertib induced autophagy, with an increase in expression of beclin 1 and conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) to LC3-II in both cell lines. Inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways as well as activation of 5′ AMP-activated protein kinase contributed to the proautophagic effect of danusertib in AGS and NCI-N78 cells. SB202191 and wortmannin enhanced the autophagy-inducing effect of danusertib in AGS and NCI-N78 cells. In addition, danusertib inhibited epithelial to mesenchymal transition with an increase in expression of E-cadherin and a decrease in expression

  1. Tauroursodeoxycholic acid reduces ER stress by regulating of Akt-dependent cellular prion protein

    PubMed Central

    Yoon, Yeo Min; Lee, Jun Hee; Yun, Seung Pil; Han, Yong-Seok; Yun, Chul Won; Lee, Hyun Jik; Noh, Hyunjin; Lee, Sei-Jung; Han, Ho Jae; Lee, Sang Hun

    2016-01-01

    Although mesenchymal stem cells (MSCs) are a promising cell source for regenerative medicine, ischemia-induced endoplasmic reticulum (ER) stress induces low MSC engraftment and limits their therapeutic efficacy. To overcome this, we investigated the protective effect of tauroursodeoxycholic acid (TUDCA), a bile acid, on ER stress in MSCs in vitro and in vivo. In ER stress conditions, TUDCA treatment of MSCs reduced the activation of ER stress-associated proteins, including GRP78, PERK, eIF2α, ATF4, IRE1α, JNK, p38, and CHOP. In particular, TUDCA inhibited the dissociation between GRP78 and PERK, resulting in reduced ER stress-mediated cell death. Next, to explore the ER stress protective mechanism induced by TUDCA treatment, TUDCA-mediated cellular prion protein (PrPC) activation was assessed. TUDCA treatment increased PrPC expression, which was regulated by Akt phosphorylation. Manganese-dependent superoxide dismutase (MnSOD) expression also increased significantly in response to signaling through the TUDCA-Akt axis. In a murine hindlimb ischemia model, TUDCA-treated MSC transplantation augmented the blood perfusion ratio, vessel formation, and transplanted cell survival more than untreated MSC transplantation did. Augmented functional recovery following MSC transplantation was blocked by PrPC downregulation. This study is the first to demonstrate that TUDCA protects MSCs against ER stress via Akt-dependent PrPC and Akt-MnSOD pathway. PMID:28004805

  2. Protein kinase A contributes to the negative control of Snf1 protein kinase in Saccharomyces cerevisiae.

    PubMed

    Barrett, LaKisha; Orlova, Marianna; Maziarz, Marcin; Kuchin, Sergei

    2012-02-01

    Snf1 protein kinase regulates responses to glucose limitation and other stresses. Snf1 activation requires phosphorylation of its T-loop threonine by partially redundant upstream kinases (Sak1, Tos3, and Elm1). Under favorable conditions, Snf1 is turned off by Reg1-Glc7 protein phosphatase. The reg1 mutation causes increased Snf1 activation and slow growth. To identify new components of the Snf1 pathway, we searched for mutations that, like snf1, suppress reg1 for the slow-growth phenotype. In addition to mutations in genes encoding known pathway components (SNF1, SNF4, and SAK1), we recovered "fast" mutations, designated fst1 and fst2. Unusual morphology of the mutants in the Σ1278b strains employed here helped us identify fst1 and fst2 as mutations in the RasGAP genes IRA1 and IRA2. Cells lacking Ira1, Ira2, or Bcy1, the negative regulatory subunit of cyclic AMP (cAMP)-dependent protein kinase A (PKA), exhibited reduced Snf1 pathway activation. Conversely, Snf1 activation was elevated in cells lacking the Gpr1 sugar receptor, which contributes to PKA signaling. We show that the Snf1-activating kinase Sak1 is phosphorylated in vivo on a conserved serine (Ser1074) within an ideal PKA motif. However, this phosphorylation alone appears to play only a modest role in regulation, and Sak1 is not the only relevant target of the PKA pathway. Collectively, our results suggest that PKA, which integrates multiple regulatory inputs, could contribute to Snf1 regulation under various conditions via a complex mechanism. Our results also support the view that, like its mammalian counterpart, AMP-activated protein kinase (AMPK), yeast Snf1 participates in metabolic checkpoint control that coordinates growth with nutrient availability.

  3. KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites.

    PubMed

    Huang, Hsien-Da; Lee, Tzong-Yi; Tzeng, Shih-Wei; Horng, Jorng-Tzong

    2005-07-01

    KinasePhos is a novel web server for computationally identifying catalytic kinase-specific phosphorylation sites. The known phosphorylation sites from public domain data sources are categorized by their annotated protein kinases. Based on the profile hidden Markov model, computational models are learned from the kinase-specific groups of the phosphorylation sites. After evaluating the learned models, the model with highest accuracy was selected from each kinase-specific group, for use in a web-based prediction tool for identifying protein phosphorylation sites. Therefore, this work developed a kinase-specific phosphorylation site prediction tool with both high sensitivity and specificity. The prediction tool is freely available at http://KinasePhos.mbc.nctu.edu.tw/.

  4. The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells

    PubMed Central

    Li, Jin-Ping; Yang, Yin-Xue; Liu, Qi-Lun; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Chen, Xiao-Wu; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Alisertib (ALS) is an investigational potent Aurora A kinase inhibitor currently undergoing clinical trials for the treatment of hematological and non-hematological malignancies. However, its antitumor activity has not been tested in human breast cancer. This study aimed to investigate the effect of ALS on the growth, apoptosis, and autophagy, and the underlying mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. In the current study, we identified that ALS had potent growth-inhibitory, pro-apoptotic, and pro-autophagic effects in MCF7 and MDA-MB-231 cells. ALS arrested the cells in G2/M phase in MCF7 and MDA-MB-231 cells which was accompanied by the downregulation of cyclin-dependent kinase (CDK)1/cell division cycle (CDC) 2, CDK2, and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53, suggesting that ALS induces G2/M arrest through modulation of p53/p21/CDC2/cyclin B1 pathways. ALS induced mitochondria-mediated apoptosis in MCF7 and MDA-MB-231 cells; ALS significantly decreased the expression of B-cell lymphoma 2 (Bcl-2), but increased the expression of B-cell lymphoma 2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and increased the expression of cleaved caspases 3 and 9. ALS significantly increased the expression level of membrane-bound microtubule-associated protein 1 light chain 3 (LC3)-II and beclin 1 and induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (MAPK) pathways in MCF7 and MDA-MB-231 cells as indicated by their altered phosphorylation, contributing to the pro-autophagic activities of ALS. Furthermore, treatment with wortmannin markedly downregulated ALS-induced p38 MAPK activation and LC3 conversion. In addition, knockdown of the p38 MAPK gene by ribonucleic acid interference upregulated Akt activation and resulted in LC3-II accumulation. These findings indicate that ALS promotes cellular

  5. The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells.

    PubMed

    Li, Jin-Ping; Yang, Yin-Xue; Liu, Qi-Lun; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Chen, Xiao-Wu; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Alisertib (ALS) is an investigational potent Aurora A kinase inhibitor currently undergoing clinical trials for the treatment of hematological and non-hematological malignancies. However, its antitumor activity has not been tested in human breast cancer. This study aimed to investigate the effect of ALS on the growth, apoptosis, and autophagy, and the underlying mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. In the current study, we identified that ALS had potent growth-inhibitory, pro-apoptotic, and pro-autophagic effects in MCF7 and MDA-MB-231 cells. ALS arrested the cells in G2/M phase in MCF7 and MDA-MB-231 cells which was accompanied by the downregulation of cyclin-dependent kinase (CDK)1/cell division cycle (CDC) 2, CDK2, and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53, suggesting that ALS induces G2/M arrest through modulation of p53/p21/CDC2/cyclin B1 pathways. ALS induced mitochondria-mediated apoptosis in MCF7 and MDA-MB-231 cells; ALS significantly decreased the expression of B-cell lymphoma 2 (Bcl-2), but increased the expression of B-cell lymphoma 2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and increased the expression of cleaved caspases 3 and 9. ALS significantly increased the expression level of membrane-bound microtubule-associated protein 1 light chain 3 (LC3)-II and beclin 1 and induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (MAPK) pathways in MCF7 and MDA-MB-231 cells as indicated by their altered phosphorylation, contributing to the pro-autophagic activities of ALS. Furthermore, treatment with wortmannin markedly downregulated ALS-induced p38 MAPK activation and LC3 conversion. In addition, knockdown of the p38 MAPK gene by ribonucleic acid interference upregulated Akt activation and resulted in LC3-II accumulation. These findings indicate that ALS promotes cellular

  6. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases but we made the surprising observation that soybean CDPK' and several Arabidopsis isoforms (AtCPK4 and AtCPK34) could also autophosphorylate on tyrosine residues. In studies with His6-GmCDPK', we ide...

  7. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID.

    PubMed

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inês C R; Willige, Björn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the--in many cells--asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  8. Synergistic effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway or NUP214-ABL1 fusion protein in human Acute Lymphoblastic Leukemia

    PubMed Central

    Martelli, Alberto M.; Zauli, Giorgio; Milani, Daniela; McCubrey, James A.; Capitani, Silvano; Neri, Luca M.

    2016-01-01

    Philadelphia chromosome-positive (Ph+) Acute Lymphoblastic Leukemia (ALL) accounts for 25–30% of adult ALL and its incidence increases with age in adults >40 years old. Irrespective of age, the ABL1 fusion genes are markers of poor prognosis and amplification of the NUP214-ABL1 oncogene can be detected mainly in patients with T-ALL. T cell malignancies harboring the ABL1 fusion genes are sensitive to many cytotoxic agents, but up to date complete remissions have not been achieved. The PI3K/Akt/mTOR signaling pathway is often activated in leukemias and plays a crucial role in leukemogenesis. We analyzed the effects of three BCR-ABL1 tyrosine kinase inhibitors (TKIs), alone and in combination with a panel of selective PI3K/Akt/mTOR inhibitors, on three NUP214-ABL1 positive T-ALL cell lines that also displayed PI3K/Akt/mTOR activation. Cells were sensitive to anti BCR-ABL1 TKIs Imatinib, Nilotinib and GZD824, that specifically targeted the ABL1 fusion protein, but not the PI3K/Akt/mTOR axis. Four drugs against the PI3K/Akt/mTOR cascade, GSK690693, NVP-BGT226, ZSTK474 and Torin-2, showed marked cytotoxic effects on T-leukemic cells, without affecting the NUP214-ABL1 kinase and related pathway. Dephosphorylation of pAkt and pS6 showed the cytotoxicity of these compounds. Either single or combined administration of drugs against the different targets displayed inhibition of cellular viability associated with a concentration-dependent induction of apoptosis, cell cycle arrest in G0/G1 phase and autophagy, having the combined treatments a significant synergistic cytotoxic effect. Co-targeting NUP214-ABL1 fusion gene and PI3K/Akt/mTOR signaling pathway could represent a new and effective pharmacological strategy to improve the outcome in NUP214-ABL1 positive T-ALL. PMID:27821800

  9. Identification of intracellular receptor proteins for activated protein kinase C.

    PubMed Central

    Mochly-Rosen, D; Khaner, H; Lopez, J

    1991-01-01

    Protein kinase C (PKC) translocates from the cytosol to the particulate fraction on activation. This activation-induced translocation of PKC is thought to reflect PKC binding to the membrane lipids. However, immunological and biochemical data suggest that PKC may bind to proteins in the cytoskeletal elements in the particulate fraction and in the nuclei. Here we describe evidence for the presence of intracellular receptor proteins that bind activated PKC. Several proteins from the detergent-insoluble material of the particulate fraction bound PKC in the presence of phosphatidylserine and calcium; binding was further increased with the addition of diacylglycerol. Binding of PKC to two of these proteins was concentration-dependent, saturable, and specific, suggesting that these binding proteins are receptors for activated C-kinase, termed here "RACKs." PKC binds to RACKs via a site on PKC distinct from the substrate binding site. We suggest that binding to RACKs may play a role in activation-induced translocation of PKC. Images PMID:1850844

  10. Prolactin-Stimulated Activation of ERK1/2 Mitogen-Activated Protein Kinases is Controlled by PI3-Kinase/Rac/PAK Signaling Pathway in Breast Cancer Cells

    PubMed Central

    Aksamitiene, Edita; Achanta, Sirisha; Kolch, Walter; Kholodenko, Boris N.; Hoek, Jan B.; Kiyatkin, Anatoly

    2011-01-01

    There is strong evidence that deregulation of prolactin (PRL) signaling contributes to pathogenesis and chemoresistance of breast cancer. Therefore, understanding cross-talk between distinct signal transduction pathways triggered by activation of the prolactin receptor (PRL-R), is essential for elucidating the pathogenesis of metastatic breast cancer. In this study, we applied a sequential inhibitory analysis of various signaling intermediates to examine the hierarchy of protein interactions within the PRL signaling network and to evaluate the relative contributions of multiple signaling branches downstream of PRL-R to the activation of the extracellular signal-regulated kinases ERK1 and ERK2 in T47D and MCF-7 human breast cancer cells. Quantitative measurements of the phosphorylation/activation patterns of proteins showed that PRL simultaneously activated Src family kinases (SFKs) and the JAK/STAT, phosphoinositide-3 (PI3)-kinase/Akt and MAPK signaling pathways. The specific blockade or siRNA-mediated suppression of SFK/FAK, JAK2/STAT5, PI3-kinase/PDK1/Akt, Rac/PAK or Ras regulatory circuits revealed that (1) the PI3-kinase/Akt pathway is required for activation of the MAPK/ERK signaling cascade upon PRL stimulation; (2) PI3-kinase-mediated activation of the c-Raf-MEK1/2-ERK1/2 cascade occurs independent of signaling dowstream of STATs, Akt and PKC, but requires JAK2, SFKs and FAK activities; (3) activated PRL-R mainly utilizes the PI3-kinase-dependent Rac/PAK pathway rather than the canonical Shc/Grb2/SOS/Ras route to initiate and sustain ERK1/2 signaling. By interconnecting diverse signaling pathways PLR may enhance proliferation, survival, migration and invasiveness of breast cancer cells. PMID:21726627

  11. AKAP-Lbc nucleates a protein kinase D activation scaffold.

    PubMed

    Carnegie, Graeme K; Smith, F Donelson; McConnachie, George; Langeberg, Lorene K; Scott, John D

    2004-09-24

    The transmission of cellular signals often proceeds through multiprotein complexes where enzymes are positioned in proximity to their upstream activators and downstream substrates. In this report we demonstrate that the A-kinase anchoring protein AKAP-Lbc assembles an activation complex for the lipid-dependent enzyme protein kinase D (PKD). Using a combination of biochemical, enzymatic, and immunofluorescence techniques, we show that the anchoring protein contributes to PKD activation in two ways: it recruits an upstream kinase PKCeta and coordinates PKA phosphorylation events that release activated protein kinase D. Thus, AKAP-Lbc synchronizes PKA and PKC activities in a manner that leads to the activation of a third kinase. This configuration illustrates the utility of kinase anchoring as a mechanism to constrain the action of broad-spectrum enzymes.

  12. Structural investigation of protein kinase C inhibitors.

    PubMed

    Barak, D; Shibata, M; Rein, R

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  13. Structural investigation of protein kinase C inhibitors

    NASA Technical Reports Server (NTRS)

    Barak, D.; Shibata, M.; Rein, R.

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  14. Type II cyclic guanosine monophosphate-dependent protein kinase inhibits Rac1 activation in gastric cancer cells

    PubMed Central

    WANG, YING; CHEN, YONGCHANG; WU, MIN; LAN, TING; WU, YAN; LI, YUEYING; QIAN, HAI

    2015-01-01

    Enhanced motility of cancer cells is a critical step in promoting tumor metastasis, which remains the major cause of gastric cancer-associated mortality. The small GTPase Rac1 is a key signaling component in the regulation of cell migration. Previous studies have demonstrated that Rac1 activity may be regulated by protein kinase G (PKG); however, the underlying mechanism is not yet clear. The current study aimed to investigate the effect of type II cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG II) on Rac1 activity. The human gastric cancer cell line AGS was infected with adenoviral constructs encoding PKG II to increase the expression of this enzyme, and treated with a cGMP analog (8-pCPT-cGMP) to induce its activation. A Transwell assay was employed to measure cell migration, and the activity of Rac1 was assessed using a pull-down assay. Immunoprecipitation was used to isolate the Rac1 protein. Phosphorylation of phosphatidylinositol 4,5 bisphosphate 3 kinase (PI3K) and its downstream effecter protein kinase B (Akt) are associated with lysophosphatidic acid (LPA)-induced motility/migration of cancer cells. Extracellular signal regulated kinase (ERK) is the major signaling molecule of the Mitogen activated protein kinase (MAPK) mediated signaling pathway. ERK and its upstream activator MAPK kinase (MEK) are also involved in LPA-induced motility/migration of cancer cells. Phosphorylation of PI3K/Akt, MEK/ERK and enriched Rac1 were detected by western blotting. The results revealed that blocking the activation of Rac1 by ectopically expressing an inactive Rac1 mutant (T17N) impeded LPA-induced cell migration. Increased PKG II activity inhibited LPA-induced migration and LPA-induced activation of Rac1; however, it had no effect on the phosphorylation of Rac1. PKG II also inhibited the activation of PI3K/Akt and MEK/ERK mediated signaling, which is important for LPA-induced Rac1 activation. These results suggest that PKG II affects LPA

  15. In vivo Evaluation of Two Thiazolidin-4-one Derivatives in High Sucrose Diet Fed Pre-diabetic Mice and Their Modulatory Effect on AMPK, Akt and p38 MAP Kinase in L6 Cells

    PubMed Central

    Mudgal, Jayesh; Shetty, Priya; Reddy, Neetinkumar D.; Akhila, H. S.; Gourishetti, Karthik; Mathew, Geetha; Nayak, Pawan G.; Kumar, Nitesh; Kishore, Anoop; Kutty, Nampurath G.; Nandakumar, Krishnadas; Shenoy, Rekha R.; Rao, Chamallamudi M.; Joseph, Alex

    2016-01-01

    We had previously demonstrated the anti-diabetic potential and pancreatic protection of two thiazolidin-4-one derivatives containing nicotinamide moiety (NAT-1 and NAT-2) in STZ-induced diabetic mice. However, due to the limitations of the STZ model, we decided to undertake a detailed evaluation of anti-diabetic potential of the molecules on a high sucrose diet (HSD) fed diabetic mouse model. Further, in vitro mechanistic studies on the phosphorylation of AMPK, Akt and p38 MAP kinase in L6 myotubes and anti-inflammatory studies in RAW264.7 mouse monocyte macrophage cells were performed. 15 months of HSD induced fasting hyperglycaemia and impaired glucose tolerance in mice. Treatment with NAT-1 and NAT-2 (100 mg/kg) for 45 days significantly improved the glucose tolerance and lowered fasting blood glucose levels compared to untreated control. An improvement in the elevated triglycerides and total cholesterol levels, and favorable rise in HDL cholesterol were also observed with test drug treatment. Also, no major changes were observed in the liver (albumin, AST and ALT) and kidney (creatinine and urea) parameters. This was further confirmed in their respective histology profiles which revealed no gross morphological changes. In L6 cells, significant phosphorylation of Akt and p38 MAP kinase proteins were observed with 100 μM of NAT-1 and NAT-2 with no significant changes in phosphorylation of AMPK. The molecules failed to exhibit anti-inflammatory activity as observed by their effect on the generation of ROS and nitrite, and nuclear levels of NF-κB in LPS-stimulated RAW264.7 cells. In summary, the molecules activated Akt and p38 MAP kinase which could have partly contributed to their anti-hyperglycaemic and hypolipidemic activities in vivo. PMID:27790148

  16. Hyperforin Inhibits Akt1 Kinase Activity and Promotes Caspase-Mediated Apoptosis Involving Bad and Noxa Activation in Human Myeloid Tumor Cells

    PubMed Central

    Merhi, Faten; Tang, Ruoping; Piedfer, Marion; Mathieu, Julie; Bombarda, Isabelle; Zaher, Murhaf; Kolb, Jean-Pierre; Billard, Christian; Bauvois, Brigitte

    2011-01-01

    Background The natural phloroglucinol hyperforin HF displays anti-inflammatory and anti-tumoral properties of potential pharmacological interest. Acute myeloid leukemia (AML) cells abnormally proliferate and escape apoptosis. Herein, the effects and mechanisms of purified HF on AML cell dysfunction were investigated in AML cell lines defining distinct AML subfamilies and primary AML cells cultured ex vivo. Methodology and Results HF inhibited in a time- and concentration-dependent manner the growth of AML cell lines (U937, OCI-AML3, NB4, HL-60) by inducing apoptosis as evidenced by accumulation of sub-G1 population, phosphatidylserine externalization and DNA fragmentation. HF also induced apoptosis in primary AML blasts, whereas normal blood cells were not affected. The apoptotic process in U937 cells was accompanied by downregulation of anti-apoptotic Bcl-2, upregulation of pro-apoptotic Noxa, mitochondrial membrane depolarization, activation of procaspases and cleavage of the caspase substrate PARP-1. The general caspase inhibitor Z-VAD-fmk and the caspase-9- and -3-specific inhibitors, but not caspase-8 inhibitor, significantly attenuated apoptosis. HF-mediated apoptosis was associated with dephosphorylation of active Akt1 (at Ser473) and Akt1 substrate Bad (at Ser136) which activates Bad pro-apoptotic function. HF supppressed the kinase activity of Akt1, and combined treatment with the allosteric Akt1 inhibitor Akt-I-VIII significantly enhanced apoptosis of U937 cells. Significance Our data provide new evidence that HF's pro-apoptotic effect in AML cells involved inhibition of Akt1 signaling, mitochondria and Bcl-2 members dysfunctions, and activation of procaspases -9/-3. Combined interruption of mitochondrial and Akt1 pathways by HF may have implications for AML treatment. PMID:21998731

  17. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells

    SciTech Connect

    Jeong, Yun-Jeong; Cho, Hyun-Ji; Magae, Junji; Lee, In-Kyu; Park, Keun-Gyu; Chang, Young-Chae

    2013-12-15

    Hypoxia-inducible factor (HIF)-1 plays an important role in tumor progression, angiogenesis and metastasis. In this study, we investigated the potential molecular mechanisms underlying the anti-angiogenic effect of ascofuranone, an isoprenoid antibiotic from Ascochyta viciae, in epidermal growth factor (EGF)-1 responsive human breast cancer cells. Ascofuranone significantly and selectively suppressed EGF-induced HIF-1α protein accumulation, whereas it did not affect the expression of HIF-1β. Furthermore, ascofuranone inhibited the transcriptional activation of vascular endothelial growth factor (VEGF) by reducing protein HIF-1α. Mechanistically, we found that the inhibitory effects of ascofuranone on HIF-1α protein expression are associated with the inhibition of synthesis HIF-1α through an EGF-dependent mechanism. In addition, ascofuranone suppressed EGF-induced phosphorylation of Akt/mTOR/p70S6 kinase, but the phosphorylation of ERK/JNK/p38 kinase was not affected by ascofuranone. These results suggest that ascofuranone suppresses EGF-induced HIF-1α protein translation through the inhibition of Akt/mTOR/p70S6 kinase signaling pathways and plays a novel role in the anti-angiogenic action. - Highlights: • Inhibitory effect of ascofuranone on HIF-1α expression is EGF-specific regulation. • Ascofuranone decreases HIF-1α protein synthesis through Akt/mTOR pathways. • Ascofuranone suppresses EGF-induced VEGF production and tumor angiogenesis.

  18. Prevention of tumour cell apoptosis associated with sustained protein kinase B phosphorylation is more sensitive to regulation by insulin signalling than stimulation of proliferation and extracellular signal-regulated kinase.

    PubMed

    Schmid, Christoph; Ghirlanda, Claudia; Niessen, Markus

    2017-03-18

    Insulin controls blood glucose while insulin-like growth factor (IGF) 1 is an important growth factor. Interestingly, both hormones have overlapping bioactivities and can activate the same intracellular signal transduction cascades. Growth control (mainly by IGF1) and metabolic function (predominantly by insulin) are believed to depend on activation of extracellular signal-regulated kinases (ERKs) 1/2 and protein kinase B (Akt/PKB), respectively. Therefore, insulin analogues that are used to normalize blood glucose are tested for their ability to preferentially activate Akt/PKB but not ERK1/2 and mitogenesis. Growth hormone, IGF1, and hyperinsulinemia are associated with increased risk of growth progression of some cancer types. To test if continuous exposure to insulin can favour tumour growth, we studied insulin/IGF1-dependent activation of ERK1/2 and Akt/PKB by Western blotting, inhibition of apoptosis by ELISA, and induction of proliferation by [(3)H]-thymidine incorporation in Saos-2/B10 osteosarcoma cells. IGF1 and insulin both induced proliferation and prevented apoptosis effectively. Regulation of apoptosis was far more sensitive than regulation of proliferation. IGF1 and insulin activated PKB (Akt/PKB) rapidly and consistently maintained its phosphorylation. Activation of ERK1/2 was only observed in response to IGF1. Loss of p-Akt/PKB (but not of p-ERK1/2) was associated with increased apoptosis, and protection from apoptosis was lost when activation of Akt/PKB was inhibited. These findings in Saos-2/B10 cells were also replicated in the A549 cell line, originally derived from a human lung carcinoma. Therefore, IGF1 and insulin more likely (at lower concentrations) enhance tumour cell survival than proliferation, via activation and maintenance of phosphatidylinositol 3-kinase activity and p-Akt/PKB.

  19. Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice.

    PubMed

    Rohila, Jai S; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald; Dardick, Chris; Canlas, Patrick; Xu, Xia; Gribskov, Michael; Kanrar, Siddhartha; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E

    2006-04-01

    Forty-one rice cDNAs encoding protein kinases were fused to the tandem affinity purification (TAP) tag and expressed in transgenic rice plants. The TAP-tagged kinases and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by mass spectrometry. Ninety-five percent of the TAP-tagged kinases were recovered. Fifty-six percent of the TAP-tagged kinases were found to interact with other rice proteins. A number of these interactions were consistent with known protein complexes found in other species, validating the TAP-tag method in rice plants. Phosphorylation sites were identified on four of the kinases that interacted with either 14-3-3 proteins or cyclins.

  20. Inhibitory Effects of Isoquinoline Alkaloid Berberine on Ischemia-Induced Apoptosis via Activation of Phosphoinositide 3-Kinase/Protein Kinase B Signaling Pathway

    PubMed Central

    Kim, Mia; Shin, Mal Soon; Lee, Jae Min; Cho, Han Sam; Kim, Chang Ju; Kim, Young Joon; Choi, Hey Ran

    2014-01-01

    Purpose Berberine is a type of isoquinoline alkaloid that has been used to treat various diseases. A neuroprotective effect of berberine against cerebral ischemia has been reported; however, the effects of berberine on apoptosis in relation to reactive astrogliosis and microglia activation under ischemic conditions have not yet been fully evaluated. In the present study, we investigated the effects of berberine on global ischemia-induced apoptosis, and focused on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in the hippocampus using gerbils. Methods Gerbils received berberine orally once a day for 14 consecutive days, starting one day after surgery. In this study, a step-down avoidance task was used to assess short-term memory. Furthermore, we employed the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay to evaluate DNA fragmentation, immunohistochemistry to investigate glial fibriallary acidic protein, CD11b, and caspase-3, and western blot to assess PI3K, Akt, Bax, Bcl-2, and cytochrome c. Results Our results revealed that berberine treatment alleviated ischemia-induced short-term memory impairment. Treatment with berbeine also attenuated ischemia-induced apoptosis and inhibited reactive astrogliosis and microglia activation. Furthermore, berberine enhanced phospho-PI3K and phospho-Akt expression in the hippocampus of ischemic gerbils. Conclusions Berberine exerted a neuroprotective effect against ischemic insult by inhibiting neuronal apoptosis via activation of the PI3K/Akt signaling pathway. The antiapoptotic effect of berberine was achieved through inhibition of reactive astrogliosis and microglia activation. Berberine may therefore serve as a therapeutic agent for stroke-induced neurourological problems. PMID:25279238

  1. Prostaglandin E2 negatively regulates AMP-activated protein kinase via protein kinase A signaling pathway.

    PubMed

    Funahashi, Koji; Cao, Xia; Yamauchi, Masako; Kozaki, Yasuko; Ishiguro, Naoki; Kambe, Fukushi

    2009-01-01

    We investigated possible involvement of prostaglandin (PG) E2 in regulation of AMP-activated protein kinase (AMPK). When osteoblastic MG63 cells were cultured in serum-deprived media, Thr-172 phosphorylation of AMPK alpha-subunit was markedly increased. Treatment of the cells with PGE2 significantly reduced the phosphorylation. Ser-79 phosphorylation of acetyl-CoA carboxylase, a direct target for AMPK, was also reduced by PGE2. On the other hand, PGE2 reciprocally increased Ser-485 phosphorylation of the alpha-subunit that could be associated with inhibition of AMPK activity. These effects of PGE2 were mimicked by PGE2 receptor EP2 and EP4 agonists and forskolin, but not by EP1 and EP3 agonists, and the effects were suppressed by an adenylate cyclase inhibitor SQ22536 and a protein kinase A inhibitor H89. Additionally, the PGE2 effects were duplicated in primary calvarial osteoblasts. Together, the present study demonstrates that PGE2 negatively regulates AMPK activity via activation of protein kinase A signaling pathway.

  2. o,p'-DDT induces cyclooxygenase-2 gene expression in murine macrophages: Role of AP-1 and CRE promoter elements and PI3-kinase/Akt/MAPK signaling pathways

    SciTech Connect

    Han, Eun Hee; Kim, Ji Young; Kim, Hyung-Kyun; Hwang, Yong Pil; Jeong, Hye Gwang

    2008-12-01

    Dichlorodiphenyltrichloroethane (DDT) has been used as an insecticide to prevent the devastation of malaria in tropical zones. However, many reports suggest that DDT may act as an endocrine disruptor and may have possible carcinogenic effects. Cyclooxygenase-2 (COX-2) acts as a link between inflammation and carcinogenesis through its involvement in tumor promotion. In the present study, we examined the effect of o,p'-DDT on COX-2 gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. Exposure to o,p'-DDT markedly enhanced the production of prostaglandin E{sub 2} (PGE{sub 2}), a major COX-2 metabolite, in murine macrophages. Furthermore, o,p'-DDT dose-dependently increased the levels of COX-2 protein and mRNA. Transfection with human COX-2 promoter construct, electrophoretic mobility shift assays and DNA-affinity protein-binding assay experiments revealed that o,p'-DDT activated the activator protein 1 (AP-1) and cyclic AMP response element (CRE) sites, but not the NF-{kappa}B site. Phosphatidylinositol 3 (PI3)-kinase, its downstream signaling molecule, Akt, and mitogen-activated protein kinases (MAPK) were also significantly activated by the o,p'-DDT-induced AP-1 and CRE activation. These results demonstrate that o,p'-DDT induced COX-2 expression via AP-1 and CRE activation through the PI3-K/Akt/ERK, JNK, and p38 MAP kinase pathways. These findings provide further insight into the signal transduction pathways involved in the carcinogenic effects of o,p'-DDT.

  3. Impact of the PI3-kinase/Akt pathway on ITAM and hemITAM receptors: haemostasis, platelet activation and antithrombotic therapy.

    PubMed

    Moroi, Alyssa J; Watson, Steve P

    2015-04-01

    Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that are activated in response to various stimulants, and they regulate many processes including inflammation; the stress response; gene transcription; and cell proliferation, differentiation, and death. Increasing reports have shown that the PI3Ks and their downstream effector Akt are activated by several platelet receptors that regulate platelet activation and haemostasis. Platelets express two immunoreceptor tyrosine based activation motif (ITAM) receptors, collagen receptor glycoprotein VI (GPVI) and Fcγ receptor IIA (FcγRIIA), which are characterized by two YxxL sequences separated by 6-12 amino acids. Activation of an ITAM receptor initiates a reaction cascade via its YxxL sequence in which signaling molecules such as spleen tyrosine kinase (Syk), linker for activation of T cells (LAT) and phospholipase C γ2 (PLCγ2) become activated, leading to platelet activation. Platelets also express another receptor, C-type lectin 2 (CLEC-2), which has a single YxxL sequence, so it is appropriately called a hemITAM receptor. ITAM receptors and the hemITAM receptor share many signaling features. Here we will summarize our current knowledge about how the PI3K/Akt pathway regulates (hem)ITAM receptor-mediated platelet activation and haemostasis and discuss the possible benefits of targeting PI3K/Akt as an antithrombotic therapy.

  4. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    NASA Technical Reports Server (NTRS)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  5. Association of protein kinase Cmu with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase.

    PubMed

    Nishikawa, K; Toker, A; Wong, K; Marignani, P A; Johannes, F J; Cantley, L C

    1998-09-04

    Protein kinase Cmu (PKCmu), also named protein kinase D, is an unusual member of the PKC family that has a putative transmembrane domain and pleckstrin homology domain. This enzyme has a substrate specificity distinct from other PKC isoforms (Nishikawa, K., Toker, A., Johannes, F. J., Songyang, Z., and Cantley, L. C. (1997) J. Biol. Chem. 272, 952-960), and its mechanism of regulation is not yet clear. Here we show that PKCmu forms a complex in vivo with a phosphatidylinositol 4-kinase and a phosphatidylinositol-4-phosphate 5-kinase. A region of PKCmu between the amino-terminal transmembrane domain and the pleckstrin homology domain is shown to be involved in the association with the lipid kinases. Interestingly, a kinase-dead point mutant of PKCmu failed to associate with either lipid kinase activity, indicating that autophosphorylation may be required to expose the lipid kinase interaction domain. Furthermore, the subcellular distribution of the PKCmu-associated lipid kinases to the particulate fraction depends on the presence of the amino-terminal region of PKCmu including the predicted transmembrane region. These results suggest a novel model in which the non-catalytic region of PKCmu acts as a scaffold for assembly of enzymes involved in phosphoinositide synthesis at specific membrane locations.

  6. Novel Anti-Microbial Peptide SR-0379 Accelerates Wound Healing via the PI3 Kinase/Akt/mTOR Pathway

    PubMed Central

    Tomioka, Hideki; Nakagami, Hironori; Tenma, Akiko; Saito, Yoshimi; Kaga, Toshihiro; Kanamori, Toshihide; Tamura, Nao; Tomono, Kazunori; Kaneda, Yasufumi; Morishita, Ryuichi

    2014-01-01

    We developed a novel cationic antimicrobial peptide, AG30/5C, which demonstrates angiogenic properties similar to those of LL-37 or PR39. However, improvement of its stability and cost efficacy are required for clinical application. Therefore, we examined the metabolites of AG30/5C, which provided the further optimized compound, SR-0379. SR-0379 enhanced the proliferation of human dermal fibroblast cells (NHDFs) via the PI3 kinase-Akt-mTOR pathway through integrin-mediated interactions. Furthermore SR-0379 promoted the tube formation of human umbilical vein endothelial cells (HUVECs) in co-culture with NHDFs. This compound also displays antimicrobial activities against a number of bacteria, including drug-resistant microbes and fungi. We evaluated the effect of SR-0379 in two different would-healing models in rats, the full-thickness defects under a diabetic condition and an acutely infected wound with full-thickness defects and inoculation with Staphylococcus aureus. Treatment with SR-0379 significantly accelerated wound healing when compared to fibroblast growth factor 2 (FGF2). The beneficial effects of SR-0379 on wound healing can be explained by enhanced angiogenesis, granulation tissue formation, proliferation of endothelial cells and fibroblasts and antimicrobial activity. These results indicate that SR-0379 may have the potential for drug development in wound repair, even under especially critical colonization conditions. PMID:24675668

  7. Andrographolide inhibits osteopontin expression and breast tumor growth through down regulation of PI3 kinase/Akt signaling pathway.

    PubMed

    Kumar, S; Patil, H S; Sharma, P; Kumar, D; Dasari, S; Puranik, V G; Thulasiram, H V; Kundu, G C

    2012-09-01

    Breast cancer is one of the most common cancers among women in India and around the world. Despite recent advancement in the treatment of breast cancer, the results of chemotherapy to date remain unsatisfactory, prompting a need to identify natural agents that could target cancer efficiently with least side effects. Andrographolide (Andro) is one such molecule which has been shown to possess inhibitory effect on cancer cell growth. In this study, Andro, a natural diterpenoid lactone isolated from Andrographis paniculata has been shown to inhibit breast cancer cell proliferation, migration and arrest cell cycle at G2/M phase and induces apoptosis through caspase independent pathway. Our experimental evidences suggest that Andro attenuates endothelial cell motility and tumor-endothelial cell interaction. Moreover, Andro suppresses breast tumor growth in orthotopic NOD/SCID mice model. The anti-tumor activity of Andro in both in vitro and in vivo model was correlated with down regulation of PI3 kinase/Akt activation and inhibition of pro-angiogenic molecules such as OPN and VEGF expressions. Collectively, these results demonstrate that Andro may act as an effective anti-tumor and anti-angiogenic agent for the treatment of breast cancer.

  8. Saw palmetto extract suppresses insulin-like growth factor-I signaling and induces stress-activated protein kinase/c-Jun N-terminal kinase phosphorylation in human prostate epithelial cells.

    PubMed

    Wadsworth, Teri L; Carroll, Julie M; Mallinson, Rebecca A; Roberts, Charles T; Roselli, Charles E

    2004-07-01

    A common alternative therapy for benign prostatic hyperplasia (BPH) is the extract from the fruit of saw palmetto (SPE). BPH is caused by nonmalignant growth of epithelial and stromal elements of the prostate. IGF action is important for prostate growth and development, and changes in the IGF system have been documented in BPH tissues. The main signaling pathways activated by the binding of IGF-I to the IGF-I receptor (IGF-IR) are the ERK arm of the MAPK cascade and the phosphoinositol-3-kinase (PI3K)/protein kinase B (PKB/Akt) cascade. We tested the hypothesis that SPE suppresses growth and induces apoptosis in the P69 prostate epithelial cell line by inhibiting IGF-I signaling. Treatment with 150 microg/ml SPE for 24 h decreased IGF-I-induced proliferation of P69 cells and induced cleavage of the enzyme poly(ADP-ribose)polymerase (PARP), an index of apoptosis. Treatment of serum-starved P69 cells with 150 microg/ml SPE for 6 h reduced IGF-I-induced phosphorylation of Akt (assessed by Western blot) and Akt activity (assessed by an Akt kinase assay). Western blot analysis showed that SPE reduced IGF-I-induced phosphorylation of the adapter protein insulin receptor substrate-1 and decreased downstream effects of Akt activation, including increased cyclin D1 levels and phosphorylation of glycogen synthase kinase-3 and p70(s6k). There was no effect on IGF-I-induced phosphorylation of MAPK, IGF-IR, or Shc. Treatment of starved cells with SPE alone induced phosphorylation the proapoptotic protein JNK. SPE treatment may relieve symptoms of BPH, in part, by inhibiting specific components of the IGF-I signaling pathway and inducing JNK activation, thus mediating antiproliferative and proapoptotic effects on prostate epithelia.

  9. PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations.

    PubMed

    Kar, Souvik; Samii, Amir; Bertalanffy, Helmut

    2015-04-01

    Cerebral cavernous malformations (CCM) are common vascular malformation of the brain and are associated with abnormal angiogenesis. Although the exact etiology and the underlying molecular mechanism are still under investigation, recent advances in the identification of the mutations in three genes and their interactions with different signaling pathways have shed light on our understanding of CCM pathogenesis. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is known to play a major role in angiogenesis. Studies have shown that the phosphatase and tensin homologue deleted on chromosome ten (PTEN), a tumor suppressor, is an antagonist regulator of the PI3K/Akt pathway and mediates angiogenesis by activating vascular endothelial growth factor (VEGF) expression. Here, we provide an update literature review on the current knowledge of the PTEN/PI3K/Akt/VEGF signaling in angiogenesis, more importantly in CCM pathogenesis. In addition to reviewing the current literatures, this article will also focus on the structural domain of the three CCM proteins and their interacting partners. Understanding the biology of these proteins with respect to their signaling counterpart will help to guide future research towards new therapeutic targets applicable for CCM treatment.

  10. Transphosphorylation of E. coli proteins during production of recombinant protein kinases provides a robust system to characterize kinase specificity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein kinase specificity is of fundamental importance to pathway regulation and signal transduction. Here, we report a convenient system to monitor the activity and specificity of recombinant protein kinases expressed in E.coli. We apply this to the study of the cytoplasmic domain of the plant rec...

  11. A hexane fraction of guava Leaves (Psidium guajava L.) induces anticancer activity by suppressing AKT/mammalian target of rapamycin/ribosomal p70 S6 kinase in human prostate cancer cells.

    PubMed

    Ryu, Nae Hyung; Park, Kyung-Ran; Kim, Sung-Moo; Yun, Hyung-Mun; Nam, Dongwoo; Lee, Seok-Geun; Jang, Hyeung-Jin; Ahn, Kyoo Seok; Kim, Sung-Hoon; Shim, Bum Sang; Choi, Seung-Hoon; Mosaddik, Ashik; Cho, Somi K; Ahn, Kwang Seok

    2012-03-01

    This study was carried out to evaluate the anticancer effects of guava leaf extracts and its fractions. The chemical compositions of the active extracts were also determined. In the present study, we set out to determine whether the anticancer effects of guava leaves are linked with their ability to suppress constitutive AKT/mammalian target of rapamycin (mTOR)/ribosomal p70 S6 kinase (S6K1) and mitogen-activated protein kinase (MAPK) activation pathways in human prostate cancer cells. We found that guava leaf hexane fraction (GHF) was the most potent inducer of cytotoxic and apoptotic effects in PC-3 cells. The molecular mechanism or mechanisms of GHF apoptotic potential were correlated with the suppression of AKT/mTOR/S6K1 and MAPK signaling pathways. This effect of GHF correlated with down-regulation of various proteins that mediate cell proliferation, cell survival, metastasis, and angiogenesis. Analysis of GHF by gas chromatography and gas chromatography-mass spectrometry tentatively identified 60 compounds, including β-eudesmol (11.98%), α-copaene (7.97%), phytol (7.95%), α-patchoulene (3.76%), β-caryophyllene oxide (CPO) (3.63%), caryophylla-3(15),7(14)-dien-6-ol (2.68%), (E)-methyl isoeugenol (1.90%), α-terpineol (1.76%), and octadecane (1.23%). Besides GHF, CPO, but not phytol, also inhibited the AKT/mTOR/S6K1 signaling pathway and induced apoptosis in prostate cancer cells. Overall, these findings suggest that guava leaves can interfere with multiple signaling cascades linked with tumorigenesis and provide a source of potential therapeutic compounds for both the prevention and treatment of cancer.

  12. Dual activators of Protein Kinase R (PKR) and Protein Kinase R Like Kinase (PERK) Identify Common and Divergent Catalytic Targets

    PubMed Central

    Ming, Jie; Sun, Hong; Cao, Peng; Fusco, Dahlene N.; Chung, Raymond T.; Chorev, Michael; Jin, Qi; Aktas, Bertal H.

    2013-01-01

    Chemical genetics has evolved into a powerful tool for studying gene function in normal- and patho-biology. PKR and PERK, two eukaryotic translation initiation factor 2 alpha (eIF2α) kinases, play critical roles in maintenance of cellular hemostasis, metabolic stability, and anti-viral defenses. Both kinases interact with and phosphorylate additional substrates including tumor suppressor p53 and nuclear protein 90. Loss of function of both kinases has been studied by reverse genetics and recently identified inhibitors. In contrast, activating probes for studying the role of catalytic activity of these kinases are not available. We identified a 3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5,7-dihydroxy-4H-chromen-4-one (DHBDC) as specific dual activator of PKR and PERK by screening a chemical library of 20,000 small molecules in a dual luciferase surrogate eIF2α phosphorylation assay. We present here extensive biological characterization and preliminary structure-activity relationship of DHBDC, which phosphorylate eIF2α by activating PKR and PERK but no other eIF2α kinases. These agents also activate downstream effectors of eIF2α phosphorylation; inducing CHOP and suppressing cyclin D1 expression and inhibiting cancer cell proliferation, all in a manner dependent on PKR and PERK. Consistent with the role of eIF2α phosphorylation in viral infection, DHBDC inhibits proliferation of human hepatitis C virus. Finally, DHBDC induces phosphorylation of Ikβα, and activates NF-κB pathway. Surprisingly, activation of NF-κB pathway is dependent on PERK but independent of PKR activity. These data indicate that DHBDC is an invaluable probe for elucidating the role of PKR and PERK in normal- and patho-biology. PMID:23784735

  13. Protein O-fucosyltransferase 1 promotes trophoblast cell proliferation through activation of MAPK and PI3K/Akt signaling pathways.

    PubMed

    Liu, Chang; Liang, Xiaohua; Wang, Jiao; Zheng, Qin; Zhao, Yue; Khan, Muhammad Noman; Liu, Shuai; Yan, Qiu

    2017-04-01

    Protein O-fucosylation is an important glycosylation modification and plays an important role in embryonic development. Protein O-fucosyltransferase 1 (poFUT1) is an essential enzyme that catalyzes the synthesis of protein O-fucosylation. Our previous studies showed that poFUT1 promoted trophoblast cell migration and invasion at the fetal-maternal interface, but the role of poFUT1 in trophoblast cells proliferation remains unclear. Here, immunohistochemistry data showed that poFUT1 and PCNA levels were decreased in abortion patient's trophoblasts compared with women with normal pregnancies. Our results also showed that poFUT1 promoted trophoblast cell proliferation by CCK-8 assay and cell cycle analysis. PoFUT1 increased the phosphorylation of ERK1/2, p38 MAPK, and PI3K/Akt, while inhibitors of ERK1/2(PD98059), p38 MAPK(SB203580), and PI3K (LY294002) prevented ERK1/2, p38 MAPK, and Akt phosphorylation. Moreover, poFUT1 stimulation of trophoblast cells proliferation correlated with increased cell cycle progression by promoting cells into S-phase. The underlying mechanism involved increased cyclin D1, cyclin E, CDK 2, CDK 4, and pRb expression and decreased levels of the cyclin-dependent kinase inhibitors p21 and p27, which were blocked by inhibitors of the upstream signaling molecules MAPK and PI3K/Akt. In conclusion, poFUT1 promotes trophoblast cell proliferation by activating MAPK and PI3K/Akt signaling pathways.

  14. Canstatin inhibits hypoxia-induced apoptosis through activation of integrin/focal adhesion kinase/Akt signaling pathway in H9c2 cardiomyoblasts

    PubMed Central

    Yamawaki, Hideyuki

    2017-01-01

    A hypoxic stress which causes apoptosis of cardiomyocytes is the main problem in the ischemic heart disease. Canstatin, a non-collagenous fragment of type IV collagen α2 chain, is an endogenous anti-angiogenic factor. We have previously reported that canstatin has a cytoprotective effect on cardiomyoblasts. In the present study, we examined the effects of canstatin on hypoxia-induced apoptosis in H9c2 cardiomyoblasts. Cell counting assay was performed to determine a cell viability. Western blotting was performed to detect expression of cleaved casepase-3 and phosphorylation of focal adhesion kinase (FAK) and Akt. Immunocytochemical staining was performed to observe a distribution of αv integrin. Hypoxia (1% O2, 48 h) significantly decreased cell viability and increased cleaved caspase-3 expression. Canstatin (10–250 ng/ml) significantly inhibited these changes in a concentration-dependent manner. Cilengitide (1 μM), an αvβ3 and αvβ5 integrin inhibitor, significantly prevented the protective effects of canstatin on cell viability. Canstatin significantly increased phosphorylation of FAK and Akt under hypoxic condition, which were inhibited by cilengitide. LY294002, an inhibitor of phosphatidylinositol-3 kinase/Akt pathway, suppressed the canstatin-induced Akt phosphorylation and reversed the protective effects of canstatin. It was observed that hypoxia caused a localization of αv integrin to focal adhesion. In summary, we for the first time clarified that canstatin inhibits hypoxia-induced apoptosis via FAK and Akt pathways through activating integrins in H9c2 cardiomyoblasts. PMID:28235037

  15. PDGF inactivates forkhead family transcription factor by activation of Akt in glomerular mesangial cells.

    PubMed

    Ghosh Choudhury, Goutam; Lenin, Mahimainathan; Calhaun, Cheresa; Zhang, Jian-Hua; Abboud, Hanna E

    2003-02-01

    Regulation of the forkhead domain transcription factors by PDGF has not been studied. In this report, we investigated the role of PDGF-induced Akt in regulating forkhead domain protein FKHRL1 in glomerular mesangial cells. PDGF increased phosphorylation of FKHRL1 in a time- and PI 3 kinase-dependent manner. Expression of dominant negative Akt by adenovirus-mediated gene transfer blocked PDGF-induced FKHRL1 phosphorylation. PDGF inhibited transcription of a forkhead DNA binding element-driven reporter gene. This inhibition was mimicked by constitutively active myristoylated Akt. Moreover, FKHR1-mediated transcription of the reporter gene was completely attenuated by both PDGF and Myr-Akt. One of the targets of forkhead transcription factors is the proapoptotic Fas ligand (FasL) gene. PDGF, as well as Myr-Akt, inhibited transcription of FasL. In contrast, inhibition of PI 3 kinase and dominant negative Akt increased FasL gene transcription, suggesting that suppression of PI 3 kinase/Akt signalling may induce apoptosis in mesangial cells via upregulation of FasL expression. However, expression of dominant negative Akt by adenovirus did not induce apoptosis in mesangial cells, suggesting that Akt-independent antiapoptotic mechanisms also exist. Together, our data demonstrate for the first time that PDGF inactivates forkhead domain transcription factor by Akt-dependent phosphorylation and that suppression of Akt signalling is not sufficient to induce apoptosis in mesangial cells.

  16. Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1.

    PubMed

    Zhu, Weiguo; Oxford, Gerry S

    2007-04-01

    Nerve growth factor (NGF) induces an acute sensitization of nociceptive DRG neurons, in part, through sensitization of the capsaicin receptor TRPV1 via the high affinity trkA receptor. The mechanisms linking trkA and TRPV1 remain controversial with several candidate signaling pathways proposed. Utilizing adult rat and mouse DRG neurons and CHO cells co-expressing trkA and TRPV1, we have investigated the signaling events underlying acute TRPV1 sensitization by NGF combining biochemical, electrophysiological, pharmacological, mutational and genetic knockout approaches. Pharmacological interference with p42/p44 mitogen activated protein kinase (MAPK) or phosphoinositide-3-kinase (PI3K), but not PLC abrogated sensitization of capsaicin responses. Co-expression of TRPV1 with wild-type or Y785F (PLC signal deficient) mutant human trkA reconstituted NGF sensitization. In contrast, TRPV1 co-expressed with MAPK signaling deficient Y490A or PI3K signaling deficient Y751F trkA mutants exhibited weaker sensitization. Biochemical analysis of p42/p44 and Akt phosphorylation confirmed the specificity of pharmacological agents and trkA mutants. Finally, NGF sensitization of capsaicin responses was greatly reduced in neurons from p85alpha (regulatory subunit of PI3K) null mice. These data strongly suggest that PI3K and MAPK pathways, but not the PLC pathway underlie the acute sensitization of TRPV1 by NGF.

  17. Transcriptional and post-transcriptional control of DNA methyltransferase 3B is regulated by phosphatidylinositol 3 kinase/Akt pathway in human hepatocellular carcinoma cell lines.

    PubMed

    Mei, Chuanzhong; Sun, Lidong; Liu, Yonglei; Yang, Yong; Cai, Xiumei; Liu, Mingzhu; Yao, Wantong; Wang, Can; Li, Xin; Wang, Liying; Li, Zengxia; Shi, Yinghong; Qiu, Shuangjian; Fan, Jia; Zha, Xiliang

    2010-09-01

    DNA methyltransferases (DNMTs) are essential for maintenance of aberrant methylation in cancer cells and play important roles in the development of cancers. Unregulated activation of PI3K/Akt pathway is a prominent feature of many human cancers including human hepatocellular carcinoma (HCC). In present study, we found that DNMT3B mRNA and protein levels were decreased in a dose- and time-dependent manner in HCC cell lines with LY294002 treatment. However, we detected that LY294002 treatment did not induce increase of the degradation of DNMT3B protein using protein decay assay. Moreover we found that Akt induced alteration of the expression of DNMT3B in cells transfected with myristylated variants of Akt2 or cells transfected with small interfering RNA respectively. Based on DNMT3B promoter dual-luciferase reporter assay, we found PI3K pathway regulates DNMT3B expression at transcriptional level. And DNMT3B mRNA decay analysis suggested that down-regulation of DNMT3B by LY294002 is also post-transcriptional control. Furthermore, we demonstrated that LY294002 down-regulated HuR expression in a time-dependent manner in BEL-7404. In summary, we have, for the first time, demonstrate that PI3K/Akt pathway regulates the expression of DNMT3B at transcriptional and post-transcriptional levels, which is particularly important to understand the effects of PI3K/Akt and DNMT3B on hepatocarcinogenesis.

  18. Resolution of thylakoid polyphenol oxidase and a protein kinase

    SciTech Connect

    Race, H.L.; Davenport, J.W.; Hind, G.

    1995-12-31

    The predominant protein kinase activity in octylglucoside (OG) extracts of spinach thylakoids has been attributed to a 64-kDa protein, tp64. Recent work calls into question the relation between tp64 and protein kinase activity, which were fractionated apart using fluid phase IEF and hydroxylapatite chromatography. Hind et al. sequenced tp64 from the cDNA and showed it to be a polyphenol oxidase (PPO) homolog. Its transit peptide indicates a location for the mature protein within the thylakoid lumen, where there is presumably no ATP and where it is remote from the presumed kinase substrates: the stromally exposed regions of integral PS-II membrane proteins. Here the authors suggest that the kinase is a 64-kDa protein distinct from tp64.

  19. Diacylglycerol kinase delta and protein kinase C(alpha) modulate epidermal growth factor receptor abundance and degradation through ubiquitin-specific protease 8.

    PubMed

    Cai, Jinjin; Crotty, Tracy M; Reichert, Ethan; Carraway, Kermit L; Stafforini, Diana M; Topham, Matthew K

    2010-03-05

    Many human epithelial cancers are characterized by abnormal activation of the epidermal growth factor receptor (EGFR), which is often caused by its excessive expression in tumor cells. The abundance of EGFR is modulated, in part, by its ubiquitination, which targets it for degradation. The components responsible for adding ubiquitin to EGFR are well characterized, but this is a reversible process, and the mechanisms that modulate the removal of ubiquitin from the EGFR are not well known. We found that de-ubiquitination of EGFR was regulated by diacylglycerol kinase delta (DGKdelta), a lipid kinase that terminates diacylglycerol signaling. In DGKdelta-deficient cells, ubiquitination of EGFR was enhanced, which attenuated the steady-state levels of EGFR and promoted its ligand-induced degradation. These effects were not caused by changes in the ubiquitinating apparatus, but instead were due to reduced expression of the de-ubiquitinase, ubiquitin-specific protease 8 (USP8). Depletion of protein kinase Calpha (PKCalpha), a target of diacylglycerol, rescued the levels of USP8 and normalized EGFR degradation in DGKdelta-deficient cells. Moreover, the effects of PKCalpha were caused by its inhibition of Akt, which stabilizes USP8. Our data indicate a novel mechanism where DGKdelta and PKCalpha modulate the levels of ubiquitinated EGFR through Akt and USP8.

  20. The specificities of protein kinase inhibitors: an update.

    PubMed Central

    Bain, Jenny; McLauchlan, Hilary; Elliott, Matthew; Cohen, Philip

    2003-01-01

    We have previously examined the specificities of 28 commercially available compounds, reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases [Davies, Reddy, Caivano and Cohen (2000) Biochem. J. 351, 95-105]. In the present study, we have extended this analysis to a further 14 compounds. Of these, indirubin-3'-monoxime, SP 600125, KT 5823 and ML-9 were found to inhibit a number of protein kinases and conclusions drawn from their use in cell-based assays are likely to be erroneous. Kenpaullone, Alsterpaullone, Purvalanol, Roscovitine, pyrazolopyrimidine 1 (PP1), PP2 and ML-7 were more specific, but still inhibited two or more protein kinases with similar potency. Our results suggest that the combined use of Roscovitine and Kenpaullone may be useful for identifying substrates and physiological roles of cyclin-dependent protein kinases, whereas the combined use of Kenpaullone and LiCl may be useful for identifying substrates and physiological roles of glycogen synthase kinase 3. The combined use of SU 6656 and either PP1 or PP2 may be useful for identifying substrates of Src family members. Epigallocatechin 3-gallate, one of the main polyphenolic constituents of tea, inhibited two of the 28 protein kinases in the panel, dual-specificity, tyrosine-phosphorylated and regulated kinase 1A (DYRK1A; IC(50)=0.33 microM) and p38-regulated/activated kinase (PRAK; IC(50)=1.0 microM). PMID:12534346

  1. Auto-phosphorylation Represses Protein Kinase R Activity

    PubMed Central

    Wang, Die; de Weerd, Nicole A.; Willard, Belinda; Polekhina, Galina; Williams, Bryan R. G.; Sadler, Anthony J.

    2017-01-01

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity. PMID:28281686

  2. Glabridin induces glucose uptake via the AMP-activated protein kinase pathway in muscle cells.

    PubMed

    Sawada, Keisuke; Yamashita, Yoko; Zhang, Tianshun; Nakagawa, Kaku; Ashida, Hitoshi

    2014-08-05

    The present study demonstrates that glabridin, a prenylated isoflavone in licorice, stimulates glucose uptake through the adenosine monophosphate-activated protein kinase (AMPK) pathway in L6 myotubes. Treatment with glabridin for 4h induced glucose uptake in a dose-dependent manner accompanied by the translocation of glucose transporter type 4 (GLUT4) to the plasma membrane. Glabridin needed at least 4h to increase glucose uptake, while it significantly decreased glycogen and increased lactic acid within 15 min. Pharmacological inhibition of AMPK by Compound C suppressed the glabridin-induced glucose uptake, whereas phosphoinositide 3-kinase and Akt inhibition by LY294002 and Akt1/2 inhibitor, respectively, did not. Furthermore, glabridin induced AMPK phosphorylation, and siRNA for AMPK completely abolished glabridin-induced glucose uptake. We confirmed that glabridin-rich licorice extract prevent glucose intolerance accompanied by the AMPK-dependent GLUT4 translocation in the plasma membrane of mice skeletal muscle. These results indicate that glabridin may possess a therapeutic effect on metabolic disorders, such as diabetes and hyperglycemia, by modulating glucose metabolism through AMPK in skeletal muscle cells.

  3. Modification of Akt by SUMO conjugation regulates alternative splicing and cell cycle

    PubMed Central

    Risso, Guillermo; Pelisch, Federico; Pozzi, Berta; Mammi, Pablo; Blaustein, Matías; Colman-Lerner, Alejandro; Srebrow, Anabella

    2013-01-01

    Akt/PKB is a key signaling molecule in higher eukaryotes and a crucial protein kinase in human health and disease. Phosphorylation, acetylation, and ubiquitylation have been reported as important regulatory post-translational modifications of this kinase. We describe here that Akt is modified by SUMO conjugation, and show that lysine residues 276 and 301 are the major SUMO attachment sites within this protein. We found that phosphorylation and SUMOylation of Akt appear as independent events. However, decreasing Akt SUMOylation levels severely affects the role of this kinase as a regulator of fibronectin and Bcl-x alternative splicing. Moreover, we observed that the Akt mutant (Akt E17K) found in several human tumors displays increased levels of SUMOylation and also an enhanced capacity to regulate fibronectin splicing patterns. This splicing regulatory activity is completely abolished by decreasing Akt E17K SUMO conjugation levels. Additionally, we found that SUMOylation controls Akt regulatory function at G₁/S transition during cell cycle progression. These findings reveal SUMO conjugation as a novel level of regulation for Akt activity, opening new areas of exploration related to the molecular mechanisms involved in the diverse cellular functions of this kinase. PMID:24013425

  4. Notch1 receptor regulates AKT protein activation loop (Thr308) dephosphorylation through modulation of the PP2A phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell acute lymphoblastic leukemia cells.

    PubMed

    Hales, Eric C; Orr, Steven M; Larson Gedman, Amanda; Taub, Jeffrey W; Matherly, Larry H

    2013-08-02

    Notch1 activating mutations occur in more than 50% of T-cell acute lymphoblastic leukemia (T-ALL) cases and increase expression of Notch1 target genes, some of which activate AKT. HES1 transcriptionally silences phosphatase and tensin homolog (PTEN), resulting in AKT activation, which is reversed by Notch1 inhibition with γ-secretase inhibitors (GSIs). Mutational loss of PTEN is frequent in T-ALL and promotes resistance to GSIs due to AKT activation. GSI treatments increased AKT-Thr(308) phosphorylation and signaling in PTEN-deficient, GSI-resistant T-ALL cell lines (Jurkat, CCRF-CEM, and MOLT3), suggesting that Notch1 represses AKT independent of its PTEN transcriptional effects. AKT-Thr(308) phosphorylation and downstream signaling were also increased by knocking down Notch1 in Jurkat (N1KD) cells. This was blocked by treatment with the AKT inhibitor perifosine. The PI3K inhibitor wortmannin and the protein phosphatase type 2A (PP2A) inhibitor okadaic acid both impacted AKT-Thr(308) phosphorylation to a greater extent in nontargeted control than N1KD cells, suggesting decreased dephosphorylation of AKT-Thr(308) by PP2A in the latter. Phosphorylations of AMP-activated protein kinaseα (AMPKα)-Thr(172) and p70S6K-Thr(389), both PP2A substrates, were also increased in both N1KD and GSI-treated cells and responded to okadaic acid treatment. A transcriptional regulatory mechanism was implied because ectopic expression of dominant-negative mastermind-like protein 1 increased and wild-type HES1 decreased phosphorylation of these PP2A targets. This was independent of changes in PP2A subunit levels or in vitro PP2A activity, but was accompanied by decreased association of PP2A with AKT in N1KD cells. These results suggest that Notch1 can regulate PP2A dephosphorylation of critical cellular regulators including AKT, AMPKα, and p70S6K.

  5. PTH-related protein upregulates integrin {alpha}6{beta}4 expression and activates Akt in breast cancer cells

    SciTech Connect

    Shen Xiaoli; Falzon, Miriam . E-mail: mfalzon@utmb.edu

    2006-11-15

    Breast cancer is the most common carcinoma that metastasizes to bone. Tumor-produced parathyroid hormone-related protein (PTHrP), a known stimulator of osteoclastic bone resorption, is a major mediator of the osteolytic process in breast cancer. We have previously shown that PTHrP increases breast cancer cell proliferation, survival, migration, and pro-invasive integrin {alpha}6{beta}4 expression. To determine the role of integrin {alpha}6{beta}4 in these PTHrP-mediated effects, we utilized two strategies to modulate expression of the {alpha}6 and {beta}4 subunits in parental and PTHrP-overexpressing MDA-MB-231 and MCF-7 cells: overexpression of {alpha}6{beta}4 by transfection with constructs encoding the {alpha}6 and {beta}4 subunits, and suppression of endogenous {alpha}6{beta}4 expression by transfection with siRNAs targeting these subunits. We now show that the effects of PTHrP are mediated via upregulation of integrin {alpha}6{beta}4 expression. We also show that integrin {alpha}6{beta}4 expression is modulated at the mRNA level, indicating a transcriptional and/or post-transcriptional mechanism of action for PTHrP. PTHrP expression also increased the levels of phosphorylated Akt, with a consequent increase in the levels of phosphorylated (inactive) glycogen synthase kinase-3 (GSK-3). The role of PTHrP in breast cancer growth and metastasis may thus be mediated via upregulation of integrin {alpha}6{beta}4 expression and Akt activation, with consequent inactivation of GSK-3.

  6. Thr308 determines Akt1 nuclear localization in insulin-stimulated keratinocytes

    SciTech Connect

    Goren, Itamar; Mueller, Elke; Pfeilschifter, Josef

    2008-07-18

    Here, we determined the localization and activation of protein kinase B (Akt) in acute cutaneous wound tissue in mice. Akt1 represented the major Akt isoform that was expressed and activated in wound margin keratinocytes and also in the cultured human keratinocyte line HaCaT. Mutation of Akt1 protein, exchanging the activation-essential Ser473 and Thr308 residues for inactive Ala or phosphorylation-mimicking Asp and Glu residues, revealed that phosphorylation of Ser473 represented an essential prerequisite for auto-phosphorylation of Thr308 within the Akt1 protein in keratinocytes. Moreover, cell culture experiments and transfection studies using Thr308 mutated Akt1 proteins demonstrated that phosphorylation of Akt1 at Thr308 appeared to selectively exclude the active kinase from the nucleus and direct the kinase to the cytoplasmic compartment in keratinocytes upon insulin stimulation. In summary, our data show that phosphorylation of Thr308 during insulin-mediated Akt1 activation is an essential prerequisite to exclude Akt1 from the nuclear compartment.

  7. Estrogen rapidly phosphorylates AMPK, Akt, and AS160 in isolated rat soleus muscles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogen status is positively correlated with whole body insulin sensitivity, however direct effects of estrogen on skeletal muscle glucose uptake have not been demonstrated. The aim of this study was to determine if estrogen can acutely activate Akt, AMP-activated protein kinase (AMPK), and/or Akt...

  8. Activation of fat cell adenylate cyclase by protein kinase C

    SciTech Connect

    Naghshineh, S.; Noguchi, M.; Huang, K.P.; Londos, C.

    1986-05-01

    Purified protein kinase C (C-kinase) from guinea pig pancreas and rat brain stimulated adenylate cyclase activity in purified rat adipocyte membranes. Cyclase stimulation occurred over 100 to 1000 mU/ml of C-kinase activity, required greater than 10 ..mu..M calcium, proceeded without a lag, was not readily reversible, and required no exogenous phospholipid. Moreover, C-kinase inhibitors, such as chlorpromazine and palmitoyl carnitine, inhibited selectively adenylate cyclase which was activated by C-kinase and calcium. Depending on assay conditions, 10 nM 12-0-tetradecanoylphorbol-13-acetate (TPA) either enhanced or was required for kinase action on cyclase. Also, TPA plus calcium promoted the quantitative association of C-kinase with membranes. Adenylate cyclase activation by C-kinase was seen both in the presence and absence of exogenous GTP, indicating that the kinase effect does not result from an action on the GTP-binding, inhibitory regulatory component (N/sub i/) of the cyclase system. Moreover, the kinase effect was seen in the presence of non-phosphorylating ATP analogs, such as AppNHp and AppCH/sub 2/p, suggesting that the effects of C-kinase described herein may result from association with, rather than phosphorylation of, adenylate cyclase.

  9. The Link between Protein Kinase CK2 and Atypical Kinase Rio1

    PubMed Central

    Kubiński, Konrad; Masłyk, Maciej

    2017-01-01

    The atypical kinase Rio1 is widespread in many organisms, ranging from Archaebacteria to humans, and is an essential factor in ribosome biogenesis. Little is known about the protein substrates of the enzyme and small-molecule inhibitors of the kinase. Protein kinase CK2 was the first interaction partner of Rio1, identified in yeast cells. The enzyme from various sources undergoes CK2-mediated phosphorylation at several sites and this modification regulates the activity of Rio1. The aim of this review is to present studies of the relationship between the two different kinases, with respect to CK2-mediated phosphorylation of Rio1, regulation of Rio1 activity, and similar susceptibility of the kinases to benzimidazole inhibitors. PMID:28178206

  10. A family of human cdc2-related protein kinases.

    PubMed Central

    Meyerson, M; Enders, G H; Wu, C L; Su, L K; Gorka, C; Nelson, C; Harlow, E; Tsai, L H

    1992-01-01

    The p34cdc2 protein kinase is known to regulate important transitions in the eukaryotic cell cycle. We have identified 10 human protein kinases based on their structural relation to p34cdc2. Seven of these kinases are novel and the products of five share greater than 50% amino acid sequence identity with p34cdc2. The seven novel genes are broadly expressed in human cell lines and tissues with each displaying some cell type or tissue specificity. The cdk3 gene, like cdc2 and cdk2, can complement cdc28 mutants of Saccharomyces cerevisiae, suggesting that all three of these protein kinases can play roles in the regulation of the mammalian cell cycle. The identification of a large family of cdc2-related kinases opens the possibility of combinatorial regulation of the cell cycle together with the emerging large family of cyclins. Images PMID:1639063

  11. The Role of AKT in Androgen-Independent Progression of Human Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    mediated iAKT activation promote tumor growth in castrated nude mice. 14. SUBJECT TERMS 15. NUMBER OF PAGES Prostate Cancer, AKT/Protein Kinase B...United States (1). While digital rectal exams and early prostate specific antigen screening have led to earlier detection and diagnosis, the number of...to determine whether CID-mediated activation of iAKT can lead to survival or proliferation after androgen withdrawal. Finally, LNCaP tumor will be

  12. Phosphatidylinositol 3-kinase/Akt signaling pathway mediates acupuncture-induced dopaminergic neuron protection and motor function improvement in a mouse model of Parkinson's disease.

    PubMed

    Kim, Seung-Nam; Kim, Seung-Tae; Doo, Ah-Reum; Park, Ji-Yeun; Moon, Woongjoon; Chae, Younbyoung; Yin, Chang Shik; Lee, Hyejung; Park, Hi-Joon

    2011-10-01

    It has been reported that acupuncture treatment reduced dopaminergic neuron degeneration in Parkinson's disease (PD) models. However, the mechanistic pathways underlying, such neuroprotection, are poorly understood. Here, we investigated the effects and the underlying mechanism of acupuncture in a mouse model of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). First, we observed that MPTP-induced impairment of Akt activation, but not MPTP-induced c-Jun activation, was effectively restored by acupuncture treatment in the substantia nigra. Furthermore, we demonstrated for the first time that the brain-specific blockade of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, by intranasal administration of LY294002, a specific inhibitor of PI3K/Akt signaling pathway, significantly blocked acupuncture-induced dopaminergic neuron protection and motor function improvement. Our results provide evidence that PI3K/Akt signaling pathway may play a central role in the mechanism underlying acupuncture-induced benefits in Parkinsonian mice.

  13. Inhibitory effect of capsaicin on B16-F10 melanoma cell migration via the phosphatidylinositol 3-kinase/Akt/Rac1 signal pathway

    PubMed Central

    Shin, Dong-Hoon; Kim, Ok-Hee; Jun, Hye-Seung

    2008-01-01

    Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), the major pungent ingredient of red pepper, has been reported to possess anti-carcinogenic and anti-mutagenic activities. In this study, the anti-migration activity of capsaicin on highly metastatic B16-F10 melanoma cells was investigated. Capsaicin significantly inhibited the migration of melanoma cells without showing obvious cellular cytotoxicity at low doses. This effect correlated with the down-regulation of phosphatidylinositol 3-kinase (PI3-K) and its downstream target, Akt. Although B16-F10 cell migration was increased by the PI3-K activator through the activation of Akt, these PI3-K activator-induced phenomena were attenuated by capsaicin. Moreover, capsaicin was found to significantly inhibit Rac1 activity in a pull-down assay. These results demonstrate that capsaicin inhibits the migration of B16-F10 cells through the inhibition of the PI3-K/Akt/Rac1 signal pathway. The present investigation suggests that capsaicin targets PI3-K/Akt/Rac1-mediated cellular events in B16-F10 melanoma cells. Consequently, capsaicin administration should be considered an effective approach for the suppression of invasion and metastasis in malignant melanoma chemotherapy. PMID:18985006

  14. The protein activator of protein kinase R, PACT/RAX, negatively regulates protein kinase R during mouse anterior pituitary development.

    PubMed

    Dickerman, Benjamin K; White, Christine L; Kessler, Patricia M; Sadler, Anthony J; Williams, Bryan R G; Sen, Ganes C

    2015-12-01

    The murine double-stranded RNA-binding protein termed protein kinase R (PKR)-associated protein X (RAX) and the human homolog, protein activator of PKR (PACT), were originally characterized as activators of PKR. Mice deficient in RAX show reproductive and developmental defects, including reduced body size, craniofacial defects and anterior pituitary hypoplasia. As these defects are not observed in PKR-deficient mice, the phenotype has been attributed to PKR-independent activities of RAX. Here we further investigated the involvement of PKR in the physiological function of RAX, by generating rax(-/-) mice deficient in PKR, or carrying a kinase-inactive mutant of PKR (K271R) or an unphosphorylatable mutant of the PKR substrate eukaryotic translation initiation factor 2 α subunit (eIF2α) (S51A). Ablating PKR expression rescued the developmental and reproductive deficiencies in rax(-/-) mice. Generating rax(-/-) mice with a kinase-inactive mutant of PKR resulted in similar rescue, confirming that the rax(-/-) defects are PKR dependent; specifically that the kinase activity of PKR was required for these defects. Moreover, generating rax(-/-) mice that were heterozygous for an unphosphorylatable mutant eIF2α provides partial rescue of the rax(-/-) defect, consistent with mutation of one copy of the Eif2s1 gene. These observations were further investigated in vitro by reducing RAX expression in anterior pituitary cells, resulting in increased PKR activity and induction of the PKR-regulated cyclin-dependent kinase inhibitor p21(WAF1/CIP1). These results demonstrate that PKR kinase activity is required for onset of the rax(-/-) phenotype, implying an unexpected function for RAX as a negative regulator of PKR in the context of postnatal anterior pituitary tissue, and identify a critical role for the regulation of PKR activity for normal development.

  15. Down-regulation of the tumor suppressor gene retinoic acid receptor beta2 through the phosphoinositide 3-kinase/Akt signaling pathway.

    PubMed

    Lefebvre, Bruno; Brand, Céline; Flajollet, Sébastien; Lefebvre, Philippe

    2006-09-01

    The retinoic acid receptor beta2 (RARbeta2) is a potent, retinoid-inducible tumor suppressor gene, which is a critical molecular relay for retinoid actions in cells. Its down-regulation, or loss of expression, leads to resistance of cancer cells to retinoid treatment. Up to now, no primary mechanism underlying the repression of the RARbeta2 gene expression, hence affecting cellular retinoid sensitivity, has been identified. Here, we demonstrate that the phosphoinositide 3-kinase/Akt signaling pathway affects cellular retinoid sensitivity, by regulating corepressor recruitment to the RARbeta2 promoter. Through direct phosphorylation of the corepressor silencing mediator for retinoic and thyroid hormone receptors (SMRT), Akt stabilized RAR/SMRT interaction, leading to an increased tethering of SMRT to the RARbeta2 promoter, decreased histone acetylation, down-regulation of the RARbeta2 expression, and impaired cellular differentiation in response to retinoid. The phosphoinositide 3-kinase/Akt signaling pathway, an important modulator of cellular survival, has thus a direct impact on cellular retinoid sensitivity, and its deregulation may be the triggering event in retinoid resistance of cancer cells.

  16. Measuring protein kinase and sugar kinase activity in plant pathogenic fusarium species.

    PubMed

    Bluhm, Burton H; Zhao, Xinhua

    2010-01-01

    As ubiquitous metabolic and signaling intermediaries, kinases regulate innumerable aspects of fungal growth and development. At its simplest, the enzymatic function of a kinase is to transfer a phosphate from a donor molecule (such as adenosine triphosphate) to an acceptor molecule, such as a protein, carbohydrate, or lipid. Kinase activity is intricately interwoven into signal transduction, and ultimately modulates gene expression, downstream phosphorylation events, and other mechanisms of posttranslational modification. Therefore, sensitive and reproducible techniques to measure kinase activity are crucial to elucidate cellular signaling and for fungal functional genomics.Protein and sugar kinases regulate multiple aspects of pathogenesis in the mycotoxigenic, plant pathogenic fungi Fusarium graminearum, and Fusarium verticillioides. Here, we present protocols to (1) quantify phosphorylation of mitogen-activated protein kinases in F. graminearum, and (2) determine glucokinase activity in F. verticillioides. The mitogen-activated protein kinase phosphorylation assay utilizes immunological methods to quantify substrate phosphorylation, whereas the glucokinase assay is a coupled enzyme assay, in which phosphorylation of glucose by glucokinase is measured indirectly through the subsequent reduction of NADP+ to NADPH, a substrate more amenable for spectrophotometric detection.

  17. Expression of the K303R Estrogen Receptor α Breast Cancer Mutation Induces Resistance to an Aromatase Inhibitor via Addiction to the PI3K/Akt Kinase Pathway

    PubMed Central

    Barone, Ines; Cui, Yukun; Herynk, Matthew H; Corona-Rodriguez, Arnoldo; Giordano, Cinzia; Selever, Jennifer; Beyer, Amanda; Andò, Sebastiano; Fuqua, Suzanne A. W.

    2009-01-01

    Aromatase inhibitors (AIs) are rapidly becoming the first choice for hormonal treatment of estrogen receptor alpha (ERα)-positive breast cancer in postmenopausal women. However, de novo and acquired resistance frequently occurs. We have previously identified a lysine to arginine transition at residue 303 (K303R) in ERα in premalignant breast lesions and invasive breast cancers, which confers estrogen hypersensitivity and resistance to tamoxifen treatment. Thus, we questioned whether resistance to AIs could arise in breast cancer cells expressing the ERα mutation. As preclinical models to directly test this possibility, we generated K303R-overexpressing MCF-7 cells stably transfected with an aromatase expression vector. Cells were stimulated with the aromatase substrate, androstenedione (AD), with or without the AI anastrozole (Ana). We found that Ana decreased AD-stimulated growth of WT cells, while K303R-expressing cells were resistant to the inhibitory effect of Ana on growth. We propose that a mechanism of resistance involves an increased binding between the mutant receptor and the p85α regulatory subunit of phosphatidylinositol-3-OH kinase (PI3K), leading to increased PI3K activity and activation of protein kinase B (PKB)/Akt survival pathways. Inhibition of the selective “addiction” to the PI3K/Akt pathway reversed AI resistance associated with expression of the mutant receptor. Our findings suggest that the K303R ERα mutation might be a new predictive marker of response to AIs in mutation-positive breast tumors, and that targeting the PI3K/Akt pathway may be a useful strategy for treating patients with tumors resistant to hormone therapy. PMID:19487288

  18. RAF protein-serine/threonine kinases: Structure and regulation

    SciTech Connect

    Roskoski, Robert

    2010-08-27

    Research highlights: {yields} The formation of unique side-to-side RAF dimers is required for full kinase activity. {yields} RAF kinase inhibitors block MEK activation in cells containing oncogenic B-RAF. {yields} RAF kinase inhibitors can lead to the paradoxical increase in RAF kinase activity. -- Abstract: A-RAF, B-RAF, and C-RAF are a family of three protein-serine/threonine kinases that participate in the RAS-RAF-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including apoptosis, cell cycle progression, differentiation, proliferation, and transformation to the cancerous state. RAS mutations occur in 15-30% of all human cancers, and B-RAF mutations occur in 30-60% of melanomas, 30-50% of thyroid cancers, and 5-20% of colorectal cancers. Activation of the RAF kinases requires their interaction with RAS-GTP along with dephosphorylation and also phosphorylation by SRC family protein-tyrosine kinases and other protein-serine/threonine kinases. The formation of unique side-to-side RAF dimers is required for full kinase activity. RAF kinase inhibitors are effective in blocking MEK1/2 and ERK1/2 activation in cells containing the oncogenic B-RAF Val600Glu activating mutation. RAF kinase inhibitors lead to the paradoxical increase in RAF kinase activity in cells containing wild-type B-RAF and wild-type or activated mutant RAS. C-RAF plays a key role in this paradoxical increase in downstream MEK-ERK activation.

  19. Tumor necrosis factor-alpha enhances neutrophil adhesiveness: induction of vascular cell adhesion molecule-1 via activation of Akt and CaM kinase II and modifications of histone acetyltransferase and histone deacetylase 4 in human tracheal smooth muscle cells.

    PubMed

    Lee, Chiang-Wen; Lin, Chih-Chung; Luo, Shue-Fen; Lee, Hui-Chun; Lee, I-Ta; Aird, William C; Hwang, Tsong-Long; Yang, Chuen-Mao

    2008-05-01

    Up-regulation of vascular cell adhesion molecule-1 (VCAM-1) involves adhesions between both circulating and resident leukocytes and the human tracheal smooth muscle cells (HTSMCs) during airway inflammatory reaction. We have demonstrated previously that tumor necrosis factor (TNF)-alpha-induced VCAM-1 expression is regulated by mitogen-activated protein kinases, nuclear factor-kappaB, and p300 activation in HTSMCs. In addition to this pathway, phosphorylation of Akt and CaM kinase II has been implicated in histone acetyltransferase and histone deacetylase 4 (HDAC4) activation. Here, we investigated whether these different mechanisms participated in TNF-alpha-induced VCAM-1 expression and enhanced neutrophil adhesion. TNF-alpha significantly increased HTSMC-neutrophil adhesions, and this effect was associated with increased expression of VCAM-1 on the HTSMCs and was blocked by the selective inhibitors of Src [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1)], epidermal growth factor receptor [EGFR; 4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline, (AG1478)], phosphatidylinositol 3-kinase (PI3K) [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride(LY294002) and wortmannin],calcium[1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester; BAPTA-AM], phosphatidylinositol-phospholipase C (PLC) [1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122)], protein kinase C (PKC) [12-(2-cyanoethyl)-6,7,12, 13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)-carbazole (Gö6976), rottlerin, and 3-1-[3-(amidinothio)propyl-1H-indol-3-yl]-3-(1-methyl-1H-indol-3-yl) maleimide (bisindolylmaleimide IX) (Ro 31-8220)], CaM (calmidazolium chloride), CaM kinase II [(8R(*),9S(*),11S(*))-(-)-9-hydroxy-9-methoxycarbonyl-8-methyl-14-n-propoxy-2,3,9, 10-tetrahydro-8,11-epoxy, 1H,8H, 11H-2,7b,11a-triazadibenzo[a,g]cycloocta[cde]trinden-1-one (KT5926) and 1-[N,O-bis(5-isoquinolinesulfonyl

  20. Ribosomal Protein Mutations Induce Autophagy through S6 Kinase Inhibition of the Insulin Pathway

    PubMed Central

    Pereboom, Tamara C.; Goos, Yvonne J.; Seinen, Cor W.; van Oirschot, Brigitte A.; van Dooren, Rowie; Gastou, Marc; Giles, Rachel H.; van Solinge, Wouter; Kuijpers, Taco W.; Gazda, Hanna T.; Bierings, Marc B.; Da Costa, Lydie; MacInnes, Alyson W.

    2014-01-01

    Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA), for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP) genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS). The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS). We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies. PMID:24875531

  1. Down-regulation of ERK1/2 and AKT-mediated X-ray repair cross-complement group 1 protein (XRCC1) expression by Hsp90 inhibition enhances the gefitinib-induced cytotoxicity in human lung cancer cells

    SciTech Connect

    Tung, Chun-Liang; Jian, Yi-Jun; Syu, Jhan-Jhang; Wang, Tai-Jing; Chang, Po-Yuan; Chen, Chien-Yu; Jian, Yun-Ting; Lin, Yun-Wei

    2015-05-15

    Gefitinib (Iressa{sup R}, ZD1839) is a selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that blocks growth factor-mediated cell proliferation and extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT signaling activation. It has been shown that inhibition of Hsp90 function can enhance antitumor activity of EGFR-TKI. XRCC1 is an important scaffold protein in base excision repair, which could be regulated by ERK1/2 and AKT pathways. However, the role of ERK1/2 and AKT-mediated XRCC1 expression in gefitinib alone or combination with an Hsp90 inhibitor-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. In this study, gefitinib treatment decreased XRCC1 mRNA and protein expression through ERK1/2 and AKT inactivation in two NSCLC cells, A549 and H1975. Knocking down XRCC1 expression by transfection with small interfering RNA of XRCC1 enhanced the cytotoxicity and cell growth inhibition of gefitinib. Combining treatment of gefitinib with an Hsp90 inhibitor resulted in enhancing the reduction of XRCC1 protein and mRNA levels in gefitinib-exposed A549 and H1975 cells. Compared to a single agent alone, gefitinib combined with an Hsp90 inhibitor resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells. Furthermore, transfection with constitutive active MKK1 or AKT vectors rescued the XRCC1 protein level as well as the cell survival suppressed by an Hsp90 inhibitor and gefitinib. These findings suggested that down-regulation of XRCC1 can enhance the sensitivity of gefitinib for NSCLC cells. - Highlights: • Gefitinib treatment decreased XRCC1 mRNA and protein expression in NSCLC cells. • Knocking down XRCC1 expression enhanced the cytotoxic effect of gefitinib. • Gefitinib combined with an Hsp90 inhibitor resulted in synergistically cytotoxicity.

  2. CB1 cannabinoid receptors increase neuronal precursor proliferation through AKT/glycogen synthase kinase-3beta/beta-catenin signaling.

    PubMed

    Trazzi, Stefania; Steger, Martin; Mitrugno, Valentina Maria; Bartesaghi, Renata; Ciani, Elisabetta

    2010-03-26

    The endocannabinoid system is involved in the regulation of many physiological effects in the central and peripheral nervous system. Recent findings have demonstrated the presence of a functional endocannabinoid system within neuronal progenitors located in the hippocampus and ventricular/subventricular zone that participates in the regulation of cell proliferation. It is presently unknown whether the endocannabinoid system exerts a widespread effect on neuronal precursors from different neurogenic regions, and very little is known about the signaling by which it regulates neuronal precursor proliferation. Herein, we demonstrate the presence of cannabinoid CB(1) receptors in granule cell precursors (GCPs) during early cerebellar development. Activation of CB(1) receptors by HU-210 promoted GCP proliferation in vitro, an effect that was prevented by a selective CB(1) antagonist. Accordingly, in vivo experiments showed that GCP proliferation was increased by chronic HU-210 treatment and that in CB(1)-deficient mice cell proliferation was significantly lower than in wild-type littermates, indicating that the endocannabinoid system is physiologically involved in regulation of GCP proliferation. The pro-proliferative effect of cannabinoids in GCPs was mediated through the CB(1)/AKT/glycogen synthase kinase-3beta/beta-catenin pathway. Involvement of this pathway was also observed in cultures of neuronal precursors from the subventricular zone, suggesting that this pathway may be a general mechanism by which endocannabinoids regulate proliferation of neuronal precursors. These observations suggest that endocannabinoids constitute a new family of lipid signaling cues that may exert a widespread effect on neuronal precursor proliferation during brain development.

  3. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  4. Interaction of SNF1 Protein Kinase with Its Activating Kinase Sak1▿

    PubMed Central

    Liu, Yang; Xu, Xinjing; Carlson, Marian

    2011-01-01

    The Saccharomyces cerevisiae SNF1 protein kinase, a member of the SNF1/AMP-activated protein kinase (AMPK) family, is activated by three kinases, Sak1, Tos3, and Elm1, which phosphorylate the Snf1 catalytic subunit on Thr-210 in response to glucose limitation and other stresses. Sak1 is the primary Snf1-activating kinase and is associated with Snf1 in a complex. Here we examine the interaction of Sak1 with SNF1. We report that Sak1 coimmunopurifies with the Snf1 catalytic subunit from extracts of both glucose-replete and glucose-limited cultures and that interaction occurs independently of the phosphorylation state of Snf1 Thr-210, Snf1 catalytic activity, and other SNF1 subunits. Sak1 interacts with the Snf1 kinase domain, and nonconserved sequences C terminal to the Sak1 kinase domain mediate interaction with Snf1 and augment the phosphorylation and activation of Snf1. The Sak1 C terminus is modified in response to glucose depletion, dependent on SNF1 activity. Replacement of the C terminus of Elm1 (or Tos3) with that of Sak1 enhanced the ability of the Elm1 kinase domain to interact with and phosphorylate Snf1. These findings indicate that the C terminus of Sak1 confers its function as the primary Snf1-activating kinase and suggest that the physical association of Sak1 with SNF1 facilitates responses to environmental change. PMID:21216941

  5. Protein kinase C activators inhibit capillary endothelial cell growth

    SciTech Connect

    Doctrow, S.R.

    1986-05-01

    Phorbol 12,13-dibutyrate (PDBu) binds specifically to bovine capillary endothelial (BCE) cells (K/sub d/ = 8nM) and inhibits the proliferation (K/sub 50/ = 6 +/- 4 nM). Under similar conditions, PDBu does not inhibit the growth of bovine aortic endothelial or smooth muscle cells. PDBu markedly attenuates the response of BCE cells to purified human hepatoma-derived growth factor which, in the absence of PDBu, stimulates BCE cell growth by about 3-fold. Several observations suggest that the inhibition of BCE cell growth by PDBu is mediated by protein kinase C: (1) different phorbol compounds inhibit BCE cell growth according to the relative potencies as protein kinase C activators (12-tetradecanoylphorbol 13-acetate > PDBu >> phorbol 12,13-diacetate >>>..beta..-phorbol; ..cap alpha..-phorbol 12,13-didecanoate). (2) Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol (diC/sub 8/), a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. (3) A cytosolic extract from BCE cells contains a Ca/sup 2 +//phosphatidylserine-dependent kinase that is activated by diC/sub 8/ and PDBu, but not by ..beta..-phorbol. These results support a role for protein kinase C in suppressing capillary endothelial cell growth and may therefore have implications in the intracellular regulation of angiogenesis.

  6. Akt isoforms in vascular disease

    PubMed Central

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-01-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease. PMID:25929188

  7. Characterization of microtubule-associated protein 1-associated protein kinases from rat brain.

    PubMed

    Fujii, T; Watanabe, M; Nakamura, A

    1996-01-01

    The microtubule-associated protein (MAP) 1 preparation, MAP1A and 1B, obtained from rat brain microtubules was associated with protein kinases that were insensitive to cAMP, cGMP, calcium, calcium/calmodulin and calcium/phosphatidylserine. The fractionation of highly purified MAP1 by phosphocellulose chromatography revealed that protein kinase activity to phosphorylate phosvitin was separated into three major peaks (MAP1 kinases A, B and C). MAP1 was recovered in the MAP1 kinase A fraction and phosphorylated by the contained kinase. MAP1 kinase A is a novel protein kinase that is remarkably activated by poly-L-lysine and poly-L-arginine, but very insensitive to heparin among the kinases. Photoaffinity labeling using [alpha-32P]8-azido ATP indicated that the 65 kDa polypeptide is identified as an ATP-binding protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the highly purified MAP1 and MAP1 kinase A fractions. MAP1 kinases B and C may be identified as casein kinase I- and II-like kinases. The present results show that MAP1 is associated with at least three kinases and provide an insight for understanding thoroughly the MAP1-mediated microtubule functions.

  8. Regulatory Crosstalk by Protein Kinases on CFTR Trafficking and Activity

    PubMed Central

    Farinha, Carlos M.; Swiatecka-Urban, Agnieszka; Brautigan, David L.; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e., channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease. PMID:26835446

  9. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    NASA Astrophysics Data System (ADS)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  10. The phosphoinositide 3-kinase/Akt-signal pathway mediates proliferation and secretory function of hepatic sinusoidal endothelial cells in rats after partial hepatectomy

    SciTech Connect

    Chen Ping . E-mail: chenping@263.net; Zhang Lin; Ding Jiming; Zhu Jin; Li Ying; Duan Shigang; Yan Hongtao; Huan Yongwei; Dong Jiahong

    2006-04-14

    Objective: To investigate the role of AKT signaling pathway in hepatic sinusoidal endothelial cells (SECs) early after partial hepatectomy in rats and the regulatory mechanisms involved. Methods: The animal model of 70% hepatectomy was made. Hepatic SECs were isolated and cultured according to Braet et al.'s method with some modifications. The cultured hepatic SECs were divided into two groups: 70% partial hepatectomy groups and LY294002 group (LY). We observed the expressions of AKT and NF-{kappa}B in cultured hepatic SECs by Western blot, measured the levels of NO, NOs, IL-6, and HGF in the supernatants of hepatic SEC cultures and [{sup 3}H]thymidine incorporation, and analyzed cell cycle of cultured hepatic SECs by flow cytometer. The relationship of the Akt pathway with secretions and proliferation of hepatic SECs after partial hepatectomy was probed. Results: The levels of Akt protein expression increased significantly after partial hepatectomy in OG group and with a peak at 24 h post operation. Meanwhile, there was a markedly increase in phosphorylated Akt protein during 2-72 h after operation. But the expression and activity of Akt protein did not change significantly after partial hepatectomy in the LY group. So, partial hepatectomy can marked induce Akt expression and result in rapid and marked phosphorylation of Akt from 2 to 72 h thereafter. The changes of NF-{kappa}B expression in cultured hepatic SECs were similar to those of Akt expression after operation. The concentrations of HGF and IL-6 in the supernatants of cultured hepatic SECs were relatively low in the LY group, and were markedly increased after partial hepatectomy, with a peak at 24 h in the OG group. There were significant differences between the OG and LY groups at 6 and 24 h (P < 0.05). Both NO and NOS secretion was increased in the OG group compared to the LY group within 24 h after partial hepatectomy. But the secretion of NO and NOS was increased more markedly in the LY group than that

  11. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  12. Regulated protein kinases and phosphatases in cell cycle decisions.

    PubMed

    Novak, Bela; Kapuy, Orsolya; Domingo-Sananes, Maria Rosa; Tyson, John J

    2010-12-01

    Many aspects of cell physiology are controlled by protein kinases and phosphatases, which together determine the phosphorylation state of targeted substrates. Some of these target proteins are themselves kinases or phosphatases or other components of a regulatory network characterized by feedback and feed-forward loops. In this review we describe some common regulatory motifs involving kinases, phosphatases, and their substrates, focusing particularly on bistable switches involved in cellular decision processes. These general principles are applied to cell cycle transitions, with special emphasis on the roles of regulated phosphatases in orchestrating progression from one phase to the next of the DNA replication-division cycle.

  13. Molecular cloning of plant transcripts encoding protein kinase homologs.

    PubMed Central

    Lawton, M A; Yamamoto, R T; Hanks, S K; Lamb, C J

    1989-01-01

    Oligonucleotides, corresponding to conserved regions of animal protein-serine/threonine kinases, were used to isolate cDNAs encoding plant homologs in the dicot bean (Phaseolus vulgaris L.) and the monocot rice (Oryzae sativa L.). The C-terminal regions of the deduced polypeptides encoded by the bean (PVPK-1) and rice (G11A) cDNAs, prepared from mRNAs of suspension cultures and leaves, respectively, contain features characteristic of the catalytic domains of eukaryotic protein-serine/threonine kinases, indicating that these cDNAs encode plant protein kinases. The putative catalytic domains are most closely related to cyclic nucleotide-dependent protein kinases and the protein kinase C family, suggesting the plant homologs may likewise transduce extracellular signals. However, outside these domains, PVPK-1 and G11A exhibit no homology either to each other or to regulatory domains of other protein kinases, indicating the plant homologs are modulated by other signals. PVPK-1 corresponds to a 2.4-kb transcript in suspension cultured bean cells. Southern blots of genomic DNA indicate that PVPK-1 and G11A correspond to single copy genes that form part of a family of related plant sequences. Images PMID:2541432

  14. GZD824 suppresses the growth of human B cell precursor acute lymphoblastic leukemia cells by inhibiting the SRC kinase and PI3K/AKT pathways.

    PubMed

    Ye, Wei; Jiang, Zhiwu; Lu, Xiaoyun; Ren, Xiaomei; Deng, Manman; Lin, Shouheng; Xiao, Yiren; Lin, Simiao; Wang, Suna; Li, Baiheng; Zheng, Yi; Lai, Peilong; Weng, Jianyu; Wu, Donghai; Ma, Yuguo; Chen, Xudong; Wen, Zhesheng; Chen, Yaoyu; Feng, Xiaoyan; Li, Yangqiu; Liu, Pentao; Du, Xin; Pei, Duanqing; Yao, Yao; Xu, Bing; Ding, Ke; Li, Peng

    2016-07-28

    Available therapeutic options for advanced B cell precursor acute lymphoblastic leukemia (pre-B ALL) are limited. Many lead to neutropenia, leaving patients at risk of life-threatening infections and result in bad outcomes. New treatment options are needed to improve overall survival. We previously showed that GZD824, a novel BCR-ABL tyrosine kinase inhibitor, has anti-tumor activity in Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia cells and tumor models. Here, we show that GZD824 decreases cell viability, induces cell-cycle arrest, and causes apoptosis in pre-B ALL cells. Furthermore, Ph- pre-B ALL cells were more sensitive to GZD824 than Ph+ pre-B ALL cells. GZD824 consistently reduced tumor loads in Ph- pre-B ALL xenografts but failed to suppress Ph+ pre-B ALL xenografts. GZD824 decreased phosphorylation of SRC kinase, STAT3, RB and C-myc. It also downregulated the expression of BCL-XL, CCND1 and CDK4 and upregulated expression of CCKN1A. Expression of IRS1 was decreased in GZD824-treated pre-B ALL cells, blocking the PI3K/AKT pathway. These data demonstrate that GZD824 suppresses pre-B ALL cells through inhibition of the SRC kinase and PI3K/AKT pathways and may be a potential therapeutic agent for the management of pre-B ALL.

  15. Rumex acetosa L. induces vasorelaxation in rat aorta via activation of PI3-kinase/Akt- AND Ca(2+)-eNOS-NO signaling in endothelial cells.

    PubMed

    Sun, Y Y; Su, X H; Jin, J Y; Zhou, Z Q; Sun, S S; Wen, J F; Kang, D G; Lee, H S; Cho, K W; Jin, S N

    2015-12-01

    Rumex acetosa L. (RA) (Polygonaceae) is an important traditional Chinese medicine (TCM) commonly used in clinic for a long history in China and the aerial parts of RA has a wide variety of pharmacological actions such as diuretic, anti-hypertensive, anti-oxidative, and anti-cancer effects. However, the mechanisms involved are to be defined. The purpose of the present study was to evaluate the vasorelaxant effect and define the mechanism of action of the ethanol extract of Rumex acetosa L. (ERA) in rat aorta. ERA was examined for its vascular relaxant effect in isolated phenylephrine-precontracted rat thoracic aorta and its acute effects on arterial blood pressure. In addition, the roles of the nitric oxide synthase (NOS)-nitric oxide (NO) signaling in the ERA-induced effects were tested in human umbilical vein endothelial cells (HUVECs). The phosphorylation levels of Akt and eNOS were assessed by Western blot analysis in the cultured HUVECs. ERA induced endothelium-dependent vasorelaxation. The ERA-induced vasorelaxation was abolished by L-NAME (an NOS inhibitor) or ODQ (a sGC inhibitor), but not by indomethacin. Inhibition of PI3-kinase/Akt signaling pathway markedly reduced the ERA-induced vasorelaxation. In HUVECs, ERA increased NO formation in a dose-dependent manner, which was inhibited by L-NAME and by removing extracellular Ca(2+). In addition, ERA promoted phosphorylation of Akt and eNOS, which was prevented by wortmannin and LY294002, indicating that ERA induces eNOS phosphorylation through the PI3-kinase/Akt pathway. Further, in anesthetized rats, intravenously administered ERA decreased arterial blood pressure in a dose-dependent manner through an activation of the NOS-NO system. In summary, the ERA- induced vasorelaxation was dependent on endothelial integrity and NO production, and was mediated by activation of both the endothelial PI3-kinase/Akt- and Ca(2+)-eNOS-NO signaling and muscular NO-sGC-cGMP signaling.

  16. The C-terminal tail of protein kinase D2 and protein kinase D3 regulates their intracellular distribution

    SciTech Connect

    Papazyan, Romeo; Rozengurt, Enrique; Rey, Osvaldo . E-mail: orey@mednet.ucla.edu

    2006-04-14

    We generated a set of GFP-tagged chimeras between protein kinase D2 (PKD2) and protein kinase D3 (PKD3) to examine in live cells the contribution of their C-terminal region to their intracellular localization. We found that the catalytic domain of PKD2 and PKD3 can localize to the nucleus when expressed without other kinase domains. However, when the C-terminal tail of PKD2 was added to its catalytic domain, the nuclear localization of the resulting protein was inhibited. In contrast, the nuclear localization of the CD of PKD3 was not inhibited by its C-terminal tail. Furthermore, the exchange of the C-terminal tail of PKD2 and PKD3 in the full-length proteins was sufficient to exchange their intracellular localization. Collectively, these data demonstrate that the short C-terminal tail of these kinases plays a critical role in determining their cytoplasmic/nuclear localization.

  17. Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice.

    PubMed

    Yeh, Chuan-Ming; Hsiao, Lin-June; Huang, Hao-Jen

    2004-09-01

    Mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. In plants, it has been evidenced that MAPKs play a role in the signaling of biotic and abiotic stresses, plant hormones, and cell cycle cues. However, the effect of heavy metals on plant MAPKs has not been well examined. The Northern blot analysis of OsMAPK mRNA levels has shown that only OsMAPK2, but not OsMAPK3 and OsMAPK4, expressed in suspension-cultured cells in response to 100-400 microM Cd treatments. The OsMAPK2 transcripts increased within 12 h upon 400 microM Cd treatment. In addition, we found that 42- and 50-kDa MBP kinases were significantly activated by Cd treatment in rice suspension-cultured cells. And 40-, 42-, 50- and 64-kDa MBP kinases were activated in rice roots. Furthermore, GSH inhibits Cd-induced 40-kDa MBP kinase activation. By immunoblot analysis and immunoprecipitation followed by in-gel kinase assay, we confirmed that Cd-activated 42-kDa MBP kinase is a MAP kinase. Our results suggest that a MAP kinase cascade may function in the Cd-signalling pathway in rice.

  18. Targeting protein kinases in central nervous system disorders

    PubMed Central

    Chico, Laura K.; Van Eldik, Linda J.; Watterson, D. Martin

    2010-01-01

    Protein kinases are a growing drug target class in disorders in peripheral tissues, but the development of kinase-targeted therapies for central nervous system (CNS) diseases remains a challenge, largely owing to issues associated specifically with CNS drug discovery. However, several candidate therapeutics that target CNS protein kinases are now in various stages of preclinical and clinical development. We review candidate compounds and discuss selected CNS protein kinases that are emerging as important therapeutic targets. In addition, we analyse trends in small-molecule properties that correlate with key challenges in CNS drug discovery, such as blood–brain barrier penetrance and cytochrome P450-mediated metabolism, and discuss the potential of future approaches that will integrate molecular-fragment expansion with pharmacoinformatics to address these challenges. PMID:19876042

  19. Protein Kinases and Parkinson’s Disease

    PubMed Central

    Mehdi, Syed Jafar; Rosas-Hernandez, Hector; Cuevas, Elvis; Lantz, Susan M.; Barger, Steven W.; Sarkar, Sumit; Paule, Merle G.; Ali, Syed F.; Imam, Syed Z.

    2016-01-01

    Currently, the lack of new drug candidates for the treatment of major neurological disorders such as Parkinson’s disease has intensified the search for drugs that can be repurposed or repositioned for such treatment. Typically, the search focuses on drugs that have been approved and are used clinically for other indications. Kinase inhibitors represent a family of popular molecules for the treatment and prevention of various cancers, and have emerged as strong candidates for such repurposing because numerous serine/threonine and tyrosine kinases have been implicated in the pathobiology of Parkinson’s disease. This review focuses on various kinase-dependent pathways associated with the expression of Parkinson’s disease pathology, and evaluates how inhibitors of these pathways might play a major role as effective therapeutic molecules. PMID:27657053

  20. Phosphorylation of the Kinase Interaction Motif in Mitogen-activated Protein (MAP) Kinase Phosphatase-4 Mediates Cross-talk between Protein Kinase A and MAP Kinase Signaling Pathways*

    PubMed Central

    Dickinson, Robin J.; Delavaine, Laurent; Cejudo-Marín, Rocío; Stewart, Graeme; Staples, Christopher J.; Didmon, Mark P.; Trinidad, Antonio Garcia; Alonso, Andrés; Pulido, Rafael; Keyse, Stephen M.

    2011-01-01

    MAP kinase phosphatase 4 (DUSP9/MKP-4) plays an essential role during placental development and is one of a subfamily of three closely related cytoplasmic dual-specificity MAPK phosphatases, which includes the ERK-specific enzymes DUSP6/MKP-3 and DUSP7/MKP-X. However, unlike DUSP6/MKP-3, DUSP9/MKP-4 also inactivates the p38α MAP kinase both in vitro and in vivo. Here we demonstrate that inactivation of both ERK1/2 and p38α by DUSP9/MKP-4 is mediated by a conserved arginine-rich kinase interaction motif located within the amino-terminal non-catalytic domain of the protein. Furthermore, DUSP9/MKP-4 is unique among these cytoplasmic MKPs in containing a conserved PKA consensus phosphorylation site 55RRXSer-58 immediately adjacent to the kinase interaction motif. DUSP9/MKP-4 is phosphorylated on Ser-58 by PKA in vitro, and phosphorylation abrogates the binding of DUSP9/MKP-4 to both ERK2 and p38α MAP kinases. In addition, although mutation of Ser-58 to either alanine or glutamic acid does not affect the intrinsic catalytic activity of DUSP9/MKP-4, phospho-mimetic (Ser-58 to Glu) substitution inhibits both the interaction of DUSP9/MKP-4 with ERK2 and p38α in vivo and its ability to dephosphorylate and inactivate these MAP kinases. Finally, the use of a phospho-specific antibody demonstrates that endogenous DUSP9/MKP-4 is phosphorylated on Ser-58 in response to the PKA agonist forskolin and is also modified in placental tissue. We conclude that DUSP9/MKP-4 is a bona fide target of PKA signaling and that attenuation of DUSP9/MKP-4 function can mediate cross-talk between the PKA pathway and MAPK signaling through both ERK1/2 and p38α in vivo. PMID:21908610

  1. The CBL-Interacting Protein Kinase CIPK23 Regulates HAK5-Mediated High-Affinity K+ Uptake in Arabidopsis Roots.

    PubMed

    Ragel, Paula; Ródenas, Reyes; García-Martín, Elena; Andrés, Zaida; Villalta, Irene; Nieves-Cordones, Manuel; Rivero, Rosa M; Martínez, Vicente; Pardo, Jose M; Quintero, Francisco J; Rubio, Francisco

    2015-12-01

    Plant growth and development requires efficient acquisition of essential elements. Potassium (K(+)) is an important macronutrient present in the soil solution at a wide range of concentrations. Regulation of the K(+) uptake systems in the roots is essential to secure K(+) supply. It has been shown in Arabidopsis (Arabidopsis thaliana) that when the external K(+) concentration is very low (<10 µm), K(+) nutrition depends exclusively on the high-affinity K(+) transporter5 (HAK5). Low-K(+)-induced transcriptional activation of the gene encoding HAK5 has been previously reported. Here, we show the posttranscriptional regulation of HAK5 transport activity by phosphorylation. Expression in a heterologous system showed that the Ca(2+) sensors calcineurin B-like (CBL1), CBL8, CBL9, and CBL10, together with CBL-interacting protein kinase23 (CIPK23), activated HAK5 in vivo. This activation produced an increase in the affinity and the Vmax of K(+) transport. In vitro experiments show that the N terminus of HAK5 is phosphorylated by CIPK23. This supports the idea that phosphorylation of HAK5 induces a conformational change that increases its affinity for K(+). Experiments of K(+) (Rb(+)) uptake and growth measurements in low-K(+) medium with Arabidopsis single mutants hak5, akt1, and cipk23, double mutants hak5 akt1, hak5 cipk23, and akt1 cipk23, and the triple mutant hak5 akt1 cipk23 confirmed the regulatory role of CIPK23 in planta.

  2. Dissecting signalling by individual Akt/PKB isoforms, three steps at once.

    PubMed

    Osorio-Fuentealba, Cesar; Klip, Amira

    2015-09-01

    The serine/threonine kinase Akt/PKB (protein kinase B) is key for mammalian cell growth, survival, metabolism and oncogenic transformation. The diverse level and tissue expression of its three isoforms, Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ, make it daunting to identify isoform-specific actions in vivo and even in isolated tissues/cells. To date, isoform-specific knockout and knockdown have been the best strategies to dissect their individual overall functions. In a recent article in the Biochemical Journal, Kajno et al. reported a new strategy to study isoform selectivity in cell lines. Individual Akt/PKB isoforms in 3T3-L1 pre-adipocytes are first silenced via shRNA and stable cellular clones lacking one or the other isoform are selected. The stably silenced isoform is then replaced by a mutant engineered to be refractory to inhibition by MK-2206 (Akt1(W80A) or Akt2(W80A)). Akt1(W80A) or Akt2(W80A) are functional and effectively recruited to the plasma membrane in response to insulin. The system affords the opportunity to acutely control the activity of the endogenous non-silenced isoform through timely addition of MK-2206. Using this approach, it is confirmed that Akt1/PKBα is the preferred isoform sustaining adipocyte differentiation, but both Akt1/PKBα and Akt2/PKBβ can indistinctly support insulin-dependent FoxO1 (forkhead box O1) nuclear exclusion. Surprisingly, either isoform can also support insulin-dependent glucose transporter (GLUT) 4 translocation to the membrane, in contrast with the preferential role of Akt2/PKBβ assessed by knockdown studies. The new strategy should allow analysis of the plurality of Akt/PKB functions in other cells and in response to other stimuli. It should also be amenable to high-throughput studies to speed up advances in signal transmission by this pivotal kinase.

  3. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    SciTech Connect

    Hwang, Yong Pil; Kim, Hyung Gyun; Hien, Tran Thi; Jeong, Myung Ho; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-11-15

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-{alpha}-stimulated monocytes to endothelial cells and suppressed the TNF-{alpha} induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-{alpha}-induced nuclear factor-{kappa}B activation, which was attenuated by pretreatment with N{sup G}-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: Black-Right-Pointing-Pointer Puerarin induced the phosphorylation of eNOS and the production of NO. Black-Right-Pointing-Pointer Puerarin activated eNOS through ER-dependent PI3-kinase and Ca{sup 2+}-dependent AMPK. Black-Right-Pointing-Pointer Puerarin-induced NO was involved in the inhibition of NF-kB activation. Black-Right-Pointing-Pointer Puerarin may help for prevention of vascular dysfunction and diabetes.

  4. Diacylglycerol kinase is phosphorylated in vivo upon stimulation of the epidermal growth factor receptor and serine/threonine kinases, including protein kinase C-epsilon.

    PubMed Central

    Schaap, D; van der Wal, J; van Blitterswijk, W J; van der Bend, R L; Ploegh, H L

    1993-01-01

    In signal transduction, diacylglycerol (DG) kinase attenuates levels of the second messenger DG by converting it to phosphatidic acid. A previously cloned full-length human 86 kDa DG kinase cDNA was expressed as fusion protein in Escherichia coli, to aid in the generation of DG-kinase-specific monoclonal antibodies suitable for immunoprecipitation experiments. To investigate whether phosphorylation of DG kinase is a possible mechanism for its regulation, COS-7 cells were transiently transfected with the DG kinase cDNA and phosphorylation of the expressed DG kinase was induced by various stimuli. Activation of both cyclic AMP-dependent protein kinase and protein kinase C (PKC) resulted in phosphorylation of DG kinase on serine residues in vivo, and both kinases induced this phosphorylation within the same tryptic phosphopeptide, suggesting that they may exert similar control over DG kinase. No phosphorylation was observed upon ionomycin treatment, intended to activate Ca2+/calmodulin-dependent kinases. Co-transfections of DG kinase with either PKC-alpha or PKC-epsilon cDNA revealed that both protein kinases, when stimulated, are able to phosphorylate DG kinase. For PKC-epsilon, DG kinase is the first in vivo substrate identified. Stimulation with epidermal growth factor (EGF) of COS-7 cells transfected with both DG kinase and EGF-receptor cDNA results mainly in phosphorylation of DG kinase on tyrosine. Since the EGF receptor has an intrinsic tyrosine kinase activity, this finding implies that DG kinase may be a direct substrate for the activated EGF receptor. Images Figure 2 Figure 3 Figure 4 PMID:7679574

  5. BRAF, KIT and NRAS mutations and expression of c-KIT, phosphorylated extracellular signal-regulated kinase and phosphorylated AKT in Japanese melanoma patients.

    PubMed

    Oyama, Satomi; Funasaka, Yoko; Watanabe, Atsushi; Takizawa, Toshihiro; Kawana, Seiji; Saeki, Hidehisa

    2015-05-01

    To clarify the status of gene mutation and activation of growth signal in melanoma of Japanese patients in vivo, we analyzed the mutation of BRAF exon 15, NRAS exon 2, and KIT exons 9, 11, 13, 17 and 18 in melanoma cells obtained by laser capture microdissection, and performed direct sequencing in 20 cases of acral lentiginous melanoma (ALM) and 17 cases of superficial spreading melanoma (SSM). In the study of the mutation of BRAF, pyrosequencing was also done. To examine the cell proliferation signaling, immunohistochemistry for phosphorylated extracellular signal-regulated kinase (pERK), phosphorylated AKT (phosphorylated AKT) and c-KIT was done. The mutation of BRAF p.V600E was detected in 13 cases of ALM (65.0%) and 12 cases of SSM (70.6%). No NRAS mutation was found in all cases. The mutation in exons 9, 11, and 18 of KIT was detected in nine cases. The mutation of BRAF and KIT showed no correlation with clinical stage, lymph node metastasis, tumor thickness, ulceration and histology. pERK and pAKT was observed in small population of melanoma cells and there was no correlation with gene mutation. Our results indicate that the mutations of BRAF and KIT exist in Japanese melanoma patients, however, the cell growth signaling may be regulated by not only these mutated genes, but by other unknown regulatory factors, which may affect the prognosis of melanoma.

  6. The involvement of Bcl-2 family proteins in AKT-regulated cell survival in cisplatin resistant epithelial ovarian cancer

    PubMed Central

    Dai, Yan; Jin, Shiguang; Li, Xueping; Wang, Daxin

    2017-01-01

    Many studies involving patients with cisplatin-resistant ovarian cancer have shown that AKT activation leads to inhibition of apoptosis. The aim of this study was to examine the potential involvement of the Bcl-2 family proteins in AKT-regulated cell survival in response to cisplatin treatment. Cisplatin-sensitive (PEO1) and cisplatin-resistant (PEO4) cells were taken from ascites of patients with ovarian cancer before cisplatin treatment and after development of chemoresistance. It was found that cisplatin treatment activated the AKT signaling pathway and promoted cell proliferation in cisplatin-resistant EOC cells. When AKT was transfected into nucleus of cisplatin-resistant ovarian cancer cells, DNA-PK was phosphorylated at S473. The activated AKT (pAKT-S473) in these cells inhibited the death signal induced by cisplatin thereby inhibiting cisplatin-mediated apoptosis. Results from this study showed that the combination of cisplatin, DNA-PK inhibitor NU7441, and AKT inhibitor TCN can overcome drug resistance, increase apoptosis, and re-sensitize PEO4 cells to cisplatin treatment. A decrease in apoptotic activity was seen in PEO4 cells when Bad was downregulated by siRNA, which indicated that Bad promotes apoptosis in PEO4 cells. Use of the Bcl-2 inhibitor ABT-737 showed that ABT-737 binds to Bcl-2 but not Mcl-1 and releases Bax/Bak which leads to cell apoptosis. The combination of ABT-737 and cisplatin leads to a significant increase in the death of PEO1 and PEO4 cells. All together, these results indicate that Bcl-2 family proteins are regulators of drug resistance. The combination of cisplatin and Bcl-2 family protein inhibitor could be a strategy for the treatment of cisplatin-resistant ovarian cancer. PMID:27935869

  7. Protein kinase CK2 in development and differentiation

    PubMed Central

    Götz, Claudia; Montenarh, Mathias

    2017-01-01

    Among the human kinomes, protein kinase CK2 (formerly termed casein kinase II) is considered to be essential, as it is implicated in the regulation of various cellular processes. Experiments with pharmacological inhibitors of the kinase activity of CK2 provide evidence that CK2 is essential for development and differentiation. Therefore, the present review addresses the role of CK2 during embryogenesis, neuronal, adipogenic, osteogenic and myogenic differentiation in established model cell lines, and in embryonic, neural and mesenchymal stem cells. CK2 kinase activity appears to be essential in the early stages of differentiation, as CK2 inhibition at early time points generally prevents differentiation. In addition, the present review reports on target proteins of CK2 in embryogenesis and differentiation. PMID:28357063

  8. Tannin 1-alpha-O-galloylpunicalagin induces the calcium-dependent activation of endothelial nitric-oxide synthase via the phosphatidylinositol 3-kinase/Akt pathway in endothelial cells.

    PubMed

    Chen, Lih-Geeng; Liu, Yen-Chin; Hsieh, Chia-Wen; Liao, Being-Chyuan; Wung, Being-Sun

    2008-10-01

    Many polyphenols have been found to increase endothelial nitric oxide (NO) production. In our present study, we investigated the effects of 1-alpha-O-galloylpunicalagin upon endothelial nitric oxide synthase (eNOS) activity in endothelial cells (ECs). Both 1-alpha-O-galloylpunicalagin and punicalagin induced NO production in a dose-dependent manner in ECs. Despite having similar chemical structures, punicalagin induced lower levels of NO production than 1-alpha-O-galloylpunicalagin. After 1-alpha-O-galloylpunicalagin addition, a rise in the intracellular Ca(2+) concentration preceded NO production. The Ca(2+) ionophore A23187 stimulated eNOS phosphorylation and augmented NO production. Pretreatment with Ca(2+) chelators inhibited 1-alpha-O-galloylpunicalagin-induced eNOS phosphorylation and NO production. Treatment with 1-alpha-O-galloylpunicalagin did not alter the eNOS protein levels but, unlike punicalagin, induced a sustained activation of eNOS Ser(1179) phosphorylation. 1-alpha-O-galloylpunicalagin was also found to activate ERK1/2, JNK and Akt in ECs. Moreover, simultaneous treatment of these cells with specific phosphatidylinositol-3-kinase inhibitors significantly inhibited the observed increases in eNOS activity and phosphorylation levels. In contrast, the inhibition of (ERK)1/2, JNK and p38 had no influence on eNOS Ser(1179) phosphorylation. Our present results thus indicate that the 1-alpha-O-galloylpunicalagin-induced calcium-dependent activation of eNOS is primarily mediated via a phosphatidylinositol 3-kinase/Akt-dependent increase in eNOS activity, and occurs independently of the eNOS protein content.

  9. Allosteric activation of apicomplexan calcium-dependent protein kinases

    PubMed Central

    Ingram, Jessica R.; Knockenhauer, Kevin E.; Markus, Benedikt M.; Mandelbaum, Joseph; Ramek, Alexander; Shan, Yibing; Shaw, David E.; Schwartz, Thomas U.; Ploegh, Hidde L.; Lourido, Sebastian

    2015-01-01

    Calcium-dependent protein kinases (CDPKs) comprise the major group of Ca2+-regulated kinases in plants and protists. It has long been assumed that CDPKs are activated, like other Ca2+-regulated kinases, by derepression of the kinase domain (KD). However, we found that removal of the autoinhibitory domain from Toxoplasma gondii CDPK1 is not sufficient for kinase activation. From a library of heavy chain-only antibody fragments (VHHs), we isolated an antibody (1B7) that binds TgCDPK1 in a conformation-dependent manner and potently inhibits it. We uncovered the molecular basis for this inhibition by solving the crystal structure of the complex and simulating, through molecular dynamics, the effects of 1B7–kinase interactions. In contrast to other Ca2+-regulated kinases, the regulatory domain of TgCDPK1 plays a dual role, inhibiting or activating the kinase in response to changes in Ca2+ concentrations. We propose that the regulatory domain of TgCDPK1 acts as a molecular splint to stabilize the otherwise inactive KD. This dependence on allosteric stabilization reveals a novel susceptibility in this important class of parasite enzymes. PMID:26305940

  10. Allosteric activation of apicomplexan calcium-dependent protein kinases

    SciTech Connect

    Ingram, Jessica R.; Knockenhauer, Kevin E.; Markus, Benedikt M.; Mandelbaum, Joseph; Ramek, Alexander; Shan, Yibing; Shaw, David E.; Schwartz, Thomas U.; Ploegh, Hidde L.; Lourido, Sebastian

    2015-08-24

    Calcium-dependent protein kinases (CDPKs) comprise the major group of Ca2+-regulated kinases in plants and protists. It has long been assumed that CDPKs are activated, like other Ca2+-regulated kinases, by derepression of the kinase domain (KD). However, we found that removal of the autoinhibitory domain from Toxoplasma gondii CDPK1 is not sufficient for kinase activation. From a library of heavy chain-only antibody fragments (VHHs), we isolated an antibody (1B7) that binds TgCDPK1 in a conformation-dependent manner and potently inhibits it. We uncovered the molecular basis for this inhibition by solving the crystal structure of the complex and simulating, through molecular dynamics, the effects of 1B7–kinase interactions. In contrast to other Ca2+-regulated kinases, the regulatory domain of TgCDPK1 plays a dual role, inhibiting or activating the kinase in response to changes in Ca2+ concentrations. We propose that the regulatory domain of TgCDPK1 acts as a molecular splint to stabilize the otherwise inactive KD. This dependence on allosteric stabilization reveals a novel susceptibility in this important class of parasite enzymes.

  11. Allosteric activation of apicomplexan calcium-dependent protein kinases

    DOE PAGES

    Ingram, Jessica R.; Knockenhauer, Kevin E.; Markus, Benedikt M.; ...

    2015-08-24

    Calcium-dependent protein kinases (CDPKs) comprise the major group of Ca2+-regulated kinases in plants and protists. It has long been assumed that CDPKs are activated, like other Ca2+-regulated kinases, by derepression of the kinase domain (KD). However, we found that removal of the autoinhibitory domain from Toxoplasma gondii CDPK1 is not sufficient for kinase activation. From a library of heavy chain-only antibody fragments (VHHs), we isolated an antibody (1B7) that binds TgCDPK1 in a conformation-dependent manner and potently inhibits it. We uncovered the molecular basis for this inhibition by solving the crystal structure of the complex and simulating, through molecular dynamics,more » the effects of 1B7–kinase interactions. In contrast to other Ca2+-regulated kinases, the regulatory domain of TgCDPK1 plays a dual role, inhibiting or activating the kinase in response to changes in Ca2+ concentrations. We propose that the regulatory domain of TgCDPK1 acts as a molecular splint to stabilize the otherwise inactive KD. This dependence on allosteric stabilization reveals a novel susceptibility in this important class of parasite enzymes.« less

  12. Homology modeling of yeast cyclin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Selwyne, R. A.; Kholmurodov, Kh. T.; Koltovaya, N. A.

    2007-07-01

    The important functions that CDKs perform in cell division and cell cycle regulation made central protein kinase of Saccharomyces cerevisiae CDC28 a target model for structural and functional analysis. The 3D models of CDC28 protein kinase using molecular modeling techniques will enlarge our understanding of the phosphorylation mechanism and the structural changes of mutant kinases. The structural template for S. cerevisiae CDC28 was identified from PDB (Protein Databank) using BLASTP (basic local alignment search tool for proteins). Template-target alignments were generated for homology modeling and checked manually for errors. The models were then generated using MODELLER and validated using PROCHECK followed by energy minimization and molecular dynamics calculations in AMBER force field.

  13. Pancreatic endocrine tumours: mutational and immunohistochemical survey of protein kinases reveals alterations in targetable kinases in cancer cell lines and rare primaries

    PubMed Central

    Corbo, V.; Beghelli, S.; Bersani, S.; Antonello, D.; Talamini, G.; Brunelli, M.; Capelli, P.; Falconi, M.; Scarpa, A.

    2012-01-01

    Background: Kinases represent potential therapeutic targets in pancreatic endocrine tumours (PETs). Patients and methods: Thirty-five kinase genes were sequenced in 36 primary PETs and three PET cell lines: (i) 4 receptor tyrosine kinases (RTK), epithelial growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), tyrosine-protein kinase KIT (KIT), platelet-derived growth factor receptor alpha (PDGFRalpha); (ii) 6 belonging to the Akt/mTOR pathway; and (iii) 25 frequently mutated in cancers. The immunohistochemical expression of the four RTKs and the copy number of EGFR and HER2 were assessed in 140 PETs. Results: Somatic mutations were found in KIT in one and ATM in two primary neoplasms. Among 140 PETs, EGFR was immunopositive in 18 (13%), HER2 in 3 (2%), KIT in 16 (11%), and PDGFRalpha in 135 (96%). HER2 amplification was found in 2/130 (1.5%) PETs. KIT membrane immunostaining was significantly associated with tumour aggressiveness and shorter patient survival. PET cell lines QGP1, CM and BON harboured mutations in FGFR3, FLT1/VEGFR1 and PIK3CA, respectively. Conclusions: Only rare PET cases, harbouring either HER2 amplification or KIT mutation, might benefit from targeted drugs. KIT membrane expression deserves further attention as a prognostic marker. ATM mutation is involved in a proportion of PET. The finding of specific mutations in PET cell lines renders these models useful for preclinical studies involving pathway-specific therapies. PMID:21447618

  14. Light-assisted small molecule screening against protein kinases

    PubMed Central

    Inglés-Prieto, Álvaro; Reichhart, Eva; Muellner, Markus K.; Nowak, Matthias; Nijman, Sebastian M.; Grusch, Michael; Janovjak, Harald

    2015-01-01

    High-throughput live-cell screens are intricate elements of systems biology studies and drug discovery pipelines. Here, we demonstrate an optogenetics-assisted method that obviates the addition of chemical activators and reporters, reduces the number of operational steps and increases information content in a cell-based small molecule screen against human protein kinases including an orphan receptor tyrosine kinase. This blueprint for all-optical screening can be adapted to many drug targets and cellular processes. PMID:26457372

  15. Evaluation of the enzyme activity of protozoan protein kinases by using an in vitro kinase assay.

    PubMed

    Kato, Kentaro

    2016-10-01

    The life cycles of parasites are more complicated than those of other biological species. Protein kinases (PKs) encoded by parasites are the main triggers of life stage conversions. Phosphorylation by cellular PKs regulates important cellular processes, and the protozoan genome contains many PKs. Some PK inhibitors inhibit specific parasite life cycle event. In this report, I present a practical approach to expressing and purifying protozoan PKs by using a wheat germ cell-free protein synthesis system and I assess the phosphorylation activities of protozoan PKs by using an in vitro kinase assay.

  16. Toxoplasma gondii calcium-dependent protein kinase 1 is a target for selective kinase inhibitors

    PubMed Central

    Ojo, Kayode K; Larson, Eric T; Keyloun, Katelyn R; Castaneda, Lisa J; DeRocher, Amy E; Inampudi, Krishna K; Kim, Jessica E; Arakaki, Tracy L; Murphy, Ryan C; Zhang, Li; Napuli, Alberto J; Maly, Dustin J; Verlinde, Christophe LMJ; Buckner, Frederick S; Parsons, Marilyn; Hol, Wim GJ; Merritt, Ethan A; Van Voorhis, Wesley C

    2010-01-01

    New drugs are needed to treat toxoplasmosis. Toxoplasma gondii calcium-dependent protein kinases (TgCDPKs) are attractive targets because they are absent in mammals. We show that TgCDPK1 is inhibited by low nanomolar levels of bumped kinase inhibitors (BKIs), compounds designed to be inactive against mammalian kinases. Cocrystal structures of TgCDPK1 with BKIs confirm that the structural basis for selectivity is due to the unique glycine gatekeeper residue in the ATP-binding site at residue 128. We show that BKIs interfere with an early step in T. gondii infection of human cells in culture. Furthermore, we show that TgCDPK1 is the in vivo target of BKIs because T. gondii cells expressing a glycine to methionine gatekeeper mutant enzyme show significantly decreased sensitivity to this class of selective kinase inhibitors. Thus, design of selective TgCDPK1 inhibitors with low host toxicity may be achievable. PMID:20436472

  17. PDK1 selectively phosphorylates Thr(308) on Akt and contributes to human platelet functional responses

    PubMed Central

    Dangelmaier, Carol; Manne, Bhanu Kanth; Liverani, Elizabetta; Jin, Jianguo; Bray, Paul; Kunapuli, Satya P.

    2014-01-01

    Summary 3-phosphoinositide-dependent protein kinase 1 (PDK1), a member of the protein A,G and C (AGC) family of proteins, is a Ser/Thr protein kinase that can phosphorylate and activate other protein kinases from the AGC family, including Akt at Thr308, all of which play important roles in mediating cellular responses. The functional role of PDK1 or the importance of phosphorylation of Akt on Thr308 for its activity has not been investigated in human platelets. In this study, we tested two pharmacological inhibitors of PDK1, BX795 and BX912, to assess the role of Thr308 phosphorylation on Akt. PAR4-induced phosphorylation of Akt onThr308 was inhibited by BX795 without affecting phosphorylation of Akt on Ser473. The lack of Thr308 phosphorylation on Akt also led to the inhibition of PAR4-induced phosphorylation of two downstream substrates of Akt, viz. GSK3β and PRAS40. In vitro kinase activity of Akt was completely abolished if Thr308 on Akt was not phosphorylated. BX795 caused inhibition of 2-MeSADP-induced or collagen-induced aggregation, ATP secretion and thromboxane generation. Primary aggregation induced by 2-MeSADP was also inhibited in the presence of BX795. PDK1 inhibition also resulted in reduced clot retraction indicating its role in outside-in signalling. These results demonstrate that PDK1 selectively phosphorylates Thr308 on Akt thereby regulating its activity and plays a positive regulatory role in platelet physiological responses. PMID:24352480

  18. Protein Kinases of the Hippo Pathway: Regulation and Substrates

    PubMed Central

    Avruch, Joseph; Zhou, Dawang; Fitamant, Julien; Bardeesy, Nabeel; Mou, Fan; Barrufet, Laura Regué

    2012-01-01

    The “Hippo” signaling pathway has emerged as a major regulator of cell proliferation and survival in metazoans. The pathway, as delineated by genetic and biochemical studies in Drosophila, consists of a kinase cascade regulated by cell-cell contact and cell polarity that inhibits the transcriptional coactivator Yorkie and its proliferative, anti-differentiation, antiapoptotic transcriptional program. The core pathway components are the GC kinase Hippo, which phosphorylates the noncatalytic polypeptide Mats/Mob1 and, with the assistance of the scaffold protein Salvador, phosphorylates the ndr-family kinase Lats. In turn phospho-Lats, after binding to phospho-Mats, autoactivates and phosphorylates Yorkie, resulting in its nuclear exit. Hippo also uses the scaffold protein Furry and a different Mob protein to control another ndr-like kinase, the morphogenetic regulator Tricornered. Architecturally homologous kinase cascades consisting of a GC kinase, a Mob protein, a scaffolding polypeptide and an ndr-like kinase are well described in yeast; in S. cerevisiae e.g., the MEN pathway promotes mitotic exit whereas the RAM network, using a different GC kinase, Mob protein, scaffold and ndr-like kinase, regulates cell polarity and morphogenesis. In mammals, the Hippo orthologues Mst1 and Mst2 utilize the Salvador ortholog WW45/Sav1 and other scaffolds to regulate the kinases Lats1/Lats2 and ndr1/ndr2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively regulate the Yorkie ortholog YAP in the epithelial cells of the liver and gut; loss of both Mst1 and Mst2 results in hyperproliferation and tumorigenesis that can be largely negated by reduction or elimination of YAP. Despite this conservation, considerable diversification in pathway composition and regulation is already evident; in skin e.g., YAP phosphorylation is independent of Mst1Mst2 and Lats1Lats2. Moreover, in lymphoid cells, Mst1/Mst2, under the control of the Rap1 GTPase and independent of YAP

  19. Emerging therapeutics for targeting Akt in cancer.

    PubMed

    Gdowski, Andrew; Panchoo, Marlyn; Treuren, Timothy Van; Basu, Alakananda

    2016-01-01

    The ultimate goal of cancer therapeutic research is to develop effective, targeted therapeutics that exploit the vulnerabilities of cancer cells. The three isoforms of Akt, also known as protein kinase B (PKB), are important mediators of various pathways that transmit mitogenic signals from the cell's exterior to the effector proteins of the cell's interior. Due to Akt\\\\\\\\\\\\\\'s importance in cell functions such as growth, proliferation and cell survival, many cancer cells rely on this pathway to aid in their survival. This dependence can lead to chemoresistance and selection of more adapted populations of cancer cells. Thus, it is important to understand the functional significance of isoform specificity and its relation to chemoresistance. In this review, we have summarized recent studies on Akt isoform specific regulation as well as each isoform's role in chemoresistance, emphasizing their potential as targets for cancer therapy. We have also condensed ongoing clinical studies involving various types of Akt inhibitors while highlighting the type of study, rationale and co-therapies involved in identifying Akt isoforms as promising therapeutic targets.

  20. Activation of focal adhesion kinase by Salmonella suppresses autophagy via an Akt/mTOR signaling pathway and promotes bacterial survival in macrophages.

    PubMed

    Owen, Katherine A; Meyer, Corey B; Bouton, Amy H; Casanova, James E

    2014-06-01

    Autophagy has emerged as an important antimicrobial host defense mechanism that not only orchestrates the systemic immune response, but also functions in a cell autonomous manner to directly eliminate invading pathogens. Pathogenic bacteria such as Salmonella have evolved adaptations to protect themselves from autophagic elimination. Here we show that signaling through the non-receptor tyrosine kinase focal adhesion kinase (FAK) is actively manipulated by the Salmonella SPI-2 system in macrophages to promote intracellular survival. In wild-type macrophages, FAK is recruited to the surface of the Salmonella-containing vacuole (SCV), leading to amplified signaling through the Akt-mTOR axis and inhibition of the autophagic response. In FAK-deficient macrophages, Akt/mTOR signaling is attenuated and autophagic capture of intracellular bacteria is enhanced, resulting in reduced bacterial survival. We further demonstrate that enhanced autophagy in FAK(-/-) macrophages requires the activity of Atg5 and ULK1 in a process that is distinct from LC3-assisted phagocytosis (LAP). In vivo, selective knockout of FAK in macrophages resulted in more rapid clearance of bacteria from tissues after oral infection with S. typhimurium. Clearance was correlated with reduced infiltration of inflammatory cell types into infected tissues and reduced tissue damage. Together, these data demonstrate that FAK is specifically targeted by S. typhimurium as a novel means of suppressing autophagy in macrophages, thereby enhancing their intracellular survival.

  1. Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases.

    PubMed

    Mistafa, Oras; Ghalali, Aram; Kadekar, Sandeep; Högberg, Johan; Stenius, Ulla

    2010-09-03

    Akt is an important oncoprotein, and data suggest a critical role for nuclear Akt in cancer development. We have previously described a rapid (3-5 min) and P2X7-dependent depletion of nuclear phosphorylated Akt (pAkt) and effects on downstream targets, and here we studied mechanisms behind the pAkt depletion. We show that cholesterol-lowering drugs, statins, or extracellular ATP, induced a complex and coordinated response in insulin-stimulated A549 cells leading to depletion of nuclear pAkt. It involved protein/lipid phosphatases PTEN, pleckstrin homology domain leucine-rich repeat phosphatase (PHLPP1 and -2), protein phosphatase 2A (PP2A), and calcineurin. We employed immunocytology, immunoprecipitation, and proximity ligation assay techniques and show that PHLPP and calcineurin translocated to the nucleus and formed complexes with Akt within 3 min. Also PTEN translocated to the nucleus and then co-localized with pAkt close to the nuclear membrane. An inhibitor of the scaffolding immunophilin FK506-binding protein 51 (FKBP51) and calcineurin, FK506, prevented depletion of nuclear pAkt. Furthermore, okadaic acid, an inhibitor of PP2A, prevented the nuclear pAkt depletion. Chemical inhibition and siRNA indicated that PHLPP, PP2A, and PTEN were required for a robust depletion of nuclear pAkt, and in prostate cancer cells lacking PTEN, transfection of PTEN restored the statin-induced pAkt depletion. The activation of protein and lipid phosphatases was paralleled by a rapid proliferating cell nuclear antigen (PCNA) translocation to the nucleus, a PCNA-p21(cip1) complex formation, and cyclin D1 degradation. We conclude that these effects reflect a signaling pathway for rapid depletion of pAkt that may stop the cell cycle.

  2. Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members.

    PubMed Central

    Frost, J A; Xu, S; Hutchison, M R; Marcus, S; Cobb, M H

    1996-01-01

    The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these MAP kinases. Although neither activated Rac nor the PAKs stimulate ERK2 activity, overexpression of either dominant negative Rac2 or the N-terminal regulatory domain of PAK1 inhibits Ras-mediated activation of ERK2, suggesting a permissive role for Rac in the control of the ERK pathway. Furthermore, constitutively active Rac2, Cdc42hs, and RhoA synergize with an activated form of Raf to increase ERK2 activity. These findings reveal a previously unrecognized connection between Rho family small G proteins and the ERK pathway. PMID:8668187

  3. AKT plays a crucial role in gastric cancer

    PubMed Central

    SASAKI, TAKAMITSU; YAMASHITA, YUICHI; KUNIYASU, HIROKI

    2015-01-01

    The AKT protein is involved in the phosphatidylinositol-3 kinase signaling pathway and is a vital regulator of survival, proliferation and differentiation in various types of cells. Helicobacter pylori infection induces epithelial cell proliferation and oxidative stress in chronic gastritis. These alterations lead to telomere shortening, resulting in the activation of telomerase. AKT, in particular, is activated by H. pylori-induced inflammation. AKT then promotes the expression of human telomerase reverse transcriptase, which encodes a catalytic subunit of telomerase, and induces telomerase activity, an essential component of the process of carcinogenesis. AKT activation is increased in gastric mucosa with carcinogenic properties and is associated with the low survival of patients with gastric cancer. The findings of the present study suggest that AKT is pivotal in gastric carcinogenesis and progression. PMID:26622541

  4. Ellagitannin-rich cloudberry inhibits hepatocyte growth factor induced cell migration and phosphatidylinositol 3-kinase/AKT activation in colon carcinoma cells and tumors in Min mice

    PubMed Central

    Pajari, Anne-Maria; Päivärinta, Essi; Paavolainen, Lassi; Vaara, Elina; Koivumäki, Tuuli; Garg, Ritu; Heiman-Lindh, Anu; Mutanen, Marja; Marjomäki, Varpu; Ridley, Anne J.

    2016-01-01

    Berries have been found to inhibit colon carcinogenesis in animal models, and thus represent a potential source of compounds for prevention and treatment of colorectal cancer. The mechanistic basis for their effects is not well understood. We used human colon carcinoma cells and Min mice to investigate the effects of ellagitannin-rich cloudberry (Rubus chamaemorus) extract on cancer cell migration and underlying cell signaling. Intrinsic and hepatocyte growth factor (HGF) -induced cell motility in human HT29 and HCA7 colon carcinoma cells was assessed carrying out cell scattering and scratch wound healing assays using time-lapse microscopy. Activation of Met, AKT, and ERK in cell lines and tumors of cloudberry-fed Min mice were determined using immunoprecipitation, Western blot and immunohistochemical analyses. Cloudberry extract significantly inhibited particularly HGF-induced cancer cell migration in both cell lines. Cloudberry extract inhibited the Met receptor tyrosine phosphorylation by HGF and strongly suppressed HGF-induced AKT and ERK activation in both HT29 and HCA7 cells. Consistently, cloudberry feeding (10% w/w freeze-dried berries in diet for 10 weeks) reduced the level of active AKT and prevented phosphoMet localization at the edges in tumors of Min mice. These results indicate that cloudberry reduces tumor growth and cancer cell motility by inhibiting Met signaling and consequent activation of phosphatidylinositol 3-kinase/AKT in vitro and in tumors in vivo. As the Met receptor is recognized to be a major target in cancer treatment, our results suggest that dietary phytochemicals may have therapeutic value in reducing cancer progression and metastasis. PMID:27270323

  5. Akt Regulates TPP1 Homodimerization and Telomere Protection

    PubMed Central

    Han, Xin; Liu, Dan; Zhang, Yi; Li, Yujing; Lu, Weisi; Chen, Junjie; Songyang, Zhou

    2014-01-01

    Summary Telomeres are specialized structures at the ends of eukaryotic chromosomes that are important for maintaining genome stability and integrity. Telomere dysfunction has been linked to aging and cancer development. In mammalian cells, extensive studies have been carried out to illustrate how core telomeric proteins assemble on telomeres to recruit the telomerase and additional factors for telomere maintenance and protection. In comparison, how changes in growth signaling pathways impact telomeres and telomere-binding proteins remains largely unexplored. The phosphatidylinositol 3-kinase (PI3-K)/Akt (also known as PKB) pathway, one of the best characterized growth signaling cascades, regulates a variety of cellular function including cell proliferation, survival, metabolism, and DNA repair, and dysregulation of PI3-K/Akt signaling has been linked to aging and diseases such as cancer and diabetes. In this study, we provide evidence that the Akt signaling pathway plays an important role in telomere protection. Akt inhibition either by chemical inhibitors or small interfering RNAs induced telomere dysfunction. Furthermore, we found that TPP1 could homodimerize through its OB fold, a process that was dependent on the Akt kinase. Telomere damage and reduced TPP1 dimerization as a result of Akt inhibition was also accompanied by diminished recruitment of TPP1 and POT1 to the telomeres. Our findings highlight a previously unknown link between Akt signaling and telomere protection. PMID:23862686

  6. TC21 mediates transformation and cell survival via activation of phosphatidylinositol 3-kinase/Akt and NF-kappaB signaling pathway.

    PubMed

    Rong, Rong; He, Qin; Liu, Yusen; Sheikh, M Saeed; Huang, Ying

    2002-02-07

    The signaling pathways of TC21-mediated transformation and cell survival are not well-established. In this study, we have investigated the role of PI3-K/Akt signaling pathway in oncogenic-TC21-mediated transformation and cell survival. We found that oncogenic-TC21 stimulated the PI3-K activity. This was associated with the activation of Akt, a key component of PI3-K signaling pathway. We also found that TC21 interacted and formed complex with PI3-K. Mutations in the GTP-binding region of TC21, which enhanced GTP-binding potential of this protein, also stimulated its association with PI3-K, suggesting that PI3-K may preferentially interact with the GTP-bound form. Suppression of PI3-K and Akt by specific inhibitors LY294002 and Wortmannin reversed TC21-induced transformation. Likewise, inhibition of PI3-K activity by the PI3-K phosphotase PTEN reduced TC21-mediated focus formation in NIH3T3 cells. Investigation of TC21's effect on cell survival revealed that mutant-TC21 expressing cells were more resistant to etoposide- and cisplatin-induced cell death, and this was associated with the activation of anti-apoptotic protein NF-kappaB, a downstream target of Akt. Treatment of PI3-K inhibitor LY294002 significantly suppressed TC21-mediated NF-kappaB activation. In conclusion, we have identified PI3-K as an effector of TC21 and demonstrated that the PI3-K/Akt signaling pathway plays important roles in TC21-mediated transformation and cell survival.

  7. Nitric oxide decreases subventricular zone stem cell proliferation by inhibition of epidermal growth factor receptor and phosphoinositide-3-kinase/Akt pathway.

    PubMed

    Torroglosa, Ana; Murillo-Carretero, Maribel; Romero-Grimaldi, Carmen; Matarredona, Esperanza R; Campos-Caro, Antonio; Estrada, Carmen

    2007-01-01

    Nitric oxide (NO) inhibits proliferation of subventricular zone (SVZ) neural precursor cells in adult mice in vivo under physiological conditions. The mechanisms underlying this NO effect have now been investigated using SVZ-derived neural stem cells, which generate neurospheres in vitro when stimulated by epidermal growth factor (EGF). In these cultures, NO donors decreased the number of newly formed neurospheres as well as their size, which indicates that NO was acting on the neurosphere-forming neural stem cells and the daughter neural progenitors. The effect of NO was cytostatic, not proapoptotic, and did not involve cGMP synthesis. Neurosphere cells expressed the neuronal and endothelial isoforms of NO synthase (NOS) and produced NO in culture. Inhibition of NOS activity by N(omega)-nitro-L-arginine methylester (L-NAME) promoted neurosphere formation and growth, thus revealing an autocrine/paracrine action of NO on the neural precursor cells. Both exogenous and endogenous NO impaired the EGF-induced activation of the EGF receptor (EGFR) tyrosine kinase and prevented the EGF-induced Akt phosphorylation in neurosphere cells. Inhibition of the phosphoinositide-3-kinase (PI3-K)/Akt pathway by LY294002 significantly reduced the number of newly formed neurospheres, which indicates that this is an essential pathway for neural stem cell self-renewal. Chronic administration of l-NAME to adult mice enhanced phospho-Akt staining in the SVZ and reduced nuclear p27(Kip1) in the SVZ and olfactory bulb. The inhibition of EGFR and PI3-K pathway by NO explains, at least in part, its antimitotic effect on neurosphere cells and may be a mechanism involved in the physiological role of NO as a negative regulator of SVZ neurogenesis in adult mice.

  8. Pea DNA Topoisomerase I Is Phosphorylated and Stimulated by Casein Kinase 2 and Protein Kinase C

    PubMed Central

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-01-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg2+-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants. PMID:12913165

  9. Protein-protein interactions of tandem affinity purified protein kinases from rice.

    PubMed

    Rohila, Jai S; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald L; Dardick, Christopher; Canlas, Patrick; Fujii, Hiroaki; Gribskov, Michael; Kanrar, Siddhartha; Knoflicek, Lucas; Stevenson, Becky; Xie, Mingtang; Xu, Xia; Zheng, Xianwu; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E

    2009-08-19

    Eighty-eight rice (Oryza sativa) cDNAs encoding rice leaf expressed protein kinases (PKs) were fused to a Tandem Affinity Purification tag (TAP-tag) and expressed in transgenic rice plants. The TAP-tagged PKs and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by tandem mass spectrometry. Forty-five TAP-tagged PKs were recovered in this study and thirteen of these were found to interact with other rice proteins with a high probability score. In vivo phosphorylated sites were found for three of the PKs. A comparison of the TAP-tagged data from a combined analysis of 129 TAP-tagged rice protein kinases with a concurrent screen using yeast two hybrid methods identified an evolutionarily new rice protein that interacts with the well conserved cell division cycle 2 (CDC2) protein complex.

  10. Protein-Protein Interactions of Tandem Affinity Purified Protein Kinases from Rice

    PubMed Central

    Rohila, Jai S.; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald L.; Dardick, Christopher; Canlas, Patrick; Fujii, Hiroaki; Gribskov, Michael; Kanrar, Siddhartha; Knoflicek, Lucas; Stevenson, Becky; Xie, Mingtang; Xu, Xia; Zheng, Xianwu; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E.

    2009-01-01

    Eighty-eight rice (Oryza sativa) cDNAs encoding rice leaf expressed protein kinases (PKs) were fused to a Tandem Affinity Purification tag (TAP-tag) and expressed in transgenic rice plants. The TAP-tagged PKs and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by tandem mass spectrometry. Forty-five TAP-tagged PKs were recovered in this study and thirteen of these were found to interact with other rice proteins with a high probability score. In vivo phosphorylated sites were found for three of the PKs. A comparison of the TAP-tagged data from a combined analysis of 129 TAP-tagged rice protein kinases with a concurrent screen using yeast two hybrid methods identified an evolutionarily new rice protein that interacts with the well conserved cell division cycle 2 (CDC2) protein complex. PMID:19690613

  11. The molecular basis of targeting protein kinases in cancer therapeutics.

    PubMed

    Tsai, Chung-Jung; Nussinov, Ruth

    2013-08-01

    In this paper, we provide an overview of targeted anticancer therapies with small molecule kinase inhibitors. First, we discuss why a single constitutively active kinase emanating from a variety of aberrant genetic alterations is capable of transforming a normal cell, leading it to acquire the hallmarks of a cancer cell. To draw attention to the fact that kinase inhibition in targeted cancer therapeutics differs from conventional cytotoxic chemotherapy, we exploit a conceptual framework explaining why suppressed kinase activity will selectively kill only the so-called oncogene 'addicted' cancer cell, while sparing the healthy cell. Second, we introduce the protein kinase superfamily in light of its common active conformation with precisely positioned structural elements, and the diversified auto-inhibitory conformations among the kinase families. Understanding the detailed activation mechanism of individual kinases is essential to relate the observed oncogenic alterations to the elevated constitutively active state, to identify the mechanism of consequent drug resistance, and to guide the development of the next-generation inhibitors. To clarify the vital importance of structural guidelines in studies of oncogenesis, we explain how somatic mutations in EGFR result in kinase constitutive activation. Third, in addition to the common theme of secondary (acquired) mutations that prevent drug binding from blocking a signaling pathway which is hijacked by the aberrant activated kinase, we discuss scenarios of drug resistance and relapse by compensating lesions that bypass the inactivated pathway in a vertical or horizontal fashion. Collectively, these suggest that the future challenge of cancer therapy with small molecule kinase inhibitors will rely on the discovery of distinct combinations of optimized drugs to target individual subtypes of different cancers.

  12. FANCI is a negative regulator of Akt activation.

    PubMed

    Zhang, Xiaoshan; Lu, Xiaoyan; Akhter, Shamima; Georgescu, Maria-Magdalena; Legerski, Randy J

    2016-01-01

    Akt is a critical mediator of the oncogenic PI3K pathway, and its activation is regulated by kinases and phosphatases acting in opposition. We report here the existence of a novel protein complex that is composed minimally of Akt, PHLPP1, PHLPP2, FANCI, FANCD2, USP1 and UAF1. Our studies show that depletion of FANCI, but not FANCD2 or USP1, results in increased phosphorylation and activation of Akt. This activation is due to a reduction in the interaction between PHLPP1 and Akt in the absence of FANCI. In response to DNA damage or growth factor treatment, the interactions between Akt, PHLPP1 and FANCI are reduced consistent with the known phosphorylation of Akt in response to these stimuli. Furthermore, depletion of FANCI results in reduced apoptosis after DNA damage in accord with its role as a negative regular of Akt. Our findings describe an unexpected function for FANCI in the regulation of Akt and define a previously unrecognized intersection between the PI3K-Akt and FA pathways.

  13. Regulation of protein kinase C by the cytoskeletal protein calponin.

    PubMed

    Leinweber, B; Parissenti, A M; Gallant, C; Gangopadhyay, S S; Kirwan-Rhude, A; Leavis, P C; Morgan, K G

    2000-12-22

    Previous studies from this laboratory have shown that, upon agonist activation, calponin co-immunoprecipitates and co-localizes with protein kinase Cepsilon (PKCepsilon) in vascular smooth muscle cells. In the present study we demonstrate that calponin binds directly to the regulatory domain of PKC both in overlay assays and, under native conditions, by sedimentation with lipid vesicles. Calponin was found to bind to the C2 region of both PKCepsilon and PKCalpha with possible involvement of C1B. The C2 region of PKCepsilon binds to the calponin repeats with a requirement for the region between amino acids 160 and 182. We have also found that calponin can directly activate PKC autophosphorylation. By using anti-phosphoantibodies to residue Ser-660 of PKCbetaII, we found that calponin, in a lipid-independent manner, increased auto-phosphorylation of PKCalpha, -epsilon, and -betaII severalfold compared with control conditions. Similarly, calponin was found to increase the amount of (32)P-labeled phosphate incorporated into PKC from [gamma-(32)P]ATP. We also observed that calponin addition strongly increased the incorporation of radiolabeled phosphate into an exogenous PKC peptide substrate, suggesting an activation of enzyme activity. Thus, these results raise the possibility that calponin may function in smooth muscle to regulate PKC activity by facilitating the phosphorylation of PKC.

  14. Chemokine CXCL12 uses CXCR4 and a signaling core formed by bifunctional Akt, extracellular signal-regulated kinase (ERK)1/2, and mammalian target of rapamycin complex 1 (mTORC1) proteins to control chemotaxis and survival simultaneously in mature dendritic cells.

    PubMed

    Delgado-Martín, Cristina; Escribano, Cristina; Pablos, José Luis; Riol-Blanco, Lorena; Rodríguez-Fernández, José Luis

    2011-10-28

    Chemokines control several cell functions in addition to chemotaxis. Although much information is available on the involvement of specific signaling molecules in the control of single functions controlled by chemokines, especially chemotaxis, the mechanisms used by these ligands to regulate several cell functions simultaneously are completely unknown. Mature dendritic cells (maDCs) migrate through the afferent lymphatic vessels to the lymph nodes, where they regulate the initiation of the immune response. As maDCs are exposed to chemokine CXCL12 (receptors CXCR4 and CXCR7) during their migration, its functions are amenable to be regulated by this ligand. We have used maDCs as a model system to analyze the mechanisms whereby CXCL12 simultaneously controls chemotaxis and survival in maDCs. We show that CXCL12 uses CXCR4, but not CXCR7, and the components of a signaling core that includes G(i)/Gβγ, PI3K-α/-δ/-γ, Akt, ERK1/2 and mammalian target of rapamycin complex 1 (mTORC1), which organize hierarchically to control both functions. Downstream of Akt, Forkhead box class O (FOXO) regulates CXCL12-dependent survival, but not chemotaxis, suggesting that downstream of the aforementioned signaling core, additional signaling molecules may control more selectively CXCL12-dependent chemotaxis or survival. Finally, the data obtained also show that CXCR4 uses a signaling signature that is different from that used by CCR7 to control similar functions.

  15. Novel pharmacodynamic biomarkers for MYCN protein and PI3K/AKT/mTOR pathway signaling in children with neuroblastoma.

    PubMed

    Smith, Jennifer R; Moreno, Lucas; Heaton, Simon P; Chesler, Louis; Pearson, Andrew D J; Garrett, Michelle D

    2016-04-01

    There is an urgent need for improved therapies for children with high-risk neuroblastoma where survival rates remain low. MYCN amplification is the most common genomic change associated with aggressive neuroblastoma and drugs targeting PI3K/AKT/mTOR, to activate MYCN oncoprotein degradation, are entering clinical evaluation. Our aim was to develop and validate pharmacodynamic (PD) biomarkers to evaluate both proof of mechanism and proof of concept for drugs that block PI3K/AKT/mTOR pathway activity in children with neuroblastoma. We have addressed the issue of limited access to tumor biopsies for quantitative detection of protein biomarkers by optimizing a three-color fluorescence activated cell sorting (FACS) method to purify CD45-/GD2+/CD56+ neuroblastoma cells from bone marrow. We then developed a novel quantitative measurement of MYCN protein in these isolated neuroblastoma cells, providing the potential to demonstrate proof of concept for drugs that inhibit PI3K/AKT/mTOR signaling in this disease. In addition we have established quantitative detection of three biomarkers for AKT pathway activity (phosphorylated and total AKT, GSK3β and P70S6K) in surrogate platelet-rich plasma (PRP) from pediatric patients. Together our new approach to neuroblastoma cell isolation for protein detection and suite of PD assays provides for the first time the opportunity for robust, quantitative measurement of protein-based PD biomarkers in this pediatric patient population. These will be ideal tools to support clinical evaluation of PI3K/AKT/mTOR pathway drugs and their ability to target MYCN oncoprotein in upcoming clinical trials in neuroblastoma.

  16. 5'-AMP-activated protein kinase signaling in Caenorhabditis elegans.

    PubMed

    Beale, Elmus G

    2008-01-01

    5'-AMP-activated protein kinase (AMPK) has been called "the metabolic master switch" because of its central role in regulating fuel homeostasis. AMPK, a heterotrimeric serine/threonine protein kinase composed of alpha, beta, and gamma subunits, is activated by upstream kinases and by 5'-AMP in response to various nutritional and stress signals. Downstream effects include regulation of metabolism, protein synthesis, cell growth, and mediation of the actions of a number of hormones, including leptin. However, AMPK research represents a young and growing field; hence, there are many unanswered questions regarding the control and action of AMPK. This review presents evidence for the existence of AMPK signaling pathways in Caenorhabditis elegans, a genetically tractable model organism that has yet to be fully exploited to elucidate AMPK signaling mechanisms.

  17. Cyclic AMP-dependent protein kinase activity in Trypanosoma cruzi.

    PubMed Central

    Ulloa, R M; Mesri, E; Esteva, M; Torres, H N; Téllez-Iñón, M T

    1988-01-01

    A cyclic AMP-dependent protein kinase activity from epimastigote forms of Trypanosoma cruzi was characterized. Cytosolic extracts were chromatographed on DEAE-cellulose columns, giving two peaks of kinase activity, which were eluted at 0.15 M- and 0.32 M-NaCl respectively. The second activity peak was stimulated by nanomolar concentrations of cyclic AMP. In addition, a cyclic AMP-binding protein co-eluted with the second kinase activity peak. Cyclic AMP-dependent protein kinase activity was further purified by gel filtration, affinity chromatography on histone-agarose and cyclic AMP-agarose, as well as by chromatography on CM-Sephadex. The enzyme ('holoenzyme') could be partially dissociated into two different components: 'catalytic' and 'regulatory'. The 'regulatory' component had specific binding for cyclic AMP, and it inhibited phosphotransferase activity of the homologous 'catalytic component' or of the 'catalytic subunit' from bovine heart. Cyclic AMP reversed these inhibitions. A 'holoenzyme preparation' was phosphorylated in the absence of exogenous phosphate acceptor and analysed by polyacrylamide-gel electrophoresis. A 56 kDa band was phosphorylated. The same preparation was analysed by Western blotting, by using polyclonal antibodies to the regulatory subunits of protein kinases type I or II. Both antibodies reacted with the 56 kDa band. Images Fig. 7. Fig. 8. PMID:2848508

  18. Purification and characterization of a thylakoid protein kinase

    SciTech Connect

    Coughlan, S.J.; Hind, G.

    1986-01-01

    Control of state transitions in the thylakoid by reversible phosphorylation of the light-harvesting chlorophyll a/b protein complex of photosystem II (LHC-II) is modulated by a kinase. The kinase catalyzing this phosphorylation is associated with the thylakoid membrane, and is regulated by the redox state of the plastoquinone pool. The isolation and partial purification from spinach thylakoids of two protein kinases (CPK1, CPK2) of apparent molecular masses 25 kDa and 38 kDa has been reported. Neither enzyme utilizes isolated LHC-II as a substrate. The partial purification of a third protein kinase (LHCK) which can utilize both lysine-rich histones (IIIs and Vs) and isolated LHC-II as substrate has now been purified to homogeneity and characterized by SDS-polyacrylamide gel electrophoresis as a 64 kDa peptide. From a comparison of the two isolation procedures we have concluded that CPK1 is indeed a protein kinase, but has a lower specific activity than that of LHCK. 8 refs., 4 figs.

  19. Discovery of a novel class of AKT pleckstrin homology domain inhibitors.

    PubMed

    Mahadevan, Daruka; Powis, Garth; Mash, Eugene A; George, Benjamin; Gokhale, Vijay M; Zhang, Shuxing; Shakalya, Kishore; Du-Cuny, Lei; Berggren, Margareta; Ali, M Ahad; Jana, Umasish; Ihle, Nathan; Moses, Sylvestor; Franklin, Chloe; Narayan, Satya; Shirahatti, Nikhil; Meuillet, Emmanuelle J

    2008-09-01

    AKT, a phospholipid-binding serine/threonine kinase, is a key component of the phosphoinositide 3-kinase cell survival signaling pathway that is aberrantly activated in many human cancers. Many attempts have been made to inhibit AKT; however, selectivity remains to be achieved. We have developed a novel strategy to inhibit AKT by targeting the pleckstrin homology (PH) domain. Using in silico library screening and interactive molecular docking, we have identified a novel class of non-lipid-based compounds that bind selectively to the PH domain of AKT, with "in silico" calculated K(D) values ranging from 0.8 to 3.0 micromol/L. In order to determine the selectivity of these compounds for AKT, we used surface plasmon resonance to measure the binding characteristics of the compounds to the PH domains of AKT1, insulin receptor substrate-1, and 3-phosphoinositide-dependent protein kinase 1. There was excellent correlation between predicted in silico and measured in vitro K(D)s for binding to the PH domain of AKT, which were in the range 0.4 to 3.6 micromol/L. Some of the compounds exhibited PH domain-binding selectivity for AKT compared with insulin receptor substrate-1 and 3-phosphoinositide-dependent protein kinase 1. The compounds also inhibited AKT in cells, induced apoptosis, and inhibited cancer cell proliferation. In vivo, the lead compound failed to achieve the blood concentrations required to inhibit AKT in cells, most likely due to rapid metabolism and elimination, and did not show antitumor activity. These results show that these compounds are the first small molecules selectively targeting the PH domain of AKT.

  20. Atypical protein kinase Clambda binds and regulates p70 S6 kinase.

    PubMed Central

    Akimoto, K; Nakaya, M; Yamanaka, T; Tanaka, J; Matsuda, S; Weng, Q P; Avruch, J; Ohno, S

    1998-01-01

    p70 S6 kinase (p70 S6K) has been implicated in the regulation of cell cycle progression. However, the mechanism of its activation is not fully understood. In the present work, evidence is provided that an atypical protein kinase C (PKC) isotype, PKClambda, is indispensable, but not sufficient, for the activation of p70 S6K. Both the regulatory and kinase domains of PKClambda associate directly with p70 S6K. Overexpression of the kinase domain without kinase activity or the regulatory domain of PKClambda results in the suppression of the serum-induced activation of p70 S6K. In addition, two types of dominant-negative mutants of PKClambda, as well as a kinase-deficient mutant of p70 S6K, suppress serum-induced DNA synthesis and E2F activation. The overexpresion of the active form of PKClambda, however, fails to activate p70 S6K. These results suggest that PKClambda is a mediator in the regulation of p70 S6K activity and plays an important role in cell cycle progression. PMID:9761742

  1. Solution structure of the cAMP-dependent protein kinase

    SciTech Connect

    Trewhella, J.; Olah, G.A.; Walsh, D.A.; Mitchell, R.D.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project as Los Alamos National Laboratory (LANL). Protein phosphorylation is well established as one of the most important mechanisms of signal transduction and cellular regulation. Two of the key enzymes that catalyze these phosphorylation reactions are the cAMP- (PKA) and cGMP- (PKG) dependent protein kinases. PKA has served as the prototypic model of this class of enzymes that now comprises in excess of 300 phylogenetically related proteins. A large number of these protein kinases are critical for the regulation of cell function and a full analysis of their similarities and differences is essential to understand their diverse physiological roles. The cAMP-dependent protein kinase has the subunit structure R2C2, in which C and R refer to the catalytic and regulatory subunits, respectively. The cGMP-dependent protein kinase (PKG) is highly homologous to PKA but is distinguished from it by having the regulatory and catalytic domains on a contiguous polypeptide. The studies described here use small-angle scattering and Fourier Transform InfraRed (FTIR) spectroscopy to study domain movements and conformational changes in these enzymes in different functional states in order to elucidate the molecular bases for the regulation of their activities.

  2. The Roles of NDR Protein Kinases in Hippo Signalling

    PubMed Central

    Hergovich, Alexander

    2016-01-01

    The Hippo tumour suppressor pathway has emerged as a critical regulator of tissue growth through controlling cellular processes such as cell proliferation, death, differentiation and stemness. Traditionally, the core cassette of the Hippo pathway includes the MST1/2 protein kinases, the LATS1/2 protein kinases, and the MOB1 scaffold signal transducer, which together regulate the transcriptional co-activator functions of the proto-oncoproteins YAP and TAZ through LATS1/2-mediated phosphorylation of YAP/TAZ. Recent research has identified additional kinases, such as NDR1/2 (also known as STK38/STK38L) and MAP4Ks, which should be considered as novel members of the Hippo core cassette. While these efforts helped to expand our understanding of Hippo core signalling, they also began to provide insights into the complexity and redundancy of the Hippo signalling network. Here, we focus on summarising our current knowledge of the regulation and functions of mammalian NDR kinases, discussing parallels between the NDR pathways in Drosophila and mammals. Initially, we provide a general overview of the cellular functions of NDR kinases in cell cycle progression, centrosome biology, apoptosis, autophagy, DNA damage signalling, immunology and neurobiology. Finally, we put particular emphasis on discussing NDR1/2 as YAP kinases downstream of MST1/2 and MOB1 signalling in Hippo signalling. PMID:27213455

  3. Ethanol increases affinity of protein kinase C for phosphatidylserine

    SciTech Connect

    Chin, J.H.

    1986-03-01

    Protein kinase C is a calcium-dependent enzyme that requires phospholipid for its activation. It is present in relatively high concentration in the brain and may be involved in neuronal function. The present experiments test whether the membrane disorder induced by ethanol affects the activity of kinase C by changing its interaction with membrane lipid. Fractions rich in kinase C were purified from rat brain cytosol by DEAE-cellulose chromatography and Sephadex G-200 gel filtration. Enzyme activity was assayed by measuring the phosphorylation of histone H1. As expected, phosphatidylserine activated the enzyme, and the stimulation was further increased by the addition of calcium and/or diacylglycerol. At low concentration of free calcium (0.5-1..mu..M), ethanol (800 mM0 enhanced kinase C activity if the presence of phospholipid. similar results were observed in the absence of calcium. Double reciprocal plots of the data showed that ethanol increased the affinity of the enzyme for phosphatidylserine without affecting the V/sub max. The stimulation of kinase C activity by ethanol was not observed at high calcium concentrations. These experiments suggest that ethanol may activated protein kinase C at physiological levels of calcium by facilitating its transfer into the hydrophobic membrane environment.

  4. Regulation of kinase cascade activation and heat shock protein expression by poly(ADP-ribose) polymerase inhibition in doxorubicin-induced heart failure.

    PubMed

    Bartha, Eva; Solti, Izabella; Szabo, Aliz; Olah, Gabor; Magyar, Klara; Szabados, Eszter; Kalai, Tamas; Hideg, Kalman; Toth, Kalman; Gero, Domokos; Szabo, Csaba; Sumegi, Balazs; Halmosi, Robert

    2011-10-01

    Cardiomyopathy is one of the most severe side effects of the chemotherapeutic agent doxorubicin (DOX). The formation of reactive oxygen species plays a critical role in the development of cardiomyopathies, and the pathophysiological cascade activates nuclear enzyme poly(ADP-ribose) polymerase (PARP), and kinase pathways. We characterized the effects of the PARP-inhibitor and kinase-modulator compound L-2286 in DOX-induced cardiac injury models. We studied the effect of the established superoxide dismutase-mimic Tempol and compared the effects of this agent with those of the PARP inhibitor. In the rat H9C2 cardiomyocytes, in which DOX-induced poly(ADP-ribosyl)ation, L-2286 protected them from the DOX-induced injury in a concentration-dependent manner. In the in vivo studies, mice were pretreated (for 1 week) with L-2286 or Tempol before the DOX treatment. Both the agents improved the activation of cytoprotective kinases, Akt, phospho-specific protein kinase C ϵ, ζ/λ and suppressed the activity of cell death promoting kinases glycogen synthase kinase-3β, JNK, and p38 mitogen-activated protein kinase, but the effect of PARP inhibitor was more pronounced and improved the survival as well. L-2286 activated the phosphorylation of proapoptotic transcription factor FKHR1 and promoted the expression of Hsp72 and Hsp90. These data suggest that the mode of the cytoprotective action of the PARP inhibitor may include the modulation of kinase pathways and heat shock protein expression.

  5. Visual detection of Akt mRNA in living cell using gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Tian, Caiping; Li, Siwen; Wang, Zhaohui; Gu, Yueqing

    2014-09-01

    PI3K-Akt signaling pathway plays the key role in cell apoptosis and survival, and the components of PI3K /Akt signaling pathway are often abnormally expressed in human tumors. Therefore, determination of the Akt (protein kinase B, PKB) messenger ribonucleic acid (mRNA) expression is significantly important in understanding the mechanism of tumor progression. In this study, we designed a special hairpin deoxyribonucleic acid (DNA) functionalized with gold nanoparticles and fluorescein isothiocyanate(FITC) as a beacon for detecting human Akt mRNA. Spectrofluorometer was used to detect the fluorescence quenching and recovery of the beacons, and laser confocal scanning microscopy was adopted to image Akt mRNA in cells. The results showed that this beacon could sensitively and quantitatively measure the Akt mRNA in living cells . This strategy is potentially useful for the cellular imaging of RNA or protein expression in living cells.

  6. Role of Protein Kinase C, PI3-kinase and Tyrosine Kinase in Activation of MAP Kinase by Glucose and Agonists of G-protein Coupled Receptors in INS-1 Cells

    PubMed Central

    Böcker, Dietmar

    2001-01-01

    MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [ P 32 ]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 ( IC 50 =51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [ H 3 ]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but

  7. Green tea extract intake during lactation modified cardiac macrophage infiltration and AMP-activated protein kinase phosphorylation in weanling rats from undernourished mother during gestation and lactation.

    PubMed

    Matsumoto, E; Kataoka, S; Mukai, Y; Sato, M; Sato, S

    2017-04-01

    Maternal dietary restriction is often associated with cardiovascular disease in offspring. The aim of this study was to investigate the effect of green tea extract (GTE) intake during lactation on macrophage infiltration, and activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and serine-threonine kinase Akt (Akt) in the hearts of weanlings exposed to maternal dietary protein restriction. Pregnant Wistar rats were fed control (C) or low-protein diets (LP) throughout gestation. Following delivery, the dams received a control or a GTE-containing control diet during lactation: control diet during gestation and lactation (CC), low-protein diet during gestation and lactation (LPC), low-protein diet during gestation and 0.12% GTE-containing low-protein diet during lactation (LPL), and low-protein diet during gestation and 0.24% GTE-containing low-protein diet during lactation (LPH). The female offspring were sacrificed at day 22. Biochemical parameters in the plasma, macrophage infiltration, degree of fibrosis and expression levels of AMPK and Akt were examined. The plasma insulin level increased in LPH compared with LPC. Percentage of the fibrotic areas and the number of macrophages in LPC were higher than those in CC. Conversely, the fibrotic areas and the macrophage number in LPH were smaller (21 and 56%, respectively) than those in LPC. The levels of phosphorylated AMPK in LPL and LPH, and Akt in LPH were greater than those in LPC. In conclusion, maternal protein restriction may induce macrophage infiltration and the decrease of insulin levels. However, GTE intake during lactation may suppress macrophage infiltration and restore insulin secretion function via upregulation of AMPK and insulin signaling in weanlings.

  8. Thioredoxin-interacting protein regulates lipid metabolism via Akt/mTOR pathway in diabetic kidney disease.

    PubMed

    Du, Chunyang; Wu, Ming; Liu, Huan; Ren, Yunzhuo; Du, Yunxia; Wu, Haijiang; Wei, Jinying; Liu, Chuxin; Yao, Fang; Wang, Hui; Zhu, Yan; Duan, Huijun; Shi, Yonghong

    2016-10-01

    Abnormal lipid metabolism contributes to the renal lipid accumulation, which is associated with diabetic kidney disease, but its precise mechanism remains unclear. The growing evidence demonstrates that thioredoxin-interacting protein is involved in regulating cellular glucose and lipid metabolism. Here, we investigated the effects of thioredoxin-interacting protein on lipid accumulation in diabetic kidney disease. In contrast to the diabetic wild-type mice, the physical and biochemical parameters were improved in the diabetic thioredoxin-interacting protein knockout mice. The increased renal lipid accumulation, expression of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element binding protein-1, and phosphorylated Akt and mTOR associated with diabetes in wild-type mice was attenuated in diabetic thioredoxin-interacting protein knockout mice. Furthermore, thioredoxin-interacting protein knockout significantly increased the expression of peroxisome proliferator-activated receptor-α, acyl-coenzyme A oxidase 1 and carnitine palmitoyltransferaser 1 in diabetic kidneys. In vitro experiments, using HK-2 cells, revealed that knockdown of thioredoxin-interacting protein inhibited high glucose-mediated lipid accumulation, expression of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element binding protein-1, as well as activation of Akt and mTOR. Moreover, knockdown of thioredoxin-interacting protein reversed high glucose-induced reduction of peroxisome proliferator-activated receptor-α, acyl-coenzyme A oxidase 1 and carnitine palmitoyltransferaser 1 expression in HK-2 cells. Importantly, blockade of Akt/mTOR signaling pathway with LY294002, a specific PI3K inhibitor, replicated these effects of thioredoxin-interacting protein silencing. Taken together, these data suggest that thioredoxin-interacting protein deficiency alleviates diabetic renal lipid accumulation through regulation of Akt/mTOR pathway, thioredoxin

  9. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE PAGES

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; ...

    2016-05-16

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  10. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    PubMed Central

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; Lopez-Garrido, Javier; Muszewska, Anna; Dudkiewicz, Małgorzata; Grynberg, Marcin; Yee, Samantha; Pogliano, Kit; Tomchick, Diana R.; Pawłowski, Krzysztof; Dixon, Jack E.; Tagliabracci, Vincent S.

    2016-01-01

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis; however, the mechanism by which CotH affects germination is unclear. Here, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology. PMID:27185916

  11. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    SciTech Connect

    Nguyen, Kim B.;