Science.gov

Sample records for akt protein levels

  1. Upregulation of AKT1 protein expression in forskolin-stimulated macrophage: evidence from ChIP analysis that CREB binds to and activates the AKT1 promoter.

    PubMed

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2007-03-01

    Recently, we reported that silencing CREB gene expression by RNAi significantly attenuates forskolin-induced activation of Akt1. We now provide evidence that forskolin-treatment causes transcriptional and translational upregulation of Akt1 in macrophages. Akt synthesis was demonstrated by [(14)C]leucine or [(35)S] incorporation into newly synthesized Akt1 protein. Akt protein levels increased by approximately 1.5-fold after only a 5 min exposure of macrophages to forskolin. Akt1 levels thereafter rapidly returned to basal values (t(1/2) approximately 15 min). Maximal upregulation of Akt1 occurred in cells treated with 10 microM forskolin. Forskolin-dependent Akt1 synthesis was abolished by pretreating the cells with CREB-directed dsRNA as demonstrated at both the message and protein level, as well as by determining the synthesis of [(35)S]-labeled Akt1 protein. The PKA inhibitor H-89, greatly attenuated forskolin-induced Akt1 synthesis. Transcriptional and translational inhibitors also greatly reduced Akt1 synthesis in forskolin-stimulated [(14)C]leucine-labeled macrophages. Using a chromatin immunoprecipitation assay, we demonstrate that CREB binds to a CRE binding domain of the Akt1 gene promoter. In conclusion, we show here for the first time transcriptional upregulation of Akt1 by CREB, based upon Akt1 protein synthesis and its modulation by transitional and translational inhibitors in forskolin-stimulated cells, Akt1 protein. and mRNA levels upon silencing CREB gene expression, and binding of CREB to the Akt1 gene promoter.

  2. PROTEIN KINASE B/AKT IS A NOVEL CYSTEINE STRING PROTEIN KINASE THAT REGULATES EXOCYTOSIS RELEASE KINETICS AND QUANTAL SIZE

    PubMed Central

    Evans, Gareth J. O.; Barclay, Jeff W.; Prescott, Gerald R.; Jo, Sung-Ro; Burgoyne, Robert D.; Birnbaum, Morris J.; Morgan, Alan

    2008-01-01

    Protein kinase B/Akt has been implicated in the insulin-dependent exocytosis of GLUT4-containing vesicles, and, more recently, insulin secretion. To determine if Akt also regulates insulin-independent exocytosis, we used adrenal chromaffin cells, a popular neuronal model. Akt1 was the predominant isoform expressed in chromaffin cells, although lower levels of Akt2 and Akt3 were also found. Secretory stimuli in both intact and permeabilized cells induced Akt phosphorylation on serine-473, and the time course of Ca2+-induced Akt phosphorylation was similar to that of exocytosis in permeabilized cells. To determine if Akt modulated exocytosis, we transfected chromaffin cells with Akt constructs and monitored catecholamine release by amperometry. Wild-type Akt had no effect on the overall number of exocytotic events, but slowed the kinetics of catecholamine release from individual vesicles, resulting in an increased quantal size. This effect was due to phosphorylation by Akt, as it was not seen in cells transfected with kinase-dead mutant Akt. As overexpression of cysteine string protein (CSP) results in a similar alteration in release kinetics and quantal size, we determined if CSP was an Akt substrate. In vitro 32P-phosphorylation studies revealed that Akt phosphorylates CSP on serine-10. Using phospho-serine10-specific antisera, we found that both transfected and endogenous cellular CSP is phosphorylated by Akt on this residue. Taken together, these findings reveal a novel role for Akt phosphorylation in regulating the late stages of exocytosis and suggest that this is achieved via the phosphorylation of CSP on serine-10. PMID:16243840

  3. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    SciTech Connect

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa; Shin, Incheol

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  4. Degradation of Akt Using Protein Catalyzed Capture Agents

    PubMed Central

    Das, Samir; Nag, Arundhati; Tang, Grace; Tang, Kevin; Sutherland, Alexander M.; Heath, James R.

    2016-01-01

    Abnormal signaling of the protein kinase Akt has been shown to contribute to human diseases such as diabetes and cancer, but Akt has proven to be a challenging target for drugging. Using iterative in situ click chemistry we recently developed multiple protein catalyzed capture (PCC) agents that allosterically modulate Akt enzymatic activity in a protein based assay. Here we utilize similar PCCs to exploit endogenous protein degradation pathways. We use the modularity of the anti-Akt PCCs to prepare Proteolysis Targeting Chimeric molecules (PROTACs) that are shown to promote the rapid degradation of Akt in live cancer cells. These novel PROTACs demonstrate that the epitope targeting selectivity of PCCs can be coupled with non-traditional drugging moieties to inhibit challenging targets. PMID:26880702

  5. Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action.

    PubMed

    Trencia, Alessandra; Perfetti, Anna; Cassese, Angela; Vigliotta, Giovanni; Miele, Claudia; Oriente, Francesco; Santopietro, Stefania; Giacco, Ferdinando; Condorelli, Gerolama; Formisano, Pietro; Beguinot, Francesco

    2003-07-01

    The antiapoptotic protein PED/PEA-15 features an Akt phosphorylation motif upstream from Ser(116). In vitro, recombinant PED/PEA-15 was phosphorylated by Akt with a stoichiometry close to 1. Based on Western blotting with specific phospho-Ser(116) PED/PEA-15 antibodies, Akt phosphorylation of PED/PEA-15 occurred mainly at Ser(116). In addition, a mutant of PED/PEA-15 featuring the substitution of Ser(116)-->Gly (PED(S116-->G)) showed 10-fold-decreased phosphorylation by Akt. In intact 293 cells, Akt also induced phosphorylation of PED/PEA-15 at Ser(116). Based on pull-down and coprecipitation assays, PED/PEA-15 specifically bound Akt, independently of Akt activity. Serum activation of Akt as well as BAD phosphorylation by Akt showed no difference in 293 cells transfected with PED/PEA-15 and in untransfected cells (which express no endogenous PED/PEA-15). However, the antiapoptotic action of PED/PEA-15 was almost twofold reduced in PED(S116-->G) compared to that in PED/PEA-15(WT) cells. PED/PEA-15 stability closely paralleled Akt activation by serum in 293 cells. In these cells, the nonphosphorylatable PED(S116-->G) mutant exhibited a degradation rate threefold greater than that observed with wild-type PED/PEA-15. In the U373MG glioma cells, blocking Akt also reduced PED/PEA-15 levels and induced sensitivity to tumor necrosis factor-related apoptosis-inducing ligand apoptosis. Thus, phosphorylation by Akt regulates the antiapoptotic function of PED/PEA-15 at least in part by controlling the stability of PED/PEA-15. In part, Akt survival signaling may be mediated by PED/PEA-15.

  6. AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins

    PubMed Central

    Riggio, Marina; Perrone, María C.; Polo, María L.; Rodriguez, María J.; May, María; Abba, Martín; Lanari, Claudia; Novaro, Virginia

    2017-01-01

    The purpose of this study was to elucidate the mechanisms associated with the specific effects of AKT1 and AKT2 isoforms in breast cancer progression. We modulated the abundance of specific AKT isoforms in IBH-6 and T47D human breast cancer cell lines and showed that AKT1 promoted cell proliferation, through S6 and cyclin D1 upregulation, but it inhibited cell migration and invasion through β1-integrin and focal adhesion kinase (FAK) downregulation. In contrast, AKT2 promoted cell migration and invasion through F-actin and vimentin induction. Thus, while overexpression of AKT1 promoted local tumor growth, downregulation of AKT1 or overexpression of AKT2 promoted peritumoral invasion and lung metastasis. Furthermore, we evaluated The Cancer Genome Atlas (TCGA) dataset for invasive breast carcinomas and found that increased AKT2 but not AKT1 mRNA levels correlated with a worse clinical outcome. We conclude that AKT isoforms play specific roles in different steps of breast cancer progression, with AKT1 involved in the local tumor growth and AKT2 involved in the distant tumor dissemination, having AKT2 a poorer prognostic value and consequently being a worthwhile target for therapy. PMID:28287129

  7. Akt phosphorylates and regulates Pdcd4 tumor suppressor protein.

    PubMed

    Palamarchuk, Alexey; Efanov, Alexey; Maximov, Vadim; Aqeilan, Rami I; Croce, Carlo M; Pekarsky, Yuri

    2005-12-15

    Programmed cell death 4 (Pdcd4) is a tumor suppressor protein that interacts with eukaryotic initiation factor 4A and inhibits protein synthesis. Pdcd4 also suppresses the transactivation of activator protein-1 (AP-1)-responsive promoters by c-Jun. The Akt (protein kinase B) serine/threonine kinase is a key mediator of phosphoinositide 3-kinase pathway involved in the regulation of cell proliferation, survival, and growth. Because Pdcd4 has two putative Akt phosphorylation sites at Ser(67) and Ser(457), we investigated whether Akt phosphorylates and regulates Pdcd4. Our results show that Akt specifically phosphorylates Ser(67) and Ser(457) residues of Pdcd4 in vitro and in vivo. We further show that phosphorylation of Pdcd4 by Akt causes nuclear translocation of Pdcd4. Using luciferase assay, we show that phosphorylation of Pdcd4 by Akt also causes a significant decrease of the ability of Pdcd4 to interfere with the transactivation of AP-1-responsive promoter by c-Jun.

  8. The tumor suppressor protein menin inhibits AKT activation by regulating its cellular localization

    PubMed Central

    Wang, Yan; Ozawa, Atsushi; Zaman, Shadia; Prasad, Nijaguna B.; Chandrasekharappa, Settara C.; Agarwal, Sunita K.; Marx, Stephen J.

    2010-01-01

    Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder associated mainly with tumors of multiple endocrine organs. Mutations in the MEN1 gene that encodes for the menin protein are the predominant cause for hereditary MEN1 syndrome. Though menin is a tumor suppressor, its molecular mechanism of action has not been defined. Here we report that menin interacts with AKT1 in vitro and in vivo. Menin downregulates the level of active AKT and its kinase activity. Through interaction with AKT1, menin suppresses both AKT1 induced proliferation and anti-apoptosis in non-endocrine and endocrine cells. Confocal microscopy analysis revealed that menin regulates AKT1 in part by reducing the translocation of AKT1 from the cytoplasm to the plasma membrane during growth factor stimulation. Our findings may be generalizable to other cancers, insofar as we found that loss of menin expression was also associated with AKT activation in a mouse model of pancreatic islet adenoma. Together, our results suggest menin as an important novel negative regulator of AKT kinase activity. PMID:21127195

  9. Association of AKT1 gene variants and protein expression in both schizophrenia and bipolar disorder.

    PubMed

    Karege, F; Perroud, N; Schürhoff, F; Méary, A; Marillier, G; Burkhardt, S; Ballmann, E; Fernandez, R; Jamain, S; Leboyer, M; La Harpe, R; Malafosse, A

    2010-07-01

    The AKT1 gene has been associated with the genetic aetiology of schizophrenia. Following the overlap model of bipolar disorder and schizophrenia, we aimed to investigate AKT1 genetic variants and protein expression in both diseases. A total of 679 subjects with European ancestry were included: 384 with schizophrenia, 130 with bipolar disorder and 165 controls. Six single nucleotide polymorphisms (SNPs) were investigated for association with the diseases using single- and multi-locus analyses. AKT1 and AKT2 protein levels were measured in post-mortem brain tissues from ante-mortem diagnosed schizophrenia (n = 30) and bipolar disorder subjects (n = 12) and matched controls. The analysis identified a significant global distortion in schizophrenia (P = 0.0026) and a weak association in bipolar disorder (P = 0.046). A sliding window procedure showed a five-SNP haplotype (TCGAG) to be associated with schizophrenia (P = 1.22 x 10(-4)) and bipolar disorder (P = 0.0041) and a four-SNP haplotype (TCGA) with the combined sample (1.73 x 10(-5)). On the basis of selected genotypes, a significant difference in protein expression emerged between subjects (P < 0.02). In conclusion, our findings, by showing the involvement of the AKT1 gene in both schizophrenia and bipolar disorder, support the role of AKT1 in the genetics of both disorders and add support to the view that there is some genetic overlap between them.

  10. Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway

    DTIC Science & Technology

    2014-10-01

    kinase . This grant proposal will explore the resistance to small molecule AKT protein kinase inhibitors mediated by the... molecule AKT protein kinase inhibitors is potentially mediated by the Pim-1 protein kinase , and that unique Pim protein kinase inhibitors that can in...application is essential for the development of this combined chemotherapeutic strategy. 15. SUBJECT TERMS Small Molecule AKT Inhibitors ,

  11. Increased levels of conditioned fear and avoidance behavior coincide with changes in phosphorylation of the protein kinase B (AKT) within the amygdala in a mouse model of extremes in trait anxiety.

    PubMed

    Yen, Yi-Chun; Mauch, Christoph P; Dahlhoff, Maik; Micale, Vincenzo; Bunck, Mirjam; Sartori, Simone B; Singewald, Nicolas; Landgraf, Rainer; Wotjak, Carsten T

    2012-07-01

    Patients diagnosed for anxiety disorders often display faster acquisition and slower extinction of learned fear. To gain further insights into the mechanisms underlying these phenomenona, we studied conditioned fear in mice originating form a bi-directional selective breeding approach, which is based on elevated plus-maze behavior and results in CD1-derived high (HAB), normal (NAB), and low (LAB) anxiety-related behavior mice. HAB mice displayed pronounced cued-conditioned fear compared to NAB/CD1 and LAB mice that coincided with increased phosphorylation of the protein kinase B (AKT) in the basolateral amygdala 45 min after conditioning. No similar changes were observed after non-associative immediate shock presentations. Fear extinction of recent but not older fear memories was preserved. However, HAB mice were more prone to relapse of conditioned fear with the passage of time. HAB mice also displayed higher levels of contextual fear compared to NAB and LAB mice and exaggerated avoidance following step-down avoidance training. Interestingly, HAB mice showed lower and LAB mice higher levels of acoustic startle responses compared to NAB controls. The increase in arousal observed in LAB mice coincided with the general absence of conditioned freezing. Taken together, our results suggest that the genetic predisposition to high anxiety-related behavior may increase the risk of forming traumatic memories, phobic-like fear and avoidance behavior following aversive encounters, with a clear bias towards passive coping styles. In contrast, genetic predisposition to low anxiety-related and high risk-taking behavior seems to be associated with an increase in active coping styles. Our data imply changes in AKT phosphorylation as a therapeutic target for the prevention of exaggerated fear memories.

  12. Analysis of AKT and ERK1/2 protein kinases in extracellular vesicles isolated from blood of patients with cancer

    PubMed Central

    van der Mijn, Johannes C.; Sol, Nik; Mellema, Wouter; Jimenez, Connie R.; Piersma, Sander R.; Dekker, Henk; Schutte, Lisette M.; Smit, Egbert F.; Broxterman, Henk J.; Skog, Johan; Tannous, Bakhos A.; Wurdinger, Thomas; Verheul, Henk M. W.

    2014-01-01

    Background Extracellular vesicles (EVs) are small nanometre-sized vesicles that are circulating in blood. They are released by multiple cells, including tumour cells. We hypothesized that circulating EVs contain protein kinases that may be assessed as biomarkers during treatment with tyrosine kinase inhibitors. Methods EVs released by U87 glioma cells, H3255 and H1650 non-small-cell lung cancer (NSCLC) cells were profiled by tandem mass spectrometry. Total AKT/protein kinase B and extracellular signal regulated kinase 1/2 (ERK1/2) levels as well as their relative phosphorylation were measured by western blot in isogenic U87 cells with or without mutant epidermal growth factor receptor (EGFRvIII) and their corresponding EVs. To assess biomarker potential, plasma samples from 24 healthy volunteers and 42 patients with cancer were used. Results In total, 130 different protein kinases were found to be released in EVs including multiple drug targets, such as mammalian target of rapamycin (mTOR), AKT, ERK1/2, AXL and EGFR. Overexpression of EGFRvIII in U87 cells results in increased phosphorylation of EGFR, AKT and ERK1/2 in cells and EVs, whereas a decreased phosphorylation was noted upon treatment with the EGFR inhibitor erlotinib. EV samples derived from patients with cancer contained significantly more protein (p=0.0067) compared to healthy donors. Phosphorylation of AKT and ERK1/2 in plasma EVs from both healthy donors and patients with cancer was relatively low compared to levels in cancer cells. Preliminary analysis of total AKT and ERK1/2 levels in plasma EVs from patients with NSCLC before and after sorafenib/metformin treatment (n=12) shows a significant decrease in AKT levels among patients with a favourable treatment response (p<0.005). Conclusion Phosphorylation of protein kinases in EVs reflects their phosphorylation in tumour cells. Total AKT protein levels may allow monitoring of kinase inhibitor responses in patients with cancer. PMID:25491250

  13. A Gammaherpesvirus Complement Regulatory Protein Promotes Initiation of Infection by Activation of Protein Kinase Akt/PKB

    PubMed Central

    Steer, Beatrix; Adler, Barbara; Jonjic, Stipan; Stewart, James P.; Adler, Heiko

    2010-01-01

    Background Viruses have evolved to evade the host's complement system. The open reading frames 4 (ORF4) of gammaherpesviruses encode homologs of regulators of complement activation (RCA) proteins, which inhibit complement activation at the level of C3 and C4 deposition. Besides complement regulation, these proteins are involved in heparan sulfate and glycosaminoglycan binding, and in case of MHV-68, also in viral DNA synthesis in macrophages. Methodology/Principal Findings Here, we made use of MHV-68 to study the role of ORF4 during infection of fibroblasts. While attachment and penetration of virions lacking the RCA protein were not affected, we observed a delayed delivery of the viral genome to the nucleus of infected cells. Analysis of the phosphorylation status of a variety of kinases revealed a significant reduction in phosphorylation of the protein kinase Akt in cells infected with ORF4 mutant virus, when compared to cells infected with wt virus. Consistent with a role of Akt activation in initial stages of infection, inhibition of Akt signaling in wt virus infected cells resulted in a phenotype resembling the phenotype of the ORF4 mutant virus, and activation of Akt by addition of insulin partially reversed the phenotype of the ORF4 mutant virus. Importantly, the homologous ORF4 of KSHV was able to rescue the phenotype of the MHV-68 ORF4 mutant, indicating that ORF4 is functionally conserved and that ORF4 of KSHV might have a similar function in infection initiation. Conclusions/Significance In summary, our studies demonstrate that ORF4 contributes to efficient infection by activation of the protein kinase Akt and thus reveal a novel function of a gammaherpesvirus RCA protein. PMID:20657771

  14. HBV core promoter mutations and AKT upregulate S-phase kinase-associated protein 2 to promote postoperative hepatocellular carcinoma progression

    PubMed Central

    Chen, Lubiao; Gu, Lin; Gu, Yurong; Wang, Hongbo; Deng, Meihai; Stamataki, Zania; Oo, Ye Htun; Huang, Yuehua

    2016-01-01

    Mutations in the hepatitis B virus (HBV) core promoter (CP) have been shown to be associated with hepatocellular carcinoma (HCC). The CP region overlaps HBV X gene, which activates AKT to regulate hepatocyte survival. However, the cooperation between these two cascades in HCC progression remains poorly understood. Here, we assayed virological factors and AKT expression in liver tissues from 56 HCC patients with better prognoses (BHCC, ≥5-year survival) and 58 with poor prognoses (PHCC, <5-year survival) after partial liver resection. Results showed double mutation A1762T/G1764A (TA) combined with other mutation(s) (TACO) in HBV genome and phosphorylated AKT (pAKT) were more common in PHCC than BHCC. TACO and pAKT levels correlated with proliferation and microvascularization but inversely correlated with apoptosis in HCC samples. These were more pronounced when TACO and pAKT co-expressed. Levels of p21 and p27 were decreased in TACO or pAKT overexpressing HCC due to SKP2 upregulation. Levels of E2F1 and both mRNA and protein of SKP2 were increased in TACO expressing HCC. Levels of 4EBP1/2 decreased and SKP2 mRNA level remained constant in pAKT-overexpressing HCC. Therefore, TACO and AKT are two independent predictors of postoperative survival in HCC. Their co-target, SKP2 may be a diagnostic or therapeutic marker. PMID:27779207

  15. Long isoform of ErbB3 binding protein, p48, mediates protein kinase B/Akt-dependent HDM2 stabilization and nuclear localization

    SciTech Connect

    Kim, Chung Kwon; Lee, Sang Bae; Nguyen, Truong L.X.; Lee, Kyung-Hoon; Um, Sung Hee; Kim, Jihoe; Ahn, Jee-Yin

    2012-01-15

    p48 is a long isoform of the ErbB3 binding protein that has oncogenic functions including promotion of carcinogenesis and induction of malignant transformation through negative regulation of tumor suppressor p53. Here, we show that high level of p48 protein expression leads to enhance HDM2 phosphorylation by Akt and inhibits the self-ubiquitination of HDM2 by up-regulation of Akt activity, thereby promoting its protein stability. Moreover, p48 expression leads to accumulated nuclear localization of HDM2, whereas p48 depletion disturbs its nuclear localization. Hence, higher expression of p48 in cancer cells reduces p53 levels through modulation of HDM2 nuclear localization and protein stability via regulation of its Akt-mediated phosphorylation.

  16. PPAR-γ agonist stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination

    SciTech Connect

    Sun, Yan; Zheng, Bin; Zhang, Xin-hua; He, Ming; Guo, Zong-wei; Wen, Jin-kun

    2014-01-10

    Highlights: •PPAR-γ increases KLF4 protein level but does not influence KLF4 gene transcription. •The increase of KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. •Pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination. -- Abstract: Peroxisome proliferator activated receptor γ (PPAR-γ) plays important roles in cell cycle regulation, differentiation and apoptosis. Krüppel-like factor 4 (KLF4) modulates vascular smooth muscle cell (VSMC) phenotype. Both KLF4 and PPAR-γ are involved in VSMC proliferation and differentiation. However, the actual relationship between KLF4 and PPAR-γ in VSMCs is not clear. In this study, we found that PPAR-γ agonist pioglitazone increases KLF4 protein levels but does not influence KLF4 gene transcription. PPAR-γ overexpression increases, while PPAR-γ knockdown reduces KLF4 expression, suggesting that the increase in KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. Further study showed that pioglitazone enhances KLF4 protein stability through reducing KLF4 ubiquitination. Furthermore, we demonstrated that stabilization of KLF4 by pioglitazone was related to the activation of Akt signaling pathway. Taken together, we revealed that PPAR-γ agonist pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination, providing further insights into PPAR-γ and KLF4 in regulating each other’s expression in VSMCs.

  17. The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) protects cells against cold-shock-induced apoptosis by maintaining phosphorylation of protein kinase B (AKT)

    PubMed Central

    Carpenter, Dale; Hsiang, Chinhui; Jiang, Xianzhi; Osorio, Nelson; BenMohamed, Lbachir; Jones, Clinton

    2017-01-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) blocks apoptosis and inhibits caspase-3 activation. We previously showed that serum starvation (removal of serum from tissue culture media), which takes several days to induce apoptosis, results in decreased levels of both AKT (protein kinase B) and phosphorylated AKT (pAKT) in cells not expressing LAT. In contrast in mouse neuroblastoma cells expressing LAT, AKT, and pAKT levels remained high. AKT is a serine/threonine protein kinase that promotes cell survival. To examine the effect of LAT on AKT-pAKT using a different and more rapid method of inducing apoptosis, a stable cell line expressing LAT was compared to non-LAT expressing cells as soon as 15 min following recovery from cold-shock-induced apoptosis. Expression of LAT appeared to inhibit dephosphorylation of pAKT. This protection correlated with blocking numerous pro-apoptotic events that are inhibited by pAKT. These results support the hypothesis that inhibiting dephosphorylation of pAKT may be one of the pathways by which LAT protects cells against apoptosis. PMID:26071090

  18. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway.

    PubMed

    Sivagurunathan, Suganya; Palanisamy, Karthikka; Arunachalam, Jayamuruga Pandian; Chidambaram, Subbulakshmi

    2017-03-01

    PIWI subfamily of proteins is shown to be primarily expressed in germline cells. They maintain the genomic integrity by silencing the transposable elements. Although the role of PIWI proteins in germ cells has been documented, their presence and function in somatic cells remains unclear. Intriguingly, we detected all four members of PIWI-like proteins in human ocular tissues and somatic cell lines. When HIWI2 was knocked down in retinal pigment epithelial cells, the typical honeycomb morphology was affected. Further analysis showed that the expression of tight junction (TJ) proteins, CLDN1, and TJP1 were altered in HIWI2 knockdown. Moreover, confocal imaging revealed disrupted TJP1 assembly at the TJ. Previous studies report the role of GSK3β in regulating TJ proteins. Accordingly, phospho-kinase proteome profiler array indicated increased phosphorylation of Akt and GSK3α/β in HIWI2 knockdown, suggesting that HIWI2 might affect TJ proteins through Akt-GSK3α/β signaling axis. Moreover, treating the HIWI2 knockdown cells with wortmannin increased the levels of TJP1 and CLDN1. Taken together, our study demonstrates the presence of PIWI-like proteins in somatic cells and the possible role of HIWI2 in preserving the functional integrity of epithelial cells probably by modulating the phosphorylation status of Akt.

  19. SET protein overexpression contributes to paclitaxel resistance in MCF-7/S cells through PI3K/Akt pathway.

    PubMed

    Zhang, Weipeng; Zheng, Xiaowei; Meng, Ti; You, Haisheng; Dong, Yalin; Xing, Jianfeng; Chen, Siying

    2017-03-01

    Patient SE translation (SET) is a carcinogen in facilitating cellular growth and proliferation, and promoting tumorigenesis and metastasis. The present study was to investigate the resistance mechanisms associated with SET in paclitaxel-induced human breast cancer cells. The different expressions of SET, ATP-binding cassette (ABC) transporters and PI3K/Akt pathway between paclitaxel sensitive MCF-7/S and paclitaxel resistant MCF-7/PTX cells were identified using western blotting. We adopted plasmid transfection to upregulate SET in MCF-7/S cells and a novel SET antagonist COG112 to decrease SET in MCF-7/PTX cells. Subsequently, cell viability to paclitaxel was assessed by MTT assay and cell apoptosis was analyzed by flow cytometry. We found that levels of SET, ABC transporters and PI3K/Akt pathway were elevated in MCF-7/PTX. Upregulation of SET in MCF-7/S cells expressed resistant to paclitaxel and decreased cell apoptosis. Moreover, overexpression of SET promoted the mRNA and protein level of ABC transporters and PI3K/Akt signal pathway in MCF-7/S cells. Conversely, decreased level of SET by COG112 not only significantly sensitized MCF-7/PTX cells to paclitaxel, but also enhanced paclitaxel-induced cell apoptosis. Additionally, the levels of the ABC transporters and PI3K/Akt signal pathway were also reduced in the COG112-treated MCF-7/PTX cells. The above results demonstrated that SET was associated with paclitaxel resistance in MCF-7/PTX cells.

  20. Identification of natural allosteric inhibitor for Akt1 protein through computational approaches and in vitro evaluation.

    PubMed

    Pragna Lakshmi, T; Kumar, Amit; Vijaykumar, Veena; Natarajan, Sakthivel; Krishna, Ramadas

    2017-03-01

    Akt, a serine/threonine protein kinase, is often hyper activated in breast and prostate cancers, but with poor prognosis. Allosteric inhibitors regulate aberrant kinase activity by stabilizing the protein in inactive conformation. Several natural compounds have been reported as inhibitors for kinases. In this study, to identify potential natural allosteric inhibitor for Akt1, we generated a seven-point pharmacophore model and screened it through natural compound library. Quercetin-7-O-β-d-glucopyranoside or Q7G was found to be the best among selected molecules based on its hydrogen bond occupancy with key allosteric residues, persistent polar contacts and salt bridges that stabilize Akt1 in inactive conformation and minimum binding free energy during molecular dynamics simulation. Q7G induced dose-dependent inhibition of breast cancer cells (MDA MB-231) and arrested them in G1 and sub-G phase. This was associated with down-regulation of anti-apoptotic protein Bcl-2, up-regulation of cleaved caspase-3 and PARP. Expression of p-Akt (Ser473) was also down-regulated which might be due to Akt1 inhibition in inactive conformation. We further confirmed the Akt1 and Q7G interaction which was observed to have a dissociation constant (Kd) of 0.246μM. With these computational, biological and thermodynamic studies, we suggest Q7G as a lead molecule and propose for its further optimization.

  1. Liver Clock Protein BMAL1 Promotes de Novo Lipogenesis through Insulin-mTORC2-AKT Signaling*

    PubMed Central

    Zhang, Deqiang; Tong, Xin; Arthurs, Blake; Guha, Anirvan; Rui, Liangyou; Kamath, Avani; Inoki, Ken; Yin, Lei

    2014-01-01

    The clock protein BMAL1 (brain and muscle Arnt-like protein 1) participates in circadian regulation of lipid metabolism, but its contribution to insulin AKT-regulated hepatic lipid synthesis is unclear. Here we used both Bmal1−/− and acute liver-specific Bmal1-depleted mice to study the role of BMAL1 in refeeding-induced de novo lipogenesis in the liver. Both global deficiency and acute hepatic depletion of Bmal1 reduced lipogenic gene expression in the liver upon refeeding. Conversely, Bmal1 overexpression in mouse liver by adenovirus was sufficient to elevate the levels of mRNA of lipogenic enzymes. Bmal1−/− primary mouse hepatocytes displayed decreased levels of de novo lipogenesis and lipogenic enzymes, supporting the notion that BMAL1 regulates lipid synthesis in hepatocytes in a cell-autonomous manner. Both refed mouse liver and insulin-treated primary mouse hepatocytes showed impaired AKT activation in the case of either Bmal1 deficiency or Bmal1 depletion by adenoviral shRNA. Restoring AKT activity by a constitutively active mutant of AKT nearly normalized de novo lipogenesis in Bmal1−/− hepatocytes. Finally, Bmal1 deficiency or knockdown decreased the protein abundance of RICTOR, the key component of the mTORC2 complex, without affecting the gene expression of key factors of insulin signaling. Thus, our study uncovered a novel metabolic function of hepatic BMAL1 that promotes de novo lipogenesis via the insulin-mTORC2-AKT signaling during refeeding. PMID:25063808

  2. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    PubMed

    Lee, Beom Seob; Kim, Soo Hyuk; Oh, Jaewon; Jin, Taewon; Choi, Eun Young; Park, Sungha; Lee, Sang-Hak; Chung, Ji Hyung; Kang, Seok-Min

    2014-01-01

    C-reactive protein (CRP) is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  3. Medium-chain triacylglycerol suppresses the decrease of plasma albumin level through the insulin-Akt-mTOR pathway in the livers of malnourished rats.

    PubMed

    Sekine, Seiji; Terada, Shin; Aoyama, Toshiaki

    2013-01-01

    Recent studies have shown that medium-chain triacylglycerol (MCT) improved serum albumin concentration in elderly people with protein-energy malnutrition (PEM) and in malnourished rats. However, the mechanism for this effect has not been clarified. Dietary MCT promotes insulin secretion from the pancreas, and insulin activates mammalian target of rapamycin (mTOR) complex 1 (mTORC1) via the activation of phosphoinositide 3-kinase (PI3K) and its downstream effecter, Akt. mTORC1 promotes mRNA translation through S6K and 4E-BP1. Therefore, we hypothesized that dietary MCT elevates albumin synthesis through promotion of insulin-Akt-mTOR transduction in the liver. To test this hypothesis, we measured phosphorylated Akt, mTOR and albumin in the livers of malnourished rats. In the present study we examined rats fed low-protein diets containing either MCT or long-chain triacylglycerol (LCT) with energy restriction. The plasma and liver albumin levels were significantly higher in the MCT-fed group than in the LCT-fed group. In addition, plasma insulin concentration, liver phosphorylated Akt/Akt and phosphorylated mTOR/mTOR levels were significantly higher in the MCT-fed group than in the LCT-fed group. These results suggest that one of the mechanisms for the albumin improvement effect of dietary MCT is the promotion of albumin synthesis through the insulin-Akt-mTOR signaling pathway of the liver.

  4. Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein.

    PubMed

    Menges, Craig W; Baglia, Laurel A; Lapoint, Randi; McCance, Dennis J

    2006-06-01

    Human papillomaviruses (HPV) are small DNA tumor viruses causally associated with cervical cancer. The early gene product E7 from high-risk HPV is considered the major transforming protein expressed by the virus. Although many functions have been described for E7 in disrupting normal cellular processes, we describe in this study a new cellular target in primary human foreskin keratinocytes (HFK), the serine/threonine kinase AKT. Expression of HPV type 16 E7 in HFK caused inhibition of differentiation, hyperproliferation, and up-regulation of AKT activity in organotypic raft cultures. The ability of E7 to up-regulate AKT activity is dependent on its ability to bind to and inactivate the retinoblastoma (Rb) gene product family of proteins. Furthermore, we show that knocking down Rb alone, with short hairpin RNAs, was sufficient to up-regulate AKT activity in differentiated keratinocytes. Up-regulation of AKT activity and loss of Rb was also observed in HPV-positive cervical high-grade squamous intraepithelial lesions when compared with normal cervical tissue. Together, these data provide evidence linking inactivation of Rb by E7 in the up-regulation of AKT activity during cervical cancer progression.

  5. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS

    SciTech Connect

    Jee, Hye Jin; Kim, Hyun-Ju; Kim, Ae Jeong; Bae, Yoe-Sik; Bae, Sun Sik; Yun, Jeanho

    2009-06-05

    Akt/PKB plays a pivotal role in cell survival and proliferation. Previously, we reported that UV-irradiation induces extensive cell death in Akt2{sup -/-} mouse embryonic fibroblasts (MEFs) while Akt1{sup -/-} MEFs show cell cycle arrest. Here, we find that Akt1{sup -/-} MEFs exhibit phenotypic changes characteristics of senescence upon UV-irradiation. An enlarged and flattened morphology, a reduced cell proliferation and an increased senescence-associated {beta}-galactosidase (SA {beta}-gal) staining indicate that Akt1{sup -/-} MEFs undergo premature senescence after UV-irradiation. Restoring Akt1 expression in Akt1{sup -/-} MEFs suppressed SA {beta}-gal activity, indicating that UV-induced senescence is due to the absence of Akt1 function. Notably, levels of ROS were rapidly increased upon UV-irradiation and the ROS scavenger NAC inhibits UV-induced senescence of Akt1{sup -/-} MEFs, suggesting that UV light induces premature senescence in Akt1{sup -/-} MEFs by modulating intracellular levels of ROS. In conjunction with our previous work, this indicates that different isoforms of Akt have distinct function in response to UV-irradiation.

  6. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway

    PubMed Central

    Hermkens, Dorien; Wlodarski, Marcin W.; Da Costa, Lydie; MacInnes, Alyson W.

    2015-01-01

    Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. PMID:26132763

  7. Action of methyl-, propyl- and butylparaben on GPR30 gene and protein expression, cAMP levels and activation of ERK1/2 and PI3K/Akt signaling pathways in MCF-7 breast cancer cells and MCF-10A non-transformed breast epithelial cells.

    PubMed

    Wróbel, Anna Maria; Gregoraszczuk, Ewa Łucja

    2015-10-14

    In the present study, we examined cAMP levels and activation of the MAPK/ERK1/2 and PI3K/Akt signaling pathways in response to the actions of parabens on GPR30 in MCF-7 and MCF-10A cells. Cells were exposed to methyl-, propyl- or butylparaben at a concentration of 20nM; 17-β-estradiol (10nM) was used as a positive control. 17β-estradiol and all tested parabens increased GPR30 gene and protein expression in MCF-7 and MCF-10A cells. No parabens affected cAMP levels in either cell line, with the exception of propylparaben in MCF-10A cells. 17β-estradiol, propylparaben, and butylparaben increased phosphorylation of ERK1/2 in MCF-7 cells, whereas 17β-estradiol, methyl- and butylparaben, but not propylparaben, increased phosphorylation of ERK1/2 in MCF-10A cells. Akt activation was noted only in MCF-7 cells and only with propylparaben treatment. Collectively, the data presented here point to a nongenomic mechanism of action of parabens in activation GPR30 in both cancer and non-cancer breast cell lines through βγ dimer-mediated activation of the ERK1/2 pathway, but not the cAMP/PKA pathway. Moreover, among investigated parabens, propylparaben appears to inhibit apoptosis in cancer cells through activation of Akt kinases, confirming conclusions suggested by our previously published data. Nevertheless, continuing research on the carcinogenic action of parabens is warranted.

  8. A novel Drosophila Girdin-like protein is involved in Akt pathway control of cell size

    SciTech Connect

    Puseenam, Aekkachai; Yoshioka, Yasuhide; Nagai, Rika; Hashimoto, Reina; Suyari, Osamu; Itoh, Masanobu; Enomoto, Atsushi; Takahashi, Masahide; Yamaguchi, Masamitsu

    2009-11-15

    The Akt signaling pathway is well known to regulate cell proliferation and growth. Girdin, a novel substrate of Akt, plays a crucial role in organization of the actin cytoskeleton and cell motility under the control of Akt. We here identified a novel Girdin-like protein in Drosophila (dGirdin), which has two isoforms, dGirdin PA and dGirdin PB. dGirdin shows high homology with human Girdin in the N-terminal and coiled-coil domains, while diverging at the C-terminal domain. On establishment of transgenic fly lines, featuring knockdown or overexpression of dGirdin in vivo, overexpression in the wing disc cells induced ectopic apoptosis, implying a role in directing apoptosis. Knockdown of dGirdin in the Drosophila wing imaginal disc cells resulted in reduction of cell size. Furthermore, this was enhanced by half reduction of the Akt gene dose, suggesting that Akt positively regulates dGirdin. In the wing disc, cells in which dGirdin was knocked down exhibited disruption of actin filaments. From these in vivo analyses, we conclude that dGirdin is required for actin organization and regulation of appropriate cell size under control of the Akt signaling pathway.

  9. AKT serine/threonine protein kinase modulates baicalin-triggered autophagy in human bladder cancer T24 cells.

    PubMed

    Lin, Chingju; Tsai, Shih-Chang; Tseng, Michael T; Peng, Shu-Fen; Kuo, Sheng-Chu; Lin, Meng-Wei; Hsu, Yuan-Man; Lee, Miau-Rong; Amagaya, Sakae; Huang, Wen-Wen; Wu, Tian-Shung; Yang, Jai-Sing

    2013-03-01

    Baicalin is one of the major compounds in the traditional Chinese medicinal herb from Scutellaria baicalensis Georgi. We investigated the molecular mechanisms of cell autophagy induced by baicalin in human bladder cancer T24 cells. Baicalin inhibited cell survival as shown by MTT assay and increased cell death by trypan blue exclusion assay in a concentration-dependent manner. Baicalin did not induce apoptotic cell death in T24 cells by TUNEL and caspase-3 activity assay. Baicalin induced the acidic vesicular organelle cell autophagy marker, manifested by acridine orange (AO) and monodansylcadaverine (MDC) staining and cleavage of microtubule-associated protein 1 light chain 3 (LC3). The protein expression levels of the Atg 5, Atg 7, Atg 12, Beclin-1 and LC3-II were upregulated in T24 cells after baicalin treatment. Inhibition of autophagy by 3-methyl-adenine (an inhibitor of class III phosphatidylinositol-3 kinase; 3-MA) reduced the cleavage of LC3 in T24 cells after baicalin treatment. Furthermore, protein expression levels of phospho-AKT (Ser473) and enzyme activity of AKT were downregulated in T24 cells after baicalin treatment. In conclusion, baicalin triggered cell autophagy through the AKT signaling pathway in T24 cells.

  10. Increased basal level of Akt-dependent insulin signaling may be responsible for the development of insulin resistance

    PubMed Central

    Liu, Hui-Yu; Hong, Tao; Wen, Ge-Bo; Han, Jianmin; Zuo, Degen; Liu, Zhenqi

    2009-01-01

    A majority of subjects with insulin resistance and hyperinsulinemia can maintain their blood glucose levels normal for the whole life presumably through protein kinase B (Akt)-dependent insulin signaling. In this study, we found that the basal Akt phosphorylation level was increased in liver and gastrocnemius of mice under the high-fat diet (HFD). Levels of mitochondrial DNA and expression of some mitochondrion-associated genes were decreased by the HFD primarily in liver. Triglyceride content was increased in both liver and gastrocnemius by the HFD. Oxidative stress was induced by the HFD in both liver and gastrocnemius. Insulin sensitivity was decreased by the HFD. All of these changes were largely or completely reversed by treatment of animals with the phosphatidylinositol 3-kinase inhibitor LY-294002 during the time when animals usually do not eat. Consequently, the overall insulin sensitivity was increased by treatment with LY-294002. Together, our results indicate that increased basal Akt-dependent insulin signaling suppresses mitochondrial production, increases ectopic fat accumulation, induces oxidative stress, and desensitizes insulin signaling in subjects with insulin resistance and hyperinsulinemia. PMID:19638508

  11. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes.

    PubMed

    Zhou, Huanyu; Dickson, Matthew E; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N

    2015-09-22

    Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique.

  12. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1.

    PubMed

    Corum, Daniel G; Tsichlis, Philip N; Muise-Helmericks, Robin C

    2014-01-01

    Our previous work has shown that Akt3 is required for mitochondrial biogenesis in primary human endothelial cells (ECs) and in Akt3-null mice; Akt3 affects subcellular localization of peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α), the master regulator of mitochondrial biogenesis. The purpose of this study is to determine the mechanism by which Akt3 controls the subcellular distribution of PGC-1α and to explore the effect on mitochondrial biogenesis and turnover during angiogenesis. Here we use standard biochemical analyses and Akt3-knockdown strategies to show that Akt3 controls the stabilization of chromosome maintenance region-1 (CRM-1), the major nuclear export receptor. Site-directed mutagenesis and association analyses show that PGC-1α nuclear export is CRM-1 dependent. Akt3 knockdown and CRM-1 overexpression cause 3-fold reductions in PGC-1α target gene expression, compared to control levels. Akt3 inhibition causes autophagy, as measured by autophagosome formation, in a CRM-1-dependent, Akt1/mTOR-independent pathway. In vivo, Akt3-null and heterozygous mice show dose-dependent decreases in angiogenesis compared to wild-type littermates (~5- and 2.5-fold decreases, respectively), as assessed by Matrigel plug assays. This correlates with an ~1.5-fold decrease in mitochondrial Cox IV expression. Our studies suggest that Akt3 is a regulator of mitochondrial dynamics in the vasculature via regulation of CRM-1-dependent nuclear export.

  13. The critical role of Akt in cardiovascular function.

    PubMed

    Abeyrathna, Prasanna; Su, Yunchao

    2015-11-01

    Akt kinase, a member of AGC kinases, is important in many cellular functions including proliferation, migration, cell growth and metabolism. There are three known Akt isoforms which play critical and diverse roles in the cardiovascular system. Akt activity is regulated by its upstream regulatory pathways at transcriptional and post-translational levels. Beta-catenin/Tcf-4, GLI1 and Stat-3 are some of few known transcriptional regulators of AKT gene. Threonine 308 and serine 473 are the two critical phosphorylation sites of Akt1. Translocation of Akt to the cell membrane facilitates PDK1 phosphorylation of the threonine site. The serine site is phosphorylated by mTORC2. Ack1, Src, PTK6, TBK1, IKBKE and IKKε are some of the non-canonical pathways which affect the Akt activity. Protein-protein interactions of Akt to actin and Hsp90 increase the Akt activity while Akt binding to other proteins such as CTMP and TRB3 reduces the Akt activity. The action of Akt on its downstream targets determines its function in cardiovascular processes such as cell survival, growth, proliferation, angiogenesis, vasorelaxation, and cell metabolism. Akt promotes cell survival via caspase-9, YAP, Bcl-2, and Bcl-x activities. Inhibition of FoxO proteins by Akt also increases cell survival by transcriptional mechanisms. Akt stimulates cell growth and proliferation through mTORC1. Akt also increases VEGF secretion and mediates eNOS phosphorylation, vasorelaxation and angiogenesis. Akt can increase cellular metabolism through its downstream targets GSK3 and GLUT4. The alterations of Akt signaling play an important role in many cardiovascular pathological processes such as atherosclerosis, cardiac hypertrophy, and vascular remodeling. Several Akt inhibitors have been developed and tested as anti-tumor agents. They could be potential novel therapeutics for the cardiovascular diseases.

  14. Akt phosphorylates and regulates the osteogenic activity of Osterix.

    PubMed

    Choi, You Hee; Jeong, Hyung Min; Jin, Yun-Hye; Li, Hongyan; Yeo, Chang-Yeol; Lee, Kwang-Youl

    2011-08-05

    Osterix (Osx), a zinc-finger transcription factor is required for osteoblast differentiation and new bone formation during embryonic development. Akt is a member of the serine/threonine-specific protein kinase and plays important roles in osteoblast differentiation. The function of Osterix can be also modulated by post-translational modification. But, the precise molecular signaling mechanisms between Osterix and Akt are not known. In this study, we investigated the potential regulation of Osterix function by Akt in osteoblast differentiation. We found that Akt phosphorylates Osterix and that Akt activation increases protein stability, osteogenic activity and transcriptional activity of Osterix. We also found that BMP-2 increases the protein level of Osterix in an Akt activity-dependent manner. These results suggest that Akt activity enhances the osteogenic function of Osterix, at least in part, through protein stabilization and that BMP-2 regulates the osteogenic function of Osterix, at least in part, through Akt.

  15. Synthesis and biological evaluation of analogues of AKT (protein kinase B) inhibitor-IV.

    PubMed

    Sun, Qi; Wu, Runzhi; Cai, Sutang; Lin, Yuan; Sellers, Llewlyn; Sakamoto, Kaori; He, Biao; Peterson, Blake R

    2011-03-10

    Inhibitors of the PI3-kinase/AKT (protein kinase B) pathway are under investigation as anticancer and antiviral agents. The benzimidazole derivative AKT inhibitor-IV (ChemBridge 5233705) affects this pathway and exhibits potent anticancer and antiviral activity. To probe its biological activity, we synthesized AKT inhibitor-IV and 21 analogues using a novel six-step route based on ZrCl(4)-catalyzed cyclization of 1,2-arylenediamines with α,β-unsaturated aldehydes. We examined effects on viability of HeLa carcinoma cells, viability of normal human cells (NHBE), replication of recombinant parainfluenza virus 5 (PIV5) in HeLa cells, and replication of the intracellular bacterium Mycobacterium fortuitum in HeLa cells. Replacement of the benzimidazole N-ethyl substitutent of AKT inhibitor-IV with N-hexyl and N-dodecyl groups enhanced antiviral activity and cytotoxicity against the cancer cell line, but these compounds showed substantially lower toxicity (from 6-fold to >20-fold) against NHBE cells and no effect on M. fortuitum, suggesting inhibition of one or more host protein(s) required for proliferation of cancer cells and PIV5. The key structural elements identified here may facilitate identification of targets of this highly biologically active scaffold.

  16. Swimming Exercise Alleviated Insulin Resistance by Regulating Tripartite Motif Family Protein 72 Expression and AKT Signal Pathway in Sprague-Dawley Rats Fed with High-Fat Diet

    PubMed Central

    Yang, Bo

    2016-01-01

    We aimed to investigate whether swimming exercise could improve insulin resistance (IR) by regulating tripartite motif family protein 72 (TRIM72) expression and AKT signal pathway in rats fed with high-fat diet. Five-week-old rats were classified into 3 groups: standard diet as control (CON), high-fat diet (HFD), and HFD plus swimming exercise (Ex-HFD). After 8 weeks, glucose infusion rate (GIR), markers of oxidative stress, mRNA and protein expression of TRIM72, protein of IRS, p-AKTSer473, and AKT were determined in quadriceps muscles. Compared with HFD, the GIR, muscle SOD, and GSH-Px were significantly increased (p < 0.05, resp.), whereas muscle MDA and 8-OHdG levels were significantly decreased (p < 0.05 and p < 0.01) in Ex-HFD. Expression levels of TRIM72 mRNA and protein in muscles were significantly reduced (p < 0.05 and p < 0.01), whereas protein expression levels of IRS-1, p-AKTSer473, and AKT were significantly increased in Ex-HFD compared with HFD (p < 0.01, p < 0.01, and p < 0.05). These results suggest that an 8-week swimming exercise improves HFD-induced insulin resistance maybe through a reduction of TRIM72 in skeletal muscle and enhancement of AKT signal transduction. PMID:27843952

  17. Tauroursodeoxycholic acid reduces ER stress by regulating of Akt-dependent cellular prion protein

    PubMed Central

    Yoon, Yeo Min; Lee, Jun Hee; Yun, Seung Pil; Han, Yong-Seok; Yun, Chul Won; Lee, Hyun Jik; Noh, Hyunjin; Lee, Sei-Jung; Han, Ho Jae; Lee, Sang Hun

    2016-01-01

    Although mesenchymal stem cells (MSCs) are a promising cell source for regenerative medicine, ischemia-induced endoplasmic reticulum (ER) stress induces low MSC engraftment and limits their therapeutic efficacy. To overcome this, we investigated the protective effect of tauroursodeoxycholic acid (TUDCA), a bile acid, on ER stress in MSCs in vitro and in vivo. In ER stress conditions, TUDCA treatment of MSCs reduced the activation of ER stress-associated proteins, including GRP78, PERK, eIF2α, ATF4, IRE1α, JNK, p38, and CHOP. In particular, TUDCA inhibited the dissociation between GRP78 and PERK, resulting in reduced ER stress-mediated cell death. Next, to explore the ER stress protective mechanism induced by TUDCA treatment, TUDCA-mediated cellular prion protein (PrPC) activation was assessed. TUDCA treatment increased PrPC expression, which was regulated by Akt phosphorylation. Manganese-dependent superoxide dismutase (MnSOD) expression also increased significantly in response to signaling through the TUDCA-Akt axis. In a murine hindlimb ischemia model, TUDCA-treated MSC transplantation augmented the blood perfusion ratio, vessel formation, and transplanted cell survival more than untreated MSC transplantation did. Augmented functional recovery following MSC transplantation was blocked by PrPC downregulation. This study is the first to demonstrate that TUDCA protects MSCs against ER stress via Akt-dependent PrPC and Akt-MnSOD pathway. PMID:28004805

  18. AKT and oxidative stress team up to kill cancer cells.

    PubMed

    Dolado, Ignacio; Nebreda, Angel R

    2008-12-09

    AKT, a protein kinase frequently hyperactivated in cancer, plays an important role in cell survival and contributes to tumor cell resistance to cytotoxic therapies. A new study in this issue of Cancer Cell shows that AKT also induces the accumulation of oxygen radicals, which can be exploited to selectively kill cancer cells containing high levels of AKT activity.

  19. Effects of different intensities of physical exercise on insulin sensitivity and protein kinase B/Akt activity in skeletal muscle of obese mice

    PubMed Central

    Marinho, Rodolfo; de Moura, Leandro Pereira; Rodrigues, Bárbara de Almeida; Pauli, Luciana Santos Souza; da Silva, Adelino Sanchez Ramos; Ropelle, Eloize Cristina Chiarreotto; de Souza, Claudio Teodoro; Cintra, Dennys Esper Corrêa; Ropelle, Eduardo Rochete; Pauli, José Rodrigo

    2014-01-01

    ABSTRACT Objective: To investigate the effects of different intensities of acute exercise on insulin sensitivity and protein kinase B/Akt activity in skeletal muscle of obese mice. Methods: Swiss mice were randomly divided into four groups, and fed either a standard diet (control group) or high fat diet (obese sedentary group and obese exercise group 1 and 2) for 12 weeks. Two different exercise protocols were used: swimming for 1 hour with or without an overload of 5% body weight. The insulin tolerance test was performed to estimate whole-body sensitivity. Western blot technique was used to determine protein levels of protein kinase B/Akt and phosphorylation by protein Kinase B/Akt in mice skeletal muscle. Results: A single bout of exercise inhibited the high fat diet-induced insulin resistance. There was increase in phosphorylation by protein kinase B/Akt serine, improve in insulin signaling and reduce of fasting glucose in mice that swam for 1 hour without overload and mice that swan for 1 hour with overload of 5%. However, no significant differences were seen between exercised groups. Conclusion: Regardless of intensity, aerobic exercise was able to improve insulin sensitivity and phosphorylation by protein kinase B/Ak, and proved to be a good form of treatment and prevention of type 2 diabetes. PMID:24728251

  20. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals

    PubMed Central

    Kureishi, Yasuko; Luo, Zhengyu; Shiojima, Ichiro; Bialik, Ann; Fulton, David; Lefer, David J.; Sessa, William C.; Walsh, Kenneth

    2010-01-01

    Recent studies suggest that statins can function to protect the vasculature in a manner that is independent of their lipid-lowering activity. We show here that statins rapidly activate the protein kinase Akt/PKB in endothelial cells. Accordingly, simvastatin enhanced phosphorylation of the endogenous Akt substrate endothelial nitric oxide synthase (eNOS), inhibited apoptosis and accelerated vascular structure formation in vitro in an Akt-dependent manner. Similar to vascular endothelial growth factor (VEGF) treatment, both simvastatin administration and enhanced Akt signaling in the endothelium promoted angiogenesis in ischemic limbs of normocholesterolemic rabbits. Therefore, activation of Akt represents a mechanism that can account for some of the beneficial side effects of statins, including the promotion of new blood vessel growth. PMID:10973320

  1. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation.

    PubMed Central

    King, W G; Mattaliano, M D; Chan, T O; Tsichlis, P N; Brugge, J S

    1997-01-01

    Cell attachment to fibronectin stimulates the integrin-dependent interaction of p85-associated phosphatidylinositol (PI) 3-kinase with integrin-dependent focal adhesion kinase (FAK) as well as activation of the Ras/mitogen-activated protein (MAP) kinase pathway. However, it is not known if this PI 3-kinase-FAK interaction increases the synthesis of the 3-phosphorylated phosphoinositides (3-PPIs) or what role, if any, is played by activated PI 3-kinase in integrin signaling. We demonstrate here the integrin-dependent accumulation of the PI 3-kinase products, PI 3,4-bisphosphate [PI(3,4)P2] and PI(3,4,5)P3, as well as activation of AKT kinase, a serine/threonine kinase that can be stimulated by binding of PI(3,4)P2. The PI 3-kinase inhibitors wortmannin and LY294002 significantly decreased the integrin-induced accumulation of the 3-PPIs and activation of AKT kinase, without having significant effects on the levels of PI(4,5)P2 or tyrosine phosphorylation of paxillin. These inhibitors also reduced cell adhesion/spreading onto fibronectin but had no effect on attachment to polylysine. Interestingly, integrin-mediated Erk-2, Mek-1, and Raf-1 activation, but not Ras-GTP loading, was inhibited at least 80% by wortmannin and LY294002. In support of the pharmacologic results, fibronectin activation of Erk-2 and AKT kinases was completely inhibited by overexpression of a dominant interfering p85 subunit of PI 3-kinase. We conclude that integrin-mediated adhesion to fibronectin results in the accumulation of the PI 3-kinase products PI(3,4)P2 and PI(3,4,5)P3 as well as the PI 3-kinase-dependent activation of the kinases Raf-1, Mek-1, Erk-2, and AKT and that PI 3-kinase may function upstream of Raf-1 but downstream of Ras in integrin activation of Erk-2 MAP and AKT kinases. PMID:9234699

  2. A Regulatory Mechanism Involving TBP-1/Tat-Binding Protein 1 and Akt/PKB in the Control of Cell Proliferation

    PubMed Central

    Tolino, Fabio; Bellucci, Luca; Sisto, Luca; Alfano, Daniela; Ragno, Pia; Calabrò, Viola; de Franciscis, Vittorio; La Mantia, Girolama; Pollice, Alessandra

    2011-01-01

    TBP-1 /Tat-Binding Protein 1 (also named Rpt-5, S6a or PSMC3) is a multifunctional protein, originally identified as a regulator of HIV-1-Tat mediated transcription. It is an AAA-ATPase component of the 19S regulative subunit of the proteasome and, as other members of this protein family, fulfils different cellular functions including proteolysis and transcriptional regulation. We and others reported that over expression of TBP-1 diminishes cell proliferation in different cellular contexts with mechanisms yet to be defined. Accordingly, we demonstrated that TBP-1 binds to and stabilizes the p14ARF oncosuppressor increasing its anti-oncogenic functions. However, TBP-1 restrains cell proliferation also in the absence of ARF, raising the question of what are the molecular pathways involved. Herein we demonstrate that stable knock-down of TBP-1 in human immortalized fibroblasts increases cell proliferation, migration and resistance to apoptosis induced by serum deprivation. We observe that TBP-1 silencing causes activation of the Akt/PKB kinase and that in turn TBP-1, itself, is a downstream target of Akt/PKB. Moreover, MDM2, a known Akt target, plays a major role in this regulation. Altogether, our data suggest the existence of a negative feedback loop involving Akt/PKB that might act as a sensor to modulate TBP-1 levels in proliferating cells. PMID:21991300

  3. Insulin inhibits AMPA-induced neuronal damage via stimulation of protein kinase B (Akt).

    PubMed

    Kim, S-J; Han, Y

    2005-02-01

    We designed a series of experiments to explore the neuroprotective effects of insulin. Insulin significantly inhibited the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced neuronal cell damage as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay. However, insulin had little affect on the AMPA-induced glial cell damage. To determine whether insulin inhibits AMPA-induced excitotoxicity, we performed grease-gap recording assays using rat brain slices. In these experiments, insulin also significantly inhibited AMPA-induced depolarization. Flow cytometry and DNA fragmentation assays showed that insulin inhibits AMPA-induced apoptosis and DNA fragmentation, respectively. Insulin stimulated protein kinase B (Akt) activity, whereas AMPA pretreatment did not alter the insulin-stimulated Akt activity. On the contrary, insulin blocked induction of SAPK/JNK, which AMPA stimulated. Taken together, these results suggest that insulin exerts neuroprotective effects by inhibiting AMPA-induced excitotoxicity and apoptosis, possibly by activating Akt and blocking SAPK/JNK.

  4. Crop milk protein is synthesised following activation of the IRS1/Akt/TOR signalling pathway in the domestic pigeon (Columba livia).

    PubMed

    Hu, X-C; Gao, C-Q; Wang, X-H; Yan, H-C; Chen, Z-S; Wang, X-Q

    2016-12-01

    The experiment was conducted to study whether insulin receptor substance 1 (IRS1) / Protein kinase B (Akt)/target of the rapamycin (TOR) signalling pathway activation stimulates crop milk protein synthesis in the domestic pigeon (Columba livia). Crop milk was collected from ten 1-d-old squabs and analysed for nutrient content. During the non-breeding period and the first day of lactation, blood samples were collected from 5 pairs of breeding pigeons and the levels of prolactin and insulin were determined. Crop samples were collected from 5 pairs of breeders at d 14 and 16 of the incubation period and d 1, 3 and 7 of the lactation period. Crop samples were evaluated for changes in crop weight and thickness and changes in the expression patterns of IRS1/Akt/TOR signalling pathway-related proteins. The results demonstrated that prolactin induces a gradual increase in the relative weight and thickness of the crop, with crops reaching a maximum size at the third day of lactation. Pigeon crop milk contains 64.1% crude protein and 29.7% crude fat based on dry weight. Serum prolactin and insulin levels in the lactation period were significantly higher than those in the non-breeding period. Compared with non-breeding pigeons, the expression of the phosphorylated IRS1 phosphorylated Akt, phosphorylated TOR, phosphorylated ribosomal protein S6 kinase, phosphorylated S6, phosphorylated eukaryotic initiation factor 4E binding protein 1 and eukaryotic initiation factor 4E were significantly up-regulated in the crop of pigeons in the lactation period. In conclusion, prolactin might induce changes in crop tissue and form the physiological structure for crop milk synthesis. Furthermore, the synthesis of crop milk protein is regulated by activation of the IRS1/Akt/TOR signalling pathway.

  5. ets-2 Is a Target for an Akt (Protein Kinase B)/Jun N-Terminal Kinase Signaling Pathway in Macrophages of motheaten-viable Mutant Mice

    PubMed Central

    Smith, James L.; Schaffner, Alicia E.; Hofmeister, Joseph K.; Hartman, Matthew; Wei, Guo; Forsthoefel, David; Hume, David A.; Ostrowski, Michael C.

    2000-01-01

    The transcription factor ets-2 was phosphorylated at residue threonine 72 in a colony-stimulating factor 1 (CSF-1)- and mitogen-activated protein kinase-independent manner in macrophages isolated from motheaten-viable (me-v) mice. The CSF-1 and ets-2 target genes coding for Bcl-x, urokinase plasminogen activator, and scavenger receptor were also expressed at high levels independent of CSF-1 addition to me-v cells. Akt (protein kinase B) was constitutively active in me-v macrophages, and an Akt immunoprecipitate catalyzed phosphorylation of ets-2 at threonine 72. The p54 isoform of c-jun N-terminal kinase–stress-activated kinase (JNK- SAPK) coimmunoprecipitated with Akt from me-v macrophages, and treatment of me-v cells with the specific phosphatidylinositol 3-kinase inhibitor LY294002 decreased cell survival, Akt and JNK kinase activities, ets-2 phosphorylation, and Bcl-x mRNA expression. Therefore, ets-2 is a target for phosphatidylinositol 3-kinase–Akt–JNK action, and the JNK p54 isoform is an ets-2 kinase in macrophages. Constitutive ets-2 activity may contribute to the pathology of me-v mice by increasing expression of genes like the Bcl-x gene that promote macrophage survival. PMID:11027273

  6. A Low-Frequency Inactivating Akt2 Variant Enriched in the Finnish Population is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk.

    PubMed

    Manning, Alisa; Highland, Heather M; Gasser, Jessica; Sim, Xueling; Tukiainen, Taru; Fontanillas, Pierre; Grarup, Niels; Rivas, Manuel A; Mahajan, Anubha; Locke, Adam E; Cingolani, Pablo; Pers, Tune H; Viñuela, Ana; Brown, Andrew A; Wu, Ying; Flannick, Jason; Fuchsberger, Christian; Gamazon, Eric R; Gaulton, Kyle J; Im, Hae Kyung; Teslovich, Tanya M; Blackwell, Thomas W; Bork-Jensen, Jette; Burtt, Noël P; Chen, Yuhui; Green, Todd; Hartl, Christopher; Kang, Hyun Min; Kumar, Ashish; Ladenvall, Claes; Ma, Clement; Moutsianas, Loukas; Pearson, Richard D; Perry, John R B; Rayner, N William; Robertson, Neil R; Scott, Laura J; van de Bunt, Martijn; Eriksson, Johan G; Jula, Antti; Koskinen, Seppo; Lehtimäki, Terho; Palotie, Aarno; Raitakari, Olli T; Jacobs, Suzanne Br; Wessel, Jennifer; Chu, Audrey Y; Scott, Robert A; Goodarzi, Mark O; Blancher, Christine; Buck, Gemma; Buck, David; Chines, Peter S; Gabriel, Stacey; Gjesing, Anette P; Groves, Christopher J; Hollensted, Mette; Huyghe, Jeroen R; Jackson, Anne U; Jun, Goo; Justesen, Johanne Marie; Mangino, Massimo; Murphy, Jacquelyn; Neville, Matt; Onofrio, Robert; Small, Kerrin S; Stringham, Heather M; Trakalo, Joseph; Banks, Eric; Carey, Jason; Carneiro, Mauricio O; DePristo, Mark; Farjoun, Yossi; Fennell, Timothy; Goldstein, Jacqueline I; Grant, George; Hrabé de Angelis, Martin; Maguire, Jared; Neale, Benjamin M; Poplin, Ryan; Purcell, Shaun; Schwarzmayr, Thomas; Shakir, Khalid; Smith, Joshua D; Strom, Tim M; Wieland, Thomas; Lindstrom, Jaana; Brandslund, Ivan; Christensen, Cramer; Surdulescu, Gabriela L; Lakka, Timo A; Doney, Alex S F; Nilsson, Peter; Wareham, Nicholas J; Langenberg, Claudia; Varga, Tibor V; Franks, Paul W; Rolandsson, Olov; Rosengren, Anders H; Farook, Vidya S; Thameem, Farook; Puppala, Sobha; Kumar, Satish; Lehman, Donna M; Jenkinson, Christopher P; Curran, Joanne E; Hale, Daniel Esten; Fowler, Sharon P; Arya, Rector; DeFronzo, Ralph A; Abboud, Hanna E; Syvänen, Ann-Christine; Hicks, Pamela J; Palmer, Nicholette D; Ng, Maggie C Y; Bowden, Donald W; Freedman, Barry I; Esko, Tõnu; Mägi, Reedik; Milani, Lili; Mihailov, Evelin; Metspalu, Andres; Narisu, Narisu; Kinnunen, Leena; Bonnycastle, Lori L; Swift, Amy; Pasko, Dorota; Wood, Andrew R; Fadista, João; Pollin, Toni I; Barzilai, Nir; Atzmon, Gil; Glaser, Benjamin; Thorand, Barbara; Strauch, Konstantin; Peters, Annette; Roden, Michael; Müller-Nurasyid, Martina; Liang, Liming; Kriebel, Jennifer; Illig, Thomas; Grallert, Harald; Gieger, Christian; Meisinger, Christa; Lannfelt, Lars; Musani, Solomon K; Griswold, Michael; Taylor, Herman A; Wilson, Gregory; Correa, Adolfo; Oksa, Heikki; Scott, William R; Afzal, Uzma; Tan, Sian-Tsung; Loh, Marie; Chambers, John C; Sehmi, Jobanpreet; Kooner, Jaspal Singh; Lehne, Benjamin; Cho, Yoon Shin; Lee, Jong-Young; Han, Bok-Ghee; Käräjämäki, Annemari; Qi, Qibin; Qi, Lu; Huang, Jinyan; Hu, Frank B; Melander, Olle; Orho-Melander, Marju; Below, Jennifer E; Aguilar, David; Wong, Tien Yin; Liu, Jianjun; Khor, Chiea-Chuen; Chia, Kee Seng; Lim, Wei Yen; Cheng, Ching-Yu; Chan, Edmund; Tai, E Shyong; Aung, Tin; Linneberg, Allan; Isomaa, Bo; Meitinger, Thomas; Tuomi, Tiinamaija; Hakaste, Liisa; Kravic, Jasmina; Jørgensen, Marit E; Lauritzen, Torsten; Deloukas, Panos; Stirrups, Kathleen E; Owen, Katharine R; Farmer, Andrew J; Frayling, Timothy M; O'Rahilly, Stephen P; Walker, Mark; Levy, Jonathan C; Hodgkiss, Dylan; Hattersley, Andrew T; Kuulasmaa, Teemu; Stančáková, Alena; Barroso, Inês; Bharadwaj, Dwaipayan; Chan, Juliana; Chandak, Giriraj R; Daly, Mark J; Donnelly, Peter J; Ebrahim, Shah B; Elliott, Paul; Fingerlin, Tasha; Froguel, Philippe; Hu, Cheng; Jia, Weiping; Ma, Ronald C W; McVean, Gilean; Park, Taesung; Prabhakaran, Dorairaj; Sandhu, Manjinder; Scott, James; Sladek, Rob; Tandon, Nikhil; Teo, Yik Ying; Zeggini, Eleftheria; Watanabe, Richard M; Koistinen, Heikki A; Kesaniemi, Y Antero; Uusitupa, Matti; Spector, Timothy D; Salomaa, Veikko; Rauramaa, Rainer; Palmer, Colin N A; Prokopenko, Inga; Morris, Andrew D; Bergman, Richard N; Collins, Francis S; Lind, Lars; Ingelsson, Erik; Tuomilehto, Jaakko; Karpe, Fredrik; Groop, Leif; Jørgensen, Torben; Hansen, Torben; Pedersen, Oluf; Kuusisto, Johanna; Abecasis, Gonçalo; Bell, Graeme I; Blangero, John; Cox, Nancy J; Duggirala, Ravindranath; Seielstad, Mark; Wilson, James G; Dupuis, Josee; Ripatti, Samuli; Hanis, Craig L; Florez, Jose C; Mohlke, Karen L; Meigs, James B; Laakso, Markku; Morris, Andrew P; Boehnke, Michael; Altshuler, David; McCarthy, Mark I; Gloyn, Anna L; Lindgren, Cecilia M

    2017-03-24

    To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting insulin, a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in fasting plasma insulin (FI) levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-hour insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio=1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.

  7. Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle.

    PubMed

    Tan, Pearl Lin; Shavlakadze, Tea; Grounds, Miranda D; Arthur, Peter G

    2015-05-01

    Oxidative stress, caused by excess reactive oxygen species (ROS), has been hypothesized to cause or exacerbate skeletal muscle wasting in a number of diseases and chronic conditions. ROS, such as hydrogen peroxide, have the potential to affect signal transduction pathways such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt pathway that regulates protein synthesis. Previous studies have found contradictory outcomes for the effect of ROS on the PI3K/Akt signaling pathway, where oxidative stress can either enhance or inhibit Akt phosphorylation. The apparent contradictions could reflect differences in experimental cell types or types of ROS treatments. We replicate both effects in myotubes of cultured skeletal muscle C2C12 cells, and show that increased oxidative stress can either inhibit or enhance Akt phosphorylation. This differential response could be explained: thiol oxidation of Akt, but not the phosphatases PTEN or PP2A, caused a decline in Akt phosphorylation; whereas the thiol oxidation of Akt, PTEN and PP2A increased Akt phosphorylation. These observations indicate that a more complete understanding of the effects of oxidative stress on a signal transduction pathway comes not only from identifying the proteins susceptible to thiol oxidation, but also their relative sensitivity to ROS.

  8. The involvement of Bcl-2 family proteins in AKT-regulated cell survival in cisplatin resistant epithelial ovarian cancer

    PubMed Central

    Dai, Yan; Jin, Shiguang; Li, Xueping; Wang, Daxin

    2017-01-01

    Many studies involving patients with cisplatin-resistant ovarian cancer have shown that AKT activation leads to inhibition of apoptosis. The aim of this study was to examine the potential involvement of the Bcl-2 family proteins in AKT-regulated cell survival in response to cisplatin treatment. Cisplatin-sensitive (PEO1) and cisplatin-resistant (PEO4) cells were taken from ascites of patients with ovarian cancer before cisplatin treatment and after development of chemoresistance. It was found that cisplatin treatment activated the AKT signaling pathway and promoted cell proliferation in cisplatin-resistant EOC cells. When AKT was transfected into nucleus of cisplatin-resistant ovarian cancer cells, DNA-PK was phosphorylated at S473. The activated AKT (pAKT-S473) in these cells inhibited the death signal induced by cisplatin thereby inhibiting cisplatin-mediated apoptosis. Results from this study showed that the combination of cisplatin, DNA-PK inhibitor NU7441, and AKT inhibitor TCN can overcome drug resistance, increase apoptosis, and re-sensitize PEO4 cells to cisplatin treatment. A decrease in apoptotic activity was seen in PEO4 cells when Bad was downregulated by siRNA, which indicated that Bad promotes apoptosis in PEO4 cells. Use of the Bcl-2 inhibitor ABT-737 showed that ABT-737 binds to Bcl-2 but not Mcl-1 and releases Bax/Bak which leads to cell apoptosis. The combination of ABT-737 and cisplatin leads to a significant increase in the death of PEO1 and PEO4 cells. All together, these results indicate that Bcl-2 family proteins are regulators of drug resistance. The combination of cisplatin and Bcl-2 family protein inhibitor could be a strategy for the treatment of cisplatin-resistant ovarian cancer. PMID:27935869

  9. Activation of Akt/protein kinase B mediates the protective effects of mechanical stretching against myocardial ischemia-reperfusion injury

    PubMed Central

    Hao, Jia; Ahn, Hee-Yul

    2012-01-01

    Akt/protein kinase B is a well-known cell survival factor and activated by many stimuli including mechanical stretching. Therefore, we evaluated the cardioprotective effect of a brief mechanical stretching of rat hearts and determined whether activation of Akt through phosphatidylinositol 3-kinase (PI3K) is involved in stretch-induced cardioprotection (SIC). Stretch preconditioning reduced infarct size and improved post-ischemic cardiac function compared to the control group. Phosphorylation of Akt and its downstream substrate, GSK-3β, was increased by mechanical stretching and completely blocked by wortmannin, a PI3K inhibitor. Treatment with lithium or SB216763 (GSK-3β inhibitors) before ischemia induction mimicked the protective effects of SIC on rat heart. Gadolinium (Gd3+), a blocker of stretch-activated ion channels (SACs), inhibited the stretch-induced phosphorylation of Akt and GSK-3β. Furthermore, SIC was abrogated by wortmannin and Gd3+. In vivo stretching induced by an aorto-caval shunt increased Akt phosphorylation and reduced myocardial infarction; these effects were diminished by wortmannin and Gd3+ pretreatment. Our results showed that mechanical stretching can provide cardioprotection against ischemia-reperfusion injury. Additionally, the activation of Akt, which might be regulated by SACs and the PI3K pathway, plays an important role in SIC. PMID:23000580

  10. Activation of Akt/protein kinase B mediates the protective effects of mechanical stretching against myocardial ischemia-reperfusion injury.

    PubMed

    Kim, Chan-Hyung; Hao, Jia; Ahn, Hee-Yul; Kim, Si Wook

    2012-09-01

    Akt/protein kinase B is a well-known cell survival factor and activated by many stimuli including mechanical stretching. Therefore, we evaluated the cardioprotective effect of a brief mechanical stretching of rat hearts and determined whether activation of Akt through phosphatidylinositol 3-kinase(PI3K) is involved in stretch-induced cardioprotection (SIC). Stretch preconditioning reduced infarct size and improved postischemic cardiac function compared to the control group. Phosphorylation of Akt and its downstream substrate, GSK-3β, was increased by mechanical stretching and completely blocked by wortmannin, a PI3K inhibitor. Treatment with lithium or SB216763 (GSK-3β inhibitors) before ischemia induction mimicked the protective effects of SIC on rat heart. Gadolinium (Gd3(+)), a blocker of stretch-activated ion channels (SACs), inhibited the stretch-induced phosphorylation of Akt and GSK-3β. Furthermore, SIC was abrogated by wortmannin and Gd3(+). In vivo stretching induced by an aorto-caval shunt increased Akt phosphorylation and reduced myocardial infarction; these effects were diminished by wortmannin and Gd3(+) pretreatment. Our results showed that mechanical stretching can provide cardioprotection against ischemia-reperfusion injury. Additionally, the activation of Akt, which might be regulated by SACs and the PI3K pathway, plays an important role in SIC.

  11. Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases.

    PubMed

    Mistafa, Oras; Ghalali, Aram; Kadekar, Sandeep; Högberg, Johan; Stenius, Ulla

    2010-09-03

    Akt is an important oncoprotein, and data suggest a critical role for nuclear Akt in cancer development. We have previously described a rapid (3-5 min) and P2X7-dependent depletion of nuclear phosphorylated Akt (pAkt) and effects on downstream targets, and here we studied mechanisms behind the pAkt depletion. We show that cholesterol-lowering drugs, statins, or extracellular ATP, induced a complex and coordinated response in insulin-stimulated A549 cells leading to depletion of nuclear pAkt. It involved protein/lipid phosphatases PTEN, pleckstrin homology domain leucine-rich repeat phosphatase (PHLPP1 and -2), protein phosphatase 2A (PP2A), and calcineurin. We employed immunocytology, immunoprecipitation, and proximity ligation assay techniques and show that PHLPP and calcineurin translocated to the nucleus and formed complexes with Akt within 3 min. Also PTEN translocated to the nucleus and then co-localized with pAkt close to the nuclear membrane. An inhibitor of the scaffolding immunophilin FK506-binding protein 51 (FKBP51) and calcineurin, FK506, prevented depletion of nuclear pAkt. Furthermore, okadaic acid, an inhibitor of PP2A, prevented the nuclear pAkt depletion. Chemical inhibition and siRNA indicated that PHLPP, PP2A, and PTEN were required for a robust depletion of nuclear pAkt, and in prostate cancer cells lacking PTEN, transfection of PTEN restored the statin-induced pAkt depletion. The activation of protein and lipid phosphatases was paralleled by a rapid proliferating cell nuclear antigen (PCNA) translocation to the nucleus, a PCNA-p21(cip1) complex formation, and cyclin D1 degradation. We conclude that these effects reflect a signaling pathway for rapid depletion of pAkt that may stop the cell cycle.

  12. Effects of protein tyrosine phosphatase-PEST are reversed by Akt in T cells.

    PubMed

    Arimura, Yutaka; Shimizu, Kazuhiko; Koyanagi, Madoka; Yagi, Junji

    2014-12-01

    T cell activation is regulated by a balance between phosphorylation and dephosphorylation that is under the control of kinases and phosphatases. Here, we examined the role of a non-receptor-type protein tyrosine phosphatase, PTP-PEST, using retrovirus-mediated gene transduction into murine T cells. Based on observations of vector markers (GFP or Thy1.1), exogenous PTP-PEST-positive CD4(+) T cells appeared within 2 days after gene transduction; the percentage of PTP-PEST-positive cells tended to decrease during a resting period in the presence of IL-2 over the next 2 days. These vector markers also showed much lower expression intensities, compared with control cells, suggesting a correlation between the percent reduction and the low marker expression intensity. A catalytically inactive PTP-PEST mutant also showed the same tendency, and stepwise deletion mutants gradually lost their ability to induce the above phenomenon. On the other hand, these PTP-PEST-transduced cells did not have an apoptotic phenotype. No difference in the total cell numbers was found in the wells of a culture plate containing VEC- and PTP-PEST-transduced T cells. Moreover, serine/threonine kinase Akt, but not the anti-apoptotic molecules Bcl-2 and Bcl-XL, reversed the phenotype induced by PTP-PEST. We discuss the novel mechanism by which Akt interferes with PTP-PEST.

  13. Gecko Proteins Exert Anti-Tumor Effect against Cervical Cancer Cells Via PI3-Kinase/Akt Pathway

    PubMed Central

    Jeong, Ae-Jin; Chung, Chung-Nam; Kim, Hye-Jin; Bae, Kil Soo; Choi, Song; Jun, Woo Jin; Shim, Sang In; Kang, Tae-Hong; Leem, Sun-Hee

    2012-01-01

    Anti-tumor activity of the proteins from Gecko (GP) on cervical cancer cells, and its signaling mechanisms were assessed by viable cell counting, propidium iodide (PI) staining, and Western blot analysis. GP induced the cell death of HeLa cells in a dose-dependent manner while it did not affect the viability of normal cells. Western blot analysis showed that GP decreased the activation of Akt, and co-administration of GP and Akt inhibitors synergistically exerted anti-tumor activities on HeLa cells, suggesting the involvement of PI3-kinase/Akt pathway in GP-induced cell death of the cancer cells. Indeed, the cytotoxic effect of GP against HeLa cells was inhibited by overexpression of constituvely active form of Akt in HeLa cells. The candidates of the functional proteins in GP were analyzed by Mass-spectrum. Taken together, our results suggest that GP elicits anti-tumor activity against HeLa cells by inhibition of PI3-kinase/Akt pathway. PMID:23118562

  14. Novel pharmacodynamic biomarkers for MYCN protein and PI3K/AKT/mTOR pathway signaling in children with neuroblastoma.

    PubMed

    Smith, Jennifer R; Moreno, Lucas; Heaton, Simon P; Chesler, Louis; Pearson, Andrew D J; Garrett, Michelle D

    2016-04-01

    There is an urgent need for improved therapies for children with high-risk neuroblastoma where survival rates remain low. MYCN amplification is the most common genomic change associated with aggressive neuroblastoma and drugs targeting PI3K/AKT/mTOR, to activate MYCN oncoprotein degradation, are entering clinical evaluation. Our aim was to develop and validate pharmacodynamic (PD) biomarkers to evaluate both proof of mechanism and proof of concept for drugs that block PI3K/AKT/mTOR pathway activity in children with neuroblastoma. We have addressed the issue of limited access to tumor biopsies for quantitative detection of protein biomarkers by optimizing a three-color fluorescence activated cell sorting (FACS) method to purify CD45-/GD2+/CD56+ neuroblastoma cells from bone marrow. We then developed a novel quantitative measurement of MYCN protein in these isolated neuroblastoma cells, providing the potential to demonstrate proof of concept for drugs that inhibit PI3K/AKT/mTOR signaling in this disease. In addition we have established quantitative detection of three biomarkers for AKT pathway activity (phosphorylated and total AKT, GSK3β and P70S6K) in surrogate platelet-rich plasma (PRP) from pediatric patients. Together our new approach to neuroblastoma cell isolation for protein detection and suite of PD assays provides for the first time the opportunity for robust, quantitative measurement of protein-based PD biomarkers in this pediatric patient population. These will be ideal tools to support clinical evaluation of PI3K/AKT/mTOR pathway drugs and their ability to target MYCN oncoprotein in upcoming clinical trials in neuroblastoma.

  15. Isoform-specific regulation of adipocyte differentiation by Akt/protein kinase B{alpha}

    SciTech Connect

    Yun, Sung-Ji; Kim, Eun-Kyoung; Tucker, David F.; Kim, Chi Dae; Birnbaum, Morris J.; Bae, Sun Sik

    2008-06-20

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway tightly regulates adipose cell differentiation. Here we show that loss of Akt1/PKB{alpha} in primary mouse embryo fibroblast (MEF) cells results in a defect of adipocyte differentiation. Adipocyte differentiation in vitro and ex vivo was restored in cells lacking both Akt1/PKB{alpha} and Akt2/PKB{beta} by ectopic expression of Akt1/PKB{alpha} but not Akt2/PKB{beta}. Akt1/PKB{alpha} was found to be the major regulator of phosphorylation and nuclear export of FoxO1, whose presence in the nucleus strongly attenuates adipocyte differentiation. Differentiation-induced cell division was significantly abrogated in Akt1/PKB{alpha}-deficient cells, but was restored after forced expression of Akt1/PKB{alpha}. Moreover, expression of p27{sup Kip1}, an inhibitor of the cell cycle, was down regulated in an Akt1/PKB{alpha}-specific manner during adipocyte differentiation. Based on these data, we suggest that the Akt1/PKB{alpha} isoform plays a major role in adipocyte differentiation by regulating FoxO1 and p27{sup Kip1}.

  16. PTH-related protein upregulates integrin {alpha}6{beta}4 expression and activates Akt in breast cancer cells

    SciTech Connect

    Shen Xiaoli; Falzon, Miriam . E-mail: mfalzon@utmb.edu

    2006-11-15

    Breast cancer is the most common carcinoma that metastasizes to bone. Tumor-produced parathyroid hormone-related protein (PTHrP), a known stimulator of osteoclastic bone resorption, is a major mediator of the osteolytic process in breast cancer. We have previously shown that PTHrP increases breast cancer cell proliferation, survival, migration, and pro-invasive integrin {alpha}6{beta}4 expression. To determine the role of integrin {alpha}6{beta}4 in these PTHrP-mediated effects, we utilized two strategies to modulate expression of the {alpha}6 and {beta}4 subunits in parental and PTHrP-overexpressing MDA-MB-231 and MCF-7 cells: overexpression of {alpha}6{beta}4 by transfection with constructs encoding the {alpha}6 and {beta}4 subunits, and suppression of endogenous {alpha}6{beta}4 expression by transfection with siRNAs targeting these subunits. We now show that the effects of PTHrP are mediated via upregulation of integrin {alpha}6{beta}4 expression. We also show that integrin {alpha}6{beta}4 expression is modulated at the mRNA level, indicating a transcriptional and/or post-transcriptional mechanism of action for PTHrP. PTHrP expression also increased the levels of phosphorylated Akt, with a consequent increase in the levels of phosphorylated (inactive) glycogen synthase kinase-3 (GSK-3). The role of PTHrP in breast cancer growth and metastasis may thus be mediated via upregulation of integrin {alpha}6{beta}4 expression and Akt activation, with consequent inactivation of GSK-3.

  17. Protein O-fucosyltransferase 1 promotes trophoblast cell proliferation through activation of MAPK and PI3K/Akt signaling pathways.

    PubMed

    Liu, Chang; Liang, Xiaohua; Wang, Jiao; Zheng, Qin; Zhao, Yue; Khan, Muhammad Noman; Liu, Shuai; Yan, Qiu

    2017-04-01

    Protein O-fucosylation is an important glycosylation modification and plays an important role in embryonic development. Protein O-fucosyltransferase 1 (poFUT1) is an essential enzyme that catalyzes the synthesis of protein O-fucosylation. Our previous studies showed that poFUT1 promoted trophoblast cell migration and invasion at the fetal-maternal interface, but the role of poFUT1 in trophoblast cells proliferation remains unclear. Here, immunohistochemistry data showed that poFUT1 and PCNA levels were decreased in abortion patient's trophoblasts compared with women with normal pregnancies. Our results also showed that poFUT1 promoted trophoblast cell proliferation by CCK-8 assay and cell cycle analysis. PoFUT1 increased the phosphorylation of ERK1/2, p38 MAPK, and PI3K/Akt, while inhibitors of ERK1/2(PD98059), p38 MAPK(SB203580), and PI3K (LY294002) prevented ERK1/2, p38 MAPK, and Akt phosphorylation. Moreover, poFUT1 stimulation of trophoblast cells proliferation correlated with increased cell cycle progression by promoting cells into S-phase. The underlying mechanism involved increased cyclin D1, cyclin E, CDK 2, CDK 4, and pRb expression and decreased levels of the cyclin-dependent kinase inhibitors p21 and p27, which were blocked by inhibitors of the upstream signaling molecules MAPK and PI3K/Akt. In conclusion, poFUT1 promotes trophoblast cell proliferation by activating MAPK and PI3K/Akt signaling pathways.

  18. Thioredoxin-interacting protein regulates lipid metabolism via Akt/mTOR pathway in diabetic kidney disease.

    PubMed

    Du, Chunyang; Wu, Ming; Liu, Huan; Ren, Yunzhuo; Du, Yunxia; Wu, Haijiang; Wei, Jinying; Liu, Chuxin; Yao, Fang; Wang, Hui; Zhu, Yan; Duan, Huijun; Shi, Yonghong

    2016-10-01

    Abnormal lipid metabolism contributes to the renal lipid accumulation, which is associated with diabetic kidney disease, but its precise mechanism remains unclear. The growing evidence demonstrates that thioredoxin-interacting protein is involved in regulating cellular glucose and lipid metabolism. Here, we investigated the effects of thioredoxin-interacting protein on lipid accumulation in diabetic kidney disease. In contrast to the diabetic wild-type mice, the physical and biochemical parameters were improved in the diabetic thioredoxin-interacting protein knockout mice. The increased renal lipid accumulation, expression of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element binding protein-1, and phosphorylated Akt and mTOR associated with diabetes in wild-type mice was attenuated in diabetic thioredoxin-interacting protein knockout mice. Furthermore, thioredoxin-interacting protein knockout significantly increased the expression of peroxisome proliferator-activated receptor-α, acyl-coenzyme A oxidase 1 and carnitine palmitoyltransferaser 1 in diabetic kidneys. In vitro experiments, using HK-2 cells, revealed that knockdown of thioredoxin-interacting protein inhibited high glucose-mediated lipid accumulation, expression of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element binding protein-1, as well as activation of Akt and mTOR. Moreover, knockdown of thioredoxin-interacting protein reversed high glucose-induced reduction of peroxisome proliferator-activated receptor-α, acyl-coenzyme A oxidase 1 and carnitine palmitoyltransferaser 1 expression in HK-2 cells. Importantly, blockade of Akt/mTOR signaling pathway with LY294002, a specific PI3K inhibitor, replicated these effects of thioredoxin-interacting protein silencing. Taken together, these data suggest that thioredoxin-interacting protein deficiency alleviates diabetic renal lipid accumulation through regulation of Akt/mTOR pathway, thioredoxin

  19. Activation of protein kinase B (PKB/Akt) and risk of lung cancer among rural women in India who cook with biomass fuel.

    PubMed

    Roychoudhury, Sanghita; Mondal, Nandan Kumar; Mukherjee, Sayali; Dutta, Anindita; Siddique, Shabana; Ray, Manas Ranjan

    2012-02-15

    The impact of indoor air pollution (IAP) from biomass fuel burning on the risk of carcinogenesis in the airways has been investigated in 187 pre-menopausal women (median age 34years) from eastern India who cooked exclusively with biomass and 155 age-matched control women from same locality who cooked with cleaner fuel liquefied petroleum gas. Compared with control, Papanicolau-stained sputum samples showed 3-times higher prevalence of metaplasia and 7-times higher prevalence of dysplasia in airway epithelial cell (AEC) of biomass users. Immunocytochemistry showed up-regulation of phosphorylated Akt (p-Akt(ser473) and p-Akt(thr308)) proteins in AEC of biomass users, especially in metaplastic and dysplastic cells. Compared with LPG users, biomass-using women showed marked rise in reactive oxygen species (ROS) generation and depletion of antioxidant enzyme, superoxide dismutase (SOD) indicating oxidative stress. There were 2-5 times more particulate pollutants (PM(10) and PM(2.5)), 72% more nitrogen dioxide and 4-times more particulate-laden benzo(a)pyrene, but no change in sulfur dioxide in indoor air of biomass-using households, and high performance liquid chromatography estimated 6-fold rise in the concentration of benzene metabolite trans,trans-muconic acid (t,t-MA) in urine of biomass users. Metaplasia and dysplasia, p-Akt expression and ROS generation were positively associated with PM and t,t-MA levels. It appears that cumulative exposure to biomass smoke increases the risk of lung carcinogenesis via oxidative stress-mediated activation of Akt signal transduction pathway.

  20. REDD1 enhances protein phosphatase 2A-mediated dephosphorylation of Akt to repress mTORC1 signaling

    PubMed Central

    Dennis, Michael D.; Coleman, Catherine S.; Berg, Arthur; Jefferson, Leonard S.; Kimball, Scot R.

    2014-01-01

    The protein kinase mTOR (mechanistic target of rapamycin) in complex 1 (mTORC1) promotes cell growth and proliferation in response to anabolic stimuli, including growth factors and nutrients. Growth factors activate mTORC1 by stimulating the kinase Akt, which phosphorylates and inhibits the tuberous sclerosis complex (TSC; which is comprised of TSC1, TSC2, and TBC1D7), thereby stimulating the mTORC1 activator Rheb. Here, we identified the mechanism through which REDD1 (regulated in DNA damage and development 1) represses the mTORC1 signaling pathway. We found that REDD1 promoted the protein phosphatase 2A (PP2A)-dependent dephosphorylation of Akt at Thr308 but not at Ser473. Consistent with previous studies showing that phosphorylation of Akt on Thr308, but not Ser473, is necessary for phosphorylation of TSC2, we observed a REDD1-dependent reduction in the phosphorylation of TSC2 and subsequently in the activity of Rheb. REDD1 and PP2A coimmunoprecipitated with Akt from wild-type but not REDD1-knockout mouse embryonic fibroblasts, suggesting that REDD1 may act as a targeting protein for the catalytic subunit of PP2A. Furthermore, binding to both Akt and PP2A was essential for REDD1 to repress signaling to mTORC1. Overall, the results demonstrate that REDD1 acts not just as a repressor of mTORC1, but also as a constant modulator of the phosphorylation of Akt in response to growth factors and nutrients. PMID:25056877

  1. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade

    PubMed Central

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-01-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536] PMID:26246284

  2. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    PubMed

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-09-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536].

  3. TCR-induced Akt serine 473 phosphorylation is regulated by protein kinase C-alpha

    SciTech Connect

    Yang, Lifen; Qiao, Guilin; Ying, Haiyan; Zhang, Jian; Yin, Fei

    2010-09-10

    Research highlights: {yields} Conventional PKC positively regulates TCR-induced phosphorylation of Akt. {yields} PKC-alpha is the PDK-2 responsible for phosphorylating Akt at Ser{sup 473} upon TCR stimulation. {yields} Knockdown of PKC-alpha decreases TCR-induced Akt phosphorylation. -- Abstract: Akt signaling plays a central role in T cell functions, such as proliferation, apoptosis, and regulatory T cell development. Phosphorylation at Ser{sup 473} in the hydrophobic motif, along with Thr{sup 308} in its activation loop, is considered necessary for Akt function. It is widely accepted that phosphoinositide-dependent kinase 1 (PDK-1) phosphorylates Akt at Thr{sup 308}, but the kinase(s) responsible for phosphorylating Akt at Ser{sup 473} (PDK-2) remains elusive. The existence of PDK-2 is considered to be specific to cell type and stimulus. PDK-2 in T cells in response to TCR stimulation has not been clearly defined. In this study, we found that conventional PKC positively regulated TCR-induced Akt Ser{sup 473} phosphorylation. PKC-alpha purified from T cells can phosphorylate Akt at Ser{sup 473} in vitro upon TCR stimulation. Knockdown of PKC-alpha in T-cell-line Jurkat cells reduced TCR-induced phosphorylation of Akt as well as its downstream targets. Thus our results suggest that PKC-alpha is a candidate for PDK-2 in T cells upon TCR stimulation.

  4. Notch1 receptor regulates AKT protein activation loop (Thr308) dephosphorylation through modulation of the PP2A phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell acute lymphoblastic leukemia cells.

    PubMed

    Hales, Eric C; Orr, Steven M; Larson Gedman, Amanda; Taub, Jeffrey W; Matherly, Larry H

    2013-08-02

    Notch1 activating mutations occur in more than 50% of T-cell acute lymphoblastic leukemia (T-ALL) cases and increase expression of Notch1 target genes, some of which activate AKT. HES1 transcriptionally silences phosphatase and tensin homolog (PTEN), resulting in AKT activation, which is reversed by Notch1 inhibition with γ-secretase inhibitors (GSIs). Mutational loss of PTEN is frequent in T-ALL and promotes resistance to GSIs due to AKT activation. GSI treatments increased AKT-Thr(308) phosphorylation and signaling in PTEN-deficient, GSI-resistant T-ALL cell lines (Jurkat, CCRF-CEM, and MOLT3), suggesting that Notch1 represses AKT independent of its PTEN transcriptional effects. AKT-Thr(308) phosphorylation and downstream signaling were also increased by knocking down Notch1 in Jurkat (N1KD) cells. This was blocked by treatment with the AKT inhibitor perifosine. The PI3K inhibitor wortmannin and the protein phosphatase type 2A (PP2A) inhibitor okadaic acid both impacted AKT-Thr(308) phosphorylation to a greater extent in nontargeted control than N1KD cells, suggesting decreased dephosphorylation of AKT-Thr(308) by PP2A in the latter. Phosphorylations of AMP-activated protein kinaseα (AMPKα)-Thr(172) and p70S6K-Thr(389), both PP2A substrates, were also increased in both N1KD and GSI-treated cells and responded to okadaic acid treatment. A transcriptional regulatory mechanism was implied because ectopic expression of dominant-negative mastermind-like protein 1 increased and wild-type HES1 decreased phosphorylation of these PP2A targets. This was independent of changes in PP2A subunit levels or in vitro PP2A activity, but was accompanied by decreased association of PP2A with AKT in N1KD cells. These results suggest that Notch1 can regulate PP2A dephosphorylation of critical cellular regulators including AKT, AMPKα, and p70S6K.

  5. Activation of protein kinase B (PKB/Akt) and risk of lung cancer among rural women in India who cook with biomass fuel

    SciTech Connect

    Roychoudhury, Sanghita; Mondal, Nandan Kumar; Mukherjee, Sayali; Dutta, Anindita; Siddique, Shabana; Ray, Manas Ranjan

    2012-02-15

    The impact of indoor air pollution (IAP) from biomass fuel burning on the risk of carcinogenesis in the airways has been investigated in 187 pre-menopausal women (median age 34 years) from eastern India who cooked exclusively with biomass and 155 age-matched control women from same locality who cooked with cleaner fuel liquefied petroleum gas. Compared with control, Papanicolau-stained sputum samples showed 3-times higher prevalence of metaplasia and 7-times higher prevalence of dysplasia in airway epithelial cell (AEC) of biomass users. Immunocytochemistry showed up-regulation of phosphorylated Akt (p-Akt{sup ser473} and p-Akt{sup thr308}) proteins in AEC of biomass users, especially in metaplastic and dysplastic cells. Compared with LPG users, biomass-using women showed marked rise in reactive oxygen species (ROS) generation and depletion of antioxidant enzyme, superoxide dismutase (SOD) indicating oxidative stress. There were 2–5 times more particulate pollutants (PM{sub 10} and PM{sub 2.5}), 72% more nitrogen dioxide and 4-times more particulate-laden benzo(a)pyrene, but no change in sulfur dioxide in indoor air of biomass-using households, and high performance liquid chromatography estimated 6-fold rise in the concentration of benzene metabolite trans,trans-muconic acid (t,t-MA) in urine of biomass users. Metaplasia and dysplasia, p-Akt expression and ROS generation were positively associated with PM and t,t-MA levels. It appears that cumulative exposure to biomass smoke increases the risk of lung carcinogenesis via oxidative stress-mediated activation of Akt signal transduction pathway. -- Highlights: ► Carcinogenesis in airway cells was examined in biomass and LPG using women. ► Metaplasia and dysplasia of epithelial cells were more prevalent in biomass users. ► Change in airway cytology was associated with oxidative stress and Akt activation. ► Biomass users had greater exposure to respirable PM, B(a)P and benzene. ► Cooking with biomass

  6. High fat diet reduces neuroprotection of isoflurane post-treatment: role of carboxyl-terminal modulator protein-Akt signaling

    PubMed Central

    Yu, Hai; Deng, Jiao; Zuo, Zhiyi

    2014-01-01

    Objective High fat diet (HFD) contributes to the increased prevalence of obesity and hyperlipidemia in young adults, a possible cause for their recent increase in stroke. Isoflurane post-treatment provides neuroprotection. We determined whether isoflurane post-treatment induced neuroprotection in HFD-fed mice. Design and Methods Six-week old CD-1 male mice were fed HFD or regular diet (RD) for 5 or 10 weeks. Their hippocampal slices (400 µm) were subjected to oxygen-glucose deprivation (OGD). Some slices were exposed to isoflurane for 30 min immediately after OGD. Some mice had a 90-min middle cerebral arterial occlusion and were post-treated with 2% isoflurane for 30 min. Results OGD time-dependently induced cell injury. This injury was dose-dependently reduced by isoflurane. The effect was apparent at 1% or 2% isoflurane in RD-fed mice but required 3% isoflurane in HFD-fed mice. HFD influenced the isoflurane effects in DG. OGD increased carboxyl-terminal modulator protein (CTMP), an Akt inhibitor, and decreased Akt signaling. Isoflurane reduced these effects. LY294002, an Akt activation inhibitor, attenuated the isoflurane effects. HFD increased CTMP and reduced Akt signaling. Isoflurane improved neurological outcome in the RD-fed mice but not in the HFD-fed mice. Conclusions HFD attenuated isoflurane post-treatment-induced neuroprotection possibly due to decreased prosurvival Akt signaling. PMID:25142024

  7. Effects of doxepin on brain-derived neurotrophic factor, tumor necrosis factor alpha, mitogen-activated protein kinase 14, and AKT1 genes expression in rat hippocampus

    PubMed Central

    Eidelkhani, Nastaran; Radahmadi, Maryam; Kazemi, Mohammad; Rafiee, Laleh; Alaei, Hojjatallah; Reisi, Parham

    2015-01-01

    Background: It has been suggested that doxepin in addition to enhancement of noradrenaline and serotonin levels may have neuroprotective effects. Therefore, this study investigated the effect of doxepin on gene expression of brain-derived neurotrophic factor (BDNF), tumor necrosis factor alpha (TNF-α), mitogen-activated protein kinase 14 (MAPK14), and serine-threonine protein kinase AKT1 in rat hippocampus. Materials and Methods: Male rats were divided randomly into three groups: Control, doxepin 1 mg/kg, and doxepin 5 mg/kg. Rats received an i.p injection of doxepin for 21 days. Then the hippocampi were dissected for the measurement of the expression of BDNF, TNF-α, MAPK14, and AKT1 genes. Results: Our results showed no significant effects of doxepin on gene expression of BDNF, TNF-α, MAPK14, and AKT1 genes in the hippocampus. Conclusions: These results did not show significant effects of doxepin on the genes that affect the neuronal survival in intact animals. However, more studies need to be done, especially in models associated with neuronal damage. PMID:26601091

  8. A Low-Level Carbon Dioxide Laser Promotes Fibroblast Proliferation and Migration through Activation of Akt, ERK, and JNK

    PubMed Central

    Shingyochi, Yoshiaki; Kanazawa, Shigeyuki; Tajima, Satoshi; Tanaka, Rica; Mizuno, Hiroshi; Tobita, Morikuni

    2017-01-01

    Background Low-level laser therapy (LLLT) with various types of lasers promotes fibroblast proliferation and migration during the process of wound healing. Although LLLT with a carbon dioxide (CO2) laser was also reported to promote wound healing, the underlying mechanisms at the cellular level have not been previously described. Herein, we investigated the effect of LLLT with a CO2 laser on fibroblast proliferation and migration. Materials and Methods Cultured human dermal fibroblasts were prepared. MTS and cell migration assays were performed with fibroblasts after LLLT with a CO2 laser at various doses (0.1, 0.5, 1.0, 2.0, or 5.0 J/cm2) to observe the effects of LLLT with a CO2 laser on the proliferation and migration of fibroblasts. The non-irradiated group served as the control. Moreover, western blot analysis was performed using fibroblasts after LLLT with a CO2 laser to analyze changes in the activities of Akt, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK), which are signaling molecules associated with cell proliferation and migration. Finally, the MTS assay, a cell migration assay, and western blot analysis were performed using fibroblasts treated with inhibitors of Akt, ERK, or JNK before LLLT with a CO2 laser. Results In MTS and cell migration assays, fibroblast proliferation and migration were promoted after LLLT with a CO2 laser at 1.0 J/cm2. Western blot analysis revealed that Akt, ERK, and JNK activities were promoted in fibroblasts after LLLT with a CO2 laser at 1.0 J/cm2. Moreover, inhibition of Akt, ERK, or JNK significantly blocked fibroblast proliferation and migration. Conclusions These findings suggested that LLLT with a CO2 laser would accelerate wound healing by promoting the proliferation and migration of fibroblasts. Activation of Akt, ERK, and JNK was essential for CO2 laser-induced proliferation and migration of fibroblasts. PMID:28045948

  9. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Sorescu, George; Boyd, Nolan; Shiojima, Ichiro; Walsh, Kenneth; Du, Jie; Jo, Hanjoong

    2002-01-01

    Recently, we have shown that shear stress stimulates NO(*) production by the protein kinase B/Akt (Akt)-dependent mechanisms in bovine aortic endothelial cells (BAEC) (Go, Y. M., Boo, Y. C., Park, H., Maland, M. C., Patel, R., Pritchard, K. A., Jr., Fujio, Y., Walsh, K., Darley-Usmar, V., and Jo, H. (2001) J. Appl. Physiol. 91, 1574-1581). Akt has been believed to regulate shear-dependent production of NO(*) by directly phosphorylating endothelial nitric-oxide synthase (eNOS) at the Ser(1179) residue (eNOS-S(1179)), but a critical evaluation using specific inhibitors or dominant negative mutants (Akt(AA) or Akt(AAA)) has not been reported. In addition, other kinases, including protein kinase A (PKA) and AMP kinase have also shown to phosphorylate eNOS-S(1179). Here, we show that shear-dependent phosphorylation of eNOS-S(1179) is mediated by an Akt-independent, but a PKA-dependent, mechanism. Expression of Akt(AA) or Akt(AAA) in BAEC by using recombinant adenoviral constructs inhibited phosphorylation of eNOS-S(1179) if cells were stimulated by vascular endothelial growth factor (VEGF), but not by shear stress. As shown before, expression of Akt(AA) inhibited shear-dependent NO(*) production, suggesting that Akt is still an important regulator in NO production. Further studies showed that a selective inhibitor of PKA, H89, inhibited shear-dependent phosphorylation of eNOS-S(1179) and NO(*) production. In contrast, H89 did not inhibit phosphorylation of eNOS-S(1179) induced by expressing a constitutively active Akt mutant (Akt(Myr)) in BAEC, showing that the inhibitor did not affect the Akt pathway. 8-Bromo-cAMP alone phosphorylated eNOS-S(1179) within 5 min without activating Akt, in an H89-sensitive manner. Collectively, these results demonstrate that shear stimulates phosphorylation of eNOS-S(1179) in a PKA-dependent, but Aktindependent manner, whereas the NO(*) production is regulated by the mechanisms dependent on both PKA and Akt. A coordinated interaction

  10. Effects of SIRT1 gene knock-out via activation of SREBP2 protein-mediated PI3K/AKT signaling on osteoarthritis in mice.

    PubMed

    Yu, Fei; Zeng, Hui; Lei, Ming; Xiao, De-Ming; Li, Wei; Yuan, Hao; Lin, Jian-Jing

    2016-10-01

    This study investigated the effects of SIRT1 gene knock-out on osteoarthritis in mice, and the possible roles of SREBP2 protein and the PI3K/AKT signaling pathway in the effects. Mice were randomly divided into a normal group and a SIRT1 gene knock-out group (6 mice in each group). In these groups, one side of the knee anterior cruciate ligament was traversed, and the ipsilateral medial meniscus was cut to establish an osteoarthritis model of knee joint. The countralateral synovial bursa was cut out, serving as controls. The knee joint specimens were then divided into four groups: SIRT1(+/+) control group (group A, n=6); SIRT1(+/+) osteoarthritis group (group B, n=6); SIRT1(-/-) control group (group C, n=6); SIRT1(-/-) osteoarthritis group (group D, n=6). HE staining, Masson staining, Safranin O-Fast Green staining and Van Gieson staining were used to observe the morphological changes in the articular cartilage of the knee. Immunohistochemical staining was employed to detect the expression of SIRT1, SREBP2, VEGF, AKT, HMGCR and type II collagen proteins. SA-β-gal staining was utilized to evaluate chondrocyte aging. The results showed clear knee joint cartilage destruction and degeneration in the SIRT1(-/-) osteoarthritis group. The tidal line was twisted and displaced anteriorly. Type II collagen was destroyed and distributed unevenly. Compared with the SIRT1(+/+) osteoarthritis group and SIRT1(-/-) control group, SIRT1 protein expression was not obviously changed in the SIRT1(-/-) osteoarthritis group (P>0.05), while the expression levels of the SREBP2, VEGF and HMGCR proteins were significantly increased (P<0.05) and the levels of AKT and type II collagen proteins were significantly decreased (P<0.05). SIRT1 gene knock-out may aggravate cartilage degeneration in osteoarthritis by activating the SREBP2 protein-mediated PI3K/AKT signalling pathway, suggesting that SIRT1 gene may play a protective role against osteoarthritis.

  11. TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKT

    PubMed Central

    Hill, Richard; Madureira, Patricia A.; Ferreira, Bibiana; Baptista, Inês; Machado, Susana; Colaço, Laura; dos Santos, Marta; Liu, Ningshu; Dopazo, Ana; Ugurel, Selma; Adrienn, Angyal; Kiss-Toth, Endre; Isbilen, Murat; Gure, Ali O.; Link, Wolfgang

    2017-01-01

    Intrinsic and acquired resistance to chemotherapy is the fundamental reason for treatment failure for many cancer patients. The identification of molecular mechanisms involved in drug resistance or sensitization is imperative. Here we report that tribbles homologue 2 (TRIB2) ablates forkhead box O activation and disrupts the p53/MDM2 regulatory axis, conferring resistance to various chemotherapeutics. TRIB2 suppression is exerted via direct interaction with AKT a key signalling protein in cell proliferation, survival and metabolism pathways. Ectopic or intrinsic high expression of TRIB2 induces drug resistance by promoting phospho-AKT (at Ser473) via its COP1 domain. TRIB2 expression is significantly increased in tumour tissues from patients correlating with an increased phosphorylation of AKT, FOXO3a, MDM2 and an impaired therapeutic response. This culminates in an extremely poor clinical outcome. Our study reveals a novel regulatory mechanism underlying drug resistance and suggests that TRIB2 functions as a regulatory component of the PI3K network, activating AKT in cancer cells. PMID:28276427

  12. Protein Phosphatase 2A Reactivates FOXO3a through a Dynamic Interplay with 14-3-3 and AKT

    PubMed Central

    Singh, Amrik; Ye, Min; Bucur, Octavian; Zhu, Shudong; Tanya Santos, Maria; Rabinovitz, Isaac; Wei, Wenyi; Gao, Daming; Hahn, William C.

    2010-01-01

    Forkhead box transcription factor FOXO3a, a key regulator of cell survival, is regulated by reversible phosphorylation and subcellular localization. Although the kinases regulating FOXO3a activity have been characterized, the role of protein phosphatases (PP) in the control of FOXO3a subcellular localization and function is unknown. In this study, we detected a robust interaction between FOXO3a and PP2A. We further demonstrate that 14-3-3, while not impeding the interaction between PP2A and FOXO3a, restrains its activity toward AKT phosphorylation sites T32/S253. Disruption of PP2A function revealed that after AKT inhibition, PP2A-mediated dephosphorylation of T32/S253 is required for dissociation of 14-3-3, nuclear translocation, and transcriptional activation of FOXO3a. Our findings reveal that distinct phosphatases dephosphorylate conserved AKT motifs within the FOXO family and that PP2A is entwined in a dynamic interplay with AKT and 14-3-3 to directly regulate FOXO3a subcellular localization and transcriptional activation. PMID:20110348

  13. The MYC-Associated Protein CDCA7 Is Phosphorylated by AKT To Regulate MYC-Dependent Apoptosis and Transformation

    PubMed Central

    Gill, R. Montgomery; Gabor, Timothy V.; Couzens, Amber L.

    2013-01-01

    Cell division control protein A7 (CDCA7) is a recently identified target of MYC-dependent transcriptional regulation. We have discovered that CDCA7 associates with MYC and that this association is modulated in a phosphorylation-dependent manner. The prosurvival kinase AKT phosphorylates CDCA7 at threonine 163, promoting binding to 14-3-3, dissociation from MYC, and sequestration to the cytoplasm. Upon serum withdrawal, induction of CDCA7 expression in the presence of MYC sensitized cells to apoptosis, whereas CDCA7 knockdown reduced MYC-dependent apoptosis. The transformation of fibroblasts by MYC was reduced by coexpression of CDCA7, while the non-MYC-interacting protein Δ(156–187)-CDCA7 largely inhibited MYC-induced transformation. These studies provide insight into a new mechanism by which AKT signaling to CDCA7 could alter MYC-dependent growth and transformation, contributing to tumorigenesis. PMID:23166294

  14. Advanced glycation end products impair function of late endothelial progenitor cells through effects on protein kinase Akt and cyclooxygenase-2

    SciTech Connect

    Chen Qin; Dong Li; Wang Lian; Kang Lina; Xu Biao

    2009-04-03

    Endothelial progenitor cells (EPCs) exhibit impaired function in the context of diabetes, and advanced glycation end products (AGEs), which accumulate in diabetes, may contribute to this. In the present study, we investigated the mechanism by which AGEs impair late EPC function. EPCs from human umbilical cord blood were isolated, and incubated with AGE-modified albumin (AGE-albumin) at different concentrations found physiologically in plasma. Apoptosis, migration, and tube formation assays were used to evaluate EPC function including capacity for vasculogenesis, and expression of the receptor for AGEs (RAGE), Akt, endothelial nitric oxide synthase (eNOS), and cycloxygenase-2 (COX-2) were determined. Anti-RAGE antibody was used to block RAGE function. AGE-albumin concentration-dependently enhanced apoptosis and depressed migration and tube formation, but did not affect proliferation, of late EPCs. High AGE-albumin increased RAGE mRNA and protein expression, and decreased Akt and COX-2 protein expression, whilst having no effect on eNOS mRNA or protein in these cells. These effects were inhibited by co-incubation with anti-RAGE antibody. These results suggest that RAGE mediates the AGE-induced impairment of late EPC function, through down-regulation of Akt and COX-2 in these cells.

  15. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  16. Linoleic acid permeabilizes gastric epithelial cells by increasing connexin 43 levels in the cell membrane via a GPR40- and Akt-dependent mechanism.

    PubMed

    Puebla, Carlos; Cisterna, Bruno A; Salas, Daniela P; Delgado-López, Fernando; Lampe, Paul D; Sáez, Juan C

    2016-05-01

    Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC activity of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintains the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt.

  17. SRPK1 and Akt Protein Kinases Phosphorylate the RS Domain of Lamin B Receptor with Distinct Specificity: A Combined Biochemical and In Silico Approach

    PubMed Central

    Nikolakaki, Eleni; Vlassi, Metaxia; Giannakouros, Thomas

    2016-01-01

    Activated Akt has been previously implicated in acting on RS domain-containing proteins. However, it has been questioned whether its action is direct or it is mediated by co-existing SR kinase activity. To address this issue we studied in detail the phosphorylation of Lamin B Receptor (LBR) by Akt. Using synthetic peptides and a set of recombinant proteins expressing mutants of the LBR RS domain we now demonstrate that while all serines of the RS domain represent more or less equal phosphoacceptor sites for SRPK1, Ser80 and Ser82 are mainly targeted by Akt. 3D-modeling combined with molecular dynamics (MD) simulations show that amongst short, overlapping LBR RS-containing peptides complying with the minimum Akt recognition consensus sequence, only those bearing phosphosites either at Ser80 or Ser82 are able to fit into the active site of Akt, at least as effectively as its known substrate, GSK3-β. Combined our results provide evidence that Akt kinases directly phosphorylate an RS domain-containing protein and that both the residues N-terminal the phosphosite and at position +1 are essential for Akt specificity, with the latter substrate position being compatible with the arginine residue of RS-repeats. PMID:27105349

  18. Inhibition of Protein Kinase Akt1 by Apoptosis Signal-regulating Kinase-1 (ASK1) Is Involved in Apoptotic Inhibition of Regulatory Volume Increase*

    PubMed Central

    Subramanyam, Muthangi; Takahashi, Nobuyuki; Hasegawa, Yuichi; Mohri, Tatsuma; Okada, Yasunobu

    2010-01-01

    Most animal cell types regulate their cell volume after an osmotic volume change. The regulatory volume increase (RVI) occurs through uptake of NaCl and osmotically obliged water after osmotic shrinkage. However, apoptotic cells undergo persistent cell shrinkage without showing signs of RVI. Persistence of the apoptotic volume decrease is a prerequisite to apoptosis induction. We previously demonstrated that volume regulation is inhibited in human epithelial HeLa cells stimulated with the apoptosis inducer. Here, we studied signaling mechanisms underlying the apoptotic inhibition of RVI in HeLa cells. Hypertonic stimulation was found to induce phosphorylation of a Ser/Thr protein kinase Akt (protein kinase B). Shrinkage-induced Akt activation was essential for RVI induction because RVI was suppressed by an Akt inhibitor, expression of a dominant negative form of Akt, or small interfering RNA-mediated knockdown of Akt1 (but not Akt2). Staurosporine, tumor necrosis factor-α, or a Fas ligand inhibited both RVI and hypertonicity-induced Akt activation in a manner sensitive to a scavenger for reactive oxygen species (ROS). Any of apoptosis inducers also induced phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) in a ROS-dependent manner. Suppression of (ASK1) expression blocked the effects of apoptosis, in hypertonic conditions, on both RVI induction and Akt activation. Thus, it is concluded that in human epithelial cells, shrinkage-induced activation of Akt1 is involved in the RVI process and that apoptotic inhibition of RVI is caused by inhibition of Akt activation, which results from ROS-mediated activation of ASK1. PMID:20048146

  19. Down-regulation of ERK1/2 and AKT-mediated X-ray repair cross-complement group 1 protein (XRCC1) expression by Hsp90 inhibition enhances the gefitinib-induced cytotoxicity in human lung cancer cells

    SciTech Connect

    Tung, Chun-Liang; Jian, Yi-Jun; Syu, Jhan-Jhang; Wang, Tai-Jing; Chang, Po-Yuan; Chen, Chien-Yu; Jian, Yun-Ting; Lin, Yun-Wei

    2015-05-15

    Gefitinib (Iressa{sup R}, ZD1839) is a selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that blocks growth factor-mediated cell proliferation and extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT signaling activation. It has been shown that inhibition of Hsp90 function can enhance antitumor activity of EGFR-TKI. XRCC1 is an important scaffold protein in base excision repair, which could be regulated by ERK1/2 and AKT pathways. However, the role of ERK1/2 and AKT-mediated XRCC1 expression in gefitinib alone or combination with an Hsp90 inhibitor-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. In this study, gefitinib treatment decreased XRCC1 mRNA and protein expression through ERK1/2 and AKT inactivation in two NSCLC cells, A549 and H1975. Knocking down XRCC1 expression by transfection with small interfering RNA of XRCC1 enhanced the cytotoxicity and cell growth inhibition of gefitinib. Combining treatment of gefitinib with an Hsp90 inhibitor resulted in enhancing the reduction of XRCC1 protein and mRNA levels in gefitinib-exposed A549 and H1975 cells. Compared to a single agent alone, gefitinib combined with an Hsp90 inhibitor resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells. Furthermore, transfection with constitutive active MKK1 or AKT vectors rescued the XRCC1 protein level as well as the cell survival suppressed by an Hsp90 inhibitor and gefitinib. These findings suggested that down-regulation of XRCC1 can enhance the sensitivity of gefitinib for NSCLC cells. - Highlights: • Gefitinib treatment decreased XRCC1 mRNA and protein expression in NSCLC cells. • Knocking down XRCC1 expression enhanced the cytotoxic effect of gefitinib. • Gefitinib combined with an Hsp90 inhibitor resulted in synergistically cytotoxicity.

  20. High Dietary Lipid Level Is Associated with Persistent Hyperglycaemia and Downregulation of Muscle Akt-mTOR Pathway in Senegalese Sole (Solea senegalensis)

    PubMed Central

    Borges, Pedro; Valente, Luísa M. P.; Véron, Vincent; Dias, Karine; Panserat, Stéphane; Médale, Françoise

    2014-01-01

    High levels of dietary lipids are incorporated in feeds for most teleost fish to promote growth and reduce nitrogen waste. However, in Senegalese sole (Solea senegalensis) previous studies revealed that increasing the level of dietary lipids above 8% negatively affect growth and nutrient utilization regardless of dietary protein content. It has been shown that glucose regulation and metabolism can be impaired by high dietary fat intake in mammals, but information in teleost fish is scarce. The aim of this study was to assess the possible effect of dietary lipids on glucose metabolism in Senegalese sole with special emphasis on the regulation of proteins involved in the muscle insulin-signalling pathway. Senegalese sole juveniles (29 g) were fed two isonitrogenous diets (53% dry matter) for 88 days. These two diets were one with a high lipid level (∼17%, HL) and a moderate starch content (∼14%, LC), and the other being devoid of fish oil (4% lipid, LL) and with high starch content (∼23%, HC). Surprisingly, feeding Senegalese sole the HL/LC diet resulted in prolonged hyperglycaemia, while fish fed on LL/HC diet restored basal glycaemia 2 h after feeding. The hyperglycaemic phenotype was associated with greater glucose-6-phosphatase activity (a key enzyme of hepatic glucose production) and lower citrate synthase activity in the liver, with significantly higher liver glycogen content. Sole fed on HL/LC diet also had significantly lower hexokinase activity in muscle, although hexokinase activity was low with both dietary treatments. The HL/LC diet was associated with significant reductions in muscle AKT, p70 ribosomal S6-K1 Kinase (S6K-1) and ribosomal protein S6 (S6) 2 h after feeding, suggesting down regulation of the AKT-mTOR nutrient signalling pathway in these fish. The results of this study show for the first time that high level of dietary lipids strongly affects glucose metabolism in Senegalese sole. PMID:25036091

  1. Alpha-ketoglutarate promotes skeletal muscle hypertrophy and protein synthesis through Akt/mTOR signaling pathways

    PubMed Central

    Cai, Xingcai; Zhu, Canjun; Xu, Yaqiong; Jing, Yuanyuan; Yuan, Yexian; Wang, Lina; Wang, Songbo; Zhu, Xiaotong; Gao, Ping; Zhang, Yongliang; Jiang, Qingyan; Shu, Gang

    2016-01-01

    Skeletal muscle weight loss is accompanied by small fiber size and low protein content. Alpha-ketoglutarate (AKG) participates in protein and nitrogen metabolism. The effect of AKG on skeletal muscle hypertrophy has not yet been tested, and its underlying mechanism is yet to be determined. In this study, we demonstrated that AKG (2%) increased the gastrocnemius muscle weight and fiber diameter in mice. Our in vitro study also confirmed that AKG dose increased protein synthesis in C2C12 myotubes, which could be effectively blocked by the antagonists of Akt and mTOR. The effects of AKG on skeletal muscle protein synthesis were independent of glutamate, its metabolite. We tested the expression of GPR91 and GPR99. The result demonstrated that C2C12 cells expressed GPR91, which could be upregulated by AKG. GPR91 knockdown abolished the effect of AKG on protein synthesis but failed to inhibit protein degradation. These findings demonstrated that AKG promoted skeletal muscle hypertrophy via Akt/mTOR signaling pathway. In addition, GPR91 might be partially attributed to AKG-induced skeletal muscle protein synthesis. PMID:27225984

  2. Silica nanoparticles induce multinucleation through activation of PI3K/Akt/GSK-3β pathway and downregulation of chromosomal passenger proteins in L-02 cells

    NASA Astrophysics Data System (ADS)

    Geng, Weijia; Li, Yang; Yu, Yongbo; Yu, Yang; Duan, Junchao; Jiang, Lizhen; Li, Qiuling; Sun, Zhiwei

    2016-04-01

    Silica nanoparticles (SNPs) are applicable in various fields due to their unique physicochemical characteristics. However, concerns over their potential adverse effects have been raised. In our previous studies, we reported that SNPs could induce abnormal high incidence of multinucleation. The aim of this study is to further investigate the mechanisms of multinucleation induced by SNPs (68 nm) in human normal liver L-02 cells (L-02 cells). In order to determine the cytotoxicity of SNPs, MTT assay was performed, and the cell viability was decreased in a dose-dependent manner. The intracellular reactive oxygen species (ROS) detected by flow cytometry and multinucleation observed by Giemsa stain showed that ROS generation and rate of multinucleated cells increased after SNPs exposure. N-acetyl-cysteine (NAC), a glutathione precursor against SNP-induced toxicity, was used as a ROS inhibitor to elucidate the relationship between ROS and multinucleation. The presence of NAC resulted in inhibition of both ROS generation and rate of multinucleation. Moreover, Western blot analysis showed that the protein levels of Cdc20, Aurora B, and Survivin were down-regulated, and the PI3K/Akt/GSK-3β pathway was activated by SNPs. In conclusion, our findings strongly suggested that multinucleation induced by SNPs was related to PI3K/Akt/GSK-3β signal pathway activation and downregulation of G2/M phase-related protein and chromosomal passenger proteins.

  3. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells

    SciTech Connect

    Kim, Hye-Mi; Kang, Dong-Ku; Kim, Hak Yong; Kang, Sang Sun; Chang, Soo-Ik . E-mail: sichang@cbnu.ac.kr

    2007-01-12

    Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells.

  4. EBV Latent Membrane Protein 1 Activates Akt, NFκB, and Stat3 in B Cell Lymphomas

    PubMed Central

    Shair, Kathy H. Y; Bendt, Katherine M; Edwards, Rachel H; Bedford, Elisabeth C; Nielsen, Judith N; Raab-Traub, Nancy

    2007-01-01

    Latent membrane protein 1 (LMP1) is the major oncoprotein of Epstein-Barr virus (EBV). In transgenic mice, LMP1 promotes increased lymphoma development by 12 mo of age. This study reveals that lymphoma develops in B-1a lymphocytes, a population that is associated with transformation in older mice. The lymphoma cells have deregulated cell cycle markers, and inhibitors of Akt, NFκB, and Stat3 block the enhanced viability of LMP1 transgenic lymphocytes and lymphoma cells in vitro. Lymphoma cells are independent of IL4/Stat6 signaling for survival and proliferation, but have constitutively activated Stat3 signaling. These same targets are also deregulated in wild-type B-1a lymphomas that arise spontaneously through age predisposition. These results suggest that Akt, NFκB, and Stat3 pathways may serve as effective targets in the treatment of EBV-associated B cell lymphomas. PMID:17997602

  5. Raloxifene activates G protein-coupled estrogen receptor 1/Akt signaling to protect dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice.

    PubMed

    Bourque, Mélanie; Morissette, Marc; Di Paolo, Thérèse

    2014-10-01

    Raloxifene, used in the clinic, is reported to protect brain dopaminergic neurons in mice. Raloxifene was shown to mediate an effect through the G protein-coupled estrogen receptor 1 (GPER1). We investigated if raloxifene neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated male mice is mediated through GPER1 by using its antagonist G15. Striatal concentrations of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid to dopamine ratio as well as dopamine transporter and vesicular monoamine transporter 2 showed that raloxifene neuroprotection of dopaminergic neurons was blocked by G15. Protection by raloxifene was accompanied by activation of striatal Akt signaling (but not ERK1/2 signaling) and increased Bcl-2 and brain-derived neurotrophic factor levels; these effects were abolished by coadministration with G15. The effect of raloxifene was not mediated through increased levels of 17β-estradiol. MPTP mice had decreased plasma testosterone, dihydrotestosterone, and 3β-diol levels; this was prevented in raloxifene-treated MPTP mice. Our results suggest that raloxifene acted through GPER1 to mediate Akt activation, increase Bcl-2 and brain-derived neurotrophic factor levels, and protection of dopaminergic neurons and plasma androgens.

  6. Interleukin-1-receptor-associated kinase 2 (IRAK2)-mediated interleukin-1-dependent nuclear factor kappaB transactivation in Saos2 cells requires the Akt/protein kinase B kinase.

    PubMed Central

    Cenni, Vittoria; Sirri, Alessandra; De Pol, Anto; Maraldi, Nadir Mario; Marmiroli, Sandra

    2003-01-01

    The post-receptor pathway that leads to nuclear factor kappaB (NF-kappaB) activation begins with the assembly of a membrane-proximal complex among the interleukin 1 (IL-1) receptors and the adaptor molecules, myeloid differentiation protein 88 (MyD88), IL-1-receptor-associated kinases (IRAKs) and tumour-necrosis-factor-receptor-associated factor 6. Eventually, phosphorylation of the inhibitor of NF-kappaB (IkappaB) by the IkappaB kinases releases NF-kappaB, which translocates to the nucleus and modulates gene expression. In this paper, we report that IRAK2 and MyD88, but not IRAK1, interact physically with Akt, as demonstrated by co-immunoprecipitation and pull-down experiments. Interestingly, the association of Akt with recombinant IRAK2 is decreased by stimulation with IL-1, and is favoured by pre-treatment with phosphatase. Likewise, Akt association with IRAK2 is increased considerably by overexpression of PTEN (phosphatase and tensin homologue deleted on chromosome 10), while it is completely abrogated by overexpression of phosphoinositide-dependent protein kinase 1. These data indicate that Akt takes part in the formation of the signalling complex that conveys the signal from the IL-1 receptors to NF-kappaB, a step that is much more membrane-proximal than was reported previously. We also demonstrate that Akt activity is necessary for IL-1-dependent NF-kappaB transactivation, since a kinase-defective mutant of Akt impairs IRAK2- and MyD88-dependent, but not IRAK1-dependent, NF-kappaB activity, as monitored by a gene reporter assay. Accordingly, IRAK2 failed to trigger inducible nitric oxide synthase and IL-1beta production in cells expressing dominant-negative Akt. However, NF-kappaB binding to DNA was not affected by inhibition of Akt, indicating that Akt regulates NF-kappaB at a level distinct from the dissociation of p65 from IkappaBalpha and its translocation to the nucleus, possibly involving phosphorylation of the p65 transactivation domain. PMID:12906710

  7. Regulator of G protein signaling 1 suppresses CXCL12-mediated migration and AKT activation in RPMI 8226 human plasmacytoma cells and plasmablasts.

    PubMed

    Pak, Hyo-Kyung; Gil, Minchan; Lee, Yoonkyung; Lee, Hyunji; Lee, A-Neum; Roh, Jin; Park, Chan-Sik

    2015-01-01

    Migration of plasma cells to the bone marrow is critical factor to humoral immunity and controlled by chemokines. Regulator of G protein signaling 1 (RGS1) is a GTPase-activating protein that controls various crucial functions such as migration. Here, we show that RGS1 controls the chemotactic migration of RPMI 8226 human plasmacytoma cells and human plasmablasts. LPS strongly increased RGS1 expression and retarded the migration of RPMI 8226 cells by suppressing CXCL12-mediated AKT activation. RGS1 knockdown by siRNA abolished the retardation of migration and AKT suppression by LPS. RGS1-dependent regulation of migration via AKT is also observed in cultured plasmablasts. We propose novel functions of RGS1 that suppress AKT activation and the migration of RPMI 8226 cells and plasmablasts in CXCL12-mediated chemotaxis.

  8. Centrosomal Protein of 55 Regulates Glucose Metabolism, Proliferation and Apoptosis of Glioma Cells via the Akt/mTOR Signaling Pathway

    PubMed Central

    Wang, Guangzhi; Liu, Mingna; Wang, Hongjun; Yu, Shan; Jiang, Zhenfeng; Sun, Jiahang; Han, Ke; Shen, Jia; Zhu, Minwei; Lin, Zhiguo; Jiang, Chuanlu; Guo, Mian

    2016-01-01

    Introduction: Glioma is one of the most common and most aggressive brain tumors in humans. The molecular and cellular mechanisms responsible for the onset and the progression of glioma are elusive and controversial. Centrosomal protein of 55 (CEP55) was initially described as a highly coiled-coil protein that plays critical roles in cell division, but was recently identified as being overexpressed in many human cancers. The function of CEP55 has not previously been characterized in glioma. We aim to discover the effect and mechanism of CEP55 in glioma development. Method: qRT-PCR and immunohistochemistry were used to analyze CEP55 expression. Glucose uptake, western blot, MTS, CCK-8, Caspase-3 activity and TUNEL staining assays were performed to investigate the role and mechanism of CEP55 on glioma cell process. Results: We found that the levels of CEP55 expression were upregulated in glioma. In addition, CEP55 appeared to regulate glucose metabolism of glioma cells. Furthermore, knockdown of CEP55 inhibited cell proliferation and induced cell apoptosis in glioma. Finally, we provided preliminary evidence that knockdown of CEP55 inhibited glioma development via suppressing the activity of Akt/mTOR signaling. Conclusions: Our results demonstrated that CEP55 regulates glucose metabolism, proliferation and apoptosis of glioma cells via the Akt/mTOR signaling pathway, and its promotive effect on glioma tumorigenesis can be a potential target for glioma therapy in the future. PMID:27471559

  9. E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway

    SciTech Connect

    Contreras-Paredes, Adriana

    2009-01-05

    Intra-type genome variations of high risk Human papillomavirus (HPV) have been associated with a differential threat for cervical cancer development. In this work, the effect of HPV18 E6 isolates in Akt/PKB and Mitogen-associated protein kinase (MAPKs) signaling pathways and its implication in cell proliferation were analyzed. E6 from HPV types 16 and 18 are able to bind and promote degradation of Human disc large (hDlg). Our results show that E6 variants differentially modulate hDlg degradation, rebounding in levels of activated PTEN and PKB. HPV18 E6 variants are also able to upregulate phospho-PI3K protein, strongly correlating with activated MAPKs and cell proliferation. Data was supported by the effect of E6 silencing in HPV18-containing HeLa cells, as well as hDlg silencing in the tested cells. Results suggest that HPV18 intra-type variations may derive in differential abilities to activate cell-signaling pathways such as Akt/PKB and MAPKs, directly involved in cell survival and proliferation.

  10. Syntheses of potent, selective, and orally bioavailable indazole-pyridine series of protein kinase B/Akt inhibitors with reduced hypotension.

    PubMed

    Zhu, Gui-Dong; Gandhi, Viraj B; Gong, Jianchun; Thomas, Sheela; Woods, Keith W; Song, Xiaohong; Li, Tongmei; Diebold, R Bruce; Luo, Yan; Liu, Xuesong; Guan, Ran; Klinghofer, Vered; Johnson, Eric F; Bouska, Jennifer; Olson, Amanda; Marsh, Kennan C; Stoll, Vincent S; Mamo, Mulugeta; Polakowski, James; Campbell, Thomas J; Martin, Ruth L; Gintant, Gary A; Penning, Thomas D; Li, Qun; Rosenberg, Saul H; Giranda, Vincent L

    2007-06-28

    Compound 7 was identified as a potent (IC50 = 14 nM), selective, and orally bioavailable (F = 70% in mouse) inhibitor of protein kinase B/Akt. While promising efficacy was observed in vivo, this compound showed effects on depolarization of Purkinje fibers in an in vitro assay and CV hypotension in vivo. Guided by an X-ray structure of 7 bound to protein kinase A, which has 80% homology with Akt in the kinase domain, our efforts have focused on structure-activity relationship (SAR) studies of the phenyl moiety, in an attempt to address the cardiovascular liability and further improve the Akt potency. A novel and efficient synthetic route toward diversely substituted phenyl derivatives of 7 was developed utilizing a copper-mediated aziridine ring-opening reaction as the key step. To improve the selectivity of these Akt inhibitors over other protein kinases, a nitrogen atom was incorporated into selected phenyl analogues of 7 at the C-6 position of the methyl indazole scaffold. These modifications resulted in the discovery of inhibitor 37c with greater potency (IC50 = 0.6 nM vs Akt), selectivity, and improved cardiovascular safety profile. The SARs, pharmacokinetic profile, and CV safety of selected Akt inhibitors will be discussed.

  11. Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein.

    PubMed

    Hong, Shin Yee; Yu, Fa-Xing; Luo, Yan; Hagen, Thilo

    2016-05-01

    Oncogenic activation of the PI3K/Akt pathway is known to play an important role to promote glucose metabolism in cancer cells. However, the molecular mechanism through which the PI3K/Akt signalling pathway promotes glucose utilisation in cancer cells is still not well understood. It has recently been shown that the oncogenic activation of the PI3K/Akt/mTOR signalling in lung adenocarcinoma is important in promoting the localisation of glucose transporter 1 (GLUT1) at the plasma membrane. We thus hypothesised that the effect of constitutive activation of the PI3K/AKT signalling on glucose metabolism is mediated by thioredoxin interacting protein (TXNIP), a known regulator of the GLUT1 plasma membrane localisation. Consistent with previous studies, inhibition of the PI3K/Akt pathway decreased cellular glucose uptake. Furthermore, inhibition of PI3K/Akt signalling in non-small cell lung cancer (NSCLC) cell lines using clinically used tyrosine kinase inhibitors (TKIs) resulted in a decrease in GLUT1 membrane localisation. We also observed that inhibition of the PI3K/Akt pathway in various cell lines, including NSCLC cells, resulted in an increase in TXNIP expression. Importantly, knockdown of TXNIP using siRNA in the NSCLC cells promoted GLUT1 to be localised at the plasma membrane and reversed the effect of PI3K/Akt inhibitors. Together, our results suggest that the oncogenic activation of PI3K/Akt signalling promotes cellular glucose uptake, at least in part, through the regulation of TXNIP expression. This mechanism may contribute to the Warburg effect in cancer cells.

  12. Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung.

    PubMed

    Malanga, Donatella; Scrima, Marianna; De Marco, Carmela; Fabiani, Fernanda; De Rosa, Nicla; De Gisi, Silvia; Malara, Natalia; Savino, Rocco; Rocco, Gaetano; Chiappetta, Gennaro; Franco, Renato; Tirino, Virginia; Pirozzi, Giuseppe; Viglietto, Giuseppe

    2008-03-01

    Somatic mutation (E17K) that constitutively activates the protein kinase AKT1 has been found in human cancer patients. We determined the role of the E17K mutation of AKT1 in lung cancer, through sequencing of AKT1 exon 4 in 105 resected, clinically annotated non-small cell lung cancer specimens. We detected a missense mutations G-->A transition at nucleotide 49 (that results in the E17K substitution) in two squamous cell carcinoma (2/36) but not in adenocarcinoma (0/53). The activity of the endogenous kinase carrying the E17K mutation immunoprecipitated by tumour tissue was significantly higher compared with the wild-type kinase immunoprecipitated by the adjacent normal tissue as determined both by in vitro kinase assay using a consensus peptide as substrate and by in vivo analysis of the phosphorylation status of AKT1 itself (pT308, pS473) or of known downstream substrates such as GSK3 (pS9/S22) and p27 (T198). Immunostaining or immunoblot analysis on membrane-enriched extracts indicated that the enhanced membrane localization exhibited by the endogenous E17K-AKT1 may account for the observed increased activity of mutant E17K kinase in comparison with the wild-type AKT1 from adjacent normal tissue. In conclusion, this is the first report of AKT1 mutation in lung cancer. Our data provide evidence that, although AKT1 mutations are apparently rare in lung cancer (1.9%), the oncogenic properties of E17K-AKT1 may contribute to the development of a fraction of lung carcinoma with squamous histotype (5.5%).

  13. Protein tyrosine phosphatase PTP4A1 promotes proliferation and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma via the PI3K/AKT pathway

    PubMed Central

    Ma, Li-Jie; Wang, Zhi-Chao; Liu, Xin-Yang; Duan, Meng; Yang, Liu-Xiao; Shi, Jie-Yi; Zhou, Jian; Fan, Jia; Gao, Qiang; Wang, Xiao-Ying

    2016-01-01

    The protein tyrosine phosphatase PTP4A1 is a key molecule that activates tyrosine phosphorylation, which is important for cancer progression and metastasis. However, the clinical implications and biological function of PTP4A1 in intrahepatic cholangiocarcinoma (ICC) remains unknown. Here, we showed that PTP4A1 was frequently overexpressed in ICC versus adjacent non-tumor tissues. This overexpression significantly correlated with aggressive tumor characteristics like the presence of lymph node metastasis and advanced tumor stages. Survival analysis further indicated that high PTP4A1 expression was significantly and independently associated with worse survival and increased recurrence in ICC patients. Moreover, through forced overexpression and knock-down of PTPT4A1, we demonstrated that PTP4A1 could significantly promote ICC cells proliferation, colony formation, migration, and invasion in vitro, and markedly enhance tumor progression in vivo. Mechanistically, PTP4A1 was involved in PI3K/AKT signaling and its downstream molecules, such as phosphorylation level of GSK3β and up-regulation of CyclinD1, in ICC cells to promote proliferation. Importantly, PTP4A1 induced ICC cells invasion was through activating PI3K/AKT signaling controlled epithelial-mesenchymal transition (EMT) process by up-regulating Zeb1 and Snail. Thus, PTP4A1 may serve as a potential oncogene that was a valuable prognostic biomarker and therapeutic target for ICC. PMID:27655691

  14. Putative Phosphatidylinositol 3-Kinase (PI3K) Binding Motifs in Ovine Betaretrovirus Env Proteins Are Not Essential for Rodent Fibroblast Transformation and PI3K/Akt Activation

    PubMed Central

    Liu, Shan-Lu; Lerman, Michael I.; Miller, A. Dusty

    2003-01-01

    Jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV) are simple betaretroviruses that cause epithelial cell tumors in the lower and upper airways of sheep and goats. The envelope (Env) glycoproteins of both viruses can transform rodent and chicken fibroblasts, indicating that they play an essential role in oncogenesis. Previous studies found that a YXXM motif in the Env cytoplasmic tail, a putative docking site for phosphatidylinositol 3-kinase (PI3K) after tyrosine phosphorylation, was necessary for rodent cell transformation but was not required for transformation of DF-1 chicken fibroblasts. Here we show that JSRV and ENTV Env proteins with tyrosine or methionine mutations in the YXXM motif can still transform rodent fibroblasts, albeit with reduced efficiency. Akt was activated in cells transformed by JSRV or ENTV Env proteins and in cells transformed by the proteins with tyrosine mutations. Furthermore, the PI3K-specific inhibitor LY294002 could inhibit Akt activation and cell transformation in all cases, indicating that Akt activation and transformation is PI3K dependent. However, we could not detect tyrosine phosphorylation of JSRV or ENTV Env proteins or an interaction between the Env proteins and PI3K in the transformed cells. We found no evidence for mitogen-activated protein kinase activation in cells that were transformed by the JSRV or ENTV Env proteins. We conclude that ovine betaretrovirus Env proteins transform the rodent fibroblasts by indirectly activating the PI3K/Akt pathway. PMID:12829832

  15. Cell cycle regulation of breast cancer cells through estrogen-induced activities of ERK and Akt protein kinases.

    PubMed

    Geffroy, Nancy; Guédin, Aurore; Dacquet, Catherine; Lefebvre, Philippe

    2005-06-15

    The proliferative effect of estrogens on breast cancer cell (BCC) is mainly mediated through estrogen receptors (ER). Non-transcriptional effects of estrogens, exerted through activation of several protein kinases, may also contribute to BCC proliferation. However, the relative contribution of these two responses to BCC proliferation is not known. We characterized a novel estrogenic receptor ligand which possess Akt and ERK activating properties distinct from that of 17beta-estradiol. Early and delayed waves of activation of these kinases were detected upon estrogenic challenge of BCC, but only molecules able to promote a significant, delayed activation of ERK-induced BCC proliferation. Estrogen-induced cell cycle progression was not sensitive to the inhibition of ERK-regulating kinases MEK1 and 2. ERalpha was found to be necessary, but not sufficient for kinases activation. Thus, estrogens elicit a distinct pattern of early and delayed activation of ERK and Akt, and early protein kinase activation is probably not involved in BCC proliferation. Structural variations in the estrogen molecule may confer novel biological properties unrelated to estrogen-dependent transcriptional activation.

  16. Akt phosphorylates myc-associated zinc finger protein (MAZ), releases P-MAZ from the p53 promoter, and activates p53 transcription.

    PubMed

    Lee, Wei-Ping; Lan, Keng-Hsin; Li, Chung-Pin; Chao, Yee; Lin, Han-Chieh; Lee, Shou-Dong

    2016-05-28

    The p53 protein is a cell cycle regulator. When the cell cycle progresses, p53 plays an important role in putting a brake on the G1 phase to prevent unwanted errors during cell division. Akt is a downstream kinase of receptor tyrosine kinase. Upon activation, Akt phorphorylates IKK that then phosphorylates IκB and releases NF-κB, leading to transcriptional activation of Dmp1. Dmp1 is a transcriptional activator of Arf. It has been known that oncogene activation stabilizes p53 through transcriptional activation of Arf, which then binds and inhibits Mdm2. In the current study, we show that myc-associated zinc finger protein (MAZ) is a transcriptional repressor of the p53 promoter. Akt phosphorylates MAZ at Thr385, and the phosphorylated MAZ is released from the p53 promoter, leading to transcriptional activation of p53, a new mechanism that contributes to increased p53 protein pool during oncogene activation.

  17. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    SciTech Connect

    Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji; Kim, Eun Kyoung; Chung, Sung Woon; Hong, Ki Whan; Kim, Chi Dae; Bae, Sun Sik

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.

  18. Carboxy-terminal modulator protein attenuated extracellular matrix deposit by inhibiting phospho-Akt, TGF-β1 and α-SMA in kidneys of diabetic mice.

    PubMed

    Chen, Ning; Hao, Jun; Li, Lisha; Li, Fan; Liu, Shuxia; Duan, Huijun

    2016-06-10

    Glomerulosclerosis and tubular interstitial extracellular matrix deposit and fibrosis are the main features of diabetic nephropathy, which are mediated by activation of PI3K/Akt signal pathway. Carboxy-terminal modulator protein (CTMP) is known as a negative regulator of PI3K/Akt pathway. Whether CTMP regulates renal extracellular matrix metabolism of diabetic nephropathy is still not known. Here, renal decreased CTMP, enhanced phospho-Akt (Ser 473), TGF-β1, α-SMA and extracellular matrix deposit are found in diabetic mice. Furthermore, high glucose decreases CTMP expression accompanied by enhanced phospho-Akt (Ser 473), TGF-β1 and α-SMA in cultured human renal proximal tubular epithelial cells (HKC), which are effectively prevented by transfection of pYr-ads-4-musCTMP vector. Moreover, delivery of pYr-ads-4-musCTMP vector into kidneys via tail vein of diabetic mice increases CTMP expression by 8.84 times followed by 60.00%, 76.50% and 24.37% decreases of phospho-Akt (Ser 473), TGF-β1 and α-SMA compared with diabetic mice receiving pYr-adshuttle-4 vector. Again, increased renal extracellular matrix accumulation of diabetic mice is also inhibited with delivery of pYr-ads-4-musCTMP vector. Our results indicate that CTMP attenuates renal extracellular matrix deposit by regulating the phosphorylation of Akt, TGF-β1 and α-SMA expression in diabetic mice.

  19. SMYD3-mediated lysine methylation in the PH domain is critical for activation of AKT1

    PubMed Central

    Yoshioka, Yuichiro; Suzuki, Takehiro; Matsuo, Yo; Nakakido, Makoto; Tsurita, Giichiro; Simone, Cristiano; Watanabe, Toshiaki; Dohmae, Naoshi; Nakamura, Yusuke; Hamamoto, Ryuji

    2016-01-01

    AKT1 is a cytosolic serine/threonine kinase that is overexpressed in various types of cancer and has a central role in human tumorigenesis. Although it is known that AKT1 is post-translationally modified in various ways including phosphorylation and ubiquitination, methylation has not been reported so far. Here we demonstrate that the protein lysine methyltransferase SMYD3 methylates lysine 14 in the PH domain of AKT1 both in vitro and in vivo. Lysine 14-substituted AKT1 shows significantly lower levels of phosphorylation at threonine 308 than wild-type AKT1, and knockdown of SMYD3 as well as treatment with a SMYD3 inhibitor significantly attenuates this phosphorylation in cancer cells. Furthermore, substitution of lysine 14 diminishes the plasma membrane accumulation of AKT1, and cancer cells overexpressing lysine 14-substiuted AKT1 shows lower growth rate than those overexpressing wild-type AKT1. These results imply that SMYD3-mediated methylation of AKT1 at lysine 14 is essential for AKT1 activation and that SMYD3-mediated AKT1 methylation appears to be a good target for development of anti-cancer therapy. PMID:27626683

  20. Modification of Akt by SUMO conjugation regulates alternative splicing and cell cycle

    PubMed Central

    Risso, Guillermo; Pelisch, Federico; Pozzi, Berta; Mammi, Pablo; Blaustein, Matías; Colman-Lerner, Alejandro; Srebrow, Anabella

    2013-01-01

    Akt/PKB is a key signaling molecule in higher eukaryotes and a crucial protein kinase in human health and disease. Phosphorylation, acetylation, and ubiquitylation have been reported as important regulatory post-translational modifications of this kinase. We describe here that Akt is modified by SUMO conjugation, and show that lysine residues 276 and 301 are the major SUMO attachment sites within this protein. We found that phosphorylation and SUMOylation of Akt appear as independent events. However, decreasing Akt SUMOylation levels severely affects the role of this kinase as a regulator of fibronectin and Bcl-x alternative splicing. Moreover, we observed that the Akt mutant (Akt E17K) found in several human tumors displays increased levels of SUMOylation and also an enhanced capacity to regulate fibronectin splicing patterns. This splicing regulatory activity is completely abolished by decreasing Akt E17K SUMO conjugation levels. Additionally, we found that SUMOylation controls Akt regulatory function at G₁/S transition during cell cycle progression. These findings reveal SUMO conjugation as a novel level of regulation for Akt activity, opening new areas of exploration related to the molecular mechanisms involved in the diverse cellular functions of this kinase. PMID:24013425

  1. C-reactive protein inhibits high-molecular-weight adiponectin expression in 3T3-L1 adipocytes via PI3K/Akt pathway.

    PubMed

    Liu, Yuanxin; Liu, Cuiping; Jiang, Chao; Wang, Su; Yang, Qichao; Jiang, Dan; Yuan, Guoyue

    2016-03-25

    Adiponectin, an adipose-specific protein hormone, is secreted from white adipose tissue and involved in glucose and lipid metabolism. It is assembled into low-molecular-weight trimer (LMW), middle-molecular-weight hexameric (MMW) and high-molecular-weight (HMW), among which HMW exhibits higher activity. In this study, we proved that C-reactive protein (CRP), an inflammatory marker, inhibited adiponectin expression, especially HMW in time-and dose-dependent manners. Furthermore, CRP decreased the HMW/total adiponectin ration and reduced adiponectin assembly by increasing ERp44, and decreasing Ero1-α and DsbA-L. CRP activated pAkt, the downstream of PI3K. Inhibition of PI3K or pAkt abolished the effect of CRP. Our study suggested that CRP decreased adiponectin expression and multimerization, while CRP-induced decline in adiponectin might be mediated through the PI3K/Akt pathway.

  2. G protein-coupled receptors (GPCRs) That Signal via Protein Kinase A (PKA) Cross-talk at Insulin Receptor Substrate 1 (IRS1) to Activate the phosphatidylinositol 3-kinase (PI3K)/AKT Pathway.

    PubMed

    Law, Nathan C; White, Morris F; Hunzicker-Dunn, Mary E

    2016-12-30

    G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser(318), Ser(346), Ser(612), and Ser(789), and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R.

  3. Sorafenib induces endometrial carcinoma apoptosis by inhibiting Elk-1-dependent Mcl-1 transcription and inducing Akt/GSK3β-dependent protein degradation.

    PubMed

    Sun, Nian-Kang; Huang, Shang-Lang; Chang, Ting-Chang; Chao, Chuck C-K

    2013-08-01

    Endometrial carcinoma (EC) is one of the main gynecologic malignancies affecting women, but effective treatments are currently lacking. In the present study, we investigated the effect of sorafenib, a general kinase inhibitor, on several EC cell lines (HEC1A, HEC1B, and RL95-2). Sorafenib induced cell death in EC cells with the following order of sensitivity: HEC1A > HEC1B > RL95-2. Sorafenib suppressed several anti-apoptotic proteins in HEC1A cells, including myeloid cell leukemia 1 (Mcl-1). Ectopic overexpression of Mcl-1 prevented the cell killing effect of sorafenib. Sorafenib suppressed Mcl-1 at the gene transactivation level by inactivating the ERK/Elk-1 pathway. Accordingly, the inhibitory effect of sorafenib on Mcl-1 expression decreased following knockdown of Elk-1 using short-hairpin RNA (shRNA). Elk-1 overexpression rescued both the inhibitory effect of sorafenib on Mcl-1 expression and the cell killing effect of sorafenib. Furthermore, sorafenib reduced the stability of the Mcl-1 protein by enhancing its ubiquitination and degradation by the proteasome via the AKT/GSK3β and the ERK pathways. Similar results were detected in other EC cell lines. These results indicate that sorafenib induces apoptosis in EC cells by down-regulating the anti-apoptotic protein Mcl-1 via transcriptional inhibition and protein degradation. Our results thus support the notion that sorafenib may be used in endometrial cancer therapy.

  4. AKT/GSK3 signaling pathway and schizophrenia

    PubMed Central

    Emamian, Effat S.

    2012-01-01

    Schizophrenia is a prevalent complex trait disorder manifested by severe neurocognitive dysfunctions and lifelong disability. During the past few years several studies have provided direct evidence for the involvement of different signaling pathways in schizophrenia. In this review, we mainly focus on AKT/GSK3 signaling pathway in schizophrenia. The original study on the involvement of this pathway in schizophrenia was published by Emamian et al. in 2004. This study reported convergent evidence for a decrease in AKT1 protein levels and levels of phosphorylation of GSK-3β in the peripheral lymphocytes and brains of individuals with schizophrenia; a significant association between schizophrenia and an AKT1 haplotype; and a greater sensitivity to the sensorimotor gating-disruptive effect of amphetamine, conferred by AKT1 deficiency. It also showed that haloperidol can induce a stepwise increase in regulatory phosphorylation of AKT1 in the brains of treated mice that could compensate for the impaired function of this signaling pathway in schizophrenia. Following this study, several independent studies were published that not only confirmed the association of this signaling pathway with schizophrenia across different populations, but also shed light on the mechanisms by which AKT/GSK3 pathway may contribute to the development of this complex disorder. In this review, following an introduction on the role of AKT in human diseases and its functions in neuronal and non-neuronal cells, a review on the results of studies published on AKT/GSK3 signaling pathway in schizophrenia after the original 2004 paper will be provided. A brief review on other signaling pathways involved in schizophrenia and the possible connections with AKT/GSK3 signaling pathway will be discussed. Moreover, some possible molecular mechanisms acting through this pathway will be discussed besides the mechanisms by which they may contribute to the pathogenesis of schizophrenia. Finally, different

  5. Expression of constitutively active Akt/protein kinase B signals GLUT4 translocation in the absence of an intact actin cytoskeleton.

    PubMed

    Eyster, Craig A; Duggins, Quwanza S; Olson, Ann Louise

    2005-05-06

    The actin cytoskeleton has been shown to be required for insulin-dependent GLUT4 translocation; however, the role that the actin network plays is unknown. Actin may play a role in formation of an active signaling complex, or actin may be required for movement of vesicles to the plasma membrane surface. To distinguish between these possibilities, we examined the ability of myr-Akt, a constitutively active form of Akt that signals GLUT4 translocation to the plasma membrane in the absence of insulin, to signal translocation of an HA-GLUT4-GFP reporter protein in the presence or absence of an intact cytoskeleton in 3T3-L1 adipocytes. Expression of myr-Akt signaled the redistribution of the GLUT4 reporter protein to the cell surface in the absence or presence of 10 microm latrunculin B, a concentration sufficient to completely inhibit insulin-dependent redistribution of the GLUT4 reporter to the cell surface. These data suggest that the actin network plays a primary role in organization of the insulin-signaling complex. To further support this conclusion, we measured the activation of known signaling proteins using a saturating concentration of insulin in cells pretreated without or with 10 microm latrunculin B. We found that latrunculin treatment did not affect insulin-dependent tyrosine phosphorylation of the insulin receptor beta-subunit and IRS-1 but completely inhibited activation of Akt/PKB enzymatic activity. Phosphorylation of Akt/PKB at Ser-473 and Thr-308 was inhibited by latrunculin B treatment, indicating that the defect in signaling lies prior to Akt/PKB activation. In summary, our data support the hypothesis that the actin network plays a role in organization of the insulin-signaling complex but is not required for vesicle trafficking and/or fusion.

  6. The nuclear protein Sam68 is redistributed to the cytoplasm and is involved in PI3K/Akt activation during EV71 infection.

    PubMed

    Zhang, Hua; Cong, Haolong; Song, Lei; Tien, Po

    2014-02-13

    Nuclear proteins can be triggered to be redistributed to the cytoplasm to assist with EV71 virus replication. This process is frequently involved in cellular signal transduction upon virus infection. In this study, we have demonstrated that a new nuclear protein, 68-kDa Src-associated in mitosis protein (Sam68), was translocated to the cytoplasm and was co-localized with EV71 during virus infection. Confocal microscopy and subcellular fractionation assay confirmed that virus 3C protease triggered the redistribution of Sam68 to the cytoplasm. Knockdown of Sam68 expression using ShRNA significantly inhibited virus replication, suggesting that Sam68 may be a host factor involved in EV71 life cycle. In addition, EV71-induced Akt phosphorylation involved a PI3K-dependent mechanism. Sam68 is known to be an upstream regulator of PI3K and our immunoprecipitation studies confirmed that Sam68 interacted directly with the p85 regulatory subunit of PI3K and mediated PI3K/Akt activation during EV71 infection. On the contrary, silencing of Sam68 dramatically abrogated Akt phosphorylation. These data, plus the fact that Sam68 is known to be a signaling adaptor protein, indicated that Sam68 is a signal molecule with a functional role in the PI3K/Akt signal pathway during EV71 infection.

  7. Dissecting signalling by individual Akt/PKB isoforms, three steps at once.

    PubMed

    Osorio-Fuentealba, Cesar; Klip, Amira

    2015-09-01

    The serine/threonine kinase Akt/PKB (protein kinase B) is key for mammalian cell growth, survival, metabolism and oncogenic transformation. The diverse level and tissue expression of its three isoforms, Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ, make it daunting to identify isoform-specific actions in vivo and even in isolated tissues/cells. To date, isoform-specific knockout and knockdown have been the best strategies to dissect their individual overall functions. In a recent article in the Biochemical Journal, Kajno et al. reported a new strategy to study isoform selectivity in cell lines. Individual Akt/PKB isoforms in 3T3-L1 pre-adipocytes are first silenced via shRNA and stable cellular clones lacking one or the other isoform are selected. The stably silenced isoform is then replaced by a mutant engineered to be refractory to inhibition by MK-2206 (Akt1(W80A) or Akt2(W80A)). Akt1(W80A) or Akt2(W80A) are functional and effectively recruited to the plasma membrane in response to insulin. The system affords the opportunity to acutely control the activity of the endogenous non-silenced isoform through timely addition of MK-2206. Using this approach, it is confirmed that Akt1/PKBα is the preferred isoform sustaining adipocyte differentiation, but both Akt1/PKBα and Akt2/PKBβ can indistinctly support insulin-dependent FoxO1 (forkhead box O1) nuclear exclusion. Surprisingly, either isoform can also support insulin-dependent glucose transporter (GLUT) 4 translocation to the membrane, in contrast with the preferential role of Akt2/PKBβ assessed by knockdown studies. The new strategy should allow analysis of the plurality of Akt/PKB functions in other cells and in response to other stimuli. It should also be amenable to high-throughput studies to speed up advances in signal transmission by this pivotal kinase.

  8. Abnormal Protein Glycosylation and Activated PI3K/Akt/mTOR Pathway: Role in Bladder Cancer Prognosis and Targeted Therapeutics.

    PubMed

    Costa, Céu; Pereira, Sofia; Lima, Luís; Peixoto, Andreia; Fernandes, Elisabete; Neves, Diogo; Neves, Manuel; Gaiteiro, Cristiana; Tavares, Ana; Gil da Costa, Rui M; Cruz, Ricardo; Amaro, Teresina; Oliveira, Paula A; Ferreira, José Alexandre; Santos, Lúcio L

    2015-01-01

    Muscle invasive bladder cancer (MIBC, stage ≥T2) is generally associated with poor prognosis, constituting the second most common cause of death among genitourinary tumours. Due to high molecular heterogeneity significant variations in the natural history and disease outcome have been observed. This has also delayed the introduction of personalized therapeutics, making advanced stage bladder cancer almost an orphan disease in terms of treatment. Altered protein glycosylation translated by the expression of the sialyl-Tn antigen (STn) and its precursor Tn as well as the activation of the PI3K/Akt/mTOR pathway are cancer-associated events that may hold potential for patient stratification and guided therapy. Therefore, a retrospective design, 96 bladder tumours of different stages (Ta, T1-T4) was screened for STn and phosphorylated forms of Akt (pAkt), mTOR (pmTOR), S6 (pS6) and PTEN, related with the activation of the PI3K/Akt/mTOR pathway. In our series the expression of Tn was residual and was not linked to stage or outcome, while STn was statically higher in MIBC when compared to non-muscle invasive tumours (p = 0.001) and associated decreased cancer-specific survival (log rank p = 0.024). Conversely, PI3K/Akt/mTOR pathway intermediates showed an equal distribution between non-muscle invasive bladder cancer (NMIBC) and MIBC and did not associate with cancer-specif survival (CSS) in any of these groups. However, the overexpression of pAKT, pmTOR and/or pS6 allowed discriminating STn-positive advanced stage bladder tumours facing worst CSS (p = 0.027). Furthermore, multivariate Cox regression analysis revealed that overexpression of PI3K/Akt/mTOR pathway proteins in STn+ MIBC was independently associated with approximately 6-fold risk of death by cancer (p = 0.039). Mice bearing advanced stage chemically-induced bladder tumours mimicking the histological and molecular nature of human tumours were then administrated with mTOR-pathway inhibitor sirolimus (rapamycin

  9. Abnormal Protein Glycosylation and Activated PI3K/Akt/mTOR Pathway: Role in Bladder Cancer Prognosis and Targeted Therapeutics

    PubMed Central

    Lima, Luís; Peixoto, Andreia; Fernandes, Elisabete; Neves, Diogo; Neves, Manuel; Gaiteiro, Cristiana; Tavares, Ana; Gil da Costa, Rui M.; Cruz, Ricardo; Amaro, Teresina; Oliveira, Paula A.; Ferreira, José Alexandre; Santos, Lúcio L.

    2015-01-01

    Muscle invasive bladder cancer (MIBC, stage ≥T2) is generally associated with poor prognosis, constituting the second most common cause of death among genitourinary tumours. Due to high molecular heterogeneity significant variations in the natural history and disease outcome have been observed. This has also delayed the introduction of personalized therapeutics, making advanced stage bladder cancer almost an orphan disease in terms of treatment. Altered protein glycosylation translated by the expression of the sialyl-Tn antigen (STn) and its precursor Tn as well as the activation of the PI3K/Akt/mTOR pathway are cancer-associated events that may hold potential for patient stratification and guided therapy. Therefore, a retrospective design, 96 bladder tumours of different stages (Ta, T1-T4) was screened for STn and phosphorylated forms of Akt (pAkt), mTOR (pmTOR), S6 (pS6) and PTEN, related with the activation of the PI3K/Akt/mTOR pathway. In our series the expression of Tn was residual and was not linked to stage or outcome, while STn was statically higher in MIBC when compared to non-muscle invasive tumours (p = 0.001) and associated decreased cancer-specific survival (log rank p = 0.024). Conversely, PI3K/Akt/mTOR pathway intermediates showed an equal distribution between non-muscle invasive bladder cancer (NMIBC) and MIBC and did not associate with cancer-specif survival (CSS) in any of these groups. However, the overexpression of pAKT, pmTOR and/or pS6 allowed discriminating STn-positive advanced stage bladder tumours facing worst CSS (p = 0.027). Furthermore, multivariate Cox regression analysis revealed that overexpression of PI3K/Akt/mTOR pathway proteins in STn+ MIBC was independently associated with approximately 6-fold risk of death by cancer (p = 0.039). Mice bearing advanced stage chemically-induced bladder tumours mimicking the histological and molecular nature of human tumours were then administrated with mTOR-pathway inhibitor sirolimus (rapamycin

  10. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen-activated protein kinase kinase signaling pathways

    PubMed Central

    HU, SHAN; HUANG, LIMING; MENG, LIWEI; SUN, HE; ZHANG, WEI; XU, YINGCHUN

    2015-01-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways. PMID:26502751

  11. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen‑activated protein kinase kinase signaling pathways.

    PubMed

    Hu, Shan; Huang, Liming; Meng, Liwei; Sun, He; Zhang, Wei; Xu, Yingchun

    2015-11-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways.

  12. Preliminary crystallographic analysis of the ankyrin-repeat domain of Arabidopsis thaliana AKT1: identification of the domain boundaries for protein crystallization

    PubMed Central

    Chaves-Sanjuán, Antonio; Sánchez-Barrena, María José; González-Rubio, Juana María; Albert, Armando

    2014-01-01

    The Arabidopsis thaliana K+ transporter 1 (AKT1) participates in the maintenance of an adequate cell potassium (K+) concentration. The CBL-interacting protein kinase 23 (CIPK23) activates AKT1 for K+ uptake under low-K+ conditions. This process is mediated by the interaction between the cytosolic ankyrin-repeat (AR) domain of AKT1 and the kinase domain of CIPK23. However, the precise boundaries of the AR domain and the residues responsible for the interaction are still unknown. Here, the optimization procedure to obtain an AR domain construct suitable for crystallization and the preliminary crystallographic analysis of the obtained crystals are reported. The crystals belonged to space group P21212, with unit-cell parameters a = 34.83, b = 65.89, c = 85.44 Å, and diffracted to 1.98 Å resolution. PMID:24699751

  13. Preliminary crystallographic analysis of the ankyrin-repeat domain of Arabidopsis thaliana AKT1: identification of the domain boundaries for protein crystallization.

    PubMed

    Chaves-Sanjuán, Antonio; Sánchez-Barrena, María José; González-Rubio, Juana María; Albert, Armando

    2014-04-01

    The Arabidopsis thaliana K(+) transporter 1 (AKT1) participates in the maintenance of an adequate cell potassium (K(+)) concentration. The CBL-interacting protein kinase 23 (CIPK23) activates AKT1 for K(+) uptake under low-K(+) conditions. This process is mediated by the interaction between the cytosolic ankyrin-repeat (AR) domain of AKT1 and the kinase domain of CIPK23. However, the precise boundaries of the AR domain and the residues responsible for the interaction are still unknown. Here, the optimization procedure to obtain an AR domain construct suitable for crystallization and the preliminary crystallographic analysis of the obtained crystals are reported. The crystals belonged to space group P21212, with unit-cell parameters a = 34.83, b = 65.89, c = 85.44 Å, and diffracted to 1.98 Å resolution.

  14. Phosphorylated Ribosomal Protein S6 Is Required for Akt-Driven Hyperplasia and Malignant Transformation, but Not for Hypertrophy, Aneuploidy and Hyperfunction of Pancreatic β-Cells.

    PubMed

    Wittenberg, Avigail Dreazen; Azar, Shahar; Klochendler, Agnes; Stolovich-Rain, Miri; Avraham, Shlomit; Birnbaum, Lea; Binder Gallimidi, Adi; Katz, Maximiliano; Dor, Yuval; Meyuhas, Oded

    2016-01-01

    Constitutive expression of active Akt (Akttg) drives hyperplasia and hypertrophy of pancreatic β-cells, concomitantly with increased insulin secretion and improved glucose tolerance, and at a later stage the development of insulinoma. To determine which functions of Akt are mediated by ribosomal protein S6 (rpS6), an Akt effector, we generated mice that express constitutive Akt in β-cells in the background of unphosphorylatable ribosomal protein S6 (rpS6P-/-). rpS6 phosphorylation deficiency failed to block Akttg-induced hypertrophy and aneuploidy in β-cells, as well as the improved glucose homeostasis, indicating that Akt carries out these functions independently of rpS6 phosphorylation. In contrast, rpS6 phosphorylation deficiency efficiently restrained the reduction in nuclear localization of the cell cycle inhibitor p27, as well as the development of Akttg-driven hyperplasia and tumor formation in β-cells. In vitro experiments with Akttg and rpS6P-/-;Akttg fibroblasts demonstrated that rpS6 phosphorylation deficiency leads to reduced translation fidelity, which might underlie its anti-tumorigenic effect in the pancreas. However, the role of translation infidelity in tumor suppression cannot simply be inferred from this heterologous experimental model, as rpS6 phosphorylation deficiency unexpectedly elevated the resistance of Akttg fibroblasts to proteotoxic, genotoxic as well as autophagic stresses. In contrast, rpS6P-/- fibroblasts exhibited a higher sensitivity to these stresses upon constitutive expression of oncogenic Kras. The latter result provides a possible mechanistic explanation for the ability of rpS6 phosphorylation deficiency to enhance DNA damage and protect mice from Kras-induced neoplastic transformation in the exocrine pancreas. We propose that Akt1 and Kras exert their oncogenic properties through distinct mechanisms, even though both show addiction to rpS6 phosphorylation.

  15. Akt1 promotes stimuli-induced endothelial-barrier protection through FoxO-mediated tight-junction protein turnover.

    PubMed

    Gao, Fei; Artham, Sandeep; Sabbineni, Harika; Al-Azayzih, Ahmad; Peng, Xiao-Ding; Hay, Nissim; Adams, Ralf H; Byzova, Tatiana V; Somanath, Payaningal R

    2016-10-01

    Vascular permeability regulated by the vascular endothelial growth factor (VEGF) through endothelial-barrier junctions is essential for inflammation. Mechanisms regulating vascular permeability remain elusive. Although 'Akt' and 'Src' have been implicated in the endothelial-barrier regulation, it is puzzling how both agents that protect and disrupt the endothelial-barrier activate these kinases to reciprocally regulate vascular permeability. To delineate the role of Akt1 in endothelial-barrier regulation, we created endothelial-specific, tamoxifen-inducible Akt1 knockout mice and stable ShRNA-mediated Akt1 knockdown in human microvascular endothelial cells. Akt1 loss leads to decreased basal and angiopoietin1-induced endothelial-barrier resistance, and enhanced VEGF-induced endothelial-barrier breakdown. Endothelial Akt1 deficiency resulted in enhanced VEGF-induced vascular leakage in mice ears, which was rescued upon re-expression with Adeno-myrAkt1. Furthermore, co-treatment with angiopoietin1 reversed VEGF-induced vascular leakage in an Akt1-dependent manner. Mechanistically, our study revealed that while VEGF-induced short-term vascular permeability is independent of Akt1, its recovery is reliant on Akt1 and FoxO-mediated claudin expression. Pharmacological inhibition of FoxO transcription factors rescued the defective endothelial barrier due to Akt1 deficiency. Here we provide novel insights on the endothelial-barrier protective role of VEGF in the long term and the importance of Akt1-FoxO signaling on tight-junction stabilization and prevention of vascular leakage through claudin expression.

  16. Phosphoinositide 3-kinase targeting by the β galactoside binding protein cytokine negates akt gene expression and leads aggressive breast cancer cells to apoptotic death

    PubMed Central

    Wells, Valerie; Mallucci, Livio

    2009-01-01

    Introduction Phosphoinositide 3-kinase (PI3K)-activated signalling has a critical role in the evolution of aggressive tumourigenesis and is therefore a prime target for anticancer therapy. Previously we have shown that the β galactoside binding protein (βGBP) cytokine, an antiproliferative molecule, induces functional inhibition of class 1A and class 1B PI3K. Here, we have investigated whether, by targeting PI3K, βGBP has therapeutic efficacy in aggressive breast cancer cells where strong mitogenic input is fuelled by overexpression of the ErbB2 (also known as HER/neu, for human epidermal growth factor receptor 2) oncoprotein receptor and have used immortalised ductal cells and non-aggressive mammary cancer cells, which express ErbB2 at low levels, as controls. Methods Aggressive BT474 and SKBR3 cancer cells where ErbB2 is overexpressed, MCF10A immortalised ductal cells and non-invasive MCF-7 cancer cells which express low levels of ErbB2, both in their naive state and when forced to mimic aggressive behaviour, were used. Class IA PI3K was immunoprecipitated and the conversion of phosphatidylinositol (4,5)-biphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3) assessed by ELISA. The consequences of PI3K inhibition by βGBP were analysed at proliferation level, by extracellular signal-regulated kinase (ERK) activation, by akt gene expression and by apoptosis. Apoptosis was documented by changes in mitochondrial membrane potential, alteration of the plasma membrane, caspase 3 activation and DNA fragmentation. Phosphorylated and total ERK were measured by Western blot analysis and akt mRNA levels by Northern blot analysis. The results obtained with the BT474 and SKBR3 cells were validated in the MCF10A ductal cells and in non-invasive MCF-7 breast cancer cells forced into mimicking the in vitro behaviour of the BT474 and SKBR3 cells. Results In aggressive breast cancer cells, where mitogenic signalling is enforced by the ErbB2 oncoprotein receptor

  17. Regulation of Akt/Protein Kinase B Signaling by a Novel Protein Phosphatase in Breast Cancer Cells

    DTIC Science & Technology

    2008-01-01

    acid 1016 (L1016S)) in the PP2C domain of thephosphatase, where the a copy of the Ser allele is present in 15% of the population. Four breast cancer...PHLPP2 preferentially dephosphorylates Akt at Ser 473, unique from the isolated PP2C domain of PHLPP2, which dephosphorylates both Ser 473 and Thr 308 of...codon 1016 in the PP2C phosphatase domain. We observed that four breast cancer cell lines possessed only the Ser allele, one breast cancer cell line

  18. Down-regulation of ribosomal protein S15A inhibits proliferation of human glioblastoma cells in vivo and in vitro via AKT pathway.

    PubMed

    Yao, Yiqun; Liu, Yongjian; Lv, Xiupeng; Dong, Bin; Wang, Feng; Li, Jun; Zhang, Qiuping; Xu, Ruixue; Xu, Yinghui

    2016-04-01

    Ribosomal protein s15a (RPS15A), a highly conserved cytoplasmic protein, promotes mRNA/ribosome interaction in translation. Recent evidence showed that RPS15A is essential for tumor growth. RPS15A expression level was measured in glioblastoma tissue samples and normal brain (NB) tissue samples. RPS15A RNAi stable cell line U87 and U251 was generated by the pLVTHM-GFP lentiviral RNAi expression system. The knockdown efficiency was confirmed by quantitative real-time PCR and western blot. Molecular mechanisms and the effect of RPS15A on cell growth and migration were investigated by using western blot, MTT assay, wound healing assay, transwell migration assay, and tumorigenesis in nude mice. Here, we report that RPS15A is overexpressed in human glioblastoma tumor tissues. RPS15A knockdown inhibits proliferation and migration of glioblastoma cells in vitro. Knocking down RPS15A leads to the level of p-Akt decrease and cell cycle arrested in G0/G1 phase in U87 and U251 cells. Furthermore, the growth of glioblastoma cell-transplanted tumors in nude mice is inhibited by transduction with Lv-shRPS15A. Our findings indicate that RPS15A promotes cell proliferation and migration in glioblastoma for the first time. RPS15A might play a distinct role in glioblastoma and serve as a potential target for therapy.

  19. Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt.

    PubMed

    McDaneld, T G; Spurlock, D M

    2008-11-01

    Ankyrin repeat and suppressor of cytokine signaling box-containing protein (ASB) 15 is a novel ASB gene family member predominantly expressed in skeletal muscle. We have previously reported that overexpression of ASB15 delays differentiation and alters protein turnover in mouse C(2)C(12) myoblasts. However, the extent of ASB15 regulation of differentiation and molecular pathways underlying this activity are unknown. The extracellular signal-regulated kinase (Erk) 1/2 and phosphatidylinositol-3 kinase-Akt (PI3K/Akt; Akt is also known as protein kinase B) signaling pathways have a role in skeletal muscle growth. Activation (phosphorylation) of the Erk1/2 signaling pathway promotes proliferation, whereas activation of the PI3K/Akt signaling pathway promotes myoblast differentiation. Accordingly, we tested the hypothesis that ASB15 controls myoblast differentiation through its regulation of these kinases. Stably transfected myoblasts overexpressing ASB15 (ASB15+) demonstrated decreased differentiation, whereas attenuation of ASB15 expression (ASB15-) increased differentiation. However, ASB15+ cells had less abundance of the phosphorylated mitogen-activated protein kinase (active) form, despite decreased differentiation relative to control myoblasts (ASB15Con). The mitogen-activated protein kinase kinase inhibitor, U0126, effectively decreased mitogen-activated protein kinase phosphorylation and stimulated differentiation in ASB15- and ASB15Con cells. However, inhibition of the Erk1/2 pathway was unable to overcome the inhibitory effect of overexpressing ASB15 on differentiation (ASB15+), suggesting that the Erk1/2 pathway is likely not the predominant mediator of ASB15 activity on differentiation. Expression of ASB15 also altered phosphorylation of the PI3K/Akt pathway, as ASB15+ and ASB15- cells had decreased and increased Akt phosphorylation, respectively. These data were consistent with observed differences in differentiation. Administration of IGF-I, a PI3K/Akt

  20. Modulation in Activation and Expression of PTEN, Akt1, and PDK1: Further Evidence Demonstrating Altered Phosphoinositide 3-kinase Signaling in Postmortem Brain of Suicide Subjects

    PubMed Central

    Dwivedi, Yogesh; Rizavi, Hooriyah S.; Zhang, Hui; Roberts, Rosalinda C.; Conley, Robert R.; Pandey, Ghanshyam N.

    2010-01-01

    Background Phosphoinositide 3-kinase (PI 3-K) signaling plays a crucial role in neuronal growth and plasticity. Recently, we demonstrated that suicide brain is associated with decreased activation and expression of selective catalytic and regulatory subunits of PI 3-K. The present investigation examined the regulation and functional significance of compromised PI 3-K in suicide brain at the level of upstream phosphatase and tensin homolog on chromosome ten (PTEN) and downstream substrates 3-phosphoinositide-dependent kinase 1 (PDK1) and Akt. Method mRNA expression of Akt1, Akt3, PTEN, and PDK1 by competitive RT-PCR; protein expression of Akt1, Akt3, PTEN, PDK1, phosphorylated-Akt1 (Ser473), phosphorylated-Akt1(Thr308), phosphorylated-PDK1, and phosphorylated-PTEN by Western blot; and catalytic activities of Akt1, Akt3, and PDK1 by enzymatic assays were determined in prefrontal cortex (PFC) and hippocampus obtained from suicide subjects and nonpsychiatric controls. Results No significant changes in the expression of Akt1 or Akt3 were observed; however, catalytic activity of Akt1, but not of Akt3, was decreased in PFC and hippocampus of suicide subjects, which was associated with decreased phosphorylation of Akt1 at Ser473 and Thr308. The catalytic activity of PDK1 and the level of phosphorylated-PDK1 were also decreased in both brain areas without any change in expression levels of PDK1. On the other hand, mRNA and protein expression of PTEN was increased, whereas the level of phosphorylated-PTEN was decreased. Conclusion Our study demonstrates abnormalities in PI 3-K signaling at several levels in brain of suicide subjects and suggests the possible involvement of aberrant PI 3-K/Akt signaling in the pathogenic mechanisms of suicide. PMID:20163786

  1. UBE2C induces EMT through Wnt/β-catenin and PI3K/Akt signaling pathways by regulating phosphorylation levels of Aurora-A

    PubMed Central

    Wang, Rui; Song, Yue; Liu, Xi; Wang, Qixue; Wang, Yunfei; Li, Liwei; Kang, Chunsheng; Zhang, Qingyu

    2017-01-01

    The ubiquitin-conjugating enzyme 2C (UBE2C) is the key component in the ubiquitin proteasome system (UPS) by partnering with the anaphase-promoting complex (APC/C). A high UBE2C protein expression level has been reported in various types of human tumors. However, little is known about the precise mechanism by which UBE2C expression is downregulated in gastric cancer. We found in MGC-803 and SGC-7901 gastric cancer cells UBE2C-deficient G2/M phase arrest in the cell cycle and subsequently decreased gastric adenocarcinoma tumorigenesis. In the previous study, we identified Aurora-A (AURKA) as the hub gene of the gastric cancer linkage network based genome-wide association study (eGWAS). Furthermore, knockdown of UBE2C using siRNA markedly reduced the level of phosphorylation AURKA (p-AURKA) via Wnt/β-catenin and PI3K/Akt signaling pathways suppressed the occurrence and development of gastric cancer. Additionally, the expression of E-cadherin was up-regulated and N-cadherin was down-regulated in response to UBE2C knockdown and inhibits epithelial-mesenchymal transition (EMT). Collectively, our data suggest that the activity of AURKA might be regulated by UBE2C through regulating the activity of APC/C. UBE2C may be a new marker in the diagnosis of gastric cancer and may be a potential therapeutic target for the treatment of gastric adenocarcinoma. PMID:28260026

  2. Insulin relaxes bladder via PI3K/AKT/eNOS pathway activation in mucosa: unfolded protein response-dependent insulin resistance as a cause of obesity-associated overactive bladder.

    PubMed

    Leiria, Luiz O; Sollon, Carolina; Báu, Fernando R; Mónica, Fabíola Z; D'Ancona, Carlos L; De Nucci, Gilberto; Grant, Andrew D; Anhê, Gabriel F; Antunes, Edson

    2013-05-01

    We aimed to investigate the role of insulin in the bladder and its relevance for the development of overactive bladder (OAB) in insulin-resistant obese mice. Bladders from male individuals who were involved in multiple organ donations were used. C57BL6/J mice were fed with a high-fat diet for 10 weeks to induce insulin-resistant obesity. Concentration-response curves to insulin were performed in human and mouse isolated mucosa-intact and mucosa-denuded bladders. Cystometric study was performed in terminally anaesthetized mice. Western blot was performed in bladders to detect phosphorylated endothelial NO synthase (eNOS) (Ser1177) and the phosphorylated protein kinase AKT (Ser473), as well as the unfolded protein response (UPR) markers TRIB3, CHOP and ATF4. Insulin (1-100 nm) produced concentration-dependent mouse and human bladder relaxations that were markedly reduced by mucosal removal or inhibition of the PI3K/AKT/eNOS pathway. In mouse bladders, insulin produced a 3.0-fold increase in cGMP levels (P < 0.05) that was prevented by PI3K/AKT/eNOS pathway inhibition. Phosphoinositide 3-kinase (PI3K) inhibition abolished insulin-induced phosphorylation of AKT and eNOS in bladder mucosa. Obese mice showed greater voiding frequency and non-voiding contractions, indicating overactive detrusor smooth muscle. Insulin failed to relax the bladder or to increase cGMP in the obese group. Insulin-stimulated AKT and eNOS phosphorylation in mucosa was also impaired in obese mice. The UPR markers TRIB3, CHOP and ATF4 were increased in the mucosa of obese mice. The UPR inhibitor 4-phenyl butyric acid normalized all the functional and molecular parameters in obese mice. Our data show that insulin relaxes human and mouse bladder via activation of the PI3K/AKT/eNOS pathway in the bladder mucosa. Endoplasmic reticulum stress-dependent insulin resistance in bladder contributes to OAB in obese mice.

  3. AKT Regulates BRCA1 Stability in Response to Hormone Signaling

    PubMed Central

    Nelson, Andrew C.; Lyons, Traci R.; Young, Christian D.; Hansen, Kirk C.; Anderson, Steven M.; Holt, Jeffrey T.

    2015-01-01

    BRCA1, with its binding partner BARD1, regulates the cellular response to DNA damage in multiple tissues, yet inherited mutations within BRCA1 result specifically in breast and ovarian cancers. This observation, along with several other lines of evidence, suggests a functional relationship may exist between hormone signaling and BRCA1 function. Our data demonstrates that AKT activation promotes the expression of BRCA1 in response to estrogen and IGF-1 receptor signaling. Further, we have identified a novel AKT phosphorylation site in BRCA1 at S694 which is responsive to activation of these signaling pathways. This rapid increase in BRCA1 protein levels appears to occur independently of new protein synthesis and treatment with the clinically utilized proteasome inhibitor bortezomib similarly leads to a rapid increase in BRCA1 protein levels. Together, these data suggest that AKT phosphorylation of BRCA1 increases total protein expression by preventing proteasomal degradation. AKT activation also appears to support nuclear localization of BRCA1, and co-expression of activated AKT with BRCA1 decreases radiation sensitivity, suggesting this interaction has functional consequences for BRCA1's role in DNA repair. We conclude that AKT regulates BRCA1 protein stability and function through direct phosphorylation of BRCA1. Further, the responsiveness of the AKT-BRCA1 regulatory pathway to hormone signaling may, in part, underlie the tissue specificity of BRCA1 mutant cancers. Pharmacological targets within this pathway could provide strategies for modulation of BRCA1 protein, which may prove therapeutically beneficial for the treatment of breast and ovarian cancers. PMID:20085797

  4. Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis

    PubMed Central

    Rotllan, Noemi; Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Wanschel, Amarylis C.; Aryal, Binod; Aranda, Juan F.; Goedeke, Leigh; Salerno, Alessandro G.; Ramírez, Cristina M.; Sessa, William C.; Suárez, Yajaira; Fernández-Hernando, Carlos

    2015-01-01

    Atherosclerosis is the major cause of death and disability in diabetic and obese subjects with insulin resistance. Akt2, a phosphoinositide-dependent serine-threonine protein kinase, is highly express in insulin-responsive tissues; however, its role during the progression of atherosclerosis remains unknown. Thus, we aimed to investigate the contribution of Akt2 during the progression of atherosclerosis. We found that germ-line Akt2-deficient mice develop similar atherosclerotic plaques as wild-type mice despite higher plasma lipids and glucose levels. It is noteworthy that transplantation of bone marrow cells isolated from Akt2−/− mice to Ldlr−/− mice results in marked reduction of the progression of atherosclerosis compared with Ldlr−/− mice transplanted with wild-type bone marrow cells. In vitro studies indicate that Akt2 is required for macrophage migration in response to proatherogenic cytokines (monocyte chemotactic protein-1 and macrophage colony-stimulating factor). Moreover, Akt2−/− macrophages accumulate less cholesterol and have an alternative activated or M2-type phenotype when stimulated with proinflammatory cytokines. Together, these results provide evidence that macrophage Akt2 regulates migration, the inflammatory response and cholesterol metabolism and suggest that targeting Akt2 in macrophages might be beneficial for treating atherosclerosis.—Rotllan, N., Chamorro-Jorganes, A., Araldi, E., Wanschel, A. C., Aryal, B., Aranda, J. F., Goedeke, L., Salerno, A. G., Ramírez, C. M., Sessa,W. C., Suárez, Y., Fernández-Hernando, C. Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis. PMID:25392271

  5. Molecular pharmacology and antitumor activity of PHT-427, a novel Akt/phosphatidylinositide-dependent protein kinase 1 pleckstrin homology domain inhibitor.

    PubMed

    Meuillet, Emmanuelle J; Zuohe, Song; Lemos, Robert; Ihle, Nathan; Kingston, John; Watkins, Ryan; Moses, Sylvestor A; Zhang, Shuxing; Du-Cuny, Lei; Herbst, Roy; Jacoby, Jörg J; Zhou, Li Li; Ahad, Ali M; Mash, Eugene A; Kirkpatrick, D Lynn; Powis, Garth

    2010-03-01

    Phosphatidylinositol 3-kinase/phosphatidylinositide-dependent protein kinase 1 (PDPK1)/Akt signaling plays a critical role in activating proliferation and survival pathways within cancer cells. We report the molecular pharmacology and antitumor activity of PHT-427, a compound designed to bind to the pleckstrin homology (PH) binding domain of signaling molecules important in cancer. Although originally designed to bind the PH domain of Akt, we now report that PHT-427 also binds to the PH domain of PDPK1. A series of PHT-427 analogues with variable C-4 to C-16 alkyl chain length were synthesized and tested. PHT-427 itself (C-12 chain) bound with the highest affinity to the PH domains of both PDPK1 and Akt. PHT-427 inhibited Akt and PDPK1 signaling and their downstream targets in sensitive but not resistant cells and tumor xenografts. When given orally, PHT-427 inhibited the growth of human tumor xenografts in immunodeficient mice, with up to 80% inhibition in the most sensitive tumors, and showed greater activity than analogues with C4, C6, or C8 alkyl chains. Inhibition of PDPK1 was more closely correlated to antitumor activity than Akt inhibition. Tumors with PIK3CA mutation were the most sensitive, and K-Ras mutant tumors were the least sensitive. Combination studies showed that PHT-427 has greater than additive antitumor activity with paclitaxel in breast cancer and with erlotinib in non-small cell lung cancer. When given >5 days, PHT-427 caused no weight loss or change in blood chemistry. Thus, we report a novel PH domain binding inhibitor of PDPK1/Akt signaling with significant in vivo antitumor activity and minimal toxicity.

  6. Metastasis and AKT activation.

    PubMed

    Qiao, Meng; Sheng, Shijie; Pardee, Arthur B

    2008-10-01

    Metastasis is responsible for 90% of cancer patient deaths. More information is needed about the molecular basis for its potential detection and treatment. The activated AKT kinase is necessary for many events of the metastatic pathway including escape of cells from the tumor's environment, into and then out of the circulation, activation of proliferation, blockage of apoptosis, and activation of angiogenesis. A series of steps leading to metastatic properties can be initiated upon activation of AKT by phosphorylation on Ser-473. These findings lead to the question of how this activation is connected to metastasis. Activated AKT phosphorylates GSK-3beta causing its proteolytic removal. This increases stability of the negative transcription factor SNAIL, thereby decreasing transcription of the transmembrane protein E-cadherin that forms adhesions between adjacent cells, thereby permitting their detachment. How is AKT hyperactivated in metastatic cells? Increased PI3K or TORC2 kinase activity- or decreased PHLPP phosphatase could be responsible. Furthermore, a positive feedback mechanism is that the decrease of E-cadherin lowers PTEN and thereby increases PIP3, further activating AKT and metastasis.

  7. Hepatitis C virus E2 protein involve in insulin resistance through an impairment of Akt/PKB and GSK3β signaling in hepatocytes

    PubMed Central

    2012-01-01

    Background Hepatitis C virus (HCV) infection may cause liver diseases of various severities ranging from primary acute infection to life-threatening diseases, such as cirrhosis or hepatocellular carcinoma with poor prognosis. According to clinical findings, HCV infection may also lead to some extra-hepatic symptoms, including type 2 diabetes mellitus (DM). Since insulin resistance is the major etiology for type 2 DM and numerous evidences showed that HCV infection associated with insulin resistance, the involvement of E2 in the pathogenesis of type 2 DM and underlying mechanisms were investigated in this study. Methods Reverse transcription and real-time PCR, Western blot assay, Immunoprecipitation, Glucose uptake assay and analysis of cellular glycogen content. Results Results showed that E2 influenced on protein levels of insulin receptor substrate-1 (IRS-1) and impaired insulin-induced Ser308 phosphorylation of Akt/PKB and Ser9 phosphorylation of GSK3β in Huh7 cells, leading to an inhibition of glucose uptake and glycogen synthesis, respectively, and eventually insulin resistance. Conclusions Therefore, HCV E2 protein indeed involved in the pathogenesis of type 2 DM by inducing insulin resistance. PMID:22721429

  8. Crk-like adapter protein is overexpressed in cervical carcinoma, facilitates proliferation, invasion and chemoresistance, and regulates Src and Akt signaling

    PubMed Central

    Ji, Hong; Li, Bo; Zhang, Shitai; He, Zheng; Zhou, Yang; Ouyang, Ling

    2016-01-01

    Overexpression of Crk-like (CrkL) adapter protein has been implicated in a number of types of human cancer. However, its involvement in human cervical carcinoma remains unclear. The present study aimed to explore the clinical significance and biological characteristics of CrkL in human cervical carcinoma. CrkL protein expression was examined in tissue samples from 92 cases of cervical carcinoma using immunohistochemistry, and was found to be overexpressed in 48.9% (45/92 cases). CrkL was transfected into HeLa and CaSki cervical carcinoma cell lines and its effects on biological behavior were examined. CrkL overexpression was revealed to promote cell proliferation, invasion and chemoresistance. In addition, CrkL overexpression increased the level of Src and Akt phosphorylation. Treatment with the Src inhibitor dasatinib eliminated the effect of CrkL on cell invasion. In conclusion, the current results demonstrate that CrkL is an oncoprotein overexpressed in cervical carcinoma which contributes to malignant cell growth and chemoresistance. In addition, the findings indicate that CrkL promotes cervical cancer cell invasion through a Src-dependent pathway. PMID:27895735

  9. AKT capture by feline leukemia virus.

    PubMed

    Kawamura, Maki; Umehara, Daigo; Odahara, Yuka; Miyake, Ariko; Ngo, Minh Ha; Ohsato, Yoshiharu; Hisasue, Masaharu; Nakaya, Masa-Aki; Watanabe, Shinya; Nishigaki, Kazuo

    2016-12-22

    Oncogene-containing retroviruses are generated by recombination events between viral and cellular sequences, a phenomenon called "oncogene capture". The captured cellular genes, referred to as "v-onc" genes, then acquire new oncogenic properties. We report a novel feline leukemia virus (FeLV), designated "FeLV-AKT", that has captured feline c-AKT1 in feline lymphoma. FeLV-AKT contains a gag-AKT fusion gene that encodes the myristoylated Gag matrix protein and the kinase domain of feline c-AKT1, but not its pleckstrin homology domain. Therefore, it differs structurally from the v-Akt gene of murine retrovirus AKT8. AKT may be involved in the mechanisms underlying malignant diseases in cats.

  10. Galangin Activates the ERK/AKT-Driven Nrf2 Signaling Pathway to Increase the Level of Reduced Glutathione in Human Keratinocytes.

    PubMed

    Madduma Hewage, Susara Ruwan Kumara; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Fernando, Pattage Madushan Dilhara Jayatissa; Oh, Min Chang; Park, Jeong Eon; Shilnikova, Kristina; Moon, Yu Jin; Shin, Dae O; Hyun, Jin Won

    2016-11-08

    Previously, we demonstrated that galangin (3,5,7-trihydroxyflavone) protects human keratinocytes against ultraviolet B (UVB)-induced oxidative damage. In this study, we investigated the effect of galangin on induction of antioxidant enzymes involved in synthesis of reduced glutathione (GSH), and investigated the associated upstream signaling cascades. By activating nuclear factor-erythroid 2-related factor (Nrf2), galangin treatment significantly increased expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS). This activation of Nrf2 depended on extracellular signal-regulated kinases (ERKs) and protein kinase B (AKT) signaling. Inhibition of GSH in galangin-treated cells attenuated the protective effect of galangin against the deleterious effects of UVB. Our results reveal that galangin protects human keratinocytes by activating ERK/AKT-Nrf2, leading to elevated expression of GSH-synthesizing enzymes.

  11. Contraction-induced changes in TNFalpha and Akt-mediated signalling are associated with increased myofibrillar protein in rat skeletal muscle.

    PubMed

    Karagounis, Leonidas G; Yaspelkis, Ben B; Reeder, Donald W; Lancaster, Graeme I; Hawley, John A; Coffey, Vernon G

    2010-07-01

    Resistance training results in skeletal muscle hypertrophy, but the molecular signalling mechanisms responsible for this altered phenotype are incompletely understood. We used a resistance training (RT) protocol consisting of three sessions [day 1 (d1), day 3 (d3), day 5 (d5)] separated by 48 h recovery (squat exercise, 4 sets x 10 repetitions, 3 min recovery) to determine early signalling responses to RT in rodent skeletal muscle. Six animals per group were killed 3 h after each resistance training session and 24 and 48 h after the last training session (d5). There was a robust increase in TNFalpha protein expression, and IKK(Ser180/181) and p38MAPK(Thr180/Tyr182) phosphorylation on d1 (P < 0.05), which abated with subsequent RT, returning to control levels by d5 for TNFalpha and IKK(Ser180/181). There was a trend for a decrease in MuRF-1 protein expression, 48 h following d5 of training (P = 0.08). Notably, muscle myofibrillar protein concentration was elevated compared to control 24 and 48 h following RT (P < 0.05). Akt(Ser473) and mTOR(Ser2448) phosphorylation were unchanged throughout RT. Phosphorylation of p70S6k(Thr389) increased 3 h post-exercise on d1, d3 and d5 (P < 0.05), whilst phosphorylation of S6(Ser235/236) increased on d1 and d3 (P < 0.05). Our results show a rapid attenuation of inflammatory signalling with repeated bouts of resistance exercise, concomitant with summation in translation initiation signalling in skeletal muscle. Indeed, the cumulative effect of these signalling events was associated with myofibrillar protein accretion, which likely contributes to the early adaptations in response to resistance training overload in the skeletal muscle.

  12. Thioredoxin Binding Protein-2 Regulates Autophagy of Human Lens Epithelial Cells under Oxidative Stress via Inhibition of Akt Phosphorylation

    PubMed Central

    Yao, Ke; Zhang, Yidong; Chen, Guangdi; Lai, Kairan; Yin, Houfa

    2016-01-01

    Oxidative stress plays an essential role in the development of age-related cataract. Thioredoxin binding protein-2 (TBP-2) is a negative regulator of thioredoxin (Trx), which deteriorates cellular antioxidant system. Our study focused on the autophagy-regulating effect of TBP-2 under oxidative stress in human lens epithelial cells (LECs). Human lens epithelial cells were used for cell culture and treatment. Lentiviral-based transfection system was used for overexpression of TBP-2. Cytotoxicity assay, western blot analysis, GFP/mCherry-fused LC3 plasmid, immunofluorescence, and transmission electronic microscopy were performed. The results showed that autophagic response of LECs with increased LC3-II, p62, and GFP/mCherry-LC3 puncta (P < 0.01) was induced by oxidative stress. Overexpression of TBP-2 further strengthens this response and worsens the cell viability (P < 0.01). Knockdown of TBP-2 attenuates the autophagic response and cell viability loss induced by oxidative stress. TBP-2 mainly regulates autophagy in the initiation stage, which is mTOR-independent and probably caused by the dephosphorylation of Akt under oxidative stress. These findings suggest a novel role of TBP-2 in human LECs under oxidative stress. Oxidative stress can cause cell injury and autophagy in LECs, and TBP-2 regulates this response. Hence, this study provides evidence regarding the role of TBP-2 in lens and the possible mechanism of cataract development. PMID:27656263

  13. Bis(hinokitiolato)zinc complex ([Zn(hkt)2]) activates Akt/protein kinase B independent of insulin signal transduction.

    PubMed

    Naito, Yuki; Yoshikawa, Yutaka; Masuda, Kazufumi; Yasui, Hiroyuki

    2016-07-01

    Since many Zn complexes have been developed to enhance the insulin-like activity and increase the exposure and residence of Zn in the animal body, these complexes are recognized as one of the new candidates with action mechanism different from existing anti-diabetic drugs. However, the molecular mechanism by which Zn complexes exert an anti-DM effect is unknown. Therefore, we evaluated the activity of Zn complexes, especially related to the phosphorylation of insulin signaling pathway components. We focused on the insulin-like effects of the bis(hinokitiolato)zinc complex, [Zn(hkt)2], using 3T3-L1 adipocytes. [Zn(hkt)2] was taken up by cells and induced Akt phosphorylation in a time-dependent manner. Additionally, it showed inhibitory activity against PTP1B and PTEN, which are major negative regulators of insulin signaling. It did not promote the phosphorylation of IR (insulin receptor)-β or IRS (insulin receptor substrate)-1 by itself, but in combination with insulin, it enhanced the phosphorylation of IRβ. We conclude that [Zn(hkt)2] has effects on the proteins of insulin signaling pathway without insulin receptor mediation, and [Zn(hkt)2] promotes insulin function and shows the anti-DM effects. Thus, [Zn(hkt)2] may be the basis for improved DM treatments.

  14. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis.

    PubMed

    Mancini, Maria L; Lien, Evan C; Toker, Alex

    2016-04-05

    One of the most frequently deregulated signaling pathways in breast cancer is the PI 3-K/Akt cascade. Genetic lesions are commonly found in PIK3CA, PTEN, and AKT, which lead to excessive and constitutive activation of Akt and downstream signaling that results in uncontrolled proliferation and increased cellular survival. One such genetic lesion is the somatic AKT1(E17K) mutation, which has been identified in 4-8% of breast cancer patients. To determine how this mutation contributes to mammary tumorigenesis, we constructed a genetically engineered mouse model that conditionally expresses human AKT1(E17K) in the mammary epithelium. Although AKT1(E17K) is only weakly constitutively active and does not promote proliferation in vitro, it is capable of escaping negative feedback inhibition to exhibit sustained signaling dynamics in vitro. Consistently, both virgin and multiparous AKT1(E17K) mice develop mammary gland hyperplasia that do not progress to carcinoma. This hyperplasia is accompanied by increased estrogen receptor expression, although exposure of the mice to estrogen does not promote tumor development. Moreover, AKT1(E17K) prevents HER2-driven mammary tumor formation, in part through negative feedback inhibition of RTK signaling. Analysis of TCGA breast cancer data revealed that the mRNA expression, total protein levels, and phosphorylation of various RTKs are decreased in human tumors harboring AKT1(E17K).

  15. AKT/PKB Signaling: Navigating Downstream

    PubMed Central

    Manning, Brendan D.; Cantley, Lewis C.

    2009-01-01

    The serine/threonine kinase Akt, also known as protein kinase B (PKB), is a central node in cell signaling downstream of growth factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt activation underlies the pathophysiological properties of a variety of complex diseases, including type-2 diabetes and cancer. Here, we review the molecular properties of Akt and the approaches used to characterize its true cellular targets. In addition, we discuss those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. PMID:17604717

  16. Protein kinase C promotes apoptosis in LNCaP prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway.

    PubMed

    Tanaka, Yuichi; Gavrielides, M Veronica; Mitsuuchi, Yasuhiro; Fujii, Teruhiko; Kazanietz, Marcelo G

    2003-09-05

    Activation of protein kinase C (PKC) by phorbol esters or diacylglycerol mimetics induces apoptosis in androgen-dependent prostate cancer cells, an effect that involves both the activation of the classic PKC alpha and the novel PKC delta isozymes (Fujii, T., García-Bermejo, M. L., Bernabó, J. L., Caamaño, J., Ohba, M., Kuroki, T., Li, L., Yuspa, S. H., and Kazanietz, M. G. (2000) J. Biol. Chem. 275, 7574-7582 and Garcia-Bermejo, M. L., Leskow, F. C., Fujii, T., Wang, Q., Blumberg, P. M., Ohba, M., Kuroki, T., Han, K. C., Lee, J., Marquez, V. E., and Kazanietz, M. G. (2002) J. Biol. Chem. 277, 645-655). In the present study we explored the signaling events involved in this PKC-mediated effect, using the androgen-dependent LNCaP cell line as a model. Stimulation of PKC by phorbol 12-myristate 13-acetate (PMA) leads to the activation of ERK1/2, p38 MAPK, and JNK in LNCaP cells. Here we present evidence that p38 MAPK, but not JNK, mediates PKC-induced apoptosis. Because LNCaP cells have hyperactivated Akt function due to PTEN inactivation, we examined whether this survival pathway could be affected by PKC activation. Interestingly, activation of PKC leads to a rapid and reversible dephosphorylation of Akt, an effect that was prevented by the pan-PKC inhibitor GF109302X and the cPKC inhibitor Gö6976. In addition, the diacylglycerol mimetic agent HK654, which selectively stimulates PKC alpha in LNCaP cells, also induced the dephosphorylation of Akt in LNCaP cells. Inactivation of Akt function by PKC does not involve the inhibition of PI3K, and it is prevented by okadaic acid, suggesting the involvement of a phosphatase 2A in PMA-induced Akt dephosphorylation. Finally, we show that, when an activated form of Akt is delivered into LNCaP cells by either transient transfection or adenoviral infection, the apoptotic effect of PMA is significantly reduced. Our results highlight a complex array of signaling pathways regulated by PKC isozymes in LNCaP prostate cancer cells

  17. Synergistic effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway or NUP214-ABL1 fusion protein in human Acute Lymphoblastic Leukemia

    PubMed Central

    Martelli, Alberto M.; Zauli, Giorgio; Milani, Daniela; McCubrey, James A.; Capitani, Silvano; Neri, Luca M.

    2016-01-01

    Philadelphia chromosome-positive (Ph+) Acute Lymphoblastic Leukemia (ALL) accounts for 25–30% of adult ALL and its incidence increases with age in adults >40 years old. Irrespective of age, the ABL1 fusion genes are markers of poor prognosis and amplification of the NUP214-ABL1 oncogene can be detected mainly in patients with T-ALL. T cell malignancies harboring the ABL1 fusion genes are sensitive to many cytotoxic agents, but up to date complete remissions have not been achieved. The PI3K/Akt/mTOR signaling pathway is often activated in leukemias and plays a crucial role in leukemogenesis. We analyzed the effects of three BCR-ABL1 tyrosine kinase inhibitors (TKIs), alone and in combination with a panel of selective PI3K/Akt/mTOR inhibitors, on three NUP214-ABL1 positive T-ALL cell lines that also displayed PI3K/Akt/mTOR activation. Cells were sensitive to anti BCR-ABL1 TKIs Imatinib, Nilotinib and GZD824, that specifically targeted the ABL1 fusion protein, but not the PI3K/Akt/mTOR axis. Four drugs against the PI3K/Akt/mTOR cascade, GSK690693, NVP-BGT226, ZSTK474 and Torin-2, showed marked cytotoxic effects on T-leukemic cells, without affecting the NUP214-ABL1 kinase and related pathway. Dephosphorylation of pAkt and pS6 showed the cytotoxicity of these compounds. Either single or combined administration of drugs against the different targets displayed inhibition of cellular viability associated with a concentration-dependent induction of apoptosis, cell cycle arrest in G0/G1 phase and autophagy, having the combined treatments a significant synergistic cytotoxic effect. Co-targeting NUP214-ABL1 fusion gene and PI3K/Akt/mTOR signaling pathway could represent a new and effective pharmacological strategy to improve the outcome in NUP214-ABL1 positive T-ALL. PMID:27821800

  18. Protein kinase B/Akt phosphorylates and inhibits the cardiac Na+/H+ exchanger NHE1.

    PubMed

    Snabaitis, Andrew K; Cuello, Friederike; Avkiran, Metin

    2008-10-10

    Sarcolemmal Na(+)/H(+) exchanger (NHE) activity is mediated by NHE isoform 1 (NHE1), which is subject to regulation by protein kinases. Our objectives were to determine whether NHE1 is phosphorylated by protein kinase B (PKB), identify any pertinent phosphorylation site(s), and delineate the functional consequences of such phosphorylation. Active PKBalpha phosphorylated in vitro a glutathione S-transferase (GST)-NHE1 fusion protein comprising amino acids 516 to 815 of the NHE1 carboxyl-terminal regulatory domain. PKBalpha-mediated phosphorylation of GST-NHE1 fusion proteins containing overlapping segments of this region localized the targeted residues to the carboxyl-terminal 190 amino acids (625 to 815) of NHE1. Mass spectrometry and phosphorylation analysis of mutated (Ser-->Ala) GST-NHE1 fusion proteins revealed that PKBalpha-mediated phosphorylation of NHE1 occurred principally at Ser648. Far-Western assays demonstrated that PKBalpha-mediated Ser648 phosphorylation abrogated calcium-activated calmodulin (CaM) binding to the regulatory domain of NHE1. In adult rat ventricular myocytes, adenovirus-mediated expression of myristoylated PKBalpha (myr-PKBalpha) increased cellular PKB activity, as confirmed by increased glycogen synthase kinase 3beta phosphorylation. Heterologously expressed myr-PKBalpha was present in the sarcolemma, colocalized with NHE1 at the intercalated disc regions, increased NHE1 phosphorylation, and reduced NHE1 activity following intracellular acidosis. Conversely, pharmacological inhibition of endogenous PKB increased NHE1 activity following intracellular acidosis. Our data suggest that NHE1 is a novel PKB substrate and that its PKB-mediated phosphorylation at Ser648 inhibits sarcolemmal NHE activity during intracellular acidosis, most likely by interfering with CaM binding and reducing affinity for intracellular H(+).

  19. Holo-APP and G-protein-mediated signaling are required for sAPPα-induced activation of the Akt survival pathway

    PubMed Central

    Milosch, N; Tanriöver, G; Kundu, A; Rami, A; François, J-C; Baumkötter, F; Weyer, S W; Samanta, A; Jäschke, A; Brod, F; Buchholz, C J; Kins, S; Behl, C; Müller, U C; Kögel, D

    2014-01-01

    Accumulating evidence indicates that loss of physiologic amyloid precursor protein (APP) function leads to reduced neuronal plasticity, diminished synaptic signaling and enhanced susceptibility of neurons to cellular stress during brain aging. Here we investigated the neuroprotective function of the soluble APP ectodomain sAPPα (soluble APPα), which is generated by cleavage of APP by α-secretase along the non-amyloidogenic pathway. Recombinant sAPPα protected primary hippocampal neurons and SH-SY5Y neuroblastoma cells from cell death induced by trophic factor deprivation. We show that this protective effect is abrogated in neurons from APP-knockout animals and APP-depleted SH-SY5Y cells, but not in APP-like protein 1- and 2- (APLP1 and APLP2) depleted cells, indicating that expression of membrane-bound holo-APP is required for sAPPα-dependent neuroprotection. Trophic factor deprivation diminished the activity of the Akt survival pathway. Strikingly, both recombinant sAPPα and the APP-E1 domain were able to stimulate Akt activity in wild-type (wt) fibroblasts, SH-SY5Y cells and neurons, but failed to rescue in APP-deficient neurons or fibroblasts. The ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) inhibitor GI254023X exacerbated neuron death in organotypic (hippocampal) slice cultures of wt mice subjected to trophic factor and glucose deprivation. This cell death-enhancing effect of GI254023X could be completely rescued by applying exogenous sAPPα. Interestingly, sAPPα-dependent Akt induction was unaffected in neurons of APP-ΔCT15 mice that lack the C-terminal YENPTY motif of the APP intracellular region. In contrast, sAPPα-dependent rescue of Akt activation was completely abolished in APP mutant cells lacking the G-protein interaction motif located in the APP C-terminus and by blocking G-protein-dependent signaling with pertussis toxin. Collectively, our data provide new mechanistic insights into the physiologic role of APP in

  20. Holo-APP and G-protein-mediated signaling are required for sAPPα-induced activation of the Akt survival pathway.

    PubMed

    Milosch, N; Tanriöver, G; Kundu, A; Rami, A; François, J-C; Baumkötter, F; Weyer, S W; Samanta, A; Jäschke, A; Brod, F; Buchholz, C J; Kins, S; Behl, C; Müller, U C; Kögel, D

    2014-08-28

    Accumulating evidence indicates that loss of physiologic amyloid precursor protein (APP) function leads to reduced neuronal plasticity, diminished synaptic signaling and enhanced susceptibility of neurons to cellular stress during brain aging. Here we investigated the neuroprotective function of the soluble APP ectodomain sAPPα (soluble APPα), which is generated by cleavage of APP by α-secretase along the non-amyloidogenic pathway. Recombinant sAPPα protected primary hippocampal neurons and SH-SY5Y neuroblastoma cells from cell death induced by trophic factor deprivation. We show that this protective effect is abrogated in neurons from APP-knockout animals and APP-depleted SH-SY5Y cells, but not in APP-like protein 1- and 2- (APLP1 and APLP2) depleted cells, indicating that expression of membrane-bound holo-APP is required for sAPPα-dependent neuroprotection. Trophic factor deprivation diminished the activity of the Akt survival pathway. Strikingly, both recombinant sAPPα and the APP-E1 domain were able to stimulate Akt activity in wild-type (wt) fibroblasts, SH-SY5Y cells and neurons, but failed to rescue in APP-deficient neurons or fibroblasts. The ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) inhibitor GI254023X exacerbated neuron death in organotypic (hippocampal) slice cultures of wt mice subjected to trophic factor and glucose deprivation. This cell death-enhancing effect of GI254023X could be completely rescued by applying exogenous sAPPα. Interestingly, sAPPα-dependent Akt induction was unaffected in neurons of APP-ΔCT15 mice that lack the C-terminal YENPTY motif of the APP intracellular region. In contrast, sAPPα-dependent rescue of Akt activation was completely abolished in APP mutant cells lacking the G-protein interaction motif located in the APP C-terminus and by blocking G-protein-dependent signaling with pertussis toxin. Collectively, our data provide new mechanistic insights into the physiologic role of APP in

  1. UBE2C induces EMT through Wnt/β‑catenin and PI3K/Akt signaling pathways by regulating phosphorylation levels of Aurora-A.

    PubMed

    Wang, Rui; Song, Yue; Liu, Xi; Wang, Qixue; Wang, Yunfei; Li, Liwei; Kang, Chunsheng; Zhang, Qingyu

    2017-04-01

    The ubiquitin-conjugating enzyme 2C (UBE2C) is the key component in the ubiquitin proteasome system (UPS) by partnering with the anaphase‑promoting complex (APC/C). A high UBE2C protein expression level has been reported in various types of human tumors. However, little is known about the precise mechanism by which UBE2C expression is downregulated in gastric cancer. We found in MGC‑803 and SGC‑7901 gastric cancer cells UBE2C‑deficient G2/M phase arrest in the cell cycle and subsequently decreased gastric adenocarcinoma tumorigenesis. In the previous study, we identified Aurora-A (AURKA) as the hub gene of the gastric cancer linkage network based genome‑wide association study (eGWAS). Furthermore, knockdown of UBE2C using siRNA markedly reduced the level of phosphorylation AURKA (p‑AURKA) via Wnt/β‑catenin and PI3K/Akt signaling pathways suppressed the occurrence and development of gastric cancer. Additionally, the expression of E‑cadherin was up‑regulated and N-cadherin was downregulated in response to UBE2C knockdown and inhibits epithelial-mesenchymal transition (EMT). Collectively, our data suggest that the activity of AURKA might be regulated by UBE2C through regulating the activity of APC/C. UBE2C may be a new marker in the diagnosis of gastric cancer and may be a potential therapeutic target for the treatment of gastric adenocarcinoma.

  2. Bisdemethoxycurcumin protects endothelial cells against t-BHP-induced cell damage by regulating the phosphorylation level of ERK1/2 and Akt.

    PubMed

    Li, Ying-Bo; Gao, Jian-Li; Lee, Simon Ming-Yuen; Zhang, Qing-Wen; Hoi, Pui-Man; Wang, Yi-Tao

    2011-02-01

    Curcuminoids are the major active components extracted from Curcuma longa and are well known for their antioxidant effects. Previous studies have reported that the antioxidant properties of curcuminoids are mainly attributed to their free radical scavenging abilities. However, whether there are other mechanisms besides the non-enzymatic process and how they are involved, still remains unknown. In the present study, we explored the protective effects of bisdemethoxycurcumin (Cur3) against tert-butyl hydroperoxide (t-BHP)-induced cytotoxicity in human umbilical vein endothelial cells (HUVECs), focusing on the effect of Cur3 on the regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways. The pre-treatment with Cur3 inhibited t-BHP-induced cell damage dose-dependently, which was evident by the increased cell viability and the corresponding decrease in lactate dehydrogenase release. The pre-treatment with Cur3 also attenuated t-BHP-induced cell morphological changes and apoptosis. MAPKs, including p38, c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase 1/2 (ERK1/2), as well as PI3K/Akt have been reported to be involved in proliferation, apoptosis and differentiation under various stress stimulations. The pre-treatment with Cur3 decreased t-BHP-induced ERK1/2 phosphorylation and increased t-BHP-induced Akt phosporylation but did not affect the phosphorylation of p38 or JNK. In addition, the Cur3-induced increase in cell viability was attenuated by the treatment with wortmannin or LY294002, the upstream inhibitors of Akt, and was enhanced by the treatment with 2-[2'-amino-3'-methoxyphenyl]-oxanaphthalen-4-one (PD98059), an upstream inhibitor of ERK1/2. These results suggest that the ERK1/2 and PI3K/Akt signaling pathways could be involved in the protective effects of Cur3 against t-BHP-induced damage in HUVECs.

  3. A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1

    NASA Astrophysics Data System (ADS)

    Deyle, Kaycie M.; Farrow, Blake; Qiao Hee, Ying; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.

    2015-05-01

    Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.

  4. PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations.

    PubMed

    Kar, Souvik; Samii, Amir; Bertalanffy, Helmut

    2015-04-01

    Cerebral cavernous malformations (CCM) are common vascular malformation of the brain and are associated with abnormal angiogenesis. Although the exact etiology and the underlying molecular mechanism are still under investigation, recent advances in the identification of the mutations in three genes and their interactions with different signaling pathways have shed light on our understanding of CCM pathogenesis. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is known to play a major role in angiogenesis. Studies have shown that the phosphatase and tensin homologue deleted on chromosome ten (PTEN), a tumor suppressor, is an antagonist regulator of the PI3K/Akt pathway and mediates angiogenesis by activating vascular endothelial growth factor (VEGF) expression. Here, we provide an update literature review on the current knowledge of the PTEN/PI3K/Akt/VEGF signaling in angiogenesis, more importantly in CCM pathogenesis. In addition to reviewing the current literatures, this article will also focus on the structural domain of the three CCM proteins and their interacting partners. Understanding the biology of these proteins with respect to their signaling counterpart will help to guide future research towards new therapeutic targets applicable for CCM treatment.

  5. Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism.

    PubMed

    An, Rui; Zhao, Lei; Xi, Cong; Li, Haixun; Shen, Guohong; Liu, Haixiao; Zhang, Shumiao; Sun, Lijun

    2016-01-01

    Myocardial dysfunction is an important manifestation of sepsis. Previous studies suggest that melatonin is protective against sepsis. In addition, activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway has been reported to be beneficial in sepsis. However, the role of PI3K/Akt signaling in the protective effect of melatonin against sepsis-induced myocardial dysfunction remains unclear. Here, LY294002, a PI3K inhibitor, was used to investigate the role of PI3K/Akt signaling in mediating the effects of melatonin on sepsis-induced myocardial injury. Cecal ligation and puncture (CLP) surgery was used to establish a rat model of sepsis. Melatonin was administrated to rats intraperitoneally (30 mg/kg). The survival rate, measures of myocardial injury and cardiac performance, serum lactate dehydrogenase level, inflammatory cytokine levels, oxidative stress level, and the extent of myocardial apoptosis were assessed. The results suggest that melatonin administration after CLP surgery improved survival rates and cardiac function, attenuated myocardial injury and apoptosis, and decreased the serum lactate dehydrogenase level. Melatonin decreased the production of the inflammatory cytokines TNF-α, IL-1β, and HMGB1, increased anti-oxidant enzyme activity, and decreased the expression of markers of oxidative damage. Levels of phosphorylated Akt (p-Akt), unphosphorylated Akt (Akt), Bcl-2, and Bax were measured by Western blot. Melatonin increased p-Akt levels, which suggests Akt pathway activation. Melatonin induced higher Bcl-2 expression and lower Bax expression, suggesting inhibition of apoptosis. All protective effects of melatonin were abolished by LY294002, the PI3K inhibitor. In conclusion, our results demonstrate that melatonin mitigates myocardial injury in sepsis via PI3K/Akt signaling activation.

  6. Discovery of 14-3-3 protein-protein interaction inhibitors that sensitize multidrug-resistant cancer cells to doxorubicin and the Akt inhibitor GSK690693.

    PubMed

    Mori, Mattia; Vignaroli, Giulia; Cau, Ylenia; Dinić, Jelena; Hill, Richard; Rossi, Matteo; Colecchia, David; Pešić, Milica; Link, Wolfgang; Chiariello, Mario; Ottmann, Christian; Botta, Maurizio

    2014-05-01

    14-3-3 is a family of highly conserved adapter proteins that is attracting much interest among medicinal chemists. Small-molecule inhibitors of 14-3-3 protein-protein interactions (PPIs) are in high demand, both as tools to increase our understanding of 14-3-3 actions in human diseases and as leads to develop innovative therapeutic agents. Herein we present the discovery of novel 14-3-3 PPI inhibitors through a multidisciplinary strategy combining molecular modeling, organic synthesis, image-based high-content analysis of reporter cells, and in vitro assays using cancer cells. Notably, the two most active compounds promoted the translocation of c-Abl and FOXO pro-apoptotic factors into the nucleus and sensitized multidrug-resistant cancer cells to apoptotic inducers such as doxorubicin and the pan-Akt inhibitor GSK690693, thus becoming valuable lead candidates for further optimization. Our results emphasize the possible role of 14-3-3 PPI inhibitors in anticancer combination therapies.

  7. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle.

    PubMed

    Lai, Yu-Chiang; Liu, Yang; Jacobs, Roxane; Rider, Mark H

    2012-10-01

    PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40 kDa and Akt substrate of 160 kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206 in a dose-dependent manner. Incubation with high doses of MK-2206 (10 μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle.

  8. Dephosphorylation and inactivation of Akt/PKB is counteracted by protein kinase CK2 in HEK 293T cells.

    PubMed

    Di Maira, Giovanni; Brustolon, Francesca; Pinna, Lorenzo A; Ruzzene, Maria

    2009-10-01

    Akt (PKB) is a critical kinase in cell-survival pathways. Its activity depends on the phosphorylation of Thr308 and Ser473, by PDK1 and mTORC2, respectively. We found that Akt can be further stimulated through phosphorylation of Ser129 by another kinase, CK2. Here we show that phosphorylation of Akt at Ser129 also facilitates its association with Hsp90 chaperone, thus preventing Thr308 dephosphorylation. This is supported by the following observations: (1) phospho-Thr308 decreases when Ser129 is mutated to alanine, (2) this decrease is abolished by cell treatment with okadaic acid (to inactivate PP2A) or geldanamycin (to inactivate Hsp90), (3) phosphorylation of Ser129 neither enhances the activity of PDK1 nor hampers the in vitro activity of PP2A on Thr308, but increases the Hsp90 association to Akt. These data support the view that the antiapoptotic potential of CK2 is at least in part mediated by its ability to maintain Akt in its active form.

  9. Epidermal Growth Factor-Like Domain-Containing Protein 7 (EGFL7) Enhances EGF Receptor−AKT Signaling, Epithelial−Mesenchymal Transition, and Metastasis of Gastric Cancer Cells

    PubMed Central

    Luo, Bai-Hua; Xiong, Feng; Wang, Jun-Pu; Li, Jing-He; Zhong, Ming; Liu, Qin-Lai; Luo, Geng-Qiu; Yang, Xiao-Jing; Xiao, Ni; Xie, Bin; Xiao, Heng; Liu, Rui-Jie; Dong, Chang-Sheng; Wang, Kuan-Song; Wen, Ji-Fang

    2014-01-01

    Epidermal growth factor-like domain-containing protein 7 (EGFL7) is upregulated in human epithelial tumors and so is a potential biomarker for malignancy. Indeed, previous studies have shown that high EGFL7 expression promotes infiltration and metastasis of gastric carcinoma. The epithelial–mesenchymal transition (EMT) initiates the metastatic cascade and endows cancer cells with invasive and migratory capacity; however, it is not known if EGFL7 promotes metastasis by triggering EMT. We found that EGFL7 was overexpressed in multiple human gastric cancer (GC) cell lines and that overexpression promoted cell invasion and migration as revealed by scratch wound and transwell migration assays. Conversely, shRNA-mediated EGFL7 knockdown reduced invasion and migration. Furthermore, EGFL7-overexpressing cells grew into larger tumors and were more likely to metastasize to the liver compared to underexpressing CG cells following subcutaneous injection in mice. EGFL7 overexpression protected GC cell lines against anoikis, providing a plausible mechanism for this enhanced metastatic capacity. In excised human gastric tumors, expression of EGFL7 was positively correlated with expression levels of the mesenchymal marker vimentin and the EMT-associated transcription repressor Snail, and negatively correlated with expression of the epithelial cell marker E-cadherin. In GC cell lines, EGFL7 knockdown reversed morphological signs of EMT and decreased both vimentin and Snail expression. In addition, EGFL7 overexpression promoted EGF receptor (EGFR) and protein kinase B (AKT) phospho-activation, effects markedly suppressed by the EGFR tyrosine kinase inhibitor AG1478. Moreover, AG1478 also reduced the elevated invasive and migratory capacity of GC cell lines overexpressing EGFL7. Collectively, these results strongly suggest that EGFL7 promotes metastasis by activating EMT through an EGFR−AKT−Snail signaling pathway. Disruption of EGFL7−EGFR−AKT−Snail signaling may a

  10. PI3K/AKT inhibition induces caspase-dependent apoptosis in HTLV-1-transformed cells.

    PubMed

    Jeong, Soo-Jin; Dasgupta, Arindam; Jung, Kyung-Jin; Um, Jee-Hyun; Burke, Aileen; Park, Hyeon Ung; Brady, John N

    2008-01-20

    The phosphatidylinositol-3-kinase (PI3K) and AKT (protein kinase B) signaling pathways play an important role in regulating cell cycle progression and cell survival. In previous studies, we demonstrated that AKT is activated in HTLV-1-transformed cells and that Tax activation of AKT is linked to p53 inhibition and cell survival. In the present study, we extend these observations to identify regulatory pathways affected by AKT in HTLV-1-transformed cells. We demonstrate that inhibition of AKT reduces the level of phosphorylated Bad, an important member of the pro-apoptotic family of proteins. Consistent with the decrease of phosphorylated Bad, cytochrome c is released from the mitochondria and caspase-9 is activated. Pretreatment of the cells with caspase-9 specific inhibitor z-LEHD-FMK or pan caspase inhibitor Ac-DEVD-CHO prevented LY294002-induced apoptosis. Of interest, p53 siRNA prevents LY294002-induced apoptosis in HTLV-1-transformed cells, suggesting that p53 reactivation is linked to apoptosis. In conclusion, the AKT pathway is involved in targeting multiple proteins which regulate caspase- and p53-dependent apoptosis in HTLV-1-transformed cells. Since AKT inhibitors simultaneously inhibit NF-kappaB and activate p53, these drugs should be promising candidates for HTLV-1-associated cancer therapy.

  11. Expression characteristics of proteins of IGF-1R, p-Akt, and survivin in papillary thyroid carcinoma patients with type 2 diabetes mellitus

    PubMed Central

    Yan, Yuerong; Hu, Fengqiu; Wu, Weilu; Ma, Ruiting; Huang, Hui

    2017-01-01

    Abstract Type 2 diabetes mellitus (T2DM) is related to increased risk of papillary thyroid carcinoma (PTC). Insulin-like growth factor-1 receptor (IGF-1R) is increased in patients with T2DM. The increased IGF-1R may be responsible for the development of PTC. In this study, we investigated the expression of phosphorylation of Akt (p-Akt)/survivin pathway activated by IGF-1R in PTC subjects with and without diabetes. Clinicopathological data of 20 PTC patients with T2DM were retrospectively analyzed and compared with those of 21 PTC subjects without diabetes. Meanwhile, IGF-1R, p-Akt, and survivin expressions of PTC tissues were detected by immunohistochemical staining. The immunohistochemical results found that the expression level of IGF-1R was significantly higher in diabetic PTC patients than that in nondiabetic PTC patients (P < 0.05). However, no significant differences of p-Akt and survivin expression were found between PTC patients with T2DM and PTC patients without T2DM. In addition, among 20 PTC patients with T2DM, subgroup analysis showed that the ratio of tumor size >10 mm was significantly higher in IGF-1R moderate to strong expression group than that in IGF-1R negative to weak expression group (P < 0.05). IGF-1R expression level was higher in PTC patients with T2DM, and the increased IGF-1R expression was associated with lager tumor size. IGF-1R may play an important role in carcinogenesis and tumor growth in PTC patients with T2DM. PMID:28328831

  12. Long-term effects of rapamycin treatment on insulin mediated phosphorylation of Akt/PKB and glycogen synthase activity

    SciTech Connect

    Varma, Shailly; Shrivastav, Anuraag; Changela, Sheena; Khandelwal, Ramji L.

    2008-04-01

    Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3{beta} (GSK-3{beta}) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-{alpha} (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.

  13. Oscillations of the p53-Akt Network: Implications on Cell Survival and Death

    PubMed Central

    Wee, Keng Boon; Surana, Uttam; Aguda, Baltazar D.

    2009-01-01

    Intracellular protein levels of p53 and MDM2 have been shown to oscillate in response to ionizing radiation (IR), but the physiological significance of these oscillations remains unclear. The p53-MDM2 negative feedback loop – the putative cause of the oscillations – is embedded in a network involving a mutual antagonism (or positive feedback loop) between p53 and AKT. We have shown earlier that this p53-AKT network predicts an all-or-none switching behavior between a pro-survival cellular state (low p53 and high AKT levels) and a pro-apoptotic state (high p53 and low AKT levels). Here, we show that upon exposure to IR, the p53-AKT network can also reproduce the experimentally observed p53 and MDM2 oscillations. The present work is based on the hypothesis that the physiological significance of the experimentally observed oscillations could be found in their role in regulating the switching behavior of the p53-AKT network between pro-survival and pro-apoptotic states. It is shown here that these oscillations are associated with a significant decrease in the threshold level of IR at which switching from a pro-survival to a pro-apoptotic state occurs. Moreover, oscillations in p53 protein levels induce higher levels of expression of p53-target genes compared to non-oscillatory p53, and thus influence cell-fate decisions between cell cycle arrest/DNA damage repair versus apoptosis. PMID:19197384

  14. Cobalt chloride stimulates phosphoinositide 3-kinase/Akt signaling through the epidermal growth factor receptor in oral squamous cell carcinoma.

    PubMed

    Ryu, Mi Heon; Park, Jeong Hee; Park, Ji Eun; Chung, Jin; Lee, Chang Hun; Park, Hae Ryoun

    2010-04-01

    Tumor cells are often found under hypoxic conditions due to the rapid outgrowth of their vascular supply, and, in order to survive hypoxia, these cells induce numerous signaling factors. Akt is an important kinase in cell survival, and its activity is regulated by the upstream phosphoinositide 3-kinase (PI3K) and receptor tyrosine kinases (RTKs). In this study, we examined Akt activation and RTKs/PI3K/Akt signaling using the hypoxia-mimetic cobalt chloride in oral squamous carcinoma cells. Cobalt chloride increases Akt phosphorylation in both a dose- and time-dependent manner. Blocking the activation of the PI3K/Akt pathway using LY294002 abolished Akt activation in response to cobalt chloride, suggesting that Akt phosphorylation by cobalt chloride is dependent on PI3K. In addition, activation of the PI3K/Akt pathway seems to rely on the epidermal growth factor receptor (EGFR), since the inhibition of EGFR attenuated cobalt chloride-induced Akt activation. The results in this study also demonstrate that cobalt chloride increases EGFR protein levels and induces oral squamous cell carcinoma cells to enter S phase.

  15. Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells

    PubMed Central

    Sahlberg, Sara Häggblad; Mortensen, Anja C.; Haglöf, Jakob; Engskog, Mikael K.R.; Arvidsson, Torbjörn; Pettersson, Curt; Glimelius, Bengt; Stenerlöw, Bo; Nestor, Marika

    2017-01-01

    AKT is a central protein in many cellular pathways such as cell survival, proliferation, glucose uptake, metabolism, angiogenesis, as well as radiation and drug response. The three isoforms of AKT (AKT1, AKT2 and AKT3) are proposed to have different physiological functions, properties and expression patterns in a cell type-dependent manner. As of yet, not much is known about the influence of the different AKT isoforms in the genome and their effects in the metabolism of colorectal cancer cells. In the present study, DLD-1 isogenic AKT1, AKT2 and AKT1/2 knockout colon cancer cell lines were used as a model system in conjunction with the parental cell line in order to further elucidate the differences between the AKT isoforms and how they are involved in various cellular pathways. This was done using genome wide expression analyses, metabolic profiling and cell migration assays. In conclusion, downregulation of genes in the cell adhesion, extracellular matrix and Notch-pathways and upregulation of apoptosis and metastasis inhibitory genes in the p53-pathway, confirm that the knockout of both AKT1 and AKT2 will attenuate metastasis and tumor cell growth. This was verified with a reduction in migration rate in the AKT1 KO and AKT2 KO and most explicitly in the AKT1/2 KO. Furthermore, the knockout of AKT1, AKT2 or both, resulted in a reduction in lactate and alanine, suggesting that the metabolism of carbohydrates and glutathione was impaired. This was further verified in gene expression analyses, showing downregulation of genes involved in glucose metabolism. Additionally, both AKT1 KO and AKT2 KO demonstrated an impaired fatty acid metabolism. However, genes were upregulated in the Wnt and cell proliferation pathways, which could oppose this effect. AKT inhibition should therefore be combined with other effectors to attain the best effect. PMID:27878243

  16. Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells.

    PubMed

    Häggblad Sahlberg, Sara; Mortensen, Anja C; Haglöf, Jakob; Engskog, Mikael K R; Arvidsson, Torbjörn; Pettersson, Curt; Glimelius, Bengt; Stenerlöw, Bo; Nestor, Marika

    2017-01-01

    AKT is a central protein in many cellular pathways such as cell survival, proliferation, glucose uptake, metabolism, angiogenesis, as well as radiation and drug response. The three isoforms of AKT (AKT1, AKT2 and AKT3) are proposed to have different physiological functions, properties and expression patterns in a cell type-dependent manner. As of yet, not much is known about the influence of the different AKT isoforms in the genome and their effects in the metabolism of colorectal cancer cells. In the present study, DLD-1 isogenic AKT1, AKT2 and AKT1/2 knockout colon cancer cell lines were used as a model system in conjunction with the parental cell line in order to further elucidate the differences between the AKT isoforms and how they are involved in various cellular pathways. This was done using genome wide expression analyses, metabolic profiling and cell migration assays. In conclusion, downregulation of genes in the cell adhesion, extracellular matrix and Notch-pathways and upregulation of apoptosis and metastasis inhibitory genes in the p53-pathway, confirm that the knockout of both AKT1 and AKT2 will attenuate metastasis and tumor cell growth. This was verified with a reduction in migration rate in the AKT1 KO and AKT2 KO and most explicitly in the AKT1/2 KO. Furthermore, the knockout of AKT1, AKT2 or both, resulted in a reduction in lactate and alanine, suggesting that the metabolism of carbohydrates and glutathione was impaired. This was further verified in gene expression analyses, showing downregulation of genes involved in glucose metabolism. Additionally, both AKT1 KO and AKT2 KO demonstrated an impaired fatty acid metabolism. However, genes were upregulated in the Wnt and cell proliferation pathways, which could oppose this effect. AKT inhibition should therefore be combined with other effectors to attain the best effect.

  17. Effects of AFP-activated PI3K/Akt signaling pathway on cell proliferation of liver cancer.

    PubMed

    Zheng, Lu; Gong, Wei; Liang, Ping; Huang, XiaoBing; You, Nan; Han, Ke Qiang; Li, Yu Ming; Li, Jing

    2014-05-01

    This study aims to investigate effects of alpha-fetoprotein (AFP)-activated phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway on hepatocellular carcinoma cell proliferation. Active cirrhosis patients after hepatitis B infection (n = 20) and viral hepatitis patients with hepatocellular carcinoma (HCC) (n = 20) were selected as the subjects of the present study. Another 20 healthy subjects were selected as the control group. The serum AFP expression and liver tissue PI3K and Akt gene mRNA expression were detected. The hepatoma cell model HepG2 which had a stable expression of AFP gene was used. Real-time quantitative PCR and Western blot and other methods were used to analyze the intracellular PI3K and Akt protein levels. Compared with control group and cirrhosis group, the serum AFP levels in HCC group significantly increased, and the tissue PI3K and Akt mRNA expression also significantly increased. HepG2 cells were intervened using AFP, in which the PIK and Akt protein expression significantly increased. After intervention by use of AFP monoclonal antibodies or LY294002 inhibitor, the PIK and Akt protein expression in HepG2 cell was significantly decreased (P < 0.05). AFP can promote the proliferation of hepatoma cells via activation of PI3K/Akt signaling pathway.

  18. Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart

    PubMed Central

    Xing, Yuan; Sun, Wanqing; Wang, Yishi; Gao, Feng; Ma, Heng

    2016-01-01

    Insulin protects cardiomyocytes from myocardial ischemia/reperfusion (MI/R) injury through activating Akt. However, phosphatase PHLPP-1 (PH domain leucine-rich repeat protein phosphatase-1) dephosphorylates and inactivates Akt. The balanced competitive interaction of insulin and PHLPP-1 has not been directly examined. In this study, we have identified the effect of mutual inhibition of insulin signaling and PHLPP-1 on the cardioprotective efficiency of Akt in aged heart. Young (3 mon) and aged (20 mon) Sprague Dawley (SD) rats were subjected to MI/R in vivo. The PHLPP-1 level was higher in aged vs. young hearts at base. But, insulin treatment failed to decrease PHLPP-1 level during reperfusion in the aged hearts. Consequently, the cardioprotection of insulin-induced Akt activation was impaired in aged hearts, resulting in more susceptible to MI/R injury. In cultured rat ventricular myocytes, PHLPP-1 knockdown significantly enhanced insulin-induced Akt phosphorylation and reduced simulated hypoxia/reoxygenation-induced apoptosis. Contrary, PHLPP-1 overexpression terminated Akt phosphorylation and deteriorated myocytes apoptosis. Using in vivo aged animal models, we confirmed that cardiac PHLPP-1 knockdown or enhanced insulin sensitivity by exercise training dramatically increased insulin-induced Akt phosphorylation. Specifically, MI/R-induced cardiomyocyte apoptosis and infarct size were decreased and cardiac function was increased. More importantly, we found that insulin regulated the degradation of PHLPP-1 and insulin treatment could enhance the binding between PHLPP-1 and β-transducin repeat-containing protein (β-TrCP) to target for ubiquitin-dependent degradation. Altogether, we have identified a new mechanism by which insulin suppresses PHLPP-1 to enhance Akt activation. But, aged heart possesses lower insulin effectiveness and fails to decrease PHLPP-1 during MI/R, which subsequently limited Akt activity and cardioprotection. PHLPP-1 could be a promising

  19. Crucial role of HSP90 in the Akt-dependent promotion of angiogenic-like effect of glucose-regulated protein94 (Grp94)-IgG complexes

    PubMed Central

    Tramentozzi, Elisa; Tibaldi, Elena; Brunati, Anna Maria; Pagetta, Andrea; Finotti, Paola

    2011-01-01

    Abstract Previous observations showed that complexes of glucose-regulated protein94 (Grp94) with human IgG, both those isolated from plasma of diabetic subjects and complexes formed in vitro, displayed cytokine-like effects on human umbilical vein endothelial cells (HUVECs), including angiogenic-like transformation capacity that predicted an increased risk of vascular damage. The aim of the present work was to find an effective inhibitor of the angiogenic-like effect of Grp94-IgG complexes. Because this effect is mediated by an increased expression of matrix metalloprotease-9 (MMP-9), we tested the selective MMP-9 inhibitor, the cyclic decapeptide CTT (CTTHWGFTLC) at 5, 10 and 20 μM. CCT failed to inhibit any morphological alteration induced by Grp94-IgG on HUVECs, on its own displaying a paradoxical angiogenic-like activity. We identified the phosphatidylinositol 3-kinase (PI3K)/Akt pathway as the specific target activated by both Grp94-IgG and CTT for sustaining the angiogenic-like transformation of HUVECs. Functioning of the PI3K/Akt pathway was crucially dependent on functional heat-shock protein (HSP)90, and both Grp94-IgG and CTT caused and increased expression of HSP90, promoting its localization to podosomes. CTT appeared to enhance the angiogenic-like effect of Grp94-IgG by increasing the rate of secretion of both HSP90 and MMP-9. By preventing the chaperoning capacity of HSP90 with the inhibitor purine-scaffold (PU)-H71 that blocked the ATP-binding site on HSP90, it was possible to inhibit the expression of Akt and secretion of HSP90 and MMP-9 induced by Grp94-IgG, thus completely reversing the angiogenic pattern. Results reveal a fundamental role of HSP90 in the PI3K/Akt pathway-mediated angiogenic-like effect of Grp94-IgG, also questioning the capacity of CTT to serve as an effective inhibitor of the angiogenic effect. PMID:21323861

  20. Testosterone regulation of Akt/mTORC1/FoxO3a Signaling in Skeletal Muscle

    PubMed Central

    White, James P.; Gao, Song; Puppa, Melissa J.; Sato, Shuichi; Welle, Stephen L.; Carson, James A.

    2012-01-01

    Low endogenous testosterone production, known as hypogonadism is commonly associated with conditions inducing muscle wasting. Akt signaling can control skeletal muscle mass through mTOR regulation of protein synthesis and FoxO regulation of protein degradation, and this pathway has been previously identified as a target of androgen signaling. However, the testosterone sensitivity of Akt/mTOR signaling requires further understanding in order to grasp the significance of varied testosterone levels seen with wasting disease on muscle protein turnover regulation. Therefore, the purpose of this study is to determine the effect of androgen availability on muscle Akt/mTORC1/FoxO3a regulation in skeletal muscle and cultured C2C12 myotubes. C57BL/6 mice were either castrated for 42 days or castrated and treated with the nandrolone decanoate (ND) (6 mg/kg bw/wk). Testosterone loss (TL) significantly decreased volitional grip strength, body weight, and gastrocnemius (GAS) muscle mass, and ND reversed these changes. Related to muscle mass regulation, TL decreased muscle IGF-1 mRNA, the rate of myofibrillar protein synthesis, Akt phosphorylation, and the phosphorylation of Akt targets, GSK3β, PRAS40 and FoxO3a. TL induced expression of FoxO transcriptional targets, MuRF1, atrogin1 and REDD1. Muscle AMPK and raptor phosphorylation, mTOR inhibitors, were not altered by low testosterone. ND restored IGF-1 expression and Akt/mTORC1 signaling while repressing expression of FoxO transcriptional targets. Testosterone (T) sensitivity of Akt/mTORC1 signaling was examined in C2C12 myotubes, and mTOR phosphorylation was induced independent of Akt activation at low T concentrations, while a higher T concentration was required to activate Akt signaling. Interestingly, low concentration T was sufficient to amplify myotube mTOR and Akt signaling after 24h of T withdrawal, demonstrating the potential in cultured myotubes for a T initiated positive feedback mechanism to amplify Akt

  1. 8-Amino-adenosine induces loss of phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2, and Akt kinase: role in induction of apoptosis in multiple myeloma.

    PubMed

    Ghias, Kulsoom; Ma, Chunguang; Gandhi, Varsha; Platanias, Leonidas C; Krett, Nancy L; Rosen, Steven T

    2005-04-01

    Multiple myeloma is a slowly proliferating B-cell malignancy that accumulates apoptosis-resistant and replication-quiescent cell populations, posing a challenge for current chemotherapeutics that target rapidly replicating cells. Multiple myeloma remains an incurable disease in need of new therapeutic approaches. The purine nucleoside analogue, 8-amino-adenosine (8-NH2-Ado), exhibits potent activity in preclinical studies, inducing apoptosis in several multiple myeloma cell lines. This cytotoxic effect requires phosphorylation of 8-NH2-Ado to its triphosphate form, 8-amino-ATP, and results in a concomitant loss of endogenous ATP levels. Here, we show the novel effect of 8-NH2-Ado on the phosphorylation status of key cellular signaling molecules. Multiple myeloma cells treated with 8-NH2-Ado exhibit a dramatic loss of phosphorylation of several important signaling proteins, including extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and Akt kinase. Cells depleted of ATP independent of 8-NH2-Ado do not exhibit the same decrease in phosphorylation of vital cellular proteins. Therefore, the significant shifts in endogenous ATP pools caused by 8-NH2-Ado treatment cannot account for the changes in phosphorylation levels. Instead, 8-NH2-Ado may influence the activity of select regulatory protein kinases and/or phosphatases, with preliminary data suggesting that protein phophatase 2A activity is affected by 8-NH2-Ado. The distinctive effect of 8-NH2-Ado on the phosphorylation status of cellular proteins is a novel phenomenon for a nucleoside analogue drug and is unique to 8-NH2-Ado among this class of drugs. The kinetics of 8-NH2-Ado-mediated changes in phosphorylation levels of critical prosurvival and apoptosis-regulating proteins suggests that the modulation of these proteins by dephosphorylation at early time points may be an important mechanistic step in 8-NH2-Ado-induced apoptosis.

  2. Polyphyllin G induce apoptosis and autophagy in human nasopharyngeal cancer cells by modulation of AKT and mitogen-activated protein kinase pathways in vitro and in vivo.

    PubMed

    Chen, Jui-Chieh; Hsieh, Ming-Ju; Chen, Chih-Jung; Lin, Jen-Tsun; Lo, Yu-Sheng; Chuang, Yi-Ching; Chien, Su-Yu; Chen, Mu-Kuan

    2016-10-25

    Polyphyllin G (also call polyphyllin VII), extract from rhizomes of Paris yunnanensis Franch, has been demonstrated to have strong anticancer activities in a wide variety of human cancer cell lines. Previous studies found that Polyphyllin G induced apoptotic cell death in human hepatoblastoma cancer and lung cancer cells. However, the underlying mechanisms of autophagy in human nasopharyngeal carcinoma (NPC) remain unclear. In this study, Polyphyllin G can potently induced apoptosis dependent on the activations of caspase-8, -3, and -9 and the changes of Bcl-2, Bcl-xL and Bax protein expression in different human NPC cell lines (HONE-1 and NPC-039). The amount of both LC3-II and Beclin-1 was intriguingly increased suggest that autophagy was induced in Polyphyllin G-treated NPC cells. To further clarify whether Polyphyllin G-induced apoptosis and autophagy depended on AKT/ERK/JNK/p38 MAPK signaling pathways, cells were combined treated with AKT inhibitor (LY294002), ERK1/2 inhibitor (U0126), p38 MAPK inhibitor (SB203580), or JNK inhibitor (SP600125). These results demonstrated that Polyphyllin G induced apoptosis in NPC cells through activation of ERK, while AKT, p38 MAPK and JNK were responsible for Polyphyllin G-induced autophagy. Finally, an administration of Polyphyllin G effectively suppressed the tumor growth in the NPC carcinoma xenograft model in vivo. In conclusion, our results reveal that Polyphyllin G inhibits cell viability and induces apoptosis and autophagy in NPC cancer cells, suggesting that Polyphyllin G is an attractive candidate for tumor therapies. Polyphyllin G may promise candidate for development of antitumor drugs targeting nasopharyngeal carcinoma.

  3. Polyphyllin G induce apoptosis and autophagy in human nasopharyngeal cancer cells by modulation of AKT and mitogen-activated protein kinase pathways in vitro and in vivo

    PubMed Central

    Chen, Chih-Jung; Lin, Jen-Tsun; Lo, Yu-Sheng; Chuang, Yi-Ching; Chien, Su-Yu; Chen, Mu-Kuan

    2016-01-01

    Polyphyllin G (also call polyphyllin VII), extract from rhizomes of Paris yunnanensis Franch, has been demonstrated to have strong anticancer activities in a wide variety of human cancer cell lines. Previous studies found that Polyphyllin G induced apoptotic cell death in human hepatoblastoma cancer and lung cancer cells. However, the underlying mechanisms of autophagy in human nasopharyngeal carcinoma (NPC) remain unclear. In this study, Polyphyllin G can potently induced apoptosis dependent on the activations of caspase-8, -3, and -9 and the changes of Bcl-2, Bcl-xL and Bax protein expression in different human NPC cell lines (HONE-1 and NPC-039). The amount of both LC3-II and Beclin-1 was intriguingly increased suggest that autophagy was induced in Polyphyllin G-treated NPC cells. To further clarify whether Polyphyllin G-induced apoptosis and autophagy depended on AKT/ERK/JNK/p38 MAPK signaling pathways, cells were combined treated with AKT inhibitor (LY294002), ERK1/2 inhibitor (U0126), p38 MAPK inhibitor (SB203580), or JNK inhibitor (SP600125). These results demonstrated that Polyphyllin G induced apoptosis in NPC cells through activation of ERK, while AKT, p38 MAPK and JNK were responsible for Polyphyllin G-induced autophagy. Finally, an administration of Polyphyllin G effectively suppressed the tumor growth in the NPC carcinoma xenograft model in vivo. In conclusion, our results reveal that Polyphyllin G inhibits cell viability and induces apoptosis and autophagy in NPC cancer cells, suggesting that Polyphyllin G is an attractive candidate for tumor therapies. Polyphyllin G may promise candidate for development of antitumor drugs targeting nasopharyngeal carcinoma. PMID:27602962

  4. Follicle-stimulating hormone and insulin-like growth factor I synergistically induce up-regulation of cartilage link protein (Crtl1) via activation of phosphatidylinositol-dependent kinase/Akt in rat granulosa cells.

    PubMed

    Sun, Guang Wei; Kobayashi, Hiroshi; Suzuki, Mika; Kanayama, Naohiro; Terao, Toshihiko

    2003-03-01

    FSH and IGF-I are both important determinants of follicle development and the process of cumulus cell-oocyte complex expansion. FSH stimulates the phosphorylation of Akt by mechanisms involving phosphatidylinositol 3-kinase (PI3-K), a pattern of response mimicking that of IGF-I. Cartilage link protein (Crtl1) is confined to the cartilaginous lineage and is assembled into a macroaggregate complex essential for hyaluronan-rich matrix stabilization. The present studies were performed to determine the actions of FSH and IGF-I on Crtl1 production in rat granulosa cells. Primary cultures of granulosa cells were prepared from 24-d-old rats. After treatments, cell extracts and media were prepared, and the Crtl1 level was determined by immunoblotting analysis using anti-Crtl1 antibodies. Here we showed that 1) treatment with FSH (> or = 25 ng/ml) or IGF-I (> or = 25 ng/ml) for 4 h increased Crtl1 production; 2) maximal stimulatory effects of FSH or IGF-I were observed at 100 or 50 ng/ml, respectively; 3) FSH caused a concentration-dependent increase in IGF-I-induced Crtl1 production and vice versa; 4) FSH and IGF-I also up-regulate the expression of Crtl1 mRNA; 5) FSH- and IGF-I-dependent Crtl1 production were abrogated by PI3-K inhibitors (LY294002 and wortmannin), and inhibition of Crtl1 production by p38 mitogen-activated protein kinase inhibitor (SB202190) was partial (approximately 30%), suggesting that PI3-K and, to a lesser extent, p38 mitogen-activated protein kinase are critical for the response. Our study represents the first report that FSH amplifies IGF-I-mediated Crtl1 production, possibly via PI3-K-Akt signaling cascades in rat granulosa cells.

  5. The role of Pten/Akt signaling pathway involved in BPA-induced apoptosis of rat Sertoli cells.

    PubMed

    Wang, Chengmin; Fu, Wenjuan; Quan, Chao; Yan, Maosheng; Liu, Changjiang; Qi, Suqin; Yang, Kedi

    2015-07-01

    Bisphenol-A (BPA), one of endocrine-disrupting chemicals, is a male reproductive toxicant. Previous studies have revealed the direct cytotoxicity of BPA in many cultured cells, such as mitotic aneuploidy in embryonic cells and somatic cells, and apoptosis in neurons and testicular Sertoli cells. To understand the action of BPA and assess its risk, the Pten/Akt pathway was investigated in cultured Sertoli cells to elucidate the mechanism of the reproductive effects of BPA. The results showed that over 50 μM BPA treatment could decrease the viability of Sertoli cells and cause more apoptosis. In addition, BPA could induce the increase in mRNA levels of Pten and Akt. The protein level of Pten was increased; however, the protein levels of phospho-Akt and procaspase-3 were decreased after BPA exposure. Taken together, observed results suggested that the Pten/Akt pathway might be involved in the apoptotic effects of BPA on Sertoli cells.

  6. Akt- or MEK-mediated mTOR inhibition suppresses Nf1 optic glioma growth

    PubMed Central

    Kaul, Aparna; Toonen, Joseph A.; Cimino, Patrick J.; Gianino, Scott M.; Gutmann, David H.

    2015-01-01

    Background Children with neurofibromatosis type 1 (NF1) develop optic pathway gliomas, which result from impaired NF1 protein regulation of Ras activity. One obstacle to the implementation of biologically targeted therapies is an incomplete understanding of the individual contributions of the downstream Ras effectors (mitogen-activated protein kinase kinase [MEK], Akt) to optic glioma maintenance. This study was designed to address the importance of MEK and Akt signaling to Nf1 optic glioma growth. Methods Primary neonatal mouse astrocyte cultures were employed to determine the consequence of phosphatidylinositol-3 kinase (PI3K)/Akt and MEK inhibition on Nf1-deficient astrocyte growth. Nf1 optic glioma–bearing mice were used to assess the effect of Akt and MEK inhibition on tumor volume, proliferation, and retinal ganglion cell dysfunction. Results Both MEK and Akt were hyperactivated in Nf1-deficient astrocytes in vitro and in Nf1 murine optic gliomas in vivo. Pharmacologic PI3K or Akt inhibition reduced Nf1-deficient astrocyte proliferation to wild-type levels, while PI3K inhibition decreased Nf1 optic glioma volume and proliferation. Akt inhibition of Nf1-deficient astrocyte and optic glioma growth reflected Akt-dependent activation of mammalian target of rapamycin (mTOR). Sustained MEK pharmacologic blockade also attenuated Nf1-deficient astrocytes as well as Nf1 optic glioma volume and proliferation. Importantly, these MEK inhibitory effects resulted from p90RSK-mediated, Akt-independent mTOR activation. Finally, both PI3K and MEK inhibition reduced optic glioma–associated retinal ganglion cell loss and nerve fiber layer thinning. Conclusion These findings establish that the convergence of 2 distinct Ras effector pathways on mTOR signaling maintains Nf1 mouse optic glioma growth, supporting the evaluation of pharmacologic inhibitors that target mTOR function in future human NF1–optic pathway glioma clinical trials. PMID:25534823

  7. rLj-RGD3, a Novel Recombinant Toxin Protein from Lampetra japonica, Protects against Cerebral Reperfusion Injury Following Middle Cerebral Artery Occlusion Involving the Integrin-PI3K/Akt Pathway in Rats

    PubMed Central

    Jiang, Junshu; Wang, Shengnan; Jia, Qilan; Wang, Yue; Li, Weiping; Zhou, Qin; Lv, Li; Li, Qingwei

    2016-01-01

    Background The RGD-toxin protein Lj-RGD3 is a naturally occurring 118 amino acid peptide that can be obtained from the salivary gland of the Lampetra japonica fish. This unique peptide contains 3 RGD (Arg-Gly-Asp) motifs in its primary structure. Lj-RGD3 is available in recombinant form (rLj-RGD3) and can be produced in large quantities using DNA recombination techniques. The pharmacology of the three RGD motif-containing peptides has not been studied. This study investigated the protective effects of rLj-RGD3, a novel polypeptide, against ischemia/reperfusion-induced damage to the brain caused by middle cerebral artery occlusion (MCAO) in a rat stroke model. We also explored the mechanism by which rLj-RGD3 acts by measuring protein and mRNA expression levels, with an emphasis on the FAK and integrin-PI3K/Akt anti-apoptosis pathways. Methods rLj-RGD3 was obtained from the buccal secretions of Lampetra japonica using gene recombination technology. Sprague Dawley (SD) rats were randomly divided into the following seven groups: a sham group; a vehicle-treated (VT) group; 100.0 μg·kg-1, 50.0 μg·kg-1 and 25.0 μg·kg-1 dose rLj-RGD3 groups; and two positive controls, including 1.5 mg·kg-1 Edaravone (ED) and 100.0 μg·kg-1 Eptifibatide (EP). MCAO was induced using a model consisting of 2 h of ischemia and 24 h of reperfusion. Behavioral changes were observed in the normal and operation groups after focal cerebral ischemia/reperfusion was applied. In addition, behavioral scores were evaluated at 4 and 24 h after reperfusion. Brain infarct volumes were determined based on 2,3,5-triphenyltetrazolium chloride (TTC) staining. Pathological changes in brain tissues were observed using hematoxylin and eosin (H&E) staining. Moreover, neuronal apoptosis was detected using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) assays. We determined the expression levels of focal adhesion kinase (FAK), phosphatidyl inositol 3-kinase (PI3K

  8. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway.

    PubMed

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D

    2006-01-01

    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway.

  9. Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle.

    PubMed

    Blaauw, Bert; Mammucari, Cristina; Toniolo, Luana; Agatea, Lisa; Abraham, Reimar; Sandri, Marco; Reggiani, Carlo; Schiaffino, Stefano

    2008-12-01

    Skeletal muscles of the mdx mouse, a model of Duchenne Muscular Dystrophy, show an excessive reduction in the maximal tetanic force following eccentric contractions. This specific sign of the susceptibility of dystrophin-deficient muscles to mechanical stress can be used as a quantitative test to measure the efficacy of therapeutic interventions. Using inducible transgenesis in mice, we show that when Akt activity is increased the force drop induced by eccentric contractions in mdx mice becomes similar to that of wild-type mice. This effect is not correlated with muscle hypertrophy and is not blocked by rapamycin treatment. The force drop induced by eccentric contractions is similar in skinned muscle fibers from mdx and Akt-mdx mice when stretch is applied directly to skinned fibers. However, skinned fibers isolated from mdx muscles exposed to eccentric contractions in vivo develop less isometric force than wild-type fibers and this force depression is completely prevented by Akt activation. These experiments indicate that the myofibrillar-cytoskeletal system of dystrophin-deficient muscle is highly susceptible to a damage caused by eccentric contraction when elongation is applied in vivo, and this damage can be prevented by Akt activation. Microarray and PCR analyses indicate that Akt activation induces up-regulation of genes coding for proteins associated with Z-disks and costameres, and for proteins with anti-oxidant or chaperone function. The protein levels of utrophin and dysferlin are also increased by Akt activation.

  10. Increased Expression of p-Akt correlates with Chronic Allograft Nephropathy in a Rat Kidney Model.

    PubMed

    Zhou, Li-Na; Wang, Ning; Dong, Yang; Zhang, Yiqin; Zou, Hequn; Li, Qingqin; Shi, Yangling; Chen, Ling; Zhou, Wenying; Han, Conghui; Wang, Yuxin

    2015-04-01

    Chronic allograft nephropathy (CAN) is the most common cause of chronic graft dysfunction leading to graft failure, our study investigates the expression and significance of p-Akt in the pathogenesis of CAN in rats. Kidneys of Fisher (F344) rats were orthotopically transplanted into Lewis (LEW) rats. The animals were evaluated at 4, 8, 12, 16, and 24 weeks post-transplantation for renal function and histopathology. Phosphorate Akt (p-Akt) protein expression was determined by Western blot and immunohistological assays. Our data show that 24-h urinary protein excretion in CAN rats increased significantly at week 16 as compared with F344/LEW controls. Allografts got severe interstitial infiltration of mononuclear cells at week 4 and week 8, but it was degraded as the time went on after week 16. Allografts markedly presented with severe interstitial fibrosis (IF) and tubular atrophy at 16 and 24 weeks. p-Akt expression was upregulated in rat kidneys with CAN, and the increase became more significant over time after transplantation. p-Akt expression correlated significantly with 24-h urinary protein excretion, serum creatinine levels, tubulointerstitial mononuclear cells infiltration, smooth muscle cells (SMCs) migration in vascular wall, and IF. It was concluded that p-Akt overexpression might be the key event that involved mononuclear cells infiltration and vascular SMCs migration at early stage, and IF and allograft nephroangiosclerosis at the late stage of CAN pathogenesis in rats.

  11. CREB is a regulatory target for the protein kinase Akt/PKB in the differentiation of pancreatic ductal cells into islet {beta}-cells mediated by hepatocyte growth factor

    SciTech Connect

    Li, Xin-Yu; Zhan, Xiao-Rong; Liu, Xiao-Min; Wang, Xiao-Chen

    2011-01-14

    Research highlights: {yields} CREB is a regulatory target for the protein kinase Akt/PKB in pancreatic duct cells. {yields} Activation of the PI3K/AKT/CREB pathway plays a critical role in the HGF-mediated differentiation of pancreatic duct cells in vivo. {yields} CREB was causally linked to the expression of transcription factors during PDEC differentiation induced by HGF. -- Abstract: We have previously reported that the PI3K/Akt signaling pathway is involved in hepatocyte growth factor (HGF)-induced differentiation of adult rat pancreatic ductal epithelial cells (PDECs) into islet {beta}-cells in vitro. The transcription factor CREB is one of the downstream key effectors of the PI3K/Akt signaling pathway. Recent studies showing that CREB is required for the survival of certain cell types prompted us to examine whether CREB is a nuclear target for activation via the HGF-dependent Ser/Thr kinase Akt/PKB in the differentiation of pancreatic duct cell into islet {beta}-cells. In this study, we first attempted to examine whether HGF modulates the Akt-dependent activation of target gene CREB and then investigated whether CREB activity affects the differentiation of HGF-induced PDECs. Finally, we studied the role of CREB in modulating the expression of transcription factors in PDECs during the differentiation of HGF-induced PDECs. Our results demonstrated that CREB is a regulatory target for the protein kinase Akt/PKB in the differentiation of pancreatic ductal cells into islet {beta}-cells mediated by HGF.

  12. Human Phosphatidylethanolamine-Binding Protein 4 Promoted the Radioresistance of Human Rectal Cancer by Activating Akt in an ROS-Dependent Way

    PubMed Central

    Qiu, Jianming; Yang, Guangen; Lin, Ali; Shen, Zhong; Wang, Dong; Ding, Lei

    2014-01-01

    Human phosphatidylethanolamine-binding protein 4(hPEBP4) is a novel anti-apoptosis molecule associated with the resistance of tumors to apoptotic agents. Here we sought to investigate the role of hPEBP4 in the radioresistance of rectal cancer. Immunohistochemistry analysis showed hPEBP4 was expressed in 27/33 of rectal cancer specimens, but only in 2/33 of neighboring normal mucosa. Silencing the expression of hPEBP4 with siRNA significantly reduced the clonogenic survival and enhanced the apoptosis of rectal cancer cells on irradiation. Instead, forced overexpression of hPEBP4 promoted its survival and decreased the apoptosis. Western blot showed hPEBP4 could increase the radiation-induced Akt activation, for which reactive oxygen specimen(ROS) was required. The radioresistance effect of hPEBP4 was reversed after given LY-294002 to inhibit Akt activation or antioxidant to abolish the ROS production. We also confirmed that effect of hPEBP4 in vivo with nude mice. Thus we concluded that hPEBP4, specifically expressed in rectal cancer cells, is associated with radioresistance of rectal cancer, implying that modulation of hPEBP4 may have important therapeutic implications in radiotherapy of rectal cancer. PMID:24594691

  13. Gab3 overexpression in human glioma mediates Akt activation and tumor cell proliferation

    PubMed Central

    Gu, Weiting; Zhang, Weifeng

    2017-01-01

    This current study tested expression and potential biological functions of Gab3 in human glioma. Gab3 mRNA and protein expression was significantly elevated in human glioma tissues and glioma cells. Its level was however low in normal brain tissues and primary human astrocytes. In both established (U251MG cell line) and primary human glioma cells, Gab3 knockdown by shRNA/siRNA significantly inhibited Akt activation and cell proliferation. Reversely, forced Gab3 overexpression in U251MG cells promoted Akt activation and cell proliferation. In vivo, the growth of U251MG tumors in nude mice was inhibited following expressing Gab3 shRNA. Akt activation in cancer tissues was also suppressed by Gab3 shRNA. Together, we conclude that Gab3 overexpression in human glioma mediates Akt activation and cancer cell proliferation. PMID:28291820

  14. Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition

    PubMed Central

    Samartzis, Eleftherios P; Gutsche, Katrin; Dedes, Konstantin J; Fink, Daniel; Stucki, Manuel; Imesch, Patrick

    2014-01-01

    ARID1A mutations are observed in various tumors, including ovarian clear cell (OCCC) and endometrioid carcinomas, endometrial, and breast carcinomas. They commonly result in loss of ARID1A-protein expression and frequently co-occur with PI3K/AKT-pathway activating mechanisms. The aim of this study was to test the hypothesis as to whether PI3K/AKT-pathway activation is a critical mechanism in ARID1A-mutated tumors and if consequently ARID1A-deficient tumors show increased sensitivity to treatment with PI3K- and AKT-inhibitors. Upon ARID1A knockdown, MCF7 breast cancer cells and primary MRC5 cells exhibited a significantly increased sensitivity towards the AKT-inhibitors MK-2206 and perifosine, as well as the PI3K-inhibitor buparlisib. Knockdown of ARID1A in MCF7 led to an increase of pAKT-Ser473. AKT-inhibition with MK-2206 led to increased apoptosis and to a decrease of pS6K in ARID1A-depleted MCF7 cells but not in the controls. In five OCCC cell lines ARID1A-deficiency correlated with increased pAKT-Ser473 levels and with sensitivity towards treatment with the AKT-inhibitor MK-2206. In conclusion, ARID1A-deficient cancer cells demonstrate an increased sensitivity to treatment with small molecule inhibitors of the PI3K/AKT-pathway. These findings suggest a specific requirement of the PI3K/AKT pathway in ARID1A-deficient tumors and reveal a synthetic lethal interaction between loss of ARID1A expression and inhibition of the PI3K/AKT pathway. PMID:24979463

  15. Activation of the EGFR/Akt/NF-κB/cyclinD1 survival signaling pathway in human cholesteatoma epithelium.

    PubMed

    Liu, Wei; Yin, Tuanfang; Ren, Jihao; Li, Lihua; Xiao, Zian; Chen, Xing; Xie, Dinghua

    2014-02-01

    Cholesteatoma is a benign keratinizing squamous epithelial lesion characterized by the hyper-proliferation of keratinocytes with abundant production of keratin debris in the middle ear. The epidermal growth factor receptor (EGFR)/Akt/nuclear factor-kappa B (NF-κB)/cyclinD1 signaling pathway is one of the most important pathways in regulating cell survival and proliferation. We hypothesized that the EGFR/Akt/NF-κB/cyclinD1 signaling pathway may be activated and involved in the cellular hyperplasia mechanism in acquired cholesteatoma epithelium. Immunohistochemical staining of phosphorylated EGFR (p-EGFR), phosphorylated Akt (p-Akt), activated NF-κB and cyclinD1 protein was performed in 40 cholesteatoma samples and 20 samples of normal external auditory canal (EAC) epithelium. Protein expression of p-EGFR, p-Akt, activated NF-κB and cyclinD1 in cholesteatoma epithelium was significantly increased when compared with normal EAC epithelium (p < 0.01). In cholesteatoma epithelium, a significant positive association was observed between p-EGFR and p-Akt expression and between the expressions of p-Akt and NF-κB, NF-κB and cyclinD1, respectively (p < 0.01). No significant relationships were observed between the levels of investigated proteins and the degree of bone destruction (p > 0.05). The increased protein expression of p-EGFR, p-Akt, NF-κB and cyclinD1 and their associations in cholesteatoma epithelium suggest that the EGFR/Akt/NF-κB/cyclinD1 survival signaling pathway is active and may be involved in the regulatory mechanisms of cellular hyperplasia in cholesteatoma epithelium.

  16. Candidate tumor suppressor and pVHL partner Jade-1 binds and inhibits AKT in renal cell carcinoma.

    PubMed

    Zeng, Liling; Bai, Ming; Mittal, Amit K; El-Jouni, Wassim; Zhou, Jing; Cohen, David M; Zhou, Mina I; Cohen, Herbert T

    2013-09-01

    The von Hippel-Lindau (VHL) tumor suppressor pVHL is lost in the majority of clear-cell renal cell carcinomas (RCC). Activation of the PI3K/AKT/mTOR pathway is also common in RCC, with PTEN loss occurring in approximately 30% of the cases, but other mechanisms responsible for activating AKT at a wider level in this setting are undefined. Plant homeodomain protein Jade-1 (PHF17) is a candidate renal tumor suppressor stabilized by pVHL. Here, using kinase arrays, we identified phospho-AKT1 as an important target of Jade-1. Overexpressing or silencing Jade-1 in RCC cells increased or decreased levels of endogenous phospho-AKT/AKT1. Furthermore, reintroducing pVHL into RCC cells increased endogenous Jade-1 and suppressed endogenous levels of phospho-AKT, which colocalized with and bound to Jade-1. The N-terminus of Jade-1 bound both the catalytic domain and the C-terminal regulatory tail of AKT, suggesting a mechanism through which Jade-1 inhibited AKT kinase activity. Intriguingly, RCC precursor cells where Jade-1 was silenced exhibited an increased capacity for AKT-dependent anchorage-independent growth, in support of a tumor suppressor function for Jade-1 in RCC. In support of this concept, an in silico expression analysis suggested that reduced Jade-1 expression is a poor prognostic factor in clear-cell RCC that is associated with activation of an AKT1 target gene signature. Taken together, our results identify 2 mechanisms for Jade-1 fine control of AKT/AKT1 in RCC, through loss of pVHL, which decreases Jade-1 protein, or through attenuation in Jade-1 expression. These findings help explain the pathologic cooperativity in clear-cell RCC between PTEN inactivation and pVHL loss, which leads to decreased Jade-1 levels that superactivate AKT. In addition, they prompt further investigation of Jade-1 as a candidate biomarker and tumor suppressor in clear-cell RCC.

  17. Effect of 2-hydroxyethyl methacrylate on human pulp cell survival pathways ERK and AKT.

    PubMed

    Spagnuolo, Gianrico; D'Antò, Vincenzo; Valletta, Rosa; Strisciuglio, Caterina; Schmalz, Gottfried; Schweikl, Helmut; Rengo, Sandro

    2008-06-01

    Previous investigations have revealed that dental monomers could affect intracellular pathways leading to cell survival or cell death. Mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) might mediate cell responses as well as cell survival and apoptosis. The purpose of this study was to evaluate the effects of 2-hydroxyethyl methacrylate (HEMA) on the ERK1/2 and AKT pathways in human primary pulp fibroblasts (HPCs). HPCs were treated with various concentrations of HEMA, after which viability and reactive oxygen species levels were determined by flow cytometry with Annexin V-PI staining and 2,7-dichlorofluorescine diacetate, respectively. Whole-cell extracts were immunoblotted with anti-P-Akt or anti-P-ERK1/2. Cell viability decreased in a dose-dependent manner after HEMA exposure, showing a significant decrease with 10 mmol/L HEMA (p < .05). HEMA treatment resulted in a 4-fold increase in reactive oxygen species formation (p < .05). A short HEMA exposure (30-90 minutes) increased ERK1/2 phosphorylation, whereas a decrease in the AKT phosphorylation was observed. Selective inhibitors of the ERK (PD98059) and AKT (LY294002) pathways amplified HPC cell damage after HEMA exposure. Our findings demonstrated that HEMA exposure modulates the ERK and AKT pathways in different manners, and that in turn, they function in parallel to mediate pro-survival signaling in pulp cells subjected to HEMA cytotoxicity.

  18. Testosterone and Voluntary Exercise, Alone or Together Increase Cardiac Activation of AKT and ERK1/2 in Diabetic Rats

    PubMed Central

    Chodari, Leila; Mohammadi, Mustafa; Mohaddes, Gisou; Alipour, Mohammad Reza; Ghorbanzade, Vajiheh; Dariushnejad, Hassan; Mohammadi, Shima

    2016-01-01

    Background Impaired angiogenesis in cardiac tissue is a major complication of diabetes. Protein kinase B (AKT) and extracellular signal regulated kinase (ERK) signaling pathways play important role during capillary-like network formation in angiogenesis process. Objectives To determine the effects of testosterone and voluntary exercise on levels of vascularity, phosphorylated Akt (P- AKT) and phosphorylated ERK (P-ERK) in heart tissue of diabetic and castrated diabetic rats. Methods Type I diabetes was induced by i.p injection of 50 mg/kg of streptozotocin in animals. After 42 days of treatment with testosterone (2mg/kg/day) or voluntary exercise alone or in combination, heart tissue samples were collected and used for histological evaluation and determination of P-AKT and P-ERK levels by ELISA method. Results Our results showed that either testosterone or exercise increased capillarity, P-AKT, and P-ERK levels in the heart of diabetic rats. Treatment of diabetic rats with testosterone and exercise had a synergistic effect on capillarity, P-AKT, and P-ERK levels in heart. Furthermore, in the castrated diabetes group, capillarity, P-AKT, and P-ERK levels significantly decreased in the heart, whereas either testosterone treatment or exercise training reversed these effects. Also, simultaneous treatment of castrated diabetic rats with testosterone and exercise had an additive effect on P-AKT and P-ERK levels. Conclusion Our findings suggest that testosterone and exercise alone or together can increase angiogenesis in the heart of diabetic and castrated diabetic rats. The proangiogenesis effects of testosterone and exercise are associated with the enhanced activation of AKT and ERK1/2 in heart tissue.

  19. Human Cytomegalovirus Stimulates the Synthesis of Select Akt-Dependent Antiapoptotic Proteins during Viral Entry To Promote Survival of Infected Monocytes

    PubMed Central

    Peppenelli, Megan A.; Arend, Kyle C.; Cojohari, Olesea; Moorman, Nathaniel J.

    2016-01-01

    ABSTRACT Primary peripheral blood monocytes are responsible for the hematogenous dissemination of human cytomegalovirus (HCMV) following a primary infection. To facilitate viral spread, we have previously shown HCMV to extend the short 48-h life span of monocytes. Mechanistically, HCMV upregulated two specific cellular antiapoptotic proteins, myeloid leukemia sequence 1 (Mcl-1) and heat shock protein 27 (HSP27), to block the two proteolytic cleavages necessary for the formation of fully active caspase 3 and the subsequent initiation of apoptosis. We now show that HCMV more robustly upregulated Mcl-1 than normal myeloid growth factors and that Mcl-1 was the only myeloid survival factor to rapidly induce HSP27 prior to the 48-h cell fate checkpoint. We determined that HCMV glycoproteins gB and gH signal through the cellular epidermal growth factor receptor (EGFR) and αvβ3 integrin, respectively, during viral entry in order to drive the increase of Mcl-1 and HSP27 in an Akt-dependent manner. Although Akt is known to regulate protein stability and transcription, we found that gB- and gH-initiated signaling preferentially and cooperatively stimulated the synthesis of Mcl-1 and HSP27 through mTOR-mediated translation. Overall, these data suggest that the unique signaling network generated during the viral entry process stimulates the upregulation of select antiapoptotic proteins allowing for the differentiation of short-lived monocytes into long-lived macrophages, a key step in the viral dissemination strategy. IMPORTANCE Human cytomegalovirus (HCMV) infection is endemic within the human population. Although primary infection is generally asymptomatic in immunocompetent individuals, HCMV is a significant cause of morbidity and mortality in the immunocompromised. The multiorgan inflammatory diseases associated with symptomatic HCMV infection are a direct consequence of the monocyte-mediated systemic spread of the virus. In order for peripheral blood monocytes to

  20. Fraxetin Induces Heme Oxygenase-1 Expression by Activation of Akt/Nrf2 or AMP-activated Protein Kinase α/Nrf2 Pathway in HaCaT Cells

    PubMed Central

    Kundu, Juthika; Chae, In Gyeong; Chun, Kyung-Soo

    2016-01-01

    Background Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a coumarin derivative, has been reported to possess antioxidative, anti-inflammatory and neuroprotective effects. A number of recent observations suggest that the induction of heme oxygenase-1 (HO-1) inhibits inflammation and tumorigenesis. In the present study, we determined the effect of fraxetin on HO-1 expression in HaCaT human keratinocytes and investigated its underlying molecular mechanisms. Methods Reverse transcriptase-PCR and Western blot analysis were performed to detect HO-1 mRNA and protein expression, respectively. Cell viability was measured by the MTS test. The induction of intracellular reactive oxygen species (ROS) by fraxetin was evaluated by 2′,7′-dichlorofluorescin diacetate staining. Results Fraxetin upregulated mRNA and protein expression of HO-1. Incubation with fraxetin induced the localization of nuclear factor-erythroid-2-related factor-2 (Nrf2) in the nucleus and increased the antioxidant response element-reporter gene activity. Fraxetin also induced the phosphorylation of Akt and AMP-activated protein kinase (AMPK)α and diminished the expression of phosphatase and tensin homolog, a negative regulator of Akt. Pharmacological inhibition of Akt and AMPKα abrogated fraxetin-induced expression of HO-1 and nuclear localization of Nrf2. Furthermore, fraxetin generated ROS in a concentration-dependent manner. Conclusions Fraxetin induces HO-1 expression through activation of Akt/Nrf2 or AMPKα/Nrf2 pathway in HaCaT cells. PMID:27722139

  1. Overexpression of protein-tyrosine phosphatase-1B in adipocytes inhibits insulin-stimulated phosphoinositide 3-kinase activity without altering glucose transport or Akt/Protein kinase B activation.

    PubMed

    Venable, C L; Frevert, E U; Kim, Y B; Fischer, B M; Kamatkar, S; Neel, B G; Kahn, B B

    2000-06-16

    Previous studies suggested that protein-tyrosine phosphatase 1B (PTP1B) antagonizes insulin action by catalyzing dephosphorylation of the insulin receptor (IR) and/or other key proteins in the insulin signaling pathway. In adipose tissue and muscle of obese humans and rodents, PTP1B expression is increased, which led to the hypothesis that PTP1B plays a role in the pathogenesis of insulin resistance. Consistent with this, mice in which the PTP1B gene was disrupted exhibit increased insulin sensitivity. To test whether increased expression of PTP1B in an insulin-sensitive cell type could contribute to insulin resistance, we overexpressed wild-type PTP1B in 3T3L1 adipocytes using adenovirus-mediated gene delivery. PTP1B expression was increased approximately 3-5-fold above endogenous levels at 16 h, approximately 14-fold at 40 h, and approximately 20-fold at 72 h post-transduction. Total protein-tyrosine phosphatase activity was increased by 50% at 16 h, 3-4-fold at 40 h, and 5-6-fold at 72 h post-transduction. Compared with control cells, cells expressing high levels of PTP1B showed a 50-60% decrease in maximally insulin-stimulated tyrosyl phosphorylation of IR and insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K) activity associated with IRS-1 or with phosphotyrosine. Akt phosphorylation and activity were unchanged. Phosphorylation of p42 and p44 MAP kinase (MAPK) was reduced approximately 32%. Overexpression of PTP1B had no effect on basal, submaximally or maximally (100 nm) insulin-stimulated glucose transport or on the EC(50) for transport. Our results suggest that: 1) insulin stimulation of glucose transport in adipocytes requires

  2. IFNγ-induced suppression of β-catenin signaling: evidence for roles of Akt and 14.3.3ζ

    PubMed Central

    Nava, Porfirio; Kamekura, Ryuta; Quirós, Miguel; Medina-Contreras, Oscar; Hamilton, Ross W.; Kolegraff, Keli N.; Koch, Stefan; Candelario, Aurora; Romo-Parra, Hector; Laur, Oskar; Hilgarth, Roland S.; Denning, Timothy L.; Parkos, Charles A.; Nusrat, Asma

    2014-01-01

    The proinflammatory cytokine interferon γ (IFNγ ) influences intestinal epithelial cell (IEC) homeostasis in a biphasic manner by acutely stimulating proliferation that is followed by sustained inhibition of proliferation despite continued mucosal injury. β-Catenin activation has been classically associated with increased IEC proliferation. However, we observed that IFNγ inhibits IEC proliferation despite sustained activation of Akt/β-catenin signaling. Here we show that inhibition of Akt/β-catenin–mediated cell proliferation by IFNγ is associated with the formation of a protein complex containing phosphorylated β-catenin 552 (pβ-cat552) and 14.3.3ζ. Akt1 served as a bimodal switch that promotes or inhibits β-catenin transactivation in response to IFNγ stimulation. IFNγ initially promotes β-catenin transactivation through Akt-dependent C-terminal phosphorylation of β-catenin to promote its association with 14.3.3ζ. Augmented β-catenin transactivation leads to increased Akt1 protein levels, and active Akt1 accumulates in the nucleus, where it phosphorylates 14.3.3ζ to translocate 14.3.3ζ/β-catenin from the nucleus, thereby inhibiting β-catenin transactivation and IEC proliferation. These results outline a dual function of Akt1 that suppresses IEC proliferation during intestinal inflammation. PMID:25079689

  3. In vitro and in vivo activity of novel small-molecule inhibitors targeting the pleckstrin homology domain of protein kinase B/AKT.

    PubMed

    Moses, Sylvestor A; Ali, M Ahad; Zuohe, Song; Du-Cuny, Lei; Zhou, Li Li; Lemos, Robert; Ihle, Nathan; Skillman, A Geoffrey; Zhang, Shuxing; Mash, Eugene A; Powis, Garth; Meuillet, Emmanuelle J

    2009-06-15

    The phosphatidylinositol 3-kinase/AKT signaling pathway plays a critical role in activating survival and antiapoptotic pathways within cancer cells. Several studies have shown that this pathway is constitutively activated in many different cancer types. The goal of this study was to discover novel compounds that bind to the pleckstrin homology (PH) domain of AKT, thereby inhibiting AKT activation. Using proprietary docking software, 22 potential PH domain inhibitors were identified. Surface plasmon resonance spectroscopy was used to measure the binding of the compounds to the expressed PH domain of AKT followed by an in vitro activity screen in Panc-1 and MiaPaCa-2 pancreatic cancer cell lines. We identified a novel chemical scaffold in several of the compounds that binds selectively to the PH domain of AKT, inducing a decrease in AKT activation and causing apoptosis at low micromolar concentrations. Structural modifications of the scaffold led to compounds with enhanced inhibitory activity in cells. One compound, 4-dodecyl-N-(1,3,4-thiadiazol-2-yl)benzenesulfonamide, inhibited AKT and its downstream targets in cells as well as in pancreatic cancer cell xenografts in immunocompromised mice; it also exhibited good antitumor activity. In summary, a pharmacophore for PH domain inhibitors targeting AKT function was developed. Computer-aided modeling, synthesis, and testing produced novel AKT PH domain inhibitors that exhibit promising preclinical properties.

  4. Spatiotemporal Analysis of Differential Akt Regulation in Plasma Membrane Microdomains

    PubMed Central

    Gao, Xinxin

    2008-01-01

    As a central kinase in the phosphatidylinositol 3-kinase pathway, Akt has been the subject of extensive research; yet, spatiotemporal regulation of Akt in different membrane microdomains remains largely unknown. To examine dynamic Akt activity in membrane microdomains in living cells, we developed a specific and sensitive fluorescence resonance energy transfer-based Akt activity reporter, AktAR, through systematic testing of different substrates and fluorescent proteins. Targeted AktAR reported higher Akt activity with faster activation kinetics within lipid rafts compared with nonraft regions of plasma membrane. Disruption of rafts attenuated platelet-derived growth factor (PDGF)-stimulated Akt activity in rafts without affecting that in nonraft regions. However, in insulin-like growth factor-1 (IGF)-1 stimulation, Akt signaling in nonraft regions is dependent on that in raft regions. As a result, cholesterol depletion diminishes Akt activity in both regions. Thus, Akt activities are differentially regulated in different membrane microdomains, and the overall activity of this oncogenic pathway is dependent on raft function. Given the increased abundance of lipid rafts in some cancer cells, the distinct Akt-activating characteristics of PDGF and IGF-1, in terms of both effectiveness and raft dependence, demonstrate the capabilities of different growth factor signaling pathways to transduce differential oncogenic signals across plasma membrane. PMID:18701703

  5. FAM83B-mediated activation of PI3K/AKT and MAPK signaling cooperates to promote epithelial cell transformation and resistance to targeted therapies

    PubMed Central

    Cipriano, Rocky; Miskimen, Kristy L.S.; Bryson, Benjamin L.; Foy, Chase R.; Bartel, Courtney A.; Jackson, Mark W.

    2013-01-01

    Therapies targeting MAPK and AKT/mTOR signaling are currently being evaluated in clinical trials for several tumor types. However, recent studies suggest that these therapies may be limited due to acquired cancer cell resistance and a small therapeutic index between normal and cancer cells. The identification of novel proteins that are involved in MAPK or AKT/mTOR signaling and differentially expressed between normal and cancer cells will provide mechanistically distinct therapeutic targets with the potential to inhibit these key cancer-associated pathways. We recently identified FAM83B as a novel, previously uncharacterized oncogene capable of hyperactivating MAPK and mTOR signaling and driving the tumorigenicity of immortalized human mammary epithelial cells (HMEC). We show here that elevated FAM83B expression also activates the PI3K/AKT signaling pathway and confers a decreased sensitivity to PI3K, AKT, and mTOR inhibitors. FAM83B co-precipitated with the p85α and p110α subunits of PI3K, as well as AKT, and increased p110α and AKT membrane localization, consistent with elevated PI3K/AKT signaling. In tumor-derived cells harboring elevated FAM83B expression, ablation of FAM83B decreased p110α and AKT membrane localization, suppressed AKT phosphorylation, and diminished proliferation, AIG, and tumorigenicity in vivo. We propose that the level of FAM83B expression may be an important factor to consider when combined therapies targeting MAPK and AKT/mTOR signaling are used. Moreover, the identification of FAM83B as a novel oncogene and its integral involvement in activating PI3K/AKT and MAPK provides a foundation for future therapies aimed at targeting FAM83B in order to suppress the growth of PI3K/AKT- and MAPK-driven cancers. PMID:23676467

  6. N-(4-bromophenethyl) Caffeamide Inhibits Melanogenesis by Regulating AKT/Glycogen Synthase Kinase 3 Beta/Microphthalmia-associated Transcription Factor and Tyrosinase-related Protein 1/Tyrosinase.

    PubMed

    Kuo, Yueh-Hsiung; Chen, Chien-Chia; Lin, Ping; You, Ya-Jhen; Chiang, Hsiu-Mei

    2015-01-01

    Skin color is primarily produced by melanin, which is a crucial pigment that protects the skin from UV-induced damage and prevents carcinogenesis. However, accumulated melanin in the skin may cause hyperpigmentation and related disorders. Melanin synthesis comprises consecutive oxidative reactions, and tyrosinase is the enzyme that catalyzes the rate-limiting process of melanogenesis. In this study, tyrosinase-related protein 1 (TRP-1) and TRP-2 contributed to melanin formation. N-(4-bromophenethyl) caffeamide ((E)-N-(4-bromophenethyl)-3-(3,4-dihydroxyphenyl)acrylamide; K36H), a caffeic acid phenyl amide derivative, inhibited α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity in B16F0 cells. In addition, K36H reduced the protein expression of the phospho-cAMP response element binding protein (p-CREB), microphthalmia-associated transcription factor (MITF), tyrosinase, and TRP-1. Moreover, K36H promoted AKT and glycogen synthase kinase 3 beta (GSK3β) phosphorylation, thereby inhibiting MITF transcription activity. Thus, K36H attenuated α-MSH-induced cAMP pathways, contributing to hypopigmentation. The results of a safety assay revealed that K36H did not exhibit cytotoxicity or irritate the skin or eyes. According to these results, K36H may have the potential to be used as a whitening agent in the cosmetic and pharmaceutical industries.

  7. Analysis of Extracellular Superoxide Dismutase and Akt in Ascending Aortic Aneurysm With Tricuspid or Bicuspid Aortic Valve

    PubMed Central

    Arcucci, A.; Ruocco, M.R.; Albano, F.; Granato, G.; Romano, V.; Corso, G.; Bancone, C.; De Vendittis, E.; Corte, A. Della

    2014-01-01

    Ascending aortic aneurysm (AsAA) is a consequence of medial degeneration (MD), deriving from apoptotic loss of smooth muscle cells (SMC) and fragmentation of elastin and collagen fibers. Alterations of extracellular matrix structure and protein composition, typical of medial degeneration, can modulate intracellular pathways. In this study we examined the relevance of extracellular superoxide dismutase (SOD3) and Akt in AsAA pathogenesis, evaluating their tissue distribution and protein levels in ascending aortic tissues from controls (n=6), patients affected by AsAA associated to tricuspid aortic valve (TAV, n=9) or bicuspid aortic valve (BAV, n=9). The results showed a significant reduction of SOD3, phospho-Akt and Akt protein levels in AsAA tissues from patients with BAV, compared to controls, whereas the differences observed between controls and patients with TAV were not significant. The decreased levels of SOD3 and Akt in BAV aortic tissues are associated with decreased Erk1/Erk2 phosphorylation and MMP-9 levels increase. The authors suggest a role of decreased SOD3 protein levels in the progression of AsAA with BAV and a link between ECM modifications of aortic media layer and impaired Erk1/Erk2 and Akt signaling in the late stages of the aortopathy associated with BAV. PMID:25308842

  8. PI3K/Akt/mTOR signaling & its regulator tumour suppressor genes PTEN & LKB1 in human uterine leiomyomas

    PubMed Central

    Makker, Annu; Goel, Madhu Mati; Mahdi, Abbas Ali; Bhatia, Vikram; Das, Vinita; Agarwal, Anjoo; Pandey, Amita

    2016-01-01

    Background & objectives: Despite their high occurrence and associated significant level of morbidity manifesting as spectrum of clinical symptoms, the pathogenesis of uterine leiomyomas (ULs) remains unclear. We investigated expression profile of tumour suppressor genes PTEN (phosphatase and tensin homolog deleted on chromosome ten) and LKB1 (liver kinase B1), and key signaling components of P13K (phosphatidylinositol 3-kinase)/Akt (protein kinase B)/mTOR (mammalian target of rapamycin) pathway in leiomyomas and adjacent normal myometrium in women of reproductive age, to explore the possibility of targeting this pathway for future therapeutic implications. Methods: Real time PCR (qPCR) was used to quantify relative gene expression levels of PTEN, Akt1, Akt2, mTOR, LKB1 and VEGFA (vascular endothelial growth factor A) in leiomyoma as compared to adjacent normal myometrium. Immunohistochemistry was subsequently performed to analyze expression of PTEN, phospho-Akt, phospho-mTOR, phospho-S6, LKB1 and VEGFA in leiomyoma and adjacent normal myometrium. Results: Significant upregulation of PTEN (2.52 fold; P=0.03) and LKB1 (3.93 fold; P=0.01), and downregulation of VEGFA (2.95 fold; P=0.01) genes were observed in leiomyoma as compared to normal myometrium. Transcript levels of Akt1, Akt2 and mTOR did not vary significantly between leiomyoma and myometrium. An increased immunoexpression of PTEN (P=0.015) and LKB1 (P<0.001) and decreased expression of VEGFA (P=0.01) was observed in leiomyoma as compared to myometrium. Immunostaining for activated (phosphorylated) Akt, mTOR and S6 was absent or low in majority of leiomyoma and myometrium. Interpretation & conclusions: Upregulation of PTEN and LKB1 in concert with negative or low levels of activated Akt, mTOR and S6 indicates that PI3K/Akt/mTOR pathway may not play a significant role in pathogenesis of leiomyoma. PMID:27748285

  9. Pharmacological manipulation of the akt signaling pathway regulates myxoma virus replication and tropism in human cancer cells.

    PubMed

    Werden, Steven J; McFadden, Grant

    2010-04-01

    Viruses have evolved an assortment of mechanisms for regulating the Akt signaling pathway to establish a cellular environment more favorable for viral replication. Myxoma virus (MYXV) is a rabbit-specific poxvirus that encodes many immunomodulatory factors, including an ankyrin repeat-containing host range protein termed M-T5 that functions to regulate tropism of MYXV for rabbit lymphocytes and certain human cancer cells. MYXV permissiveness in these human cancer cells is dependent upon the direct interaction between M-T5 and Akt, which has been shown to induce the kinase activity of Akt. In this study, an array of compounds that selectively manipulate Akt signaling was screened and we show that only a subset of Akt inhibitors significantly decreased the ability of MYXV to replicate in previously permissive human cancer cells. Furthermore, reduced viral replication efficiency was correlated with lower levels of phosphorylated Akt. In contrast, the PP2A-specific phosphatase inhibitor okadaic acid promoted increased Akt kinase activation and rescued MYXV replication in human cancer cells that did not previously support viral replication. Finally, phosphorylation of Akt at residue Thr308 was shown to dictate the physical interaction between Akt and M-T5, which then leads to phosphorylation of Ser473 and permits productive MYXV replication in these human cancer cells. The results of this study further characterize the mechanism by which M-T5 exploits the Akt signaling cascade and affirms this interaction as a major tropism determinant that regulates the replication efficiency of MYXV in human cancer cells.

  10. Cross Talk between the Akt and p38α Pathways in Macrophages Downstream of Toll-Like Receptor Signaling

    PubMed Central

    McGuire, Victoria A.; Gray, Alexander; Monk, Claire E.; Santos, Susana G.; Lee, Keunwook; Aubareda, Anna; Crowe, Jonathan; Ronkina, Natalia; Schwermann, Jessica; Batty, Ian H.; Leslie, Nick R.; Dean, Jonathan L. E.; O'Keefe, Stephen J.; Boothby, Mark; Gaestel, Matthias

    2013-01-01

    The stimulation of Toll-like receptors (TLRs) on macrophages by pathogen-associated molecular patterns (PAMPs) results in the activation of intracellular signaling pathways that are required for initiating a host immune response. Both phosphatidylinositol 3-kinase (PI3K)–Akt and p38 mitogen-activated protein kinase (MAPK) signaling pathways are activated rapidly in response to TLR activation and are required to coordinate effective host responses to pathogen invasion. In this study, we analyzed the role of the p38-dependent kinases MK2/3 in the activation of Akt and show that lipopolysaccharide (LPS)-induced phosphorylation of Akt on Thr308 and Ser473 requires p38α and MK2/3. In cells treated with p38 inhibitors or an MK2/3 inhibitor, phosphorylation of Akt on Ser473 and Thr308 is reduced and Akt activity is inhibited. Furthermore, BMDMs deficient in MK2/3 display greatly reduced phosphorylation of Ser473 and Thr308 following TLR stimulation. However, MK2/3 do not directly phosphorylate Akt in macrophages but act upstream of PDK1 and mTORC2 to regulate Akt phosphorylation. Akt is recruited to phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the membrane, where it is activated by PDK1 and mTORC2. Analysis of lipid levels in MK2/3-deficient bone marrow-derived macrophages (BMDMs) revealed a role for MK2/3 in regulating Akt activity by affecting availability of PIP3 at the membrane. These data describe a novel role for p38α-MK2/3 in regulating TLR-induced Akt activation in macrophages. PMID:23979601

  11. Deletion of MLIP (Muscle-enriched A-type Lamin-interacting Protein) Leads to Cardiac Hyperactivation of Akt/Mammalian Target of Rapamycin (mTOR) and Impaired Cardiac Adaptation*

    PubMed Central

    Cattin, Marie-Elodie; Wang, Jessica; Weldrick, Jonathan J.; Roeske, Cassandra L.; Mak, Esther; Thorn, Stephanie L.; DaSilva, Jean N.; Wang, Yibin; Lusis, Aldon J.; Burgon, Patrick G.

    2015-01-01

    Aging and diseases generally result from tissue inability to maintain homeostasis through adaptation. The adult heart is particularly vulnerable to disequilibrium in homeostasis because its regenerative abilities are limited. Here, we report that MLIP (muscle enriched A-type lamin-interacting protein), a unique protein of unknown function, is required for proper cardiac adaptation. Mlip−/− mice exhibited normal cardiac function despite myocardial metabolic abnormalities and cardiac-specific overactivation of Akt/mTOR pathways. Cardiac-specific MLIP overexpression led to an inhibition of Akt/mTOR, providing evidence of a direct impact of MLIP on these key signaling pathways. Mlip−/− hearts showed an impaired capacity to adapt to stress (isoproterenol-induced hypertrophy), likely because of deregulated Akt/mTOR activity. Genome-wide association studies showed a genetic association between Mlip and early response to cardiac stress, supporting the role of MLIP in cardiac adaptation. Together, these results revealed that MLIP is required for normal myocardial adaptation to stress through integrated regulation of the Akt/mTOR pathways. PMID:26359501

  12. Enhanced Cardiac Akt/Protein Kinase B Signaling Contributes to Pathological Cardiac Hypertrophy in Part by Impairing Mitochondrial Function via Transcriptional Repression of Mitochondrion-Targeted Nuclear Genes

    PubMed Central

    Wende, Adam R.; O'Neill, Brian T.; Bugger, Heiko; Riehle, Christian; Tuinei, Joseph; Buchanan, Jonathan; Tsushima, Kensuke; Wang, Li; Caro, Pilar; Guo, Aili; Sloan, Crystal; Kim, Bum Jun; Wang, Xiaohui; Pereira, Renata O.; McCrory, Mark A.; Nye, Brenna G.; Benavides, Gloria A.; Darley-Usmar, Victor M.; Shioi, Tetsuo; Weimer, Bart C.

    2014-01-01

    Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity. PMID:25535334

  13. Antiapoptotic activity of Akt is down-regulated by Ca2+ in myocardiac H9c2 cells. Evidence of Ca(2+)-dependent regulation of protein phosphatase 2Ac.

    PubMed

    Yasuoka, Chie; Ihara, Yoshito; Ikeda, Satoshi; Miyahara, Yoshiyuki; Kondo, Takahito; Kohno, Shigeru

    2004-12-03

    Cell survival signaling of the Akt/protein kinase B pathway was influenced by a change in the cytoplasmic free calcium concentration ([Ca2+]i) for over 2 h via the regulation of a Ser/Thr phosphatase, protein phosphatase 2Ac (PP2Ac), in rat myocardiac H9c2 cells. Akt was down-regulated when [Ca2+]i was elevated by thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, but was up-regulated when it was suppressed by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)ester (BAPTA-AM), a cell permeable Ca2+ chelator. The inactivation of Akt was well correlated with the susceptibility to oxidant-induced apoptosis in H9c2 cells. To investigate the mechanism of the Ca(2+)-dependent regulation of Akt via the regulation of PP2A, we examined the transcriptional regulation of PP2Acalpha in H9c2 cells with Ca2+ modulators. Transcription of the PP2Acalpha gene was increased by thapsigargin but decreased by BAPTA-AM. The promoter activity was examined and the cAMP response element (CRE) was found responsible for the Ca(2+)-dependent regulation of PP2Acalpha. Furthermore, phosphorylation of CRE-binding protein increased with thapsigargin but decreased with BAPTA-AM. A long term change of [Ca2+]i regulates PP2Acalpha gene transcription via CRE, resulting in a change in the activation status of Akt leading to an altered susceptibility to apoptosis.

  14. Mitomycin C treatment induces resistance and enhanced migration via phosphorylated Akt in aggressive lung cancer cells

    PubMed Central

    Lai, Liang-Chuan; Chuang, Eric Y.; Tsai, Mong-Hsun

    2016-01-01

    Since 1984, mitomycin C (MMC) has been applied in the treatment of non-small-cell lung cancer (NSCLC). MMC-based chemotherapeutic regimens are still under consideration owing to the efficacy and low cost as compared with other second-line regimens in patients with advanced NSCLC. Hence, it is important to investigate whether MMC induces potential negative effects in NSCLC. Here, we found that the malignant lung cancer cells, CL1-2 and CL1-5, were more resistant to MMC than were the parental CL1-0 cells and pre-malignant CL1-1 cells. CL1-2 and CL1-5 cells consistently showed lower sub-G1 fractions post MMC treatment. DNA repair-related proteins were not induced more in CL1-5 than in CL1-0 cells, but the levels of endogenous and MMC-induced phosphorylated Akt (p-Akt) were higher in CL1-5 cells. Administering a p-Akt inhibitor reduced the MMC resistance, demonstrating that p-Akt is important in the MMC resistance of CL1-5 cells. Furthermore, we revealed that cell migration was enhanced by MMC but lowered by a p-Akt inhibitor in CL1-5 cells. This study suggests that in CL1-5 cells, the activity of p-Akt, rather than DNA repair mechanisms, may underlie the resistance to MMC and enhance the cells' migration abilities after MMC treatment. PMID:27833080

  15. Protein kinase CK2 regulates AKT, NF-κB and STAT3 activation, stem cell viability and proliferation in acute myeloid leukemia.

    PubMed

    Quotti Tubi, L; Canovas Nunes, S; Brancalion, A; Doriguzzi Breatta, E; Manni, S; Mandato, E; Zaffino, F; Macaccaro, P; Carrino, M; Gianesin, K; Trentin, L; Binotto, G; Zambello, R; Semenzato, G; Gurrieri, C; Piazza, F

    2017-02-01

    Protein kinase CK2 sustains acute myeloid leukemia cell growth, but its role in leukemia stem cells is largely unknown. Here, we discovered that the CK2 catalytic α and regulatory β subunits are consistently expressed in leukemia stem cells isolated from acute myeloid leukemia patients and cell lines. CK2 inactivation with the selective inhibitor CX-4945 or RNA interference induced an accumulation of leukemia stem cells in the late S-G2-M phases of the cell cycle and triggered late-onset apoptosis. As a result, leukemia stem cells displayed an increased sensitivity to the chemotherapeutic agent doxorubicin. From a molecular standpoint, CK2 blockade was associated with a downmodulation of the stem cell-regulating protein BMI-1 and a marked impairment of AKT, nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) activation, whereas FOXO3a nuclear activity was induced. Notably, combined CK2 and either NF-κB or STAT3 inhibition resulted in a superior cytotoxic effect on leukemia stem cells. This study suggests that CK2 blockade could be a rational approach to minimize the persistence of residual leukemia cells.

  16. Mutation of the PDK1 PH Domain Inhibits Protein Kinase B/Akt, Leading to Small Size and Insulin Resistance▿ †

    PubMed Central

    Bayascas, Jose R.; Wullschleger, Stephan; Sakamoto, Kei; García-Martínez, Juan M.; Clacher, Carol; Komander, David; van Aalten, Daan M. F.; Boini, Krishna M.; Lang, Florian; Lipina, Christopher; Logie, Lisa; Sutherland, Calum; Chudek, John A.; van Diepen, Janna A.; Voshol, Peter J.; Lucocq, John M.; Alessi, Dario R.

    2008-01-01

    PDK1 activates a group of kinases, including protein kinase B (PKB)/Akt, p70 ribosomal S6 kinase (S6K), and serum and glucocorticoid-induced protein kinase (SGK), that mediate many of the effects of insulin as well as other agonists. PDK1 interacts with phosphoinositides through a pleckstrin homology (PH) domain. To study the role of this interaction, we generated knock-in mice expressing a mutant of PDK1 incapable of binding phosphoinositides. The knock-in mice are significantly small, insulin resistant, and hyperinsulinemic. Activation of PKB is markedly reduced in knock-in mice as a result of lower phosphorylation of PKB at Thr308, the residue phosphorylated by PDK1. This results in the inhibition of the downstream mTOR complex 1 and S6K1 signaling pathways. In contrast, activation of SGK1 or p90 ribosomal S6 kinase or stimulation of S6K1 induced by feeding is unaffected by the PDK1 PH domain mutation. These observations establish the importance of the PDK1-phosphoinositide interaction in enabling PKB to be efficiently activated with an animal model. Our findings reveal how reduced activation of PKB isoforms impinges on downstream signaling pathways, causing diminution of size as well as insulin resistance. PMID:18347057

  17. Phosphatidylserine is a critical modulator for Akt activation

    PubMed Central

    Huang, Bill X.; Akbar, Mohammed; Kevala, Karl

    2011-01-01

    Akt activation relies on the binding of Akt to phosphatidylinositol-3,4,5-trisphosphate (PIP3) in the membrane. Here, we demonstrate that Akt activation requires not only PIP3 but also membrane phosphatidylserine (PS). The extent of insulin-like growth factor–induced Akt activation and downstream signaling as well as cell survival under serum starvation conditions positively correlates with plasma membrane PS levels in living cells. PS promotes Akt-PIP3 binding, participates in PIP3-induced Akt interdomain conformational changes for T308 phosphorylation, and causes an open conformation that allows for S473 phosphorylation by mTORC2. PS interacts with specific residues in the pleckstrin homology (PH) and regulatory (RD) domains of Akt. Disruption of PS–Akt interaction by mutation impairs Akt signaling and increases susceptibility to cell death. These data identify a critical function of PS for Akt activation and cell survival, particularly in conditions with limited PIP3 availability. The novel molecular interaction mechanism for Akt activation suggests potential new targets for controlling Akt-dependent cell survival and proliferation. PMID:21402788

  18. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells

    SciTech Connect

    Jeong, Yun-Jeong; Cho, Hyun-Ji; Magae, Junji; Lee, In-Kyu; Park, Keun-Gyu; Chang, Young-Chae

    2013-12-15

    Hypoxia-inducible factor (HIF)-1 plays an important role in tumor progression, angiogenesis and metastasis. In this study, we investigated the potential molecular mechanisms underlying the anti-angiogenic effect of ascofuranone, an isoprenoid antibiotic from Ascochyta viciae, in epidermal growth factor (EGF)-1 responsive human breast cancer cells. Ascofuranone significantly and selectively suppressed EGF-induced HIF-1α protein accumulation, whereas it did not affect the expression of HIF-1β. Furthermore, ascofuranone inhibited the transcriptional activation of vascular endothelial growth factor (VEGF) by reducing protein HIF-1α. Mechanistically, we found that the inhibitory effects of ascofuranone on HIF-1α protein expression are associated with the inhibition of synthesis HIF-1α through an EGF-dependent mechanism. In addition, ascofuranone suppressed EGF-induced phosphorylation of Akt/mTOR/p70S6 kinase, but the phosphorylation of ERK/JNK/p38 kinase was not affected by ascofuranone. These results suggest that ascofuranone suppresses EGF-induced HIF-1α protein translation through the inhibition of Akt/mTOR/p70S6 kinase signaling pathways and plays a novel role in the anti-angiogenic action. - Highlights: • Inhibitory effect of ascofuranone on HIF-1α expression is EGF-specific regulation. • Ascofuranone decreases HIF-1α protein synthesis through Akt/mTOR pathways. • Ascofuranone suppresses EGF-induced VEGF production and tumor angiogenesis.

  19. The B56γ3 regulatory subunit-containing protein phosphatase 2A outcompetes Akt to regulate p27KIP1 subcellular localization by selectively dephosphorylating phospho-Thr157 of p27KIP1

    PubMed Central

    Lai, Tai-Yu; Yang, Yu-San; Hong, Wei-Fu; Chiang, Chi-Wu

    2016-01-01

    The B56γ-containing protein phosphatase 2A (PP2A-B56γ) has been postulated to have tumor suppressive functions. Here, we report regulation of p27KIP1 subcellular localization by PP2A-B56γ3. B56γ3 overexpression enhanced nuclear localization of p27KIP1, whereas knockdown of B56γ3 decreased p27KIP1 nuclear localization. B56γ3 overexpression decreased phosphorylation at Thr157 (phospho-Thr157), whose phosphorylation promotes cytoplasmic localization of p27KIP1, whereas B56γ3 knockdown significantly increased the level of phospho-Thr157. In vitro, PP2A-B56γ3 catalyzed dephosphorylation of phospho-Thr157 in a dose-dependent and okadaic acid-sensitive manner. B56γ3 did not increase p27KIP1 nuclear localization by down-regulating the upstream kinase Akt activity and outcompeted a myristoylated constitutively active Akt (Aktca) in regulating Thr157 phosphorylation and subcellular localization of p27KIP1. In addition, results of interaction domain mapping revealed that both the N-terminal and C-terminal domains of p27 and a domain at the C-terminus of B56γ3 are required for interaction between p27 and B56γ3. Furthermore, we demonstrated that p27KIP1 levels are positively correlated with B56γ levels in both non-tumor and tumor parts of a set of human colon tissue specimens. However, positive correlation between nuclear p27KIP1 levels and B56γ levels was found only in the non-tumor parts, but not in tumor parts of these tissues, implicating a dysregulation in PP2A-B56γ3-regulated p27KIP1 nuclear localization in these tumor tissues. Altogether, this study provides a new mechanism by which the PP2A-B56γ3 holoenzyme plays its tumor suppressor role. PMID:26684356

  20. The Protein Phosphatase-1/Inhibitor-2 Complex Differentially Regulates GSK-3 Dephosphorylation and Increases Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2 Levels

    PubMed Central

    King, Taj D.; Gandy, Johanna C.; Bijur, Gautam N.

    2007-01-01

    The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3α and Ser9 of GSK3β. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3β, but not GSK3α. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels. PMID:16987514

  1. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways.

    PubMed

    Chuang, Wan-Ling; Su, Chin-Cheng; Lin, Ping-Yi; Lin, Chi-Chen; Chen, Yao-Li

    2015-08-01

    Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicine, was previously reported to induce autophagy and inhibit the proliferation of the human HepG2 hepatocellular carcinoma cell line via an extrinsic pathway. In the present study, the effects of SJKJT-induced autophagy and the cytotoxic mechanisms mediating these effects were investigated in HepG2 cells. The cytotoxicity of SJKJT in the HepG2 cells was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results demonstrated that the half-maximal inhibitory concentration of SJKJT was 2.91 mg/ml at 24 h, 1.64 mg/ml at 48 h and 1.26 mg/ml at 72 h. The results of confocal fluorescence microscopy indicated that SJKJT resulted in the accumulation of green fluorescent protein-LC3 and vacuolation of the cytoplasm. Flow cytometric analysis revealed the accumulation of acidic vesicular organelles. Furthermore, western blot analysis, used to determine the expression levels of autophagy-associated proteins, demonstrated that the HepG2 cells treated with SJKJT exhibited LC3B-I/LC3B-II conversion, increased expression levels of Beclin, Atg-3 and Atg-5 and reduced expression levels of p62 and decreased signaling of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and the p38 mitogen-activated protein kinase pathways. Taken together, these findings may assist in the development of novel chemotherapeutic agents for the treatment of malignant types of liver cancer.

  2. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways

    PubMed Central

    CHUANG, WAN-LING; SU, CHIN-CHENG; LIN, PING-YI; LIN, CHI-CHEN; CHEN, YAO-LI

    2015-01-01

    Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicine, was previously reported to induce autophagy and inhibit the proliferation of the human HepG2 hepatocellular carcinoma cell line via an extrinsic pathway. In the present study, the effects of SJKJT-induced autophagy and the cytotoxic mechanisms mediating these effects were investigated in HepG2 cells. The cytotoxicity of SJKJT in the HepG2 cells was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results demonstrated that the half-maximal inhibitory concentration of SJKJT was 2.91 mg/ml at 24 h, 1.64 mg/ml at 48 h and 1.26 mg/ml at 72 h. The results of confocal fluorescence microscopy indicated that SJKJT resulted in the accumulation of green fluorescent protein-LC3 and vacuolation of the cytoplasm. Flow cytometric analysis revealed the accumulation of acidic vesicular organelles. Furthermore, western blot analysis, used to determine the expression levels of autophagy-associated proteins, demonstrated that the HepG2 cells treated with SJKJT exhibited LC3B-I/LC3B-II conversion, increased expression levels of Beclin, Atg-3 and Atg-5 and reduced expression levels of p62 and decreased signaling of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and the p38 mitogen-activated protein kinase pathways. Taken together, these findings may assist in the development of novel chemotherapeutic agents for the treatment of malignant types of liver cancer. PMID:25847489

  3. A Hot-spot of In-frame Duplications Activates the Oncoprotein AKT1 in Juvenile Granulosa Cell Tumors

    PubMed Central

    Bessière, Laurianne; Todeschini, Anne-Laure; Auguste, Aurélie; Sarnacki, Sabine; Flatters, Delphine; Legois, Bérangère; Sultan, Charles; Kalfa, Nicolas; Galmiche, Louise; Veitia, Reiner A.

    2015-01-01

    Background Ovarian granulosa cell tumors are the most common sex-cord stromal tumors and have juvenile (JGCTs) and adult forms. In a previous study we reported the occurrence of activating somatic mutations of Gαs, which transduces mitogenic signals, in 30% of the analyzed JGCTs. Methods We have searched for alterations in other proteins involved in ovarian mitogenic signaling. We focused on the PI3K–AKT axis. As we found mutations in AKT1, we analyzed the subcellular localization of the mutated proteins and performed functional explorations using Western-blot and luciferase assays. Findings We detected in-frame duplications affecting the pleckstrin-homology domain of AKT1 in more than 60% of the tumors occurring in girls under 15 years of age. The somatic status of the mutations was confirmed when peritumoral DNA was available. The JGCTs without duplications carried point mutations affecting highly conserved residues. Several of these substitutions were somatic lesions. The mutated proteins carrying the duplications had a non-wild-type subcellular distribution, with a marked enrichment at the plasma membrane. This led to a striking degree of AKT1 activation demonstrated by a strong phosphorylation level and by reporter assays. Interpretation Our study incriminates somatic mutations of AKT1 as a major event in the pathogenesis of JGCTs. The existence of AKT inhibitors currently tested in clinical trials opens new perspectives for targeted therapies for these tumors, which are currently treated with standard non-specific chemotherapy protocols. PMID:26137586

  4. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages.

    PubMed

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05) gradually with increasing age. Bama mini-pigs had generally higher (P<0.05) muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but

  5. Inhibition of miR301 enhances Akt-mediated cell proliferation by accumulation of PTEN in nucleus and its effects on cell-cycle regulatory proteins

    PubMed Central

    Jain, Mayur V.; Shareef, Ahmad; Likus, Wirginia; Cieślar-Pobuda, Artur; Ghavami, Saeid; Łos, Marek J.

    2016-01-01

    Micro-RNAs (miRs) represent an innovative class of genes that act as regulators of gene expression. Recently, the aberrant expression of several miRs has been associated with different types of cancers. In this study, we show that miR301 inhibition influences PI3K-Akt pathway activity. Akt overexpression in MCF7 and MDAMB468 cells caused downregulation of miR301 expression. This effect was confirmed by co-transfection of miR301-modulators in the presence of Akt. Cells overexpressing miR301-inhibitor and Akt, exhibited increased migration and proliferation. Experimental results also confirmed PI3K, PTEN and FoxF2 as regulatory targets for miR301. Furthermore, Akt expression in conjunction with miR301-inhibitor increased nuclear accumulation of PTEN, thus preventing it from downregulating the PI3K-signalling. In summary, our data emphasize the importance of miR301 inhibition on PI3K-Akt pathway-mediated cellular functions. Hence, it opens new avenues for the development of new anti-cancer agents preferentially targeting PI3K-Akt pathway. PMID:26967567

  6. Oxidative stress induces proliferation of colorectal cancer cells by inhibiting RUNX3 and activating the Akt signaling pathway.

    PubMed

    Kang, Kyoung Ah; Kim, Ki Cheon; Bae, Suk Chul; Hyun, Jin Won

    2013-11-01

    We recently reported that the tumor suppressor Runt-related transcription factor 3 (RUNX3) is silenced in colorectal cancer cells via oxidative stress-induced hypermethylation of its promoter. The resulting downregulation of RUNX3 expression influences cell proliferation. Activation of the Akt signaling pathway is also associated with cell survival and proliferation; however, the effects of oxidative stress on the relationship between RUNX3 and Akt signaling are largely unknown. Therefore, this study investigated the mechanisms involved in cell proliferation caused by oxidative stress-induced silencing of RUNX3. The levels of RUNX3 mRNA and protein were downregulated in response to treatment of the human colorectal cancer cell line SNU-407 with H2O2. Treatment of the cells with H2O2 also upregulated Akt mRNA and protein expression, and inhibited the binding of RUNX3 to the Akt promoter. The inverse correlation between the expression levels of RUNX3 and Akt in H2O2-treated cells was also associated with nuclear translocation of β-catenin and upregulation of cyclin D1 expression, which induced cell proliferation. H2O2 treatment also increased the binding of β-catenin to the cyclin D1 promoter. The results presented here demonstrate that reactive oxygen species silence the tumor suppressor RUNX3, enhance the Akt-mediated signaling pathway, and promote the proliferation of colorectal cancer cells.

  7. Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling

    PubMed Central

    Cittadini, A; Monti, MG; Iaccarino, G; Di Rella, F; Tsichlis, PN; Di Gianni, A; Strömer, H; Sorriento, D; Peschle, C; Trimarco, B; Saccà, L; Condorelli, G

    2010-01-01

    The serine-threonine kinase Akt/PKB mediates stimuli from different classes of cardiomyocyte receptors, including the growth hormone/insulin like growth factor and the β-adrenergic receptors. Whereas the growth-promoting and antiapoptotic properties of Akt activation are well established, little is known about the effects of Akt on myocardial contractility, intracellular calcium (Ca2+) handling, oxygen consumption, and β-adrenergic pathway. To this aim, Sprague–Dawley rats were subjected to a wild-type Akt in vivo adenoviral gene transfer using a catheter-based technique combined with aortopulmonary crossclamping. Left ventricular (LV) contractility and intracellular Ca2+ handling were evaluated in an isolated isovolumic buffer-perfused, aequorin-loaded whole heart preparations 10 days after the surgery. The Ca2+–force relationship was obtained under steady-state conditions in tetanized muscles. No significant hypertrophy was detected in adenovirus with wild-type Akt (Ad.Akt) versus controls rats (LV-to-body weight ratio 2.6±0.2 versus 2.7±0.1 mg/g, controls versus Ad.Akt, P, NS). LV contractility, measured as developed pressure, increased by 41% in Ad.Akt. This was accounted for by both more systolic Ca2+ available to the contractile machinery (+19% versus controls) and by enhanced myofilament Ca2+ responsiveness, documented by an increased maximal Ca2+-activated pressure (+19% versus controls) and a shift to the left of the Ca2+–force relationship. Such increased contractility was paralleled by a slight increase of myocardial oxygen consumption (14%), while titrated dose of dobutamine providing similar inotropic effect augmented oxygen consumption by 39% (P<0.01). Phospholamban, calsequestrin, and ryanodine receptor LV mRNA and protein content were not different among the study groups, while sarcoplasmic reticulum Ca2+ ATPase protein levels were significantly increased in Ad.Akt rats. β-Adrenergic receptor density, affinity, kinase-1 levels, and

  8. Infectious bursal disease virus activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by interaction of VP5 protein with the p85{alpha} subunit of PI3K

    SciTech Connect

    Wei Li; Hou Lei; Zhu Shanshan; Wang Jing; Zhou Jiao; Liu Jue

    2011-08-15

    Phosphatidylinositol 3-kinase (PI3K)/Akt signaling is commonly activated upon virus infection and has been implicated in the regulation of diverse cellular functions such as proliferation and apoptosis. The present study demonstrated for the first time that infectious bursal disease virus (IBDV), the causative agent of a highly contagious disease in chickens, can induce Akt phosphorylation in cultured cells, by a mechanism that is dependent on PI3K. Inhibition of PI3K activation greatly enhanced virus-induced cytopathic effect and apoptotic cell death as evidenced by cleavage of poly-ADP ribose polymerase and activation of caspase-3. Investigations into the mechanism of PI3K/Akt activation revealed that IBDV activates PI3K/Akt signaling through binding of the non-structural protein VP5 to regulatory subunit p85{alpha} of PI3K resulting in the suppression of premature apoptosis and improved virus growth after infection. The results presented here provide a basis for understanding molecular mechanism of IBDV infection.

  9. Restoration of Akt activity by the bisperoxovanadium compound bpV(pic) attenuates hippocampal apoptosis in experimental neonatal pneumococcal meningitis.

    PubMed

    Sury, Matthias D; Vorlet-Fawer, Lorianne; Agarinis, Claudia; Yousefi, Shida; Grandgirard, Denis; Leib, Stephen L; Christen, Stephan

    2011-01-01

    Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP(3) and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed the restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis.

  10. Emerging therapeutics for targeting Akt in cancer.

    PubMed

    Gdowski, Andrew; Panchoo, Marlyn; Treuren, Timothy Van; Basu, Alakananda

    2016-01-01

    The ultimate goal of cancer therapeutic research is to develop effective, targeted therapeutics that exploit the vulnerabilities of cancer cells. The three isoforms of Akt, also known as protein kinase B (PKB), are important mediators of various pathways that transmit mitogenic signals from the cell's exterior to the effector proteins of the cell's interior. Due to Akt\\\\\\\\\\\\\\'s importance in cell functions such as growth, proliferation and cell survival, many cancer cells rely on this pathway to aid in their survival. This dependence can lead to chemoresistance and selection of more adapted populations of cancer cells. Thus, it is important to understand the functional significance of isoform specificity and its relation to chemoresistance. In this review, we have summarized recent studies on Akt isoform specific regulation as well as each isoform's role in chemoresistance, emphasizing their potential as targets for cancer therapy. We have also condensed ongoing clinical studies involving various types of Akt inhibitors while highlighting the type of study, rationale and co-therapies involved in identifying Akt isoforms as promising therapeutic targets.

  11. Snail promotes cell migration through PI3K/AKT-dependent Rac1 activation as well as PI3K/AKT-independent pathways during prostate cancer progression

    PubMed Central

    Henderson, Veronica; Smith, Basil; Burton, Liza J; Randle, Diandra; Morris, Marisha; Odero-Marah, Valerie A

    2015-01-01

    Snail, a zinc-finger transcription factor, induces epithelial-mesenchymal transition (EMT), which is associated with increased cell migration and metastasis in cancer cells. Rac1 is a small G-protein which upon activation results in formation of lamellipodia, the first protrusions formed by migrating cells. We have previously shown that Snail promotes cell migration through down-regulation of maspin tumor suppressor. We hypothesized that Snail's regulation of cell migration may also involve Rac1 signaling regulated by PI3K/AKT and/or MAPK pathways. We found that Snail overexpression in LNCaP and 22Rv1 prostate cancer cells increased Rac1 activity associated with increased cell migration, and the Rac1 inhibitor, NSC23766, could inhibit Snail-mediated cell migration. Conversely, Snail downregulation using shRNA in the aggressive C4–2 prostate cancer cells decreased Rac1 activity and cell migration. Moreover, Snail overexpression increased ERK and PI3K/AKT activity in 22Rv1 prostate cancer cells. Treatment of Snail-overexpressing 22Rv1 cells with LY294002, PI3K/AKT inhibitor or U0126, MEK inhibitor, decreased cell migration significantly, but only LY294002 significantly reduced Rac1 activity, suggesting that Snail promotes Rac1 activation via the PI3K/AKT pathway. Furthermore, 22Rv1 cells overexpressing Snail displayed decreased maspin levels, while inhibition of maspin expression in 22Rv1 cells with siRNA, led to increased PI3K/AKT, Rac1 activity and cell migration, without affecting ERK activity, suggesting that maspin is upstream of PI3K/AKT. Overall, we have dissected signaling pathways by which Snail may promote cell migration through MAPK signaling or alternatively through PI3K/AKT-Rac1 signaling that involves Snail inhibition of maspin tumor suppressor. This may contribute to prostate cancer progression. PMID:26207671

  12. Metastasis and AKT activation.

    PubMed

    Sheng, Shijie; Qiao, Meng; Pardee, Arthur B

    2009-03-01

    Metastasis, responsible for 90% of cancer patient deaths, is an inefficient process because many tumor cells die. The survival of metastatic tumor cells should be considered as a critical therapeutic target. This review provides a new perspective regarding the role of AKT in tumor survival, and the rationale to target AKT in anti-metastasis therapies.

  13. Effects of streptozotocin-induced type 1 maternal diabetes on PI3K/AKT signaling pathway in the hippocampus of rat neonates.

    PubMed

    Hami, Javad; Kerachian, Mohammad-Amin; Karimi, Razieh; Haghir, Hossein; Sadr-Nabavi, Ariane

    2016-01-01

    Diabetes in pregnancy impairs hippocampus development in offspring, leading to behavioral problems and learning deficits. Phosphatidylinositol 3-kinase/protein kinase B (PKB/Akt) signaling pathway plays a pivotal role in the regulation of neuronal proliferation, survival and death. The present study was designed to examine the effects of maternal diabetes on PKB/Akt expression and phosphorylation in the developing rat hippocampus. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was killed at first postnatal day (P1). The hippocampal expression and phosphorylation level of PKB/Akt, one of the key molecules in PI3K/AKT signaling pathway, was evaluated using real-time polymerase chain reaction (PCR) and western blot analysis. We found a significant bilateral downregulation of AKT1 gene expression in the hippocampus of pups born to diabetic mothers (p < 0.05). Interestingly, our results revealed a marked upregulation of Akt1 gene in insulin-treated group compared with other groups (p < 0.05). The western blot analysis also showed the reduction of phosphorylation level of all AKT isoforms in both diabetic and insulin-treated groups compared with control (p < 0.05). Moreover, the results showed a significant increase in phosphorylation level of AKT in insulin-treated group compared with the diabetic group. These results represent that diabetes during pregnancy strongly influences the regulation of PKB/AKT in the developing rat hippocampus. Furthermore, although the control of glycemia by insulin administration is not sufficient to prevent the alterations in PKB/Akt expression, it modulates the phosphorylation process, thus ultimately resulting in a situation comparable to that found in the normal condition.

  14. Suppression of AKT expression by miR-153 produced anti-tumor activity in lung cancer.

    PubMed

    Yuan, Ye; Du, Weijie; Wang, Ying; Xu, Chaoqian; Wang, Jinghao; Zhang, Yang; Wang, Huimin; Ju, Jiaming; Zhao, Liang; Wang, Zhiguo; Lu, Yanjie; Cai, Benzhi; Pan, Zhenwei

    2015-03-15

    Lung cancer is one of the leading causes of cancer death worldwide. microRNAs have been shown to be a novel class of regulators in lung cancer. Here, we explored the role of miR-153 in the pathogenesis of lung cancer and its therapeutic potential. miR-153 was significantly decreased in lung cancer tissues than the adjacent tissues. The protein and mRNA levels of protein kinase B (AKT), which were shown to promote tumor growth, were both increased in lung cancer tissues than adjacent tissues. Overexpression of miR-153 significantly inhibited AKT protein expression, which were abrogated by co-transfection of AMO-153, the specific inhibitor of miR-153. Luciferase assay showed that transfection of miR-153 markedly suppressed the fluorescent intensity of chimeric vectors carrying the 3'UTR of AKT1, while produced no effect on the mutant construct, indicating that AKT is regulated by miR-153. Overexpression of miR-153 significantly inhibited the proliferation and migration, and promoted apoptosis of cultured lung cancer cells in vitro, and suppressed the growth of xenograft tumors in vivo. Interestingly, lung cancer cells with lower endogenous miR-153 expression are more sensitive to ectopic overexpressed miR-153. The IC50 of miR-153 on lung cancer cells is positive correlated with the endogenous miR-153 level, while negative correlated with AKT level. Knockdown of AKT expression suppressed lung cancer cell proliferation. In summary, miR-153 exerted anti-tumor activity in lung cancer by targeting on AKT. The sensitivity of lung cancer cells to miR-153 is determined by its endogenous miR-153 level.

  15. Berberine protects endothelial progenitor cell from damage of TNF-α via the PI3K/AKT/eNOS signaling pathway.

    PubMed

    Xiao, Min; Men, Li Na; Xu, Ming Guo; Wang, Guo Bing; Lv, Hai Tao; Liu, Cong

    2014-11-15

    Endothelial progenitor cells (EPCs) dysfunction is closely correlated with the coronary artery injury induced by Kawasaki disease (KD). The level of tumor necrosis factor-α (TNF-α) elevated significantly in acute phase of KD which can damage the functions of EPCs. The aim of this study was to investigate whether berberine (BBR) can protect EPCs from the inhibition caused by TNF-α via the PI3K (Phosphatidyl Inositol 3-kinase) /AKT (Serine/threonine protein kinase B) /eNOS (endothelial Nitric Oxide synthase) signaling pathway. The cell proliferative ability of EPCs was determined by MTT (methyl thiazolyl tetrazolium) assays. Nitric oxide (NO) level was determined in supernatants. The mRNA level of eNOS, PI3K and AKT were measured by Real Time-Polymerase Chain Reaction (RT-PCR), and the protein levels of eNOS, phospho-eNOS (p-eNOS), Akt, phospho-Akt (p-Akt) and PI3K were analyzed using Western-blot. The results demonstrated that TNF-α inhibits the proliferative ability of EPCs. However, BBR improves the proliferative activity of EPCs inhibited by TNF-α. Blockade of PI3K by 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (Ly294002) and blockade of eNOS by l-NAME (NG-Nitroarginine Methyl Ester) attenuates the effect of BBR. BBR can increase the level of PI3K/Akt/eNOS mRNA and the protein level of PI3K, p-Akt, eNOS and p-eNOS, which can be blocked by PI3K inhibitor (LY294002) and eNOS inhibitor (l-NAME). Therefore, we concluded that impaired EPCs proliferation could be reversed by BBR via the PI3K/AKT/eNOS signaling pathway.

  16. Akt-phosphorylated mitogen-activated kinase-activating death domain protein (MADD) inhibits TRAIL-induced apoptosis by blocking Fas-associated death domain (FADD) association with death receptor 4.

    PubMed

    Li, Peifeng; Jayarama, Shankar; Ganesh, Lakshmy; Mordi, David; Carr, Ryan; Kanteti, Prasad; Hay, Nissim; Prabhakar, Bellur S

    2010-07-16

    MADD plays an essential role in cancer cell survival. Abrogation of endogenous MADD expression results in significant spontaneous apoptosis and enhanced susceptibility to tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. However, the regulation of MADD function is largely unknown. Here, we demonstrate that endogenous MADD is phosphorylated at three highly conserved sites by Akt, and only the phosphorylated MADD can directly interact with the TRAIL receptor DR4 thereby preventing Fas-associated death domain recruitment. However, in cells susceptible to TRAIL treatment, TRAIL induces a reduction in MADD phosphorylation levels resulting in MADD dissociation from, and Fas-associated death domain association with DR4, which allows death-inducing signaling complex (DISC) formation leading to apoptosis. Thus, the pro-survival function of MADD is dependent upon its phosphorylation by Akt. Because Akt is active in most cancer cells and phosphorylated MADD confers resistance to TRAIL-induced apoptosis, co-targeting Akt-MADD axis is likely to increase efficacy of TRAIL-based therapies.

  17. Akt Deficiency Attenuates Muscle Size and Function but Not the Response to ActRIIB Inhibition

    PubMed Central

    Goncalves, Marcus D.; Pistilli, Emidio E.; Balduzzi, Anthony; Birnbaum, Morris J.; Lachey, Jennifer; Khurana, Tejvir S.; Ahima, Rexford S.

    2010-01-01

    Background Akt is a critical mediator of developmental skeletal muscle growth. Treatment with a soluble ActRIIB fusion protein (ActRIIB-mFc) increases skeletal muscle mass and strength by inhibiting myostatin and related peptides. Recent in vitro studies have suggested that Akt signaling is necessary for the ability of ActRIIB inhibition to induce muscle hypertrophy. Thus, we hypothesized that mice deficient in either Akt1 or Akt2 would not respond to in vivo inhibition of ActRIIB with ActRIIB-mFc treatment. Methodology and Principal Findings We analyzed body composition and muscle parameters in wild-type C57BL/6J and Akt1 and Akt2 knockout mice, and compared the responses to blockade of ActRIIB signaling via ActRIIB-mFc treatment. Mice lacking Akt1 or Akt2 had reduced muscle mass, grip strength and contractile force. However, deficiency of Akt1 or Akt2 did not prevent the ability of ActRIIB-mFc treatment to induce muscle hypertrophy, or increase grip strength and contractile force. Akt1 and Akt2 deficient mice responded similarly as wild type mice to ActRIIB-mFc treatment by increasing fiber size. Conclusions and Significance Akt1 and Akt2 are important for the regulation of skeletal muscle mass and function. However, these Akt isoforms are not essential for the ability of ActRIIB inhibition to regulate muscle size, fiber type, strength or contractile force. PMID:20856813

  18. The myxoma virus m-t5 ankyrin repeat host range protein is a novel adaptor that coordinately links the cellular signaling pathways mediated by Akt and Skp1 in virus-infected cells.

    PubMed

    Werden, Steven J; Lanchbury, Jerry; Shattuck, Donna; Neff, Chris; Dufford, Max; McFadden, Grant

    2009-12-01

    Most poxviruses express multiple proteins containing ankyrin (ANK) repeats accounting for a large superfamily of related but unique determinants of poxviral tropism. Recently, select members of this novel family of poxvirus proteins have drawn considerable attention for their potential roles in modulating intracellular signaling networks during viral infection. The rabbit-specific poxvirus, myxoma virus (MYXV), encodes four unique ANK repeat proteins, termed M-T5, M148, M149, and M150, all of which include a carboxy-terminal PRANC domain which closely resembles a cellular protein motif called the F-box domain. Here, we show that each MYXV-encoded ANK repeat protein, including M-T5, interacts directly with the Skp1 component of the host SCF ubiquitin ligase complex, and that the binding of M-T5 to cullin 1 is indirect via binding to Skp1 in the host SCF complex. To understand the significance of these virus-host protein interactions, the various binding domains of M-T5 were mapped. The N-terminal ANK repeats I and II were identified as being important for interaction with Akt, whereas the C-terminal PRANC/F-box-like domain was essential for binding to Skp1. We also report that M-T5 can bind Akt and the host SCF complex (via Skp1) simultaneously in MYXV-infected cells. Finally, we report that M-T5 specifically mediates the relocalization of Akt from the nucleus to the cytoplasm during infection with the wild-type MYXV, but not the M-T5 knockout version of the virus. These results indicate that ANK/PRANC proteins play a critical role in reprogramming disparate cellular signaling cascades to establish a new cellular environment more favorable for virus replication.

  19. High constitutive Akt2 activity in U937 promonocytes: effective reduction of Akt2 phosphorylation by the histamine H2-receptor and the β2-adrenergic receptor.

    PubMed

    Werner, Kristin; Neumann, Detlef; Seifert, Roland

    2016-01-01

    Histamine (HA) is approved for the treatment of acute myeloid leukemia (AML). Its antileukemic activity is related to histamine H2-receptor (H2R)-mediated inhibition of reactive oxygen species (ROS) production in myeloid cells facilitating survival of antineoplastic lymphocytes. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which plays a crucial role in cell survival and proliferation, is constitutively activated in leukemic cells of most AML patients resulting in poor survival prognosis. In a proof-of-principle experiment using a human phosphorylated mitogen-activated protein kinase (MAPK) array, we found high phosphorylation levels of Akt2 in U937 promonocytes that was abrogated by HA or selective H2R agonists. The H2R and the β2-adrenergic receptor (β2AR) are Gs-protein-coupled receptors. Stimulation results in adenylyl cyclase activation followed by generation of the second messenger adenosine 3′,5′-cyclic monophosphate (cAMP). In our present study, we evaluated the pharmacological profile of the H2R and the β2AR regarding Akt2 phosphorylation at Ser474 via western blot analysis and ELISA and cAMP accumulation via HPLC-MS/MS in U937 promonocytes. H2R and β2AR agonists concentration-dependently decreased Akt2 phosphorylation at Ser474. Deviations of potencies and efficacies of agonists in Akt2 phosphorylation and cAMP accumulation assays indicated participation of cAMP-independent signaling in GPCR-induced reduction of Akt2 phosphorylation. Accordingly, our study supports the concept of functional selectivity of the H2R and the β2AR in U937 promonocytes. In summary, we extended the antileukemic mechanism of HA via H2R and revealed the potential of β2AR agonists, which are already approved in the treatment of bronchial asthma and chronic obstructive pulmonary disease, as antileukemic drugs.

  20. Phosphorylation of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) by Akt promotes stability and mitogenic function of S-phase kinase-associated protein-2 (Skp2).

    PubMed

    Song, Gyun Jee; Leslie, Kristen L; Barrick, Stacey; Mamonova, Tatyana; Fitzpatrick, Jeremy M; Drombosky, Kenneth W; Peyser, Noah; Wang, Bin; Pellegrini, Maria; Bauer, Philip M; Friedman, Peter A; Mierke, Dale F; Bisello, Alessandro

    2015-01-30

    The regulation of the cell cycle by the ubiquitin-proteasome system is dependent on the activity of E3 ligases. Skp2 (S-phase kinase associated protein-2) is the substrate recognition subunit of the E3 ligase that ubiquitylates the cell cycle inhibitors p21(cip1) and p27(kip1) thus promoting cell cycle progression. Increased expression of Skp2 is frequently observed in diseases characterized by excessive cell proliferation, such as cancer and neointima hyperplasia. The stability and cellular localization of Skp2 are regulated by Akt, but the molecular mechanisms underlying these effects remain only partly understood. The scaffolding protein Ezrin-Binding Phosphoprotein of 50 kDa (EBP50) contains two PDZ domains and plays a critical role in the development of neointimal hyperplasia. Here we report that EBP50 directly binds Skp2 via its first PDZ domain. Moreover, EBP50 is phosphorylated by Akt on Thr-156 within the second PDZ domain, an event that allosterically promotes binding to Skp2. The interaction with EBP50 causes cytoplasmic localization of Skp2, increases Skp2 stability and promotes proliferation of primary vascular smooth muscle cells. Collectively, these studies define a novel regulatory mechanism contributing to aberrant cell growth and highlight the importance of scaffolding function of EBP50 in Akt-dependent cell proliferation.

  1. Akt attenuates apoptotic death through phosphorylation of H2A under hydrogen peroxide-induced oxidative stress in PC12 cells and hippocampal neurons

    PubMed Central

    Park, Ji Hye; Kim, Chung Kwon; Lee, Sang Bae; Lee, Kyung-Hoon; Cho, Sung-Woo; Ahn, Jee-Yin

    2016-01-01

    Although the essential role of protein kinase B (PKB)/Akt in cell survival signaling has been clearly established, the mechanism by which Akt mediates the cellular response to hydrogen peroxide (H2O2)-induced oxidative stress remains unclear. We demonstrated that Akt attenuated neuronal apoptosis through direct association with histone 2A (H2A) and phosphorylation of H2A at threonine 17. At early time points during H2O2 exposure of PC12 cells and primary hippocampal neurons, when the cells can tolerate the level of DNA damage, Akt was activated and phosphorylated H2A, leading to inhibition of apoptotic death. At later time points, Akt delivered the NAD+-dependent protein deacetylase Sirtuin 2 (Sirt 2) to the vicinity of phosphorylated H2A in response to irreversible DNA damage, thereby inducing H2A deacetylation and subsequently leading to apoptotic death. Ectopically expressed T17A-substituted H2A minimally interacted with Akt and failed to prevent apoptosis under oxidative stress. Thus Akt-mediated H2A phosphorylation has an anti-apoptotic function in conditions of H2O2-induced oxidative stress in neurons and PC12 cells. PMID:26899247

  2. Can protein levels be economically increased?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One result from the 2010 hard red winter wheat harvest was an increase of discussions on protein values across the southern great plains. The crop garnered relatively low protein values for several reasons, many of which were directly related to the weather patterns and environmental conditions. T...

  3. PI3K/AKT signaling modulates transcriptional expression of EWS/FLI1 through specificity protein 1

    PubMed Central

    Giorgi, Chiara; Boro, Aleksandar; Rechfeld, Florian; Lopez-Garcia, Laura A.; Gierisch, Maria E.; Schäfer, Beat W.; Niggli, Felix K.

    2015-01-01

    Ewing sarcoma (ES) is the second most frequent bone cancer in childhood and is characterized by the presence of the balanced translocation t(11;22)(q24;q12) in more than 85% of cases, generating a dysregulated transcription factor EWS/FLI1. This fusion protein is an essential oncogenic component of ES development which is necessary for tumor cell maintenance and represents an attractive therapeutic target. To search for modulators of EWS/FLI1 activity we screened a library of 153 targeted compounds and identified inhibitors of the PI3K pathway to directly modulate EWS/FLI1 transcription. Surprisingly, treatment of four different ES cell lines with BEZ235 resulted in down regulation of EWS/FLI1 mRNA and protein by ∼50% with subsequent modulation of target gene expression. Analysis of the EWS/FLI1 promoter region (−2239/+67) using various deletion constructs identified two 14bp minimal elements as being important for EWS/FLI1 transcription. We identified SP1 as modulator of EWS/FLI1 gene expression and demonstrated direct binding to one of these regions in the EWS/FLI1 promoter by EMSA and ChIP experiments. These results provide the first insights on the transcriptional regulation of EWS/FLI1, an area that has not been investigated so far, and offer an additional molecular explanation for the known sensitivity of ES cell lines to PI3K inhibition. PMID:26336820

  4. An integrative genomic and proteomic analysis of PIK3CA, PTEN and AKT mutations in breast cancer

    SciTech Connect

    Stemke-Hale, Katherine; Gonzalez-Angulo, Ana Maria; Lluch, Ana; Neve, Richard M.; Kuo, Wen-Lin; Davies, Michael; Carey, Mark; Hu, Zhi; Guan, Yinghui; Sahin, Aysegul; Symmans, W. Fraser; Pusztai, Lajos; Nolden, Laura K.; Horlings, Hugo; Berns, Katrien; Hung, Mien-Chie; van de Vijver, Marc J.; Valero, Vicente; Gray, Joe W.; Bernards, Rene; Mills, Gordon B.; Hennessy, Bryan T.

    2008-05-06

    Phosphatidylinositol-3-kinase (PI3K)/AKT pathway aberrations are common in cancer. By applying mass spectroscopy-based sequencing and reverse phase protein arrays to 547 human breast cancers and 41 cell lines, we determined the subtype specificity and signaling effects of PIK3CA, AKT and PTEN mutations, and the effects of PIK3CA mutations on responsiveness to PI3K inhibition in-vitro and on outcome after adjuvant tamoxifen. PIK3CA mutations were more common in hormone receptor positive (33.8%) and HER2-positive (24.6%) than in basal-like tumors (8.3%). AKT1 (1.4%) and PTEN (2.3%) mutations were restricted to hormone receptor-positive cancers with PTEN protein levels also being significantly lower in hormone receptor-positive cancers. Unlike AKT1 mutations, PIK3CA (39%) and PTEN (20%) mutations were more common in cell lines than tumors, suggesting a selection for these but not AKT1 mutations during adaptation to culture. PIK3CA mutations did not have a significant impact on outcome in 166 hormone receptor-positive breast cancer patients after adjuvant tamoxifen. PIK3CA mutations, in comparison with PTEN loss and AKT1 mutations, were associated with significantly less and indeed inconsistent activation of AKT and of downstream PI3K/AKT signaling in tumors and cell lines, and PTEN loss and PIK3CA mutation were frequently concordant, suggesting different contributions to pathophysiology. PTEN loss but not PIK3CA mutations rendered cells sensitive to growth inhibition by the PI3K inhibitor LY294002. Thus, PI3K pathway aberrations likely play a distinct role in the pathogenesis of different breast cancer subtypes. The specific aberration may have implications for the selection of PI3K-targeted therapies in hormone receptor-positive breast cancer.

  5. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide

    PubMed Central

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase—protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton’s lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism. PMID:27494022

  6. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide.

    PubMed

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase-protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton's lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism.

  7. Akt phosphorylates Tal1 oncoprotein and inhibits its repressor activity.

    PubMed

    Palamarchuk, Alexey; Efanov, Alexey; Maximov, Vadim; Aqeilan, Rami I; Croce, Carlo M; Pekarsky, Yuri

    2005-06-01

    The helix-loop-helix transcription factor Tal1 is required for blood cell development and its activation is a frequent event in T-cell acute lymphoblastic leukemia. The Akt (protein kinase B) kinase is a key player in transduction of antiapoptotic and proliferative signals in T cells. Because Tal1 has a putative Akt phosphorylation site at Thr90, we investigated whether Akt regulates Tal1. Our results show that Akt specifically phosphorylates Thr90 of the Tal1 protein within its transactivation domain in vitro and in vivo. Coimmunoprecipitation experiments showed the presence of Tal1 in Akt immune complexes, suggesting that Tal1 and Akt physically interact. We further showed that phosphorylation of Tal1 by Akt causes redistribution of Tal1 within the nucleus. Using luciferase assay, we showed that phosphorylation of Tal1 by Akt decreased repressor activity of Tal1 on EpB42 (P4.2) promoter. Thus, these data indicate that Akt interacts with Tal1 and regulates Tal1 by phosphorylation at Thr90 in a phosphatidylinositol 3-kinase-dependent manner.

  8. Depression of p53-independent Akt survival signals after high-LET radiation in mutated p53 cells

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takeo; Takahashi, Akihisa; Nakagawa, Yosuke

    Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses the activities of serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signals were analyzed with Western blotting analysis 1 h, 2 h, 3 h and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis.Akt-related protein levels were decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G _{2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and depresses cell growth by suppressing Akt-related signals, even in the mp53 cells.

  9. Akt isoforms in vascular disease

    PubMed Central

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-01-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease. PMID:25929188

  10. A Screen for Regulators of Survival of Motor Neuron Protein Levels

    PubMed Central

    Makhortova, Nina R.; Hayhurst, Monica; Cerqueira, Antonio; Sinor-Anderson, Amy D.; Zhao, Wen-Ning; Heiser, Patrick W.; Arvanites, Anthony C.; Davidow, Lance S.; Waldon, Zachary O.; Steen, Judith A.; Lam, Kelvin; Ngo, Hien D.; Rubin, Lee L.

    2011-01-01

    The motor neuron disease Spinal Muscular Atrophy (SMA) results from mutations that lead to low levels of the ubiquitously expressed protein Survival of Motor Neuron (SMN). Ever-increasing data suggest that therapeutics that elevate SMN may be effective in treating SMA. We executed an image-based screen of annotated chemical libraries and discovered multiple classes of compounds that were able to increase cellular SMN. Among the most important was the RTK/PI3K/AKT/GSK-3 signaling cascade. Chemical inhibitors of GSK-3, as well as shRNAs directed against this target, elevate SMN levels primarily by stabilizing the protein. Of particular significance is that GSK-3 chemical inhibitors were also effective in motor neurons, not only in elevating SMN levels, but also in blocking the death that was produced when SMN was acutely reduced by a SMN-specific shRNA. Thus, we have established a screen capable of detecting drug-like compounds that correct the main phenotypic change that underlies SMA. PMID:21685895

  11. Inhibition of p21 and Akt potentiates SU6656-induced caspase-independent cell death in FRO anaplastic thyroid carcinoma cells.

    PubMed

    Kim, S H; Kang, J G; Kim, C S; Ihm, S-H; Choi, M G; Yoo, H J; Lee, S J

    2013-06-01

    SU6656 is a small-molecule indolinone that selectively inhibits Src family kinase and induces death of cancer cells. The aim of the present study was to investigate the influence of SU6656 on cell survival and to assess the role of p21 and PI3K/Akt signaling in cell survival resulting from SU6656 treatment in anaplastic thyroid carcinoma (ATC) cells. When 8505C, CAL62, and FRO ATC cells were treated with SU6656, the viability of 8505C and CAL62 ATC cells decreased only after treatment with SU6656 at a dosage of 100 μM for 72 h, while the viability of FRO ATC cells decreased after treatment with SU6656 in a concentration- and time-dependent manner. Cell viability was not changed by pretreatment with the broad-spectrum caspase inhibitor z-VAD-fmk. Phospho-Src protein levels were reduced, and p21 protein levels were elevated. Phospho-ERK1/2 protein levels were multiplied without alteration of total ERK1/2, total Akt, and phospho-Akt protein levels. Regarding FRO ATC cells, the decrement of cell viability, the increment of cleaved PARP-1 protein levels, and the decrement of phospho-Src protein levels were shown in p21 siRNA- or LY294002-pretreated cells compared to SU6656-treated control cells. ERK1/2 siRNA transfection did not affect cell viability and protein levels of cleaved PARP-1, p21, and Akt. In conclusion, these results suggest that SU6656 induces caspase-independent death of FRO ATC cells by overcoming the resistance mechanism involving p21 and Akt. Suppression of p21 and Akt enhances the cytotoxic effect of SU6656 in FRO ATC cells.

  12. Salvianolic acid A positively regulates PTEN protein level and inhibits growth of A549 lung cancer cells

    PubMed Central

    BI, LEI; CHEN, JIANPING; YUAN, XIAOJING; JIANG, ZEQUN; CHEN, WEIPING

    2013-01-01

    Salvianolic acid A (Sal A) is an effective compound extracted from Salvia miltiorrhiza which has been used in the treatment of various diseases. Preliminary data indicate that Sal A treatment has a specific anti-lung cancer effect. However, the manner in which Sal A regulates cancer growth remains unknown. In this study, the A549 lung cancer cell line and its response to Sal A treatment was examined. Results showed that Sal A treatment significantly decreased A549 cell growth, promoted partial apoptosis and increased mitochondrial membrane permeability. Western blot analysis showed that Sal A upregulated the phosphatase and tensin homolog (PTEN) protein level, while consistently downregulating Akt phosphorylation. These results indicate that Sal A negatively mediates A549 lung cancer cell line growth or apoptosis, most likely by positively regulating PTEN protein level. PMID:24648921

  13. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways

    PubMed Central

    Huang, Wei-Ru; Chiu, Hung-Chuan; Liao, Tsai-Ling; Chuang, Kuo-Pin; Shih, Wing-Ling; Liu, Hung-Jen

    2015-01-01

    Avian reovirus (ARV) protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128) of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication. PMID:26244501

  14. Phosphorylation-dependent regulation cytosolic localization and oncogenic function of Skp2 by Akt/PKB

    PubMed Central

    Lin, Hui-Kuan; Wang, Guocan; Chen, Zhenbang; Teruya-Feldstein, Julie; Liu, Yan; Chan, Chia-Hsin; Yang, Wei-Lei; Erdjument-Bromage, Hediye; Nakayama, Keiichi I.; Nimer, Stephen; Tempst, Paul; Pandolfi, Pier Paolo

    2010-01-01

    Skp2 is an F-box protein that forms the SCF complex with Skp1 and Cullin-1 to constitute an E3 ligase for ubiquitylation. Ubiquitylation and degradation of the p27 is critical for Skp2-mediated cell cycle entry, and overexpression and cytosolic accumulation of Skp2 have been clearly associated with tumorigenesis although the functional significance of the latter has remained elusive. Here we show that the Akt/PKB interacts with and directly phosphorylates Skp2. We find that Skp2 phosphorylation by Akt triggers SCF complex formation and E3 ligase activity. Importantly, a phosphorylation-defective Skp2 mutant is drastically impaired in its ability to promote cell proliferation and tumorigenesis. Furthermore, we show that Akt-mediated phosphorylation triggers 14-3-3-β-dependent Skp2 relocalization to the cytosol, and we attribute a specific role to cytosolic Skp2 in the positive regulation of cell migration. Finally, we demonstrate that high levels of Akt activation correlate with Skp2 cytosolic accumulation in human cancer specimens. Our results therefore define a novel proto-oncogenic Akt/PKB-dependent signaling pathway. PMID:19270694

  15. Akt Pathway Activation by Human T-cell Leukemia Virus Type 1 Tax Oncoprotein.

    PubMed

    Cherian, Mathew A; Baydoun, Hicham H; Al-Saleem, Jacob; Shkriabai, Nikoloz; Kvaratskhelia, Mamuka; Green, Patrick; Ratner, Lee

    2015-10-23

    Human T-cell leukemia virus (HTLV) type 1, the etiological agent of adult T-cell leukemia, expresses the viral oncoprotein Tax1. In contrast, HTLV-2, which expresses Tax2, is non-leukemogenic. One difference between these homologous proteins is the presence of a C-terminal PDZ domain-binding motif (PBM) in Tax1, previously reported to be important for non-canonical NFκB activation. In contrast, this study finds no defect in non-canonical NFκB activity by deletion of the Tax1 PBM. Instead, Tax1 PBM was found to be important for Akt activation. Tax1 attenuates the effects of negative regulators of the PI3K-Akt-mammalian target of rapamycin pathway, phosphatase and tensin homologue (PTEN), and PHLPP. Tax1 competes with PTEN for binding to DLG-1, unlike a PBM deletion mutant of Tax1. Forced membrane expression of PTEN or PHLPP overcame the effects of Tax1, as measured by levels of Akt phosphorylation, and rates of Akt dephosphorylation. The current findings suggest that Akt activation may explain the differences in transforming activity of HTLV-1 and -2.

  16. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    PubMed

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.

  17. Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells.

    PubMed

    Sahlberg, Sara Häggblad; Spiegelberg, Diana; Glimelius, Bengt; Stenerlöw, Bo; Nestor, Marika

    2014-01-01

    The cell surface proteins CD133, CD24 and CD44 are putative markers for cancer stem cell populations in colon cancer, associated with aggressive cancer types and poor prognosis. It is important to understand how these markers may predict treatment outcomes, determined by factors such as radioresistance. The scope of this study was to assess the connection between EGFR, CD133, CD24, and CD44 (including isoforms) expression levels and radiation sensitivity, and furthermore analyze the influence of AKT isoforms on the expression patterns of these markers, to better understand the underlying molecular mechanisms in the cell. Three colon cancer cell-lines were used, HT-29, DLD-1, and HCT116, together with DLD-1 isogenic AKT knock-out cell-lines. All three cell-lines (HT-29, HCT116 and DLD-1) expressed varying amounts of CD133, CD24 and CD44 and the top ten percent of CD133 and CD44 expressing cells (CD133high/CD44high) were more resistant to gamma radiation than the ten percent with lowest expression (CD133low/CD44low). The AKT expression was lower in the fraction of cells with low CD133/CD44. Depletion of AKT1 or AKT2 using knock out cells showed for the first time that CD133 expression was associated with AKT1 but not AKT2, whereas the CD44 expression was influenced by the presence of either AKT1 or AKT2. There were several genes in the cell adhesion pathway which had significantly higher expression in the AKT2 KO cell-line compared to the AKT1 KO cell-line; however important genes in the epithelial to mesenchymal transition pathway (CDH1, VIM, TWIST1, SNAI1, SNAI2, ZEB1, ZEB2, FN1, FOXC2 and CDH2) did not differ. Our results demonstrate that CD133high/CD44high expressing colon cancer cells are associated with AKT and increased radiation resistance, and that different AKT isoforms have varying effects on the expression of cancer stem cell markers, which is an important consideration when targeting AKT in a clinical setting.

  18. Effect of dehydroepiandrosterone (DHEA) on Akt and protein kinase C zeta (PKCζ) phosphorylation in different tissues of C57BL6, insulin receptor substrate (IRS)1(-/-), and IRS2(-/-) male mice fed a high-fat diet.

    PubMed

    Aoki, Kazutaka; Tajima, Kazuki; Taguri, Masataka; Terauchi, Yasuo

    2016-05-01

    We have previously reported that dehydroepiandrosterone (DHEA) suppresses the activity and mRNA expression of the hepatic gluconeogenic enzyme glucose-6-phosphatase (G6Pase), and hepatic glucose production in db/db mice. Tyrosine phosphorylation levels of Insulin receptor substrate (IRS)1 and IRS2 reportedly differ between the liver and muscle tissue and the effect of DHEA on insulin signaling has not been elucidated. Therefore, we examined DHEA's effect on the liver and muscle tissue of IRS1(-/-) and IRS2(-/-) mice. Eight-week-old male C57BL6, IRS1(-/-), and IRS2(-/-) mice were fed a high-fat diet (HFD), or an HFD containing 0.2% DHEA for 4 weeks. In a separate experiment, 8-week-old male C57BL6 mice were fed an HFD or an HFD containing 0.2% androstenedione for 4 weeks. In an insulin tolerance test, DHEA administration decreased the initial plasma glucose levels in the C57BL6, IRS1(-/-), and IRS2(-/-) mice but did not decrease the ratios to the basal blood glucose level. Although DHEA administration increased Akt phosphorylation in the liver of the C57BL6, IRS1(-/-), and IRS2(-/-) mice, androstenedione administration did not increase Akt phosphorylation in the liver of C57BL6 mice. DHEA administration did not increase Akt and PKCζ phosphorylation in the muscle tissue of C57BL6, IRS1(-/-), or IRS2(-/-) mice. However, androstenedione administration increased Akt and PKCζ phosphorylation in the muscle tissue of C57BL6 mice. These findings suggest that the effect of DHEA on insulin action in the liver is self-mediated by DHEA or DHEA sulfate (DHEA-S) in the presence of IRS1, IRS2, or both.

  19. Estrogen Receptor β Signaling through Phosphatase and Tensin Homolog/Phosphoinositide 3-Kinase/Akt/Glycogen Synthase Kinase 3 Down-Regulates Blood-Brain Barrier Breast Cancer Resistance Protein

    PubMed Central

    Hartz, A. M. S.; Madole, E. K.; Miller, D. S.

    2010-01-01

    Breast cancer resistance protein (BCRP) is an ATP-driven efflux pump at the blood-brain barrier that limits central nervous system pharmacotherapy. Our previous studies showed rapid loss of BCRP transport activity in rat brain capillaries exposed to low concentrations of 17-β-estradiol (E2); this occurred without acute change in BCRP protein expression. Here, we describe a pathway through which sustained, extended exposure to E2 signals down-regulation of BCRP at the blood-brain barrier. Six-hour exposure of isolated rat and mouse brain capillaries to E2 reduced BCRP transport activity and BCRP monomer and dimer expression. Experiments with brain capillaries from estrogen receptor (ER)α and ERβ knockout mice and with ER agonists and antagonists showed that E2 signaled through ERβ to down-regulate BCRP expression. In rat brain capillaries, E2 increased unphosphorylated, active phosphatase and tensin homolog (PTEN); decreased phosphorylated, active Akt; and increased phosphorylated, active glycogen synthase kinase (GSK)3. Consistent with this, inhibition of phosphoinositide 3-kinase (PI3K) or Akt decreased BCRP activity and protein expression, and inhibition of PTEN or GSK3 reversed the E2 effect on BCRP. Lactacystin, a proteasome inhibitor, abolished E2-mediated BCRP down-regulation, suggesting internalization followed by transporter degradation. Dosing mice with E2 reduced BCRP activity in brain capillaries within 1 h; this reduction persisted for 24 h. BCRP protein expression in brain capillaries was unchanged 1 h after E2 dosing but was substantially reduced 6 and 24 h after dosing. Thus, E2 signals through ERβ, PTEN/PI3K/Akt/GSK3 to stimulate proteasomal degradation of BCRP. These in vitro and in vivo findings imply that E2-mediated down-regulation of blood-brain barrier BCRP has the potential to increase brain uptake of chemotherapeutics that are BCRP substrates. PMID:20460386

  20. Effects of Dietary Crude Protein Levels and Cysteamine Supplementation on Protein Synthetic and Degradative Signaling in Skeletal Muscle of Finishing Pigs

    PubMed Central

    Zhou, Ping; Zhang, Lin; Li, Jiaolong; Luo, Yiqiu; Zhang, Bolin; Xing, Shen; Zhu, Yuping; Sun, Hui; Gao, Feng; Zhou, Guanghong

    2015-01-01

    Dietary protein levels and cysteamine (CS) supplementation can affect growth performance and protein metabolism of pigs. However, the influence of dietary protein intake on the growth response of CS-treated pigs is unclear, and the mechanisms involved in protein metabolism remain unknown. Hence, we investigated the interactions between dietary protein levels and CS supplementation and the effects of dietary crude protein levels and CS supplementation on protein synthetic and degradative signaling in skeletal muscle of finishing pigs. One hundred twenty barrows (65.84 ± 0.61 kg) were allocated to a 2 × 2 factorial arrangement with five replicates of six pigs each. The primary variations were dietary crude protein (CP) levels (14% or 10%) and CS supplemental levels (0 or 700 mg/kg). The low-protein (LP) diets (10% CP) were supplemented with enough essential amino acids (EAA) to meet the NRC AA requirements of pigs and maintain the balanced supply of eight EAA including lysine, methionine, threonine, tryptophan, valine, phenylalanine, isoleucine, and leucine. After 41 days, 10 pigs per treatment were slaughtered. We found that LP diets supplemented with EAA resulted in decreased concentrations of plasma somatostatin (SS) (P<0.01) and plasma urea nitrogen (PUN) (P<0.001), while dietary protein levels did not affect other traits. However, CS supplementation increased the average daily gain (P<0.001) and lean percentage (P<0.05), and decreased the feed conversion ratio (P<0.05) and back fat (P<0.05). CS supplementation also increased the concentrations of plasma insulin-like growth factor 1 (IGF-1) (P<0.001), and reduced the concentrations of leptin, SS, and PUN (P<0.001). Increased mRNA abundance of Akt1 and IGF-1 signaling (P<0.001) and decreased mRNA abundance of Forkhead Box O (FOXO) 4 (P<0.01) and muscle atrophy F-box (P<0.001) were observed in pigs receiving CS. Additionally, CS supplementation increased the protein levels for the phosphorylated mammalian target

  1. Effects of Dietary Crude Protein Levels and Cysteamine Supplementation on Protein Synthetic and Degradative Signaling in Skeletal Muscle of Finishing Pigs.

    PubMed

    Zhou, Ping; Zhang, Lin; Li, Jiaolong; Luo, Yiqiu; Zhang, Bolin; Xing, Shen; Zhu, Yuping; Sun, Hui; Gao, Feng; Zhou, Guanghong

    2015-01-01

    Dietary protein levels and cysteamine (CS) supplementation can affect growth performance and protein metabolism of pigs. However, the influence of dietary protein intake on the growth response of CS-treated pigs is unclear, and the mechanisms involved in protein metabolism remain unknown. Hence, we investigated the interactions between dietary protein levels and CS supplementation and the effects of dietary crude protein levels and CS supplementation on protein synthetic and degradative signaling in skeletal muscle of finishing pigs. One hundred twenty barrows (65.84 ± 0.61 kg) were allocated to a 2 × 2 factorial arrangement with five replicates of six pigs each. The primary variations were dietary crude protein (CP) levels (14% or 10%) and CS supplemental levels (0 or 700 mg/kg). The low-protein (LP) diets (10% CP) were supplemented with enough essential amino acids (EAA) to meet the NRC AA requirements of pigs and maintain the balanced supply of eight EAA including lysine, methionine, threonine, tryptophan, valine, phenylalanine, isoleucine, and leucine. After 41 days, 10 pigs per treatment were slaughtered. We found that LP diets supplemented with EAA resulted in decreased concentrations of plasma somatostatin (SS) (P<0.01) and plasma urea nitrogen (PUN) (P<0.001), while dietary protein levels did not affect other traits. However, CS supplementation increased the average daily gain (P<0.001) and lean percentage (P<0.05), and decreased the feed conversion ratio (P<0.05) and back fat (P<0.05). CS supplementation also increased the concentrations of plasma insulin-like growth factor 1 (IGF-1) (P<0.001), and reduced the concentrations of leptin, SS, and PUN (P<0.001). Increased mRNA abundance of Akt1 and IGF-1 signaling (P<0.001) and decreased mRNA abundance of Forkhead Box O (FOXO) 4 (P<0.01) and muscle atrophy F-box (P<0.001) were observed in pigs receiving CS. Additionally, CS supplementation increased the protein levels for the phosphorylated mammalian target

  2. FANCI is a negative regulator of Akt activation.

    PubMed

    Zhang, Xiaoshan; Lu, Xiaoyan; Akhter, Shamima; Georgescu, Maria-Magdalena; Legerski, Randy J

    2016-01-01

    Akt is a critical mediator of the oncogenic PI3K pathway, and its activation is regulated by kinases and phosphatases acting in opposition. We report here the existence of a novel protein complex that is composed minimally of Akt, PHLPP1, PHLPP2, FANCI, FANCD2, USP1 and UAF1. Our studies show that depletion of FANCI, but not FANCD2 or USP1, results in increased phosphorylation and activation of Akt. This activation is due to a reduction in the interaction between PHLPP1 and Akt in the absence of FANCI. In response to DNA damage or growth factor treatment, the interactions between Akt, PHLPP1 and FANCI are reduced consistent with the known phosphorylation of Akt in response to these stimuli. Furthermore, depletion of FANCI results in reduced apoptosis after DNA damage in accord with its role as a negative regular of Akt. Our findings describe an unexpected function for FANCI in the regulation of Akt and define a previously unrecognized intersection between the PI3K-Akt and FA pathways.

  3. PI3K/Akt pathway restricts epithelial adhesion of Dr+ Escherichia coli by down-regulating the expression of Decay Accelerating Factor (DAF)

    PubMed Central

    Banadakoppa, Manu; Goluszko, Pawel; Liebenthal, Daniel; Nowicki, Bogdan J.; Nowicki, Stella; Yallampalli, Chandra

    2014-01-01

    The urogenital microbial infection in pregnancy is an important cause of maternal and neonatal morbidity and mortality. Uropathogenic Escherichia coli strains which express Dr fimbriae (Dr+) are associated with unique gestational virulence and they utilize cell surface decay accelerating factor (DAF or CD55) as one of the cellular receptor before invading the epithelial cells. Previous studies in our laboratory established that nitric oxide reduces the rate of E. coli invasion by delocalizing the DAF protein from cell surface lipid rafts and down-regulating its expression. The phosphoinositide 3-kinase/ protein kinase B (PI3K/Akt) cell signal pathway plays an important role in host-microbe interaction because many bacteria including E. coli activate this pathway in order to establish infection. In the present study we showed that the PI3K/Akt pathway negatively regulates the expression of DAF on the epithelial cell surface and thus inhibits the adhesion of Dr+ E. coli to epithelial cells. Initially, using two human cell lines Ishikawa and HeLa which differ in constitutive activity of PI3K/Akt we showed that DAF levels were associated with the PI3K/Akt pathway. We then showed that the DAF gene expression was up-regulated and the Dr+ E. coli adhesion increased after the suppression of PI3K/Akt pathway in Ishikawa cells using inhibitor LY-294002, and a plasmid which allowed the expression of PI3K/Akt regulatory protein PTEN. The down-regulation of PTEN protein using PTEN-specific siRNA activated the PI3K/Akt pathway, down-regulated the DAF and decreased the adhesion of Dr+ E. coli. We conclude that the PI3K/Akt pathway regulated the DAF expression in a nitric oxide independent manner. PMID:24599886

  4. Cyclic Compressive Stress Regulates Apoptosis in Rat Osteoblasts: Involvement of PI3K/Akt and JNK MAPK Signaling Pathways

    PubMed Central

    Jiang, Dawei; Wang, Tianchen; Zhang, Yinquan; Ma, Hui

    2016-01-01

    It is widely accepted that physiological mechanical stimulation suppresses apoptosis and induces synthesis of extracellular matrix by osteoblasts; however, the effect of stress overloading on osteoblasts has not been fully illustrated. In the present study, we investigated the effect of cyclic compressive stress on rat osteoblasts apoptosis, using a novel liquid drop method to generate mechanical stress on osteoblast monolayers. After treatment with different levels of mechanical stress, apoptosis of osteoblasts and activations of mitogen-activated protein kinases (MAPKs) and PI3-kinase (PI3K)/Akt signaling pathways were investigated. Osteoblasts apoptosis was observed after treated with specific inhibitors prior to mechanical stimulation. Protein levels of Bax/Bcl-2/caspase-3 signaling were determined using western blot with or without inhibitors of PI3K/Akt and phosphorylation of c-jun N-terminal kinase (JNK) MAPK. Results showed that mechanical stimulation led to osteoblasts apoptosis in a dose-dependent manner and a remarkable activation of MAPKs and PI3K/Akt signaling pathways. Activation of PI3K/Akt protected against apoptosis, whereas JNK MAPK increased apoptosis via regulation of Bax/Bcl-2/caspase-3 activation. In summary, the PI3K/Akt and JNK MAPK signaling pathways played opposing roles in osteoblasts apoptosis, resulting in inhibition of apoptosis upon small-magnitude stress and increased apoptosis upon large-magnitude stress. PMID:27806136

  5. Protective Role of PI3-kinase/Akt/eNOS Signaling in Mechanical Stress Through Inhibition of p38 Mitogen-Activated Protein Kinase in Mouse Lung

    DTIC Science & Technology

    2010-01-01

    81. 6 Iwakiri Y. Tsai MH. McCabe TJ. Gratton JP. Fulton D. Groszmann RJ. et al. Phosphorylation of eNOS initiates excessive NO production in early...Crit care Med 2008; 177(Abstracts issue): A760. 21 Gratton JP. Morales-Ruiz M. Kureishi Y. Fulton D. Walsh K. Sessa WC. Akt down-regulation of p38

  6. Allicin protects traumatic spinal cord injury through regulating the HSP70/Akt/iNOS pathway in mice

    PubMed Central

    Wang, Shunyi; Ren, Dongliang

    2016-01-01

    Allicin is a major component of garlic, extracted as an oily liquid. The present study was designed to investigate the beneficial effects of allicin on traumatic spinal cord injury (TSCI) in mice, and whether the effects are mediated via regulation of the heat shock protein 70 (HSP70), v-akt murine thymoma viral oncogene homolog 1 (Akt) and inducible nitric oxide synthase (iNOS) pathways. Adult BALB/c mice (30–40 g) received a laminectomy at the T9 vertebral level as a model of TSCI. In the present study, treatment of the TSCI mice with allicin significantly increased their Basso, Beattie and Bresnahan (BBB) scores (P<0.01) and reduced the spinal cord water content (P<0.01). This protective effect was associated with the inhibition of oxidative stress and inflammatory responses in TSCI mice. Western blot analysis demonstrated that allicin increased the protein levels of HSP70, increased the phosphorylation of Akt and reduced the iNOS protein expression levels in TSCI mice. Additionally, treatment with allicin significantly reduced the levels of ROS and enhanced the NADH levels in TSCI mice. Collectively, these data demonstrate that the effects of allicin on TSCI are mediated via regulation of the HSP70, Akt and iNOS pathways in mice. PMID:27573340

  7. Differential Role of β1C and β1A Integrin Cytoplasmic Variants in Modulating Focal Adhesion Kinase, Protein Kinase B/AKT, and Ras/Mitogen-activated Protein Kinase Pathways

    PubMed Central

    Fornaro, Mara; Steger, Craig A.; Bennett, Anton M.; Wu, J. Julie; Languino, Lucia R.

    2000-01-01

    The integrin cytoplasmic domain modulates cell proliferation, adhesion, migration, and intracellular signaling. The β1 integrin subunits, β1C and β1A, that contain variant cytoplasmic domains differentially affect cell proliferation; β1C inhibits proliferation, whereas β1A promotes it. We investigated the ability of β1C and β1A to modulate integrin-mediated signaling events that affect cell proliferation and survival in Chinese hamster ovary stable cell lines expressing either human β1C or human β1A. The different cytodomains of either β1C or β1A did not affect either association with the endogenous α2, αV, and α5 subunits or cell adhesion to fibronectin or TS2/16, a mAb to human β1. Upon engagement of endogenous and exogenous integrins by fibronectin, cells expressing β1C showed significantly inhibited extracellular signal–regulated kinase (ERK) 2 activation compared with β1A stable cell lines. In contrast, focal adhesion kinase phosphorylation and Protein Kinase B/AKT activity were not affected. Selective engagement of the exogenously expressed β1C by TS2/16 led to stimulation of Protein Kinase B/AKT phosphorylation but not of ERK2 activation; in contrast, β1A engagement induced activation of both proteins. We show that Ras activation was strongly reduced in β1C stable cell lines in response to fibronectin adhesion and that expression of constitutively active Ras, Ras 61 (L), rescued β1C-mediated down-regulation of ERK2 activation. Inhibition of cell proliferation in β1C stable cell lines was attributable to an inhibitory effect of β1C on the Ras/MAP kinase pathway because expression of activated MAPK kinase rescued β1C antiproliferative effect. These findings show that the β1C variant, by means of a unique signaling mechanism, selectively inhibits the MAP kinase pathway by preventing Ras activation without affecting either survival signals stimulated by integrins or cellular interactions with the extracellular matrix. These findings

  8. Indoor air pollution from biomass burning activates Akt in airway cells and peripheral blood lymphocytes: a study among premenopausal women in rural India.

    PubMed

    Mondal, Nandan K; Roy, Amrita; Mukherjee, Bidisha; Das, Debangshu; Ray, Manas R

    2010-12-01

    Biomass burning is a major source of indoor air pollution in rural India. The authors investigated in this study whether cumulative exposures to biomass smoke cause activation of the serine/threonine kinase Akt in airway cells and peripheral blood lymphocytes (PBL). For this, the authors enrolled 87 premenopausal (median age 34 years), nonsmoking women who used to cook with biomass (wood, dung, crop wastes) and 85 age-matched control women who cooked with cleaner fuel liquefied petroleum gas. Immunocytochemical and immunoblotting assays revealed significantly higher levels of phosphorylated forms of Akt protein (p-Akt(ser473) and p-Akt(thr308)) in PBL, airway epithelial cells, alveolar macrophages, and neutrophils in sputum of biomass-using women than control. Akt activation in biomass users was associated with marked rise in generation of reactive oxygen species and concomitant depletion of superoxide dismutase. Measurement of particulate matter having a diameter of less than 10 and 2.5 µm in indoor air by real-time aerosol monitor showed 2 to 4 times more particulate pollution in biomass-using households, and Akt activation was positively associated with particulate pollution after controlling potential confounders. The findings suggest that chronic exposure to biomass smoke activates Akt, possibly via generation of oxidative stress.

  9. Juglanthraquinone C Induces Intracellular ROS Increase and Apoptosis by Activating the Akt/Foxo Signal Pathway in HCC Cells.

    PubMed

    Hou, Ya-Qin; Yao, Yao; Bao, Yong-Li; Song, Zhen-Bo; Yang, Cheng; Gao, Xiu-Li; Zhang, Wen-Jing; Sun, Lu-Guo; Yu, Chun-Lei; Huang, Yan-Xin; Wang, Guan-Nan; Li, Yu-Xin

    2016-01-01

    Juglanthraquinone C (JC), a naturally occurring anthraquinone extracted from Juglans mandshurica, could induce apoptosis of cancer cells. This study aims to investigate the detailed cytotoxicity mechanism of JC in HepG2 and BEL-7402 cells. The Affymetrix HG-U133 Plus 2.0 arrays were first used to analyze the mRNA expression exposed to JC or DMSO in HepG2 cells. Consistent with the previous results, the data indicated that JC could induce apoptosis and hyperactivated Akt. The Western blot analysis further revealed that Akt, a well-known survival protein, was strongly activated in HepG2 and BEL-7402 cells. Furthermore, an obvious inhibitory effect on JC-induced apoptosis was observed when the Akt levels were decreased, while the overexpression of constitutively active mutant Akt greatly accelerated JC-induced apoptosis. The subsequent results suggested that JC treatment suppressed nuclear localization and increased phosphorylated levels of Foxo3a, and the overexpression of Foxo3a abrogated JC-induced apoptosis. Most importantly, the inactivation of Foxo3a induced by JC further led to an increase of intracellular ROS levels by suppressing ROS scavenging enzymes, and the antioxidant N-acetyl-L-cysteine and catalase successfully decreased JC-induced apoptosis. Collectively, this study demonstrated that JC induced the apoptosis of hepatocellular carcinoma (HCC) cells by activating Akt/Foxo signaling pathway and increasing intracellular ROS levels.

  10. Dietary protein source and level alters growth in neon tetras.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritional studies for aquarium fish like the neon tetra are sparse in comparison with those for food fish. To determine the optimum dietary protein level and source for growth of neon tetras, diets were formulated to contain 25, 35, 45 and 55% dietary protein from either marine animal protein or ...

  11. Ubiquitin-specific protease 8 links the PTEN-Akt-AIP4 pathway to the control of FLIPS stability and TRAIL sensitivity in glioblastoma multiforme.

    PubMed

    Panner, Amith; Crane, Courtney A; Weng, Changjiang; Feletti, Alberto; Fang, Shanna; Parsa, Andrew T; Pieper, Russell O

    2010-06-15

    The antiapoptotic protein FLIP(S) is a key suppressor of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human glioblastoma multiforme (GBM) cells. We previously reported that a novel phosphatase and tensin homologue (PTEN)-Akt-atrophin-interacting protein 4 (AIP4) pathway regulates FLIP(S) ubiquitination and stability, although the means by which PTEN and Akt were linked to AIP4 activity were unclear. Here, we report that a second regulator of ubiquitin metabolism, the ubiquitin-specific protease 8 (USP8), is a downstream target of Akt, and that USP8 links Akt to AIP4 and the regulation of FLIP(S) stability and TRAIL resistance. In human GBM xenografts, levels of USP8 correlated inversely with pAkt levels, and genetic or pharmacologic manipulation of Akt regulated USP8 levels in an inverse manner. Overexpression of wild-type USP8, but not catalytically inactive USP8, increased FLIP(S) ubiquitination, decreased FLIP(S) half-life, decreased FLIP(S) steady-state levels, and decreased TRAIL resistance, whereas short interfering RNA (siRNA)-mediated suppression of USP8 levels had the opposite effect. Because high levels of the USP8 deubiquitinase correlated with high levels of FLIP(S) ubiquitination, USP8 seemed to control FLIP(S) ubiquitination through an intermediate target. Consistent with this idea, overexpression of wild-type USP8 decreased the ubiquitination of the FLIP(S) E3 ubiquitin ligase AIP4, an event previously shown to increase AIP4-FLIP(S) interaction, whereas siRNA-mediated suppression of USP8 increased AIP4 ubiquitination. Furthermore, the suppression of FLIP(S) levels by USP8 overexpression was reversed by the introduction of siRNA targeting AIP4. These results show that USP8, a downstream target of Akt, regulates the ability of AIP4 to control FLIP(S) stability and TRAIL sensitivity.

  12. USP8 links the PTEN-Akt-AIP4 pathway to the control of FLIPS stability and TRAIL sensitivity in glioblastoma multiforme

    PubMed Central

    Panner, Amith; Crane, Courtney A.; Weng, Changjiang; Feletti, Alberto; Fang, Shanna; Parsa, Andrew T.; Pieper, Russell O.

    2010-01-01

    The anti-apoptotic protein FLIPS is a key suppressor of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) -induced apoptosis in human glioblastoma multiforme (GBM) cells. We previously reported that a novel phosphatase and tensin homolog (PTEN)-Akt-atrophin interacting protein 4 (AIP4) pathway regulates FLIPS ubiquitination and stability, although the means by which PTEN and Akt were linked to AIP4 activity were unclear. We here report that a second regulator of ubiquitin metabolism, the ubiquitin-specific protease (USP) 8, is a downstream target of Akt, and that USP8 links Akt to AIP4 and the regulation of FLIPS stability and TRAIL resistance. In human GBM xenografts, levels of USP8 correlated inversely with pAkt levels, and genetic or pharmacologic manipulation of Akt regulated USP8 levels in an inverse manner. Over-expression of WT USP8, but not catalytically inactive USP8, increased FLIPS ubiquitination, decreased FLIPS half-life, decreased FLIPS steady-state levels, and decreased TRAIL resistance, while siRNA-mediated suppression of USP8 levels had the opposite effects. Because high levels of the USP8 deubiquitinase correlated with high levels of FLIPS ubiquitination, USP8 appeared to control FLIPS ubiquitination through an intermediate target. Consistent with this idea, over-expression of WT USP8 decreased ubiquitination of the FLIPS E3 ubiquitin ligase AIP4, an event previously shown to increase AIP4-FLIPS interaction, while siRNA-mediated suppression of USP8 increased AIP4 ubiquitination. Furthermore, the suppression of FLIPS levels by USP8 over-expression was reversed by introduction of siRNA targeting AIP4. These results show that USP8, a downstream target of Akt, regulates the ability of AIP4 to control FLIPS stability and TRAIL sensitivity. PMID:20484045

  13. Resveratrol rescues hyperglycemia-induced endothelial dysfunction via activation of Akt

    PubMed Central

    Li, Jin-yi; Huang, Wei-qiang; Tu, Rong-hui; Zhong, Guo-qiang; Luo, Bei-bei; He, Yan

    2017-01-01

    Resveratrol (RSV), a phytoalexin, has shown to prevent endothelial dysfunction and reduce diabetic vascular complications and the risk of cardiovascular diseases. The aim of this study was to investigate the signaling mechanisms underlying the protecting effects of RSV against endothelial dysfunction during hyperglycemia in vitro and in vivo. Human umbilical vein endothelial cells (HUVECs) were treated with RSV, and then exposed to high glucose (HG, 30 mmol/L). Akt-Ser473 phosphorylation, eNOS-Ser1177 phosphorylation, and PTEN protein levels in the cells were detected using Western blot. For in vivo studies, WT and Akt−/− mice were fed a normal diet containing RSV (400 mg·kg−1·d−1) for 2 weeks, then followed by injection of STZ to induce hyperglycemia (300 mg/dL). Endothelial function was evaluated using aortic rings by assessing ACh-induced vasorelaxation. RSV (5–20 μmol/L) dose-dependently increased Akt-Ser473 phosphorylation, accompanied by increased eNOS-Ser1177 phosphorylation in HUVECs; these effects were more prominent under HG stimulation. Transfection with Akt siRNA abolished RSV-enhanced eNOS phosphorylation and NO release. Furthermore, RSV (5–20 μmol/L) dose-dependently decreased the levels of PTEN, which was significantly increased under HG stimulation, and PTEN overexpression abolished RSV-stimulated Akt phosphorylation in HG-treated HUVECs. Moreover, RSV dramatically increased 26S proteasome activity, which induced degradation of PTEN. In in vivo studies, pretreatment with RSV significantly increased Akt and eNOS phosphorylation in aortic tissues and ACh-induced vasorelaxation, and improved diabetes-induced endothelial dysfunction in wild-type mice but not in Akt−/− mice. RSV attenuates endothelial function during hyperglycemia via activating proteasome-dependent degradation of PTEN, which increases Akt phosphorylation, and consequentially upregulation of eNOS-derived NO production. PMID:27941804

  14. PI3K/AKT and Mdm2 activation are associated with inhibitory effect of cAMP increasing agents on DNA damage-induced cell death in human pre-B NALM-6 cells.

    PubMed

    Ghorbani, Arman; Jeddi-Tehrani, Mahmood; Saidpour, Atoosa; Safa, Majid; Bayat, Ahmad Ali; Zand, Hamid

    2015-01-15

    DNA damage response (DDR) consists of both proapoptotic and prosurvival signaling branches. Superiority of each signaling branch determines the outcome of DNA damage: death or allowing the repair. The present authors have previously shown that an increased intracellular level of cAMP disrupts p53-mediated apoptosis in human pre-B NALM-6 cells and inhibition of NF-κB prevents prosurvival effect of cAMP during DNA damage. AKT/PKB (protein kinase B) is a general mediator of survival signaling. AKT signaling inhibits p53-mediated transcription and apoptosis. The results of present study showed that cAMP disrupted DNA damage/p53-mediated apoptosis through AKT and subsequent NF-κB activation. These results suggested that AKT may be found as part of a complex with scaffolding proteins, beta-arrestins and PDE4D. cAMP disarticulated the complex through binding to PDE4D compartment. It seems that release of AKT protein potentiated DDR activated pro-survival AKT in NALM-6 cells. Taken together, the present data indicated that regulation of AKT signaling may determine the fate of cells exposed to genotoxic stress.

  15. Pancreas-specific Pten deficiency causes partial resistance to diabetes and elevated hepatic AKT signaling.

    PubMed

    Tong, Zan; Fan, Yan; Zhang, Weiqi; Xu, Jun; Cheng, Jing; Ding, Mingxiao; Deng, Hongkui

    2009-06-01

    PTEN, a negative regulator of the phosphatidylinositol-3-kinase/AKT pathway, is an important modulator of insulin signaling. To determine the metabolic function of pancreatic Pten, we generated pancreas-specific Pten knockout (PPKO) mice. PPKO mice had enlarged pancreas and elevated proliferation of acinar cells. They also exhibited hypoglycemia, hypoinsulinemia, and altered amino metabolism. Notably, PPKO mice showed delayed onset of streptozotocin (STZ)-induced diabetes and sex-biased resistance to high-fat-diet (HFD)-induced diabetes. To investigate the mechanism for the resistance to HFD-induced hyperglycemia in PPKO mice, we evaluated AKT phosphorylation in major insulin-responsive tissues: the liver, muscle, and fat. We found that Pten loss in the pancreas causes the elevation of AKT signaling in the liver. The phosphorylation of AKT and its downstream substrate GSK3beta was increased in the liver of PPKO mice, while PTEN level was decreased without detectable excision of Pten allele in the liver of PPKO mice. Proteomics analysis revealed dramatically decreased level of 78-kDa glucose-regulated protein (GRP78) in the liver of PPKO mice, which may also contribute to the lower blood glucose level of PPKO mice fed with HFD. Together, our findings reveal a novel response in the liver to pancreatic defect in metabolic regulation, adding a new dimension to understanding diabetes resistance.

  16. Mitochondrial E3 Ubiquitin Protein Ligase 1 Mediates Cigarette Smoke-Induced Endothelial Cell Death and Dysfunction.

    PubMed

    Kim, Sun-Yong; Kim, Hyo Jeong; Park, Mi Kyeong; Huh, Jin Won; Park, Hye Yun; Ha, Sang Yun; Shin, Joo-Ho; Lee, Yun-Song

    2016-02-01

    By virtue of the critical roles of Akt in vascular endothelial cell (EC) survival and function, cigarette smoke-induced Akt reduction may contribute to EC death and dysfunction in smokers' lungs. One of the negative Akt regulatory mechanisms is K48-linked Akt ubiquitination and subsequent proteasomal degradation. Here, we assessed the involvement of mitochondrial E3 ubiquitin protein ligase 1 (MUL1), recently revealed as a novel Akt ubiquitin E3 ligase, in cigarette smoke-induced Akt ubiquitination and its contribution to pulmonary EC death and dysfunction. In human lung microvascular ECs (HLMVECs), cigarette smoke extract (CSE) noticeably elevated MUL1 expression and K48-linked Akt ubiquitination, whereas Akt, p-Akt, eNOS, and p-eNOS levels were decreased. MUL1 knockdown suppressed CSE-induced Akt ubiquitination/degradation and cytoplasmic reductions of Akt and p-Akt. Furthermore, MUL1 knockdown attenuated reductions of eNOS and p-eNOS and alleviated EC survival, migration, and tube formation in the presence of CSE exposure. In addition, overexpression of K284R Akt, a mutant for a MUL1-ubiquitination site, produced similar effects. In HLMVECs exposed to CSE, Akt-MUL1 interaction was increased in coimmunoprecipitation and in situ proximity ligation assays. Similarly, the proximity ligation assay signals were elevated in rat lungs exposed to cigarette smoke for 3 months, during which Mul1 levels were noticeably increased. Finally, we found that CSE-mediated MUL1 induction in HLMVECs is mediated by retinoic acid receptor-related orphan receptor α. Taken together, these data suggest that cigarette smoke-induced MUL1 elevation mediates Akt ubiquitination/degradation, potentially leading to pulmonary EC death and functional impairment.

  17. Enhancement of insulin-induced PI3K/Akt/GSK-3beta and ERK signaling by neuronal nicotinic receptor/PKC-alpha/ERK pathway: up-regulation of IRS-1/-2 mRNA and protein in adrenal chromaffin cells.

    PubMed

    Sugano, Takashi; Yanagita, Toshihiko; Yokoo, Hiroki; Satoh, Shinya; Kobayashi, Hideyuki; Wada, Akihiko

    2006-07-01

    In cultured bovine adrenal chromaffin cells treated with nicotine (10 microm for 24 h), phosphorylation of Akt, glycogen synthase kinase-3beta (GSK-3beta) and extracellular signal-regulated kinase (ERK)1/2 induced by insulin (100 nm for 10 min) was enhanced by approximately 62%, without altering levels of these protein kinases. Nicotine produced time (> 12 h)- and concentration (EC(50) 3.6 and 13 microm)-dependent increases in insulin receptor substrate (IRS)-1 and IRS-2 levels by approximately 125 and 105%, without altering cell surface density of insulin receptors. In these cells, insulin-induced tyrosine phosphorylation of IRS-1/IRS-2 and recruitment of phosphoinositide 3-kinase (PI3K) to IRS-1/IRS-2 were augmented by approximately 63%. The increase in IRS-1/IRS-2 levels induced by nicotine was prevented by nicotinic acetylcholine receptor (nAChR) antagonists, the Ca(2+) chelator 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetra-acetic acid tetrakis-acetoxymethyl ester, cycloheximide or actinomycin D. Nicotine increased IRS-1 and IRS-2 mRNA levels by approximately 57 and approximately 50%, and this was prevented by conventional protein kinase C (cPKC) inhibitor Gö6976, or ERK kinase inhibitors PD98059 and U0126. Nicotine phosphorylated cPKC-alpha, thereby increasing phosphorylation of ERK1/ERK2, as demonstrated by using Gö6976, PD98059 or U0126. Selective activation of cPKC-alpha by thymeleatoxin mimicked these effects of nicotine. Thus, stimulation of nAChRs up-regulated expression of IRS-1/IRS-2 via Ca(2+)-dependent sequential activation of cPKC-alpha and ERK, and enhanced insulin-induced PI3K/Akt/GSK-3beta and ERK signaling pathways.

  18. Hydrogen Sulfide and/or Ammonia Reduces Spermatozoa Motility through AMPK/AKT Related Pathways

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Zhang, Wei-Dong; Liu, Xin-Qi; Zhang, Peng-Fei; Hao, Ya-Nan; Li, Lan; Chen, Liang; Shen, Wei; Tang, Xiang-Fang; Min, Ling-Jiang; Meng, Qing-Shi; Wang, Shu-Kun; Yi, Bao; Zhang, Hong-Fu

    2016-11-01

    A number of emerging studies suggest that air pollutants such as hydrogen sulfide (H2S) and ammonia (NH3) may cause a decline in spermatozoa motility. The impact and underlying mechanisms are currently unknown. Boar spermatozoa (in vitro) and peripubertal male mice (in vivo) were exposed to H2S and/or NH3 to evaluate the impact on spermatozoa motility. Na2S and/or NH4Cl reduced the motility of boar spermatozoa in vitro. Na2S and/or NH4Cl disrupted multiple signaling pathways including decreasing Na+/K+ ATPase activity and protein kinase B (AKT) levels, activating Adenosine 5‧-monophosphate (AMP)-activated protein kinase (AMPK) and phosphatase and tensin homolog deleted on chromosome ten (PTEN), and increasing reactive oxygen species (ROS) to diminish boar spermatozoa motility. The increase in ROS might have activated PTEN, which in turn diminished AKT activation. The ATP deficiency (indicated by reduction in Na+/K+ ATPase activity), transforming growth factor (TGFβ) activated kinase-1 (TAK1) activation, and AKT deactivation stimulated AMPK, which caused a decline in boar spermatozoa motility. Simultaneously, the deactivation of AKT might play some role in the reduction of boar spermatozoa motility. Furthermore, Na2S and/or NH4Cl declined the motility of mouse spermatozoa without affecting mouse body weight gain in vivo. Findings of the present study suggest that H2S and/or NH3 are adversely associated with spermatozoa motility.

  19. Hydrogen Sulfide and/or Ammonia Reduces Spermatozoa Motility through AMPK/AKT Related Pathways

    PubMed Central

    Zhao, Yong; Zhang, Wei-Dong; Liu, Xin-Qi; Zhang, Peng-Fei; Hao, Ya-Nan; Li, Lan; Chen, Liang; Shen, Wei; Tang, Xiang-Fang; Min, Ling-Jiang; Meng, Qing-Shi; Wang, Shu-Kun; Yi, Bao; Zhang, Hong-Fu

    2016-01-01

    A number of emerging studies suggest that air pollutants such as hydrogen sulfide (H2S) and ammonia (NH3) may cause a decline in spermatozoa motility. The impact and underlying mechanisms are currently unknown. Boar spermatozoa (in vitro) and peripubertal male mice (in vivo) were exposed to H2S and/or NH3 to evaluate the impact on spermatozoa motility. Na2S and/or NH4Cl reduced the motility of boar spermatozoa in vitro. Na2S and/or NH4Cl disrupted multiple signaling pathways including decreasing Na+/K+ ATPase activity and protein kinase B (AKT) levels, activating Adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) and phosphatase and tensin homolog deleted on chromosome ten (PTEN), and increasing reactive oxygen species (ROS) to diminish boar spermatozoa motility. The increase in ROS might have activated PTEN, which in turn diminished AKT activation. The ATP deficiency (indicated by reduction in Na+/K+ ATPase activity), transforming growth factor (TGFβ) activated kinase-1 (TAK1) activation, and AKT deactivation stimulated AMPK, which caused a decline in boar spermatozoa motility. Simultaneously, the deactivation of AKT might play some role in the reduction of boar spermatozoa motility. Furthermore, Na2S and/or NH4Cl declined the motility of mouse spermatozoa without affecting mouse body weight gain in vivo. Findings of the present study suggest that H2S and/or NH3 are adversely associated with spermatozoa motility. PMID:27883089

  20. PDK1-Akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex.

    PubMed

    Itoh, Yasuhiro; Higuchi, Maiko; Oishi, Koji; Kishi, Yusuke; Okazaki, Tomohiko; Sakai, Hiroshi; Miyata, Takaki; Nakajima, Kazunori; Gotoh, Yukiko

    2016-05-24

    Neurons migrate a long radial distance by a process known as locomotion in the developing mammalian neocortex. During locomotion, immature neurons undergo saltatory movement along radial glia fibers. The molecular mechanisms that regulate the speed of locomotion are largely unknown. We now show that the serine/threonine kinase Akt and its activator phosphoinositide-dependent protein kinase 1 (PDK1) regulate the speed of locomotion of mouse neocortical neurons through the cortical plate. Inactivation of the PDK1-Akt pathway impaired the coordinated movement of the nucleus and centrosome, a microtubule-dependent process, during neuronal migration. Moreover, the PDK1-Akt pathway was found to control microtubules, likely by regulating the binding of accessory proteins including the dynactin subunit p150(glued) Consistent with this notion, we found that PDK1 regulates the expression of cytoplasmic dynein intermediate chain and light intermediate chain at a posttranscriptional level in the developing neocortex. Our results thus reveal an essential role for the PDK1-Akt pathway in the regulation of a key step of neuronal migration.

  1. AKT plays a crucial role in gastric cancer

    PubMed Central

    SASAKI, TAKAMITSU; YAMASHITA, YUICHI; KUNIYASU, HIROKI

    2015-01-01

    The AKT protein is involved in the phosphatidylinositol-3 kinase signaling pathway and is a vital regulator of survival, proliferation and differentiation in various types of cells. Helicobacter pylori infection induces epithelial cell proliferation and oxidative stress in chronic gastritis. These alterations lead to telomere shortening, resulting in the activation of telomerase. AKT, in particular, is activated by H. pylori-induced inflammation. AKT then promotes the expression of human telomerase reverse transcriptase, which encodes a catalytic subunit of telomerase, and induces telomerase activity, an essential component of the process of carcinogenesis. AKT activation is increased in gastric mucosa with carcinogenic properties and is associated with the low survival of patients with gastric cancer. The findings of the present study suggest that AKT is pivotal in gastric carcinogenesis and progression. PMID:26622541

  2. Effects of ageing on expression of the muscle-specific E3 ubiquitin ligases and Akt-dependent regulation of Foxo transcription factors in skeletal muscle.

    PubMed

    Wagatsuma, Akira; Shiozuka, Masataka; Takayama, Yuzo; Hoshino, Takayuki; Mabuchi, Kunihiko; Matsuda, Ryoichi

    2016-01-01

    Controversy exists as to whether the muscle-specific E3 ubiquitin ligases MAFbx and MuRF1 are transcriptionally upregulated in the process of sarcopenia. In the present study, we investigated the effects of ageing on mRNA/protein expression of muscle-specific E3 ubiquitin ligases and Akt/Foxo signalling in gastrocnemius muscles of female mice. Old mice exhibited a typical sarcopenic phenotype, characterized by loss of muscle mass and strength, decreased amount of myofibrillar proteins, incidence of aberrant muscle fibres, and genetic signature to sarcopenia. Activation levels of Akt were lower in adult and old mice than in young mice. Consequently, Akt-mediated phosphorylation levels of Foxo1 and Foxo3 proteins were decreased. Nuclear levels of Foxo1 and Foxo3 proteins showed an overall increasing trend in old mice. MAFbx mRNA expression was decreased in old mice relative to adult mice, whereas MuRF1 mRNA expression was less affected by ageing. At the protein level, MAFbx was less affected by ageing, whereas MuRF1 was increased in old mice relative to adult mice, with ubiquitin-protein conjugates being increased with ageing. In conclusion, we provided evidence for no mRNA upregulation of muscle-specific E3 ubiquitin ligases and disconnection between their expression and Akt/Foxo signalling in sarcopenic mice. Their different responsiveness to ageing may reflect different roles in sarcopenia.

  3. Hirsutenone reduces deterioration of tight junction proteins through EGFR/Akt and ERK1/2 pathway both converging to HO-1 induction.

    PubMed

    Seo, Geom Seog; Jiang, Wen-Yi; Park, Pil-Hoon; Sohn, Dong Hwan; Cheon, Jae Hee; Lee, Sung Hee

    2014-07-15

    Oxidative stress-induced disruption of epithelial tight junctions (TJ) plays a critical role in the pathogenesis of intestinal disorders, including inflammatory bowel disease (IBD). The current study investigated the protective effect of hirsutenone against disruption of the intestinal barrier in vitro and in a mouse model of colitis. Caco-2 cells were stimulated with tert-butyl hydroperoxide (t-BH). Hirsutenone prevented the t-BH-induced increase in permeability by inhibiting the reduction in zonula occludens-1 (ZO-1) expression, and rapidly stimulated tyrosine phosphorylation of the epidermal growth factor receptor (EGFR). Hirsutenone-mediated protection against the loss of ZO-1 depends on the activation of both ERK1/2 and Akt signaling pathways. Interestingly, hirsutenone-mediated activation of Akt, but not ERK1/2, signaling was EGFR-dependent. Hirsutenone increased heme oxygenase-1 (HO-1) expression through both EGFR/Akt- and ERK1/2-dependent pathways, contributing to the protective effects against TJ dysfunction. Colitis was induced in mice by intrarectal administration of 2,4,6,-trinitrobenzene sulfonic acid (TNBS). Hirsutenone administration improved the clinical parameters and tissue histological appearance, increased HO-1 expression, attenuated reduction of ZO-1 and occludin mRNA, and promoted BrdU incorporation in the colonic epithelium of TNBS-treated mice. Taken together, our results demonstrate that hirsutenone reverse disordered intestinal permeability by activating EGFR/Akt and ERK1/2 pathways, which are involved in the regulation of HO-1 expression. These findings highlight the potential of hirsutenone for clinical applications in the treatment of IBD.

  4. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits

    PubMed Central

    WANG, YAN; LI, YIGANG; SONG, LEI; LI, YANYAN; JIANG, SHAN; ZHANG, SONG

    2016-01-01

    Amniotic fluid-derived mesenchymal stem cells (AFMSCs) are an attractive cell source for applications in regenerative medicine, due to characteristics such as proliferative capacity and multipotency. In addition, Akt, a serine-threonine kinase, maintains stem cells by promoting viability and proliferation. Whether the transplantation of Akt-overexpressing AFMSCs protects the heart against ischemia-reperfusion (I/R) injury has yet to be elucidated. Accordingly, the Akt gene was overexpressed in AFMSCs using lentiviral transduction, and Akt-AFMSCs were transplanted into the ischemic myocardium of rabbits prior to reperfusion. Any protective effects resulting from this procedure were subsequently sought after three weeks later. A histological examination revealed that there was a decrease in intramyocardial inflammation and ultrastructural damage, and an increase in capillary density and in the levels of GATA binding protein 4, connexin 43 and cardiac troponin T in the Akt-AFMSC group compared with the control group. A significant decrease in cardiomyocyte apoptosis, accompanying an increase in phosphorylated Akt and B-cell lymphoma 2 (Bcl-2) and a decrease in caspase-3, was also observed. Furthermore, the left ventricular function was markedly augmented in the Akt-AFMSC group compared with the control group. These observations suggested that the protective effect of AFMSCs may be due to the delivery of secreted cytokines, promotion of neoangiogenesis, prevention of cardiomyocyte apoptosis, transdifferentiation into cardiomyocytes and promotion of the viability of AFMSCs, which are assisted by Akt gene modification. Taken together, the results of the present study have indicated that transplantation of Akt-AFMSCs is able to alleviate myocardial I/R injury and improve cardiac function. PMID:27151366

  5. Transcriptional and post-transcriptional control of DNA methyltransferase 3B is regulated by phosphatidylinositol 3 kinase/Akt pathway in human hepatocellular carcinoma cell lines.

    PubMed

    Mei, Chuanzhong; Sun, Lidong; Liu, Yonglei; Yang, Yong; Cai, Xiumei; Liu, Mingzhu; Yao, Wantong; Wang, Can; Li, Xin; Wang, Liying; Li, Zengxia; Shi, Yinghong; Qiu, Shuangjian; Fan, Jia; Zha, Xiliang

    2010-09-01

    DNA methyltransferases (DNMTs) are essential for maintenance of aberrant methylation in cancer cells and play important roles in the development of cancers. Unregulated activation of PI3K/Akt pathway is a prominent feature of many human cancers including human hepatocellular carcinoma (HCC). In present study, we found that DNMT3B mRNA and protein levels were decreased in a dose- and time-dependent manner in HCC cell lines with LY294002 treatment. However, we detected that LY294002 treatment did not induce increase of the degradation of DNMT3B protein using protein decay assay. Moreover we found that Akt induced alteration of the expression of DNMT3B in cells transfected with myristylated variants of Akt2 or cells transfected with small interfering RNA respectively. Based on DNMT3B promoter dual-luciferase reporter assay, we found PI3K pathway regulates DNMT3B expression at transcriptional level. And DNMT3B mRNA decay analysis suggested that down-regulation of DNMT3B by LY294002 is also post-transcriptional control. Furthermore, we demonstrated that LY294002 down-regulated HuR expression in a time-dependent manner in BEL-7404. In summary, we have, for the first time, demonstrate that PI3K/Akt pathway regulates the expression of DNMT3B at transcriptional and post-transcriptional levels, which is particularly important to understand the effects of PI3K/Akt and DNMT3B on hepatocarcinogenesis.

  6. Direct Regulation of Osteocytic Connexin 43 Hemichannels through AKT Kinase Activated by Mechanical Stimulation*

    PubMed Central

    Batra, Nidhi; Riquelme, Manuel A.; Burra, Sirisha; Kar, Rekha; Gu, Sumin; Jiang, Jean X.

    2014-01-01

    Connexin (Cx) 43 hemichannels in osteocytes are thought to play a critical role in releasing bone modulators in response to mechanical loading, a process important for bone formation and remodeling. However, the underlying mechanism that regulates the opening of mechanosensitive hemichannels is largely unknown. We have recently shown that Cx43 and integrin α5 interact directly with each other, and activation of PI3K appears to be required for Cx43 hemichannel opening by mechanical stimulation. Here, we show that mechanical loading through fluid flow shear stress (FFSS) increased the level of active AKT, a downstream effector of PI3K, which is correlated with the opening of hemichannels. Both Cx43 and integrin α5 are directly phosphorylated by AKT. Inhibition of AKT activation significantly reduced FFSS-induced opening of hemichannels and disrupted the interaction between Cx43 and integrin α5. Moreover, AKT phosphorylation on Cx43 and integrin α5 enhanced their interaction. In contrast to the C terminus of wild-type Cx43, overexpression of the C-terminal mutant containing S373A, a consensus site previously shown to be phosphorylated by AKT, failed to bind with α5 and hence could not inhibit hemichannel opening. Together, our results suggest that AKT activated by FFSS directly phosphorylates Cx43 and integrin α5, and Ser-373 of Cx43 plays a predominant role in mediating the interaction between these two proteins and Cx43 hemichannel opening, a crucial step to mediate the anabolic function of mechanical loading in the bone. PMID:24563481

  7. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway

    SciTech Connect

    Cheng, Chi-Chih; Hsueh, Chi-Mei; Chen, Chiu-Yuan; Chen, Tzu-Hsiu; Hsu, Shih-Lan

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-κB protein expression and NF-κB-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-κB pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-induced PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.

  8. Phosphorylation of GSK3α/β correlates with activation of AKT and is prognostic for poor overall survival in acute myeloid leukemia patients

    PubMed Central

    Ruvolo, Peter P.; Qiu, YiHua; Coombes, Kevin R.; Zhang, Nianxiang; Neeley, E. Shannon; Ruvolo, Vivian R.; Hail, Numsen; Borthakur, Gautam; Konopleva, Marina; Andreeff, Michael; Kornblau, Steven M.

    2015-01-01

    Background Acute myeloid leukemia (AML) patients with highly active AKT tend to do poorly. Cell cycle arrest and apoptosis are tightly regulated by AKT via phosphorylation of GSK3α and β isoforms which inactivates these kinases. In the current study we examine the prognostic role of AKT mediated GSK3 phosphorylation in AML. Methods We analyzed GSK3α/β phosphorylation by reverse phase protein analysis (RPPA) in a cohort of 511 acute myeloid leukemia (AML) patients. Levels of phosphorylated GSK3 were correlated with patient characteristics including survival and with expression of other proteins important in AML cell survival. Results High levels of p-GSK3α/β correlated with adverse overall survival and a lower incidence of complete remission duration in patients with intermediate cytogenetics, but not in those with unfavorable cytogenetics. Intermediate cytogenetic patients with FLT3 mutation also fared better respectively when p-GSK3α/β levels were lower. Phosphorylated GSK3α/β expression was compared and contrasted with that of 229 related cell cycle arrest and/or apoptosis proteins. Consistent with p-GSK3α/β as an indicator of AKT activation, RPPA revealed that p-GSK3α/β positively correlated with phosphorylation of AKT, BAD, and P70S6K, and negatively correlated with β-catenin and FOXO3A. PKCδ also positively correlated with p-GSK3α/β expression, suggesting crosstalk between the AKT and PKC signaling pathways in AML cells. Conclusions These findings suggest that AKT-mediated phosphorylation of GSK3α/β may be beneficial to AML cell survival, and hence detrimental to the overall survival of AML patients. Intrinsically, p-GSK3α/β may serve as an important adverse prognostic factor for a subset of AML patients. PMID:26674329

  9. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response

    PubMed Central

    Chan, Tung O.; Zhang, Jin; Tiegs, Brian C.; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M.; Armen, Roger S.; Rodeck, Ulrich; Penn, Raymond B.

    2015-01-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr308 in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr308 dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser473) increased phosphatase resistance of the phosphorylated activation loop (pThr308) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr308 phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. PMID:26201515

  10. Simvastatin Attenuation of Cerebral Vasospasm After Subarachnoid Hemorrhage in Rats Via Increased Phosphorylation of Akt and Endothelial Nitric Oxide Synthase

    PubMed Central

    Sugawara, Takashi; Ayer, Robert; Jadhav, Vikram; Chen, Wanqiu; Tsubokawa, Tamiji; Zhang, John H.

    2009-01-01

    The mechanisms involved in simvastatin-mediated attenuation of cerebral vasospasm after subarachnoid hemorrhage (SAH) are unclear. We investigated the role of the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway and endothelial nitric oxide synthase (eNOS) in the cerebral vasculature in statin-mediated attenuation of cerebral vasospasm using wortmannin, an irreversible pharmacological PI3K inhibitor, and a rat SAH endovascular perforation model. Simvastatin was administered intraperitoneally in two dosages (1 mg/kg and 20 mg/kg) at 0.5, 24, and 48 hr after SAH and histological parameters of ipsilateral intracranial carotid artery (ICA) were assessed at 24 and 72 hr. SAH significantly decreased ICA diameter and perimeter while increasing wall thickness at both 24 and 72 hr. High-dosage simvastatin prevented the reduction of ICA diameter and perimeter following SAH, whereas both high and low dosages reduced wall thickness significantly at 24 and 72 hr. The effects of simvastatin were significantly reversed by wortmannin. High-dosage simvastatin increased pAkt and peNOS (phosphorylated forms) levels without increasing Akt and eNOS expression compared with the SAH group and also improved neurological deficits at 24 and 72 hr. Simvastatin did not affect protein levels by itself compared with untreated sham group. The present study elucidates the critical role of the PI3K activation leading to phosphorylation of Akt and eNOS in simvastatin-mediated attenuation of cerebral vasospasm after SAH. PMID:18683242

  11. Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats.

    PubMed

    Rathinam, Ayyasamy; Pari, Leelavinothan

    2016-08-25

    Insulin signaling pathway is an important role in glucose utilization in tissues. Our Previous study has established that myrtenal has antihyperglycemic effect against diabetic rats. The aim of this study was to explore the molecular mechanism of myrtenal in Streptozotocin-induced diabetic rats. Experimental diabetes was induced by single intraperitoneal injection of Streptozotocin (STZ) (40 mg/kg bw) in Wistar albino rats. Diabetic rats were administered myrtenal (80 mg/kg bw) for a period of 28 days. Diabetic rats showed an increased the levels of plasma glucose, decreased the levels of plasma insulin, down-regulation of insulin receptor substrate 2 (IRS2), Akt and glucose transporter 2 (GLUT2) in liver and insulin receptor substrate 2 (IRS2), Akt and glucose transporter 4 (GLUT4) protein expression in skeletal muscle. However, myrtenal treated diabetic rats revealed decreased the levels of plasma glucose, improved the plasma insulin levels, up-regulation of IRS2, Akt and GLUT2 in liver and IRS2, Akt and GLUT4 protein expression in skeletal muscle. The up-regulation of glucose transporters enhances the glucose uptake in liver and skeletal muscle. The histopathology and immunohistochemical analysis of the pancreas also corroborates with the above findings. Our findings suggest that myrtenal could be a potent phytochemical in the management of diabetes.

  12. Activation of PI3K/Akt/mTOR signaling in the tumor stroma drives endocrine therapy-dependent breast tumor regression

    PubMed Central

    Polo, María Laura; Riggio, Marina; May, María; Rodríguez, María Jimena; Perrone, María Cecilia; Stallings-Mann, Melody; Kaen, Diego; Frost, Marlene; Goetz, Matthew; Boughey, Judy; Lanari, Claudia; Radisky, Derek; Novaro, Virginia

    2015-01-01

    Improved efficacy of neoadjuvant endocrine-targeting therapies in luminal breast carcinomas could be achieved with optimal use of pathway targeting agents. In a mouse model of ductal breast carcinoma we identify a tumor regressive stromal reaction that is induced by neoadjuvant endocrine therapy. This reparative reaction is characterized by tumor neovascularization accompanied by infiltration of immune cells and carcinoma-associated fibroblasts that stain for phosphorylated ribosomal protein S6 (pS6), downstream the PI3K/Akt/mTOR pathway. While tumor variants with higher PI3K/Akt/mTOR activity respond well to a combination of endocrine and PI3K/Akt/mTOR inhibitors, tumor variants with lower PI3K/Akt/mTOR activity respond more poorly to the combination therapy than to the endocrine therapy alone, associated with inhibition of stromal pS6 and the reparative reaction. In human breast cancer xenografts we confirm that such differential sensitivity to therapy is primarily determined by the level of PI3K/Akt/mTOR in tumor cells. We further show that the clinical response of breast cancer patients undergoing neoadjuvant endocrine therapy is associated with the reparative stromal reaction. We conclude that tumor level and localization of pS6 are associated with therapeutic response in breast cancer and represent biomarkers to distinguish which tumors will benefit from the incorporation of PI3K/Akt/mTOR inhibitors with neoadjuvant endocrine therapy. PMID:26098779

  13. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages

    PubMed Central

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A.; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05) gradually with increasing age. Bama mini-pigs had generally higher (P<0.05) muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but

  14. Gastrin induces sodium-hydrogen exchanger 3 phosphorylation and mTOR activation via a phosphoinositide 3-kinase-/protein kinase C-dependent but AKT-independent pathway in renal proximal tubule cells derived from a normotensive male human.

    PubMed

    Liu, Tianbing; Jose, Pedro A

    2013-02-01

    Gastrin is natriuretic, but its renal molecular targets and signal transduction pathways are not fully known. In this study, we confirmed the existence of CCKBR (a gastrin receptor) in male human renal proximal tubule cells and discovered that gastrin induced S6 phosphorylation, a downstream component of the phosphatidylinositol 3 kinase (PI3 kinase)-mammalian target of rapamycin pathway. Gastrin also increased the phosphorylation of sodium-hydrogen exchanger 3 (NHE3) at serine 552, caused its internalization, and decreased its expression at the cell surface and NHE activity. The phosphorylation of NHE3 and S6 was dependent on PI3 kinases because it was blocked by 2 different PI3-kinase inhibitors, wortmannin and LY294,002. The phosphorylation of NHE3 and S6 was not affected by the protein kinase A inhibitor H-89 but was blocked by a pan-PKC (chelerythrine) and a conventional PKC (cPKC) inhibitor (Gö6976) (10 μM) and an intracellular calcium chelator, 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)-ester, suggesting the importance of cPKC and intracellular calcium in the gastrin signaling pathway. The cPKC involved was probably PKCα because it was phosphorylated by gastrin. The gastrin-mediated phosphorylation of NHE3, S6, and PKCα was via phospholipase C because it was blocked by a phospholipase C inhibitor, U73122 (10 μM). The phosphorylation (activation) of AKT, which is usually upstream of mammalian target of rapamycin in the classic PI3 kinase-AKT-p70S6K signaling pathway, was not affected, suggesting that the gastrin-induced phosphorylation of NHE3 and S6 is dependent on both PI3 kinase and PKCα but not AKT.

  15. Apigenin suppresses GLUT-1 and p-AKT expression to enhance the chemosensitivity to cisplatin of laryngeal carcinoma Hep-2 cells: an in vitro study.

    PubMed

    Xu, Ying-Ying; Wu, Ting-Ting; Zhou, Shui-Hong; Bao, Yang-Yang; Wang, Qin-Ying; Fan, Jun; Huang, Ya-Ping

    2014-01-01

    Glucose transporter-1 (GLUT-1) and PI3K/Akt are known to be closely involved in resistance to chemotherapy. Co-targeted therapy reducing GLUT-1 expression and PI3K/Akt pathway activity may overcome the chemoresistance of human cancers. Apigenin may inhibit the expression of GLUT-1 and the PI3K/Akt pathway. We hypothesized that over-expression of GLUT-1 and p-Akt was associated with the resistance to cisplatin of laryngeal carcinoma Hep-2 cells. We explored whether apigenin inhibited GLUT-1 and p-Akt, resulting in sensitization of laryngeal carcinoma Hep-2 cells to cisplatin. Real-time RT-PCR and Western blotting confirmed the presence of GLUT-1 mRNA, and GLUT-1 and p-Akt proteins in Hep-2 cells. We found that resistance or insensitivity of Hep-2 cells to cisplatin might be associated with such expression. Apigenin markedly enhanced the cisplatin-induced suppression of Hep-2 cell growth. This effect was concentration- and time-dependent. Thus apigenin may significantly reduce the levels of GLUT-1 mRNA, and GLUT-1 and p-Akt proteins, in cisplatin-treated Hep-2 cells, in a concentration- and time-dependent manner. To conclude, overexpression of GLUT-1 mRNA may be associated with the resistance to cisplatin of laryngeal carcinoma Hep-2 cells. Apigenin may enhance the sensitivity to cisplatin of laryngeal carcinoma cells via inhibition of GLUT-1 and p-Akt expression.

  16. Akt Regulates TPP1 Homodimerization and Telomere Protection

    PubMed Central

    Han, Xin; Liu, Dan; Zhang, Yi; Li, Yujing; Lu, Weisi; Chen, Junjie; Songyang, Zhou

    2014-01-01

    Summary Telomeres are specialized structures at the ends of eukaryotic chromosomes that are important for maintaining genome stability and integrity. Telomere dysfunction has been linked to aging and cancer development. In mammalian cells, extensive studies have been carried out to illustrate how core telomeric proteins assemble on telomeres to recruit the telomerase and additional factors for telomere maintenance and protection. In comparison, how changes in growth signaling pathways impact telomeres and telomere-binding proteins remains largely unexplored. The phosphatidylinositol 3-kinase (PI3-K)/Akt (also known as PKB) pathway, one of the best characterized growth signaling cascades, regulates a variety of cellular function including cell proliferation, survival, metabolism, and DNA repair, and dysregulation of PI3-K/Akt signaling has been linked to aging and diseases such as cancer and diabetes. In this study, we provide evidence that the Akt signaling pathway plays an important role in telomere protection. Akt inhibition either by chemical inhibitors or small interfering RNAs induced telomere dysfunction. Furthermore, we found that TPP1 could homodimerize through its OB fold, a process that was dependent on the Akt kinase. Telomere damage and reduced TPP1 dimerization as a result of Akt inhibition was also accompanied by diminished recruitment of TPP1 and POT1 to the telomeres. Our findings highlight a previously unknown link between Akt signaling and telomere protection. PMID:23862686

  17. The myocardial response to adrenomedullin involves increased cAMP generation as well as augmented Akt phosphorylation.

    PubMed

    Pan, Chun Shui; Jin, Shao Ju; Cao, Chang Qi; Zhao, Jing; Zhang, Jing; Wang, Xian; Tang, Chao Shu; Qi, Yong Fen

    2007-04-01

    In this work we aimed to observe (1) the changes in adrenomedullin (AM) and its receptor system - calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) - in myocardial ischemic injury and (2) the response of injuried myocardia to AM and the phosphorylation of Akt to illustrate the protective mechanism of AM in ischemic myocardia. Male SD rats were subcutaneously injected with isoproterenol (ISO) to induce myocardial ischemia. The mRNA levels of AM, CRLR, RAMP1, RAMP2 and RAMP3 were determined by RT-PCR. Protein levels of Akt, phosphor-Akt, CRLR, RAMP1, RAMP2 and RAMP3 were assayed by Western blot. Results showed that, compared with that of the controls, ISO-treated rats showed lower cardiac function and myocardial injury. The mRNA relative amount of AM, CRLR, RAMP1, RAMP2 and RAMP3 in the myocardia of ISO-treated rats was increased. The elevated mRNA levels of CRLR, RAMP1, RAMP2 and RAMP3 were positively correlated with AM content in injured myocardia. The protein levels of CRLR, RAMP1, RAMP2 and RAMP3 in injured myocardia were increased compared with that of control myocardia. AM-stimulated cAMP generation in myocardia was elevated in the ISO group, and was antagonized by AM(22-52) and CGRP(8-37). Western blot analyses revealed that AM significantly enhanced Akt phosphorylation in injured myocardia, which was blocked by pretreatment with AM(22-52) or CGRP(8-37). Ischemia-injured myocardia hyper-expressed AM and its receptors - CRLR, RAMP1, RAMP2 and RAMP3 - and the response of ischemic myocardia to AM was potentiated, and the level of Akt phosphorylation was also increased, which suggests that changes in cardiac AM/AM receptor might play an important role in the pathogenesis of myocardial ischemic injury.

  18. Electrostimulation during hindlimb unloading modulates PI3K-AKT downstream targets without preventing soleus atrophy and restores slow phenotype through ERK.

    PubMed

    Dupont, Erwan; Cieniewski-Bernard, Caroline; Bastide, Bruno; Stevens, Laurence

    2011-02-01

    Our aim was to analyze the role of phosphatidylinositol 3-kinase (PI3K)-AKT and MAPK signaling pathways in the regulation of muscle mass and slow-to-fast phenotype transition during hindlimb unloading (HU). For that purpose, we studied, in rat slow soleus and fast extensor digitorum longus muscles, the time course of anabolic PI3K-AKT-mammalian target of rapamycin, catabolic PI3K-AKT-forkhead box O (FOXO), and MAPK signaling pathway activation after 7, 14, and 28 days of HU. Moreover, we performed chronic low-frequency soleus electrostimulation during HU to maintain exclusively contractile phenotype and so to determine more precisely the role of these signaling pathways in the modulation of muscle mass. HU induced a downregulation of the anabolic AKT, mammalian target of rapamycin, 70-kDa ribosomal protein S6 kinase, 4E-binding protein 1, and glycogen synthase kinase-3β targets, and an upregulation of the catabolic FOXO1 and muscle-specific RING finger protein-1 targets correlated with soleus muscle atrophy. Unexpectedly, soleus electrostimulation maintained 70-kDa ribosomal protein S6 kinase, 4E-binding protein 1, FOXO1, and muscle-specific RING finger protein-1 to control levels, but failed to reduce muscle atrophy. HU decreased ERK phosphorylation, while electrostimulation enabled the maintenance of ERK phosphorylation similar to control level. Moreover, slow-to-fast myosin heavy chain phenotype transition and upregulated glycolytic metabolism were prevented by soleus electrostimulation during HU. Taken together, our data demonstrated that the processes responsible for gradual disuse muscle plasticity in HU conditions involved both PI3-AKT and MAPK pathways. Moreover, electrostimulation during HU restored PI3K-AKT activation without counteracting soleus atrophy, suggesting the involvement of other signaling pathways. Finally, electrostimulation maintained initial contractile and metabolism properties in parallel to ERK activation, reinforcing the idea of a

  19. Dietary protein level and performance of growing Baladi kids

    PubMed Central

    Abdelrahman, M. M.; Aljumaah, R. S.

    2014-01-01

    A study was conducted to evaluate the effect of feeding different levels of protein to black Baladi breed kids. Weanling Baladi kids (n=18; 75 to 90 days old) were selected and individually housed at our experimental farm. Kids were divided randomly to one of the three treatments for 12 weeks. The three dietary treatments were: T1: control ration, formulated according to NRC to cover the protein (level 1) and other nutrients requirements. T2: ration formulated to cover only 75% of protein (level 2) recommended by NRC. T3: control diet + 2.4 g undegradable methionine (Smartamine®)/day/kid (level 3). Feed intake, initial and monthly body weights were recorded. Blood samples were collected monthly and analyzed for metabolites and Co, Zn and Cu levels. Decreasing the dietary level of protein (T2) negatively affected (P<0.05) the total live weight gain, average daily gain and feed conversion ratio when compared with the control and T3 groups. Moreover, treatment, time and time × treatment caused a significant change on Co concentration in blood serum with higher value at the end of the experiment. Treatments had a significant effect (P<0.05) on blood serum cholesterol and protein levels. Undegradable methionine supplementation (T3) significantly increased longissimus dorsi weight, fat thickness and omental fat%. In conclusion, feeding Baladi kids below the NRC requirements of protein negatively affect the growth performance and feed efficiency. The recommended protein level by NRC for growing kids cover the requirements of growing black Baladi kids for maximum growth and productivity. PMID:27175130

  20. Dietary protein level and performance of growing Baladi kids.

    PubMed

    Abdelrahman, M M; Aljumaah, R S

    2014-01-01

    A study was conducted to evaluate the effect of feeding different levels of protein to black Baladi breed kids. Weanling Baladi kids (n=18; 75 to 90 days old) were selected and individually housed at our experimental farm. Kids were divided randomly to one of the three treatments for 12 weeks. The three dietary treatments were: T1: control ration, formulated according to NRC to cover the protein (level 1) and other nutrients requirements. T2: ration formulated to cover only 75% of protein (level 2) recommended by NRC. T3: control diet + 2.4 g undegradable methionine (Smartamine®)/day/kid (level 3). Feed intake, initial and monthly body weights were recorded. Blood samples were collected monthly and analyzed for metabolites and Co, Zn and Cu levels. Decreasing the dietary level of protein (T2) negatively affected (P<0.05) the total live weight gain, average daily gain and feed conversion ratio when compared with the control and T3 groups. Moreover, treatment, time and time × treatment caused a significant change on Co concentration in blood serum with higher value at the end of the experiment. Treatments had a significant effect (P<0.05) on blood serum cholesterol and protein levels. Undegradable methionine supplementation (T3) significantly increased longissimus dorsi weight, fat thickness and omental fat%. In conclusion, feeding Baladi kids below the NRC requirements of protein negatively affect the growth performance and feed efficiency. The recommended protein level by NRC for growing kids cover the requirements of growing black Baladi kids for maximum growth and productivity.

  1. Human Papillomaviruses, p16INK4a and Akt expression in basal cell carcinoma

    PubMed Central

    2011-01-01

    Background The pathogenic role of beta-HPVs in non melanoma skin cancer (NMSC), is not still completely understood, and literature data indicate that they might be at least cofactors in the development of certain cutaneous squamous cell carcinomas. However, only few reports contain data on basal cell carcinoma (BCC). The HPVs interact with many cellular proteins altering their function or the expression levels, like the p16INK4a and Akt. Our study aimed to determine the presence of different beta -HPV types and the expression of p16INK4a and Akt in BCC, the commonest NMSC, in the normal appearing perilesional skin and in forehead swab of 37 immunocompetent patients. Methods The expression of p16INK4a and Akt, by immunohistochemistry, and the HPV DNA, by nested PCR, were investigated in each sample. Results No correspondence of HPV types between BCC and swab samples was found, whereas a correspondence between perilesional skin and BCC was ascertained in the 16,7% of the patients. In BCC, 16 different types of beta HPV were found and the most frequent types were HPV107 (15,4%), HPV100 (11,5%) and HPV15 (11,5%) all belonging to the beta HPV species 2. Immunohistochemistry detected significant p16INK4a expression in almost all tumor samples (94,3%) with the highest percentages (> 30%) of positive cells detected in 8 cases. A statistically significant (p = 0,012) increase of beta HPV presence was detected in p16INK4a strongly positive samples, in particular of species 2. pAkt expression was detected in all tumor samples with only 2 cases showing rare positive cells, whereas Akt2 expression was found in 14 out of 35 BCC (40%); in particular in HPV positive samples over-expressing p16INK4a. Conclusions Our data show that p16INK4a and pAkt are over-expressed in BCC and that the high expression of p16INK4a and of Akt2 isoform is often associated with the presence of beta-HPV species 2 (i.e. HPV 15). The association of these viruses with the up-regulation of p16INK4a and Akt

  2. Epicatechin induces NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells.

    PubMed

    Granado-Serrano, Ana Belén; Martín, María Angeles; Haegeman, Guy; Goya, Luis; Bravo, Laura; Ramos, Sonia

    2010-01-01

    The dietary flavonoid epicatechin has been reported to exhibit a wide range of biological activities. The objective of the present study was to investigate the time-dependent regulation by epicatechin on the activity of the main transcription factors (NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor (Nrf2)) related to antioxidant defence and survival and proliferation pathways in HepG2 cells. Treatment of cells with 10 microm-epicatechin induced the NF-kappaB pathway in a time-dependent manner characterised by increased levels of IkappaB kinase (IKK) and phosphorylated inhibitor of kappaB subunit-alpha (p-IkappaBalpha) and proteolytic degradation of IkappaB, which was consistent with an up-regulation of the NF-kappaB-binding activity. Time-dependent activation of the AP-1 pathway, in concert with enhanced c-Jun nuclear levels and induction of Nrf2 translocation and phosphorylation were also demonstrated. Additionally, epicatechin-induced NF-kappaB and Nrf2 were connected to reactive oxygen species intracellular levels and to the activation of cell survival and proliferation pathways, being phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) associated to Nrf2 modulation and ERK to NF-kappaB induction. These data suggest that the epicatechin-induced survival effect occurs by the induction of redox-sensitive transcription factors through a tight regulation of survival and proliferation pathways.

  3. OSU-T315: a novel targeted therapeutic that antagonizes AKT membrane localization and activation of chronic lymphocytic leukemia cells

    PubMed Central

    Liu, Ta-Ming; Ling, Yonghua; Woyach, Jennifer A.; Beckwith, Kyle; Yeh, Yuh-Ying; Hertlein, Erin; Zhang, Xiaoli; Lehman, Amy; Awan, Farrukh; Jones, Jeffrey A.; Andritsos, Leslie A.; Maddocks, Kami; MacMurray, Jessica; Salunke, Santosh B.; Chen, Ching-Shih; Phelps, Mitch A.; Byrd, John C.

    2015-01-01

    Aberrant regulation of endogenous survival pathways plays a major role in progression of chronic lymphocytic leukemia (CLL). Signaling via conjugation of surface receptors within the tumor environmental niche activates survival and proliferation pathways in CLL. Of these, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway appears to be pivotal to support CLL pathogenesis, and pharmacologic inhibitors targeting this axis have shown clinical activity. Here we investigate OSU-T315, a compound that disrupts the PI3K/AKT pathway in a novel manner. Dose-dependent selective cytotoxicity by OSU-T315 is noted in both CLL-derived cell lines and primary CLL cells relative to normal lymphocytes. In contrast to the highly successful Bruton's tyrosine kinase and PI3K inhibitors that inhibit B-cell receptor (BCR) signaling pathway at proximal kinases, OSU-T315 directly abrogates AKT activation by preventing translocation of AKT into lipid rafts without altering the activation of receptor-associated kinases. Through this mechanism, the agent triggers caspase-dependent apoptosis in CLL by suppressing BCR, CD49d, CD40, and Toll-like receptor 9-mediated AKT activation in an integrin-linked kinase-independent manner. In vivo, OSU-T315 attains pharmacologically active drug levels and significantly prolongs survival in the TCL1 mouse model. Together, our findings indicate a novel mechanism of action of OSU-T315 with potential therapeutic application in CLL. PMID:25293770

  4. OSU-T315: a novel targeted therapeutic that antagonizes AKT membrane localization and activation of chronic lymphocytic leukemia cells.

    PubMed

    Liu, Ta-Ming; Ling, Yonghua; Woyach, Jennifer A; Beckwith, Kyle; Yeh, Yuh-Ying; Hertlein, Erin; Zhang, Xiaoli; Lehman, Amy; Awan, Farrukh; Jones, Jeffrey A; Andritsos, Leslie A; Maddocks, Kami; MacMurray, Jessica; Salunke, Santosh B; Chen, Ching-Shih; Phelps, Mitch A; Byrd, John C; Johnson, Amy J

    2015-01-08

    Aberrant regulation of endogenous survival pathways plays a major role in progression of chronic lymphocytic leukemia (CLL). Signaling via conjugation of surface receptors within the tumor environmental niche activates survival and proliferation pathways in CLL. Of these, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway appears to be pivotal to support CLL pathogenesis, and pharmacologic inhibitors targeting this axis have shown clinical activity. Here we investigate OSU-T315, a compound that disrupts the PI3K/AKT pathway in a novel manner. Dose-dependent selective cytotoxicity by OSU-T315 is noted in both CLL-derived cell lines and primary CLL cells relative to normal lymphocytes. In contrast to the highly successful Bruton's tyrosine kinase and PI3K inhibitors that inhibit B-cell receptor (BCR) signaling pathway at proximal kinases, OSU-T315 directly abrogates AKT activation by preventing translocation of AKT into lipid rafts without altering the activation of receptor-associated kinases. Through this mechanism, the agent triggers caspase-dependent apoptosis in CLL by suppressing BCR, CD49d, CD40, and Toll-like receptor 9-mediated AKT activation in an integrin-linked kinase-independent manner. In vivo, OSU-T315 attains pharmacologically active drug levels and significantly prolongs survival in the TCL1 mouse model. Together, our findings indicate a novel mechanism of action of OSU-T315 with potential therapeutic application in CLL.

  5. Inhibition of EGFR-AKT Axis Results in the Suppression of Ovarian Tumors In Vitro and in Preclinical Mouse Model

    PubMed Central

    Gupta, Parul; Srivastava, Sanjay K.

    2012-01-01

    Ovarian cancer is the leading cause of cancer related deaths in women. Genetic alterations including overexpression of EGFR play a crucial role in ovarian carcinogenesis. Here we evaluated the effect of phenethyl isothiocyanate (PEITC) in ovarian tumor cells in vitro and in vivo. Oral administration of 12 µmol PEITC resulted in drastically suppressing ovarian tumor growth in a preclinical mouse model. Our in vitro studies demonstrated that PEITC suppress the growth of SKOV-3, OVCAR-3 and TOV-21G human ovarian cancer cells by inducing apoptosis in a concentration-dependent manner. Growth inhibitory effects of PEITC were mediated by inhibition of EGFR and AKT, which are known to be overexpressed in ovarian tumors. PEITC treatment caused significant down regulation of constitutive protein levels as well as phosphorylation of EGFR at Tyr1068 in various ovarian cancer cells. In addition, PEITC treatment drastically reduced the phosphorylation of AKT which is downstream to EGFR and disrupted mTOR signaling. PEITC treatment also inhibited the kinase activity of AKT as observed by the down regulation of p-GSK in OVCAR-3 and TOV-21G cells. AKT overexpression or TGF treatment blocked PEITC induced apoptosis in ovarian cancer cells. These results suggest that PEITC targets EGFR/AKT pathway in our model. In conclusion, our study suggests that PEITC could be used alone or in combination with other therapeutic agents to treat ovarian cancer. PMID:22952709

  6. Regulation of Akt during torpor in the hibernating ground squirrel, Ictidomys tridecemlineatus.

    PubMed

    McMullen, David C; Hallenbeck, John M

    2010-08-01

    The 13-lined ground squirrel (Ictidomys tridecemlineatus) is capable of entering into extended periods of torpor during winter hibernation. The state of torpor represents a hypometabolic shift wherein the rate of oxygen consuming processes are strongly repressed in an effort to maintain cellular homeostasis as the availability of food energy becomes limited. We are interested in studying hibernation/torpor because of the robust state of tolerance to constrained oxygen delivery, oligemia, and hypothermia achieved by the tissues of hibernating mammals. The role of the serine/threonine kinase Akt (also known as PKB) has been examined in torpor in previous studies. However, this is the first study that examines the level of Akt phosphorylation in the liver during the two transition phases of the hibernation cycle: entrance into torpor, and the subsequent arousal from torpor. Our results indicate that Akt is activated in the squirrel liver by phosphorylation of two key residues (Thr(308) and Ser(473)) during entrance into torpor and arousal from torpor. Moreover, we observed increased phosphorylation of key substrates of Akt during the two transition stages of torpor. Finally, this study reports the novel finding that PRAS40, a component of the TORC1 multi-protein complex and a potentially important modulator of metabolism, is regulated during torpor.

  7. Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells.

    PubMed

    Chen, Bo; Tan, Yaoxi; Liang, Yan; Li, Yan; Chen, Lei; Wu, Shuangshuang; Xu, Wei; Wang, Yan; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Period2 (Per2) is a key mammalian circadian clock protein, and additionally has a tumor suppressive function. The present study aimed to investigate its role in drug resistance in A549/cisplatin (DDP) lung adenocarcinoma cells. Per2 knockdown and overexpression in A549/DDP cells were used to compare cell proliferation (by MTT assay), apoptosis (active-caspase 3 western blot) and clone forming assay. The activation of AKT/mechanistic target of rapamycin (mTOR) was investigated by a western blot assay. The Per2 expression level was decreased in A549/DDP cells compared with A549 cells. Per2 knockdown by short hairpin RNA protects A549/DDP cells from apoptosis, and promotes proliferation and migration. Per2 knockdown results in increased activation of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR signaling pathway. Overexpression of Per2 in A549/DDP cells may reduce the activity of the PI3K/AKT/mTOR signaling pathway, and promote apoptosis of A549 cells. The results of the present study suggest that Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells.

  8. Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells

    PubMed Central

    Chen, Bo; Tan, Yaoxi; Liang, Yan; Li, Yan; Chen, Lei; Wu, Shuangshuang; Xu, Wei; Wang, Yan; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Period2 (Per2) is a key mammalian circadian clock protein, and additionally has a tumor suppressive function. The present study aimed to investigate its role in drug resistance in A549/cisplatin (DDP) lung adenocarcinoma cells. Per2 knockdown and overexpression in A549/DDP cells were used to compare cell proliferation (by MTT assay), apoptosis (active-caspase 3 western blot) and clone forming assay. The activation of AKT/mechanistic target of rapamycin (mTOR) was investigated by a western blot assay. The Per2 expression level was decreased in A549/DDP cells compared with A549 cells. Per2 knockdown by short hairpin RNA protects A549/DDP cells from apoptosis, and promotes proliferation and migration. Per2 knockdown results in increased activation of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR signaling pathway. Overexpression of Per2 in A549/DDP cells may reduce the activity of the PI3K/AKT/mTOR signaling pathway, and promote apoptosis of A549 cells. The results of the present study suggest that Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells. PMID:28123577

  9. Quercetin Attenuates Cell Survival, Inflammation, and Angiogenesis via Modulation of AKT Signaling in Murine T-Cell Lymphoma.

    PubMed

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2017-04-01

    AKT signaling is important to maintaining normal physiology. Hyperactivation of AKT signaling is frequent in cancer, which maintains a high oxidative state in a tumor microenvironment that is needed for tumor adaptation. Therefore, antioxidants are proposed to exhibit anticancer properties by interfering with the tumor microenvironment. Quercetin is an ubiquitous bioactive antioxidant rich in vegetables and beverages. The present study aimed to analyze cancer preventive property of quercetin in ascite cells of Dalton's lymphoma-bearing mice. Protein level was determined by Western blotting. Nitric oxide (NO) level was estimated spectrophotometrically using Griess reagent. Results show downregulation in phosphorylation of AKT and PDK1 by quercetin, which was consistent with decreased phosphorylation of downstream survival factors such as BAD, GSK-3β, mTOR, and IkBα. Further, quercetin attenuated the levels of angiogenic factor VEGF-A and inflammatory enzymes COX-2 and iNOS as well as NO levels, whereas it increased the levels of phosphatase PTEN. Overall results suggest that quercetin modulates AKT signaling leading to attenuation of cell survival, inflammation, and angiogenesis in lymphoma-bearing mice.

  10. Inhibition of constitutively activated phosphoinositide 3-kinase/AKT pathway enhances antitumor activity of chemotherapeutic agents in breast cancer susceptibility gene 1-defective breast cancer cells.

    PubMed

    Yi, Yong Weon; Kang, Hyo Jin; Kim, Hee Jeong; Hwang, Jae Seok; Wang, Antai; Bae, Insoo

    2013-09-01

    Loss or decrease of wild type BRCA1 function, by either mutation or reduced expression, has a role in hereditary and sporadic human breast and ovarian cancers. We report here that the PI3K/AKT pathway is constitutively active in BRCA1-defective human breast cancer cells. Levels of phospho-AKT are sustained even after serum starvation in breast cancer cells carrying deleterious BRCA1 mutations. Knockdown of BRCA1 in MCF7 cells increases the amount of phospho-AKT and sensitizes cells to small molecule protein kinase inhibitors (PKIs) targeting the PI3K/AKT pathway. Restoration of wild type BRCA1 inhibits the activated PI3K/AKT pathway and de-sensitizes cells to PKIs targeting this pathway in BRCA1 mutant breast cancer cells, regardless of PTEN mutations. In addition, clinical PI3K/mTOR inhibitors, PI-103, and BEZ235, showed anti-proliferative effects on BRCA1 mutant breast cancer cell lines and synergism in combination with chemotherapeutic drugs, cisplatin, doxorubicin, topotecan, and gemcitabine. BEZ235 synergizes with the anti-proliferative effects of gemcitabine by enhancing caspase-3/7 activity. Our results suggest that the PI3K/AKT pathway can be an important signaling pathway for the survival of BRCA1-defective breast cancer cells and pharmacological inhibition of this pathway is a plausible treatment for a subset of breast cancers.

  11. Activation of GRs-Akt-nNOs-NR2B signaling pathway by second dose GR agonist contributes to exacerbated hyperalgesia in a rat model of radicular pain.

    PubMed

    Zhang, Jing; Zhang, Wei; Sun, Yu'e; Liu, Yue; Song, Lihua; Ma, Zhengliang; Gu, Xiaoping

    2014-06-01

    Central Akt, neuronal nitric oxide synthase (nNOS) and N-methyl-D-aspartate receptor subunit 2B (NR2B) play key roles in the development of neuropathic pain. Here we investigate the effects of glucocorticoid receptors (GRs) on the expression and activation of spinal Akt, nNOS and NR2B after chronic compression of dorsal root ganglia (CCD). Thermal hyperalgesia test and mechanical allodynia test were used to measure rats after intrathecal injection of GR antagonist mifepristone or GR agonist dexamethasone for 21 days postoperatively. Expression of spinal Akt, nNOS, NR2B and their phosphorylation state after CCD was examined by western blot. The effects of intrathecal treatment with dexamethasone or mifepristone on nociceptive behaviors and the corresponding expression of Akt, nNOS and NR2B in spinal cord were also investigated. Intrathecal injection of mifepristone or dexamethasone inhibited PWMT and PWTL in CCD rats. However, hyperalgesia was induced by intrathecal injection of dexamethasone on days 12 to 14 after surgery. Treatment of dexamethasone increased the expression and phosphorylation levels of spinal Akt, nNOS, GR and NR2B time dependently, whereas administration of mifepristone downregulated the expression of these proteins significantly. GRs activated spinal Akt-nNOS/NR2B pathway play important roles in the development of neuropathic pain in a time-dependent manner.

  12. 125I Seeds Radiation Induces Paraptosis-Like Cell Death via PI3K/AKT Signaling Pathway in HCT116 Cells

    PubMed Central

    Hu, Lelin; Wang, Hao; Zhao, Yong

    2016-01-01

    125I seeds brachytherapy implantation has been extensively performed in unresectable and rerecurrent rectal carcinoma. Many studies on the cancer-killing activity of 125I seeds radiation mainly focused on its ability to trigger apoptosis, which is the most well-known and dominant type of cell death induced by radiation. However our results showed some unique morphological features such as cell swelling, cytoplasmic vacuolation, and plasma membrane integrity, which is obviously different to apoptosis. In this study, clonogenic proliferation was carried out to assay survival fraction. Transmission electron microscopy was used to analyze ultrastructural and evaluate morphologic feature of HCT116 cells after exposure to 125I seeds radiation. Immunofluorescence analysis was used to detect the origin of cytoplasmic vacuoles. Flow cytometry analysis was employed to detect the size and granularity of HCT116 cells. Western blot was performed to measure the protein level of AIP1, caspase-3, AKT, p-Akt (Thr308), p-Akt (Ser473), and β-actin. We found that 125I seeds radiation activated PI3K/AKT signaling pathway and could trigger paraptosis-like cell death. Moreover, inhibitor of PI3K/AKT signaling pathway could inhibit paraptosis-like cell death induced by 125I seeds radiation. Our data suggest that 125I seeds radiation can induce paraptosis-like cell death via PI3K/AKT signaling pathway. PMID:28078301

  13. Soy protein isolate molecular level contributions to bulk adhesive properties

    NASA Astrophysics Data System (ADS)

    Shera, Jeanne Norton

    Increasing environmental awareness and the recognized health hazards of formaldehyde-based resins has prompted a strong demand for environmentally-responsible adhesives for wood composites. Soy protein-based adhesives have been shown to be commercially viable with 90-day shelf stability and composite physical properties comparable to those of commercial formaldehyde-based particleboards. The main research focus is to isolate and characterize the molecular level features in soy protein isolate responsible for providing mechanical properties, storage stability, and water resistance during adhesive formulation, processing, and wood composite fabrication. Commercial composite board will be reviewed to enhance our understanding of the individual components and processes required for particleboard production. The levels of protein structure will be defined and an overview of current bio-based technology will be presented. In the process, the logic for utilizing soy protein as a sole binder in the adhesive will be reinforced. Variables such as adhesive components, pH, divalent ions, blend aging, protein molecular weight, formulation solids content, and soy protein functionalization will relate the bulk properties of soy protein adhesives to the molecular configuration of the soybean protein. This work has demonstrated that when intermolecular beta-sheet interactions and protein long-range order is disrupted, viscosity and mechanical properties decrease. Storage stability can be maintained through the stabilization of intermolecular beta-sheet interactions. When molecular weight is reduced through enzymatic digestion, long-range order is disrupted and viscosity and mechanical properties decrease accordingly. Processibility and physical properties must be balanced to increase solids while maintaining low viscosity, desirable mechanical properties, and adequate storage stability. The structure of the soybean protein must be related to the particleboard bulk mechanical

  14. Novel B55α-PP2A mutations in AML promote AKT T308 phosphorylation and sensitivity to AKT inhibitor-induced growth arrest

    PubMed Central

    Shouse, Geoffrey; de Necochea-Campion, Rosalia; Mirshahidi, Saied; Liu, Xuan; Chen, Chien-Shing

    2016-01-01

    Activation of the Protein Kinase B (PKB), or AKT pathway has been shown to correlate with acute myeloid leukemia (AML) prognosis. B55α-Protein Phosphatase 2A (PP2A) has been shown to dephosphorylate AKT at Thr-308 rendering it inactive. In fact, low expression of the PP2A regulatory subunit B55α was associated with activated phospho-AKT and correlated with inferior outcomes in AML. Despite this fact, no studies have specifically demonstrated a mechanism whereby B55α expression is regulated in AML. In this study, we demonstrate novel loss of function mutations in the PPP2R2A gene identified in leukemic blasts from three AML patients. These mutations eliminate B55α protein expression thereby allowing constitutive AKT activation. In addition, leukemic blasts with PPP2R2A gene mutation were more sensitive to treatment with the AKT inhibitor MK2206, but less responsive to the PP2A activator FTY720. Using leukemia cell lines, we further demonstrate that B55α expression correlates with AKT Thr-308 phosphorylation and predicts responsiveness to AKT inhibition and PP2A activation. Together our data illustrate the importance of the B55α-PP2A-AKT pathway in leukemogenesis. Screening for disruptions in this pathway at initial AML diagnosis may predict response to targeted therapies against AKT and PP2A. PMID:27531894

  15. Galactose-1 phosphate uridylyltransferase (GalT) gene: a novel positive regulator of the PI3K/Akt signaling pathway in mouse fibroblasts

    PubMed Central

    Balakrishnan, Bijina; Chen, Wyman; Tang, Manshu; Huang, Xiaoping; Cakici, Didem Demirbas; Siddiqi, Anwer; Berry, Gerard; Lai, Kent

    2016-01-01

    The vital importance of the Leloir pathway of galactose metabolism has been repeatedly demonstrated by various uni-/multicellular model organisms, as well human patients who have inherited deficiencies of the key GAL enzymes. Yet, other than the obvious links to the glycolytic pathway and glycan biosynthetic pathways, little is known about how this metabolic pathway interacts with the rest of the metabolic and signaling networks. In this study, we compared the growth and the expression levels of the key components of the PI3K/Akt growth signaling pathway in primary fibroblasts derived from normal and galactose-1 phosphate uridylyltransferase (GalT)-deficient mice, the latter exhibited a subfertility phenotype in adult females and growth restriction in both sexes. The growth potential and the protein levels of the pAkt(Thr308), pAkt(Ser473), pan-Akt, pPdk1, and Hsp90 proteins were significantly reduced by 62.5%, 60.3%, 66%, 66%, and 50%, respectively in the GalT-deficient cells. Reduced expression of phosphorylated Akt proteins in the mutant cells led to diminished phosphorylation of Gsk-3β (−74%). Protein expression of BiP and pPten were 276% and 176% higher respectively in cells with GalT-deficiency. Of the 24 genes interrogated using QIAGEN RT2 Profiler PCR Custom Arrays, the mRNA abundance of Akt1, Pdpk1, Hsp90aa1 and Pi3kca genes were significantly reduced at least 2.03-, 1.37-, 2.45-, and 1.78-fold respectively in mutant fibroblasts. Both serum-fasted normal and GalT-deficient cells responded to Igf-1-induced activation of Akt phosphorylation at +15 minutes, but the mutant cells have lower phosphorylation levels. The steady-state protein abundance of Igf-1 receptor was also significantly reduced in mutant cells. Our results thus demonstrated that GalT deficiency can effect down-regulation of the PI3K/Akt growth signaling pathway in mouse fibroblasts through distinct mechanisms targeting both gene and protein expression levels. PMID:26773505

  16. Galactose-1 phosphate uridylyltransferase (GalT) gene: A novel positive regulator of the PI3K/Akt signaling pathway in mouse fibroblasts.

    PubMed

    Balakrishnan, Bijina; Chen, Wyman; Tang, Manshu; Huang, Xiaoping; Cakici, Didem Demirbas; Siddiqi, Anwer; Berry, Gerard; Lai, Kent

    2016-01-29

    The vital importance of the Leloir pathway of galactose metabolism has been repeatedly demonstrated by various uni-/multicellular model organisms, as well human patients who have inherited deficiencies of the key GAL enzymes. Yet, other than the obvious links to the glycolytic pathway and glycan biosynthetic pathways, little is known about how this metabolic pathway interacts with the rest of the metabolic and signaling networks. In this study, we compared the growth and the expression levels of the key components of the PI3K/Akt growth signaling pathway in primary fibroblasts derived from normal and galactose-1 phosphate uridylyltransferase (GalT)-deficient mice, the latter exhibited a subfertility phenotype in adult females and growth restriction in both sexes. The growth potential and the protein levels of the pAkt(Thr308), pAkt(Ser473), pan-Akt, pPdk1, and Hsp90 proteins were significantly reduced by 62.5%, 60.3%, 66%, 66%, and 50%, respectively in the GalT-deficient cells. Reduced expression of phosphorylated Akt proteins in the mutant cells led to diminished phosphorylation of Gsk-3β (-74%). Protein expression of BiP and pPten were 276% and 176% higher respectively in cells with GalT-deficiency. Of the 24 genes interrogated using QIAGEN RT(2) Profiler PCR Custom Arrays, the mRNA abundance of Akt1, Pdpk1, Hsp90aa1 and Pi3kca genes were significantly reduced at least 2.03-, 1.37-, 2.45-, and 1.78-fold respectively in mutant fibroblasts. Both serum-fasted normal and GalT-deficient cells responded to Igf-1-induced activation of Akt phosphorylation at +15 min, but the mutant cells have lower phosphorylation levels. The steady-state protein abundance of Igf-1 receptor was also significantly reduced in mutant cells. Our results thus demonstrated that GalT deficiency can effect down-regulation of the PI3K/Akt growth signaling pathway in mouse fibroblasts through distinct mechanisms targeting both gene and protein expression levels.

  17. Akt recruits Dab2 to albumin endocytosis in the proximal tubule.

    PubMed

    Koral, Kelly; Li, Hui; Ganesh, Nandita; Birnbaum, Morris J; Hallows, Kenneth R; Erkan, Elif

    2014-12-15

    Proximal tubule epithelial cells have a highly sophisticated endocytic machinery to retrieve the albumin in the glomerular filtrate. The megalin-cubilin complex and the endocytic adaptor disabled-2 (Dab2) play a pivotal role in albumin endocytosis. We previously demonstrated that protein kinase B (Akt) regulates albumin endocytosis in the proximal tubule through an interaction with Dab2. Here, we examined the nature of Akt-Dab2 interaction. The pleckstrin homology (PH) and catalytic domains (CD) of Akt interacted with the proline-rich domain (PRD) of Dab2 based on yeast-two hybrid (Y2H) experiments. Pull-down experiments utilizing the truncated constructs of Dab2 demonstrated that the initial 11 amino acids of Dab2-PRD were sufficient to mediate the interaction between Akt and Dab2. Endocytosis experiments utilizing Akt1- and Akt2-silencing RNA revealed that both Akt1 and Akt2 mediate albumin endocytosis in proximal tubule epithelial cells; therefore, Akt1 and Akt2 may play a compensatory role in albumin endocytosis. Furthermore, both Akt isoforms phosphorylated Dab2 at Ser residues 448 and 449. Ser-to-Ala mutations of these Dab2 residues inhibited albumin endocytosis and resulted in a shift in location of Dab2 from the peripheral to the perinuclear area, suggesting the physiological relevance of these phosphorylation sites in albumin endocytosis. We conclude that both Akt1 and Akt2 are involved in albumin endocytosis, and phosphorylation of Dab2 by Akt induces albumin endocytosis in proximal tubule epithelial cells. Further delineation of how Akt affects expression/phosphorylation of endocytic adaptors and receptors will enhance our understanding of the molecular network triggered by albumin overload in the proximal tubule.

  18. Akt Phosphorylates Wnt Coactivator and Chromatin Effector Pygo2 at Serine 48 to Antagonize Its Ubiquitin/Proteasome-mediated Degradation*

    PubMed Central

    Li, Qiuling; Li, Yuewei; Gu, Bingnan; Fang, Lei; Zhou, Pengbo; Bao, Shilai; Huang, Lan; Dai, Xing

    2015-01-01

    Pygopus 2 (Pygo2/PYGO2) is an evolutionarily conserved coactivator and chromatin effector in the Wnt/β-catenin signaling pathway that regulates cell growth and differentiation in various normal and malignant tissues. Although PYGO2 is highly overexpressed in a number of human cancers, the molecular mechanism underlying its deregulation is largely unknown. Here we report that Pygo2 protein is degraded through the ubiquitin/proteasome pathway and is posttranslationally stabilized through phosphorylation by activated phosphatidylinositol 3-kinase/Akt signaling. Specifically, Pygo2 is stabilized upon inhibition of the proteasome, and its intracellular level is regulated by Cullin 4 (Cul4) and DNA damage-binding protein 1 (DDB1), components of the Cul4-DDB1 E3 ubiquitin ligase complex. Furthermore, Pygo2 is phosphorylated at multiple residues, and Akt-mediated phosphorylation at serine 48 leads to its decreased ubiquitylation and increased stability. Finally, we provide evidence that Akt and its upstream growth factors act in parallel with Wnt to stabilize Pygo2. Taken together, our findings highlight chromatin regulator Pygo2 as a common node downstream of oncogenic Wnt and Akt signaling pathways and underscore posttranslational modification, particularly phosphorylation and ubiquitylation, as a significant mode of regulation of Pygo2 protein expression. PMID:26170450

  19. Inhibition of Aurora-B suppresses HepG2 cell invasion and migration via the PI3K/Akt/NF-κB signaling pathway in vitro.

    PubMed

    Shan, Ren Feng; Zhou, Yun Fei; Peng, Ai Fen; Jie, Zhi Gang

    2014-09-01

    In the present study, the effect of Aurora-B inhibition on HepG2 cell invasion and migration in vitro was investigated. A recombinant plasmid targeting the Aurora-B gene (MiR-Aurora-B) was used to inhibit Aurora-B expression in HepG2 cells. Cell migration and invasion were investigated using Transwell migration and invasion assays. The results demonstrated that cell invasion and migration were suppressed by inhibiting Aurora-B. In addition, the effect of Aurora-B inhibition on the activity of the phosphoinositide 3-kinase (PI3K)/Akt/nuclear factor (NF)-κB signaling pathway was investigated by analyzing the protein expression levels of phosphorylated (p)-Akt, Akt, NF-κB p65, matrix metalloproteinase (MMP)-2 and MMP-9 using western blot analysis. The results demonstrated that the protein expression levels of p-Akt, NF-κB p65, MMP-2 and MMP-9 were reduced significantly by inhibiting Aurora-B. Therefore, inhibition of Aurora-B was shown to suppress hepatocellular carcinoma cell migration and invasion by decreasing the activity of the PI3K/Akt/NF-κB signaling pathway in vitro.

  20. A novel 7-bromoindirubin with potent anticancer activity suppresses survival of human melanoma cells associated with inhibition of STAT3 and Akt signaling.

    PubMed

    Liu, Lucy; Kritsanida, Marina; Magiatis, Prokopios; Gaboriaud, Nicolas; Wang, Yan; Wu, Jun; Buettner, Ralf; Yang, Fan; Nam, Sangkil; Skaltsounis, Leandros; Jove, Richard

    2012-11-01

    STAT3 and Akt signaling have been validated as potential molecular targets for treatment of cancers including melanoma. These small molecule inhibitors of STAT3 or Akt signaling are promising for developing anti-melanoma therapeutic agents. MLS-2438, a novel 7-bromoindirubin, a derivative of the natural product indirubin, was synthesized with a bromo-group at the 7-position on one indole ring and a hydrophilic group at the 3'-position on the other indole ring. We tested the anticancer activity of MLS-2438 and investigated its mechanism of action in human melanoma cell lines. Here, we show that MLS-2438 inhibits viability and induces apoptosis of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Several pro-apoptotic Bcl-2 family proteins are involved in the MLS-2438 mediated apoptosis. MLS-2438 inhibits Src kinase activity in vitro and phosphorylation of JAK2, Src, STAT3 and Akt in cultured cancer cells. In contrast to the decreased phosphorylation levels of JAK2, Src, STAT3 and Akt, phosphorylation levels of the MAPK (Erk1/2) signaling protein were not reduced in cells treated with MLS-2438. These results demonstrate that MLS-2438, a novel natural product derivative, is a Src inhibitor and potentially regulates kinase activity of JAK2 and Akt in cancer cells. Importantly, MLS-2438 suppressed tumor growth with low toxicity in a mouse xenograft model of human melanoma. Our findings support further development of MLS-2438 as a potential small-molecule therapeutic agent that targets both STAT3 and Akt signaling in human melanoma cells.

  1. Plasma amino acid response to graded levels of escape protein.

    PubMed

    Gibb, D J; Klopfenstein, T J; Britton, R A; Lewis, A J

    1992-09-01

    A trial was conducted to examine the potential of using plasma amino acid responses to graded levels of escape protein to determine limiting amino acids in cattle. Growing calves (n = 120; mean BW = 220 +/- 21 kg) were fed a basal diet of corncob:sorghum silage (61:39) and were individually supplemented with distillers' dried grains (DDG), heat-damaged DDG (H-DDG), feather meal (FTH), or urea. The urea supplement was mixed with DDG and H-DDG to allow 0, 20, 35, 50, 65, or 80% of the supplemental CP to come from distillers' protein and maintain an 11.5% CP diet. Urea supplement was mixed with FTH to allow 0, 22, 39, 56, 73, or 90% of the supplemental CP to come from FTH. Dietary CP ranged from 11.5% at the 0% level to 17.3% at the 90% level. Plasma concentration of most essential plasma amino acids responded (P less than .10) linearly and(or) quadratically to increased escape protein. The broken-line response of plasma methionine at low DDG intake suggested that methionine was limiting at low levels of escape protein. An initial decrease followed by a plateau fit by a broken line indicated that histidine became limiting in FTH diets, and lysine eventually became limiting for DDG, H-DDG, and FTH diets before maximum BW gain was reached. Results indicate that plasma amino acid responses may identify amino acids that become limiting with increasing escape protein.

  2. Epistatic interactions of AKT1 on human medial temporal lobe biology and pharmacogenetic implications

    PubMed Central

    Tan, H Y; Chen, A G; Chen, Q; Browne, L B; Verchinski, B; Kolachana, B; Zhang, F; Apud, J; Callicott, J H; Mattay, V S; Weinberger, D R

    2012-01-01

    AKT1 controls important processes in medial temporal lobe (MTL) development and plasticity, but the impact of human genetic variation in AKT1 on these processes is not known in healthy or disease states. Here, we report that an AKT1 variant (rs1130233) previously associated with AKT1 protein expression, prefrontal function and schizophrenia, affects human MTL structure and memory function. Further, supporting AKT1's role in transducing hippocampal neuroplasticity and dopaminergic processes, we found epistasis with functional polymorphisms in BDNF and COMT—genes also implicated in MTL biology related to AKT1. Consistent with prior predictions that these biologic processes relate to schizophrenia, we found epistasis between the same AKT1, BDNF and COMT functional variants on schizophrenia risk, and pharmacogenetic interactions of AKT1 with the effects on cognition and brain volume measures by AKT1 activators in common clinical use—lithium and sodium valproate. Our findings suggest that AKT1 affects risk for schizophrenia and accompanying cognitive deficits, at least in part through specific genetic interactions related to brain neuroplasticity and development, and that these AKT1 effects may be pharmacologically modulated in patients. PMID:21788944

  3. PI3K/AKT Signaling Regulates Bioenergetics in Immortalized Hepatocytes

    PubMed Central

    Li, Chen; Li, Yang; He, Lina; Agarwal, Amit R.; Zeng, Ni; Cadenas, Enrique; Stiles, Bangyan L.

    2013-01-01

    Regulation of cellular bioenergetics by PI3K/AKT signaling was examined in isogenic hepatocyte cell lines lacking the major inhibitor of PI3K/AKT signaling, PTEN (phosphatase and tensin homolog deleted on Chromosome 10). PI3K/AKT signaling was manipulated using the activator (IGF-1) and the inhibitor (LY 294002) of the PI3K/AKT pathway. Activation of PI3K/AKT signaling resulted in an enhanced anaerobic glycolysis and mitochondrial respiration. AKT, when phosphorylated and activated, translocated to mitochondria and localized within the membrane structure of mitochondria, where it phosphorylated a number of mitochondrial residence proteins including the subunits α and β of ATP synthase. Inhibition of GSK3β by either phosphorylation by AKT or lithium chloride resulted in activation of pyruvate dehydrogenase, i.e., decrease of its phosphorylated form. AKT-dependent phosphorylation of ATP synthase subunits α and β resulted in an increased complex activity. AKT translocation to mitochondria was associated with an increased expression and activity of complex I. These data suggest that the mitochondrial signaling pathway AKT-GSK3β-PDH, AKT-dependent phosphorylation of ATP synthase, and upregulation of mitochondrial complex I expression and activity are involved in the control of mitochondrial bioenergetics by increasing substrate availability and regulating the mitochondrial catalytic/energy-transducing capacity. PMID:23376468

  4. PDGF inactivates forkhead family transcription factor by activation of Akt in glomerular mesangial cells.

    PubMed

    Ghosh Choudhury, Goutam; Lenin, Mahimainathan; Calhaun, Cheresa; Zhang, Jian-Hua; Abboud, Hanna E

    2003-02-01

    Regulation of the forkhead domain transcription factors by PDGF has not been studied. In this report, we investigated the role of PDGF-induced Akt in regulating forkhead domain protein FKHRL1 in glomerular mesangial cells. PDGF increased phosphorylation of FKHRL1 in a time- and PI 3 kinase-dependent manner. Expression of dominant negative Akt by adenovirus-mediated gene transfer blocked PDGF-induced FKHRL1 phosphorylation. PDGF inhibited transcription of a forkhead DNA binding element-driven reporter gene. This inhibition was mimicked by constitutively active myristoylated Akt. Moreover, FKHR1-mediated transcription of the reporter gene was completely attenuated by both PDGF and Myr-Akt. One of the targets of forkhead transcription factors is the proapoptotic Fas ligand (FasL) gene. PDGF, as well as Myr-Akt, inhibited transcription of FasL. In contrast, inhibition of PI 3 kinase and dominant negative Akt increased FasL gene transcription, suggesting that suppression of PI 3 kinase/Akt signalling may induce apoptosis in mesangial cells via upregulation of FasL expression. However, expression of dominant negative Akt by adenovirus did not induce apoptosis in mesangial cells, suggesting that Akt-independent antiapoptotic mechanisms also exist. Together, our data demonstrate for the first time that PDGF inactivates forkhead domain transcription factor by Akt-dependent phosphorylation and that suppression of Akt signalling is not sufficient to induce apoptosis in mesangial cells.

  5. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    SciTech Connect

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  6. A component of green tea (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins

    SciTech Connect

    Qin Jie; Xie Liping . E-mail: xielp@zjuem.zju.edu.cn; Zheng Xiangyi; Wang Yunbin; Bai Yu; Shen Huafeng; Li Longcheng; Dahiya, Rajvir

    2007-03-23

    Bladder cancer is the fourth most common cancer in men and ninth most common in women. It has a protracted course of progression and is thus an ideal candidate for chemoprevention strategies and trials. This study was conducted to evaluate the chemopreventive/antiproliferative potential of (-)-epigallocatechin gallate (EGCG, the major phytochemical in green tea) against bladder cancer and its mechanism of action. Using the T24 human bladder cancer cell line, we found that EGCG treatment caused dose- and time-dependent inhibition of cellular proliferation and cell viability, and induced apoptosis. Mechanistically, EGCG inhibits phosphatidylinositol 3'-kinase/Akt activation that, in turn, results in modulation of Bcl-2 family proteins, leading to enhanced apoptosis of T24 cells. These findings suggest that EGCG may be an important chemoprevention agent for the management of bladder cancer.

  7. Reversion of BDNF, Akt and CREB in Hippocampus of Chronic Unpredictable Stress Induced Rats: Effects of Phytochemical, Bacopa Monnieri

    PubMed Central

    Hazra, Somoday; Kumar, Sourav; Saha, Goutam Kumar

    2017-01-01

    Objective The aims of the present study were to explore the behavioural effects and to understand the possible mode of action of Bacopa monnieri extract (BME) on chronic unpredictable stress (CUS) induced depressive model and the biochemical alterations such as brain derived neurotrophic factor (BDNF), Akt, cyclic-AMP response element binding (CREB) protein level in the hippocampus of rats. Methods We examined the effects of chronic administration of BME on CUS exposed rats for 28 days. Behavioural changes were assessed by sucrose consumption and open field test to assess the effect of BME on CUS-induced depression. The mechanisms underlying antidepressant like action of BME was further evaluated by measuring levels of BDNF, Akt, and CREB in the hippocampus of rat brain and compared with the standard tricyclic antidepressant drug imipramine (20 mg/kg body weight). Results Exposure to CUS for 28 days produced depression-like behavior in rats, as indicated by significant decreases in sucrose consumption, locomotor activity including decreased BDNF, Akt and CREB levels in the hippocampus. Daily administration of BME at a dose of (80 mg/kg body weight) significantly reverses the behavioral alteration and restored the normal level of BDNF, total and phospho-Akt, total and phospho CREB in the hippocampus of CUS induced rats as compared to vehicle treated control rats. Conclusion These findings suggest that BME ameliorates CUS induced behavioural depression in rats and that can be used as a potent therapeutic agent in treating depressive like behavior. PMID:28096878

  8. P2X7 receptors stimulate AKT phosphorylation in astrocytes

    PubMed Central

    Jacques-Silva, Maria C; Rodnight, Richard; Lenz, Guido; Liao, Zhongji; Kong, Qiongman; Tran, Minh; Kang, Yuan; Gonzalez, Fernando A; Weisman, Gary A; Neary, Joseph T

    2004-01-01

    Emerging evidence indicates that nucleotide receptors are widely expressed in the nervous system. Here, we present evidence that P2Y and P2X receptors, particularly the P2X7 subtype, are coupled to the phosphoinositide 3-kinase (PI3K)/Akt pathway in astrocytes. P2Y and P2X receptor agonists ATP, uridine 5′-triphosphate (UTP) and 2′,3′-O-(4-benzoyl)-benzoyl ATP (BzATP) stimulated Akt phosphorylation in primary cultures of rat cortical astrocytes. BzATP induced Akt phosphorylation in a concentration- and time-dependent manner, similar to the effect of BzATP on Akt phosphorylation in 1321N1 astrocytoma cells stably transfected with the rat P2X7 receptor. Activation was maximal at 5 – 10 min and was sustained for 60 min; the EC50 for BzATP was approximately 50 μM. In rat cortical astrocytes, the positive effect of BzATP on Akt phosphorylation was independent of glutamate release. The effect of BzATP on Akt phosphorylation in rat cortical astrocytes was significantly reduced by the P2X7 receptor antagonist Brilliant Blue G and the P2X receptor antagonist iso-pyridoxal-5′-phosphate-6-azophenyl-2′,4′-disulfonic acid, but was unaffected by trinitrophenyl-ATP, oxidized ATP, suramin and reactive blue 2. Results with specific inhibitors of signal transduction pathways suggest that extracellular and intracellular calcium, PI3K and a Src family kinase are involved in the BzATP-induced Akt phosphorylation pathway. In conclusion, our data indicate that stimulation of astrocytic P2X7 receptors, as well as other P2 receptors, leads to Akt activation. Thus, signaling by nucleotide receptors in astrocytes may be important in several cellular downstream effects related to the Akt pathway, such as cell cycle and apoptosis regulation, protein synthesis, differentiation and glucose metabolism. PMID:15023862

  9. Poly r(C) binding protein (PCBP) 1 expression is regulated at the post-translation level in thyroid carcinoma

    PubMed Central

    Zhang, Ming-Peng; Zhang, Wei-San; Tan, Jin; Zhao, Ming-Hui; Lian, Lin-Juan; Cai, Jie

    2017-01-01

    Poly r(C) binding protein (PCBP) 1 or heterogeneous ribonucleoprotein (hnRNP) E1 is a RNA binding protein that plays a vital role in a wide variety of biological processes. PCBP1 has been shown to function as a tumor suppressor by negatively regulating translation of pro-metastatic proteins in different cancers. Loss of PCBP1 expression or its Akt2-mediated phosphorylation at serine 43 residue has both been indicated to de-repress its regulation of EMT inducer proteins. Our previous work has established that PCBP1 functions as a tumor suppressor in thyroid cancer, where its translation is inhibited by microRNA-490-3p. Here we show that thyroid cancer patients can be divided into 2 cohorts based on miR-490-3p expression and PCBP1 mRNA expression-one cohort with high PCBP1 mRNA expression and basal miR-490-3p expression and a second cohort with low PCBP1 mRNA expression and high miR-490-3p expression. However, PCBP1 protein expression is also downregulated in the cohort with high PCBP1 mRNA expression, with expression levels similar to what is observed in patients with the low PCBP1 mRNA expression. Our analysis shows that PCBP1 mRNA is actively translated in patients with high PCBP1 mRNA expression, but that the protein is post translationally degraded by the proteasome machinery. Our results thus elucidate a novel mechanism responsible for down regulation of PCBP1 expression in thyroid cancer. It will be important in future to identify the mechanism that causes degradation of PCBP1 protein and to identify if similar mechanisms are active in other tumors characterized by low PCBP1 protein expression.

  10. Thr308 determines Akt1 nuclear localization in insulin-stimulated keratinocytes

    SciTech Connect

    Goren, Itamar; Mueller, Elke; Pfeilschifter, Josef

    2008-07-18

    Here, we determined the localization and activation of protein kinase B (Akt) in acute cutaneous wound tissue in mice. Akt1 represented the major Akt isoform that was expressed and activated in wound margin keratinocytes and also in the cultured human keratinocyte line HaCaT. Mutation of Akt1 protein, exchanging the activation-essential Ser473 and Thr308 residues for inactive Ala or phosphorylation-mimicking Asp and Glu residues, revealed that phosphorylation of Ser473 represented an essential prerequisite for auto-phosphorylation of Thr308 within the Akt1 protein in keratinocytes. Moreover, cell culture experiments and transfection studies using Thr308 mutated Akt1 proteins demonstrated that phosphorylation of Akt1 at Thr308 appeared to selectively exclude the active kinase from the nucleus and direct the kinase to the cytoplasmic compartment in keratinocytes upon insulin stimulation. In summary, our data show that phosphorylation of Thr308 during insulin-mediated Akt1 activation is an essential prerequisite to exclude Akt1 from the nuclear compartment.

  11. Visual detection of Akt mRNA in living cell using gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Tian, Caiping; Li, Siwen; Wang, Zhaohui; Gu, Yueqing

    2014-09-01

    PI3K-Akt signaling pathway plays the key role in cell apoptosis and survival, and the components of PI3K /Akt signaling pathway are often abnormally expressed in human tumors. Therefore, determination of the Akt (protein kinase B, PKB) messenger ribonucleic acid (mRNA) expression is significantly important in understanding the mechanism of tumor progression. In this study, we designed a special hairpin deoxyribonucleic acid (DNA) functionalized with gold nanoparticles and fluorescein isothiocyanate(FITC) as a beacon for detecting human Akt mRNA. Spectrofluorometer was used to detect the fluorescence quenching and recovery of the beacons, and laser confocal scanning microscopy was adopted to image Akt mRNA in cells. The results showed that this beacon could sensitively and quantitatively measure the Akt mRNA in living cells . This strategy is potentially useful for the cellular imaging of RNA or protein expression in living cells.

  12. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    NASA Astrophysics Data System (ADS)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  13. Smoking, COPD and 3-Nitrotyrosine Levels of Plasma Proteins

    SciTech Connect

    Jin, Hongjun; Webb-Robertson, Bobbie-Jo M.; Peterson, Elena S.; Tan, Ruimin; Bigelow, Diana J.; Scholand, Mary Beth; Hoidal, John R.; Pounds, Joel G.; Zangar, Richard C.

    2011-09-01

    BACKGROUND: Nitric oxide is a physiologically regulator of endothelial function and hemodynamics. Oxidized products of nitric oxide can form nitrotyrosine, which is a marker of nitrative stress. Cigarette smoking decreases exhaled nitric oxide, and the underlying mechanism may be important in the cardiovascular toxicity of cigarette smoke, although it is not clear if this effect results from decreased nitric oxide production or oxidation of nitric oxide to reactive, nitrating, species. These processes would be expected to have opposite effects on nitrotyrosine levels, a marker of nitrative stress. OBJECTIVE: In this study, we determine the effects of smoking and chronic obstructive pulmonary disease (COPD) on circulating levels of nitrotyrosine, and thereby gain insight into the processes regulating nitrotyrosine formation. METHODS: A custom antibody microarray platform was used to analyze the levels of 3-nitrotyrosine modifications on 24 proteins in plasma. Plasma samples from 458 individuals were analyzed. RESULTS: Nitrotyrosine levels in circulating proteins were uniformly reduced in smokers but increased in COPD patients. We also observed a persistent suppression of nitrotyrosine in former smokers. CONCLUSIONS: Smoking broadly suppresses the levels of 3-nitrotyrosine in plasma proteins, suggesting that cigarette smoke suppresses endothelial nitric oxide production. In contrast, the increase in nitrotyrosine levels in COPD patients most likely results from inflammatory processes. This study provides the first evidence that smoking has irreversible effects on endothelial production of nitric oxide, and provides insight into how smoking could induce a loss of elasticity in the vasculature and a long-term increase in the risk of cardiovascular disease.

  14. Ischemic post-conditioning facilitates brain recovery after stroke by promoting Akt/mTOR activity in nude rats.

    PubMed

    Xie, Rong; Wang, Peng; Ji, Xunming; Zhao, Heng

    2013-12-01

    While pre-conditioning is induced before stroke onset, ischemic post-conditioning (IPostC) is performed after reperfusion, which typically refers to a series of mechanical interruption of blood reperfusion after stroke. IPostC is known to reduce infarction in wild-type animals. We investigated if IPostC protects against brain injury induced by focal ischemia in Tcell-deficient nude rats and to examine its effects on Akt and the mammalian target of rapamycin (mTOR) pathway. Although IPostC reduced infarct size at 2 days post-stroke in wild-type rats, it did not attenuate infarction in nude rats. Despite the unaltered infarct size in nude rats, IPostC increased levels of phosphorylated Akt (p-Akt) and Akt isoforms (Akt1, Akt2, Akt3), and p-mTOR, p-S6K and p-4EBP1 in the mTOR pathway, as well as growth associated Protein 43 (GAP43), both in the peri-infarct area and core, 24 h after stroke. IPostC improved neurological function in nude rats 1-30 days after stroke and reduced the extent of brain damage 30 days after stroke. The mTOR inhibitor rapamycin abolished the long-term protective effects of IPostC. We determined that IPostC did not inhibit acute infarction in nude rats but did provide long-term protection by enhancing Akt and mTOR activity during the acute post-stroke phase. Post-conditioning did not attenuate infarction in nude rats measured 2 days post-stroke, but improved neurological function in nude rats and reduced brain damage 30 days after stroke. It resulted in increased-activities of Akt and mTOR, S6K and p-4EBP1. The mTOR inhibitor rapamycin abolished the long-term protective effects of IPostC.

  15. Myostatin signaling regulates Akt activity via the regulation of miR-486 expression.

    PubMed

    Hitachi, Keisuke; Nakatani, Masashi; Tsuchida, Kunihiro

    2014-02-01

    Myostatin, also known as growth and differentiation factor-8, is a pivotal negative regulator of skeletal muscle mass and reduces muscle protein synthesis by inhibiting the insulin-like growth factor-1 (IGF-1)/Akt/mammalian target of rapamycin (mTOR) pathway. However, the precise mechanism by which myostatin inhibits the IGF-1/Akt/mTOR pathway remains unclear. In this study, we investigated the global microRNA expression profile in myostatin knockout mice and identified miR-486, a positive regulator of the IGF-1/Akt pathway, as a novel target of myostatin signaling. In myostatin knockout mice, the expression level of miR-486 in skeletal muscle was significantly increased. In addition, we observed increased expression of the primary transcript of miR-486 (pri-miR-486) and Ankyrin 1.5 (Ank1.5), the host gene of miR-486, in myostatin knockout mice. In C2C12 cells, myostatin negatively regulated the expression of Ank1.5. Moreover, canonical myostatin signaling repressed the skeletal muscle-specific promoter activity of miR-486/Ank1.5. This repression was partially mediated by the E-box elements in the proximal region of the promoter. We also show that overexpression of miR-486 induced myotube hypertrophy in vitro and that miR-486 was essential to maintain skeletal muscle size both in vitro and in vivo. In addition, inhibition of miR-486 led to a decrease in Akt activity in C2C12 myotubes. Our findings indicate that miR-486 is one of the intermediary molecules connecting myostatin signaling and the IGF-1/Akt/mTOR pathway in the regulation of skeletal muscle size.

  16. Non-thermal plasma induces AKT degradation through turn-on the MUL1 E3 ligase in head and neck cancer

    PubMed Central

    Kim, Sun-Yong; Kim, Haeng-Jun; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Shin, Yoo Seob; Kim, Yeon Soo; Lee, Keunho; Kim, Chul-Ho

    2015-01-01

    Recent research on non-thermal plasma (NTP, an ionized gas) has identified it as a novel cancer therapeutic tool. However, the molecular mechanism remains unclear. In this study, we demonstrated NTP induced cell death of head and neck cancer (HNC) through the AKT ubiquitin–proteasome system. NTP increased the gene expression of mitochondrial E3 ubiquitin protein ligase 1 (MUL1), an E3 ligase for AKT, and NTP-induced HNC cell death was prevented by MUL1 siRNA. We also showed that MUL1 inhibited the level of AKT and p-AKT and MUL1 expression was increased by NTP-induced ROS. Furthermore, we optimized and manufactured a new type of NTP, a liquid type of NTP (LTP). In syngeneic and xenograft in vivo tumor models, LTP inhibited tumor progression by increasing the MUL1 level and reducing p-AKT levels, indicating that LTP also has an anti-cancer effect through the same mechanism as that of NTP. Taken together, our results suggest that NTP and LTP have great potential for HNC therapy. PMID:26450902

  17. PI3K/Akt Pathway Contributes to Neurovascular Unit Protection of Xiao-Xu-Ming Decoction against Focal Cerebral Ischemia and Reperfusion Injury in Rats

    PubMed Central

    Xiang, Jun; Zhang, Yong; Wang, Guo-Hua; Bao, Jie; Li, Wen-Wei; Zhang, Wen; Xu, Li-Li; Cai, Ding-Fang

    2013-01-01

    In the present study, we used a focal cerebral ischemia and reperfusion rat model to investigate the protective effects of Xiao-Xu-Ming decoction (XXMD) on neurovascular unit and to examine the role of PI3K (phosphatidylinositol 3-kinase)/Akt pathway in this protection. The cerebral ischemia was induced by 90 min of middle cerebral artery occlusion. Cerebral infarct area was measured by tetrazolium staining, and neurological function was observed at 24 h after reperfusion. DNA fragmentation assay, combined with immunofluorescence, was performed to evaluate apoptosis of neuron, astrocyte, and vascular endothelial cell which constitute neurovascular unit. The expression levels of proteins involved in PI3K/Akt pathway were detected by Western blot. The results showed that XXMD improved neurological function, decreased cerebral infarct area and neuronal damage, and attenuated cellular apoptosis in neurovascular unit, while these effects were abolished by inhibition of PI3K/Akt with LY294002. We also found that XXMD upregulated p-PDKl, p-Akt, and p-GSK3β expression levels, which were partly reversed by LY294002. In addition, the increases of p-PTEN and p-c-Raf expression levels on which LY294002 had no effect were also observed in response to XXMD treatment. The data indicated the protective effects of XXMD on neurovascular unit partly through the activation of PI3K/Akt pathway. PMID:23781261

  18. The Role of AKT in Androgen-Independent Progression of Human Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    mediated iAKT activation promote tumor growth in castrated nude mice. 14. SUBJECT TERMS 15. NUMBER OF PAGES Prostate Cancer, AKT/Protein Kinase B...United States (1). While digital rectal exams and early prostate specific antigen screening have led to earlier detection and diagnosis, the number of...to determine whether CID-mediated activation of iAKT can lead to survival or proliferation after androgen withdrawal. Finally, LNCaP tumor will be

  19. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    SciTech Connect

    Roffe, Suzy; Hagai, Yosey; Pines, Mark; Halevy, Orna

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  20. TCN, an AKT inhibitor, exhibits potent antitumor activity and enhances radiosensitivity in hypoxic esophageal squamous cell carcinoma in vitro and in vivo

    PubMed Central

    Guo, Qing; He, Jia; Shen, Feng; Zhang, Wei; Yang, Xi; Zhang, Chi; Zhang, Qu; Huang, Jun-Xing; Wu, Zheng-Dong; Sun, Xin-Chen; Dai, Sheng-Bin

    2017-01-01

    The aim of the present study was to investigate the radiosensitization effect of triciribine (TCN) on human esophageal squamous cell carcinoma (ESCC) in normoxia or hypoxia and its mechanism. The cytotoxicity and radiosensitization mechanism of TCN were investigated by Cell Counting Kit 8, clonogenic assay, flow cytometry, western blotting (WB) and immunofluorescence staining of phospho-histone H2A.X, Ser139 (γ-H2AX) in ESCC in vitro, while the protein expression levels of AKT, phosphorylated (p)-AKT, hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) were evaluated by WB in vivo. The cytotoxicity of TCN was dose dependent. Upon exposure to TCN, ESCC cells in hypoxia treated with 4-Gy radiotherapy exhibited an evidently higher apoptotic rate than cells subjected to other treatments. TCN could significantly inhibit the protein expression of p-AKT, HIF-1α and VEGF in vitro and in vivo. The present results suggested that TCN can effectively inhibit AKT, p-AKT, HIF-1α and VEGF, thus conferring radiosensitivity to ESCC in vitro and vivo. TCN is considered as an adjuvant in radiotherapy of ESCC in clinical application. PMID:28356983

  1. PDK1–Akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex

    PubMed Central

    Itoh, Yasuhiro; Higuchi, Maiko; Oishi, Koji; Kishi, Yusuke; Okazaki, Tomohiko; Sakai, Hiroshi; Miyata, Takaki; Gotoh, Yukiko

    2016-01-01

    Neurons migrate a long radial distance by a process known as locomotion in the developing mammalian neocortex. During locomotion, immature neurons undergo saltatory movement along radial glia fibers. The molecular mechanisms that regulate the speed of locomotion are largely unknown. We now show that the serine/threonine kinase Akt and its activator phosphoinositide-dependent protein kinase 1 (PDK1) regulate the speed of locomotion of mouse neocortical neurons through the cortical plate. Inactivation of the PDK1–Akt pathway impaired the coordinated movement of the nucleus and centrosome, a microtubule-dependent process, during neuronal migration. Moreover, the PDK1–Akt pathway was found to control microtubules, likely by regulating the binding of accessory proteins including the dynactin subunit p150glued. Consistent with this notion, we found that PDK1 regulates the expression of cytoplasmic dynein intermediate chain and light intermediate chain at a posttranscriptional level in the developing neocortex. Our results thus reveal an essential role for the PDK1–Akt pathway in the regulation of a key step of neuronal migration. PMID:27170189

  2. Selaginellatamariscina Attenuates Metastasis via Akt Pathways in Oral Cancer Cells

    PubMed Central

    Hsin, Chung-Han; Hsieh, Ming-Ju; Chang, Yu-Chao

    2013-01-01

    Background Crude extracts of Selaginellatamariscina, an oriental medicinal herb, have been evidenced to treat several human diseases. This study investigated the mechanisms by which Selaginellatamariscina inhibits the invasiveness of human oral squamous-cell carcinoma (OSCC) HSC-3 cells. Methodology/Principal Findings Herein, we demonstrate that Selaginellatamariscina attenuated HSC-3 cell migration and invasion in a dose-dependent manner. The anti-metastatic activities of Selaginellatamariscina occurred at least partially because of the down-regulation of matrix metalloproteinases (MMP)-2 and MMP-9 gelatinase activity and the down-regulation of protein expression. The expression and function of both MMP-2 and MMP-9 were regulated by Selaginellatamariscina at a transcriptional level, as shown by quantitative real-time PCR and reporter assays. Chromatin immunoprecipitation (ChIP) data further indicated that binding of the cAMP response element-binding (CREB) protein and activating protein-1 (AP-1) to the MMP-2 promoter diminished at the highest dosage level of Selaginellatamariscina. The DNA-binding activity of specificity protein 1 (SP-1) to the MMP-9 promoter was also suppressed at the same concentration. Selaginellatamariscina did not affect the mitogen-activated protein kinase signaling pathway, but did inhibit the effects of gelatinase by reducing the activation of serine–threonine kinase Akt. Conclusions These results demonstrate that Selaginellatamariscina may be a potent adjuvant therapeutic agent in the prevention of oral cancer. PMID:23799155

  3. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    PubMed

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC.

  4. Akt Regulates Drug-Induced Cell Death through Bcl-w Downregulation

    PubMed Central

    Zanca, Ciro; De Rienzo, Assunta; Romano, Giulia; Acunzo, Mario; Puca, Loredana; Incoronato, Mariarosaria; Croce, Carlo M.; Condorelli, Gerolama

    2008-01-01

    Akt is a serine threonine kinase with a major role in transducing survival signals and regulating proteins involved in apoptosis. To find new interactors of Akt involved in cell survival, we performed a two-hybrid screening in yeast using human full-length Akt c-DNA as bait and a murine c-DNA library as prey. Among the 80 clones obtained, two were identified as Bcl-w. Bcl-w is a member of the Bcl-2 family that is essential for the regulation of cellular survival, and that is up-regulated in different human tumors, such as gastric and colorectal carcinomas. Direct interaction of Bcl-w with Akt was confirmed by immunoprecipitation assays. Subsequently, we addressed the function of this interaction: by interfering with the activity or amount of Akt, we have demonstrated that Akt modulates the amount of Bcl-w protein. We have found that inhibition of Akt activity may promote apoptosis through the downregulation of Bcl-w protein and the consequential reduction in interaction of Bcl-w with pro-apoptotic members of the Bcl-2 family. Our data provide evidence that Bcl-w is a new member of the Akt pathway and that Akt may induce anti-apoptotic signals at least in part through the regulation of the amount and activity of Bcl-w. PMID:19114998

  5. Impaired mouse mammary gland growth and development is mediated by melatonin and its MT1G protein-coupled receptor via repression of ERα, Akt1, and Stat5.

    PubMed

    Xiang, Shulin; Mao, Lulu; Yuan, Lin; Duplessis, Tamika; Jones, Frank; Hoyle, Gary W; Frasch, Tripp; Dauchy, Robert; Blask, David E; Chakravarty, Geetika; Hill, Steven M

    2012-10-01

    To determine whether melatonin, via its MT(1)  G protein-coupled receptor, impacts mouse mammary gland development, we generated a mouse mammary tumor virus (MMTV)-MT1-Flag-mammary gland over-expressing (MT1-mOE) transgenic mouse. Increased expression of the MT(1) -Flag transgene was observed in the mammary glands of pubescent MT1-mOE transgenic female mice, with further significant increases during pregnancy and lactation. Mammary gland whole mounts from MT1-mOE mice showed significant reductions in ductal growth, ductal branching, and terminal end bud formation. Elevated MT(1) receptor expression in pregnant and lactating female MT1-mOE mice was associated with reduced lobulo-alveolar development, inhibition of mammary epithelial cell proliferation, and significant reductions in body weights of suckling pups. Elevated MT(1) expression in pregnant and lactating MT1-mOE mice correlated with reduced mammary gland expression of Akt1, phospho-Stat5, Wnt4, estrogen receptor alpha, progesterone receptors A and B, and milk proteins β-casein and whey acidic protein. Estrogen- and progesterone-stimulated mammary gland development was repressed by elevated MT(1) receptor expression and exogenous melatonin administration. These studies demonstrate that the MT(1) melatonin receptor and its ligand melatonin play an important regulatory role in mammary gland development and lactation in mice through both growth suppression and alteration of developmental paradigms.

  6. Inhibition of autophagy via activation of PI3K/Akt pathway contributes to the protection of ginsenoside Rb1 against neuronal death caused by ischemic insults.

    PubMed

    Luo, Tianfei; Liu, Guiying; Ma, Hongxi; Lu, Bin; Xu, Haiyang; Wang, Yujing; Wu, Jiang; Ge, Pengfei; Liang, Jianmin

    2014-09-01

    Lethal autophagy is a pathway leading to neuronal death caused by transient global ischemia. In this study, we examined the effect of Ginsenoside Rb1 (GRb1) on ischemia/reperfusion-induced autophagic neuronal death and investigated the role of PI3K/Akt. Ischemic neuronal death in vitro was induced by using oxygen glucose deprivation (OGD) in SH-SY5Y cells, and transient global ischemia was produced by using two vessels occlusion in rats. Cellular viability of SH-SY5Y cells was assessed by MTT assay, and CA1 neuronal death was evaluated by Hematoxylin-eosin staining. Autophagic vacuoles were detected by using both fluorescent microscopy in combination with acridine orange (AO) and Monodansylcadaverine (MDC) staining and transmission electronic microscopy. Protein levels of LC3II, Beclin1, total Akt and phosphor-Akt at Ser473 were examined by western blotting analysis. GRb1 inhibited both OGD and transient ischemia-induced neuronal death and mitigated OGD-induced autophagic vacuoles in SH-SY5Y cells. By contrast, PI3K inhibitor LY294002 counteracted the protection of GRb1 against neuronal death caused by either OGD or transient ischemia. LY294002 not only mitigated the up-regulated protein level of phosphor Akt at Ser473 caused by GRb1, but also reversed the inhibitory effect of GRb1 on OGD and transient ischemia-induced elevation in protein levels of LC3II and Beclin1.

  7. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia.

    PubMed

    Jansen, Laura A; Mirzaa, Ghayda M; Ishak, Gisele E; O'Roak, Brian J; Hiatt, Joseph B; Roden, William H; Gunter, Sonya A; Christian, Susan L; Collins, Sarah; Adams, Carissa; Rivière, Jean-Baptiste; St-Onge, Judith; Ojemann, Jeffrey G; Shendure, Jay; Hevner, Robert F; Dobyns, William B

    2015-06-01

    Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum.

  8. Low copper and high manganese levels in prion protein plaques

    USGS Publications Warehouse

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  9. Fibroblast growth factor 4-induced migration of porcine trophectoderm cells is mediated via the AKT cell signaling pathway.

    PubMed

    Jeong, Wooyoung; Lee, Jieun; Bazer, Fuller W; Song, Gwonhwa; Kim, Jinyoung

    2016-01-05

    During early pregnancy, a well-coordinated communication network between the conceptus and maternal uterus is especially crucial in pigs in which there is a protracted pre-attachment phase prior to implantation. This network is regulated by an astonishing number of molecules such as growth factors. Fibroblast growth factor 4 (FGF4) is a multipotent growth factor that elicits diverse biological actions on various types of cells and tissues. In pigs, FGF4 and its receptors are expressed in the uterine endometrium and conceptus during early pregnancy, but less is known about the FGF4-mediated regulation of conceptus growth during peri-implantation period of pregnancy. Therefore, the aims of the present study were to investigate: 1) expression of endometrial FGF4 mRNA during early pregnancy; 2) up-regulation of FGF receptor expression in porcine trophectoderm (pTr) cells in response to FGF4; and 3) FGF-induced intracellular signaling and cellular activities in pTr cells. In vitro cultured pTr cells incubated with different concentrations of recombinant FGF4 (0-50 ng/ml) responded with a dose-dependent increase in AKT phosphorylation of 2.9-fold at 20 ng/ml FGF4. Within 30 min after treatment with 20 ng/ml FGF4, the abundances of p-AKT, p-P90RSK and p-RPS6 proteins increased 2.1-, 5.2- and 3.2-fold, respectively, and then returned to basal levels by 120 min. To ensure that the stimulatory effect of FGF4 on AKT signaling was p-AKT-dependent, pTr cells were pre-incubated with an AKT inhibitor (LY294002) for 1 h prior to FGF4 treatment. 20 μM of LY294002 decreased FGF4-induced p-AKT, p-P90RSK and p-RPS6 proteins. Immunofluorescence analyses revealed that p-RPS6 proteins were abundant within the cytoplasm of FGF4-treated cells, but present at basal levels in the presence of LY294002. Furthermore, FGF4 increased migration of pTr cells and LY294002 significantly reduced this effect. Results of the present study suggest that activation of the FGF receptor(s) on trophectoderm

  10. EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function.

    PubMed

    Phuchareon, Janyaporn; McCormick, Frank; Eisele, David W; Tetsu, Osamu

    2015-07-21

    Nonsmall cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. About 14% of NSCLCs harbor mutations in epidermal growth factor receptor (EGFR). Despite remarkable progress in treatment with tyrosine kinase inhibitors (TKIs), only 5% of patients achieve tumor reduction >90%. The limited primary responses are attributed partly to drug resistance inherent in the tumor cells before therapy begins. Recent reports showed that activation of receptor tyrosine kinases (RTKs) is an important determinant of this innate drug resistance. In contrast, we demonstrate that EGFR inhibition promotes innate drug resistance despite blockade of RTK activity in NSCLC cells. EGFR TKIs decrease both the mitogen-activated protein kinase (MAPK) and Akt protein kinase pathways for a short time, after which the Ras/MAPK pathway becomes reactivated. Akt inhibition selectively blocks the transcriptional activation of Ets-1, which inhibits its target gene, dual specificity phosphatase 6 (DUSP6), a negative regulator specific for ERK1/2. As a result, ERK1/2 is activated. Furthermore, elevated c-Src stimulates Ras GTP-loading and activates Raf and MEK kinases. These observations suggest that not only ERK1/2 but also Akt activity is essential to maintain Ets-1 in an active state. Therefore, despite high levels of ERK1/2, Ets-1 target genes including DUSP6 and cyclins D1, D3, and E2 remain suppressed by Akt inhibition. Reduction of DUSP6 in combination with elevated c-Src renews activation of the Ras/MAPK pathway, which enhances cell survival by accelerating Bim protein turnover. Thus, EGFR TKIs evoke innate drug resistance by preventing Akt activity and inactivating Ets-1 function in NSCLC cells.

  11. Salvianolic Acid A Attenuates Cell Apoptosis, Oxidative Stress, Akt and NF-κB Activation in Angiotensin-II Induced Murine Peritoneal Macrophages.

    PubMed

    Li, Ling; Xu, Tongda; Du, Yinping; Pan, Defeng; Wu, Wanling; Zhu, Hong; Zhang, Yanbin; Li, Dongye

    2016-01-01

    We discuss the role of Salvianolic acid A(SAA), one of the main effective components in Salvia Miltiorrhiza (known as 'Danshen' in traditional Chinese medicine), in apoptotic factors, the production of oxidative products, and the expression of Akt and NF-κB in angiotensin II (Ang II)-mediated murine macrophages. In the present study, Ang II was added to mice abdominal macrophages with or without addition of SAA. After cell identification, apoptosis was measured by DNA strand break level with TdT-mediated dUTP nick-end labeling (TUNEL) staining, and the expression of Bcl-2 and Bax. Intracellular concentrations of superoxide dismutase (SOD) and malondialdehyde (MDA) were also measured. Western blotting determined the expression of Akt, p-Akt, NF-κB and p-NF-κB. Ly294002 (the inhibitor of PI3K) was used to determine the mechanism of SAA. Ang II (1 µM) significantly increased the number of TUNEL-positive cells and Bax expression, but reduced Bcl-2 expression. These effects were antagonized when the cells were pretreated with SAA. SAA decreased MDA, but increased SOD in the cell lysis solution treated with Ang II. It markedly reduced the level of p-NF-κB, as also p-Akt, which was partly blocked by Ly294002. SAA prevents Ang IIinduced apoptosis, oxidative stress and related protein expression in the macrophages. It also inhibits the activation of Akt.

  12. Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt

    PubMed Central

    Chen, Jialin; Chen, Peng; Backman, Ludvig J.; Zhou, Qingjun; Danielson, Patrik

    2016-01-01

    The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway. PMID:27174608

  13. IL-10 Protects Neurites in Oxygen-Glucose-Deprived Cortical Neurons through the PI3K/Akt Pathway.

    PubMed

    Lin, Longzai; Chen, Hongbin; Zhang, Yixian; Lin, Wei; Liu, Yong; Li, Tin; Zeng, Yongping; Chen, Jianhao; Du, Houwei; Chen, Ronghua; Tan, Yi; Liu, Nan

    2015-01-01

    IL-10, as a cytokine, has an anti-inflammatory cascade following various injuries, but it remains blurred whether IL-10 protects neurites of cortical neurons after oxygen-glucose deprivation injury. Here, we reported that IL-10, in a concentration-dependent manner, reduced neuronal apoptosis and increased neuronal survival in oxygen-glucose-deprived primary cortical neurons, producing an optimal protective effect at 20ng/ml. After staining NF-H and GAP-43, we found that IL-10 significantly protected neurites in terms of axon length and dendrite number by confocal microscopy. Furthermore, it induced the phosphorylation of AKT, suppressed the activation of caspase-3, and up-regulated the protein expression of GAP-43. In contrast, LY294002, a specific inhibitor of PI3K/AKT, reduced the level of AKT phosphorylation and GAP-43 expression, increased active caspase-3 expression and thus significantly weakened IL-10-mediated protective effect in the OGD-induced injury model. IL-10NA, the IL-10 neutralizing antibody, reduced the level of p-PI3K phosphorylation and increased the expression of active caspase-3. These findings suggest that IL-10 provides neuroprotective effects by protecting neurites through PI3K/AKT signaling pathway in oxygen-glucose-deprived primary cortical neurons.

  14. MYOCARDIAL AKT: THE OMNIPRESENT NEXUS

    PubMed Central

    Sussman, Mark A.; Völkers, Mirko; Fischer, Kimberlee; Bailey, Brandi; Cottage, Christopher T.; Din, Shabana; Gude, Natalie; Avitabile, Daniele; Alvarez, Roberto; Sundararaman, Balaji; Quijada, Pearl; Mason, Matt; Konstandin, Mathias H.; Malhowski, Amy; Cheng, Zhaokang; Khan, Mohsin; McGregor, Michael

    2013-01-01

    One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses. PMID:21742795

  15. All Akt Isoforms (Akt1, Akt2, Akt3) Are Involved in Normal Hearing, but Only Akt2 and Akt3 Are Involved in Auditory Hair Cell Survival in the Mammalian Inner Ear

    PubMed Central

    Brand, Yves; Levano, Soledad; Radojevic, Vesna; Naldi, Arianne Monge; Setz, Cristian; Ryan, Allen F.; Pak, Kwang; Hemmings, Brian A.; Bodmer, Daniel

    2015-01-01

    The kinase Akt is a key downstream mediator of the phosphoinositide-3-kinase signaling pathway and participates in a variety of cellular processes. Akt comprises three isoforms each encoded by a separate gene. There is evidence to indicate that Akt is involved in the survival and protection of auditory hair cells in vitro. However, little is known about the physiological role of Akt in the inner ear—especially in the intact animal. To elucidate this issue, we first analyzed the mRNA expression of the three Akt isoforms in the inner ear of C57/BL6 mice by real-time PCR. Next, we tested the susceptibility to gentamicin-induced auditory hair cell loss in isoform-specific Akt knockout mice compared to wild-types (C57/BL6) in vitro. To analyze the effect of gene deletion in vivo, hearing and cochlear microanatomy were evaluated in Akt isoform knockout animals. In this study, we found that all three Akt isoforms are expressed in the cochlea. Our results further indicate that Akt2 and Akt3 enhance hair cell resistance to ototoxicity, while Akt1 does not. Finally, we determined that untreated Akt1 and Akt2/Akt3 double knockout mice display significant hearing loss, indicating a role for these isoforms in normal hearing. Taken together, our results indicate that each of the Akt isoforms plays a distinct role in the mammalian inner ear. PMID:25811375

  16. Haploinsufficiency of Akt1 Prolongs the Lifespan of Mice

    PubMed Central

    Nojima, Aika; Yamashita, Masakatsu; Yoshida, Yohko; Shimizu, Ippei; Ichimiya, Harumi; Kamimura, Naomi; Kobayashi, Yoshio; Ohta, Shigeo; Ishii, Naoaki; Minamino, Tohru

    2013-01-01

    There is increasing evidence that nutrient-sensing machinery is critically involved in the regulation of aging. The insulin/insulin-like growth factor-1 signaling pathway is the best-characterized pathway with an influence on longevity in a variety of organisms, ranging from yeast to rodents. Reduced expression of the receptor for this pathway has been reported to prolong the lifespan; however, the underlying mechanisms are largely unknown. Here we show that haploinsufficiency of Akt1 leads to an increase of the lifespan in mice. Akt1+/– mice had a lower body weight than their littermates with less fat mass and normal glucose metabolism. Ribosomal biogenesis and the mitochondrial DNA content were significantly reduced in these mice, along with a decrease of oxidative stress. Consistent with the results obtained in mice, inhibition of Akt-1 promoted longevity in nematodes (Caenorhabditis elegans), whereas activation of Akt-1 shortened the lifespan. Inhibition of Akt-1 led to a decrease of ribosomal gene expression and the mitochondrial DNA content in both human cells and nematodes. Moreover, deletion of ribosomal gene expression resulted in a decrease of the mitochondrial DNA content and normalized the lifespan shortened by Akt-1 activation in nematodes. These results suggest that an increase of mitochondrial amount and energy expenditure associated with enhanced protein synthesis accelerates both aging and the onset of age-associated diseases. PMID:23935948

  17. Specific serum protein levels in women using intrauterine contraceptive device.

    PubMed

    Wiedermann, D; Kríz, J; Cídl, K

    1980-01-01

    The report is concerned with the levels of 17 specific serum proteins in 46 women using plastic nonmedicated intrauterine contraceptive device (IUCD) Dana-Super. Blood samplings were carried out three times: just before the IUCD introduction, 30 and 54 weeks after the insertion of IUCD. The following proteins except haptoglobin were quantitatively determined by radial immunodiffusion: prealbumin, albumin, orosomucoid, alpha 1-antitrypsin, ceruloplasmin, alpha 2HS-glycoprotein, alpha 2-macroglobulin, hemopexin, C3-component, transferrin, beta 2-glycoprotein I, C-reactive protein and immunoglobulins IgG, IgA, IgM and IgD. Moderately increased values were found for alpha 2HS-glycoprotein and beta 2-glycoprotein I in sera taken 30 weeks after the insertion of IUCD. AT the same time the augmentation of alpha 1-antitrypsin was established. This might be evoked by the raised protease activity in biological fluids of genital region. The raise in consequence of IUCD application of transferrin and the decrease of haptoglobin at the first postinsertion examination and the decrease of hemopexin and albumin at the second may be associated with higher menstrual bleeding followed by iron deficiency. All other proteins as well as the acute phase proteins showed only minor if any differences as compared with the corresponding start values. Similarly, there is no evidence of a systemic immunoglobulin response to IUCD use.

  18. Mechanism of estrogen-mediated attenuation of hepatic injury following trauma-hemorrhage: Akt-dependent HO-1 up-regulation.

    PubMed

    Hsu, Jun-Te; Kan, Wen-Hong; Hsieh, Chi-Hsun; Choudhry, Mashkoor A; Schwacha, Martin G; Bland, Kirby I; Chaudry, Irshad H

    2007-10-01

    Protein kinase B (Akt) is known to be involved in proinflammatory and chemotactic events in response to injury. Akt activation also leads to the induction of heme oxygenase (HO)-1. Up-regulation of HO-1 mediates potent, anti-inflammatory effects and attenuates organ injury. Although studies have shown that 17beta-estradiol (E2) prevents organ damage following trauma-hemorrhage, it remains unknown whether Akt/HO-1 plays any role in E2-mediated attenuation of hepatic injury following trauma-hemorrhage. To study this, male rats underwent trauma-hemorrhage (mean blood pressure, approximately 40 mmHg for 90 min), followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, E2 (1 mg/kg body weight), E2 plus the PI-3K inhibitor (Wortmannin), or the estrogen receptor (ER) antagonist (ICI 182,780). At 2 h after sham operation or trauma-hemorrhage, plasma alpha-GST and hepatic tissue myeloperoxidase (MPO) activity, IL-6, TNF-alpha, ICAM-1, cytokine-induced neutrophil chemoattractant-1, and MIP-2 levels were measured. Hepatic Akt and HO-1 protein levels were also determined. Trauma-hemorrhage increased hepatic injury markers (alpha-GST and MPO activity), cytokines, ICAM-1, and chemokine levels. These parameters were markedly improved in the E2-treated rats following trauma-hemorrhage. E2 treatment also increased hepatic Akt activation and HO-1 expression compared with vehicle-treated, trauma-hemorrhage rats, which were abolished by coadministration of Wortmannin or ICI 182,780. These results suggest that the salutary effects of E2 on hepatic injury following trauma-hemorrhage are in part mediated via an ER-related, Akt-dependent up-regulation of HO-1.

  19. FOXM1 confers resistance to gefitinib in lung adenocarcinoma via a MET/AKT-dependent positive feedback loop.

    PubMed

    Wang, Yu; Zhang, Weiwei; Wen, Li; Yang, Huiling; Wen, Mingling; Yun, Yuyu; Zhao, Lisheng; Zhu, Xiaofei; Tian, Li; Luo, Erping; Li, Yu; Liu, Wenchao; Wen, Ning

    2016-09-13

    Gefitinib resistance remains a major problem in the treatment of lung adenocarcinoma. However, the molecular mechanisms of gefitinib resistance are not fully understood. In this study, we characterized the critical role of transcription factor Forkhead box protein M1 (FOXM1) in gefitinib resistance of lung adenocarcinoma cells. In vitro drug sensitivity assays demonstrated that FOXM1 inhibition sensitized PC9/GR and HCC827/GR cells to gefitinib, whereas FOXM1 overexpression enhanced PC9 and HCC827 cell resistance to gefitinib. Increased FOXM1 resulted in the upregulation of hepatocyte growth factor receptor (MET), which led to activation of the protein kinase B (AKT) pathway, whereas knockdown of FOXM1 did the opposite. FOXM1 bound directly to the MET promoter regions and regulated the promoter activities and the expression of MET at the transcriptional level. Moreover, MET/AKT pathway upregulated the expression of FOXM1 in lung adenocarcinoma cells. Inhibition of pAKT by LY294002 or inhibition of pMET by PHA-665752 significantly inhibited the expression of FOXM1 in lung adenocarcinoma cells. Importantly, we further demonstrated that the expression levels of FOXM1, pAKT and MET were significantly increased in lung adenocarcinoma tissues relative to normal lung tissues, and these three biomarkers were concomitantly overexpressed in lung adenocarcinoma tissues. Taken together, our results indicate that FOXM1 promotes acquired resistance to gefitinib of lung adenocarcinoma cells, and FOXM1 crosstalks with MET/AKT signaling to form a positive feedback loop to promote lung adenocarcinoma development.

  20. FOXM1 confers resistance to gefitinib in lung adenocarcinoma via a MET/AKT-dependent positive feedback loop

    PubMed Central

    Wen, Mingling; Yun, Yuyu; Zhao, Lisheng; Zhu, Xiaofei; Tian, Li; Luo, Erping; Li, Yu; Liu, Wenchao; Wen, Ning

    2016-01-01

    Gefitinib resistance remains a major problem in the treatment of lung adenocarcinoma. However, the molecular mechanisms of gefitinib resistance are not fully understood. In this study, we characterized the critical role of transcription factor Forkhead box protein M1 (FOXM1) in gefitinib resistance of lung adenocarcinoma cells. In vitro drug sensitivity assays demonstrated that FOXM1 inhibition sensitized PC9/GR and HCC827/GR cells to gefitinib, whereas FOXM1 overexpression enhanced PC9 and HCC827 cell resistance to gefitinib. Increased FOXM1 resulted in the upregulation of hepatocyte growth factor receptor (MET), which led to activation of the protein kinase B (AKT) pathway, whereas knockdown of FOXM1 did the opposite. FOXM1 bound directly to the MET promoter regions and regulated the promoter activities and the expression of MET at the transcriptional level. Moreover, MET/AKT pathway upregulated the expression of FOXM1 in lung adenocarcinoma cells. Inhibition of pAKT by LY294002 or inhibition of pMET by PHA-665752 significantly inhibited the expression of FOXM1 in lung adenocarcinoma cells. Importantly, we further demonstrated that the expression levels of FOXM1, pAKT and MET were significantly increased in lung adenocarcinoma tissues relative to normal lung tissues, and these three biomarkers were concomitantly overexpressed in lung adenocarcinoma tissues. Taken together, our results indicate that FOXM1 promotes acquired resistance to gefitinib of lung adenocarcinoma cells, and FOXM1 crosstalks with MET/AKT signaling to form a positive feedback loop to promote lung adenocarcinoma development. PMID:27494877

  1. Multiple host kinases contribute to Akt activation during Salmonella infection.

    PubMed

    Roppenser, Bernhard; Kwon, Hyunwoo; Canadien, Veronica; Xu, Risheng; Devreotes, Peter N; Grinstein, Sergio; Brumell, John H

    2013-01-01

    SopB is a type 3 secreted effector with phosphatase activity that Salmonella employs to manipulate host cellular processes, allowing the bacteria to establish their intracellular niche. One important function of SopB is activation of the pro-survival kinase Akt/protein kinase B in the infected host cell. Here, we examine the mechanism of Akt activation by SopB during Salmonella infection. We show that SopB-mediated Akt activation is only partially sensitive to PI3-kinase inhibitors LY294002 and wortmannin in HeLa cells, suggesting that Class I PI3-kinases play only a minor role in this process. However, depletion of PI(3,4) P2/PI(3-5) P3 by expression of the phosphoinositide 3-phosphatase PTEN inhibits Akt activation during Salmonella invasion. Therefore, production of PI(3,4) P2/PI(3-5) P3 appears to be a necessary event for Akt activation by SopB and suggests that non-canonical kinases mediate production of these phosphoinositides during Salmonella infection. We report that Class II PI3-kinase beta isoform, IPMK and other kinases identified from a kinase screen all contribute to Akt activation during Salmonella infection. In addition, the kinases required for SopB-mediated activation of Akt vary depending on the type of infected host cell. Together, our data suggest that Salmonella has evolved to use a single effector, SopB, to manipulate a remarkably large repertoire of host kinases to activate Akt for the purpose of optimizing bacterial replication in its host.

  2. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability

    PubMed Central

    Silva, Ana; Yunes, J. Andrés; Cardoso, Bruno A.; Martins, Leila R.; Jotta, Patrícia Y.; Abecasis, Miguel; Nowill, Alexandre E.; Leslie, Nick R.; Cardoso, Angelo A.; Barata, Joao T.

    2008-01-01

    Mutations in the phosphatase and tensin homolog (PTEN) gene leading to PTEN protein deletion and subsequent activation of the PI3K/Akt signaling pathway are common in cancer. Here we show that PTEN inactivation in human T cell acute lymphoblastic leukemia (T-ALL) cells is not always synonymous with PTEN gene lesions and diminished protein expression. Samples taken from patients with T-ALL at the time of diagnosis very frequently showed constitutive hyperactivation of the PI3K/Akt pathway. In contrast to immortalized cell lines, most primary T-ALL cells did not harbor PTEN gene alterations, displayed normal PTEN mRNA levels, and expressed higher PTEN protein levels than normal T cell precursors. However, PTEN overexpression was associated with decreased PTEN lipid phosphatase activity, resulting from casein kinase 2 (CK2) overexpression and hyperactivation. In addition, T-ALL cells had constitutively high levels of ROS, which can also downmodulate PTEN activity. Accordingly, both CK2 inhibitors and ROS scavengers restored PTEN activity and impaired PI3K/Akt signaling in T-ALL cells. Strikingly, inhibition of PI3K and/or CK2 promoted T-ALL cell death without affecting normal T cell precursors. Overall, our data indicate that T-ALL cells inactivate PTEN mostly in a nondeletional, posttranslational manner. Pharmacological manipulation of these mechanisms may open new avenues for T-ALL treatment. PMID:18830414

  3. Tetrandrine inhibits migration and invasion of human renal cell carcinoma by regulating Akt/NF-κB/MMP-9 signaling

    PubMed Central

    Wang, Ke; Fan, Yizeng; Chen, Jiaqi; Ma, Jianbin; Wang, Xinyang; He, Dalin; Zeng, Jin; Li, Lei

    2017-01-01

    Renal cell carcinoma (RCC) is known as one of the most lethal malignancies in the urological system because of its high incidence of metastasis. Tetrandrine (Tet), a traditional Chinese herbal medicine, exerts a potent anti-cancer effect in a variety of cancer cells. However, the anti-metastatic effect of Tet and its possible mechanism in RCC is still unclear. The present study revealed that Tet significantly suppressed the migration and invasion of RCC 786-O and 769-P cells in vitro. Mechanistically, the protein levels of matrix metalloproteinases 9 (MMP-9), phosphorylated PI3K, PDK1, Akt and NF-κB were markedly reduced after Tet treatment. Moreover, co-treatment with LY294002 (PI3K inhibitor) could further enhance the Tet-inhibited migration and invasion, and the NF-κB and MMP-9 protein levels were further decreased. Similar results were observed after PDTC (NF-κB inhibitor) co-treatment. Conversely, SC79, an Akt activator, could partially reverse the anti-metastatic effects of Tet, accompanied by the restoration of NF-κB and MMP-9 protein levels. In conclusion, the current results indicated that Tet inhibited migration and invasion of RCC partially by regulating Akt/NF-κB/MMP-9 signaling pathway, suggesting that Tet may be a potential therapeutic candidate against metastatic RCC. PMID:28288190

  4. Tetrandrine inhibits migration and invasion of human renal cell carcinoma by regulating Akt/NF-κB/MMP-9 signaling.

    PubMed

    Chen, Shurui; Liu, Wei; Wang, Ke; Fan, Yizeng; Chen, Jiaqi; Ma, Jianbin; Wang, Xinyang; He, Dalin; Zeng, Jin; Li, Lei

    2017-01-01

    Renal cell carcinoma (RCC) is known as one of the most lethal malignancies in the urological system because of its high incidence of metastasis. Tetrandrine (Tet), a traditional Chinese herbal medicine, exerts a potent anti-cancer effect in a variety of cancer cells. However, the anti-metastatic effect of Tet and its possible mechanism in RCC is still unclear. The present study revealed that Tet significantly suppressed the migration and invasion of RCC 786-O and 769-P cells in vitro. Mechanistically, the protein levels of matrix metalloproteinases 9 (MMP-9), phosphorylated PI3K, PDK1, Akt and NF-κB were markedly reduced after Tet treatment. Moreover, co-treatment with LY294002 (PI3K inhibitor) could further enhance the Tet-inhibited migration and invasion, and the NF-κB and MMP-9 protein levels were further decreased. Similar results were observed after PDTC (NF-κB inhibitor) co-treatment. Conversely, SC79, an Akt activator, could partially reverse the anti-metastatic effects of Tet, accompanied by the restoration of NF-κB and MMP-9 protein levels. In conclusion, the current results indicated that Tet inhibited migration and invasion of RCC partially by regulating Akt/NF-κB/MMP-9 signaling pathway, suggesting that Tet may be a potential therapeutic candidate against metastatic RCC.

  5. Genetic Evidence Supports a Major Role for Akt1 in VSMCs During Atherogenesis

    PubMed Central

    Rotllan, Noemi; Wanschel, Amarylis C.; Fernandez-Hernando, Ana; Salerno, Alessandro G.; Offermanns, Stefan; Sessa, William C.; Fernández-Hernando, Carlos

    2015-01-01

    Rationale Coronary artery disease (CAD), the direct result of atherosclerosis, is the most common cause of death in Western societies. Vascular smooth muscle cell (VSMC) apoptosis occurs during the progression of atherosclerosis and in advanced lesions, promotes plaque necrosis, a common feature of high-risk/vulnerable atherosclerotic plaques. Akt1, a serine-threonine protein kinase, regulates several key endothelial cell (EC) and VSMC functions including cell growth, migration, survival and vascular tone. While global deficiency of Akt1 results in impaired angiogenesis and massive atherosclerosis, the specific contribution of VSMC Akt1 remains poorly characterized. Objective To investigate the contribution of VSMC Akt1 during atherogenesis and in established atherosclerotic plaques. Methods and Results We generated two mouse models in which Akt1 expression can be suppressed specifically in VSCMs before (Apoe−/−Akt1fl/flSm22αCRE) and after (Apoe−/−Akt1fl/flSM-MHC-CreERT2E) the formation of atherosclerotic plaques. This approach allows us to interrogate the role of Akt1 during the initial and late steps of atherogenesis. Absence of Akt1 in VSMCs during the progression of atherosclerosis results in larger atherosclerotic plaques characterized by bigger necrotic core areas, enhanced VSMC apoptosis and reduced fibrous cap and collagen content. In contrast, VSMC Akt1 inhibition in established atherosclerotic plaques does not influence lesion size but markedly reduces the relative fibrous cap area in plaques and increases VSMC apoptosis. Conclusions Akt1 expression in VSMCs influences early and late stages of atherosclerosis. Absence of Akt1 in VSMCs induces features of plaque vulnerability including fibrous cap thinning and extensive necrotic core areas. These observations suggest that interventions enhancing Akt1 expression specifically in VSMCs may lessen plaque progression. PMID:25868464

  6. Real-time imaging nuclear translocation of Akt1 in HCC cells

    SciTech Connect

    Zhu, Li; Li, Jinjun; He, Xianghuo

    2007-05-18

    Akt is one of the critical mediators in cellular signaling, and overactivation of Akt related pathway frequently occurs in hepatocellular carcinoma (HCC). In this study, we presented that Akt was upregulated in HCC cell lines, and its active phosphorylated form was mainly located in the nucleus. Employing the laser confocal techniques for imaging intracellular protein dynamics, we monitored the transnuclear movement of GFP-tagged wild-type Akt1 (Akt1-WT-GFP) and its inactive mutant (Akt1-T308A/S473A-GFP) in live SMMC-7721 HCC cells, and both of fusion proteins were found to distribute over the cytoplasm and nucleus. Moreover, it was found that platelet derived growth factor (PDGF) was able to accelerate the nuclear translocation of wild-type Akt1 in HCC cells but failed to speed up the motion of the mutant. It was demonstrated that activation of phosphatidylinositol 3-kinase (PI3K) and Akt1 facilitated the nuclear translocation of Akt1, but the phosphorylation at threonine 308 and serine 473 was not prerequisite.

  7. Nitric Oxide Synthase and Breast Cancer: Role of TIMP-1 in NO-mediated Akt Activation

    PubMed Central

    Ridnour, Lisa A.; Barasch, Kimberly M.; Windhausen, Alisha N.; Dorsey, Tiffany H.; Lizardo, Michael M.; Yfantis, Harris G.; Lee, Dong H.; Switzer, Christopher H.; Cheng, Robert Y. S.; Heinecke, Julie L.; Brueggemann, Ernst; Hines, Harry B.; Khanna, Chand; Glynn, Sharon A.; Ambs, Stefan; Wink, David A.

    2012-01-01

    Prediction of therapeutic response and cancer patient survival can be improved by the identification of molecular markers including tumor Akt status. A direct correlation between NOS2 expression and elevated Akt phosphorylation status has been observed in breast tumors. Tissue inhibitor matrix metalloproteinase-1 (TIMP-1) has been proposed to exert oncogenic properties through CD63 cell surface receptor pathway initiation of pro-survival PI3k/Akt signaling. We employed immunohistochemistry to examine the influence of TIMP-1 on the functional relationship between NOS2 and phosphorylated Akt in breast tumors and found that NOS2-associated Akt phosphorylation was significantly increased in tumors expressing high TIMP-1, indicating that TIMP-1 may further enhance NO-induced Akt pathway activation. Moreover, TIMP-1 silencing by antisense technology blocked NO-induced PI3k/Akt/BAD phosphorylation in cultured MDA-MB-231 human breast cancer cells. TIMP-1 protein nitration and TIMP-1/CD63 co-immunoprecipitation was observed at NO concentrations that induced PI3k/Akt/BAD pro-survival signaling. In the survival analysis, elevated tumor TIMP-1 predicted poor patient survival. This association appears to be mainly restricted to tumors with high NOS2 protein. In contrast, TIMP-1 did not predict poor survival in patient tumors with low NOS2 expression. In summary, our findings suggest that tumors with high TIMP-1 and NOS2 behave more aggressively by mechanisms that favor Akt pathway activation. PMID:22957045

  8. Angiotensin II Signaling in Human Preadipose Cells: Participation of ERK1,2-Dependent Modulation of Akt

    PubMed Central

    Dünner, Natalia; Quezada, Carolina; Berndt, F. Andrés; Cánovas, José; Rojas, Cecilia V.

    2013-01-01

    The renin-angiotensin system expressed in adipose tissue has been implicated in the modulation of adipocyte formation, glucose metabolism, triglyceride accumulation, lipolysis, and the onset of the adverse metabolic consequences of obesity. As we investigated angiotensin II signal transduction mechanisms in human preadipose cells, an interplay of extracellular-signal-regulated kinases 1 and 2 (ERK1,2) and Akt/PKB became evident. Angiotensin II caused attenuation of phosphorylated Akt (p-Akt), at serine 473; the p-Akt/Akt ratio decreased to 0.5±0.2-fold the control value without angiotensin II (p<0.001). Here we report that the reduction of phosphorylated Akt associates with ERK1,2 activities. In the absence of angiotensin II, inhibition of ERK1,2 activation with U0126 or PD98059 resulted in a 2.1±0.5 (p<0.001) and 1.4±0.2-fold (p<0.05) increase in the p-Akt/Akt ratio, respectively. In addition, partial knockdown of ERK1 protein expression by the short hairpin RNA technique also raised phosphorylated Akt in these cells (the p-Akt/Akt ratio was 1.5±0.1-fold the corresponding control; p<0.05). Furthermore, inhibition of ERK1,2 activation with U0126 prevented the reduction of p-Akt/Akt by angiotensin II. An analogous effect was found on the phosphorylation status of Akt downstream effectors, the forkhead box (Fox) proteins O1 and O4. Altogether, these results indicate that angiotensin II signaling in human preadipose cells involves an ERK1,2-dependent attenuation of Akt activity, whose impact on the biological functions under its regulation is not fully understood. PMID:24098385

  9. Estrogen rapidly phosphorylates AMPK, Akt, and AS160 in isolated rat soleus muscles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogen status is positively correlated with whole body insulin sensitivity, however direct effects of estrogen on skeletal muscle glucose uptake have not been demonstrated. The aim of this study was to determine if estrogen can acutely activate Akt, AMP-activated protein kinase (AMPK), and/or Akt...

  10. AKT1, LKB1, and YAP1 revealed as MYC interactors with NanoLuc-based protein-fragment complementation assay. | Office of Cancer Genomics

    Cancer.gov

    The c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity. Here we report the development of a NanoLuc®-based protein-fragment complementation assay (NanoPCA) and mapping of the MYC protein interaction hub in live mammalian cells.

  11. Dissociation between the translocation and the activation of Akt in fMLP-stimulated human neutrophils--effect of prostaglandin E2.

    PubMed

    Burelout, Chantal; Naccache, Paul H; Bourgoin, Sylvain G

    2007-06-01

    PGE(2) and other cAMP-elevating agents are known to down-regulate most functions stimulated by fMLP in human polymorphonuclear neutrophils. We reported previously that the inhibitory potential of PGE(2) resides in its capacity to suppress fMLP-stimulated PI-3Kgamma activation via the PGE(2) receptor EP(2) and hence, to decrease phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P(3)] formation. Akt activity is stimulated by fMLP through phosphorylation on threonine 308 (Thr308) and serine 473 (Ser473) by 3-phosphoinositide-dependent kinase 1 (PDK1) and MAPK-AP kinase (APK)-APK-2 (MAPKAPK-2), respectively, in a PI-3K-dependent manner. Despite the suppression of fMLP-induced PI-3Kgamma activation observed in the presence of PGE(2), we show that Akt is fully phosphorylated on Thr308 and Ser473. However, fMLP-induced Akt translocation is decreased markedly in this context. PGE(2) does not affect the phosphorylation of MAPKAPK-2 but decreases the translocation of PDK1 induced by fMLP. Other cAMP-elevating agents such as adenosine (Ado) similarly block the fMLP-induced PI-3Kgamma activation process but do not inhibit Akt phosphorylation. However, Akt activity stimulated by fMLP is down-regulated slightly by agonists that elevate cAMP levels. Whereas protein kinase A is not involved in the maintenance of Akt phosphorylation, it is required for the inhibition of Akt translocation by PGE(2). Moreover, inhibition of fMLP-stimulated PI-3Kdelta activity by the selective inhibitor IC87114 only partially affects the late phase of Akt phosphorylation in the presence of PGE(2). Taken together, these results suggest that cAMP-elevating agents, such as PGE(2) or Ado, are able to induce an alternative mechanism of Akt activation by fMLP in which the translocation of Akt to PI(3,4,5)P(3)-enriched membranes is not required prior to its phosphorylation.

  12. The phosphoinositide 3-kinase/Akt-signal pathway mediates proliferation and secretory function of hepatic sinusoidal endothelial cells in rats after partial hepatectomy

    SciTech Connect

    Chen Ping . E-mail: chenping@263.net; Zhang Lin; Ding Jiming; Zhu Jin; Li Ying; Duan Shigang; Yan Hongtao; Huan Yongwei; Dong Jiahong

    2006-04-14

    Objective: To investigate the role of AKT signaling pathway in hepatic sinusoidal endothelial cells (SECs) early after partial hepatectomy in rats and the regulatory mechanisms involved. Methods: The animal model of 70% hepatectomy was made. Hepatic SECs were isolated and cultured according to Braet et al.'s method with some modifications. The cultured hepatic SECs were divided into two groups: 70% partial hepatectomy groups and LY294002 group (LY). We observed the expressions of AKT and NF-{kappa}B in cultured hepatic SECs by Western blot, measured the levels of NO, NOs, IL-6, and HGF in the supernatants of hepatic SEC cultures and [{sup 3}H]thymidine incorporation, and analyzed cell cycle of cultured hepatic SECs by flow cytometer. The relationship of the Akt pathway with secretions and proliferation of hepatic SECs after partial hepatectomy was probed. Results: The levels of Akt protein expression increased significantly after partial hepatectomy in OG group and with a peak at 24 h post operation. Meanwhile, there was a markedly increase in phosphorylated Akt protein during 2-72 h after operation. But the expression and activity of Akt protein did not change significantly after partial hepatectomy in the LY group. So, partial hepatectomy can marked induce Akt expression and result in rapid and marked phosphorylation of Akt from 2 to 72 h thereafter. The changes of NF-{kappa}B expression in cultured hepatic SECs were similar to those of Akt expression after operation. The concentrations of HGF and IL-6 in the supernatants of cultured hepatic SECs were relatively low in the LY group, and were markedly increased after partial hepatectomy, with a peak at 24 h in the OG group. There were significant differences between the OG and LY groups at 6 and 24 h (P < 0.05). Both NO and NOS secretion was increased in the OG group compared to the LY group within 24 h after partial hepatectomy. But the secretion of NO and NOS was increased more markedly in the LY group than that

  13. Akt2 and nucleophosmin/B23 function as an oncogenic unit in human lung cancer cells

    SciTech Connect

    Kim, Chung Kwon; Nguyen, Truong L.X.; Lee, Sang Bae; Park, Sang Bum; Lee, Kyung-Hoon; Cho, Sung-Woo; Ahn, Jee-Yin

    2011-04-15

    The signaling network of protein kinase B(PKB)/Akt has been implicated in survival of lung cancer cells. However, understanding the relative contribution of the different isoform of Akt network is nontrival. Here, we report that Akt2 is highly expressed in human lung adenocarcinoma cell line A549 cells. Suppression of Akt2 expression in A549 cells results in notable inhibition of cell poliferation, soft agar growth, and invasion, accompanying by a decrease of nucleophosmin/B23 protein. Overexpression of Akt1 restores cancerous growth of A549 cells in B23-knockdown (KD) cells while Akt2 overexpression did not restore proliferating potential in cells with downregulated B23, thus suggesting Akt2 requires B23 to drive proliferation of lung cancer cell. Loss of functional Akt2 and B23 has similar defects on cell proliferation, apoptotic resistance and cell cycle regulation, while loss of Akt1 has less defects on cell proliferation, survial and cell cycle progression in A549 cells. Moreover, overexpression of B23 rescues the proliferative block induced as a consequence of loss of Akt2. Thus our data suggest that Akt2/B23 functions as an oncogenic unit to drive tumorigenesis of A549 lung cancer cells.

  14. Effect of Crude Protein Levels in Concentrate and Concentrate Levels in Diet on In vitro Fermentation.

    PubMed

    Van Dung, Dinh; Shang, Weiwei; Yao, Wen

    2014-06-01

    The effect of concentrate mixtures with crude protein (CP) levels 10%, 13%, 16%, and 19% and diets with roughage to concentrate ratios 80:20, 60:40, 40:60, and 20:80 (w/w) were determined on dry matter (DM) and organic matter (OM) digestibility, and fermentation metabolites using an in vitro fermentation technique. In vitro fermented attributes were measured after 4, 24, and 48 h of incubation respectively. The digestibility of DM and OM, and total volatile fatty acid (VFA) increased whereas pH decreased with the increased amount of concentrate in the diet (p<0.001), however CP levels of concentrate did not have any influence on these attributes. Gas production reduced with increased CP levels, while it increased with increasing concentrate levels. Ammonia nitrogen (NH3-N) concentration and microbial CP production increased significantly (p<0.05) by increasing CP levels and with increasing concentrate levels in diet as well, however, no significant difference was found between 16% and 19% CP levels. Therefore, 16% CP in concentrate and increasing proportion of concentrate up to 80% in diet all had improved digestibility of DM and organic matter, and higher microbial protein production, with improved fermentation characteristics.

  15. Gomisin N Inhibits Melanogenesis through Regulating the PI3K/Akt and MAPK/ERK Signaling Pathways in Melanocytes

    PubMed Central

    Chae, Jae Kyoung; Subedi, Lalita; Jeong, Minsun; Park, Yong Un; Kim, Chul Young; Kim, Hakwon; Kim, Sun Yeou

    2017-01-01

    Gomisin N, one of the lignan compounds found in Schisandra chinensis has been shown to possess anti-oxidative, anti-tumorigenic, and anti-inflammatory activities in various studies. Here we report, for the first time, the anti-melenogenic efficacy of Gomisin N in mammalian cells as well as in zebrafish embryos. Gomisin N significantly reduced the melanin content without cellular toxicity. Although it was not capable of modulating the catalytic activity of mushroom tyrosinase in vitro, Gomisin N downregulated the expression levels of key proteins that function in melanogenesis. Gomisin N downregulated melanocortin 1 receptor (MC1R), adenylyl cyclase 2, microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). In addition, Gomisin N-treated Melan-A cells exhibited increased p-Akt and p-ERK levels, which implies that the activation of the PI3K/Akt and MAPK/ERK pathways may function to inhibit melanogenesis. We also validated that Gomisin N reduced melanin production by repressing the expression of MITF, tyrosinase, TRP-1, and TRP-2 in mouse and human cells as well as in developing zebrafish embryos. Collectively, we conclude that Gomisin N inhibits melanin synthesis by repressing the expression of MITF and melanogenic enzymes, probably through modulating the PI3K/Akt and MAPK/ERK pathways. PMID:28241436

  16. Gomisin N Inhibits Melanogenesis through Regulating the PI3K/Akt and MAPK/ERK Signaling Pathways in Melanocytes.

    PubMed

    Chae, Jae Kyoung; Subedi, Lalita; Jeong, Minsun; Park, Yong Un; Kim, Chul Young; Kim, Hakwon; Kim, Sun Yeou

    2017-02-22

    Gomisin N, one of the lignan compounds found in Schisandra chinensis has been shown to possess anti-oxidative, anti-tumorigenic, and anti-inflammatory activities in various studies. Here we report, for the first time, the anti-melenogenic efficacy of Gomisin N in mammalian cells as well as in zebrafish embryos. Gomisin N significantly reduced the melanin content without cellular toxicity. Although it was not capable of modulating the catalytic activity of mushroom tyrosinase in vitro, Gomisin N downregulated the expression levels of key proteins that function in melanogenesis. Gomisin N downregulated melanocortin 1 receptor (MC1R), adenylyl cyclase 2, microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). In addition, Gomisin N-treated Melan-A cells exhibited increased p-Akt and p-ERK levels, which implies that the activation of the PI3K/Akt and MAPK/ERK pathways may function to inhibit melanogenesis. We also validated that Gomisin N reduced melanin production by repressing the expression of MITF, tyrosinase, TRP-1, and TRP-2 in mouse and human cells as well as in developing zebrafish embryos. Collectively, we conclude that Gomisin N inhibits melanin synthesis by repressing the expression of MITF and melanogenic enzymes, probably through modulating the PI3K/Akt and MAPK/ERK pathways.

  17. Autophagy supports survival and phototransduction protein levels in rod photoreceptors

    PubMed Central

    Zhou, Z; Doggett, T A; Sene, A; Apte, R S; Ferguson, T A

    2015-01-01

    Damage and loss of the postmitotic photoreceptors is a leading cause of blindness in many diseases of the eye. Although the mechanisms of photoreceptor death have been extensively studied, few studies have addressed mechanisms that help sustain these non-replicating neurons for the life of an organism. Autophagy is an intracellular pathway where cytoplasmic constituents are delivered to the lysosomal pathway for degradation. It is not only a major pathway activated in response to cellular stress, but is also important for cytoplasmic turnover and to supply the structural and energy needs of cells. We examined the importance of autophagy in photoreceptors by deleting the essential autophagy gene Atg5 specifically in rods. Loss of autophagy led to progressive degeneration of rod photoreceptors beginning at 8 weeks of age such that by 44 weeks few rods remained. Cone photoreceptor numbers were only slightly diminished following rod degeneration but their function was significantly decreased. Rod cell death was apoptotic but was not dependent on daily light exposure or accelerated by intense light. Although the light-regulated translocation of the phototransduction proteins arrestin and transducin were unaffected in rods lacking autophagy, Atg5-deficient rods accumulated transducin-α as they degenerated suggesting autophagy might regulate the level of this protein. This was confirmed when the light-induced decrease in transducin was abolished in Atg5-deficient rods and the inhibition of autophagy in retinal explants cultures prevented its degradation. These results demonstrate that basal autophagy is essential to the long-term health of rod photoreceptors and a critical process for maintaining optimal levels of the phototransduction protein transducin-α. As the lack of autophagy is associated with retinal degeneration and altered phototransduction protein degradation in the absence of harmful gene products, this process may be a viable therapeutic target where rod

  18. Inhibiting GLUT-1 expression and PI3K/Akt signaling using apigenin improves the radiosensitivity of laryngeal carcinoma in vivo.

    PubMed

    Bao, Yang-Yang; Zhou, Shui-Hong; Lu, Zhong-Jie; Fan, Jun; Huang, Ya-Ping

    2015-10-01

    Hypoxia is an important factor in radioresistance of laryngeal carcinoma. Glucose transporter-1 (GLUT-1) is an important hypoxic marker in malignant tumors, including laryngeal carcinoma. Apigenin is a natural phytoestrogen flavonoid that has potential anticancer effects. Various studies have reported that the effects of apigenin on lowering GLUT-1 expression were involved in downregulation of the PI3K/Akt pathway. Thus, apigenin may improve the radiosensitivity of laryngeal carcinoma by suppressing the expression of GLUT-1 via the PI3K/Akt pathway. The effect of GLUT-1 and PI3K/Akt pathway-related factor expressions by apigenin or antisense oligonucleotides (AS-ODNs) on the radiosensitivity of laryngeal carcinoma in vivo was assessed. The xenograft volume, xenograft weight and apoptosis detection were performed to determine radiosensitivity. The results showed that apigenin or apigenin plus GLUT-1 AS-ODNs improved the radiosensitivity of xenografts. Apigenin or apigenin plus GLUT-1 reduced the expression of GLUT-1, Akt, and PI3K mRNA after X-ray radiation. We found similar results at the protein level. The results suggest that the effects of apigenin on inhibiting xenograft growth and enhancing xenograft radiosensitivity may be associated with suppressing the expression of GLUT-1 via the PI3K/Akt pathway. In addition, apigenin may enhance the effects of GLUT-1 AS-ODNs via the same mechanism.

  19. microRNA-21-induced Dissociation of PDCD4 from Rictor Contributes to Akt-IKKβ-mTORC1 axis to Regulate Select Renal Cancer Cell Invasion

    PubMed Central

    Bera, Amit; Das, Falguni; Ghosh-Choudhury, Nandini; Kasinath, Balakuntalam S.; Abboud, Hanna E.; Choudhury, Goutam Ghosh

    2014-01-01

    Renal cancer metastasis may result from oncogenic forces that contribute to the primary tumor. We have recently identified microRNA-21 as an oncogenic driver of renal cancer cells. The mechanism by which miR-21 controls renal cancer cell invasion is poorly understood. We show that miR-21 directly downregulates the proapoptotic protein PDCD4 to increase migration and invasion of ACHN and 786-O renal cancer cells as a result of phosphorylation/activation of Akt and IKKβ, which activate NFκB-dependent transcription. Constitutively active (CA) Akt or CA IKKβ blocks PDCD4-mediated inhibition and restores renal cancer cell migration and invasion. PDCD4 inhibits mTORC1 activity, which was reversed by CA IKKβ. Moreover, CA mTORC1 restores cell migration and invasion inhibited by PDCD4- and dominant negative IKKβ. Moreover, PDCD4 negatively regulates mTORC2-dependent Akt phosphorylation upstream of this cascade. We show that PDCD4 forms a complex with rictor, an exclusive component of mTORC2, and that this complex formation is reduced in renal cancer cells due to increased miR-21 expression resulting in enhanced phosphorylation of Akt. Thus our results identify a previously unrecognized signaling node where high miR-21 levels reduce rictor-PDCD4 interaction to increase phosphorylation of Akt and contribute to metastatic fitness of renal cancer cells. PMID:25016284

  20. Morphine Suppresses T helper Lymphocyte Differentiation to Th1 Type Through PI3K/AKT Pathway.

    PubMed

    Mao, Mao; Qian, Yanning; Sun, Jie

    2016-04-01

    To investigate the effect of morphine on T helper lymphocyte differentiation and PI3K/AKT pathway mechanism, CD4+ lymphocytes were treated by phorbol-myristate-acetate (25 ng/ml) (PMA) plus ionomycin (1 μg/ml) in the presence of various concentrations of morphine (25, 50, 100, 200 ng/ml) for 4 h. Th1 and Th2 subsets, supernatant cytokines, and PI3K, AKT, and protein kinase C-theta (PKC-θ) levels were detected. The Th1 cell percentage, Th1-derived cytokines, and ratio of Th1/Th2 decreased in the presence of morphine in a concentration-dependent manner. However, Th2 cell percentage kept stable after morphine treatment. The phosphorylation of PI3K and AKT decreased, but the phosphorylation of PKC-θ did not change in the presence of morphine. The decreased percentage of Th1 cells and ratio of Th1/Th2 was recovered by naloxone concentration-dependently. Morphine can inhibit the differentiation of Th1 lymphocytes and decrease the ratio of Th1/Th2 via the pathway of PI3K/AKT. The effect can be inhibited by naloxone.

  1. Impairment of insulin-stimulated Akt/GLUT4 signaling is associated with cardiac contractile dysfunction and aggravates I/R injury in STZ-diabetic Rats

    PubMed Central

    Huang, Jiung-Pang; Huang, Shiang-Suo; Deng, Jen-Ying; Hung, Li-Man

    2009-01-01

    In this study, we established systemic in-vivo evidence from molecular to organism level to explain how diabetes can aggravate myocardial ischemia-reperfusion (I/R) injury and revealed the role of insulin signaling (with specific focus on Akt/GLUT4 signaling molecules). The myocardial I/R injury was induced by the left main coronary artery occlusion for 1 hr and then 3 hr reperfusion in control, streptozotocin (STZ)-induced insulinopenic diabetes, and insulin-treated diabetic rats. The diabetic rats showed a significant decrease in heart rate, and a prolonged isovolumic relaxation (tau) which lead to decrease in cardiac output (CO) without changing total peripheral resistance (TPR). The phosphorylated Akt and glucose transporter 4 (GLUT 4) protein levels were dramatically reduced in both I/R and non-I/R diabetic rat hearts. Insulin treatment in diabetes showed improvement of contractile function as well as partially increased Akt phosphorylation and GLUT 4 protein levels. In the animals subjected to I/R, the mortality rates were 25%, 65%, and 33% in the control, diabetic, and insulin-treated diabetic group respectively. The I/R-induced arrhythmias and myocardial infarction did not differ significantly between the control and the diabetic groups. Consistent with its anti-hyperglycemic effects, insulin significantly reduced I/R-induced arrhythmias but had no effect on I/R-induced infarctions. Diabetic rat with I/R exhibited the worse hemodynamic outcome, which included systolic and diastolic dysfunctions. Insulin treatment only partially improved diastolic functions and elevated P-Akt and GLUT 4 protein levels. Our results indicate that cardiac contractile dysfunction caused by a defect in insulin-stimulated Akt/GLUT4 may be a major reason for the high mortality rate in I/R injured diabetic rats. PMID:19706162

  2. SiO2@antisense molecules covered by nepetalactone, extracted from Nepeta gloeocephala, inhibits ILK phosphorylation and downstream PKB/AKT signaling in HeLa cells.

    PubMed

    Dehghany Ashkezary, M; Aboee-Mehrizi, F; Moradi, P

    2017-01-01

    In this study, the anticancer property of SiO2@antisense molecules (SiO2@AMs) and SiO2@AM covered by nepetalactone (SiO2@AM/CN), extracted from Nepeta gloeocephala, was investigated. Here integrin-linked kinase (ILK) phosphorylation and protein kinase B/AKT (PKB/AKT) signaling was studied when HeLa cells were exposed to SiO2@AM and SiO2@AM/CN. First, N. gloeocephala was identified at the Iranian National Herbarium. Then, its essential oil (EO) was obtained by the hydrodistillation method. In the next step, 4aα,7α,7aα-nepetalactone was extracted from the EO, based on the spectroscopic data. To obtain SiO2@AM/CN, 1 ml of SiO2@AM was mixed with extracted nepetalactone and then strongly shaken for 30 min. Finally, serial concentrations (100, 50, 25 and 12.5 μg ml(-1)) of SiO2@AM and SiO2@AM/CN were prepared and then exposed to HeLa cells (2 × 10(5) cells per ml) for 24 h at 37 °C. After incubation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell-cycle analysis, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and western blots were carried out. To find ILK phosphorylation and PKB/AKT signaling, the expression of threonine-173 (Thr-173), serine-246 (Ser-246), total ILK, AKT-Ser473, AKT-Thr308 and total AKT was investigated. HeLa cells that were treated with SiO2@AM/CN had G2/M arrest. Based on the TUNEL assay, many apoptotic cells have been shown when they were exposed to SiO2@AM/CN. Importantly, SiO2@AM/CN decreased ILK phosphorylation at Thr-173 and Ser-246 without affecting total ILK levels. Moreover, SiO2@AM/CN decreased AKT-Ser473 and AKT-Thr308 phosphorylation without affecting total PKB/AKT protein.

  3. Bamboo leaf extract ameliorates diabetic nephropathy through activating the AKT signaling pathway in rats.

    PubMed

    Ying, Changjiang; Mao, Yizhen; Chen, Lei; Wang, Shanshan; Ling, Hongwei; Li, Wei; Zhou, Xiaoyan

    2017-03-27

    Diabetic nephropathy (DN) is one of the most severe diabetic complication and it is becoming become a worldwide epidemic, accounting for approximately one-third of all case of end-stage renal disease. However, the underlying mechanism and strategy to alleviate renal injury remain unclear. In the present study, we assessed the protective effect of bamboo leaf extract on the DN, and investigated the underlying mechanism by which bamboo leaf extract ameliorating DN. Diabetic rats were induced by 4 weeks high sugar and high fat diet, and then injected a single dose of STZ (35mg/kg) into abdominal cavity. Different dose of bamboo extract (50mg/kg, 100mg/kg and 200mg/kg) were orally administered every day for a period of 12 weeks. Body weight, blood glucose, glycosylated hemoglobin A1c (HbAlc), blood urea nitrogen (BUN), serum creatinine (Scr), and 24-hour urinary protein (24 h-UP) were assessed. Total superoxide dismutase (T-SOD) activity and MDA (methane dicarboxylic aldehyde, MDA) level were tested by assay kit. Microstructural changes were observed by hematoxylin-eosin (HE) staining and electron microscopy. Expression of phosphorylated ser/thr protein kinase (P-AKT), phosphorylated glycogen synthase kinase-3 beta (P-GSK-3β), B cell lymphoma/leukemia 2-associated X protein (BAX) and cleaved-cysteinyl aspartate-specific proteinase-3 (Cleaved Caspase-3) were measured by Western-Blotting (WB). Results showed that diabetic rats had weight loss, high blood glucose, HbAlc, BUN, Scr and 24-UP and T-SOD activity were increased and MDA level was decreased in diabetic rats. Moreover, hyperglycemia could injury renal tissue ultrastructure, inhibit P-AKT level and increase P-GSK-3β, BAX and Cleaved Caspase-3 levels in rats. However, bamboo leaf extract treatment could reduce body weight loss, BUN, Scr, 24 h-UP and MDA level, improve T-SOD activity and alleviate renal injury in diabetic rats. Furthermore, bamboo leaf extract increased P-AKT level, decreased P-GSK-3β, BAX and

  4. Akt Requires Glucose Metabolism to Suppress Puma Expression and Prevent Apoptosis of Leukemic T Cells*

    PubMed Central

    Coloff, Jonathan L.; Mason, Emily F.; Altman, Brian J.; Gerriets, Valerie A.; Liu, Tingyu; Nichols, Amanda N.; Zhao, Yuxing; Wofford, Jessica A.; Jacobs, Sarah R.; Ilkayeva, Olga; Garrison, Sean P.; Zambetti, Gerard P.; Rathmell, Jeffrey C.

    2011-01-01

    The PI3K/Akt pathway is activated in stimulated cells and in many cancers to promote glucose metabolism and prevent cell death. Although inhibition of Akt-mediated cell survival may provide a means to eliminate cancer cells, this survival pathway remains incompletely understood. In particular, unlike anti-apoptotic Bcl-2 family proteins that prevent apoptosis independent of glucose, Akt requires glucose metabolism to inhibit cell death. This glucose dependence may occur in part through metabolic regulation of pro-apoptotic Bcl-2 family proteins. Here, we show that activated Akt relies on glycolysis to inhibit induction of Puma, which was uniquely sensitive to metabolic status among pro-apoptotic Bcl-2 family members and was rapidly up-regulated in glucose-deficient conditions. Importantly, preventing Puma expression was critical for Akt-mediated cell survival, as Puma deficiency protected cells from glucose deprivation and Akt could not readily block Puma-mediated apoptosis. In contrast, the pro-apoptotic Bcl-2 family protein Bim was induced normally even when constitutively active Akt was expressed, yet Akt could provide protection from Bim cytotoxicity. Up-regulation of Puma appeared mediated by decreased availability of mitochondrial metabolites rather than glycolysis itself, as alternative mitochondrial fuels could suppress Puma induction and apoptosis upon glucose deprivation. Metabolic regulation of Puma was mediated through combined p53-dependent transcriptional induction and control of Puma protein stability, with Puma degraded in nutrient-replete conditions and long lived in nutrient deficiency. Together, these data identify a key role for Bcl-2 family proteins in Akt-mediated cell survival that may be critical in normal immunity and in cancer through Akt-dependent stimulation of glycolysis to suppress Puma expression. PMID:21159778

  5. PDK1 selectively phosphorylates Thr(308) on Akt and contributes to human platelet functional responses

    PubMed Central

    Dangelmaier, Carol; Manne, Bhanu Kanth; Liverani, Elizabetta; Jin, Jianguo; Bray, Paul; Kunapuli, Satya P.

    2014-01-01

    Summary 3-phosphoinositide-dependent protein kinase 1 (PDK1), a member of the protein A,G and C (AGC) family of proteins, is a Ser/Thr protein kinase that can phosphorylate and activate other protein kinases from the AGC family, including Akt at Thr308, all of which play important roles in mediating cellular responses. The functional role of PDK1 or the importance of phosphorylation of Akt on Thr308 for its activity has not been investigated in human platelets. In this study, we tested two pharmacological inhibitors of PDK1, BX795 and BX912, to assess the role of Thr308 phosphorylation on Akt. PAR4-induced phosphorylation of Akt onThr308 was inhibited by BX795 without affecting phosphorylation of Akt on Ser473. The lack of Thr308 phosphorylation on Akt also led to the inhibition of PAR4-induced phosphorylation of two downstream substrates of Akt, viz. GSK3β and PRAS40. In vitro kinase activity of Akt was completely abolished if Thr308 on Akt was not phosphorylated. BX795 caused inhibition of 2-MeSADP-induced or collagen-induced aggregation, ATP secretion and thromboxane generation. Primary aggregation induced by 2-MeSADP was also inhibited in the presence of BX795. PDK1 inhibition also resulted in reduced clot retraction indicating its role in outside-in signalling. These results demonstrate that PDK1 selectively phosphorylates Thr308 on Akt thereby regulating its activity and plays a positive regulatory role in platelet physiological responses. PMID:24352480

  6. Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt.

    PubMed

    Murata, Hiroaki; Ihara, Yoshito; Nakamura, Hajime; Yodoi, Junji; Sumikawa, Koji; Kondo, Takahito

    2003-12-12

    Glutaredoxin (GRX) is a small dithiol protein involved in various cellular functions, including the redox regulation of certain enzyme activities. GRX functions via a disulfide exchange reaction by utilizing the active site Cys-Pro-Tyr-Cys. Here we demonstrated that overexpression of GRX protected cells from hydrogen peroxide (H2O2)-induced apoptosis by regulating the redox state of Akt. Akt was transiently phosphorylated, dephosphorylated, and then degraded in cardiac H9c2 cells undergoing H2O2-induced apoptosis. Under stress, Akt underwent disulfide bond formation between Cys-297 and Cys-311 and dephosphorylation in accordance with an increased association with protein phosphatase 2A. Overexpression of GRX protected Akt from H2O2-induced oxidation and suppressed recruitment of protein phosphatase 2A to Akt, resulting in a sustained phosphorylation of Akt and inhibition of apoptosis. This effect was reversed by cadmium, an inhibitor of GRX. Furthermore an in vitro assay revealed that GRX reduced oxidized Akt in concert with glutathione, NADPH, and glutathione-disulfide reductase. Thus, GRX plays an important role in protecting cells from apoptosis by regulating the redox state of Akt.

  7. Garlic Oil Suppressed Nitrosodiethylamine-Induced Hepatocarcinoma in Rats by Inhibiting PI3K-AKT-NF-κB Pathway

    PubMed Central

    Zhang, Cui-Li; Zeng, Tao; Zhao, Xiu-Lan; Xie, Ke-Qin

    2015-01-01

    To explore the underlying mechanisms for the protective effects of garlic oil (GO) against nitrosodiethylamine (NDEA)-induced hepatocarcinoma, 60 male Wistar rats were randomized into 4 groups (n=15): control group, NDEA group, and two GO plus NDEA groups. The rats in GO plus NDEA groups were pretreated with GO (20 or 40 mg/kg) for 7 days. Then, all rats except those in control group were gavaged with NDEA for 20 weeks, and the rats in GO plus NDEA groups were continuously administered with GO. The results showed that GO co-treatment significantly suppressed the NDEA-induced increases of alpha fetal protein (AFP) level in serum, nuclear atypia in H&E staining, sirius red-positive areas and proliferating cell nuclear antigen (PCNA) expression. The molecular mechanisms exploration revealed that the protein levels of phosphatidylinositol 3 kinase (PI3K)-p85, PI3K-p110, total AKT, p-AKT (Ser473) and p-AKT (Thr308) in the liver of NDEA group rats were higher than those in control group rats. In addition, NDEA treatment induced IκB degradation and NF-κB p65 phosphorylation, and up-regulated the protein levels of downstream pro-inflammatory mediators. GO co-treatment significantly reversed all the above adverse effects induced by NDEA. These results suggested that the protective effects of GO against NDEA-induced hepatocarcinoma might be associated with the suppression of PI3K- AKT-NF-κB pathway. PMID:25999787

  8. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    SciTech Connect

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung; Lee, Joo Young

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. Black-Right-Pointing-Pointer PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. Black-Right-Pointing-Pointer p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. Black-Right-Pointing-Pointer Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl{sub 2}. Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1{alpha}. A PI3K inhibitor (LY294002) attenuated CoCl{sub 2}-induced nuclear accumulation and transcriptional activation of HIF-1{alpha}. In addition, HIF-1{alpha}-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl{sub 2}-induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1{alpha}. However, p38 was not involved in HIF-1{alpha} activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K/Akt

  9. Combretastatin A4 Regulates Proliferation, Migration, Invasion, and Apoptosis of Thyroid Cancer Cells via PI3K/Akt Signaling Pathway

    PubMed Central

    Liang, Weixin; Lai, Yongqiang; Zhu, Mingzhang; Huang, Shangshu; Feng, Weizhao; Gu, Xiaoyu

    2016-01-01

    Background Combretastatin A4 (CA4) is a potential therapeutic candidate for a variety of human cancer treatments. However, the inhibitive effects of CA4 on thyroid cancer cells are still not well-clarified. This study aimed to investigate the potential effect of CA4 on thyroid cancer cells, as well as underlying mechanism. Material/Methods Human thyroid papillary carcinoma cell line TPC1 was pre-treated with 5 concentrations of CA4 (0, 1, 2, 5, or 10 μM) for 2 h. Cell proliferation was determined by 3-(4, 5-dimethyl-2- thiazolyl)-2, 5-diphenyl -2-H-tetrazolium bromide (MTT) assay. Cell migration and invasion were detected by a modified Boyden chamber assay. Moreover, cell apoptosis was detected by terminal deoxynucleotidyl (TUNEL) staining assay and flow cytometry method. Western blot analysis was performed to determine the expression changes of epithelial-mesenchymal transition (EMT)-related proteins and phosphatidylinositol-3-kinase/serine/threonine kinase (PI3K/Akt) signaling pathway proteins. Results CA4 significantly inhibited the cell proliferation, migration, and invasion, and significantly promoted cell apoptosis in a dose-dependent manner compared with the control group. The EMT-related protein levels of N-Cadherin, Vimentin, Snail1, Slug, Twist1, and ZEB1 were significantly decreased by CA4, while E-cadherin had no significant difference compared with the control group. Moreover, PI3K/Akt signaling pathway protein levels of p-PI3K and p-Akt were significantly decreased, whereas PI3K and Akt had no significant differences compared with the control group. Conclusions CA4 can inhibit proliferation, migration, and invasion and promote apoptosis of TPC1 cells. These effects might be through the PI3K/Akt signaling pathway. CA4 may be a potential therapeutic target for the treatment of thyroid cancer. PMID:27966519

  10. Cellular context–mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis

    PubMed Central

    Hellesøy, Monica; Lorens, James B.

    2015-01-01

    The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis. PMID:26023089

  11. Singularity analysis of the AKT signaling pathway reveals connections between cancer and metabolic diseases

    NASA Astrophysics Data System (ADS)

    Wang, Guanyu

    2010-12-01

    Connections between cancer and metabolic diseases may consist in the complex network of interactions among a common set of biomolecules. By applying singularity and bifurcation analysis, the phenotypes constrained by the AKT signaling pathway are identified and mapped onto the parameter space, which include cancer and certain metabolic diseases. By considering physiologic properties (sensitivity, robustness and adaptivity) the AKT pathway must possess in order to efficiently sense growth factors and nutrients, the region of normal responses is located. To optimize these properties, the intracellular concentration of the AKT protein must be sufficiently high to saturate its enzymes; the strength of the positive feedback must be stronger than that of the negative feedback. The analysis illuminates the parameter space and reveals system-level mechanisms in regulating biological functions (cell growth, survival, proliferation and metabolism) and how their deregulation may lead to the development of diseases. The analytical expressions summarize the synergistic interactions among many molecules, which provides valuable insights into therapeutic interventions. In particular, a strategy for overcoming the limitations of mTOR inhibition is proposed for cancer therapy.

  12. Labdane diterpenes protect against anoxia/reperfusion injury in cardiomyocytes: involvement of AKT activation

    PubMed Central

    Cuadrado, I; Fernández-Velasco, M; Boscá, L; de las Heras, B

    2011-01-01

    Several labdane diterpenes exert anti-inflammatory and cytoprotective actions; therefore, we have investigated whether these molecules protect cardiomyocytes in an anoxia/reperfusion (A/R) model, establishing the molecular mechanisms involved in the process. The cardioprotective activity of three diterpenes (T1, T2 and T3) was studied in the H9c2 cell line and in isolated rat cardiomyocyte subjected to A/R injury. In both cases, treatment with diterpenes T1 and T2 protected from A/R-induced apoptosis, as deduced by a decrease in the percentage of apoptotic and caspase-3 active positive cells, a decrease in the Bcl-2/Bax ratio and an increase in the expression of antiapoptotic proteins. Analysis of cell survival signaling pathways showed that diterpenes T1 and T2 added after A/R increased phospho-AKT and phospho-ERK 1/2 levels. These cardioprotective effects were lost when AKT activity was pharmacologically inhibited. Moreover, the labdane-induced cardioprotection involves activation of AMPK, suggesting a role for energy homeostasis in their mechanism of action. Labdane diterpenes (T1 and T2) also exerted cardioprotective effects against A/R-induced injury in isolated cardiomyocytes and the mechanisms involved activation of specific survival signals (PI3K/AKT pathways, ERK1/2 and AMPK) and inhibition of apoptosis. PMID:22071634

  13. The PTEN/PI3K/AKT Pathway in vivo, Cancer Mouse Models

    PubMed Central

    Carnero, Amancio; Paramio, Jesus M.

    2014-01-01

    When PI3K (phosphatidylinositol-3 kinase) is activated by receptor tyrosine kinases, it phosphorylates PIP2 to generate PIP3 and activates the signaling pathway. Phosphatase and tensin homolog deleted on chromosome 10 dephosphorylates PIP3 to PIP2, and thus, negatively regulates the pathway. AKT (v-akt murine thymoma viral oncogene homolog; protein kinase B) is activated downstream of PIP3 and mediates physiological processes. Furthermore, substantial crosstalk exists with other signaling networks at all levels of the PI3K pathway. Because of its diverse array, gene mutations, and amplifications and also as a consequence of its central role in several signal transduction pathways, the PI3K-dependent axis is frequently activated in many tumors and is an attractive therapeutic target. The preclinical testing and analysis of these novel therapies requires appropriate and well-tailored systems. Mouse models in which this pathway has been genetically modified have been essential in understanding the role that this pathway plays in the tumorigenesis process. Here, we review cancer mouse models in which the PI3K/AKT pathway has been genetically modified. PMID:25295225

  14. AKT-phosphorylated FOXO1 suppresses ERK activation and chemoresistance by disrupting IQGAP1-MAPK interaction.

    PubMed

    Pan, Chun-Wu; Jin, Xin; Zhao, Yu; Pan, Yunqian; Yang, Jing; Karnes, R Jeffrey; Zhang, Jun; Wang, Liguo; Huang, Haojie

    2017-03-09

    Nuclear FOXO proteins act as tumor suppressors by transcriptionally activating genes involved in apoptosis and cell cycle arrest, and these anticancer functions are inhibited by AKT-induced phosphorylation and cytoplasmic sequestration of FOXOs. We found that, after AKT-mediated phosphorylation at serine 319, FOXO1 binds to IQGAP1, a hub for activation of the MAPK pathway, and impedes IQGAP1-dependent phosphorylation of ERK1/2 (pERK1/2). Conversely, decreased FOXO1 expression increases pERK1/2 in cancer cell lines and correlates with increased pERK1/2 levels in patient specimens and disease progression. Treatment of cancer cells with PI3K inhibitors or taxane causes FOXO1 localization in the nucleus, increased expression of pERK1/2, and drug resistance. These effects are reversed by administering a small FOXO1-derived phospho-mimicking peptide inhibitor in vitro and in mice. Our results show a tumor suppressor role of AKT-phosphorylated FOXO1 in the cytoplasm and suggest that this function of FOXO1 can be harnessed to overcome chemoresistance in cancer.

  15. Prediabetes linked to excess glucagon in transgenic mice with pancreatic active AKT1.

    PubMed

    Albury-Warren, Toya M; Pandey, Veethika; Spinel, Lina P; Masternak, Michal M; Altomare, Deborah A

    2016-01-01

    Protein kinase B/AKT has three isoforms (AKT1-3) and is renowned for its central role in the regulation of cell growth and proliferation, due to its constitutive activation in various cancers. AKT2, which is highly expressed in insulin-responsive tissues, has been identified as a primary regulator of glucose metabolism as Akt2 knockout mice (Akt2(-/-)) are glucose-intolerant and insulin-resistant. However, the role of AKT1 in glucose metabolism is not as clearly defined. We previously showed that mice with myristoylated Akt1 (AKT1(Myr)) expressed through a bicistronic Pdx1-TetA and TetO-MyrAkt1 system were susceptible to islet cell carcinomas, and in this study we characterized an early onset, prediabetic phenotype. Beginning at weaning (3 weeks of age), the glucose-intolerant AKT1(Myr) mice exhibited non-fasted hyperglycemia, which progressed to fasted hyperglycemia by 5 months of age. The glucose intolerance was attributed to a fasted hyperglucagonemia, and hepatic insulin resistance detectable by reduced phosphorylation of the insulin receptor following insulin injection into the inferior vena cava. In contrast, treatment with doxycycline diet to turn off the transgene caused attenuation of the non-fasted and fasted hyperglycemia, thus affirming AKT1 hyperactivation as the trigger. Collectively, this model highlights a novel glucagon-mediated mechanism by which AKT1 hyperactivation affects glucose homeostasis and provides an avenue to better delineate the molecular mechanisms responsible for diabetes mellitus and the potential association with pancreatic cancer.

  16. Euphorbia fischeriana Steud inhibits malignant melanoma via modulation of the phosphoinositide-3-kinase/Akt signaling pathway

    PubMed Central

    DONG, MENG-HUA; ZHANG, QIAN; WANG, YUAN-YUAN; ZHOU, BAI-SUI; SUN, YU-FEI; FU, QIANG

    2016-01-01

    Euphorbia fischeriana Steud, a traditional Chinese medicine, has been shown to inhibit the growth of various cancers by the induction of apoptosis and cell cycle arrest. The purpose of the present study was to investigate the association between the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway and the inhibitory effect of Euphorbia fischeriana Steud on the growth and metastasis of melanoma B16 cells in vitro, and the underlying mechanisms. MTT assay results indicated that Euphorbia fischeriana Steud inhibited the growth of B16 cells in a time- and dose-dependent manner. Flow cytometric analysis revealed that Euphorbia fischeriana Steud markedly induced apoptosis of the B16 cells, with arrest at the G0/G1 phase of the cell cycle. In addition, in a Transwell assay Euphorbia fischeriana Steud significantly suppressed the migration of B16 cells. Western blot analysis revealed that the expression levels of phosphatase and tensin homolog (PTEN) were upregulated, and the phosphorylation of Akt was downregulated, which resulted in inhibition of the PI3K/Akt signaling pathway and the eventual suppression of its downstream targets, such as matrix metalloproteinase-2 mRNA, in B16 cells. The results demonstrated that Euphorbia fischeriana Steud inhibited the growth and migration of B16 cells, possibly via modulation of the PI3K/Akt signaling pathway and upregulation of PTEN expression levels, in addition to downregulation of p-Akt expression. The aforementioned findings suggest that Euphorbia fischeriana Steud may have broad therapeutic applications in the treatment of malignant melanoma. PMID:27073468

  17. Chronic sleep restriction induces changes in the mandibular condylar cartilage of rats: roles of Akt, Bad and Caspase-3

    PubMed Central

    Zhu, Yong; Wu, Gaoyi; Zhu, Guoxiong; Ma, Chuan; Zhao, Huaqiang

    2014-01-01

    Aims: The aim of the present study was to observe changes in the temporomandibular joint (TMJ) of rats that had been subjected to chronic sleep restriction and to investigate whether Akt, Bad and Caspase3 play a role in the mechanism underlying the changes. Main methods: One hundred and eighty male Wistar rats were randomly divided into three groups (n = 60 in each): cage control group, large-platform control group, and sleep restriction group. Each group was divided into three subgroups (n = 20 in each) of three different time points (7, 14 and 21 days), respectively. The modified multiple platform method was used to induce chronic sleep restriction. The TMJ tissue histology was studied by staining with haematoxylin and eosin. The expression of Akt, p-Aktser473, Bad, p-Badser136 and Caspase3 proteins was detected by immunohistochemistry and western blotting. The expression of Akt, Bad and Caspase3 mRNAs was measured by real-time quantitative polymerase chain reaction (RT-qPCR). Key findings: Compared with the large-platform and cage control groups, condylar cartilage pathological alterations were found in the sleep restriction group. There were significantly decreased expression levels of Akt, p-Aktser473 and p-Badser136 and significantly increased expression levels of Bad and Caspase3 after sleep restriction. Significance: These data suggest that sleep restriction may induce pathological alterations in the condylar cartilage of rats. Alterations in Akt, Bad and Caspase3 may be associated with the potential mechanism by which chronic sleep restriction influences the condylar cartilage. PMID:25356113

  18. PKC and AKT Modulate cGMP/PKG Signaling Pathway on Platelet Aggregation in Experimental Sepsis

    PubMed Central

    Lopes-Pires, M. Elisa; Naime, Ana C. Antunes; Almeida Cardelli, Nádia J.; Anjos, Débora J.; Antunes, Edson; Marcondes, Sisi

    2015-01-01

    Sepsis severity has been positively correlated with platelet dysfunction, which may be due to elevations in nitric oxide (NO) and cGMP levels. Protein kinase C, Src kinases, PI3K and AKT modulate platelet activity in physiological conditions, but no studies evaluated the role of these enzymes in platelet aggregation in sepsis. In the present study we tested the hypothesis that in sepsis these enzymes positively modulate upstream the NO-cGMP pathway resulting in platelet inhibition. Rats were injected with lipopolysaccharide (LPS, 1 mg/kg, i.p.) and blood was collected after 6 h. Platelet aggregation was induced by ADP (10 μM). Western blotting assays were carried out to analyze c-Src and AKT activation in platelets. Intraplatelet cGMP levels were determined by enzyme immunoassay kit. Phosphorylation of c-SRC at Tyr416 was the same magnitude in platelets of control and LPS group. Incubation of the non-selective Src inhibitor PP2 (10 μM) had no effect on platelet aggregation of LPS-treated rats. LPS increased intraplatelet cGMP levels by 5-fold compared with control group, which was accompanied by 76% of reduction in ADP-induced platelet aggregation. The guanylyl cyclase inhibitor ODQ (25 μM) and the PKG inhibitor Rp-8-Br-PET-cGMPS (25 μM) fully reversed the inhibitory effect of LPS on platelet aggregation. Likewise, the PKC inhibitor GF109203X (10 μM) reversed the inhibition by LPS of platelet aggregation and decreased cGMP levels in platelets. AKT phosphorylation at Thr308 was significantly higher in platelets of LPS compared with control group, which was not reduced by PI3K inhibition. The AKT inhibitor API-1 (20 μM) significantly increased aggregation and reduced cGMP levels in platelets of LPS group. However, the PI3K inhibitor wortmannin and LY29004 had no effect on platelet aggregation of LPS-treated rats. Therefore, inhibition of ADP-induced platelet aggregation after LPS injection is mediated by cGMP/PKG-dependent mechanisms, and PKC and AKT act

  19. Ascertaining effects of nanoscale polymeric interfaces on competitive protein adsorption at the individual protein level

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Xie, Tian; Ravensbergen, Kristina; Hahm, Jong-In

    2016-02-01

    With the recent development of biomaterials and biodevices with reduced dimensionality, it is critical to comprehend protein adhesion processes to nanoscale solid surfaces, especially those occurring in a competitive adsorption environment. Complex sequences of adhesion events in competitive adsorption involving multicomponent protein systems have been extensively investigated, but our understanding is still limited primarily to macroscopic adhesion onto chemically simple surfaces. We examine the competitive adsorption behavior from a binary protein mixture containing bovine serum albumin and fibrinogen at the single protein level. We subsequently evaluate a series of adsorption and displacement processes occurring on both the macroscopic homopolymer and nanoscopic diblock copolymer surfaces, while systematically varying the protein concentration and incubation time. We identify the similarities and dissimilarities in competitive protein adsorption behavior between the two polymeric surfaces, the former presenting chemical uniformity at macroscale versus the latter exhibiting periodic nanointerfaces of chemically alternating polymeric segments. We then present our novel experimental finding of a large increase in the nanointerface-engaged residence time of the initially bound proteins and further explain the origin of this phenomenon manifested on nanoscale diblock copolymer surfaces. The outcomes of this study may provide timely insight into nanoscale competitive protein adsorption that is much needed in designing bioimplant and tissue engineering materials. In addition, the fundamental understanding gained from this study can be beneficial for the development of highly miniaturized biodevices and biomaterials fabricated by using nanoscale polymeric materials and interfaces.With the recent development of biomaterials and biodevices with reduced dimensionality, it is critical to comprehend protein adhesion processes to nanoscale solid surfaces, especially those

  20. Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser157) and dephosphorylation of PI3K and Akt

    PubMed Central

    Kwon, Hyuk-Woo; Shin, Jung-Hae; Cho, Hyun-Jeong; Rhee, Man Hee; Park, Hwa-Jin

    2015-01-01

    Background Binding of adhesive proteins (i.e., fibrinogen, fibronectin, vitronectin) to platelet integrin glycoprotein IIb/IIIa (αIIb/β3) by various agonists (thrombin, collagen, adenosine diphosphate) involve in strength of thrombus. This study was carried out to evaluate the antiplatelet effect of total saponin from Korean Red Ginseng (KRG-TS) by investigating whether KRG-TS inhibits thrombin-induced binding of fibrinogen and fibronectin to αIIb/β3. Methods We investigated the effect of KRG-TS on phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and dephosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt, affecting binding of fibrinogen and fibronectin to αIIb/β3, and clot retraction. Results KRG-TS had an antiplatelet effect by inhibiting the binding of fibrinogen and fibronectin to αIIb/β3 via phosphorylation of VASP (Ser157), and dephosphorylation of PI3K and Akt on thrombin-induced platelet aggregation. Moreover, A-kinase inhibitor Rp-8-Br-cyclic adenosine monophosphates (cAMPs) reduced KRG-TS-increased VASP (Ser157) phosphorylation, and increased KRG-TS-inhibited fibrinogen-, and fibronectin-binding to αIIb/β3. These findings indicate that KRG-TS interferes with the binding of fibrinogen and fibronectin to αIIb/β3 via cAMP-dependent phosphorylation of VASP (Ser157). In addition, KRG-TS decreased the rate of clot retraction, reflecting inhibition of αIIb/β3 activation. In this study, we clarified ginsenoside Ro (G-Ro) in KRG-TS inhibited thrombin-induced platelet aggregation via both inhibition of [Ca2+]i mobilization and increase of cAMP production. Conclusion These results strongly indicate that KRG-TS is a beneficial herbal substance inhibiting fibrinogen-, and fibronectin-binding to αIIb/β3, and clot retraction, and may prevent platelet αIIb/β3-mediated thrombotic disease. In addition, we demonstrate that G-Ro is a novel compound with antiplatelet characteristics of KRG-TS. PMID:26843825

  1. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: role of the PI3K/AKT pathway and associated microRNAs.

    PubMed

    Banerjee, Nivedita; Kim, Hyemee; Krenek, Kimberly; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2015-08-01

    The cytotoxic and anti-inflammatory properties of mango polyphenolics including gallic acid and gallotannins have been demonstrated in numerous types of cancers. We hypothesized that the phosphoinositide 3-kinase (PI3K)/AKT pathway and the expression of related miRNAs are involved in the chemotherapeutic activities of mango polyphenolics in a mouse xenograft model for breast cancer. The objectives of this research were to determine the tumor-cytotoxic activities of mango polyphenolics and the underlying molecular mechanisms involving posttranscriptional targets in BT474 breast cancer cells and xenografts in mice. In vitro findings showed cytotoxic effects of mango polyphenolics in BT474 breast cancer cells within a concentration range of 2.5 to 20 mg/L gallic acid equivalents. Mango polyphenolics suppressed the expression of PI3K, AKT, hypoxia inducible factor-1α, and vascular endothelial growth factor (VEGF) mRNA, and pAKT, AKT, pPI3K (p85), VEGF and nuclear factor-kappa B protein levels. The involvement of miR-126 was verified by using antagomiR for miR-126, where mango reversed the effect of the antagomiR of miR-126. In vivo, the intake of mango polyphenolics decreased the tumor volume by 73% in BT474 xenograft-bearing mice compared with the control group. In addition, mango reduced the expression of nuclear factor-kappa B (p65), pAKT, pPI3K, mammalian target of rapamycin, hypoxia inducible factor-1α, and VEGF protein in athymic nude mice. A screening for miRNA expression changes confirmed that mango polyphenolics modulated the expression of cancer-associated miRNAs including miR-126 in the xenografted tumors. In summary, mango polyphenolics have a chemotherapeutic potential against breast cancer that at least in part is mediated through the PI3K/AKT pathway and miR-126.

  2. AKT/mTOR and c-Jun N-terminal kinase signaling pathways are required for chrysotile asbestos-induced autophagy.

    PubMed

    Lin, Ziying; Liu, Tie; Kamp, David W; Wang, Yahong; He, Huijuan; Zhou, Xu; Li, Donghong; Yang, Lawei; Zhao, Bin; Liu, Gang

    2014-07-01

    Chrysotile asbestos is closely associated with excess mortality from pulmonary diseases such as lung cancer, mesothelioma, and asbestosis. Although multiple mechanisms in which chrysotile asbestos fibers induce pulmonary disease have been identified, the role of autophagy in human lung epithelial cells has not been examined. In this study, we evaluated whether chrysotile asbestos induces autophagy in A549 human lung epithelial cells and then analyzed the possible underlying molecular mechanism. Chrysotile asbestos induced autophagy in A549 cells based on a series of biochemical and microscopic autophagy markers. We observed that asbestos increased expression of A549 cell microtubule-associated protein 1 light chain 3 (LC3-II), an autophagy marker, in conjunction with dephosphorylation of phospho-AKT, phospho-mTOR, and phospho-p70S6K. Notably, AKT1/AKT2 double-knockout murine embryonic fibroblasts (MEFs) had negligible asbestos-induced LC3-II expression, supporting a crucial role for AKT signaling. Chrysotile asbestos also led to the phosphorylation/activation of Jun N-terminal kinase (JNK) and p38 MAPK. Pharmacologic inhibition of JNK, but not p38 MAPK, dramatically inhibited the protein expression of LC3-II. Moreover, JNK2(-/-) MEFs but not JNK1(-/-) MEFs blocked LC3-II levels induced by chrysotile asbestos. In addition, N-acetylcysteine, an antioxidant, attenuated chrysotile asbestos-induced dephosphorylation of P-AKT and completely abolished phosphorylation/activation of JNK. Finally, we demonstrated that chrysotile asbestos-induced apoptosis was not affected by the presence of the autophagy inhibitor 3-methyladenine or autophagy-related gene 5 siRNA, indicating that the chrysotile asbestos-induced autophagy may be adaptive rather than prosurvival. Our findings demonstrate that AKT/mTOR and JNK2 signaling pathways are required for chrysotile asbestos-induced autophagy. These data provide a mechanistic basis for possible future clinical applications targeting

  3. Hepatitis B virus X protein is capable of down-regulating protein level of host antiviral protein APOBEC3G

    PubMed Central

    Chen, Ruidong; Zhao, Xue; Wang, Yongxiang; Xie, Youhua; Liu, Jing

    2017-01-01

    The apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) family proteins bind RNA and single-stranded DNA, and create C-to-U base modifications through cytidine deaminase activity. APOBEC3G restricts human immunodeficiency virus 1 (HIV-1) infection by creating hypermutations in proviral DNA, while HIV-1-encoded vif protein antagonizes such restriction by targeting APOBEC3G for degradation. APOBEC3G also inhibits hepatitis B virus (HBV): APOBEC3G co-expression inhibits HBV replication and evidences exist indicating APOBEC3G-mediated HBV hypermutations in patients. HBV encodes a small non-structural X protein (HBx) with a recognized activating effect on HBV life cycle. In this work, we report the discovery that HBx selectively and dose-dependently decreases the protein level of co-expressed APOBEC3G in transfected Huh-7 cells. The effect was shown to take place post-translationally, but does not rely on protein degradation via proteasome or lysosome. Further work demonstrated that intracellular APOBEC3G is normally exported via exosome secretion and inhibition of exosome biogenesis causes retention of intracellular APOBEC3G. Finally, HBx co-expression specifically enhanced externalization of APOBEC3G via exosomes, resulting in decrease of intracellular APOBEC3G protein level. These data suggest the possibility that in addition to other mechanisms, HBx-mediated activation of HBV might also involve antagonizing of intracellular restriction factor APOBEC3G through promotion of its export. PMID:28098260

  4. CCN1 acutely increases nitric oxide production via integrin αvβ3-Akt-S6K-phosphorylation of endothelial nitric oxide synthase at the serine 1177 signaling axis.

    PubMed

    Hwang, Soojin; Lee, Hyeon-Ju; Kim, Gyungah; Won, Kyung-Jong; Park, Yoon Shin; Jo, Inho

    2015-12-01

    Although CCN1 (also known as cysteine-rich, angiogenic inducer 61, CYR61) has been reported to promote angiogenesis and neovascularization in endothelial cells (ECs), its effects on endothelial nitric oxide (NO) production have never been studied. Using human umbilical vein ECs, we investigated whether and how CCN1 regulates NO production. CCN1 acutely increased NO production in a time- and dose-dependent manner, which was accompanied by increased phosphorylation of endothelial NO synthase (eNOS) at serine 1177 (eNOS-Ser(1177)), but not that of eNOS-Thr(495) or eNOS-Ser(114). The level of total eNOS expression was unaltered. Treatment with either LY294002, a selective inhibitor of phosphoinositide 3-kinase known as an upstream kinase of Akt, or H-89, an inhibitor of protein kinase A, mitogen- and stress-activated protein kinase 1, Rho-associated protein kinase 2, and ribosomal protein S6 kinase (S6K), inhibited CCN1-stimulated eNOS-Ser(1177) phosphorylation and subsequent NO production. Ectopic expression of small interfering RNA against Akt and S6K significantly inhibited the effects of CCN1. Consistently, CCN1 increased the phosphorylation of Akt-Ser(473) and S6K-Thr(389). However, CCN1 did not alter the expression or secretion of VEGF, a known downstream factor of CCN1 and a potential upstream factor of Akt-mediated eNOS-Ser(1177) phosphorylation. Furthermore, neutralization of integrin αvβ3 with corresponding antibody completely reversed all of the observed effects of CCN1. Moreover, CCN1 increased acetylcholine-induced relaxation in the rat aortas. Finally, we also found that CCN1-stimulated eNOS-Ser(1177) phosphorylation and NO production are true for other types of EC tested. In conclusion, CCN1 acutely increases NO production via activation of a signaling axis in integrin αvβ3-Akt-S6K-eNOS-Ser(1177) phosphorylation, suggesting an important role for CCN1 in vasodilation.

  5. Discovery of a novel class of AKT pleckstrin homology domain inhibitors.

    PubMed

    Mahadevan, Daruka; Powis, Garth; Mash, Eugene A; George, Benjamin; Gokhale, Vijay M; Zhang, Shuxing; Shakalya, Kishore; Du-Cuny, Lei; Berggren, Margareta; Ali, M Ahad; Jana, Umasish; Ihle, Nathan; Moses, Sylvestor; Franklin, Chloe; Narayan, Satya; Shirahatti, Nikhil; Meuillet, Emmanuelle J

    2008-09-01

    AKT, a phospholipid-binding serine/threonine kinase, is a key component of the phosphoinositide 3-kinase cell survival signaling pathway that is aberrantly activated in many human cancers. Many attempts have been made to inhibit AKT; however, selectivity remains to be achieved. We have developed a novel strategy to inhibit AKT by targeting the pleckstrin homology (PH) domain. Using in silico library screening and interactive molecular docking, we have identified a novel class of non-lipid-based compounds that bind selectively to the PH domain of AKT, with "in silico" calculated K(D) values ranging from 0.8 to 3.0 micromol/L. In order to determine the selectivity of these compounds for AKT, we used surface plasmon resonance to measure the binding characteristics of the compounds to the PH domains of AKT1, insulin receptor substrate-1, and 3-phosphoinositide-dependent protein kinase 1. There was excellent correlation between predicted in silico and measured in vitro K(D)s for binding to the PH domain of AKT, which were in the range 0.4 to 3.6 micromol/L. Some of the compounds exhibited PH domain-binding selectivity for AKT compared with insulin receptor substrate-1 and 3-phosphoinositide-dependent protein kinase 1. The compounds also inhibited AKT in cells, induced apoptosis, and inhibited cancer cell proliferation. In vivo, the lead compound failed to achieve the blood concentrations required to inhibit AKT in cells, most likely due to rapid metabolism and elimination, and did not show antitumor activity. These results show that these compounds are the first small molecules selectively targeting the PH domain of AKT.

  6. Gastrointestinal growth factors and hormones have divergent effects on Akt activation

    PubMed Central

    Berna, Marc J.; Tapia, Jose A.; Sancho, Veronica; Thill, Michelle; Pace, Andrea; Hoffmann, K. Martin; Gonzalez-Fernandez, Lauro; Jensen, Robert T.

    2009-01-01

    Akt is a central regulator of apoptosis, cell growth and survival. Growth factors and some G-protein-coupled receptors (GPCR) regulate Akt. Whereas growth-factor activation of Akt has been extensively studied, the regulation of Akt by GPCR's, especially gastrointestinal hormones/neurotransmitters, remains unclear. To address this area, in this study the effects of GI growth factors and hormones/neurotransmitters were investigate in rat pancreatic acinar cells which are high responsive to these agents. Pancreatic acini expressed Akt and 5 of 7 known pancreatic growth-factors stimulate Akt phosphorylation (T308, S473) and translocation. These effects are mediated by p85 phosphorylation and activation of PI3K. GI hormones increasing intracellular cAMP had similar effects. However, GI-hormones/neurotransmitters[CCK, bombesin,carbachol] activating phospholipase C (PLC) inhibited basal and growth-factor-stimulated Akt activation. Detailed studies with CCK, which has both physiological and pathophysiological effects on pancreatic acinar cells at different concentrations, demonstrated CCK has a biphasic effect: at low concentrations(pM) stimulating Akt by a Src-dependent mechanism and at higher concentrations(nM) inhibited basal and stimulated Akt translocation, phosphorylation and activation, by de-phosphorylating p85 resulting in decreasing PI3K activity. This effect required activation of both limbs of the PLC-pathway and a protein tyrosine phosphatase, but was not mediated by p44/42 MAPK, Src or activation of a serine phosphatase. Akt inhibition by CCK was also found in vivo and in Panc-1 cancer cells where it inhibited serum-mediated rescue from apoptosis. These results demonstrate that GI growth factors as well as gastrointestinal hormones/neurotransmitters with different cellular basis of action can all regulate Akt phosphorylation in pancreatic acinar cells. This regulation is complex with phospholipase C agents such as CCK, because both stimulatory and inhibitory

  7. Coprinus comatus Cap Inhibits Adipocyte Differentiation via Regulation of PPARγ and Akt Signaling Pathway

    PubMed Central

    Jang, Sun-Hee; Kang, Suk Nam; Jeon, Beong-Sam; Ko, Yeoung-Gyu; Kim, Hong-Duck; Won, Chung-Kil; Kim, Gon-Sup; Cho, Jae-Hyeon

    2014-01-01

    This study assessed the effects of Coprinus comatus cap (CCC) on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD) and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the Akt pathway in 3T3

  8. Effects of soy protein and calcium levels on mineral bioaccessibility and protein digestibility from enteral formulas.

    PubMed

    Galán, María Gimena; Drago, Silvina Rosa

    2014-09-01

    Enteral formulas (EF) are complex food systems which have all the nutrients in their matrix for the complete human nourishment. However, there are components in EF which can interact with minerals, reducing their absorption, and thereof the EF nutritional quality. The effect of soy protein (SP) and Ca content on Fe, Zn, and Ca bioaccessibility and protein digestibility (%DP) was assessed using a response surface design in EF. Tested SP levels were 2.5-5.0 g/100 mL of total protein. Ca levels were adjusted with Ca citrate within a range between 50 and 100 mg/100 mL. SP content negatively influenced %DP and Fe, Zn and Ca bioaccessibility. As SP content increased, mineral bioaccessibility and %DP decreased, probably due to the increased levels of phytic acid and trypsin inhibitors from SP. Ca content only affected %DCa, which had a direct relationship with Ca levels, while did not affect Fe and Zn bioaccessibility or %DP. Since Ca citrate did not impair Fe and Zn bioaccessibility, it could be an appropriate Ca source for EF fortification.

  9. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma.

    PubMed

    Chang, Liang; Zhao, Dan; Liu, Hui-Bin; Wang, Qiu-Shi; Zhang, Ping; Li, Chen-Long; Du, Wen-Zhong; Wang, Hong-Jun; Liu, Xing; Zhang, Zhi-Ren; Jiang, Chuan-Lu

    2015-11-01

    Aberrant hedgehog signaling contributes to the development of various malignancies, including glioblastoma (GBM). However, the potential mechanism of hedgehog signaling in GBM migration and invasion has remained to be elucidated. The present study showed that enhanced hedgehog signaling by recombinant human sonic hedgehog N‑terminal peptide (rhSHH) promoted the adhesion, invasion and migration of GBM cells, accompanied by increases in mRNA and protein levels of matrix metalloproteinase‑2 (MMP‑2) and MMP‑9. However, inhibition of hedgehog signaling with cyclopamine suppressed the adhesion, invasion and migration of GBM cells, accompanied by decreases in mRNA and protein levels of MMP‑2 and ‑9. Furthermore, it was found that MMP‑2- and MMP‑9-neutralizing antibodies or GAM6001 reversed the inductive effects of rhSHH on cell migration and invasion. In addition, enhanced hedgehog signaling by rhSHH increased AKT phosphorylation, whereas blockade of hedgehog signaling decreased AKT phosphorylations. Further experiments showed that LY294002, an inhibitor of phosphoinositide-3 kinase (PI3K), decreased rhSHH‑induced upregulation of MMP‑2 and ‑9. Finally, the protein expression of glioblastoma-associated oncogene 1 was positively correlated with levels of phosphorylated AKT as well as protein expressions of MMP‑2 and ‑9 in GBM tissue samples. In conclusion, the present study indicated that the hedgehog pathway regulates GBM-cell migration and invasion by increasing MMP-2 and MMP-9 production via the PI3K/AKT pathway.

  10. Hyaluronan Activates Cell Motility of v-Src-transformed Cells via Ras-Mitogen–activated Protein Kinase and Phosphoinositide 3-Kinase-Akt in a Tumor-specific Manner

    PubMed Central

    Sohara, Yasuyoshi; Ishiguro, Naoki; Machida, Kazuya; Kurata, Hisashi; Thant, Aye Aye; Senga, Takeshi; Matsuda, Satoru; Kimata, Koji; Iwata, Hisashi; Hamaguchi, Michinari

    2001-01-01

    We investigated the production of hyaluronan (HA) and its effect on cell motility in cells expressing the v-src mutants. Transformation of 3Y1 by v-src virtually activated HA secretion, whereas G2A v-src, a nonmyristoylated form of v-src defective in cell transformation, had no effect. In cells expressing the temperature-sensitive mutant of v-Src, HA secretion was temperature dependent. In addition, HA as small as 1 nM, on the other side, activated cell motility in a tumor-specific manner. HA treatment strongly activated the motility of v-Src–transformed 3Y1, whereas it showed no effect on 3Y1- and 3Y1-expressing G2A v-src. HA-dependent cell locomotion was strongly blocked by either expression of dominant-negative Ras or treatment with a Ras farnesyltransferase inhibitor. Similarly, both the MEK1 inhibitor and the kinase inhibitor clearly inhibited HA-dependent cell locomotion. In contrast, cells transformed with an active MEK1 did not respond to the HA. Finally, an anti-CD44–neutralizing antibody could block the activation of cell motility by HA as well as the HA-dependent phosphorylation of mitogen-activated protein kinase and Akt. Taken together, these results suggest that simultaneous activation of the Ras-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway by the HA-CD44 interaction is required for the activation of HA-dependent cell locomotion in v-Src–transformed cells. PMID:11408591

  11. Akt/hypoxia-inducible factor-1α signaling deficiency compromises skin wound healing in a type 1 diabetes mouse model

    PubMed Central

    JING, LIFENG; LI, SHUANG; LI, QIN

    2015-01-01

    The aim of the present study was to investigate the mechanisms for impaired skin wound healing in subjects with diabetes. Type 1 diabetes (T1DM) was induced in BALB/c mice using streptozotocin. One month after the establishment of the T1DM mouse model, a wound was formed on the back of the mice, and tissues from the wounds and the margins were collected on days 0, 3, 7 and 10. Protein levels of cluster of differentiation 31 (CD31) were detected using immunohistochemistry, and the mRNA levels of Akt, hypoxia-inducible factor-1α (Hif-1α), vascular endothelial growth factor (Vegf), VEGF receptor 2 (Vegfr2), stromal cell-derived growth factor-1α (Sdf-1α) and CXC chemokine receptor 4 (Cxcr4) were determined using reverse transcription-quantitative polymerase chain reaction analysis. The corresponding protein levels were determined using western blotting. The skin wound healing rate in the T1DM mice was significantly lower than that in the control mice, and the protein level of CD31 in the wounded skin of the T1DM mice was significantly decreased. Furthermore, the overall mRNA levels of Akt, Hif-1α, Vegf, Vegfr2, Sdf-1α and Cxcr4 in the T1DM mice were significantly lower than those in the control mice, and similar trends were observed in the protein levels. In conclusion, skin wound healing was impaired in the T1DM mice, and this may have been caused by a deficiency of Akt/HIF-1α and downstream signaling, as well as delayed angiogenesis. PMID:26136949

  12. Paclitaxel resistance in MCF-7/PTX cells is reversed by paeonol through suppression of the SET/phosphatidylinositol 3-kinase/Akt pathway.

    PubMed

    Zhang, Weipeng; Cai, Jiangxia; Chen, Siying; Zheng, Xiaowei; Hu, Sasa; Dong, Weihua; Lu, Jun; Xing, Jianfeng; Dong, Yalin

    2015-07-01

    Breast cancer is one of the most prevalent types of malignant tumor. Paclitaxel is widely used in the treatment of breast cancer; however, the major problem contributing to the failure of chemotherapy in breast cancer is the development of drug resistance. Therefore, it is necessary to identify novel therapeutic targets and reversal agents for breast cancer. In the present study, the protein expression levels of SET, protein phosphatase 2A (PP2A) and phosphatidylinositol 3-kinase (PI3K)/Akt pathway were determined in MCF-7/PTX human breast carcinoma paclitaxel-resistant cells using western blot analysis. Small interference RNAs (siRNAs) were used to knock down the gene expression of SET in MCF-7/PTX cells and the cell viability was assessed following treatment with paclitaxel, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays and flow cytometry. In addition, western blot analysis was used to determined PI3K/Akt pathway activity following SET knockdown. Furthermore, the reversal effects of paeonol on paclitaxel, and its underlying mechanisms of action, were investigated using western blot analysis and reverse transcription-quantitative polymerase chain reaction. The results demonstrated that increased levels of SET and PI3K/Akt pathway proteins were present in the MCF-7/PTX cells, compared with normal MCF-7 cells. Knockdown of SET significantly sensitized MCF-7/PTX cells to paclitaxel and induced cell apoptosis. In addition, the expression levels of the adenosine triphosphate binding cassette (ABC) transporter proteins were significantly reduced in the MCF-7/PTX cells compared with the normal MCF-7 cells. SET-induced paclitaxel resistance was found to be associated with the activation of the PI3K/Akt pathway. Paeonol significantly reduced the mRNA and protein expression levels of SET in the MCF-7/PTX cells. Furthermore, paeonol significantly sensitized the MCF-7/PTX to paclitaxel via regulation of ABC transporters, B cell lymphoma-2 (Bcl-2

  13. LIN-28 balances longevity and germline stem cell number in Caenorhabditis elegans through let-7/AKT/DAF-16 axis.

    PubMed

    Wang, Dan; Hou, Lei; Nakamura, Shuhei; Su, Ming; Li, Fang; Chen, Weiyang; Yan, Yizhen; Green, Christopher D; Chen, Di; Zhang, Hong; Antebi, Adam; Han, Jing-Dong J

    2017-02-01

    The RNA-binding protein LIN-28 was first found to control developmental timing in Caenorhabditis elegans. Later, it was found to play important roles in pluripotency, metabolism, and cancer in mammals. Here we report that a low dosage of lin-28 enhanced stress tolerance and longevity, and reduced germline stem/progenitor cell number in C. elegans. The germline LIN-28-regulated microRNA let-7 was required for these effects by targeting akt-1/2 and decreasing their protein levels. AKT-1/2 and the downstream DAF-16 transcription factor were both required for the lifespan and germline stem cell effects of lin-28. The pathway also mediated dietary restriction induced lifespan extension and reduction in germline stem cell number. Thus, the LIN-28/let-7/AKT/DAF-16 axis we delineated here is a program that plays an important role in balancing reproduction and somatic maintenance and their response to the environmental energy level-a central dogma of the 'evolutionary optimization' of resource allocation that modulates aging.

  14. Involvement of PI3K/Akt/FoxO3a and PKA/CREB Signaling Pathways in the Protective Effect of Fluoxetine Against Corticosterone-Induced Cytotoxicity in PC12 Cells.

    PubMed

    Zeng, Bingqing; Li, Yiwen; Niu, Bo; Wang, Xinyi; Cheng, Yufang; Zhou, Zhongzhen; You, Tingting; Liu, Yonggang; Wang, Haitao; Xu, Jiangping

    2016-08-01

    The selective serotonin reuptake inhibitor fluoxetine is neuroprotective in several brain injury models. It is commonly used to treat major depressive disorder and related conditions, but its mechanism of action remains incompletely understood. Activation of the phosphatidylinositol-3-kinase/protein kinase B/forkhead box O3a (PI3K/Akt/FoxO3a) and protein kinase A/cAMP-response element binding protein (PKA/CREB) signaling pathways has been strongly implicated in the pathogenesis of depression and might be the downstream target of fluoxetine. Here, we used PC12 cells exposed to corticosterone (CORT) to study the neuroprotective effects of fluoxetine and the involvement of the PI3K/Akt/FoxO3a and PKA/CREB signaling pathways. Our results show that CORT reduced PC12 cells viability by 70 %, and that fluoxetine showed a concentration-dependent neuroprotective effect. Neuroprotective effects of fluoxetine were abolished by inhibition of PI3K, Akt, and PKA using LY294002, KRX-0401, and H89, respectively. Treatment of PC12 cells with fluoxetine resulted in increased phosphorylation of Akt, FoxO3a, and CREB. Fluoxetine also dose-dependently rescued the phosphorylation levels of Akt, FoxO3a, and CREB, following administration of CORT (from 99 to 110, 56 to 170, 80 to 170 %, respectively). In addition, inhibition of PKA and PI3K/Akt resulted in decreased levels of p-CREB, p-Akt, and p-FoxO3a in the presence of fluoxetine. Furthermore, fluoxetine reversed CORT-induced upregulation of p53-upregulated modulator of apoptosis (Puma) and Bcl-2-interacting mediator of cell death (Bim) via the PI3K/Akt/FoxO3a signaling pathway. H89 treatment reversed the effect of fluoxetine on the mRNA level of brain-derived neurotrophic factor, which was decreased in the presence of CORT. Our data indicate that fluoxetine elicited neuroprotection toward CORT-induced cell death that involves dual regulation from PI3K/Akt/FoxO3a and PKA/CREB pathways.

  15. Honey bee protein atlas at organ-level resolution

    PubMed Central

    Chan, Queenie W.T.; Chan, Man Yi; Logan, Michelle; Fang, Yuan; Higo, Heather; Foster, Leonard J.

    2013-01-01

    Genome sequencing has provided us with gene lists but cannot tell us where and how their encoded products work together to support life. Complex organisms rely on differential expression of subsets of genes/proteins in organs and tissues, and, in concert, evolved to their present state as they function together to improve an organism's overall reproductive fitness. Proteomics studies of individual organs help us understand their basic functions, but this reductionist approach misses the larger context of the whole organism. This problem could be circumvented if all the organs in an organism were comprehensively studied by the same methodology and analyzed together. Using honey bees (Apis mellifera L.) as a model system, we report here an initial whole proteome of a complex organism, measuring 29 different organ/tissue types among the three honey bee castes: queen, drone, and worker. The data reveal that, e.g., workers have a heightened capacity to deal with environmental toxins and queens have a far more robust pheromone detection system than their nestmates. The data also suggest that workers altruistically sacrifice not only their own reproductive capacity but also their immune potential in favor of their queen. Finally, organ-level resolution of protein expression offers a systematic insight into how organs may have developed. PMID:23878156

  16. Contactin-1 reduces E-cadherin expression via activating AKT in lung cancer.

    PubMed

    Yan, Judy; Wong, Nicholas; Hung, Claudia; Chen, Wendy Xin-Yi; Tang, Damu

    2013-01-01

    Contactin-1 has been shown to promote cancer metastasis. However, the underlying mechanisms remain unclear. We report here that knockdown of contactin-1 in A549 lung cancer cells reduced A549 cell invasion and the cell's ability to grow in soft agar without affecting cell proliferation. Reduction of contactin-1 resulted in upregulation of E-cadherin, consistent with E-cadherin being inhibitive of cancer cell invasion. In an effort to investigate the mechanisms whereby contactin-1 reduces E-cadherin expression, we observed that contactin-1 plays a role in AKT activation, as knockdown of contactin-1 attenuated AKT activation. Additionally, inhibition of AKT activation significantly enhanced E-cadherin expression, an observation that mimics the situation observed in contactin-1 knockdown, suggesting that activation of AKT plays a role in contactin-1-mediated downregulation of E-cadherin. In addition, we were able to show that knockdown of contactin-1 did not further reduce A549 cell's invasion ability, when AKT activation was inhibited by an AKT inhibitor. To further support our findings, we overexpressed CNTN-1 in two CNTN-1 null breast cancer cell lines expressing E-cadherin. Upon overexpression, CNTN-1 reduced E-cadherin levels in one cell line and increased AKT activation in the other. Furthermore, in our study of 63 primary lung cancers, we observed 65% of primary lung cancers being contactin-1 positive and in these carcinomas, 61% were E-cadherin negative. Collectively, we provide evidence that contactin-1 plays a role in the downregulation of E-cadherin in lung cancer and that AKT activation contributes to this process. In a study of mechanisms responsible for contactin-1 to activate AKT, we demonstrated that knockdown of CNTN-1 in A549 cells did not enhance PTEN expression but upregulated PHLPP2, a phosphatase that dephosphorylates AKT. These observations thus suggest that contactin-1 enhances AKT activation in part by preventing PHLPP2-mediated AKT

  17. Coactivation of the PI3K/Akt and ERK signaling pathways in PCB153-induced NF-κB activation and caspase inhibition

    SciTech Connect

    Liu, Changjiang; Yang, Jixin; Fu, Wenjuan; Qi, Suqin; Wang, Chenmin; Quan, Chao; Yang, Kedi

    2014-06-15

    Polychlorinated biphenyls (PCBs) are a group of persistent and widely distributed environmental pollutants that have various deleterious effects, e.g., neurotoxicity, endocrine disruption and reproductive abnormalities. In order to verify the hypothesis that the PI3K/Akt and MAPK pathways play important roles in hepatotoxicity induced by PCBs, Sprague–Dawley (SD) rats were dosed with PCB153 intraperitoneally at 0, 4, 16 and 32 mg/kg for five consecutive days; BRL cells (rat liver cell line) were treated with PCB153 (0, 1, 5, and 10 μM) for 24 h. Results indicated that the PI3K/Akt and ERK pathways were activated in vivo and in vitro after exposure to PCB153, and protein levels of phospho-Akt and phospho-ERK were significantly increased. Nuclear factor-κB (NF-κB) activation and caspase-3, -8 and -9 inhibition caused by PCB153 were also observed. Inhibiting the ERK pathway significantly attenuated PCB153-induced NF-κB activation, whereas inhibiting the PI3K/Akt pathway hardly influenced phospho-NF-κB level. However, inhibiting the PI3K/Akt pathway significantly elevated caspase-3, -8 and -9 activities, while the ERK pathway only synergistically regulated caspase-9. Proliferating cell nuclear antigen (PCNA), a reliable indicator of cell proliferation, was also induced. Moreover, PCB153 led to hepatocellular hypertrophy and elevated liver weight. Taken together, PCB153 leads to aberrant proliferation and apoptosis of hepatocytes through NF-κB activation and caspase inhibition, and coactivated PI3K/Akt and ERK pathways play critical roles in PCB153-induced hepatotoxicity. - Highlights: • PCB153 led to hepatotoxicity through NF-κB activation and caspase inhibition. • The PI3K/Akt and ERK pathways were coactivated in vivo and in vitro by PCB153. • The ERK pathway regulated levels of phospho-NF-κB and caspase-9. • The PI3K/Akt pathway regulated levels of caspase-3, -8 and -9.

  18. Ramentaceone, a Naphthoquinone Derived from Drosera sp., Induces Apoptosis by Suppressing PI3K/Akt Signaling in Breast Cancer Cells

    PubMed Central

    Kawiak, Anna; Lojkowska, Ewa

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in processes critical for breast cancer progression and its upregulation confers increased resistance of cancer cells to chemotherapy and radiation. The present study aimed at determining the activity of ramentaceone, a constituent of species in the plant genera Drosera, toward breast cancer cells and defining the involvement of PI3K/Akt inhibition in ramentaceone-mediated cell death induction. The results showed that ramentaceone exhibited high antiproliferative activity toward breast cancer cells, in particular HER2-overexpressing breast cancer cells. The mode of cell death induced by ramentaceone was through apoptosis as determined by cytometric analysis of caspase activity and Annexin V staining. Apoptosis induction was found to be mediated by inhibition of PI3K/Akt signaling and through targeting its downstream anti-apoptotic effectors. Ramentaceone inhibited PI3-kinase activity, reduced the expression of the PI3K protein and inhibited the phosphorylation of the Akt protein in breast cancer cells. The expression of the anti-apoptotic Bcl-2 protein was decreased and the levels of the pro-apoptotic proteins, Bax and Bak, were elevated. Moreover, inhibition of PI3K and silencing of Akt expression increased the sensitivity of cells to ramentaceone-induced apoptosis. In conclusion, our results indicate that ramentaceone induces apoptosis in breast cancer cells through PI3K/Akt signaling inhibition. These findings suggest further investigation of ramentaceone as a potential therapeutic agent in breast cancer therapy, in particular HER2-positive breast cancer. PMID:26840401

  19. Quercetin attenuates cell apoptosis in focal cerebral ischemia rat brain via activation of BDNF-TrkB-PI3K/Akt signaling pathway.

    PubMed

    Yao, Rui-Qin; Qi, Da-Shi; Yu, Hong-Li; Liu, Jing; Yang, Li-Hua; Wu, Xiu-Xiang

    2012-12-01

    Many studies have demonstrated that apoptosis play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Neuroprotective effect of quercetin has been shown in a variety of brain injury models including ischemia/reperfusion. It is not clear whether BDNF-TrkB-PI3K/Akt signaling pathway mediates the neuroprotection of quercetin, though there has been some reports on the quercetin increased brain-derived neurotrophic factor (BDNF) level in brain injury models. We therefore first examined the neurological function, infarct volume and cell apoptosis in quercetin treated middle cerebral artery occlusion (MCAO) rats. Then the protein expression of BDNF, cleaved caspase-3 and p-Akt were evaluated in either the absence or presence of PI3K inhibitor (LY294002) or tropomyosin receptor kinase B (TrkB) receptor antagonist (K252a) by immunohistochemistry staining and western blotting. Quercetin significantly improved neurological function, while it decreased the infarct volume and the number of TdT mediated dUTP nick end labeling positive cells in MCAO rats. The protein expression of BDNF, TrkB and p-Akt also increased in the quercetin treated rats. However, treatment with LY294002 or K252a reversed the quercetin-induced increase of BDNF and p-Akt proteins and decrease of cleaved caspase-3 protein in focal cerebral ischemia rats. These results demonstrate that quercetin can decrease cell apoptosis in the focal cerebral ischemia rat brain and the mechanism may be related to the activation of BDNF-TrkB-PI3K/Akt signaling pathway.

  20. Ramentaceone, a Naphthoquinone Derived from Drosera sp., Induces Apoptosis by Suppressing PI3K/Akt Signaling in Breast Cancer Cells.

    PubMed

    Kawiak, Anna; Lojkowska, Ewa

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in processes critical for breast cancer progression and its upregulation confers increased resistance of cancer cells to chemotherapy and radiation. The present study aimed at determining the activity of ramentaceone, a constituent of species in the plant genera Drosera, toward breast cancer cells and defining the involvement of PI3K/Akt inhibition in ramentaceone-mediated cell death induction. The results showed that ramentaceone exhibited high antiproliferative activity toward breast cancer cells, in particular HER2-overexpressing breast cancer cells. The mode of cell death induced by ramentaceone was through apoptosis as determined by cytometric analysis of caspase activity and Annexin V staining. Apoptosis induction was found to be mediated by inhibition of PI3K/Akt signaling and through targeting its downstream anti-apoptotic effectors. Ramentaceone inhibited PI3-kinase activity, reduced the expression of the PI3K protein and inhibited the phosphorylation of the Akt protein in breast cancer cells. The expression of the anti-apoptotic Bcl-2 protein was decreased and the levels of the pro-apoptotic proteins, Bax and Bak, were elevated. Moreover, inhibition of PI3K and silencing of Akt expression increased the sensitivity of cells to ramentaceone-induced apoptosis. In conclusion, our results indicate that ramentaceone induces apoptosis in breast cancer cells through PI3K/Akt signaling inhibition. These findings suggest further investigation of ramentaceone as a potential therapeutic agent in breast cancer therapy, in particular HER2-positive breast cancer.

  1. KNK437, abrogates hypoxia-induced radioresistance by dual targeting of the AKT and HIF-1{alpha} survival pathways

    SciTech Connect

    Oommen, Deepu; Prise, Kevin M.

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer KNK437, a benzylidene lactam compound, is a novel radiosensitizer. Black-Right-Pointing-Pointer KNK437 inhibits AKT signaling and abrogates the accumulation of HIF-1{alpha} under hypoxia. Black-Right-Pointing-Pointer KNK437 abrogates hypoxia induced resistance to radiation. -- Abstract: KNK437 is a benzylidene lactam compound known to inhibit stress-induced synthesis of heat shock proteins (HSPs). HSPs promote radioresistance and play a major role in stabilizing hypoxia inducible factor-1{alpha} (HIF-1{alpha}). HIF-1{alpha} is widely responsible for tumor resistance to radiation under hypoxic conditions. We hypothesized that KNK437 sensitizes cancer cells to radiation and overrides hypoxia-induced radioresistance via destabilizing HIF-1{alpha}. Treatment of human cancer cells MDA-MB-231 and T98G with KNK437 sensitized them to ionizing radiation (IR). Surprisingly, IR did not induce HSPs in these cell lines. As hypothesized, KNK437 abrogated the accumulation of HIF-1{alpha} in hypoxic cells. However, there was no induction of HSPs under hypoxic conditions. Moreover, the proteosome inhibitor MG132 did not restore HIF-1{alpha} levels in KNK437-treated cells. This suggested that the absence of HIF-1{alpha} in hypoxic cells was not due to the enhanced protein degradation. HIF-1{alpha} is mainly regulated at the level of post-transcription and AKT is known to modulate the translation of HIF-1{alpha} mRNA. Interestingly, pre-treatment of cells with KNK437 inhibited AKT signaling. Furthermore, down regulation of AKT by siRNA abrogated HIF-1{alpha} levels under hypoxia. Interestingly, KNK437 reduced cell survival in hypoxic conditions and inhibited hypoxia-induced resistance to radiation. Taken together, these data suggest that KNK437 is an effective radiosensitizer that targets multiple pro-survival stress response pathways.

  2. The AKT-mTOR signalling pathway in kidney cancer tissues

    NASA Astrophysics Data System (ADS)

    Spirina, L. V.; Usynin, Y. A.; Kondakova, I. V.; Yurmazov, Z. A.; Slonimskaya, E. M.; Kolegova, E. S.

    2015-11-01

    An increased expression of phospho-AKT, m-TOR, glycogen regulator GSK-3-beta and transcription inhibitor 4E-BP1 was observed in kidney cancer tissues. Tumor size growth was associated with a high level of c-Raf and low content of phospho-m-TOR. Cancer metastasis development led to a decreased PTEN and phospho-AKT expression.

  3. Nik-related kinase regulates trophoblast proliferation and placental development by modulating AKT phosphorylation.

    PubMed

    Morioka, Yuka; Nam, Jin-Min; Ohashi, Takashi

    2017-01-01

    Nik-related kinase (Nrk) is a Ser/Thr kinase and was initially discovered as a molecule that was predominantly detected in skeletal muscles during development. A recent study using Nrk-null mice suggested the importance of Nrk in proper placental development; however, the molecular mechanism remains unknown. In this study, we demonstrated that differentiated trophoblasts from murine embryonic stem cells (ESCs) endogenously expressed Nrk and that Nrk disruption led to the enhanced proliferation of differentiated trophoblasts. This phenomenon may reflect the overproliferation of trophoblasts that has been reported in enlarged placentas of Nrk-null mice. Furthermore, we demonstrated that AKT phosphorylati