Science.gov

Sample records for akt protein levels

  1. Motexafin gadolinium modulates levels of phosphorylated Akt and synergizes with inhibitors of Akt phosphorylation.

    PubMed

    Ramos, Jason; Sirisawad, Mint; Miller, Richard; Naumovski, Louie

    2006-05-01

    Motexafin gadolinium (MGd, Xcytrin) is a tumor-selective expanded porphyrin that targets oxidative stress-related proteins. MGd treatment of the follicular lymphoma-derived cell line HF-1 resulted in growth suppression and apoptosis whereas MGd treatment of the Burkitt's lymphoma-derived cell line Ramos resulted in growth suppression but not apoptosis. Because phosphorylation status of Akt/protein kinase B is regulated by oxidative stress, we monitored total and phosphorylated Akt (pAkt) in MGd-treated HF-1 and Ramos cells. Levels of pAkt increased within 30 minutes after MGd treatment of HF-1 but after 4 hours began to show a progressive decline to below baseline levels before cells underwent apoptosis. In MGd-treated Ramos cells, pAkt increased approximately 2-fold within 4 hours and remained persistently elevated. Because pAkt activates survival pathways, we determined if MGd-induced cell death could be enhanced by inhibiting phosphorylation of Akt. The addition of specific inhibitors of Akt phosphorylation (Akt inhibitor 1 or SH-5) reduced pAkt levels in MGd-treated HF-1 and Ramos cells and synergistically enhanced MGd-induced cell death. MGd was also evaluated in combination with celecoxib, an inhibitor of Akt phosphorylation, or docetaxel, a microtubule inhibitor that can decrease Akt phosphorylation. The combination of MGd/celecoxib or MGd/docetaxel resulted in decreased Akt phosphorylation and in synergistic cytotoxicity compared with either agent alone. These data point to a potential protective role for pAkt in MGd-induced apoptosis and suggest that MGd activity may be enhanced by combining it with agents that inhibit Akt phosphorylation.

  2. Activation of the PI3K/Akt signal transduction pathway and increased levels of insulin receptor in protein repair-deficient mice.

    PubMed

    Farrar, Christine; Houser, Carolyn R; Clarke, Steven

    2005-02-01

    Protein L-isoaspartate (D-aspartate) O-methyltransferase is an enzyme that catalyses the repair of isoaspartyl damage in proteins. Mice lacking this enzyme (Pcmt1-/- mice) have a progressive increase in brain size compared with wild-type mice (Pcmt1+/+ mice), a phenotype that can be associated with alterations in the PI3K/Akt signal transduction pathway. Here we show that components of this pathway, including Akt, GSK3beta and PDK-1, are more highly phosphorylated in the brains of Pcmt1-/- mice, particularly in cells of the hippocampus, in comparison with Pcmt1+/+ mice. Examination of upstream elements of this pathway in the hippocampus revealed that Pcmt1-/- mice have increased activation of insulin-like growth factor-I (IGF-I) receptor and/or insulin receptor. Western blot analysis revealed an approximate 200% increase in insulin receptor protein levels and an approximate 50% increase in IGF-I receptor protein levels in the hippocampus of Pcmt1-/- mice. Higher levels of the insulin receptor protein were also found in other regions of the adult brain and in whole tissue extracts of brain, liver, heart and testes of both juvenile and adult Pcmt1-/- mice. There were no significant differences in plasma insulin levels for adult Pcmt1-/- mice during glucose tolerance tests. However, they did show higher peak levels of blood glucose, suggesting a mild impairment in glucose tolerance. We propose that Pcmt1-/- mice have altered regulation of the insulin pathway, possibly as a compensatory response to altered glucose uptake or metabolism or as an adaptive response to a general accumulation of isoaspartyl protein damage in the brain and other tissues.

  3. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    SciTech Connect

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa; Shin, Incheol

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  4. Synthetic sulfoglycolipids targeting the serine-threonine protein kinase Akt.

    PubMed

    Costa, Barbara; Dangate, Milind; Vetro, Maria; Donvito, Giulia; Gabrielli, Luca; Amigoni, Loredana; Cassinelli, Giuliana; Lanzi, Cinzia; Ceriani, Michela; De Gioia, Luca; Filippi, Giulia; Cipolla, Laura; Zaffaroni, Nadia; Perego, Paola; Colombo, Diego

    2016-08-15

    The serine-threonine protein kinase Akt, also known as protein kinase B, is a key component of the phosphoinositide 3-kinase (PI3K)-Akt-mTOR axis. Deregulated activation of this pathway is frequent in human tumors and Akt-dependent signaling appears to be critical in cell survival. PI3K activation generates 3-phosphorylated phosphatidylinositols that bind Akt pleckstrin homology (PH) domain. The blockage of Akt PH domain/phosphoinositides interaction represents a promising approach to interfere with the oncogenic potential of over-activated Akt. In the present study, phosphatidyl inositol mimics based on a β-glucoside scaffold have been synthesized as Akt inhibitors. The compounds possessed one or two lipophilic moieties of different length at the anomeric position of glucose, and an acidic or basic group at C-6. Docking studies, ELISA Akt inhibition assays, and cellular assays on different cell models highlighted 1-O-octadecanoyl-2-O-β-d-sulfoquinovopyranosyl-sn-glycerol as the best Akt inhibitor among the synthesized compounds, which could be considered as a lead for further optimization in the design of Akt inhibitors.

  5. AKT (protein kinase B) is implicated in meiotic maturation of porcine oocytes.

    PubMed

    Kalous, Jaroslav; Kubelka, Michal; Solc, Petr; Susor, Andrej; Motlík, Jan

    2009-10-01

    The aim of this study was to investigate the involvement of the serine/threonine protein kinase AKT (also called protein kinase B) in the control of meiosis of porcine denuded oocytes (DOs) matured in vitro. Western blot analysis revealed that the two principal AKT phosphorylation sites, Ser473 and Thr308, are phosphorylated at different stages of meiosis. In freshly isolated germinal vesicle (GV)-stage DOs, Ser473 was already phosphorylated. After the onset of oocyte maturation, the intensity of the Ser473 phosphorylation increased, however, which declined sharply when DOs underwent GV breakdown (GVBD) and remained at low levels in metaphase I- and II-stage (MI- and MII-stage). In contrast, phosphorylation of Thr308 was increased by the time of GVBD and reached maximum at MI-stage. A peak of AKT activity was noticed around GVBD and activity of AKT declined at MI-stage. To assess the role of AKT during meiosis, porcine DOs were cultured in 50 microM SH-6, a specific inhibitor of AKT. In SH-6-treated DOs, GVBD was not inhibited; on the contrary, a significant acceleration of meiosis resumption was observed. The dynamics of the Ser473 phosphorylation was not affected; however, phosphorylation of Thr308 was reduced, AKT activity was diminished at the time of GVBD, and meiotic progression was arrested in early MI-stage. Moreover, the activity of the cyclin-dependent kinase 1 (CDK1) and MAP kinase declined when SH-6-treated DOs underwent GVBD, indicating that AKT activity is involved in the regulation of CDK1 and MAP kinase. These results suggest that activity of AKT is not essential for induction of GVBD in porcine oocytes but plays a substantial role during progression of meiosis to MI/MII-stage.

  6. Akt2 Regulates Expression of the Actin-Bundling Protein Palladin

    PubMed Central

    Chin, Y. Rebecca; Toker, Alex

    2010-01-01

    The PI 3-K/Akt pathway is responsible for key aspects of tumor progression, and is frequently hyperactivated in cancer. We have recently identified palladin, an actin-bundling protein that functions to control the actin cytoskeleton, as an Akt1-specific substrate that inhibits breast cancer cell migration. Here we have identified a role for Akt isoforms in the regulation of palladin expression. Akt2, but not Akt1, enhances palladin expression by maintaining protein stability and upregulating transcription. These data reveal that Akt signaling regulates the stability of palladin, and further supports the notion that Akt isoforms have distinct and specific roles in tumorigenesis. PMID:21050850

  7. VAMP-associated protein B (VAPB) promotes breast tumor growth by modulation of Akt activity.

    PubMed

    Rao, Meghana; Song, Wenqiang; Jiang, Aixiang; Shyr, Yu; Lev, Sima; Greenstein, David; Brantley-Sieders, Dana; Chen, Jin

    2012-01-01

    VAPB (VAMP- associated protein B) is an ER protein that regulates multiple biological functions. Although aberrant expression of VAPB is associated with breast cancer, its function in tumor cells is poorly understood. In this report, we provide evidence that VAPB regulates breast tumor cell proliferation and AKT activation. VAPB protein expression is elevated in primary and metastatic tumor specimens, and VAPB mRNA expression levels correlated negatively with patient survival in two large breast tumor datasets. Overexpression of VAPB in mammary epithelial cells increased cell growth, whereas VAPB knockdown in tumor cells inhibited cell proliferation in vitro and suppressed tumor growth in orthotopic mammary gland allografts. The growth regulation of mammary tumor cells controlled by VAPB appears to be mediated, at least in part, by modulation of AKT activity. Overexpression of VAPB in MCF10A-HER2 cells enhances phosphorylation of AKT. In contrast, knockdown of VAPB in MMTV-Neu tumor cells inhibited pAKT levels. Pharmacological inhibition of AKT significantly reduced three-dimensional spheroid growth induced by VAPB. Collectively, the genetic, functional and mechanistic analyses suggest a role of VAPB in tumor promotion in human breast cancer.

  8. VAMP-Associated Protein B (VAPB) Promotes Breast Tumor Growth by Modulation of Akt Activity

    PubMed Central

    Rao, Meghana; Song, Wenqiang; Jiang, Aixiang; Shyr, Yu; Lev, Sima; Greenstein, David; Brantley-Sieders, Dana; Chen, Jin

    2012-01-01

    VAPB (VAMP- associated protein B) is an ER protein that regulates multiple biological functions. Although aberrant expression of VAPB is associated with breast cancer, its function in tumor cells is poorly understood. In this report, we provide evidence that VAPB regulates breast tumor cell proliferation and AKT activation. VAPB protein expression is elevated in primary and metastatic tumor specimens, and VAPB mRNA expression levels correlated negatively with patient survival in two large breast tumor datasets. Overexpression of VAPB in mammary epithelial cells increased cell growth, whereas VAPB knockdown in tumor cells inhibited cell proliferation in vitro and suppressed tumor growth in orthotopic mammary gland allografts. The growth regulation of mammary tumor cells controlled by VAPB appears to be mediated, at least in part, by modulation of AKT activity. Overexpression of VAPB in MCF10A-HER2 cells enhances phosphorylation of AKT. In contrast, knockdown of VAPB in MMTV-Neu tumor cells inhibited pAKT levels. Pharmacological inhibition of AKT significantly reduced three-dimensional spheroid growth induced by VAPB. Collectively, the genetic, functional and mechanistic analyses suggest a role of VAPB in tumor promotion in human breast cancer. PMID:23049696

  9. Novel Endogenous, Insulin-Stimulated Akt2 Protein Interaction Partners in L6 Myoblasts

    PubMed Central

    Caruso, Michael; Zhang, Xiangmin; Ma, Danjun; Yang, Zhao; Qi, Yue; Yi, Zhengping

    2015-01-01

    Insulin resistance and Type 2 diabetes are marked by an aberrant response in the insulin signaling network. The phosphoinositide-dependent serine/threonine kinase, Akt2, plays a key role in insulin signaling and glucose uptake, most notably within skeletal muscle. Protein-protein interaction regulates the functional consequence of Akt2 and in turn, Akt2’s role in glucose uptake. However, only few insulin-responsive Akt2 interaction partners have been identified in skeletal muscle cells. In the present work, rat L6 myoblasts, a widely used insulin sensitive skeletal muscle cell line, were used to examine endogenous, insulin-stimulated Akt2 protein interaction partners. Akt2 co-immunoprecipitation was coupled with 1D-SDS-PAGE and fractions were analyzed by HPLC-ESI-MS/MS to reveal Akt2 protein-protein interactions. The pull-down assay displayed specificity for the Akt2 isoform; Akt1 and Akt3 unique peptides were not detected. A total of 49 were detected with a significantly increased (47) or decreased (2) association with Akt2 following insulin administration (n = 4; p<0.05). Multiple pathways were identified for the novel Akt2 interaction partners, such as the EIF2 and ubiquitination pathways. These data suggest that multiple new endogenous proteins may associate with Akt2 under basal as well as insulin-stimulated conditions, providing further insight into the insulin signaling network. Data are available via ProteomeXchange with identifier PXD002557. PMID:26465754

  10. Analysis of AKT and ERK1/2 protein kinases in extracellular vesicles isolated from blood of patients with cancer

    PubMed Central

    van der Mijn, Johannes C.; Sol, Nik; Mellema, Wouter; Jimenez, Connie R.; Piersma, Sander R.; Dekker, Henk; Schutte, Lisette M.; Smit, Egbert F.; Broxterman, Henk J.; Skog, Johan; Tannous, Bakhos A.; Wurdinger, Thomas; Verheul, Henk M. W.

    2014-01-01

    Background Extracellular vesicles (EVs) are small nanometre-sized vesicles that are circulating in blood. They are released by multiple cells, including tumour cells. We hypothesized that circulating EVs contain protein kinases that may be assessed as biomarkers during treatment with tyrosine kinase inhibitors. Methods EVs released by U87 glioma cells, H3255 and H1650 non-small-cell lung cancer (NSCLC) cells were profiled by tandem mass spectrometry. Total AKT/protein kinase B and extracellular signal regulated kinase 1/2 (ERK1/2) levels as well as their relative phosphorylation were measured by western blot in isogenic U87 cells with or without mutant epidermal growth factor receptor (EGFRvIII) and their corresponding EVs. To assess biomarker potential, plasma samples from 24 healthy volunteers and 42 patients with cancer were used. Results In total, 130 different protein kinases were found to be released in EVs including multiple drug targets, such as mammalian target of rapamycin (mTOR), AKT, ERK1/2, AXL and EGFR. Overexpression of EGFRvIII in U87 cells results in increased phosphorylation of EGFR, AKT and ERK1/2 in cells and EVs, whereas a decreased phosphorylation was noted upon treatment with the EGFR inhibitor erlotinib. EV samples derived from patients with cancer contained significantly more protein (p=0.0067) compared to healthy donors. Phosphorylation of AKT and ERK1/2 in plasma EVs from both healthy donors and patients with cancer was relatively low compared to levels in cancer cells. Preliminary analysis of total AKT and ERK1/2 levels in plasma EVs from patients with NSCLC before and after sorafenib/metformin treatment (n=12) shows a significant decrease in AKT levels among patients with a favourable treatment response (p<0.005). Conclusion Phosphorylation of protein kinases in EVs reflects their phosphorylation in tumour cells. Total AKT protein levels may allow monitoring of kinase inhibitor responses in patients with cancer. PMID:25491250

  11. HBV core promoter mutations and AKT upregulate S-phase kinase-associated protein 2 to promote postoperative hepatocellular carcinoma progression

    PubMed Central

    Chen, Lubiao; Gu, Lin; Gu, Yurong; Wang, Hongbo; Deng, Meihai; Stamataki, Zania; Oo, Ye Htun; Huang, Yuehua

    2016-01-01

    Mutations in the hepatitis B virus (HBV) core promoter (CP) have been shown to be associated with hepatocellular carcinoma (HCC). The CP region overlaps HBV X gene, which activates AKT to regulate hepatocyte survival. However, the cooperation between these two cascades in HCC progression remains poorly understood. Here, we assayed virological factors and AKT expression in liver tissues from 56 HCC patients with better prognoses (BHCC, ≥5-year survival) and 58 with poor prognoses (PHCC, <5-year survival) after partial liver resection. Results showed double mutation A1762T/G1764A (TA) combined with other mutation(s) (TACO) in HBV genome and phosphorylated AKT (pAKT) were more common in PHCC than BHCC. TACO and pAKT levels correlated with proliferation and microvascularization but inversely correlated with apoptosis in HCC samples. These were more pronounced when TACO and pAKT co-expressed. Levels of p21 and p27 were decreased in TACO or pAKT overexpressing HCC due to SKP2 upregulation. Levels of E2F1 and both mRNA and protein of SKP2 were increased in TACO expressing HCC. Levels of 4EBP1/2 decreased and SKP2 mRNA level remained constant in pAKT-overexpressing HCC. Therefore, TACO and AKT are two independent predictors of postoperative survival in HCC. Their co-target, SKP2 may be a diagnostic or therapeutic marker. PMID:27779207

  12. Cross regulation between cGMP-dependent protein kinase and Akt in vasodilatation of porcine pulmonary artery.

    PubMed

    Liu, Juan; Liu, Huixia; Li, Yanjing; Xu, Xiaojian; Chen, Zhengju; Liu, Limei; Yu, Xiaoxing; Gao, Yuansheng; Dou, Dou

    2014-11-01

    cGMP-dependent protein kinase (PKG) plays a crucial role in vasodilatation induced by cGMP-elevating agents. Akt has been demonstrated to be involved in modulating vasoreactivity. The present study was to determine the interaction between PKG and Akt and their influences on nitric oxide (NO)-induced vasodilatation. Isolated fourth-generation porcine pulmonary arteries were dissected from the lung and cut into rings in ice-cold modified Krebs-Ringer bicarbonate buffer. The relaxant responses of vessels were determined by organ chamber technique, cGMP was assayed by using enzyme-linked immunosorbent assay kit, the protein levels of phosphorylated Akt were examined by Western blotting, and the activity of phosphodiesterase type 5 (PDE5) was assayed by measuring the rate of cGMP degradation. Incubation with DETA NONOate (a stable NO donor) and 8-Br-cGMP (a cell membrane permeable analog of cGMP) attenuated Akt phosphorylation at Ser-473, which was prevented by Rp-8-Br-PET-cGMPS (a specific inhibitor of PKG) and calyculin A (an inhibitor of protein phosphatase 1 and 2A) but not by okadaic acid (a selective inhibitor of protein phosphatase 2A). Inhibition of Akt enhanced the relaxation and cGMP elevation of porcine pulmonary arteries induced by DETA NONOate or sodium nitroprusside, which was prevented by zaprinast, a specific inhibitor of PDE5. Incubation with LY294002 or Akt inhibitor reduced PDE5 activity in porcine pulmonary arteries. The present study indicates that PKG may attenuate Akt phosphorylation through protein phosphatase 1, which leads to an augmented cGMP elevation by inhibition of PDE5. The increased cGMP in turn activates PKG. Such a positive feedback may play an important role in NO-induced pulmonary vasodilatation.

  13. Long isoform of ErbB3 binding protein, p48, mediates protein kinase B/Akt-dependent HDM2 stabilization and nuclear localization

    SciTech Connect

    Kim, Chung Kwon; Lee, Sang Bae; Nguyen, Truong L.X.; Lee, Kyung-Hoon; Um, Sung Hee; Kim, Jihoe; Ahn, Jee-Yin

    2012-01-15

    p48 is a long isoform of the ErbB3 binding protein that has oncogenic functions including promotion of carcinogenesis and induction of malignant transformation through negative regulation of tumor suppressor p53. Here, we show that high level of p48 protein expression leads to enhance HDM2 phosphorylation by Akt and inhibits the self-ubiquitination of HDM2 by up-regulation of Akt activity, thereby promoting its protein stability. Moreover, p48 expression leads to accumulated nuclear localization of HDM2, whereas p48 depletion disturbs its nuclear localization. Hence, higher expression of p48 in cancer cells reduces p53 levels through modulation of HDM2 nuclear localization and protein stability via regulation of its Akt-mediated phosphorylation.

  14. Role for the adaptor protein Grb10 in the activation of Akt.

    PubMed

    Jahn, Thomas; Seipel, Petra; Urschel, Susanne; Peschel, Christian; Duyster, Justus

    2002-02-01

    Grb10 is a member of the Grb7 family of adapter proteins lacking intrinsic enzymatic function and encodes functional domains including a pleckstrin homology (PH) domain and an SH2 domain. The role of different Grb10 splice variants in signal transduction of growth factors like insulin or insulin-like growth factor has been described as inhibitory or stimulatory depending on the presence of a functional PH and/or SH2 domain. Performing a yeast two-hybrid screen with the c-kit cytoplasmic tail fused to LexA as a bait and a mouse embryo cDNA library as prey, we found that the Grb10 SH2 domain interacted with the c-kit receptor tyrosine kinase. In the course of SCF-mediated activation of c-kit, Grb10 is recruited to the c-kit receptor in an SH2 domain- and phosphotyrosine-dependent but PH domain-independent manner. We found that Akt and Grb10 form a constitutive complex, suggesting a role for Grb10 in the translocation of Akt to the cell membrane. Indeed, coexpression studies revealed that Grb10 and c-kit activate Akt in a synergistic manner. This dose-dependent effect of Grb10 is wortmannin sensitive and was also seen at a lower level in cells in which c-kit was not expressed. Expression of a Grb10 mutant lacking the SH2 domain as well as a mutant lacking the PH domain did not influence Akt activity. Grb10-induced Akt activation was observed without increased phosphatidylinositol 3-kinase (PI3-kinase) activity, suggesting that Grb10 is a positive regulator of Akt downstream of PI3-kinase. Significantly, deficient activation of Akt by a constitutively activated c-kit mutant lacking the binding site for PI3-kinase (c-kitD814V/Y719F) could be fully compensated by overexpression of Grb10. In Ba/F3 cells, the incapacity of c-kitD814V/Y719F to induce interleukin-3 (IL-3)-independent growth could be rescued by overexpression of Grb10. In contrast, expression of the SH2 deletion mutant of Grb10 together with c-kitD814V/Y719F did not render Ba/F3 cells independent of IL-3. In

  15. Effective Identification of Akt Interacting Proteins by Two-Step Chemical Crosslinking, Co-Immunoprecipitation and Mass Spectrometry

    PubMed Central

    Huang, Bill X.; Kim, Hee-Yong

    2013-01-01

    Akt is a critical protein for cell survival and known to interact with various proteins. However, Akt binding partners that modulate or regulate Akt activation have not been fully elucidated. Identification of Akt-interacting proteins has been customarily achieved by co-immunoprecipitation combined with western blot and/or MS analysis. An intrinsic problem of the method is loss of interacting proteins during procedures to remove non-specific proteins. Moreover, antibody contamination often interferes with the detection of less abundant proteins. Here, we developed a novel two-step chemical crosslinking strategy to overcome these problems which resulted in a dramatic improvement in identifying Akt interacting partners. Akt antibody was first immobilized on protein A/G beads using disuccinimidyl suberate and allowed to bind to cellular Akt along with its interacting proteins. Subsequently, dithiobis[succinimidylpropionate], a cleavable crosslinker, was introduced to produce stable complexes between Akt and binding partners prior to the SDS-PAGE and nanoLC-MS/MS analysis. This approach enabled identification of ten Akt partners from cell lysates containing as low as 1.5 mg proteins, including two new potential Akt interacting partners. None of these but one protein was detectable without crosslinking procedures. The present method provides a sensitive and effective tool to probe Akt-interacting proteins. This strategy should also prove useful for other protein interactions, particularly those involving less abundant or weakly associating partners. PMID:23613850

  16. PPAR-γ agonist stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination

    SciTech Connect

    Sun, Yan; Zheng, Bin; Zhang, Xin-hua; He, Ming; Guo, Zong-wei; Wen, Jin-kun

    2014-01-10

    Highlights: •PPAR-γ increases KLF4 protein level but does not influence KLF4 gene transcription. •The increase of KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. •Pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination. -- Abstract: Peroxisome proliferator activated receptor γ (PPAR-γ) plays important roles in cell cycle regulation, differentiation and apoptosis. Krüppel-like factor 4 (KLF4) modulates vascular smooth muscle cell (VSMC) phenotype. Both KLF4 and PPAR-γ are involved in VSMC proliferation and differentiation. However, the actual relationship between KLF4 and PPAR-γ in VSMCs is not clear. In this study, we found that PPAR-γ agonist pioglitazone increases KLF4 protein levels but does not influence KLF4 gene transcription. PPAR-γ overexpression increases, while PPAR-γ knockdown reduces KLF4 expression, suggesting that the increase in KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. Further study showed that pioglitazone enhances KLF4 protein stability through reducing KLF4 ubiquitination. Furthermore, we demonstrated that stabilization of KLF4 by pioglitazone was related to the activation of Akt signaling pathway. Taken together, we revealed that PPAR-γ agonist pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination, providing further insights into PPAR-γ and KLF4 in regulating each other’s expression in VSMCs.

  17. The protein kinase Akt1 regulates the interferon response through phosphorylation of the transcriptional repressor EMSY.

    PubMed

    Ezell, Scott A; Polytarchou, Christos; Hatziapostolou, Maria; Guo, Ailan; Sanidas, Ioannis; Bihani, Teeru; Comb, Michael J; Sourvinos, George; Tsichlis, Philip N

    2012-03-01

    The protein kinases Akt1, Akt2, and Akt3 possess nonredundant signaling properties, few of which have been investigated. Here, we present evidence for an Akt1-dependent pathway that controls interferon (IFN)-regulated gene expression and antiviral immunity. The target of this pathway is EMSY, an oncogenic interacting partner of BRCA2 that functions as a transcriptional repressor. Overexpression of EMSY in hTERT-immortalized mammary epithelial cells, and in breast and ovarian carcinoma cell lines, represses IFN-stimulated genes (ISGs) in a BRCA2-dependent manner, whereas its knockdown has the opposite effect. EMSY binds to the promoters of ISGs, suggesting that EMSY functions as a direct transcriptional repressor. Akt1, but not Akt2, phosphorylates EMSY at Ser209, relieving EMSY-mediated ISG repression. The Akt1/EMSY/ISG pathway is activated by both viral infection and IFN, and it inhibits the replication of HSV-1 and vesicular stomatitis virus (VSV). Collectively, these data define an Akt1-dependent pathway that contributes to the full activation of ISGs by relieving their repression by EMSY and BRCA2.

  18. Protein kinase B (AKT) regulates SYK activity and shuttling through 14-3-3 and importin 7.

    PubMed

    Mohammad, Dara K; Nore, Beston F; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2016-09-01

    The Protein kinase B (AKT) regulates a plethora of intracellular signaling proteins to fine-tune signaling of multiple pathways. Here, we found that following B-cell receptor (BCR)-induced tyrosine phosphorylation of the cytoplasmic tyrosine kinase SYK and the adaptor BLNK, the AKT/PKB enzyme strongly induced BLNK (>100-fold) and SYK (>100-fold) serine/threonine phosphorylation (pS/pT). Increased phosphorylation promoted 14-3-3 binding to BLNK (37-fold) and SYK (2.5-fold) in a pS/pT-concentration dependent manner. We also demonstrated that the AKT inhibitor MK2206 reduced pS/pT of both BLNK (3-fold) and SYK (2.5-fold). Notably, the AKT phosphatase, PHLPP2 maintained the activating phosphorylation of BLNK at Y84 and increased protein stability (8.5-fold). In addition, 14-3-3 was required for the regulation SYK's interaction with BLNK and attenuated SYK binding to Importin 7 (5-fold), thereby perturbing shuttling to the nucleus. Moreover, 14-3-3 proteins also sustained tyrosine phosphorylation of SYK and BLNK. Furthermore, substitution of S295 or S297 for alanine abrogated SYK's binding to Importin 7. SYK with S295A or S297A replacements showed intense pY525/526 phosphorylation, and BLNK pY84 phosphorylation correlated with the SYK pY525/526 phosphorylation level. Conversely, the corresponding mutations to aspartic acid in SYK reduced pY525/526 phosphorylation. Collectively, these and previous results suggest that AKT and 14-3-3 proteins down-regulate the activity of several BCR-associated components, including BTK, BLNK and SYK and also inhibit SYK's interaction with Importin 7. PMID:27381982

  19. Biochemical and Cellular Evidence Demonstrating AKT-1 as a Binding Partner for Resveratrol Targeting Protein NQO2

    PubMed Central

    Hsieh, Tze-chen; Lin, Chia-Yi; Bennett, Dylan John; Wu, Erxi; Wu, Joseph M.

    2014-01-01

    Background AKT plays an important role in the control of cell proliferation and survival. Aberrant activation of AKT frequently occurs in human cancers making it an attractive drug targets and leading to the synthesis of numerous AKT inhibitors as therapeutic candidates. Less is known regarding proteins that control AKT. We recently reported that quinone reductase 2 (NQO2) inhibited AKT activity, by unknown mechanisms. Methodology/Principal Findings In this study, molecular modeling was used to query interaction between NQO2 and AKT. We found that pleckstrin homology (PH) and kinase domains of AKT bind to chains A and B of NQO2. Pull-down and deletion assays revealed that PH domain of AKT is essential for interaction with NQO2. Modeling analysis further revealed that kinase domain of AKT binds NQO2 in the vicinity of asparagine 161 located in the resveratrol-binding domain of NQO2. In studies to test whether exposure to resveratrol potentiates or diminishes AKT binding to NQO2, we showed that pre-binding by resveratrol in wild type but not histidine-161 (N161H) mutant NQO2 significantly affected this interaction. To obtain information on interplay between resveratrol and AKT, resveratrol affinity chromatography was performed. AKT binds with high affinity to the column suggesting that it is a target of resveratrol. The half-life of AKT mRNA decreased from ∼4 h in control cells to ∼1 h in NQO2-knockdown cells. The inhibition of AKT by resveratrol was attenuated in NQO2-expressing relative to NQO2-knockdown cells. Conclusion/Significance Both NQO2 and AKT are targets of resveratrol; NQO2:AKT interaction is a novel physiological regulator of AKT activation/function. PMID:24968355

  20. Protein kinase B (PKB/AKT1) formed signaling complexes with mitochondrial proteins and prevented glycolytic energy dysfunction in cultured cardiomyocytes during ischemia-reperfusion injury.

    PubMed

    Deng, Wu; Leu, Hsin-Bang; Chen, Yumay; Chen, Yu-Han; Epperson, Christine M; Juang, Charity; Wang, Ping H

    2014-05-01

    Our previous studies showed that insulin stimulated AKT1 translocation into mitochondria and modulated oxidative phosphorylation complex V in cardiac muscle. This raised the possibility that mitochondrial AKT1 may regulate glycolytic oxidative phosphorylation and mitochondrial function in cardiac muscle cells. The aims of this project were to study the effects of mitochondrial AKT1 signaling on cell survival in stressed cardiomyocytes, to define the effect of mitochondrial AKT1 signaling on glycolytic bioenergetics, and to identify mitochondrial targets of AKT1 signaling in cardiomyocytes. Mitochondrial AKT1 signaling played a protective role against apoptosis and necrosis during ischemia-reperfusion stress, suppressed mitochondrial calcium overload, and alleviated mitochondrial membrane depolarization. Activation of AKT1 signaling in mitochondria increased glucose uptake, enhanced respiration efficiency, reduced superoxide generation, and increased ATP production in the cardiomyocytes. Inhibition of mitochondrial AKT attenuated insulin response, indicating that insulin regulation of ATP production required mitochondrial AKT1 signaling. A proteomic approach was used to reveal 15 novel targets of AKT1 signaling in mitochondria, including pyruvate dehydrogenase complex (PDC). We have confirmed and characterized the association of AKT1 and PDC subunits and verified a stimulatory effect of mitochondrial AKT1 on the enzymatic activity of PDC. These findings suggested that AKT1 formed protein complexes with multiple mitochondrial proteins and improved mitochondrial function in stressed cardiomyocytes. The novel AKT1 signaling targets in mitochondria may become a resource for future metabolism research.

  1. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway

    PubMed Central

    Hermkens, Dorien; Wlodarski, Marcin W.; Da Costa, Lydie; MacInnes, Alyson W.

    2015-01-01

    Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. PMID:26132763

  2. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS

    SciTech Connect

    Jee, Hye Jin; Kim, Hyun-Ju; Kim, Ae Jeong; Bae, Yoe-Sik; Bae, Sun Sik; Yun, Jeanho

    2009-06-05

    Akt/PKB plays a pivotal role in cell survival and proliferation. Previously, we reported that UV-irradiation induces extensive cell death in Akt2{sup -/-} mouse embryonic fibroblasts (MEFs) while Akt1{sup -/-} MEFs show cell cycle arrest. Here, we find that Akt1{sup -/-} MEFs exhibit phenotypic changes characteristics of senescence upon UV-irradiation. An enlarged and flattened morphology, a reduced cell proliferation and an increased senescence-associated {beta}-galactosidase (SA {beta}-gal) staining indicate that Akt1{sup -/-} MEFs undergo premature senescence after UV-irradiation. Restoring Akt1 expression in Akt1{sup -/-} MEFs suppressed SA {beta}-gal activity, indicating that UV-induced senescence is due to the absence of Akt1 function. Notably, levels of ROS were rapidly increased upon UV-irradiation and the ROS scavenger NAC inhibits UV-induced senescence of Akt1{sup -/-} MEFs, suggesting that UV light induces premature senescence in Akt1{sup -/-} MEFs by modulating intracellular levels of ROS. In conjunction with our previous work, this indicates that different isoforms of Akt have distinct function in response to UV-irradiation.

  3. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway.

    PubMed Central

    Khwaja, A; Rodriguez-Viciana, P; Wennström, S; Warne, P H; Downward, J

    1997-01-01

    Upon detachment from the extracellular matrix, epithelial cells enter into programmed cell death, a phenomenon known as anoikis, ensuring that they are unable to survive in an inappropriate location. Activated ras oncogenes protect cells from this form of apoptosis. The nature of the survival signals activated by integrin engagement and usurped by oncogenic Ras are unknown: here we show that in both cases phosphoinositide 3-OH kinase (PI 3-kinase), but not Raf, mediates this protection, acting through protein kinase B/Akt (PKB/Akt). Constitutively activated PI 3-kinase or PKB/Akt block anoikis, while inhibition of PI 3-kinase abrogates protection by Ras, but not PKB/Akt. Inhibition of either PI 3-kinase or PKB/Akt induces apoptosis in adherent epithelial cells. Attachment of cells to matrix leads to rapid elevation of the levels of PI 3-kinase lipid products and PKB/Akt activity, both of which remain high in Ras-transformed cells even in suspension. PI 3-kinase acting through PKB/Akt is therefore implicated as a key mediator of the aberrant survival of Ras-transformed epithelial cells in the absence of attachment, and mediates matrix-induced survival of normal epithelial cells. PMID:9184223

  4. A novel Drosophila Girdin-like protein is involved in Akt pathway control of cell size

    SciTech Connect

    Puseenam, Aekkachai; Yoshioka, Yasuhide; Nagai, Rika; Hashimoto, Reina; Suyari, Osamu; Itoh, Masanobu; Enomoto, Atsushi; Takahashi, Masahide; Yamaguchi, Masamitsu

    2009-11-15

    The Akt signaling pathway is well known to regulate cell proliferation and growth. Girdin, a novel substrate of Akt, plays a crucial role in organization of the actin cytoskeleton and cell motility under the control of Akt. We here identified a novel Girdin-like protein in Drosophila (dGirdin), which has two isoforms, dGirdin PA and dGirdin PB. dGirdin shows high homology with human Girdin in the N-terminal and coiled-coil domains, while diverging at the C-terminal domain. On establishment of transgenic fly lines, featuring knockdown or overexpression of dGirdin in vivo, overexpression in the wing disc cells induced ectopic apoptosis, implying a role in directing apoptosis. Knockdown of dGirdin in the Drosophila wing imaginal disc cells resulted in reduction of cell size. Furthermore, this was enhanced by half reduction of the Akt gene dose, suggesting that Akt positively regulates dGirdin. In the wing disc, cells in which dGirdin was knocked down exhibited disruption of actin filaments. From these in vivo analyses, we conclude that dGirdin is required for actin organization and regulation of appropriate cell size under control of the Akt signaling pathway.

  5. Heterogeneous kinetics of AKT signaling in individual cells are accounted for by variable protein concentration.

    PubMed

    Meyer, René; D'Alessandro, Lorenza A; Kar, Sandip; Kramer, Bernhard; She, Bin; Kaschek, Daniel; Hahn, Bettina; Wrangborg, David; Karlsson, Johan; Kvarnström, Mats; Jirstrand, Mats; Lehmann, Wolf-Dieter; Timmer, Jens; Höfer, Thomas; Klingmüller, Ursula

    2012-01-01

    In most solid cancers, cells harboring oncogenic mutations represent only a sub-fraction of the entire population. Within this sub-fraction the expression level of mutated proteins can vary significantly due to cellular variability limiting the efficiency of targeted therapy. To address the causes of the heterogeneity, we performed a systematic analysis of one of the most frequently mutated pathways in cancer cells, the phosphatidylinositol 3 kinase (PI3K) signaling pathway. Among others PI3K signaling is activated by the hepatocyte growth factor (HGF) that regulates proliferation of hepatocytes during liver regeneration but also fosters tumor cell proliferation. HGF-mediated responses of PI3K signaling were monitored both at the single cell and cell population level in primary mouse hepatocytes and in the hepatoma cell line Hepa1_6. Interestingly, we observed that the HGF-mediated AKT responses at the level of individual cells is rather heterogeneous. However, the overall average behavior of the single cells strongly resembled the dynamics of AKT activation determined at the cell population level. To gain insights into the molecular cause for the observed heterogeneous behavior of individual cells, we employed dynamic mathematical modeling in a stochastic framework. Our analysis demonstrated that intrinsic noise was not sufficient to explain the observed kinetic behavior, but rather the importance of extrinsic noise has to be considered. Thus, distinct from gene expression in the examined signaling pathway fluctuations of the reaction rates has only a minor impact whereas variability in the concentration of the various signaling components even in a clonal cell population is a key determinant for the kinetic behavior. PMID:23226133

  6. Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase Calpha in endothelial cells.

    PubMed

    Partovian, Chohreh; Simons, Michael

    2004-08-01

    Protein kinase Balpha (PKBalpha/Akt-1) is a key mediator of multiple signaling pathways involved in angiogenesis, cell proliferation and apoptosis among others. The unphosphorylated form of Akt-1 is virtually inactive and its full activation requires two phosphatidylinositol-3,4,5-triphosphate-dependent phosphorylation events, Thr308 by 3-phosphoinositide-dependent kinase-1 (PDK1) and Ser473 by an undefined kinase that has been termed PDK2. Recent studies have suggested that the Ser473 kinase is a plasma membrane raft-associated kinase. In this study we show that protein kinase Calpha (PKCalpha) translocates to the membrane rafts in response to insulin growth factor-1 (IGF-1) stimulation. Overexpression of PKCalpha increases Ser473 phosphorylation and Akt-1 activity, while inhibition of its activity or expression decreases IGF-1-dependent activation of Akt-1. Furthermore, in vitro, in the presence of phospholipids and calcium, PKCalpha directly phosphorylates Akt-1 at the Ser473 site. We conclude, therefore, that PKCalpha regulates Akt-1 activity via Ser473 phosphorylation and may function as PDK2 in endothelial cells. PMID:15157674

  7. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes

    PubMed Central

    Zhou, Huanyu; Dickson, Matthew E.; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N.

    2015-01-01

    Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique. PMID:26354121

  8. Hypoactivity Affects IGF-1 Level and PI3K/AKT Signaling Pathway in Cerebral Structures Implied in Motor Control

    PubMed Central

    Mysoet, Julien; Canu, Marie-Hélène; Cieniewski-Bernard, Caroline; Bastide, Bruno; Dupont, Erwan

    2014-01-01

    A chronic reduction in neuromuscular activity through prolonged body immobilization in human alters motor task performance through a combination of peripheral and central factors. Studies performed in a rat model of sensorimotor restriction have shown functional and biochemical changes in sensorimotor cortex. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of Insulin-like Growth Factor 1 (IGF-1), a growth factor known to mediate neuronal excitability and synaptic plasticity by inducing phosphorylation cascades which include the PI3K–AKT pathway. In order to better understand the influence of IGF-1 in cortical plasticity in rats submitted to a sensorimotor restriction, we analyzed the effect of hindlimb unloading on IGF-1 and its main molecular pathway in structures implied in motor control (sensorimotor cortex, striatum, cerebellum). IGF-1 level was determined by ELISA, and phosphorylation of its receptor and proteins of the PI3K–AKT pathway by immunoblot. In the sensorimotor cortex, our results indicate that HU induces a decrease in IGF-1 level; this alteration is associated to a decrease in activation of PI3K-AKT pathway. The same effect was observed in the striatum, although to a lower extent. No variation was noticed in the cerebellum. These results suggest that IGF-1 might contribute to cortical and striatal plasticity induced by a chronic sensorimotor restriction. PMID:25226394

  9. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1.

    PubMed

    Corum, Daniel G; Tsichlis, Philip N; Muise-Helmericks, Robin C

    2014-01-01

    Our previous work has shown that Akt3 is required for mitochondrial biogenesis in primary human endothelial cells (ECs) and in Akt3-null mice; Akt3 affects subcellular localization of peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α), the master regulator of mitochondrial biogenesis. The purpose of this study is to determine the mechanism by which Akt3 controls the subcellular distribution of PGC-1α and to explore the effect on mitochondrial biogenesis and turnover during angiogenesis. Here we use standard biochemical analyses and Akt3-knockdown strategies to show that Akt3 controls the stabilization of chromosome maintenance region-1 (CRM-1), the major nuclear export receptor. Site-directed mutagenesis and association analyses show that PGC-1α nuclear export is CRM-1 dependent. Akt3 knockdown and CRM-1 overexpression cause 3-fold reductions in PGC-1α target gene expression, compared to control levels. Akt3 inhibition causes autophagy, as measured by autophagosome formation, in a CRM-1-dependent, Akt1/mTOR-independent pathway. In vivo, Akt3-null and heterozygous mice show dose-dependent decreases in angiogenesis compared to wild-type littermates (~5- and 2.5-fold decreases, respectively), as assessed by Matrigel plug assays. This correlates with an ~1.5-fold decrease in mitochondrial Cox IV expression. Our studies suggest that Akt3 is a regulator of mitochondrial dynamics in the vasculature via regulation of CRM-1-dependent nuclear export.

  10. Paclitaxel and beta-lapachone synergistically induce apoptosis in human retinoblastoma Y79 cells by downregulating the levels of phospho-Akt.

    PubMed

    D'Anneo, Antonella; Augello, Giuseppa; Santulli, Andrea; Giuliano, Michela; di Fiore, Riccardo; Messina, Concetta; Tesoriere, Giovanni; Vento, Renza

    2010-02-01

    Paclitaxel (PTX) and beta-lapachone (LPC) are naturally occurring compounds that have shown a large spectrum of anticancer activity. In this article we show for the first time that PTX/LPC combination induces potent synergistic apoptotic effects in human retinoblastoma Y79 cells. Combination of suboptimal doses of PTX (0.3 nM) and LPC (1.5 microM) caused biochemical and morphological signs of apoptosis at 48 h of treatment. These effects were accompanied by potent lowering in inhibitor of apoptosis proteins and by activation of Bid and caspases 3 and 6 with lamin B and PARP breakdown. PTX/LPC combination acted by favoring p53 stabilization through a lowering in p-Akt levels and in ps166-MDM2, the phosphorylated-MDM2 form that enters the nucleus and induces p53 export and degradation. Treatment with wortmannin or transfection with a dominant negative form of Akt anticipated at 24 h the effects induced by PTX/LPC, suggesting a protective role against apoptosis played by Akt in Y79 cells. In line with these results, we demonstrated that Y79 cells contain constitutively active Akt, which forms a cytosolic complex with p53 and MDM2 driving p53 degradation. PTX/LPC treatment induced a weakness of Akt-MDM2-p53 complex and increased nuclear p53 levels. Our results suggest that phospho-Akt lowering is at the root of the apoptotic action exerted by PTX/LPC combination and provide strong validation for a treatment approach that targets survival signals represented by phospho-Akt and inhibitor of apoptosis proteins. PMID:19918798

  11. G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling

    PubMed Central

    Riaz, Anjum; Huang, Ying; Johansson, Staffan

    2016-01-01

    A hallmark of G-protein-coupled receptors (GPCRs) is their ability to recognize and respond to chemically diverse ligands. Lysophospholipids constitute a relatively recent addition to these ligands and carry out their biological functions by activating G-proteins coupled to a large family of cell-surface receptors. This review aims to highlight salient features of cell signaling by one class of these receptors, known as lysophosphatidic acid (LPA) receptors, in the context of phosphatidylinositol 3-kinase (PI3K)–AKT pathway activation. LPA moieties efficiently activate AKT phosphorylation and activation in a multitude of cell types. The interplay between LPA, its receptors, the associated Gαi/o subunits, PI3K and AKT contributes to the regulation of cell survival, migration, proliferation and confers chemotherapy-resistance in certain cancers. However, detailed information on the regulation of PI3K–AKT signals induced by LPA receptors is missing from the literature. Here, some urgent issues for investigation are highlighted. PMID:26861299

  12. G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling.

    PubMed

    Riaz, Anjum; Huang, Ying; Johansson, Staffan

    2016-01-01

    A hallmark of G-protein-coupled receptors (GPCRs) is their ability to recognize and respond to chemically diverse ligands. Lysophospholipids constitute a relatively recent addition to these ligands and carry out their biological functions by activating G-proteins coupled to a large family of cell-surface receptors. This review aims to highlight salient features of cell signaling by one class of these receptors, known as lysophosphatidic acid (LPA) receptors, in the context of phosphatidylinositol 3-kinase (PI3K)-AKT pathway activation. LPA moieties efficiently activate AKT phosphorylation and activation in a multitude of cell types. The interplay between LPA, its receptors, the associated Gαi/o subunits, PI3K and AKT contributes to the regulation of cell survival, migration, proliferation and confers chemotherapy-resistance in certain cancers. However, detailed information on the regulation of PI3K-AKT signals induced by LPA receptors is missing from the literature. Here, some urgent issues for investigation are highlighted. PMID:26861299

  13. Effects of different intensities of physical exercise on insulin sensitivity and protein kinase B/Akt activity in skeletal muscle of obese mice

    PubMed Central

    Marinho, Rodolfo; de Moura, Leandro Pereira; Rodrigues, Bárbara de Almeida; Pauli, Luciana Santos Souza; da Silva, Adelino Sanchez Ramos; Ropelle, Eloize Cristina Chiarreotto; de Souza, Claudio Teodoro; Cintra, Dennys Esper Corrêa; Ropelle, Eduardo Rochete; Pauli, José Rodrigo

    2014-01-01

    ABSTRACT Objective: To investigate the effects of different intensities of acute exercise on insulin sensitivity and protein kinase B/Akt activity in skeletal muscle of obese mice. Methods: Swiss mice were randomly divided into four groups, and fed either a standard diet (control group) or high fat diet (obese sedentary group and obese exercise group 1 and 2) for 12 weeks. Two different exercise protocols were used: swimming for 1 hour with or without an overload of 5% body weight. The insulin tolerance test was performed to estimate whole-body sensitivity. Western blot technique was used to determine protein levels of protein kinase B/Akt and phosphorylation by protein Kinase B/Akt in mice skeletal muscle. Results: A single bout of exercise inhibited the high fat diet-induced insulin resistance. There was increase in phosphorylation by protein kinase B/Akt serine, improve in insulin signaling and reduce of fasting glucose in mice that swam for 1 hour without overload and mice that swan for 1 hour with overload of 5%. However, no significant differences were seen between exercised groups. Conclusion: Regardless of intensity, aerobic exercise was able to improve insulin sensitivity and phosphorylation by protein kinase B/Ak, and proved to be a good form of treatment and prevention of type 2 diabetes. PMID:24728251

  14. THE ACTIN BUNDLING PROTEIN PALLADIN IS AN AKT1-SPECIFIC SUBSTRATE THAT REGULATES BREAST CANCER CELL MIGRATION

    PubMed Central

    Chin, Y. Rebecca; Toker, Alex

    2010-01-01

    Summary The phosphoinositide 3-kinase (PI 3-K) signaling pathway is frequently deregulated in cancer. Downstream of PI 3-K, Akt1 and Akt2 have opposing roles in breast cancer invasive migration leading to metastatic dissemination. Here we identify palladin, an actin-associated protein, as an Akt1-specific substrate that modulates breast cancer cell invasive migration. Akt1, but not Akt2, phosphorylates palladin at S507 in a domain that is critical for F-actin bundling. Downregulation of palladin enhances migration and invasion of breast cancer cells and induces abnormal branching morphogenesis in 3D cultures. Palladin phosphorylation at S507 is required for Akt1-mediated inhibition of breast cancer cell migration and also for F-actin bundling leading to the maintenance of an organized actin cytoskeleton. These findings identify palladin as an Akt1-specific substrate that regulates cell motility and provide a molecular mechanism that accounts for the functional distinction between Akt isoforms in breast cancer cell signaling to cell migration. PMID:20471940

  15. ets-2 Is a Target for an Akt (Protein Kinase B)/Jun N-Terminal Kinase Signaling Pathway in Macrophages of motheaten-viable Mutant Mice

    PubMed Central

    Smith, James L.; Schaffner, Alicia E.; Hofmeister, Joseph K.; Hartman, Matthew; Wei, Guo; Forsthoefel, David; Hume, David A.; Ostrowski, Michael C.

    2000-01-01

    The transcription factor ets-2 was phosphorylated at residue threonine 72 in a colony-stimulating factor 1 (CSF-1)- and mitogen-activated protein kinase-independent manner in macrophages isolated from motheaten-viable (me-v) mice. The CSF-1 and ets-2 target genes coding for Bcl-x, urokinase plasminogen activator, and scavenger receptor were also expressed at high levels independent of CSF-1 addition to me-v cells. Akt (protein kinase B) was constitutively active in me-v macrophages, and an Akt immunoprecipitate catalyzed phosphorylation of ets-2 at threonine 72. The p54 isoform of c-jun N-terminal kinase–stress-activated kinase (JNK- SAPK) coimmunoprecipitated with Akt from me-v macrophages, and treatment of me-v cells with the specific phosphatidylinositol 3-kinase inhibitor LY294002 decreased cell survival, Akt and JNK kinase activities, ets-2 phosphorylation, and Bcl-x mRNA expression. Therefore, ets-2 is a target for phosphatidylinositol 3-kinase–Akt–JNK action, and the JNK p54 isoform is an ets-2 kinase in macrophages. Constitutive ets-2 activity may contribute to the pathology of me-v mice by increasing expression of genes like the Bcl-x gene that promote macrophage survival. PMID:11027273

  16. Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways.

    PubMed

    Guo, Deliang; Chien, Shu; Shyy, John Y-J

    2007-03-01

    Steady laminar flow in the straight parts of the arterial tree is atheroprotective, whereas disturbed flow with oscillation in branch points and the aortic root are athero-prone, in part, because of the distinct roles of the flow patterns in regulating the cell cycle of vascular endothelial cells (ECs). To elucidate the molecular basis underlying the endothelial cell cycle regulated by distinct flow patterns, we conducted flow-channel experiments to investigate the effects of laminar versus oscillatory flows on activation of AMP-activated protein kinase (AMPK) and Akt in ECs. Laminar flow caused a transient activation of both AMPK and Akt, but oscillatory flow activated only Akt, with AMPK being maintained at its basal level. Constitutively active and dominant-negative mutants of AMPK and Akt were used to elucidate further the positive effect of Akt and negative role of AMPK in mediating mTOR (mammalian target of rapamycin) and its target p70S6 kinase (S6K) in response to laminar and oscillatory flows. Measurements of phosphorylation of mTOR Ser2448 and S6K Thr389 showed that AMPK, by counteracting Akt under laminar flow, resulted in a transient activation of S6K. Under oscillatory flow, because of the lack of AMPK activation to effect negative regulation, S6K was activated in a sustained manner. As a functional consequence, AMPK activation attenuated cell cycle progression in response to both laminar and oscillatory flows. In contrast, AMPK inhibition promoted EC cycle progression by decreasing the cell population in the G(0)/G(1) phase and increasing it in the S+G(2)/M phase. In vivo, phosphorylation of the promitotic S6K in mouse thoracic aorta was much less than that in mouse aortic root. In contrast, AMPK phosphorylation was higher in the thoracic aorta. These results provide a molecular mechanism by which laminar versus oscillatory flow regulates the endothelial cell cycle.

  17. Switching Akt: from survival signaling to deadly response

    PubMed Central

    Los, Marek; Maddika, Subbareddy; Erb, Bettina; Schulze-Osthoff, Klaus

    2010-01-01

    Akt, a protein kinase hyperactivated in many tumors, plays a major role in both cell survival and resistance to tumor therapy. A recent study,(1) along with other evidences, shows interestingly, that Akt is not a single-function kinase, but may facilitate rather than inhibit cell death under certain conditions. This hitherto undetected function of Akt is accomplished by its ability to increase reactive oxygen species and to suppress antioxidant enzymes. The ability of Akt to down-regulate antioxidant defenses uncovers a novel Achilles’ heel, which could be exploited by oxidant therapies in order to selectively eradicate tumor cells that express high levels of Akt activity. PMID:19319914

  18. Estrogen receptor alpha transcriptionally activates casein kinase 2 alpha: A pivotal regulator of promyelocytic leukaemia protein (PML) and AKT in oncogenesis.

    PubMed

    Das, Nilanjana; Datta, Neerajana; Chatterjee, Uttara; Ghosh, Mrinal Kanti

    2016-06-01

    Protein kinase CK2α is frequently upregulated in different cancers. Alteration of CK2α expression and its activity is sufficient to induce dramatic changes in cell fate. It has been established that CK2α induces oncogenesis through modulation of both AKT and PML. CK2α has been found to be overexpressed in breast cancer. In contrary, statistical reports have shown low level of PML. However, the regulation of CK2α gene expression is not fully understood. In the current study, we found that CK2α and activated AKT positively correlate with ERα, whereas PML follows an inverse correlation in human breast cancer tissues. Modulation of ERα signalling leads to recruitment of activated ERα on the ERE sites of CK2α promoter, resulting in CK2α transactivation. Furthermore, the DMBA induced tumours in rat showed elevated level of active CK2α. Consequently it mediates enhancement of AKT activity and PML degradation, resulting in increased cellular proliferation, migration and metastasis. Syngeneic ERα overexpressing stable mouse 4T1 cells produce larger primary tumours and metastatic lung nodules in mice, corroborating our in vitro findings. Hence, our study provides a novel route of ERα dependent CK2α mediated oncogenesis that causes upregulation and consequent AKT activation along with degradation of tumour suppressor PML. PMID:27012497

  19. AKT3 promotes prostate cancer proliferation cells through regulation of Akt, B-Raf & TSC1/TSC2

    PubMed Central

    Tseng, Jen-Chih; Jiang, Shih Sheng; Kuo, Ying-Yu; Chen, Shyh-Chang; Wang, Chih-Ting; Chan, Tzu-Min; Liou, Jun-Yang; Wang, John; Chang, Wun-Shaing Wayne; Chang, Chung-Ho; Kung, Hsing-Jien; Chuu, Chih-Pin

    2015-01-01

    The qRT-PCR analysis of 139 clinical samples and analysis of 150 on-line database clinical samples indicated that AKT3 mRNA expression level was elevated in primary prostate tumors. Immunohistochemical staining of 65 clinical samples revealed that AKT3 protein expression was higher in prostate tumors of stage I, II, III as compared to nearby normal tissues. Plasmid overexpression of AKT3 promoted cell proliferation of LNCaP, PC-3, DU-145, and CA-HPV-10 human prostate cancer (PCa) cells, while knockdown of AKT3 by siRNA reduced cell proliferation. Overexpression of AKT3 increased the protein expression of total AKT, phospho-AKT S473, phospho-AKT T308, B-Raf, c-Myc, Skp2, cyclin E, GSK3β, phospho-GSK3β S9, phospho-mTOR S2448, and phospho-p70S6K T421/S424, but decreased TSC1 (tuberous sclerosis 1) and TSC2 (tuberous Sclerosis Complex 2) proteins in PC-3 PCa cells. Overexpression of AKT3 also increased protein abundance of phospho-AKT S473, phospho-AKT T308, and B-Raf but decreased expression of TSC1 and TSC2 proteins in LNCaP, DU-145, and CA-HPV-10 PCa cells. Oncomine datasets analysis suggested that AKT3 mRNA level was positively correlated to BRAF. Knockdown of AKT3 in DU-145 cells with siRNA increased the sensitivity of DU-145 cells to B-Raf inhibitor treatment. Knockdown of TSC1 or TSC2 promoted the proliferation of PCa cells. Our observations implied that AKT3 may be a potential therapeutic target for PCa treatment. PMID:26318033

  20. Mechanism of estrogen-mediated improvement in cardiac function after trauma-hemorrhage: p38-dependent normalization of cardiac Akt phosphorylation and glycogen levels.

    PubMed

    Hsu, Jun-Te; Kan, Wen-Hong; Hsieh, Ya-Ching; Choudhry, Mashkoor A; Schwacha, Martin G; Bland, Kirby I; Chaudry, Irshad H

    2008-10-01

    Both p38 mitogen-activated protein kinase (p38) activation and protein kinase B (Akt) activation have been reported to regulate glucose transport during myocardial I/R. An increase in cardiac glycogen levels prevents myocardial injury in the ischemic or stressed heart. Although studies have shown that 17"-estradiol (E2)-mediated improvement in cardiac function after trauma-hemorrhage is via p38 activation, it remains unknown whether p38/Akt plays any role in regulation of cardiac glycogen levels under these conditions. To study this, male rats underwent trauma-hemorrhage(mean blood pressure, x40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats (n=6 per group) were treated with vehicle, E2 (1 mg/kg body weight), the p38 inhibitor SB203580 (2 mg/kg body weight), or E2 and SB203580. Various parameters were measured at 2 h after resuscitation. One-way ANOVA and Tukey test were used for statistical analysis, and differences were considered significant at P<0.05. The depressed cardiac function after trauma-hemorrhage was restored by E2 treatment (P<0.05). Administration of E2 after trauma-hemorrhage also normalized the p38/Akt phosphorylation, which was associated with restoration of cardiac glycogen, glycogen synthase kinase 3"activation, glucose transporter 4 translocation, and increased hexokinase II levels (all parameters, P<0.05). Inhibition of the p38 pathway abolished the E2-induced restoration in above parameters after trauma-hemorrhage. These results suggest that p38-dependent normalization of cardiac Akt phosphorylation and glycogen levels plays an important role in E2-mediated restoration of cardiac function after trauma-hemorrhage.

  1. Mdm2, p53, p21 and pAKT protein pathways in benign neoplasms of the salivary gland.

    PubMed

    Marques, Yonara Maria Freire Soares; de Lima, Marina de Deus Moura; de Melo Alves, Sérgio de Melo; Soares, Fernando Augusto; de Araújo, Vera Cavalcanti; Pinto, Décio dos Santos; Mantesso, Andrea

    2008-09-01

    The p53 protein can be altered virtually in all human cancers. In the absence of p53 mutations, p53 inactivation is possible via complex formation with other proteins, such as Mdm2. Previous studies have shown an overexpression of Mdm2 and lack of p53 expression in pleomorphic adenomas. The pAkt protein is closely related to Mdm2, and has not been previously reported in salivary gland tumors. The aim of this study was to analyze the expression of Mdm2, p53, p21 and pAkt proteins in pleomorphic adenomas and myoepitheliomas by immunohistochemistry, Western blotting and immunofluorescence techniques. Overexpression of Mdm2 and pAkt was present in all the cell lines and tumors studied, whereas the expression of p53 and p21 proteins was considered absent. In conclusion, the signaling pathway in benign salivary gland neoplasm showed an important participation of Mdm2 overexpression protein in tumor formation, progression through inactivation of p53 action, or both, and of pAkt overexpression through increased translocation of Mdm2 protein to cellular nuclei.

  2. Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity.

    PubMed

    Zhu, Xiaosan; Dai, Yichen; Chen, Zhangxin; Xie, Junpei; Zeng, Wei; Lin, Yuanyuan

    2013-01-01

    Overexpression of Pokemon, which is an erythroid myeloid ontogenic factor protein, occurs in different cancers, including hepatocellular carcinoma (HCC). Pokemon is also reported to have an oncogenic activity in various human cancers. This study investigated the effect of Pokemon knockdown on the regulation of HCC growth. POK shRNA suppressed the expression of Pokemon protein in HepG2 cells compared to the negative control vector-transfected HCC cells. Pokemon knockdown also reduced HCC cell viability and enhanced cisplatin-induced apoptosis in HCC cells. AKT activation and the expression of various cell cycle-related genes were inhibited following Pokemon knockdown. These data demonstrate that Pokemon may play a role in HCC progression, suggesting that inhibition of Pokemon expression using Pokemon shRNA should be further evaluated as a novel target for the control of HCC. PMID:23924858

  3. Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity.

    PubMed

    Zhu, Xiaosan; Dai, Yichen; Chen, Zhangxin; Xie, Junpei; Zeng, Wei; Lin, Yuanyuan

    2013-01-01

    Overexpression of Pokemon, which is an erythroid myeloid ontogenic factor protein, occurs in different cancers, including hepatocellular carcinoma (HCC). Pokemon is also reported to have an oncogenic activity in various human cancers. This study investigated the effect of Pokemon knockdown on the regulation of HCC growth. POK shRNA suppressed the expression of Pokemon protein in HepG2 cells compared to the negative control vector-transfected HCC cells. Pokemon knockdown also reduced HCC cell viability and enhanced cisplatin-induced apoptosis in HCC cells. AKT activation and the expression of various cell cycle-related genes were inhibited following Pokemon knockdown. These data demonstrate that Pokemon may play a role in HCC progression, suggesting that inhibition of Pokemon expression using Pokemon shRNA should be further evaluated as a novel target for the control of HCC.

  4. Receptor Interacting Protein 3 Suppresses Vascular Smooth Muscle Cell Growth by Inhibition of the Phosphoinositide 3-Kinase-Akt Axis*

    PubMed Central

    Li, Qian; Li, Geng; Lan, Xiaomei; Zheng, Ming; Chen, Kuang-Hueih; Cao, Chun-Mei; Xiao, Rui-Ping

    2010-01-01

    Proliferation of vascular smooth muscle cells (VSMCs) is a primary mechanism underlying cardiovascular proliferative disorders. Phosphoinositide 3-kinase (PI3K)-Akt (or protein kinase B) axis has been assigned at the center of pathways that regulate cell proliferation. Here we demonstrate that enhanced PI3K-Akt signaling by mitogenic stimulation or arterial injury profoundly elevates expression of receptor interacting protein 3 (RIP3) in primary cultured rat VSMCs and in vivo and that the up-regulation of RIP3 leads to VSMC growth arrest and apoptosis via inhibiting the PI3K-Akt signaling pathway, thereby alleviating balloon injury-induced neointimal formation. Specifically, mitogenic stimulation with platelet-derived growth factor-BB or angiotensin II leads to a profound increase in RIP3 expression, which is abolished by inhibition of PI3K or Akt, and increased PI3K-Akt signaling by expression of a constitutively active PI3K mutant also elevates RIP3 expression. Importantly, adenoviral overexpression of RIP3 not only triggers apoptosis but also causes cell cycle arrest at G1/G0 phases that is associated with suppressed Akt activation. In sharp contrast, RIP3 gene silencing enhances serum- and platelet-derived growth factor-induced cell proliferation and Akt activation. In vivo adenoviral gene delivery of rat RIP3 (rRIP3) increased apoptosis and reduced VSMC proliferation, thus, effectively alleviating balloon injury-induced neointimal formation. The growth-suppressive and pro-apoptotic effects are independent of rRIP3 Ser/Thr kinase activity, because overexpression of a kinase-inactive mutant of rRIP3, similar to its wild type, is sufficient to induce growth arrest and apoptosis. These findings reveal a novel growth-suppressive action of RIP3, marking RIP3 as an important factor to prevent excessive mitogenic stimulation- or injury-induced vascular smooth muscle cells hyperplasia. PMID:20042608

  5. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients

    PubMed Central

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-01-01

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9–25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm), large aggregates (50–70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients. PMID:27187380

  6. Chronic TGFβ stimulation promotes the metastatic potential of lung cancer cells by Snail protein stabilization through integrin β3-Akt-GSK3β signaling

    PubMed Central

    Park, Jeong-Rak; Kwon, Ok-Seon; Kim, Keun-Tae; Koo, JaeHyung; Oh, Ensel; Cha, Hyuk-Jin

    2016-01-01

    Chronic exposure to TGFβ, a frequent occurrence for tumor cells in the tumor microenvironment, confers more aggressive phenotypes on cancer cells by promoting their invasion and migration while at the same time increasing their resistance to the growth-inhibitory effect of TGFβ. In this study, a transdifferentiated (TD) A549 cell model, established by chronically exposing A549 cells to TGFβ, showed highly invasive phenotypes in conjunction with attenuation of Smad-dependent signaling. We show that Snail protein, the mRNA expression of which strongly correlates with a poor prognosis in lung cancer patients, was highly stable in TD cells after TGFβ stimulation. The increased protein stability of Snail in TD cells correlated with elevated inhibitory phosphorylation of GSK3β, resulting from the high Akt activity. Notably, integrin β3, whose expression was markedly increased upon sustained exposure to TGFβ, was responsible for the high Akt activity as well as the increased Snail protein stability in TD cells. Consistently, clinical database analysis on lung cancer patients revealed a negative correlation between overall survival and integrin β3 mRNA levels. Therefore, we suggest that the integrin β3-Akt-GSK3β signaling axis plays an important role in non-canonical TGFβ signaling, determining the invasive properties of tumor cells chronically exposed to TGFβ. PMID:27015122

  7. PTH-related protein upregulates integrin {alpha}6{beta}4 expression and activates Akt in breast cancer cells

    SciTech Connect

    Shen Xiaoli; Falzon, Miriam . E-mail: mfalzon@utmb.edu

    2006-11-15

    Breast cancer is the most common carcinoma that metastasizes to bone. Tumor-produced parathyroid hormone-related protein (PTHrP), a known stimulator of osteoclastic bone resorption, is a major mediator of the osteolytic process in breast cancer. We have previously shown that PTHrP increases breast cancer cell proliferation, survival, migration, and pro-invasive integrin {alpha}6{beta}4 expression. To determine the role of integrin {alpha}6{beta}4 in these PTHrP-mediated effects, we utilized two strategies to modulate expression of the {alpha}6 and {beta}4 subunits in parental and PTHrP-overexpressing MDA-MB-231 and MCF-7 cells: overexpression of {alpha}6{beta}4 by transfection with constructs encoding the {alpha}6 and {beta}4 subunits, and suppression of endogenous {alpha}6{beta}4 expression by transfection with siRNAs targeting these subunits. We now show that the effects of PTHrP are mediated via upregulation of integrin {alpha}6{beta}4 expression. We also show that integrin {alpha}6{beta}4 expression is modulated at the mRNA level, indicating a transcriptional and/or post-transcriptional mechanism of action for PTHrP. PTHrP expression also increased the levels of phosphorylated Akt, with a consequent increase in the levels of phosphorylated (inactive) glycogen synthase kinase-3 (GSK-3). The role of PTHrP in breast cancer growth and metastasis may thus be mediated via upregulation of integrin {alpha}6{beta}4 expression and Akt activation, with consequent inactivation of GSK-3.

  8. Phosphatidylethanolamine-binding protein 4 promotes lung cancer cells proliferation and invasion via PI3K/Akt/mTOR axis

    PubMed Central

    Yu, Guiping; Chen, Guoqiang; Mi, Yedong

    2015-01-01

    RAPA only significantly inhibited the protein expression of p-mTOR (P<0.05). As shown by MTT, flow cytometry, and Transwell migration assay, both LY294002 and RAPA could significantly lower the viability of HCC827 cells and inhibit their proliferation and invasion (P<0.05); meanwhile, they could reverse the effect of PEBP4 in promoting the proliferation and migration of HCC827 cells (P<0.05). Conclusions The overexpression of PEBP4 increases the phosphorylation levels of Akt and mTOR in lung cancer cells. The PI3K/Akt/mTOR signaling axis may be a key molecular pathway via which PEBP4 promotes the proliferation and invasion of non-small cell lung cancer (NSCLC) cells; also, it may serve as a potential therapeutic target. PMID:26623104

  9. Activation of protein kinase B (PKB/Akt) and risk of lung cancer among rural women in India who cook with biomass fuel.

    PubMed

    Roychoudhury, Sanghita; Mondal, Nandan Kumar; Mukherjee, Sayali; Dutta, Anindita; Siddique, Shabana; Ray, Manas Ranjan

    2012-02-15

    The impact of indoor air pollution (IAP) from biomass fuel burning on the risk of carcinogenesis in the airways has been investigated in 187 pre-menopausal women (median age 34years) from eastern India who cooked exclusively with biomass and 155 age-matched control women from same locality who cooked with cleaner fuel liquefied petroleum gas. Compared with control, Papanicolau-stained sputum samples showed 3-times higher prevalence of metaplasia and 7-times higher prevalence of dysplasia in airway epithelial cell (AEC) of biomass users. Immunocytochemistry showed up-regulation of phosphorylated Akt (p-Akt(ser473) and p-Akt(thr308)) proteins in AEC of biomass users, especially in metaplastic and dysplastic cells. Compared with LPG users, biomass-using women showed marked rise in reactive oxygen species (ROS) generation and depletion of antioxidant enzyme, superoxide dismutase (SOD) indicating oxidative stress. There were 2-5 times more particulate pollutants (PM(10) and PM(2.5)), 72% more nitrogen dioxide and 4-times more particulate-laden benzo(a)pyrene, but no change in sulfur dioxide in indoor air of biomass-using households, and high performance liquid chromatography estimated 6-fold rise in the concentration of benzene metabolite trans,trans-muconic acid (t,t-MA) in urine of biomass users. Metaplasia and dysplasia, p-Akt expression and ROS generation were positively associated with PM and t,t-MA levels. It appears that cumulative exposure to biomass smoke increases the risk of lung carcinogenesis via oxidative stress-mediated activation of Akt signal transduction pathway.

  10. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade

    PubMed Central

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-01-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536] PMID:26246284

  11. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    PubMed

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-09-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536].

  12. TCR-induced Akt serine 473 phosphorylation is regulated by protein kinase C-alpha

    SciTech Connect

    Yang, Lifen; Qiao, Guilin; Ying, Haiyan; Zhang, Jian; Yin, Fei

    2010-09-10

    Research highlights: {yields} Conventional PKC positively regulates TCR-induced phosphorylation of Akt. {yields} PKC-alpha is the PDK-2 responsible for phosphorylating Akt at Ser{sup 473} upon TCR stimulation. {yields} Knockdown of PKC-alpha decreases TCR-induced Akt phosphorylation. -- Abstract: Akt signaling plays a central role in T cell functions, such as proliferation, apoptosis, and regulatory T cell development. Phosphorylation at Ser{sup 473} in the hydrophobic motif, along with Thr{sup 308} in its activation loop, is considered necessary for Akt function. It is widely accepted that phosphoinositide-dependent kinase 1 (PDK-1) phosphorylates Akt at Thr{sup 308}, but the kinase(s) responsible for phosphorylating Akt at Ser{sup 473} (PDK-2) remains elusive. The existence of PDK-2 is considered to be specific to cell type and stimulus. PDK-2 in T cells in response to TCR stimulation has not been clearly defined. In this study, we found that conventional PKC positively regulated TCR-induced Akt Ser{sup 473} phosphorylation. PKC-alpha purified from T cells can phosphorylate Akt at Ser{sup 473} in vitro upon TCR stimulation. Knockdown of PKC-alpha in T-cell-line Jurkat cells reduced TCR-induced phosphorylation of Akt as well as its downstream targets. Thus our results suggest that PKC-alpha is a candidate for PDK-2 in T cells upon TCR stimulation.

  13. Activation of protein kinase B (PKB/Akt) and risk of lung cancer among rural women in India who cook with biomass fuel

    SciTech Connect

    Roychoudhury, Sanghita; Mondal, Nandan Kumar; Mukherjee, Sayali; Dutta, Anindita; Siddique, Shabana; Ray, Manas Ranjan

    2012-02-15

    The impact of indoor air pollution (IAP) from biomass fuel burning on the risk of carcinogenesis in the airways has been investigated in 187 pre-menopausal women (median age 34 years) from eastern India who cooked exclusively with biomass and 155 age-matched control women from same locality who cooked with cleaner fuel liquefied petroleum gas. Compared with control, Papanicolau-stained sputum samples showed 3-times higher prevalence of metaplasia and 7-times higher prevalence of dysplasia in airway epithelial cell (AEC) of biomass users. Immunocytochemistry showed up-regulation of phosphorylated Akt (p-Akt{sup ser473} and p-Akt{sup thr308}) proteins in AEC of biomass users, especially in metaplastic and dysplastic cells. Compared with LPG users, biomass-using women showed marked rise in reactive oxygen species (ROS) generation and depletion of antioxidant enzyme, superoxide dismutase (SOD) indicating oxidative stress. There were 2–5 times more particulate pollutants (PM{sub 10} and PM{sub 2.5}), 72% more nitrogen dioxide and 4-times more particulate-laden benzo(a)pyrene, but no change in sulfur dioxide in indoor air of biomass-using households, and high performance liquid chromatography estimated 6-fold rise in the concentration of benzene metabolite trans,trans-muconic acid (t,t-MA) in urine of biomass users. Metaplasia and dysplasia, p-Akt expression and ROS generation were positively associated with PM and t,t-MA levels. It appears that cumulative exposure to biomass smoke increases the risk of lung carcinogenesis via oxidative stress-mediated activation of Akt signal transduction pathway. -- Highlights: ► Carcinogenesis in airway cells was examined in biomass and LPG using women. ► Metaplasia and dysplasia of epithelial cells were more prevalent in biomass users. ► Change in airway cytology was associated with oxidative stress and Akt activation. ► Biomass users had greater exposure to respirable PM, B(a)P and benzene. ► Cooking with biomass

  14. Effects of doxepin on brain-derived neurotrophic factor, tumor necrosis factor alpha, mitogen-activated protein kinase 14, and AKT1 genes expression in rat hippocampus

    PubMed Central

    Eidelkhani, Nastaran; Radahmadi, Maryam; Kazemi, Mohammad; Rafiee, Laleh; Alaei, Hojjatallah; Reisi, Parham

    2015-01-01

    Background: It has been suggested that doxepin in addition to enhancement of noradrenaline and serotonin levels may have neuroprotective effects. Therefore, this study investigated the effect of doxepin on gene expression of brain-derived neurotrophic factor (BDNF), tumor necrosis factor alpha (TNF-α), mitogen-activated protein kinase 14 (MAPK14), and serine-threonine protein kinase AKT1 in rat hippocampus. Materials and Methods: Male rats were divided randomly into three groups: Control, doxepin 1 mg/kg, and doxepin 5 mg/kg. Rats received an i.p injection of doxepin for 21 days. Then the hippocampi were dissected for the measurement of the expression of BDNF, TNF-α, MAPK14, and AKT1 genes. Results: Our results showed no significant effects of doxepin on gene expression of BDNF, TNF-α, MAPK14, and AKT1 genes in the hippocampus. Conclusions: These results did not show significant effects of doxepin on the genes that affect the neuronal survival in intact animals. However, more studies need to be done, especially in models associated with neuronal damage. PMID:26601091

  15. Fine particulate matter leads to reproductive impairment in male rats by overexpressing phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway.

    PubMed

    Cao, Xi-Ning; Yan, Chao; Liu, Dong-Yao; Peng, Jin-Pu; Chen, Jin-Jun; Zhou, Yue; Long, Chun-Lan; He, Da-Wei; Lin, Tao; Shen, Lian-Ju; Wei, Guang-Hui

    2015-09-17

    Maintenance of male reproductive function depends on normal sperm generation during which process Sertoli cells play a vital role. Studies found that fine particulate matter (PM) causes decreased male sperm quality, mechanism of which unestablished. We aim to investigate the definite mechanism of PM impairment on male reproduction. Male Sprague-Dawley rats were daily exposed to normal saline (NS) or PM2.5 with the doses of 9 mg/kg.b.w and 24 mg/kg.b.w. via intratracheal instillation for seven weeks. Reproductive function was tested by mating test and semen analysis after last exposure. Testes were collected to assess changes in histomorphology, and biomarkers including connexin 43 (Cx43), superoxide dismutase (SOD), phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (p-Akt). Male rats exposed to PM2.5 showed noticeable decreased fertility, significantly reduced sperm count, increased sperm abnormality rate and severe testicular damage in histomorphology. After PM2.5 exposure, the levels of Cx43 was significantly downregulated, and SOD was upregulated and downregulated significantly with different dose, respectively. Protein expression of PI3K and p-Akt dramatically enhanced, and the later one being located in Sertoli cells, the upward or declining trend was in dose dependent. PM2.5 exposure leads to oxidative stress impairment via PI3K/Akt signaling pathway on male reproduction in rats.

  16. Regulation of sterol regulatory-element binding protein 1 gene expression in liver: role of insulin and protein kinase B/cAkt.

    PubMed Central

    Fleischmann, M; Iynedjian, P B

    2000-01-01

    Insulin stimulates the transcription of the sterol regulatory- element binding protein (SREBP) 1/ADD1 gene in liver. Hepatocytes in primary culture were used to delineate the insulin signalling pathway for induction of SREBP1 gene expression. The inhibitors of phosphoinositide 3-kinase (PI 3-kinase), wortmannin and LY 294002, abolished the insulin-dependent increase in SREBP1 mRNA, whereas the inhibitor of the mitogen- activated protein kinase cascade, PD 98059, was without effect. To investigate the role of protein kinase B (PKB)/cAkt downstream of PI 3-kinase, hepatocytes were transduced with an adenovirus encoding a PKB--oestrogen receptor fusion protein. The PKB activity of this recombinant protein was rapidly activated in hepatocytes challenged with 4-hydroxytamoxifen (OHT), as was endogenous PKB in hepatocytes challenged with insulin. The addition of OHT to transduced hepatocytes resulted in accumulation of SREBP1 mRNA, with a time-course and magnitude similar to the effect of insulin in non-transduced cells. The level of SREBP1 mRNA was not increased by OHT in hepatocytes expressing a mutant form of the recombinant protein whose PKB activity was not activated by OHT. Thus acute activation of PKB is sufficient to induce SREBP1 mRNA accumulation in primary hepatocytes, and might be the major signalling event by which insulin induces SREBP1 gene expression in the liver. PMID:10861205

  17. Akt signaling dynamics in individual cells

    PubMed Central

    Gross, Sean M.; Rotwein, Peter

    2015-01-01

    ABSTRACT The protein kinase Akt (for which there are three isoforms) is a key intracellular mediator of many biological processes, yet knowledge of Akt signaling dynamics is limited. Here, we have constructed a fluorescent reporter molecule in a lentiviral delivery system to assess Akt kinase activity at the single cell level. The reporter, a fusion between a modified FoxO1 transcription factor and clover, a green fluorescent protein, rapidly translocates from the nucleus to the cytoplasm in response to Akt stimulation. Because of its long half-life and the intensity of clover fluorescence, the sensor provides a robust readout that can be tracked for days under a range of biological conditions. Using this reporter, we find that stimulation of Akt activity by IGF-I is encoded into stable and reproducible analog responses at the population level, but that single cell signaling outcomes are variable. This reporter, which provides a simple and dynamic measure of Akt activity, should be compatible with many cell types and experimental platforms, and thus opens the door to new insights into how Akt regulates its biological responses. PMID:26040286

  18. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Sorescu, George; Boyd, Nolan; Shiojima, Ichiro; Walsh, Kenneth; Du, Jie; Jo, Hanjoong

    2002-01-01

    Recently, we have shown that shear stress stimulates NO(*) production by the protein kinase B/Akt (Akt)-dependent mechanisms in bovine aortic endothelial cells (BAEC) (Go, Y. M., Boo, Y. C., Park, H., Maland, M. C., Patel, R., Pritchard, K. A., Jr., Fujio, Y., Walsh, K., Darley-Usmar, V., and Jo, H. (2001) J. Appl. Physiol. 91, 1574-1581). Akt has been believed to regulate shear-dependent production of NO(*) by directly phosphorylating endothelial nitric-oxide synthase (eNOS) at the Ser(1179) residue (eNOS-S(1179)), but a critical evaluation using specific inhibitors or dominant negative mutants (Akt(AA) or Akt(AAA)) has not been reported. In addition, other kinases, including protein kinase A (PKA) and AMP kinase have also shown to phosphorylate eNOS-S(1179). Here, we show that shear-dependent phosphorylation of eNOS-S(1179) is mediated by an Akt-independent, but a PKA-dependent, mechanism. Expression of Akt(AA) or Akt(AAA) in BAEC by using recombinant adenoviral constructs inhibited phosphorylation of eNOS-S(1179) if cells were stimulated by vascular endothelial growth factor (VEGF), but not by shear stress. As shown before, expression of Akt(AA) inhibited shear-dependent NO(*) production, suggesting that Akt is still an important regulator in NO production. Further studies showed that a selective inhibitor of PKA, H89, inhibited shear-dependent phosphorylation of eNOS-S(1179) and NO(*) production. In contrast, H89 did not inhibit phosphorylation of eNOS-S(1179) induced by expressing a constitutively active Akt mutant (Akt(Myr)) in BAEC, showing that the inhibitor did not affect the Akt pathway. 8-Bromo-cAMP alone phosphorylated eNOS-S(1179) within 5 min without activating Akt, in an H89-sensitive manner. Collectively, these results demonstrate that shear stimulates phosphorylation of eNOS-S(1179) in a PKA-dependent, but Aktindependent manner, whereas the NO(*) production is regulated by the mechanisms dependent on both PKA and Akt. A coordinated interaction

  19. Carboxyl-Terminal Modulator Protein Positively Acts as an Oncogenic Driver in Head and Neck Squamous Cell Carcinoma via Regulating Akt phosphorylation

    PubMed Central

    Chang, Jae Won; Jung, Seung-Nam; Kim, Ju-Hee; Shim, Geun-Ae; Park, Hee Sung; Liu, Lihua; Kim, Jin Man; Park, Jongsun; Koo, Bon Seok

    2016-01-01

    The exact regulatory mechanisms of carboxyl-terminal modulator protein (CTMP) and its downstream pathways in cancer have been controversial and are not completely understood. Here, we report a new mechanism of regulation of Akt serine/threonine kinase, one of the most important dysregulated signals in head and neck squamous cell carcinoma (HNSCC) by the CTMP pathway and its clinical implications. We find that HNSCC tumor tissues and cell lines had relatively high levels of CTMP expression. Clinical data indicate that CTMP expression was significantly associated with positive lymph node metastasis (OR = 3.8, P = 0.033) and correlated with poor prognosis in patients with HNSCC. CTMP was also positively correlated with Akt/GSK-3β phosphorylation, Snail up-regulation and E-cadherin down-regulation, which lead to increased proliferation and epithelial-to-mesenchymal transition, suggesting that CTMP expression results in enhanced tumorigenic and metastatic properties of HNSCC cells. Moreover, CTMP suppression restores sensitivity to cisplatin chemotherapy. Intriguingly, all the molecular responses to CTMP regulation are identical regardless of p53 status in HNSCC cells. We conclude that CTMP promotes Akt phosphorylation and functions as an oncogenic driver and prognostic marker in HNSCC irrespective of p53. PMID:27328758

  20. Immunomodulatory Protein from Ganoderma microsporum Induces Pro-Death Autophagy through Akt-mTOR-p70S6K Pathway Inhibition in Multidrug Resistant Lung Cancer Cells.

    PubMed

    Chiu, Ling-Yen; Hu, Ming-E; Yang, Tsung-Ying; Hsin, I-Lun; Ko, Jiunn-Liang; Tsai, Kan-Jen; Sheu, Gwo-Tarng

    2015-01-01

    Chemoresistance in cancer therapy is an unfavorable prognostic factor in non-small cell lung cancer (NSCLC). Elevation of intracellular calcium level in multidrug resistant (MDR) sublines leads to sensitization of MDR sublines to cell death. We demonstrated that a fungal protein from Ganoderma microsporum, GMI, elevates the intracellular calcium level and reduces the growth of MDR subline via autophagy and apoptosis, regardless of p-glycoprotein (P-gp) overexpression, in mice xenograft tumors. In addition, we examined the roles of autophagy in the death of MDR A549 lung cancer sublines by GMI, thapsigargin (TG) and tunicamycin (TM) in vitro. Cytotoxicity of TG was inhibited by overexpressed P-gp. However, TM-induced death of MDR sublines was independent of P-gp level. Combinations of TG and TM with either docetaxel or vincristine showed no additional cytotoxic effects on MDR sublines. TG- and TM-mediated apoptosis of MDR sublines was demonstrated on Annexin-V assay and Western blot and repressed by pan-caspase inhibitor (Z-VAD-FMK). Treatment of MDR sublines with TG and TM also augmented autophagy with accumulation of LC3-II proteins, breakdown of p62 and formation of acidic vesicular organelles (AVOs). Inhibition of ATG5 by shRNA silencing significantly reduced autophagy and cell death but not apoptosis following TG or TM treatment. GMI treatment inhibited the phosphorylation of Akt/S473 and p70S6K/T389. Interestingly, the phosphorylation of ERK was not associated with GMI-induced autophagy. We conclude that autophagy plays a pro-death role in acquired MDR and upregulation of autophagy by GMI via Akt/mTOR inhibition provides a potential strategy for overcoming MDR in the treatment of lung cancers.

  1. Advanced glycation end products impair function of late endothelial progenitor cells through effects on protein kinase Akt and cyclooxygenase-2

    SciTech Connect

    Chen Qin; Dong Li; Wang Lian; Kang Lina; Xu Biao

    2009-04-03

    Endothelial progenitor cells (EPCs) exhibit impaired function in the context of diabetes, and advanced glycation end products (AGEs), which accumulate in diabetes, may contribute to this. In the present study, we investigated the mechanism by which AGEs impair late EPC function. EPCs from human umbilical cord blood were isolated, and incubated with AGE-modified albumin (AGE-albumin) at different concentrations found physiologically in plasma. Apoptosis, migration, and tube formation assays were used to evaluate EPC function including capacity for vasculogenesis, and expression of the receptor for AGEs (RAGE), Akt, endothelial nitric oxide synthase (eNOS), and cycloxygenase-2 (COX-2) were determined. Anti-RAGE antibody was used to block RAGE function. AGE-albumin concentration-dependently enhanced apoptosis and depressed migration and tube formation, but did not affect proliferation, of late EPCs. High AGE-albumin increased RAGE mRNA and protein expression, and decreased Akt and COX-2 protein expression, whilst having no effect on eNOS mRNA or protein in these cells. These effects were inhibited by co-incubation with anti-RAGE antibody. These results suggest that RAGE mediates the AGE-induced impairment of late EPC function, through down-regulation of Akt and COX-2 in these cells.

  2. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  3. PTEN permits acute increases in D3-phosphoinositide levels following TCR stimulation but inhibits distal signaling events by reducing the basal activity of Akt.

    PubMed

    Seminario, Maria-Cristina; Precht, Patricia; Bunnell, Stephen C; Warren, Sarah E; Morris, Christa M; Taub, Dennis; Wange, Ronald L

    2004-11-01

    Phosphoinositide 3-kinase (PI3K) is important in TCR signaling. PI3K generates phosphatidylinositol 3, 4, 5-trisphosphate (PI-3,4,5-P3), which regulates membrane localization and/or activity of multiple signaling proteins. PTEN (phosphatase and tensin homologue deleted on chromosome 10) opposes PI3K, reversing this reaction. Maintaining the balance between these two enzymes is important for normal T cell function. Here we use the PTEN-null Jurkat T cell line to address the role of PTEN in modulating proximal and distal TCR-signaling events. PTEN expression at levels that restored low basal Akt phosphorylation (an indicator of PI-3,4,5-P3 levels), but which were not themselves cytotoxic, had minimal effect on TCR-stimulated activation of phospholipase Cgamma1 and Ca2+ flux, but reduced the duration of extracellular signal-regulated kinase (Erk) activation. Distal signaling events, including nuclear factor of activated T cells (NFAT) activation, CD69 expression and IL-2 production, were all inhibited by PTEN expression. Notably, PTEN did not block TCR-stimulated PI-3,4,5-P3 accumulation. The effect of PTEN on distal TCR signaling events was strongly correlated with the loss of the constitutive Akt activation and glycogen synthase kinase-3 (GSK3) inhibition that is typical of Jurkat cells, and could be reversed by expression of activated Akt or pharmacologic inhibition of GSK3. These results suggest that PTEN acts in T cells primarily to control basal PI-3,4,5-P3 levels, rather than opposing PI3K acutely during TCR stimulation.

  4. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway.

    PubMed

    Zhang, Hua; Xiong, Zhouyi; Wang, Jiao; Zhang, Shuangshuang; Lei, Lei; Yang, Li; Zhang, Zhen

    2016-02-01

    Cardiomyocyte apoptosis is a major event in the pathogenesis of diabetic cardiomyopathy. Currently, no single effective treatment for diabetic cardiomyopathy exists. The present study investigated whether advanced oxidative protein products (AOPPs) have a detrimental role in the survival of cardiomyocytes and if glucagon-like peptide-1 (GLP-1) exerts a cardioprotective effect under these circumstances. The present study also aimed to determine the underlying mechanisms. H9c2 cells were exposed to increasing concentrations of AOPPs in the presence or absence of GLP-1, and the viability and apoptotic rate were detected using a cell counting kit-8 assay and flow cytometry, respectively. In addition, a phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) inhibitor, LY294002, was employed to illustrate the mechanism of the antiapoptotic effect of GLP-1. The expression levels of the apoptotic-associated proteins, Akt, B-cell lymphoma (Bcl)-2, Bcl-2-associated death promoter (Bad), Bcl-2-associated X protein (Bax) and caspase-3 were measured by western blotting. It was revealed that GLP-1 significantly attenuated AOPP-induced cell toxicity and apoptosis. AOPPs inactivated the phosphorylation of Akt, reduced the phosphorylation of Bad, decreased the expression of Bcl-2, increased the expression of Bax and the activation of caspase-3 in H9c2 cells. GLP-1 reversed the above changes induced by AOPPs and the protective effects of GLP-1 were abolished by the PI3K inhibitor, LY294002. In conclusion, the present data suggested that GLP-1 protected cardiomyocytes against AOPP-induced apoptosis, predominantly via the PI3K/Akt/Bad pathway. These results provided a conceivable mechanism for the development of diabetic cardiomyopathy and rendered a novel application of GLP-1 exerting favorable cardiac effects for the treatment of diabetic cardiomyopathy.

  5. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway

    PubMed Central

    ZHANG, HUA; XIONG, ZHOUYI; WANG, JIAO; ZHANG, SHUANGSHUANG; LEI, LEI; YANG, LI; ZHANG, ZHEN

    2016-01-01

    Cardiomyocyte apoptosis is a major event in the pathogenesis of diabetic cardiomyopathy. Currently, no single effective treatment for diabetic cardiomyopathy exists. The present study investigated whether advanced oxidative protein products (AOPPs) have a detrimental role in the survival of cardiomyocytes and if glucagon-like peptide-1 (GLP-1) exerts a cardioprotective effect under these circumstances. The present study also aimed to determine the underlying mechanisms. H9c2 cells were exposed to increasing concentrations of AOPPs in the presence or absence of GLP-1, and the viability and apoptotic rate were detected using a cell counting kit-8 assay and flow cytometry, respectively. In addition, a phosphatidylino-sitol-4,5-bisphosphate 3-kinase (PI3K) inhibitor, LY294002, was employed to illustrate the mechanism of the antiapoptotic effect of GLP-1. The expression levels of the apoptotic-associated proteins, Akt, B-cell lymphoma (Bcl)-2, Bcl-2-associated death promoter (Bad), Bcl-2-associated X protein (Bax) and caspase-3 were measured by western blotting. It was revealed that GLP-1 significantly attenuated AOPP-induced cell toxicity and apoptosis. AOPPs inactivated the phosphorylation of Akt, reduced the phosphorylation of Bad, decreased the expression of Bcl-2, increased the expression of Bax and the activation of caspase-3 in H9c2 cells. GLP-1 reversed the above changes induced by AOPPs and the protective effects of GLP-1 were abolished by the PI3K inhibitor, LY294002. In conclusion, the present data suggested that GLP-1 protected cardiomyocytes against AOPP-induced apoptosis, predominantly via the PI3K/Akt/Bad pathway. These results provided a conceivable mechanism for the development of diabetic cardiomyopathy and rendered a novel application of GLP-1 exerting favorable cardiac effects for the treatment of diabetic cardiomyopathy. PMID:26717963

  6. Inhibition of protein kinase Akt1 by apoptosis signal-regulating kinase-1 (ASK1) is involved in apoptotic inhibition of regulatory volume increase.

    PubMed

    Subramanyam, Muthangi; Takahashi, Nobuyuki; Hasegawa, Yuichi; Mohri, Tatsuma; Okada, Yasunobu

    2010-02-26

    Most animal cell types regulate their cell volume after an osmotic volume change. The regulatory volume increase (RVI) occurs through uptake of NaCl and osmotically obliged water after osmotic shrinkage. However, apoptotic cells undergo persistent cell shrinkage without showing signs of RVI. Persistence of the apoptotic volume decrease is a prerequisite to apoptosis induction. We previously demonstrated that volume regulation is inhibited in human epithelial HeLa cells stimulated with the apoptosis inducer. Here, we studied signaling mechanisms underlying the apoptotic inhibition of RVI in HeLa cells. Hypertonic stimulation was found to induce phosphorylation of a Ser/Thr protein kinase Akt (protein kinase B). Shrinkage-induced Akt activation was essential for RVI induction because RVI was suppressed by an Akt inhibitor, expression of a dominant negative form of Akt, or small interfering RNA-mediated knockdown of Akt1 (but not Akt2). Staurosporine, tumor necrosis factor-alpha, or a Fas ligand inhibited both RVI and hypertonicity-induced Akt activation in a manner sensitive to a scavenger for reactive oxygen species (ROS). Any of apoptosis inducers also induced phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) in a ROS-dependent manner. Suppression of (ASK1) expression blocked the effects of apoptosis, in hypertonic conditions, on both RVI induction and Akt activation. Thus, it is concluded that in human epithelial cells, shrinkage-induced activation of Akt1 is involved in the RVI process and that apoptotic inhibition of RVI is caused by inhibition of Akt activation, which results from ROS-mediated activation of ASK1. PMID:20048146

  7. Down-regulation of ERK1/2 and AKT-mediated X-ray repair cross-complement group 1 protein (XRCC1) expression by Hsp90 inhibition enhances the gefitinib-induced cytotoxicity in human lung cancer cells

    SciTech Connect

    Tung, Chun-Liang; Jian, Yi-Jun; Syu, Jhan-Jhang; Wang, Tai-Jing; Chang, Po-Yuan; Chen, Chien-Yu; Jian, Yun-Ting; Lin, Yun-Wei

    2015-05-15

    Gefitinib (Iressa{sup R}, ZD1839) is a selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that blocks growth factor-mediated cell proliferation and extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT signaling activation. It has been shown that inhibition of Hsp90 function can enhance antitumor activity of EGFR-TKI. XRCC1 is an important scaffold protein in base excision repair, which could be regulated by ERK1/2 and AKT pathways. However, the role of ERK1/2 and AKT-mediated XRCC1 expression in gefitinib alone or combination with an Hsp90 inhibitor-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. In this study, gefitinib treatment decreased XRCC1 mRNA and protein expression through ERK1/2 and AKT inactivation in two NSCLC cells, A549 and H1975. Knocking down XRCC1 expression by transfection with small interfering RNA of XRCC1 enhanced the cytotoxicity and cell growth inhibition of gefitinib. Combining treatment of gefitinib with an Hsp90 inhibitor resulted in enhancing the reduction of XRCC1 protein and mRNA levels in gefitinib-exposed A549 and H1975 cells. Compared to a single agent alone, gefitinib combined with an Hsp90 inhibitor resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells. Furthermore, transfection with constitutive active MKK1 or AKT vectors rescued the XRCC1 protein level as well as the cell survival suppressed by an Hsp90 inhibitor and gefitinib. These findings suggested that down-regulation of XRCC1 can enhance the sensitivity of gefitinib for NSCLC cells. - Highlights: • Gefitinib treatment decreased XRCC1 mRNA and protein expression in NSCLC cells. • Knocking down XRCC1 expression enhanced the cytotoxic effect of gefitinib. • Gefitinib combined with an Hsp90 inhibitor resulted in synergistically cytotoxicity.

  8. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells

    SciTech Connect

    Kim, Hye-Mi; Kang, Dong-Ku; Kim, Hak Yong; Kang, Sang Sun; Chang, Soo-Ik . E-mail: sichang@cbnu.ac.kr

    2007-01-12

    Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells.

  9. Alpha-ketoglutarate promotes skeletal muscle hypertrophy and protein synthesis through Akt/mTOR signaling pathways

    PubMed Central

    Cai, Xingcai; Zhu, Canjun; Xu, Yaqiong; Jing, Yuanyuan; Yuan, Yexian; Wang, Lina; Wang, Songbo; Zhu, Xiaotong; Gao, Ping; Zhang, Yongliang; Jiang, Qingyan; Shu, Gang

    2016-01-01

    Skeletal muscle weight loss is accompanied by small fiber size and low protein content. Alpha-ketoglutarate (AKG) participates in protein and nitrogen metabolism. The effect of AKG on skeletal muscle hypertrophy has not yet been tested, and its underlying mechanism is yet to be determined. In this study, we demonstrated that AKG (2%) increased the gastrocnemius muscle weight and fiber diameter in mice. Our in vitro study also confirmed that AKG dose increased protein synthesis in C2C12 myotubes, which could be effectively blocked by the antagonists of Akt and mTOR. The effects of AKG on skeletal muscle protein synthesis were independent of glutamate, its metabolite. We tested the expression of GPR91 and GPR99. The result demonstrated that C2C12 cells expressed GPR91, which could be upregulated by AKG. GPR91 knockdown abolished the effect of AKG on protein synthesis but failed to inhibit protein degradation. These findings demonstrated that AKG promoted skeletal muscle hypertrophy via Akt/mTOR signaling pathway. In addition, GPR91 might be partially attributed to AKG-induced skeletal muscle protein synthesis. PMID:27225984

  10. Modulation of the PI3K/Akt Pathway and Bcl-2 Family Proteins Involved in Chicken’s Tubular Apoptosis Induced by Nickel Chloride (NiCl2)

    PubMed Central

    Guo, Hongrui; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie; Deng, Jie

    2015-01-01

    Exposure of people and animals to environments highly polluted with nickel (Ni) can cause pathologic effects. Ni compounds can induce apoptosis, but the mechanism and the pathway of Ni compounds-induced apoptosis are unclear. We evaluated the alterations of apoptosis, mitochondrial membrane potential (MMP), phosphoinositide-3-kinase (PI3K)/serine-threonine kinase (Akt) pathway, and Bcl-2 family proteins induced by nickel chloride (NiCl2) in the kidneys of broiler chickens, using flow cytometry, terminal deoxynucleotidyl transferase 2ʹ-deoxyuridine 5ʹ-triphosphate dUTP nick end-labeling (TUNEL), immunohistochemstry and quantitative real-time polymerase chain reaction (qRT-PCR). We found that dietary NiCl2 in excess of 300 mg/kg resulted in a significant increase in apoptosis, which was associated with decrease in MMP, and increase in apoptosis inducing factor (AIF) and endonuclease G (EndoG) protein and mRNA expression. Concurrently, NiCl2 inhibited the PI3K/Akt pathway, which was characterized by decreasing PI3K, Akt1 and Akt2 mRNA expression levels. NiCl2 also reduced the protein and mRNA expression of anti-apoptotic Bcl-2 and Bcl-xL and increased the protein and mRNA expression of pro-apoptotic Bax and Bak. These results show that NiCl2 causes mitochondrial-mediated apoptosis by disruption of MMP and increased expression of AIF and EndoG mRNA and protein, and that the underlying mechanism of MMP loss involves the Bcl-2 family proteins modulation and PI3K/Akt pathway inhibition. PMID:26404262

  11. Linoleic acid permeabilizes gastric epithelial cells by increasing connexin 43 levels in the cell membrane via a GPR40- and Akt-dependent mechanism.

    PubMed

    Puebla, Carlos; Cisterna, Bruno A; Salas, Daniela P; Delgado-López, Fernando; Lampe, Paul D; Sáez, Juan C

    2016-05-01

    Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC activity of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintains the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt.

  12. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR

    PubMed Central

    Kazior, Zuzanna; Willis, Sarah J.; Moberg, Marcus; Apró, William; Calbet, José A. L.; Holmberg, Hans-Christer; Blomstrand, Eva

    2016-01-01

    Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55–0.61, P<0.05), as well as mean fiber area (r = 0.55–0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes. PMID:26885978

  13. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR.

    PubMed

    Kazior, Zuzanna; Willis, Sarah J; Moberg, Marcus; Apró, William; Calbet, José A L; Holmberg, Hans-Christer; Blomstrand, Eva

    2016-01-01

    Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55-0.61, P<0.05), as well as mean fiber area (r = 0.55-0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes.

  14. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR.

    PubMed

    Kazior, Zuzanna; Willis, Sarah J; Moberg, Marcus; Apró, William; Calbet, José A L; Holmberg, Hans-Christer; Blomstrand, Eva

    2016-01-01

    Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55-0.61, P<0.05), as well as mean fiber area (r = 0.55-0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes. PMID:26885978

  15. Down-regulation of ERK1/2 and AKT-mediated X-ray repair cross-complement group 1 protein (XRCC1) expression by Hsp90 inhibition enhances the gefitinib-induced cytotoxicity in human lung cancer cells.

    PubMed

    Tung, Chun-Liang; Jian, Yi-Jun; Syu, Jhan-Jhang; Wang, Tai-Jing; Chang, Po-Yuan; Chen, Chien-Yu; Jian, Yun-Ting; Lin, Yun-Wei

    2015-05-15

    Gefitinib (Iressa(R), ZD1839) is a selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that blocks growth factor-mediated cell proliferation and extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT signaling activation. It has been shown that inhibition of Hsp90 function can enhance antitumor activity of EGFR-TKI. XRCC1 is an important scaffold protein in base excision repair, which could be regulated by ERK1/2 and AKT pathways. However, the role of ERK1/2 and AKT-mediated XRCC1 expression in gefitinib alone or combination with an Hsp90 inhibitor-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. In this study, gefitinib treatment decreased XRCC1 mRNA and protein expression through ERK1/2 and AKT inactivation in two NSCLC cells, A549 and H1975. Knocking down XRCC1 expression by transfection with small interfering RNA of XRCC1 enhanced the cytotoxicity and cell growth inhibition of gefitinib. Combining treatment of gefitinib with an Hsp90 inhibitor resulted in enhancing the reduction of XRCC1 protein and mRNA levels in gefitinib-exposed A549 and H1975 cells. Compared to a single agent alone, gefitinib combined with an Hsp90 inhibitor resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells. Furthermore, transfection with constitutive active MKK1 or AKT vectors rescued the XRCC1 protein level as well as the cell survival suppressed by an Hsp90 inhibitor and gefitinib. These findings suggested that down-regulation of XRCC1 can enhance the sensitivity of gefitinib for NSCLC cells. PMID:25662161

  16. Akt negatively regulates translation of the ternary complex factor Elk-1.

    PubMed

    Figueroa, Claudia; Vojtek, Anne B

    2003-08-28

    Cross-talk between signaling pathways plays an important role in regulation of cell growth, differentiation, survival, and death. Here, we show that Akt regulates the Elk-1 transcription factor, independent of its negative regulation of Raf kinases. Using a constitutively active Mek1 to bypass the regulation of Raf by Akt, we find that the Elk-1 and Sap1a proteins are dramatically decreased in the presence of activated Akt. Akt catalytic activity is required. Also, Mek-dependent activation of a TCF (Elk-1/Sap-1a)-dependent c-fos reporter is decreased by activated Akt. Neither the level of Elk-1 mRNA nor the stability of the Elk-1 protein is altered by activated Akt. Instead, the rate of incorporation of labeled methionine into Elk-1 protein is decreased in the presence of Akt. In addition, the level of the Elk-1 protein but not GFP is significantly decreased in the presence of activated Akt, when GFP is expressed from an IRES element in a bicistronic message with Elk-1. We conclude that Akt negatively regulates translation of the Elk-1 mRNA. A coding region determinant that maps within the first 279 nts of the Elk-1 message is necessary and sufficient for Akt-mediated regulation of Elk-1.

  17. Leishmania donovani-Induced Ceramide as the Key Mediator of Akt Dephosphorylation in Murine Macrophages: Role of Protein Kinase Cζ and Phosphatase▿

    PubMed Central

    Dey, Ranadhir; Majumder, Nivedita; Bhattacharjee, Surajit; Majumdar, Suchandra Bhattacharyya; Banerjee, Rajdeep; Ganguly, Sandipan; Das, Pradeep; Majumdar, Subrata

    2007-01-01

    Leishmania donovani is an intracellular protozoan parasite that impairs the host macrophage immune response to render it suitable for its survival and establishment. L. donovani-induced immunosuppression and alteration of host cell signaling is mediated by ceramide, a pleiotropic second messenger playing an important role in regulation of several kinases, including mitogen-activated protein kinase and phosphatases. We observed that the endogenous ceramide generated during leishmanial infection led to the dephosphorylation of protein kinase B (PKB) (Akt) in infected cells. The study of ceramide-mediated Akt phosphorylation revealed that Akt was dephosphorylated at both Thr308 and Ser473 sites in infected cells. Further investigation demonstrated that ceramide was also responsible for the induction of PKCζ, an atypical Ca-independent stress kinase, as well as the ceramide-activated protein phosphatases (e.g., protein phosphatase 2A [PP2A]). We found that Akt dephosphorylation was mediated by ceramide-induced PKCζ-Akt association and PP2A activation. In addition, treatment of L. donovani-infected macrophages with PKCζ-specific inhibitor peptide could restore the translocation of phosphorylated Akt to the cell membrane. This study also revealed that ceramide is involved in the inhibition of proinflammatory cytokine tumor necrosis factor alpha release by infected macrophages. These observations strongly suggest the importance of ceramide in the alteration of normal cellular functions, impairment of the kinase/phosphatase balance, and thereby establishment of leishmaniasis in the hostile macrophage environment. PMID:17220321

  18. Centrosomal Protein of 55 Regulates Glucose Metabolism, Proliferation and Apoptosis of Glioma Cells via the Akt/mTOR Signaling Pathway

    PubMed Central

    Wang, Guangzhi; Liu, Mingna; Wang, Hongjun; Yu, Shan; Jiang, Zhenfeng; Sun, Jiahang; Han, Ke; Shen, Jia; Zhu, Minwei; Lin, Zhiguo; Jiang, Chuanlu; Guo, Mian

    2016-01-01

    Introduction: Glioma is one of the most common and most aggressive brain tumors in humans. The molecular and cellular mechanisms responsible for the onset and the progression of glioma are elusive and controversial. Centrosomal protein of 55 (CEP55) was initially described as a highly coiled-coil protein that plays critical roles in cell division, but was recently identified as being overexpressed in many human cancers. The function of CEP55 has not previously been characterized in glioma. We aim to discover the effect and mechanism of CEP55 in glioma development. Method: qRT-PCR and immunohistochemistry were used to analyze CEP55 expression. Glucose uptake, western blot, MTS, CCK-8, Caspase-3 activity and TUNEL staining assays were performed to investigate the role and mechanism of CEP55 on glioma cell process. Results: We found that the levels of CEP55 expression were upregulated in glioma. In addition, CEP55 appeared to regulate glucose metabolism of glioma cells. Furthermore, knockdown of CEP55 inhibited cell proliferation and induced cell apoptosis in glioma. Finally, we provided preliminary evidence that knockdown of CEP55 inhibited glioma development via suppressing the activity of Akt/mTOR signaling. Conclusions: Our results demonstrated that CEP55 regulates glucose metabolism, proliferation and apoptosis of glioma cells via the Akt/mTOR signaling pathway, and its promotive effect on glioma tumorigenesis can be a potential target for glioma therapy in the future. PMID:27471559

  19. E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway

    SciTech Connect

    Contreras-Paredes, Adriana

    2009-01-05

    Intra-type genome variations of high risk Human papillomavirus (HPV) have been associated with a differential threat for cervical cancer development. In this work, the effect of HPV18 E6 isolates in Akt/PKB and Mitogen-associated protein kinase (MAPKs) signaling pathways and its implication in cell proliferation were analyzed. E6 from HPV types 16 and 18 are able to bind and promote degradation of Human disc large (hDlg). Our results show that E6 variants differentially modulate hDlg degradation, rebounding in levels of activated PTEN and PKB. HPV18 E6 variants are also able to upregulate phospho-PI3K protein, strongly correlating with activated MAPKs and cell proliferation. Data was supported by the effect of E6 silencing in HPV18-containing HeLa cells, as well as hDlg silencing in the tested cells. Results suggest that HPV18 intra-type variations may derive in differential abilities to activate cell-signaling pathways such as Akt/PKB and MAPKs, directly involved in cell survival and proliferation.

  20. Drosophila Tribbles Antagonizes Insulin Signaling-Mediated Growth and Metabolism via Interactions with Akt Kinase

    PubMed Central

    Das, Rahul; Sebo, Zachary; Pence, Laramie; Dobens, Leonard L.

    2014-01-01

    Drosophila Tribbles (Trbl) is the founding member of the Trib family of kinase-like docking proteins that modulate cell signaling during proliferation, migration and growth. In a wing misexpression screen for Trbl interacting proteins, we identified the Ser/Thr protein kinase Akt1. Given the central role of Akt1 in insulin signaling, we tested the function of Trbl in larval fat body, a tissue where rapid increases in size are exquisitely sensitive to insulin/insulin-like growth factor levels. Consistent with a role in antagonizing insulin-mediated growth, trbl RNAi knockdown in the fat body increased cell size, advanced the timing of pupation and increased levels of circulating triglyceride. Complementarily, overexpression of Trbl reduced fat body cell size, decreased overall larval size, delayed maturation and lowered levels of triglycerides, while circulating glucose levels increased. The conserved Trbl kinase domain is required for function in vivo and for interaction with Akt in a yeast two-hybrid assay. Consistent with direct regulation of Akt, overexpression of Trbl in the fat body decreased levels of activated Akt (pSer505-Akt) while misexpression of trbl RNAi increased phospho-Akt levels, and neither treatment affected total Akt levels. Trbl misexpression effectively suppressed Akt-mediated wing and muscle cell size increases and reduced phosphorylation of the Akt target FoxO (pSer256-FoxO). Taken together, these data show that Drosophila Trbl has a conserved role to bind Akt and block Akt-mediated insulin signaling, and implicate Trib proteins as novel sites of signaling pathway integration that link nutrient availability with cell growth and proliferation. PMID:25329475

  1. Lambda-cyhalothrin disrupts the up-regulation effect of 17β-estradiol on post-synaptic density 95 protein expression via estrogen receptor α-dependent Akt pathway.

    PubMed

    Wang, Qunan; Xia, Xin; Deng, Xiaomei; Li, Nian; Wu, Daji; Zhang, Long; Yang, Chengwei; Tao, Fangbiao; Zhou, Jiangning

    2016-03-01

    Lambda-cyhalothrin (LCT), one of the type II pyrethroids, has been widely used throughout the world. The estrogenic effect of LCT to increase cell proliferation has been well established. However, whether the estrogenic effect of LCT will influence neurodevelopment has not been investigated. In addition, 17β-Estradiol (E2) plays a crucial role in neurodevelopment and induces an increase in synaptic proteins. The post-synaptic density 95 (PSD95) protein, which is involved in the development of the structure and function of new spines and localized with estrogen receptor α (ERα) at the post-synaptic density (PSD), was detected in our study by using hippocampal neuron cell line HT22. We found that LCT up-regulated PSD95 and ERα expression, estrogen receptor (ER) antagonist ICI182,780 and phosphatidylinositol-4; 5-bisphosphate 3-kinase (PI3K) inhibitor LY294,002 blocked this effect. In addition, LCT disrupted the promotion effect of E2 on PSD95. To investigate whether the observed changes are caused by ERα-dependent signaling activation, we next detected the effects of LCT on the ERα-mediated PI3K-Protein kinase B (PKB/Akt)-eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) pathway. There existed an activation of Akt and the downstream factor 4E-BP1 after LCT treatment. In addition, LCT could disrupt the activation effect of E2 on the Akt pathway. However, no changes in cAMP response element-binding protein (CREB) activation and PSD95 messenger ribonucleic acid (mRNA) were observed. Our findings demonstrated that LCT could increase the PSD95 protein level via the ERα-dependent Akt pathway, and LCT might disrupt the up-regulation effect of E2 on PSD95 protein expression via this signaling pathway. PMID:26969072

  2. Growth-factor dependent expression of the translationally controlled tumour protein TCTP is regulated through the PI3-K/Akt/mTORC1 signalling pathway.

    PubMed

    Bommer, Ulrich-Axel; Iadevaia, Valentina; Chen, Jiezhong; Knoch, Bianca; Engel, Martin; Proud, Christopher G

    2015-08-01

    Translationally controlled tumour protein TCTP (gene symbol: TPT1) is a highly-conserved, cyto-protective protein implicated in many physiological and disease processes, in particular cancer, where it is associated with poor patient outcomes. To understand the mechanisms underlying the accumulation of high TCTP levels in cancer cells, we studied the signalling pathways that control translation of TCTP mRNA, which contains a 5'-terminal oligopyrimidine tract (5'-TOP). In HT29 colon cancer cells and in HeLa cells, serum increases the expression of TCTP two- and four-fold, respectively, and this is inhibited by rapamycin or mTOR kinase inhibitors. Polysome profiling and mRNA quantification indicate that these effects occur at the level of mRNA translation. Blocking this pathway upstream of mTOR complex 1 (mTORC1) by inhibiting Akt also prevented increases in TCTP levels in both HeLa and HT29 colon cancer cells, whereas knockout of TSC2, a negative regulator of mTORC1, led to derepression of TCTP synthesis under serum starvation. Overexpression of eIF4E enhanced the polysomal association of the TCTP mRNA, although it did not protect its translation from inhibition by rapamycin. Conversely, expression of a constitutively-active mutant of the eIF4E inhibitor 4E-BP1, which is normally inactivated by mTORC1, inhibited TCTP mRNA translation in HEK293 cells. Our results demonstrate that TCTP mRNA translation is regulated by signalling through the PI3-K/Akt/mTORC1 pathway. This explains why TCTP levels are frequently increased in cancers, since mTORC1 signalling is hyperactive in ~80% of tumours.

  3. Molecular mechanism underlying Akt activation in zinc-induced cardioprotection

    PubMed Central

    Lee, SungRyul; Chanoit, Guillaume; McIntosh, Rachel; Zvara, David A.; Xu, Zhelong

    2009-01-01

    Our previous study demonstrated that zinc prevents cardiac reperfusion injury by targeting the mitochondrial permeability transition pore (mPTP) via Akt and glycogen synthetase kinase 3β (GSK-3β). We aimed to address the mechanism by which zinc activates Akt. Treatment of H9c2 cells with ZnCl2 (10 μM) in the presence of the zinc ionophore pyrithione (4 μM) for 20 min enhanced Akt phosphorylation (Ser473), indicating that zinc can rapidly activate Akt. Zinc did not alter either phosphatase and tensin homolog deleted on chromosome 10 (PTEN) phosphorylation and total PTEN protein levels or PTEN oxidation, implying that PTEN may not play a role in the action of zinc. However, zinc-induced Akt phosphorylation was blocked by both the nonselective receptor tyrosine kinase (RTK) inhibitor genistein and the selective insulin-like growth factor-1 RTK (IGF-1RTK) inhibitor AG1024, indicating that zinc activates Akt via IGF-1RTK. Zinc-induced phosphorylation of protein tyrosine and Ser/Thr was also abolished by AG1024. In addition, zinc markedly enhanced phosphorylation of IGF-1 receptor (IGF-1R), which was again reversed by genistein and AG1024. A confocal imaging study revealed that AG1024 abolished the preventive effect of zinc on oxidant-induced mPTP opening, confirming that IGF-1RTK plays a role in zinc-induced cardioprotection. Furthermore, zinc decreased the activity of protein phosphatase 2A (PP2A), a major protein Ser/Thr phosphatase, implying that protein Ser/Thr phosphatases may also play a role in the action of zinc on Akt activity. Taken together, these findings demonstrate that exogenous zinc activates Akt via IGF-1RTK and prevents the mPTP opening in cardiac cells. Inactivation of Ser/Thr protein phosphatases may also contribute to zinc-induced Akt activation. PMID:19525380

  4. Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways.

    PubMed

    Wang, Ziliang; Hou, Jing; Lu, Lili; Qi, Zihao; Sun, Jianmin; Gao, Wen; Meng, Jiao; Wang, Yan; Sun, Huizhen; Gu, Hongyu; Xin, Yuhu; Guo, Xiaomao; Yang, Gong

    2013-01-01

    Small ribosomal protein subunit S7 (RPS7) has been reported to be associated with various malignancies, but the role of RPS7 in ovarian cancer remains unclear. In this study, we found that silencing of RPS7 by a specific shRNA promoted ovarian cancer cell proliferation, accelerated cell cycle progression, and slightly reduced cell apoptosis and response to cisplatin treatment. Knockdown of RPS7 resulted in increased expression of P85α, P110α, and AKT2. Although the basal levels of ERK1/2, MEK1/2, and P38 were inconsistently altered in ovarian cancer cells, the phosphorylated forms of MEK1/2 (Ser217/221), ERK1/2 (Thr202/Tyr204), JNK1/2 (Thr183/Tyr185), and P38 (Thr180/Tyr182) were consistently reduced after RPS7 was silenced. Both the in vitro anchorage-independent colony formation and in vivo animal tumor formation capability of cells were enhanced after RPS7 was depleted. We also showed that silencing of RPS7 enhanced ovarian cancer cell migration and invasion. In sum, our results suggest that RPS7 suppresses ovarian tumorigenesis and metastasis through PI3K/AKT and MAPK signal pathways. Thus, RPS7 may be used as a potential marker for diagnosis and treatment of ovarian cancer.

  5. Activated AKT pathway promotes establishment of endometriosis.

    PubMed

    Kim, Tae Hoon; Yu, Yanni; Luo, Lily; Lydon, John P; Jeong, Jae-Wook; Kim, J Julie

    2014-05-01

    The pathogenesis of endometriosis remains unclear, and relatively little is known about the mechanisms that promote establishment and survival of the disease. Previously, we demonstrated that v-akt murine thymoma viral oncogene homolog (AKT) activity was increased in endometriosis tissues and cells from ovarian endometriomas and that this increase promoted cell survival as well as decreased levels of progesterone receptor. The objective of this study was to demonstrate a role for AKT in the establishment of ectopic lesions. First, a dose-dependent inhibition of AKT in stromal cells from human ovarian endometriomas (OSIS) as well as endometrial stromal cells from disease-free patients (ESC) with the allosteric AKT inhibitor MK-2206 was demonstrated by decreased levels of phosphorylated (p)(Ser473)-AKT. Levels of the AKT target protein, p(Ser256)-forkhead box O1 were increased in OSIS cells, which decreased with MK-2206 treatment, whereas levels of p(Ser9)-glycogen synthase kinase 3β did not change in response to MK-2206. Although MK-2206 decreased viability of both OSIS and ESC in a dose-dependent manner, proliferation of OSIS cells was differentially decreased significantly compared with ESC. Next, the role of hyperactive AKT in the establishment of ectopic lesions was studied using the bigenic, PR(cre/+)Pten(f/+) heterozygous mouse. Autologous implantation of uterine tissues was performed in these mice. After 4 weeks, an average of 4 ± 0.33 lesions per Pten(f/+) mouse and 7.5 ± 0.43 lesions in the PR(cre/+)Pten(f/+) mouse were found. Histological examination of the lesions showed endometrial tissue-like morphology, which was similar in both the Pten(f/+) and PR(cre/+)Pten(f/+) mice. Treatment of mice with MK-2206 resulted in a significantly decreased number of lesions established. Immunohistochemical staining of ectopic lesions revealed decreased p(Ser473)-AKT and the proliferation marker Ki67 from MK-2206-treated mice compared with vehicle-treated mice

  6. Matrine induces the apoptosis of lung cancer cells through downregulation of inhibitor of apoptosis proteins and the Akt signaling pathway.

    PubMed

    Niu, Huiyan; Zhang, Yifei; Wu, Baogang; Zhang, Yi; Jiang, Hongfang; He, Ping

    2014-09-01

    Lung cancer is the leading cause of cancer‑related mortality in humans. The prognosis for advanced lung cancer patients is extremely poor. Current standard care is rather ineffective for prolonging patient life while preserving satisfactory quality of life due to adverse side-effects. Matrine extracted from the traditional Chinese herbal plant Sophora flavescens was shown to induce cancer cell death in vitro. The aim of this study was to investigate the effect of matrine on the proliferation and apoptosis of lung cancer cells and the molecular basis of matrine-induced apoptosis. The results showed that matrine inhibited cell proliferation and induced apoptosis in lung cancer A549 and 95D cells in a dose- and time-dependent manner. The apoptotic effects of matrine on lung cancer cells appeared to act via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway and downregulation of the expression of the inhibitor of apoptosis protein (IAP) family proteins. Matrine exerts its cancer-killing effect via promoting apoptosis in lung cancer cells and may be a useful adjuvant therapeutic scheme for treating advanced lung cancer patients.

  7. Cell cycle regulation of breast cancer cells through estrogen-induced activities of ERK and Akt protein kinases.

    PubMed

    Geffroy, Nancy; Guédin, Aurore; Dacquet, Catherine; Lefebvre, Philippe

    2005-06-15

    The proliferative effect of estrogens on breast cancer cell (BCC) is mainly mediated through estrogen receptors (ER). Non-transcriptional effects of estrogens, exerted through activation of several protein kinases, may also contribute to BCC proliferation. However, the relative contribution of these two responses to BCC proliferation is not known. We characterized a novel estrogenic receptor ligand which possess Akt and ERK activating properties distinct from that of 17beta-estradiol. Early and delayed waves of activation of these kinases were detected upon estrogenic challenge of BCC, but only molecules able to promote a significant, delayed activation of ERK-induced BCC proliferation. Estrogen-induced cell cycle progression was not sensitive to the inhibition of ERK-regulating kinases MEK1 and 2. ERalpha was found to be necessary, but not sufficient for kinases activation. Thus, estrogens elicit a distinct pattern of early and delayed activation of ERK and Akt, and early protein kinase activation is probably not involved in BCC proliferation. Structural variations in the estrogen molecule may confer novel biological properties unrelated to estrogen-dependent transcriptional activation.

  8. Rapid activation by 3,5,3'-L-triiodothyronine of adenosine 5'-monophosphate-activated protein kinase/acetyl-coenzyme a carboxylase and akt/protein kinase B signaling pathways: relation to changes in fuel metabolism and myosin heavy-chain protein content in rat gastrocnemius muscle in vivo.

    PubMed

    de Lange, Pieter; Senese, Rosalba; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; Silvestri, Elena; Goglia, Fernando; Lanni, Antonia

    2008-12-01

    T3 stimulates metabolic rate in many tissues and induces changes in fuel use. The pathways by which T3 induces metabolic/structural changes related to altered fuel use in skeletal muscle have not been fully clarified. Gastrocnemius muscle (isolated at different time points after a single injection of T3 into hypothyroid rats), displayed rapid inductions of AMP-activated protein kinase (AMPK) phosphorylation (threonine 172; within 6 h) and acetyl-coenzyme A carboxylase phosphorylation (serine 79; within 12 h). As a consequence, increases occurred in mitochondrial fatty acid oxidation and carnitine palmitoyl transferase activity. Concomitantly, T3 stimulated signaling toward increased glycolysis through a rapid increase in Akt/protein kinase B (serine 473) phosphorylation (within 6 h) and a directly related increase in the activity of phosphofructokinase. The kinase specificity of the above effects was verified by treatment with inhibitors of AMPK and Akt activity (compound C and wortmannin, respectively). In contrast, glucose transporter 4 translocation to the membrane (activated by T3 within 6 h) was maintained when either AMPK or Akt activity was inhibited. The metabolic changes were accompanied by a decline in myosin heavy-chain Ib protein [causing a shift toward the fast-twitch (glycolytic) phenotype]. The increases in AMPK and acetyl-coenzyme A carboxylase phosphorylation were transient events, both levels declining from 12 h after the T3 injection, but Akt phosphorylation remained elevated until at least 48h after the injection. These data show that in skeletal muscle, T3 stimulates both fatty acid and glucose metabolism through rapid activations of the associated signaling pathways involving AMPK and Akt/protein kinase B.

  9. C-reactive protein inhibits high-molecular-weight adiponectin expression in 3T3-L1 adipocytes via PI3K/Akt pathway.

    PubMed

    Liu, Yuanxin; Liu, Cuiping; Jiang, Chao; Wang, Su; Yang, Qichao; Jiang, Dan; Yuan, Guoyue

    2016-03-25

    Adiponectin, an adipose-specific protein hormone, is secreted from white adipose tissue and involved in glucose and lipid metabolism. It is assembled into low-molecular-weight trimer (LMW), middle-molecular-weight hexameric (MMW) and high-molecular-weight (HMW), among which HMW exhibits higher activity. In this study, we proved that C-reactive protein (CRP), an inflammatory marker, inhibited adiponectin expression, especially HMW in time-and dose-dependent manners. Furthermore, CRP decreased the HMW/total adiponectin ration and reduced adiponectin assembly by increasing ERp44, and decreasing Ero1-α and DsbA-L. CRP activated pAkt, the downstream of PI3K. Inhibition of PI3K or pAkt abolished the effect of CRP. Our study suggested that CRP decreased adiponectin expression and multimerization, while CRP-induced decline in adiponectin might be mediated through the PI3K/Akt pathway.

  10. Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice.

    PubMed

    Ong, Qi-Rui; Chan, Elizabeth S; Lim, Mei-Li; Cole, Gregory M; Wong, Boon-Seng

    2014-01-17

    Human ApoE4 accelerates memory decline in ageing and in Alzheimer's disease. Although intranasal insulin can improve cognition, this has little effect in ApoE4 subjects. To understand this ApoE genotype-dependent effect, we examined brain insulin signaling in huApoE3 and huApoE4 targeted replacement (TR) mice. At 32 weeks, lower insulin receptor substrate 1 (IRS1) at S636/639 and Akt phosphorylation at T308 were detected in fasting huApoE4 TR mice as compared to fasting huApoE3 TR mice. These changes in fasting huApoE4 TR mice were linked to lower brain glucose content and have no effect on plasma glucose level. However, at 72 weeks of age, these early changes were accompanied by reduction in IRS2 expression, IRS1 phosphorylation at Y608, Akt phosphorylation at S473, and MAPK (p38 and p44/42) activation in the fasting huApoE4 TR mice. The lower brain glucose was significantly associated with higher brain insulin in the aged huApoE4 TR mice. These results show that ApoE4 reduces brain insulin signaling and glucose level leading to higher insulin content.

  11. p53 response to arsenic exposure in epithelial cells: protein kinase B/Akt involvement.

    PubMed

    Sandoval, Marisol; Morales, Moisés; Tapia, Rocío; del Carmen Alarcón, Luz; Sordo, Montserrat; Ostrosky-Wegman, Patricia; Ortega, Arturo; López-Bayghen, Esther

    2007-09-01

    Inorganic arsenic is a major environmental contaminant associated with an increased risk of human skin cancer. Arsenic modulates cellular signaling pathways that affect diverse processes such as cell proliferation, differentiation, and apoptosis, including genotoxic damage. The p53 protein plays a central role in mediating stress and DNA damage responses, leading to either growth arrest or apoptosis. Several signal transduction pathways activated under a plethora of stressing conditions increase p53 protein levels. To further understand the molecular mechanisms involved in the arsenic mode of action, we explored the effects of this metalloid on the activation of the phosphatidyl inositol 3-kinase (PI3K)/Ca2+/diacylglicerol dependent protein kinase/protein kinase B (PKB) signaling cascade and its repercussion in p53 activation in two epithelial cell types: primary normal human keratinocytes cultures (NHK) and the carcinoma-derived C33-A cell line. Although in both cell systems arsenic leads to an increase in p53 and its binding to DNA, the final outcome is different. In NHK, arsenic triggers a sustained activation of the PI3K/PKB/glycogen synthase kinase-3 beta pathway, driving the cell into a cell-differentiated stage in which the proliferation signals are turned down. In sharp contrast, in C33-A cells, arsenic leads to a transient increase in p53 followed by a drastic reduction in its nuclear levels and an increase in cell proliferation. These findings favor the notion that p53-stage and transcriptional abilities are important to understand modifications in the proliferation-differentiation balance, an equilibrium that is severely impaired by arsenic.

  12. Dissecting signalling by individual Akt/PKB isoforms, three steps at once.

    PubMed

    Osorio-Fuentealba, Cesar; Klip, Amira

    2015-09-01

    The serine/threonine kinase Akt/PKB (protein kinase B) is key for mammalian cell growth, survival, metabolism and oncogenic transformation. The diverse level and tissue expression of its three isoforms, Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ, make it daunting to identify isoform-specific actions in vivo and even in isolated tissues/cells. To date, isoform-specific knockout and knockdown have been the best strategies to dissect their individual overall functions. In a recent article in the Biochemical Journal, Kajno et al. reported a new strategy to study isoform selectivity in cell lines. Individual Akt/PKB isoforms in 3T3-L1 pre-adipocytes are first silenced via shRNA and stable cellular clones lacking one or the other isoform are selected. The stably silenced isoform is then replaced by a mutant engineered to be refractory to inhibition by MK-2206 (Akt1(W80A) or Akt2(W80A)). Akt1(W80A) or Akt2(W80A) are functional and effectively recruited to the plasma membrane in response to insulin. The system affords the opportunity to acutely control the activity of the endogenous non-silenced isoform through timely addition of MK-2206. Using this approach, it is confirmed that Akt1/PKBα is the preferred isoform sustaining adipocyte differentiation, but both Akt1/PKBα and Akt2/PKBβ can indistinctly support insulin-dependent FoxO1 (forkhead box O1) nuclear exclusion. Surprisingly, either isoform can also support insulin-dependent glucose transporter (GLUT) 4 translocation to the membrane, in contrast with the preferential role of Akt2/PKBβ assessed by knockdown studies. The new strategy should allow analysis of the plurality of Akt/PKB functions in other cells and in response to other stimuli. It should also be amenable to high-throughput studies to speed up advances in signal transmission by this pivotal kinase.

  13. The nuclear protein Sam68 is redistributed to the cytoplasm and is involved in PI3K/Akt activation during EV71 infection.

    PubMed

    Zhang, Hua; Cong, Haolong; Song, Lei; Tien, Po

    2014-02-13

    Nuclear proteins can be triggered to be redistributed to the cytoplasm to assist with EV71 virus replication. This process is frequently involved in cellular signal transduction upon virus infection. In this study, we have demonstrated that a new nuclear protein, 68-kDa Src-associated in mitosis protein (Sam68), was translocated to the cytoplasm and was co-localized with EV71 during virus infection. Confocal microscopy and subcellular fractionation assay confirmed that virus 3C protease triggered the redistribution of Sam68 to the cytoplasm. Knockdown of Sam68 expression using ShRNA significantly inhibited virus replication, suggesting that Sam68 may be a host factor involved in EV71 life cycle. In addition, EV71-induced Akt phosphorylation involved a PI3K-dependent mechanism. Sam68 is known to be an upstream regulator of PI3K and our immunoprecipitation studies confirmed that Sam68 interacted directly with the p85 regulatory subunit of PI3K and mediated PI3K/Akt activation during EV71 infection. On the contrary, silencing of Sam68 dramatically abrogated Akt phosphorylation. These data, plus the fact that Sam68 is known to be a signaling adaptor protein, indicated that Sam68 is a signal molecule with a functional role in the PI3K/Akt signal pathway during EV71 infection.

  14. Abnormal Protein Glycosylation and Activated PI3K/Akt/mTOR Pathway: Role in Bladder Cancer Prognosis and Targeted Therapeutics

    PubMed Central

    Lima, Luís; Peixoto, Andreia; Fernandes, Elisabete; Neves, Diogo; Neves, Manuel; Gaiteiro, Cristiana; Tavares, Ana; Gil da Costa, Rui M.; Cruz, Ricardo; Amaro, Teresina; Oliveira, Paula A.; Ferreira, José Alexandre; Santos, Lúcio L.

    2015-01-01

    Muscle invasive bladder cancer (MIBC, stage ≥T2) is generally associated with poor prognosis, constituting the second most common cause of death among genitourinary tumours. Due to high molecular heterogeneity significant variations in the natural history and disease outcome have been observed. This has also delayed the introduction of personalized therapeutics, making advanced stage bladder cancer almost an orphan disease in terms of treatment. Altered protein glycosylation translated by the expression of the sialyl-Tn antigen (STn) and its precursor Tn as well as the activation of the PI3K/Akt/mTOR pathway are cancer-associated events that may hold potential for patient stratification and guided therapy. Therefore, a retrospective design, 96 bladder tumours of different stages (Ta, T1-T4) was screened for STn and phosphorylated forms of Akt (pAkt), mTOR (pmTOR), S6 (pS6) and PTEN, related with the activation of the PI3K/Akt/mTOR pathway. In our series the expression of Tn was residual and was not linked to stage or outcome, while STn was statically higher in MIBC when compared to non-muscle invasive tumours (p = 0.001) and associated decreased cancer-specific survival (log rank p = 0.024). Conversely, PI3K/Akt/mTOR pathway intermediates showed an equal distribution between non-muscle invasive bladder cancer (NMIBC) and MIBC and did not associate with cancer-specif survival (CSS) in any of these groups. However, the overexpression of pAKT, pmTOR and/or pS6 allowed discriminating STn-positive advanced stage bladder tumours facing worst CSS (p = 0.027). Furthermore, multivariate Cox regression analysis revealed that overexpression of PI3K/Akt/mTOR pathway proteins in STn+ MIBC was independently associated with approximately 6-fold risk of death by cancer (p = 0.039). Mice bearing advanced stage chemically-induced bladder tumours mimicking the histological and molecular nature of human tumours were then administrated with mTOR-pathway inhibitor sirolimus (rapamycin

  15. Abnormal Protein Glycosylation and Activated PI3K/Akt/mTOR Pathway: Role in Bladder Cancer Prognosis and Targeted Therapeutics.

    PubMed

    Costa, Céu; Pereira, Sofia; Lima, Luís; Peixoto, Andreia; Fernandes, Elisabete; Neves, Diogo; Neves, Manuel; Gaiteiro, Cristiana; Tavares, Ana; Gil da Costa, Rui M; Cruz, Ricardo; Amaro, Teresina; Oliveira, Paula A; Ferreira, José Alexandre; Santos, Lúcio L

    2015-01-01

    Muscle invasive bladder cancer (MIBC, stage ≥T2) is generally associated with poor prognosis, constituting the second most common cause of death among genitourinary tumours. Due to high molecular heterogeneity significant variations in the natural history and disease outcome have been observed. This has also delayed the introduction of personalized therapeutics, making advanced stage bladder cancer almost an orphan disease in terms of treatment. Altered protein glycosylation translated by the expression of the sialyl-Tn antigen (STn) and its precursor Tn as well as the activation of the PI3K/Akt/mTOR pathway are cancer-associated events that may hold potential for patient stratification and guided therapy. Therefore, a retrospective design, 96 bladder tumours of different stages (Ta, T1-T4) was screened for STn and phosphorylated forms of Akt (pAkt), mTOR (pmTOR), S6 (pS6) and PTEN, related with the activation of the PI3K/Akt/mTOR pathway. In our series the expression of Tn was residual and was not linked to stage or outcome, while STn was statically higher in MIBC when compared to non-muscle invasive tumours (p = 0.001) and associated decreased cancer-specific survival (log rank p = 0.024). Conversely, PI3K/Akt/mTOR pathway intermediates showed an equal distribution between non-muscle invasive bladder cancer (NMIBC) and MIBC and did not associate with cancer-specif survival (CSS) in any of these groups. However, the overexpression of pAKT, pmTOR and/or pS6 allowed discriminating STn-positive advanced stage bladder tumours facing worst CSS (p = 0.027). Furthermore, multivariate Cox regression analysis revealed that overexpression of PI3K/Akt/mTOR pathway proteins in STn+ MIBC was independently associated with approximately 6-fold risk of death by cancer (p = 0.039). Mice bearing advanced stage chemically-induced bladder tumours mimicking the histological and molecular nature of human tumours were then administrated with mTOR-pathway inhibitor sirolimus (rapamycin

  16. Abnormal Protein Glycosylation and Activated PI3K/Akt/mTOR Pathway: Role in Bladder Cancer Prognosis and Targeted Therapeutics.

    PubMed

    Costa, Céu; Pereira, Sofia; Lima, Luís; Peixoto, Andreia; Fernandes, Elisabete; Neves, Diogo; Neves, Manuel; Gaiteiro, Cristiana; Tavares, Ana; Gil da Costa, Rui M; Cruz, Ricardo; Amaro, Teresina; Oliveira, Paula A; Ferreira, José Alexandre; Santos, Lúcio L

    2015-01-01

    Muscle invasive bladder cancer (MIBC, stage ≥T2) is generally associated with poor prognosis, constituting the second most common cause of death among genitourinary tumours. Due to high molecular heterogeneity significant variations in the natural history and disease outcome have been observed. This has also delayed the introduction of personalized therapeutics, making advanced stage bladder cancer almost an orphan disease in terms of treatment. Altered protein glycosylation translated by the expression of the sialyl-Tn antigen (STn) and its precursor Tn as well as the activation of the PI3K/Akt/mTOR pathway are cancer-associated events that may hold potential for patient stratification and guided therapy. Therefore, a retrospective design, 96 bladder tumours of different stages (Ta, T1-T4) was screened for STn and phosphorylated forms of Akt (pAkt), mTOR (pmTOR), S6 (pS6) and PTEN, related with the activation of the PI3K/Akt/mTOR pathway. In our series the expression of Tn was residual and was not linked to stage or outcome, while STn was statically higher in MIBC when compared to non-muscle invasive tumours (p = 0.001) and associated decreased cancer-specific survival (log rank p = 0.024). Conversely, PI3K/Akt/mTOR pathway intermediates showed an equal distribution between non-muscle invasive bladder cancer (NMIBC) and MIBC and did not associate with cancer-specif survival (CSS) in any of these groups. However, the overexpression of pAKT, pmTOR and/or pS6 allowed discriminating STn-positive advanced stage bladder tumours facing worst CSS (p = 0.027). Furthermore, multivariate Cox regression analysis revealed that overexpression of PI3K/Akt/mTOR pathway proteins in STn+ MIBC was independently associated with approximately 6-fold risk of death by cancer (p = 0.039). Mice bearing advanced stage chemically-induced bladder tumours mimicking the histological and molecular nature of human tumours were then administrated with mTOR-pathway inhibitor sirolimus (rapamycin

  17. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen-activated protein kinase kinase signaling pathways

    PubMed Central

    HU, SHAN; HUANG, LIMING; MENG, LIWEI; SUN, HE; ZHANG, WEI; XU, YINGCHUN

    2015-01-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways. PMID:26502751

  18. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen‑activated protein kinase kinase signaling pathways.

    PubMed

    Hu, Shan; Huang, Liming; Meng, Liwei; Sun, He; Zhang, Wei; Xu, Yingchun

    2015-11-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways. PMID:26502751

  19. Phosphorylated Ribosomal Protein S6 Is Required for Akt-Driven Hyperplasia and Malignant Transformation, but Not for Hypertrophy, Aneuploidy and Hyperfunction of Pancreatic β-Cells

    PubMed Central

    Wittenberg, Avigail Dreazen; Azar, Shahar; Klochendler, Agnes; Stolovich-Rain, Miri; Avraham, Shlomit; Birnbaum, Lea; Binder Gallimidi, Adi; Katz, Maximiliano; Dor, Yuval; Meyuhas, Oded

    2016-01-01

    Constitutive expression of active Akt (Akttg) drives hyperplasia and hypertrophy of pancreatic β-cells, concomitantly with increased insulin secretion and improved glucose tolerance, and at a later stage the development of insulinoma. To determine which functions of Akt are mediated by ribosomal protein S6 (rpS6), an Akt effector, we generated mice that express constitutive Akt in β-cells in the background of unphosphorylatable ribosomal protein S6 (rpS6P-/-). rpS6 phosphorylation deficiency failed to block Akttg-induced hypertrophy and aneuploidy in β-cells, as well as the improved glucose homeostasis, indicating that Akt carries out these functions independently of rpS6 phosphorylation. In contrast, rpS6 phosphorylation deficiency efficiently restrained the reduction in nuclear localization of the cell cycle inhibitor p27, as well as the development of Akttg-driven hyperplasia and tumor formation in β-cells. In vitro experiments with Akttg and rpS6P-/-;Akttg fibroblasts demonstrated that rpS6 phosphorylation deficiency leads to reduced translation fidelity, which might underlie its anti-tumorigenic effect in the pancreas. However, the role of translation infidelity in tumor suppression cannot simply be inferred from this heterologous experimental model, as rpS6 phosphorylation deficiency unexpectedly elevated the resistance of Akttg fibroblasts to proteotoxic, genotoxic as well as autophagic stresses. In contrast, rpS6P-/- fibroblasts exhibited a higher sensitivity to these stresses upon constitutive expression of oncogenic Kras. The latter result provides a possible mechanistic explanation for the ability of rpS6 phosphorylation deficiency to enhance DNA damage and protect mice from Kras-induced neoplastic transformation in the exocrine pancreas. We propose that Akt1 and Kras exert their oncogenic properties through distinct mechanisms, even though both show addiction to rpS6 phosphorylation. PMID:26919188

  20. Cross-talk between the two divergent insulin signaling pathways is revealed by the protein kinase B (Akt)-mediated phosphorylation of adapter protein APS on serine 588.

    PubMed

    Katsanakis, Kostas D; Pillay, Tahir S

    2005-11-11

    The APS adapter protein is recruited to the autophosphorylated kinase domain of the insulin receptor and initiates the phosphatidylinositol 3-kinase (PI3K)-independent pathway of insulin-stimulated glucose transport by recruiting CAP and c-Cbl. In this study, we have identified APS as a novel substrate for protein kinase B/Akt using an antibody that exhibits insulin-dependent immunoreactivity with a phosphospecific antibody raised against the protein kinase B substrate consensus sequence RXRXX(pS/pT) and a phosphospecific antibody that recognizes serine 21/9 of glycogen synthase kinase-3alpha/beta. This phosphorylation of APS is observed in both 3T3-L1 adipocytes and transfected cells. The insulin-stimulated serine phosphorylation of APS was inhibited by a PI3-kinase inhibitor, LY290004, a specific protein kinase B (PKB) inhibitor, deguelin, and knockdown of Akt. Serine 588 of APS is contained in a protein kinase B consensus sequence for phosphorylation conserved in APS across multiple species but not found in other members of this family, including SH2-B and Lnk. Mutation of serine 588 to alanine abolished the insulin-stimulated serine phosphorylation of APS and prevented the localization of APS to membrane ruffles. A glutathione S-transferase fusion protein containing amino acids 534-621 of APS was phosphorylated by purified PKB in vitro, and mutation of serine 588 abolished the PKB-mediated phosphorylation of APS in vitro. Taken together, this study identifies APS as a novel physiological substrate for PKB and the first serine phosphorylation site on APS. These data therefore reveal the molecular cross-talk between the insulin-activated PI3-kinase-dependent and -independent pathways previously thought to be distinct and divergent.

  1. Lamin A/C protein is overexpressed in tissue-invading prostate cancer and promotes prostate cancer cell growth, migration and invasion through the PI3K/AKT/PTEN pathway.

    PubMed

    Kong, Lu; Schäfer, Georg; Bu, Huajie; Zhang, Yong; Zhang, Yuxiang; Klocker, Helmut

    2012-04-01

    Prostate cancer (PC) remains the second most common cause of cancer-related death in Western countries. A previous proteomics study suggested that the nuclear membrane protein lamin A/C to be a maker to discriminate low- and high-Gleason score tumors and to identify high-risk cancers. To characterize its function in PC cells, we performed a detailed expression analysis in PC tissue and explored the consequences of down or upregulation of lamin A/C in PC cells. Our results confirm an increased lamin A/C protein expression in high-risk cancers and show association of expression with tumor cell formations at the invasion fronts of tumors and in invasion 'spearheading' tumor cell clusters. In the prostate tumor cell lines, LNCaP, DU145, and PC3 small hairpin RNA knockdown or overexpression of lamin A/C resulted in inhibition or stimulation, respectively, of cell growth, colony formation, migration and invasion. Further mechanism studies suggested that the lamin A/C-related malignant behavior is regulated through modulation of the phosphoinositide 3-kinase (PI3K)/AKT/PTEN signaling pathway. Western blot results indicated that knockdown or overexpression of lamin A/C decreased or increased, respectively, protein levels of the PI3K subunits p110 and p85 in all three cell lines; phosphor-AKT in the PTEN-negative cell lines LNCaP and PC3, and, increased or decreased, respectively, PTEN protein levels in PTEN-positive DU145 cells. Together, our data suggest that lamin A/C proteins are positively involved in malignant behavior of PC cells through the PI3K/AKT/PTEN pathway. Lamin A/C may represent a new oncogenic factor and a novel therapeutic target for PC.

  2. Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis

    PubMed Central

    Rotllan, Noemi; Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Wanschel, Amarylis C.; Aryal, Binod; Aranda, Juan F.; Goedeke, Leigh; Salerno, Alessandro G.; Ramírez, Cristina M.; Sessa, William C.; Suárez, Yajaira; Fernández-Hernando, Carlos

    2015-01-01

    Atherosclerosis is the major cause of death and disability in diabetic and obese subjects with insulin resistance. Akt2, a phosphoinositide-dependent serine-threonine protein kinase, is highly express in insulin-responsive tissues; however, its role during the progression of atherosclerosis remains unknown. Thus, we aimed to investigate the contribution of Akt2 during the progression of atherosclerosis. We found that germ-line Akt2-deficient mice develop similar atherosclerotic plaques as wild-type mice despite higher plasma lipids and glucose levels. It is noteworthy that transplantation of bone marrow cells isolated from Akt2−/− mice to Ldlr−/− mice results in marked reduction of the progression of atherosclerosis compared with Ldlr−/− mice transplanted with wild-type bone marrow cells. In vitro studies indicate that Akt2 is required for macrophage migration in response to proatherogenic cytokines (monocyte chemotactic protein-1 and macrophage colony-stimulating factor). Moreover, Akt2−/− macrophages accumulate less cholesterol and have an alternative activated or M2-type phenotype when stimulated with proinflammatory cytokines. Together, these results provide evidence that macrophage Akt2 regulates migration, the inflammatory response and cholesterol metabolism and suggest that targeting Akt2 in macrophages might be beneficial for treating atherosclerosis.—Rotllan, N., Chamorro-Jorganes, A., Araldi, E., Wanschel, A. C., Aryal, B., Aranda, J. F., Goedeke, L., Salerno, A. G., Ramírez, C. M., Sessa,W. C., Suárez, Y., Fernández-Hernando, C. Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis. PMID:25392271

  3. Protein kinase C betaII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion.

    PubMed

    Kawakami, Yuko; Nishimoto, Hajime; Kitaura, Jiro; Maeda-Yamamoto, Mari; Kato, Roberta M; Littman, Dan R; Leitges, Michael; Rawlings, David J; Kawakami, Toshiaki

    2004-11-12

    Akt (= protein kinase B), a subfamily of the AGC serine/threonine kinases, plays critical roles in survival, proliferation, glucose metabolism, and other cellular functions. Akt activation requires the recruitment of the enzyme to the plasma membrane by interacting with membrane-bound lipid products of phosphatidylinositol 3-kinase. Membrane-bound Akt is then phosphorylated at two sites for its full activation; Thr-308 in the activation loop of the kinase domain is phosphorylated by 3-phosphoinositide-dependent kinase-1 (PDK1) and Ser-473 in the C-terminal hydrophobic motif by a putative kinase PDK2. The identity of PDK2 has been elusive. Here we present evidence that conventional isoforms of protein kinase C (PKC), particularly PKCbetaII, can regulate Akt activity by directly phosphorylating Ser-473 in vitro and in IgE/antigen-stimulated mast cells. By contrast, PKCbeta is not required for Ser-473 phosphorylation in mast cells stimulated with stem cell factor or interleukin-3, in serum-stimulated fibroblasts, or in antigen receptor-stimulated T or B lymphocytes. Therefore, PKCbetaII appears to work as a cell type- and stimulus-specific PDK2. PMID:15364915

  4. Repulsive axon guidance by Draxin is mediated by protein Kinase B (Akt), glycogen synthase kinase-3β (GSK-3β) and microtubule-associated protein 1B.

    PubMed

    Meli, Rajeshwari; Weisová, Petronela; Propst, Friedrich

    2015-01-01

    Draxin is an important axon guidance cue necessary for the formation of forebrain commissures including the corpus callosum, but the molecular details of draxin signaling are unknown. To unravel how draxin signals are propagated we used murine cortical neurons and genetic and pharmacological approaches. We found that draxin-induced growth cone collapse critically depends on draxin receptors (deleted in colorectal cancer, DCC), inhibition of protein kinase B/Akt, activation of GSK-3β (glycogen synthase kinase-3β) and the presence of microtubule-associated protein MAP1B. This study, for the first time elucidates molecular events in draxin repulsion, links draxin and DCC to MAP1B and identifies a novel MAP1B-depenent GSK-3β pathway essential for chemo-repulsive axon guidance cue signaling.

  5. PARP-inhibitor treatment prevents hypertension induced cardiac remodeling by favorable modulation of heat shock proteins, Akt-1/GSK-3β and several PKC isoforms.

    PubMed

    Deres, Laszlo; Bartha, Eva; Palfi, Anita; Eros, Krisztian; Riba, Adam; Lantos, Janos; Kalai, Tamas; Hideg, Kalman; Sumegi, Balazs; Gallyas, Ferenc; Toth, Kalman; Halmosi, Robert

    2014-01-01

    Spontaneously hypertensive rat (SHR) is a suitable model for studies of the complications of hypertension. It is known that activation of poly(ADP-ribose) polymerase enzyme (PARP) plays an important role in the development of postinfarction as well as long-term hypertension induced heart failure. In this study, we examined whether PARP-inhibitor (L-2286) treatment could prevent the development of hypertensive cardiopathy in SHRs. 6-week-old SHR animals were treated with L-2286 (SHR-L group) or placebo (SHR-C group) for 24 weeks. Wistar-Kyoto rats were used as aged-matched, normotensive controls (WKY group). Echocardiography was performed, brain-derived natriuretic peptide (BNP) activity and blood pressure were determined at the end of the study. We detected the extent of fibrotic areas. The amount of heat-shock proteins (Hsps) and the phosphorylation state of Akt-1(Ser473), glycogen synthase kinase (GSK)-3β(Ser9), forkhead transcription factor (FKHR)(Ser256), mitogen activated protein kinases (MAPKs), and protein kinase C (PKC) isoenzymes were monitored. The elevated blood pressure in SHRs was not influenced by PARP-inhibitor treatment. Systolic left ventricular function and BNP activity did not differ among the three groups. L-2286 treatment decreased the marked left ventricular (LV) hypertrophy which was developed in SHRs. Interstitial collagen deposition was also decreased by L-2286 treatment. The phosphorylation of extracellular signal-regulated kinase (ERK)1/2(Thr183-Tyr185), Akt-1(Ser473), GSK-3β(Ser9), FKHR(Ser256), and PKC ε(Ser729) and the level of Hsp90 were increased, while the activity of PKC α/βII(Thr638/641), ζ/λ(410/403) were mitigated by L-2286 administration. We could detect signs of LV hypertrophy without congestive heart failure in SHR groups. This alteration was prevented by PARP inhibition. Our results suggest that PARP-inhibitor treatment has protective effect already in the early stage of hypertensive myocardial remodeling. PMID

  6. Na+/Ca2+ exchanger 1 (NCX-1) mediates the anti-apoptotic effect of Akt1 in neonatal rat cardiomyocytes during ischemia/reperfusion

    PubMed Central

    Huang, Manman; Pan, Defeng; Du, Yinping; Zhu, Hong; Zhang, Lin; Xu, Tongda; Luo, Yuanyuan; Li, Dongye

    2016-01-01

    The purpose of this study was to investigate the anti-apoptotic role of Akt1 gene in neonatal rat cardiomyocytes and the relationship with Na+/Ca2+ exchanger 1 (NCX1) during ischemia/reperfusion (IR). The cultured original rat cardiomyocytes were randomly divided into five groups: normal control group (C group), hypoxia/reoxygenation group (HR group), the control vector pLVX-EGFP-3FLAG group (CV group), the gene pLVX-EGFP-3FLAG-Akt1 transfection group (A group), and Akt1 inhibitor LY294002 group (LY group). Cardiomyocyte vitality was determined using MTT, and the apoptosis was determined by TUNEL to verify the anti-apoptotic role of Akt1. The mRNA levels of Akt1 and NCX1 were determined by RT-PCR, the protein expression of Akt1, p-Akt1, NCX1 and the apoptotic proteins of mitochondrial pathway cytochrome C (Cyto C) and caspase-9 were measured by Western blot. As a result, transfected Akt1 (A group) showed increased myocardial cell viability and reduced apoptosis, with increase in Akt1 expression and decrease in NCX1 expression. The levels of apoptotic proteins Cyto C and caspase-9 also declined. This study demonstrated that lentivirus-mediated transfection of Akt1 played an anti-apoptotic role during IR of rat cardiomyocytes, via inhibition of NCX1 and other mitochondrial proteins. PMID:27186265

  7. Determinants of hepcidin levels in sepsis-associated acute kidney injury: Impact on pAKT/PTEN pathways?

    PubMed

    Schaalan, Mona F; Mohamed, Walid A

    2016-09-01

    The antimicrobial β-defensin-like role of hepcidin (HEPC) has been increasingly investigated for its potential role in acute kidney injury (AKI). In sepsis-induced AKI, there is a complex interplay between positive and negative regulation of HEPC, with consequently altered distributions of iron caused by changes in HEPC levels. The aim of the current research was to assess serum HEPC levels in a cohort of septic patients with AKI and investigate the regulatory impact of hypoxia-inducing factor (HIF)-1α, erythropoietin (EPO) and inflammation on HEPC levels and related signal cascades in these patients. Baseline, higher levels of SCr (2.3-fold), blood urea nitrogen (BUN) (1.8-fold), uric acid (2.3-fold) and white blood cell (2.3-fold) were noted in septic AKI patients, along with decreased levels of albumin (15.7%), creatinine (44.7%) and BUN/creatinine ratios (23.8%), compared to in normal subjects. These hosts also had increased serum levels of TNFα (4.4-times) and TGFβ1 (3.2-times) compared to controls (p < 0.05). Further, HEPC and HIF-1α levels were also increased (8.8- and 3.6-times control levels), while EPO levels were decreased (77.8%) from control levels. After 12 weeks of antibiotic therapy, all septic AKI patients showed significant improvement of the altered markers of kidney dysfunction. In line with significant reductions in serum TNFα and TGFβ1 (25.5% and 26.2%, respectively), HEPC and HIF-1α levels were significantly decreased (31.6% and 19.3%), and EPO levels increased (1.9-fold) compared to pretreatment values. There was a significant positive correlation between HEPC levels and kidney function markers (SCr and BUN), inflammatory TNFα and TGFβ1 and serum HIF-1α and pAKT in septic AKI patients before and after treatment. Based on the results here, we conclude that HEPC, EPO and HIF-1α are involved in the pathogenesis of sepsis-induced AKI and confirm the dominating effects of inflammatory determinants over hypoxia

  8. Determinants of hepcidin levels in sepsis-associated acute kidney injury: Impact on pAKT/PTEN pathways?

    PubMed

    Schaalan, Mona F; Mohamed, Walid A

    2016-09-01

    The antimicrobial β-defensin-like role of hepcidin (HEPC) has been increasingly investigated for its potential role in acute kidney injury (AKI). In sepsis-induced AKI, there is a complex interplay between positive and negative regulation of HEPC, with consequently altered distributions of iron caused by changes in HEPC levels. The aim of the current research was to assess serum HEPC levels in a cohort of septic patients with AKI and investigate the regulatory impact of hypoxia-inducing factor (HIF)-1α, erythropoietin (EPO) and inflammation on HEPC levels and related signal cascades in these patients. Baseline, higher levels of SCr (2.3-fold), blood urea nitrogen (BUN) (1.8-fold), uric acid (2.3-fold) and white blood cell (2.3-fold) were noted in septic AKI patients, along with decreased levels of albumin (15.7%), creatinine (44.7%) and BUN/creatinine ratios (23.8%), compared to in normal subjects. These hosts also had increased serum levels of TNFα (4.4-times) and TGFβ1 (3.2-times) compared to controls (p < 0.05). Further, HEPC and HIF-1α levels were also increased (8.8- and 3.6-times control levels), while EPO levels were decreased (77.8%) from control levels. After 12 weeks of antibiotic therapy, all septic AKI patients showed significant improvement of the altered markers of kidney dysfunction. In line with significant reductions in serum TNFα and TGFβ1 (25.5% and 26.2%, respectively), HEPC and HIF-1α levels were significantly decreased (31.6% and 19.3%), and EPO levels increased (1.9-fold) compared to pretreatment values. There was a significant positive correlation between HEPC levels and kidney function markers (SCr and BUN), inflammatory TNFα and TGFβ1 and serum HIF-1α and pAKT in septic AKI patients before and after treatment. Based on the results here, we conclude that HEPC, EPO and HIF-1α are involved in the pathogenesis of sepsis-induced AKI and confirm the dominating effects of inflammatory determinants over hypoxia

  9. Uncoupling protein 3 expression levels influence insulin sensitivity, fatty acid oxidation, and related signaling pathways.

    PubMed

    Senese, Rosalba; Valli, Vivien; Moreno, Maria; Lombardi, Assunta; Busiello, Rosa Anna; Cioffi, Federica; Silvestri, Elena; Goglia, Fernando; Lanni, Antonia; de Lange, Pieter

    2011-01-01

    Controversy exists on whether uncoupling protein 3 (UCP3) positively or negatively influences insulin sensitivity in vivo, and the underlying signaling pathways have been scarcely studied. We studied how a progressive reduction in UCP3 expression (using UCP3 +/+, UCP3 +/-, and UCP3 -/- mice) modulates insulin sensitivity and related metabolic parameters. In order to further validate our observations, we also studied animals in which insulin resistance was induced by administration of a high-fat diet (HFD). In UCP3 +/- and UCP3 -/- mice, gastrocnemius muscle Akt/protein kinase B (Akt/PKB) (serine 473) and AMP-activated protein kinase (AMPK) (threonine 171) phosphorylation, and glucose transporter 4 (GLUT4) membrane levels were reduced compared to UCP3 +/+ mice. The HOMA-IR index (insulin resistance parameter) was increased both in the UCP3 +/- and UCP3 -/- mice. In these mice, insulin administration normalized Akt/PKB phosphorylation between genotypes while AMPK phosphorylation was further reduced, and sarcolemmal GLUT4 levels were induced but did not reach control levels. Furthermore, non-insulin-stimulated muscle fatty acid oxidation and the expression of several involved genes both in muscle and in liver were reduced. HFD administration induced insulin resistance in UCP3 +/+ mice and the aforementioned parameters resulted similar to those of chow-fed UCP3 +/- and UCP3 -/- mice. In conclusion, high-fat-diet-induced insulin resistance in wild-type mice mimics that of chow-fed UCP3 +/- and UCP3 -/- mice showing that progressive reduction of UCP3 levels results in insulin resistance. This is accompanied by decreased fatty acid oxidation and a less intense Akt/PKB and AMPK signaling.

  10. Modifying akt signaling in B-cell chronic lymphocytic leukemia cells.

    PubMed

    Hofbauer, Sebastian W; Piñón, Josefina D; Brachtl, Gabriele; Haginger, Lucia; Wang, Wei; Jöhrer, Karin; Tinhofer, Ingeborg; Hartmann, Tanja Nicole; Greil, Richard

    2010-09-15

    Emerging evidence suggests that the survival of B-cell chronic lymphocytic leukemia (CLL) cells is dependent on microenvironmental influences such as antigenic stimulation and support by stromal cells. Akt, also known as protein kinase B, is a central component in prosurvival signaling downstream of these events. We investigated the role of Akt and its modulation by the protooncogene T-cell leukemia 1a (Tcl1a) in the survival pathways of primary CLL samples and CLL-derived prolymphocytic cell lines MEC-1 and MEC-2. Akt activation was increased by the protective presence of human bone marrow stromal cells and B-cell receptor mimicking signals but antagonized by direct Akt blockade with the novel specific inhibitor AiX, with preferential apoptosis induction in CLL cells with an unmutated immunoglobulin status, which predicts poor clinical outcome. In addition, we found a direct interaction of Akt with Tcl1a in an endogenous coimmunoprecipitation assay. Confirming the critical role of Tcl1a in modulating Akt signaling, Akt activation was enhanced by overexpressing Tcl1a in CLL. In contrast, decreasing Tcl1a levels by small interfering RNA reduced Akt activation in the fludarabine-insensitive CLL cell line MEC-2 and sensitized the malignant cells to fludarabine treatment. In summary, our data reveal a significant role for the Akt-Tcl1a axis in CLL survival and propose a further evaluation of this interplay for targeting chemoresistance phenomena.

  11. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis

    PubMed Central

    Mancini, Maria L.; Lien, Evan C.; Toker, Alex

    2016-01-01

    One of the most frequently deregulated signaling pathways in breast cancer is the PI 3-K/Akt cascade. Genetic lesions are commonly found in PIK3CA, PTEN, and AKT, which lead to excessive and constitutive activation of Akt and downstream signaling that results in uncontrolled proliferation and increased cellular survival. One such genetic lesion is the somatic AKT1(E17K) mutation, which has been identified in 4-8% of breast cancer patients. To determine how this mutation contributes to mammary tumorigenesis, we constructed a genetically engineered mouse model that conditionally expresses human AKT1(E17K) in the mammary epithelium. Although AKT1(E17K) is only weakly constitutively active and does not promote proliferation in vitro, it is capable of escaping negative feedback inhibition to exhibit sustained signaling dynamics in vitro. Consistently, both virgin and multiparous AKT1(E17K) mice develop mammary gland hyperplasia that do not progress to carcinoma. This hyperplasia is accompanied by increased estrogen receptor expression, although exposure of the mice to estrogen does not promote tumor development. Moreover, AKT1(E17K) prevents HER2-driven mammary tumor formation, in part through negative feedback inhibition of RTK signaling. Analysis of TCGA breast cancer data revealed that the mRNA expression, total protein levels, and phosphorylation of various RTKs are decreased in human tumors harboring AKT1(E17K). PMID:27004402

  12. Thioredoxin Binding Protein-2 Regulates Autophagy of Human Lens Epithelial Cells under Oxidative Stress via Inhibition of Akt Phosphorylation

    PubMed Central

    Yao, Ke; Zhang, Yidong; Chen, Guangdi; Lai, Kairan; Yin, Houfa

    2016-01-01

    Oxidative stress plays an essential role in the development of age-related cataract. Thioredoxin binding protein-2 (TBP-2) is a negative regulator of thioredoxin (Trx), which deteriorates cellular antioxidant system. Our study focused on the autophagy-regulating effect of TBP-2 under oxidative stress in human lens epithelial cells (LECs). Human lens epithelial cells were used for cell culture and treatment. Lentiviral-based transfection system was used for overexpression of TBP-2. Cytotoxicity assay, western blot analysis, GFP/mCherry-fused LC3 plasmid, immunofluorescence, and transmission electronic microscopy were performed. The results showed that autophagic response of LECs with increased LC3-II, p62, and GFP/mCherry-LC3 puncta (P < 0.01) was induced by oxidative stress. Overexpression of TBP-2 further strengthens this response and worsens the cell viability (P < 0.01). Knockdown of TBP-2 attenuates the autophagic response and cell viability loss induced by oxidative stress. TBP-2 mainly regulates autophagy in the initiation stage, which is mTOR-independent and probably caused by the dephosphorylation of Akt under oxidative stress. These findings suggest a novel role of TBP-2 in human LECs under oxidative stress. Oxidative stress can cause cell injury and autophagy in LECs, and TBP-2 regulates this response. Hence, this study provides evidence regarding the role of TBP-2 in lens and the possible mechanism of cataract development.

  13. Bis(hinokitiolato)zinc complex ([Zn(hkt)2]) activates Akt/protein kinase B independent of insulin signal transduction.

    PubMed

    Naito, Yuki; Yoshikawa, Yutaka; Masuda, Kazufumi; Yasui, Hiroyuki

    2016-07-01

    Since many Zn complexes have been developed to enhance the insulin-like activity and increase the exposure and residence of Zn in the animal body, these complexes are recognized as one of the new candidates with action mechanism different from existing anti-diabetic drugs. However, the molecular mechanism by which Zn complexes exert an anti-DM effect is unknown. Therefore, we evaluated the activity of Zn complexes, especially related to the phosphorylation of insulin signaling pathway components. We focused on the insulin-like effects of the bis(hinokitiolato)zinc complex, [Zn(hkt)2], using 3T3-L1 adipocytes. [Zn(hkt)2] was taken up by cells and induced Akt phosphorylation in a time-dependent manner. Additionally, it showed inhibitory activity against PTP1B and PTEN, which are major negative regulators of insulin signaling. It did not promote the phosphorylation of IR (insulin receptor)-β or IRS (insulin receptor substrate)-1 by itself, but in combination with insulin, it enhanced the phosphorylation of IRβ. We conclude that [Zn(hkt)2] has effects on the proteins of insulin signaling pathway without insulin receptor mediation, and [Zn(hkt)2] promotes insulin function and shows the anti-DM effects. Thus, [Zn(hkt)2] may be the basis for improved DM treatments.

  14. Thioredoxin Binding Protein-2 Regulates Autophagy of Human Lens Epithelial Cells under Oxidative Stress via Inhibition of Akt Phosphorylation

    PubMed Central

    Yao, Ke; Zhang, Yidong; Chen, Guangdi; Lai, Kairan; Yin, Houfa

    2016-01-01

    Oxidative stress plays an essential role in the development of age-related cataract. Thioredoxin binding protein-2 (TBP-2) is a negative regulator of thioredoxin (Trx), which deteriorates cellular antioxidant system. Our study focused on the autophagy-regulating effect of TBP-2 under oxidative stress in human lens epithelial cells (LECs). Human lens epithelial cells were used for cell culture and treatment. Lentiviral-based transfection system was used for overexpression of TBP-2. Cytotoxicity assay, western blot analysis, GFP/mCherry-fused LC3 plasmid, immunofluorescence, and transmission electronic microscopy were performed. The results showed that autophagic response of LECs with increased LC3-II, p62, and GFP/mCherry-LC3 puncta (P < 0.01) was induced by oxidative stress. Overexpression of TBP-2 further strengthens this response and worsens the cell viability (P < 0.01). Knockdown of TBP-2 attenuates the autophagic response and cell viability loss induced by oxidative stress. TBP-2 mainly regulates autophagy in the initiation stage, which is mTOR-independent and probably caused by the dephosphorylation of Akt under oxidative stress. These findings suggest a novel role of TBP-2 in human LECs under oxidative stress. Oxidative stress can cause cell injury and autophagy in LECs, and TBP-2 regulates this response. Hence, this study provides evidence regarding the role of TBP-2 in lens and the possible mechanism of cataract development. PMID:27656263

  15. Bis(hinokitiolato)zinc complex ([Zn(hkt)2]) activates Akt/protein kinase B independent of insulin signal transduction.

    PubMed

    Naito, Yuki; Yoshikawa, Yutaka; Masuda, Kazufumi; Yasui, Hiroyuki

    2016-07-01

    Since many Zn complexes have been developed to enhance the insulin-like activity and increase the exposure and residence of Zn in the animal body, these complexes are recognized as one of the new candidates with action mechanism different from existing anti-diabetic drugs. However, the molecular mechanism by which Zn complexes exert an anti-DM effect is unknown. Therefore, we evaluated the activity of Zn complexes, especially related to the phosphorylation of insulin signaling pathway components. We focused on the insulin-like effects of the bis(hinokitiolato)zinc complex, [Zn(hkt)2], using 3T3-L1 adipocytes. [Zn(hkt)2] was taken up by cells and induced Akt phosphorylation in a time-dependent manner. Additionally, it showed inhibitory activity against PTP1B and PTEN, which are major negative regulators of insulin signaling. It did not promote the phosphorylation of IR (insulin receptor)-β or IRS (insulin receptor substrate)-1 by itself, but in combination with insulin, it enhanced the phosphorylation of IRβ. We conclude that [Zn(hkt)2] has effects on the proteins of insulin signaling pathway without insulin receptor mediation, and [Zn(hkt)2] promotes insulin function and shows the anti-DM effects. Thus, [Zn(hkt)2] may be the basis for improved DM treatments. PMID:27251140

  16. Exendin-4 induces myocardial protection through MKK3 and Akt-1 in infarcted hearts.

    PubMed

    Du, Jianfeng; Zhang, Ling; Wang, Zhengke; Yano, Naohiro; Zhao, Yu Tina; Wei, Lei; Dubielecka-Szczerba, Patrycja; Liu, Paul Y; Zhuang, Shougang; Qin, Gangjian; Zhao, Ting C

    2016-02-15

    We have demonstrated that glucagon like peptide-1 (GLP-1) protects the heart against ischemic injury. However, the physiological mechanism by which GLP-1 receptor (GLP-1R) initiates cardioprotection remains to be determined. The objective of this study is to elucidate the functional roles of MAPK kinase 3 (MKK3) and Akt-1 in mediating exendin-4-elicited protection in the infarcted hearts. Adult mouse myocardial infarction (MI) was created by ligation of the left descending artery. Wild-type, MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice were divided into one of several groups: 1) sham: animals underwent thoracotomy without ligation; 2) MI: animals underwent MI and received a daily dose of intraperitoneal injection of vehicle (saline); 3) MI + exendin-4: infarcted mice received daily injections of exendin-4, a GLP-1R agonist (0.1 mg/kg, ip). Echocardiographic measurements indicate that exendin-4 treatment resulted in the preservation of ventricular function and increases in the survival rate, but these effects were diminished in MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice. Exendin-4 treatments suppressed cardiac hypotrophy and reduced scar size and cardiac interstitial fibrosis, respectively, but these beneficial effects were lost in genetic elimination of MKK3, Akt-1, or Akt-1(-/-);MKK3(-/-) mice. GLP-1R stimulation stimulated angiogenic responses, which were also mitigated by deletion of MKK3 and Akt-1. Exendin-4 treatment increased phosphorylation of MKK3, p38, and Akt-1 at Ser129 but decreased levels of active caspase-3 and cleaved poly (ADP-ribose) polymerase; these proteins were diminished in MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice. These results reveal that exendin-4 treatment improves cardiac function, attenuates cardiac remodeling, and promotes angiogenesis in the infarcted myocardium through MKK3 and Akt-1 pathway.

  17. Holo-APP and G-protein-mediated signaling are required for sAPPα-induced activation of the Akt survival pathway

    PubMed Central

    Milosch, N; Tanriöver, G; Kundu, A; Rami, A; François, J-C; Baumkötter, F; Weyer, S W; Samanta, A; Jäschke, A; Brod, F; Buchholz, C J; Kins, S; Behl, C; Müller, U C; Kögel, D

    2014-01-01

    Accumulating evidence indicates that loss of physiologic amyloid precursor protein (APP) function leads to reduced neuronal plasticity, diminished synaptic signaling and enhanced susceptibility of neurons to cellular stress during brain aging. Here we investigated the neuroprotective function of the soluble APP ectodomain sAPPα (soluble APPα), which is generated by cleavage of APP by α-secretase along the non-amyloidogenic pathway. Recombinant sAPPα protected primary hippocampal neurons and SH-SY5Y neuroblastoma cells from cell death induced by trophic factor deprivation. We show that this protective effect is abrogated in neurons from APP-knockout animals and APP-depleted SH-SY5Y cells, but not in APP-like protein 1- and 2- (APLP1 and APLP2) depleted cells, indicating that expression of membrane-bound holo-APP is required for sAPPα-dependent neuroprotection. Trophic factor deprivation diminished the activity of the Akt survival pathway. Strikingly, both recombinant sAPPα and the APP-E1 domain were able to stimulate Akt activity in wild-type (wt) fibroblasts, SH-SY5Y cells and neurons, but failed to rescue in APP-deficient neurons or fibroblasts. The ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) inhibitor GI254023X exacerbated neuron death in organotypic (hippocampal) slice cultures of wt mice subjected to trophic factor and glucose deprivation. This cell death-enhancing effect of GI254023X could be completely rescued by applying exogenous sAPPα. Interestingly, sAPPα-dependent Akt induction was unaffected in neurons of APP-ΔCT15 mice that lack the C-terminal YENPTY motif of the APP intracellular region. In contrast, sAPPα-dependent rescue of Akt activation was completely abolished in APP mutant cells lacking the G-protein interaction motif located in the APP C-terminus and by blocking G-protein-dependent signaling with pertussis toxin. Collectively, our data provide new mechanistic insights into the physiologic role of APP in

  18. Holo-APP and G-protein-mediated signaling are required for sAPPα-induced activation of the Akt survival pathway.

    PubMed

    Milosch, N; Tanriöver, G; Kundu, A; Rami, A; François, J-C; Baumkötter, F; Weyer, S W; Samanta, A; Jäschke, A; Brod, F; Buchholz, C J; Kins, S; Behl, C; Müller, U C; Kögel, D

    2014-01-01

    Accumulating evidence indicates that loss of physiologic amyloid precursor protein (APP) function leads to reduced neuronal plasticity, diminished synaptic signaling and enhanced susceptibility of neurons to cellular stress during brain aging. Here we investigated the neuroprotective function of the soluble APP ectodomain sAPPα (soluble APPα), which is generated by cleavage of APP by α-secretase along the non-amyloidogenic pathway. Recombinant sAPPα protected primary hippocampal neurons and SH-SY5Y neuroblastoma cells from cell death induced by trophic factor deprivation. We show that this protective effect is abrogated in neurons from APP-knockout animals and APP-depleted SH-SY5Y cells, but not in APP-like protein 1- and 2- (APLP1 and APLP2) depleted cells, indicating that expression of membrane-bound holo-APP is required for sAPPα-dependent neuroprotection. Trophic factor deprivation diminished the activity of the Akt survival pathway. Strikingly, both recombinant sAPPα and the APP-E1 domain were able to stimulate Akt activity in wild-type (wt) fibroblasts, SH-SY5Y cells and neurons, but failed to rescue in APP-deficient neurons or fibroblasts. The ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) inhibitor GI254023X exacerbated neuron death in organotypic (hippocampal) slice cultures of wt mice subjected to trophic factor and glucose deprivation. This cell death-enhancing effect of GI254023X could be completely rescued by applying exogenous sAPPα. Interestingly, sAPPα-dependent Akt induction was unaffected in neurons of APP-ΔCT15 mice that lack the C-terminal YENPTY motif of the APP intracellular region. In contrast, sAPPα-dependent rescue of Akt activation was completely abolished in APP mutant cells lacking the G-protein interaction motif located in the APP C-terminus and by blocking G-protein-dependent signaling with pertussis toxin. Collectively, our data provide new mechanistic insights into the physiologic role of APP in

  19. Modulation of JAK2, STAT3 and Akt1 proteins by granulocyte colony stimulating factor following carbon monoxide poisoning in male rat.

    PubMed

    Hashemzaei, Mahmoud; Imen Shahidi, Mohsen; Moallem, Seyyed Adel; Abnous, Khalil; Ghorbani, Maryam; Mohamadpour, Amir Hooshang

    2016-10-01

    Carbon monoxide (CO) is an odorless, colorless, tasteless and non-irritating by-product of inefficient combustion of hydrocarbon fuels such as motor vehicle exhausted gases. It is the leading cause of mortality in the USA among all unintentional toxicants. Male rats exposed to CO poisoning in the heart has many cardiovascular effects such as, cardiomyopathy, tachycardia, arrhythmias, and ischemia and in severe cases, myocardial infarction (MI) and cardiac arrest. Cardiomyocyte apoptosis is one of the most frequent consequences in the heart. Granulocyte colony stimulating factor (G-CSF) is a cytokine that mobilizes and differentiates granulocytes from stem cells. It can stimulate many anti-apoptotic pathways such as JAK2-STAT3 and PI3-Akt kinases following cardiac ischemia. G-CSF exerts its anti-apoptotic effects through binding to its specific cell surface receptor. The purpose of this study was to elucidate the mechanism of anti-apoptotic effect of G-CSF following CO poisoning. Rats were exposed to CO 1500 or 3000 ppm for 60 min. Animals received G-CSF 100 μg/kg subcutaneously for five consecutive days after CO intoxication. Western blot analysis was used to evaluate the expression of six proteins namely JAK2, p-JAK2, STAT3, p-STAT3, Akt1 and p-Akt1 following G-CSF 100 μg/kg consecutive dose administration after CO poisoning. There was a significant difference between phosphorylated proteins including p-JAK2, p-STAT3 and p-Akt1 in the G-CSF groups and those in control groups and there were not any significant differences in total protein among the groups. PMID:26810905

  20. Osteopontin induces {beta}-catenin signaling through activation of Akt in prostate cancer cells

    SciTech Connect

    Robertson, Brian W.; Chellaiah, Meenakshi A.

    2010-01-01

    Secretion of osteopontin (OPN) by cancer cells is a known mediator of tumorigenesis and cancer progression in both experimental and clinical studies. Our work demonstrates that OPN can activate Akt, an important step in cancer progression. Both ILK and PI3K are integral proteins in the OPN/Akt pathway, as inhibition of either kinase leads to a loss of OPN-mediated Akt activation. Subsequent to OPN-induced Akt activation, we observe inactivation of GSK-3{beta}, a regulator of {beta}-catenin. Osteopontin stimulation leads to an overall increase in {beta}-catenin protein levels with a resultant transfer of {beta}-catenin to the nucleus. Through the nuclear import of {beta}-catenin, OPN increases both the transcription and protein levels of MMP-7 and CD44, which are known TCF/LEF transcription targets. This work describes an important aspect of cancer progression induced by OPN.

  1. The role of mouse Akt2 in insulin-dependent suppression of adipocyte lipolysis in vivo

    PubMed Central

    Koren, Shlomit; DiPilato, Lisa M.; Emmett, Matthew J.; Shearin, Abigail L.; Chu, Qingwei; Monks, Bob; Birnbaum, Morris J.

    2015-01-01

    Aim/hypothesis The release of fatty acids from adipocytes, i.e. lipolysis, is maintained under tight control, primarily by the opposing actions of catecholamines and insulin. A widely accepted model is that insulin antagonises catecholamine-dependent lipolysis through phosphorylation and activation of cAMP phosphodiesterase 3B (PDE3B) by the serine-threonine protein kinase Akt (protein kinase B). Recently, this hypothesis has been challenged, as in cultured adipocytes insulin appears, under some conditions, to suppress lipolysis independently of Akt. Methods To address the requirement for Akt2, the predominant isoform expressed in classic insulin target tissues, in the suppression of fatty acid release in vivo, we assessed lipolysis in mice lacking Akt2. Results In the fed state and following an oral glucose challenge, Akt2 null mice were glucose intolerant and hyperinsulinaemic, but nonetheless exhibited normal serum NEFA and glycerol levels, suggestive of normal suppression of lipolysis. Furthermore, insulin partially inhibited lipolysis in Akt2 null mice during an insulin tolerance test (ITT) and hyperinsulinaemic–euglycaemic clamp, respectively. In support of these in vivo observations, insulin antagonised catecholamine-induced lipolysis in primary brown fat adipocytes from Akt2-deficient nice. Conclusion These data suggest that suppression of lipolysis by insulin in hyperinsulinaemic states can take place in the absence of Akt2. PMID:25740694

  2. PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations.

    PubMed

    Kar, Souvik; Samii, Amir; Bertalanffy, Helmut

    2015-04-01

    Cerebral cavernous malformations (CCM) are common vascular malformation of the brain and are associated with abnormal angiogenesis. Although the exact etiology and the underlying molecular mechanism are still under investigation, recent advances in the identification of the mutations in three genes and their interactions with different signaling pathways have shed light on our understanding of CCM pathogenesis. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is known to play a major role in angiogenesis. Studies have shown that the phosphatase and tensin homologue deleted on chromosome ten (PTEN), a tumor suppressor, is an antagonist regulator of the PI3K/Akt pathway and mediates angiogenesis by activating vascular endothelial growth factor (VEGF) expression. Here, we provide an update literature review on the current knowledge of the PTEN/PI3K/Akt/VEGF signaling in angiogenesis, more importantly in CCM pathogenesis. In addition to reviewing the current literatures, this article will also focus on the structural domain of the three CCM proteins and their interacting partners. Understanding the biology of these proteins with respect to their signaling counterpart will help to guide future research towards new therapeutic targets applicable for CCM treatment.

  3. A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1

    NASA Astrophysics Data System (ADS)

    Deyle, Kaycie M.; Farrow, Blake; Qiao Hee, Ying; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.

    2015-05-01

    Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.

  4. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle.

    PubMed

    Lai, Yu-Chiang; Liu, Yang; Jacobs, Roxane; Rider, Mark H

    2012-10-01

    PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40 kDa and Akt substrate of 160 kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206 in a dose-dependent manner. Incubation with high doses of MK-2206 (10 μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle.

  5. Effects of heat exposure on Akt/S6K1 signaling and expression of genes related to protein and energy metabolism in chicken (Gallus gallus) pectoralis major muscle.

    PubMed

    Boussaid-Om Ezzine, S; Everaert, N; Métayer-Coustard, S; Rideau, N; Berri, C; Joubert, R; Temim, S; Collin, A; Tesseraud, S

    2010-11-01

    In order to improve understanding of the heat-induced changes in muscle growth, we determined the expression of genes related to protein and energy metabolism in the pectoralis major muscle of chickens. We also explored the protein kinase B (PKB also called Akt)/p70 S6 kinase (S6K1)/S6 pathway that mediates anabolic signals thereby regulating metabolism and hypertrophic/atrophic balance. Four-week-old chickens were exposed to 32 or 22 degrees C for 1 week. Chickens from both groups were then fasted for 16 h or left fed, and submitted to an oral administration of glucose-arginine to induce an anabolic response (30-min treatment) or left untreated. High ambient temperature and the associated decrease in feed intake modified the expression of certain energy-related genes (e.g. -40% for PGC-1alpha) and protein metabolism (e.g. about +80% for atrogin-1), but the expression of several muscle metabolism-related genes considered here was unchanged. The capacity for muscle protein synthesis, i.e. RNA/protein ratio, was reduced in warm conditions (approximately -20%). Slightly lower activation of S6 induced by glucose-arginine treatment was found at 32 degrees C compared to 22 degrees C, which might indicate somewhat lower efficiency of mRNA translation. Analysis of glucose/insulin balance suggested changes in glucose metabolism under heat exposure. However, this remains to be characterized.

  6. Green Tea Polyphenol Epigallocatechin Gallate Reduces Endothelin-1 Expression and Secretion in Vascular Endothelial Cells: Roles for AMP-Activated Protein Kinase, Akt, and FOXO1

    PubMed Central

    Reiter, Chad E. N.; Kim, Jeong-a; Quon, Michael J.

    2010-01-01

    Epigallocatechin gallate (EGCG), a green tea polyphenol, promotes vasodilation by phosphatidylinositol 3-kinase-dependent activation of Akt and endothelial nitric oxide synthase to stimulate production of nitric oxide. Reduction in endothelin-1 (ET-1) synthesis may also increase bioavailability of nitric oxide. We hypothesized that the phosphatidylinositol 3-kinase-dependent transcription factor FOXO1 may mediate effects of EGCG to regulate expression of ET-1 in endothelial cells. EGCG treatment (10 μm, 8 h) of human aortic endothelial cells reduced expression of ET-1 mRNA, protein, and ET-1 secretion. We identified a putative FOXO binding domain in the human ET-1 promoter 51 bp upstream from the transcription start site. Trans-activation of a human ET-1 (hET-1) promoter luciferase reporter was enhanced by coexpression of a constitutively nuclear FOXO1 mutant, whereas expression of a mutant FOXO1 with disrupted DNA binding domain did not trans-activate the hET-1 promoter. Disrupting the hET-1 putative FOXO binding domain by site-directed mutagenesis ablated promoter activity in response to overexpression of wild-type FOXO1. EGCG stimulated time-dependent phosphorylation of Akt (S473), FOXO1 (at Akt phosphorylation site T24), and AMP-activated protein kinase α (AMPKα) (T172). EGCG-induced nuclear exclusion of FOXO1, FOXO1 binding to the hET-1 promoter, and reduction of ET-1 expression was partially inhibited by the AMPK inhibitor Compound C. Basal ET-1 protein expression was enhanced by short interfering RNA knock-down of Akt and reduced by short interfering RNA knock-down of FOXO1 or adenovirus-mediated expression of dominant-negative Foxo1. We conclude that EGCG decreases ET-1 expression and secretion from endothelial cells, in part, via Akt- and AMPK-stimulated FOXO1 regulation of the ET-1 promoter. These findings may be relevant to beneficial cardiovascular actions of green tea. PMID:19887561

  7. Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice

    PubMed Central

    Hu, Junjie; Che, Li; Li, Lei; Pilo, Maria G.; Cigliano, Antonio; Ribback, Silvia; Li, Xiaolei; Latte, Gavinella; Mela, Marta; Evert, Matthias; Dombrowski, Frank; Zheng, Guohua; Chen, Xin; Calvisi, Diego F.

    2016-01-01

    Activation of the AKT/mTOR cascade and overexpression of c-Met have been implicated in the development of human hepatocellular carcinoma (HCC). To elucidate the functional crosstalk between the two pathways, we generated a model characterized by the combined expression of activated AKT and c-Met in the mouse liver. Co-expression of AKT and c-Met triggered rapid liver tumor development and mice required to be euthanized within 8 weeks after hydrodynamic injection. At the molecular level, liver tumors induced by AKT/c-Met display activation of AKT/mTOR and Ras/MAPK cascades as well as increased lipogenesis and glycolysis. Since a remarkable lipogenic phenotype characterizes liver lesions from AKT/c-Met mice, we determined the requirement of lipogenesis in AKT/c-Met driven hepatocarcinogenesis using conditional Fatty Acid Synthase (FASN) knockout mice. Of note, hepatocarcinogenesis induced by AKT/c-Met was fully inhibited by FASN ablation. In human HCC samples, coordinated expression of FASN, activated AKT, and c-Met proteins was detected in a subgroup of biologically aggressive tumors. Altogether, our study demonstrates that co-activation of AKT and c-Met induces HCC development that depends on the mTORC1/FASN pathway. Suppression of mTORC1 and/or FASN might be highly detrimental for the growth of human HCC subsets characterized by concomitant induction of the AKT and c-Met cascades. PMID:26857837

  8. [The changes of p-Akt/MuRF1/FoxO1 proteins expressions in the conditions of training and immobilization in rats' gastrocnemius muscle].

    PubMed

    Su, Yan-Hong; Su, Zhe; Zhang, Kai; Yuan, Qian-Kun; Liu, Qiang; Lv, Shen; Wang, Zhao-Hui; Zou, Wei

    2014-10-25

    This study was aimed to investigate the changes of muscle protein synthesis and degradation under different movement conditions, so as to provide theoretical basis for muscle atrophy mechanism. Sprague Dawley (SD) rats were randomly divided into control, endurance training (treadmill training), hind limb overhanging and eccentric training (treadmill training, angle -16º) groups. The gastrocnemius muscles of rats were taken and weighed. The muscle was sectioned, and HE staining was employed to determine the cell's cross-sectional area. Protein expression of p-Akt was measured by immunohistochemistry; and the expressions of MuRF1 and FoxO1 were determined by Western blot. The results showed that, compared with control group, hind limb overhanging and eccentric training groups exhibited decreased muscle weight and cross-sectional area, but endurance training group did not show any changes. The expressions of p-Akt in endurance and eccentric training groups, not in hind limb overhanging group, were significantly higher than that in control group. Compared with that of control, MuRF1 protein remained unchanged in endurance training groups, but was increased in eccentric training and hind limb overhanging groups; FoxO1 protein was decreased in endurance training group, but was increased in eccentric training and hind limb overhanging groups. These results indicate that movement (endurance and eccentric training) can activate Akt expression, but does not increase muscle weight, whereas eccentric training and hind limb overhanging can increase the expressions of MuRF1 and FoxO1, and induce amyotrophy, suggesting MuRF1 and FoxO1 are major determinant factors in muscle atrophy.

  9. Akt2 negatively regulates assembly of the POSH-MLK-JNK signaling complex.

    PubMed

    Figueroa, Claudia; Tarras, Samantha; Taylor, Jennifer; Vojtek, Anne B

    2003-11-28

    We demonstrate that POSH, a scaffold for the JNK signaling pathway, binds to Akt2. A POSH mutant that is unable to bind Akt2 (POSH W489A) exhibits enhanced-binding to MLK3, and this increase in binding is accompanied by increased activation of the JNK signaling pathway. In addition, we show that the association of MLK3 with POSH is increased upon inhibition of the endogenous phosphatidylinositol 3-kinase/Akt signaling pathway. Thus, the assembly of an active JNK signaling complex by POSH is negatively regulated by Akt2. Further, the level of Akt-phosphorylated MLK3 is reduced in cells expressing the Akt2 binding domain of POSH, which acts as a dominant interfering protein. Taken together, our results support a model in which Akt2 binds to a POSH-MLK-MKK-JNK complex and phosphorylates MLK3; phosphorylation of MLK3 by Akt2 results in the disassembly of the JNK complex bound to POSH and down-regulation of the JNK signaling pathway.

  10. [The expression of Akt kinase in the heart ventricles under hypoxic preconditioning and myocardial remodeling].

    PubMed

    Portnichenko, A G; Lapikova-Briginskaia, T Iu; Vasilenko, M I; Portnichenko, G V; Maslov, L N; Moĭbenko, A A

    2013-01-01

    Activation of Akt-dependent mechanisms may play a significant role in the cellular response under hypoxic preconditioning and myocardial remodeling. The impact of hypoxic preconditioning, and remodeling on the expression of Akt kinase in the heart ventricles was investigated. Wistar male rats, the residents of plains or middle altitude (2100 m above sea level), were exposed to hypoxic preconditioning by "lifting" in the barochamber at the "height" of 5,600 m in 3 h. In the right and left ventricles of the heart, Akt protein expression was determined by Western blotting. It was shown, that hypoxic preconditioning causes the induction of Akt kinase in the ventricles during the period of delayed cardioprotection (1-3 days after preconditioning). Myocardial remodeling induced by chronic hypoxia in middle altitude was associated with elevated Akt expression in the myocardium, more pronounced in the left ventricle. Progression of hypoxic myocardial remodeling found in part of the animals was accompanied by a reduction of the cell hypoxic reactivity, including Akt induction in response to preconditioning. Thus, Akt kinase is involved in the mechanisms of hypoxia induced late preconditioning and myocardial remodeling in chronic hypoxia. Inhibitory regulatory mechanism was found to limit the induction of Akt in myocardium after remodeling.

  11. Long-term effects of rapamycin treatment on insulin mediated phosphorylation of Akt/PKB and glycogen synthase activity

    SciTech Connect

    Varma, Shailly; Shrivastav, Anuraag; Changela, Sheena; Khandelwal, Ramji L.

    2008-04-01

    Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3{beta} (GSK-3{beta}) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-{alpha} (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.

  12. Dietary L-Lysine Suppresses Autophagic Proteolysis and Stimulates Akt/mTOR Signaling in the Skeletal Muscle of Rats Fed a Low-Protein Diet.

    PubMed

    Sato, Tomonori; Ito, Yoshiaki; Nagasawa, Takashi

    2015-09-23

    Amino acids, especially L-leucine, regulate protein turnover in skeletal muscle and have attracted attention as a means of increasing muscle mass in people suffering from malnutrition, aging (sarcopenia), or a bedridden state. We previously showed that oral administration of L-lysine (Lys) by gavage suppressed proteolysis in skeletal muscles of fasted rats. However, the intake of Lys in the absence of other dietary components is unlikely in a non-experimental setting, and other dietary components may interfere with the suppressive effect of Lys on proteolysis. We supplemented Lys to a 10% casein diet and investigated the effect of Lys on proteolysis and autophagy, a major proteolytic system, in the skeletal muscle of rats. The rate of proteolysis was evaluated from 3-methylhisitidine (MeHis) released from isolated muscles, in plasma, and excreted in urine. Supplementing lysine with the 10% casein diet decreased the rate of proteolysis induced by intake of a low-protein diet. The upregulated autophagy activity [light chain 3 (LC3)-II/total LC3] caused by a low-protein diet was reduced, and the Akt/mTOR signaling pathway was activated by Lys. Importantly, continuous feeding of a Lys-rich 10% casein diet for 15 days increased the masses of the soleus and gastrocnemius muscles. Taken together, supplementation of Lys to a low-protein diet suppresses autophagic proteolysis through the Akt/mTOR signaling pathway, and continuous feeding of a Lys-rich diet may increase skeletal muscle mass.

  13. Abrogation of Mitogen-Activated Protein Kinase and Akt Signaling by Vandetanib Synergistically Potentiates Histone Deacetylase Inhibitor-Induced Apoptosis in Human Glioma Cells

    PubMed Central

    Jane, Esther P.; Premkumar, Daniel R.; Addo-Yobo, Steven O.

    2009-01-01

    Vandetanib is a multitargeted tyrosine kinase inhibitor. Our initial studies demonstrated that this agent blocks vascular endothelial growth factor receptor, epidermal growth factor receptor, and platelet-derived growth factor receptor phosphorylation and mitogen-activated protein kinase (MAPK)-mediated signaling in glioma cell lines in a dose-dependent manner. Despite these effects, we observed that vandetanib had little effect on apoptosis induction at clinically achievable concentrations. Because histone deacetylase inhibitors (HDACIs) have been suggested to regulate signaling protein transcription and downstream interactions via modulation of protein chaperone function through the 90-kDa heat shock protein, we investigated whether combining vandetanib with an HDACI could synergistically potentiate signaling pathway inhibition and apoptosis induction in a panel of malignant human glioma cell lines. Proliferation assays, apoptosis induction studies, and Western immunoblot analysis were conducted in cells treated with vandetanib and HDACIs as single agents or in combination. Vandetanib and suberoylanalide hydroxamic acid reduced proliferation in all cell lines when used as single agents, and the combination produced marked potentiation of growth inhibition as assessed by combinatorial methods. These effects were paralleled by potentiation of Akt signaling inhibition and apoptosis induction. Our results indicate that inhibition of histone deacetylation enhances the antiproliferative effect of vandetanib in malignant human glioma cell lines by enhancing inhibition of MAPK, Akt, and other downstream effectors that may have application in combinatorial therapeutics for these tumors. PMID:19622715

  14. The Heart Protection Effect of Alcalase Potato Protein Hydrolysate Is through IGF1R-PI3K-Akt Compensatory Reactivation in Aging Rats on High Fat Diets

    PubMed Central

    Hu, Wei-Syun; Ting, Wei-Jen; Chiang, Wen-Dee; Pai, Peiying; Yeh, Yu-Lan; Chang, Chung-Ho; Lin, Wan-Teng; Huang, Chih-Yang

    2015-01-01

    The prevalence of obesity is high in older adults. Alcalase potato protein hydrolysate (APPH), a nutraceutical food, might have greater benefits and be more economical than hypolipidemic drugs. In this study, serum lipid profiles and heart protective effects were evaluated in high fat diet (HFD) induced hyperlipidemia in aging rats treated with APPH (15, 45 and 75 mg/kg/day) and probucol (500 mg/kg/day). APPH treatments reduced serum triacylglycerol (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels to the normal levels expressed in the control group. Additionally, the IGF1R-PI3K-Akt survival pathway was reactivated, and Fas-FADD (Fas-associated death domain) induced apoptosis was inhibited by APPH treatments (15 and 45 mg/kg/day) in HFD aging rat hearts. APPH (75 mg/kg/day) rather than probucol (500 mg/kg/day) treatment could reduce serum lipids without affecting HDL expression. The heart protective effect of APPH in aging rats with hyperlipidemia was through lowering serum lipids and enhancing the activation of the compensatory IGF1R-PI3K-Akt survival pathway. PMID:25950762

  15. The Heart Protection Effect of Alcalase Potato Protein Hydrolysate Is through IGF1R-PI3K-Akt Compensatory Reactivation in Aging Rats on High Fat Diets.

    PubMed

    Hu, Wei-Syun; Ting, Wei-Jen; Chiang, Wen-Dee; Pai, Peiying; Yeh, Yu-Lan; Chang, Chung-Ho; Lin, Wan-Teng; Huang, Chih-Yang

    2015-01-01

    The prevalence of obesity is high in older adults. Alcalase potato protein hydrolysate (APPH), a nutraceutical food, might have greater benefits and be more economical than hypolipidemic drugs. In this study, serum lipid profiles and heart protective effects were evaluated in high fat diet (HFD) induced hyperlipidemia in aging rats treated with APPH (15, 45 and 75 mg/kg/day) and probucol (500 mg/kg/day). APPH treatments reduced serum triacylglycerol (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels to the normal levels expressed in the control group. Additionally, the IGF1R-PI3K-Akt survival pathway was reactivated, and Fas-FADD (Fas-associated death domain) induced apoptosis was inhibited by APPH treatments (15 and 45 mg/kg/day) in HFD aging rat hearts. APPH (75 mg/kg/day) rather than probucol (500 mg/kg/day) treatment could reduce serum lipids without affecting HDL expression. The heart protective effect of APPH in aging rats with hyperlipidemia was through lowering serum lipids and enhancing the activation of the compensatory IGF1R-PI3K-Akt survival pathway. PMID:25950762

  16. Regulation of Heat Shock Proteins 27 and 70, p-Akt/p-eNOS and MAPKs by Naringin Dampens Myocardial Injury and Dysfunction In Vivo after Ischemia/Reperfusion

    PubMed Central

    Rani, Neha; Bharti, Saurabh; Manchanda, Mansi; Nag, T. C.; Ray, Ruma; Chauhan, S. S.; Kumari, Santosh; Arya, Dharamvir Singh

    2013-01-01

    Naringin has antioxidant properties that could improve redox-sensitive myocardial ischemia reperfusion (IR) injury. This study was designed to investigate whether naringin restores the myocardial damage and dysfunction in vivo after IR and the mechanisms underlying its cardioprotective effects. Naringin (20–80 mg/kg/day, p.o.) or saline were administered to rats for 14 days and the myocardial IR injury was induced on 15th day by occluding the left anterior descending coronary artery for 45 min and subsequent reperfusion for 60 min. Post-IR rats exhibited pronounced cardiac dysfunction as evidenced by significantly decreased mean arterial pressure, heart rate, +LVdP/dtmax (inotropic state), -LVdP/dtmax (lusitropic state) and increased left ventricular end diastolic pressure as compared to sham group, which was improved by naringin. Further, on histopathological and ultrastructural assessments myocardium and myocytes appeared more normal in structure and the infarct size was reduced significantly in naringin 40 and 80 mg/kg/day group. This amelioration of post-IR-associated cardiac injury by naringin was accompanied by increased nitric oxide (NO) bioavailability, decreased NO inactivation to nitrotyrosine, amplified protein expressions of Hsp27, Hsp70, β-catenin and increased p-eNOS/eNOS, p-Akt/Akt, and p-ERK/ERK ratio. In addition, IR-induced TNF-α/IKK-β/NF-κB upregulation and JNK phosphorylation were significantly attenuated by naringin. Moreover, western blotting and immunohistochemistry analysis of apoptotic signaling pathway further established naringin cardioprotective potential as it upregulated Bcl-2 expression and downregulated Bax and Caspase-3 expression with reduced TUNEL positivity. Naringin also normalized the cardiac injury markers (lactate dehydrogenase and creatine kinase-MB), endogenous antioxidant activities (superoxide dismutase, reduced glutathione and glutathione peroxidase) and lipid peroxidation levels. Thus, naringin restored IR injury

  17. Suppression of the TNF-alpha level is mediated by Gan-Lu-Yin (traditional Chinese medicine) in human oral cancer cells through the NF-kappa B, AKT, and ERK-dependent pathways.

    PubMed

    Yang, Jai-Sing; Wu, Chia-Chun; Lee, Hong-Zin; Hsieh, Wen-Tsong; Tang, Feng-Yao; Bau, Da-Tian; Lai, Kuang-Chi; Lien, Jin-Cherng; Chung, Jing-Gung

    2016-10-01

    Oral cancer is one of the major causes of deaths in the male population of Taiwan. Gan-Lu-Yin (GLY) is used for an adjuvant treatment of Traditional Chinese Medicine in clinical patients. In this study, we investigated the molecular mechanisms in oral cancer cell lines after exposure to GLY. The cytometric bead-based array (CBA) method was used for the examining and analyzing of tumor necrosis factor-alpha (TNF-α) secretion level. TNF-α mRNA expression was determined by real-time PCR analysis. Nuclear factor kappa B (NF-κB) activity and other relative proteins were determined by NF-κB promoter assay, Western blotting, electrophoretic mobility shift assay (EMSA), and immuno-staining analyses. GLY decreased the secretion of TNF-α from the oral cancer CAL 27 cells. Furthermore, 2000 μg/mL of GLY significantly suppressed TNF-α mRNA expression of CAL 27 cells in a time-dependent manner. GLY reduced the levels of proteins, including nuclear NF-κB (p65 and p50), p-IKK (ser176), p-IκB, p-AKT, p-ERK, and nuclear Egr-1 in a time and dose-dependent manner. GLY also suppressed the NF-κB activity and translocation in CAL 27 cells. We suggest that GLY might promote the cure of oral cancer through decreasing the level of TNF-α cytokine, and these actions were mediated partially through the NF-κB, AKT, and ERK-dependent pathways in vitro. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1196-1205, 2016.

  18. Dichloroacetate induces protective autophagy in LoVo cells: involvement of cathepsin D/thioredoxin-like protein 1 and Akt-mTOR-mediated signaling.

    PubMed

    Gong, F; Peng, X; Sang, Y; Qiu, M; Luo, C; He, Z; Zhao, X; Tong, A

    2013-11-07

    Dichloroacetate (DCA) is an inhibitor of pyruvate dehydrogenase kinase (PDK), and recently it has been shown as a promising nontoxic antineoplastic agent. In this study, we demonstrated that DCA could induce autophagy in LoVo cells, which were confirmed by the formation of autophagosomes, appearance of punctate patterns of LC3 immunoreactivity and activation of autophagy associated proteins. Moreover, autophagy inhibition by 3-methyladenine (3-MA) or Atg7 siRNA treatment can significantly enhance DCA-induced apoptosis. To determine the underlying mechanism of DCA-induced autophagy, target identification using drug affinity responsive target stability (DARTS) coupled with ESI-Q-TOF MS/MS analysis were utilized to profile differentially expressed proteins between control and DCA-treated LoVo cells. As a result, Cathepsin D (CTSD) and thioredoxin-like protein 1 (TXNL1) were identified with significant alterations compared with control. Further study indicated that DCA treatment significantly promoted abnormal reactive oxygen species (ROS) production. On the other hand, DCA-triggered autophagy could be attenuated by N-acetyl cysteine (NAC), a ROS inhibitor. Finally, we demonstrated that the Akt-mTOR signaling pathway, a major negative regulator of autophagy, was suppressed by DCA treatment. To our knowledge, it was the first study to show that DCA induced protective autophagy in LoVo cells, and the potential mechanisms were involved in ROS imbalance and Akt-mTOR signaling pathway suppression.

  19. Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart

    PubMed Central

    Xing, Yuan; Sun, Wanqing; Wang, Yishi; Gao, Feng; Ma, Heng

    2016-01-01

    Insulin protects cardiomyocytes from myocardial ischemia/reperfusion (MI/R) injury through activating Akt. However, phosphatase PHLPP-1 (PH domain leucine-rich repeat protein phosphatase-1) dephosphorylates and inactivates Akt. The balanced competitive interaction of insulin and PHLPP-1 has not been directly examined. In this study, we have identified the effect of mutual inhibition of insulin signaling and PHLPP-1 on the cardioprotective efficiency of Akt in aged heart. Young (3 mon) and aged (20 mon) Sprague Dawley (SD) rats were subjected to MI/R in vivo. The PHLPP-1 level was higher in aged vs. young hearts at base. But, insulin treatment failed to decrease PHLPP-1 level during reperfusion in the aged hearts. Consequently, the cardioprotection of insulin-induced Akt activation was impaired in aged hearts, resulting in more susceptible to MI/R injury. In cultured rat ventricular myocytes, PHLPP-1 knockdown significantly enhanced insulin-induced Akt phosphorylation and reduced simulated hypoxia/reoxygenation-induced apoptosis. Contrary, PHLPP-1 overexpression terminated Akt phosphorylation and deteriorated myocytes apoptosis. Using in vivo aged animal models, we confirmed that cardiac PHLPP-1 knockdown or enhanced insulin sensitivity by exercise training dramatically increased insulin-induced Akt phosphorylation. Specifically, MI/R-induced cardiomyocyte apoptosis and infarct size were decreased and cardiac function was increased. More importantly, we found that insulin regulated the degradation of PHLPP-1 and insulin treatment could enhance the binding between PHLPP-1 and β-transducin repeat-containing protein (β-TrCP) to target for ubiquitin-dependent degradation. Altogether, we have identified a new mechanism by which insulin suppresses PHLPP-1 to enhance Akt activation. But, aged heart possesses lower insulin effectiveness and fails to decrease PHLPP-1 during MI/R, which subsequently limited Akt activity and cardioprotection. PHLPP-1 could be a promising

  20. Aerosol delivery of kinase-deficient Akt1 attenuates Clara cell injury induced by naphthalene in the lungs of dual luciferase mice.

    PubMed

    Minai-Tehrani, Arash; Park, Young-Chan; Hwang, Soon-Kyung; Kwon, Jung-Taek; Chang, Seung-Hee; Park, Sung-Jin; Yu, Kyeong-Nam; Kim, Ji-Eun; Shin, Ji-Young; Kim, Ji-Hye; Kang, Bitna; Hong, Seong-Ho; Cho, Myung-Haing

    2011-12-01

    Conventional lung cancer therapies are associated with poor survival rates; therefore, new approaches such as gene therapy are required for treating cancer. Gene therapies for treating lung cancer patients can involve several approaches. Among these, aerosol gene delivery is a potentially more effective approach. In this study, Akt1 kinase-deficient (KD) and wild-type (WT) Akt1 were delivered to the lungs of CMV-LucR-cMyc-IRES-LucF dual reporter mice through a nose only inhalation system using glucosylated polyethylenimine and naphthalene was administrated to the mice via intraperitoneal injection. Aerosol delivery of Akt1 WT and naphthalene treatment increased protein levels of downstream substrates of Akt signaling pathway while aerosol delivery of Akt1 KD did not. Our results showed that naphthalene affected extracellular signal-regulated kinase (ERK) protein levels, ERK-related signaling, and induced Clara cell injury. However, Clara cell injury induced by naphthalene was considerably attenuated in mice exposed to Akt1 KD. Furthermore, a dual luciferase activity assay showed that aerosol delivery of Akt1 WT and naphthalene treatment enhanced cap-dependent protein translation, while reduced cap-dependent protein translation was observed after delivering Akt1 KD. These studies demonstrated that our aerosol delivery is compatible for in vivo gene delivery. PMID:22122896

  1. The role of Pten/Akt signaling pathway involved in BPA-induced apoptosis of rat Sertoli cells.

    PubMed

    Wang, Chengmin; Fu, Wenjuan; Quan, Chao; Yan, Maosheng; Liu, Changjiang; Qi, Suqin; Yang, Kedi

    2015-07-01

    Bisphenol-A (BPA), one of endocrine-disrupting chemicals, is a male reproductive toxicant. Previous studies have revealed the direct cytotoxicity of BPA in many cultured cells, such as mitotic aneuploidy in embryonic cells and somatic cells, and apoptosis in neurons and testicular Sertoli cells. To understand the action of BPA and assess its risk, the Pten/Akt pathway was investigated in cultured Sertoli cells to elucidate the mechanism of the reproductive effects of BPA. The results showed that over 50 μM BPA treatment could decrease the viability of Sertoli cells and cause more apoptosis. In addition, BPA could induce the increase in mRNA levels of Pten and Akt. The protein level of Pten was increased; however, the protein levels of phospho-Akt and procaspase-3 were decreased after BPA exposure. Taken together, observed results suggested that the Pten/Akt pathway might be involved in the apoptotic effects of BPA on Sertoli cells.

  2. rLj-RGD3, a Novel Recombinant Toxin Protein from Lampetra japonica, Protects against Cerebral Reperfusion Injury Following Middle Cerebral Artery Occlusion Involving the Integrin-PI3K/Akt Pathway in Rats

    PubMed Central

    Jiang, Junshu; Wang, Shengnan; Jia, Qilan; Wang, Yue; Li, Weiping; Zhou, Qin; Lv, Li; Li, Qingwei

    2016-01-01

    Background The RGD-toxin protein Lj-RGD3 is a naturally occurring 118 amino acid peptide that can be obtained from the salivary gland of the Lampetra japonica fish. This unique peptide contains 3 RGD (Arg-Gly-Asp) motifs in its primary structure. Lj-RGD3 is available in recombinant form (rLj-RGD3) and can be produced in large quantities using DNA recombination techniques. The pharmacology of the three RGD motif-containing peptides has not been studied. This study investigated the protective effects of rLj-RGD3, a novel polypeptide, against ischemia/reperfusion-induced damage to the brain caused by middle cerebral artery occlusion (MCAO) in a rat stroke model. We also explored the mechanism by which rLj-RGD3 acts by measuring protein and mRNA expression levels, with an emphasis on the FAK and integrin-PI3K/Akt anti-apoptosis pathways. Methods rLj-RGD3 was obtained from the buccal secretions of Lampetra japonica using gene recombination technology. Sprague Dawley (SD) rats were randomly divided into the following seven groups: a sham group; a vehicle-treated (VT) group; 100.0 μg·kg-1, 50.0 μg·kg-1 and 25.0 μg·kg-1 dose rLj-RGD3 groups; and two positive controls, including 1.5 mg·kg-1 Edaravone (ED) and 100.0 μg·kg-1 Eptifibatide (EP). MCAO was induced using a model consisting of 2 h of ischemia and 24 h of reperfusion. Behavioral changes were observed in the normal and operation groups after focal cerebral ischemia/reperfusion was applied. In addition, behavioral scores were evaluated at 4 and 24 h after reperfusion. Brain infarct volumes were determined based on 2,3,5-triphenyltetrazolium chloride (TTC) staining. Pathological changes in brain tissues were observed using hematoxylin and eosin (H&E) staining. Moreover, neuronal apoptosis was detected using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) assays. We determined the expression levels of focal adhesion kinase (FAK), phosphatidyl inositol 3-kinase (PI3K

  3. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway.

    PubMed

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D

    2006-01-01

    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway.

  4. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway.

    PubMed

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D

    2006-01-01

    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway. PMID:16397275

  5. Accelerated Tumor Growth Mediated by Sub-lytic Levels of Antibody-Induced Complement Activation is Associated with Activation of the PI3K/AKT Survival Pathway

    PubMed Central

    Wu, Xiaohong; Ragupathi, Govind; Panageas, Katherine; Hong, Feng; Livingston, Philip O.

    2013-01-01

    Purpose We addressed the possibility that low levels of tumor cell bound antibodies targeting gangliosides might accelerate tumor growth. Experimental Design To test this hypothesis, we treated mice with a range of mAb doses against GM2, GD2, GD3 and CD20 after challenge with tumors expressing these antigens and tested the activity of the same mAbs in-vitro. We also explored the mechanisms behind the complement-mediated tumor growth acceleration that we observed and an approach to overcome it. Results Serologically detectable levels of IgM-mAb against GM2 are able to delay or prevent tumor growth of high GM2-expressing cell lines both in-vitro and in a SCID mouse model, while very low levels of this mAb resulted in slight but consistent acceleration of tumor growth in both settings. Surprisingly, this is not restricted to IgM antibodies targeting GM2 but consistent against IgG-mAb targeting GD3 as well. These findings were mirrored by in-vitro studies with antibodies against these antigens as well as GD2 and CD20 (with Rituxan), and shown to be complement-dependent in all cases. Complement-mediated accelerated growth of cultured tumor cell lines initiated by low mAb levels was associated with activation of the PI3K/AKT survival pathway and significantly elevated levels of both p-AKT and p-PRAS40. This complement-mediated PI3K-activation and accelerated tumor growth in-vitro and in-vivo are eliminated by PI3K-inhibitors NVP-BEZ235 and Wortmannin. These PI3K-inhibitors also significantly increased efficacy of high doses of these 4 mAbs. Conclusion Our findings suggest that manipulation of the PI3K/AKT pathway and its signaling network can significantly increase the potency of passively administered mAbs and vaccine-induced-antibodies targeting a variety of tumor-cell-surface-antigens. PMID:23833306

  6. Akt3 and Mutant V600EB-Raf Cooperate to Promote Early Melanoma Development

    PubMed Central

    Cheung, Mitchell; Sharma, Arati; Madhunapantula, SubbaRao V.; Robertson, Gavin P.

    2008-01-01

    B-Raf is the most mutated gene in melanoma; however, mechanism through which it promotes early melanomas remains uncertain. Most nevi contain activated V600EB-Raf but few develop into melanoma and expression in melanocytes is inhibitory with low protein levels present in surviving cells, suggesting unknown cooperative oncogenic events are necessary for melanoma development. Since many melanomas have V600EB-Raf and active Akt3, it is possible these proteins cooperatively facilitate melanocyte transformation. In this study, Akt3 is shown to phosphorylate V600EB-Raf to lower its activity as well as that of the downstream MAP kinase pathway to levels promoting early melanoma development. Expression of active Akt3 in early melanoma cells containing V600EB-Raf reduced MAP kinase signaling and promoted anchorage independent growth. Furthermore, expression of both V600EB-Raf and active Akt3 in melanocytes promoted a transformed phenotype. Mechanistically, aberrant Akt3 activity in early melanomas serves to phosphorylate serines 364 and 428 on V600EB-Raf in order to reduce activity of V600EB-Raf to levels that promote rather than inhibit proliferation, which aids melanocytic transformation. Inhibition of V600EB-Raf or Akt3 in advanced melanoma cells in which both pathways were active reduced anchorage independent growth and tumor development in a cooperatively acting manner. Inhibition of Akt3 alone in these cells led to increased MAP kinase signaling. In summary, these results suggest that activating B-Raf mutations initially promote nevi development but the resulting high, intense activation of the MAP kinase pathway inhibits further tumor progression requiring Akt3 activation to bypass this barrier and aid melanoma development. PMID:18451171

  7. Runx2 activates PI3K/Akt signaling via mTORC2 regulation in invasive breast cancer cells

    PubMed Central

    2014-01-01

    Introduction The Runt-related transcription factor Runx2 is critical for skeletal development but is also aberrantly expressed in breast cancers, and promotes cell growth and invasion. A de-regulated serine/threonine kinase Akt signaling pathway is implicated in mammary carcinogenesis and cell survival; however, the mechanisms underlying Runx2 role in survival of invasive breast cancer cells are still unclear. Methods The phenotypic analysis of Runx2 function in cell survival was performed by gene silencing and flow cytometric analysis in highly invasive MDA-MB-231 and SUM-159-PT mammary epithelial cell lines. The expression analysis of Runx2 and pAkt (serine 473) proteins in metastatic breast cancer specimens was performed by immunohistochemistry. The mRNA and protein levels of kinases and phosphatases functional in Akt signaling were determined by real-time PCR and Western blotting, while DNA-protein interaction was studied by chromatin immunoprecipitation assays. Results The high Runx2 levels in invasive mammary epithelial cell lines promoted cell survival in Akt phosphorylation (pAkt-serine 473) dependent manner. The analysis of kinases and phosphatases associated with pAkt regulation revealed that Runx2 promotes pAkt levels via mammalian target of rapamycin complex-2 (mTORC2). The recruitment of Runx2 on mTOR promoter coupled with Runx2-dependent expression of mTORC2 component Rictor defined Runx2 function in pAkt-mediated survival of invasive breast cancer cells. Conclusions Our results identified a novel mechanism of Runx2 regulatory crosstalk in Akt signaling that could have important consequences in targeting invasive breast cancer-associated cell survival. PMID:24479521

  8. Amelioration of carbon tetrachloride-induced cirrhosis and portal hypertension in rat using adenoviral gene transfer of Akt

    PubMed Central

    Deng, Gang; Huang, Xiang-Jun; Luo, Hong-Wu; Huang, Fei-Zhou; Liu, Xun-Yang; Wang, Yong-Heng

    2013-01-01

    AIM: To investigate whether a virus constitutively expressing active Akt is useful to prevent cirrhosis induced by carbon tetrachloride (CCl4). METHODS: Using cre-loxp technique, we created an Ad-myr-HA-Akt virus, in which Akt is labeled by a HA tag and its expression is driven by myr promoter. Further, through measuring enzyme levels and histological structure, we determined the efficacy of this Ad-myr-HA-Akt virus in inhibiting the development of cirrhosis induced by CCl4 in rats. Lastly, using western blotting, we examined the expression levels and/or phosphorylation status of Akt, apoptotic mediators, endothelial nitric oxide synthase (eNOS), and markers for hepatic stellate cells activation to understand the underlying mechanisms of protective role of this virus. RESULTS: The Ad-myr-HA-Akt virus was confirmed using polymerase chain reaction amplification of inserted Akt gene and sequencing for full length of inserted fragment, which was consistent with the sequence reported in the GenBank. The concentrations of Ad-myr-HA-Akt and adenoviral enhanced green fluorescent protein (Ad-EGFP) virus used in the current study were 5.5 × 1011 vp/mL. The portal vein diameter, peak velocity of blood flow, portal blood flow and congestion index were significantly increased in untreated, saline and Ad-EGFP cirrhosis groups when compared to normal control after the virus was introduced to animal through tail veil injection. In contrast, these parameters in the Akt cirrhosis group were comparable to normal control group. Compared to the normal control, the liver function (Alanine aminotransferase, Aspartate aminotransferase and Albumin) was significantly impaired in the untreated, saline and Ad-EGFP cirrhosis groups. The Akt cirrhosis group showed significant improvement of liver function when compared to the untreated, saline and Ad-EGFP cirrhosis groups. The Hyp level and portal vein pressure in Akt cirrhosis groups were also significantly lower than other cirrhosis groups

  9. Helicobacter pylori neutrophil-activating protein induces release of histamine and interleukin-6 through G protein-mediated MAPKs and PI3K/Akt pathways in HMC-1 cells.

    PubMed

    Tsai, Chung-Che; Kuo, Ting-Yu; Hong, Zhi-Wei; Yeh, Ying-Chieh; Shih, Kuo-Shun; Du, Shin-Yi; Fu, Hua-Wen

    2015-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) activates several innate leukocytes including neutrophils, monocytes, and mast cells. It has been reported that HP-NAP induces degranulation and interleukin-6 (IL-6) secretion of rat peritoneal mast cells. However, the molecular mechanism is not very clear. Here, we show that HP-NAP activates human mast cell line-1 (HMC-1) cells to secrete histamine and IL-6. The secretion depends on pertussis toxin (PTX)-sensitive heterotrimeric G proteins but not on Toll-like receptor 2. Moreover, HP-NAP induces PTX-sensitive G protein-mediated activation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38-mitogen-activated protein kinase (p38 MAPK), and Akt in HMC-1 cells. Inhibition of ERK1/2, p38 MAPK, or phosphatidylinositol 3-kinase (PI3K) suppresses HP-NAP-induced release of histamine and IL-6 from HMC-1 cells. Thus, the activation of HMC-1 cells by HP-NAP is through Gi-linked G protein-coupled receptor-mediated MAPKs and PI3K/Akt pathways.

  10. Candidate tumor suppressor and pVHL partner Jade-1 binds and inhibits AKT in renal cell carcinoma.

    PubMed

    Zeng, Liling; Bai, Ming; Mittal, Amit K; El-Jouni, Wassim; Zhou, Jing; Cohen, David M; Zhou, Mina I; Cohen, Herbert T

    2013-09-01

    The von Hippel-Lindau (VHL) tumor suppressor pVHL is lost in the majority of clear-cell renal cell carcinomas (RCC). Activation of the PI3K/AKT/mTOR pathway is also common in RCC, with PTEN loss occurring in approximately 30% of the cases, but other mechanisms responsible for activating AKT at a wider level in this setting are undefined. Plant homeodomain protein Jade-1 (PHF17) is a candidate renal tumor suppressor stabilized by pVHL. Here, using kinase arrays, we identified phospho-AKT1 as an important target of Jade-1. Overexpressing or silencing Jade-1 in RCC cells increased or decreased levels of endogenous phospho-AKT/AKT1. Furthermore, reintroducing pVHL into RCC cells increased endogenous Jade-1 and suppressed endogenous levels of phospho-AKT, which colocalized with and bound to Jade-1. The N-terminus of Jade-1 bound both the catalytic domain and the C-terminal regulatory tail of AKT, suggesting a mechanism through which Jade-1 inhibited AKT kinase activity. Intriguingly, RCC precursor cells where Jade-1 was silenced exhibited an increased capacity for AKT-dependent anchorage-independent growth, in support of a tumor suppressor function for Jade-1 in RCC. In support of this concept, an in silico expression analysis suggested that reduced Jade-1 expression is a poor prognostic factor in clear-cell RCC that is associated with activation of an AKT1 target gene signature. Taken together, our results identify 2 mechanisms for Jade-1 fine control of AKT/AKT1 in RCC, through loss of pVHL, which decreases Jade-1 protein, or through attenuation in Jade-1 expression. These findings help explain the pathologic cooperativity in clear-cell RCC between PTEN inactivation and pVHL loss, which leads to decreased Jade-1 levels that superactivate AKT. In addition, they prompt further investigation of Jade-1 as a candidate biomarker and tumor suppressor in clear-cell RCC.

  11. Erratum to: Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    PubMed

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-11-01

    The BMB Reports would like to correct in the reference of BMB Rep. 48(9), 531-536 titled "Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade". The ACKNOWLEDGEMENTS should be corrected as follows, "This work was supported by the National Research Foundation of Korea (NRF-2010-0009086, NRF-2012R1A1A2039992, and 2012M3A9C7050184) and the Brain Busan 21 Project." and not "This work was partially supported by the National Research Foundation of Korea (NRF-2010-0009086, NRF-2003-003-C00110, and 2012M3A9C7050184) and the Brain Busan 21 Project." The online version reflects this change. PMID:26612629

  12. Erratum to: Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    PubMed

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-11-01

    The BMB Reports would like to correct in the reference of BMB Rep. 48(9), 531-536 titled "Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade". The ACKNOWLEDGEMENTS should be corrected as follows, "This work was supported by the National Research Foundation of Korea (NRF-2010-0009086, NRF-2012R1A1A2039992, and 2012M3A9C7050184) and the Brain Busan 21 Project." and not "This work was partially supported by the National Research Foundation of Korea (NRF-2010-0009086, NRF-2003-003-C00110, and 2012M3A9C7050184) and the Brain Busan 21 Project." The online version reflects this change.

  13. Leishmania promastigotes activate PI3K/Akt signalling to confer host cell resistance to apoptosis.

    PubMed

    Ruhland, Aaron; Leal, Nicole; Kima, Peter E

    2007-01-01

    Previous reports have shown that cells infected with promastigotes of some Leishmania species are resistant to the induction of apoptosis. This would suggest that either parasites elaborate factors that block signalling from apoptosis inducers or that parasites engage endogenous host signalling pathways that block apoptosis. To investigate the latter scenario, we determined whether Leishmania infection results in the activation of signalling pathways that have been shown to mediate resistance to apoptosis in other infection models. First, we showed that infection with the promastigote form of Leishmania major, Leishmania pifanoi and Leishmania amazonensis activates signalling through p38 mitogen-activated protein kinase (MAPK), NFkappaB and PI3K/Akt. Then we found that inhibition of signalling through the PI3K/Akt pathway with LY294002 and Akt IV inhibitor reversed resistance of infected bone marrow-derived macrophages and RAW 264.7 macrophages to potent inducers of apoptosis. Moreover, reduction of Akt levels with small interfering RNAs to Akt resulted in the inability of infected macrophages to resist apoptosis. Further evidence of the role of PI3K/Akt signalling in the promotion of cell survival by infected cells was obtained with the finding that Bad, which is a substrate of Akt, becomes phosphorylated during the course of infection. In contrast to the observations with PI3K/Akt signalling, inhibition of p38 MAPK signalling with SB202190 or NFkappaB signalling with wedelolactone had limited effect on parasite-induced resistance to apoptosis. We conclude that Leishmania promastigotes engage PI3K/Akt signalling, which confers to the infected cell, the capacity to resist death from activators of apoptosis.

  14. IFNγ-induced suppression of β-catenin signaling: evidence for roles of Akt and 14.3.3ζ

    PubMed Central

    Nava, Porfirio; Kamekura, Ryuta; Quirós, Miguel; Medina-Contreras, Oscar; Hamilton, Ross W.; Kolegraff, Keli N.; Koch, Stefan; Candelario, Aurora; Romo-Parra, Hector; Laur, Oskar; Hilgarth, Roland S.; Denning, Timothy L.; Parkos, Charles A.; Nusrat, Asma

    2014-01-01

    The proinflammatory cytokine interferon γ (IFNγ ) influences intestinal epithelial cell (IEC) homeostasis in a biphasic manner by acutely stimulating proliferation that is followed by sustained inhibition of proliferation despite continued mucosal injury. β-Catenin activation has been classically associated with increased IEC proliferation. However, we observed that IFNγ inhibits IEC proliferation despite sustained activation of Akt/β-catenin signaling. Here we show that inhibition of Akt/β-catenin–mediated cell proliferation by IFNγ is associated with the formation of a protein complex containing phosphorylated β-catenin 552 (pβ-cat552) and 14.3.3ζ. Akt1 served as a bimodal switch that promotes or inhibits β-catenin transactivation in response to IFNγ stimulation. IFNγ initially promotes β-catenin transactivation through Akt-dependent C-terminal phosphorylation of β-catenin to promote its association with 14.3.3ζ. Augmented β-catenin transactivation leads to increased Akt1 protein levels, and active Akt1 accumulates in the nucleus, where it phosphorylates 14.3.3ζ to translocate 14.3.3ζ/β-catenin from the nucleus, thereby inhibiting β-catenin transactivation and IEC proliferation. These results outline a dual function of Akt1 that suppresses IEC proliferation during intestinal inflammation. PMID:25079689

  15. Fraxetin Induces Heme Oxygenase-1 Expression by Activation of Akt/Nrf2 or AMP-activated Protein Kinase α/Nrf2 Pathway in HaCaT Cells

    PubMed Central

    Kundu, Juthika; Chae, In Gyeong; Chun, Kyung-Soo

    2016-01-01

    Background Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a coumarin derivative, has been reported to possess antioxidative, anti-inflammatory and neuroprotective effects. A number of recent observations suggest that the induction of heme oxygenase-1 (HO-1) inhibits inflammation and tumorigenesis. In the present study, we determined the effect of fraxetin on HO-1 expression in HaCaT human keratinocytes and investigated its underlying molecular mechanisms. Methods Reverse transcriptase-PCR and Western blot analysis were performed to detect HO-1 mRNA and protein expression, respectively. Cell viability was measured by the MTS test. The induction of intracellular reactive oxygen species (ROS) by fraxetin was evaluated by 2′,7′-dichlorofluorescin diacetate staining. Results Fraxetin upregulated mRNA and protein expression of HO-1. Incubation with fraxetin induced the localization of nuclear factor-erythroid-2-related factor-2 (Nrf2) in the nucleus and increased the antioxidant response element-reporter gene activity. Fraxetin also induced the phosphorylation of Akt and AMP-activated protein kinase (AMPK)α and diminished the expression of phosphatase and tensin homolog, a negative regulator of Akt. Pharmacological inhibition of Akt and AMPKα abrogated fraxetin-induced expression of HO-1 and nuclear localization of Nrf2. Furthermore, fraxetin generated ROS in a concentration-dependent manner. Conclusions Fraxetin induces HO-1 expression through activation of Akt/Nrf2 or AMPKα/Nrf2 pathway in HaCaT cells. PMID:27722139

  16. Akt Regulates Axon Wrapping and Myelin Sheath Thickness in the PNS

    PubMed Central

    Baloui, Hasna; Meng, Xiaosong; Zhang, Yanqing; Deinhardt, Katrin; Dupree, Jeff L.; Einheber, Steven; Chrast, Roman

    2016-01-01

    The signaling pathways that regulate myelination in the PNS remain poorly understood. Phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, activated in Schwann cells by neuregulin and the extracellular matrix, has an essential role in the early events of myelination. Akt/PKB, a key effector of phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, was previously implicated in CNS, but not PNS myelination. Here we demonstrate that Akt plays a crucial role in axon ensheathment and in the regulation of myelin sheath thickness in the PNS. Pharmacological inhibition of Akt in DRG neuron-Schwann cell cocultures dramatically decreased MBP and P0 levels and myelin sheath formation without affecting expression of Krox20/Egr2, a key transcriptional regulator of myelination. Conversely, expression of an activated form of Akt in purified Schwann cells increased expression of myelin proteins, but not Krox20/Egr2, and the levels of activated Rac1. Transgenic mice expressing a membrane-targeted, activated form of Akt under control of the 2′,3′-cyclic nucleotide 3′-phosphodiesterase promoter, exhibited thicker PNS and CNS myelin sheaths, and PNS myelin abnormalities, such as tomacula and myelin infoldings/outfoldings, centered around the paranodes and Schmidt Lanterman incisures. These effects were corrected by rapamycin treatment in vivo. Importantly, Akt activity in the transgenic mice did not induce myelination of nonmyelinating Schwann cells in the sympathetic trunk or Remak fibers of the dorsal roots, although, in those structures, they wrapped membranes redundantly around axons. Together, our data indicate that Akt is crucial for PNS myelination driving axonal wrapping by unmyelinated and myelinated Schwann cells and enhancing myelin protein synthesis in myelinating Schwann cells. SIGNIFICANCE STATEMENT Although the role of the key serine/threonine kinase Akt in promoting CNS myelination has been demonstrated, its role in the PNS has not been established and remains

  17. In vitro and In vivo Activity of Novel Small-Molecule Inhibitors Targeting the Pleckstrin Homology Domain of Protein Kinase B/AKT

    PubMed Central

    Moses, Sylvestor A.; Ali, M. Ahad; Zuohe, Song; Du-Cuny, Lei; Zhou, Li Li; Lemos, Robert; Ihle, Nathan; Skillman, A. Geoffrey; Zhang, Shuxing; Mash, Eugene A.; Powis, Garth; Meuillet, Emmanuelle J.

    2010-01-01

    The phosphatidylinositol 3-kinase/AKT signaling pathway plays a critical role in activating survival and antiapoptotic pathways within cancer cells. Several studies have shown that this pathway is constitutively activated in many different cancer types. The goal of this study was to discover novel compounds that bind to the pleckstrin homology (PH) domain of AKT, thereby inhibiting AKT activation. Using proprietary docking software, 22 potential PH domain inhibitors were identified. Surface plasmon resonance spectroscopy was used to measure the binding of the compounds to the expressed PH domain of AKT followed by an in vitro activity screen in Panc-1 and MiaPaCa-2 pancreatic cancer cell lines. We identified a novel chemical scaffold in several of the compounds that binds selectively to the PH domain of AKT, inducing a decrease in AKT activation and causing apoptosis at low micromolar concentrations. Structural modifications of the scaffold led to compounds with enhanced inhibitory activity in cells. One compound, 4-dodecyl-N-(1,3,4-thiadiazol-2-yl) benzenesulfonamide, inhibited AKT and its downstream targets in cells as well as in pancreatic cancer cell xenografts in immunocompromised mice; it also exhibited good antitumor activity. In summary, a pharmacophore for PH domain inhibitors targeting AKT function was developed. Computer-aided modeling, synthesis, and testing produced novel AKT PH domain inhibitors that exhibit promising preclinical properties. PMID:19491272

  18. Environmental enrichment induces neuroplastic changes in middle age female Balb/c mice and increases the hippocampal levels of BDNF, p-Akt and p-MAPK1/2.

    PubMed

    Ramírez-Rodríguez, G; Ocaña-Fernández, M A; Vega-Rivera, N M; Torres-Pérez, O M; Gómez-Sánchez, A; Estrada-Camarena, E; Ortiz-López, L

    2014-02-28

    Hippocampus is one of the brain regions in which neuroplastic changes occur. Paradigms such as environmental enrichment (ENR) have been used to prevent or delay the neuroplastic changes of the hippocampus during aging. Here, we investigated the beneficial effects of ENR on dendritic spines and hippocampal neurogenesis in middle age Balb/c mice. ENR increased the number of dendritic spines, cell survival, and intermediate stages of the hippocampal neurodevelopment process. Also, ENR alters the distribution of cells involved in the neurogenic process along the dorsal-ventral dentate gyrus. In addition, ENR increased the proportion of cells with more mature dendritic morphology and net hippocampal neurogenesis. Whole-hippocampus protein extracts revealed that ENR increases the levels of BDNF, phospho-Akt and phospho-MAPK1/2, suggesting that the positive effects of ENR on neuroplasticity in middle age Balb/c mice involve the participation of these key-signaling proteins. Our results suggest that ENR is a relevant strategy to prevent neuroplastic decline by increasing the formation of both dendritic spines and new neurons in the hippocampus during middle age.

  19. Lithium protection of phencyclidine-induced neurotoxicity in developing brain: the role of phosphatidylinositol-3 kinase/Akt and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathways.

    PubMed

    Xia, Yan; Wang, Cheng Z; Liu, Jie; Anastasio, Noelle C; Johnson, Kenneth M

    2008-09-01

    Phencyclidine (PCP) and other N-methyl-D-aspartate (NMDA) receptor antagonists have been shown to be neurotoxic to developing brains and to result in schizophrenia-like behaviors later in development. Prevention of both effects by antischizophrenic drugs suggests the validity of PCP neurodevelopmental toxicity as a heuristic model of schizophrenia. Lithium is used for the treatment of bipolar and schizoaffective disorders and has recently been shown to have neuroprotective properties. The present study used organotypic corticostriatal slices taken from postnatal day 2 rat pups to investigate the protective effect of lithium and the role of the phosphatidylinositol-3 kinase (PI-3K)/Akt and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) pathways in PCP-induced cell death. Lithium pretreatment dose-dependently reduced PCP-induced caspase-3 activation and DNA fragmentation in layers II to IV of the cortex. PCP elicited time-dependent inhibition of the MEK/ERK and PI-3K/Akt pathways, as indicated by dephosphorylation of ERK1/2 and Akt. The proapoptotic factor glycogen synthase kinase (GSK)-3beta was also dephosphorylated at serine 9 and thus activated. Lithium prevented PCP-induced inhibition of the two pathways and activation of GSK-3beta. Furthermore, blocking either PI-3K/Akt or MEK/ERK pathway abolished the protective effect of lithium, whereas inhibiting GSK-3beta activity mimicked the protective effect of lithium. However, no cross-talk between the two pathways was found. Finally, specific GSK-3beta inhibition did not prevent PCP-induced dephosphorylation of Akt and ERK. These data strongly suggest that the protective effect of lithium against PCP-induced neuroapoptosis is mediated through independent stimulation of the PI-3K/Akt and ERK pathways and suppression of GSK-3beta activity.

  20. Modulatory role of garlicin in migration and invasion of intrahepatic cholangiocarcinoma via PI3K/AKT pathway

    PubMed Central

    Xie, Kun; Nian, Jianze; Zhu, Xingyang; Geng, Xiaoping; Liu, Fubao

    2015-01-01

    Increasing evidences have indicated the role of garlicin in inhibiting the progression of various tumors including glioma, pulmonary carcinoma and pancreatic carcinoma, via mediating cell apoptosis or cell cycle. The regulatory effect and related molecular mechanism of garlicin in intrahepatic cholangiocarcinoma, however, remained unknown. This study thus aimed to investigate this scientific issue. HCCC-9810 cell line was treated with serially diluted garlicin, followed by cell proliferation assay using MTT approach. Transwell migration and invasion assays were further employed the regulatory effect of garlicin. The expression level of p-AKT and AKT proteins in tumor cells was quantified by Western blot. The growth of tumor cells was significantly inhibited by high concentration of garlicin (> 1.5 μM). Lower concentration of garlicin showed dose-dependent inhibition of tumor cell invasion and migration. After using specific agonist IGF-1 (50 ng/mL) of PI3K/AKT signaling pathway, such facilitating effects of garlicin were depressed (P < 0.05). Western blotting showed significantly decreased phosphorylation level of AKT after treated with gradient concentrations of garlicin, while leaving the total AKT protein level unchanged. Garlicin may inhibit the invasion and migration of intrahepatic cholangiocarcinoma cells via inhibiting PI3K/AKT signaling pathway. PMID:26823715

  1. Antiapoptotic activity of Akt is down-regulated by Ca2+ in myocardiac H9c2 cells. Evidence of Ca(2+)-dependent regulation of protein phosphatase 2Ac.

    PubMed

    Yasuoka, Chie; Ihara, Yoshito; Ikeda, Satoshi; Miyahara, Yoshiyuki; Kondo, Takahito; Kohno, Shigeru

    2004-12-01

    Cell survival signaling of the Akt/protein kinase B pathway was influenced by a change in the cytoplasmic free calcium concentration ([Ca2+]i) for over 2 h via the regulation of a Ser/Thr phosphatase, protein phosphatase 2Ac (PP2Ac), in rat myocardiac H9c2 cells. Akt was down-regulated when [Ca2+]i was elevated by thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, but was up-regulated when it was suppressed by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)ester (BAPTA-AM), a cell permeable Ca2+ chelator. The inactivation of Akt was well correlated with the susceptibility to oxidant-induced apoptosis in H9c2 cells. To investigate the mechanism of the Ca(2+)-dependent regulation of Akt via the regulation of PP2A, we examined the transcriptional regulation of PP2Acalpha in H9c2 cells with Ca2+ modulators. Transcription of the PP2Acalpha gene was increased by thapsigargin but decreased by BAPTA-AM. The promoter activity was examined and the cAMP response element (CRE) was found responsible for the Ca(2+)-dependent regulation of PP2Acalpha. Furthermore, phosphorylation of CRE-binding protein increased with thapsigargin but decreased with BAPTA-AM. A long term change of [Ca2+]i regulates PP2Acalpha gene transcription via CRE, resulting in a change in the activation status of Akt leading to an altered susceptibility to apoptosis. PMID:15375154

  2. Antiapoptotic activity of Akt is down-regulated by Ca2+ in myocardiac H9c2 cells. Evidence of Ca(2+)-dependent regulation of protein phosphatase 2Ac.

    PubMed

    Yasuoka, Chie; Ihara, Yoshito; Ikeda, Satoshi; Miyahara, Yoshiyuki; Kondo, Takahito; Kohno, Shigeru

    2004-12-01

    Cell survival signaling of the Akt/protein kinase B pathway was influenced by a change in the cytoplasmic free calcium concentration ([Ca2+]i) for over 2 h via the regulation of a Ser/Thr phosphatase, protein phosphatase 2Ac (PP2Ac), in rat myocardiac H9c2 cells. Akt was down-regulated when [Ca2+]i was elevated by thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, but was up-regulated when it was suppressed by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)ester (BAPTA-AM), a cell permeable Ca2+ chelator. The inactivation of Akt was well correlated with the susceptibility to oxidant-induced apoptosis in H9c2 cells. To investigate the mechanism of the Ca(2+)-dependent regulation of Akt via the regulation of PP2A, we examined the transcriptional regulation of PP2Acalpha in H9c2 cells with Ca2+ modulators. Transcription of the PP2Acalpha gene was increased by thapsigargin but decreased by BAPTA-AM. The promoter activity was examined and the cAMP response element (CRE) was found responsible for the Ca(2+)-dependent regulation of PP2Acalpha. Furthermore, phosphorylation of CRE-binding protein increased with thapsigargin but decreased with BAPTA-AM. A long term change of [Ca2+]i regulates PP2Acalpha gene transcription via CRE, resulting in a change in the activation status of Akt leading to an altered susceptibility to apoptosis.

  3. Hepatocyte-specific Dyrk1a gene transfer rescues plasma apolipoprotein A-I levels and aortic Akt/GSK3 pathways in hyperhomocysteinemic mice.

    PubMed

    Tlili, Asma; Jacobs, Frank; de Koning, Leanne; Mohamed, Sirine; Bui, Linh-Chi; Dairou, Julien; Belin, Nicole; Ducros, Véronique; Dubois, Thierry; Paul, Jean-Louis; Delabar, Jean-Maurice; De Geest, Bart; Janel, Nathalie

    2013-06-01

    Hyperhomocysteinemia, characterized by high plasma homocysteine levels, is recognized as an independent risk factor for cardiovascular diseases. The increased synthesis of homocysteine, a product of methionine metabolism involving B vitamins, and its slower intracellular utilization cause increased flux into the blood. Plasma homocysteine level is an important reflection of hepatic methionine metabolism and the rate of processes modified by B vitamins as well as different enzyme activity. Lowering homocysteine might offer therapeutic benefits. However, approximately 50% of hyperhomocysteinemic patients due to cystathionine-beta-synthase deficiency are biochemically responsive to pharmacological doses of B vitamins. Therefore, effective treatments to reduce homocysteine levels are needed, and gene therapy could provide a novel approach. We recently showed that hepatic expression of DYRK1A, a serine/threonine kinase, is negatively correlated with plasma homocysteine levels in cystathionine-beta-synthase deficient mice, a mouse model of hyperhomocysteinemia. Therefore, Dyrk1a is a good candidate for gene therapy to normalize homocysteine levels. We then used an adenoviral construct designed to restrict expression of DYRK1A to hepatocytes, and found decreased plasma homocysteine levels after hepatocyte-specific Dyrk1a gene transfer in hyperhomocysteinemic mice. The elevation of pyridoxal phosphate was consistent with the increase in cystathionine-beta-synthase activity. Commensurate with the decreased plasma homocysteine levels, targeted hepatic expression of DYRK1A resulted in elevated plasma paraoxonase-1 activity and apolipoprotein A-I levels, and rescued the Akt/GSK3 signaling pathways in aorta of mice, which can prevent homocysteine-induced endothelial dysfunction. These results demonstrate that hepatocyte-restricted Dyrk1a gene transfer can offer a useful therapeutic targets for the development of new selective homocysteine lowering therapy. PMID:23429073

  4. Enhanced cardiac Akt/protein kinase B signaling contributes to pathological cardiac hypertrophy in part by impairing mitochondrial function via transcriptional repression of mitochondrion-targeted nuclear genes.

    PubMed

    Wende, Adam R; O'Neill, Brian T; Bugger, Heiko; Riehle, Christian; Tuinei, Joseph; Buchanan, Jonathan; Tsushima, Kensuke; Wang, Li; Caro, Pilar; Guo, Aili; Sloan, Crystal; Kim, Bum Jun; Wang, Xiaohui; Pereira, Renata O; McCrory, Mark A; Nye, Brenna G; Benavides, Gloria A; Darley-Usmar, Victor M; Shioi, Tetsuo; Weimer, Bart C; Abel, E Dale

    2015-03-01

    Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity.

  5. Enhanced Cardiac Akt/Protein Kinase B Signaling Contributes to Pathological Cardiac Hypertrophy in Part by Impairing Mitochondrial Function via Transcriptional Repression of Mitochondrion-Targeted Nuclear Genes

    PubMed Central

    Wende, Adam R.; O'Neill, Brian T.; Bugger, Heiko; Riehle, Christian; Tuinei, Joseph; Buchanan, Jonathan; Tsushima, Kensuke; Wang, Li; Caro, Pilar; Guo, Aili; Sloan, Crystal; Kim, Bum Jun; Wang, Xiaohui; Pereira, Renata O.; McCrory, Mark A.; Nye, Brenna G.; Benavides, Gloria A.; Darley-Usmar, Victor M.; Shioi, Tetsuo; Weimer, Bart C.

    2014-01-01

    Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity. PMID:25535334

  6. Residual protein levels on reprocessed dental instruments.

    PubMed

    Smith, A; Letters, S; Lange, A; Perrett, D; McHugh, S; Bagg, J

    2005-11-01

    Reduction of the initial bioburden on instruments, prior to sterilization, is believed to reduce transmission risks of iatrogenic Creutzfeldt-Jakob disease. Endodontic files are used in the preparation of root canals and are likely to have close contact and become contaminated with neural material from branches of the maxillary and mandibular cranial nerves. This study examined methods used by 22 dental practices to clean endodontic files, and scored visible debris and residual protein levels adhering to 220 dental endodontic files that had been used, cleaned, autoclaved and were deemed ready for re-use. Visible debris was scored after examination under a dissecting light microscope. Residual protein was quantified using a fluorescent assay based on reaction of proteins with o-phthaldialdehyde/N-acetyl cysteine. There was wide variation in the methods used by practices to clean endodontic files. The cleaning process varied from a wipe with an alcohol-impregnated cloth to hand scrubbing and/or use of an ultrasonic bath. Surface debris was visually detected on 98% of files. Residual protein was detected on all the files examined (median amount: 5.4 microg; range: 0.5-63.2 microg). These results demonstrate that the cleaning of some instruments reprocessed routinely in primary care is incomplete, and such instruments cannot be excluded as a potential source of cross-infection.

  7. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells

    SciTech Connect

    Jeong, Yun-Jeong; Cho, Hyun-Ji; Magae, Junji; Lee, In-Kyu; Park, Keun-Gyu; Chang, Young-Chae

    2013-12-15

    Hypoxia-inducible factor (HIF)-1 plays an important role in tumor progression, angiogenesis and metastasis. In this study, we investigated the potential molecular mechanisms underlying the anti-angiogenic effect of ascofuranone, an isoprenoid antibiotic from Ascochyta viciae, in epidermal growth factor (EGF)-1 responsive human breast cancer cells. Ascofuranone significantly and selectively suppressed EGF-induced HIF-1α protein accumulation, whereas it did not affect the expression of HIF-1β. Furthermore, ascofuranone inhibited the transcriptional activation of vascular endothelial growth factor (VEGF) by reducing protein HIF-1α. Mechanistically, we found that the inhibitory effects of ascofuranone on HIF-1α protein expression are associated with the inhibition of synthesis HIF-1α through an EGF-dependent mechanism. In addition, ascofuranone suppressed EGF-induced phosphorylation of Akt/mTOR/p70S6 kinase, but the phosphorylation of ERK/JNK/p38 kinase was not affected by ascofuranone. These results suggest that ascofuranone suppresses EGF-induced HIF-1α protein translation through the inhibition of Akt/mTOR/p70S6 kinase signaling pathways and plays a novel role in the anti-angiogenic action. - Highlights: • Inhibitory effect of ascofuranone on HIF-1α expression is EGF-specific regulation. • Ascofuranone decreases HIF-1α protein synthesis through Akt/mTOR pathways. • Ascofuranone suppresses EGF-induced VEGF production and tumor angiogenesis.

  8. The AKT/mTOR signaling pathway plays a key role in statin-induced myotoxicity.

    PubMed

    Bonifacio, Annalisa; Sanvee, Gerda M; Bouitbir, Jamal; Krähenbühl, Stephan

    2015-08-01

    Statins are drugs that lower blood cholesterol levels and reduce cardiovascular morbidity and mortality. They are generally well-tolerated, but myopathy is a potentially severe adverse reaction of these compounds. The mechanisms by which statins induce myotoxicity are not completely understood, but may be related to inhibition of the AKT signaling pathway. The current studies were performed to explore the down-stream effects of the statin-associated inhibition of AKT within the AKT signaling pathway and on myocyte biology and morphology in C2C12 myotubes and in mice in vivo. We exposed C2C12 myotubes to 10 μM or 50 μM simvastatin, atorvastatin or rosuvastatin for 24 h. Simvastatin and atorvastatin inhibited AKT phosphorylation and were cytotoxic starting at 10 μM, whereas similar effects were observed for rosuvastatin at 50 μM. Inhibition of AKT phosphorylation was associated with impaired phosphorylation of S6 kinase, ribosomal protein S6, 4E-binding protein 1 and FoxO3a, resulting in reduced protein synthesis, accelerated myofibrillar degradation and atrophy of C2C12 myotubes. Furthermore, impaired AKT phosphorylation was associated with activation of caspases and PARP, reflecting induction of apoptosis. Similar findings were detected in skeletal muscle of mice treated orally with 5 mg/kg/day simvastatin for 3 weeks. In conclusion, this study highlights the importance of the AKT/mTOR signaling pathway in statin-induced myotoxicity and reveals potential drug targets for treatment of patients with statin-associated myopathies.

  9. The B56γ3 regulatory subunit-containing protein phosphatase 2A outcompetes Akt to regulate p27KIP1 subcellular localization by selectively dephosphorylating phospho-Thr157 of p27KIP1

    PubMed Central

    Lai, Tai-Yu; Yang, Yu-San; Hong, Wei-Fu; Chiang, Chi-Wu

    2016-01-01

    The B56γ-containing protein phosphatase 2A (PP2A-B56γ) has been postulated to have tumor suppressive functions. Here, we report regulation of p27KIP1 subcellular localization by PP2A-B56γ3. B56γ3 overexpression enhanced nuclear localization of p27KIP1, whereas knockdown of B56γ3 decreased p27KIP1 nuclear localization. B56γ3 overexpression decreased phosphorylation at Thr157 (phospho-Thr157), whose phosphorylation promotes cytoplasmic localization of p27KIP1, whereas B56γ3 knockdown significantly increased the level of phospho-Thr157. In vitro, PP2A-B56γ3 catalyzed dephosphorylation of phospho-Thr157 in a dose-dependent and okadaic acid-sensitive manner. B56γ3 did not increase p27KIP1 nuclear localization by down-regulating the upstream kinase Akt activity and outcompeted a myristoylated constitutively active Akt (Aktca) in regulating Thr157 phosphorylation and subcellular localization of p27KIP1. In addition, results of interaction domain mapping revealed that both the N-terminal and C-terminal domains of p27 and a domain at the C-terminus of B56γ3 are required for interaction between p27 and B56γ3. Furthermore, we demonstrated that p27KIP1 levels are positively correlated with B56γ levels in both non-tumor and tumor parts of a set of human colon tissue specimens. However, positive correlation between nuclear p27KIP1 levels and B56γ levels was found only in the non-tumor parts, but not in tumor parts of these tissues, implicating a dysregulation in PP2A-B56γ3-regulated p27KIP1 nuclear localization in these tumor tissues. Altogether, this study provides a new mechanism by which the PP2A-B56γ3 holoenzyme plays its tumor suppressor role. PMID:26684356

  10. Aged black garlic extract inhibits HT29 colon cancer cell growth via the PI3K/Akt signaling pathway.

    PubMed

    Dong, Menghua; Yang, Guiqing; Liu, Hanchen; Liu, Xiaoxu; Lin, Sixiang; Sun, Dongning; Wang, Yishan

    2014-03-01

    Accumulating evidence indicates that aged black garlic extract (ABGE) may prove beneficial in preventing or inhibiting oncogenesis; however, the underlying mechanisms have not been fully elucidated. The present study aimed to investigate the effects of ABGE on the proliferation and apoptosis of HT29 colon cancer cells. Our results demonstrated that ABGE inhibited HT29 cell growth via the induction of apoptosis and cell cycle arrest. We further investigated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signal transduction pathway and the molecular mechanisms underlying the ABGE-induced inhibition of HT29 cell proliferation. We observed that ABGE may regulate the function of the PI3K/Akt pathway through upregulating PTEN and downregulating Akt and p-Akt expression, as well as suppressing its downstream target, 70-kDa ribosomal protein S6 kinase 1, at the mRNA and protein levels. In conclusion, these findings suggest that the PI3K/Akt signal transduction pathway is crucial for the development of colon cancer. ABGE inhibited the growth and induced apoptosis in HT29 cells through the inhibition of the PI3K/Akt pathway, suggesting that ABGE may be effective in the prevention and treatment of colon cancer in humans. PMID:24649105

  11. A Hot-spot of In-frame Duplications Activates the Oncoprotein AKT1 in Juvenile Granulosa Cell Tumors

    PubMed Central

    Bessière, Laurianne; Todeschini, Anne-Laure; Auguste, Aurélie; Sarnacki, Sabine; Flatters, Delphine; Legois, Bérangère; Sultan, Charles; Kalfa, Nicolas; Galmiche, Louise; Veitia, Reiner A.

    2015-01-01

    Background Ovarian granulosa cell tumors are the most common sex-cord stromal tumors and have juvenile (JGCTs) and adult forms. In a previous study we reported the occurrence of activating somatic mutations of Gαs, which transduces mitogenic signals, in 30% of the analyzed JGCTs. Methods We have searched for alterations in other proteins involved in ovarian mitogenic signaling. We focused on the PI3K–AKT axis. As we found mutations in AKT1, we analyzed the subcellular localization of the mutated proteins and performed functional explorations using Western-blot and luciferase assays. Findings We detected in-frame duplications affecting the pleckstrin-homology domain of AKT1 in more than 60% of the tumors occurring in girls under 15 years of age. The somatic status of the mutations was confirmed when peritumoral DNA was available. The JGCTs without duplications carried point mutations affecting highly conserved residues. Several of these substitutions were somatic lesions. The mutated proteins carrying the duplications had a non-wild-type subcellular distribution, with a marked enrichment at the plasma membrane. This led to a striking degree of AKT1 activation demonstrated by a strong phosphorylation level and by reporter assays. Interpretation Our study incriminates somatic mutations of AKT1 as a major event in the pathogenesis of JGCTs. The existence of AKT inhibitors currently tested in clinical trials opens new perspectives for targeted therapies for these tumors, which are currently treated with standard non-specific chemotherapy protocols. PMID:26137586

  12. The protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation and increases sarcoplasmic/endoplasmic reticulum calcium ATPase 2 levels

    SciTech Connect

    King, Taj D.; Gandy, Johanna C.; Bijur, Gautam N. . E-mail: gautam@uab.edu

    2006-11-01

    The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3{alpha} and Ser9 of GSK3{beta}. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3{beta}, but not GSK3{alpha}. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels.

  13. Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling.

    PubMed

    Cittadini, A; Monti, M G; Iaccarino, G; Di Rella, F; Tsichlis, P N; Di Gianni, A; Strömer, H; Sorriento, D; Peschle, C; Trimarco, B; Saccà, L; Condorelli, G

    2006-01-01

    The serine-threonine kinase Akt/PKB mediates stimuli from different classes of cardiomyocyte receptors, including the growth hormone/insulin like growth factor and the beta-adrenergic receptors. Whereas the growth-promoting and antiapoptotic properties of Akt activation are well established, little is known about the effects of Akt on myocardial contractility, intracellular calcium (Ca(2+)) handling, oxygen consumption, and beta-adrenergic pathway. To this aim, Sprague-Dawley rats were subjected to a wild-type Akt in vivo adenoviral gene transfer using a catheter-based technique combined with aortopulmonary crossclamping. Left ventricular (LV) contractility and intracellular Ca(2+) handling were evaluated in an isolated isovolumic buffer-perfused, aequorin-loaded whole heart preparations 10 days after the surgery. The Ca(2+)-force relationship was obtained under steady-state conditions in tetanized muscles. No significant hypertrophy was detected in adenovirus with wild-type Akt (Ad.Akt) versus controls rats (LV-to-body weight ratio 2.6+/-0.2 versus 2.7+/-0.1 mg/g, controls versus Ad.Akt, P, NS). LV contractility, measured as developed pressure, increased by 41% in Ad.Akt. This was accounted for by both more systolic Ca(2+) available to the contractile machinery (+19% versus controls) and by enhanced myofilament Ca(2+) responsiveness, documented by an increased maximal Ca(2+)-activated pressure (+19% versus controls) and a shift to the left of the Ca(2+)-force relationship. Such increased contractility was paralleled by a slight increase of myocardial oxygen consumption (14%), while titrated dose of dobutamine providing similar inotropic effect augmented oxygen consumption by 39% (P<0.01). Phospholamban, calsequestrin, and ryanodine receptor LV mRNA and protein content were not different among the study groups, while sarcoplasmic reticulum Ca(2+) ATPase protein levels were significantly increased in Ad.Akt rats. beta-Adrenergic receptor density, affinity, kinase-1

  14. Restoration of Akt activity by the bisperoxovanadium compound bpV(pic) attenuates hippocampal apoptosis in experimental neonatal pneumococcal meningitis.

    PubMed

    Sury, Matthias D; Vorlet-Fawer, Lorianne; Agarinis, Claudia; Yousefi, Shida; Grandgirard, Denis; Leib, Stephen L; Christen, Stephan

    2011-01-01

    Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP(3) and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed the restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis.

  15. β-arrestin1 interacts with the G protein subunits β1γ2 and promotes β1γ2-dependent Akt signaling for NF-κB activation

    PubMed Central

    Yang, Ming; He, Rong L.; Benovic, Jeffrey L.; Ye, Richard D.

    2009-01-01

    SYNOPSIS β-Arrestins are known to regulate G protein signaling through interactions with their downstream effectors. Here, we report that β-arrestin1 associates with the G protein β1γ2 subunits in transfected cells, and purified β-arrestin1 interacts with Gβ1γ2 derived from in vitro translation. Deletion mutagenesis of β-arrestin1 led to the identification of a region, comprising amino acids 181-280, as being responsible for its interaction with Gβ1γ2. Overexpression of β-arrestin1 facilitates Gβ1γ2-mediated Akt phosphorylation, and inhibition of endogenous β-arrestin1 expression by small interfering RNA (siRNA) diminishes this effect. Through investigation of nuclear factor κB (NF-κB), a transcription factor regulated by Akt signaling, we have found that overexpression of β-arrestin1 significantly enhances Gβ1γ2-mediated nuclear translocation of NF-κB proteins and expression of a NF-κB-directed luciferase reporter. Overexpression of β-arrestin1 also promotes bradykinin-induced, Gβγ-mediated NF-κB luciferase reporter expression, which is reverted by silencing the endogenous β-arrestin1 with a specific siRNA. These results identify novel functions of β-arrestin1 in binding to the β1γ2 subunits of heterotrimeric G proteins and promoting Gβγ-mediated Akt signaling for NF-κB activation. PMID:18729826

  16. Infectious bursal disease virus activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by interaction of VP5 protein with the p85{alpha} subunit of PI3K

    SciTech Connect

    Wei Li; Hou Lei; Zhu Shanshan; Wang Jing; Zhou Jiao; Liu Jue

    2011-08-15

    Phosphatidylinositol 3-kinase (PI3K)/Akt signaling is commonly activated upon virus infection and has been implicated in the regulation of diverse cellular functions such as proliferation and apoptosis. The present study demonstrated for the first time that infectious bursal disease virus (IBDV), the causative agent of a highly contagious disease in chickens, can induce Akt phosphorylation in cultured cells, by a mechanism that is dependent on PI3K. Inhibition of PI3K activation greatly enhanced virus-induced cytopathic effect and apoptotic cell death as evidenced by cleavage of poly-ADP ribose polymerase and activation of caspase-3. Investigations into the mechanism of PI3K/Akt activation revealed that IBDV activates PI3K/Akt signaling through binding of the non-structural protein VP5 to regulatory subunit p85{alpha} of PI3K resulting in the suppression of premature apoptosis and improved virus growth after infection. The results presented here provide a basis for understanding molecular mechanism of IBDV infection.

  17. Inhibition of miR301 enhances Akt-mediated cell proliferation by accumulation of PTEN in nucleus and its effects on cell-cycle regulatory proteins

    PubMed Central

    Jain, Mayur V.; Shareef, Ahmad; Likus, Wirginia; Cieślar-Pobuda, Artur; Ghavami, Saeid; Łos, Marek J.

    2016-01-01

    Micro-RNAs (miRs) represent an innovative class of genes that act as regulators of gene expression. Recently, the aberrant expression of several miRs has been associated with different types of cancers. In this study, we show that miR301 inhibition influences PI3K-Akt pathway activity. Akt overexpression in MCF7 and MDAMB468 cells caused downregulation of miR301 expression. This effect was confirmed by co-transfection of miR301-modulators in the presence of Akt. Cells overexpressing miR301-inhibitor and Akt, exhibited increased migration and proliferation. Experimental results also confirmed PI3K, PTEN and FoxF2 as regulatory targets for miR301. Furthermore, Akt expression in conjunction with miR301-inhibitor increased nuclear accumulation of PTEN, thus preventing it from downregulating the PI3K-signalling. In summary, our data emphasize the importance of miR301 inhibition on PI3K-Akt pathway-mediated cellular functions. Hence, it opens new avenues for the development of new anti-cancer agents preferentially targeting PI3K-Akt pathway. PMID:26967567

  18. Emerging therapeutics for targeting Akt in cancer.

    PubMed

    Gdowski, Andrew; Panchoo, Marlyn; Treuren, Timothy Van; Basu, Alakananda

    2016-01-01

    The ultimate goal of cancer therapeutic research is to develop effective, targeted therapeutics that exploit the vulnerabilities of cancer cells. The three isoforms of Akt, also known as protein kinase B (PKB), are important mediators of various pathways that transmit mitogenic signals from the cell's exterior to the effector proteins of the cell's interior. Due to Akt\\\\\\\\\\\\\\'s importance in cell functions such as growth, proliferation and cell survival, many cancer cells rely on this pathway to aid in their survival. This dependence can lead to chemoresistance and selection of more adapted populations of cancer cells. Thus, it is important to understand the functional significance of isoform specificity and its relation to chemoresistance. In this review, we have summarized recent studies on Akt isoform specific regulation as well as each isoform's role in chemoresistance, emphasizing their potential as targets for cancer therapy. We have also condensed ongoing clinical studies involving various types of Akt inhibitors while highlighting the type of study, rationale and co-therapies involved in identifying Akt isoforms as promising therapeutic targets.

  19. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages.

    PubMed

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05) gradually with increasing age. Bama mini-pigs had generally higher (P<0.05) muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but

  20. Feedbacks and adaptive capabilities of the PI3K/Akt/mTOR axis in acute myeloid leukemia revealed by pathway selective inhibition and phosphoproteome analysis.

    PubMed

    Bertacchini, J; Guida, M; Accordi, B; Mediani, L; Martelli, A M; Barozzi, P; Petricoin, E; Liotta, L; Milani, G; Giordan, M; Luppi, M; Forghieri, F; De Pol, A; Cocco, L; Basso, G; Marmiroli, S

    2014-11-01

    Acute myeloid leukemia (AML) primary cells express high levels of phosphorylated Akt, a master regulator of cellular functions regarded as a promising drug target. By means of reverse phase protein arrays, we examined the response of 80 samples of primary cells from AML patients to selective inhibitors of the phosphatidylinositol 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) axis. We confirm that >60% of the samples analyzed are characterized by high pathway phosphorylation. Unexpectedly, however, we show here that targeting Akt and mTOR with the specific inhibitors Akti 1/2 and Torin1, alone or in combination, result in paradoxical Akt phosphorylation and activation of downstream signaling in 70% of the samples. Indeed, we demonstrate that cropping Akt or mTOR activity can stabilize the Akt/mTOR downstream effectors Forkhead box O and insulin receptor substrate-1, which in turn potentiate signaling through upregulation of the expression/phosphorylation of selected growth factor receptor tyrosine kinases (RTKs). Activation of RTKs in turn reactivates PI3K and downstream signaling, thus overruling the action of the drugs. We finally demonstrate that dual inhibition of Akt and RTKs displays strong synergistic cytotoxic effects in AML cells and downmodulates Akt signaling to a much greater extent than either drug alone, and should therefore be explored in AML clinical setting.

  1. Insulin inhibits hepatocyte iNOS expression induced by cytokines by an Akt-dependent mechanism.

    PubMed

    Harbrecht, Brian G; Nweze, Ikenna; Smith, Jason W; Zhang, Baochun

    2012-01-01

    Hepatocyte inducible nitric oxide synthese (iNOS) expression is a tightly controlled pathway that mediates hepatic inflammation and hepatocyte injury in a variety of disease states. We have shown that cyclic adenosine monophosphate (cAMP) regulates cytokine-induced hepatocyte iNOS expression through mechanisms that involve protein kinase B/Akt. We hypothesized that insulin, which activates Akt signaling in hepatocytes, as well as signaling through p38 and MAPK p42/p44, would regulate iNOS expression during inflammation. In primary rat hepatocytes, insulin inhibited cytokine-stimulated nitrite accumulation and iNOS expression in a dose-dependent manner. Inhibition of MAPK p42/p44 with PD98059 had no effect on iNOS activation, whereas SB203580 to block p38 reversed insulin's inhibitory effect. However, insulin did not increase p38 activation and inhibition of p38 signaling with a dominant negative p38 plasmid had no effect on cytokine- or insulin-mediated effects on iNOS. We found that SB203580 blocked insulin-induced Akt activation. Inhibition of Akt signaling with LY294002 or a dominant negative Akt plasmid increased cytokine-stimulated nitrite production and iNOS protein expression and blocked the inhibitory effects of insulin. NF-κB induces iNOS expression and can be regulated by Akt, but insulin had no effect on cytokine-mediated IκBα levels or NF-κB p65 translocation. Our data demonstrate that insulin inhibits cytokine-stimulated hepatocyte iNOS expression and does so through effects on Akt-mediated signaling. PMID:22038823

  2. Cafestol, a coffee-specific diterpene, induces apoptosis in renal carcinoma Caki cells through down-regulation of anti-apoptotic proteins and Akt phosphorylation.

    PubMed

    Choi, Min Jung; Park, Eun Jung; Oh, Jung Hwa; Min, Kyoung-Jin; Yang, Eun Sun; Kim, Young Ho; Lee, Tae Jin; Kim, Sang Hyun; Choi, Yung Hyun; Park, Jong-Wook; Kwon, Taeg Kyu

    2011-04-25

    Cafestol, one of the major compounds in coffee beans, has been reported for its tumor cell growth inhibitory activity and anti-carcinogenic activity, although the mechanism of action is poorly understood. In the present study, we investigated the effect of cafestol on the apoptotic pathway in human renal Caki cells and other cancer cell lines. Cafestol treatment inhibited Caki cells viability a dose-dependent manner by inducing apoptosis, as evidenced by DNA fragmentation and the accumulation of sub-G1 phase. Cafestol-induced apoptosis is associated with the reduction of mitochondrial membrane potential (MMP), activation of caspase 3, cytochrome c release, and down-regulation of anti-apoptotic proteins (Bcl-2, Bcl-xL, Mcl-1 and cFLIP). Cafestol-induced apoptosis was blocked by pretreatment with broad caspase inhibitor z-VAD-fmk, showing its dependence on caspases. Ectopic expression of Bcl-2 or Mcl-1 in Caki cells attenuates cafestol-induced apoptosis. In addition, we have also shown that cafestol inhibits phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, and PI3K inhibitor LY29004 significantly increases cafestol-induced apoptosis in Caki cells. Taken together, our results show the activity of cafestol to modulate multiple components in apoptotic response of human renal Caki cells and a potential as a therapeutic agent for preventing cancers such as renal carcinoma. PMID:21334318

  3. SG2NA recruits DJ-1 and Akt into the mitochondria and membrane to protect cells from oxidative damage.

    PubMed

    Tanti, Goutam Kumar; Goswami, Shyamal K

    2014-10-01

    SG2NA is a WD-40 repeat protein with multiple protein-protein interaction domains of unknown functions. We demonstrate that it associates with the antioxidant protein DJ-1 and the survival kinase Akt. The C-terminal WD-40 repeat domain of SG2NA is required for its interaction with Akt, while DJ-1 binds it further upstream. No interaction between DJ-1 and Akt occurs in the absence of SG2NA. SG2NA, DJ-1, and Akt colocalize in mitochondria and plasma membrane. Their association is enhanced by increasing levels of reactive oxygen species up to a threshold level but falters thereafter with further increase in oxidants. Mutants of DJ-1 found in patients with familial parkinsonism are not recruited by SG2NA, suggesting its role in neuroprotection. Cells depleted of SG2NA are susceptible, while those overexpressing it are resistant to apoptosis induced by oxidative stress. Our study thus unravels a novel pathway of recruitment of Akt and DJ-1 that provides protection against oxidative stress, especially in neurons.

  4. CYP2J2 and its metabolites (epoxyeicosatrienoic acids) attenuate cardiac hypertrophy by activating AMPKα2 and enhancing nuclear translocation of Akt1.

    PubMed

    Wang, Bei; Zeng, Hesong; Wen, Zheng; Chen, Chen; Wang, Dao Wen

    2016-10-01

    Cytochrome P450 epoyxgenase 2J2 and epoxyeicosatrienoic acids (EETs) are known to protect against cardiac hypertrophy and heart failure, which involve the activation of 5'-AMP-activated protein kinase (AMPK) and Akt. Although the functional roles of AMPK and Akt are well established, the significance of cross talk between them in the development of cardiac hypertrophy and antihypertrophy of CYP2J2 and EETs remains unclear. We investigated whether CYP2J2 and its metabolites EETs protected against cardiac hypertrophy by activating AMPKα2 and Akt1. Moreover, we tested whether EETs enhanced cross talk between AMPKα2 and phosphorylated Akt1 (p-Akt1), and stimulated nuclear translocation of p-Akt1, to exert their antihypertrophic effects. AMPKα2(-/-) mice that overexpressed CYP2J2 in heart were treated with Ang II for 2 weeks. Interestingly, overexpression of CYP2J2 suppressed cardiac hypertrophy and increased levels of atrial natriuretic peptide (ANP) in the heart tissue and plasma of wild-type mice but not AMPKα2(-/-) mice. The CYP2J2 metabolites, 11,12-EET, activated AMPKα2 to induce nuclear translocation of p-Akt1 selectively, which increased the production of ANP and therefore inhibited the development of cardiac hypertrophy. Furthermore, by co-immunoprecipitation analysis, we found that AMPKα2β2γ1 and p-Akt1 interact through the direct binding of the AMPKγ1 subunit to the Akt1 protein kinase domain. This interaction was enhanced by 11,12-EET. Our studies reveal a novel mechanism in which CYP2J2 and EETs enhanced Akt1 nuclear translocation through interaction with AMPKα2β2γ1 and protect against cardiac hypertrophy and suggest that overexpression of CYP2J2 might have clinical potential to suppress cardiac hypertrophy and heart failure.

  5. The PI3K/Akt pathway: recent progress in the development of ATP-competitive and allosteric Akt kinase inhibitors.

    PubMed

    Lindsley, Craig W; Barnett, Stanley F; Layton, Mark E; Bilodeau, Mark T

    2008-02-01

    This article describes recent advances in the development and biological evaluation of allosteric and ATP-competitive small molecule inhibitors for the serine/threonine kinase Akt (protein kinase B, PKB). Unregulated activation of the PI3K/Akt/PTEN pathway is a prominent feature of many human cancers and Akt is over-expressed or activated in all major cancers making Akt an exciting new target for cancer therapy. The development of Akt inhibitors has been complicated and hampered by the presence of three Akt isozymes, (Akt1, Akt2 and Akt3) which differ in function and tissue distribution, as well as a lack of Akt specific inhibitors. In the past 18 months, a large number of reports have appeared describing the discovery and development of allosteric Akt kinase inhibitors and classical ATP-competitive Akt kinase inhibitors. This review will discuss the PI3K/Akt/PTEN pathway, allosteric and ATP-competitive Akt kinase inhibitors, their biological evaluation and progress towards target validation.

  6. A KSHV microRNA Directly Targets G Protein-Coupled Receptor Kinase 2 to Promote the Migration and Invasion of Endothelial Cells by Inducing CXCR2 and Activating AKT Signaling

    PubMed Central

    Bai, Zhiqiang; Qin, Di; Yan, Qin; Zhu, Jianzhong; Krueger, Brian J.; Renne, Rolf; Gao, Shou-Jiang; Lu, Chun

    2015-01-01

    Kaposi's sarcoma (KS) is a highly disseminated angiogenic tumor of endothelial cells linked to infection by Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV encodes more than two dozens of miRNAs but their roles in KSHV-induced tumor dissemination and metastasis remain unknown. Here, we found that ectopic expression of miR-K12-3 (miR-K3) promoted endothelial cell migration and invasion. Bioinformatics and luciferase reporter analyses showed that miR-K3 directly targeted G protein-coupled receptor (GPCR) kinase 2 (GRK2, official gene symbol ADRBK1). Importantly, overexpression of GRK2 reversed miR-K3 induction of cell migration and invasion. Furthermore, the chemokine receptor CXCR2, which was negatively regulated by GRK2, was upregulated in miR-K3-transduced endothelial cells. Knock down of CXCR2 abolished miR-K3-induced cell migration and invasion. Moreover, miR-K3 downregulation of GRK2 relieved its direct inhibitory effect on AKT. Both CXCR2 induction and the release of AKT from GRK2 were required for miR-K3 maximum activation of AKT and induction of cell migration and invasion. Finally, deletion of miR-K3 from the KSHV genome abrogated its effect on the GRK2/CXCR2/AKT pathway and KSHV-induced migration and invasion. Our data provide the first-line evidence that, by repressing GRK2, miR-K3 facilitates cell migration and invasion via activation of CXCR2/AKT signaling, which likely contribute to the dissemination of KSHV-induced tumors. PMID:26402907

  7. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/Pi3K/AKT pathways during muscle differentiation

    PubMed Central

    Carlo, Serra; Daniela, Palacios; Chiara, Mozzetta; Sonia, Forcales; Ianessa, Morantte; Meri, Ripani; Jones David, R.; Keyong, Du; Jhala Ulupi, S.; Cristiano, Simone; Lorenzo, Puri Pier

    2009-01-01

    During muscle regeneration, the mechanism integrating environmental cues at the chromatin of muscle progenitors is unknown. We show that inflammation-activated MKK6-p38 and IGF1-induced Pi3K/AKT pathways converge on the chromatin of muscle genes to target distinct components of the muscle transcriptosome. p38 α/β kinases recruit the SWI/SNF chromatin-remodeling complex; AKT 1 and 2 promote the association of MyoD with p300 and PCAF acetyltransferases, via direct phosphorylation of p300. Pharmacological or genetic interference with either pathway led to partial assembly of discrete chromatin-bound complexes, which reflected two reversible and distinct cellular phenotypes. Remarkably, Pi3K/AKT blockade was permissive for chromatin recruitment of MEF2-SWI/SNF complex, whose remodeling activity was compromised in the absence of MyoD and acetyltransferases. The functional interdependence between p38 and IGF1/Pi3K/AKT pathways was further established by the evidence that blockade of AKT chromatin targets was sufficient to prevent the activation of the myogenic program triggered by deliberate activation of p38 signaling PMID:17964260

  8. Repression of AKT signaling by ARQ 092 in cells and tissues from patients with Proteus syndrome

    PubMed Central

    Lindhurst, Marjorie J.; Yourick, Miranda R.; Yu, Yi; Savage, Ronald E.; Ferrari, Dora; Biesecker, Leslie G.

    2015-01-01

    A somatic activating mutation in AKT1, c.49G>A, pGlu17Lys, that results in elevated AKT signaling in mutation-positive cells, is responsible for the mosaic overgrowth condition, Proteus syndrome. ARQ 092 is an allosteric pan-AKT inhibitor under development for treatment in cancer. We tested the efficacy of this drug for suppressing AKT signaling in cells and tissues from patients with Proteus syndrome. ARQ 092 reduced phosphorylation of AKT and downstream targets of AKT in a concentration-dependent manner in as little as two hours. While AKT signaling was suppressed with ARQ 092 treatment, cells retained their ability to respond to growth factor stimulation by increasing pAKT levels proportionally to untreated cells. At concentrations sufficient to decrease AKT signaling, little reduction in cell viability was seen. These results indicate that ARQ 092 can suppress AKT signaling and warrants further development as a therapeutic option for patients with Proteus syndrome. PMID:26657992

  9. Tetrandrine suppresses metastatic phenotype of prostate cancer cells by regulating Akt/mTOR/MMP-9 signaling pathway.

    PubMed

    Kou, Bo; Liu, Wei; He, Wenbo; Zhang, Yuanyuan; Zheng, Jianjie; Yan, Yang; Zhang, Yongjian; Xu, Suochun; Wang, Haichen

    2016-05-01

    Tetrandrine (TET), a bisbenzylisoquinoline alkaloid found in traditional Chinese medicines, exerts anticancer activity in vitro and in vivo. However, its potential role in the prostate cancer metastatic process has not yet been elucidated. Thus, we investigated the inhibition effect of tetrandrine on prostate cancer migration and invasion and the corresponding molecular basis underlying its anticancer activity. Cell migration and invasion were determined using the Transwell chamber model. The protein expression of Akt, phosphorylated Akt, the mammalian target of rapamycin (mTOR), phosphorylated mTOR and matrix metalloproteinases 9 (MMP-9) was detected by western blot in the presence or absence of tetrandrine or in the group tetrandrine combination with LY294002 (inhibitor of Akt) and rapamycin (inhibitor of mTOR). Our studies showed that excluding the effect of tetrandrine on cell proliferation, tetrandrine significantly inhibited cell migration and invasion in prostate cancer DU145 and PC3 cells. Furthermore, tetrandrine decreased the protein levels of p-Akt, p-mTOR, and MMP-9. While the inhibition of Akt or mTOR by the respective inhibitors could potentiate this effect of tetrandrine on prostate cancer cells, the studies indicate that tetrandrine inhibits the metastasis process by negatively regulating the Akt/mTOR/MMP-9 signaling pathway. These results suggest that tetrandrine might serve as a potential metastasis suppressor to treat cancer cells that have escaped surgical removal or that have disseminated widely. PMID:26935264

  10. Gq-mediated Akt translocation to the membrane: a novel PIP3-independent mechanism in platelets.

    PubMed

    Badolia, Rachit; Manne, Bhanu Kanth; Dangelmaier, Carol; Chernoff, Jonathan; Kunapuli, Satya P

    2015-01-01

    Akt is an important signaling molecule regulating platelet aggregation. Akt is phosphorylated after translocation to the membrane through Gi signaling pathways by a phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent mechanism. However, Akt is more robustly phosphorylated by thrombin compared with adenosine 5'-diphosphate in platelets. This study investigated the mechanisms of Akt translocation as a possible explanation for this difference. Stimulation of washed human platelets with protease-activated receptor agonists caused translocation of Akt to the membrane rapidly, whereas phosphorylation occurred later. The translocation of Akt was abolished in the presence of a Gq-selective inhibitor or in Gq-deficient murine platelets, indicating that Akt translocation is regulated downstream of Gq pathways. Interestingly, phosphatidylinositol 3-kinase (PI3K) inhibitors or P2Y12 antagonist abolished Akt phosphorylation without affecting Akt translocation to the membrane, suggesting that Akt translocation occurs through a PI3K/PIP3/Gi-independent mechanism. An Akt scaffolding protein, p21-activated kinase (PAK), translocates to the membrane after stimulation with protease-activated receptor agonists in a Gq-dependent manner, with the kinetics of translocation similar to that of Akt. Coimmunoprecipitation studies showed constitutive association of PAK and Akt, suggesting a possible role of PAK in Akt translocation. These results show, for the first time, an important role of the Gq pathway in mediating Akt translocation to the membrane in a novel Gi/PI3K/PIP3-independent mechanism.

  11. Gq-mediated Akt translocation to the membrane: a novel PIP3-independent mechanism in platelets

    PubMed Central

    Badolia, Rachit; Manne, Bhanu Kanth; Dangelmaier, Carol; Chernoff, Jonathan

    2015-01-01

    Akt is an important signaling molecule regulating platelet aggregation. Akt is phosphorylated after translocation to the membrane through Gi signaling pathways by a phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent mechanism. However, Akt is more robustly phosphorylated by thrombin compared with adenosine 5′-diphosphate in platelets. This study investigated the mechanisms of Akt translocation as a possible explanation for this difference. Stimulation of washed human platelets with protease-activated receptor agonists caused translocation of Akt to the membrane rapidly, whereas phosphorylation occurred later. The translocation of Akt was abolished in the presence of a Gq-selective inhibitor or in Gq-deficient murine platelets, indicating that Akt translocation is regulated downstream of Gq pathways. Interestingly, phosphatidylinositol 3-kinase (PI3K) inhibitors or P2Y12 antagonist abolished Akt phosphorylation without affecting Akt translocation to the membrane, suggesting that Akt translocation occurs through a PI3K/PIP3/Gi-independent mechanism. An Akt scaffolding protein, p21-activated kinase (PAK), translocates to the membrane after stimulation with protease-activated receptor agonists in a Gq-dependent manner, with the kinetics of translocation similar to that of Akt. Coimmunoprecipitation studies showed constitutive association of PAK and Akt, suggesting a possible role of PAK in Akt translocation. These results show, for the first time, an important role of the Gq pathway in mediating Akt translocation to the membrane in a novel Gi/PI3K/PIP3-independent mechanism. PMID:25331114

  12. Atomic-level analysis of membrane-protein structure.

    PubMed

    Hendrickson, Wayne A

    2016-06-01

    Membrane proteins are substantially more challenging than natively soluble proteins as subjects for structural analysis. Thus, membrane proteins are greatly underrepresented in structural databases. Recently, focused consortium efforts and advances in methodology for protein production, crystallographic analysis and cryo-EM analysis have accelerated the pace of atomic-level structure determination of membrane proteins.

  13. An integrative genomic and proteomic analysis of PIK3CA, PTEN and AKT mutations in breast cancer

    SciTech Connect

    Stemke-Hale, Katherine; Gonzalez-Angulo, Ana Maria; Lluch, Ana; Neve, Richard M.; Kuo, Wen-Lin; Davies, Michael; Carey, Mark; Hu, Zhi; Guan, Yinghui; Sahin, Aysegul; Symmans, W. Fraser; Pusztai, Lajos; Nolden, Laura K.; Horlings, Hugo; Berns, Katrien; Hung, Mien-Chie; van de Vijver, Marc J.; Valero, Vicente; Gray, Joe W.; Bernards, Rene; Mills, Gordon B.; Hennessy, Bryan T.

    2008-05-06

    Phosphatidylinositol-3-kinase (PI3K)/AKT pathway aberrations are common in cancer. By applying mass spectroscopy-based sequencing and reverse phase protein arrays to 547 human breast cancers and 41 cell lines, we determined the subtype specificity and signaling effects of PIK3CA, AKT and PTEN mutations, and the effects of PIK3CA mutations on responsiveness to PI3K inhibition in-vitro and on outcome after adjuvant tamoxifen. PIK3CA mutations were more common in hormone receptor positive (33.8%) and HER2-positive (24.6%) than in basal-like tumors (8.3%). AKT1 (1.4%) and PTEN (2.3%) mutations were restricted to hormone receptor-positive cancers with PTEN protein levels also being significantly lower in hormone receptor-positive cancers. Unlike AKT1 mutations, PIK3CA (39%) and PTEN (20%) mutations were more common in cell lines than tumors, suggesting a selection for these but not AKT1 mutations during adaptation to culture. PIK3CA mutations did not have a significant impact on outcome in 166 hormone receptor-positive breast cancer patients after adjuvant tamoxifen. PIK3CA mutations, in comparison with PTEN loss and AKT1 mutations, were associated with significantly less and indeed inconsistent activation of AKT and of downstream PI3K/AKT signaling in tumors and cell lines, and PTEN loss and PIK3CA mutation were frequently concordant, suggesting different contributions to pathophysiology. PTEN loss but not PIK3CA mutations rendered cells sensitive to growth inhibition by the PI3K inhibitor LY294002. Thus, PI3K pathway aberrations likely play a distinct role in the pathogenesis of different breast cancer subtypes. The specific aberration may have implications for the selection of PI3K-targeted therapies in hormone receptor-positive breast cancer.

  14. Depression of p53-independent Akt survival signals after high-LET radiation in mutated p53 cells

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takeo; Takahashi, Akihisa; Nakagawa, Yosuke

    Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses the activities of serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signals were analyzed with Western blotting analysis 1 h, 2 h, 3 h and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis.Akt-related protein levels were decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G _{2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and depresses cell growth by suppressing Akt-related signals, even in the mp53 cells.

  15. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide.

    PubMed

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase-protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton's lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism. PMID:27494022

  16. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide

    PubMed Central

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase—protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton’s lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism. PMID:27494022

  17. Matrine inhibits proliferation and induces apoptosis of human colon cancer LoVo cells by inactivating Akt pathway.

    PubMed

    Zhang, Shujun; Cheng, Binglin; Li, Hali; Xu, Wei; Zhai, Bo; Pan, Shangha; Wang, Lei; Liu, Ming; Sun, Xueying

    2014-01-01

    The present study has investigated the anti-tumor activity and the underlying mechanisms of matrine on human colon cancer LoVo cells. Matrine inhibited the proliferation of the cells in dose- and time-dependent manners. The concentration required for 50 % inhibition (IC50) was 1.15, 0.738, and 0.414 mg/ml, when cell were incubated with matrine for 24, 48, and 72 h, respectively. Matrine induced cell cycle arrest at G1 phase by downregulating cyclin D1 and upregulating p27 and p21. Matrine induced cell apoptosis by reducing the ratio of Bcl-2/Bax and increasing the activation of caspase-9 in a dose-dependent manner. Matrine displayed its anti-tumor activity by inactivating Akt, the upstream factor of the above proteins. Matrine significantly reduced the protein levels of pAkt, and increased the protein levels of other downstream factors, pBad and pGSK-3β. Specific inhibition of pAkt induced cell apoptosis, and synergized with matrine to inhibit the proliferation of LoVo cells; whereas activation of Akt neutralized the inhibitory effect of matrine on cell proliferation. The present study has demonstrated that matrine inhibits proliferation and induces apoptosis of human colon cancer LoVo cells by inactivating Akt pathway, indicating matrine may be a potential anti-cancer agent for colon cancer.

  18. PI3K/AKT signaling modulates transcriptional expression of EWS/FLI1 through specificity protein 1

    PubMed Central

    Giorgi, Chiara; Boro, Aleksandar; Rechfeld, Florian; Lopez-Garcia, Laura A.; Gierisch, Maria E.; Schäfer, Beat W.; Niggli, Felix K.

    2015-01-01

    Ewing sarcoma (ES) is the second most frequent bone cancer in childhood and is characterized by the presence of the balanced translocation t(11;22)(q24;q12) in more than 85% of cases, generating a dysregulated transcription factor EWS/FLI1. This fusion protein is an essential oncogenic component of ES development which is necessary for tumor cell maintenance and represents an attractive therapeutic target. To search for modulators of EWS/FLI1 activity we screened a library of 153 targeted compounds and identified inhibitors of the PI3K pathway to directly modulate EWS/FLI1 transcription. Surprisingly, treatment of four different ES cell lines with BEZ235 resulted in down regulation of EWS/FLI1 mRNA and protein by ∼50% with subsequent modulation of target gene expression. Analysis of the EWS/FLI1 promoter region (−2239/+67) using various deletion constructs identified two 14bp minimal elements as being important for EWS/FLI1 transcription. We identified SP1 as modulator of EWS/FLI1 gene expression and demonstrated direct binding to one of these regions in the EWS/FLI1 promoter by EMSA and ChIP experiments. These results provide the first insights on the transcriptional regulation of EWS/FLI1, an area that has not been investigated so far, and offer an additional molecular explanation for the known sensitivity of ES cell lines to PI3K inhibition. PMID:26336820

  19. Akt inhibitors reduce glucose uptake independently of their effects on Akt.

    PubMed

    Tan, Shi-Xiong; Ng, Yvonne; James, David E

    2010-11-15

    The protein kinase Akt is involved in various cellular processes, including cell proliferation, growth and metabolism. Hyperactivation of Akt is commonly observed in human tumours and so this pathway has been the focus of targeted drug discovery. However, Akt also plays an essential role in other physiological processes, such as the insulin-regulated transport of glucose into muscle and fat cells. This process, which is essential for whole-body glucose homoeostasis in mammals, is thought to be mediated via Akt-dependent movement of GLUT4 glucose transporters to the plasma membrane. In the present study, we have investigated the metabolic side effects of non-ATP-competitive allosteric Akt inhibitors. In 3T3-L1 adipocytes, these inhibitors caused a decrease in the Akt signalling pathway concomitant with reduced glucose uptake. Surprisingly, a similar reduction in GLUT4 translocation to the plasma membrane was not observed. Further investigation revealed that the inhibitory effects of these compounds on glucose uptake in 3T3-L1 adipocytes were independent of the Akt signalling pathway. The inhibitors also inhibited glucose transport into other cell types, including human erythrocytes and T-47D breast cancer cells, suggesting that these effects are not specific to GLUT4. We conclude that these drugs may, at least in part, inhibit tumorigenesis through inhibition of tumour cell glucose transport.

  20. Shift from extracellular signal-regulated kinase to AKT/cAMP response element-binding protein pathway increases survival-motor-neuron expression in spinal-muscular-atrophy-like mice and patient cells.

    PubMed

    Branchu, Julien; Biondi, Olivier; Chali, Farah; Collin, Thibault; Leroy, Felix; Mamchaoui, Kamel; Makoukji, Joelle; Pariset, Claude; Lopes, Philippe; Massaad, Charbel; Chanoine, Christophe; Charbonnier, Frédéric

    2013-03-01

    Spinal muscular atrophy (SMA), a recessive neurodegenerative disease, is characterized by the selective loss of spinal motor neurons. No available therapy exists for SMA, which represents one of the leading genetic causes of death in childhood. SMA is caused by a mutation of the survival-of-motor-neuron 1 (SMN1) gene, leading to a quantitative defect in the survival-motor-neuron (SMN) protein expression. All patients retain one or more copies of the SMN2 gene, which modulates the disease severity by producing a small amount of stable SMN protein. We reported recently that NMDA receptor activation, directly in the spinal cord, significantly enhanced the transcription rate of the SMN2 genes in a mouse model of very severe SMA (referred as type 1) by a mechanism that involved AKT/CREB pathway activation. Here, we provide the first compelling evidence for a competition between the MEK/ERK/Elk-1 and the phosphatidylinositol 3-kinase/AKT/CREB signaling pathways for SMN2 gene regulation in the spinal cord of type 1 SMA-like mice. The inhibition of the MEK/ERK/Elk-1 pathway promotes the AKT/CREB pathway activation, leading to (1) an enhanced SMN expression in the spinal cord of SMA-like mice and in human SMA myotubes and (2) a 2.8-fold lifespan extension in SMA-like mice. Furthermore, we identified a crosstalk between ERK and AKT signaling pathways that involves the calcium-dependent modulation of CaMKII activity. Together, all these data open new perspectives to the therapeutic strategy for SMA patients. PMID:23467345

  1. Akt isoforms in vascular disease.

    PubMed

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-08-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease.

  2. Akt isoforms in vascular disease

    PubMed Central

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-01-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease. PMID:25929188

  3. Tumors with AKT1E17K Mutations Are Rational Targets for Single Agent or Combination Therapy with AKT Inhibitors.

    PubMed

    Davies, Barry R; Guan, Nin; Logie, Armelle; Crafter, Claire; Hanson, Lyndsey; Jacobs, Vivien; James, Neil; Dudley, Philippa; Jacques, Kelly; Ladd, Brendon; D'Cruz, Celina M; Zinda, Michael; Lindemann, Justin; Kodaira, Makoto; Tamura, Kenji; Jenkins, Emma L

    2015-11-01

    AKT1(E17K) mutations occur at low frequency in a variety of solid tumors, including those of the breast and urinary bladder. Although this mutation has been shown to transform rodent cells in culture, it was found to be less oncogenic than PIK3CA mutations in breast epithelial cells. Moreover, the therapeutic potential of AKT inhibitors in human tumors with an endogenous AKT1(E17K) mutation is not known. Expression of exogenous copies of AKT1(E17K) in MCF10A breast epithelial cells increased phosphorylation of AKT and its substrates, induced colony formation in soft agar, and formation of lesions in the mammary fat pad of immunodeficient mice. These effects were inhibited by the allosteric and catalytic AKT inhibitors MK-2206 and AZD5363, respectively. Both AKT inhibitors caused highly significant growth inhibition of breast cancer explant models with AKT1(E17K) mutation. Furthermore, in a phase I clinical study, the catalytic Akt inhibitor AZD5363 induced partial responses in patients with breast and ovarian cancer with tumors containing AKT1(E17K) mutations. In MGH-U3 bladder cancer xenografts, which contain both AKT1(E17K) and FGFR3(Y373C) mutations, AZD5363 monotherapy did not significantly reduce tumor growth, but tumor regression was observed in combination with the FGFR inhibitor AZD4547. The data show that tumors with AKT1(E17K) mutations are rational therapeutic targets for AKT inhibitors, although combinations with other targeted agents may be required where activating oncogenic mutations of other proteins are present in the same tumor.

  4. Molecular alterations of Ras-Raf-mitogen-activated protein kinase and phosphatidylinositol 3-kinase-Akt signaling pathways in colorectal cancers from a tertiary hospital at Kuala Lumpur, Malaysia.

    PubMed

    Yip, Wai Kien; Choo, Chee Wei; Leong, Vincent Ching-Shian; Leong, Pooi Pooi; Jabar, Mohd Faisal; Seow, Heng Fong

    2013-10-01

    Molecular alterations in KRAS, BRAF, PIK3CA, and PTEN have been implicated in designing targeted therapy for colorectal cancer (CRC). The present study aimed to determine the status of these molecular alterations in Malaysian CRCs as such data are not available in the literature. We investigated the mutations of KRAS, BRAF, and PTEN, the gene amplification of PIK3CA, and the protein expression of PTEN and phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110α) by direct DNA sequencing, quantitative real-time PCR, and immunohistochemistry, respectively, in 49 CRC samples. The frequency of KRAS (codons 12, 13, and 61), BRAF (V600E), and PTEN mutations, and PIK3CA amplification was 25.0% (11/44), 2.3% (1/43), 0.0% (0/43), and 76.7% (33/43), respectively. Immunohistochemical staining demonstrated loss of PTEN protein in 54.5% (24/44) of CRCs and no significant difference in PI3K p110α expression between CRCs and the adjacent normal colonic mucosa (p = 0.380). PIK3CA amplification was not associated with PI3K p110α expression level, but associated with male cases (100% of male cases vs 56% of female cases harbored amplified PIK3CA, p = 0.002). PI3K p110α expression was significantly higher (p = 0.041) in poorly/moderately differentiated carcinoma compared with well-differentiated carcinoma. KRAS mutation, PIK3CA amplification, PTEN loss, and PI3K p110α expression did not correlate with Akt phosphorylation or Ki-67 expression. KRAS mutation, PIK3CA amplification, and PTEN loss were not mutually exclusive. This is the first report on CRC in Malaysia showing comparable frequency of KRAS mutation and PTEN loss, lower BRAF mutation rate, higher PIK3CA amplification frequency, and rare PTEN mutation, as compared with published reports.

  5. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    PubMed

    Huang, Wei-Ru; Chiu, Hung-Chuan; Liao, Tsai-Ling; Chuang, Kuo-Pin; Shih, Wing-Ling; Liu, Hung-Jen

    2015-01-01

    Avian reovirus (ARV) protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128) of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication. PMID:26244501

  6. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    PubMed

    Huang, Wei-Ru; Chiu, Hung-Chuan; Liao, Tsai-Ling; Chuang, Kuo-Pin; Shih, Wing-Ling; Liu, Hung-Jen

    2015-01-01

    Avian reovirus (ARV) protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128) of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication.

  7. Computational Modeling of the Metabolic States Regulated by the Kinase Akt

    PubMed Central

    Mosca, Ettore; Alfieri, Roberta; Maj, Carlo; Bevilacqua, Annamaria; Canti, Gianfranco; Milanesi, Luciano

    2012-01-01

    Signal transduction and gene regulation determine a major reorganization of metabolic activities in order to support cell proliferation. Protein Kinase B (PKB), also known as Akt, participates in the PI3K/Akt/mTOR pathway, a master regulator of aerobic glycolysis and cellular biosynthesis, two activities shown by both normal and cancer proliferating cells. Not surprisingly considering its relevance for cellular metabolism, Akt/PKB is often found hyperactive in cancer cells. In the last decade, many efforts have been made to improve the understanding of the control of glucose metabolism and the identification of a therapeutic window between proliferating cancer cells and proliferating normal cells. In this context, we have modeled the link between the PI3K/Akt/mTOR pathway, glycolysis, lactic acid production, and nucleotide biosynthesis. We used a computational model to compare two metabolic states generated by two different levels of signaling through the PI3K/Akt/mTOR pathway: one of the two states represents the metabolism of a growing cancer cell characterized by aerobic glycolysis and cellular biosynthesis, while the other state represents the same metabolic network with a reduced glycolytic rate and a higher mitochondrial pyruvate metabolism. Biochemical reactions that link glycolysis and pentose phosphate pathway revealed their importance for controlling the dynamics of cancer glucose metabolism. PMID:23181020

  8. Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression.

    PubMed

    Turner, Kristen M; Sun, Youting; Ji, Ping; Granberg, Kirsi J; Bernard, Brady; Hu, Limei; Cogdell, David E; Zhou, Xinhui; Yli-Harja, Olli; Nykter, Matti; Shmulevich, Ilya; Yung, W K Alfred; Fuller, Gregory N; Zhang, Wei

    2015-03-17

    Akt is a robust oncogene that plays key roles in the development and progression of many cancers, including glioma. We evaluated the differential propensities of the Akt isoforms toward progression in the well-characterized RCAS/Ntv-a mouse model of PDGFB-driven low grade glioma. A constitutively active myristoylated form of Akt1 did not induce high-grade glioma (HGG). In stark contrast, Akt2 and Akt3 showed strong progression potential with 78% and 97% of tumors diagnosed as HGG, respectively. We further revealed that significant variations in polarity and hydropathy values among the Akt isoforms in both the pleckstrin homology domain (P domain) and regulatory domain (R domain) were critical in mediating glioma progression. Gene expression profiles from representative Akt-derived tumors indicated dominant and distinct roles for Akt3, consisting primarily of DNA repair pathways. TCGA data from human GBM closely reflected the DNA repair function, as Akt3 was significantly correlated with a 76-gene signature DNA repair panel. Consistently, compared with Akt1 and Akt2 overexpression models, Akt3-expressing human GBM cells had enhanced activation of DNA repair proteins, leading to increased DNA repair and subsequent resistance to radiation and temozolomide. Given the wide range of Akt3-amplified cancers, Akt3 may represent a key resistance factor.

  9. Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression

    PubMed Central

    Turner, Kristen M.; Sun, Youting; Ji, Ping; Granberg, Kirsi J.; Bernard, Brady; Hu, Limei; Cogdell, David E.; Zhou, Xinhui; Yli-Harja, Olli; Nykter, Matti; Shmulevich, Ilya; Yung, W. K. Alfred; Fuller, Gregory N.; Zhang, Wei

    2015-01-01

    Akt is a robust oncogene that plays key roles in the development and progression of many cancers, including glioma. We evaluated the differential propensities of the Akt isoforms toward progression in the well-characterized RCAS/Ntv-a mouse model of PDGFB-driven low grade glioma. A constitutively active myristoylated form of Akt1 did not induce high-grade glioma (HGG). In stark contrast, Akt2 and Akt3 showed strong progression potential with 78% and 97% of tumors diagnosed as HGG, respectively. We further revealed that significant variations in polarity and hydropathy values among the Akt isoforms in both the pleckstrin homology domain (P domain) and regulatory domain (R domain) were critical in mediating glioma progression. Gene expression profiles from representative Akt-derived tumors indicated dominant and distinct roles for Akt3, consisting primarily of DNA repair pathways. TCGA data from human GBM closely reflected the DNA repair function, as Akt3 was significantly correlated with a 76-gene signature DNA repair panel. Consistently, compared with Akt1 and Akt2 overexpression models, Akt3-expressing human GBM cells had enhanced activation of DNA repair proteins, leading to increased DNA repair and subsequent resistance to radiation and temozolomide. Given the wide range of Akt3-amplified cancers, Akt3 may represent a key resistance factor. PMID:25737557

  10. An optogenetic system for interrogating the temporal dynamics of Akt

    PubMed Central

    Katsura, Yoshihiro; Kubota, Hiroyuki; Kunida, Katsuyuki; Kanno, Akira; Kuroda, Shinya; Ozawa, Takeaki

    2015-01-01

    The dynamic activity of the serine/threonine kinase Akt is crucial for the regulation of diverse cellular functions, but the precise spatiotemporal control of its activity remains a critical issue. Herein, we present a photo-activatable Akt (PA-Akt) system based on a light-inducible protein interaction module of Arabidopsis thaliana cryptochrome2 (CRY2) and CIB1. Akt fused to CRY2phr, which is a minimal light sensitive domain of CRY2 (CRY2-Akt), is reversibly activated by light illumination in several minutes within a physiological dynamic range and specifically regulates downstream molecules and inducible biological functions. We have generated a computational model of CRY2-Akt activation that allows us to use PA-Akt to control the activity quantitatively. The system provides evidence that the temporal patterns of Akt activity are crucial for generating one of the downstream functions of the Akt-FoxO pathway; the expression of a key gene involved in muscle atrophy (Atrogin-1). The use of an optical module with computational modeling represents a general framework for interrogating the temporal dynamics of biomolecules by predictive manipulation of optogenetic modules. PMID:26423353

  11. Yeast prions: Paramutation at the protein level?

    PubMed

    Tuite, Mick F

    2015-08-01

    Prions are proteins that have the potential to refold into a novel conformation that templates the conversion of like molecules to the altered infectious form. In the yeast Saccharomyces cerevisiae, trans-generational epigenetic inheritance can be mediated by a number of structurally and functionally diverse prions. Prionogenesis can confer both loss-of-function and gain-of-function properties to the prion protein and this in turn can have a major impact on host phenotype, short-term adaptation and evolution of new traits. Prionogenesis shares a number of properties in common with paramutation and can be considered as a mitotically and meiotically heritable change in protein conformation induced by trans-interactions between homologous proteins. PMID:26386407

  12. The Akt inhibitor MK-2206 enhances the cytotoxicity of paclitaxel (Taxol) and cisplatin in ovarian cancer cells.

    PubMed

    Lin, Ying-Hsi; Chen, Bert Yu-Hung; Lai, Wei-Ting; Wu, Shao-Fu; Guh, Jih-Hwa; Cheng, Ann-Lii; Hsu, Lih-Ching

    2015-01-01

    Abnormalities in the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway are commonly observed in human cancers and contribute to chemotherapy resistance. Combination therapy, involving the use of molecular targeted agents and traditional cytotoxic drugs, may represent a promising strategy to lower resistance and enhance cytotoxicity. Here, we demonstrate the efficacy of an Akt inhibitor, MK-2206, in increasing the cytotoxic effect of either paclitaxel (Taxol) or cisplatin against the ovarian cancer cell lines SKOV3 (with constitutively active Akt) and ES2 (with inactive Akt). Sequential treatment of Taxol or cisplatin, followed by MK-2206, induced a synergistic inhibition of cell proliferation and effectively promoted cell death, either by inhibiting the phosphorylation of Akt and its downstream effectors 4E-BP1 and p70S6K in SKOV3 cells or by restoring p53 levels, which were downregulated after Taxol or cisplatin treatment, in ES2 cells. Combination treatment also downregulated the pro-survival protein Bcl-2 in both SKOV3 and ES2 cells, which may have contributed to cell death. In addition, we discovered that Taxol/MK-2206 or cisplatin/MK-2206 combination treatment resulted in significant enhancement of intracellular reactive oxygen species (ROS) induced by MK-2206, in both SKOV3 and ES2 cells; however, MK-2206-induced growth inhibition was reversed by a ROS scavenger only in ES2 cells. MK-2206 also suppressed DNA repair, particularly in SKOV3 cells. Taken together, our results demonstrate that the Akt inhibitor MK-2206 enhances the efficacy of cytotoxic agents in both Akt-active and Akt-inactive ovarian cancer cells but through different mechanisms.

  13. Allicin protects traumatic spinal cord injury through regulating the HSP70/Akt/iNOS pathway in mice.

    PubMed

    Wang, Shunyi; Ren, Dongliang

    2016-10-01

    Allicin is a major component of garlic, extracted as an oily liquid. The present study was designed to investigate the beneficial effects of allicin on traumatic spinal cord injury (TSCI) in mice, and whether the effects are mediated via regulation of the heat shock protein 70 (HSP70), v‑akt murine thymoma viral oncogene homolog 1 (Akt) and inducible nitric oxide synthase (iNOS) pathways. Adult BALB/c mice (30‑40 g) received a laminectomy at the T9 vertebral level as a model of TSCI. In the present study, treatment of the TSCI mice with allicin significantly increased their Basso, Beattie and Bresnahan (BBB) scores (P<0.01) and reduced the spinal cord water content (P<0.01). This protective effect was associated with the inhibition of oxidative stress and inflammatory responses in TSCI mice. Western blot analysis demonstrated that allicin increased the protein levels of HSP70, increased the phosphorylation of Akt and reduced the iNOS protein expression levels in TSCI mice. Additionally, treatment with allicin significantly reduced the levels of ROS and enhanced the NADH levels in TSCI mice. Collectively, these data demonstrate that the effects of allicin on TSCI are mediated via regulation of the HSP70, Akt and iNOS pathways in mice. PMID:27573340

  14. Allicin protects traumatic spinal cord injury through regulating the HSP70/Akt/iNOS pathway in mice

    PubMed Central

    Wang, Shunyi; Ren, Dongliang

    2016-01-01

    Allicin is a major component of garlic, extracted as an oily liquid. The present study was designed to investigate the beneficial effects of allicin on traumatic spinal cord injury (TSCI) in mice, and whether the effects are mediated via regulation of the heat shock protein 70 (HSP70), v-akt murine thymoma viral oncogene homolog 1 (Akt) and inducible nitric oxide synthase (iNOS) pathways. Adult BALB/c mice (30–40 g) received a laminectomy at the T9 vertebral level as a model of TSCI. In the present study, treatment of the TSCI mice with allicin significantly increased their Basso, Beattie and Bresnahan (BBB) scores (P<0.01) and reduced the spinal cord water content (P<0.01). This protective effect was associated with the inhibition of oxidative stress and inflammatory responses in TSCI mice. Western blot analysis demonstrated that allicin increased the protein levels of HSP70, increased the phosphorylation of Akt and reduced the iNOS protein expression levels in TSCI mice. Additionally, treatment with allicin significantly reduced the levels of ROS and enhanced the NADH levels in TSCI mice. Collectively, these data demonstrate that the effects of allicin on TSCI are mediated via regulation of the HSP70, Akt and iNOS pathways in mice. PMID:27573340

  15. Molecular dissection of AKT activation in lung cancer cell lines

    PubMed Central

    Guo, Yanan; Du, Jinyan; Kwiatkowski, David J

    2013-01-01

    AKT is a critical signaling node downstream of PI3K, which is often activated in cancer. We analyzed the state of activation of AKT in 80 human non-small cell lung cancer cell lines under serum starvation conditions. We identified 13 lines which showed persistent AKT activation in the absence of serum. In 12 of the 13 lines, AKT activation could be attributed to loss of PTEN, activating mutation in EGFR or PIK3CA, or amplification of ERBB2. HCC2429 was the only cell line that had no alterations in those genes, but had high phospho-AKT(Ser473) levels under serum starvation conditions. However, the activation of AKT in HCC2429 was PI3K- and mTORC2-dependent based upon use of specific inhibitors. Kinome tyrosine phosphorylation profiling showed that both Notch and SRC were highly activated in this cell line. Despite the activation of Notch, AKT activation and cell survival were not affected by Notch inhibitors DAPT or Compound E. In contrast, SRC inhibitors PP2 and dasatinib both significantly decreased pAKT(Ser473) levels and reduced cell survival by inducing apoptosis. Further, a combination of SRC and mTOR inhibition synergistically blocked activation of AKT and induced apoptosis. Over-expression of SRC has been identified previously in human lung cancers, and these results suggest that a combination of SRC and mTOR inhibitors may have unique therapeutic benefit for a subset of lung cancers with these molecular features. PMID:23319332

  16. Frequent loss of PTEN expression is linked to elevated phosphorylated Akt levels, but not associated with p27 and cyclin D1 expression, in primary epithelial ovarian carcinomas.

    PubMed

    Kurose, K; Zhou, X P; Araki, T; Cannistra, S A; Maher, E R; Eng, C

    2001-06-01

    PTEN (MMAC1/TEP1), a tumor suppressor gene on chromosome subband 10q23.3, is variably mutated and/or deleted in a variety of human cancers. Germline mutations in PTEN, which encode a dual-specificity phosphatase, have been implicated in at least two hamartoma tumor syndromes that exhibit some clinical overlap, Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome. Among several series of ovarian cancers, the frequency of loss of heterozygosity (LOH) of markers flanking and within PTEN, is approximately 30 to 50%, and the somatic intragenic PTEN mutation frequency is <10%. In this study, we screened primary adenocarcinomas of the ovary for LOH of polymorphic markers within and flanking the PTEN gene and for intragenic mutations of the PTEN gene and compared them to PTEN expression using immunohistochemistry. Furthermore, we sought to detect the expression of the presumed downstream targets of PTEN, such as P-Akt, p27, and cyclin D1 by immunohistochemistry. LOH at 10q23 was observed in 29 of 64 (45%) cases. Of the 117 samples, 6 somatic intragenic PTEN mutations, 1 germline mutation, and 1 novel polymorphism were found in 7 (6%) patients. Immunostaining of 49 ovarian cancer samples revealed that 13 (27%) were PTEN immunostain-negative, 25 (51%) had reduced staining, and the rest (22%) were PTEN expression-positive. Among the 44 informative tumors assessed for 10q23 LOH and PTEN immunostaining, there was an association between 10q23 LOH and decreased or absent staining (P = 0.0317). Of note, there were five (11%) tumors with neither mutation nor deletion that exhibited no PTEN expression and 10 (25%) others without mutation or deletion but had decreased PTEN expression. Among the 49 tumors available for immunohistochemistry, 28 (57%) showed P-Akt-positive staining, 24 (49%) had decreased p27 staining, and cyclin D1 was overexpressed in 35 (79%) cases. In general, P-Akt expression was inversely correlated with PTEN expression (P = 0.0083). These data suggest that

  17. Berberine Induced Apoptosis of Human Osteosarcoma Cells by Inhibiting Phosphoinositide 3 Kinase/Protein Kinase B (PI3K/Akt) Signal Pathway Activation

    PubMed Central

    2016-01-01

    Background: Osteosarcoma is a malignant tumor with high mortality but effective therapy has not yet been developed. Berberine, an isoquinoline alkaloid component in several Chinese herbs including Huanglian, has been shown to induce growth inhibition and the apoptosis of certain cancer cells. The aim of this study was to determine the role of berberine on human osteosarcoma cell lines U2OS and its potential mechanism. Methods: The proliferation effect of U20S was exanimed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di- phenytetrazoliumromide (MTT) and the percentage of apoptotic cells were determined by flow cytometric analysis. The expression of PI3K, p-Akt, Bax, Bcl-2, cleavage-PARP and Caspase3 were detected by Western blott. Results: Berberine treatment caused dose-dependent inhibiting proliferation and inducing apoptosis of U20S cell. Mechanistically, berberine inhibits PI3K/AKT activation that, in turn, results in up-regulating the expression of Bax, and PARP and down-regulating the expression of Bcl-2 and caspase3. In all, berberine can suppress the proliferation and induce the apoptosis of U2OS cell through inhibiting the PI3K/Akt signaling pathway activation. Conclusion: Berberine can suppress the proliferation and induce the apoptosis of U2OS cell through inhibiting the PI3K/Akt signaling pathway activation. PMID:27398330

  18. Juglanthraquinone C Induces Intracellular ROS Increase and Apoptosis by Activating the Akt/Foxo Signal Pathway in HCC Cells

    PubMed Central

    2016-01-01

    Juglanthraquinone C (JC), a naturally occurring anthraquinone extracted from Juglans mandshurica, could induce apoptosis of cancer cells. This study aims to investigate the detailed cytotoxicity mechanism of JC in HepG2 and BEL-7402 cells. The Affymetrix HG-U133 Plus 2.0 arrays were first used to analyze the mRNA expression exposed to JC or DMSO in HepG2 cells. Consistent with the previous results, the data indicated that JC could induce apoptosis and hyperactivated Akt. The Western blot analysis further revealed that Akt, a well-known survival protein, was strongly activated in HepG2 and BEL-7402 cells. Furthermore, an obvious inhibitory effect on JC-induced apoptosis was observed when the Akt levels were decreased, while the overexpression of constitutively active mutant Akt greatly accelerated JC-induced apoptosis. The subsequent results suggested that JC treatment suppressed nuclear localization and increased phosphorylated levels of Foxo3a, and the overexpression of Foxo3a abrogated JC-induced apoptosis. Most importantly, the inactivation of Foxo3a induced by JC further led to an increase of intracellular ROS levels by suppressing ROS scavenging enzymes, and the antioxidant N-acetyl-L-cysteine and catalase successfully decreased JC-induced apoptosis. Collectively, this study demonstrated that JC induced the apoptosis of hepatocellular carcinoma (HCC) cells by activating Akt/Foxo signaling pathway and increasing intracellular ROS levels. PMID:26682007

  19. Effects of Dietary Crude Protein Levels and Cysteamine Supplementation on Protein Synthetic and Degradative Signaling in Skeletal Muscle of Finishing Pigs.

    PubMed

    Zhou, Ping; Zhang, Lin; Li, Jiaolong; Luo, Yiqiu; Zhang, Bolin; Xing, Shen; Zhu, Yuping; Sun, Hui; Gao, Feng; Zhou, Guanghong

    2015-01-01

    Dietary protein levels and cysteamine (CS) supplementation can affect growth performance and protein metabolism of pigs. However, the influence of dietary protein intake on the growth response of CS-treated pigs is unclear, and the mechanisms involved in protein metabolism remain unknown. Hence, we investigated the interactions between dietary protein levels and CS supplementation and the effects of dietary crude protein levels and CS supplementation on protein synthetic and degradative signaling in skeletal muscle of finishing pigs. One hundred twenty barrows (65.84 ± 0.61 kg) were allocated to a 2 × 2 factorial arrangement with five replicates of six pigs each. The primary variations were dietary crude protein (CP) levels (14% or 10%) and CS supplemental levels (0 or 700 mg/kg). The low-protein (LP) diets (10% CP) were supplemented with enough essential amino acids (EAA) to meet the NRC AA requirements of pigs and maintain the balanced supply of eight EAA including lysine, methionine, threonine, tryptophan, valine, phenylalanine, isoleucine, and leucine. After 41 days, 10 pigs per treatment were slaughtered. We found that LP diets supplemented with EAA resulted in decreased concentrations of plasma somatostatin (SS) (P<0.01) and plasma urea nitrogen (PUN) (P<0.001), while dietary protein levels did not affect other traits. However, CS supplementation increased the average daily gain (P<0.001) and lean percentage (P<0.05), and decreased the feed conversion ratio (P<0.05) and back fat (P<0.05). CS supplementation also increased the concentrations of plasma insulin-like growth factor 1 (IGF-1) (P<0.001), and reduced the concentrations of leptin, SS, and PUN (P<0.001). Increased mRNA abundance of Akt1 and IGF-1 signaling (P<0.001) and decreased mRNA abundance of Forkhead Box O (FOXO) 4 (P<0.01) and muscle atrophy F-box (P<0.001) were observed in pigs receiving CS. Additionally, CS supplementation increased the protein levels for the phosphorylated mammalian target

  20. Temperature sensitivity of phospho-Ser{sup 473}-PKB/AKT

    SciTech Connect

    Oehler-Jaenne, Christoph; Bueren, Andre O. von; Vuong, Van; Hollenstein, Andreas; Grotzer, Michael A.; Pruschy, Martin

    2008-10-24

    The phospho-PKB/Akt status is often used as surrogate marker to measure activation of the PI3K/Akt/mTOR signal transduction pathway. Though, inconsistencies of the p-Ser{sup 473}-PKB/Akt status have raised doubts in the validity of p-Ser{sup 473}-PKB/Akt phosphorylation as endpoint. Here, we determined that p-Ser{sup 473}-PKB/Akt but not p-Thr{sup 308}-PKB/Akt phosphorylation is highly temperature sensitive. p-Ser{sup 473}-PKB/Akt phosphorylation was rapidly reduced to levels below 50% on exposure to 20-25 deg. C in murine and human cell lines including cells expressing constitutively active PI3K or lacking PTEN. Down-regulation of p-Ser{sup 473}-PKB/Akt was reversible and re-exposure to physiological temperature resulted in increased p-Ser{sup 473}-PKB/Akt phosphorylation levels. Phosphatase activity at low temperature was sustained at 75% baseline level and phosphatase inhibition prevented p-Ser{sup 473}-PKB/Akt dephosphorylation induced by the low temperature shift. Interestingly temperature-dependent deregulation of the p-Ser{sup 473}-PKB/Akt status was also observed in response to irradiation. Thus our data demonstrate that minimal additional stress factors deregulate the PI3K/Akt-survival pathway and the p-Ser{sup 473}-PKB/Akt status as experimental endpoint.

  1. Nobiletin, a citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells.

    PubMed

    Lee, Yi-Chieh; Cheng, Tsan-Hwang; Lee, Jung-Shin; Chen, Jiun-Hwan; Liao, Yi-Chen; Fong, Yao; Wu, Cheng-Hsun; Shih, Yuan-Wei

    2011-01-01

    Nobiletin, a compound isolated from citrus fruits, is a polymethoxylated flavone derivative shown to have anti-inflammatory, antitumor, and neuroprotective properties. This study has investigated that nobiletin exerted inhibitory effects on the cell adhesion, invasion, and migration abilities of a highly metastatic AGS cells under non-cytotoxic concentrations. Data also showed nobiletin could inhibit the activation of focal adhesion kinase (FAK) and phosphoinositide-3-kinase/Akt (PI3K/Akt) involved in the downregulation of the enzyme activities, protein expressions, messenger RNA levels of matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-2 (MMP-9). Also, our data revealed that nobiletin inhibited FAK/PI3K/Akt with concurrent reduction in the protein expressions of Ras, c-Raf, Rac-1, Cdc42, and RhoA by western blotting, whereas the protein level of RhoB increased progressively. Otherwise, nobiletin-treated AGS cells showed tremendously decreased in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, nobiletin significantly decreased the levels of phospho-Akt and MMP-2/9 in Akt1-cDNA-transfected cells concomitantly with a marked reduction in cell invasion and migration. These results suggest that nobiletin can reduce invasion and migration of AGS cells, and such a characteristic may be of great value in the development of a potential cancer therapy.

  2. Akt3 Deficiency in Macrophages Promotes Foam Cell Formation and Atherosclerosis in Mice

    PubMed Central

    Ding, Liang; Biswas, Sudipta; Morton, Richard E.; Smith, Jonathan D.; Hay, Nissim; Byzova, Tatiana; Febbraio, Maria; Podrez, Eugene

    2012-01-01

    Summary Akt, a serine-threonine protein kinase, exists as three isoforms. The Akt signaling pathway controls multiple cellular functions in the cardiovascular system, and the atheroprotective endothelial cell dependent role of Akt1 has been recently demonstrated. The role of Akt3 isoform in cardiovascular pathophysiology is not known. We explored the role of Akt3 in atherosclerosis using mice with a genetic ablation of the Akt3 gene. Using hyperlipidemic ApoE−/− mice, we demonstrated a macrophage dependent, atheroprotective role for Akt3. In vitro experiments demonstrated differential subcellular localization of Akt1 and Akt3 in macrophages, and showed that Akt3 specifically inhibits macrophage cholesteryl ester accumulation and foam cell formation, a critical early event in atherogenesis. Mechanistically, Akt3 suppresses foam cell formation by reducing lipoprotein uptake and promoting ACAT-1 degradation via the ubiquitin-proteasome pathway. These studies demonstrate the non-redundant atheroprotective role for Akt3 exerted via the previously unknown link between the Akt signaling pathway and cholesterol metabolism. PMID:22632897

  3. Mitochondrial E3 Ubiquitin Protein Ligase 1 Mediates Cigarette Smoke-Induced Endothelial Cell Death and Dysfunction.

    PubMed

    Kim, Sun-Yong; Kim, Hyo Jeong; Park, Mi Kyeong; Huh, Jin Won; Park, Hye Yun; Ha, Sang Yun; Shin, Joo-Ho; Lee, Yun-Song

    2016-02-01

    By virtue of the critical roles of Akt in vascular endothelial cell (EC) survival and function, cigarette smoke-induced Akt reduction may contribute to EC death and dysfunction in smokers' lungs. One of the negative Akt regulatory mechanisms is K48-linked Akt ubiquitination and subsequent proteasomal degradation. Here, we assessed the involvement of mitochondrial E3 ubiquitin protein ligase 1 (MUL1), recently revealed as a novel Akt ubiquitin E3 ligase, in cigarette smoke-induced Akt ubiquitination and its contribution to pulmonary EC death and dysfunction. In human lung microvascular ECs (HLMVECs), cigarette smoke extract (CSE) noticeably elevated MUL1 expression and K48-linked Akt ubiquitination, whereas Akt, p-Akt, eNOS, and p-eNOS levels were decreased. MUL1 knockdown suppressed CSE-induced Akt ubiquitination/degradation and cytoplasmic reductions of Akt and p-Akt. Furthermore, MUL1 knockdown attenuated reductions of eNOS and p-eNOS and alleviated EC survival, migration, and tube formation in the presence of CSE exposure. In addition, overexpression of K284R Akt, a mutant for a MUL1-ubiquitination site, produced similar effects. In HLMVECs exposed to CSE, Akt-MUL1 interaction was increased in coimmunoprecipitation and in situ proximity ligation assays. Similarly, the proximity ligation assay signals were elevated in rat lungs exposed to cigarette smoke for 3 months, during which Mul1 levels were noticeably increased. Finally, we found that CSE-mediated MUL1 induction in HLMVECs is mediated by retinoic acid receptor-related orphan receptor α. Taken together, these data suggest that cigarette smoke-induced MUL1 elevation mediates Akt ubiquitination/degradation, potentially leading to pulmonary EC death and functional impairment.

  4. PTEN Contributes to Profound PI3K/Akt Signaling Pathway Deregulation in Dystrophin-Deficient Dog Muscle

    PubMed Central

    Feron, Marie; Guevel, Laetitia; Rouger, Karl; Dubreil, Laurence; Arnaud, Marie-Claire; Ledevin, Mireille; Megeney, Lynn A.; Cherel, Yan; Sakanyan, Vehary

    2009-01-01

    Duchenne muscular dystrophy is the most common and severe form of muscular dystrophy, and although the genetic basis of this disease is well defined, the overall mechanisms that define its pathogenesis remain obscure. Alterations in individual signaling pathways have been described, but little information is available regarding their putative implications in Duchenne muscular dystrophy pathogenesis. Here, we studied the status of various major signaling pathways in the Golden Retriever muscular dystrophy dog that specifically reproduces the full spectrum of human pathology. Using antibody arrays, we found that Akt1, glycogen synthase kinase-3β (GSK3β), 70-kDa ribosomal protein S6 kinase (p70S6K), extracellular signal-regulated kinases 1/2, and p38δ and p38γ kinases all exhibited decreased phosphorylation in muscle from a 4-month-old animal with Golden Retriever muscular dystrophy, revealing a deep alteration of the phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways. Immunohistochemistry analysis revealed the presence of muscle fibers exhibiting a cytosolic accumulation of Akt1, GSK3β, and phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (PTEN), an enzyme counteracting PI3K-mediated Akt activation. Enzymatic assays established that these alterations in phosphorylation and expression levels were associated with decreased Akt and increased GSK3β and PTEN activities. PTEN/GSK3β-positive fibers were also observed in muscle sections from 3- and 36-month-old animals, indicating long-term PI3K/Akt pathway alteration. Collectively, our data suggest that increased PTEN expression and activity play a central role in PI3K/Akt/GSK3β and p70S6K pathway modulation, which could exacerbate the consequences of dystrophin deficiency. PMID:19264909

  5. Medroxyprogestogen enhances apoptosis of SKOV-3 cells via inhibition of the PI3K/Akt signaling pathway

    PubMed Central

    Li, Yan; Jiang, Yi; Wan, Yicong; Zhang, Lin; Tang, Weiwei; Ma, Jingjing; Wu, Shan; Cheng, Wenjun

    2013-01-01

    We sought to assess the effect of progestin on the apoptosis of epithelial ovarian cancer cell line SKOV-3 and via regulation of phosphorylation signaling in. Epithelial ovarian cancer cell line SKOV-3 was treated with medroxyprogestogen, phosphatidylinositol 3-kinase inhibitor LY294002 and vehicle control. Akt, phospho-Akt, Bcl-2 and phospho-Bad proteins were examined by immunoblotting assays. Medroxyprogestogen-induced apoptosis was assessed by MTT assays and Annexin V apoptosis assay. We found no significant difference in Akt and Bad expression in both the medroxyprogestogen groups and the control group. The levels of phospho-Akt, Bcl-2 and phospho-Bad were decreased in all the medroxyprogestogen groups and significantly decreased in the high dose mitogen-activated protein (MAP) group (10 µmol/L). Viability of SKOV-3 was reduced and apparent apoptosis of SKOV-3 cells was observed with increased doses of MAP. The findings suggest that medroxyprogestogen can induce SKOV-3 cell apoptosis by inhibiting Akt phosphorylation. PMID:23554793

  6. Androgen receptor promotes gastric cancer cell migration and invasion via AKT-phosphorylation dependent upregulation of matrix metalloproteinase 9

    PubMed Central

    Zang, Ming-de; Chang, Qing; Fan, Zhi-yuan; Li, Jian-fang; Yu, Bei-qin; Su, Li-ping; Li, Chen; Yan, Chao; Gu, Qin-long; Zhu, Zheng-gang; Yan, Min; Liu, Bingya

    2014-01-01

    Androgen receptor (AR) plays an important role in many kinds of cancers. However, the molecular mechanisms of AR in gastric cancer (GC) are poorly characterized. Here, we investigated the role of AR in GC cell migration, invasion and metastatic potential. Our data showed that AR expression was positively correlated with lymph node metastasis and late TNM stages. These findings were accompanied by activation of AKT and upregulation of matrix metalloproteinase 9 (MMP9). AR overexpression induced increases in GC cell migration, invasion and proliferation in vitro and in vivo. These effects were attenuated by inhibition of AKT, AR and MMP9. AR overexpression upregulated MMP9 protein levels, whereas this effect was counteracted by AR siRNA. Inhibition of AKT by siRNA or an inhibitor (MK-2206 2HC) decreased AR protein expression in both stably transfected and parental SGC-7901 cells. Luciferase reporter and chromatin immunoprecipitation assays demonstrated that AR bound to the AR-binding sites of the MMP9 promoter. In summary, AR overexpression induced by AKT phosphorylation upregulated MMP9 by binding to its promoter region to promote gastric carcinogenesis. The AKT/AR/MMP9 pathway plays an important role in GC metastasis and may be a novel therapeutic target for GC treatment. PMID:25301736

  7. Dietary protein source and level alters growth in neon tetras.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritional studies for aquarium fish like the neon tetra are sparse in comparison with those for food fish. To determine the optimum dietary protein level and source for growth of neon tetras, diets were formulated to contain 25, 35, 45 and 55% dietary protein from either marine animal protein or ...

  8. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits

    PubMed Central

    WANG, YAN; LI, YIGANG; SONG, LEI; LI, YANYAN; JIANG, SHAN; ZHANG, SONG

    2016-01-01

    Amniotic fluid-derived mesenchymal stem cells (AFMSCs) are an attractive cell source for applications in regenerative medicine, due to characteristics such as proliferative capacity and multipotency. In addition, Akt, a serine-threonine kinase, maintains stem cells by promoting viability and proliferation. Whether the transplantation of Akt-overexpressing AFMSCs protects the heart against ischemia-reperfusion (I/R) injury has yet to be elucidated. Accordingly, the Akt gene was overexpressed in AFMSCs using lentiviral transduction, and Akt-AFMSCs were transplanted into the ischemic myocardium of rabbits prior to reperfusion. Any protective effects resulting from this procedure were subsequently sought after three weeks later. A histological examination revealed that there was a decrease in intramyocardial inflammation and ultrastructural damage, and an increase in capillary density and in the levels of GATA binding protein 4, connexin 43 and cardiac troponin T in the Akt-AFMSC group compared with the control group. A significant decrease in cardiomyocyte apoptosis, accompanying an increase in phosphorylated Akt and B-cell lymphoma 2 (Bcl-2) and a decrease in caspase-3, was also observed. Furthermore, the left ventricular function was markedly augmented in the Akt-AFMSC group compared with the control group. These observations suggested that the protective effect of AFMSCs may be due to the delivery of secreted cytokines, promotion of neoangiogenesis, prevention of cardiomyocyte apoptosis, transdifferentiation into cardiomyocytes and promotion of the viability of AFMSCs, which are assisted by Akt gene modification. Taken together, the results of the present study have indicated that transplantation of Akt-AFMSCs is able to alleviate myocardial I/R injury and improve cardiac function. PMID:27151366

  9. Gardenamide A Protects RGC-5 Cells from H₂O₂-Induced Oxidative Stress Insults by Activating PI3K/Akt/eNOS Signaling Pathway.

    PubMed

    Wang, Rikang; Peng, Lizhi; Zhao, Jiaqiang; Zhang, Laitao; Guo, Cuiping; Zheng, Wenhua; Chen, Heru

    2015-01-01

    Gardenamide A (GA) protects the rat retinal ganglion (RGC-5) cells against cell apoptosis induced by H₂O₂. The protective effect of GA was completely abrogated by the specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and the specific protein kinase B (Akt) inhibitor Akt VIII respectively, indicating that the protective mechanism of GA is mediated by the PI3K/Akt signaling pathway. The specific extracellular signal-regulated kinase (ERK1/2) inhibitor PD98059 could not block the neuroprotection of GA. GA attenuated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) induced by H₂O₂. Western blotting showed that GA promoted the phosphorylation of ERK1/2, Akt and endothelial nitric oxide synthase (eNOS), respectively, and effectively reversed the H₂O₂-inhibited phosphorylation of these three proteins. LY294002 completely inhibited the GA-activated phosphorylation of Akt, while only partially inhibiting eNOS. This evidence implies that eNOS may be activated directly by GA. PD98059 attenuated only partially the GA-induced phosphorylation of ERK1/2 with/without the presence of H₂O₂, indicating that GA may activate ERK1/2 directly. All these results put together confirm that GA protects RGC-5 cells from H₂O₂ insults via the activation of PI3K/Akt/eNOS signaling pathway. Whether the ERK1/2 signaling pathway is involved requires further investigations.

  10. Endothelium-independent hypoxic contraction of porcine coronary arteries may be mediated by activation of phosphoinositide 3-kinase/Akt pathway.

    PubMed

    Liu, Huixia; Chen, Zhengju; Liu, Juan; Liu, Limei; Gao, Yuansheng; Dou, Dou

    2014-01-01

    Phosphoinositide 3-kinase (PI3K)/Akt signaling pathway plays an essential role in the regulation of vascular tone. The present study aimed to determine its role in hypoxic coronary vasoconstriction. Isometric tension of isolated porcine coronary arteries was measured with organ chamber technique; the protein levels of phosphorylated and total MLC were examined by Western blotting; the activities of PI3K and Rho kinase were determined by the phosphorylation of their respective target protein Akt and MTPT1. Acute hypoxia induced a rapid contraction followed by a short-term relaxation and then a sustained contraction in porcine coronary arteries. The rapid but not the sustained contraction was abolished by endothelium removal. The sustained contraction was attenuated by inhibitors of PI3K (LY294002) and Akt (Akt-I). The attenuation effect caused by LY294002 was not affected by nifedipine, but was abolished by Y27632, an inhibitor of Rho kinase. The sustained hypoxic contraction was associated with altered phosphorylation of MLC and Akt, which was inhibited by LY294002. The sustained hypoxic contraction was also accompanied with increased phosphorylation of MYPT1, which was inhibited by LY294002 and Y27632. This study demonstrates that sustained hypoxia causes porcine coronary artery to contract in an endothelium-independent manner. An increased PI3K/Akt/Rho kinase signaling may be involved. PMID:24685819

  11. Akt regulates basic helix-loop-helix transcription factor-coactivator complex formation and activity during neuronal differentiation.

    PubMed

    Vojtek, Anne B; Taylor, Jennifer; DeRuiter, Stacy L; Yu, Jenn-Yah; Figueroa, Claudia; Kwok, Roland P S; Turner, David L

    2003-07-01

    Neural basic helix-loop-helix (bHLH) transcription factors regulate neurogenesis in vertebrates. Signaling by peptide growth factors also plays critical roles in regulating neuronal differentiation and survival. Many peptide growth factors activate phosphatidylinositol 3-kinase (PI3K) and subsequently the Akt kinases, raising the possibility that Akt may impact bHLH protein function during neurogenesis. Here we demonstrate that reducing expression of endogenous Akt1 and Akt2 by RNA interference (RNAi) reduces neuron generation in P19 cells transfected with a neural bHLH expression vector. The reduction in neuron generation from decreased Akt expression is not solely due to decreased cell survival, since addition of the caspase inhibitor z-VAD-FMK rescues cell death associated with loss of Akt function but does not restore neuron formation. This result indicates that Akt1 and Akt2 have additional functions during neuronal differentiation that are separable from neuronal survival. We show that activated Akt1 enhances complex formation between bHLH proteins and the transcriptional coactivator p300. Activated Akt1 also significantly augments the transcriptional activity of the bHLH protein neurogenin 3 in complex with the coactivators p300 or CBP. In addition, inhibition of endogenous Akt activity by the PI3K/Akt inhibitor LY294002 abolishes transcriptional cooperativity between the bHLH proteins and p300. We propose that Akt regulates the assembly and activity of bHLH-coactivator complexes to promote neuronal differentiation.

  12. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway

    SciTech Connect

    Cheng, Chi-Chih; Hsueh, Chi-Mei; Chen, Chiu-Yuan; Chen, Tzu-Hsiu; Hsu, Shih-Lan

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-κB protein expression and NF-κB-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-κB pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-induced PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.

  13. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response

    PubMed Central

    Chan, Tung O.; Zhang, Jin; Tiegs, Brian C.; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M.; Armen, Roger S.; Rodeck, Ulrich; Penn, Raymond B.

    2015-01-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr308 in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr308 dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser473) increased phosphatase resistance of the phosphorylated activation loop (pThr308) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr308 phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. PMID:26201515

  14. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response.

    PubMed

    Chan, Tung O; Zhang, Jin; Tiegs, Brian C; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M; Armen, Roger S; Rodeck, Ulrich; Penn, Raymond B

    2015-10-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr(308) in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr(308) dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser(473)) increased phosphatase resistance of the phosphorylated activation loop (pThr(308)) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr(308) phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin.

  15. Phosphorylation of GSK3α/β correlates with activation of AKT and is prognostic for poor overall survival in acute myeloid leukemia patients

    PubMed Central

    Ruvolo, Peter P.; Qiu, YiHua; Coombes, Kevin R.; Zhang, Nianxiang; Neeley, E. Shannon; Ruvolo, Vivian R.; Hail, Numsen; Borthakur, Gautam; Konopleva, Marina; Andreeff, Michael; Kornblau, Steven M.

    2015-01-01

    Background Acute myeloid leukemia (AML) patients with highly active AKT tend to do poorly. Cell cycle arrest and apoptosis are tightly regulated by AKT via phosphorylation of GSK3α and β isoforms which inactivates these kinases. In the current study we examine the prognostic role of AKT mediated GSK3 phosphorylation in AML. Methods We analyzed GSK3α/β phosphorylation by reverse phase protein analysis (RPPA) in a cohort of 511 acute myeloid leukemia (AML) patients. Levels of phosphorylated GSK3 were correlated with patient characteristics including survival and with expression of other proteins important in AML cell survival. Results High levels of p-GSK3α/β correlated with adverse overall survival and a lower incidence of complete remission duration in patients with intermediate cytogenetics, but not in those with unfavorable cytogenetics. Intermediate cytogenetic patients with FLT3 mutation also fared better respectively when p-GSK3α/β levels were lower. Phosphorylated GSK3α/β expression was compared and contrasted with that of 229 related cell cycle arrest and/or apoptosis proteins. Consistent with p-GSK3α/β as an indicator of AKT activation, RPPA revealed that p-GSK3α/β positively correlated with phosphorylation of AKT, BAD, and P70S6K, and negatively correlated with β-catenin and FOXO3A. PKCδ also positively correlated with p-GSK3α/β expression, suggesting crosstalk between the AKT and PKC signaling pathways in AML cells. Conclusions These findings suggest that AKT-mediated phosphorylation of GSK3α/β may be beneficial to AML cell survival, and hence detrimental to the overall survival of AML patients. Intrinsically, p-GSK3α/β may serve as an important adverse prognostic factor for a subset of AML patients. PMID:26674329

  16. Activation of PI3K/Akt/mTOR signaling in the tumor stroma drives endocrine therapy-dependent breast tumor regression

    PubMed Central

    Polo, María Laura; Riggio, Marina; May, María; Rodríguez, María Jimena; Perrone, María Cecilia; Stallings-Mann, Melody; Kaen, Diego; Frost, Marlene; Goetz, Matthew; Boughey, Judy; Lanari, Claudia; Radisky, Derek; Novaro, Virginia

    2015-01-01

    Improved efficacy of neoadjuvant endocrine-targeting therapies in luminal breast carcinomas could be achieved with optimal use of pathway targeting agents. In a mouse model of ductal breast carcinoma we identify a tumor regressive stromal reaction that is induced by neoadjuvant endocrine therapy. This reparative reaction is characterized by tumor neovascularization accompanied by infiltration of immune cells and carcinoma-associated fibroblasts that stain for phosphorylated ribosomal protein S6 (pS6), downstream the PI3K/Akt/mTOR pathway. While tumor variants with higher PI3K/Akt/mTOR activity respond well to a combination of endocrine and PI3K/Akt/mTOR inhibitors, tumor variants with lower PI3K/Akt/mTOR activity respond more poorly to the combination therapy than to the endocrine therapy alone, associated with inhibition of stromal pS6 and the reparative reaction. In human breast cancer xenografts we confirm that such differential sensitivity to therapy is primarily determined by the level of PI3K/Akt/mTOR in tumor cells. We further show that the clinical response of breast cancer patients undergoing neoadjuvant endocrine therapy is associated with the reparative stromal reaction. We conclude that tumor level and localization of pS6 are associated with therapeutic response in breast cancer and represent biomarkers to distinguish which tumors will benefit from the incorporation of PI3K/Akt/mTOR inhibitors with neoadjuvant endocrine therapy. PMID:26098779

  17. ChAkt1 involvement in orchestrating the immune and heat shock responses in Crassostrea hongkongensis: Molecular cloning and functional characterization.

    PubMed

    Wang, Fuxuan; Xiao, Shu; Zhang, Yang; Zhang, Yuehuan; Liu, Ying; Yan, Yan; Xiang, Zhiming; Yu, Ziniu

    2015-12-01

    G-protein-coupled receptors (GPCRs) are the largest class of cell-surface receptors and play crucial roles in virtually every organ system. As one of the major downstream effectors of GPCRs, Akt can acquire information from the receptors and coordinate intracellular responses for many signaling pathways, through which the serine/threonine kinase masters numerous aspects of biological processes, such as cell survival, growth, proliferation, migration, angiogenesis, and metabolism. In the present study, we have characterized the first Akt1 ortholog in mollusks using the Hong Kong oyster, Crassostrea hongkongensis (designed ChAkt1). The full-length cDNA is 2223 bp and encodes a putative protein of 493 amino acids that contains an amino-terminal pleckstin homology (PH) domain, a central catalytic domain, and a carboxy-terminal regulatory domain. Quantitative real-time PCR analysis showed that ChAkt1 mRNA is broadly expressed in various tissues and during different stages of the oyster's embryonic and larval development. Upon exposure to two stressors (microbial infection and heat shock), the expression level of ChAkt1 mRNA increases significantly. Furthermore, ChAkt1 is located in the cytoplasm in HEK293T cells, where the over-expression of ChAkt1 regulates the transcriptional activities of NF-κB and p53 reporter genes. Taken together, our results indicate that ChAkt1 most likely plays a central role in response to various stimuli in oysters and has a particular response to microbial pathogens and high temperature.

  18. ChAkt1 involvement in orchestrating the immune and heat shock responses in Crassostrea hongkongensis: Molecular cloning and functional characterization.

    PubMed

    Wang, Fuxuan; Xiao, Shu; Zhang, Yang; Zhang, Yuehuan; Liu, Ying; Yan, Yan; Xiang, Zhiming; Yu, Ziniu

    2015-12-01

    G-protein-coupled receptors (GPCRs) are the largest class of cell-surface receptors and play crucial roles in virtually every organ system. As one of the major downstream effectors of GPCRs, Akt can acquire information from the receptors and coordinate intracellular responses for many signaling pathways, through which the serine/threonine kinase masters numerous aspects of biological processes, such as cell survival, growth, proliferation, migration, angiogenesis, and metabolism. In the present study, we have characterized the first Akt1 ortholog in mollusks using the Hong Kong oyster, Crassostrea hongkongensis (designed ChAkt1). The full-length cDNA is 2223 bp and encodes a putative protein of 493 amino acids that contains an amino-terminal pleckstin homology (PH) domain, a central catalytic domain, and a carboxy-terminal regulatory domain. Quantitative real-time PCR analysis showed that ChAkt1 mRNA is broadly expressed in various tissues and during different stages of the oyster's embryonic and larval development. Upon exposure to two stressors (microbial infection and heat shock), the expression level of ChAkt1 mRNA increases significantly. Furthermore, ChAkt1 is located in the cytoplasm in HEK293T cells, where the over-expression of ChAkt1 regulates the transcriptional activities of NF-κB and p53 reporter genes. Taken together, our results indicate that ChAkt1 most likely plays a central role in response to various stimuli in oysters and has a particular response to microbial pathogens and high temperature. PMID:26549179

  19. PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways.

    PubMed

    Castorina, Alessandro; Scuderi, Soraya; D'Amico, Agata Grazia; Drago, Filippo; D'Agata, Velia

    2014-03-10

    PACAP and its cognate peptide VIP participate in various biological functions, including myelin maturation and synthesis. However, defining whether these peptides affect peripheral expression of myelin proteins still remains unanswered. To address this issue, we assessed whether PACAP or VIP contribute to regulate the expression of three myelin proteins (MAG, MBP and MPZ, respectively) using the rat schwannoma cell line (RT4-P6D2T), a well-established model to study myelin gene expression. In addition, we endeavored to partly unravel the underlying molecular mechanisms involved. Expression of myelin-specific proteins was assessed in cells grown either in normal serum (10% FBS) or serum starved and treated with or without 100 nM PACAP or VIP. Furthermore, through pharmacological approach using the PACAP/VIP receptor antagonist (PACAP6-38) or specific pathway (MAPK or PI3K) inhibitors we defined the relative contribution of receptors and/or signaling pathways on the expression of myelin proteins. Our data show that serum starvation (24h) significantly increased both MAG, MBP and MPZ expression. Concurrently, we observed increased expression of endogenous PACAP and related receptors. Treatment with PACAP or VIP further exacerbated starvation-induced expression of myelin markers, suggesting that serum withdrawal might sensitize cells to peptide activity. Stimulation with either peptides increased phosphorylation of Akt at Ser473 residue but had no effect on phosphorylated Erk-1/2. PACAP6-38 (10 μM) impeded starvation- or peptide-induced expression of myelin markers. Similar effects were obtained after pretreatment with the PI3K inhibitor (wortmannin, 10 μM) but not the MAPKK inhibitor (PD98059, 50 μM). Together, the present finding corroborate the hypothesis that PACAP and VIP might contribute to the myelinating process preferentially via the canonical PI3K/Akt signaling pathway, providing the basis for future studies on the role of these peptides in demyelinating

  20. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages

    PubMed Central

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A.; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05) gradually with increasing age. Bama mini-pigs had generally higher (P<0.05) muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but

  1. Expression, activation, and role of AKT isoforms in the uterus.

    PubMed

    Fabi, François; Asselin, Eric

    2014-11-01

    The three isoforms of AKT: AKT1, AKT2, and AKT3, are crucial regulators of both normal and pathological cellular processes. Each of these isoforms exhibits a high level of homology and functional redundancy with each other. However, while being highly similar and structurally homologous, a rising amount of evidence is showing that each isoform possesses specific targets as well as preferential subcellular localization. The role of AKT has been studied extensively in reproductive processes, but isoform-specific roles are yet to be fully understood. This review will focus on the role of AKT in the uterus and its function in processes related to cell death and proliferation such as embryo implantation, decidualization, endometriosis, and endometrial cancer in an isoform-centric manner. In this review, we will cover the activation of AKT in various settings, localization of isoforms in subcellular compartments, and the effect of isoform expression on cellular processes. To fully understand the dynamic molecular processes taking place in the uterus, it is crucial that we better understand the physiological role of AKT isoforms as well as their function in the emergence of diseases.

  2. Arsenic Trioxide Overcomes Rapamycin-Induced Feedback Activation of AKT and ERK Signaling to Enhance the Anti-Tumor Effects in Breast Cancer

    PubMed Central

    Guilbert, Cynthia; Annis, Matthew G.; Dong, Zhifeng; Siegel, Peter M.; Miller, Wilson H.; Mann, Koren K.

    2013-01-01

    Inhibitors of the mammalian target of rapamycin (mTORi) have clinical activity; however, the benefits of mTOR inhibition by rapamycin and rapamycin-derivatives (rapalogs) may be limited by a feedback mechanism that results in AKT activation. Increased AKT activity resulting from mTOR inhibition can be a result of increased signaling via the mTOR complex, TORC2. Previously, we published that arsenic trioxide (ATO) inhibits AKT activity and in some cases, decreases AKT protein expression. Therefore, we propose that combining ATO and rapamycin may circumvent the AKT feedback loop and increase the anti-tumor effects. Using a panel of breast cancer cell lines, we find that ATO, at clinically-achievable doses, can enhance the inhibitory activity of the mTORi temsirolimus. In all cell lines, temsirolimus treatment resulted in AKT activation, which was decreased by concomitant ATO treatment only in those cell lines where ATO enhanced growth inhibition. Treatment with rapalog also results in activated ERK signaling, which is decreased with ATO co-treatment in all cell lines tested. We next tested the toxicity and efficacy of rapamycin plus ATO combination therapy in a MDA-MB-468 breast cancer xenograft model. The drug combination was well-tolerated, and rapamycin did not increase ATO-induced liver enzyme levels. In addition, combination of these drugs was significantly more effective at inhibiting tumor growth compared to individual drug treatments, which corresponded with diminished phospho-Akt and phospho-ERK levels when compared with rapamycin-treated tumors. Therefore, we propose that combining ATO and mTORi may overcome the feedback loop by decreasing activation of the MAPK and AKT signaling pathways. PMID:24392034

  3. Activation of Erk1/2 and Akt following unilateral ureteral obstruction.

    PubMed

    Rodríguez-Peña, Ana B; Grande, Maria T; Eleno, Nélida; Arévalo, Miguel; Guerrero, Carmen; Santos, Eugerio; López-Novoa, José M

    2008-07-01

    Chronic unilateral ureteral obstruction is a well characterized model of renal injury leading to tubulointerstitial fibrosis and distinct patterns of cell proliferation and apoptosis in the obstructed kidney. In this study we assessed the contribution of the mitogen activated protein kinase (MAPK)-ERK1/2 and the phosphatidylinositol 3 kinase (PI3K)-Akt pathways to early renal changes following unilateral obstruction. Increased activation of small Ras GTPase and its downstream effectors ERK1/2 and Akt was detected in ligated kidneys. The use of specific pharmacological inhibitors to either ERK1/2 or Akt activation led to decreased levels of fibroblast-myofibroblast markers in the interstitium while inhibition of PI3K reduced the number of proliferating cells and the amount of interstitial extracellular matrix deposition. Treatment with an ERK1/2 inhibitor diminished the number of apoptotic tubule and interstitial cells. Our results suggest a role for the MAPK-ERK1/2 and PI3K-Akt systems in early changes induced by ureteral obstruction and that inhibition of these signaling pathways may provide a novel approach to prevent progression of renal fibrosis.

  4. PDK1 regulates growth through Akt and S6K in Drosophila

    PubMed Central

    Rintelen, Felix; Stocker, Hugo; Thomas, George; Hafen, Ernst

    2001-01-01

    The insulin/insulin-like growth factor-1 signaling pathway promotes growth in invertebrates and vertebrates by increasing the levels of phosphatidylinositol 3,4,5-triphosphate through the activation of p110 phosphatidylinositol 3-kinase. Two key effectors of this pathway are the phosphoinositide-dependent protein kinase 1 (PDK1) and Akt/PKB. Although genetic analysis in Caenorhabditis elegans has implicated Akt as the only relevant PDK1 substrate, cell culture studies have suggested that PDK1 has additional targets. Here we show that, in Drosophila, dPDK1 controls cellular and organism growth by activating dAkt and S6 kinase, dS6K. Furthermore, dPDK1 genetically interacts with dRSK but not with dPKN, encoding two substrates of PDK1 in vitro. Thus, the results suggest that dPDK1 is required for dRSK but not dPKN activation and that it regulates insulin-mediated growth through two main effector branches, dAkt and dS6K. PMID:11752451

  5. Regulation of Akt during torpor in the hibernating ground squirrel, Ictidomys tridecemlineatus.

    PubMed

    McMullen, David C; Hallenbeck, John M

    2010-08-01

    The 13-lined ground squirrel (Ictidomys tridecemlineatus) is capable of entering into extended periods of torpor during winter hibernation. The state of torpor represents a hypometabolic shift wherein the rate of oxygen consuming processes are strongly repressed in an effort to maintain cellular homeostasis as the availability of food energy becomes limited. We are interested in studying hibernation/torpor because of the robust state of tolerance to constrained oxygen delivery, oligemia, and hypothermia achieved by the tissues of hibernating mammals. The role of the serine/threonine kinase Akt (also known as PKB) has been examined in torpor in previous studies. However, this is the first study that examines the level of Akt phosphorylation in the liver during the two transition phases of the hibernation cycle: entrance into torpor, and the subsequent arousal from torpor. Our results indicate that Akt is activated in the squirrel liver by phosphorylation of two key residues (Thr(308) and Ser(473)) during entrance into torpor and arousal from torpor. Moreover, we observed increased phosphorylation of key substrates of Akt during the two transition stages of torpor. Finally, this study reports the novel finding that PRAS40, a component of the TORC1 multi-protein complex and a potentially important modulator of metabolism, is regulated during torpor.

  6. Oxytocin Increases Invasive Properties of Endometrial Cancer Cells Through Phosphatidylinositol 3-Kinase/AKT-Dependent Up-Regulation of Cyclooxygenase-1, -2, and X-Linked Inhibitor of Apoptosis Protein1

    PubMed Central

    Déry, Marie-Claude; Chaudhry, Parvesh; Leblanc, Valérie; Parent, Sophie; Fortier, Anne-Marie; Asselin, Eric

    2011-01-01

    Traditionally, oxytocin (OT) is well known to play a crucial role in the regulation of cyclic changes in the uterus, implantation of the embryo, and parturition. Recently, an additional role for OT has been identified in several types of cancer cells in which OT acts as a growth regulator. In endometrial cancer cells, OT is known to efficiently inhibit cellular proliferation. In the present study, we show that OT increases invasiveness of human endometrial carcinoma (HEC) cells, which are otherwise resistant to the growth-inhibiting effects of OT. Using pharmacological inhibitors, invasion assay, RNA interference, and immunofluorescence, we found that OT enhances the invasive properties of HEC cells through up-regulation of X-linked inhibitor of apoptosis protein (XIAP), matrix-metalloproteinase 2 (MMP2), and matrix-metalloproteinase 14 (MMP14). In addition, we show that OT-mediated invasion is both cyclooxygenase 1 (PTGS1) and cyclooxygenase-2 (PTGS2) dependent via the phosphatidylinositol 3-kinase/AKT (PIK3/AKT) pathway. PTGS2 knockdown by shRNA resulted in XIAP down-regulation. We also show that OT receptor is overexpressed in grade I to III endometrial cancer. Taken together, our results describe for the first time a novel role for OT in endometrial cancer cell invasion. PMID:21816851

  7. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-07-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application. PMID:27408334

  8. Over-expression of astrocytic ET-1 attenuates neuropathic pain by inhibition of ERK1/2 and Akt(s) via activation of ETA receptor.

    PubMed

    Hung, Victor K L; Tai, Lydia W; Qiu, Qiu; Luo, Xin; Wong, K L; Chung, Sookja K; Cheung, C W

    2014-05-01

    A differential role of endothelin-1 (ET-1) in pain processing has recently been suggested. However, the function of central ET-1 in neuropathic pain (NP) has not been fully elucidated to date. We report here the action of endogenous central ET-1 in sciatic nerve ligation-induced NP (SNL-NP) in a transgenic animal model that over-expresses ET-1 in the astrocytes (GET-1 mice). We hypothesized that the over-expression of astrocytic ET-1 would exert anti-allodynic and anti-hyperalgesic effects in NP, as demonstrated by mechanical threshold and plantar withdrawal latency using the von Frey filament and heat stimuli. In our animal model, GET-1 mice showed an increase in the withdrawal threshold and latency in response to the mechanical and thermal stimuli, respectively, in pain behavior tests after SNL. ET-1 and endothelin type A receptor (ETA-R) levels were increased significantly in L4-L6 segments of the spinal cord (ipsilateral to SNL) of GET-1 mice at 7 and 21days after surgery. Moreover, intrathecal administration of a specific ETA-R antagonist, BQ-123, attenuated the anti-allodynic and anti-hyperalgesic phenotype in GET-1 mice. The effects of BQ-123 on the mRNA expression of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and protein kinase B/serine protein kinase (Akt(s)) were assessed in the ipsilateral L4-L6 segments harvested 30min after BQ-123 administration on day 7 after surgery. Phosphorylation of ERK1/2 and Akt(s) in the ipsilateral spinal cord of GET-1 mice was reduced following SNL, whereas no reduction was observed after intrathecal injection of BQ-123. In conclusion, our results showed that the xover-expression of astrocytic ET-1 reduced SNL-induced allodynia and hyperalgesia by inhibiting the activation of ERK1/2 and Akt(s) via the ETA-R-mediated pathway.

  9. PCNA-interacting peptides reduce Akt phosphorylation and TLR-mediated cytokine secretion suggesting a role of PCNA in cellular signaling.

    PubMed

    Olaisen, Camilla; Müller, Rebekka; Nedal, Aina; Otterlei, Marit

    2015-07-01

    Proliferating cell nuclear antigen (PCNA), commonly known as a nuclear protein essential for regulation of DNA replication, DNA repair, and epigenetics, has recently been associated with multiple cytosolic functions. Many proteins containing one of the two known PCNA-interacting motifs, the AlkB homologue 2 PCNA interacting motif (APIM) and the PCNA-interacting peptide (PIP)-box, are considered to be mainly cytosolic. APIM is found in more than 20 kinases and/or associated proteins including several direct or indirect members of the mitogen-activated protein kinase (MAPK) and PI3K/Akt pathways. Mass spectrometry analysis of PCNA-pull downs verified that many cytosolic proteins involved in the MAPK and PI3K/Akt pathways are in complex with PCNA. Furthermore, treatment of cells with a PCNA-interacting APIM-containing peptide (APIM-peptide) reduced Akt phosphorylation in human peripheral blood monocytes and a human keratinocyte cell line (HaCaT). Additionally, the APIM-peptide strongly reduced the cytokine secretion from monocytes stimulated with toll like receptor (TLR) ligands and potentiated the effects of MAPK and PI3K/Akt inhibitors. Interestingly, the protein level of the APIM-containing PKR/RIG-1 activator protein (PACT) was initially strongly reduced in HaCaT cells stimulated with APIM-peptide in combination with the TLR ligand polyinosinic-polycytidylic acid (polyIC). Our results suggest that PCNA has a platform role in cytosol affecting cellular signaling.

  10. The Regulation of Lipid Deposition by Insulin in Goose Liver Cells Is Mediated by the PI3K-AKT-mTOR Signaling Pathway

    PubMed Central

    Han, Chunchun; Wei, Shouhai; He, Fang; Liu, Dandan; Wan, Huofu; Liu, Hehe; Li, Liang; Xu, Hongyong; Du, Xiaohui; Xu, Feng

    2015-01-01

    Background We previously showed that the fatty liver formations observed in overfed geese are accompanied by the activation of the PI3K-Akt-mTOR pathway and an increase in plasma insulin concentrations. Recent studies have suggested a crucial role for the PI3K-Akt-mTOR pathway in regulating lipid metabolism; therefore, we hypothesized that insulin affects goose hepatocellular lipid metabolism through the PI3K-Akt-mTOR signaling pathway. Methods Goose primary hepatocytes were isolated and treated with serum-free media supplemented with PI3K-Akt-mTOR pathway inhibitors (LY294002, rapamycin, and NVP-BEZ235, respectively) and 50 or 150 nmol/L insulin. Results Insulin induced strong effects on lipid accumulation as well as the mRNA and protein levels of genes involved in lipogenesis, fatty acid oxidation, and VLDL-TG assembly and secretion in primary goose hepatocytes. The stimulatory effect of insulin on lipogenesis was significantly decreased by treatment with PI3K-Akt-mTOR inhibitors. These inhibitors also rescued the insulin-induced down-regulation of fatty acid oxidation and VLDL-TG assembly and secretion. Conclusion These findings suggest that the stimulatory effect of insulin on lipid deposition is mediated by PI3K-Akt-mTOR regulation of lipogenesis, fatty acid oxidation, and VLDL-TG assembly and secretion in goose hepatocytes. PMID:25945932

  11. Molecular and functional interactions between AKT and SOX2 in breast carcinoma

    PubMed Central

    Mir, Perihan; Konantz, Martina; Pereboom, Tamara C.; Paczulla, Anna M.; Merz, Britta; Fehm, Tanja; Perner, Sven; Rothfuss, Oliver C.; Kanz, Lothar; Schulze-Osthoff, Klaus; Lengerke, Claudia

    2015-01-01

    The transcription factor SOX2 is a key regulator of pluripotency in embryonic stem cells and plays important roles in early organogenesis. Recently, SOX2 expression was documented in various cancers and suggested as a cancer stem cell (CSC) marker. Here we identify the Ser/Thr-kinase AKT as an upstream regulator of SOX2 protein turnover in breast carcinoma (BC). SOX2 and pAKT are co-expressed and co-regulated in breast CSCs and depletion of either reduces clonogenicity. Ectopic SOX2 expression restores clonogenicity and in vivo tumorigenicity of AKT-inhibited cells, suggesting that SOX2 acts as a functional downstream AKT target. Mechanistically, we show that AKT physically interacts with the SOX2 protein to modulate its subcellular distribution. AKT kinase inhibition results in enhanced cytoplasmic retention of SOX2, presumably via impaired nuclear import, and in successive cytoplasmic proteasomal degradation of the protein. In line, blockade of either nuclear transport or proteasomal degradation rescues SOX2 expression in AKT-inhibited BC cells. Finally, AKT inhibitors efficiently suppress the growth of SOX2-expressing putative cancer stem cells, whereas conventional chemotherapeutics select for this population. Together, our results suggest the AKT/SOX2 molecular axis as a regulator of BC clonogenicity and AKT inhibitors as promising drugs for the treatment of SOX2-positive BC. PMID:26498353

  12. Akt is translocated to the mitochondria during etoposide-induced apoptosis of HeLa cells.

    PubMed

    Park, Byoungduck; Je, Young-Tae; Chun, Kwang-Hoon

    2015-11-01

    Akt, or protein kinase B, is a key serine-threonine kinase, which exerts anti-apoptotic effects and promotes cell proliferation in response to various stimuli. Recently, however, it was demonstrated that Akt exhibits a proapoptotic role in certain contexts. During etoposide‑induced apoptosis of HeLa cells, Akt enhances the interaction of second mitochondria‑derived activator of caspases/direct IAP binding protein with low pI (Smac/DIABLO) and X‑linked inhibitor of apoptosis protein by phosphorylating Smac at serine 67, and thus promotes apoptosis. However, the detailed mechanisms underlying Akt regulation in etoposide‑mediated apoptosis remain to be determined. The present study investigated whether etoposide triggers the translocation of Akt into the mitochondria. It was found that Akt activity was increased and sustained during apoptosis triggered by etoposide in HeLa cells. During apoptosis, Akt was translocated from the cytoplasm into the mitochondria in a phosphoinositide 3‑kinase-dependent manner at the early and late stages of apoptosis. Concomitantly, the depletion of Akt in the nuclear fraction was observed after etoposide treatment from analysis of confocal microscopy. The results suggest that etoposide‑stimulated Akt is translocated into the mitochondria, thereby possibly enhancing its interaction with Smac and promoting apoptosis in HeLa cells. These results indicate that Akt may be a promising candidate for a pro-apoptotic approach in cancer treatment.

  13. Akt recruits Dab2 to albumin endocytosis in the proximal tubule.

    PubMed

    Koral, Kelly; Li, Hui; Ganesh, Nandita; Birnbaum, Morris J; Hallows, Kenneth R; Erkan, Elif

    2014-12-15

    Proximal tubule epithelial cells have a highly sophisticated endocytic machinery to retrieve the albumin in the glomerular filtrate. The megalin-cubilin complex and the endocytic adaptor disabled-2 (Dab2) play a pivotal role in albumin endocytosis. We previously demonstrated that protein kinase B (Akt) regulates albumin endocytosis in the proximal tubule through an interaction with Dab2. Here, we examined the nature of Akt-Dab2 interaction. The pleckstrin homology (PH) and catalytic domains (CD) of Akt interacted with the proline-rich domain (PRD) of Dab2 based on yeast-two hybrid (Y2H) experiments. Pull-down experiments utilizing the truncated constructs of Dab2 demonstrated that the initial 11 amino acids of Dab2-PRD were sufficient to mediate the interaction between Akt and Dab2. Endocytosis experiments utilizing Akt1- and Akt2-silencing RNA revealed that both Akt1 and Akt2 mediate albumin endocytosis in proximal tubule epithelial cells; therefore, Akt1 and Akt2 may play a compensatory role in albumin endocytosis. Furthermore, both Akt isoforms phosphorylated Dab2 at Ser residues 448 and 449. Ser-to-Ala mutations of these Dab2 residues inhibited albumin endocytosis and resulted in a shift in location of Dab2 from the peripheral to the perinuclear area, suggesting the physiological relevance of these phosphorylation sites in albumin endocytosis. We conclude that both Akt1 and Akt2 are involved in albumin endocytosis, and phosphorylation of Dab2 by Akt induces albumin endocytosis in proximal tubule epithelial cells. Further delineation of how Akt affects expression/phosphorylation of endocytic adaptors and receptors will enhance our understanding of the molecular network triggered by albumin overload in the proximal tubule.

  14. Flotillin depletion affects ErbB protein levels in different human breast cancer cells.

    PubMed

    Asp, Nagham; Pust, Sascha; Sandvig, Kirsten

    2014-09-01

    The ErbB3 receptor is an important regulator of cell growth and carcinogenesis. Among breast cancer patients, up to 50-70% have ErbB3 overexpression and 20-30% show overexpressed or amplified ErbB2. ErbB3 has also been implicated in the development of resistance to several drugs used against cancers driven by ErbB1 or ErbB2. One of the main challenges in ErbB-targeting therapy is to inactivate signaling mediated by ErbB2-ErbB3 oncogenic receptor complexes. We analyzed the regulatory role of flotillins on ErbB3 levels and ErbB2-ErbB3 complexes in SKBR3, MCF7 and MDA-MB-134-VI human breast cancer cells. Recently, we described a mechanism for interfering with ErbB2 signaling in breast cancer and demonstrated a molecular complex of flotillin scaffolding proteins with ErbB2 and Hsp90. In the present study, flotillins were found to be in a molecular complex with ErbB3, even in cells without the presence of ErbB2 or other ErbB receptors. Depletion of either flotillin-1 or flotillin-2 resulted in downregulation of ErbB3 and a selective reduction of ErbB2-ErbB3 receptor complexes. Moreover, flotillin-2 depletion resulted in reduced activation of Akt and MAPK signaling cascades, and as a functional consequence of flotillin depletion, breast cancer cells showed an impaired cell migration. Altogether, we provide data demonstrating a novel and functional role of flotillins in the regulation of ErbB protein levels and stabilization of ErbB2-ErbB3 receptor complexes. Thus, flotillins are crucial regulators for oncogenic ErbB function and potential targets for cancer treatment.

  15. Inhibition of PTEN and activation of Akt by menadione.

    PubMed

    Yoshikawa, Kyoko; Nigorikawa, Kiyomi; Tsukamoto, Mariko; Tamura, Namiko; Hazeki, Kaoru; Hazeki, Osamu

    2007-04-01

    Menadione (vitamin K(3)) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells. The phosphorylation of Akt by menadione was not inhibited by AG1478, an inhibitor of EGFR. Menadione inhibited the lipid phosphatase activity of PTEN in a cell-free system. In an intact cell system, menadione inhibited the effect of transfected PTEN on Akt. Thus, one mechanism of its action was considered the accelerated activation of Akt through inhibition of PTEN. This was not the sole mechanism responsible for the EGFR-independent activation of Akt, because menadione attenuated the rate of Akt dephosphorylation even in PTEN-null PC3 cells. The decelerated inactivation of Akt, probably through inhibition of some tyrosine phosphatases, was considered another mechanism of its action.

  16. Identification and quantification of AKT isoforms and phosphoforms in breast cancer using a novel nanofluidic immunoassay.

    PubMed

    Iacovides, Demetris C; Johnson, Aimee B; Wang, Nick; Boddapati, Shanta; Korkola, Jim; Gray, Joe W

    2013-11-01

    Breast cancer subtype-specific molecular variations can dramatically affect patient responses to existing therapies. It is thought that differentially phosphorylated protein isoforms might be a useful prognostic biomarker of drug response in the clinic. However, the accurate detection and quantitative analysis of cancer-related protein isoforms and phospho-isoforms in tumors are limited by current technologies. Using a novel, fully automated nanocapillary electrophoresis immunoassay (NanoPro(TM) 1000) designed to separate protein molecules based on their isoelectric point, we developed a reliable and highly sensitive assay for the detection and quantitation of AKT isoforms and phosphoforms in breast cancer. This assay enabled the measurement of activated AKT1/2/3 in breast cancer cells using protein produced from as few as 56 cells. Importantly, we were able to assign an identity for the phosphorylated S473 phosphoform of AKT1, the major form of activated AKT involved in multiple cancers, including breast, and a current focus in clinical trials for targeted intervention. The ability of our AKT assay to detect and measure AKT phosphorylation from very low amounts of total protein will allow the accurate evaluation of patient response to drugs targeting activated PI3K-AKT using scarce clinical specimens. Moreover, the capacity of this assay to detect and measure all three AKT isoforms using one single pan-specific antibody enables the study of the multiple and variable roles that these isoforms play in AKT tumorigenesis.

  17. Identification and Quantification of AKT Isoforms and Phosphoforms in Breast Cancer Using a Novel Nanofluidic Immunoassay*

    PubMed Central

    Iacovides, Demetris C.; Johnson, Aimee B.; Wang, Nick; Boddapati, Shanta; Korkola, Jim; Gray, Joe W.

    2013-01-01

    Breast cancer subtype-specific molecular variations can dramatically affect patient responses to existing therapies. It is thought that differentially phosphorylated protein isoforms might be a useful prognostic biomarker of drug response in the clinic. However, the accurate detection and quantitative analysis of cancer-related protein isoforms and phospho-isoforms in tumors are limited by current technologies. Using a novel, fully automated nanocapillary electrophoresis immunoassay (NanoProTM 1000) designed to separate protein molecules based on their isoelectric point, we developed a reliable and highly sensitive assay for the detection and quantitation of AKT isoforms and phosphoforms in breast cancer. This assay enabled the measurement of activated AKT1/2/3 in breast cancer cells using protein produced from as few as 56 cells. Importantly, we were able to assign an identity for the phosphorylated S473 phosphoform of AKT1, the major form of activated AKT involved in multiple cancers, including breast, and a current focus in clinical trials for targeted intervention. The ability of our AKT assay to detect and measure AKT phosphorylation from very low amounts of total protein will allow the accurate evaluation of patient response to drugs targeting activated PI3K-AKT using scarce clinical specimens. Moreover, the capacity of this assay to detect and measure all three AKT isoforms using one single pan-specific antibody enables the study of the multiple and variable roles that these isoforms play in AKT tumorigenesis. PMID:23929892

  18. A novel 7-bromoindirubin with potent anticancer activity suppresses survival of human melanoma cells associated with inhibition of STAT3 and Akt signaling.

    PubMed

    Liu, Lucy; Kritsanida, Marina; Magiatis, Prokopios; Gaboriaud, Nicolas; Wang, Yan; Wu, Jun; Buettner, Ralf; Yang, Fan; Nam, Sangkil; Skaltsounis, Leandros; Jove, Richard

    2012-11-01

    STAT3 and Akt signaling have been validated as potential molecular targets for treatment of cancers including melanoma. These small molecule inhibitors of STAT3 or Akt signaling are promising for developing anti-melanoma therapeutic agents. MLS-2438, a novel 7-bromoindirubin, a derivative of the natural product indirubin, was synthesized with a bromo-group at the 7-position on one indole ring and a hydrophilic group at the 3'-position on the other indole ring. We tested the anticancer activity of MLS-2438 and investigated its mechanism of action in human melanoma cell lines. Here, we show that MLS-2438 inhibits viability and induces apoptosis of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Several pro-apoptotic Bcl-2 family proteins are involved in the MLS-2438 mediated apoptosis. MLS-2438 inhibits Src kinase activity in vitro and phosphorylation of JAK2, Src, STAT3 and Akt in cultured cancer cells. In contrast to the decreased phosphorylation levels of JAK2, Src, STAT3 and Akt, phosphorylation levels of the MAPK (Erk1/2) signaling protein were not reduced in cells treated with MLS-2438. These results demonstrate that MLS-2438, a novel natural product derivative, is a Src inhibitor and potentially regulates kinase activity of JAK2 and Akt in cancer cells. Importantly, MLS-2438 suppressed tumor growth with low toxicity in a mouse xenograft model of human melanoma. Our findings support further development of MLS-2438 as a potential small-molecule therapeutic agent that targets both STAT3 and Akt signaling in human melanoma cells.

  19. TGF-β1 induces human aortic vascular smooth muscle cell phenotype switch through PI3K/AKT/ID2 signaling

    PubMed Central

    Zhu, Shui-Bo; Zhu, Jian; Zhou, Zi-Zi; Xi, Er-Ping; Wang, Rong-Ping; Zhang, Yu

    2015-01-01

    The vascular smooth muscle cell (VSMC) phenotypic switch is considered to be the key pathophysiological change in various cardiovascular diseases, such as aortic dissection, atherosclerosis, and hypertension. The results in this study showed that TGF-β1 promotes the proliferation, migration and morphological changes of VSMC.TGF-β1 promoted the expressions of PI3K, P-PI3K, AKT, P-AKT, ID2, and OPN protein and suppressed the expressions of α-SMA and SM22α protein; the opposite results were observed for TGF-β1 inhibitor group, AKT inhibitor group and Combined inhibitors group. After the stimulation of TGF-β1 signaling, the mRNA levels of PI3K, AKT, ID2, and OPN were the highest, while the mRNA levels of α-SMA and SM22α were the lowest; the opposite results were found in the same groups above. These results suggested the PI3K/AKT/ID2 signaling pathway is involved in TGF-β1-mediated human aortic VSMC phenotypic switching, that is from a contractile to synthetic phenotype, and Combined inhibitors was more effective in inhibiting the phenotypic switch than a single inhibitor. The Combined inhibitors experiments may provide new avenues for the prevention and treatment of thoracic aortic dissection (TAD) that are based on the pathological effects of phenotypic switching. PMID:26885273

  20. Vitamin E succinate induces apoptosis via the PI3K/AKT signaling pathways in EC109 esophageal cancer cells.

    PubMed

    Yang, Peng; Zhao, Jiaying; Hou, Liying; Yang, Lei; Wu, Kun; Zhang, Linyou

    2016-08-01

    Esophageal cancer is the fourth most common gastrointestinal cancer, it generally has a poor prognosis and novel strategies are required for prevention and treatment. Vitamin E succinate (VES) is a potential chemical agent for cancer prevention and therapy as it exerts anti‑tumor effects in a variety of cancers. However, the role of VES in tumorigenesis and progression of cancer remains to be elucidated. The present study aimed to determine the effects of VES in regulating the survival and apoptosis of human esophageal cancer cells. EC109 human esophageal cancer cells were used to investigate the anti‑proliferative effects of VES. The MTT and Annexin V‑fluorescein isothiocyanate/propidium iodide assays demonstrated that VES inhibited cell proliferation and induced apoptosis in esophageal cancer cells. Furthermore, VES downregulated constitutively active basal levels of phosphorylated (p)‑serine‑threonine kinase AKT (AKT) and p‑mammalian target of rapamycin (mTOR), and decreased the phosphorylation of AKT substrates Bcl‑2‑associated death receptor and caspase‑9, in addition to mTOR effectors, ribosomal protein S6 kinase β1 and eIF4E‑binding protein 1. Phosphoinositide‑3‑kinase (PI3K) inhibitor, LY294002 suppressed p‑AKT and p‑mTOR, indicating PI3K is a common upstream mediator. The apoptosis induced by VES was increased by inhibition of AKT or mTOR with their respective inhibitor in esophageal cancer cells. The results of the present study suggested that VES targeted the PI3K/AKT signaling pathways and induced apoptosis in esophageal cancer cells. Furthermore, the current study suggests that VES may be useful in a combinational therapeutic strategy employing an mTOR inhibitor.

  1. Vitamin E succinate induces apoptosis via the PI3K/AKT signaling pathways in EC109 esophageal cancer cells

    PubMed Central

    Yang, Peng; Zhao, Jiaying; Hou, Liying; Yang, Lei; Wu, Kun; Zhang, Linyou

    2016-01-01

    Esophageal cancer is the fourth most common gastrointestinal cancer, it generally has a poor prognosis and novel strategies are required for prevention and treatment. Vitamin E succinate (VES) is a potential chemical agent for cancer prevention and therapy as it exerts anti-tumor effects in a variety of cancers. However, the role of VES in tumorigenesis and progression of cancer remains to be elucidated. The present study aimed to determine the effects of VES in regulating the survival and apoptosis of human esophageal cancer cells. EC109 human esophageal cancer cells were used to investigate the anti-proliferative effects of VES. The MTT and Annexin V-fluorescein isothiocyanate/propidium iodide assays demonstrated that VES inhibited cell proliferation and induced apoptosis in esophageal cancer cells. Furthermore, VES downregulated constitutively active basal levels of phosphorylated (p)-serine-threonine kinase AKT (AKT) and p-mammalian target of rapamycin (mTOR), and decreased the phosphorylation of AKT substrates Bcl-2-associated death receptor and caspase-9, in addition to mTOR effectors, ribosomal protein S6 kinase β1 and eIF4E-binding protein 1. Phosphoinositide-3-kinase (PI3K) inhibitor, LY294002 suppressed p-AKT and p-mTOR, indicating PI3K is a common upstream mediator. The apoptosis induced by VES was increased by inhibition of AKT or mTOR with their respective inhibitor in esophageal cancer cells. The results of the present study suggested that VES targeted the PI3K/AKT signaling pathways and induced apoptosis in esophageal cancer cells. Furthermore, the current study suggests that VES may be useful in a combinational therapeutic strategy employing an mTOR inhibitor. PMID:27357907

  2. Dietary protein level and performance of growing Baladi kids.

    PubMed

    Abdelrahman, M M; Aljumaah, R S

    2014-01-01

    A study was conducted to evaluate the effect of feeding different levels of protein to black Baladi breed kids. Weanling Baladi kids (n=18; 75 to 90 days old) were selected and individually housed at our experimental farm. Kids were divided randomly to one of the three treatments for 12 weeks. The three dietary treatments were: T1: control ration, formulated according to NRC to cover the protein (level 1) and other nutrients requirements. T2: ration formulated to cover only 75% of protein (level 2) recommended by NRC. T3: control diet + 2.4 g undegradable methionine (Smartamine®)/day/kid (level 3). Feed intake, initial and monthly body weights were recorded. Blood samples were collected monthly and analyzed for metabolites and Co, Zn and Cu levels. Decreasing the dietary level of protein (T2) negatively affected (P<0.05) the total live weight gain, average daily gain and feed conversion ratio when compared with the control and T3 groups. Moreover, treatment, time and time × treatment caused a significant change on Co concentration in blood serum with higher value at the end of the experiment. Treatments had a significant effect (P<0.05) on blood serum cholesterol and protein levels. Undegradable methionine supplementation (T3) significantly increased longissimus dorsi weight, fat thickness and omental fat%. In conclusion, feeding Baladi kids below the NRC requirements of protein negatively affect the growth performance and feed efficiency. The recommended protein level by NRC for growing kids cover the requirements of growing black Baladi kids for maximum growth and productivity.

  3. Dietary protein level and performance of growing Baladi kids

    PubMed Central

    Abdelrahman, M. M.; Aljumaah, R. S.

    2014-01-01

    A study was conducted to evaluate the effect of feeding different levels of protein to black Baladi breed kids. Weanling Baladi kids (n=18; 75 to 90 days old) were selected and individually housed at our experimental farm. Kids were divided randomly to one of the three treatments for 12 weeks. The three dietary treatments were: T1: control ration, formulated according to NRC to cover the protein (level 1) and other nutrients requirements. T2: ration formulated to cover only 75% of protein (level 2) recommended by NRC. T3: control diet + 2.4 g undegradable methionine (Smartamine®)/day/kid (level 3). Feed intake, initial and monthly body weights were recorded. Blood samples were collected monthly and analyzed for metabolites and Co, Zn and Cu levels. Decreasing the dietary level of protein (T2) negatively affected (P<0.05) the total live weight gain, average daily gain and feed conversion ratio when compared with the control and T3 groups. Moreover, treatment, time and time × treatment caused a significant change on Co concentration in blood serum with higher value at the end of the experiment. Treatments had a significant effect (P<0.05) on blood serum cholesterol and protein levels. Undegradable methionine supplementation (T3) significantly increased longissimus dorsi weight, fat thickness and omental fat%. In conclusion, feeding Baladi kids below the NRC requirements of protein negatively affect the growth performance and feed efficiency. The recommended protein level by NRC for growing kids cover the requirements of growing black Baladi kids for maximum growth and productivity. PMID:27175130

  4. Glycoprotein nonmetastatic melanoma protein B extracellular fragment shows neuroprotective effects and activates the PI3K/Akt and MEK/ERK pathways via the Na+/K+-ATPase

    PubMed Central

    Ono, Yoko; Tsuruma, Kazuhiro; Takata, Masafumi; Shimazawa, Masamitsu; Hara, Hideaki

    2016-01-01

    Glycoprotein nonmetastatic melanoma protein B (GPNMB) plays important roles in various types of cancer and amyotrophic lateral sclerosis (ALS). The details of GPNMB function and its interacting protein have not been clarified. Therefore, to identify GPNMB binding partners on the cell membrane, we used membrane protein library/BLOTCHIP-MS technology, which enables us to analyze all cell membrane proteins as binding partners of the GPNMB extracellular fragment. As a result of a comprehensive search, we identified the alpha subunits of Na+/K+-ATPase (NKA) as a possible binding partner. We confirmed the interaction between the GPNMB extracellular fragment and NKA by immunoprecipitation and immunostaining in NSC-34 cells. Indeed, endogenous GPNMB extracellular fragment bound to and colocalized with NKA alpha subunits. Furthermore, exogenous GPNMB extracellular fragment, i.e., human recombinant GPNMB, also bound to and colocalized with NKA alpha subunits. Additionally, we found that the GPNMB extracellular fragment had neuroprotective effects and activated the phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathways via NKA. These findings indicated that NKA may act as a novel “receptor” for the GPNMB extracellular fragment, offering additional molecular targets for the treatment of GPNMB-related diseases, including various types of cancer and ALS. PMID:26988030

  5. A component of green tea (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins

    SciTech Connect

    Qin Jie; Xie Liping . E-mail: xielp@zjuem.zju.edu.cn; Zheng Xiangyi; Wang Yunbin; Bai Yu; Shen Huafeng; Li Longcheng; Dahiya, Rajvir

    2007-03-23

    Bladder cancer is the fourth most common cancer in men and ninth most common in women. It has a protracted course of progression and is thus an ideal candidate for chemoprevention strategies and trials. This study was conducted to evaluate the chemopreventive/antiproliferative potential of (-)-epigallocatechin gallate (EGCG, the major phytochemical in green tea) against bladder cancer and its mechanism of action. Using the T24 human bladder cancer cell line, we found that EGCG treatment caused dose- and time-dependent inhibition of cellular proliferation and cell viability, and induced apoptosis. Mechanistically, EGCG inhibits phosphatidylinositol 3'-kinase/Akt activation that, in turn, results in modulation of Bcl-2 family proteins, leading to enhanced apoptosis of T24 cells. These findings suggest that EGCG may be an important chemoprevention agent for the management of bladder cancer.

  6. Dysregulation of AKT Pathway by SMYD2-Mediated Lysine Methylation on PTEN.

    PubMed

    Nakakido, Makoto; Deng, Zhenzhong; Suzuki, Takehiro; Dohmae, Naoshi; Nakamura, Yusuke; Hamamoto, Ryuji

    2015-04-01

    Phosphatase and tensin homologue (PTEN), one of the well-characterized tumor suppressor proteins, counteracts the phosphatidylinositol 3-kinase-AKT pathway through its unique lipid phosphatase activity. The functions of PTEN are regulated by a variety of posttranslational modifications such as acetylation, oxidation, ubiquitylation, phosphorylation, and SUMOylation. However, methylation of PTEN has not been reported so far. In this study, we demonstrated that the oncogenic protein lysine methyltransferase SET and MYND domain containing 2 (SMYD2) methylates PTEN at lysine 313 in vitro and in vivo. Knockdown of SMYD2 suppressed the cell growth of breast cancer cells and attenuated phosphorylation levels of AKT, indicating that SMYD2-mediated methylation negatively regulates PTEN tumor suppressor activity and results in activation of the phosphatidylinositol 3-kinase-AKT pathway. Furthermore, PTEN protein with lysine 313 substitution diminished phosphorylation of PTEN at serine 380, which is known to inactivate tumor suppressor functions of PTEN. Taken together, our findings unveil a novel mechanism of PTEN dysregulation regulated by lysine methylation in human cancer. PMID:25925379

  7. Plasma protein carbonyl levels and breast cancer risk.

    PubMed

    Rossner, Pavel; Terry, Mary Beth; Gammon, Marilie D; Agrawal, Meenakshi; Zhang, Fang Fang; Ferris, Jennifer S; Teitelbaum, Susan L; Eng, Sybil M; Gaudet, Mia M; Neugut, Alfred I; Santella, Regina M

    2007-01-01

    To study the role of oxidative stress in breast cancer risk, we analysed plasma levels of protein carbonyls in 1050 cases and 1107 controls. We found a statistically significant trend in breast cancer risk in relation to increasing quartiles of plasma protein carbonyl levels (OR = 1.2, 95% CI = 0.9-1.5; OR = 1.5, 95% CI = 1.2-2.0; OR = 1.6, 95% CI = 1.2-2.1, for the 2(nd), 3(rd) and 4(th) quartile relative to the lowest quartile, respectively, P for trend = 0.0001). The increase in risk was similar for younger (<50 years) and older women, more pronounced among women with higher physical activity levels (0.7 hrs/week for 4(th) quartile versus lowest quartile OR = 2.0, 95% CI = 1.4-3.0), higher alcohol consumption (> or = 15 grams/day for 4(th) quartile versus lowest quartile OR = 2.3, 95% CI = 1.1-4.7), and hormone replacement therapy use (HRT, OR = 2.6, 95% CI = 1.6-4.4 for 4(th) quartile versus lowest quartile). The multiplicative interaction terms were statistically significant only for physical activity and HRT. The positive association between plasma protein carbonyl levels and breast cancer risk was also observed when the analysis was restricted to women who had not received chemotherapy or radiation therapy prior to blood collection. Among controls, oxidized protein levels significantly increased with cigarette smoking and higher fruit and vegetable consumption, and decreased with alcohol consumption >30 grams per day. Women with higher levels of plasma protein carbonyl and urinary 15F(2t)-isoprostane had an 80% increase in breast cancer risk (OR = 1.8, 95% CI = 1.2-2.6) compared to women with levels below the median for both markers of oxidative stress. In summary, our results suggest that increased plasma protein carbonyl levels may be associated with breast cancer risk.

  8. Soy protein isolate molecular level contributions to bulk adhesive properties

    NASA Astrophysics Data System (ADS)

    Shera, Jeanne Norton

    Increasing environmental awareness and the recognized health hazards of formaldehyde-based resins has prompted a strong demand for environmentally-responsible adhesives for wood composites. Soy protein-based adhesives have been shown to be commercially viable with 90-day shelf stability and composite physical properties comparable to those of commercial formaldehyde-based particleboards. The main research focus is to isolate and characterize the molecular level features in soy protein isolate responsible for providing mechanical properties, storage stability, and water resistance during adhesive formulation, processing, and wood composite fabrication. Commercial composite board will be reviewed to enhance our understanding of the individual components and processes required for particleboard production. The levels of protein structure will be defined and an overview of current bio-based technology will be presented. In the process, the logic for utilizing soy protein as a sole binder in the adhesive will be reinforced. Variables such as adhesive components, pH, divalent ions, blend aging, protein molecular weight, formulation solids content, and soy protein functionalization will relate the bulk properties of soy protein adhesives to the molecular configuration of the soybean protein. This work has demonstrated that when intermolecular beta-sheet interactions and protein long-range order is disrupted, viscosity and mechanical properties decrease. Storage stability can be maintained through the stabilization of intermolecular beta-sheet interactions. When molecular weight is reduced through enzymatic digestion, long-range order is disrupted and viscosity and mechanical properties decrease accordingly. Processibility and physical properties must be balanced to increase solids while maintaining low viscosity, desirable mechanical properties, and adequate storage stability. The structure of the soybean protein must be related to the particleboard bulk mechanical

  9. Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells.

    PubMed

    Gu, Zhennan; Wu, Jiansheng; Wang, Shihua; Suburu, Janel; Chen, Haiqin; Thomas, Michael J; Shi, Lihong; Edwards, Iris J; Berquin, Isabelle M; Chen, Yong Q

    2013-09-01

    AKT is a serine-threonine protein kinase that plays important roles in cell growth, proliferation and apoptosis. It is activated after binding to phosphatidylinositol phosphates (PIPs) with phosphate groups at positions 3,4 and 3,4,5 on the inositol ring. In spite of extensive research on AKT, one aspect has been largely overlooked, namely the role of the fatty acid chains on PIPs. PIPs are phospholipids composed of a glycerol backbone with fatty acids at the sn-1 and sn-2 position and inositol at the sn-3 position. Here, we show that polyunsaturated fatty acids (PUFAs) modify phospholipid content. Docosahexaenoic acid (DHA), an ω3 PUFA, can replace the fatty acid at the sn-2 position of the glycerol backbone, thereby changing the species of phospholipids. DHA also inhibits AKT(T308) but not AKT(S473) phosphorylation, alters PI(3,4,5)P3 (PIP3) and phospho-AKT(S473) protein localization, decreases pPDPK1(S241)-AKT and AKT-BAD interaction and suppresses prostate tumor growth. Our study highlights a potential novel mechanism of cancer inhibition by ω3 PUFA through alteration of PIP3 and AKT localization and affecting the AKT signaling pathway.

  10. Thr308 determines Akt1 nuclear localization in insulin-stimulated keratinocytes

    SciTech Connect

    Goren, Itamar; Mueller, Elke; Pfeilschifter, Josef

    2008-07-18

    Here, we determined the localization and activation of protein kinase B (Akt) in acute cutaneous wound tissue in mice. Akt1 represented the major Akt isoform that was expressed and activated in wound margin keratinocytes and also in the cultured human keratinocyte line HaCaT. Mutation of Akt1 protein, exchanging the activation-essential Ser473 and Thr308 residues for inactive Ala or phosphorylation-mimicking Asp and Glu residues, revealed that phosphorylation of Ser473 represented an essential prerequisite for auto-phosphorylation of Thr308 within the Akt1 protein in keratinocytes. Moreover, cell culture experiments and transfection studies using Thr308 mutated Akt1 proteins demonstrated that phosphorylation of Akt1 at Thr308 appeared to selectively exclude the active kinase from the nucleus and direct the kinase to the cytoplasmic compartment in keratinocytes upon insulin stimulation. In summary, our data show that phosphorylation of Thr308 during insulin-mediated Akt1 activation is an essential prerequisite to exclude Akt1 from the nuclear compartment.

  11. Visual detection of Akt mRNA in living cell using gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Tian, Caiping; Li, Siwen; Wang, Zhaohui; Gu, Yueqing

    2014-09-01

    PI3K-Akt signaling pathway plays the key role in cell apoptosis and survival, and the components of PI3K /Akt signaling pathway are often abnormally expressed in human tumors. Therefore, determination of the Akt (protein kinase B, PKB) messenger ribonucleic acid (mRNA) expression is significantly important in understanding the mechanism of tumor progression. In this study, we designed a special hairpin deoxyribonucleic acid (DNA) functionalized with gold nanoparticles and fluorescein isothiocyanate(FITC) as a beacon for detecting human Akt mRNA. Spectrofluorometer was used to detect the fluorescence quenching and recovery of the beacons, and laser confocal scanning microscopy was adopted to image Akt mRNA in cells. The results showed that this beacon could sensitively and quantitatively measure the Akt mRNA in living cells . This strategy is potentially useful for the cellular imaging of RNA or protein expression in living cells.

  12. Progesterone is neuroprotective against ischemic brain injury through its effects on the PI3K/Akt signaling pathway

    PubMed Central

    Ishrat, Tauheed; Sayeed, Iqbal; Atif, Fahim; Hua, Fang; Stein, Donald G.

    2012-01-01

    We tested the hypothesis that the phosphatidylinositol-3 kinase (PI3K/Akt) pathway mediates some of the neuroprotective effects of progesterone (PROG) after ischemic stroke. We examined whether PROG acting through the PI3K/Akt pathway could affect the expression of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF). Rats underwent permanent focal cerebral ischemia (pMCAO) by electro-coagulation and received intraperitoneal injections of PROG (8mg/kg) or vehicle at 1h post-occlusion and subcutaneous injections at 6, 24, and 48h. PAkt/Akt levels, apoptosis and apoptosis-related proteins (pBAD, BAD, caspase-3, and cleaved caspase-3) were analyzed by TUNEL assays, Western blotting and immunohistochemistry at 24h post-pMCAO. VEGF and BDNF were analyzed at 24, 72h and 14 days post-pMCAO with Western blots. Following pMCAO, PROG treatment significantly (p<0.05) reduced ischemic lesion size and edema. Treatment with PROG significantly (p<0.05) decreased VEGF at 24 and 72h but increased VEGF expression 14d after injury. The treatment also increased BDNF, and attenuated apoptosis by increasing Akt phosphorylation compared to vehicle-alone. The selective PI3K inhibitor Wortmannin compromised PROG-induced neuroprotective effects and reduced the elevation of pAkt levels in the ischemic penumbra. Our findings lead us to suggest that the PI3K/Akt pathway can play a role in mediating the neuroprotective effects of PROG after stroke by altering the expression of trophic factors in the brain. PMID:22450229

  13. Regulation of Bax/mitochondria interaction by AKT.

    PubMed

    Simonyan, Lilit; Renault, Thibaud T; Novais, Maria João da Costa; Sousa, Maria João; Côrte-Real, Manuela; Camougrand, Nadine; Gonzalez, Cécile; Manon, Stéphen

    2016-01-01

    Bax-dependent mitochondrial permeabilization during apoptosis is controlled by multiple factors, including the phosphorylation by the protein kinase AKT. We used the heterologous co-expression of human Bax and AKT1 in yeast to investigate how the kinase modulates the different steps underlying Bax activation. We found that AKT activated Bax and increased its cellular content. Both effects were dependent on Ser184, but a phosphorylation of this residue did not fully explain the effects of AKT. Additional experiments with mutants substituted on Ser184 suggested that the regulation of Bax dynamic equilibrium between the cytosol and mitochondria might be more tightly regulated by Bcl-xL when Bax is phosphorylated. PMID:26763134

  14. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    NASA Astrophysics Data System (ADS)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  15. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    SciTech Connect

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  16. Cadmium Activates Multiple Signaling Pathways That Coordinately Stimulate Akt Activity to Enhance c-Myc mRNA Stability

    PubMed Central

    Tsai, Jia-Shiuan; Chao, Cheng-Han; Lin, Lih-Yuan

    2016-01-01

    Cadmium is a known environmental carcinogen. Exposure of Cd leads to the activation of several proto-oncogenes in cells. We investigated here the mechanism of c-Myc expression in hepatic cells under Cd treatment. The c-Myc protein and mRNA levels increased in dose- and time-dependent manners in HepG2 cells with Cd treatment. This increase was due to an increase in c-Myc mRNA stability. To explore the mechanism involved in enhancing the mRNA stability, several cellular signaling factors that evoked by Cd treatment were analyzed. PI3K, p38, ERK and JNK were activated by Cd. However, ERK did not participate in the Cd-induced c-Myc expression. Further analysis revealed that mTORC2 was a downstream factor of p38. PI3K, JNK and mTORC2 coordinately activated Akt. Akt was phosphorylated at Thr450 in the untreated cells. Cd treatment led to additional phosphorylation at Thr308 and Ser473. Blocking any of the three signaling factors resulted in the reduction of phosphorylation level at all three Akt sites. The activated Akt phosphorylated Foxo1 and allowed the modified protein to translocate into the cytoplasm. We conclude that Cd-induced accumulation of c-Myc requires the activation of several signaling pathways. The signals act coordinately for Akt activation and drive the Foxo1 from the nucleus to the cytoplasm. Reduction of Foxo1 in the nucleus reduces the transcription of its target genes that may affect c-Myc mRNA stability, resulting in a higher accumulation of the c-Myc proteins. PMID:26751215

  17. Targeted Apoptotic Effects of Thymoquinone and Tamoxifen on XIAP Mediated Akt Regulation in Breast Cancer

    PubMed Central

    Rajput, Shashi; Kumar, B. N. Prashanth; Sarkar, Siddik; Das, Subhasis; Azab, Belal; Santhekadur, Prasanna K.; Das, Swadesh K.; Emdad, Luni; Sarkar, Devanand; Fisher, Paul B.; Mandal, Mahitosh

    2013-01-01

    X-linked inhibitor of apoptosis protein (XIAP) is constitutively expressed endogenous inhibitor of apoptosis, exhibit its antiapoptotic effect by inactivating key caspases such as caspase-3, caspase-7 and caspase-9 and also play pivotal role in rendering cancer chemoresistance. Our studies showed the coadministration of TQ and TAM resulting in a substantial increase in breast cancer cell apoptosis and marked inhibition of cell growth both in vitro and in vivo. Anti-angiogenic and anti-invasive potential of TQ and TAM was assessed through in vitro studies. This novel combinatorial regimen leads to regulation of multiple cell signaling targets including inactivation of Akt and XIAP degradation. At molecular level, TQ and TAM synergistically lowers XIAP expression resulting in binding and activation of caspase-9 in apoptotic cascade, and interfere with cell survival through PI3-K/Akt pathway by inhibiting Akt phosphorylation. Cleaved caspase-9 further processes other intracellular death substrates such as PARP thereby shifting the balance from survival to apoptosis, indicated by rise in the sub-G1 cell population. This combination also downregulates the expression of Akt-regulated downstream effectors such as Bcl-xL, Bcl-2 and induce expression of Bax, AIF, cytochrome C and p-27. Consistent with these results, overexpression studies further confirmed the involvement of XIAP and its regulatory action on Akt phosphorylation along with procaspase-9 and PARP cleavage in TQ-TAM coadministrated induced apoptosis. The ability of TQ and TAM in inhibiting XIAP was confirmed through siRNA-XIAP cotransfection studies. This novel modality may be a promising tool in breast cancer treatment. PMID:23613836

  18. Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus

    PubMed Central

    Liu, Pengda; Begley, Michael; Michowski, Wojciech; Inuzuka, Hiroyuki; Ginzberg, Miriam; Gao, Daming; Tsou, Peiling; Gan, Wenjian; Papa, Antonella; Kim, Byeong Mo; Wan, Lixin; Singh, Amrik; Zhai, Bo; Yuan, Min; Wang, Zhiwei; Gygi, Steven P.; Lee, Tae Ho; Lu, Kun-Ping; Toker, Alex; Pandolfi, Pier Paolo; Asara, John M.; Kirschner, Marc W.; Sicinski, Piotr; Cantley, Lewis; Wei, Wenyi

    2014-01-01

    Akt, also known as protein kinase B, plays key roles in cell proliferation, survival and metabolism. Akt hyperactivation contributes to many pathophysiological conditions, including human cancers1–3, and is closely associated with poor prognosis and chemo- or radio-therapeutic resistance4. Phosphorylation of Akt at S473 (ref. 5) and T308 (ref. 6) activates Akt. However, it remains unclear whether further mechanisms account for full Akt activation, and whether Akt hyperactivation is linked to misregulated cell cycle progression, another cancer hallmark7. Here we report that Akt activity fluctuates across the cell cycle, mirroring cyclin A expression. Mechanistically, phosphorylation of S477 and T479 at the Akt extreme carboxy terminus by cyclin-dependent kinase 2 (Cdk2)/cyclin A or mTORC2, under distinct physiological conditions, promotes Akt activation through facilitating, or functionally compensating for, S473 phosphorylation. Furthermore, deletion of the cyclin A2 allele in the mouse olfactory bulb leads to reduced S477/T479 phosphorylation and elevated cellular apoptosis. Notably, cyclin A2-deletion-induced cellular apoptosis in mouse embryonic stem cells is partly rescued by S477D/T479E-Akt1, supporting a physiological role for cyclin A2 in governing Akt activation. Together, the results of our study show Akt S477/T479 phosphorylation to be an essential layer of the Akt activation mechanism to regulate its physiological functions, thereby providing a new mechanistic link between aberrant cell cycle progression and Akt hyperactivation in cancer. PMID:24670654

  19. Expression of phosphorylated Akt/mTOR and clinical significance in human ameloblastoma

    PubMed Central

    Li, Ning; Sui, Jianfu; Liu, Hao; Zhong, Ming; Zhang, Min; Wang, Yan; Hao, Fengyu

    2015-01-01

    This study aimed to evaluate the expression of AKT and phosphorylated AKT (p-Akt) in human ameloblastoma (AB). Immunohistochemistry showed human AB was positive for Akt and Akt expression was mainly found in the cytoplasm of epithelial cells. The Akt expression in AB was significantly higher than that in normal oral mucosa (NOM), but still lower than that in oral squamous cell carcinoma (OSCC). NOM was negative for p-Akt, but AB was positive for p-Akt. In some AB tissues, p-Akt expression was found in both cytoplasm and nucleus. Akt expression in AB was significantly different from that in NOM and OSCC. The p-Akt in AB was markedly higher than that in NOM, but lower than that in OSCC. mTOR expressed in cytoplasm in AB, but not in NOM. P-mTOR expressed on cell membrane in NOM, while in cytoplasm and nucleus in Ab. Results of western blot assay showed that Akt expression was found in all the AB tissues, and increased in tissues with malignant transformation. In addition, the p-Akt expression also markedly increased in AB, but was still lower than that in OSCC tissues. Compared to NOM, mTOR and p-mTOR expression significantly increased in AB. BandScan 5.0 software was used to detect the optical density of protein bands. Results showed p-Akt, mTOR and p-mTOR expression in AB was markedly different from that in control group. PMID:26131097

  20. Non-thermal plasma induces AKT degradation through turn-on the MUL1 E3 ligase in head and neck cancer

    PubMed Central

    Kim, Sun-Yong; Kim, Haeng-Jun; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Shin, Yoo Seob; Kim, Yeon Soo; Lee, Keunho; Kim, Chul-Ho

    2015-01-01

    Recent research on non-thermal plasma (NTP, an ionized gas) has identified it as a novel cancer therapeutic tool. However, the molecular mechanism remains unclear. In this study, we demonstrated NTP induced cell death of head and neck cancer (HNC) through the AKT ubiquitin–proteasome system. NTP increased the gene expression of mitochondrial E3 ubiquitin protein ligase 1 (MUL1), an E3 ligase for AKT, and NTP-induced HNC cell death was prevented by MUL1 siRNA. We also showed that MUL1 inhibited the level of AKT and p-AKT and MUL1 expression was increased by NTP-induced ROS. Furthermore, we optimized and manufactured a new type of NTP, a liquid type of NTP (LTP). In syngeneic and xenograft in vivo tumor models, LTP inhibited tumor progression by increasing the MUL1 level and reducing p-AKT levels, indicating that LTP also has an anti-cancer effect through the same mechanism as that of NTP. Taken together, our results suggest that NTP and LTP have great potential for HNC therapy. PMID:26450902

  1. Oncogenic NanogP8 expression regulates cell proliferation and migration through the Akt/mTOR signaling pathway in human gastric cancer – SGC-7901cell line

    PubMed Central

    Jiang, Zheng; Liu, Yao; Wang, Chuan

    2016-01-01

    Background Although elevated expression of NanogP8 has been detected in many human tumor tissues, its role in gastric tumorigenesis remains unclear. Therefore, this study aimed to investigate the function and regulatory mechanism of NanogP8 in gastric cancer. Methods In this study, NanogP8 cDNA was amplified by real time polymerase chain reaction from the human gastric cancer cell line SGC-7901. The shRNA for RNA interference was established. The NanogP8, pAkt, Akt, pERK, ERK, p-mTOR, and mTOR proteins were detected by using the Western blot assay. Cell viability was evaluated by using the CCK-8 assay. Cell migration and invasion were also examined by using the transwell assay. Results The results indicated that the NanogP8 overexpression promoted proliferation and migration of SGC-7901 cell line, whereas its ablation exerted opposite effects. Interestingly, NanogP8 activated Akt, a key mediator of survival signals, and without affecting total Akt protein level. The NanogP8-increased gastric cell proliferation was downregulated by Akt inhibition. Our results further showed that increasing NanogP8 expression in human gastric cancer cells promoted cell proliferation by activating the AKT/mTOR pathway and further maintained gastric cell survival. Conclusion Our findings extend the knowledge regarding the oncogenic functions and proved that the NanogP8 regulates cell proliferation and migration by Akt/mTOR signaling pathway in human gastric cancer SGC-7901cell line. PMID:27563247

  2. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    SciTech Connect

    Roffe, Suzy; Hagai, Yosey; Pines, Mark; Halevy, Orna

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  3. Akt3 controls vascular endothelial growth factor secretion and angiogenesis in ovarian cancer cells.

    PubMed

    Liby, Tiera A; Spyropoulos, Perry; Buff Lindner, Haley; Eldridge, Juanita; Beeson, Craig; Hsu, Tien; Muise-Helmericks, Robin C

    2012-02-01

    The PI3 kinase/Akt pathway is commonly deregulated in human cancers, functioning in such processes as proliferation, glucose metabolism, survival and motility. We have previously described a novel function for one of the Akt isoforms (Akt3) in primary endothelial cells: the control of VEGF-induced mitochondrial biogenesis. We sought to determine if Akt3 played a similar role in carcinoma cells. Because the PI3 kinase/Akt pathway has been strongly implicated as a key regulator in ovarian carcinoma, we tested the role of Akt3 in this tumor type. Silencing of Akt3 by shRNA did not cause an overt reduction in mitochondrial gene expression in a series of PTEN positive ovarian cancer cells. Rather, we find that blockade of Akt3, results in smaller, less vascularized tumors in a xenograft mouse model that is correlated with a reduction in VEGF expression. We find that blockade of Akt3, but not Akt1, results in a reduction in VEGF secretion and retention of VEGF protein in the endoplasmic reticulum (ER). The reduction in secretion under conditions of Akt3 blockade is, at least in part, due to the down regulation of the resident golgi protein and reported tumor cell marker, RCAS1. Conversely, over-expression of Akt3 results in an increase in RCAS1 expression and in VEGF secretion. Silencing of RCAS1 using siRNA inhibits VEGF secretion. These findings suggest an important role for Akt3 in the regulation of RCAS1 and VEGF secretion in ovarian cancer cells.

  4. Multi-level machine learning prediction of protein-protein interactions in Saccharomyces cerevisiae.

    PubMed

    Zubek, Julian; Tatjewski, Marcin; Boniecki, Adam; Mnich, Maciej; Basu, Subhadip; Plewczynski, Dariusz

    2015-01-01

    Accurate identification of protein-protein interactions (PPI) is the key step in understanding proteins' biological functions, which are typically context-dependent. Many existing PPI predictors rely on aggregated features from protein sequences, however only a few methods exploit local information about specific residue contacts. In this work we present a two-stage machine learning approach for prediction of protein-protein interactions. We start with the carefully filtered data on protein complexes available for Saccharomyces cerevisiae in the Protein Data Bank (PDB) database. First, we build linear descriptions of interacting and non-interacting sequence segment pairs based on their inter-residue distances. Secondly, we train machine learning classifiers to predict binary segment interactions for any two short sequence fragments. The final prediction of the protein-protein interaction is done using the 2D matrix representation of all-against-all possible interacting sequence segments of both analysed proteins. The level-I predictor achieves 0.88 AUC for micro-scale, i.e., residue-level prediction. The level-II predictor improves the results further by a more complex learning paradigm. We perform 30-fold macro-scale, i.e., protein-level cross-validation experiment. The level-II predictor using PSIPRED-predicted secondary structure reaches 0.70 precision, 0.68 recall, and 0.70 AUC, whereas other popular methods provide results below 0.6 threshold (recall, precision, AUC). Our results demonstrate that multi-scale sequence features aggregation procedure is able to improve the machine learning results by more than 10% as compared to other sequence representations. Prepared datasets and source code for our experimental pipeline are freely available for download from: http://zubekj.github.io/mlppi/ (open source Python implementation, OS independent).

  5. Multi-level machine learning prediction of protein-protein interactions in Saccharomyces cerevisiae.

    PubMed

    Zubek, Julian; Tatjewski, Marcin; Boniecki, Adam; Mnich, Maciej; Basu, Subhadip; Plewczynski, Dariusz

    2015-01-01

    Accurate identification of protein-protein interactions (PPI) is the key step in understanding proteins' biological functions, which are typically context-dependent. Many existing PPI predictors rely on aggregated features from protein sequences, however only a few methods exploit local information about specific residue contacts. In this work we present a two-stage machine learning approach for prediction of protein-protein interactions. We start with the carefully filtered data on protein complexes available for Saccharomyces cerevisiae in the Protein Data Bank (PDB) database. First, we build linear descriptions of interacting and non-interacting sequence segment pairs based on their inter-residue distances. Secondly, we train machine learning classifiers to predict binary segment interactions for any two short sequence fragments. The final prediction of the protein-protein interaction is done using the 2D matrix representation of all-against-all possible interacting sequence segments of both analysed proteins. The level-I predictor achieves 0.88 AUC for micro-scale, i.e., residue-level prediction. The level-II predictor improves the results further by a more complex learning paradigm. We perform 30-fold macro-scale, i.e., protein-level cross-validation experiment. The level-II predictor using PSIPRED-predicted secondary structure reaches 0.70 precision, 0.68 recall, and 0.70 AUC, whereas other popular methods provide results below 0.6 threshold (recall, precision, AUC). Our results demonstrate that multi-scale sequence features aggregation procedure is able to improve the machine learning results by more than 10% as compared to other sequence representations. Prepared datasets and source code for our experimental pipeline are freely available for download from: http://zubekj.github.io/mlppi/ (open source Python implementation, OS independent). PMID:26157620

  6. Fragile Histidine Triad (FHIT) Suppresses Proliferation and Promotes Apoptosis in Cholangiocarcinoma Cells by Blocking PI3K-Akt Pathway

    PubMed Central

    Huang, Qiang; Liu, Zhen; Xie, Fang; Liu, Chenhai; Shao, Feng; Zhu, Cheng-lin; Hu, Sanyuan

    2014-01-01

    Fragile histidine triad (FHIT) is a tumor suppressor protein that regulates cancer cell proliferation and apoptosis. However, its exact mechanism of action is poorly understood. Phosphatidylinositol 3-OH kinase (PI3K)-Akt-survivin is an important signaling pathway that was regulated by FHIT in lung cancer cells. To determine whether FHIT can regulate this pathway in cholangiocarcinoma QBC939 cells, we constructed an FHIT expression plasmid and used it to transfect QBC939 cells. Protein and mRNA expression were measured by western blotting and qRT-PCR, respectively. The viability and apoptosis of QBC939 cells were then assessed using MTT assays and flow cytometry. Our results revealed that the expression of survivin and Bcl-2 was downregulated, and caspase 3 was upregulated, in cells overexpressing FHIT. In addition, FHIT suppressed the phosphorylation of Akt. The changes in cell proliferation and apoptosis were obvious in cells overexpressing FHIT which parallels that of treatment with LY294002, a potent inhibitor of phosphoinositide 3-kinases. Treatment with LY294002 further decreased the expression of survivin and Bcl-2 and increased caspase-3 levels. These results suggest that FHIT can block the PI3K-Akt-survivin pathway by suppressing the phosphorylation of Akt and the expression of survivin and Bcl-2 and upregulating caspase 3. PMID:24757411

  7. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    PubMed

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC.

  8. SchA-p85-FAK complex dictates isoform-specific activation of Akt2 and subsequent PCBP1-mediated post-transcriptional regulation of TGFβ-mediated epithelial to mesenchymal transition in human lung cancer cell line A549.

    PubMed

    Xue, Xinying; Wang, Xin; Liu, Yuxia; Teng, Guigen; Wang, Yong; Zang, Xuefeng; Wang, Kaifei; Zhang, Jinghui; Xu, Yali; Wang, Jianxin; Pan, Lei

    2014-08-01

    A post-transcriptional pathway by which TGF-β modulates expression of specific proteins, Disabled-2 (Dab2) and Interleukin-like EMT Inducer (ILEI), inherent to epithelial to mesenchymal transition (EMT) in murine epithelial cells through Akt2-mediated phosphorylation of poly r(C) binding protein (PCBP1), has been previously elucidated. The aims of the current study were to determine if the same mechanism is operative in the non-small cell lung cancer (NSCLC) cell line, A549, and to delineate the underlying mechanism. Steady-state transcript and protein expression levels of Dab2 and ILEI were examined in A549 cells treated with TGF-β for up to 48 h. Induction of translational de-repression in this model was quantified by polysomal fractionation followed by qRT-PCR. The underlying mechanism of isoform-specific activation of Akt2 was elucidated through a combination of co-immunoprecipitation studies. TGF-β induced EMT in A549 cells concomitant with translational upregulation of Dab2 and ILEI proteins through isoform-specific activation of Akt2 followed by phosphorylation of PCBP1 at serine-43. Our experiments further elucidated that the adaptor protein SchA is phosphorylated at tyrosine residues following TGF-β treatment, which initiated a signaling cascade resulting in the sequential recruitment of p85 subunit of PI3K and focal adhesion kinase (FAK). The SchA-FAK-p85 complex subsequently selectively recruited and activated Akt2, not Akt1. Inhibition of the p85 subunit through phosphorylated 1257 peptide completely attenuated EMT in these cells. We have defined the underlying mechanism responsible for isoform-specific recruitment and activation of Akt2, not Akt1, during TGF-β-mediated EMT in A549 cells. Inhibition of the formation of this complex thus represents an important and novel therapeutic target in metastatic lung carcinoma. PMID:24819169

  9. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia.

    PubMed

    Jansen, Laura A; Mirzaa, Ghayda M; Ishak, Gisele E; O'Roak, Brian J; Hiatt, Joseph B; Roden, William H; Gunter, Sonya A; Christian, Susan L; Collins, Sarah; Adams, Carissa; Rivière, Jean-Baptiste; St-Onge, Judith; Ojemann, Jeffrey G; Shendure, Jay; Hevner, Robert F; Dobyns, William B

    2015-06-01

    Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum.

  10. Vitamin E Facilitates the Inactivation of the Kinase Akt by the Phosphatase PHLPP1

    PubMed Central

    Huang, Po-Hsien; Chuang, Hsiao-Ching; Chou, Chih-Chien; Wang, Huiling; Lee, Su-Lin; Yang, Hsiao-Ching; Chiu, Hao-Chieh; Kapuriya, Naval; Wang, Dasheng; Kulp, Samuel K.; Chen, Ching-Shih

    2014-01-01

    Vitamin E is a fat-soluble vitamin that includes isomers of tocopherols and tocotrienols which are known for their antioxidant properties. Tocopherols are the predominant form encountered in the diet and through supplementation, and have garnered interest for their potential cancer therapeutic and chemopreventive effects, which include the dephosphorylation of Akt, a serine/threonine kinase that plays a pivotal role in important cellular processes, such as cell growth, survival, metabolism and motility. Full catalytic activation of Akt requires phosphorylation at both Thr308 and Ser473. Dephosphorylation of Ser473 drastically reduces Akt catalytic activity and the number of downstream substrates it can regulate. The mechanism by which α- and γ-tocopherol facilitate the selective dephosphorylation of the kinase Akt at Ser473 was investigated. We showed that this site-specific Akt dephosphorylation was mediated through the pleckstrin homology (PH) domain-dependent recruitment to the plasma membrane of Akt and PHLPP1 (PH domain leucine-rich repeat protein phosphatase, isoform 1), a phosphatase that dephosphorylates Akt at Ser473. The ability of α- and γ-tocopherol to induce PHLPP-mediated Akt inhibition established PHLPP as a “druggable” target. We structurally optimized these tocopherols to obtain derivatives with greater in vitro potency and in vivo tumor-suppressive activity in two prostate xenograft tumor models. Binding affinities for the PH domains of Akt and PHLPP1 were greater than for other PH domain-containing proteins, which may underlie the preferential membrane recruitment of these proteins. Molecular modeling revealed the structural determinants of the interaction with the PH domain of Akt that may inform strategies for continued structural optimization. These findings describe a mechanism by which tocopherols facilitate the dephosphorylation of Akt at Ser473, thereby providing insights into the mode of antitumor action of tocopherols and a

  11. Extensive Crosstalk between O-GlcNAcylation and Phosphorylation Regulates Akt Signaling

    PubMed Central

    Sun, Danni; Xin, Xianliang; Pan, Qiuming; Peng, Shuying; Liang, Zhongjie; Luo, Cheng; Yang, Yiming; Jiang, Hualiang; Huang, Min; Chai, Wengang; Ding, Jian; Geng, Meiyu

    2012-01-01

    O-linked N-acetylglucosamine glycosylations (O-GlcNAc) and O-linked phosphorylations (O-phosphate), as two important types of post-translational modifications, often occur on the same protein and bear a reciprocal relationship. In addition to the well documented phosphorylations that control Akt activity, Akt also undergoes O-GlcNAcylation, but the interplay between these two modifications and the biological significance remain unclear, largely due to the technique challenges. Here, we applied a two-step analytic approach composed of the O-GlcNAc immunoenrichment and subsequent O-phosphate immunodetection. Such an easy method enabled us to visualize endogenous glycosylated and phosphorylated Akt subpopulations in parallel and observed the inhibitory effect of Akt O-GlcNAcylations on its phosphorylation. Further studies utilizing mass spectrometry and mutagenesis approaches showed that O-GlcNAcylations at Thr 305 and Thr 312 inhibited Akt phosphorylation at Thr 308 via disrupting the interaction between Akt and PDK1. The impaired Akt activation in turn resulted in the compromised biological functions of Akt, as evidenced by suppressed cell proliferation and migration capabilities. Together, this study revealed an extensive crosstalk between O-GlcNAcylations and phosphorylations of Akt and demonstrated O-GlcNAcylation as a new regulatory modification for Akt signaling. PMID:22629392

  12. Smoking, COPD and 3-Nitrotyrosine Levels of Plasma Proteins

    SciTech Connect

    Jin, Hongjun; Webb-Robertson, Bobbie-Jo M.; Peterson, Elena S.; Tan, Ruimin; Bigelow, Diana J.; Scholand, Mary Beth; Hoidal, John R.; Pounds, Joel G.; Zangar, Richard C.

    2011-09-01

    BACKGROUND: Nitric oxide is a physiologically regulator of endothelial function and hemodynamics. Oxidized products of nitric oxide can form nitrotyrosine, which is a marker of nitrative stress. Cigarette smoking decreases exhaled nitric oxide, and the underlying mechanism may be important in the cardiovascular toxicity of cigarette smoke, although it is not clear if this effect results from decreased nitric oxide production or oxidation of nitric oxide to reactive, nitrating, species. These processes would be expected to have opposite effects on nitrotyrosine levels, a marker of nitrative stress. OBJECTIVE: In this study, we determine the effects of smoking and chronic obstructive pulmonary disease (COPD) on circulating levels of nitrotyrosine, and thereby gain insight into the processes regulating nitrotyrosine formation. METHODS: A custom antibody microarray platform was used to analyze the levels of 3-nitrotyrosine modifications on 24 proteins in plasma. Plasma samples from 458 individuals were analyzed. RESULTS: Nitrotyrosine levels in circulating proteins were uniformly reduced in smokers but increased in COPD patients. We also observed a persistent suppression of nitrotyrosine in former smokers. CONCLUSIONS: Smoking broadly suppresses the levels of 3-nitrotyrosine in plasma proteins, suggesting that cigarette smoke suppresses endothelial nitric oxide production. In contrast, the increase in nitrotyrosine levels in COPD patients most likely results from inflammatory processes. This study provides the first evidence that smoking has irreversible effects on endothelial production of nitric oxide, and provides insight into how smoking could induce a loss of elasticity in the vasculature and a long-term increase in the risk of cardiovascular disease.

  13. EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function.

    PubMed

    Phuchareon, Janyaporn; McCormick, Frank; Eisele, David W; Tetsu, Osamu

    2015-07-21

    Nonsmall cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. About 14% of NSCLCs harbor mutations in epidermal growth factor receptor (EGFR). Despite remarkable progress in treatment with tyrosine kinase inhibitors (TKIs), only 5% of patients achieve tumor reduction >90%. The limited primary responses are attributed partly to drug resistance inherent in the tumor cells before therapy begins. Recent reports showed that activation of receptor tyrosine kinases (RTKs) is an important determinant of this innate drug resistance. In contrast, we demonstrate that EGFR inhibition promotes innate drug resistance despite blockade of RTK activity in NSCLC cells. EGFR TKIs decrease both the mitogen-activated protein kinase (MAPK) and Akt protein kinase pathways for a short time, after which the Ras/MAPK pathway becomes reactivated. Akt inhibition selectively blocks the transcriptional activation of Ets-1, which inhibits its target gene, dual specificity phosphatase 6 (DUSP6), a negative regulator specific for ERK1/2. As a result, ERK1/2 is activated. Furthermore, elevated c-Src stimulates Ras GTP-loading and activates Raf and MEK kinases. These observations suggest that not only ERK1/2 but also Akt activity is essential to maintain Ets-1 in an active state. Therefore, despite high levels of ERK1/2, Ets-1 target genes including DUSP6 and cyclins D1, D3, and E2 remain suppressed by Akt inhibition. Reduction of DUSP6 in combination with elevated c-Src renews activation of the Ras/MAPK pathway, which enhances cell survival by accelerating Bim protein turnover. Thus, EGFR TKIs evoke innate drug resistance by preventing Akt activity and inactivating Ets-1 function in NSCLC cells.

  14. Effects of low-intensity pulsed ultrasound on integrin-FAK-PI3K/Akt mechanochemical transduction in rabbit osteoarthritis chondrocytes.

    PubMed

    Cheng, Kai; Xia, Peng; Lin, Qiang; Shen, Shihao; Gao, Mingxia; Ren, Shasha; Li, Xueping

    2014-07-01

    The effect of low-intensity pulsed ultrasound (LIPUS) on extracellular matrix (ECM) production via modulation of the integrin/focal adhesion kinase (FAK)/phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been investigated in previous studies in normal chondrocytes, but not in osteoarthritis (OA). Therefore, we investigated the LIPUS-induced integrin β1/FAK/PI3K/Akt mechanochemical transduction pathway in a single study in rabbit OA chondrocytes. Normal and OA chondrocytes were exposed to LIPUS, and mRNA and protein expression of cartilage, metalloproteinases and integrin-FAK-PI3K/Akt signal pathway-related genes was determined by quantitative reverse transcription polymerase chain reaction and Western blotting, respectively. Compared with levels in normal chondrocytes, expression levels of ECM-related genes were significantly lower in OA chondrocytes and those of metalloproteinase-related genes were significantly higher. In addition, integrin β1 gene expression and the phosphorylation of FAK, PI3K and Akt were significantly higher in OA chondrocytes. The expression of all tested genes was significantly increased except for that of metalloproteinase, which was significantly decreased in the LIPUS-treated OA group compared to the untreated OA group. LIPUS may affect the integrin-FAK-PI3K/Akt mechanochemical transduction pathway and alter ECM production by OA chondrocytes. Our findings will aid the future development of a treatment or even cure for OA.

  15. Inactivation of Akt by arsenic trioxide induces cell death via mitochondrial-mediated apoptotic signaling in SGC-7901 human gastric cancer cells.

    PubMed

    Gao, Yan-Hui; Zhang, Hao-Peng; Yang, Shu-Meng; Yang, Yue; Ma, Yu-Yan; Zhang, Xin-Yu; Yang, Yan-Mei

    2014-04-01

    Arsenic trioxide (As2O3) has been recognized as a potential chemotherapeutic agent, yet the details concerning its mechanism of action in solid cancers remain undetermined. The present study assessed the role of Akt in the cell death induced by As2O3. The MTT assay showed that As2O3 suppressed the proliferation of SGC-7901 cells in a dose- and time-dependent manner. Characteristic apoptotic changes were observed in the As2O3‑treated cells by Hoechst 33342 staining, and FACS analysis showed that As2O3 caused dose-dependent apoptotic cell death. As2O3 activated caspase-3 and -9, and PARP cleavage in a dose-dependent manner. Compromised mitochondrial membrane potential and an increased protein level of Bax indicated involvement of mitochondia. As2O3 decreased the levels of p-Akt (Ser473), p-Akt (Thr308) and p-GSK-3β (Ser9), suggesting that As2O3 inactivated Akt kinase. In addition, LY294002 (a PI3 kinase inhibitor) augmented the apoptosis induced by As2O3. These results demonstrated that inhibition of PI3K/Akt signaling was involved in As2O3-induced apoptosis of gastric cancer SGC-7901 cells. PMID:24482137

  16. Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt

    PubMed Central

    Chen, Jialin; Chen, Peng; Backman, Ludvig J.; Zhou, Qingjun; Danielson, Patrik

    2016-01-01

    The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway. PMID:27174608

  17. Phosphorylation of the Nuclear Receptor Co-repressor 1 by Protein Kinase B (PKB/Akt) Switches its Co-repressor Targets in the Liver

    PubMed Central

    Jo, Young Suk; Ryu, Dongryeol; Maida, Adriano; Wang, Xu; Evans, Ronald M.; Schoonjans, Kristina; Auwerx, Johan

    2015-01-01

    The nuclear receptor corepressor 1 (NCoR1) is a transcriptional co-regulator that has wide-ranging effects on gene expression patterns. In the liver, NCoR1 represses lipid synthesis in the fasting state, whereas it inhibits the activation of PPARα upon feeding, thereby blunting ketogenesis. Here, we show that insulin via the activation of PKB/Akt induces the phosphorylation of NCoR1 on serine 1460, which selectively favors its interaction with PPARα and ERRα over LXRα. Phosphorylation of NCoR1 on S1460 selectively derepresses LXRα target genes, resulting in increased lipogenesis, while at the same time it inhibits PPARα and ERRα targets, thereby attenuating oxidative metabolism in the liver. The phosphorylation-gated differential recruitment of NCoR1 to different nuclear receptors explains the apparent paradox that liver-specific deletion of NCoR1 concurrently induces both lipogenesis and oxidative metabolism, due to a global derepression of LXRα, PPARα and ERRα activity. This phosphorylation-mediated recruitment switch of NCoR1 between nuclear receptor subsets hence provides a mechanism by which corepressors can selectively modulate liver energy metabolism during the fasting-feeding transition. PMID:25998209

  18. IL-10 Protects Neurites in Oxygen-Glucose-Deprived Cortical Neurons through the PI3K/Akt Pathway

    PubMed Central

    Zhang, Yixian; Lin, Wei; Liu, Yong; Li, Tin; Zeng, Yongping; Chen, Jianhao; Du, Houwei; Chen, Ronghua; Tan, Yi; Liu, Nan

    2015-01-01

    IL-10, as a cytokine, has an anti-inflammatory cascade following various injuries, but it remains blurred whether IL-10 protects neurites of cortical neurons after oxygen-glucose deprivation injury. Here, we reported that IL-10, in a concentration-dependent manner, reduced neuronal apoptosis and increased neuronal survival in oxygen-glucose-deprived primary cortical neurons, producing an optimal protective effect at 20ng/ml. After staining NF-H and GAP-43, we found that IL-10 significantly protected neurites in terms of axon length and dendrite number by confocal microscopy. Furthermore, it induced the phosphorylation of AKT, suppressed the activation of caspase-3, and up-regulated the protein expression of GAP-43. In contrast, LY294002, a specific inhibitor of PI3K/AKT, reduced the level of AKT phosphorylation and GAP-43 expression, increased active caspase-3 expression and thus significantly weakened IL-10-mediated protective effect in the OGD-induced injury model. IL-10NA, the IL-10 neutralizing antibody, reduced the level of p-PI3K phosphorylation and increased the expression of active caspase-3. These findings suggest that IL-10 provides neuroprotective effects by protecting neurites through PI3K/AKT signaling pathway in oxygen-glucose-deprived primary cortical neurons. PMID:26366999

  19. MYOCARDIAL AKT: THE OMNIPRESENT NEXUS

    PubMed Central

    Sussman, Mark A.; Völkers, Mirko; Fischer, Kimberlee; Bailey, Brandi; Cottage, Christopher T.; Din, Shabana; Gude, Natalie; Avitabile, Daniele; Alvarez, Roberto; Sundararaman, Balaji; Quijada, Pearl; Mason, Matt; Konstandin, Mathias H.; Malhowski, Amy; Cheng, Zhaokang; Khan, Mohsin; McGregor, Michael

    2013-01-01

    One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses. PMID:21742795

  20. Response of protein and urea kinetics in burn patients to different levels of protein intake.

    PubMed Central

    Wolfe, R R; Goodenough, R D; Burke, J F; Wolfe, M H

    1983-01-01

    The effects of two levels of protein intake on protein metabolism in six severely burned adult patients were studied (means of 70% BSA burned). A crossover experimental design enabled the authors to study each patient at the end of two three-day dietary regimens. All diets were isocaloric and provided approximately 25% more calories than the measured energy expenditure (means = 40.8 Kcal/kg X day). In one regimen, each patient received 2.2 g protein/kg X day, while during the other treatment period they received 1.4 g protein/kg X day. The patients were studied in the fed state and after 10 to 12 hours of fasting. Leucine kinetics were determined by means of the primed-constant infusion of [1--13C]--leucine. The authors were able to distinguish the oxidation of plasma leucine from the oxidation of leucine derived from intracellular protein at the site of the deamination of leucine (predominantly muscle) by simultaneously determining both leucine and alpha-ketoisocaproic acid enrichment. Also, rates of whole-body protein synthesis and catabolism were calculated from the leucine flux and oxidation data. Net protein synthesis was also calculated by means of another stable-isotope technique involving the infusion of [15N2]--urea. Finally, a third means of estimating net protein catabolism based on urinary N-excretion data was used at the same time that the isotopic studies were performed. The 13C leucine-data and the N-excretion data indicated that a balance between protein synthesis and catabolism could be achieved with a protein intake of 1.4 protein/kg X day. When protein intake was increased to 2.2 g protein/kg X day, neither isotopic method indicated a further beneficial effect on net protein synthesis, although the absolute rates of protein synthesis and catabolism were stimulated. The N-excretion data, on the other hand, indicated a significant improvement in net protein synthesis with higher protein intake. Regardless of the level of protein intake, the

  1. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability

    PubMed Central

    Silva, Ana; Yunes, J. Andrés; Cardoso, Bruno A.; Martins, Leila R.; Jotta, Patrícia Y.; Abecasis, Miguel; Nowill, Alexandre E.; Leslie, Nick R.; Cardoso, Angelo A.; Barata, Joao T.

    2008-01-01

    Mutations in the phosphatase and tensin homolog (PTEN) gene leading to PTEN protein deletion and subsequent activation of the PI3K/Akt signaling pathway are common in cancer. Here we show that PTEN inactivation in human T cell acute lymphoblastic leukemia (T-ALL) cells is not always synonymous with PTEN gene lesions and diminished protein expression. Samples taken from patients with T-ALL at the time of diagnosis very frequently showed constitutive hyperactivation of the PI3K/Akt pathway. In contrast to immortalized cell lines, most primary T-ALL cells did not harbor PTEN gene alterations, displayed normal PTEN mRNA levels, and expressed higher PTEN protein levels than normal T cell precursors. However, PTEN overexpression was associated with decreased PTEN lipid phosphatase activity, resulting from casein kinase 2 (CK2) overexpression and hyperactivation. In addition, T-ALL cells had constitutively high levels of ROS, which can also downmodulate PTEN activity. Accordingly, both CK2 inhibitors and ROS scavengers restored PTEN activity and impaired PI3K/Akt signaling in T-ALL cells. Strikingly, inhibition of PI3K and/or CK2 promoted T-ALL cell death without affecting normal T cell precursors. Overall, our data indicate that T-ALL cells inactivate PTEN mostly in a nondeletional, posttranslational manner. Pharmacological manipulation of these mechanisms may open new avenues for T-ALL treatment. PMID:18830414

  2. ORMDL proteins regulate ceramide levels during sterile inflammation.

    PubMed

    Cai, Lin; Oyeniran, Clement; Biswas, Debolina D; Allegood, Jeremy; Milstien, Sheldon; Kordula, Tomasz; Maceyka, Michael; Spiegel, Sarah

    2016-08-01

    The bioactive sphingolipid metabolite, ceramide, regulates physiological processes important for inflammation and elevated levels of ceramide have been implicated in IL-1-mediated events. Although much has been learned about ceramide generation by activation of sphingomyelinases in response to IL-1, the contribution of the de novo pathway is not completely understood. Because yeast ORM1 and ORM2 proteins negatively regulate ceramide levels through inhibition of serine palmitoyltransferase, the first committed step in ceramide biosynthesis, we examined the functions of individual mammalian ORM orthologs, ORM (yeast)-like (ORMDL)1-3, in regulation of ceramide levels. In HepG2 liver cells, downregulation of ORMDL3 markedly increased the ceramide precursors, dihydrosphingosine and dihydroceramide, primarily from de novo biosynthesis based on [U-(13)C]palmitate incorporation into base-labeled and dual-labeled dihydroceramides, whereas downregulation of each isoform increased dihydroceramides [(13)C]labeled in only the amide-linked fatty acid. IL-1 and the IL-6 family cytokine, oncostatin M, increased dihydroceramide and ceramide levels in HepG2 cells and concomitantly decreased ORMDL proteins. Moreover, during irritant-induced sterile inflammation in mice leading to induction of the acute-phase response, which is dependent on IL-1, expression of ORMDL proteins in the liver was strongly downregulated and accompanied by increased ceramide levels in the liver and accumulation in the blood. Together, our results suggest that ORMDLs may be involved in regulation of ceramides during IL-1-mediated sterile inflammation. PMID:27313060

  3. Genetic Evidence Supports a Major Role for Akt1 in VSMCs During Atherogenesis

    PubMed Central

    Rotllan, Noemi; Wanschel, Amarylis C.; Fernandez-Hernando, Ana; Salerno, Alessandro G.; Offermanns, Stefan; Sessa, William C.; Fernández-Hernando, Carlos

    2015-01-01

    Rationale Coronary artery disease (CAD), the direct result of atherosclerosis, is the most common cause of death in Western societies. Vascular smooth muscle cell (VSMC) apoptosis occurs during the progression of atherosclerosis and in advanced lesions, promotes plaque necrosis, a common feature of high-risk/vulnerable atherosclerotic plaques. Akt1, a serine-threonine protein kinase, regulates several key endothelial cell (EC) and VSMC functions including cell growth, migration, survival and vascular tone. While global deficiency of Akt1 results in impaired angiogenesis and massive atherosclerosis, the specific contribution of VSMC Akt1 remains poorly characterized. Objective To investigate the contribution of VSMC Akt1 during atherogenesis and in established atherosclerotic plaques. Methods and Results We generated two mouse models in which Akt1 expression can be suppressed specifically in VSCMs before (Apoe−/−Akt1fl/flSm22αCRE) and after (Apoe−/−Akt1fl/flSM-MHC-CreERT2E) the formation of atherosclerotic plaques. This approach allows us to interrogate the role of Akt1 during the initial and late steps of atherogenesis. Absence of Akt1 in VSMCs during the progression of atherosclerosis results in larger atherosclerotic plaques characterized by bigger necrotic core areas, enhanced VSMC apoptosis and reduced fibrous cap and collagen content. In contrast, VSMC Akt1 inhibition in established atherosclerotic plaques does not influence lesion size but markedly reduces the relative fibrous cap area in plaques and increases VSMC apoptosis. Conclusions Akt1 expression in VSMCs influences early and late stages of atherosclerosis. Absence of Akt1 in VSMCs induces features of plaque vulnerability including fibrous cap thinning and extensive necrotic core areas. These observations suggest that interventions enhancing Akt1 expression specifically in VSMCs may lessen plaque progression. PMID:25868464

  4. Akt and PTEN: new diagnostic markers of non-small cell lung cancer?

    PubMed

    David, O

    2001-01-01

    We are particularly interested in testing the principles of cell proliferation and apoptosis in the microenvironment of human lung cancers with respect to the cell survival protein Akt 1 and PTEN 2. Akt is a cytosolic protein which promotes cell survival by phosphorylative inactivation of targets in apoptotic pathways. Akt has been found to play a role in the survival of experimental cancer cell lines in breast, prostate, ovary, lung and brain tissue. PTEN is a tumor suppressor gene whose protein product is expressed in inverse proportion to phosphorylated Akt in endometrial and breast cancer cell lines. No studies of the diagnostic significance of Akt and PTEN in human lung cancers have been reported.

  5. Regulation of Akt/PKB activity by P21-activated kinase in cardiomyocytes.

    PubMed

    Mao, Kai; Kobayashi, Satoru; Jaffer, Zahara M; Huang, Yuan; Volden, Paul; Chernoff, Jonathan; Liang, Qiangrong

    2008-02-01

    Akt/PKB is a critical regulator of cardiac function and morphology, and its activity is governed by dual phosphorylation at active loop (Thr308) by phosphoinositide-dependent protein kinase-1 (PDK1) and at carboxyl-terminal hydrophobic motif (Ser473) by a putative PDK2. P21-activated kinase-1 (Pak1) is a serine/threonine protein kinase implicated in the regulation of cardiac hypertrophy and contractility and was shown previously to activate Akt through an undefined mechanism. Here we report Pak1 as a potential PDK2 that is essential for Akt activity in cardiomyocytes. Both Pak1 and Akt can be activated by multiple hypertrophic stimuli or growth factors in a phosphatidylinositol-3-kinase (PI3K)-dependent manner. Pak1 overexpression induces Akt phosphorylation at both Ser473 and Thr308 in cardiomyocytes. Conversely, silencing or inactivating Pak1 gene diminishes Akt phosphorylation in vitro and in vivo. Purified Pak1 can directly phosphorylate Akt only at Ser473, suggesting that Pak1 may be a relevant PDK2 responsible for AKT Ser473 phosphorylation in cardiomyocytes. In addition, Pak1 protects cardiomyocytes from cell death, which is blocked by Akt inhibition. Our results connect two important regulators of cellular physiological functions and provide a potential mechanism for Pak1 signaling in cardiomyocytes. PMID:18054038

  6. Nitric Oxide Synthase and Breast Cancer: Role of TIMP-1 in NO-mediated Akt Activation

    PubMed Central

    Ridnour, Lisa A.; Barasch, Kimberly M.; Windhausen, Alisha N.; Dorsey, Tiffany H.; Lizardo, Michael M.; Yfantis, Harris G.; Lee, Dong H.; Switzer, Christopher H.; Cheng, Robert Y. S.; Heinecke, Julie L.; Brueggemann, Ernst; Hines, Harry B.; Khanna, Chand; Glynn, Sharon A.; Ambs, Stefan; Wink, David A.

    2012-01-01

    Prediction of therapeutic response and cancer patient survival can be improved by the identification of molecular markers including tumor Akt status. A direct correlation between NOS2 expression and elevated Akt phosphorylation status has been observed in breast tumors. Tissue inhibitor matrix metalloproteinase-1 (TIMP-1) has been proposed to exert oncogenic properties through CD63 cell surface receptor pathway initiation of pro-survival PI3k/Akt signaling. We employed immunohistochemistry to examine the influence of TIMP-1 on the functional relationship between NOS2 and phosphorylated Akt in breast tumors and found that NOS2-associated Akt phosphorylation was significantly increased in tumors expressing high TIMP-1, indicating that TIMP-1 may further enhance NO-induced Akt pathway activation. Moreover, TIMP-1 silencing by antisense technology blocked NO-induced PI3k/Akt/BAD phosphorylation in cultured MDA-MB-231 human breast cancer cells. TIMP-1 protein nitration and TIMP-1/CD63 co-immunoprecipitation was observed at NO concentrations that induced PI3k/Akt/BAD pro-survival signaling. In the survival analysis, elevated tumor TIMP-1 predicted poor patient survival. This association appears to be mainly restricted to tumors with high NOS2 protein. In contrast, TIMP-1 did not predict poor survival in patient tumors with low NOS2 expression. In summary, our findings suggest that tumors with high TIMP-1 and NOS2 behave more aggressively by mechanisms that favor Akt pathway activation. PMID:22957045

  7. Predicting Protein-Protein Interactions from the Molecular to the Proteome Level.

    PubMed

    Keskin, Ozlem; Tuncbag, Nurcan; Gursoy, Attila

    2016-04-27

    Identification of protein-protein interactions (PPIs) is at the center of molecular biology considering the unquestionable role of proteins in cells. Combinatorial interactions result in a repertoire of multiple functions; hence, knowledge of PPI and binding regions naturally serve to functional proteomics and drug discovery. Given experimental limitations to find all interactions in a proteome, computational prediction/modeling of protein interactions is a prerequisite to proceed on the way to complete interactions at the proteome level. This review aims to provide a background on PPIs and their types. Computational methods for PPI predictions can use a variety of biological data including sequence-, evolution-, expression-, and structure-based data. Physical and statistical modeling are commonly used to integrate these data and infer PPI predictions. We review and list the state-of-the-art methods, servers, databases, and tools for protein-protein interaction prediction. PMID:27074302

  8. Angiotensin II Signaling in Human Preadipose Cells: Participation of ERK1,2-Dependent Modulation of Akt

    PubMed Central

    Dünner, Natalia; Quezada, Carolina; Berndt, F. Andrés; Cánovas, José; Rojas, Cecilia V.

    2013-01-01

    The renin-angiotensin system expressed in adipose tissue has been implicated in the modulation of adipocyte formation, glucose metabolism, triglyceride accumulation, lipolysis, and the onset of the adverse metabolic consequences of obesity. As we investigated angiotensin II signal transduction mechanisms in human preadipose cells, an interplay of extracellular-signal-regulated kinases 1 and 2 (ERK1,2) and Akt/PKB became evident. Angiotensin II caused attenuation of phosphorylated Akt (p-Akt), at serine 473; the p-Akt/Akt ratio decreased to 0.5±0.2-fold the control value without angiotensin II (p<0.001). Here we report that the reduction of phosphorylated Akt associates with ERK1,2 activities. In the absence of angiotensin II, inhibition of ERK1,2 activation with U0126 or PD98059 resulted in a 2.1±0.5 (p<0.001) and 1.4±0.2-fold (p<0.05) increase in the p-Akt/Akt ratio, respectively. In addition, partial knockdown of ERK1 protein expression by the short hairpin RNA technique also raised phosphorylated Akt in these cells (the p-Akt/Akt ratio was 1.5±0.1-fold the corresponding control; p<0.05). Furthermore, inhibition of ERK1,2 activation with U0126 prevented the reduction of p-Akt/Akt by angiotensin II. An analogous effect was found on the phosphorylation status of Akt downstream effectors, the forkhead box (Fox) proteins O1 and O4. Altogether, these results indicate that angiotensin II signaling in human preadipose cells involves an ERK1,2-dependent attenuation of Akt activity, whose impact on the biological functions under its regulation is not fully understood. PMID:24098385

  9. Equol inhibits proliferation of human gastric carcinoma cells via modulating Akt pathway

    PubMed Central

    Yang, Zhi-Ping; Zhao, Yan; Huang, Fang; Chen, Jie; Yao, Ya-Hong; Li, Jun; Wu, Xiao-Nan

    2015-01-01

    AIM: To investigate the anti-tumor effects of equol in gastric cancer cells and the underlying molecular mechanisms. METHODS: MGC-803 cells were employed for in vitro experiments in this study. Cells were treated with control (vehicle, 0.1% DMSO) or equol under specified dose titration or time courses. Cell viability was examined by MTS assay, and the levels of Ki67 were determined by qPCR and immunofluorescent assay. Changes in cell cycle distribution and apoptosis rate were detected by flow cytometry. The mRNA expression of cyclin E1 and P21WAF1 was determined by qPCR. The protein levels of cell cycle regulators, PARP and Caspase-3 cleavage, and the phosphorylation of Akt were examined by Western blot. In addition, to characterize the role of elevated Akt activation in the anti-tumor effect exerted by equol, Ly294002, a PI3K/AKT pathway inhibitor, was used to pretreat MGC-803 cells. RESULTS: Equol (5, 10, 20, 40, or 80 μmol/L) inhibited viability of MGC-803 cells in a dose- and time-dependent manner after treatment for 24, 36, or 48 h (P < 0.05 for all). Equol also decreased the mRNA (P < 0.05 for 12 and 24 h treatment) and protein levels of Ki67. Equol treatment significantly induced G0/G1 cell cycle arrest (P < 0.05), with the percentages of G0/G1 cells of 32.23% ± 3.62%, 36.31% ± 0.24%, 45.58% ± 2.29%, and 65.10% ± 2.04% for equol (0, 10, 20, or 30 μmol/L) treatment, respectively, accompanied by a significant decrease of CDK2/4 (P < 0.05 for 24 and 48 h treatment) and Cyclin D1/Cyclin E1 (P < 0.05), and an increased level of P21WAF1 (P < 0.05). A marked increase of apoptosis was observed, with the percentages of apoptotic cells of 5.01% ± 0.91%, 14.57% ± 0.99%, 37.40% ± 0.58%, and 38.46% ± 2.01% for equol (0, 5, 10, or 20 μmol/L) treatment, respectively, accompanied by increased levels of cleaved PARP and caspase-3. In addition, we found that equol treatment increased P-Akt (Ser473 and Thr308) at 12 and 24 h compared to vehicle-treated control

  10. Mitochondrial genome depletion in human liver cells abolishes bile acid-induced apoptosis: role of the Akt/mTOR survival pathway and Bcl-2 family proteins.

    PubMed

    Marin, Jose J G; Hernandez, Alicia; Revuelta, Isabel E; Gonzalez-Sanchez, Ester; Gonzalez-Buitrago, Jose M; Perez, Maria J

    2013-08-01

    Acute accumulation of bile acids in hepatocytes may cause cell death. However, during long-term exposure due to prolonged cholestasis, hepatocytes may develop a certain degree of chemoresistance to these compounds. Because mitochondrial adaptation to persistent oxidative stress may be involved in this process, here we have investigated the effects of complete mitochondrial genome depletion on the response to bile acid-induced hepatocellular injury. A subline (Rho) of human hepatoma SK-Hep-1 cells totally depleted of mitochondrial DNA (mtDNA) was obtained, and bile acid-induced concentration-dependent activation of apoptosis/necrosis and survival signaling pathways was studied. In the absence of changes in intracellular ATP content, Rho cells were highly resistant to bile acid-induced apoptosis and partially resistant to bile acid-induced necrosis. In Rho cells, both basal and bile acid-induced generation of reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, was decreased. Bile acid-induced proapoptotic signals were also decreased, as evidenced by a reduction in the expression ratios Bax-α/Bcl-2, Bcl-xS/Bcl-2, and Bcl-xS/Bcl-xL. This was mainly due to a downregulation of Bax-α and Bcl-xS. Moreover, in these cells the Akt/mTOR pathway was constitutively activated in a ROS-independent manner and remained similarly activated in the presence of bile acid treatment. In contrast, ERK1/2 activation was constitutively reduced and was not activated by incubation with bile acids. In conclusion, these results suggest that impaired mitochondrial function associated with mtDNA alterations, which may occur in liver cells during prolonged cholestasis, may activate mechanisms of cell survival accounting for an enhanced resistance of hepatocytes to bile acid-induced apoptosis. PMID:23597504

  11. O-GlcNAcylation enhances the invasion of thyroid anaplastic cancer cells partially by PI3K/Akt1 pathway

    PubMed Central

    Zhang, Peng; Wang, Chunli; Ma, Tao; You, Shengyi

    2015-01-01

    Background The PI3K family participates in multiple signaling pathways to regulate cellular functions. PI3K/Akt signaling pathway plays an important role in tumorigenesis and development. O-GlcNAcylation, a posttranslational modification, is thought to modulate a wide range of biological processes, such as transcription, cell growth, signal transduction, and cell motility. O-GlcNAcylation is catalyzed by the nucleocytoplasmic enzymes, OGT and OGA, which adds or removes O-GlcNAc moieties, respectively. Abnormal O-GlcNAcylation has been implicated in a variety of human diseases. However, the role of O-GlcNAcylation in tumorigenesis and progression of cancer is still under-investigated. Understanding the O-GlcNAc-associated molecular mechanism might be significant for diagnosis and therapy of cancer. Methods Human thyroid anaplastic cancer 8305C cells were used to evaluate the role of O-GlcNAcylation in tumorigenesis and progression of cancer. The global O-GlcNAc level of intracellular proteins was up-regulated by OGA inhibitor Thiamet-G treatment or OGT over-expression. Cell proliferation was assessed by MTT assay. Invasion in vitro was determined by Transwell assay, and phosphorylation of Akt1 at Ser473 was assessed by Western blot for activity of Akt1. PI3K-specific inhibitor LY294002 and RNA interference of Akt1 were used to investigate the impact of PI3K/Akt signaling on the regulation of O-GlcNAcylation during tumor progression. Results Cell models with remarkably up-regulated O-GlcNAcylation were constructed, and then cell proliferation and invasion were determined. The results indicated that the proliferation was not affected by OGA inhibition or OGT overexpression, while the invasion of 8305C cells with OGA inhibition or OGT overexpression was obviously increased. Akt1 activity was stimulated by elevated O-GlcNAcylation by mediating phosphorylation at Ser473. The enhanced invasion of thyroid cancer cells by Thiamet-G treatment or OGT overexpression was

  12. Akt2 and nucleophosmin/B23 function as an oncogenic unit in human lung cancer cells

    SciTech Connect

    Kim, Chung Kwon; Nguyen, Truong L.X.; Lee, Sang Bae; Park, Sang Bum; Lee, Kyung-Hoon; Cho, Sung-Woo; Ahn, Jee-Yin

    2011-04-15

    The signaling network of protein kinase B(PKB)/Akt has been implicated in survival of lung cancer cells. However, understanding the relative contribution of the different isoform of Akt network is nontrival. Here, we report that Akt2 is highly expressed in human lung adenocarcinoma cell line A549 cells. Suppression of Akt2 expression in A549 cells results in notable inhibition of cell poliferation, soft agar growth, and invasion, accompanying by a decrease of nucleophosmin/B23 protein. Overexpression of Akt1 restores cancerous growth of A549 cells in B23-knockdown (KD) cells while Akt2 overexpression did not restore proliferating potential in cells with downregulated B23, thus suggesting Akt2 requires B23 to drive proliferation of lung cancer cell. Loss of functional Akt2 and B23 has similar defects on cell proliferation, apoptotic resistance and cell cycle regulation, while loss of Akt1 has less defects on cell proliferation, survial and cell cycle progression in A549 cells. Moreover, overexpression of B23 rescues the proliferative block induced as a consequence of loss of Akt2. Thus our data suggest that Akt2/B23 functions as an oncogenic unit to drive tumorigenesis of A549 lung cancer cells.

  13. UCP2, a mitochondrial protein regulated at multiple levels.

    PubMed

    Donadelli, Massimo; Dando, Ilaria; Fiorini, Claudia; Palmieri, Marta

    2014-04-01

    An ever-increasing number of studies highlight the role of uncoupling protein 2 (UCP2) in a broad range of physiological and pathological processes. The knowledge of the molecular mechanisms of UCP2 regulation is becoming fundamental in both the comprehension of UCP2-related physiological events and the identification of novel therapeutic strategies based on UCP2 modulation. The study of UCP2 regulation is a fast-moving field. Recently, several research groups have made a great effort to thoroughly understand the various molecular mechanisms at the basis of UCP2 regulation. In this review, we describe novel findings concerning events that can occur in a concerted manner at various levels: Ucp2 gene mutation (single nucleotide polymorphisms), UCP2 mRNA and protein expression (transcriptional, translational, and protein turn-over regulation), UCP2 proton conductance (ligands and post-transcriptional modifications), and nutritional and pharmacological regulation of UCP2.

  14. Low copper and high manganese levels in prion protein plaques

    USGS Publications Warehouse

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  15. Low Copper and High Manganese Levels in Prion Protein Plaques

    PubMed Central

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecht, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; Aiken, Judd M.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system. PMID:23435237

  16. Low copper and high manganese levels in prion protein plaques.

    PubMed

    Johnson, Christopher J; Gilbert, P U P A; Abrecht, Mike; Baldwin, Katherine L; Russell, Robin E; Pedersen, Joel A; Aiken, Judd M; McKenzie, Debbie

    2013-02-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  17. Increased expression of pAKT is associated with radiation resistance in cervical cancer

    PubMed Central

    Kim, T-J; Lee, J-W; Song, S Y; Choi, J-J; Choi, C H; Kim, B-G; Lee, J-H; Bae, D-S

    2006-01-01

    Phosphorylated AKT (pAKT) is a major contributor to radioresistance in human cancers. The aim of this study was to investigate the association of pAKT expression and radiation resistance in cervical cancer. A retrospective review was made of the records of 27 women who received primary radiation therapy due to locally advanced cervical cancer (LACC) with FIGO stage IIB–IVA. Nine patients regarded as radiation resistant developed local recurrences with a median progression free interval of 9 months. Eighteen patients did not show local recurrences, and were regarded as a radiation-sensitive group. Using pretreatment paraffin-embedded tissues, we evaluated pAKT expression by immunohistochemistry. A significant association was found between the level of pAKT expression and local recurrence. Immunohistochemical staining for pAKT was significantly more frequent in the radiation-resistant than in the radiation-sensitive group (P=0.004). The mean progression-free survival was 86 months for patients with pAKT-negative staining (19 cases) and 44 months for patients with pAKT-positive expression (eight cases) (P=0.008). These results suggest that signalling from phosphatidylinositide 3-kinase/pAKT can lead to radiation resistance, and that evaluation of pAKT may be a prognostic marker for response to radiotherapy in LACC. PMID:16721365

  18. RhoC promotes human melanoma invasion in a PI3K/Akt-dependent pathway.

    PubMed

    Ruth, Mariah C; Xu, Yisheng; Maxwell, Ian H; Ahn, Natalie G; Norris, David A; Shellman, Yiqun G

    2006-04-01

    Overexpression of the small GTPase, RhoC, in various human cancers has been correlated with high metastatic ability and poor prognosis. Rho-kinase (ROCK) is an important effector of Rho GTPases. The oncogenic serine/threonine kinase Akt (also known as PKB) is a downstream effector of phosphatidylinositol-3 kinase (PI3K). Akt activation contributes to the neoplastic phenotype by promoting cell cycle progression, increasing antiapoptotic functions, and enhancing tumor cell invasion. Rho signaling via ROCK has been previously shown either to activate or to downregulate PI3K/Akt. Using a human radial growth phase melanoma cell line, WM35, we have established stable transfectants that overexpress RhoC (called WM35RhoC). We found that overexpression of RhoC increased phosphorylated-Akt (Ser473/474/472, pAkt) expression and promoted cell invasion. Inhibition of RhoC with C3 transferase downregulated pAkt expression and decreased cell invasion in these cells. In addition, inhibition of PI3K, Akt, or ROCK partially decreased invasion. Further, inhibition of PI3K but not ROCK decreased the pAkt level. These results suggest that RhoC promotes invasion in part via activation of a PI3K/Akt pathway, in a manner independent of ROCK signaling. We propose that RhoC promotes melanoma progression via separate mechanisms that regulate the PI3K/Akt pathway and the ROCK signaling pathway.

  19. miR-190-mediated downregulation of PHLPP contributes to arsenic-induced Akt activation and carcinogenesis.

    PubMed

    Beezhold, Kevin; Liu, Jia; Kan, Hong; Meighan, Terry; Castranova, Vince; Shi, Xianglin; Chen, Fei

    2011-10-01

    The role of trivalent arsenic (As(3+)) on the regulation of the recently identified noncoding small RNAs, mainly microRNAs, has not been explored so far. In the present study, we provide evidence showing that As(3+) is a potent inducer for the expression of miR-190 in human bronchial epithelial cells. The induction of miR-190 by As(3+) is concentration dependent and associated with the expression of the host gene of miR-190, talin 2, a gene encoding a high-molecular-weight cytoskeletal protein. The elevated level of miR-190 induced by As(3+) is capable of downregulating the translation of the PH domain leucine-rich repeat protein phosphatase (PHLPP), a negative regulator of Akt signaling. Such a downregulation is occurred through direct interaction of the miR-190 with the 3'-UTR region of the PHLPP mRNA, leading to a diminished PHLPP protein expression and consequently, an enhanced Akt activation and expression of vascular endothelial growth factor, an Akt-regulated protein. Overexpression of miR-190 itself is able to enhance proliferation and malignant transformation of the cells as determined by anchorage-independent growth of the cells in soft agar. Accordingly, the data presented suggest that induction of miR-190 is one of the key mechanisms in As(3+)-induced carcinogenesis.

  20. Ferulic acid regulates the AKT/GSK-3β/CRMP-2 signaling pathway in a middle cerebral artery occlusion animal model.

    PubMed

    Gim, Sang-A; Sung, Jin-Hee; Shah, Fawad-Ali; Kim, Myeong-Ok; Koh, Phil-Ok

    2013-06-01

    Ferulic acid, a component of the plants Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort, exerts a neuroprotective effect by regulating various signaling pathways. This study showed that ferulic acid treatment prevents the injury-induced increase of collapsin response mediator protein 2 (CRMP-2) in focal cerebral ischemia. Glycogen synthase kinase-3β (GSK-3β) regulates CRMP-2 function through phosphorylation of CRMP-2. Moreover, the pro-apoptotic activity of GSK-3β is inactivated by phosphorylation by Akt. This study investigated whether ferulic acid modulates the expression of CRMP-2 and its upstream targets, Akt and GSK-3β, in focal cerebral ischemia. Male rats were treated immediately with ferulic acid (100 mg/kg, i.v.) or vehicle after middle cerebral artery occlusion (MCAO), and then cerebral cortices were collected 24 hr after MCAO. MCAO resulted in decreased levels of phospho-Akt and phospho-GSK-3β, while ferulic acid treatment prevented the decrease in the levels of these proteins. Moreover, phospho-CRMP-2 and CRMP-2 levels increased during MCAO, whereas ferulic acid attenuated these injury-induced increases. These results demonstrate that ferulic acid regulates the Akt/GSK-3β/CRMP-2 signaling pathway in focal cerebral ischemic injury, thereby protecting against brain injury. PMID:23825478

  1. Residue level quantification of protein stability in living cells.

    PubMed

    Monteith, William B; Pielak, Gary J

    2014-08-01

    The intracellular milieu differs from the dilute conditions in which most biophysical and biochemical studies are performed. This difference has led both experimentalists and theoreticians to tackle the challenging task of understanding how the intracellular environment affects the properties of biopolymers. Despite a growing number of in-cell studies, there is a lack of quantitative, residue-level information about equilibrium thermodynamic protein stability under nonperturbing conditions. We report the use of NMR-detected hydrogen-deuterium exchange of quenched cell lysates to measure individual opening free energies of the 56-aa B1 domain of protein G (GB1) in living Escherichia coli cells without adding destabilizing cosolutes or heat. Comparisons to dilute solution data (pH 7.6 and 37 °C) show that opening free energies increase by as much as 1.14 ± 0.05 kcal/mol in cells. Importantly, we also show that homogeneous protein crowders destabilize GB1, highlighting the challenge of recreating the cellular interior. We discuss our findings in terms of hard-core excluded volume effects, charge-charge GB1-crowder interactions, and other factors. The quenched lysate method identifies the residues most important for folding GB1 in cells, and should prove useful for quantifying the stability of other globular proteins in cells to gain a more complete understanding of the effects of the intracellular environment on protein chemistry.

  2. microRNA-21-induced dissociation of PDCD4 from rictor contributes to Akt-IKKβ-mTORC1 axis to regulate renal cancer cell invasion.

    PubMed

    Bera, Amit; Das, Falguni; Ghosh-Choudhury, Nandini; Kasinath, Balakuntalam S; Abboud, Hanna E; Choudhury, Goutam Ghosh

    2014-10-15

    Renal cancer metastasis may result from oncogenic forces that contribute to the primary tumor. We have recently identified microRNA-21 as an oncogenic driver of renal cancer cells. The mechanism by which miR-21 controls renal cancer cell invasion is poorly understood. We show that miR-21 directly downregulates the proapoptotic protein PDCD4 to increase migration and invasion of ACHN and 786-O renal cancer cells as a result of phosphorylation/activation of Akt and IKKβ, which activate NFκB-dependent transcription. Constitutively active (CA) Akt or CA IKKβ blocks PDCD4-mediated inhibition and restores renal cancer cell migration and invasion. PDCD4 inhibits mTORC1 activity, which was reversed by CA IKKβ. Moreover, CA mTORC1 restores cell migration and invasion inhibited by PDCD4 and dominant negative IKKβ. Moreover, PDCD4 negatively regulates mTORC2-dependent Akt phosphorylation upstream of this cascade. We show that PDCD4 forms a complex with rictor, an exclusive component of mTORC2, and that this complex formation is reduced in renal cancer cells due to increased miR-21 expression resulting in enhanced phosphorylation of Akt. Thus our results identify a previously unrecognized signaling node where high miR-21 levels reduce rictor-PDCD4 interaction to increase phosphorylation of Akt and contribute to metastatic fitness of renal cancer cells.

  3. Activation of the PI3K/AKT pathway correlates with prognosis in stage II colon cancer

    PubMed Central

    Malinowsky, K; Nitsche, U; Janssen, K-P; Bader, F G; Späth, C; Drecoll, E; Keller, G; Höfler, H; Slotta-Huspenina, J; Becker, K-F

    2014-01-01

    Background: Patients with UICC/AJCC stage II colon cancer have a high 5-year overall survival rate after surgery. Nevertheless, a significant subgroup of patients develops tumour recurrence. Currently, there are no clinically established biomarkers available to identify this patient group. We applied reverse-phase protein arrays (RPPA) for phosphatidylinositide-3-kinase pathway activation mapping to stratify patients according to their risk of tumour recurrence after surgery. Methods: Full-length proteins were extracted from formalin-fixed, paraffin-embedded tissue samples of 118 patients who underwent curative resection. RPPA technology was used to analyse expression and/or phosphorylation levels of six major factors of the phosphatidylinositide-3-kinase pathway. Oncogenic mutations of KRAS and BRAF, and DNA microsatellite status, currently discussed as prognostic markers, were analysed in parallel. Results: Expression of phospho-AKT (HR=3.52; P=0.032), S6RP (HR=6.3; P=0.044), and phospho-4E-BP1 (HR=4.12; P=0.011) were prognostic factors for disease-free survival. None of the molecular genetic alterations were significantly associated with prognosis. Conclusions: Our data indicate that activation of the PI3K/AKT pathway evidenced on the protein level might be a valuable prognostic marker to stratify patients for their risk of tumour recurrence. Beside adjuvant chemotherapy targeting of upregulated PI3K/AKT signalling may be an attractive strategy for treatment of high-risk patients. PMID:24619078

  4. Vitamin E facilitates the inactivation of the kinase Akt by the phosphatase PHLPP1.

    PubMed

    Huang, Po-Hsien; Chuang, Hsiao-Ching; Chou, Chih-Chien; Wang, Huiling; Lee, Su-Lin; Yang, Hsiao-Ching; Chiu, Hao-Chieh; Kapuriya, Naval; Wang, Dasheng; Kulp, Samuel K; Chen, Ching-Shih

    2013-03-19

    Vitamin E is a fat-soluble vitamin with antioxidant properties. Tocopherols are the predominant form of vitamin E found in the diet and in supplements and have garnered interest for their potential cancer therapeutic and preventive effects, such as the dephosphorylation of Akt, a serine/threonine kinase with a pivotal role in cell growth, survival, and metabolism. Dephosphorylation of Akt at Ser473 substantially reduces its catalytic activity and inhibits downstream signaling. We found that the mechanism by which α-tocopherol and γ-tocopherol facilitate this site-specific dephosphorylation of Akt was mediated through the pleckstrin homology (PH) domain-dependent recruitment of Akt and PHLPP1 (PH domain leucine-rich repeat protein phosphatase, isoform 1) to the plasma membrane. We structurally optimized these tocopherols to obtain derivatives with greater in vitro potency and in vivo tumor-suppressive activity in two prostate xenograft tumor models. Binding affinities for the PH domains of Akt and PHLPP1 were greater than for other PH domain-containing proteins, which may underlie the preferential recruitment of these proteins to membranes containing tocopherols. Molecular modeling revealed the structural determinants of the interaction with the PH domain of Akt that may inform strategies for continued structural optimization. By describing a mechanism by which tocopherols facilitate the dephosphorylation of Akt at Ser473, we provide insights into the mode of antitumor action of tocopherols and a rationale for the translational development of tocopherols into novel PH domain-targeted Akt inhibitors.

  5. Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt.

    PubMed

    Murata, Hiroaki; Ihara, Yoshito; Nakamura, Hajime; Yodoi, Junji; Sumikawa, Koji; Kondo, Takahito

    2003-12-12

    Glutaredoxin (GRX) is a small dithiol protein involved in various cellular functions, including the redox regulation of certain enzyme activities. GRX functions via a disulfide exchange reaction by utilizing the active site Cys-Pro-Tyr-Cys. Here we demonstrated that overexpression of GRX protected cells from hydrogen peroxide (H2O2)-induced apoptosis by regulating the redox state of Akt. Akt was transiently phosphorylated, dephosphorylated, and then degraded in cardiac H9c2 cells undergoing H2O2-induced apoptosis. Under stress, Akt underwent disulfide bond formation between Cys-297 and Cys-311 and dephosphorylation in accordance with an increased association with protein phosphatase 2A. Overexpression of GRX protected Akt from H2O2-induced oxidation and suppressed recruitment of protein phosphatase 2A to Akt, resulting in a sustained phosphorylation of Akt and inhibition of apoptosis. This effect was reversed by cadmium, an inhibitor of GRX. Furthermore an in vitro assay revealed that GRX reduced oxidized Akt in concert with glutathione, NADPH, and glutathione-disulfide reductase. Thus, GRX plays an important role in protecting cells from apoptosis by regulating the redox state of Akt. PMID:14522978

  6. Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt.

    PubMed

    Murata, Hiroaki; Ihara, Yoshito; Nakamura, Hajime; Yodoi, Junji; Sumikawa, Koji; Kondo, Takahito

    2003-12-12

    Glutaredoxin (GRX) is a small dithiol protein involved in various cellular functions, including the redox regulation of certain enzyme activities. GRX functions via a disulfide exchange reaction by utilizing the active site Cys-Pro-Tyr-Cys. Here we demonstrated that overexpression of GRX protected cells from hydrogen peroxide (H2O2)-induced apoptosis by regulating the redox state of Akt. Akt was transiently phosphorylated, dephosphorylated, and then degraded in cardiac H9c2 cells undergoing H2O2-induced apoptosis. Under stress, Akt underwent disulfide bond formation between Cys-297 and Cys-311 and dephosphorylation in accordance with an increased association with protein phosphatase 2A. Overexpression of GRX protected Akt from H2O2-induced oxidation and suppressed recruitment of protein phosphatase 2A to Akt, resulting in a sustained phosphorylation of Akt and inhibition of apoptosis. This effect was reversed by cadmium, an inhibitor of GRX. Furthermore an in vitro assay revealed that GRX reduced oxidized Akt in concert with glutathione, NADPH, and glutathione-disulfide reductase. Thus, GRX plays an important role in protecting cells from apoptosis by regulating the redox state of Akt.

  7. Estrogen, tamoxifen, and Akt modulate expression of putative housekeeping genes in breast cancer cells.

    PubMed

    Shah, Khyati N; Faridi, Jesika S

    2011-07-01

    Clinically, Akt overexpression has been associated with tamoxifen resistance, and multiple in vitro breast cancer models of tamoxifen resistance have been developed. In order to study the mechanism of this tamoxifen resistance, differential gene expression studies have been performed utilizing quantitative reverse transcription-polymerase chain reaction (RT-qPCR). Since accurate data normalization requires the use of a stable reference gene, the goal of this study was to identify the most stable reference gene for RT-qPCR (from a panel of putative housekeeping genes) that remains unaltered despite estrogen or tamoxifen treatment or stable overexpression of active Akt. Gene expression of nine candidate genes was determined in parental and Akt overexpressing MCF-7 breast cancer cells treated with estrogen, tamoxifen, or vehicle, and gene stability was analyzed using two different statistical models. Based on our results, we suggest RPL13A as suitable internal reference gene that is both stable and remains unaltered in MCF-7 cells regardless of estrogen or tamoxifen treatment or Akt overexpression. We also validated that expression levels for RPL13A, as well as RPLP0 (another member of the RPL protein family), remain unaltered after estrogen and tamoxifen treatment in the ER positive ZR-75-1 cell line and ER negative MDA-MB-468 breast cancer cell line. Both RPL13A and RPLP0 levels were also stable in normal and tumor mammary tissue from Her2 overexpressing mice. In addition, our work emphasizes the importance of a preliminary study to validate each reference gene that will be used for RT-qPCR.

  8. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    SciTech Connect

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung; Lee, Joo Young

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. Black-Right-Pointing-Pointer PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. Black-Right-Pointing-Pointer p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. Black-Right-Pointing-Pointer Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl{sub 2}. Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1{alpha}. A PI3K inhibitor (LY294002) attenuated CoCl{sub 2}-induced nuclear accumulation and transcriptional activation of HIF-1{alpha}. In addition, HIF-1{alpha}-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl{sub 2}-induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1{alpha}. However, p38 was not involved in HIF-1{alpha} activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K/Akt

  9. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation

    PubMed Central

    Snyder, Nathaniel W.; Wei, Shuanzeng; Venneti, Sriram; Worth, Andrew J.; Yuan, Zuo-Fei; Lim, Hee-Woong; Liu, Shichong; Jackson, Ellen; Aiello, Nicole M.; Haas, Naomi B.; Rebbeck, Timothy R.; Judkins, Alexander; Won, Kyoung-Jae; Chodosh, Lewis A.; Garcia, Benjamin A.; Stanger, Ben Z.; Feldman, Michael D.; Blair, Ian A.; Wellen, Kathryn E.

    2014-01-01

    SUMMARY Histone acetylation plays important roles in gene regulation, DNA replication, and the response to DNA damage, and it is frequently deregulated in tumors. We postulated that tumor cell histone acetylation levels are determined in part by changes in acetyl-CoA availability mediated by oncogenic metabolic reprogramming. Here, we demonstrate that acetyl-CoA is dynamically regulated by glucose availability in cancer cells and that the ratio of acetyl-CoA: coenzyme A within the nucleus modulates global histone acetylation levels. In vivo, expression of oncogenic Kras or Akt stimulates histone acetylation changes that precede tumor development. Furthermore, we show that Akt's effects on histone acetylation are mediated through the metabolic enzyme ATP-citrate lyase (ACLY), and that pAkt(Ser473) levels correlate significantly with histone acetylation marks in human gliomas and prostate tumors. The data implicate acetyl-CoA metabolism as a key determinant of histone acetylation levels in cancer cells. PMID:24998913

  10. Doxorubicin and cyclophosphamide induce cognitive dysfunction and activate the ERK and AKT signaling pathways.

    PubMed

    Salas-Ramirez, Kaliris Y; Bagnall, Ciara; Frias, Leslie; Abdali, Syed A; Ahles, Tim A; Hubbard, Karen

    2015-10-01

    Chemotherapy is associated with long-term cognitive deficits in breast cancer survivors. Studies suggest that these impairments result in the loss of cognitive reserve and/or induce a premature aging of the brain. This study has been aimed to determine the potential underlying mechanisms that induce cognitive impairments by chemotherapeutic agents commonly used in breast cancer. Intact and ovariectomized (OVX) female rats were treated intravenously with either saline or a combination of cyclophosphamide (40 mg/kg) and doxorubicin (4 mg/kg). All subjects were tested for anxiety, locomotor activity, working, visual and spatial memory consecutively. Although anxiety and visual memory were not affected, chemotherapy significantly decreased locomotor activity and impaired working and spatial memory in female rats, independent of their hormonal status. The cognitive deficits observed are hippocampal dependent. Therefore, as a first step to identity the potential signaling pathways involved in this cognitive dysfunction, the protein levels of extracellular signal-regulated kinase 1/2 (Erk1/2), Akt (neuroprotectant) BDNF and (structural protein) PSD95 in hippocampal lysates were measured. Erk1/2 and Akt pathways are known to modulate synaptic plasticity, neuronal survival, aging and cancer. We found an increased activation of Erk1/2 and Akt as well as an increase in the protein levels of PSD95 in OVX female rodents. However, OVX females had a higher overall BDNF level, independent of chemotherapy. These studies provide additional evidence that commonly used chemotherapeutic agents affect cognitive function and impact synaptic plasticity/aging molecules which may be part of the underlying biology explaining cognitive change and can be potential therapeutic targets.

  11. Accumulated p53 protein and UVA protection level of sunscreens.

    PubMed

    Seité, S; Moyal, D; Verdier, M P; Hourseau, C; Fourtanier, A

    2000-02-01

    Nuclear p53 expression is a sensitive parameter for the detection of ultraviolet (UV)-induced skin damage, and it has been used as an endpoint to evaluate the effectiveness of sunscreens. In this study, we compared the protection provided by two sunscreens having identical sun protection factors (SPF) but different UVA protection factors (UVA-PF) measured by the persistent pigment darkening method (PPD). The SPF of the sunscreens was 7 and the UVA-PF were respectively 7 and 3. Nuclear p53 protein was quantified in human skin biopsies treated with sunscreens and exposed 8 times to 5 MED of solar simulated radiation (SSR). The results showed that both sunscreens offered only partial protection against the increased expression of nuclear p53 protein induced by repetitive SSR exposures. However, a significantly lower level of p53-positive cells was found in areas protected with the sunscreen having the higher UVA-PF compared to the other sunscreen protected areas. In order to verify whether the difference in efficacy of these products was due to the difference in UVA absorption capacity, we quantified epidermal p53 protein accumulation after 8 exposures to either UVA (320-400 nm) or UVA1 (340-400 nm). We showed that as with SSR, repetitive exposures to 12.5 and 25 J/cm2 of UVA or UVA1 induced a significant increase in p53-positive cells in the human epidermis. These results confirmed that SPF determined on the basis of an acute erythemal reaction does not predict the level of protection against cumulative damage. They also showed that the protection provided by two sunscreens with different UVA protection factors is different (based on nuclear p53 protein accumulation), and that the PPD method can distinguish varying levels of sunscreen efficacy against UVA-induced cell damage. PMID:10721857

  12. Tetramethylpyrazine induces SH-SY5Y cell differentiation toward the neuronal phenotype through activation of the PI3K/Akt/Sp1/TopoIIβ pathway.

    PubMed

    Yan, Yong-Xin; Zhao, Jun-Xia; Han, Shuo; Zhou, Na-Jing; Jia, Zhi-Qiang; Yao, Sheng-Jie; Cao, Cui-Li; Wang, Yan-Ling; Xu, Yan-Nan; Zhao, Juan; Yan, Yun-Li; Cui, Hui-Xian

    2015-12-01

    Tetramethylpyrazine (TMP) is an active compound extracted from the traditional Chinese medicinal herb Chuanxiong. Previously, we have shown that TMP induces human SH-SY5Y neuroblastoma cell differentiation toward the neuronal phenotype by targeting topoisomeraseIIβ (TopoIIβ), a protein implicated in neural development. In the present study, we aimed to elucidate whether the transcriptional factors specificity protein 1 (Sp1) and nuclear factor Y (NF-Y), in addition to the upstream signaling pathways ERK1/2 and PI3K/Akt, are involved in modulating TopoIIβ expression in the neuronal differentiation process. We demonstrated that SH-SY5Y cells treated with TMP (80μM) terminally differentiated into neurons, characterized by increased neuronal markers, tubulin βIII and microtubule associated protein 2 (MAP2), and increased neurite outgrowth, with no negative effect on cell survival. TMP also increased the expression of TopoIIβ, which was accompanied by increased expression of Sp1 in the differentiated neuron-like cells, whereas NF-Y protein levels remained unchanged following the differentiation progression. We also found that the phosphorylation level of Akt, but not ERK1/2, was significantly increased as a result of TMP stimulation. Furthermore, as established by chromatin immunoprecipitation (ChIP) assay, activation of the PI3K/Akt pathway increased Sp1 binding to the promoter of the TopoIIβ gene. Blockage of PI3K/Akt was shown to lead to subsequent inhibition of TopoIIβ expression and neuronal differentiation. Collectively, the results indicate that the PI3K/Akt/Sp1/TopoIIβ signaling pathway is necessary for TMP-induced neuronal differentiation. Our findings offer mechanistic insights into understanding the upstream regulation of TopoIIβ in neuronal differentiation, and suggest potential applications of TMP both in neuroscience research and clinical practice to treat relevant diseases of the nervous system. PMID:26518113

  13. Recurrent BCAM-AKT2 fusion gene leads to a constitutively activated AKT2 fusion kinase in high-grade serous ovarian carcinoma

    PubMed Central

    Kannan, Kalpana; Coarfa, Cristian; Chao, Pei-Wen; Luo, Liming; Wang, Yan; Brinegar, Amy E.; Hawkins, Shannon M.; Milosavljevic, Aleksandar; Matzuk, Martin M.; Yen, Laising

    2015-01-01

    High-grade serous ovarian cancer (HGSC) is among the most lethal forms of cancer in women. Excessive genomic rearrangements, which are expected to create fusion oncogenes, are the hallmark of this cancer. Here we report a cancer-specific gene fusion between BCAM, a membrane adhesion molecule, and AKT2, a key kinase in the PI3K signaling pathway. This fusion is present in 7% of the 60 patient cancers tested, a significant frequency considering the highly heterogeneous nature of this malignancy. Further, we provide direct evidence that BCAM-AKT2 is translated into an in-frame fusion protein in the patient’s tumor. The resulting AKT2 fusion kinase is membrane-associated, constitutively phosphorylated, and activated as a functional kinase in cells. Unlike endogenous AKT2, whose activity is tightly regulated by external stimuli, BCAM-AKT2 escapes the regulation from external stimuli. Moreover, a BCAM-AKT2 fusion gene generated via chromosomal translocation using the CRISPR/Cas9 system leads to focus formation in both OVCAR8 and HEK-293T cell lines, suggesting that BCAM-AKT2 is oncogenic. Together, the results indicate that BCAM-AKT2 expression is a new mechanism of AKT2 kinase activation in HGSC. BCAM-AKT2 is the only fusion gene in HGSC that is proven to translate an aberrant yet functional kinase fusion protein with oncogenic properties. This recurrent genomic alteration is a potential therapeutic target and marker of a clinically relevant subtype for tailored therapy of HGSC. PMID:25733895

  14. Effect of protein level and protein source on zinc absorption in humans

    SciTech Connect

    Sandstroem, B.A.; Almgren, A.; Kivistoe, B.C.; Cederblad, A.

    1989-01-01

    The effect of increasing levels of various protein sources on zinc absorption from a legume-based meal was studied in humans with the use of a radionuclide technique. The meals were extrinsically labelled with 65Zn and absorption was determined from measurements of the whole-body retention of the isotope. The mean fractional zinc absorption for the 13 meals was 24.7 +/- 6.9% and was only influenced by the protein content of the meal to a limited extent (r = 0.45). However, the amount of zinc absorbed from the meals was strongly correlated with both the protein (r = 0.85) and zinc content (r = 0.86): 5.9 +/- 1.7 mumol of zinc was absorbed from the basal bean meal which had the lowest protein content; the addition of low zinc chicken doubled the protein content and increased zinc absorption to 10.3 +/- 2.0 mumol; the addition of zinc-rich beef also doubled the protein content, however, zinc absorption was increased to 15.9 +/- 4.7 mumol. It is concluded that the zinc content of the main protein source of the diet determines the amount of zinc absorbed to a large extent. However, relatively small amounts of animal protein can significantly improve the value of a legume-based meal as a source of zinc.

  15. Ascertaining effects of nanoscale polymeric interfaces on competitive protein adsorption at the individual protein level.

    PubMed

    Song, Sheng; Xie, Tian; Ravensbergen, Kristina; Hahm, Jong-in

    2016-02-14

    With the recent development of biomaterials and biodevices with reduced dimensionality, it is critical to comprehend protein adhesion processes to nanoscale solid surfaces, especially those occurring in a competitive adsorption environment. Complex sequences of adhesion events in competitive adsorption involving multicomponent protein systems have been extensively investigated, but our understanding is still limited primarily to macroscopic adhesion onto chemically simple surfaces. We examine the competitive adsorption behavior from a binary protein mixture containing bovine serum albumin and fibrinogen at the single protein level. We subsequently evaluate a series of adsorption and displacement processes occurring on both the macroscopic homopolymer and nanoscopic diblock copolymer surfaces, while systematically varying the protein concentration and incubation time. We identify the similarities and dissimilarities in competitive protein adsorption behavior between the two polymeric surfaces, the former presenting chemical uniformity at macroscale versus the latter exhibiting periodic nanointerfaces of chemically alternating polymeric segments. We then present our novel experimental finding of a large increase in the nanointerface-engaged residence time of the initially bound proteins and further explain the origin of this phenomenon manifested on nanoscale diblock copolymer surfaces. The outcomes of this study may provide timely insight into nanoscale competitive protein adsorption that is much needed in designing bioimplant and tissue engineering materials. In addition, the fundamental understanding gained from this study can be beneficial for the development of highly miniaturized biodevices and biomaterials fabricated by using nanoscale polymeric materials and interfaces.

  16. Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity.

    PubMed

    Gingras, Andrée-Anne; White, Phillip James; Chouinard, P Yvan; Julien, Pierre; Davis, Teresa A; Dombrowski, Luce; Couture, Yvon; Dubreuil, Pascal; Myre, Alexandre; Bergeron, Karen; Marette, André; Thivierge, M Carole

    2007-02-15

    The ability of the skeletal musculature to use amino acids to build or renew constitutive proteins is gradually lost with age and this is partly due to a decline in skeletal muscle insulin sensitivity. Since long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) from fish oil are known to improve insulin-mediated glucose metabolism in insulin-resistant states, their potential role in regulating insulin-mediated protein metabolism was investigated in this study. Experimental data are based on a switchback design composed of three 5 week experimental periods using six growing steers to compare the effect of a continuous abomasal infusion of LCn-3PUFA-rich menhaden oil with an iso-energetic control oil mixture. Clamp and insulin signalling observations were combined with additional data from a second cohort of six steers. We found that enteral LCn-3PUFA potentiate insulin action by increasing the insulin-stimulated whole-body disposal of amino acids from 152 to 308 micromol kg(-1) h(-1) (P=0.006). The study further showed that in the fed steady-state, chronic adaptation to LCn-3PUFA induces greater activation (P<0.05) of the Akt-mTOR-S6K1 signalling pathway. Simultaneously, whole-body total flux of phenylalanine was reduced from 87 to 67 micromol kg(-1) h(-1) (P=0.04) and oxidative metabolism was decreased (P=0.05). We conclude that chronic feeding of menhaden oil provides a novel nutritional mean to enhance insulin-sensitive aspects of protein metabolism. PMID:17158167

  17. Linker for activation of T-cell family member2 (LAT2) a lipid raft adaptor protein for AKT signaling, is an early mediator of alkylphospholipid anti-leukemic activity.

    PubMed

    Thomé, Carolina H; dos Santos, Guilherme A; Ferreira, Germano A; Scheucher, Priscila S; Izumi, Clarice; Leopoldino, Andreia M; Simão, Ana Maria; Ciancaglini, Pietro; de Oliveira, Kleber T; Chin, Alice; Hanash, Samir M; Falcão, Roberto P; Rego, Eduardo M; Greene, Lewis J; Faça, Vitor M

    2012-12-01

    Lipid rafts are highly ordered membrane domains rich in cholesterol and sphingolipids that provide a scaffold for signal transduction proteins; altered raft structure has also been implicated in cancer progression. We have shown that 25 μm 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC), an alkylphospholipid, targets high cholesterol domains in model membranes and induces apoptosis in leukemia cells but spares normal hematopoietic and epithelial cells under the same conditions. We performed a quantitative (SILAC) proteomic screening of ODPC targets in a lipid-raft-enriched fraction of leukemic cells to identify early events prior to the initiation of apoptosis. Six proteins, three with demonstrated palmitoylation sites, were reduced in abundance. One, the linker for activation of T-cell family member 2 (LAT2), is an adaptor protein associated with lipid rafts in its palmitoylated form and is specifically expressed in B lymphocytes and myeloid cells. Interestingly, LAT2 is not expressed in K562, a cell line more resistant to ODPC-induced apoptosis. There was an early loss of LAT2 in the lipid-raft-enriched fraction of NB4 cells within 3 h following treatment with 25 μm ODPC. Subsequent degradation of LAT2 by proteasomes was observed. Twenty-five μm ODPC inhibited AKT activation via myeloid growth factors, and LAT2 knockdown in NB4 cells by shRNA reproduced this effect. LAT2 knockdown in NB4 cells also decreased cell proliferation and increased cell sensitivity to ODPC (7.5×), perifosine (3×), and arsenic trioxide (8.5×). Taken together, these data indicate that LAT2 is an early mediator of the anti-leukemic activity of alkylphospholipids and arsenic trioxide. Thus, LAT2 may be used as a target for the design of drugs for cancer therapy.

  18. Linker for Activation of T-cell Family Member2 (LAT2) a Lipid Raft Adaptor Protein for AKT Signaling, Is an Early Mediator of Alkylphospholipid Anti-leukemic Activity*

    PubMed Central

    Thomé, Carolina H.; dos Santos, Guilherme A.; Ferreira, Germano A.; Scheucher, Priscila S.; Izumi, Clarice; Leopoldino, Andreia M.; Simão, Ana Maria; Ciancaglini, Pietro; de Oliveira, Kleber T.; Chin, Alice; Hanash, Samir M.; Falcão, Roberto P.; Rego, Eduardo M.; Greene, Lewis J.; Faça, Vitor M.

    2012-01-01

    Lipid rafts are highly ordered membrane domains rich in cholesterol and sphingolipids that provide a scaffold for signal transduction proteins; altered raft structure has also been implicated in cancer progression. We have shown that 25 μm 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC), an alkylphospholipid, targets high cholesterol domains in model membranes and induces apoptosis in leukemia cells but spares normal hematopoietic and epithelial cells under the same conditions. We performed a quantitative (SILAC) proteomic screening of ODPC targets in a lipid-raft-enriched fraction of leukemic cells to identify early events prior to the initiation of apoptosis. Six proteins, three with demonstrated palmitoylation sites, were reduced in abundance. One, the linker for activation of T-cell family member 2 (LAT2), is an adaptor protein associated with lipid rafts in its palmitoylated form and is specifically expressed in B lymphocytes and myeloid cells. Interestingly, LAT2 is not expressed in K562, a cell line more resistant to ODPC-induced apoptosis. There was an early loss of LAT2 in the lipid-raft-enriched fraction of NB4 cells within 3 h following treatment with 25 μm ODPC. Subsequent degradation of LAT2 by proteasomes was observed. Twenty-five μm ODPC inhibited AKT activation via myeloid growth factors, and LAT2 knockdown in NB4 cells by shRNA reproduced this effect. LAT2 knockdown in NB4 cells also decreased cell proliferation and increased cell sensitivity to ODPC (7.5×), perifosine (3×), and arsenic trioxide (8.5×). Taken together, these data indicate that LAT2 is an early mediator of the anti-leukemic activity of alkylphospholipids and arsenic trioxide. Thus, LAT2 may be used as a target for the design of drugs for cancer therapy. PMID:23001822

  19. Labdane diterpenes protect against anoxia/reperfusion injury in cardiomyocytes: involvement of AKT activation

    PubMed Central

    Cuadrado, I; Fernández-Velasco, M; Boscá, L; de las Heras, B

    2011-01-01

    Several labdane diterpenes exert anti-inflammatory and cytoprotective actions; therefore, we have investigated whether these molecules protect cardiomyocytes in an anoxia/reperfusion (A/R) model, establishing the molecular mechanisms involved in the process. The cardioprotective activity of three diterpenes (T1, T2 and T3) was studied in the H9c2 cell line and in isolated rat cardiomyocyte subjected to A/R injury. In both cases, treatment with diterpenes T1 and T2 protected from A/R-induced apoptosis, as deduced by a decrease in the percentage of apoptotic and caspase-3 active positive cells, a decrease in the Bcl-2/Bax ratio and an increase in the expression of antiapoptotic proteins. Analysis of cell survival signaling pathways showed that diterpenes T1 and T2 added after A/R increased phospho-AKT and phospho-ERK 1/2 levels. These cardioprotective effects were lost when AKT activity was pharmacologically inhibited. Moreover, the labdane-induced cardioprotection involves activation of AMPK, suggesting a role for energy homeostasis in their mechanism of action. Labdane diterpenes (T1 and T2) also exerted cardioprotective effects against A/R-induced injury in isolated cardiomyocytes and the mechanisms involved activation of specific survival signals (PI3K/AKT pathways, ERK1/2 and AMPK) and inhibition of apoptosis. PMID:22071634

  20. MDM2 restrains estrogen-mediated AKT activation by promoting TBK1-dependent HPIP degradation.

    PubMed

    Shostak, K; Patrascu, F; Göktuna, S I; Close, P; Borgs, L; Nguyen, L; Olivier, F; Rammal, A; Brinkhaus, H; Bentires-Alj, M; Marine, J-C; Chariot, A

    2014-05-01

    Restoration of p53 tumor suppressor function through inhibition of its interaction and/or enzymatic activity of its E3 ligase, MDM2, is a promising therapeutic approach to treat cancer. However, because the MDM2 targetome extends beyond p53, MDM2 inhibition may also cause unwanted activation of oncogenic pathways. Accordingly, we identified the microtubule-associated HPIP, a positive regulator of oncogenic AKT signaling, as a novel MDM2 substrate. MDM2-dependent HPIP degradation occurs in breast cancer cells on its phosphorylation by the estrogen-activated kinase TBK1. Importantly, decreasing Mdm2 gene dosage in mouse mammary epithelial cells potentiates estrogen-dependent AKT activation owing to HPIP stabilization. In addition, we identified HPIP as a novel p53 transcriptional target, and pharmacological inhibition of MDM2 causes p53-dependent increase in HPIP transcription and also prevents HPIP degradation by turning off TBK1 activity. Our data indicate that p53 reactivation through MDM2 inhibition may result in ectopic AKT oncogenic activity by maintaining HPIP protein levels. PMID:24488098

  1. Singularity analysis of the AKT signaling pathway reveals connections between cancer and metabolic diseases.

    PubMed

    Wang, Guanyu

    2010-01-01

    Connections between cancer and metabolic diseases may consist in the complex network of interactions among a common set of biomolecules. By applying singularity and bifurcation analysis, the phenotypes constrained by the AKT signaling pathway are identified and mapped onto the parameter space, which include cancer and certain metabolic diseases. By considering physiologic properties (sensitivity, robustness and adaptivity) the AKT pathway must possess in order to efficiently sense growth factors and nutrients, the region of normal responses is located. To optimize these properties, the intracellular concentration of the AKT protein must be sufficiently high to saturate its enzymes; the strength of the positive feedback must be stronger than that of the negative feedback. The analysis illuminates the parameter space and reveals system-level mechanisms in regulating biological functions (cell growth, survival, proliferation and metabolism) and how their deregulation may lead to the development of diseases. The analytical expressions summarize the synergistic interactions among many molecules, which provides valuable insights into therapeutic interventions. In particular, a strategy for overcoming the limitations of mTOR inhibition is proposed for cancer therapy.

  2. Slug inhibits the proliferation and tumor formation of human cervical cancer cells by up-regulating the p21/p27 proteins and down-regulating the activity of the Wnt/β-catenin signaling pathway via the trans-suppression Akt1/p-Akt1 expression

    PubMed Central

    Cui, Nan; Yang, Wen-Ting; Zheng, Peng-Sheng

    2016-01-01

    Slug (Snai2) has been demonstrated to act as an oncogene or tumor suppressor in different human cancers, but the function of Slug in cervical cancer remains poorly understood. In this study, we demonstrated that Slug could suppress the proliferation of cervical cancer cells in vitro and tumor formation in vivo. Further experiments found that Slug could trans-suppress the expression of Akt1/p-Akt1 by binding to E-box motifs in the promoter of the Akt1 gene and then inhibit the cell proliferation and tumor formation of cervical cancer cells by up-regulating p21/p27 and/or down-regulating the activity of the Wnt/β-catenin signaling pathway. Therefore, Slug acts as a tumor suppressor during cervical carcinogenesis. PMID:27036045

  3. AKT/mTOR and c-Jun N-terminal kinase signaling pathways are required for chrysotile asbestos-induced autophagy.

    PubMed

    Lin, Ziying; Liu, Tie; Kamp, David W; Wang, Yahong; He, Huijuan; Zhou, Xu; Li, Donghong; Yang, Lawei; Zhao, Bin; Liu, Gang

    2014-07-01

    Chrysotile asbestos is closely associated with excess mortality from pulmonary diseases such as lung cancer, mesothelioma, and asbestosis. Although multiple mechanisms in which chrysotile asbestos fibers induce pulmonary disease have been identified, the role of autophagy in human lung epithelial cells has not been examined. In this study, we evaluated whether chrysotile asbestos induces autophagy in A549 human lung epithelial cells and then analyzed the possible underlying molecular mechanism. Chrysotile asbestos induced autophagy in A549 cells based on a series of biochemical and microscopic autophagy markers. We observed that asbestos increased expression of A549 cell microtubule-associated protein 1 light chain 3 (LC3-II), an autophagy marker, in conjunction with dephosphorylation of phospho-AKT, phospho-mTOR, and phospho-p70S6K. Notably, AKT1/AKT2 double-knockout murine embryonic fibroblasts (MEFs) had negligible asbestos-induced LC3-II expression, supporting a crucial role for AKT signaling. Chrysotile asbestos also led to the phosphorylation/activation of Jun N-terminal kinase (JNK) and p38 MAPK. Pharmacologic inhibition of JNK, but not p38 MAPK, dramatically inhibited the protein expression of LC3-II. Moreover, JNK2(-/-) MEFs but not JNK1(-/-) MEFs blocked LC3-II levels induced by chrysotile asbestos. In addition, N-acetylcysteine, an antioxidant, attenuated chrysotile asbestos-induced dephosphorylation of P-AKT and completely abolished phosphorylation/activation of JNK. Finally, we demonstrated that chrysotile asbestos-induced apoptosis was not affected by the presence of the autophagy inhibitor 3-methyladenine or autophagy-related gene 5 siRNA, indicating that the chrysotile asbestos-induced autophagy may be adaptive rather than prosurvival. Our findings demonstrate that AKT/mTOR and JNK2 signaling pathways are required for chrysotile asbestos-induced autophagy. These data provide a mechanistic basis for possible future clinical applications targeting

  4. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: role of the PI3K/AKT pathway and associated microRNAs.

    PubMed

    Banerjee, Nivedita; Kim, Hyemee; Krenek, Kimberly; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2015-08-01

    The cytotoxic and anti-inflammatory properties of mango polyphenolics including gallic acid and gallotannins have been demonstrated in numerous types of cancers. We hypothesized that the phosphoinositide 3-kinase (PI3K)/AKT pathway and the expression of related miRNAs are involved in the chemotherapeutic activities of mango polyphenolics in a mouse xenograft model for breast cancer. The objectives of this research were to determine the tumor-cytotoxic activities of mango polyphenolics and the underlying molecular mechanisms involving posttranscriptional targets in BT474 breast cancer cells and xenografts in mice. In vitro findings showed cytotoxic effects of mango polyphenolics in BT474 breast cancer cells within a concentration range of 2.5 to 20 mg/L gallic acid equivalents. Mango polyphenolics suppressed the expression of PI3K, AKT, hypoxia inducible factor-1α, and vascular endothelial growth factor (VEGF) mRNA, and pAKT, AKT, pPI3K (p85), VEGF and nuclear factor-kappa B protein levels. The involvement of miR-126 was verified by using antagomiR for miR-126, where mango reversed the effect of the antagomiR of miR-126. In vivo, the intake of mango polyphenolics decreased the tumor volume by 73% in BT474 xenograft-bearing mice compared with the control group. In addition, mango reduced the expression of nuclear factor-kappa B (p65), pAKT, pPI3K, mammalian target of rapamycin, hypoxia inducible factor-1α, and VEGF protein in athymic nude mice. A screening for miRNA expression changes confirmed that mango polyphenolics modulated the expression of cancer-associated miRNAs including miR-126 in the xenografted tumors. In summary, mango polyphenolics have a chemotherapeutic potential against breast cancer that at least in part is mediated through the PI3K/AKT pathway and miR-126.

  5. Discovery of 4-Amino-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamides As Selective, Orally Active Inhibitors of Protein Kinase B (Akt)†

    PubMed Central

    2010-01-01

    Protein kinase B (PKB or Akt) is an important component of intracellular signaling pathways regulating growth and survival. Signaling through PKB is frequently deregulated in cancer, and inhibitors of PKB therefore have potential as antitumor agents. The optimization of lipophilic substitution within a series of 4-benzyl-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amines provided ATP-competitive, nanomolar inhibitors with up to 150-fold selectivity for inhibition of PKB over the closely related kinase PKA. Although active in cellular assays, compounds containing 4-amino-4-benzylpiperidines underwent metabolism in vivo, leading to rapid clearance and low oral bioavailability. Variation of the linker group between the piperidine and the lipophilic substituent identified 4-amino-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamides as potent and orally bioavailable inhibitors of PKB. Representative compounds modulated biomarkers of signaling through PKB in vivo and strongly inhibited the growth of human tumor xenografts in nude mice at well-tolerated doses. PMID:20151677

  6. G-protein coupled receptor 34 activates Erk and phosphatidylinositol 3-kinase/Akt pathways and functions as alternative pathway to mediate p185Bcr-Abl-induced transformation and leukemogenesis.

    PubMed

    Zuo, Bo; Li, Mei; Liu, Yulan; Li, Kun; Ma, Shuyun; Cui, Meihua; Qin, Yazhen; Zhu, Honghu; Pan, Xiuying; Guo, Jingzhu; Dai, Zonghan; Yu, Weidong

    2015-07-01

    Tyrosine 177 and the Src homology 2 (SH2) domain play important roles in linking p185Bcr-Abl to downstream pathways critical for cell growth and survival. However, a mutant p185(Y177FR552L) (p185(YR)), in which tyrosine 177 and arginine 552 in the SH2 domain are mutated, is still capable of transforming hematopoietic cells in vitro. Transplant of these cells into syngeneic mice also leads to leukemogenesis, albeit with a phenotype distinct from that produced by wild-type p185Bcr-Abl (p185(wt))-transformed cells. Here we show that G-protein coupled receptor 34 (Gpr34) expression is markedly up-regulated in p185(YR)-transformed cells compared to those transformed by p185(wt). Knockdown of Gpr34 in p185(YR) cells is sufficient to suppress growth factor-independent proliferation and survival in vitro and attenuate leukemogenesis in vivo. The Erk and phosphatidylinositol 3-kinase/Akt pathways are activated in p185(YR) cells and the activation is dependent on Gpr34 expression. These studies identify Gpr34 as an alternative pathway that may mediate p185Bcr-Abl-induced transformation and leukemogenesis. PMID:25363403

  7. Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser157) and dephosphorylation of PI3K and Akt

    PubMed Central

    Kwon, Hyuk-Woo; Shin, Jung-Hae; Cho, Hyun-Jeong; Rhee, Man Hee; Park, Hwa-Jin

    2015-01-01

    Background Binding of adhesive proteins (i.e., fibrinogen, fibronectin, vitronectin) to platelet integrin glycoprotein IIb/IIIa (αIIb/β3) by various agonists (thrombin, collagen, adenosine diphosphate) involve in strength of thrombus. This study was carried out to evaluate the antiplatelet effect of total saponin from Korean Red Ginseng (KRG-TS) by investigating whether KRG-TS inhibits thrombin-induced binding of fibrinogen and fibronectin to αIIb/β3. Methods We investigated the effect of KRG-TS on phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and dephosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt, affecting binding of fibrinogen and fibronectin to αIIb/β3, and clot retraction. Results KRG-TS had an antiplatelet effect by inhibiting the binding of fibrinogen and fibronectin to αIIb/β3 via phosphorylation of VASP (Ser157), and dephosphorylation of PI3K and Akt on thrombin-induced platelet aggregation. Moreover, A-kinase inhibitor Rp-8-Br-cyclic adenosine monophosphates (cAMPs) reduced KRG-TS-increased VASP (Ser157) phosphorylation, and increased KRG-TS-inhibited fibrinogen-, and fibronectin-binding to αIIb/β3. These findings indicate that KRG-TS interferes with the binding of fibrinogen and fibronectin to αIIb/β3 via cAMP-dependent phosphorylation of VASP (Ser157). In addition, KRG-TS decreased the rate of clot retraction, reflecting inhibition of αIIb/β3 activation. In this study, we clarified ginsenoside Ro (G-Ro) in KRG-TS inhibited thrombin-induced platelet aggregation via both inhibition of [Ca2+]i mobilization and increase of cAMP production. Conclusion These results strongly indicate that KRG-TS is a beneficial herbal substance inhibiting fibrinogen-, and fibronectin-binding to αIIb/β3, and clot retraction, and may prevent platelet αIIb/β3-mediated thrombotic disease. In addition, we demonstrate that G-Ro is a novel compound with antiplatelet characteristics of KRG-TS. PMID:26843825

  8. CCN1 acutely increases nitric oxide production via integrin αvβ3-Akt-S6K-phosphorylation of endothelial nitric oxide synthase at the serine 1177 signaling axis.

    PubMed

    Hwang, Soojin; Lee, Hyeon-Ju; Kim, Gyungah; Won, Kyung-Jong; Park, Yoon Shin; Jo, Inho

    2015-12-01

    Although CCN1 (also known as cysteine-rich, angiogenic inducer 61, CYR61) has been reported to promote angiogenesis and neovascularization in endothelial cells (ECs), its effects on endothelial nitric oxide (NO) production have never been studied. Using human umbilical vein ECs, we investigated whether and how CCN1 regulates NO production. CCN1 acutely increased NO production in a time- and dose-dependent manner, which was accompanied by increased phosphorylation of endothelial NO synthase (eNOS) at serine 1177 (eNOS-Ser(1177)), but not that of eNOS-Thr(495) or eNOS-Ser(114). The level of total eNOS expression was unaltered. Treatment with either LY294002, a selective inhibitor of phosphoinositide 3-kinase known as an upstream kinase of Akt, or H-89, an inhibitor of protein kinase A, mitogen- and stress-activated protein kinase 1, Rho-associated protein kinase 2, and ribosomal protein S6 kinase (S6K), inhibited CCN1-stimulated eNOS-Ser(1177) phosphorylation and subsequent NO production. Ectopic expression of small interfering RNA against Akt and S6K significantly inhibited the effects of CCN1. Consistently, CCN1 increased the phosphorylation of Akt-Ser(473) and S6K-Thr(389). However, CCN1 did not alter the expression or secretion of VEGF, a known downstream factor of CCN1 and a potential upstream factor of Akt-mediated eNOS-Ser(1177) phosphorylation. Furthermore, neutralization of integrin αvβ3 with corresponding antibody completely reversed all of the observed effects of CCN1. Moreover, CCN1 increased acetylcholine-induced relaxation in the rat aortas. Finally, we also found that CCN1-stimulated eNOS-Ser(1177) phosphorylation and NO production are true for other types of EC tested. In conclusion, CCN1 acutely increases NO production via activation of a signaling axis in integrin αvβ3-Akt-S6K-eNOS-Ser(1177) phosphorylation, suggesting an important role for CCN1 in vasodilation.

  9. Bone morphogenetic protein (BMP) signaling regulates mitotic checkpoint protein levels in human breast cancer cells.

    PubMed

    Yan, Hualong; Zhu, Songcheng; Song, Chenlin; Liu, Naifa; Kang, Jiuhong

    2012-04-01

    Aberrant expression of mitotic checkpoint genes compromises mitotic checkpoint, leads to chromosome instability and tumorigenesis. However, the cell signals that control mitotic checkpoint gene expression have not been reported so far. In the present study we show that, in human breast cancer cells, chemical inhibition of Bone morphogenetic proteins (BMPs), but not Transforming Growth Factor-β (TGF-β), abrogates the mitotic arrest induced by nocodazole. Protein expression analysis reveals that inhibition of BMP signaling dramatically down regulates protein levels of mitotic checkpoint components BUB3, Hec1, TTK and MAD2, but inhibition of TGF-β has relatively minor effect on the expression of these proteins. Activation of BMP signaling specifically up regulates BUB3, and activation of Activin A signaling globally down regulates these proteins level. Furthermore, overexpressing MAD2, TTK, BUB3 or Hec1 significantly rescues the mitotic arrest defect caused by BMP inhibition. Our results demonstrated for the first time that TGF-β family cytokines are cellular signals regulating mitotic checkpoint and perturbations in intrinsic BMP signaling could lead to suppression of mitotic checkpoint signaling by downregulating key checkpoint proteins. The results suggest a possible mechanism by which dysregulation of TGF-β signaling causes mitotic checkpoint defects and drives tumorigenesis. The finding also provides a potential and more specific strategy for cancer prevention by targeting BMP and mitotic checkpoint connection. PMID:22234345

  10. Blood glucose fluctuation accelerates renal injury involved to inhibit the AKT signaling pathway in diabetic rats.

    PubMed

    Ying, Changjiang; Zhou, Xiaoyan; Chang, Zhenzhen; Ling, Hongwei; Cheng, Xingbo; Li, Wei

    2016-07-01

    Blood glucose fluctuation is associated with diabetic nephropathy. However, the mechanism by which blood glucose fluctuation accelerates renal injury is not fully understood. The aim of the present study was to assess the effects of blood glucose fluctuation on diabetic nephropathy in rats and investigate its underlying mechanism. Diabetes in the rats was induced by a high sugar, high-fat diet, and a single dose of STZ (35 mg/kg)-injected intraperitoneally. Unstable blood sugar models were induced by subcutaneous insulin injection and intravenous glucose injection alternately. Body weight, glycosylated hemoglobin A1c (HbAlc), blood urea nitrogen (BUN), serum creatinine (Scr), and Creatinine clearance (Ccr) were assessed. T-SOD activity and MDA level were measured by assay kit. Change in renal tissue ultrastructure was observed by light microscopy and electron microscopy. Phosphorylated ser/thr protein kinase (p-AKT) (phosphor-Ser473), phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β) (phosphor-Ser9), Bcl-2-associated X protein (BAX), B cell lymphoma/leukemia 2 (BCL-2), and cleaved-cysteinyl aspartate-specific proteinase-3 (caspase-3) levels were detected by immunohistochemistry and Western blot. We observed that BUN and Scr were increased in diabetic rats, and Ccr was decreased. Furthermore, blood glucose fluctuations could exacerbate the Ccr changes. Renal tissue ultrastructure was also seriously injured by glucose variability in diabetic rats. In addition, glucose fluctuation increased the oxidative stress of renal tissue. Moreover, fluctuating blood glucose decreased p-AKT level and BCL-2, and increased p-GSK-3β, BAX, cleaved-caspase-3 levels, and ratio of BAX/BCL-2 in the kidneys of diabetic rats. In conclusion, these results suggest that blood glucose fluctuation accelerated renal injury is due, at least in part to its oxidative stress promoting and inhibiting the AKT signaling pathway in diabetic rats. PMID:26860515

  11. Classification of G-protein coupled receptors at four levels.

    PubMed

    Gao, Qing-Bin; Wang, Zheng-Zhi

    2006-11-01

    G-protein coupled receptors (GPCRs) are transmembrane proteins which via G-proteins initiate some of the important signaling pathways in a cell and are involved in various physiological processes. Thus, computational prediction and classification of GPCRs can supply significant information for the development of novel drugs in pharmaceutical industry. In this paper, a nearest neighbor method has been introduced to discriminate GPCRs from non-GPCRs and subsequently classify GPCRs at four levels on the basis of amino acid composition and dipeptide composition of proteins. Its performance is evaluated on a non-redundant dataset consisted of 1406 GPCRs for six families and 1406 globular proteins using the jackknife test. The present method based on amino acid composition achieved an overall accuracy of 96.4% and Matthew's correlation coefficient (MCC) of 0.930 for correctly picking out the GPCRs from globular proteins. The overall accuracy and MCC were further enhanced to 99.8% and 0.996 by dipeptide composition-based method. On the other hand, the present method has successfully classified 1406 GPCRs into six families with an overall accuracy of 89.6 and 98.8% using amino acid composition and dipeptide composition, respectively. For the subfamily prediction of 1181 GPCRs of rhodopsin-like family, the present method achieved an overall accuracy of 76.7 and 94.5% based on the amino acid composition and dipeptide composition, respectively. Finally, GPCRs belonging to the amine subfamily and olfactory subfamily of rhodopsin-like family were further analyzed at the type level. The overall accuracy of dipeptide composition-based method for the classification of amine type and olfactory type of GPCRs reached 94.5 and 86.9%, respectively, while the overall accuracy of amino acid composition-based method was very low for both subfamilies. In comparison with existing methods in the literature, the present method also displayed great competitiveness. These results demonstrate

  12. The mRNA expression of DRD2, PI3KCB, and AKT1 in the blood of acute schizophrenia patients.

    PubMed

    Liu, Liang; Luo, Yin; Zhang, Guofu; Jin, Chunhui; Zhou, Zhenhe; Cheng, Zaohuo; Yuan, Guozhen

    2016-09-30

    The phosphoinositide 3 kinase - protein kinase B (PI3K-Akt) signaling pathway plays an important role in the dopamine D2 receptor (DRD2) pathway and in the pathophysiology of schizophrenia. This study measured the mRNA levels of DRD2, PI3KCB, and AKT1 in peripheral blood samples from 24 acute schizophrenia patients and 20 healthy controls using real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR). We found that in the acute schizophrenia patients, the mRNA expression levels of DRD2 and PI3KCB were significantly lower than those in the healthy controls, while the AKT1 mRNA levels were significantly higher than those in the healthy controls. A significant relationship between the mRNA levels of DRD2 and PI3KCB was found only in the controls. In conclusion, the gene expression state of the DRD2-PI3K-AKT signaling cascade differed significantly between acute schizophrenia patients and healthy controls. PMID:27449010

  13. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma.

    PubMed

    Chang, Liang; Zhao, Dan; Liu, Hui-Bin; Wang, Qiu-Shi; Zhang, Ping; Li, Chen-Long; Du, Wen-Zhong; Wang, Hong-Jun; Liu, Xing; Zhang, Zhi-Ren; Jiang, Chuan-Lu

    2015-11-01

    Aberrant hedgehog signaling contributes to the development of various malignancies, including glioblastoma (GBM). However, the potential mechanism of hedgehog signaling in GBM migration and invasion has remained to be elucidated. The present study showed that enhanced hedgehog signaling by recombinant human sonic hedgehog N‑terminal peptide (rhSHH) promoted the adhesion, invasion and migration of GBM cells, accompanied by increases in mRNA and protein levels of matrix metalloproteinase‑2 (MMP‑2) and MMP‑9. However, inhibition of hedgehog signaling with cyclopamine suppressed the adhesion, invasion and migration of GBM cells, accompanied by decreases in mRNA and protein levels of MMP‑2 and ‑9. Furthermore, it was found that MMP‑2- and MMP‑9-neutralizing antibodies or GAM6001 reversed the inductive effects of rhSHH on cell migration and invasion. In addition, enhanced hedgehog signaling by rhSHH increased AKT phosphorylation, whereas blockade of hedgehog signaling decreased AKT phosphorylations. Further experiments showed that LY294002, an inhibitor of phosphoinositide-3 kinase (PI3K), decreased rhSHH‑induced upregulation of MMP‑2 and ‑9. Finally, the protein expression of glioblastoma-associated oncogene 1 was positively correlated with levels of phosphorylated AKT as well as protein expressions of MMP‑2 and ‑9 in GBM tissue samples. In conclusion, the present study indicated that the hedgehog pathway regulates GBM-cell migration and invasion by increasing MMP-2 and MMP-9 production via the PI3K/AKT pathway. PMID:26299938

  14. MECHANISMS OF SPHINGOSINE-1-PHOSPHATE INDUCED AKT DEPENDENT SMOOTH MUSCLE CELL MIGRATION

    PubMed Central

    Roztocil, Elisa; Nicholl, Suzanne M.; Davies, Mark G.

    2008-01-01

    Background Sphingosine-1-phosphate (S-1-P) is a bioactive sphingolipid released from activated platelets, which stimulates migration of vascular smooth muscle cells (VSMC) in vitro. S-1-P will activate akt, which can regulate multiple cellular functions including cell migration. Akt activation is downstream of phosphatidyl-inositol 3′ kinase (PI3-K) and Phosphoinositide-dependent protein kinase-1 (PDK1). Objective To examine the regulation of akt signaling during smooth muscle cell migration in response to S-1-P. Methods Murine arterial SMCs were cultured in vitro. Linear wound and Boyden microchemotaxis assays of migration were performed in the presence of S-1-P with and without an akt inhibitor (aktI). Assays were performed for PI3-K, PDK1, akt and GSK3β activation in the presence of various inhibitors and after transfection with the Gβγ inhibitor. βARKCT. Results S-1-P induced time dependent PI3-K, PDK1 and akt activation. The migratory responses in both assays to S-1-P were blocked by akt inhibitor (aktI). Activation of akt and dephosphorylation of its downstream kinase, GSK3 β, were inhibited by aktI. Inhibition of PI3-K with LY294002 significantly reduced both PI3-K and akt activation. Inhibition of G βγ inhibited akt activation through a reduction in both PI3-K and PDK1 activation. While inhibition of the ras with manumycin A had no effect, inhibition of rho with C3 limited both PI3K and akt activation. PDK1 responses were unchanged by inhibition of GTPases. Inhibition of reactive oxygen species generation with N-acetylcysteine and of EGFR with AG1478 inhibited PDK1 activation in response to S-1-P. Conclusion S-1-P mediated migration is akt dependent. S-1-P mediated akt phosphorylation is controlled by G βγ dependent, PI3-K activation, which requires the GTPase rho and Gβγ. PDK1 activation requires Gβγ reactive oxygen species generation and EGFR activation. PMID:19081473

  15. Involvement of PI3K/Akt/FoxO3a and PKA/CREB Signaling Pathways in the Protective Effect of Fluoxetine Against Corticosterone-Induced Cytotoxicity in PC12 Cells.

    PubMed

    Zeng, Bingqing; Li, Yiwen; Niu, Bo; Wang, Xinyi; Cheng, Yufang; Zhou, Zhongzhen; You, Tingting; Liu, Yonggang; Wang, Haitao; Xu, Jiangping

    2016-08-01

    The selective serotonin reuptake inhibitor fluoxetine is neuroprotective in several brain injury models. It is commonly used to treat major depressive disorder and related conditions, but its mechanism of action remains incompletely understood. Activation of the phosphatidylinositol-3-kinase/protein kinase B/forkhead box O3a (PI3K/Akt/FoxO3a) and protein kinase A/cAMP-response element binding protein (PKA/CREB) signaling pathways has been strongly implicated in the pathogenesis of depression and might be the downstream target of fluoxetine. Here, we used PC12 cells exposed to corticosterone (CORT) to study the neuroprotective effects of fluoxetine and the involvement of the PI3K/Akt/FoxO3a and PKA/CREB signaling pathways. Our results show that CORT reduced PC12 cells viability by 70 %, and that fluoxetine showed a concentration-dependent neuroprotective effect. Neuroprotective effects of fluoxetine were abolished by inhibition of PI3K, Akt, and PKA using LY294002, KRX-0401, and H89, respectively. Treatment of PC12 cells with fluoxetine resulted in increased phosphorylation of Akt, FoxO3a, and CREB. Fluoxetine also dose-dependently rescued the phosphorylation levels of Akt, FoxO3a, and CREB, following administration of CORT (from 99 to 110, 56 to 170, 80 to 170 %, respectively). In addition, inhibition of PKA and PI3K/Akt resulted in decreased levels of p-CREB, p-Akt, and p-FoxO3a in the presence of fluoxetine. Furthermore, fluoxetine reversed CORT-induced upregulation of p53-upregulated modulator of apoptosis (Puma) and Bcl-2-interacting mediator of cell death (Bim) via the PI3K/Akt/FoxO3a signaling pathway. H89 treatment reversed the effect of fluoxetine on the mRNA level of brain-derived neurotrophic factor, which was decreased in the presence of CORT. Our data indicate that fluoxetine elicited neuroprotection toward CORT-induced cell death that involves dual regulation from PI3K/Akt/FoxO3a and PKA/CREB pathways. PMID:27412469

  16. Loss of Mel-18 induces tumor angiogenesis through enhancing the activity and expression of HIF-1α mediated by the PTEN/PI3K/Akt pathway.

    PubMed

    Park, J H; Lee, J Y; Shin, D H; Jang, K S; Kim, H J; Kong, Gu

    2011-11-10

    Mel-18 has been implicated in several processes in tumor progression, in which the Akt pathway is involved as an important key molecular event. However, the function of Mel-18 in human cancers has not been fully established yet. Here, we examined the effect of Mel-18 on tumor angiogenesis in human breast cancer, and found that Mel-18 was a novel regulator of HIF-1α. Mel-18 negatively regulated the HIF-1α expression and its target gene VEGF transcription during both normoxia and hypoxia. We demonstrated that Mel-18 regulated the HIF-1α expression and activity via the PI3K/Akt pathway. Loss of Mel-18 downregulated Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression, consequently activating the PI3K/Akt/MDM2 pathway, and leading to an increase of HIF-1α protein level. Mel-18 modulated the HIF-1α transcriptional activity via regulating the cytoplasmic retention of FOXO3a, a downstream effector of Akt, and recruitment of HIF-1α/CBP complex to the VEGF promoter. Furthermore, our data shows that Mel-18 blocked tumor angiogenesis both in vitro and in vivo. Mel-18 overexpression inhibited in vitro tube formation in human umbilical endothelial cells (HUVECs). Xenografts in NOD/SCID mice derived from stably Mel-18 knocked down MCF7 human breast cancer cells showed increased tumor volume, microvessel density, and phospho-Akt and HIF-1α expression levels. In conclusion, our findings provide that Mel-18 is a novel regulator of tumor angiogenesis through regulating HIF-1α and its target VEGF expressions mediated by the PTEN/PI3K/Akt pathway, suggesting a new tumor-suppressive role of Mel-18 in human breast cancer.

  17. Ascertaining effects of nanoscale polymeric interfaces on competitive protein adsorption at the individual protein level

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Xie, Tian; Ravensbergen, Kristina; Hahm, Jong-In

    2016-02-01

    With the recent development of biomaterials and biodevices with reduced dimensionality, it is critical to comprehend protein adhesion processes to nanoscale solid surfaces, especially those occurring in a competitive adsorption environment. Complex sequences of adhesion events in competitive adsorption involving multicomponent protein systems have been extensively investigated, but our understanding is still limited primarily to macroscopic adhesion onto chemically simple surfaces. We examine the competitive adsorption behavior from a binary protein mixture containing bovine serum albumin and fibrinogen at the single protein level. We subsequently evaluate a series of adsorption and displacement processes occurring on both the macroscopic homopolymer and nanoscopic diblock copolymer surfaces, while systematically varying the protein concentration and incubation time. We identify the similarities and dissimilarities in competitive protein adsorption behavior between the two polymeric surfaces, the former presenting chemical uniformity at macroscale versus the latter exhibiting periodic nanointerfaces of chemically alternating polymeric segments. We then present our novel experimental finding of a large increase in the nanointerface-engaged residence time of the initially bound proteins and further explain the origin of this phenomenon manifested on nanoscale diblock copolymer surfaces. The outcomes of this study may provide timely insight into nanoscale competitive protein adsorption that is much needed in designing bioimplant and tissue engineering materials. In addition, the fundamental understanding gained from this study can be beneficial for the development of highly miniaturized biodevices and biomaterials fabricated by using nanoscale polymeric materials and interfaces.With the recent development of biomaterials and biodevices with reduced dimensionality, it is critical to comprehend protein adhesion processes to nanoscale solid surfaces, especially those

  18. Ramentaceone, a Naphthoquinone Derived from Drosera sp., Induces Apoptosis by Suppressing PI3K/Akt Signaling in Breast Cancer Cells

    PubMed Central

    Kawiak, Anna; Lojkowska, Ewa

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in processes critical for breast cancer progression and its upregulation confers increased resistance of cancer cells to chemotherapy and radiation. The present study aimed at determining the activity of ramentaceone, a constituent of species in the plant genera Drosera, toward breast cancer cells and defining the involvement of PI3K/Akt inhibition in ramentaceone-mediated cell death induction. The results showed that ramentaceone exhibited high antiproliferative activity toward breast cancer cells, in particular HER2-overexpressing breast cancer cells. The mode of cell death induced by ramentaceone was through apoptosis as determined by cytometric analysis of caspase activity and Annexin V staining. Apoptosis induction was found to be mediated by inhibition of PI3K/Akt signaling and through targeting its downstream anti-apoptotic effectors. Ramentaceone inhibited PI3-kinase activity, reduced the expression of the PI3K protein and inhibited the phosphorylation of the Akt protein in breast cancer cells. The expression of the anti-apoptotic Bcl-2 protein was decreased and the levels of the pro-apoptotic proteins, Bax and Bak, were elevated. Moreover, inhibition of PI3K and silencing of Akt expression increased the sensitivity of cells to ramentaceone-induced apoptosis. In conclusion, our results indicate that ramentaceone induces apoptosis in breast cancer cells through PI3K/Akt signaling inhibition. These findings suggest further investigation of ramentaceone as a potential therapeutic agent in breast cancer therapy, in particular HER2-positive breast cancer. PMID:26840401

  19. Coactivation of the PI3K/Akt and ERK signaling pathways in PCB153-induced NF-κB activation and caspase inhibition

    SciTech Connect

    Liu, Changjiang; Yang, Jixin; Fu, Wenjuan; Qi, Suqin; Wang, Chenmin; Quan, Chao; Yang, Kedi

    2014-06-15

    Polychlorinated biphenyls (PCBs) are a group of persistent and widely distributed environmental pollutants that have various deleterious effects, e.g., neurotoxicity, endocrine disruption and reproductive abnormalities. In order to verify the hypothesis that the PI3K/Akt and MAPK pathways play important roles in hepatotoxicity induced by PCBs, Sprague–Dawley (SD) rats were dosed with PCB153 intraperitoneally at 0, 4, 16 and 32 mg/kg for five consecutive days; BRL cells (rat liver cell line) were treated with PCB153 (0, 1, 5, and 10 μM) for 24 h. Results indicated that the PI3K/Akt and ERK pathways were activated in vivo and in vitro after exposure to PCB153, and protein levels of phospho-Akt and phospho-ERK were significantly increased. Nuclear factor-κB (NF-κB) activation and caspase-3, -8 and -9 inhibition caused by PCB153 were also observed. Inhibiting the ERK pathway significantly attenuated PCB153-induced NF-κB activation, whereas inhibiting the PI3K/Akt pathway hardly influenced phospho-NF-κB level. However, inhibiting the PI3K/Akt pathway significantly elevated caspase-3, -8 and -9 activities, while the ERK pathway only synergistically regulated caspase-9. Proliferating cell nuclear antigen (PCNA), a reliable indicator of cell proliferation, was also induced. Moreover, PCB153 led to hepatocellular hypertrophy and elevated liver weight. Taken together, PCB153 leads to aberrant proliferation and apoptosis of hepatocytes through NF-κB activation and caspase inhibition, and coactivated PI3K/Akt and ERK pathways play critical roles in PCB153-induced hepatotoxicity. - Highlights: • PCB153 led to hepatotoxicity through NF-κB activation and caspase inhibition. • The PI3K/Akt and ERK pathways were coactivated in vivo and in vitro by PCB153. • The ERK pathway regulated levels of phospho-NF-κB and caspase-9. • The PI3K/Akt pathway regulated levels of caspase-3, -8 and -9.

  20. KNK437, abrogates hypoxia-induced radioresistance by dual targeting of the AKT and HIF-1{alpha} survival pathways

    SciTech Connect

    Oommen, Deepu; Prise, Kevin M.

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer KNK437, a benzylidene lactam compound, is a novel radiosensitizer. Black-Right-Pointing-Pointer KNK437 inhibits AKT signaling and abrogates the accumulation of HIF-1{alpha} under hypoxia. Black-Right-Pointing-Pointer KNK437 abrogates hypoxia induced resistance to radiation. -- Abstract: KNK437 is a benzylidene lactam compound known to inhibit stress-induced synthesis of heat shock proteins (HSPs). HSPs promote radioresistance and play a major role in stabilizing hypoxia inducible factor-1{alpha} (HIF-1{alpha}). HIF-1{alpha} is widely responsible for tumor resistance to radiation under hypoxic conditions. We hypothesized that KNK437 sensitizes cancer cells to radiation and overrides hypoxia-induced radioresistance via destabilizing HIF-1{alpha}. Treatment of human cancer cells MDA-MB-231 and T98G with KNK437 sensitized them to ionizing radiation (IR). Surprisingly, IR did not induce HSPs in these cell lines. As hypothesized, KNK437 abrogated the accumulation of HIF-1{alpha} in hypoxic cells. However, there was no induction of HSPs under hypoxic conditions. Moreover, the proteosome inhibitor MG132 did not restore HIF-1{alpha} levels in KNK437-treated cells. This suggested that the absence of HIF-1{alpha} in hypoxic cells was not due to the enhanced protein degradation. HIF-1{alpha} is mainly regulated at the level of post-transcription and AKT is known to modulate the translation of HIF-1{alpha} mRNA. Interestingly, pre-treatment of cells with KNK437 inhibited AKT signaling. Furthermore, down regulation of AKT by siRNA abrogated HIF-1{alpha} levels under hypoxia. Interestingly, KNK437 reduced cell survival in hypoxic conditions and inhibited hypoxia-induced resistance to radiation. Taken together, these data suggest that KNK437 is an effective radiosensitizer that targets multiple pro-survival stress response pathways.

  1. Sorafenib downregulates ERK/Akt and STAT3 survival pathways and induces apoptosis in a human neuroblastoma cell line.

    PubMed

    Chai, Hong; Luo, Annie Z; Weerasinghe, Priya; Brown, Robert E

    2010-04-23

    Neuroblastoma is a common solid tumor in children and its tumorigenicity is enhanced by the expression of survival pathways such as Akt and signal transducer and activator of transcription 3 (STAT3). Sorafenib is a multikinase inhibitor that also inhibits STAT3 signaling and induces apoptosis. In this study, we will examine the efficacy of sorafenib on a human neuroblastoma cell line (SK-N-AS) and also investigate its possible mechanisms. After cells reached 50-60% confluence, they were treated with various concentrations of sorafenib (0, 0.1, 1, 5, 10 and 20 microM) for different periods of time. The cell viability and apoptosis were determined by MTS colorimetric assay and TUNEL, respectively. Phosphorylation of Akt1/2/3 (p-Akt1/2/3), extracellular signal-regulated kinase 1/2 (p-ERK1/2), STAT3 (p-STAT3), and AMP-activated protein kinase alpha subunit (p-AMPKalpha) were determined with Western blot. The results indicate that as early as 2 hours post-treatment, cell viability was significantly decreased at 10 microM concentration. In 24 hours or longer treatment groups, sorafenib at 5 microM and above significantly decreased cell viability. TUNEL assay showed a significant increased of apoptosis in 5 and 20 microM treatment groups 24 hours after treatment. Western blots showed a decrease of p-ERK1/2, p-Akt1/2/3, p-STAT3, and p-AMPKalpha expression levels in various sorafenib treatment groups. Our results indicate that sorafenib significantly decreased cell viability and increased apoptosis in human neuroblastoma cell line in association with down-regulation of p-ERK1/2, p-Akt, p-STAT3 survival pathways. These data suggested potential clinical application of sorafenib in the treatment of neuroblastoma.

  2. The AKT-mTOR signalling pathway in kidney cancer tissues

    NASA Astrophysics Data System (ADS)

    Spirina, L. V.; Usynin, Y. A.; Kondakova, I. V.; Yurmazov, Z. A.; Slonimskaya, E. M.; Kolegova, E. S.

    2015-11-01

    An increased expression of phospho-AKT, m-TOR, glycogen regulator GSK-3-beta and transcription inhibitor 4E-BP1 was observed in kidney cancer tissues. Tumor size growth was associated with a high level of c-Raf and low content of phospho-m-TOR. Cancer metastasis development led to a decreased PTEN and phospho-AKT expression.

  3. Characterization of protein expression levels with label-free detected reverse phase protein arrays.

    PubMed

    Guo, Xuexue; Deng, Yihong; Zhu, Chenggang; Cai, Junlong; Zhu, Xiangdong; Landry, James P; Zheng, Fengyun; Cheng, Xunjia; Fei, Yiyan

    2016-09-15

    In reverse-phase protein arrays (RPPA), one immobilizes complex samples (e.g., cellular lysate, tissue lysate or serum etc.) on solid supports and performs parallel reactions of antibodies with immobilized protein targets from the complex samples. In this work, we describe a label-free detection of RPPA that enables quantification of RPPA data and thus facilitates comparison of studies performed on different samples and on different solid supports. We applied this detection platform to characterization of phosphoserine aminotransferase (PSAT) expression levels in Acanthamoeba lysates treated with artemether and the results were confirmed by Western blot studies. PMID:27372609

  4. C-reactive protein levels in hereditary angioedema

    PubMed Central

    Hofman, Z L M; Relan, A; Hack, C E

    2014-01-01

    Hereditary angioedema (HAE) patients experience recurrent episodes of angioedema attacks that can be painful, disfiguring and even life-threatening. The disorder results from a mutation in the gene that controls the synthesis of C1-inhibitor (C1INH). C1INH is a major regulator of activation of the contact system. It is often assumed that attacks results from uncontrolled local activation of the contact system with subsequent formation of bradykinin. To evaluate the involvement of inflammatory reactions in HAE, we analysed C-reactive protein (CRP) levels. HAE patients included in a clinical database of recombinant human C1-inhibitor (rhC1INH) studies were evaluated. For the current study we analysed CRP levels when patients were asymptomatic, during a clinical attack and in a follow-up period, and correlated these with the clinical manifestations of the attack. Data from 68 HAE patients were analysed and included CRP levels on 273 occasions. While asymptomatic, 20% of the patients analysed had increased CRP. At the onset of the attack (P = 0·049) and during the next 24 h CRP rose significantly (P = 0·002) in patients with an abdominal location, and post-attack levels were significantly higher in these patients than in patients with attacks at other locations (P = 0·034). In conclusion, CRP levels are elevated in a substantial proportion of asymptomatic HAE patients. Levels of CRP increase significantly during an abdominal attack. These data suggest low-grade systemic inflammatory reactions in HAE patients as well as a triggering event for attacks that starts prior to symptom onset. PMID:24588117

  5. C-reactive protein levels in hereditary angioedema.

    PubMed

    Hofman, Z L M; Relan, A; Hack, C E

    2014-07-01

    Hereditary angioedema (HAE) patients experience recurrent episodes of angioedema attacks that can be painful, disfiguring and even life-threatening. The disorder results from a mutation in the gene that controls the synthesis of C1-inhibitor (C1INH). C1INH is a major regulator of activation of the contact system. It is often assumed that attacks results from uncontrolled local activation of the contact system with subsequent formation of bradykinin. To evaluate the involvement of inflammatory reactions in HAE, we analysed C-reactive protein (CRP) levels. HAE patients included in a clinical database of recombinant human C1-inhibitor (rhC1INH) studies were evaluated. For the current study we analysed CRP levels when patients were asymptomatic, during a clinical attack and in a follow-up period, and correlated these with the clinical manifestations of the attack. Data from 68 HAE patients were analysed and included CRP levels on 273 occasions. While asymptomatic, 20% of the patients analysed had increased CRP. At the onset of the attack (P = 0·049) and during the next 24 h CRP rose significantly (P = 0·002) in patients with an abdominal location, and post-attack levels were significantly higher in these patients than in patients with attacks at other locations (P = 0·034). In conclusion, CRP levels are elevated in a substantial proportion of asymptomatic HAE patients. Levels of CRP increase significantly during an abdominal attack. These data suggest low-grade systemic inflammatory reactions in HAE patients as well as a triggering event for attacks that starts prior to symptom onset.

  6. Resveratrol induces cell cycle arrest in human gastric cancer MGC803 cells via the PTEN-regulated PI3K/Akt signaling pathway.

    PubMed

    Jing, Xiaoping; Cheng, Weiwei; Wang, Shiying; Li, Pin; He, Li

    2016-01-01

    Resveratrol is a polyphenolic compound that is extracted from Polygonum cuspidatum and is used in traditional Chinese medicine. Previous data have shown that resveratrol inhibits the growth of human gastric cancer. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and trypan blue assays showed that resveratrol significantly decreased the survival rate of MGC803 cells in a concentration- and time-dependent manner. Our flow cytometric analysis showed that resveratrol treatment arrested the cells at the G0/G1 phase of the cell cycle. Furthermore, western blotting demonstrated that resveratrol decreased the protein expression of phospho-glycogen synthase kinase 3β (p-GSK3β), cyclin D1, phospho-phosphatase and tensin homologue (p-PTEN), phospho-phosphatidylinositol 3'-OH kinase (p-PI3K), and phospho-protein kinase B (p-PKB/Akt). We also found that resveratrol inhibited the progression of the cell cycle in MGC803 cells by repressing p-PI3K and p-Akt expression. Meanwhile, resveratrol did not decrease the phosphorylation level of Akt when the PTEN gene expression was knocked down by an siRNA in the MGC803 cells. Taken together, these results suggest that resveratrol induced cell cycle arrest in human gastric cancer MGC803 cells by regulating the PTEN/PI3K/Akt signaling pathway.

  7. Resveratrol induces cell cycle arrest in human gastric cancer MGC803 cells via the PTEN-regulated PI3K/Akt signaling pathway.

    PubMed

    Jing, Xiaoping; Cheng, Weiwei; Wang, Shiying; Li, Pin; He, Li

    2016-01-01

    Resveratrol is a polyphenolic compound that is extracted from Polygonum cuspidatum and is used in traditional Chinese medicine. Previous data have shown that resveratrol inhibits the growth of human gastric cancer. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and trypan blue assays showed that resveratrol significantly decreased the survival rate of MGC803 cells in a concentration- and time-dependent manner. Our flow cytometric analysis showed that resveratrol treatment arrested the cells at the G0/G1 phase of the cell cycle. Furthermore, western blotting demonstrated that resveratrol decreased the protein expression of phospho-glycogen synthase kinase 3β (p-GSK3β), cyclin D1, phospho-phosphatase and tensin homologue (p-PTEN), phospho-phosphatidylinositol 3'-OH kinase (p-PI3K), and phospho-protein kinase B (p-PKB/Akt). We also found that resveratrol inhibited the progression of the cell cycle in MGC803 cells by repressing p-PI3K and p-Akt expression. Meanwhile, resveratrol did not decrease the phosphorylation level of Akt when the PTEN gene expression was knocked down by an siRNA in the MGC803 cells. Taken together, these results suggest that resveratrol induced cell cycle arrest in human gastric cancer MGC803 cells by regulating the PTEN/PI3K/Akt signaling pathway. PMID:26530632

  8. Fas apoptosis inhibitory molecule regulates T cell receptor-mediated apoptosis of thymocytes by modulating Akt activation and Nur77 expression.

    PubMed

    Huo, Jianxin; Xu, Shengli; Lam, Kong-Peng

    2010-04-16

    Fas apoptosis inhibitory molecule (FAIM) has been demonstrated to confer resistance to Fas-induced apoptosis of lymphocytes and hepatocytes in vitro and in vivo. Here, we show that FAIM is up-regulated in thymocytes upon T cell receptor (TCR) engagement and that faim(-/-) thymocytes are highly susceptible to TCR-mediated apoptosis with increased activation of caspase-8 and -9. Furthermore, injection of anti-CD3 antibodies leads to augmented depletion of CD4(+)CD8(+) T cells in the thymus of faim(-/-) mice compared with wild-type control, suggesting that FAIM plays a role in thymocyte apoptosis. Cross-linking of the TCR on faim(-/-) thymocytes leads to an elevated protein level of the orphan nuclear receptor Nur77, which plays a role in thymocyte apoptosis. Interestingly, in the absence of FAIM, there are reduced ubiquitination and degradation of the Nur77 protein. Faim(-/-) thymocytes also exhibit a defective TCR-induced activation of Akt whose activity we now show is required for Nur77 ubiquitination. Further analyses utilizing FAIM-deficient primary thymocytes and FAIM-overexpressing DO-11.10 T cells indicate that FAIM acts upstream of Akt during TCR signaling and influences the localization of Akt to lipid rafts, hence affecting its activation. Taken together, our study defined a TCR-induced FAIM/Akt/Nur77 signaling axis that is critical for modulating the apoptosis of developing thymocytes.

  9. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor.

    PubMed

    Dumble, Melissa; Crouthamel, Ming-Chih; Zhang, Shu-Yun; Schaber, Michael; Levy, Dana; Robell, Kimberly; Liu, Qi; Figueroa, David J; Minthorn, Elisabeth A; Seefeld, Mark A; Rouse, Meagan B; Rabindran, Sridhar K; Heerding, Dirk A; Kumar, Rakesh

    2014-01-01

    Tumor cells upregulate many cell signaling pathways, with AKT being one of the key kinases to be activated in a variety of malignancies. GSK2110183 and GSK2141795 are orally bioavailable, potent inhibitors of the AKT kinases that have progressed to human clinical studies. Both compounds are selective, ATP-competitive inhibitors of AKT 1, 2 and 3. Cells treated with either compound show decreased phosphorylation of several substrates downstream of AKT. Both compounds have desirable pharmaceutical properties and daily oral dosing results in a sustained inhibition of AKT activity as well as inhibition of tumor growth in several mouse tumor models of various histologic origins. Improved kinase selectivity was associated with reduced effects on glucose homeostasis as compared to previously reported ATP-competitive AKT kinase inhibitors. In a diverse cell line proliferation screen, AKT inhibitors showed increased potency in cell lines with an activated AKT pathway (via PI3K/PTEN mutation or loss) while cell lines with activating mutations in the MAPK pathway (KRAS/BRAF) were less sensitive to AKT inhibition. Further investigation in mouse models of KRAS driven pancreatic cancer confirmed that combining the AKT inhibitor, GSK2141795 with a MEK inhibitor (GSK2110212; trametinib) resulted in an enhanced anti-tumor effect accompanied with greater reduction in phospho-S6 levels. Taken together these results support clinical evaluation of the AKT inhibitors in cancer, especially in combination with MEK inhibitor.

  10. PP2A inhibition results in hepatic insulin resistance despite Akt2 activation.

    PubMed

    Galbo, Thomas; Perry, Rachel J; Nishimura, Erica; Samuel, Varman T; Quistorff, Bjørn; Shulman, Gerald I

    2013-10-01

    In the liver, insulin suppresses hepatic gluconeogenesis by activating Akt, which inactivates the key gluconeogenic transcription factor FoxO1 (Forkhead Box O1). Recent studies have implicated hyperactivity of the Akt phosphatase Protein Phosphatase 2A (PP2A) and impaired Akt signaling as a molecular defect underlying insulin resistance. We therefore hypothesized that PP2A inhibition would enhance insulin-stimulated Akt activity and decrease glucose production. PP2A inhibitors increased hepatic Akt phosphorylation and inhibited FoxO1in vitro and in vivo, and suppressed gluconeogenesis in hepatocytes. Paradoxically, PP2A inhibition exacerbated insulin resistance in vivo. This was explained by phosphorylation of both hepatic glycogen synthase (GS) (inactivation) and phosphorylase (activation) resulting in impairment of glycogen storage. Our findings underline the significance of GS and Phosphorylase as hepatic PP2A substrates and importance of glycogen metabolism in acute plasma glucose regulation. PMID:24150286

  11. Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB.

    PubMed

    Maag, David; Maxwell, Micah J; Hardesty, Douglas A; Boucher, Katie L; Choudhari, Namrata; Hanno, Adam G; Ma, Jenny F; Snowman, Adele S; Pietropaoli, Joseph W; Xu, Risheng; Storm, Phillip B; Saiardi, Adolfo; Snyder, Solomon H; Resnick, Adam C

    2011-01-25

    The second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), formed by the p110 family of PI3-kinases, promotes cellular growth, proliferation, and survival, in large part by activating the protein kinase Akt/PKB. We show that inositol polyphosphate multikinase (IPMK) physiologically generates PIP(3) as well as water soluble inositol phosphates. IPMK deletion reduces growth factor-elicited Akt signaling and cell proliferation caused uniquely by loss of its PI3-kinase activity. Inhibition of p110 PI3-kinases by wortmannin prevents IPMK phosphorylation and activation. Thus, growth factor stimulation of Akt signaling involves PIP(3) generation through the sequential activations of the p110 PI3-kinases and IPMK. As inositol phosphates inhibit Akt signaling, IPMK appears to act as a molecular switch, inhibiting or stimulating Akt via its inositol phosphate kinase or PI3-kinase activities, respectively. Drugs regulating IPMK may have therapeutic relevance in influencing cell proliferation.

  12. PI3K/Akt pathway involving into apoptosis and invasion in human colon cancer cells LoVo.

    PubMed

    Jiang, Qun Guang; Li, Tai Yuan; Liu, Dong Ning; Zhang, Hai Tao

    2014-05-01

    In this study we determined the effects of Curcumin on human colon cancer cells line LoVo. We found that Curcumin significantly inhibited the proliferation, migration and invasion, and clone formation of LoVo cells in a dose-dependent manner. Curcumin also dose-dependently reduced the phosphorylation of proteins Akt and increased expression levels of the genes caspase-3, cytochrome-c, Bax mRNA in LoVo cells. In addition, Curcumin dose-dependently decreased gene Bcl-2 mRNA expression. Similar results were observed in LoVo cells treated with LY294002. These in vitro studies suggest that Curcumin may play its anti-cancer actions partly via suppressing PI3K/Akt signal pathway in LoVo cells.

  13. Pemetrexed Induces S-Phase Arrest and Apoptosis via a Deregulated Activation of Akt Signaling Pathway

    PubMed Central

    Chen, Kun-Chieh; Yang, Tsung-Ying; Wu, Chun-Chi; Cheng, Chi-Chih; Hsu, Shih-Lan; Hung, Hsiao-Wen

    2014-01-01

    Pemetrexed is approved for first-line and maintenance treatment of patients with advanced or metastatic non-small-cell lung cancer (NSCLC). The protein kinase Akt/protein kinase B is a well-known regulator of cell survival which is activated by pemetrexed, but its role in pemetrexed-mediated cell death and its molecular mechanisms are unclear. This study showed that stimulation with pemetrexed induced S-phase arrest and cell apoptosis and a parallel increase in sustained Akt phosphorylation and nuclear accumulation in the NSCLC A549 cell line. Inhibition of Akt expression by Akt specific siRNA blocked S-phase arrest and protected cells from apoptosis, indicating an unexpected proapoptotic role of Akt in the pemetrexed-mediated toxicity. Treatment of A549 cells with pharmacological inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and Ly294002, similarly inhibited pemetrexed-induced S-phase arrest and apoptosis and Akt phosphorylation, indicating that PI3K is an upstream mediator of Akt and is involved in pemetrexed-mediated cell death. Previously, we identified cyclin A-associated cyclin-dependent kinase 2 (Cdk2) as the principal kinase that was required for pemetrexed-induced S-phase arrest and apoptosis. The current study showed that inhibition of Akt function and expression by pharmacological inhibitors as well as Akt siRNA drastically inhibited cyclin A/Cdk2 activation. These pemetrexed-mediated biological and molecular events were also observed in a H1299 cell line. Overall, our results indicate that, in contrast to its normal prosurvival role, the activated Akt plays a proapoptotic role in pemetrexed-mediated S-phase arrest and cell death through a mechanism that involves Cdk2/cyclin A activation. PMID:24847863

  14. Neuroprotective effects of preconditioning ischaemia on ischaemic brain injury through inhibition of mixed-lineage kinase 3 via NMDA receptor-mediated Akt1 activation.

    PubMed

    Yin, Xiao-Hui; Zhang, Quan-Guang; Miao, Bei; Zhang, Guang-Yi

    2005-05-01

    A number of works show that the mitogen-activated protein kinase (MAPK) signalling pathway responds actively in cerebral ischaemia and reperfusion. We undertook our present studies to clarify the role of mixed-lineage kinase 3 (MLK3), a MAPK kinase kinase (MAPKKK) in MAPK cascades, in global ischaemia and ischaemic tolerance. The mechanism concerning NMDA receptor-mediated Akt1 activation underlying ischaemic tolerance, was also investigated. Sprague-Dawley rats were subjected to 6 min of ischaemia and differing times of reperfusion. Our results showed MLK3 was activated in the hippocampal CA1 region with two peaks occurring at 30 min and 6 h, respectively. This activation returned to base level 3 days later. Both preconditioning with 3 min of sublethal ischaemia and NMDA pretreatment inhibited the 6-h peak of activation. However, pretreatment of ketamine before preconditioning reversed the inhibiting effect of preconditioning on MLK3 activation at 6 h of reperfusion. In the case of Akt1, however, preconditioning and NMDA pretreatment enhanced Akt1 activation at 10 min of reperfusion. Furthermore, ketamine pretreatment reversed preconditioning-induced increase of Akt1 activation. We also noted that pretreatment of LY294002 before preconditioning reversed both the inhibition of MLK3 activation at 6 h of reperfusion and the increase in Akt1 activation at 10 min of reperfusion. The above-mentioned results lead us to conclude that, in the hippocampal CA1 region, preconditioning inhibits MLK3 activation after lethal ischaemia and reperfusion and, furthermore, this effect is mediated by Akt1 activation through NMDA receptor stimulation.

  15. DESC1, a novel tumor suppressor, sensitizes cells to apoptosis by downregulating the EGFR/AKT pathway in esophageal squamous cell carcinoma.

    PubMed

    Ng, Hoi Yan; Ko, Josephine Mun-Yee; Yu, Valen Zhuoyou; Ip, Joseph Chok Yan; Dai, Wei; Cal, Santiago; Lung, Maria Li

    2016-06-15

    Esophageal cancer is ranked as the eighth most common cancer and the sixth leading cause of cancer deaths worldwide. To identify candidate tumor suppressor genes related to esophageal squamous cell carcinoma (ESCC) development, a cDNA microarray analysis was performed using paired tumor and nontumor tissue samples from ESCC patients. Differentially expressed in squamous cell carcinoma 1 (DESC1), which belongs to the Type II transmembrane serine protease family, was frequently downregulated in ESCC. This study aims to elucidate the molecular mechanism for the tumor suppressive function of DESC1 in ESCC. We show that DESC1 reduced cell viability and sensitized cells to apoptosis, when cells were under apoptotic stimuli. The proapoptotic effect of DESC1 was mediated through downregulating AKT1 activation and the restoration of AKT activation by the introduction of the constitutively active AKT, myr-AKT, abolished the apoptosis-sensitizing effect of DESC1. DESC1 also reduced EGFR protein level, which was abrogated when the proteolytic function of DESC1 was lost, suggesting that DESC1 cleaved EGFR and downregulated the EGFR/AKT pathway to favor apoptosis. The transmembrane localization and the structural domains provide an opportunity for DESC1 to interact with the extracellular environment. The importance of such interaction was highlighted by the finding that DESC1 reduced cell colony formation ability in three-dimensional culture. In line with this, DESC1 reduced tumor growth kinetics in the in vivo orthotopic tumorigenesis assay. Taken together, our novel findings suggest how DESC1 may suppress ESCC development by sensitizing cells to apoptosis under an apoptotic stimulus through downregulating the EGFR/AKT signaling pathway.

  16. Akt-Signal Integration Is Involved in the Differentiation of Embryonal Carcinoma Cells

    PubMed Central

    Chen, Bo; Xue, Zheng; Yang, Guanghui; Shi, Bingyang; Yang, Ben; Yan, Yuemin; Wang, Xue; Han, Daishu; Huang, Yue; Dong, Wenji

    2013-01-01

    The mechanism by which Akt modulates stem cell homeostasis is still incompletely defined. Here we demonstrate that Akt phosphorylates special AT-rich sequences binding protein 1 (SATB1) at serine 47 and protects SATB1 from apoptotic cleavage. Meanwhile, Akt phosphorylates Oct4 at threonine 228 and Klf4 at threonine 399, and accelerates their degradation. Moreover, PI3K/Akt signaling enhances the binding of SATB1 to Sox2, thereby probably impairing the formation of Oct4/Sox2 regulatory complexes. During retinoic acid (RA)-induced differentiation of mouse F9 embryonal carcinoma cells (ECCs), the Akt activation profile as well as its substrate spectrum is strikingly correlated with the down-regulation of Oct4, Klf4 and Nanog, which suggests Akt activation is coupled to the onset of differentiation. Accordingly, Akt-mediated phosphorylation is crucial for the capability of SATB1 to repress Nanog expression and to activate transcription of Bcl2 and Nestin genes. Taken together, we conclude that Akt is involved in the differentiation of ECCs through coordinated phosphorylations of pluripotency/differentiation factors. PMID:23762260

  17. T Cells Expressing Constitutively Active Akt Resist Multiple Tumor-associated Inhibitory Mechanisms

    PubMed Central

    Sun, Jiali; Dotti, Gianpietro; Huye, Leslie E; Foster, Aaron E; Savoldo, Barbara; Gramatges, Maria M; Spencer, David M; Rooney, Cliona M

    2010-01-01

    Adoptive transfer of antigen-specific cytotoxic T lymphocytes has shown promise for the therapy of cancer. However, tumor-specific T cells are susceptible to diverse inhibitory signals from the tumor microenvironment. The Akt/protein kinase B plays a central role in T-cell proliferation, function, and survival and we hypothesized that expression of constitutively active Akt (caAkt) in T cells could provide resistance to many of these tumor-associated inhibitory mechanisms. caAkt expression in activated human T cells increased proliferation and cytokine production, a likely result of their sustained expression of nuclear factor-κB (NF-κB) and provided resistance to apoptosis by upregulating antiapoptotic molecules. caAkt expressing T cells (caAkt-T-cells) were also relatively resistant to suppression by and conversion into regulatory T cells (Tregs). These characteristics provided a survival advantage to T cells cocultured with tumor cells in vitro; CD3/28-stimulated T cells expressing a chimeric antigen receptor (CAR) specific for disialoganglioside (GD2) that redirected their activity to the immunosuppressive, GD2-expressing neuroblastoma cell line, LAN-1, resisted tumor-induced apoptosis when co-expressing transgenic caAkt. In conclusion, caAkt-transduced T cells showed resistance to several evasion strategies employed by tumors and may therefore enhance the antitumor activity of adoptively transferred T lymphocytes. PMID:20842106

  18. Akt-mediated phosphorylation of Oct4 is associated with the proliferation of stem-like cancer cells

    PubMed Central

    ZHAO, QING-WEI; ZHOU, YAN-WEN; LI, WEN-XIN; KANG, BO; ZHANG, XIAO-QIAN; YANG, YING; CHENG, JIE; YIN, SHENG-YONG; TONG, YING; HE, JIAN-QIN; YAO, HANG-PING; ZHENG, MIN; WANG, YING-JIE

    2015-01-01

    Oct4 protein encoded by POU5F1 plays a pivotal role in maintaining the self-renewal of pluripotent stem cells; however, its presence in cancer cells remains controversial. In the present study, we provided evidence that the transcripts of authentic OCT4 gene (OCT4A) and its multiple pseudogenes were detected in a variety of cancer cell lines. A few major bands were also detected by western blotting using an anti-Oct4A monoclonal antibody. Moreover, an anti-Oct4-pT235 antibody was used to identify a band in the majority of the tested cancer cell lines that coincided with one of the anti-Oct4A bands which was decreasable by a specific shRNA. The Oct4-pT235 signals were also detected in human glioblastoma and liver cancer specimens by immunofluorescence microscopy and immunohistochemistry. U87 glioblastoma cells were cultured in a neural stem cell medium to induce the formation of neurospheres rich in stem-like cancer cells. The levels of Oct4-pT235 in the sphere cells were markedly increased compared to their monolayer parental cells, a result that was accompanied by upregulation of the PI3K-Akt pathway. Akti-1/2, a specific inhibitor of Akt, effectively reduced the level of Oct4-pT235 and attenuated the proliferation of U87 sphere cells. ITE, an agonist of the aryl hydrocarbon receptor, also significantly attenuated the Akt-mediated phosphorylation of Oct4 in glioblastoma and liver cancer cells, and reduced their tumorigenic potential in a xenograft tumor model. Taken together, we concluded that the Akt-mediated phosphorylation of Oct4A or its homolog protein was associated with the proliferation of stem-like cancer cells that may serve as a novel biomarker and drug target for certain types of cancer. PMID:25625591

  19. AKT mediated glycolytic shift regulates autophagy in classically activated macrophages.

    PubMed

    Matta, Sumit Kumar; Kumar, Dhiraj

    2015-09-01

    Autophagy is considered as an innate defense mechanism primarily due to its role in the targeting of intracellular pathogens for lysosomal degradation. Here we report inhibition of autophagy as an adaptive response in classically activated macrophages that helps achieve high cellular ROS production and cell death-another hallmark of innate mechanisms. We show prolonged classical activation of Raw 264.7 macrophages by treating them with IFN-γ and LPS inhibited autophagy. The inhibition of autophagy was dependent on nitric oxide (NO) production which activated the AKT-mTOR signaling, the known negative regulators of autophagy. Autophagy inhibition in these cells was accompanied with a shift to aerobic glycolysis along with a decline in the mitochondrial membrane potential (MOMP). The decline in MOMP coupled with autophagy inhibition led to increased mitochondrial content and considerably elevated cellular ROS, eventually causing cell death. Next, using specific siRNA mediated knockdowns we show AKT was responsible for the glycolytic shift and autophagy inhibition in activated macrophages. Surprisingly, AKT knockdown in activated macrophages also rescued them from cell death. Finally we show that AKT mediated autophagy inhibition in the activated macrophages correlated with the depletion of glucose from the extracellular medium, and glucose supplementation not only rescued autophagy levels and reversed other phenotypes of activated macrophages, but also inhibited cell death. Thus we report here a novel link between AKT mediated glycolytic metabolism and autophagy in the activated macrophages, and provide a possible mechanism for sustained macrophage activation in vivo.

  20. Honey bee protein atlas at organ-level resolution.

    PubMed

    Chan, Queenie W T; Chan, Man Yi; Logan, Michelle; Fang, Yuan; Higo, Heather; Foster, Leonard J

    2013-11-01

    Genome sequencing has provided us with gene lists but cannot tell us where and how their encoded products work together to support life. Complex organisms rely on differential expression of subsets of genes/proteins in organs and tissues, and, in concert, evolved to their present state as they function together to improve an organism's overall reproductive fitness. Proteomics studies of individual organs help us understand their basic functions, but this reductionist approach misses the larger context of the whole organism. This problem could be circumvented if all the organs in an organism were comprehensively studied by the same methodology and analyzed together. Using honey bees (Apis mellifera L.) as a model system, we report here an initial whole proteome of a complex organism, measuring 29 different organ/tissue types among the three honey bee castes: queen, drone, and worker. The data reveal that, e.g., workers have a heightened capacity to deal with environmental toxins and queens have a far more robust pheromone detection system than their nestmates. The data also suggest that workers altruistically sacrifice not only their own reproductive capacity but also their immune potential in favor of their queen. Finally, organ-level resolution of protein expression offers a systematic insight into how organs may have developed.

  1. Honey bee protein atlas at organ-level resolution.

    PubMed

    Chan, Queenie W T; Chan, Man Yi; Logan, Michelle; Fang, Yuan; Higo, Heather; Foster, Leonard J

    2013-11-01

    Genome sequencing has provided us with gene lists but cannot tell us where and how their encoded products work together to support life. Complex organisms rely on differential expression of subsets of genes/proteins in organs and tissues, and, in concert, evolved to their present state as they function together to improve an organism's overall reproductive fitness. Proteomics studies of individual organs help us understand their basic functions, but this reductionist approach misses the larger context of the whole organism. This problem could be circumvented if all the organs in an organism were comprehensively studied by the same methodology and analyzed together. Using honey bees (Apis mellifera L.) as a model system, we report here an initial whole proteome of a complex organism, measuring 29 different organ/tissue types among the three honey bee castes: queen, drone, and worker. The data reveal that, e.g., workers have a heightened capacity to deal with environmental toxins and queens have a far more robust pheromone detection system than their nestmates. The data also suggest that workers altruistically sacrifice not only their own reproductive capacity but also their immune potential in favor of their queen. Finally, organ-level resolution of protein expression offers a systematic insight into how organs may have developed. PMID:23878156

  2. Cullin-3 protein expression levels correlate with breast cancer progression

    PubMed Central

    Haagenson, Kelly K.; Tait, Larry; Wang, Juan; Shekhar, Malathy P.; Polin, Lisa; Chen, Wei; Wu, Gen Sheng

    2012-01-01

    Cullin-3 is a component of the Cullin-Ring ubiquitin ligase (CRL) family that plays an important role in mediating protein degradation. Deregulation of Cullin-3 expression has been observed in human cancers; however, a role for Cullin-3 in tumor progression has not been previously recognized. Using the MCF10DCIS.com human breast cancer xenograft model, we show that Cullin-3 is increasingly expressed during progression from comedo ductal carcinoma in situ (DCIS) to invasive carcinomas. Cullin-3 protein is not detected in early lesions but is noticeably increased in DCIS tumors and significantly overexpressed in invasive cancers. In experimental metastasis assays, high expression of Cullin-3 was observed in the lung site. Importantly, Cullin-3 staining is detected in human breast cancer tissues, not in normal breast tissues and its expression level positively correlates with tumor stage. These data suggest that Cullin-3 may play an important role in tumor progression from DCIS to invasive cancer and may serve as a biomarker for the diagnosis of aggressive breast cancer. PMID:22825334

  3. Dual phosphorylation of Btk by Akt/protein kinase b provides docking for 14-3-3ζ, regulates shuttling, and attenuates both tonic and induced signaling in B cells.

    PubMed

    Mohammad, Dara K; Nore, Beston F; Hussain, Alamdar; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2013-08-01

    Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation.

  4. Exploitation of the ability of γ-tocopherol to facilitate membrane co-localization of Akt and PHLPP1 to develop PHLPP1-targeted Akt inhibitors.

    PubMed

    Yan, Ribai; Chuang, Hsiao-Ching; Kapuriya, Naval; Chou, Chih-Chien; Lai, Po-Ting; Chang, Hsin-Wen; Yang, Chia-Ning; Kulp, Samuel K; Chen, Ching-Shih

    2015-03-12

    Previously, we reported that Akt inactivation by γ-tocopherol (2) in PTEN-negative prostate cancer cells resulted from its unique ability to facilitate membrane co-localization of Akt and PHLPP1 (PH domain leucine-rich repeat protein phosphatase isoform 1), a Ser473-specific Akt phosphatase, through pleckstrin homology (PH) domain binding. This finding provided a basis for exploiting 2 to develop a novel class of PHLPP1-targeted Akt inhibitors. Here, we used 3 (γ-VE5), a side chain-truncated 2 derivative, as a scaffold for lead optimization. The proof-of-concept of this structural optimization was obtained by 20, which exhibited higher antitumor efficacy than 3 in PTEN-negative cancer cells through PHLPP1-facilitated Akt inactivation. Like 3, 20 preferentially recognized the PH domains of Akt and PHLPP1, as its binding affinities for other PH domains, including those of ILK and PDK1, were an order-of-magnitude lower. Moreover, 20 was orally active in suppressing xenograft tumor growth in nude mice, which underlines the translational potential of this new class of Akt inhibitor in PTEN-deficient cancers.

  5. Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans

    PubMed Central

    Tan, Hao-Yang; Nicodemus, Kristin K.; Chen, Qiang; Li, Zhen; Brooke, Jennifer K.; Honea, Robyn; Kolachana, Bhaskar S.; Straub, Richard E.; Meyer-Lindenberg, Andreas; Sei, Yoshitasu; Mattay, Venkata S.; Callicott, Joseph H.; Weinberger, Daniel R.

    2008-01-01

    AKT1-dependent molecular pathways control diverse aspects of cellular development and adaptation, including interactions with neuronal dopaminergic signaling. If AKT1 has an impact on dopaminergic signaling, then genetic variation in AKT1 would be associated with brain phenotypes related to cortical dopaminergic function. Here, we provide evidence that a coding variation in AKT1 that affects protein expression in human B lymphoblasts influenced several brain measures related to dopaminergic function. Cognitive performance linked to frontostriatal circuitry, prefrontal physiology during executive function, and frontostriatal gray-matter volume on MRI were altered in subjects with the AKT1 variation. Moreover, on neuroimaging measures with a main effect of the AKT1 genotype, there was significant epistasis with a functional polymorphism (Val158Met) in catechol-O-methyltransferase [COMT], a gene that indexes cortical synaptic dopamine. This genetic interaction was consistent with the putative role of AKT1 in dopaminergic signaling. Supportive of an earlier tentative association of AKT1 with schizophrenia, we also found that this AKT1 variant was associated with risk for schizophrenia. These data implicate AKT1 in modulating human prefrontal-striatal structure and function and suggest that the mechanism of this effect may be coupled to dopaminergic signaling and relevant to the expression of psychosis. PMID:18497887

  6. Upregulated TRIM29 promotes proliferation and metastasis of nasopharyngeal carcinoma via PTEN/AKT/mTOR signal pathway

    PubMed Central

    Sun, Jian; Zhang, Mei-Yin; Wang, Meng-He; Yang, Yang; Wang, Hui-Yun; Mai, Shi-Juan

    2016-01-01

    Tripartite motif–containing 29 (TRIM29) has been reported to be dysregulated in human cancers. Up-regulation of TRIM29 was first observed in NPC cell lines by a genome-wide transcriptome analysis in our previous study. However, its expression biological function and clinical significance in nasopharyngeal carcinoma (NPC) remain unclear. In this study, TRIM29 expression was validated by qRT-PCR and immunohistochemistry in 69 NPC samples. Notably, TRIM29 protein expression was significantly and positively correlated with the tumor size, clinical stage and metastasis. TRIM29 was identified as the direct target of miR-335-5p and miR-15b-5p, both of which were down-regulated and negatively associated with TRIM29 expression in NPC cell lines and clinical samples. Ectopic TRIM29 expression promoted proliferation, epithelial-mesenchymal transition (EMT), migration and invasion in NPC cells, while its depletion inhibited cell invasion and EMT phenotype. Mechanistically, TRIM29 overexpression reduced PTEN expression and increase phosphorylated protein level of AKT, p70S6K and 4E-BP1. Correspondingly, AKT inhibitor and Rapamycin blocked the effect of TRIM29 on cell invasion. In conclusion, our results suggest that miR-335-5p and miR-15b-5p down-regulation results in TRIM29 over-expression, which induces proliferation, EMT and metastasis of NPC through the PTEN/AKT/mTOR signaling pathway. PMID:26872369

  7. Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers

    PubMed Central

    Nakahata, Shingo; Ichikawa, Tomonaga; Maneesaay, Phudit; Saito, Yusuke; Nagai, Kentaro; Tamura, Tomohiro; Manachai, Nawin; Yamakawa, Norio; Hamasaki, Makoto; Kitabayashi, Issay; Arai, Yasuhito; Kanai, Yae; Taki, Tomohiko; Abe, Takaya; Kiyonari, Hiroshi; Shimoda, Kazuya; Ohshima, Koichi; Horii, Akira; Shima, Hiroshi; Taniwaki, Masafumi; Yamaguchi, Ryoji; Morishita, Kazuhiro

    2014-01-01

    Constitutive phosphatidylinositol 3-kinase (PI3K)-AKT activation has a causal role in adult T-cell leukaemia-lymphoma (ATLL) and other cancers. ATLL cells do not harbour genetic alterations in PTEN and PI3KCA but express high levels of PTEN that is highly phosphorylated at its C-terminal tail. Here we report a mechanism for the N-myc downstream-regulated gene 2 (NDRG2)-dependent regulation of PTEN phosphatase activity via the dephosphorylation of PTEN at the Ser380, Thr382 and Thr383 cluster within the C-terminal tail. We show that NDRG2 is a PTEN-binding protein that recruits protein phosphatase 2A (PP2A) to PTEN. The expression of NDRG2 is frequently downregulated in ATLL, resulting in enhanced phosphorylation of PTEN at the Ser380/Thr382/Thr383 cluster and enhanced activation of the PI3K-AKT pathway. Given the high incidence of T-cell lymphoma and other cancers in NDRG2-deficient mice, PI3K-AKT activation via enhanced PTEN phosphorylation may be critical for the development of cancer. PMID:24569712

  8. Effect of orexin A on apoptosis in BGC-823 gastric cancer cells via OX1R through the AKT signaling pathway.

    PubMed

    Wen, Jing; Zhao, Yuyan; Shen, Yang; Guo, Lei

    2015-05-01

    Orexins are a class of peptides involved in the regulation of food intake, energy homeostasis, the sleep‑wake cycle and gastrointestinal function. Recent studies have demonstrated that orexin A may influence apoptosis and proliferation in numerous types of cancer cells. However, the effect of orexin A on gastric cancer cells and its mechanisms of action remain elusive. In the present study, BGC‑823 gastric cancer cells were treated with orexin A (10‑10‑10‑6 M) in vitro and the expression levels of orexin receptor 1 (OX1R) protein in cells was then determined. The proliferation, viability and apoptosis of BGC‑823 cells were detected. In addition, BGC‑823 cells were treated with AKT inhibitor PF‑04691502 or OX1R‑specific antagonist SB334867 in combination with orexin A, in order to examine the activation of AKT and caspase‑3. The results showed that orexin A (10‑10‑10‑6 M) stimulated the OX1R protein expression in BGC‑823 cells, which improved the proliferation and viability of the cells as well as protected them from apoptosis. Phosphorylated AKT protein was significantly increased in BGC‑823 cells following treatment with orexin A. Moreover, 10‑8 M orexin A reduced the proapoptotic activity of caspase‑3 (by ≤30%). The OX1R antagonist SB334867 (10‑6 M) and AKT antagonist PF‑04691502 (10‑6 M), when used individually or in combination, abolished the effect of orexin A (10‑8 M) on BGC-823 cells. In conclusion, the results of the present study demonstrated that orexin A inhibited gastric cancer cell apoptosis via OX1R through the AKT signaling pathway.

  9. Pharmacological modulation of the AKT/microRNA-199a-5p/CAV1 pathway ameliorates cystic fibrosis lung hyper-inflammation

    PubMed Central

    Zhang, Ping-xia; Cheng, Jijun; Zou, Siying; D’Souza, Anthony D.; Koff, Jonathan L.; Lu, Jun; Lee, Patty J.; Krause, Diane S.; Egan, Marie E.; Bruscia, Emanuela M.

    2015-01-01

    In Cystic Fibrosis (CF) patients, hyper-inflammation is a key factor in lung destruction and disease morbidity. We have previously demonstrated that macrophages drive the lung hyper-inflammatory response to LPS in CF mice, due to reduced levels of the scaffold protein CAV1 with subsequent uncontrolled TLR4 signaling. Here we show that reduced CAV1 and, consequently, increased TLR4 signaling, in human and murine CF macrophages and murine CF lungs, is caused by high microRNA-199a-5p levels, which are PI3K/AKT-dependent. Down-regulation of microRNA-199a-5p or increased AKT signaling restores CAV1 expression and reduces hyper-inflammation in CF macrophages. Importantly, the FDA approved drug celecoxib reestablishes the AKT/miR-199a-5p/CAV1 axis in CF macrophages, and ameliorates lung hyper-inflammation in Cftr-deficient mice. Thus, we identify the AKT/miR-199a-5p/CAV1 pathway as a regulator of innate immunity, which is dysfunctional in CF macrophages contributing to lung hyper-inflammation. Importantly, this pathway is targeted by celecoxib. PMID:25665524

  10. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance

    PubMed Central

    Ahmad, Izhar; Mian, Afaq; Maathuis, Frans J. M.

    2016-01-01

    Potassium (K+) is the most important cationic nutrient for all living organisms and has roles in most aspects of plant physiology. To assess the impact of one of the main K+ uptake components, the K+ inward rectifying channel AKT1, we characterized both loss of function and overexpression of OsAKT1 in rice. In many conditions, AKT1 expression correlated with K+ uptake and tissue K+ levels. No salinity-related growth phenotype was observed for either loss or gain of function mutants. However, a correlation between AKT1 expression and root Na+ when the external Na/K ratio was high suggests that there may be a role for AKT1 in Na+ uptake in such conditions. In contrast to findings with Arabidopsis thaliana, we did not detect any change in growth of AKT1 loss of function mutants in the presence of NH4 +. Nevertheless, NH4 +-dependent inhibition was detected during K+ uptake assays in loss of function and wild type plants, depending on pre-growth conditions. The most prominent result of OsAKT1 overexpression was a reduction in sensitivity to osmotic/drought stress in transgenic plants: the data suggest that AKT1 overexpression improved rice osmotic and drought stress tolerance by increasing tissue levels of K+, especially in the root. PMID:26969743

  11. A novel AKT1 mutant amplifies an adaptive melanoma response to BRAF inhibition

    PubMed Central

    Shi, Hubing; Hong, Aayoung; Kong, Xiangju; Koya, Richard C.; Song, Chunying; Moriceau, Gatien; Hugo, Willy; Yu, Clarissa C.; Ng, Charles; Chodon, Thinle; Scolyer, Richard A.; Kefford, Richard F.; Ribas, Antoni; Long, Georgina V.; Lo, Roger S.

    2013-01-01

    BRAF inhibitor (BRAFi) therapy leads to remarkable anti-melanoma responses, but the initial tumor shrinkage is commonly incomplete, providing a nidus for subsequent disease progression. Adaptive signaling may underlie early BRAFi resistance and influence the selection pattern for genetic variants causing late, acquired resistance. We show here that BRAFi (or BRAFi+MEKi) therapy in patients frequently led to rebound p-AKT levels in their melanomas early on treatment. In cell lines, BRAFi treatment led to rebound levels of RTKs (including PDGFRβ), PIP3, pleckstrin homology domain (PHD) recruitment, and p-AKT. PTEN expression limited this BRAFi-elicited PI3K-AKT signaling, which could be rescued by introduction of a mutant AKT1 (Q79K) kown to confer acquired BRAFi resistance. Functionally, AKT1 Q79K conferred BRAFi resistance via amplifying BRAFi-elicited PI3K-AKT signaling. Additionally, MAPK pathway inhibition enhanced clonogenic growth dependency on PI3K or AKT. Thus, adaptive or genetic upregulation of AKT critically participates in melanoma survival during BRAFi therapy. PMID:24265152

  12. Selective Inhibition of PI3K/Akt/mTOR Signaling Pathway Regulates Autophagy of Macrophage and Vulnerability of Atherosclerotic Plaque

    PubMed Central

    Zhai, Chungang; Cheng, Jing; Mujahid, Haroon; Wang, Hefeng; Kong, Jing; Yin, Yue; Li, Jifu; Zhang, Yun; Ji, Xiaoping; Chen, Wenqiang

    2014-01-01

    Macrophage infiltration contributes to the instability of atherosclerotic plaques. In the present study, we investigated whether selective inhibition of PI3K/Akt/mTOR signaling pathway can enhance the stability of atherosclerotic plaques by activation of macrophage autophagy. In vitro study, selective inhibitors or siRNA of PI3K/Akt/mTOR pathways were used to treat the rabbit's peritoneal primary macrophage cells. Inflammation related cytokines secreted by macrophages were measured. Ultrastructure changes of macrophages were examined by transmission electron microscope. mRNA or protein expression levels of autophagy related gene Beclin 1, protein 1 light chain 3 II dots (LC3-II) or Atg5-Atg12 conjugation were assayed by quantitative RT-PCR or Western blot. In vivo study, vulnerable plaque models were established in 40 New Zealand White rabbits and then drugs or siRNA were given for 8 weeks to inhibit the PI3K/Akt/mTOR signaling pathway. Intravascular ultrasound (IVUS) was performed to observe the plaque imaging. The ultrastructure of the abdominal aortic atherosclerosis lesions were analyzed with histopathology. RT-PCR or Western blot methods were used to measure the expression levels of corresponding autophagy related molecules. We found that macrophage autophagy was induced in the presence of Akt inhibitor, mTOR inhibitor and mTOR-siRNA in vitro study, while PI3K inhibitor had the opposite role. In vivo study, we found that macrophage autophagy increased significantly and the rabbits had lower plaque rupture incidence, lower plaque burden and decreased vulnerability index in the inhibitors or siRNA treated groups. We made a conclusion that selective inhibition of the Akt/mTOR signal pathway can reduce macrophages and stabilize the vulnerable atherosclerotic plaques by promoting macrophage autophagy. PMID:24599185

  13. Redox-sensitive Akt and Src regulate coronary collateral growth in metabolic syndrome.

    PubMed

    Reed, Ryan; Potter, Barry; Smith, Erika; Jadhav, Rashmi; Villalta, Patricia; Jo, Hanjoong; Rocic, Petra

    2009-06-01

    We have recently shown that the inability of repetitive ischemia (RI) to activate p38 MAPK (p38) and Akt in metabolic syndrome [JCR:LA-cp (JCR)] rats was associated with impaired coronary collateral growth (CCG). Furthermore, Akt and p38 activation correlated with optimal O(2)(-). levels and were altered in JCR rats, and redox-sensitive p38 activation was required for CCG. Here, we determined whether the activation of Src, a possible upstream regulator, was altered in JCR rats and whether redox-dependent Src and Akt activation were required for CCG. CCG was assessed by myocardial blood flow (microspheres) and kinase activation was assessed by Western blot analysis in the normal zone and collateral-dependent zone (CZ). RI induced Src activation (approximately 3-fold) in healthy [Wistar-Kyoto (WKY)] animals but not in JCR animals. Akt inhibition decreased (approximately 50%), and Src inhibition blocked RI-induced CCG in WKY rats. Src inhibition decreased p38 and Akt activation. Myocardial oxidative stress (O(2)(-). and oxidized/reduced thiols) was measured quantitatively (X-band electron paramagnetic resonance). An antioxidant, apocynin, reduced RI-induced oxidative stress in JCR rats to levels induced by RI in WKY rats versus the reduction in WKY rats to very low levels. This resulted in a significant restoration of p38 (approximately 80%), Akt (approximately 65%), and Src (approximately 90%) activation in JCR rats but decreased the activation in WKY rats (p38: approximately 45%, Akt: approximately 65%, and Src: approximately 100%), correlating with reduced CZ flow in WKY rats (approximately 70%), but significantly restored CZ flow in JCR rats (approximately 75%). We conclude that 1) Akt and Src are required for CCG, 2) Src is a redox-sensitive upstream regulator of RI-induced p38 and Akt activation, and 3) optimal oxidative stress levels are required for RI-induced p38, Akt, and Src activation and CCG.

  14. Guizhi Fuling Wan, a Traditional Chinese Herbal Formula, Sensitizes Cisplatin-Resistant Human Ovarian Cancer Cells through Inactivation of the PI3K/AKT/mTOR Pathway

    PubMed Central

    Guo, Xiaojuan; Bian, Hua; Yang, Lei; Chen, Zhong; Zang, Wenhua; Yang, Jingke

    2016-01-01

    The aim of the study was to explore the possible mechanisms that Guizhi Fuling Wan (GFW) enhances the sensitivity of the SKOV3/DDP ovarian cancer cells and the resistant xenograft tumours to cisplatin. Rat medicated sera containing GFW were prepared by administering GFW to rats, and the primary bioactive constituents of the sera were gallic acid, paeonol, and paeoniflorin analysed by HPLC/QqQ MS. Cell counting kit-8 analysis was shown that coincubation of the sera with cisplatin/paclitaxel enhanced significantly the cytotoxic effect of cisplatin or paclitaxel in SKOV3/DDP cells. The presence of the rat medicated sera containing GFW resulted in an increase in rhodamine 123 accumulation by flow cytometric assays and a decrease in the protein levels of P-gp, phosphorylation of AKT at Ser473, and mTOR in a dose-dependent manner in SKOV3/DDP cells by western blot analysis, but the sera had no effect on the protein levels of PI3K p110α and total AKT. The low dose of GFW enhanced the anticancer efficacy of cisplatin and paclitaxel treatment in resistant SKOV3/DDP xenograft tumours. GFW could sensitize cisplatin-resistant SKOV3/DDP cells by inhibiting the protein level and function of P-gp, which may be medicated through inactivation of the PI3K/AKT/mTOR pathway. PMID:27293459

  15. Probing Protein Channel Dynamics At The Single Molecule Level.

    NASA Astrophysics Data System (ADS)

    Lee, M. Ann; Dunn, Robert C.

    1997-03-01

    It would be difficult to overstate the importance played by protein ion channels in cellular function. These macromolecular pores allow the passage of ions across the cellular membrane and play indispensable roles in all aspects of neurophysiology. While the patch-clamp technique continues to provide elegant descriptions of the kinetic processes involved in ion channel gating, the associated conformational changes remain a mystery. We are using the spectroscopic capabilities and single molecule fluorescence sensitivity of near-field scanning optical microscopy (NSOM) to probe these dynamics at the single channel level. Using a newly developed cantilevered NSOM probe capable of probing soft biological samples with single molecule fluorescence sensitivity, we have begun mapping the location of single NMDA receptors in intact rat cortical neurons with <100 nm spatial resolution. We will also present recent results exploring the conformational changes accompanying activation of nuclear pore channels located in the nuclear membrane of Xenopus oocytes. Our recent NSOM and AFM measurements on single nuclear pore complexes reveal large conformational changes taking place upon activation, providing rich, new molecular level details of channel function.

  16. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    SciTech Connect

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  17. Gentamicin alters Akt-expression and its activation in the guinea pig cochlea.

    PubMed

    Heinrich, U-R; Strieth, S; Schmidtmann, I; Li, H; Helling, K

    2015-12-17

    Gentamicin treatment induces hair cell death or survival in the inner ear. Besides the well-known toxic effects, the phosphatidylinositol-3 kinase/Akt (PI3K/Akt) pathway was found to be involved in cell protection. After gentamicin application, the spatiotemporal expression patterns of Akt and its activated form (p-Akt) were determined in male guinea pigs. A single dose of 0.1 mL gentamicin (4 mg/ear/animal) was intratympanically injected. The auditory brainstem responses (ABRs) were recorded prior to application and 1, 2 and 7 days afterward. At these three time points the cochleae (n=10 in each case) were removed, transferred to fixative and embedded in paraffin. Seven ears were used as untreated controls. Gentamicin, Akt and p-Akt were identified immunohistochemically in various regions of the cochlea and their staining intensities were quantified on sections using digital image analysis. The application of gentamicin resulted in hearing loss with a concomitant up-regulation of Akt-expression in the organ of Corti and spiral ganglion cells and an additional activation in spiral ganglion cells. At the level of individual ears, clear intracellular correlations were found between Akt- and p-Akt-expression in the stria vascularis and interdental cells and, to a minor extent, in the spiral ligament and the organ of Corti. Furthermore, statistical evidence for the connection between gentamicin up-take and hearing loss was detected. The increase in Akt- and p-Akt-expression in the organ of Corti and spiral ganglion cells indicates a selected response of the cochlea against gentamicin toxicity.

  18. The Akt switch model: Is location sufficient?

    PubMed

    Gray, Catheryn W; Coster, Adelle C F

    2016-06-01

    Akt/PKB is a biochemical regulator that functions as an important cross-talk node between several signalling pathways in the mammalian cell. In particular, Akt is a key mediator of glucose transport in response to insulin. The phosphorylation (activation) of only a small percentage of the Akt pool of insulin-sensitive cells results in maximal translocation of glucose transporter 4 (GLUT4) to the plasma membrane (PM). This enables the diffusion of glucose into the cell. The dysregulation of Akt signalling is associated with the development of diabetes, cancer and cardiovascular disease. Akt is synthesised in the cytoplasm in the inactive state. Under the influence of insulin, it moves to the PM, where it is phosphorylated to form pAkt. Although phosphorylation occurs only at the PM, pAkt is found in many cellular locations, including the PM, the cytoplasm, and the nucleus. Indeed, the spatial distribution of pAkt within the cell appears to be an important determinant of downstream regulation. Here we present a simple, linear, four-compartment ordinary differential equation (ODE) model of Akt activation that tracks both the biochemical state and the physical location of Akt. This model embodies the main features of the activation of this important cross-talk node and is consistent with the experimental data. In particular, it allows different downstream signalling motifs without invoking separate feedback pathways. Moreover, the model is computationally tractable, readily analysed, and elucidates some of the apparent anomalies in insulin signalling via Akt. PMID:26992575

  19. Low-dose testosterone alleviates vascular damage caused by castration in male rats in puberty via modulation of the PI3K/AKT signaling pathway

    PubMed Central

    Zhao, Jing; Liu, Ge-Li; Wei, Ying; Jiang, Li-Hong; Bao, Peng-Li; Yang, Qing-Yan

    2016-01-01

    The aim of the present study was to investigate the effect of testosterone on glucolipid metabolism and vascular injury in male rats, and examine the underlying molecular mechanisms. A total of 40 male Sprague-Dawley rats were divided into a control group (n=10), high-fat-diet + castration group (n=10), high-fat-diet + castration + low dose testosterone group (n=10), and high-fat-diet + castration + high dose testosterone group (n=10). Hematoxylin and eosin staining was performed to evaluate the morphology of the thoracic aortic tissues. Immunohistochemical staining was used to detect biomarkers of the phosphoinositide 3-kinase (PI3K) signaling pathway. The mRNA and protein expression levels of PI3K, AKT, insulin receptor substrate-1 (IRS-1), glucose transporter type 4 (GLUT-4), nuclear factor (NF)-κB and tumor necrosis factor (TNF)-α in the aortas were determined using quantitative polymerase chain reaction and Western blot analyses, respectively. Apoptosis in the aortic tissues was detected using a TUNEL assay. Castration induced apoptosis in the animals fed a high-fat-diet, whereas low dose testosterone replacement ameliorated the apoptosis in the aorta. However, the levels of apoptosis was more severe following high-dose testosterone treatment. Low-dose testosterone induced upregulation in the levels of IRS-1, AKT, GLUT-4 protein, NF-κB, TNF-α and PI3K, compared with those in the animals fed a high-fat diet following castration. A high dose of testosterone resulted in a significant decrease in the levels of IRS-1, AKT, GLUT-4, NF-κB, TNF-α and PI3K. Compared with the rats in the high-fat diet + castration group, a low dose of testosterone induced upregulation in the mRNA levels of IRS-1, AKT and GLUT-4, and downregulation of the mRNA levels of NF-κB, TNF-α and PI3K. A high dose of testosterone resulted in a significant decrease in the levels of IRS-1, AKT and GLUT-4, and marked increases in the mRNA levels of NF-κB, TNF-α and PI3K, compared with the

  20. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    SciTech Connect

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  1. Monocyte chemoattractant protein-1 serum levels in ovarian cancer patients

    PubMed Central

    Hefler, L; Tempfer, C; Heinze, G; Mayerhofer, K; Breitenecker, G; Leodolter, S; Reinthaller, A; Kainz, C

    1999-01-01

    The chemokine monocyte chemoattractant protein (MCP)-1 is an important mediator of monocyte infiltration in various solid tumours of epithelial origin. The aim of the present study was to evaluate the role of MCP-1 in the natural history of ovarian cancer and to determine its value as differentiation marker and prognostic marker regarding disease free and overall survival. This retrospective study comprises 86 patients with ovarian cancer, 48 with primary ovarian cancer and 38 with recurrent ovarian cancer, 67 patients with benign ovarian cysts and 42 healthy women. Median serum levels in patients with primary ovarian cancer, recurrent ovarian cancer, benign ovarian cysts and in healthy women were 535.6 (range 129.6–1200) pg ml–1, 427.3 (range 193.4–1101) pg ml–1, 371.2 (range 222–986.8) pg ml–1 and 318.7 (range 241.3–681.4) pg ml–1 respectively (Mann–Whitney U-test, P < 0.001). Univariate logistic regression models revealed a significant influence of MCP-1 serum levels on the odds of presenting with primary ovarian cancer versus benign cysts and versus healthy women respectively (univariate logistic regression, P < 0.001 and P < 0.001 respectively). In a multivariate logistic regression model considering MCP-1 and CA 125 serum levels simultaneously, both MCP-1 and CA 125 revealed statistical significance on the odds of presenting with primary ovarian cancer versus benign cysts (multivariate logistic regression, P = 0.05 and P < 0.001 respectively). In ovarian cancer patients, MCP-1 serum levels showed a statistically significant correlation with histological grade (Mann–Whitney U-test, P = 0.02) and age at the time of diagnosis (Mann–Whitney U-test, P = 0.03). Elevated MCP-1 serum levels prior to therapy were not associated with disease-free and overall survival (log-rank test, P = 0.2 and P = 0.7 respectively). In summary these data indicate that MCP-1 might play a functional role in the natural history of ovarian cancer and might serve as

  2. Molecular characterization of the Akt-TOR signaling pathway in rainbow trout: potential role in muscle growth/degradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Akt-TOR signaling pathway plays a key role in cellular metabolism and muscle growth. Hormone, nutrition and stress factors affect the Akt-TOR pathway by regulating gene transcription, protein synthesis and degradation. In addition, we previously showed that energetic demands elevate during vit...

  3. Differential Phosphorylation of Akt and signaling in CD4+ T Cells in Pathogenic and Apathogenic SIV Infection.

    PubMed

    Stephenson, S T; Bostik, V; Bostik, P

    2016-01-01

    Increased CD4+ T cell apoptosis and activation induced cell death (AICD) as a result of HIV infection in humans and SIV infection in Rhesus macaques (RM) is indicative of disease. Some non-human primate species naturally infected by SIV, such as African sooty mangabeys (SM), do not succumb to SIV despite high viral loads. Previously, we showed that mRNA levels of GSK-3β a kinase involved in T cell signaling, are significantly decreased in SIV+ RM compared to SIV+ SM. The current study confirms that expression of GSK-3β is decreased at the protein level in SIV+ RM. In addition, CD4+ T cells from SIV+ RM, but not other animals show an increase in both total Akt, a kinase directly interacting with GSK-3β and p-AktThr308 in response to stimulation via CD3/CD28, which is associated with an increase in apoptosis. Furthermore, the differences between the uninfected and pathogenically or non-pathogenically infected animals are not only species specific, but also T cell subset specific and that these trends correlate with AICD. This is one of few studies indicating the activity of Akt can be specific to only one phosphorylation site and may be linked to the differences in AICD and resistance to the lentivirus induced disease. PMID:27467331

  4. A case for protein-level and site-level specificity in glycoproteomic studies of disease.

    PubMed

    Schumacher, Katherine N; Dodds, Eric D

    2016-06-01

    Abnormal glycosylation of proteins is known to be either resultant or causative of a variety of diseases. This makes glycoproteins appealing targets as potential biomarkers and focal points of molecular studies on the development and progression of human ailment. To date, a majority of efforts in disease glycoproteomics have tended to center on either determining the concentration of a given glycoprotein, or on profiling the total population of glycans released from a mixture of glycoproteins. While these approaches have demonstrated some diagnostic potential, they are inherently insensitive to the fine molecular detail which distinguishes unique and possibly disease relevant glycoforms of specific proteins. As a consequence, such analyses can be of limited sensitivity, specificity, and accuracy because they do not comprehensively consider the glycosylation status of any particular glycoprotein, or of any particular glycosylation site. Therefore, significant opportunities exist to improve glycoproteomic inquiry into disease by engaging in these studies at the level of individual glycoproteins and their exact loci of glycosylation. In this concise review, the rationale for glycoprotein and glycosylation site specificity is developed in the context of human disease glycoproteomics with an emphasis on N-glycosylation. Recent examples highlighting disease-related perturbations in glycosylation will be presented, including those involving alterations in the overall glycosylation of a specific protein, alterations in the occupancy of a given glycosylation site, and alterations in the compositional heterogeneity of glycans occurring at a given glycosylation site. Each will be discussed with particular emphasis on how protein-specific and site-specific approaches can contribute to improved discrimination between glycoproteomes and glycoproteins associated with healthy and unhealthy states.

  5. Leucine minimizes denervation-induced skeletal muscle atrophy of rats through akt/mtor signaling pathways

    PubMed Central

    Ribeiro, Carolina B.; Christofoletti, Daiane C.; Pezolato, Vitor A.; de Cássia Marqueti Durigan, Rita; Prestes, Jonato; Tibana, Ramires A.; Pereira, Elaine C. L.; de Sousa Neto, Ivo V.; Durigan, João L. Q.; da Silva, Carlos A.

    2015-01-01

    The aim of the present study was to evaluate the effect of leucine treatment (0.30 mM) on muscle weight and signaling of myoproteins related to synthesis and degradation pathways of soleus muscle following seven days of complete sciatic nerve lesion. Wistar rats (n = 24) of 3–4 months of age (192 ± 23 g) were used. The animals were randomly distributed into four experimental groups (n = 6/group): control, treated with leucine (L), denervated (D) and denervated treated with leucine (DL). Dependent measures were proteins levels of AKT, AMPK, mTOR, and ACC performed by Western blot. Leucine induced a reduction in the phosphorylation of AMPK (p < 0.05) by 16% in the L and by 68% in the DL groups as compared with control group. Denervation increased AMPK by 24% in the D group as compared with the control group (p < 0.05). AKT was also modulated by denervation and leucine treatment, highlighted by the elevation of AKT phosphorylation in the D (65%), L (98%) and DL (146%) groups as compared with the control group (p < 0.05). AKT phosphorylation was 49% higher in the D group as compared with the DL group. Furthermore, denervation decreased mTOR phosphorylation by 29% in the D group as compared with the control group. However, leucine treatment induced an increase of 49% in the phosphorylation of mTOR in the L group as compared with the control group, and an increase of 154% in the DL as compared with the D group (p < 0.05). ACC phosphorylation was 20% greater in the D group than the control group. Furthermore, ACC in the soleus was 22% lower in the in the L group and 50% lower in the DL group than the respective control group (p < 0.05). In conclusion, leucine treatment minimized the deleterious effects of denervation on rat soleus muscle by increasing anabolic (AKT and mTOR) and decreasing catabolic (AMPK) pathways. These results may be interesting for muscle recovery following acute denervation, which may contribute to musculoskeletal rehabilitation after denervation

  6. WISP1 overexpression promotes proliferation and migration of human vascular smooth muscle cells via AKT signaling pathway.

    PubMed

    Lu, Shun; Liu, Hao; Lu, Lihe; Wan, Heng; Lin, Zhiqi; Qian, Kai; Yao, Xingxing; Chen, Qing; Liu, Wenjun; Yan, Jianyun; Liu, Zhengjun

    2016-10-01

    Proliferation and migration of vascular smooth muscle cells (VSMCs) play crucial roles in the development of vascular restenosis. Our previous study showed that CCN4, namely Wnt1 inducible signaling pathway protein 1 (WISP1), significantly promotes proliferation and migration of rat VSMCs, but its mechanism remains unclear. This study aims to investigate whether and how WISP1 stimulates proliferation and migration of human VSMCs. Western blot analysis showed that FBS treatment increased WISP1 protein levels in human VSMCs in a dose-dependent manner. Overexpression of WISP1 using adenovirus encoding WISP1 (AD-WISP1) significantly increased proliferation rate of human VSMCs by 2.98-fold compared with empty virus (EV)-transfected cells, shown by EdU incorporation assay. Additionally, Scratch-induced wound healing assay revealed that adenovirus-mediated overexpression of WISP1 significantly increased cell migration compared with EV-transfected cells from 6h (4.56±1.14% vs. 11.23±2.25%, P<0.05) to 48h (25.25±5.51% vs. 97.54±13.12%, P<0.01) after injury. Transwell Migration Assay confirmed that WISP1 overexpression significantly promoted human VSMC migration by 2.25-fold compared with EV. Furthermore, WISP1 overexpression stimulated Akt signaling activation in human VSMCs. Blockage of Akt signaling by Akt inhibitor AZD5363 or PI3K inhibitor LY294002, led to an inhibitory effect of WISP1-induced proliferation and migration in human VSMCs. Moreover, we found that WISP1 overexpression stimulated GSK3α/β phosphorylation, and increased expression of cyclin D1 and MMP9 in human VSMCs, and this effect was abolished by AZD5363. Collectively, we demonstrated that Akt signaling pathway mediates WISP1-induced migration and proliferation of human VSMCs, suggesting that WISP1 may act as a novel potential therapeutic target for vascular restenosis.

  7. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling.

    PubMed

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-01

    Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and AKT. MMP-2 activation was also significantly increased. Specific inhibitors of p38 (SB203580) and JNK (SP600125) inhibited tube formation and wound healing, while an ERK inhibitor (PD98059) did not. MMP-2 activation and AKT phosphorylation were also attenuated and associated with the suppression of p38 and JNK phosphorylation, but not with that of ERK. These results indicate that fucoidan, in the presence of FGF-2, induces angiogenesis through AKT/MMP-2 signalling by activating p38 and JNK. These findings provide basic molecular information on the effect of fucoidan on angiogenesis in the presence of FGF-2.

  8. Hepatocyte growth factor induces Mcl-1 in primary human hepatocytes and inhibits CD95-mediated apoptosis via Akt.

    PubMed

    Schulze-Bergkamen, Henning; Brenner, Dirk; Krueger, Andreas; Suess, Dorothee; Fas, Stefanie C; Frey, Christian R; Dax, Andreas; Zink, Dorothea; Büchler, Peter; Müller, Martina; Krammer, Peter H

    2004-03-01

    CD95 (APO-1/Fas)-mediated apoptosis of hepatocytes plays a central role in the pathophysiology of various human liver diseases. Hepatocyte growth factor (HGF) was shown to exert antiapoptotic functions in rodent hepatocytes. We previously showed that primary human hepatocytes (PHH) are a valuable tool for the investigation of apoptotic processes in liver cells. In this study, we analyzed the influence of HGF on CD95-mediated apoptosis of PHH and its molecular determinants. HGF significantly inhibited CD95-mediated apoptosis of PHH as well as cleavage of caspase-8 and poly (ADP-ribose)polymerase. HGF transcriptionally induced the expression of the anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1). In contrary, HGF did not alter the expression levels of Bcl-2 or Bcl-x(L). HGF activated survival pathways such as the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase/ERK and the signal transducer and activator of transcription 3 (STAT3) pathway. Notably, HGF triggered serine(727)--but not tyrosine(705)--phosphorylation of STAT3. Pretreatment of PHH with the PI3K inhibitor LY294002 as well as adenoviral transduction of dominant negative Akt1 prevented HGF-mediated Mcl-1 induction and reversed the antiapoptotic effects of HGF. In conclusion, HGF confers survival of PHH by activation of the PI3K/Akt pathway. PI3K/Akt activation by HGF results in the induction of antiapoptotic proteins such as Mcl-1. Thus, application of HGF may be a therapeutic approach to prevent CD95-mediated hepatocellular damage in human liver diseases. PMID:14999683

  9. Orexin-A stimulates 3β-hydroxysteroid dehydrogenase expression and cortisol production in H295R human adrenocortical cells through the AKT pathway.

    PubMed

    Chang, Xiaocen; Zhao, Yuyan; Ju, Shujing; Guo, Lei

    2014-12-01

    Orexin-A is a regulatory peptide involved in the regulation of food intake, sleep-wakefulness, and it has various endocrine and metabolic functions. It orchestrates diverse central and peripheral processes through the stimulation of two G-protein coupled receptors, orexin receptor type 1 (OX1 receptor) and orexin receptor type 2 (OX2 receptor). In this study, human adrenocortical cells (NCI-H295R cells) were incubated with various concentrations of orexin-A (10-10 to 10-6 M) in vitro, and the mRNA and protein expression of OX1 receptor was determined in the cells. In addition, NCI-H295R cells treated with 10-6 M orexin-A were then treated with or without OX1 receptor specific antagonist (SB334867), AKT antagonist (PF-04691502), or a combination of both. Subsequently, cell proliferation, the cortisol content in the medium and the mRNA and protein expression expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) were analyzed. The activity of the AKT signaling pathway was also determined in the NCI-H295R cells. We observed that the increase in the mRNA and protein expression of OX1 receptor was orexin-A concentration-dependent, with 10-6 M orexin-A exerting the most potent effect. Orexin-A enhanced cell proliferation and cortisol production, and increased the mRNA and protein expression of 3β-HSD in the NCI-H295R cells; however, these effects were partly blocked by the OX1 receptor antagonist, the AKT antagonist and the combination of both. Furthermore, orexin-A significantly increased the phosphorylation of AKT, with the levels of total AKT protein remaining unaltered. This effect was blocked in the presence of PF-04691502 (10-6 M), SB334867 (10-6 M) and the combination of both. On the whole, our data demonstrate that the effects of orexin-A on the survival and function of human adrenocortical cells are mediated through the AKT signaling pathway.

  10. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    SciTech Connect

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li{sub 2}CO{sub 3} significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li{sub 2}CO{sub 3} did not affect PI3K-mediated PI(3,4,5)P{sub 3} production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li{sub 2}CO{sub 3} on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li{sub 2}CO{sub 3} significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li{sub 2}CO{sub 3} significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity.

  11. Auxin acts independently of DELLA proteins in regulating gibberellin levels.

    PubMed

    Reid, James B; Davidson, Sandra E; Ross, John J

    2011-03-01

    Shoot elongation is a vital process for plant development and productivity, in both ecological and economic contexts. Auxin and bioactive gibberellins (GAs), such as GA1, play critical roles in the control of elongation, along with environmental and endogenous factors, including other hormones such as the brassinosteroids. The effect of auxins, such as indole-3-acetic acid (IAA), is at least in part mediated by its effect on GA metabolism, since auxin up-regulates biosynthesis genes such as GA 3-oxidase and GA 20-oxidase and down regulates GA catabolism genes such as GA 2-oxidases, leading to elevated levels of bioactive GA 1. In our recent paper, we have provided evidence that this action of IAA is largely independent of DELLA proteins, the negative regulators of GA action, since the auxin effects are still present in the DELLA-deficient la cry-s genotype of pea. This was a crucial issue to resolve, since like auxin, the DELLAs also promote GA 1 synthesis and inhibit its deactivation. DELLAs are deactivated by GA, and thereby mediate a feedback system by which bioactive GA regulates its own level. However, our recent results, in themselves, do not show the generality of the auxin-GA relationship across species and phylogenetic groups or across different tissue types and responses. Further, they do not touch on the ecological benefits of the auxin-GA interaction. These issues are discussed below as well as the need for the development of suitable experimental systems to allow this process to be examined. PMID:21358281

  12. Anticancer Effects of Paris Saponins by Apoptosis and PI3K/AKT Pathway in Gefitinib-Resistant Non-Small Cell Lung Cancer

    PubMed Central

    Zhu, Xinhai; Jiang, Hao; Li, Jinhui; Xu, Ji; Fei, Zhenghua

    2016-01-01

    Background Paris saponins have been studied for their anticancer effects in various cancer types, but the mechanisms underlying the cytotoxic effects, especially in EGFR-TKI-resistant cells, are still unclear. We explored the potential mechanism of the antitumor effects of PSI, II, VI, VII in EGFR-TKI-resistant cells and attempted to develop PSI, II, VI, VII as a systemic treatment strategy for EGFR-TKI-resistant lung cancer. Material/Methods Growth inhibition was detected by MTT assay. The apoptosis assay was detected using annexin-V/PI and Hoechst staining. The level of PI3K, pAKT, Bax, Bcl-2, caspase-3, and caspase-9 protein expression were detected using Western blot analysis. Results The results revealed that PSI, II, VI, VII inhibited the proliferation of PC-9-ZD cells. Furthermore, PSI, II, VI, VII induced significant cell apoptosis. The levels of PI3K, pAKT, Bcl-2 protein decreased, while the Bax, caspase-3, and caspase-9 protein was increased by PSI, II, PSVI, PSVII treatment and resulted in increased sensitivity to gefitinib in PC-9-ZD cells. Conclusions The underlying mechanism of Paris saponins may be related to targeting the PI3K/AKT pathways to cause apoptosis. Our results suggest a therapeutic potential of Paris saponins in clinical settings for gefitinib-resistant NSCLC. PMID:27125283

  13. Anticancer Effects of Paris Saponins by Apoptosis and PI3K/AKT Pathway in Gefitinib-Resistant Non-Small Cell Lung Cancer.

    PubMed

    Zhu, XinHai; Jiang, Hao; Li, Jinhui; Xu, Ji; Fei, Zhenghua

    2016-01-01

    BACKGROUND Paris saponins have been studied for their anticancer effects in various cancer types, but the mechanisms underlying the cytotoxic effects, especially in EGFR-TKI-resistant cells, are still unclear. We explored the potential mechanism of the antitumor effects of PSI, II, VI, VII in EGFR-TKI-resistant cells and attempted to develop PSI, II, VI, VII as a systemic treatment strategy for EGFR-TKI-resistant lung cancer. MATERIAL AND METHODS Growth inhibition was detected by MTT assay. The apoptosis assay was detected using annexin-V/PI and Hoechst staining. The level of PI3K, pAKT, Bax, Bcl-2, caspase-3, and caspase-9 protein expression were detected using Western blot analysis. RESULTS The results revealed that PSI, II, VI, VII inhibited the proliferation of PC-9-ZD cells. Furthermore, PSI, II, VI, VII induced significant cell apoptosis. The levels of PI3K, pAKT, Bcl-2 protein decreased, while the Bax, caspase-3, and caspase-9 protein was increased by PSI, II, PSVI, PSVII treatment and resulted in increased sensitivity to gefitinib in PC-9-ZD cells. CONCLUSIONS The underlying mechanism of Paris saponins may be related to targeting the PI3K/AKT pathways to cause apoptosis. Our results suggest a therapeutic potential of Paris saponins in clinical settings for gefitinib-resistant NSCLC. PMID:27125283

  14. Unrestrained mammalian target of rapamycin complexes 1 and 2 increase expression of phosphatase and tensin homolog deleted on chromosome 10 to regulate phosphorylation of Akt kinase.

    PubMed

    Das, Falguni; Ghosh-Choudhury, Nandini; Dey, Nirmalya; Mandal, Chandi Charan; Mahimainathan, Lenin; Kasinath, Balakuntalam S; Abboud, Hanna E; Choudhury, Goutam Ghosh

    2012-02-01

    Tuberous sclerosis complex 2 (TSC2) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) function to block growth factor-induced mammalian target of rapamycin (mTOR) signaling and are mutated in autosomal dominant hamartoma syndromes. mTOR binds to a spectrum of common and different proteins to form TOR complex 1 (TORC1) and TORC2, which regulate cell growth, division, and metabolism. TSC2 deficiency induces constitutive activation of mTOR, leading to a state of insulin resistance due to a negative feedback regulation, resulting in reduced Akt phosphorylation. We have recently described an alternative mechanism showing that in TSC2 deficiency, enhanced PTEN expression contributes to reduced Akt phosphorylation. To explore the mechanism of PTEN regulation, we used rapamycin and constitutively active mTOR to show that TORC1 increases the expression of PTEN mRNA and protein. We found that in TSC2(-/-) mouse embryonic fibroblasts expression of a kinase-dead mutant of mTOR, which inhibits both TORC1 and TORC2, decreases the expression of PTEN via transcriptional mechanism. Furthermore, kinase-dead mTOR increased and decreased phosphorylation of Akt at catalytic loop site Thr-308 and hydrophobic motif site Ser-473, respectively. Moreover, inhibition of deregulated TORC1 in TSC2-null mouse embryonic fibroblasts or in 293 cells by down-regulation of raptor decreased the levels of the transcription factor Hif1α and blocked PTEN expression, resulting in enhanced phosphorylation of Akt at Thr-308 and Ser-473. Finally, knockdown of rictor or mSin1 attenuated the expression of Hif1α, which decreased transcription of PTEN. These results unravel a previously unrecognized cell-autonomous function of TORC1 and TORC2 in the up-regulation of PTEN, which prevents phosphorylation of Akt and may shield against the development of malignancy in TSC patients. PMID:22184110

  15. Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells.

    PubMed

    Fleming, Ingrid; Fisslthaler, Beate; Dixit, Madhulika; Busse, Rudi

    2005-09-15

    The application of fluid shear stress to endothelial cells elicits the formation of nitric oxide (NO) and phosphorylation of the endothelial NO synthase (eNOS). Shear stress also elicits the enhanced tyrosine phosphorylation of endothelial proteins, especially of those situated in the vicinity of cell-cell contacts. Since a major constituent of these endothelial cell-cell contacts is the platelet endothelial cell adhesion molecule-1 (PECAM-1) we assessed the role of PECAM-1 in the activation of eNOS. In human endothelial cells, shear stress induced the tyrosine phosphorylation of PECAM-1 and enhanced the association of PECAM-1 with eNOS. Endothelial cell stimulation with shear stress elicited the phosphorylation of Akt and eNOS as well as of the AMP-activated protein kinase (AMPK). While the shear-stress-induced tyrosine phosphorylation of PECAM-1 as well as the serine phosphorylation of Akt and eNOS were abolished by the pre-treatment of cells with the tyrosine kinase inhibitor PP1 the phosphorylation of AMPK was unaffected. Down-regulation of PECAM-1 using a siRNA approach attenuated the shear-stress-induced phosphorylation of Akt and eNOS, as well as the shear-stress-induced accumulation of cyclic GMP levels while the shear-stress-induced phosphorylation of AMPK remained intact. A comparable attenuation of Akt and eNOS (but not AMPK) phosphorylation and NO production was also observed in endothelial cells generated from PECAM-1-deficient mice. These data indicate that the shear-stress-induced activation of Akt and eNOS in endothelial cells is modulated by the tyrosine phosphorylation of PECAM-1 whereas the shear-stress-induced phosphorylation of AMPK is controlled by an alternative signaling pathway. PMID:16118242

  16. CCL21 Facilitates Chemoresistance and Cancer Stem Cell-Like Properties of Colorectal Cancer Cells through AKT/GSK-3β/Snail Signals

    PubMed Central

    Lu, Lin-Lin; Chen, Xiao-Hui; Zhang, Ge; Liu, Zong-Cai; Wu, Nong; Wang, Hao; Qi, Yi-Fei; Wang, Hong-Sheng; Cai, Shao Hui; Du, Jun

    2016-01-01

    Some evidence indicated that chemoresistance associates with the acquisition of cancer stem-like properties. Recent studies suggested that chemokines can promote the chemoresistance and stem cell properties in various cancer cells, while the underling mechanism is still not completely illustrated. In our study, we found that CCL21 can upregulate the expression of P-glycoprotein (P-gp) and stem cell property markers such as Bmi-1, Nanog, and OCT-4 in colorectal cancer (CRC) HCT116 cells and then improve the cell survival rate and mammosphere formation. Our results suggested that Snail was crucial for CCL21-mediated chemoresistance and cancer stem cell property in CRC cells. Further, we observed that CCL21 treatment increased the protein but not mRNA levels of Snail, which suggested that CCL21 upregulates Snail via posttranscriptional ways. The downstream signals AKT/GSK-3β mediated CCL21 induced the upregulation of Snail due to the fact that CCL21 treatment can obviously phosphorylate both AKT and GSK-3β. The inhibitor of PI3K/Akt, LY294002 significantly abolished CCL21 induced chemoresistance and mammosphere formation of HCT116 cells. Collectively, our results in the present study revealed that CCL21 can facilitate chemoresistance and stem cell property of CRC cells via the upregulation of P-gp, Bmi-1, Nanog, and OCT-4 through AKT/GSK-3β/Snail signals, which suggested a potential therapeutic approach to CRC patients. PMID:27057280

  17. PIM and AKT kinase inhibitors show synergistic cytotoxicity in acute myeloid leukaemia that is associated with convergence on mTOR and MCL1 pathways.

    PubMed

    Meja, Koremu; Stengel, Chloe; Sellar, Rob; Huszar, Dennis; Davies, Barry R; Gale, Rosemary E; Linch, David C; Khwaja, Asim

    2014-10-01

    PIM kinases (PIM1, 2 and 3) are involved in cell proliferation and survival signalling and are emerging targets for the therapy of various malignancies. We found that a significant proportion of primary acute myeloid leukaemia (AML) samples showed PIM1 and PIM2 expression by quantitative reverse transcription polymerase chain reaction. Therefore, we investigated the effects of a novel ATP-competitive pan-PIM inhibitor, AZD1897, on AML cell growth and survival. PIM inhibition showed limited single agent activity in AML cell lines and primary AML cells, including those with or without FLT3-internal tandem duplication (ITD) mutation. However, significant synergy was seen when AZD1897 was combined with the Akt inhibitor AZD5363, a compound that is in early-phase clinical trials. AML cells from putative leukaemia stem cell subsets, including CD34+38- and CD34+38+ fractions, were equivalently affected by dual PIM/Akt inhibition when compared with bulk tumour cells. Analysis of downstream signalling pathways showed that combined PIM/Akt inhibition downregulated mTOR outputs (phosphorylation of 4EBP1 and S6) and markedly reduced levels of the anti-apoptotic protein MCL1. The combination of PIM and Akt inhibition holds promise for the treatment of AML. PMID:24975213

  18. Targeting the AKT pathway: Repositioning HIV protease inhibitors as radiosensitizers

    PubMed Central

    Goda, Jayant S.; Pachpor, Tejaswini; Basu, Trinanjan; Chopra, Supriya; Gota, Vikram

    2016-01-01

    Cellular resistance in tumour cells to different therapeutic approaches has been a limiting factor in the curative treatment of cancer. Resistance to therapeutic radiation is a common phenomenon which significantly reduces treatment options and impacts survival. One of the mechanisms of acquiring resistance to ionizing radiation is the overexpression or activation of various oncogenes like the EGFR (epidermal growth factor receptor), RAS (rat sarcoma) oncogene or loss of PTEN (phosphatase and tensin homologue) which in turn activates the phosphatidyl inositol 3-kinase/protein kinase B (PI3-K)/AKT pathway responsible for radiation resistance in various tumours. Blocking the pathway enhances the radiation response both in vitro and in vivo. Due to the differential activation of this pathway (constitutively activated in tumour cells and not in the normal host cells), it is an excellent candidate target for molecular targeted therapy to enhance radiation sensitivity. In this regard, HIV protease inhibitors (HPIs) known to interfere with PI3-K/AKT signaling in tumour cells, have been shown to sensitize various tumour cells to radiation both in vitro and in vivo. As a result, HPIs are now being investigated as possible radiosensitizers along with various chemotherapeutic drugs. This review describes the mechanisms by which PI3-K/AKT pathway causes radioresistance and the role of HIV protease inhibitors especially nelfinavir as a potential candidate drug to target the AKT pathway for overcoming radioresistance and its use in various clinical trials for different malignancies. PMID:27121513

  19. Targeting the AKT pathway: Repositioning HIV protease inhibitors as radiosensitizers.

    PubMed

    Goda, Jayant S; Pachpor, Tejaswini; Basu, Trinanjan; Chopra, Supriya; Gota, Vikram

    2016-02-01

    Cellular resistance in tumour cells to different therapeutic approaches has been a limiting factor in the curative treatment of cancer. Resistance to therapeutic radiation is a common phenomenon which significantly reduces treatment options and impacts survival. One of the mechanisms of acquiring resistance to ionizing radiation is the overexpression or activation of various oncogenes like the EGFR (epidermal growth factor receptor), RAS (rat sarcoma) oncogene or loss of PTEN (phosphatase and tensin homologue) which in turn activates the phosphatidyl inositol 3-kinase/protein kinase B (PI3-K)/AKT pathway responsible for radiation resistance in various tumours. Blocking the pathway enhances the radiation response both in vitro and in vivo. Due to the differential activation of this pathway (constitutively activated in tumour cells and not in the normal host cells), it is an excellent candidate target for molecular targeted therapy to enhance radiation sensitivity. In this regard, HIV protease inhibitors (HPIs) known to interfere with PI3-K/AKT signaling in tumour cells, have been shown to sensitize various tumour cells to radiation both in vitro and in vivo. As a result, HPIs are now being investigated as possible radiosensitizers along with various chemotherapeutic drugs. This review describes the mechanisms by which PI3-K/AKT pathway causes radioresistance and the role of HIV protease inhibitors especially nelfinavir as a potential candidate drug to target the AKT pathway for overcoming radioresistance and its use in various clinical trials for different malignancies.

  20. PIM kinase (and Akt) biology and signaling in tumors

    PubMed Central

    Warfel, Noel A.; Kraft, Andrew S.

    2016-01-01

    The initiation and progression of human cancer is frequently linked to the uncontrolled activation of survival kinases. Two such pro-survival kinases that are commonly amplified in cancer are PIM and Akt. These oncogenic proteins are serine/threonine kinases that regulate tumorigenesis by phosphorylating substrates that control the cell cycle, cellular metabolism, proliferation, and survival. Growing evidence suggests that cross-talk exists between the PIM and Akt kinases, indicating that they control partially overlapping survival signaling pathways that are critical to the initiation, progression, and metastatic spread of many types of cancer. The PI3K/Akt signaling pathway is activated in many human tumors, and it is well established as a promising anticancer target. Likewise, based on the role of PIM kinases in normal and tumor tissues, it is clear that this family of kinases represents an interesting target for anticancer therapy. Pharmacological inhibition of PIM has the potential to significantly influence the efficacy of standard and targeted therapies. This review focuses on the regulation of PIM kinases, their role in tumorigenesis, and the biological impact of their interaction with the Akt signaling pathway on the efficacy of cancer therapy. PMID:25749412