Science.gov

Sample records for akt protein levels

  1. The Nuclear Zinc Finger Protein Zfat Maintains FoxO1 Protein Levels in Peripheral T Cells by Regulating the Activities of Autophagy and the Akt Signaling Pathway.

    PubMed

    Ishikura, Shuhei; Iwaihara, Yuri; Tanaka, Yoko; Luo, Hao; Nishi, Kensuke; Doi, Keiko; Koyanagi, Midori; Okamura, Tadashi; Tsunoda, Toshiyuki; Shirasawa, Senji

    2016-07-15

    Forkhead box O1 (FoxO1) is a key molecule for the development and functions of peripheral T cells. However, the precise mechanisms regulating FoxO1 expression in peripheral T cells remain elusive. We previously reported that Zfat(f/f)-CD4Cre mice showed a marked decline in FoxO1 protein levels in peripheral T cells, partially through proteasomal degradation. Here we have identified the precise mechanisms, apart from proteasome-mediated degradation, of the decreased FoxO1 levels in Zfat-deficient T cells. First, we confirmed that tamoxifen-inducible deletion of Zfat in Zfat(f/f)-CreERT2 mice coincidently decreases FoxO1 protein levels in peripheral T cells, indicating that Zfat is essential for maintaining FoxO1 levels in these cells. Although the proteasome-specific inhibitors lactacystin and epoxomicin only moderately increase FoxO1 protein levels, the inhibitors of lysosomal proteolysis bafilomycin A1 and chloroquine restore the decreased FoxO1 levels in Zfat-deficient T cells to levels comparable with those in control cells. Furthermore, Zfat-deficient T cells show increased numbers of autophagosomes and decreased levels of p62 protein, together indicating that Zfat deficiency promotes lysosomal FoxO1 degradation through autophagy. In addition, Zfat deficiency increases the phosphorylation levels of Thr-308 and Ser-473 of Akt and the relative amounts of cytoplasmic to nuclear FoxO1 protein levels, indicating that Zfat deficiency causes Akt activation, leading to nuclear exclusion of FoxO1. Our findings have demonstrated a novel role of Zfat in maintaining FoxO1 protein levels in peripheral T cells by regulating the activities of autophagy and the Akt signaling pathway. PMID:27226588

  2. Activation of the PI3K/Akt signal transduction pathway and increased levels of insulin receptor in protein repair-deficient mice.

    PubMed

    Farrar, Christine; Houser, Carolyn R; Clarke, Steven

    2005-02-01

    Protein L-isoaspartate (D-aspartate) O-methyltransferase is an enzyme that catalyses the repair of isoaspartyl damage in proteins. Mice lacking this enzyme (Pcmt1-/- mice) have a progressive increase in brain size compared with wild-type mice (Pcmt1+/+ mice), a phenotype that can be associated with alterations in the PI3K/Akt signal transduction pathway. Here we show that components of this pathway, including Akt, GSK3beta and PDK-1, are more highly phosphorylated in the brains of Pcmt1-/- mice, particularly in cells of the hippocampus, in comparison with Pcmt1+/+ mice. Examination of upstream elements of this pathway in the hippocampus revealed that Pcmt1-/- mice have increased activation of insulin-like growth factor-I (IGF-I) receptor and/or insulin receptor. Western blot analysis revealed an approximate 200% increase in insulin receptor protein levels and an approximate 50% increase in IGF-I receptor protein levels in the hippocampus of Pcmt1-/- mice. Higher levels of the insulin receptor protein were also found in other regions of the adult brain and in whole tissue extracts of brain, liver, heart and testes of both juvenile and adult Pcmt1-/- mice. There were no significant differences in plasma insulin levels for adult Pcmt1-/- mice during glucose tolerance tests. However, they did show higher peak levels of blood glucose, suggesting a mild impairment in glucose tolerance. We propose that Pcmt1-/- mice have altered regulation of the insulin pathway, possibly as a compensatory response to altered glucose uptake or metabolism or as an adaptive response to a general accumulation of isoaspartyl protein damage in the brain and other tissues. PMID:15659208

  3. Transcriptional and posttranslational regulation of insulin-like growth factor binding protein-3 by Akt3

    PubMed Central

    Jin, Quanri; Lee, Hyo-Jong; Min, Hye-Young; Smith, John Kendal; Hwang, Su Jung; Whang, Young Mi; Kim, Woo-Young; Kim, Yeul Hong; Lee, Ho-Young

    2014-01-01

    Insulin-like growth factor (IGF)-dependent and -independent antitumor activities of insulin-like growth factor binding protein-3 (IGFBP-3) have been proposed in human non-small cell lung cancer (NSCLC) cells. However, the mechanism underlying regulation of IGFBP-3 expression in NSCLC cells is not well understood. In this study, we show that activation of Akt, especially Akt3, plays a major role in the mRNA expression and protein stability of IGFBP-3 and thus antitumor activities of IGFBP-3 in NSCLC cells. When Akt was activated by genomic or pharmacologic approaches, IGFBP-3 transcription and protein stability were decreased. Conversely, suppression of Akt increased IGFBP-3 mRNA levels and protein stability in NSCLC cell lines. Characterization of the effects of constitutively active form of each Akt subtype (HA-Akt-DD) on IGFBP-3 expression in NSCLC cells and a xenograft model indicated that Akt3 plays a major role in the Akt-mediated regulation of IGFBP-3 expression and thus suppression of Akt effectively enhances the antitumor activities of IGFBP-3 in NSCLC cells with Akt3 overactivation. Collectively, these data suggest a novel function of Akt3 as a negative regulator of IGFBP-3, indicating the possible benefit of a combined inhibition of IGFBP-3 and Akt3 for the treatment of patients with NSCLC. PMID:24942865

  4. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    SciTech Connect

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa; Shin, Incheol

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  5. Synthetic sulfoglycolipids targeting the serine-threonine protein kinase Akt.

    PubMed

    Costa, Barbara; Dangate, Milind; Vetro, Maria; Donvito, Giulia; Gabrielli, Luca; Amigoni, Loredana; Cassinelli, Giuliana; Lanzi, Cinzia; Ceriani, Michela; De Gioia, Luca; Filippi, Giulia; Cipolla, Laura; Zaffaroni, Nadia; Perego, Paola; Colombo, Diego

    2016-08-15

    The serine-threonine protein kinase Akt, also known as protein kinase B, is a key component of the phosphoinositide 3-kinase (PI3K)-Akt-mTOR axis. Deregulated activation of this pathway is frequent in human tumors and Akt-dependent signaling appears to be critical in cell survival. PI3K activation generates 3-phosphorylated phosphatidylinositols that bind Akt pleckstrin homology (PH) domain. The blockage of Akt PH domain/phosphoinositides interaction represents a promising approach to interfere with the oncogenic potential of over-activated Akt. In the present study, phosphatidyl inositol mimics based on a β-glucoside scaffold have been synthesized as Akt inhibitors. The compounds possessed one or two lipophilic moieties of different length at the anomeric position of glucose, and an acidic or basic group at C-6. Docking studies, ELISA Akt inhibition assays, and cellular assays on different cell models highlighted 1-O-octadecanoyl-2-O-β-d-sulfoquinovopyranosyl-sn-glycerol as the best Akt inhibitor among the synthesized compounds, which could be considered as a lead for further optimization in the design of Akt inhibitors. PMID:27316541

  6. Degradation of Akt Using Protein Catalyzed Capture Agents

    PubMed Central

    Das, Samir; Nag, Arundhati; Tang, Grace; Tang, Kevin; Sutherland, Alexander M.; Heath, James R.

    2016-01-01

    Abnormal signaling of the protein kinase Akt has been shown to contribute to human diseases such as diabetes and cancer, but Akt has proven to be a challenging target for drugging. Using iterative in situ click chemistry we recently developed multiple protein catalyzed capture (PCC) agents that allosterically modulate Akt enzymatic activity in a protein based assay. Here we utilize similar PCCs to exploit endogenous protein degradation pathways. We use the modularity of the anti-Akt PCCs to prepare Proteolysis Targeting Chimeric molecules (PROTACs) that are shown to promote the rapid degradation of Akt in live cancer cells. These novel PROTACs demonstrate that the epitope targeting selectivity of PCCs can be coupled with non-traditional drugging moieties to inhibit challenging targets. PMID:26880702

  7. Seasonal, tissue-specific regulation of Akt/protein kinase B and glycogen synthase in hibernators.

    PubMed

    Hoehn, Kyle L; Hudachek, Susan F; Summers, Scott A; Florant, Gregory L

    2004-03-01

    Yellow-bellied marmots (Marmota flaviventris) exhibit a circannual cycle of hyperphagia and nutrient storage in the summer followed by hibernation in the winter. This annual cycle of body mass gain and loss is primarily due to large-scale accumulation of lipid in the summer, which is then mobilized and oxidized for energy during winter. The rapid and predictable change in body mass makes these animals ideal for studies investigating the molecular basis for body weight regulation. In the study described herein, we monitored seasonal changes in the protein levels and activity of a central regulator of anabolic metabolism, the serine-threonine kinase Akt-protein kinase B (Akt/PKB), during the months accompanying maximal weight gain and entry into hibernation (June-November). Interestingly, under fasting conditions, Akt/PKB demonstrated a tissue-specific seasonal activation. Specifically, although Akt/PKB levels did not change, the activity of Akt/PKB (isoforms 1/alpha and 2/beta) in white adipose tissue (WAT) increased significantly in July. Moreover, glycogen synthase, which lies downstream of Akt/PKB on a linear pathway linking the enzyme to the stimulation of glycogen synthesis, demonstrated a similar pattern of seasonal activation. By contrast, Akt/PKB activity in skeletal muscle peaked much later (i.e., September). These data suggest the existence of a novel, tissue-specific mechanism regulating Akt/PKB activation during periods of marked anabolism. PMID:14656767

  8. Asymmetric Dimethylarginine Stimulates Akt1 Phosphorylation via Heat Shock Protein 70-Facilitated Carboxyl-Terminal Modulator Protein Degradation in Pulmonary Arterial Endothelial Cells.

    PubMed

    Sun, Xutong; Kellner, Manuela; Desai, Ankit A; Wang, Ting; Lu, Qing; Kangath, Archana; Qu, Ning; Klinger, Christina; Fratz, Sohrab; Yuan, Jason X-J; Jacobson, Jeffrey R; Garcia, Joe G N; Rafikov, Ruslan; Fineman, Jeffrey R; Black, Stephen M

    2016-08-01

    Asymmetric dimethylarginine (ADMA) induces the mitochondrial translocation of endothelial nitric oxide synthase (eNOS) through the nitration-mediated activation of Akt1. However, it is recognized that the activation of Akt1 requires phosphorylation events at threonine (T) 308 and serine (S) 473. Thus, the current study was performed to elucidate the potential effect of ADMA on Akt1 phosphorylation and the mechanisms that are involved. Exposure of pulmonary arterial endothelial cells to ADMA enhanced Akt1 phosphorylation at both threonine 308 and Ser473 without altering Akt1 protein levels, phosphatase and tensin homolog activity, or membrane Akt1 levels. Heat shock protein (Hsp) 90 plays a pivotal role in maintaining Akt1 activity, and our results demonstrate that ADMA decreased Hsp90-Akt1 interactions, but, surprisingly, overexpression of a dominant-negative Hsp90 mutant increased Akt1 phosphorylation. ADMA exposure or overexpression of dominant-negative Hsp90 increased Hsp70 levels, and depletion of Hsp70 abolished ADMA-induced Akt1 phosphorylation. ADMA decreased the interaction of Akt1 with its endogenous inhibitor, carboxyl-terminal modulator protein (CTMP). This was mediated by the proteasomal-dependent degradation of CTMP. The overexpression of CTMP attenuated ADMA-induced Akt1 phosphorylation at Ser473, eNOS phosphorylation at Ser617, and eNOS mitochondrial translocation. Finally, we found that the mitochondrial translocation of eNOS in our lamb model of pulmonary hypertension is associated with increased Akt1 and eNOS phosphorylation and reduced Akt1-CTMP protein interactions. In conclusion, our data suggest that CTMP is directly involved in ADMA-induced Akt1 phosphorylation in vitro and in vivo, and that increasing CTMP levels may be an avenue to treat pulmonary hypertension. PMID:26959555

  9. Avian reovirus σA and σNS proteins activate the phosphatidylinositol 3-kinase-dependent Akt signalling pathway.

    PubMed

    Xie, Liji; Xie, Zhixun; Huang, Li; Fan, Qing; Luo, Sisi; Huang, Jiaoling; Deng, Xianwen; Xie, Zhiqin; Zeng, Tingting; Zhang, Yanfang; Wang, Sheng

    2016-08-01

    The present study was conducted to identify avian reovirus (ARV) proteins that can activate the phosphatidylinositol 3-kinase (PI3K)-dependent Akt pathway. Based on ARV protein amino acid sequence analysis, σA, σNS, μA, μB and μNS were identified as putative proteins capable of mediating PI3K/Akt pathway activation. The recombinant plasmids σA-pcAGEN, σNS-pcAGEN, μA-pcAGEN, μB-pcAGEN and μNS-pcAGEN were constructed and used to transfect Vero cells, and the expression levels of the corresponding genes were quantified by immunofluorescence and Western blot analysis. Phosphorylated Akt (P-Akt) levels in the transfected cells were measured by flow cytometry and Western blot analysis. The results showed that the σA, σNS, μA, μB and μNS genes were expressed in Vero cells. σA-expressing and σNS-expressing cells had higher P-Akt levels than negative control cells, pcAGEN-expressing cells and cells designed to express other proteins (i.e., μA, μB and μNS). Pre-treatment with the PI3K inhibitor LY294002 inhibited Akt phosphorylation in σA- and σNS-expressing cells. These results indicate that the σA and σNS proteins can activate the PI3K/Akt pathway. PMID:27233800

  10. Novel Endogenous, Insulin-Stimulated Akt2 Protein Interaction Partners in L6 Myoblasts

    PubMed Central

    Caruso, Michael; Zhang, Xiangmin; Ma, Danjun; Yang, Zhao; Qi, Yue; Yi, Zhengping

    2015-01-01

    Insulin resistance and Type 2 diabetes are marked by an aberrant response in the insulin signaling network. The phosphoinositide-dependent serine/threonine kinase, Akt2, plays a key role in insulin signaling and glucose uptake, most notably within skeletal muscle. Protein-protein interaction regulates the functional consequence of Akt2 and in turn, Akt2’s role in glucose uptake. However, only few insulin-responsive Akt2 interaction partners have been identified in skeletal muscle cells. In the present work, rat L6 myoblasts, a widely used insulin sensitive skeletal muscle cell line, were used to examine endogenous, insulin-stimulated Akt2 protein interaction partners. Akt2 co-immunoprecipitation was coupled with 1D-SDS-PAGE and fractions were analyzed by HPLC-ESI-MS/MS to reveal Akt2 protein-protein interactions. The pull-down assay displayed specificity for the Akt2 isoform; Akt1 and Akt3 unique peptides were not detected. A total of 49 were detected with a significantly increased (47) or decreased (2) association with Akt2 following insulin administration (n = 4; p<0.05). Multiple pathways were identified for the novel Akt2 interaction partners, such as the EIF2 and ubiquitination pathways. These data suggest that multiple new endogenous proteins may associate with Akt2 under basal as well as insulin-stimulated conditions, providing further insight into the insulin signaling network. Data are available via ProteomeXchange with identifier PXD002557. PMID:26465754

  11. Protein kinase Cδ regulates endothelial nitric oxide synthase expression via Akt activation and nitric oxide generation

    PubMed Central

    Sud, Neetu; Wedgwood, Stephen; Black, Stephen M.

    2008-01-01

    In this study, we explore the roles of the delta isoform of PKC (PKCδ) in the regulation of endothelial nitric oxide synthase (eNOS) activity in pulmonary arterial endothelial cells isolated from fetal lambs (FPAECs). Pharmacological inhibition of PKCδ with either rottlerin or with the peptide, δV1-1, acutely attenuated NO production, and this was associated with a decrease in phosphorylation of eNOS at Ser1177 (S1177). The chronic effects of PKCδ inhibition using either rottlerin or the overexpression of a dominant negative PKCδ mutant included the downregulation of eNOS gene expression that was manifested by a decrease in both eNOS promoter activity and protein expression after 24 h of treatment. We also found that PKCδ inhibition blunted Akt activation as observed by a reduction in phosphorylated Akt at position Ser473. Thus, we conclude that PKCδ is actively involved in the activation of Akt. To determine the effect of Akt on eNOS signaling, we overexpressed a dominant negative mutant of Akt and determined its effect of NO generation, eNOS expression, and phosphorylation of eNOS at S1177. Our results demonstrated that Akt inhibition was associated with decreased NO production that correlated with reduced phosphorylation of eNOS at S1177, and decreased eNOS promoter activity. We next evaluated the effect of endogenously produced NO on eNOS expression by incubating FPAECs with the eNOS inhibitor 2-ethyl-2-thiopseudourea (ETU). ETU significantly inhibited NO production, eNOS promoter activity, and eNOS protein levels. Together, our data indicate involvement of PKCδ-mediated Akt activation and NO generation in maintaining eNOS expression. PMID:18192589

  12. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1

    PubMed Central

    Corum, Daniel G.; Tsichlis, Philip N.; Muise-Helmericks, Robin C.

    2014-01-01

    Our previous work has shown that Akt3 is required for mitochondrial biogenesis in primary human endothelial cells (ECs) and in Akt3-null mice; Akt3 affects subcellular localization of peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α), the master regulator of mitochondrial biogenesis. The purpose of this study is to determine the mechanism by which Akt3 controls the subcellular distribution of PGC-1α and to explore the effect on mitochondrial biogenesis and turnover during angiogenesis. Here we use standard biochemical analyses and Akt3-knockdown strategies to show that Akt3 controls the stabilization of chromosome maintenance region-1 (CRM-1), the major nuclear export receptor. Site-directed mutagenesis and association analyses show that PGC-1α nuclear export is CRM-1 dependent. Akt3 knockdown and CRM-1 overexpression cause 3-fold reductions in PGC-1α target gene expression, compared to control levels. Akt3 inhibition causes autophagy, as measured by autophagosome formation, in a CRM-1-dependent, Akt1/mTOR-independent pathway. In vivo, Akt3-null and heterozygous mice show dose-dependent decreases in angiogenesis compared to wild-type littermates (∼5- and 2.5-fold decreases, respectively), as assessed by Matrigel plug assays. This correlates with an ∼1.5-fold decrease in mitochondrial Cox IV expression. Our studies suggest that Akt3 is a regulator of mitochondrial dynamics in the vasculature via regulation of CRM-1-dependent nuclear export.—Corum, D. G., Tsichlis, P. N., Muise-Helmericks, R. C. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1. PMID:24081905

  13. Cross regulation between cGMP-dependent protein kinase and Akt in vasodilatation of porcine pulmonary artery.

    PubMed

    Liu, Juan; Liu, Huixia; Li, Yanjing; Xu, Xiaojian; Chen, Zhengju; Liu, Limei; Yu, Xiaoxing; Gao, Yuansheng; Dou, Dou

    2014-11-01

    cGMP-dependent protein kinase (PKG) plays a crucial role in vasodilatation induced by cGMP-elevating agents. Akt has been demonstrated to be involved in modulating vasoreactivity. The present study was to determine the interaction between PKG and Akt and their influences on nitric oxide (NO)-induced vasodilatation. Isolated fourth-generation porcine pulmonary arteries were dissected from the lung and cut into rings in ice-cold modified Krebs-Ringer bicarbonate buffer. The relaxant responses of vessels were determined by organ chamber technique, cGMP was assayed by using enzyme-linked immunosorbent assay kit, the protein levels of phosphorylated Akt were examined by Western blotting, and the activity of phosphodiesterase type 5 (PDE5) was assayed by measuring the rate of cGMP degradation. Incubation with DETA NONOate (a stable NO donor) and 8-Br-cGMP (a cell membrane permeable analog of cGMP) attenuated Akt phosphorylation at Ser-473, which was prevented by Rp-8-Br-PET-cGMPS (a specific inhibitor of PKG) and calyculin A (an inhibitor of protein phosphatase 1 and 2A) but not by okadaic acid (a selective inhibitor of protein phosphatase 2A). Inhibition of Akt enhanced the relaxation and cGMP elevation of porcine pulmonary arteries induced by DETA NONOate or sodium nitroprusside, which was prevented by zaprinast, a specific inhibitor of PDE5. Incubation with LY294002 or Akt inhibitor reduced PDE5 activity in porcine pulmonary arteries. The present study indicates that PKG may attenuate Akt phosphorylation through protein phosphatase 1, which leads to an augmented cGMP elevation by inhibition of PDE5. The increased cGMP in turn activates PKG. Such a positive feedback may play an important role in NO-induced pulmonary vasodilatation. PMID:24977346

  14. Long isoform of ErbB3 binding protein, p48, mediates protein kinase B/Akt-dependent HDM2 stabilization and nuclear localization

    SciTech Connect

    Kim, Chung Kwon; Lee, Sang Bae; Nguyen, Truong L.X.; Lee, Kyung-Hoon; Um, Sung Hee; Kim, Jihoe; Ahn, Jee-Yin

    2012-01-15

    p48 is a long isoform of the ErbB3 binding protein that has oncogenic functions including promotion of carcinogenesis and induction of malignant transformation through negative regulation of tumor suppressor p53. Here, we show that high level of p48 protein expression leads to enhance HDM2 phosphorylation by Akt and inhibits the self-ubiquitination of HDM2 by up-regulation of Akt activity, thereby promoting its protein stability. Moreover, p48 expression leads to accumulated nuclear localization of HDM2, whereas p48 depletion disturbs its nuclear localization. Hence, higher expression of p48 in cancer cells reduces p53 levels through modulation of HDM2 nuclear localization and protein stability via regulation of its Akt-mediated phosphorylation.

  15. Effective Identification of Akt Interacting Proteins by Two-Step Chemical Crosslinking, Co-Immunoprecipitation and Mass Spectrometry

    PubMed Central

    Huang, Bill X.; Kim, Hee-Yong

    2013-01-01

    Akt is a critical protein for cell survival and known to interact with various proteins. However, Akt binding partners that modulate or regulate Akt activation have not been fully elucidated. Identification of Akt-interacting proteins has been customarily achieved by co-immunoprecipitation combined with western blot and/or MS analysis. An intrinsic problem of the method is loss of interacting proteins during procedures to remove non-specific proteins. Moreover, antibody contamination often interferes with the detection of less abundant proteins. Here, we developed a novel two-step chemical crosslinking strategy to overcome these problems which resulted in a dramatic improvement in identifying Akt interacting partners. Akt antibody was first immobilized on protein A/G beads using disuccinimidyl suberate and allowed to bind to cellular Akt along with its interacting proteins. Subsequently, dithiobis[succinimidylpropionate], a cleavable crosslinker, was introduced to produce stable complexes between Akt and binding partners prior to the SDS-PAGE and nanoLC-MS/MS analysis. This approach enabled identification of ten Akt partners from cell lysates containing as low as 1.5 mg proteins, including two new potential Akt interacting partners. None of these but one protein was detectable without crosslinking procedures. The present method provides a sensitive and effective tool to probe Akt-interacting proteins. This strategy should also prove useful for other protein interactions, particularly those involving less abundant or weakly associating partners. PMID:23613850

  16. Akt2 and Akt3 play a pivotal role in malignant gliomas

    PubMed Central

    Mure, Hideo; Matsuzaki, Kazuhito; Kitazato, Keiko T.; Mizobuchi, Yoshifumi; Kuwayama, Kazuyuki; Kageji, Teruyoshi; Nagahiro, Shinji

    2010-01-01

    Akt, one of the major downstream effectors of phosphatidylinositol 3-kinase, is hyper-expressed and activated in a variety of cancers including glioblastoma. However, the expression profiles of the Akt isoforms Akt1/PKBα, Akt2/PKBβ, and Akt3/PKBγ and their functional roles in malignant glioma are not well understood. Therefore, we examined the protein and mRNA expression patterns of Akt isoforms in tissues from human astrocytomas, glioblastomas, and non-neoplastic regions. We also explored the biological role of each Akt isoform in malignant glioma cells using RNA interference-mediated knock-down and the over-expression of plasmid DNA of each isoform. The expression of Akt1 protein and mRNA was similar in glioma and normal control tissues. Although the protein and mRNA level of Akt2 increased with the pathological grade of malignancy, the expression of Akt3 mRNA and protein decreased as the malignancy grade increased. In U87MG, T98G, and TGB cells, the down-regulation of Akt2 or Akt3 by RNA interference reduced the expression of the phosphorylated form of Bad, resulting in the induction of caspase-dependent apoptosis. Akt1 knock-down did not affect cell growth or survival. We first demonstrate that the over-expression of Akt2 or Akt3 down-regulated the expression of the other protein and that endogenous Akt3 protein showed high kinase activity in U87MG cells. Our data suggest that Akt2 and Akt3 play an important role in the viability of human malignant glioma cells. Targeting Akt2 and Akt3 may hold promise for the treatment of patients with gliomas. PMID:20167810

  17. PPAR-γ agonist stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination

    SciTech Connect

    Sun, Yan; Zheng, Bin; Zhang, Xin-hua; He, Ming; Guo, Zong-wei; Wen, Jin-kun

    2014-01-10

    Highlights: •PPAR-γ increases KLF4 protein level but does not influence KLF4 gene transcription. •The increase of KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. •Pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination. -- Abstract: Peroxisome proliferator activated receptor γ (PPAR-γ) plays important roles in cell cycle regulation, differentiation and apoptosis. Krüppel-like factor 4 (KLF4) modulates vascular smooth muscle cell (VSMC) phenotype. Both KLF4 and PPAR-γ are involved in VSMC proliferation and differentiation. However, the actual relationship between KLF4 and PPAR-γ in VSMCs is not clear. In this study, we found that PPAR-γ agonist pioglitazone increases KLF4 protein levels but does not influence KLF4 gene transcription. PPAR-γ overexpression increases, while PPAR-γ knockdown reduces KLF4 expression, suggesting that the increase in KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. Further study showed that pioglitazone enhances KLF4 protein stability through reducing KLF4 ubiquitination. Furthermore, we demonstrated that stabilization of KLF4 by pioglitazone was related to the activation of Akt signaling pathway. Taken together, we revealed that PPAR-γ agonist pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination, providing further insights into PPAR-γ and KLF4 in regulating each other’s expression in VSMCs.

  18. Regulation of Adipocyte Differentiation by Distinct Subcellular Pools of Protein Kinase B (PKB/Akt)*

    PubMed Central

    Maiuri, Tamara; Ho, Jason; Stambolic, Vuk

    2010-01-01

    The phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB)/Akt-PTEN signal transduction pathway orchestrates a variety of fundamental cell processes and its deregulation is implicated in many human diseases. Although the importance of this pathway to many cellular functions is well established, the mechanisms by which it achieves context-specific physiological outcomes in response to a variety of stimuli, using a relatively limited pool of effectors, remain largely unknown. Spatial restriction of signaling events is one means by which cells coordinate specific responses using common molecules. To investigate the subcellular location-specific roles of the major PI3K effector PKB/Akt in various cell processes, we have developed a novel experimental system employing cellular compartment-directed PKB/Akt pseudosubstrate inhibitors. Subcellular location-restricted PKB/Akt inhibition in the 3T3L1 adipocyte differentiation model revealed that nuclear and plasma membrane, but not cytoplasmic, PKB/Akt activity is required for terminal adipocyte differentiation. Nuclear and plasma membrane pools of PKB/Akt were found to contribute to distinct stages of adipocyte differentiation, revealing that PKB/Akt activity impacts multiple points of this program. Our work establishes the use of localized pseudosubstrate PKB/Akt inhibitors as an effective method for the dissection of PKB/Akt signaling. PMID:20223817

  19. MAT2B promotes adipogenesis by modulating SAMe levels and activating AKT/ERK pathway during porcine intramuscular preadipocyte differentiation.

    PubMed

    Zhao, Cunzhen; Chen, Xiaochang; Wu, Wenjing; Wang, Wusu; Pang, Weijun; Yang, Gongshe

    2016-05-15

    Intramuscular fat (IMF) has been demonstrated as one of the crucial factors of livestock meat quality. The MAT2B protein with MAT2α catalyzes the formation of methyl donor S- adenosylmethionine (SAMe) to mediate cell metabolism including proliferation and apoptosis. However, the regulatory effect of MAT2B on IMF deposition is still unclear. In this study, the effect of MAT2B on adipogenesis and its potential mechanism during porcine intramuscular preadipocyte differentiation was studied. The results showed that overexpression of MAT2B promoted adipogenesis and significantly up-regulated the mRNA and protein levels of adipogenic marker genes including FASN, PPARγ and aP2, consistently, knockdown of MAT2B inhibited lipid accumulation and down-regulated the mRNA and protein levels of the above genes. Furthermore, flow cytometry and EdU-labeling assay indicated that MAT2B regulate adipogenesis was partly due to influence intracellular SAMe levels and further affect cell clonal expansion. Also, increased expression of MAT2B activated the phosphorylations of AKT and ERK1/2, whereas knockdown of MAT2B blocked AKT signaling and repressed the phosphorylation of ERK1/2. Moreover, the inhibitory effect of LY294002 (a specific PI3K inhibitor) on the activities of AKT and ERK1/2 was partially recovered by overexpression of MAT2B in porcine intramuscular adipocytes. Finally, Co-IP experiments showed that MAT2B can directly interact with AKT. Taken together, our findings suggested that MAT2B acted as a positive regulator through modifying SAMe levels as well as activating AKT/ERK signaling pathway to promote porcine intramuscular adipocyte differentiation. PMID:26940012

  20. The basal level of intracellular calcium gates the activation of phosphoinositide 3-kinase - Akt signaling by brain-derived neurotrophic factor in cortical neurons

    PubMed Central

    Zheng, Fei; Soellner, Deborah; Nunez, Joseph; Wang, Hongbing

    2008-01-01

    Brain derived neurotrophic factor (BDNF) mediates survival and neuroplasticity through the activation of phosphoinositide 3-kinase (PI3K)-Akt pathway. Although previous studies suggested the roles of MAPK, PLC-γ-mediated intra-cellular calcium ([Ca2+]i) increase, and extra-cellular calcium influx in regulating Akt activation, the cellular mechanisms are largely unknown. We demonstrated that sub-nanomolar BDNF significantly induced Akt activation in developing cortical neurons. The TrkB-dependent Akt phosphorylation at S473 and T308 required only PI3K, but not PLC and MAPK activity. Blocking NMDA receptors, L-type voltage-gated calcium channels, and chelating extra-cellular calcium by EGTA failed to block BDNF-induced Akt phosphorylation. In contrast, chelating [Ca2+]i by BAPTA-AM abolished Akt phosphorylation. Interestingly, sub-nanomolar BDNF did not stimulate [Ca2+]i increase under our culture conditions. Together with that NMDA- and membrane depolarization-induced [Ca2+]i increase did not activate Akt, we conclude that the basal level of [Ca2+]i gates BDNF function. Furthermore, inhibiting calmodulin by W13 suppressed Akt phosphorylation. On the other hand, inhibition of protein phosphatase 1 by okadaic acid and tautomycin rescued Akt phosphorylation in BAPTA- and W13-treated neurons. We further demonstrated that the phosphorylation of PDK1 did not correlate with Akt phosphorylation at T308. Our results suggested novel roles of basal [Ca2+]i, rather than activity-induced calcium elevation, in BDNF-Akt signaling. PMID:18485103

  1. The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) protects cells against cold-shock-induced apoptosis by maintaining phosphorylation of protein kinase B (AKT).

    PubMed

    Carpenter, Dale; Hsiang, Chinhui; Jiang, Xianzhi; Osorio, Nelson; BenMohamed, Lbachir; Jones, Clinton; Wechsler, Steven L

    2015-10-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) blocks apoptosis and inhibits caspase-3 activation. We previously showed that serum starvation (removal of serum from tissue culture media), which takes several days to induce apoptosis, results in decreased levels of both AKT (protein kinase B) and phosphorylated AKT (pAKT) in cells not expressing LAT. In contrast in mouse neuroblastoma cells expressing LAT, AKT, and pAKT levels remained high. AKT is a serine/threonine protein kinase that promotes cell survival. To examine the effect of LAT on AKT-pAKT using a different and more rapid method of inducing apoptosis, a stable cell line expressing LAT was compared to non-LAT expressing cells as soon as 15 min following recovery from cold-shock-induced apoptosis. Expression of LAT appeared to inhibit dephosphorylation of pAKT. This protection correlated with blocking numerous pro-apoptotic events that are inhibited by pAKT. These results support the hypothesis that inhibiting dephosphorylation of pAKT may be one of the pathways by which LAT protects cells against apoptosis. PMID:26071090

  2. Protein kinase B (AKT) regulates SYK activity and shuttling through 14-3-3 and importin 7.

    PubMed

    Mohammad, Dara K; Nore, Beston F; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2016-09-01

    The Protein kinase B (AKT) regulates a plethora of intracellular signaling proteins to fine-tune signaling of multiple pathways. Here, we found that following B-cell receptor (BCR)-induced tyrosine phosphorylation of the cytoplasmic tyrosine kinase SYK and the adaptor BLNK, the AKT/PKB enzyme strongly induced BLNK (>100-fold) and SYK (>100-fold) serine/threonine phosphorylation (pS/pT). Increased phosphorylation promoted 14-3-3 binding to BLNK (37-fold) and SYK (2.5-fold) in a pS/pT-concentration dependent manner. We also demonstrated that the AKT inhibitor MK2206 reduced pS/pT of both BLNK (3-fold) and SYK (2.5-fold). Notably, the AKT phosphatase, PHLPP2 maintained the activating phosphorylation of BLNK at Y84 and increased protein stability (8.5-fold). In addition, 14-3-3 was required for the regulation SYK's interaction with BLNK and attenuated SYK binding to Importin 7 (5-fold), thereby perturbing shuttling to the nucleus. Moreover, 14-3-3 proteins also sustained tyrosine phosphorylation of SYK and BLNK. Furthermore, substitution of S295 or S297 for alanine abrogated SYK's binding to Importin 7. SYK with S295A or S297A replacements showed intense pY525/526 phosphorylation, and BLNK pY84 phosphorylation correlated with the SYK pY525/526 phosphorylation level. Conversely, the corresponding mutations to aspartic acid in SYK reduced pY525/526 phosphorylation. Collectively, these and previous results suggest that AKT and 14-3-3 proteins down-regulate the activity of several BCR-associated components, including BTK, BLNK and SYK and also inhibit SYK's interaction with Importin 7. PMID:27381982

  3. 14-3-3 Proteins regulate Akt Thr308 phosphorylation in intestinal epithelial cells.

    PubMed

    Gómez-Suárez, M; Gutiérrez-Martínez, I Z; Hernández-Trejo, J A; Hernández-Ruiz, M; Suárez-Pérez, D; Candelario, A; Kamekura, R; Medina-Contreras, O; Schnoor, M; Ortiz-Navarrete, V; Villegas-Sepúlveda, N; Parkos, C; Nusrat, A; Nava, P

    2016-06-01

    Akt activation has been associated with proliferation, differentiation, survival and death of epithelial cells. Phosphorylation of Thr308 of Akt by phosphoinositide-dependent kinase 1 (PDK1) is critical for optimal stimulation of its kinase activity. However, the mechanism(s) regulating this process remain elusive. Here, we report that 14-3-3 proteins control Akt Thr308 phosphorylation during intestinal inflammation. Mechanistically, we found that IFNγ and TNFα treatment induce degradation of the PDK1 inhibitor, 14-3-3η, in intestinal epithelial cells. This mechanism requires association of 14-3-3ζ with raptor in a process that triggers autophagy and leads to 14-3-3η degradation. Notably, inhibition of 14-3-3 function by the chemical inhibitor BV02 induces uncontrolled Akt activation, nuclear Akt accumulation and ultimately intestinal epithelial cell death. Our results suggest that 14-3-3 proteins control Akt activation and regulate its biological functions, thereby providing a new mechanistic link between cell survival and apoptosis of intestinal epithelial cells during inflammation. PMID:26846144

  4. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway.

    PubMed

    Antunes, Ana T; Goos, Yvonne J; Pereboom, Tamara C; Hermkens, Dorien; Wlodarski, Marcin W; Da Costa, Lydie; MacInnes, Alyson W

    2015-07-01

    Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. PMID:26132763

  5. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway

    PubMed Central

    Hermkens, Dorien; Wlodarski, Marcin W.; Da Costa, Lydie; MacInnes, Alyson W.

    2015-01-01

    Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. PMID:26132763

  6. AKT serine/threonine protein kinase modulates baicalin-triggered autophagy in human bladder cancer T24 cells.

    PubMed

    Lin, Chingju; Tsai, Shih-Chang; Tseng, Michael T; Peng, Shu-Fen; Kuo, Sheng-Chu; Lin, Meng-Wei; Hsu, Yuan-Man; Lee, Miau-Rong; Amagaya, Sakae; Huang, Wen-Wen; Wu, Tian-Shung; Yang, Jai-Sing

    2013-03-01

    Baicalin is one of the major compounds in the traditional Chinese medicinal herb from Scutellaria baicalensis Georgi. We investigated the molecular mechanisms of cell autophagy induced by baicalin in human bladder cancer T24 cells. Baicalin inhibited cell survival as shown by MTT assay and increased cell death by trypan blue exclusion assay in a concentration-dependent manner. Baicalin did not induce apoptotic cell death in T24 cells by TUNEL and caspase-3 activity assay. Baicalin induced the acidic vesicular organelle cell autophagy marker, manifested by acridine orange (AO) and monodansylcadaverine (MDC) staining and cleavage of microtubule-associated protein 1 light chain 3 (LC3). The protein expression levels of the Atg 5, Atg 7, Atg 12, Beclin-1 and LC3-II were upregulated in T24 cells after baicalin treatment. Inhibition of autophagy by 3-methyl-adenine (an inhibitor of class III phosphatidylinositol-3 kinase; 3-MA) reduced the cleavage of LC3 in T24 cells after baicalin treatment. Furthermore, protein expression levels of phospho-AKT (Ser473) and enzyme activity of AKT were downregulated in T24 cells after baicalin treatment. In conclusion, baicalin triggered cell autophagy through the AKT signaling pathway in T24 cells. PMID:23354080

  7. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS

    SciTech Connect

    Jee, Hye Jin; Kim, Hyun-Ju; Kim, Ae Jeong; Bae, Yoe-Sik; Bae, Sun Sik; Yun, Jeanho

    2009-06-05

    Akt/PKB plays a pivotal role in cell survival and proliferation. Previously, we reported that UV-irradiation induces extensive cell death in Akt2{sup -/-} mouse embryonic fibroblasts (MEFs) while Akt1{sup -/-} MEFs show cell cycle arrest. Here, we find that Akt1{sup -/-} MEFs exhibit phenotypic changes characteristics of senescence upon UV-irradiation. An enlarged and flattened morphology, a reduced cell proliferation and an increased senescence-associated {beta}-galactosidase (SA {beta}-gal) staining indicate that Akt1{sup -/-} MEFs undergo premature senescence after UV-irradiation. Restoring Akt1 expression in Akt1{sup -/-} MEFs suppressed SA {beta}-gal activity, indicating that UV-induced senescence is due to the absence of Akt1 function. Notably, levels of ROS were rapidly increased upon UV-irradiation and the ROS scavenger NAC inhibits UV-induced senescence of Akt1{sup -/-} MEFs, suggesting that UV light induces premature senescence in Akt1{sup -/-} MEFs by modulating intracellular levels of ROS. In conjunction with our previous work, this indicates that different isoforms of Akt have distinct function in response to UV-irradiation.

  8. A novel Drosophila Girdin-like protein is involved in Akt pathway control of cell size

    SciTech Connect

    Puseenam, Aekkachai; Yoshioka, Yasuhide; Nagai, Rika; Hashimoto, Reina; Suyari, Osamu; Itoh, Masanobu; Enomoto, Atsushi; Takahashi, Masahide; Yamaguchi, Masamitsu

    2009-11-15

    The Akt signaling pathway is well known to regulate cell proliferation and growth. Girdin, a novel substrate of Akt, plays a crucial role in organization of the actin cytoskeleton and cell motility under the control of Akt. We here identified a novel Girdin-like protein in Drosophila (dGirdin), which has two isoforms, dGirdin PA and dGirdin PB. dGirdin shows high homology with human Girdin in the N-terminal and coiled-coil domains, while diverging at the C-terminal domain. On establishment of transgenic fly lines, featuring knockdown or overexpression of dGirdin in vivo, overexpression in the wing disc cells induced ectopic apoptosis, implying a role in directing apoptosis. Knockdown of dGirdin in the Drosophila wing imaginal disc cells resulted in reduction of cell size. Furthermore, this was enhanced by half reduction of the Akt gene dose, suggesting that Akt positively regulates dGirdin. In the wing disc, cells in which dGirdin was knocked down exhibited disruption of actin filaments. From these in vivo analyses, we conclude that dGirdin is required for actin organization and regulation of appropriate cell size under control of the Akt signaling pathway.

  9. Action of methyl-, propyl- and butylparaben on GPR30 gene and protein expression, cAMP levels and activation of ERK1/2 and PI3K/Akt signaling pathways in MCF-7 breast cancer cells and MCF-10A non-transformed breast epithelial cells.

    PubMed

    Wróbel, Anna Maria; Gregoraszczuk, Ewa Łucja

    2015-10-14

    In the present study, we examined cAMP levels and activation of the MAPK/ERK1/2 and PI3K/Akt signaling pathways in response to the actions of parabens on GPR30 in MCF-7 and MCF-10A cells. Cells were exposed to methyl-, propyl- or butylparaben at a concentration of 20nM; 17-β-estradiol (10nM) was used as a positive control. 17β-estradiol and all tested parabens increased GPR30 gene and protein expression in MCF-7 and MCF-10A cells. No parabens affected cAMP levels in either cell line, with the exception of propylparaben in MCF-10A cells. 17β-estradiol, propylparaben, and butylparaben increased phosphorylation of ERK1/2 in MCF-7 cells, whereas 17β-estradiol, methyl- and butylparaben, but not propylparaben, increased phosphorylation of ERK1/2 in MCF-10A cells. Akt activation was noted only in MCF-7 cells and only with propylparaben treatment. Collectively, the data presented here point to a nongenomic mechanism of action of parabens in activation GPR30 in both cancer and non-cancer breast cell lines through βγ dimer-mediated activation of the ERK1/2 pathway, but not the cAMP/PKA pathway. Moreover, among investigated parabens, propylparaben appears to inhibit apoptosis in cancer cells through activation of Akt kinases, confirming conclusions suggested by our previously published data. Nevertheless, continuing research on the carcinogenic action of parabens is warranted. PMID:26253279

  10. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes

    PubMed Central

    Zhou, Huanyu; Dickson, Matthew E.; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N.

    2015-01-01

    Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique. PMID:26354121

  11. Gender differences in cardioprotection against ischemia/reperfusion injury in adult rat hearts: focus on Akt and protein kinase C signaling.

    PubMed

    Bae, Soochan; Zhang, Lubo

    2005-12-01

    Previous studies have reported the sex differences in heart susceptibility to ischemia/reperfusion (I/R) injury, but the mechanisms are not understood. The present study tested the hypothesis that Akt and protein kinase C (PKC)epsilon play an important role in the sexual dimorphism of heart susceptibility to I/R injury. Isolated hearts from 2-month-old male and female rats were subjected to I/R in the Langendorff preparation. The postischemic recovery of left ventricular function was significantly better, and infarct size was significantly smaller in female (37.1 +/- 1.9%) than in male (48.3 +/- 2.3%) hearts after 25-min ischemia followed by 2-h reperfusion. Inhibition of phosphatidylinositol 3-kinase/Akt pathway by wortmannin or PKC by chelerythrine chloride before ischemia significantly reduced postischemic recovery and increased infarct size in female but not male hearts. There were no differences in myocardial protein levels of heat shock protein 70, Akt, and PKCepsilon, respectively, between male and female rats. However, the ratio of phosphorylated (p)-Akt/Akt (0.58 +/- 0.05 versus 0.22 +/- 0.04; P < 0.05) and p-PKCepsilon/PKCepsilon (0.35 +/- 0.03 versus 0.22 +/- 0.02; P < 0.05) was significantly higher in female than in male hearts. In addition, there were significant increases in p-Akt and p-PKCepsilon levels during reperfusion in female but not in male hearts. The results suggest that increased p-Akt and p-PKCepsilon levels in female hearts contribute to the gender-related differences in heart susceptibility to I/R and play an important role in cardioprotection against I/R injury in females. PMID:16099927

  12. Paclitaxel and beta-lapachone synergistically induce apoptosis in human retinoblastoma Y79 cells by downregulating the levels of phospho-Akt.

    PubMed

    D'Anneo, Antonella; Augello, Giuseppa; Santulli, Andrea; Giuliano, Michela; di Fiore, Riccardo; Messina, Concetta; Tesoriere, Giovanni; Vento, Renza

    2010-02-01

    Paclitaxel (PTX) and beta-lapachone (LPC) are naturally occurring compounds that have shown a large spectrum of anticancer activity. In this article we show for the first time that PTX/LPC combination induces potent synergistic apoptotic effects in human retinoblastoma Y79 cells. Combination of suboptimal doses of PTX (0.3 nM) and LPC (1.5 microM) caused biochemical and morphological signs of apoptosis at 48 h of treatment. These effects were accompanied by potent lowering in inhibitor of apoptosis proteins and by activation of Bid and caspases 3 and 6 with lamin B and PARP breakdown. PTX/LPC combination acted by favoring p53 stabilization through a lowering in p-Akt levels and in ps166-MDM2, the phosphorylated-MDM2 form that enters the nucleus and induces p53 export and degradation. Treatment with wortmannin or transfection with a dominant negative form of Akt anticipated at 24 h the effects induced by PTX/LPC, suggesting a protective role against apoptosis played by Akt in Y79 cells. In line with these results, we demonstrated that Y79 cells contain constitutively active Akt, which forms a cytosolic complex with p53 and MDM2 driving p53 degradation. PTX/LPC treatment induced a weakness of Akt-MDM2-p53 complex and increased nuclear p53 levels. Our results suggest that phospho-Akt lowering is at the root of the apoptotic action exerted by PTX/LPC combination and provide strong validation for a treatment approach that targets survival signals represented by phospho-Akt and inhibitor of apoptosis proteins. PMID:19918798

  13. Synthesis and Biological Evaluation of Analogues of AKT (Protein Kinase B) Inhibitor-IV

    PubMed Central

    Sun, Qi; Wu, Runzhi; Cai, Sutang; Lin, Yuan; Sellers, Llewlyn; Sakamoto, Kaori; He, Biao; Peterson, Blake R.

    2011-01-01

    Inhibitors of the PI3-kinase/AKT (protein kinase B) pathway are under investigation as anticancer and antiviral agents. The benzimidazole derivative AKT inhibitor-IV (ChemBridge 5233705) affects this pathway and exhibits potent anticancer and antiviral activity. To probe its biological activity, we synthesized AKT inhibitor-IV and 21 analogues using a novel six-step route based on ZrCl4-catalyzed cyclization of 1,2-arylenediamines with α,β-unsaturated aldehydes. We examined effects on viability of HeLa carcinoma cells, viability of normal human cells (NHBE), replication of recombinant parainfluenza virus 5 (PIV5) in HeLa cells, and replication of the intracellular bacterium Mycobacterium fortuitum in HeLa cells. Replacement of the benzimidazole N-ethyl substitutent of AKT inhibitor-IV with N-hexyl and N-dodecyl groups enhanced antiviral activity and cytotoxicity against the cancer cell line, but these compounds showed substantially lower toxicity (from 6-fold to >20-fold) against NHBE cells, and no effect on M. fortuitum, suggesting inhibition of one or more host protein(s) required for proliferation of cancer cells and PIV5. The key structural elements identified here may facilitate identification of targets of this highly biologically active scaffold. PMID:21319800

  14. Distinct Time Course of the Decrease in Hepatic AMP-Activated Protein Kinase and Akt Phosphorylation in Mice Fed a High Fat Diet

    PubMed Central

    Shiwa, Mami; Yoneda, Masayasu; Okubo, Hirofumi; Ohno, Haruya; Kobuke, Kazuhiro; Monzen, Yuko; Kishimoto, Rui; Nakatsu, Yusuke; Asano, Tomoichiro; Kohno, Nobuoki

    2015-01-01

    AMP-activated protein kinase (AMPK) plays an important role in insulin resistance, which is characterized by the impairment of the insulin-Akt signaling pathway. However, the time course of the decrease in AMPK and Akt phosphorylation in the liver during the development of obesity and insulin resistance caused by feeding a high fat diet (HFD) remains controversial. Moreover, it is unclear whether the impairment of AMPK and Akt signaling pathways is reversible when changing from a HFD to a standard diet (SD). Male ddY mice were fed the SD or HFD for 3 to 28 days, or fed the HFD for 14 days, followed by the SD for 14 days. We examined the time course of the expression and phosphorylation levels of AMPK and Akt in the liver by immunoblotting. After 3 days of feeding on the HFD, mice gained body weight, resulting in an increased oil red O staining, indicative of hepatic lipid accumulation, and significantly decreased AMPK phosphorylation, in comparison with mice fed the SD. After 14 days on the HFD, systemic insulin resistance occurred and Akt phosphorylation significantly decreased. Subsequently, a change from the HFD to SD for 3 days, after 14 days on the HFD, ameliorated the impairment of AMPK and Akt phosphorylation and systemic insulin resistance. Our findings indicate that AMPK phosphorylation decreases early upon feeding a HFD and emphasizes the importance of prompt lifestyle modification for decreasing the risk of developing diabetes. PMID:26266809

  15. G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling

    PubMed Central

    Riaz, Anjum; Huang, Ying; Johansson, Staffan

    2016-01-01

    A hallmark of G-protein-coupled receptors (GPCRs) is their ability to recognize and respond to chemically diverse ligands. Lysophospholipids constitute a relatively recent addition to these ligands and carry out their biological functions by activating G-proteins coupled to a large family of cell-surface receptors. This review aims to highlight salient features of cell signaling by one class of these receptors, known as lysophosphatidic acid (LPA) receptors, in the context of phosphatidylinositol 3-kinase (PI3K)–AKT pathway activation. LPA moieties efficiently activate AKT phosphorylation and activation in a multitude of cell types. The interplay between LPA, its receptors, the associated Gαi/o subunits, PI3K and AKT contributes to the regulation of cell survival, migration, proliferation and confers chemotherapy-resistance in certain cancers. However, detailed information on the regulation of PI3K–AKT signals induced by LPA receptors is missing from the literature. Here, some urgent issues for investigation are highlighted. PMID:26861299

  16. G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling.

    PubMed

    Riaz, Anjum; Huang, Ying; Johansson, Staffan

    2016-01-01

    A hallmark of G-protein-coupled receptors (GPCRs) is their ability to recognize and respond to chemically diverse ligands. Lysophospholipids constitute a relatively recent addition to these ligands and carry out their biological functions by activating G-proteins coupled to a large family of cell-surface receptors. This review aims to highlight salient features of cell signaling by one class of these receptors, known as lysophosphatidic acid (LPA) receptors, in the context of phosphatidylinositol 3-kinase (PI3K)-AKT pathway activation. LPA moieties efficiently activate AKT phosphorylation and activation in a multitude of cell types. The interplay between LPA, its receptors, the associated Gαi/o subunits, PI3K and AKT contributes to the regulation of cell survival, migration, proliferation and confers chemotherapy-resistance in certain cancers. However, detailed information on the regulation of PI3K-AKT signals induced by LPA receptors is missing from the literature. Here, some urgent issues for investigation are highlighted. PMID:26861299

  17. Potential role of AKT/mTOR signalling proteins in hairy cell leukaemia: association with BRAF/ERK activation and clinical outcome

    PubMed Central

    Lakiotaki, Eleftheria; Levidou, Georgia; Angelopoulou, Maria K.; Adamopoulos, Christos; Pangalis, Gerassimos; Rassidakis, George; Vassilakopoulos, Theodoros; Gainaru, Gabriella; Flevari, Pagona; Sachanas, Sotirios; Saetta, Angelica A.; Sepsa, Athanasia; Moschogiannis, Maria; Kalpadakis, Christina; Tsesmetzis, Nikolaos; Milionis, Vassilios; Chatziandreou, Ilenia; Thymara, Irene; Panayiotidis, Panayiotis; Dimopoulou, Maria; Plata, Eleni; Konstantopoulos, Konstantinos; Patsouris, Efstratios; Piperi, Christina; Korkolopoulou, Penelope

    2016-01-01

    The potential role of AKT/mTOR signalling proteins and its association with the Raf-MEK-ERK pathway was investigated in hairy cell leukaemia (HCL). BRAFV600E expression and activated forms of AKT, mTOR, ERK1/2, p70S6k and 4E-BP1 were immunohistochemically assessed in 77 BM biopsies of HCL patients and correlated with clinicopathological and BM microvascular characteristics, as well as with c-Caspase-3 levels in hairy cells. Additionally, we tested rapamycin treatment response of BONNA-12 wild-type cells or transfected with BRAFV600E. Most HCL cases expressed p-p70S6K and p-4E-BP1 but not p-mTOR, being accompanied by p-ERK1/2 and p-AKT. AKT/mTOR activation was evident in BONNA-12 cells irrespective of the presence of BRAFV600E mutation and was implicated in cell proliferation enhancement. In multivariate analysis p-AKT/p-mTOR/p-4E-BP1 overexpression was an adverse prognostic factor for time to next treatment conferring earlier relapse. When p-AKT, p-mTOR and p-4E-BP1 were examined separately only p-4E-BP1 remained significant. Our findings indicate that in HCL, critical proteins up- and downstream of mTOR are activated. Moreover, the strong associations with Raf-MEK-ERK signalling imply a possible biologic interaction between these pathways. Most importantly, expression of p-4E-BP1 alone or combined with p-AKT and p-mTOR is of prognostic value in patients with HCL. PMID:26893254

  18. A functional proteogenomic analysis of endometrioid and clear cell carcinomas using reverse phase protein array and mutation analysis: protein expression is histotype-specific and loss of ARID1A/BAF250a is associated with AKT phosphorylation

    PubMed Central

    2014-01-01

    Background Ovarian cancer is now recognized as a number of distinct diseases primarily defined by histological subtype. Both clear cell ovarian carcinomas (CCC) and ovarian endometrioid carcinomas (EC) may arise from endometriosis and frequently harbor mutations in the ARID1A tumor suppressor gene. We studied the influence of histological subtype on protein expression with reverse phase protein array (RPPA) and assessed proteomic changes associated with ARID1A mutation/BAF250a expression in EC and CCC. Methods Immunohistochemistry (IHC) for BAF250a expression was performed on 127 chemotherapy-naive ovarian carcinomas (33 CCC, 29 EC, and 65 high-grade serous ovarian carcinomas (HGSC)). Whole tumor lysates were prepared from frozen banked tumor samples and profiled by RPPA using 116 antibodies. ARID1A mutations were identified by exome sequencing, and PIK3CA mutations were characterized by MALDI-TOF mass spectrometry. SAM (Significance Analysis of Microarrays) was performed to determine differential protein expression by histological subtype and ARID1A mutation status. Multivariate logistic regression was used to assess the impact of ARID1A mutation status/BAF250a expression on AKT phosphorylation (pAKT). PIK3CA mutation type and PTEN expression were included in the model. BAF250a knockdown was performed in 3 clear cell lines using siRNA to ARID1A. Results Marked differences in protein expression were observed that are driven by histotype. Compared to HGSC, SAM identified over 50 proteins that are differentially expressed in CCC and EC. These included PI3K/AKT pathway proteins, those regulating the cell cycle, apoptosis, transcription, and other signaling pathways including steroid hormone signaling. Multivariate models showed that tumors with loss of BAF250a expression showed significantly higher levels of AKT-Thr308 and AKT-Ser473 phosphorylation (p < 0.05). In 31 CCC cases, pAKT was similarly significantly increased in tumors with BAF250a loss on IHC

  19. Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B

    PubMed Central

    Jiang, Bing-Hua; Aoki, Masahiro; Zheng, Jenny Z.; Li, Jian; Vogt, Peter K.

    1999-01-01

    The oncogene p3k, coding for a constitutively active form of phosphatidylinositol 3-kinase (PI 3-kinase), strongly activates myogenic differentiation. Inhibition of endogenous PI 3-kinase activity with the specific inhibitor LY294002, or with dominant-negative mutants of PI 3-kinase, interferes with myotube formation and with the expression of muscle-specific proteins. Here we demonstrate that a downstream target of PI 3-kinase, serine-threonine kinase Akt, plays an important role in myogenic differentiation. Expression of constitutively active forms of Akt dramatically enhances myotube formation and expression of the muscle-specific proteins MyoD, creatine kinase, myosin heavy chain, and desmin. Transdominant negative forms of Akt inhibit myotube formation and the expression of muscle-specific proteins. The inhibition of myotube formation and the reduced expression of muscle-specific proteins caused by the PI 3-kinase inhibitor LY294002 are completely reversed by constitutively active forms of Akt. Wild-type cellular Akt effects a partial reversal of LY294002-induced inhibition of myogenic differentiation. This result suggests that Akt can substitute for PI 3-kinase in the stimulation of myogenesis; Akt may be an essential downstream component of PI 3-kinase-induced muscle differentiation. PMID:10051597

  20. Novel RNA chaperone domain of RNA-binding protein La is regulated by AKT phosphorylation

    PubMed Central

    Kuehnert, Julia; Sommer, Gunhild; Zierk, Avery W.; Fedarovich, Alena; Brock, Alexander; Fedarovich, Dzmitry; Heise, Tilman

    2015-01-01

    The cellular function of the cancer-associated RNA-binding protein La has been linked to translation of viral and cellular mRNAs. Recently, we have shown that the human La protein stimulates IRES-mediated translation of the cooperative oncogene CCND1 in cervical cancer cells. However, there is little known about the underlying molecular mechanism by which La stimulates CCND1 IRES-mediated translation, and we propose that its RNA chaperone activity is required. Herein, we show that La binds close to the CCND1 start codon and demonstrate that La's RNA chaperone activity can change the folding of its binding site. We map the RNA chaperone domain (RCD) within the C-terminal region of La in close proximity to a novel AKT phosphorylation site (T389). Phosphorylation at T389 by AKT-1 strongly impairs its RNA chaperone activity. Furthermore, we demonstrate that the RCD as well as T389 is required to stimulate CCND1 IRES-mediated translation in cells. In summary, we provide a model whereby a novel interplay between RNA-binding, RNA chaperoning and AKT phosphorylation of La protein regulates CCND1 IRES-mediated translation. PMID:25520193

  1. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation.

    PubMed Central

    King, W G; Mattaliano, M D; Chan, T O; Tsichlis, P N; Brugge, J S

    1997-01-01

    Cell attachment to fibronectin stimulates the integrin-dependent interaction of p85-associated phosphatidylinositol (PI) 3-kinase with integrin-dependent focal adhesion kinase (FAK) as well as activation of the Ras/mitogen-activated protein (MAP) kinase pathway. However, it is not known if this PI 3-kinase-FAK interaction increases the synthesis of the 3-phosphorylated phosphoinositides (3-PPIs) or what role, if any, is played by activated PI 3-kinase in integrin signaling. We demonstrate here the integrin-dependent accumulation of the PI 3-kinase products, PI 3,4-bisphosphate [PI(3,4)P2] and PI(3,4,5)P3, as well as activation of AKT kinase, a serine/threonine kinase that can be stimulated by binding of PI(3,4)P2. The PI 3-kinase inhibitors wortmannin and LY294002 significantly decreased the integrin-induced accumulation of the 3-PPIs and activation of AKT kinase, without having significant effects on the levels of PI(4,5)P2 or tyrosine phosphorylation of paxillin. These inhibitors also reduced cell adhesion/spreading onto fibronectin but had no effect on attachment to polylysine. Interestingly, integrin-mediated Erk-2, Mek-1, and Raf-1 activation, but not Ras-GTP loading, was inhibited at least 80% by wortmannin and LY294002. In support of the pharmacologic results, fibronectin activation of Erk-2 and AKT kinases was completely inhibited by overexpression of a dominant interfering p85 subunit of PI 3-kinase. We conclude that integrin-mediated adhesion to fibronectin results in the accumulation of the PI 3-kinase products PI(3,4)P2 and PI(3,4,5)P3 as well as the PI 3-kinase-dependent activation of the kinases Raf-1, Mek-1, Erk-2, and AKT and that PI 3-kinase may function upstream of Raf-1 but downstream of Ras in integrin activation of Erk-2 MAP and AKT kinases. PMID:9234699

  2. Akt/Protein kinase B is required for lymphatic network formation, remodeling, and valve development.

    PubMed

    Zhou, Fei; Chang, Zai; Zhang, Luqing; Hong, Young-Kwon; Shen, Bin; Wang, Bo; Zhang, Fan; Lu, Guangming; Tvorogov, Denis; Alitalo, Kari; Hemmings, Brian A; Yang, Zhongzhou; He, Yulong

    2010-10-01

    Akt-mediated signaling plays an important role in blood vascular development. In this study, we investigated the role of Akt in lymphatic growth using Akt-deficient mice. First, we found that lymphangiogenesis occurred in Akt1(-/-), Akt2(-/-), and Akt3(-/-) mice. However, both the diameter and endothelial cell number of lymphatic capillaries were significantly less in Akt1(-/-) mice than in wild-type control mice, whereas there was only a slight change in Akt2(-/-) and Akt3(-/-) mice. Second, valves present in the small collecting lymphatics in the superficial dermal layer of the ear skin were rarely observed in Akt1(-/-) mice, although these valves could be detected in the large collecting lymphatics in the deep layer of the skin tissues. A fluorescence microlymphangiography assay showed that the skin lymphatic network in Akt1(-/-) mice was functional but abnormal as shown by fluorescein isothiocyanate-dextran draining. There was an uncharacteristic enlargement of collecting lymphatic vessels, and further analysis showed that smooth muscle cell coverage of collecting lymphatic vessels became much more sparse in Akt1-deficient mice than in wild-type control animals. Finally, we showed that lymphatic vessels were detected in compound Akt-null mice and that lymphangiogenesis could be induced by vascular endothelial growth factor-C delivered via adenoviral vectors in adult mice lacking Akt1. These results indicate that despite the compensatory roles of other Akt isoforms, Akt1 is more critically required during lymphatic development. PMID:20724596

  3. Upregulation of AKT3 Confers Resistance to the AKT Inhibitor MK2206 in Breast Cancer.

    PubMed

    Stottrup, Casey; Tsang, Tiffany; Chin, Y Rebecca

    2016-08-01

    Acquired resistance to molecular targeted therapy represents a major challenge for the effective treatment of cancer. Hyperactivation of the PI3K/AKT pathway is frequently observed in virtually all human malignancies, and numerous PI3K and AKT inhibitors are currently under clinical evaluation. However, mechanisms of acquired resistance to AKT inhibitors have yet to be described. Here, we use a breast cancer preclinical model to identify resistance mechanisms to a small molecule allosteric AKT inhibitor, MK2206. Using a step-wise and chronic high-dose exposure, breast cancer cell lines harboring oncogenic PI3K resistant to MK2206 were established. Using this model, we reveal that AKT3 expression is markedly upregulated in AKT inhibitor-resistant cells. Induction of AKT3 is regulated epigenetically by the bromodomain and extra terminal domain proteins. Importantly, knockdown of AKT3, but not AKT1 or AKT2, in resistant cells restores sensitivity to MK2206. AKT inhibitor-resistant cells also display an epithelial to mesenchymal transition phenotype as assessed by alterations in the levels of E-Cadherin, N-Cadherin, and vimentin, as well as enhanced invasiveness of tumor spheroids. Notably, the invasive morphology of resistant spheroids is diminished upon AKT3 depletion. We also show that resistance to MK2206 is reversible because upon drug removal resistant cells regain sensitivity to AKT inhibition, accompanied by reexpression of epithelial markers and reduction of AKT3 expression, implying that epigenetic reprogramming contributes to acquisition of resistance. These findings provide a rationale for developing therapeutics targeting AKT3 to circumvent acquired resistance in breast cancer. Mol Cancer Ther; 15(8); 1964-74. ©2016 AACR. PMID:27297869

  4. Akt signaling in platelets and thrombosis

    PubMed Central

    Woulfe, Donna S

    2010-01-01

    Akt is a Ser–Thr kinase with pleiotropic effects on cell survival, growth and metabolism. Recent evidence from gene-deletion studies in mice, and analysis of human platelets treated with Akt inhibitors, suggest that Akt regulates platelet activation, with potential consequences for thrombosis. Akt activation is regulated by the level of phosphoinositide 3-phosphates, and proteins that regulate concentrations of this lipid also regulate Akt activation and platelet function. Although the effectors through which Akt contributes to platelet activation are not definitively known, several candidates are discussed, including endothelial nitric oxide synthase, glycogen synthase kinase 3β, phosphodiesterase 3A and the integrin β3 tail. Selective inhibitors of Akt isoforms or of proteins that contribute to its activation, such as individual PI3K isoforms, may make attractive targets for antithrombotic therapy. This review summarizes the current literature describing Akt activity and its regulation in platelets, including speculation regarding the future of Akt or its regulatory pathways as targets for the development of antithrombotic therapies. PMID:20352060

  5. Estrogen receptor alpha transcriptionally activates casein kinase 2 alpha: A pivotal regulator of promyelocytic leukaemia protein (PML) and AKT in oncogenesis.

    PubMed

    Das, Nilanjana; Datta, Neerajana; Chatterjee, Uttara; Ghosh, Mrinal Kanti

    2016-06-01

    Protein kinase CK2α is frequently upregulated in different cancers. Alteration of CK2α expression and its activity is sufficient to induce dramatic changes in cell fate. It has been established that CK2α induces oncogenesis through modulation of both AKT and PML. CK2α has been found to be overexpressed in breast cancer. In contrary, statistical reports have shown low level of PML. However, the regulation of CK2α gene expression is not fully understood. In the current study, we found that CK2α and activated AKT positively correlate with ERα, whereas PML follows an inverse correlation in human breast cancer tissues. Modulation of ERα signalling leads to recruitment of activated ERα on the ERE sites of CK2α promoter, resulting in CK2α transactivation. Furthermore, the DMBA induced tumours in rat showed elevated level of active CK2α. Consequently it mediates enhancement of AKT activity and PML degradation, resulting in increased cellular proliferation, migration and metastasis. Syngeneic ERα overexpressing stable mouse 4T1 cells produce larger primary tumours and metastatic lung nodules in mice, corroborating our in vitro findings. Hence, our study provides a novel route of ERα dependent CK2α mediated oncogenesis that causes upregulation and consequent AKT activation along with degradation of tumour suppressor PML. PMID:27012497

  6. Akt isoform-dependent regulation of ATP-Binding cassette A1 expression by apolipoprotein E.

    PubMed

    Okoro, Emmanuel U; Guo, Zhongmao; Yang, Hong

    2016-08-12

    We previously reported that apolipoprotein E (apoE) upregulates ATP-binding cassette transporter A1 (ABCA1) transcription through phosphatidylinositol 3-kinase (PI3K). Here we demonstrate that treatment of murine macrophages with human apoE3 enhanced Akt phosphorylation, and upregulated ABCA1 protein and mRNA expression. Inhibition of PI3K weakened apoE3-induced Akt phosphorylation, and ABCA1 protein and mRNA increase. In contrast, inhibition of Akt only diminished apoE-induced ABCA1 protein but not the mRNA level. Suppression of protein synthesis did not erase the ability of apoE3 to increase ABCA1 protein level. Further, apoE3 increased the resistance of ABCA1 protein to calpain-mediated degradation without affecting calpain activity. Treatment of macrophages with apoE3 selectively enhanced the phosphorylation of Akt1 and Akt2, but not Akt3. Knockdown of Akt1 or Akt2 increased and decreased ABCA1 protein level, respectively; while overexpression of these Akt isoenzymes caused changes in ABCA1 protein level opposite to those induced by knockdown of the corresponding Akt. These data imply that apoE3 guards against calpain-mediated ABCA1 degradation through Akt2. PMID:27297104

  7. Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity.

    PubMed

    Zhu, Xiaosan; Dai, Yichen; Chen, Zhangxin; Xie, Junpei; Zeng, Wei; Lin, Yuanyuan

    2013-01-01

    Overexpression of Pokemon, which is an erythroid myeloid ontogenic factor protein, occurs in different cancers, including hepatocellular carcinoma (HCC). Pokemon is also reported to have an oncogenic activity in various human cancers. This study investigated the effect of Pokemon knockdown on the regulation of HCC growth. POK shRNA suppressed the expression of Pokemon protein in HepG2 cells compared to the negative control vector-transfected HCC cells. Pokemon knockdown also reduced HCC cell viability and enhanced cisplatin-induced apoptosis in HCC cells. AKT activation and the expression of various cell cycle-related genes were inhibited following Pokemon knockdown. These data demonstrate that Pokemon may play a role in HCC progression, suggesting that inhibition of Pokemon expression using Pokemon shRNA should be further evaluated as a novel target for the control of HCC. PMID:23924858

  8. Protein Kinase B (AKT) Mediates Phospholipase D Activation via ERK1/2 and Promotes Respiratory Burst Parameters in Formylpeptide-stimulated Neutrophil-like HL-60 Cells*

    PubMed Central

    Patel, Satyananda; Djerdjouri, Bahia; Raoul-Des-Essarts, Yannick; Dang, Pham My-Chan; El-Benna, Jamel; Périanin, Axel

    2010-01-01

    Phospholipase D (PLD), a major source of lipid second messengers (phosphatidic acid, diglycerides) in many cell types, is tightly regulated by protein kinases, but only a few of them have been identified. We show here that protein kinase B (AKT) is a novel major signaling effector of PLD activity induced by the formylpeptide f-Met-Leu-Phe (fMLP) in human neutrophil-like HL-60 cells (dHL-60 cells). AKT inhibition with the selective antagonist AKTib1/2 almost completely prevented fMLP-mediated activity of PLD, its upstream effector ERK1/2, but not p38 MAPK. Immunoprecipitation studies show that phosphorylated AKT, ERK, and PLD2 form a complex induced by fMLP, which can be prevented by AKTib1/2. In cell-free systems, AKT1 stimulated PLD activity via activation of ERK. AKT1 actually phosphorylated ERK2 as a substrate (Km 1 μm). Blocking AKT activation with AKTib1/2 also prevented fMLP- but not phorbol 12-myristate 13-acetate-mediated NADPH oxidase activation (respiratory burst, RB) of dHL-60 cells. Impaired RB was associated with defective membrane translocation of NADPH oxidase components p67phox and p47phox, ERK, AKT1, AKT2, but not AKT3. Depletion of AKT1 or AKT2 with antisense oligonucleotides further indicates a partial contribution of both isoforms in fMLP-induced activation of ERK, PLD, and RB, with a predominant role of AKT1. Thus, formylpeptides induce sequential activation of AKT, ERK1/2, and PLD, which represents a novel signaling pathway. A major primarily role of this AKT signaling pathway also emerges in membrane recruitment of NOX2 components p47phox, p67phox, and ERK, which may contribute to assembly and activation of the RB motor system, NADPH oxidase. PMID:20693286

  9. Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMP-activated protein kinase suppression

    PubMed Central

    Osawa, Yosuke; Seki, Ekihiro; Kodama, Yuzo; Suetsugu, Atsushi; Miura, Kouichi; Adachi, Masayuki; Ito, Hiroyasu; Shiratori, Yoshimune; Banno, Yoshiko; Olefsky, Jerrold M.; Nagaki, Masahito; Moriwaki, Hisataka; Brenner, David A.; Seishima, Mitsuru

    2011-01-01

    Acid sphingomyelinase (ASM) regulates the homeostasis of sphingolipids, including ceramides and sphingosine-1-phosphate (S1P). Because sphingolipids regulate AKT activation, we investigated the role of ASM in hepatic glucose and lipid metabolism. Initially, we overexpressed ASM in the livers of wild-type and diabetic db/db mice by adenovirus vector (Ad5ASM). In these mice, glucose tolerance was improved, and glycogen and lipid accumulation in the liver were increased. Using primary cultured hepatocytes, we confirmed that ASM increased glucose uptake, glycogen deposition, and lipid accumulation through activation of AKT and glycogen synthase kinase-3β. In addition, ASM induced up-regulation of glucose transporter 2 accompanied by suppression of AMP-activated protein kinase (AMPK) phosphorylation. Loss of sphingosine kinase-1 (SphK1) diminished ASM-mediated AKT phosphorylation, but exogenous S1P induced AKT activation in hepatocytes. In contrast, SphK1 deficiency did not affect AMPK activation. These results suggest that the SphK/S1P pathway is required for ASM-mediated AKT activation but not for AMPK inactivation. Finally, we found that treatment with high-dose glucose increased glycogen deposition and lipid accumulation in wild-type hepatocytes but not in ASM−/− cells. This result is consistent with glucose intolerance in ASM−/− mice. In conclusion, ASM modulates AKT activation and AMPK inactivation, thus regulating glucose and lipid metabolism in the liver.—Osawa, Y., Seki, E., Kodama, Y., Suetsugu, A., Miura, K., Adachi, M., Ito, H., Shiratori, Y., Banno, Y., Olefsky, J. M., Nagaki, M., Moriwaki, H., Brenner, D. A., Seishima, M. Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMP-activated protein kinase suppression. PMID:21163859

  10. Tanshinone IIA decreases the protein expression of EGFR, and IGFR blocking the PI3K/Akt/mTOR pathway in gastric carcinoma AGS cells both in vitro and in vivo.

    PubMed

    Su, Chin-Cheng; Chiu, Tsung-Lang

    2016-08-01

    Tan-IIA exerts powerful inhibitory effects in gastric cancer AGS cells. The PI3K/AKT/mTOR pathway is one of the most frequently dysregulated kinase cascades in human cancer. In the present study, we investigated the protein expression levels of PI3K, AKT and mTOR in AGS cells treated with Tan-IIA both in vitro and in vivo. The AGS cells were treated with Tan-IIA for different durations in vitro. In the in vivo study, AGS cell xerograft SCID mice were treated with Tan-IIA for 8 weeks. Subsequently, the protein expression of EGFR, IGFR, PI3K, AKT and mTOR was measured by western blotting. The results showed that Tan-IIA was able to decrease the protein expression levels of EGFR, IGFR, PI3K, AKT and mTOR significantly and dose-dependently in vitro and in vivo. In conclusion, these findings indicate Tan-IIA could inhibit AGS cells through decreasing the protein expression of EGFR, IGFR and blocking PI3K/AKT/mTOR pathway both in vitro and in vivo. PMID:27277844

  11. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients

    PubMed Central

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-01-01

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9–25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm), large aggregates (50–70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients. PMID:27187380

  12. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients.

    PubMed

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-01-01

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9-25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25-50 µm), large aggregates (50-70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients. PMID:27187380

  13. Activation of AKT negatively regulates the pro-apoptotic function of death-associated protein kinase 3 (DAPK3) in prostate cancer.

    PubMed

    Das, Trinath P; Suman, Suman; Papu John, A M Sashi; Pal, Deeksha; Edwards, Angelena; Alatassi, Houda; Ankem, Murali K; Damodaran, Chendil

    2016-07-28

    The activation of AKT governs many signaling pathways and promotes cell growth and inhibits apoptosis in human malignancies including prostate cancer (CaP). Here, we investigated the molecular association between AKT activation and the function of death-associated protein kinase 3 (DAPK3) in CaP. An inverse correlation of pAKT and DAPK3 expression was seen in a panel of CaP cell lines. Inhibition of AKT by wortmannin/LY294002 or overexpression of DAPK3 reverts the proliferative function of AKT in CaP cells. On the other hand, ectopic expression of AKT inhibited DAPK3 function and induced proliferation of CaP cells. In addition, AKT over-expressed tumors exhibit aggressive growth when compared to control vector in xenograft models. The immunohistochemistry results revealed a down-regulation of DAPK3 expression in AKT over-expressed tumors as compared to control tumors. Finally, we examined the expression pattern of AKT and DAPK3 in human CaP specimens - the expected gradual increase and nuclear localization of pAKT was seen in higher Gleason score samples versus benign hyperplasia (BPH). On the contrary, reduced expression of DAPK3 was seen in higher Gleason stages versus BPH. This suggests that inhibition of DAPK3 may be a contributing factor to the carcinogenesis of the prostate. Understanding the mechanism by which AKT negatively regulates DAPK3 function may suggest whether DAPK3 can be a therapeutic target for CaP. PMID:27126362

  14. Novel pharmacodynamic biomarkers for MYCN protein and PI3K/AKT/mTOR pathway signaling in children with neuroblastoma.

    PubMed

    Smith, Jennifer R; Moreno, Lucas; Heaton, Simon P; Chesler, Louis; Pearson, Andrew D J; Garrett, Michelle D

    2016-04-01

    There is an urgent need for improved therapies for children with high-risk neuroblastoma where survival rates remain low. MYCN amplification is the most common genomic change associated with aggressive neuroblastoma and drugs targeting PI3K/AKT/mTOR, to activate MYCN oncoprotein degradation, are entering clinical evaluation. Our aim was to develop and validate pharmacodynamic (PD) biomarkers to evaluate both proof of mechanism and proof of concept for drugs that block PI3K/AKT/mTOR pathway activity in children with neuroblastoma. We have addressed the issue of limited access to tumor biopsies for quantitative detection of protein biomarkers by optimizing a three-color fluorescence activated cell sorting (FACS) method to purify CD45-/GD2+/CD56+ neuroblastoma cells from bone marrow. We then developed a novel quantitative measurement of MYCN protein in these isolated neuroblastoma cells, providing the potential to demonstrate proof of concept for drugs that inhibit PI3K/AKT/mTOR signaling in this disease. In addition we have established quantitative detection of three biomarkers for AKT pathway activity (phosphorylated and total AKT, GSK3β and P70S6K) in surrogate platelet-rich plasma (PRP) from pediatric patients. Together our new approach to neuroblastoma cell isolation for protein detection and suite of PD assays provides for the first time the opportunity for robust, quantitative measurement of protein-based PD biomarkers in this pediatric patient population. These will be ideal tools to support clinical evaluation of PI3K/AKT/mTOR pathway drugs and their ability to target MYCN oncoprotein in upcoming clinical trials in neuroblastoma. PMID:26686971

  15. Gecko Proteins Exert Anti-Tumor Effect against Cervical Cancer Cells Via PI3-Kinase/Akt Pathway

    PubMed Central

    Jeong, Ae-Jin; Chung, Chung-Nam; Kim, Hye-Jin; Bae, Kil Soo; Choi, Song; Jun, Woo Jin; Shim, Sang In; Kang, Tae-Hong; Leem, Sun-Hee

    2012-01-01

    Anti-tumor activity of the proteins from Gecko (GP) on cervical cancer cells, and its signaling mechanisms were assessed by viable cell counting, propidium iodide (PI) staining, and Western blot analysis. GP induced the cell death of HeLa cells in a dose-dependent manner while it did not affect the viability of normal cells. Western blot analysis showed that GP decreased the activation of Akt, and co-administration of GP and Akt inhibitors synergistically exerted anti-tumor activities on HeLa cells, suggesting the involvement of PI3-kinase/Akt pathway in GP-induced cell death of the cancer cells. Indeed, the cytotoxic effect of GP against HeLa cells was inhibited by overexpression of constituvely active form of Akt in HeLa cells. The candidates of the functional proteins in GP were analyzed by Mass-spectrum. Taken together, our results suggest that GP elicits anti-tumor activity against HeLa cells by inhibition of PI3-kinase/Akt pathway. PMID:23118562

  16. Gecko Proteins Exert Anti-Tumor Effect against Cervical Cancer Cells Via PI3-Kinase/Akt Pathway.

    PubMed

    Jeong, Ae-Jin; Chung, Chung-Nam; Kim, Hye-Jin; Bae, Kil Soo; Choi, Song; Jun, Woo Jin; Shim, Sang In; Kang, Tae-Hong; Leem, Sun-Hee; Chung, Jin Woong

    2012-10-01

    Anti-tumor activity of the proteins from Gecko (GP) on cervical cancer cells, and its signaling mechanisms were assessed by viable cell counting, propidium iodide (PI) staining, and Western blot analysis. GP induced the cell death of HeLa cells in a dose-dependent manner while it did not affect the viability of normal cells. Western blot analysis showed that GP decreased the activation of Akt, and co-administration of GP and Akt inhibitors synergistically exerted anti-tumor activities on HeLa cells, suggesting the involvement of PI3-kinase/Akt pathway in GP-induced cell death of the cancer cells. Indeed, the cytotoxic effect of GP against HeLa cells was inhibited by overexpression of constituvely active form of Akt in HeLa cells. The candidates of the functional proteins in GP were analyzed by Mass-spectrum. Taken together, our results suggest that GP elicits anti-tumor activity against HeLa cells by inhibition of PI3-kinase/Akt pathway. PMID:23118562

  17. PTH-related protein upregulates integrin {alpha}6{beta}4 expression and activates Akt in breast cancer cells

    SciTech Connect

    Shen Xiaoli; Falzon, Miriam . E-mail: mfalzon@utmb.edu

    2006-11-15

    Breast cancer is the most common carcinoma that metastasizes to bone. Tumor-produced parathyroid hormone-related protein (PTHrP), a known stimulator of osteoclastic bone resorption, is a major mediator of the osteolytic process in breast cancer. We have previously shown that PTHrP increases breast cancer cell proliferation, survival, migration, and pro-invasive integrin {alpha}6{beta}4 expression. To determine the role of integrin {alpha}6{beta}4 in these PTHrP-mediated effects, we utilized two strategies to modulate expression of the {alpha}6 and {beta}4 subunits in parental and PTHrP-overexpressing MDA-MB-231 and MCF-7 cells: overexpression of {alpha}6{beta}4 by transfection with constructs encoding the {alpha}6 and {beta}4 subunits, and suppression of endogenous {alpha}6{beta}4 expression by transfection with siRNAs targeting these subunits. We now show that the effects of PTHrP are mediated via upregulation of integrin {alpha}6{beta}4 expression. We also show that integrin {alpha}6{beta}4 expression is modulated at the mRNA level, indicating a transcriptional and/or post-transcriptional mechanism of action for PTHrP. PTHrP expression also increased the levels of phosphorylated Akt, with a consequent increase in the levels of phosphorylated (inactive) glycogen synthase kinase-3 (GSK-3). The role of PTHrP in breast cancer growth and metastasis may thus be mediated via upregulation of integrin {alpha}6{beta}4 expression and Akt activation, with consequent inactivation of GSK-3.

  18. Phosphatidylethanolamine-binding protein 4 promotes lung cancer cells proliferation and invasion via PI3K/Akt/mTOR axis

    PubMed Central

    Yu, Guiping; Chen, Guoqiang; Mi, Yedong

    2015-01-01

    RAPA only significantly inhibited the protein expression of p-mTOR (P<0.05). As shown by MTT, flow cytometry, and Transwell migration assay, both LY294002 and RAPA could significantly lower the viability of HCC827 cells and inhibit their proliferation and invasion (P<0.05); meanwhile, they could reverse the effect of PEBP4 in promoting the proliferation and migration of HCC827 cells (P<0.05). Conclusions The overexpression of PEBP4 increases the phosphorylation levels of Akt and mTOR in lung cancer cells. The PI3K/Akt/mTOR signaling axis may be a key molecular pathway via which PEBP4 promotes the proliferation and invasion of non-small cell lung cancer (NSCLC) cells; also, it may serve as a potential therapeutic target. PMID:26623104

  19. Isoform-specific regulation of adipocyte differentiation by Akt/protein kinase B{alpha}

    SciTech Connect

    Yun, Sung-Ji; Kim, Eun-Kyoung; Tucker, David F.; Kim, Chi Dae; Birnbaum, Morris J.; Bae, Sun Sik

    2008-06-20

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway tightly regulates adipose cell differentiation. Here we show that loss of Akt1/PKB{alpha} in primary mouse embryo fibroblast (MEF) cells results in a defect of adipocyte differentiation. Adipocyte differentiation in vitro and ex vivo was restored in cells lacking both Akt1/PKB{alpha} and Akt2/PKB{beta} by ectopic expression of Akt1/PKB{alpha} but not Akt2/PKB{beta}. Akt1/PKB{alpha} was found to be the major regulator of phosphorylation and nuclear export of FoxO1, whose presence in the nucleus strongly attenuates adipocyte differentiation. Differentiation-induced cell division was significantly abrogated in Akt1/PKB{alpha}-deficient cells, but was restored after forced expression of Akt1/PKB{alpha}. Moreover, expression of p27{sup Kip1}, an inhibitor of the cell cycle, was down regulated in an Akt1/PKB{alpha}-specific manner during adipocyte differentiation. Based on these data, we suggest that the Akt1/PKB{alpha} isoform plays a major role in adipocyte differentiation by regulating FoxO1 and p27{sup Kip1}.

  20. Notch signaling regulates the phosphorylation of Akt and survival of lipopolysaccharide-activated macrophages via regulator of G protein signaling 19 (RGS19)

    PubMed Central

    Sangphech, Naunpun; Osborne, Barbara A.; Palaga, Tanapat

    2014-01-01

    Macrophages play critical roles in innate immune defense by sensing microbes using pattern-recognition receptors. Lipopolysaccharide (LPS) stimulates macrophages via TLR, which leads to activation of downstream signaling cascades. In this study, we investigated the roles of a conserved signaling pathway, Notch signaling, in regulating the downstream signaling cascades of the LPS/TLR4 pathways in macrophages. Using a phosphoproteomic approach and a gamma-secretase inhibitor (GSI) to suppress the processing and activation of Notch signaling, we identified regulator of G protein signaling 19 (RGS19) as a target protein whose phosphorylation was affected by GSI treatment. RGS19 is a guanosine triphosphatase (GTPase)-activating protein that functions to negatively regulate G protein-coupled receptors via Gαi/Gαq-linked signaling. Stimulation of RAW264.7 cells with LPS increased the level of the phosphorylated form of RGS19, while LPS stimulation in the presence of GSI decreased its level. GSI treatment did not alter the mRNA level of rgs19. Treatment with GSI or silencing of rgs19 in macrophages impaired the phosphorylation of Akt Thr308 upon LPS stimulation. Furthermore, targeted deletion of a DNA-binding protein and binding partner of the Notch receptor, RBP-Jκ/CSL, in macrophages resulted in delayed and decreased Akt phosphorylation. Because the PI3K/Akt pathway regulates cell survival in various cell types, the cell cycle and cell death were assayed upon GSI treatment, phosphatidylinositol 3 kinase (PI3K) inhibitor treatment or silencing of rgs19. GSI treatment resulted in decreased cell populations in the G1 and S phases, while it increased the cell population of cell death. Similarly, silencing of rgs19 resulted in a decreased cell population in the G1 phase and an increased cell population in the subG1 phase. Inhibition of Akt phosphorylation by PI3K inhibitor in LPS-stimulated macrophages increased cell population in G1 phase, suggesting a possible cell cycle

  1. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    PubMed

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-09-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536]. PMID:26246284

  2. Notch1 Receptor Regulates AKT Protein Activation Loop (Thr308) Dephosphorylation through Modulation of the PP2A Phosphatase in Phosphatase and Tensin Homolog (PTEN)-null T-cell Acute Lymphoblastic Leukemia Cells*

    PubMed Central

    Hales, Eric C.; Orr, Steven M.; Larson Gedman, Amanda; Taub, Jeffrey W.; Matherly, Larry H.

    2013-01-01

    Notch1 activating mutations occur in more than 50% of T-cell acute lymphoblastic leukemia (T-ALL) cases and increase expression of Notch1 target genes, some of which activate AKT. HES1 transcriptionally silences phosphatase and tensin homolog (PTEN), resulting in AKT activation, which is reversed by Notch1 inhibition with γ-secretase inhibitors (GSIs). Mutational loss of PTEN is frequent in T-ALL and promotes resistance to GSIs due to AKT activation. GSI treatments increased AKT-Thr308 phosphorylation and signaling in PTEN-deficient, GSI-resistant T-ALL cell lines (Jurkat, CCRF-CEM, and MOLT3), suggesting that Notch1 represses AKT independent of its PTEN transcriptional effects. AKT-Thr308 phosphorylation and downstream signaling were also increased by knocking down Notch1 in Jurkat (N1KD) cells. This was blocked by treatment with the AKT inhibitor perifosine. The PI3K inhibitor wortmannin and the protein phosphatase type 2A (PP2A) inhibitor okadaic acid both impacted AKT-Thr308 phosphorylation to a greater extent in nontargeted control than N1KD cells, suggesting decreased dephosphorylation of AKT-Thr308 by PP2A in the latter. Phosphorylations of AMP-activated protein kinaseα (AMPKα)-Thr172 and p70S6K-Thr389, both PP2A substrates, were also increased in both N1KD and GSI-treated cells and responded to okadaic acid treatment. A transcriptional regulatory mechanism was implied because ectopic expression of dominant-negative mastermind-like protein 1 increased and wild-type HES1 decreased phosphorylation of these PP2A targets. This was independent of changes in PP2A subunit levels or in vitro PP2A activity, but was accompanied by decreased association of PP2A with AKT in N1KD cells. These results suggest that Notch1 can regulate PP2A dephosphorylation of critical cellular regulators including AKT, AMPKα, and p70S6K. PMID:23788636

  3. Targeting cytosolic phospholipase A2 α in colorectal cancer cells inhibits constitutively activated protein kinase B (AKT) and cell proliferation

    PubMed Central

    Xie, Chanlu; Hua, Sheng; Li, Jianfang; Wang, Tingfeng; Yao, Mu; Vignarajan, Soma; Teng, Ying; Hejazi, Leila; Liu, Bingya; Dong, Qihan

    2014-01-01

    A constitutive activation of protein kinase B (AKT) in a hyper-phosphorylated status at Ser473 is one of the hallmarks of anti-EGFR therapy-resistant colorectal cancer (CRC). The aim of this study was to examine the role of cytosolic phospholipase A2α (cPLA2α) on AKT phosphorylation at Ser473 and cell proliferation in CRC cells with mutation in phosphoinositide 3-kinase (PI3K). AKT phosphorylation at Ser473 was resistant to EGF stimulation in CRC cell lines of DLD-1 (PIK3CAE545K mutation) and HT-29 (PIK3CAP499T mutation). Over-expression of cPLA2α by stable transfection increased basal and EGF-stimulated AKT phosphorylation and proliferation in DLD-1 cells. In contrast, silencing of cPLA2α with siRNA or inhibition with Efipladib decreased basal and EGF-stimulated AKT phosphorylation and proliferation in HT-29. Treating animals transplanted with DLD-1 with Efipladib (10 mg/kg, i.p. daily) over 14 days reduced xenograft growth by >90% with a concomitant decrease in AKT phosphorylation. In human CRC tissue, cPLA2α expression and phosphorylation were increased in 63% (77/120) compared with adjacent normal mucosa determined by immunohistochemistry. We conclude that cPLA2α is required for sustaining AKT phosphorylation at Ser473 and cell proliferation in CRC cells with PI3K mutation, and may serve as a potential therapeutic target for treatment of CRC resistant to anti-EGFR therapy. PMID:25365190

  4. Activation of protein kinase B (PKB/Akt) and risk of lung cancer among rural women in India who cook with biomass fuel

    SciTech Connect

    Roychoudhury, Sanghita; Mondal, Nandan Kumar; Mukherjee, Sayali; Dutta, Anindita; Siddique, Shabana; Ray, Manas Ranjan

    2012-02-15

    The impact of indoor air pollution (IAP) from biomass fuel burning on the risk of carcinogenesis in the airways has been investigated in 187 pre-menopausal women (median age 34 years) from eastern India who cooked exclusively with biomass and 155 age-matched control women from same locality who cooked with cleaner fuel liquefied petroleum gas. Compared with control, Papanicolau-stained sputum samples showed 3-times higher prevalence of metaplasia and 7-times higher prevalence of dysplasia in airway epithelial cell (AEC) of biomass users. Immunocytochemistry showed up-regulation of phosphorylated Akt (p-Akt{sup ser473} and p-Akt{sup thr308}) proteins in AEC of biomass users, especially in metaplastic and dysplastic cells. Compared with LPG users, biomass-using women showed marked rise in reactive oxygen species (ROS) generation and depletion of antioxidant enzyme, superoxide dismutase (SOD) indicating oxidative stress. There were 2–5 times more particulate pollutants (PM{sub 10} and PM{sub 2.5}), 72% more nitrogen dioxide and 4-times more particulate-laden benzo(a)pyrene, but no change in sulfur dioxide in indoor air of biomass-using households, and high performance liquid chromatography estimated 6-fold rise in the concentration of benzene metabolite trans,trans-muconic acid (t,t-MA) in urine of biomass users. Metaplasia and dysplasia, p-Akt expression and ROS generation were positively associated with PM and t,t-MA levels. It appears that cumulative exposure to biomass smoke increases the risk of lung carcinogenesis via oxidative stress-mediated activation of Akt signal transduction pathway. -- Highlights: ► Carcinogenesis in airway cells was examined in biomass and LPG using women. ► Metaplasia and dysplasia of epithelial cells were more prevalent in biomass users. ► Change in airway cytology was associated with oxidative stress and Akt activation. ► Biomass users had greater exposure to respirable PM, B(a)P and benzene. ► Cooking with biomass

  5. TCR-induced Akt serine 473 phosphorylation is regulated by protein kinase C-alpha

    SciTech Connect

    Yang, Lifen; Qiao, Guilin; Ying, Haiyan; Zhang, Jian; Yin, Fei

    2010-09-10

    Research highlights: {yields} Conventional PKC positively regulates TCR-induced phosphorylation of Akt. {yields} PKC-alpha is the PDK-2 responsible for phosphorylating Akt at Ser{sup 473} upon TCR stimulation. {yields} Knockdown of PKC-alpha decreases TCR-induced Akt phosphorylation. -- Abstract: Akt signaling plays a central role in T cell functions, such as proliferation, apoptosis, and regulatory T cell development. Phosphorylation at Ser{sup 473} in the hydrophobic motif, along with Thr{sup 308} in its activation loop, is considered necessary for Akt function. It is widely accepted that phosphoinositide-dependent kinase 1 (PDK-1) phosphorylates Akt at Thr{sup 308}, but the kinase(s) responsible for phosphorylating Akt at Ser{sup 473} (PDK-2) remains elusive. The existence of PDK-2 is considered to be specific to cell type and stimulus. PDK-2 in T cells in response to TCR stimulation has not been clearly defined. In this study, we found that conventional PKC positively regulated TCR-induced Akt Ser{sup 473} phosphorylation. PKC-alpha purified from T cells can phosphorylate Akt at Ser{sup 473} in vitro upon TCR stimulation. Knockdown of PKC-alpha in T-cell-line Jurkat cells reduced TCR-induced phosphorylation of Akt as well as its downstream targets. Thus our results suggest that PKC-alpha is a candidate for PDK-2 in T cells upon TCR stimulation.

  6. Membrane-tethered AKT kinase regulates basal synaptic transmission and early phase LTP expression by modulation of post-synaptic AMPA receptor level.

    PubMed

    Pen, Y; Borovok, N; Reichenstein, M; Sheinin, A; Michaelevski, I

    2016-09-01

    The serine/threonine kinase AKT/PKB plays a fundamental role in a wide variety of neuronal functions, including neuronal cell development, axonal growth, and synaptic plasticity. Multiple evidence link AKT signaling pathways to regulation of late phase long-term synaptic plasticity, synaptogenesis, and spinogenesis, as well as long-term memory formation. Nevertheless, the downstream effectors mediating the effects of AKT on early phase long-term potentiation (eLTP) are currently unknown. Here we report that using different regimes of pharmacological activation and inhibition of AKT activity in acute hippocampal slices, we found that AKT regulates the post-synaptic expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) receptors affecting solely the expression of eLTP, with no effect on its induction and maintenance. We further show that both maintenance of basal synaptic activity and expression of eLTP require plasma membrane tethering by activated AKT and that basal synaptic activity may be regulated via the direct effects of AKT1 on the expression level of post-synaptic AMPA receptors bypassing the canonical AKT signaling. Finally, we establish that eLTP expression requires the involvement of both the canonical AKT signaling pathways and the direct effect of AKT1 on AMPA receptor activity/expression in the post-synaptic membrane. © 2016 Wiley Periodicals, Inc. PMID:27068236

  7. Targeting the glucose-regulated protein-78 abrogates Pten-null driven AKT activation and endometrioid tumorigenesis.

    PubMed

    Lin, Y G; Shen, J; Yoo, E; Liu, R; Yen, H-Y; Mehta, A; Rajaei, A; Yang, W; Mhawech-Fauceglia, P; DeMayo, F J; Lydon, J; Gill, P; Lee, A S

    2015-10-01

    Rates of the most common gynecologic cancer, endometrioid adenocarcinoma (EAC), continue to rise, mirroring the global epidemic of obesity, a well-known EAC risk factor. Thus, identifying novel molecular targets to prevent and/or mitigate EAC is imperative. The prevalent Type 1 EAC commonly harbors loss of the tumor suppressor, Pten, leading to AKT activation. The major endoplasmic reticulum (ER) chaperone, GRP78, is a potent pro-survival protein to maintain ER homeostasis, and as a cell surface protein, is known to regulate the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. To determine whether targeting GRP78 could suppress EAC development, we created a conditional knockout mouse model using progesterone receptor-Cre-recombinase to achieve Pten and Grp78 (cPten(f/f)Grp78(f/f)) deletion in the endometrial epithelium. Mice with a single Pten (cPten(f/f)) deletion developed well-differentiated EAC by 4 weeks. In contrast, no cPten(f/f)Grp78(f/f) mice developed EAC, even after more than 8 months of observation. Histologic examination of uteri from cPten(f/f)Grp78(f/f) mice also revealed no complex atypical hyperplasia, a well-established EAC precursor. These histologic observations among the cPten(f/f)Grp78(f/f) murine uteri also corresponded to abrogation of AKT activation within the endometrium. We further observed that GRP78 co-localized with activated AKT on the surface of EAC, thus providing an opportunity for therapeutic targeting. Consistent with previous findings that cell surface GRP78 is an upstream regulator of PI3K/AKT signaling, we show here that in vivo short-term systemic treatment with a highly specific monoclonal antibody against GRP78 suppressed AKT activation and increased apoptosis in the cPten(f/f) tumors. Collectively, these findings present GRP78-targeting therapy as an efficacious therapeutic option for EAC. PMID:25684138

  8. Protein kinase B/Akt: a nexus of growth factor and cytokine signaling in determining muscle mass.

    PubMed

    Frost, Robert A; Lang, Charles H

    2007-07-01

    Although the boundaries of skeletal muscle size are fundamentally determined by genetics, this dynamic tissue also demonstrates great plasticity in response to environmental and hormonal factors. Recent work indicates that contractile activity, nutrients, growth factors, and cytokines all contribute to determining muscle mass. Muscle responds not only to endocrine hormones but also to the autocrine production of growth factors and cytokines. Skeletal muscle synthesizes anabolic growth factors such as insulin-like growth factor (IGF)-I and potentially inhibitory cytokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, and myostatin. These self-regulating inputs in turn influence muscle metabolism, including the use of nutrients such as glucose and amino acids. These changes are principally achieved by altering the activity of the protein kinase known as protein kinase B or Akt. Akt plays a central role in integrating anabolic and catabolic responses by transducing growth factor and cytokine signals via changes in the phosphorylation of its numerous substrates. Activation of Akt stimulates muscle hypertrophy and antagonizes the loss of muscle protein. Here we review the many signals that funnel through Akt to alter muscle mass. PMID:17332274

  9. Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats

    PubMed Central

    Pauli, José R; Ropelle, Eduardo R; Cintra, Dennys E; Carvalho-Filho, Marco A; Moraes, Juliana C; De Souza, Cláudio T; Velloso, Lício A; Carvalheira, José B C; Saad, Mario J A

    2008-01-01

    Early evidence demonstrates that exogenous nitric oxide (NO) and the NO produced by inducible nitric oxide synthase (iNOS) can induce insulin resistance. Here, we investigated whether this insulin resistance, mediated by S-nitrosation of proteins involved in early steps of the insulin signal transduction pathway, could be reversed by acute physical exercise. Rats on a high-fat diet were subjected to swimming for two 3 h-long bouts, separated by a 45 min rest period. Two or 16 h after the exercise protocol the rats were killed and proteins from the insulin signalling pathway were analysed by immunoprecipitation and immunoblotting. We demonstrated that a high-fat diet led to an increase in the iNOS protein level and S-nitrosation of insulin receptor β (IRβ), insulin receptor substrate 1 (IRS1) and Akt. Interestingly, an acute bout of exercise reduced iNOS expression and S-nitrosation of proteins involved in the early steps of insulin action, and improved insulin sensitivity in diet-induced obesity rats. Furthermore, administration of GSNO (NO donor) prevents this improvement in insulin action and the use of an inhibitor of iNOS (l-N6-(1-iminoethyl)lysine; l-NIL) simulates the effects of exercise on insulin action, insulin signalling and S-nitrosation of IRβ, IRS1 and Akt. In summary, a single bout of exercise reverses insulin sensitivity in diet-induced obese rats by improving the insulin signalling pathway, in parallel with a decrease in iNOS expression and in the S-nitrosation of IR/IRS1/Akt. The decrease in iNOS protein expression in the muscle of diet-induced obese rats after an acute bout of exercise was accompanied by an increase in AMP-activated protein kinase (AMPK) activity. These results provide new insights into the mechanism by which exercise restores insulin sensitivity. PMID:17974582

  10. Akt signaling dynamics in individual cells

    PubMed Central

    Gross, Sean M.; Rotwein, Peter

    2015-01-01

    ABSTRACT The protein kinase Akt (for which there are three isoforms) is a key intracellular mediator of many biological processes, yet knowledge of Akt signaling dynamics is limited. Here, we have constructed a fluorescent reporter molecule in a lentiviral delivery system to assess Akt kinase activity at the single cell level. The reporter, a fusion between a modified FoxO1 transcription factor and clover, a green fluorescent protein, rapidly translocates from the nucleus to the cytoplasm in response to Akt stimulation. Because of its long half-life and the intensity of clover fluorescence, the sensor provides a robust readout that can be tracked for days under a range of biological conditions. Using this reporter, we find that stimulation of Akt activity by IGF-I is encoded into stable and reproducible analog responses at the population level, but that single cell signaling outcomes are variable. This reporter, which provides a simple and dynamic measure of Akt activity, should be compatible with many cell types and experimental platforms, and thus opens the door to new insights into how Akt regulates its biological responses. PMID:26040286

  11. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Sorescu, George; Boyd, Nolan; Shiojima, Ichiro; Walsh, Kenneth; Du, Jie; Jo, Hanjoong

    2002-01-01

    Recently, we have shown that shear stress stimulates NO(*) production by the protein kinase B/Akt (Akt)-dependent mechanisms in bovine aortic endothelial cells (BAEC) (Go, Y. M., Boo, Y. C., Park, H., Maland, M. C., Patel, R., Pritchard, K. A., Jr., Fujio, Y., Walsh, K., Darley-Usmar, V., and Jo, H. (2001) J. Appl. Physiol. 91, 1574-1581). Akt has been believed to regulate shear-dependent production of NO(*) by directly phosphorylating endothelial nitric-oxide synthase (eNOS) at the Ser(1179) residue (eNOS-S(1179)), but a critical evaluation using specific inhibitors or dominant negative mutants (Akt(AA) or Akt(AAA)) has not been reported. In addition, other kinases, including protein kinase A (PKA) and AMP kinase have also shown to phosphorylate eNOS-S(1179). Here, we show that shear-dependent phosphorylation of eNOS-S(1179) is mediated by an Akt-independent, but a PKA-dependent, mechanism. Expression of Akt(AA) or Akt(AAA) in BAEC by using recombinant adenoviral constructs inhibited phosphorylation of eNOS-S(1179) if cells were stimulated by vascular endothelial growth factor (VEGF), but not by shear stress. As shown before, expression of Akt(AA) inhibited shear-dependent NO(*) production, suggesting that Akt is still an important regulator in NO production. Further studies showed that a selective inhibitor of PKA, H89, inhibited shear-dependent phosphorylation of eNOS-S(1179) and NO(*) production. In contrast, H89 did not inhibit phosphorylation of eNOS-S(1179) induced by expressing a constitutively active Akt mutant (Akt(Myr)) in BAEC, showing that the inhibitor did not affect the Akt pathway. 8-Bromo-cAMP alone phosphorylated eNOS-S(1179) within 5 min without activating Akt, in an H89-sensitive manner. Collectively, these results demonstrate that shear stimulates phosphorylation of eNOS-S(1179) in a PKA-dependent, but Aktindependent manner, whereas the NO(*) production is regulated by the mechanisms dependent on both PKA and Akt. A coordinated interaction

  12. Carboxyl-Terminal Modulator Protein Positively Acts as an Oncogenic Driver in Head and Neck Squamous Cell Carcinoma via Regulating Akt phosphorylation.

    PubMed

    Chang, Jae Won; Jung, Seung-Nam; Kim, Ju-Hee; Shim, Geun-Ae; Park, Hee Sung; Liu, Lihua; Kim, Jin Man; Park, Jongsun; Koo, Bon Seok

    2016-01-01

    The exact regulatory mechanisms of carboxyl-terminal modulator protein (CTMP) and its downstream pathways in cancer have been controversial and are not completely understood. Here, we report a new mechanism of regulation of Akt serine/threonine kinase, one of the most important dysregulated signals in head and neck squamous cell carcinoma (HNSCC) by the CTMP pathway and its clinical implications. We find that HNSCC tumor tissues and cell lines had relatively high levels of CTMP expression. Clinical data indicate that CTMP expression was significantly associated with positive lymph node metastasis (OR = 3.8, P = 0.033) and correlated with poor prognosis in patients with HNSCC. CTMP was also positively correlated with Akt/GSK-3β phosphorylation, Snail up-regulation and E-cadherin down-regulation, which lead to increased proliferation and epithelial-to-mesenchymal transition, suggesting that CTMP expression results in enhanced tumorigenic and metastatic properties of HNSCC cells. Moreover, CTMP suppression restores sensitivity to cisplatin chemotherapy. Intriguingly, all the molecular responses to CTMP regulation are identical regardless of p53 status in HNSCC cells. We conclude that CTMP promotes Akt phosphorylation and functions as an oncogenic driver and prognostic marker in HNSCC irrespective of p53. PMID:27328758

  13. Carboxyl-Terminal Modulator Protein Positively Acts as an Oncogenic Driver in Head and Neck Squamous Cell Carcinoma via Regulating Akt phosphorylation

    PubMed Central

    Chang, Jae Won; Jung, Seung-Nam; Kim, Ju-Hee; Shim, Geun-Ae; Park, Hee Sung; Liu, Lihua; Kim, Jin Man; Park, Jongsun; Koo, Bon Seok

    2016-01-01

    The exact regulatory mechanisms of carboxyl-terminal modulator protein (CTMP) and its downstream pathways in cancer have been controversial and are not completely understood. Here, we report a new mechanism of regulation of Akt serine/threonine kinase, one of the most important dysregulated signals in head and neck squamous cell carcinoma (HNSCC) by the CTMP pathway and its clinical implications. We find that HNSCC tumor tissues and cell lines had relatively high levels of CTMP expression. Clinical data indicate that CTMP expression was significantly associated with positive lymph node metastasis (OR = 3.8, P = 0.033) and correlated with poor prognosis in patients with HNSCC. CTMP was also positively correlated with Akt/GSK-3β phosphorylation, Snail up-regulation and E-cadherin down-regulation, which lead to increased proliferation and epithelial-to-mesenchymal transition, suggesting that CTMP expression results in enhanced tumorigenic and metastatic properties of HNSCC cells. Moreover, CTMP suppression restores sensitivity to cisplatin chemotherapy. Intriguingly, all the molecular responses to CTMP regulation are identical regardless of p53 status in HNSCC cells. We conclude that CTMP promotes Akt phosphorylation and functions as an oncogenic driver and prognostic marker in HNSCC irrespective of p53. PMID:27328758

  14. Decreased Phosphorylated Protein Kinase B (Akt) in Individuals with Autism Associated with High Epidermal Growth Factor Receptor (EGFR) and Low Gamma-Aminobutyric Acid (GABA)

    PubMed Central

    Russo, Anthony J

    2015-01-01

    Dysregulation of the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway could contribute to the pathogenesis of autism spectrum disorders. In this study, phosphorylated Akt concentration was measured in 37 autistic children and 12, gender and age similar neurotypical, controls using an enzyme-linked immunosorbent assay. Akt levels were compared to biomarkers known to be associated with epidermal growth factor receptor (EGFR) and c-Met (hepatocyte growth factor (HGF) receptor) pathways and severity levels of 19 autism-related symptoms. We found phosphorylated Akt levels significantly lower in autistic children and low Akt levels correlated with high EGFR and HGF and low gamma-aminobutyric acid, but not other biomarkers. Low Akt levels also correlated significantly with increased severity of receptive language, conversational language, hypotonia, rocking and pacing, and stimming, These results suggest a relationship between decreased phosphorylated Akt and selected symptom severity in autistic children and support the suggestion that the AKT pathways may be associated with the etiology of autism. PMID:26508828

  15. Advanced glycation end products impair function of late endothelial progenitor cells through effects on protein kinase Akt and cyclooxygenase-2

    SciTech Connect

    Chen Qin; Dong Li; Wang Lian; Kang Lina; Xu Biao

    2009-04-03

    Endothelial progenitor cells (EPCs) exhibit impaired function in the context of diabetes, and advanced glycation end products (AGEs), which accumulate in diabetes, may contribute to this. In the present study, we investigated the mechanism by which AGEs impair late EPC function. EPCs from human umbilical cord blood were isolated, and incubated with AGE-modified albumin (AGE-albumin) at different concentrations found physiologically in plasma. Apoptosis, migration, and tube formation assays were used to evaluate EPC function including capacity for vasculogenesis, and expression of the receptor for AGEs (RAGE), Akt, endothelial nitric oxide synthase (eNOS), and cycloxygenase-2 (COX-2) were determined. Anti-RAGE antibody was used to block RAGE function. AGE-albumin concentration-dependently enhanced apoptosis and depressed migration and tube formation, but did not affect proliferation, of late EPCs. High AGE-albumin increased RAGE mRNA and protein expression, and decreased Akt and COX-2 protein expression, whilst having no effect on eNOS mRNA or protein in these cells. These effects were inhibited by co-incubation with anti-RAGE antibody. These results suggest that RAGE mediates the AGE-induced impairment of late EPC function, through down-regulation of Akt and COX-2 in these cells.

  16. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  17. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway

    PubMed Central

    ZHANG, HUA; XIONG, ZHOUYI; WANG, JIAO; ZHANG, SHUANGSHUANG; LEI, LEI; YANG, LI; ZHANG, ZHEN

    2016-01-01

    Cardiomyocyte apoptosis is a major event in the pathogenesis of diabetic cardiomyopathy. Currently, no single effective treatment for diabetic cardiomyopathy exists. The present study investigated whether advanced oxidative protein products (AOPPs) have a detrimental role in the survival of cardiomyocytes and if glucagon-like peptide-1 (GLP-1) exerts a cardioprotective effect under these circumstances. The present study also aimed to determine the underlying mechanisms. H9c2 cells were exposed to increasing concentrations of AOPPs in the presence or absence of GLP-1, and the viability and apoptotic rate were detected using a cell counting kit-8 assay and flow cytometry, respectively. In addition, a phosphatidylino-sitol-4,5-bisphosphate 3-kinase (PI3K) inhibitor, LY294002, was employed to illustrate the mechanism of the antiapoptotic effect of GLP-1. The expression levels of the apoptotic-associated proteins, Akt, B-cell lymphoma (Bcl)-2, Bcl-2-associated death promoter (Bad), Bcl-2-associated X protein (Bax) and caspase-3 were measured by western blotting. It was revealed that GLP-1 significantly attenuated AOPP-induced cell toxicity and apoptosis. AOPPs inactivated the phosphorylation of Akt, reduced the phosphorylation of Bad, decreased the expression of Bcl-2, increased the expression of Bax and the activation of caspase-3 in H9c2 cells. GLP-1 reversed the above changes induced by AOPPs and the protective effects of GLP-1 were abolished by the PI3K inhibitor, LY294002. In conclusion, the present data suggested that GLP-1 protected cardiomyocytes against AOPP-induced apoptosis, predominantly via the PI3K/Akt/Bad pathway. These results provided a conceivable mechanism for the development of diabetic cardiomyopathy and rendered a novel application of GLP-1 exerting favorable cardiac effects for the treatment of diabetic cardiomyopathy. PMID:26717963

  18. SRPK1 and Akt Protein Kinases Phosphorylate the RS Domain of Lamin B Receptor with Distinct Specificity: A Combined Biochemical and In Silico Approach

    PubMed Central

    Nikolakaki, Eleni; Vlassi, Metaxia; Giannakouros, Thomas

    2016-01-01

    Activated Akt has been previously implicated in acting on RS domain-containing proteins. However, it has been questioned whether its action is direct or it is mediated by co-existing SR kinase activity. To address this issue we studied in detail the phosphorylation of Lamin B Receptor (LBR) by Akt. Using synthetic peptides and a set of recombinant proteins expressing mutants of the LBR RS domain we now demonstrate that while all serines of the RS domain represent more or less equal phosphoacceptor sites for SRPK1, Ser80 and Ser82 are mainly targeted by Akt. 3D-modeling combined with molecular dynamics (MD) simulations show that amongst short, overlapping LBR RS-containing peptides complying with the minimum Akt recognition consensus sequence, only those bearing phosphosites either at Ser80 or Ser82 are able to fit into the active site of Akt, at least as effectively as its known substrate, GSK3-β. Combined our results provide evidence that Akt kinases directly phosphorylate an RS domain-containing protein and that both the residues N-terminal the phosphosite and at position +1 are essential for Akt specificity, with the latter substrate position being compatible with the arginine residue of RS-repeats. PMID:27105349

  19. Down-regulation of ERK1/2 and AKT-mediated X-ray repair cross-complement group 1 protein (XRCC1) expression by Hsp90 inhibition enhances the gefitinib-induced cytotoxicity in human lung cancer cells

    SciTech Connect

    Tung, Chun-Liang; Jian, Yi-Jun; Syu, Jhan-Jhang; Wang, Tai-Jing; Chang, Po-Yuan; Chen, Chien-Yu; Jian, Yun-Ting; Lin, Yun-Wei

    2015-05-15

    Gefitinib (Iressa{sup R}, ZD1839) is a selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that blocks growth factor-mediated cell proliferation and extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT signaling activation. It has been shown that inhibition of Hsp90 function can enhance antitumor activity of EGFR-TKI. XRCC1 is an important scaffold protein in base excision repair, which could be regulated by ERK1/2 and AKT pathways. However, the role of ERK1/2 and AKT-mediated XRCC1 expression in gefitinib alone or combination with an Hsp90 inhibitor-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. In this study, gefitinib treatment decreased XRCC1 mRNA and protein expression through ERK1/2 and AKT inactivation in two NSCLC cells, A549 and H1975. Knocking down XRCC1 expression by transfection with small interfering RNA of XRCC1 enhanced the cytotoxicity and cell growth inhibition of gefitinib. Combining treatment of gefitinib with an Hsp90 inhibitor resulted in enhancing the reduction of XRCC1 protein and mRNA levels in gefitinib-exposed A549 and H1975 cells. Compared to a single agent alone, gefitinib combined with an Hsp90 inhibitor resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells. Furthermore, transfection with constitutive active MKK1 or AKT vectors rescued the XRCC1 protein level as well as the cell survival suppressed by an Hsp90 inhibitor and gefitinib. These findings suggested that down-regulation of XRCC1 can enhance the sensitivity of gefitinib for NSCLC cells. - Highlights: • Gefitinib treatment decreased XRCC1 mRNA and protein expression in NSCLC cells. • Knocking down XRCC1 expression enhanced the cytotoxic effect of gefitinib. • Gefitinib combined with an Hsp90 inhibitor resulted in synergistically cytotoxicity.

  20. Akt kinase-interacting protein1, a novel therapeutic target for lung cancer with EGFR-activating and gatekeeper mutations.

    PubMed

    Yamada, T; Takeuchi, S; Fujita, N; Nakamura, A; Wang, W; Li, Q; Oda, M; Mitsudomi, T; Yatabe, Y; Sekido, Y; Yoshida, J; Higashiyama, M; Noguchi, M; Uehara, H; Nishioka, Y; Sone, S; Yano, S

    2013-09-12

    Despite initial dramatic response, epidermal growth factor receptor (EGFR) mutant lung cancer patients always acquire resistance to EGFR-tyrosine kinase inhibitors (TKIs). Gatekeeper T790M mutation in EGFR is the most prevalent genetic alteration underlying acquired resistance to EGFR-TKI, and EGFR mutant lung cancer cells are reported to be addictive to EGFR/Akt signaling even after acquired T790M mutation. Here, we focused on Akt kinase-interacting protein1 (Aki1), a scaffold protein of PI3K (phosphoinositide 3-kinase)/PDK1 (3-phosphoinositide-dependent protein kinase)/Akt that determines receptor signal selectivity for non-mutated EGFR, and assessed its role in EGFR mutant lung cancer with or without gatekeeper T790M mutation. Cell line-based assays showed that Aki1 constitutively associates with mutant EGFR in lung cancer cells with (H1975) or without (PC-9 and HCC827) T790M gatekeeper mutation. Silencing of Aki1 induced apoptosis of EGFR mutant lung cancer cells. Treatment with Aki1 siRNA dramatically inhibited growth of H1975 cells in a xenograft model. Moreover, silencing of Aki1 further potentiated growth inhibitory effect of new generation EGFR-TKIs against H1975 cells in vitro. Aki1 was frequently expressed in tumor cells of EGFR mutant lung cancer patients (53/56 cases), including those with acquired resistance to EGFR-TKI treatment (7/7 cases). Our data suggest that Aki1 may be a critical mediator of survival signaling from mutant EGFR to Akt, and may therefore be an ideal target for EGFR mutant lung cancer patients, especially those with acquired EGFR-TKI resistance due to EGFR T790M gatekeeper mutation. PMID:23045273

  1. Alpha-ketoglutarate promotes skeletal muscle hypertrophy and protein synthesis through Akt/mTOR signaling pathways.

    PubMed

    Cai, Xingcai; Zhu, Canjun; Xu, Yaqiong; Jing, Yuanyuan; Yuan, Yexian; Wang, Lina; Wang, Songbo; Zhu, Xiaotong; Gao, Ping; Zhang, Yongliang; Jiang, Qingyan; Shu, Gang

    2016-01-01

    Skeletal muscle weight loss is accompanied by small fiber size and low protein content. Alpha-ketoglutarate (AKG) participates in protein and nitrogen metabolism. The effect of AKG on skeletal muscle hypertrophy has not yet been tested, and its underlying mechanism is yet to be determined. In this study, we demonstrated that AKG (2%) increased the gastrocnemius muscle weight and fiber diameter in mice. Our in vitro study also confirmed that AKG dose increased protein synthesis in C2C12 myotubes, which could be effectively blocked by the antagonists of Akt and mTOR. The effects of AKG on skeletal muscle protein synthesis were independent of glutamate, its metabolite. We tested the expression of GPR91 and GPR99. The result demonstrated that C2C12 cells expressed GPR91, which could be upregulated by AKG. GPR91 knockdown abolished the effect of AKG on protein synthesis but failed to inhibit protein degradation. These findings demonstrated that AKG promoted skeletal muscle hypertrophy via Akt/mTOR signaling pathway. In addition, GPR91 might be partially attributed to AKG-induced skeletal muscle protein synthesis. PMID:27225984

  2. Alpha-ketoglutarate promotes skeletal muscle hypertrophy and protein synthesis through Akt/mTOR signaling pathways

    PubMed Central

    Cai, Xingcai; Zhu, Canjun; Xu, Yaqiong; Jing, Yuanyuan; Yuan, Yexian; Wang, Lina; Wang, Songbo; Zhu, Xiaotong; Gao, Ping; Zhang, Yongliang; Jiang, Qingyan; Shu, Gang

    2016-01-01

    Skeletal muscle weight loss is accompanied by small fiber size and low protein content. Alpha-ketoglutarate (AKG) participates in protein and nitrogen metabolism. The effect of AKG on skeletal muscle hypertrophy has not yet been tested, and its underlying mechanism is yet to be determined. In this study, we demonstrated that AKG (2%) increased the gastrocnemius muscle weight and fiber diameter in mice. Our in vitro study also confirmed that AKG dose increased protein synthesis in C2C12 myotubes, which could be effectively blocked by the antagonists of Akt and mTOR. The effects of AKG on skeletal muscle protein synthesis were independent of glutamate, its metabolite. We tested the expression of GPR91 and GPR99. The result demonstrated that C2C12 cells expressed GPR91, which could be upregulated by AKG. GPR91 knockdown abolished the effect of AKG on protein synthesis but failed to inhibit protein degradation. These findings demonstrated that AKG promoted skeletal muscle hypertrophy via Akt/mTOR signaling pathway. In addition, GPR91 might be partially attributed to AKG-induced skeletal muscle protein synthesis. PMID:27225984

  3. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells

    SciTech Connect

    Kim, Hye-Mi; Kang, Dong-Ku; Kim, Hak Yong; Kang, Sang Sun; Chang, Soo-Ik . E-mail: sichang@cbnu.ac.kr

    2007-01-12

    Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells.

  4. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR.

    PubMed

    Kazior, Zuzanna; Willis, Sarah J; Moberg, Marcus; Apró, William; Calbet, José A L; Holmberg, Hans-Christer; Blomstrand, Eva

    2016-01-01

    Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55-0.61, P<0.05), as well as mean fiber area (r = 0.55-0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes. PMID:26885978

  5. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR

    PubMed Central

    Kazior, Zuzanna; Willis, Sarah J.; Moberg, Marcus; Apró, William; Calbet, José A. L.; Holmberg, Hans-Christer; Blomstrand, Eva

    2016-01-01

    Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55–0.61, P<0.05), as well as mean fiber area (r = 0.55–0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes. PMID:26885978

  6. Linoleic acid permeabilizes gastric epithelial cells by increasing connexin 43 levels in the cell membrane via a GPR40- and Akt-dependent mechanism.

    PubMed

    Puebla, Carlos; Cisterna, Bruno A; Salas, Daniela P; Delgado-López, Fernando; Lampe, Paul D; Sáez, Juan C

    2016-05-01

    Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC activity of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintains the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt. PMID:26869446

  7. Down-regulation of ERK1/2 and AKT-mediated X-ray repair cross-complement group 1 protein (XRCC1) expression by Hsp90 inhibition enhances the gefitinib-induced cytotoxicity in human lung cancer cells.

    PubMed

    Tung, Chun-Liang; Jian, Yi-Jun; Syu, Jhan-Jhang; Wang, Tai-Jing; Chang, Po-Yuan; Chen, Chien-Yu; Jian, Yun-Ting; Lin, Yun-Wei

    2015-05-15

    Gefitinib (Iressa(R), ZD1839) is a selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that blocks growth factor-mediated cell proliferation and extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT signaling activation. It has been shown that inhibition of Hsp90 function can enhance antitumor activity of EGFR-TKI. XRCC1 is an important scaffold protein in base excision repair, which could be regulated by ERK1/2 and AKT pathways. However, the role of ERK1/2 and AKT-mediated XRCC1 expression in gefitinib alone or combination with an Hsp90 inhibitor-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. In this study, gefitinib treatment decreased XRCC1 mRNA and protein expression through ERK1/2 and AKT inactivation in two NSCLC cells, A549 and H1975. Knocking down XRCC1 expression by transfection with small interfering RNA of XRCC1 enhanced the cytotoxicity and cell growth inhibition of gefitinib. Combining treatment of gefitinib with an Hsp90 inhibitor resulted in enhancing the reduction of XRCC1 protein and mRNA levels in gefitinib-exposed A549 and H1975 cells. Compared to a single agent alone, gefitinib combined with an Hsp90 inhibitor resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells. Furthermore, transfection with constitutive active MKK1 or AKT vectors rescued the XRCC1 protein level as well as the cell survival suppressed by an Hsp90 inhibitor and gefitinib. These findings suggested that down-regulation of XRCC1 can enhance the sensitivity of gefitinib for NSCLC cells. PMID:25662161

  8. Microcystin-LR promotes proliferation by activating Akt/S6K1 pathway and disordering apoptosis and cell cycle associated proteins phosphorylation in HL7702 cells.

    PubMed

    Liu, Jinghui; Wang, Hao; Wang, Beilei; Chen, Tao; Wang, Xiaofeng; Huang, Pu; Xu, Lihong; Guo, Zonglou

    2016-01-01

    Our previous studies had shown that MC-LR inhibited PP2A activity and hyperphosphorylated PP2A substrates at 24 h exposure in HL7702 cells. Although the cytoskeleton was rearranged, the cellular effects were not observed. The purpose of the present study with HL7702 cell exposed to MC-LR for 1-72 h was to further uncover the adverse effects of MC-LR comprehensively. The results showed that there were no obvious difference in apoptosis rate and cell-cycle distribution but the cell proliferation was changed since 36 h exposure while the uptake of MC-LR and its binding to PP2A/C kept unchanged since 1h exposure. PP2A activity had not manifested continued decline compare to 24h exposure and PP2A regulator α4 was found to release its associated PP2A/C since 1h exposure. The increasing of p-Akt-T308, p-Akt-S473, p-S6K1, p-S6, and p-4E-BP1 since 1h MC-LR exposure indicated that Akt/S6K1 cascade had been activated as early as 1h MC-LR treatment. And, PI3K/Akt inhibitor (LY294002) blocked MC-LR-induced Akt/S6K1 activation and proliferation. Besides, MC-LR also led to hyperphosphorylation of c-Myc, c-Jun, Bcl-2 and Bad and activation of Cdk1. Our study indicated that MC-LR exposure promoted HL7702 cell proliferation and the main mechanism was the activation of Akt/S6K1 cascade. Meanwhile, hyperphosphorylation of Bcl-2, Bad, c-Myc and c-Jun might also be involved. And, the inhibition of PP2A was the major reason for these molecular changes. PMID:26506538

  9. Centrosomal Protein of 55 Regulates Glucose Metabolism, Proliferation and Apoptosis of Glioma Cells via the Akt/mTOR Signaling Pathway

    PubMed Central

    Wang, Guangzhi; Liu, Mingna; Wang, Hongjun; Yu, Shan; Jiang, Zhenfeng; Sun, Jiahang; Han, Ke; Shen, Jia; Zhu, Minwei; Lin, Zhiguo; Jiang, Chuanlu; Guo, Mian

    2016-01-01

    Introduction: Glioma is one of the most common and most aggressive brain tumors in humans. The molecular and cellular mechanisms responsible for the onset and the progression of glioma are elusive and controversial. Centrosomal protein of 55 (CEP55) was initially described as a highly coiled-coil protein that plays critical roles in cell division, but was recently identified as being overexpressed in many human cancers. The function of CEP55 has not previously been characterized in glioma. We aim to discover the effect and mechanism of CEP55 in glioma development. Method: qRT-PCR and immunohistochemistry were used to analyze CEP55 expression. Glucose uptake, western blot, MTS, CCK-8, Caspase-3 activity and TUNEL staining assays were performed to investigate the role and mechanism of CEP55 on glioma cell process. Results: We found that the levels of CEP55 expression were upregulated in glioma. In addition, CEP55 appeared to regulate glucose metabolism of glioma cells. Furthermore, knockdown of CEP55 inhibited cell proliferation and induced cell apoptosis in glioma. Finally, we provided preliminary evidence that knockdown of CEP55 inhibited glioma development via suppressing the activity of Akt/mTOR signaling. Conclusions: Our results demonstrated that CEP55 regulates glucose metabolism, proliferation and apoptosis of glioma cells via the Akt/mTOR signaling pathway, and its promotive effect on glioma tumorigenesis can be a potential target for glioma therapy in the future. PMID:27471559

  10. E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway

    SciTech Connect

    Contreras-Paredes, Adriana

    2009-01-05

    Intra-type genome variations of high risk Human papillomavirus (HPV) have been associated with a differential threat for cervical cancer development. In this work, the effect of HPV18 E6 isolates in Akt/PKB and Mitogen-associated protein kinase (MAPKs) signaling pathways and its implication in cell proliferation were analyzed. E6 from HPV types 16 and 18 are able to bind and promote degradation of Human disc large (hDlg). Our results show that E6 variants differentially modulate hDlg degradation, rebounding in levels of activated PTEN and PKB. HPV18 E6 variants are also able to upregulate phospho-PI3K protein, strongly correlating with activated MAPKs and cell proliferation. Data was supported by the effect of E6 silencing in HPV18-containing HeLa cells, as well as hDlg silencing in the tested cells. Results suggest that HPV18 intra-type variations may derive in differential abilities to activate cell-signaling pathways such as Akt/PKB and MAPKs, directly involved in cell survival and proliferation.

  11. Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of Forkhead proteins

    PubMed Central

    Li, Hui-Hua; Willis, Monte S.; Lockyer, Pamela; Miller, Nathaniel; McDonough, Holly; Glass, David J.; Patterson, Cam

    2007-01-01

    Cardiac hypertrophy is a major cause of human morbidity and mortality. Although much is known about the pathways that promote hypertrophic responses, mechanisms that antagonize these pathways have not been as clearly defined. Atrogin-1, also known as muscle atrophy F-box, is an F-box protein that inhibits pathologic cardiac hypertrophy by participating in a ubiquitin ligase complex that triggers degradation of calcineurin, a factor involved in promotion of pathologic hypertrophy. Here we demonstrated that atrogin-1 also disrupted Akt-dependent pathways responsible for physiologic cardiac hypertrophy. Our results indicate that atrogin-1 does not affect the activity of Akt itself, but serves as a coactivator for members of the Forkhead family of transcription factors that function downstream of Akt. This coactivator function of atrogin-1 was dependent on its ubiquitin ligase activity and the deposition of polyubiquitin chains on lysine 63 of Foxo1 and Foxo3a. Transgenic mice expressing atrogin-1 in the heart displayed increased Foxo1 ubiquitylation and upregulation of known Forkhead target genes concomitant with suppression of cardiac hypertrophy, while mice lacking atrogin-1 displayed the opposite physiologic phenotype. These experiments define a role for lysine 63–linked ubiquitin chains in transcriptional coactivation and demonstrate that atrogin-1 uses this mechanism to disrupt physiologic cardiac hypertrophic signaling through its effects on Forkhead transcription factors. PMID:17965779

  12. Antioxidant administration attenuates mechanical ventilation-induced rat diaphragm muscle atrophy independent of protein kinase B (PKB Akt) signalling.

    PubMed

    McClung, J M; Kavazis, A N; Whidden, M A; DeRuisseau, K C; Falk, D J; Criswell, D S; Powers, S K

    2007-11-15

    Oxidative stress promotes controlled mechanical ventilation (MV)-induced diaphragmatic atrophy. Nonetheless, the signalling pathways responsible for oxidative stress-induced muscle atrophy remain unknown. We tested the hypothesis that oxidative stress down-regulates insulin-like growth factor-1-phosphotidylinositol 3-kinase-protein kinase B serine threonine kinase (IGF-1-PI3K-Akt) signalling and activates the forkhead box O (FoxO) class of transcription factors in diaphragm fibres during MV-induced diaphragm inactivity. Sprague-Dawley rats were randomly assigned to one of five experimental groups: (1) control (Con), (2) 6 h of MV, (3) 6 h of MV with infusion of the antioxidant Trolox, (4) 18 h of MV, (5) 18 h of MV with Trolox. Following 6 h and 18 h of MV, diaphragmatic Akt activation decreased in parallel with increased nuclear localization and transcriptional activation of FoxO1 and decreased nuclear localization of FoxO3 and FoxO4, culminating in increased expression of the muscle-specific ubiquitin ligases, muscle atrophy factor (MAFbx) and muscle ring finger-1 (MuRF-1). Interestingly, following 18 h of MV, antioxidant administration was associated with attenuation of MV-induced atrophy in type I, type IIa and type IIb/IIx myofibres. Collectively, these data reveal that the antioxidant Trolox attenuates MV-induced diaphragmatic atrophy independent of alterations in Akt regulation of FoxO transcription factors and expression of MAFbx or MuRF-1. Further, these results also indicate that differential regulation of diaphragmatic IGF-1-PI3K-Akt signalling exists during the early and late stages of MV. PMID:17916612

  13. Drosophila tribbles antagonizes insulin signaling-mediated growth and metabolism via interactions with Akt kinase.

    PubMed

    Das, Rahul; Sebo, Zachary; Pence, Laramie; Dobens, Leonard L

    2014-01-01

    Drosophila Tribbles (Trbl) is the founding member of the Trib family of kinase-like docking proteins that modulate cell signaling during proliferation, migration and growth. In a wing misexpression screen for Trbl interacting proteins, we identified the Ser/Thr protein kinase Akt1. Given the central role of Akt1 in insulin signaling, we tested the function of Trbl in larval fat body, a tissue where rapid increases in size are exquisitely sensitive to insulin/insulin-like growth factor levels. Consistent with a role in antagonizing insulin-mediated growth, trbl RNAi knockdown in the fat body increased cell size, advanced the timing of pupation and increased levels of circulating triglyceride. Complementarily, overexpression of Trbl reduced fat body cell size, decreased overall larval size, delayed maturation and lowered levels of triglycerides, while circulating glucose levels increased. The conserved Trbl kinase domain is required for function in vivo and for interaction with Akt in a yeast two-hybrid assay. Consistent with direct regulation of Akt, overexpression of Trbl in the fat body decreased levels of activated Akt (pSer505-Akt) while misexpression of trbl RNAi increased phospho-Akt levels, and neither treatment affected total Akt levels. Trbl misexpression effectively suppressed Akt-mediated wing and muscle cell size increases and reduced phosphorylation of the Akt target FoxO (pSer256-FoxO). Taken together, these data show that Drosophila Trbl has a conserved role to bind Akt and block Akt-mediated insulin signaling, and implicate Trib proteins as novel sites of signaling pathway integration that link nutrient availability with cell growth and proliferation. PMID:25329475

  14. Drosophila Tribbles Antagonizes Insulin Signaling-Mediated Growth and Metabolism via Interactions with Akt Kinase

    PubMed Central

    Das, Rahul; Sebo, Zachary; Pence, Laramie; Dobens, Leonard L.

    2014-01-01

    Drosophila Tribbles (Trbl) is the founding member of the Trib family of kinase-like docking proteins that modulate cell signaling during proliferation, migration and growth. In a wing misexpression screen for Trbl interacting proteins, we identified the Ser/Thr protein kinase Akt1. Given the central role of Akt1 in insulin signaling, we tested the function of Trbl in larval fat body, a tissue where rapid increases in size are exquisitely sensitive to insulin/insulin-like growth factor levels. Consistent with a role in antagonizing insulin-mediated growth, trbl RNAi knockdown in the fat body increased cell size, advanced the timing of pupation and increased levels of circulating triglyceride. Complementarily, overexpression of Trbl reduced fat body cell size, decreased overall larval size, delayed maturation and lowered levels of triglycerides, while circulating glucose levels increased. The conserved Trbl kinase domain is required for function in vivo and for interaction with Akt in a yeast two-hybrid assay. Consistent with direct regulation of Akt, overexpression of Trbl in the fat body decreased levels of activated Akt (pSer505-Akt) while misexpression of trbl RNAi increased phospho-Akt levels, and neither treatment affected total Akt levels. Trbl misexpression effectively suppressed Akt-mediated wing and muscle cell size increases and reduced phosphorylation of the Akt target FoxO (pSer256-FoxO). Taken together, these data show that Drosophila Trbl has a conserved role to bind Akt and block Akt-mediated insulin signaling, and implicate Trib proteins as novel sites of signaling pathway integration that link nutrient availability with cell growth and proliferation. PMID:25329475

  15. Essential role of PH domain and leucine-rich repeat protein phosphatase 2 in Nrf2 suppression via modulation of Akt/GSK3β/Fyn kinase axis during oxidative hepatocellular toxicity.

    PubMed

    Rizvi, F; Shukla, S; Kakkar, P

    2014-01-01

    Instances of sustained oxidative activity have been shown to involve dysregulation of Nrf2-mediated transcriptional induction; however, mechanisms warranting Nrf2-repression remain unclear. In this study, using primary rat hepatocytes, we have attempted to identify factors that may negatively influence Nrf2 survival pathway. Though studies indicate a conspicuous association between Akt and Nrf2, a confirmatory link between the two is unaddressed. On inhibiting PI3K/Akt pathway, we observed compromised activities of antioxidant and detoxification enzymes culminating in oxidative cytotoxicity. This was accompanied by reduced nuclear retention of Nrf2 and its ARE binding affinity, increased Nrf2 ubiquitination and concurrent decline in its downstream targets. Moreover, Akt inhibition enhanced nuclear translocation as well as phosphorylation of Fyn kinase, an enzyme linked to Nrf2 degradation, by relieving GSK3β from phosphorylation-mediated repression. The involvement of Akt and Fyn kinase in influencing Nrf2 signaling was further confirmed in oxidatively stressed hepatocytes by using tert-butyl hydroperoxide (tBHP). tBHP-induced decrease in Nrf2 levels was associated with enhanced Fyn kinase phosphorylation, Fyn kinase nuclear translocation and decreased levels of phosphorylated GSK3β(Ser9) in a time-dependent manner. Interestingly, tBHP induced site-specific deactivation of Akt as only Akt(Ser473) phosphorylation was observed to be affected. Further, protein expression as well as nuclear localization of PHLPP2, a phosphatase specific for Akt(Ser473), was found to be significantly enhanced in tBHP-stressed hepatocytes. Silencing of PHLPP2 not only resulted in considerable restoration of Nrf2 signaling, enhanced Nrf2-ARE binding and reduced Nrf2 ubiquitination but also significantly suppressed tBHP-induced ROS generation and alterations in mitochondrial permeability. We infer that cellular PHLPP2 levels may aggravate oxidative toxicity by suppressing Nrf2/ARE

  16. Tamoxifen-induced cytotoxicity in breast cancer cells is mediated by glucose-regulated protein 78 (GRP78) via AKT (Thr308) regulation.

    PubMed

    Pujari, Radha; Jose, Jemy; Bhavnani, Varsha; Kumar, Natesh; Shastry, Padma; Pal, Jayanta K

    2016-08-01

    Glucose regulated protein 78 (GRP78) has recently been suggested to be associated with drug resistance in breast cancer patients. However, the precise role of GRP78 in drug resistance and the involved signaling pathways are not clearly understood. In the present study, we show that among a panel of drugs, namely Paclitaxel (TAX), Doxorubicin (DOX), 5-fluorouracil (5-FU), UCN-01 and Tamoxifen (TAM) used, TAM alone up-regulated the expression of GRP78 significantly and induced apoptosis in MCF-7 and MDA-MB-231 cells. Interestingly, inhibition of GRP78 by a specific pharmacological inhibitor, VER-155008 augmented TAM-induced apoptosis, and overexpression of GRP78 rendered the cells resistant to TAM-induced cell death suggesting a role for GRP78 in TAM-induced cytotoxicity. Mechanistically, the expression of phosphorylated AKT as determined by Western blot analyses revealed that TAM selectively upregulated phosphorylation of AKT at Thr308 but not at Ser473, and siRNA silencing of GRP78 resulted in inhibition of AKT phosphorylation at Thr308 but not at Ser473. Further, a GRP78 inhibitor, VER155008 inhibited TAM-induced phosphorylation of GSK3β, a downstream substrate of AKT. These results, thus suggests a role for GRP78 in TAM-induced AKT activation. Additionally, co-localization studies by immunofluorescence, and immunoprecipitation experiments demonstrated a complex formation of AKT and GRP78. Furthermore, in glucose-free medium, the cells were sensitized to TAM-induced cell death that was associated with reduced AKT phosphorylation at Thr308, thus strengthening the association of AKT regulation with drug response. Collectively, our findings identify a role of GRP78 in AKT regulation in response to TAM in breast cancer cells. PMID:27262235

  17. Human umbilical cord blood mononuclear cells activate the survival protein Akt in cardiac myocytes and endothelial cells that limits apoptosis and necrosis during hypoxia.

    PubMed

    Henning, Robert J; Dennis, Steve; Sawmiller, Darrell; Hunter, Lorynn; Sanberg, Paul; Miller, Leslie

    2012-06-01

    We have previously reported that human umbilical cord blood mononuclear cells (HUCBC), which contain hematopoietic, mesenchymal, and endothelial stem cells, can significantly reduce acute myocardial infarction size. To determine the mechanism whereby HUCBC increase myocyte and vascular endothelial cell survival, we treated cardiac myocytes and coronary artery endothelial cells in separate experiments with HUCBC plus culture media or culture media alone and subjected the cells to 24 h of hypoxia or normoxia. We then determined in myocytes and endothelial cells activation of the cell survival protein Akt by Western blots. We also determined in these cells apoptosis by annexin V staining and necrosis by propidium iodide staining. Thereafter, we inhibited with API, a specific and sensitive Akt inhibitor, Akt activation in myocytes and endothelial cells cultured with HUCBC during hypoxia and determined cell apoptosis and necrosis. In cells cultured without HUCBC, hypoxia only slightly activated Akt. Moreover, hypoxia increased myocyte apoptosis by ≥ 226% and necrosis by 58% in comparison with myocytes in normoxia. Hypoxic treatment of endothelial cells without HUCBC increased apoptosis by 94% and necrosis by 59%. In contrast, hypoxia did not significantly affect HUCBC. Moreover, in myocyte + HUCBC cultures in hypoxia, HUCBC induced a ≥ 135% increase in myocyte phospho-Akt. Akt activation decreased myocyte apoptosis by 76% and necrosis by 35%. In endothelial cells, HUCBC increased phospho-Akt by 116%. HUCBC also decreased endothelial cell apoptosis by 58% and necrosis by 42%. Inhibition of Akt with API in myocytes and endothelial cells cultured with HUCBC during hypoxia nearly totally prevented the HUCBC-induced decrease in apoptosis and necrosis. We conclude that HUCBC can significantly decrease hypoxia-induced myocyte and endothelial cell apoptosis and necrosis by activating Akt in these cells and in this manner HUCBC can limit myocardial ischemia and injury. PMID

  18. Melatonin Attenuates Her-2, p38 MAPK, p-AKT, and mTOR Levels in Ovarian Carcinoma of Ethanol-Preferring Rats

    PubMed Central

    Ferreira, Grazielle M.; Martinez, Marcelo; Camargo, Isabel Cristina C.; Domeniconi, Raquel F.; Martinez, Francisco Eduardo; Chuffa, Luiz Gustavo A.

    2014-01-01

    Epidermal growth factor receptors 2 (Her-2) and 4 (Her-4) are closely associated with ovarian cancer (OC) progression and metastasis, and a more complete understanding of these signaling pathways allow the development of new therapeutic strategies. Melatonin (Mel) is recognized as having several anticancer properties and has been reported to modulate Her-2 system in aggressive tumors. Here, we investigated OC and the role of Mel therapy on the Her-2- and Her-4-signaling pathway related to downstream molecules in an ethanol-preferring rat model. To induce OC, the left ovary was injected directly with a single dose of 100 µg 7,12-dimethylbenz(a)anthracene (DMBA) dissolved in 10 µL of sesame oil under the bursa. Right ovaries were used as sham-surgery controls. After developing OC, half of the animals received i.p. injections of Mel (200 µg/100 g b.w./day) for 60 days. While Mel therapy was unable to reduce Her-4 and phosphoinositide 3-kinase (PI3K) levels, it was able to suppress the OC-related increase in the levels of the Her-2, p38 mitogen-activated protein kinases (p38 MAPK), protein kinase B (phospho-AKT), and mammalian target of rapamycin (mTOR). In addition, Mel significantly attenuated the expression of Her-2, p38 MAPK, and p-AKT, which are involved in OC signaling during ethanol intake. Collectively, our results suggest that Mel attenuates the Her-2-signaling pathway in OC of ethanol-preferring rats, providing an effective contribution for further development of adjuvant therapies. PMID:25368672

  19. A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling.

    PubMed Central

    Hatakeyama, Mariko; Kimura, Shuhei; Naka, Takashi; Kawasaki, Takuji; Yumoto, Noriko; Ichikawa, Mio; Kim, Jae-Hoon; Saito, Kazuki; Saeki, Mihoro; Shirouzu, Mikako; Yokoyama, Shigeyuki; Konagaya, Akihiko

    2003-01-01

    ErbB tyrosine kinase receptors mediate mitogenic signal cascade by binding a variety of ligands and recruiting the different cassettes of adaptor proteins. In the present study, we examined heregulin (HRG)-induced signal transduction of ErbB4 receptor and found that the phosphatidylinositol 3'-kinase (PI3K)-Akt pathway negatively regulated the extracellular signal-regulated kinase (ERK) cascade by phosphorylating Raf-1 on Ser(259). As the time-course kinetics of Akt and ERK activities seemed to be transient and complex, we constructed a mathematical simulation model for HRG-induced ErbB4 receptor signalling to explain the dynamics of the regulation mechanism in this signal transduction cascade. The model reflected well the experimental results observed in HRG-induced ErbB4 cells and in other modes of growth hormone-induced cell signalling that involve Raf-Akt cross-talk. The model suggested that HRG signalling is regulated by protein phosphatase 2A as well as Raf-Akt cross-talk, and protein phosphatase 2A modulates the kinase activity in both the PI3K-Akt and MAPK (mitogen-activated protein kinase) pathways. PMID:12691603

  20. Akt phosphorylates myc-associated zinc finger protein (MAZ), releases P-MAZ from the p53 promoter, and activates p53 transcription.

    PubMed

    Lee, Wei-Ping; Lan, Keng-Hsin; Li, Chung-Pin; Chao, Yee; Lin, Han-Chieh; Lee, Shou-Dong

    2016-05-28

    The p53 protein is a cell cycle regulator. When the cell cycle progresses, p53 plays an important role in putting a brake on the G1 phase to prevent unwanted errors during cell division. Akt is a downstream kinase of receptor tyrosine kinase. Upon activation, Akt phorphorylates IKK that then phosphorylates IκB and releases NF-κB, leading to transcriptional activation of Dmp1. Dmp1 is a transcriptional activator of Arf. It has been known that oncogene activation stabilizes p53 through transcriptional activation of Arf, which then binds and inhibits Mdm2. In the current study, we show that myc-associated zinc finger protein (MAZ) is a transcriptional repressor of the p53 promoter. Akt phosphorylates MAZ at Thr385, and the phosphorylated MAZ is released from the p53 promoter, leading to transcriptional activation of p53, a new mechanism that contributes to increased p53 protein pool during oncogene activation. PMID:26902421

  1. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    SciTech Connect

    Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji; Kim, Eun Kyoung; Chung, Sung Woon; Hong, Ki Whan; Kim, Chi Dae; Bae, Sun Sik

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.

  2. Glucose regulated protein 78 (GRP78) inhibits apoptosis and attentinutes chemosensitivity of gemcitabine in breast cancer cell via AKT/mitochondrial apoptotic pathway.

    PubMed

    Xie, Jie; Tao, Zhong-Hua; Zhao, Jiang; Li, Ting; Wu, Zheng-Hua; Zhang, Jin-Feng; Zhang, Jian; Hu, Xi-Chun

    2016-06-01

    The underlying mechanism of gemcitabine resistance during breast cancer treatment remains unclear. Glucose regulated protein 78 (GRP78) frequently triggered by anticancer agents, was substantially elevated in gemcitabine resistant sublines. Ectopic expression of GRP78 changes gemcitabine chemosensitivity and apoptosis levels in breast cancer cells. Further experiments showed an involvement of caspase 9, not caspase 8, in gemcitabine resistance and GRP78-mediated chemosensitivity, suggesting that mitochondria apoptotic pathway was activated by GRP78. This finding was further supported by the observations of AKT activation, Bcl-2 increase, Bax and Bim decrease. Conclusively, GRP78 plays a vital role in gemcitabine resistance and clinical strategy to improve gemcitabine efficacy in breast cancer by manipulating GRP78 should be explored. PMID:27012209

  3. Carboxy-terminal modulator protein attenuated extracellular matrix deposit by inhibiting phospho-Akt, TGF-β1 and α-SMA in kidneys of diabetic mice.

    PubMed

    Chen, Ning; Hao, Jun; Li, Lisha; Li, Fan; Liu, Shuxia; Duan, Huijun

    2016-06-10

    Glomerulosclerosis and tubular interstitial extracellular matrix deposit and fibrosis are the main features of diabetic nephropathy, which are mediated by activation of PI3K/Akt signal pathway. Carboxy-terminal modulator protein (CTMP) is known as a negative regulator of PI3K/Akt pathway. Whether CTMP regulates renal extracellular matrix metabolism of diabetic nephropathy is still not known. Here, renal decreased CTMP, enhanced phospho-Akt (Ser 473), TGF-β1, α-SMA and extracellular matrix deposit are found in diabetic mice. Furthermore, high glucose decreases CTMP expression accompanied by enhanced phospho-Akt (Ser 473), TGF-β1 and α-SMA in cultured human renal proximal tubular epithelial cells (HKC), which are effectively prevented by transfection of pYr-ads-4-musCTMP vector. Moreover, delivery of pYr-ads-4-musCTMP vector into kidneys via tail vein of diabetic mice increases CTMP expression by 8.84 times followed by 60.00%, 76.50% and 24.37% decreases of phospho-Akt (Ser 473), TGF-β1 and α-SMA compared with diabetic mice receiving pYr-adshuttle-4 vector. Again, increased renal extracellular matrix accumulation of diabetic mice is also inhibited with delivery of pYr-ads-4-musCTMP vector. Our results indicate that CTMP attenuates renal extracellular matrix deposit by regulating the phosphorylation of Akt, TGF-β1 and α-SMA expression in diabetic mice. PMID:27166156

  4. Tsc1 deficiency impairs mammary development in mice by suppression of AKT, nuclear ERα, and cell-cycle-driving proteins.

    PubMed

    Qin, Zhenqi; Zheng, Hang; Zhou, Ling; Ou, Yanhua; Huang, Bin; Yan, Bo; Qin, Zhenshu; Yang, Cuilan; Su, Yongchun; Bai, Xiaochun; Guo, Jiasong; Lin, Jun

    2016-01-01

    Loss of Tsc1/Tsc2 results in excess cell growth that eventually forms hamartoma in multiple organs. Our study using a mouse model with Tsc1 conditionally knockout in mammary epithelium showed that Tsc1 deficiency impaired mammary development. Phosphorylated S6 was up-regulated in Tsc1(-/-) mammary epithelium, which could be reversed by rapamycin, suggesting that mTORC1 was hyperactivated in Tsc1(-/-) mammary epithelium. The mTORC1 inhibitor rapamycin restored the development of Tsc1(-/-) mammary glands whereas suppressed the development of Tsc1(wt/wt) mammary glands, indicating that a modest activation of mTORC1 is critical for mammary development. Phosphorylated PDK1 and AKT, nuclear ERα, nuclear IRS-1, SGK3, and cell cycle regulators such as Cyclin D1, Cyclin E, CDK2, CDK4 and their target pRB were all apparently down-regulated in Tsc1(-/-) mammary glands, which could be reversed by rapamycin, suggesting that suppression of AKT by hyperactivation of mTORC1, inhibition on nuclear ERα signaling, and down-regulation of cell-cycle-driving proteins play important roles in the retarded mammary development induced by Tsc1 deletion. This study demonstrated for the first time the in vivo role of Tsc1 in pubertal mammary development of mice, and revealed that loss of Tsc1 does not necessarily lead to tissue hyperplasia. PMID:26795955

  5. Sestrin 3 Protein Enhances Hepatic Insulin Sensitivity by Direct Activation of the mTORC2-Akt Signaling

    PubMed Central

    Tao, Rongya; Xiong, Xiwen; Liangpunsakul, Suthat

    2015-01-01

    Sestrin proteins have been implicated in multiple biological processes including resistance to oxidative and genotoxic stresses, protection against aging-related pathologies, and promotion of metabolic homeostasis; however, the underlying mechanisms are incompletely understood. Some evidence suggests that sestrins may inhibit mTORC1 (mechanistic target of rapamycin complex 1) through inhibition of RagA/B GTPases or activation of AMPK; however, whether sestrins are also involved in mTORC2 regulation and function is unclear. To investigate the functions and mechanisms of Sestrin 3 (Sesn3), we generated Sesn3 liver-specific transgenic and knockout mice. Our data show that Sesn3 liver-specific knockout mice exhibit insulin resistance and glucose intolerance, and Sesn3 transgenic mice were protected against insulin resistance induced by a high-fat diet. Using AMPK liver-specific knockout mice, we demonstrate that the Sesn3 insulin-sensitizing effect is largely independent of AMPK. Biochemical analysis reveals that Sesn3 interacts with and activates mTORC2 and subsequently stimulates Akt phosphorylation at Ser473. These findings suggest that Sesn3 can activate Akt via mTORC2 to regulate hepatic insulin sensitivity and glucose metabolism. PMID:25377878

  6. Activation of the p38 MAPK/Akt/ERK1/2 signal pathways is required for the protein stabilization of CDC6 and cyclin D1 in low-dose arsenite-induced cell proliferation.

    PubMed

    Liu, Youhong; Hock, Janet M; Sullivan, Con; Fang, Geying; Cox, Allison J; Davis, Kathleen T; Davis, Bruce H; Li, Xiong

    2010-12-15

    Arsenic trioxide (ATO) is a first-line anti-cancer agent for acute promyelocytic leukemia, and induces apoptosis in other solid cancer cell lines including breast cancer cells. However, as with arsenites found in drinking water and used as raw materials for wood preservatives, insecticides, and herbicides, low doses of ATO can induce carcinogenesis after long-term exposure. At 24 h after exposure, ATO (0.01-1 µM) significantly increased cell proliferation and promoted cell cycle progression from the G1 to S/G2 phases in the non-tumorigenic MCF10A breast epithelial cell line. The expression of 14 out of 96 cell-cycle-associated genes significantly increased, and seven of these genes including cell division cycle 6 (CDC6) and cyclin D1 (CCND1) were closely related to cell cycle progression from G1 to S phase. Low-dose ATO steadily increased gene transcript and protein levels of both CDC6 and cyclin D1 in a dose- and time-dependent manner. Low-dose ATO produced reactive oxygen species (ROS), and activated the p38 MAPK, Akt, and ERK1/2 pathways at different time points within 60 min. Small molecular inhibitors and siRNAs inhibiting the activation of p38 MAPK, Akt, and ERK1/2 decreased the ATO-increased expression of CDC6 protein. Inhibiting the activation of Akt and ERK1/2, but not p38 MAPK, decreased the ATO-induced expression of cyclin D1 protein. This study reports for the first time that p38 MAPK/Akt/ERK1/2 activation is required for the protein stabilization of CDC6 in addition to cyclin D1 in ATO-induced cell proliferation and cell cycle modulation from G1 to S phase. PMID:20862710

  7. Cell surface protein C23 affects EGF-EGFR induced activation of ERK and PI3K-AKT pathways.

    PubMed

    Lv, Shunzeng; Dai, Congxin; Liu, Yuting; Sun, Bowen; Shi, Ranran; Han, Mingzhi; Bian, Ruixiang; Wang, Renzhi

    2015-02-01

    The epidermal growth factor (EGF) pathway has been reported as canonical causes in cancer development. Meanwhile, the involvement of C23 in multiple signaling pathways has been also investigated (Lv et al., 2014). However, the effect of C23 on EGF pathway in glioblastoma is not fully characterized. In the present study, C23 and the epidermal growth factor receptor (EGFR) of U251 cell line were inhibited by C23 and EGFR antibodies, respectively; and then C23 and EGFR siRNAs were used to knock down endogenous C23 and EGFR, respectively. In addition, soft-agar and MTT assay were also introduced. Compared with control, either C23 or EGFR antibodies efficiently repressed the phosphorylation levels of ERK1/2 (p<0.000) and AKT (p<0.000). Similarly, either C23 or EGFR siRNAs indeed resulted in C23 and EGFR knockdown, and further suppressed the expression of p-ERK1/2 and p-AKT. Most importantly, immunoprecipitation revealed C23 interacted with EGFR once U251 was exposed to EGF treatment. In addition, the MTT and soft-agar assay also identified that C23 or EGFR siRNAs could obviously affected cell growth (p=0.004) and invasiveness, as cell viability and colony formation decreased markedly. Our results suggest that C23 plays a crucial role in activation of EGF-induced ERK and PI3K-AKT pathways via interacting with EGFR; furthermore, C23 could be indicative of an important factor in glioblastoma development and a useful target for glioblastoma treatment. PMID:25015231

  8. The hepatitis B virus X protein promotes pancreatic cancer through modulation of the PI3K/AKT signaling pathway.

    PubMed

    Chen, Yiwen; Bai, Xueli; Zhang, Qi; Wen, Liang; Su, Wei; Fu, Qihan; Sun, Xu; Lou, Yu; Yang, Jiaqi; Zhang, Jingying; Chen, Qi; Wang, Jianxin; Liang, Tingbo

    2016-09-28

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal cancer, with poor outcomes. Infection with the hepatitis B virus (HBV) may be associated as a worse prognosis for PDAC patients; however, the mechanisms involved in this process are unclear. We evaluated whether HBV infection leads to PDAC with a more aggressive phenotype, and attempted to elucidate the mechanisms involved. Clinicopathological data and outcomes from 64 patients with PDAC were collected and compared between serum HBsAg+ and HBsAg- patients. Furthermore, we examined the effects of the HBV X protein (HBx) on proliferation and migration of the pancreatic cancer cell lines PANC-1 and SW1990. We investigated expression changes of over 500 proteins by protein array analysis and identified several HBV- and PDAC-related candidates, which were further validated by immunoblotting and enzyme-linked immunosorbent assay. No differences in clinicopathological features were observed between HBsAg+ and HBsAg- patients; however, HBsAg+ patients had a shorter median survival time (8 vs. 13 months), although the differences were not significant. HBV DNA was detected in clinical specimens, even in PDAC patients considered "HBV-free", potentially due to occult infection. HBx expression significantly enhanced cellular proliferation and migration and induced an epithelial-mesenchymal transition phenotype. Expression of ErbB4 and TGF-α was increased in parallel with HBx expression, and several downstream pathways including PI3K/AKT, MAPK, and ERK were upregulated. Inhibition of the PI3K/AKT pathway reversed the effects of HBx in PDAC cell lines. HBx may, therefore, contribute to the progression of PDAC through modulation of these pathways. PMID:27339327

  9. Bone Morphogenic Protein (BMP) Signaling Up-regulates Neutral Sphingomyelinase 2 to Suppress Chondrocyte Maturation via the Akt Protein Signaling Pathway as a Negative Feedback Mechanism*

    PubMed Central

    Kakoi, Hironori; Maeda, Shingo; Shinohara, Naohiro; Matsuyama, Kanehiro; Imamura, Katsuyuki; Kawamura, Ichiro; Nagano, Satoshi; Setoguchi, Takao; Yokouchi, Masahiro; Ishidou, Yasuhiro; Komiya, Setsuro

    2014-01-01

    Although bone morphogenic protein (BMP) signaling promotes chondrogenesis, it is not clear whether BMP-induced chondrocyte maturation is cell-autonomously terminated. Loss of function of Smpd3 in mice results in an increase in mature hypertrophic chondrocytes. Here, we report that in chondrocytes the Runx2-dependent expression of Smpd3 was increased by BMP-2 stimulation. Neutral sphingomyelinase 2 (nSMase2), encoded by the Smpd3 gene, was detected both in prehypertrophic and hypertrophic chondrocytes of mouse embryo bone cartilage. An siRNA for Smpd3, as well as the nSMase inhibitor GW4869, significantly enhanced BMP-2-induced differentiation and maturation of chondrocytes. Conversely, overexpression of Smpd3 or C2-ceramide, which mimics the function of nSMase2, inhibited chondrogenesis. Upon induction of Smpd3 siRNA or GW4869, phosphorylation of both Akt and S6 proteins was increased. The accelerated chondrogenesis induced by Smpd3 silencing was negated by application of the Akt inhibitor MK2206 or the mammalian target of rapamycin inhibitor rapamycin. Importantly, in mouse bone culture, GW4869 treatment significantly promoted BMP-2-induced hypertrophic maturation and calcification of chondrocytes, which subsequently was eliminated by C2-ceramide. Smpd3 knockdown decreased the apoptosis of terminally matured ATDC5 chondrocytes, probably as a result of decreased ceramide production. In addition, we found that expression of hyaluronan synthase 2 (Has2) was elevated by a loss of Smpd3, which was restored by MK2206. Indeed, expression of Has2 protein decreased in nSMase2-positive hypertrophic chondrocytes in the bones of mouse embryos. Our data suggest that the Smpd3/nSMase2-ceramide-Akt signaling axis negatively regulates BMP-induced chondrocyte maturation and Has2 expression to control the rate of endochondral ossification as a negative feedback mechanism. PMID:24505141

  10. Dissecting signalling by individual Akt/PKB isoforms, three steps at once.

    PubMed

    Osorio-Fuentealba, Cesar; Klip, Amira

    2015-09-01

    The serine/threonine kinase Akt/PKB (protein kinase B) is key for mammalian cell growth, survival, metabolism and oncogenic transformation. The diverse level and tissue expression of its three isoforms, Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ, make it daunting to identify isoform-specific actions in vivo and even in isolated tissues/cells. To date, isoform-specific knockout and knockdown have been the best strategies to dissect their individual overall functions. In a recent article in the Biochemical Journal, Kajno et al. reported a new strategy to study isoform selectivity in cell lines. Individual Akt/PKB isoforms in 3T3-L1 pre-adipocytes are first silenced via shRNA and stable cellular clones lacking one or the other isoform are selected. The stably silenced isoform is then replaced by a mutant engineered to be refractory to inhibition by MK-2206 (Akt1(W80A) or Akt2(W80A)). Akt1(W80A) or Akt2(W80A) are functional and effectively recruited to the plasma membrane in response to insulin. The system affords the opportunity to acutely control the activity of the endogenous non-silenced isoform through timely addition of MK-2206. Using this approach, it is confirmed that Akt1/PKBα is the preferred isoform sustaining adipocyte differentiation, but both Akt1/PKBα and Akt2/PKBβ can indistinctly support insulin-dependent FoxO1 (forkhead box O1) nuclear exclusion. Surprisingly, either isoform can also support insulin-dependent glucose transporter (GLUT) 4 translocation to the membrane, in contrast with the preferential role of Akt2/PKBβ assessed by knockdown studies. The new strategy should allow analysis of the plurality of Akt/PKB functions in other cells and in response to other stimuli. It should also be amenable to high-throughput studies to speed up advances in signal transmission by this pivotal kinase. PMID:26348913

  11. Abnormal Protein Glycosylation and Activated PI3K/Akt/mTOR Pathway: Role in Bladder Cancer Prognosis and Targeted Therapeutics

    PubMed Central

    Lima, Luís; Peixoto, Andreia; Fernandes, Elisabete; Neves, Diogo; Neves, Manuel; Gaiteiro, Cristiana; Tavares, Ana; Gil da Costa, Rui M.; Cruz, Ricardo; Amaro, Teresina; Oliveira, Paula A.; Ferreira, José Alexandre; Santos, Lúcio L.

    2015-01-01

    Muscle invasive bladder cancer (MIBC, stage ≥T2) is generally associated with poor prognosis, constituting the second most common cause of death among genitourinary tumours. Due to high molecular heterogeneity significant variations in the natural history and disease outcome have been observed. This has also delayed the introduction of personalized therapeutics, making advanced stage bladder cancer almost an orphan disease in terms of treatment. Altered protein glycosylation translated by the expression of the sialyl-Tn antigen (STn) and its precursor Tn as well as the activation of the PI3K/Akt/mTOR pathway are cancer-associated events that may hold potential for patient stratification and guided therapy. Therefore, a retrospective design, 96 bladder tumours of different stages (Ta, T1-T4) was screened for STn and phosphorylated forms of Akt (pAkt), mTOR (pmTOR), S6 (pS6) and PTEN, related with the activation of the PI3K/Akt/mTOR pathway. In our series the expression of Tn was residual and was not linked to stage or outcome, while STn was statically higher in MIBC when compared to non-muscle invasive tumours (p = 0.001) and associated decreased cancer-specific survival (log rank p = 0.024). Conversely, PI3K/Akt/mTOR pathway intermediates showed an equal distribution between non-muscle invasive bladder cancer (NMIBC) and MIBC and did not associate with cancer-specif survival (CSS) in any of these groups. However, the overexpression of pAKT, pmTOR and/or pS6 allowed discriminating STn-positive advanced stage bladder tumours facing worst CSS (p = 0.027). Furthermore, multivariate Cox regression analysis revealed that overexpression of PI3K/Akt/mTOR pathway proteins in STn+ MIBC was independently associated with approximately 6-fold risk of death by cancer (p = 0.039). Mice bearing advanced stage chemically-induced bladder tumours mimicking the histological and molecular nature of human tumours were then administrated with mTOR-pathway inhibitor sirolimus (rapamycin

  12. C23 protein meditates bone morphogenetic protein-2-mediated EMT via up-regulation of Erk1/2 and Akt in gastric cancer.

    PubMed

    Yang, Yonggang; Yang, Chunyan; Zhang, Jianping

    2015-03-01

    In our previous study, the epithelial-to-mesenchymal transition (EMT) has been identified to be involved in gastric cancer progression. Notably, nuclear protein C23 and bone morphogenetic protein-2 (BMP2) have been linked into EMT. However, the specific mechanisms underlying BMP2 pathway-mediated EMT are not still unraveled. In this study, we adopted immunohistochemistry and immunoblotting to determine the expression of C23 and BMP2 receptor II (BMPR-II) in 90 gastric cancer samples and cell lines. Subsequently, relevant cell lines were selected to be treated with si-C23 or si-BMPRII and the detection of in vitro assay. Our results revealed that both C23 and BMPRII were aberrantly and constitutively expressed in gastric cancer specimens and cell lines, whose expression was positively associated with metastasis, stage and differentiation, and portended poor survival outcome of gastric cancer patients. In vitro assay validated the increased expression of p-Erk1/2, p-Akt, vimentin, N-cadherin, and MMP2 in BMP2-stimulated MGC803 cells, which was in a dose-dependent manner. By contrast, si-C23 treatment attenuated the BMP2-stimulated expression of p-Erk1/2, p-Akt, vimentin, N-cadherin, and MMP2. Also, the treatment of either si-C23 or si-BMPRII decreased the ability of migration and invasion of MGC803 cells. In conclusion, C23 mediates BMP2-induced EMT progression via the up-regulation of Erk1/2 and Akt signaling pathway in gastric cancer, which indicated both C23 and BMPRII pathway could be recommended as prospective targets or biomarkers to antagonize the progression of gastric cancer. PMID:25698539

  13. Phosphorylated Ribosomal Protein S6 Is Required for Akt-Driven Hyperplasia and Malignant Transformation, but Not for Hypertrophy, Aneuploidy and Hyperfunction of Pancreatic β-Cells

    PubMed Central

    Wittenberg, Avigail Dreazen; Azar, Shahar; Klochendler, Agnes; Stolovich-Rain, Miri; Avraham, Shlomit; Birnbaum, Lea; Binder Gallimidi, Adi; Katz, Maximiliano; Dor, Yuval; Meyuhas, Oded

    2016-01-01

    Constitutive expression of active Akt (Akttg) drives hyperplasia and hypertrophy of pancreatic β-cells, concomitantly with increased insulin secretion and improved glucose tolerance, and at a later stage the development of insulinoma. To determine which functions of Akt are mediated by ribosomal protein S6 (rpS6), an Akt effector, we generated mice that express constitutive Akt in β-cells in the background of unphosphorylatable ribosomal protein S6 (rpS6P-/-). rpS6 phosphorylation deficiency failed to block Akttg-induced hypertrophy and aneuploidy in β-cells, as well as the improved glucose homeostasis, indicating that Akt carries out these functions independently of rpS6 phosphorylation. In contrast, rpS6 phosphorylation deficiency efficiently restrained the reduction in nuclear localization of the cell cycle inhibitor p27, as well as the development of Akttg-driven hyperplasia and tumor formation in β-cells. In vitro experiments with Akttg and rpS6P-/-;Akttg fibroblasts demonstrated that rpS6 phosphorylation deficiency leads to reduced translation fidelity, which might underlie its anti-tumorigenic effect in the pancreas. However, the role of translation infidelity in tumor suppression cannot simply be inferred from this heterologous experimental model, as rpS6 phosphorylation deficiency unexpectedly elevated the resistance of Akttg fibroblasts to proteotoxic, genotoxic as well as autophagic stresses. In contrast, rpS6P-/- fibroblasts exhibited a higher sensitivity to these stresses upon constitutive expression of oncogenic Kras. The latter result provides a possible mechanistic explanation for the ability of rpS6 phosphorylation deficiency to enhance DNA damage and protect mice from Kras-induced neoplastic transformation in the exocrine pancreas. We propose that Akt1 and Kras exert their oncogenic properties through distinct mechanisms, even though both show addiction to rpS6 phosphorylation. PMID:26919188

  14. Phosphorylated Ribosomal Protein S6 Is Required for Akt-Driven Hyperplasia and Malignant Transformation, but Not for Hypertrophy, Aneuploidy and Hyperfunction of Pancreatic β-Cells.

    PubMed

    Wittenberg, Avigail Dreazen; Azar, Shahar; Klochendler, Agnes; Stolovich-Rain, Miri; Avraham, Shlomit; Birnbaum, Lea; Binder Gallimidi, Adi; Katz, Maximiliano; Dor, Yuval; Meyuhas, Oded

    2016-01-01

    Constitutive expression of active Akt (Akttg) drives hyperplasia and hypertrophy of pancreatic β-cells, concomitantly with increased insulin secretion and improved glucose tolerance, and at a later stage the development of insulinoma. To determine which functions of Akt are mediated by ribosomal protein S6 (rpS6), an Akt effector, we generated mice that express constitutive Akt in β-cells in the background of unphosphorylatable ribosomal protein S6 (rpS6P-/-). rpS6 phosphorylation deficiency failed to block Akttg-induced hypertrophy and aneuploidy in β-cells, as well as the improved glucose homeostasis, indicating that Akt carries out these functions independently of rpS6 phosphorylation. In contrast, rpS6 phosphorylation deficiency efficiently restrained the reduction in nuclear localization of the cell cycle inhibitor p27, as well as the development of Akttg-driven hyperplasia and tumor formation in β-cells. In vitro experiments with Akttg and rpS6P-/-;Akttg fibroblasts demonstrated that rpS6 phosphorylation deficiency leads to reduced translation fidelity, which might underlie its anti-tumorigenic effect in the pancreas. However, the role of translation infidelity in tumor suppression cannot simply be inferred from this heterologous experimental model, as rpS6 phosphorylation deficiency unexpectedly elevated the resistance of Akttg fibroblasts to proteotoxic, genotoxic as well as autophagic stresses. In contrast, rpS6P-/- fibroblasts exhibited a higher sensitivity to these stresses upon constitutive expression of oncogenic Kras. The latter result provides a possible mechanistic explanation for the ability of rpS6 phosphorylation deficiency to enhance DNA damage and protect mice from Kras-induced neoplastic transformation in the exocrine pancreas. We propose that Akt1 and Kras exert their oncogenic properties through distinct mechanisms, even though both show addiction to rpS6 phosphorylation. PMID:26919188

  15. Modulation in Activation and Expression of PTEN, Akt1, and PDK1: Further Evidence Demonstrating Altered Phosphoinositide 3-kinase Signaling in Postmortem Brain of Suicide Subjects

    PubMed Central

    Dwivedi, Yogesh; Rizavi, Hooriyah S.; Zhang, Hui; Roberts, Rosalinda C.; Conley, Robert R.; Pandey, Ghanshyam N.

    2010-01-01

    Background Phosphoinositide 3-kinase (PI 3-K) signaling plays a crucial role in neuronal growth and plasticity. Recently, we demonstrated that suicide brain is associated with decreased activation and expression of selective catalytic and regulatory subunits of PI 3-K. The present investigation examined the regulation and functional significance of compromised PI 3-K in suicide brain at the level of upstream phosphatase and tensin homolog on chromosome ten (PTEN) and downstream substrates 3-phosphoinositide-dependent kinase 1 (PDK1) and Akt. Method mRNA expression of Akt1, Akt3, PTEN, and PDK1 by competitive RT-PCR; protein expression of Akt1, Akt3, PTEN, PDK1, phosphorylated-Akt1 (Ser473), phosphorylated-Akt1(Thr308), phosphorylated-PDK1, and phosphorylated-PTEN by Western blot; and catalytic activities of Akt1, Akt3, and PDK1 by enzymatic assays were determined in prefrontal cortex (PFC) and hippocampus obtained from suicide subjects and nonpsychiatric controls. Results No significant changes in the expression of Akt1 or Akt3 were observed; however, catalytic activity of Akt1, but not of Akt3, was decreased in PFC and hippocampus of suicide subjects, which was associated with decreased phosphorylation of Akt1 at Ser473 and Thr308. The catalytic activity of PDK1 and the level of phosphorylated-PDK1 were also decreased in both brain areas without any change in expression levels of PDK1. On the other hand, mRNA and protein expression of PTEN was increased, whereas the level of phosphorylated-PTEN was decreased. Conclusion Our study demonstrates abnormalities in PI 3-K signaling at several levels in brain of suicide subjects and suggests the possible involvement of aberrant PI 3-K/Akt signaling in the pathogenic mechanisms of suicide. PMID:20163786

  16. Pregnancy-associated plasma protein-A promotes TF procoagulant activity in human endothelial cells by Akt-NF-κB axis.

    PubMed

    Cirillo, Plinio; Conte, Stefano; Pellegrino, Grazia; Ziviello, Francesca; Barra, Giusi; De Palma, Raffaele; Leonardi, Antonio; Trimarco, Bruno

    2016-08-01

    Pregnancy-associated plasma protein-A (PAPP-A) is a metalloproteinase with a controversial role in pathophysiology of cardiovascular disease. It seems involved in progression of atherosclerosis and is widely represented in atherosclerotic plaque. PAPP-A plasma levels are elevated in patients with acute coronary syndromes (ACS), thus it has been suggested that it might be a prognostic marker for developing major cardiovascular events. However, the pathophysiological link(s) between PAPP-A and ACS are still unknown. Several studies have indicated that tissue factor (TF) plays a pivotal role in the pathophysiology of ACS by triggering the formation of intracoronary thrombi following endothelial injury. This study investigates whether PAPP-A, at concentrations measurable in ACS patients, might induce TF expression in human endothelial cells in culture (HUVEC). In HUVEC, PAPP-A induced TF-mRNA transcription as demonstrated by real time PCR and expression of functionally active TF as demonstrated by FACS analysis and pro-coagulant activity assay. PAPP-A induced TF expression through the activation of Akt/NF-κB axis, as demonstrated by luciferase assay and by suppression of TF-mRNA transcription as well as of TF expression/activity by Akt and NF-κB inhibitors. These data indicate that PAPP-A promotes TF expression in human endothelial cells and support the hypothesis that this proteinase, besides being involved in progression of atherosclerosis, does not represent an independent risk factor for adverse cardiovascular events, but it rather might play an "active" role in the pathophysiology of ACS as an effector molecule able to induce a pro-thrombotic phenotype in endothelial cells. PMID:27007282

  17. Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis

    PubMed Central

    Rotllan, Noemi; Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Wanschel, Amarylis C.; Aryal, Binod; Aranda, Juan F.; Goedeke, Leigh; Salerno, Alessandro G.; Ramírez, Cristina M.; Sessa, William C.; Suárez, Yajaira; Fernández-Hernando, Carlos

    2015-01-01

    Atherosclerosis is the major cause of death and disability in diabetic and obese subjects with insulin resistance. Akt2, a phosphoinositide-dependent serine-threonine protein kinase, is highly express in insulin-responsive tissues; however, its role during the progression of atherosclerosis remains unknown. Thus, we aimed to investigate the contribution of Akt2 during the progression of atherosclerosis. We found that germ-line Akt2-deficient mice develop similar atherosclerotic plaques as wild-type mice despite higher plasma lipids and glucose levels. It is noteworthy that transplantation of bone marrow cells isolated from Akt2−/− mice to Ldlr−/− mice results in marked reduction of the progression of atherosclerosis compared with Ldlr−/− mice transplanted with wild-type bone marrow cells. In vitro studies indicate that Akt2 is required for macrophage migration in response to proatherogenic cytokines (monocyte chemotactic protein-1 and macrophage colony-stimulating factor). Moreover, Akt2−/− macrophages accumulate less cholesterol and have an alternative activated or M2-type phenotype when stimulated with proinflammatory cytokines. Together, these results provide evidence that macrophage Akt2 regulates migration, the inflammatory response and cholesterol metabolism and suggest that targeting Akt2 in macrophages might be beneficial for treating atherosclerosis.—Rotllan, N., Chamorro-Jorganes, A., Araldi, E., Wanschel, A. C., Aryal, B., Aranda, J. F., Goedeke, L., Salerno, A. G., Ramírez, C. M., Sessa,W. C., Suárez, Y., Fernández-Hernando, C. Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis. PMID:25392271

  18. EB-virus latent membrane protein 1 potentiates the stemness of nasopharyngeal carcinoma via preferential activation of PI3K/AKT pathway by a positive feedback loop.

    PubMed

    Yang, C-F; Yang, G-D; Huang, T-J; Li, R; Chu, Q-Q; Xu, L; Wang, M-S; Cai, M-D; Zhong, L; Wei, H-J; Huang, H-B; Huang, J-L; Qian, C-N; Huang, B-J

    2016-06-30

    Our previous study reported that Epstein-Barr virus(EBV)-encoded latent membrane protein 1 (LMP1) could induce development of CD44(+/High) stem-like cells in nasopharyngeal carcinoma (NPC). However, the molecular mechanisms that underlie modulation of cancer stem cells (CSCs) in NPC remain unclear. Here, we show that LMP1 induced CSC-like properties through promotion of the expression of epithelial-mesenchymal transition-like cellular markers and through alterations in differentiation markers. Furthermore, LMP1 activated and triggered phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, which subsequently stimulated expression of CSC markers, development of side population and tumor sphere formation. This suggests that PI3K/AKT pathway has an important role in the induction and maintenance of CSC properties in NPC. Similarly, PI3K/AKT pathway was also activated by phosphorylase in LMP1-induced CD44(+/High) cells. In addition, LMP1 greatly increased expression of miR-21 and downregulated expression of the miR-21 target, PTEN. Overexpression of miR-21 by transfection of miR-21 mimics into LMP1-transformed cells led to phosphorylase-mediated activation of the PI3K/AKT pathway and induction of CSCs. On the contrary, phosphorylation of the PI3K/AKT pathway and the expression of CSC were reversed by an miR-21 inhibitor. The specific inhibitor (Ly294002) of PI3K/AKT pathway significantly decreased expression of miR-21 and CSC markers and upregulated the expression of PTEN, which indicates that miR-21 and PTEN are the downstream effectors of PI3K/AKT and that expression of these two effectors are related to the development of NPC CSCs. Taken together, our novel findings indicate that LMP1, PI3K/AKT, miR-21 and PTEN constitute a positive feedback loop and have a key role in LMP1-induced CSCs in NPC. PMID:26568302

  19. Hepatitis C virus E2 protein involve in insulin resistance through an impairment of Akt/PKB and GSK3β signaling in hepatocytes

    PubMed Central

    2012-01-01

    Background Hepatitis C virus (HCV) infection may cause liver diseases of various severities ranging from primary acute infection to life-threatening diseases, such as cirrhosis or hepatocellular carcinoma with poor prognosis. According to clinical findings, HCV infection may also lead to some extra-hepatic symptoms, including type 2 diabetes mellitus (DM). Since insulin resistance is the major etiology for type 2 DM and numerous evidences showed that HCV infection associated with insulin resistance, the involvement of E2 in the pathogenesis of type 2 DM and underlying mechanisms were investigated in this study. Methods Reverse transcription and real-time PCR, Western blot assay, Immunoprecipitation, Glucose uptake assay and analysis of cellular glycogen content. Results Results showed that E2 influenced on protein levels of insulin receptor substrate-1 (IRS-1) and impaired insulin-induced Ser308 phosphorylation of Akt/PKB and Ser9 phosphorylation of GSK3β in Huh7 cells, leading to an inhibition of glucose uptake and glycogen synthesis, respectively, and eventually insulin resistance. Conclusions Therefore, HCV E2 protein indeed involved in the pathogenesis of type 2 DM by inducing insulin resistance. PMID:22721429

  20. PARP-inhibitor treatment prevents hypertension induced cardiac remodeling by favorable modulation of heat shock proteins, Akt-1/GSK-3β and several PKC isoforms.

    PubMed

    Deres, Laszlo; Bartha, Eva; Palfi, Anita; Eros, Krisztian; Riba, Adam; Lantos, Janos; Kalai, Tamas; Hideg, Kalman; Sumegi, Balazs; Gallyas, Ferenc; Toth, Kalman; Halmosi, Robert

    2014-01-01

    Spontaneously hypertensive rat (SHR) is a suitable model for studies of the complications of hypertension. It is known that activation of poly(ADP-ribose) polymerase enzyme (PARP) plays an important role in the development of postinfarction as well as long-term hypertension induced heart failure. In this study, we examined whether PARP-inhibitor (L-2286) treatment could prevent the development of hypertensive cardiopathy in SHRs. 6-week-old SHR animals were treated with L-2286 (SHR-L group) or placebo (SHR-C group) for 24 weeks. Wistar-Kyoto rats were used as aged-matched, normotensive controls (WKY group). Echocardiography was performed, brain-derived natriuretic peptide (BNP) activity and blood pressure were determined at the end of the study. We detected the extent of fibrotic areas. The amount of heat-shock proteins (Hsps) and the phosphorylation state of Akt-1(Ser473), glycogen synthase kinase (GSK)-3β(Ser9), forkhead transcription factor (FKHR)(Ser256), mitogen activated protein kinases (MAPKs), and protein kinase C (PKC) isoenzymes were monitored. The elevated blood pressure in SHRs was not influenced by PARP-inhibitor treatment. Systolic left ventricular function and BNP activity did not differ among the three groups. L-2286 treatment decreased the marked left ventricular (LV) hypertrophy which was developed in SHRs. Interstitial collagen deposition was also decreased by L-2286 treatment. The phosphorylation of extracellular signal-regulated kinase (ERK)1/2(Thr183-Tyr185), Akt-1(Ser473), GSK-3β(Ser9), FKHR(Ser256), and PKC ε(Ser729) and the level of Hsp90 were increased, while the activity of PKC α/βII(Thr638/641), ζ/λ(410/403) were mitigated by L-2286 administration. We could detect signs of LV hypertrophy without congestive heart failure in SHR groups. This alteration was prevented by PARP inhibition. Our results suggest that PARP-inhibitor treatment has protective effect already in the early stage of hypertensive myocardial remodeling. PMID

  1. Dichloromethane fraction of Cimicifuga heracleifolia decreases the level of melanin synthesis by activating the ERK or AKT signaling pathway in B16F10 cells.

    PubMed

    Jang, Ji Yeon; Lee, Jun Hyuk; Kang, Byoung Won; Chung, Kyung Tae; Choi, Yung Hyun; Choi, Byung Tae

    2009-03-01

    Cimicifuga rhizoma has long been used in traditional Korean medicine. In particular, a Cimicifuga heracleifolia extract (CHE) was reported to inhibit the formation of glutamate and the glutamate dehydrogenase activity in cultured rat islet. Glutamate activates melanogenesis by activating tyrosinase. Accordingly, it was hypothesized that a CHE might inhibit the melanogenesis-related signal pathways including the inhibition of microphthalmia-associated transcription factor (MITF)-tyrosinase signaling and/or the activation of extracellular signal-regulated kinase (ERK)-Akt signaling. The results showed that CHE inhibits the cellular melanin contents, tyrosinase activity and expression of melanogenesis-related proteins including MITF, tyrosinase and tyrosinase-related protein (TRP)s in alpha-melanocyte-stimulating hormone-stimulated B16 cells. Moreover, CHE phosphorylates MEK, ERK1/2 and Akt, which are melanogenesis inhibitory proteins. The data suggest that CHE inhibits melanogenesis signaling by both inhibiting the tyrosinase directly and activating the MEK-ERK or Akt signal pathways-mediated suppression of MITF and its downstream signal pathway, including tyrosinase and TRPs. Therefore, C. heracleifolia would be a useful therapeutic agent for treating hyperpigmentation and an effective component in whitening and/or lightening cosmetics. PMID:18803655

  2. Na+/Ca2+ exchanger 1 (NCX-1) mediates the anti-apoptotic effect of Akt1 in neonatal rat cardiomyocytes during ischemia/reperfusion

    PubMed Central

    Huang, Manman; Pan, Defeng; Du, Yinping; Zhu, Hong; Zhang, Lin; Xu, Tongda; Luo, Yuanyuan; Li, Dongye

    2016-01-01

    The purpose of this study was to investigate the anti-apoptotic role of Akt1 gene in neonatal rat cardiomyocytes and the relationship with Na+/Ca2+ exchanger 1 (NCX1) during ischemia/reperfusion (IR). The cultured original rat cardiomyocytes were randomly divided into five groups: normal control group (C group), hypoxia/reoxygenation group (HR group), the control vector pLVX-EGFP-3FLAG group (CV group), the gene pLVX-EGFP-3FLAG-Akt1 transfection group (A group), and Akt1 inhibitor LY294002 group (LY group). Cardiomyocyte vitality was determined using MTT, and the apoptosis was determined by TUNEL to verify the anti-apoptotic role of Akt1. The mRNA levels of Akt1 and NCX1 were determined by RT-PCR, the protein expression of Akt1, p-Akt1, NCX1 and the apoptotic proteins of mitochondrial pathway cytochrome C (Cyto C) and caspase-9 were measured by Western blot. As a result, transfected Akt1 (A group) showed increased myocardial cell viability and reduced apoptosis, with increase in Akt1 expression and decrease in NCX1 expression. The levels of apoptotic proteins Cyto C and caspase-9 also declined. This study demonstrated that lentivirus-mediated transfection of Akt1 played an anti-apoptotic role during IR of rat cardiomyocytes, via inhibition of NCX1 and other mitochondrial proteins. PMID:27186265

  3. Determinants of hepcidin levels in sepsis-associated acute kidney injury: Impact on pAKT/PTEN pathways?

    PubMed

    Schaalan, Mona F; Mohamed, Walid A

    2016-09-01

    The antimicrobial β-defensin-like role of hepcidin (HEPC) has been increasingly investigated for its potential role in acute kidney injury (AKI). In sepsis-induced AKI, there is a complex interplay between positive and negative regulation of HEPC, with consequently altered distributions of iron caused by changes in HEPC levels. The aim of the current research was to assess serum HEPC levels in a cohort of septic patients with AKI and investigate the regulatory impact of hypoxia-inducing factor (HIF)-1α, erythropoietin (EPO) and inflammation on HEPC levels and related signal cascades in these patients. Baseline, higher levels of SCr (2.3-fold), blood urea nitrogen (BUN) (1.8-fold), uric acid (2.3-fold) and white blood cell (2.3-fold) were noted in septic AKI patients, along with decreased levels of albumin (15.7%), creatinine (44.7%) and BUN/creatinine ratios (23.8%), compared to in normal subjects. These hosts also had increased serum levels of TNFα (4.4-times) and TGFβ1 (3.2-times) compared to controls (p < 0.05). Further, HEPC and HIF-1α levels were also increased (8.8- and 3.6-times control levels), while EPO levels were decreased (77.8%) from control levels. After 12 weeks of antibiotic therapy, all septic AKI patients showed significant improvement of the altered markers of kidney dysfunction. In line with significant reductions in serum TNFα and TGFβ1 (25.5% and 26.2%, respectively), HEPC and HIF-1α levels were significantly decreased (31.6% and 19.3%), and EPO levels increased (1.9-fold) compared to pretreatment values. There was a significant positive correlation between HEPC levels and kidney function markers (SCr and BUN), inflammatory TNFα and TGFβ1 and serum HIF-1α and pAKT in septic AKI patients before and after treatment. Based on the results here, we conclude that HEPC, EPO and HIF-1α are involved in the pathogenesis of sepsis-induced AKI and confirm the dominating effects of inflammatory determinants over hypoxia

  4. Ginsenoside Rg3 attenuates myocardial ischemia/reperfusion injury via Akt/endothelial nitric oxide synthase signaling and the B‑cell lymphoma/B‑cell lymphoma‑associated X protein pathway.

    PubMed

    Wang, Yiping; Hu, Zhaohui; Sun, Bing; Xu, Jiahong; Jiang, Jinfa; Luo, Ming

    2015-06-01

    Previous studies have suggested that ginsenoside Rg3 (GSRg3) extract from the medicinal plant Panax ginseng, may increase nitric oxide production via increases in the phosphorylation and expression of endothelial nitric oxide synthase (eNOS). The present study used an in vitro neonatal rat cardiomyocyte (NRC) model of anoxia‑reoxygenation injury and an in vivo rat model of myocardial ischemia/reperfusion (MI/R) injury. Hemodynamic, histopathological and biochemical assessment of the myocardial injury was performed and the expression levels of lactate dehydrogenase (LDH), superoxide dismutase and creatine kinase (CK) were measured in serum from the animal model, which may reflect myocardial injury. NRC injury was determined using a Cell Counting kit‑8. The GSRg3 anti‑apoptotic effects were assessed using flow cytometry to investigate the number of early‑late apoptotic cells and western blot analysis was performed to analyze the protein expression levels of caspase‑3, caspase‑9, B‑cell lymphoma‑2 (Bcl‑2), phosphorylated (p‑)Akt and eNOS. The results suggested that pretreatment with GSRg3 (60 mg/kg) significantly improved rat cardiac function, as demonstrated by increased left ventricular systolic pressure, heart rate and first derivative of left ventricular pressure. GSRg3 also reduced the size of the myocardial infarct and LDH/CK levels in the blood following MI/R. In vitro investigations revealed that GSRg3 (10 mM) decreased NRC apoptosis through inhibiting the activation of caspase‑3 and caspase‑9, and increasing the expression levels of p‑Akt, eNOS and the ratio of Bcl‑2/Bcl‑2‑associated X protein (Bax). Overall, the present study revealed that GSRg3 mediated a cardioprotective effect against MI/R‑induced apoptosis via Akt/eNOS signaling and the Bcl‑2/Bax pathway. PMID:25672441

  5. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair

    PubMed Central

    Mirotsou, Maria; Zhang, Zhongyan; Deb, Arjun; Zhang, Lunan; Gnecchi, Massimiliano; Noiseux, Nicolas; Mu, Hui; Pachori, Alok; Dzau, Victor

    2007-01-01

    Stem cell therapy has emerged as a promising tool for the treatment of a variety of diseases. Previously, we have shown that Akt-modified mesenchymal stem cells mediate tissue repair through paracrine mechanisms. Using a comprehensive functional genomic strategy, we show that secreted frizzled related protein 2 (Sfrp2) is the key stem cell paracrine factor that mediates myocardial survival and repair after ischemic injury. Sfrp2 is known to modulate Wnt signaling, and we demonstrate that cardiomyocytes treated with secreted frizzled related protein increase cellular β-catenin and up-regulate expression of antiapoptotic genes. These findings reveal the key role played by Sfrp2 in mediating the paracrine effects of Akt-mesenchymal stem cells on tissue repair and identify modulation of Wnt signaling as a therapeutic target for heart disease. PMID:17251350

  6. Sphingosine-1-Phosphate Protects Intestinal Epithelial Cells from Apoptosis Through the Akt Signaling Pathway

    PubMed Central

    Greenspon, Jose; Li, Ruiyun; Xiao, Lan; Rao, Jaladanki N.; Marasa, Bernard S.; Strauch, Eric D.; Wang, Jian-Ying; Turner, Douglas J.

    2009-01-01

    Objective The regulation of apoptosis of intestinal mucosal cells is important in maintenance of normal intestinal physiology. Summary Sphingosine-1-phosphate (S1P) has been shown to play a critical role in cellular protection to otherwise lethal stimuli in several nonintestinal tissues. Methods The current study determines whether S1P protected normal intestinal epithelial cells (IECs) from apoptosis and whether Akt activation was the central pathway for this effect. Results S1P demonstrated significantly reduced levels of apoptosis induced by tumor necrosis factor-alpha (TNF-α)/cycloheximide (CHX). S1P induced increased levels of phosphorylated Akt and increased Akt activity, but did not affect total amounts of Akt. This activation of Akt was associated with decreased levels of both caspase-3 protein levels and of caspase-3 activity. Inactivation of Akt by treatment with the PI3K chemical inhibitor LY294002 or by overexpression of the dominant negative mutant of Akt (DNMAkt) prevented the protective effect of S1P on apoptosis. Additionally, silencing of the S1P-1 receptor by specific siRNA demonstrated a lesser decrease in apoptosis to S1P exposure. Conclusion These results indicate that S1P protects intestinal epithelial cells from apoptosis via an Akt-dependent pathway. PMID:18654850

  7. Activating Akt and the brain's resources to drive cellular survival and prevent inflammatory injury

    PubMed Central

    Chong, Z.Z.; Li, F.; Maiese, K.

    2008-01-01

    Summary Protein kinase B, also known as Akt, is a serine/threonine kinase and plays a critical role in the modulation of cell development, growth, and survival. Interestingly, Akt is ubiquitously expressed throughout the body, but its expression in the nervous system is substantially up-regulated during cellular stress, suggesting a more expansive role for Akt in the nervous system that may involve cellular protection. In this regard, a body of recent work has identified a robust capacity for Akt and its downstream substrates to foster both neuronal and vascular survival during apoptotic injury. Cell survival by Akt is driven by the modulation of both intrinsic cellular pathways that oversee genomic DNA integrity and extrinsic mechanisms that control inflammatory microglial activation. A series of distinct pathways are regulated by Akt that include the Forkhead family of transcription factors, GSK-3ß, ß-catenin, c-Jun, CREB, Bad, IKK, and p53. Culminating below these substrates of Akt are the control of caspase mediated pathways that promote genomic integrity as well as prevent inflammatory cell demise. With further levels of progress in defining the cellular role of Akt, the attractiveness of Akt as a vital and broad cytoprotectant for both neuronal and vascular cell populations should continue to escalate. PMID:15578447

  8. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis

    PubMed Central

    Mancini, Maria L.; Lien, Evan C.; Toker, Alex

    2016-01-01

    One of the most frequently deregulated signaling pathways in breast cancer is the PI 3-K/Akt cascade. Genetic lesions are commonly found in PIK3CA, PTEN, and AKT, which lead to excessive and constitutive activation of Akt and downstream signaling that results in uncontrolled proliferation and increased cellular survival. One such genetic lesion is the somatic AKT1(E17K) mutation, which has been identified in 4-8% of breast cancer patients. To determine how this mutation contributes to mammary tumorigenesis, we constructed a genetically engineered mouse model that conditionally expresses human AKT1(E17K) in the mammary epithelium. Although AKT1(E17K) is only weakly constitutively active and does not promote proliferation in vitro, it is capable of escaping negative feedback inhibition to exhibit sustained signaling dynamics in vitro. Consistently, both virgin and multiparous AKT1(E17K) mice develop mammary gland hyperplasia that do not progress to carcinoma. This hyperplasia is accompanied by increased estrogen receptor expression, although exposure of the mice to estrogen does not promote tumor development. Moreover, AKT1(E17K) prevents HER2-driven mammary tumor formation, in part through negative feedback inhibition of RTK signaling. Analysis of TCGA breast cancer data revealed that the mRNA expression, total protein levels, and phosphorylation of various RTKs are decreased in human tumors harboring AKT1(E17K). PMID:27004402

  9. Bis(hinokitiolato)zinc complex ([Zn(hkt)2]) activates Akt/protein kinase B independent of insulin signal transduction.

    PubMed

    Naito, Yuki; Yoshikawa, Yutaka; Masuda, Kazufumi; Yasui, Hiroyuki

    2016-07-01

    Since many Zn complexes have been developed to enhance the insulin-like activity and increase the exposure and residence of Zn in the animal body, these complexes are recognized as one of the new candidates with action mechanism different from existing anti-diabetic drugs. However, the molecular mechanism by which Zn complexes exert an anti-DM effect is unknown. Therefore, we evaluated the activity of Zn complexes, especially related to the phosphorylation of insulin signaling pathway components. We focused on the insulin-like effects of the bis(hinokitiolato)zinc complex, [Zn(hkt)2], using 3T3-L1 adipocytes. [Zn(hkt)2] was taken up by cells and induced Akt phosphorylation in a time-dependent manner. Additionally, it showed inhibitory activity against PTP1B and PTEN, which are major negative regulators of insulin signaling. It did not promote the phosphorylation of IR (insulin receptor)-β or IRS (insulin receptor substrate)-1 by itself, but in combination with insulin, it enhanced the phosphorylation of IRβ. We conclude that [Zn(hkt)2] has effects on the proteins of insulin signaling pathway without insulin receptor mediation, and [Zn(hkt)2] promotes insulin function and shows the anti-DM effects. Thus, [Zn(hkt)2] may be the basis for improved DM treatments. PMID:27251140

  10. Exendin-4 induces myocardial protection through MKK3 and Akt-1 in infarcted hearts.

    PubMed

    Du, Jianfeng; Zhang, Ling; Wang, Zhengke; Yano, Naohiro; Zhao, Yu Tina; Wei, Lei; Dubielecka-Szczerba, Patrycja; Liu, Paul Y; Zhuang, Shougang; Qin, Gangjian; Zhao, Ting C

    2016-02-15

    We have demonstrated that glucagon like peptide-1 (GLP-1) protects the heart against ischemic injury. However, the physiological mechanism by which GLP-1 receptor (GLP-1R) initiates cardioprotection remains to be determined. The objective of this study is to elucidate the functional roles of MAPK kinase 3 (MKK3) and Akt-1 in mediating exendin-4-elicited protection in the infarcted hearts. Adult mouse myocardial infarction (MI) was created by ligation of the left descending artery. Wild-type, MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice were divided into one of several groups: 1) sham: animals underwent thoracotomy without ligation; 2) MI: animals underwent MI and received a daily dose of intraperitoneal injection of vehicle (saline); 3) MI + exendin-4: infarcted mice received daily injections of exendin-4, a GLP-1R agonist (0.1 mg/kg, ip). Echocardiographic measurements indicate that exendin-4 treatment resulted in the preservation of ventricular function and increases in the survival rate, but these effects were diminished in MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice. Exendin-4 treatments suppressed cardiac hypotrophy and reduced scar size and cardiac interstitial fibrosis, respectively, but these beneficial effects were lost in genetic elimination of MKK3, Akt-1, or Akt-1(-/-);MKK3(-/-) mice. GLP-1R stimulation stimulated angiogenic responses, which were also mitigated by deletion of MKK3 and Akt-1. Exendin-4 treatment increased phosphorylation of MKK3, p38, and Akt-1 at Ser129 but decreased levels of active caspase-3 and cleaved poly (ADP-ribose) polymerase; these proteins were diminished in MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice. These results reveal that exendin-4 treatment improves cardiac function, attenuates cardiac remodeling, and promotes angiogenesis in the infarcted myocardium through MKK3 and Akt-1 pathway. PMID:26739490

  11. Holo-APP and G-protein-mediated signaling are required for sAPPα-induced activation of the Akt survival pathway.

    PubMed

    Milosch, N; Tanriöver, G; Kundu, A; Rami, A; François, J-C; Baumkötter, F; Weyer, S W; Samanta, A; Jäschke, A; Brod, F; Buchholz, C J; Kins, S; Behl, C; Müller, U C; Kögel, D

    2014-01-01

    Accumulating evidence indicates that loss of physiologic amyloid precursor protein (APP) function leads to reduced neuronal plasticity, diminished synaptic signaling and enhanced susceptibility of neurons to cellular stress during brain aging. Here we investigated the neuroprotective function of the soluble APP ectodomain sAPPα (soluble APPα), which is generated by cleavage of APP by α-secretase along the non-amyloidogenic pathway. Recombinant sAPPα protected primary hippocampal neurons and SH-SY5Y neuroblastoma cells from cell death induced by trophic factor deprivation. We show that this protective effect is abrogated in neurons from APP-knockout animals and APP-depleted SH-SY5Y cells, but not in APP-like protein 1- and 2- (APLP1 and APLP2) depleted cells, indicating that expression of membrane-bound holo-APP is required for sAPPα-dependent neuroprotection. Trophic factor deprivation diminished the activity of the Akt survival pathway. Strikingly, both recombinant sAPPα and the APP-E1 domain were able to stimulate Akt activity in wild-type (wt) fibroblasts, SH-SY5Y cells and neurons, but failed to rescue in APP-deficient neurons or fibroblasts. The ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) inhibitor GI254023X exacerbated neuron death in organotypic (hippocampal) slice cultures of wt mice subjected to trophic factor and glucose deprivation. This cell death-enhancing effect of GI254023X could be completely rescued by applying exogenous sAPPα. Interestingly, sAPPα-dependent Akt induction was unaffected in neurons of APP-ΔCT15 mice that lack the C-terminal YENPTY motif of the APP intracellular region. In contrast, sAPPα-dependent rescue of Akt activation was completely abolished in APP mutant cells lacking the G-protein interaction motif located in the APP C-terminus and by blocking G-protein-dependent signaling with pertussis toxin. Collectively, our data provide new mechanistic insights into the physiologic role of APP in

  12. MicroRNA-141 and MicroRNA-146b-5p Inhibit the Prometastatic Mesenchymal Characteristics through the RNA-binding Protein AUF1 Targeting the Transcription Factor ZEB1 and the Protein Kinase AKT*

    PubMed Central

    Al-Khalaf, Huda H.; Aboussekhra, Abdelilah

    2014-01-01

    miR-141 and miR-146b-5p are two important tumor suppressor microRNAs, which control several cancer-related genes and processes. In the present report, we have shown that these microRNAs bind specific sites at the 3′-untranslated region (UTR) of the mRNA-binding protein AUF1, leading to its down-regulation. This inverse correlation between the levels of these microRNAs and AUF1 has been identified in various osteosarcoma cell lines. Additionally, we present clear evidence that AUF1 promotes mesenchymal features in osteosarcoma cells and that miR-141 and miR-146b-5p suppress this prometastatic process through AUF1 repression. Indeed, both microRNAs suppressed the invasion/migration and proliferation abilities of osteosarcoma cells through inhibiting the AKT protein kinase in an AUF1-dependent manner. We have also shown that AUF1 binds to and stabilizes the mRNA of the AKT activator phosphoinositide-dependent kinase-1 (PDK1). Furthermore, miR-141 and miR-146b-5p positively regulate the epithelial markers (E-cadherin and Epcam) and repress the mesenchymal markers (N-cadherin, Vimentin, Twist2, and ZEB1). These effects were mediated via the repression of the epithelial-to-mesenchymal inducer ZEB1 through targeting AUF1, which binds the 3′-UTR of the ZEB1 mRNA and reduces its turnover. These results indicate that at least some tumor suppressor functions of miR-141 and miR-146b-5p are mediated through the repression of the oncogenic potentials of AUF1. Therefore, these 3′-UTR-directed post-transcriptional gene expression regulators constitute promising new targets for diagnostic and/or therapeutic interventions. PMID:25261470

  13. Osteopontin induces {beta}-catenin signaling through activation of Akt in prostate cancer cells

    SciTech Connect

    Robertson, Brian W.; Chellaiah, Meenakshi A.

    2010-01-01

    Secretion of osteopontin (OPN) by cancer cells is a known mediator of tumorigenesis and cancer progression in both experimental and clinical studies. Our work demonstrates that OPN can activate Akt, an important step in cancer progression. Both ILK and PI3K are integral proteins in the OPN/Akt pathway, as inhibition of either kinase leads to a loss of OPN-mediated Akt activation. Subsequent to OPN-induced Akt activation, we observe inactivation of GSK-3{beta}, a regulator of {beta}-catenin. Osteopontin stimulation leads to an overall increase in {beta}-catenin protein levels with a resultant transfer of {beta}-catenin to the nucleus. Through the nuclear import of {beta}-catenin, OPN increases both the transcription and protein levels of MMP-7 and CD44, which are known TCF/LEF transcription targets. This work describes an important aspect of cancer progression induced by OPN.

  14. Modulation of JAK2, STAT3 and Akt1 proteins by granulocyte colony stimulating factor following carbon monoxide poisoning in male rat.

    PubMed

    Hashemzaei, Mahmoud; Imen Shahidi, Mohsen; Moallem, Seyyed Adel; Abnous, Khalil; Ghorbani, Maryam; Mohamadpour, Amir Hooshang

    2016-10-01

    Carbon monoxide (CO) is an odorless, colorless, tasteless and non-irritating by-product of inefficient combustion of hydrocarbon fuels such as motor vehicle exhausted gases. It is the leading cause of mortality in the USA among all unintentional toxicants. Male rats exposed to CO poisoning in the heart has many cardiovascular effects such as, cardiomyopathy, tachycardia, arrhythmias, and ischemia and in severe cases, myocardial infarction (MI) and cardiac arrest. Cardiomyocyte apoptosis is one of the most frequent consequences in the heart. Granulocyte colony stimulating factor (G-CSF) is a cytokine that mobilizes and differentiates granulocytes from stem cells. It can stimulate many anti-apoptotic pathways such as JAK2-STAT3 and PI3-Akt kinases following cardiac ischemia. G-CSF exerts its anti-apoptotic effects through binding to its specific cell surface receptor. The purpose of this study was to elucidate the mechanism of anti-apoptotic effect of G-CSF following CO poisoning. Rats were exposed to CO 1500 or 3000 ppm for 60 min. Animals received G-CSF 100 μg/kg subcutaneously for five consecutive days after CO intoxication. Western blot analysis was used to evaluate the expression of six proteins namely JAK2, p-JAK2, STAT3, p-STAT3, Akt1 and p-Akt1 following G-CSF 100 μg/kg consecutive dose administration after CO poisoning. There was a significant difference between phosphorylated proteins including p-JAK2, p-STAT3 and p-Akt1 in the G-CSF groups and those in control groups and there were not any significant differences in total protein among the groups. PMID:26810905

  15. Akt is activated in chronic lymphocytic leukemia cells and delivers a pro-survival signal: the therapeutic potential of Akt inhibition

    PubMed Central

    Zhuang, Jianguo; Hawkins, Stephen F.; Glenn, Mark A.; Lin, Ke; Johnson, Gillian G.; Carter, Anthony; Cawley, John C.; Pettitt, Andrew R.

    2010-01-01

    Background The aims of the present study were to ascertain the activation status of Akt in the primary cells of chronic lymphocytic leukemia and to investigate the effects of specific Akt inhibition on chronic lymphocytic leukemia-cell survival. Design and Methods Anti-phospho-Akt (Ser473 or Thr308) antibodies and western blotting were used to establish the activation status of Akt. The effects of two different, specific small-molecule inhibitors (A-443654 or Akti-1/2) or small interfering RNA on cell survival and downstream targets of Akt were assessed. Apoptosis was determined by fluorescence-activated cell sorting analysis of phosphatidylserine exposure and by measurement of PARP cleavage. The phosphorylation status of GSK-3 and MDM2, two immediate downstream substrates of Akt, levels of the anti-apoptotic proteins BCL2 and MCL1, and expression of p53 and p21 were all measured by western blotting. Results Fully activated Akt was demonstrable in all chronic lymphocytic leukemia clones examined (n=26). These results were validated with extensive controls and it was shown that a harsh method of cell extraction is needed for detection of the active enzyme. Specific inhibition of Akt induced extensive apoptosis of chronic lymphocytic leukemia cells, which was associated with both a rapid loss of MCL1 through proteasomal degradation and increased expression of p53. Moreover, the Akt inhibitors, at concentrations that induced extensive apoptosis in chronic lymphocytic leukemia cells, had little or no effect on normal peripheral blood mononuclear cells. Conclusions Chronic lymphocytic leukemia clones consistently contain activated Akt which plays a pivotal role in maintaining cell survival. Inhibition of the Akt pathway may be of potential value as a novel therapeutic strategy in chronic lymphocytic leukemia. PMID:19713228

  16. The role of mouse Akt2 in insulin-dependent suppression of adipocyte lipolysis in vivo

    PubMed Central

    Koren, Shlomit; DiPilato, Lisa M.; Emmett, Matthew J.; Shearin, Abigail L.; Chu, Qingwei; Monks, Bob; Birnbaum, Morris J.

    2015-01-01

    Aim/hypothesis The release of fatty acids from adipocytes, i.e. lipolysis, is maintained under tight control, primarily by the opposing actions of catecholamines and insulin. A widely accepted model is that insulin antagonises catecholamine-dependent lipolysis through phosphorylation and activation of cAMP phosphodiesterase 3B (PDE3B) by the serine-threonine protein kinase Akt (protein kinase B). Recently, this hypothesis has been challenged, as in cultured adipocytes insulin appears, under some conditions, to suppress lipolysis independently of Akt. Methods To address the requirement for Akt2, the predominant isoform expressed in classic insulin target tissues, in the suppression of fatty acid release in vivo, we assessed lipolysis in mice lacking Akt2. Results In the fed state and following an oral glucose challenge, Akt2 null mice were glucose intolerant and hyperinsulinaemic, but nonetheless exhibited normal serum NEFA and glycerol levels, suggestive of normal suppression of lipolysis. Furthermore, insulin partially inhibited lipolysis in Akt2 null mice during an insulin tolerance test (ITT) and hyperinsulinaemic–euglycaemic clamp, respectively. In support of these in vivo observations, insulin antagonised catecholamine-induced lipolysis in primary brown fat adipocytes from Akt2-deficient nice. Conclusion These data suggest that suppression of lipolysis by insulin in hyperinsulinaemic states can take place in the absence of Akt2. PMID:25740694

  17. Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation.

    PubMed

    Bijur, Gautam N; Jope, Richard S

    2003-12-01

    We describe here a new component of the phosphatidylinositol 3-kinase/Akt signaling pathway that directly impacts mitochondria. Akt (protein kinase B) was shown for the first time to be localized in mitochondria, where it was found to reside in the matrix and the inner and outer membranes, and the level of mitochondrial Akt was very dynamically regulated. Stimulation of a variety of cell types with insulin-like growth factor-1, insulin, or stress (induced by heat shock), induced translocation of Akt to the mitochondria within only several minutes of stimulation, causing increases of nearly eight- to 12-fold, and the mitochondrial Akt was in its phosphorylated, active state. Two mitochondrial proteins were identified to be phosphorylated following stimulation of mitochondrial Akt, the beta-subunit of ATP synthase and glycogen synthase kinase-3beta. The finding that mitochondrial glycogen synthase kinase-3beta was rapidly and substantially modified by Ser9 phosphorylation, which inhibits its activity, following translocation of Akt to the mitochondria is the first evidence for a regulatory mechanism affecting mitochondrial glycogen synthase kinase-3beta. These results demonstrate that signals emanating from plasma membrane receptors or generated by stress rapidly modulate Akt and glycogen synthase kinase-3beta in mitochondria. PMID:14713298

  18. Sevoflurane postconditioning reduces myocardial reperfusion injury in rat isolated hearts via activation of PI3K/Akt signaling and modulation of Bcl-2 family proteins*

    PubMed Central

    Yu, Li-na; Yu, Jing; Zhang, Feng-jiang; Yang, Mei-juan; Ding, Ting-ting; Wang, Jun-kuan; He, Wei; Fang, Tao; Chen, Gang; Yan, Min

    2010-01-01

    Sevoflurane postconditioning reduces myocardial infarct size. The objective of this study was to examine the role of the phosphatidylinositol-3-kinase (PI3K)/Akt pathway in anesthetic postconditioning and to determine whether PI3K/Akt signaling modulates the expression of pro- and antiapoptotic proteins in sevoflurane postconditioning. Isolated and perfused rat hearts were prepared first, and then randomly assigned to the following groups: Sham-operation (Sham), ischemia/reperfusion (Con), sevoflurane postconditioning (SPC), Sham plus 100 nmol/L wortmannin (Sham+Wort), Con+Wort, SPC+Wort, and Con+dimethylsulphoxide (DMSO). Sevoflurane postconditioning was induced by administration of sevoflurane (2.5%, v/v) for 10 min from the onset of reperfusion. Left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), maximum increase in rate of LVDP (+dP/dt), maximum decrease in rate of LVDP (−dP/dt), heart rate (HR), and coronary flow (CF) were measured at baseline, R30 min (30 min of reperfusion), R60 min, R90 min, and R120 min. Creatine kinase (CK) and lactate dehydrogenase (LDH) were measured after 5 min and 10 min reperfusion. Infarct size was determined by triphenyltetrazolium chloride staining at the end of reperfusion. Total Akt and phosphorylated Akt (phospho-Akt), Bax, Bcl-2, Bad, and phospho-Bad were determined by Western blot analysis. Analysis of variance (ANOVA) and Student-Newman-Keuls’ test were used to investigate the significance of differences between groups. The LVDP, ±dP/dt, and CF were higher and LVEDP was lower in the SPC group than in the Con group at all points of reperfusion (P<0.05). The SPC group had significantly reduced CK and LDH release and decreased infarct size compared with the Con group [(22.9±8)% vs. (42.4±9.4)%, respectively; P<0.05]. The SPC group also had increased the expression of phosphor-Akt, Bcl-2, and phospho-Bad, and decreased the expression of Bax. Wortmannin abolished the

  19. Protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH Domain of Akt1

    PubMed Central

    Deyle, Kaycie M.; Farrow, Blake; Hee, Ying Qiao; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.

    2015-01-01

    Ligands that can selectively bind to proteins with single amino acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wildtype. However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical, synthetic epitope-targeting strategy which we used to discover a 5-mer peptide with selectivity for the E17K transforming point mutation in the Pleckstrin Homology Domain of the Akt1 oncoprotein. A fragment of Akt1 containing the E17K mutation and a I19[Propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that covalently clicked onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to wildtype, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 substrate. PMID:25901825

  20. A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1

    NASA Astrophysics Data System (ADS)

    Deyle, Kaycie M.; Farrow, Blake; Qiao Hee, Ying; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.

    2015-05-01

    Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.

  1. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle.

    PubMed

    Lai, Yu-Chiang; Liu, Yang; Jacobs, Roxane; Rider, Mark H

    2012-10-01

    PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40 kDa and Akt substrate of 160 kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206 in a dose-dependent manner. Incubation with high doses of MK-2206 (10 μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle. PMID:22793019

  2. Epstein-Barr virus latent membrane protein-2A induces ITAM/Syk- and Akt-dependent epithelial migration through αv-integrin membrane translocation.

    PubMed

    Fotheringham, Julie A; Coalson, Nicole E; Raab-Traub, Nancy

    2012-10-01

    Epstein-Barr virus (EBV) is a highly prevalent herpesvirus associated with epithelial cancers, including nasopharyngeal carcinoma (NPC). The EBV protein latent membrane protein 2 (LMP2) is expressed in NPC tumor tissue and has been shown to induce transformation, inhibit differentiation, and promote migration of epithelial cells. In this study, the effect of LMP2A on migration of human epithelial cells was further analyzed. LMP2A expression induced migration in human foreskin keratinocytes (HFK) and HaCaT keratinocytes measured by wound healing scratch assay and chemoattractant-induced Transwell migration assay. The induction of migration by LMP2A required the ITAM signaling domain of LMP2A and activation of the Syk tyrosine kinase. LMP2A-induced Transwell migration required the Akt signaling pathway, and activation of Akt by LMP2A required the ITAM signaling domain of LMP2A. LMP2A also induced phosphorylation of the Akt target GSK3β, a Wnt signaling mediator that has been shown to regulate the activity of focal adhesion kinase (FAK), a tyrosine kinase activated by clustering and ligand interaction of integrins. Inhibition of either FAK or its signaling mediator Src kinase inhibited LMP2A-induced migration. Interestingly, αV-integrin was greatly increased in membrane-enriched fractions by LMP2A, and a neutralizing antibody to αV-integrin blocked migration, suggesting that the effects of LMP2A on membrane-localized αV-integrin promoted migration. The results of this study indicate that LMP2A expression in human epithelial cells induces αV-integrin-dependent migration through a mechanism requiring ITAM-mediated Syk and Akt activation and inducing membrane translocation or stabilization of αV-integrin and FAK activation. The specific effects of LMP2A on an integrin with a diverse repertoire of ligand specificities could promote migration of different cell types and be initiated by multiple chemoattractants. PMID:22837212

  3. Interference with Akt signaling pathway contributes curcumin-induced adipocyte insulin resistance.

    PubMed

    Zhang, Deling; Zhang, Yemin; Ye, Mao; Ding, Youming; Tang, Zhao; Li, Mingxin; Zhou, Yu; Wang, Changhua

    2016-07-01

    Previous study has shown that curcumin directly or indirectly suppresses insulin signaling in 3T3-L1 adipocytes. However, the underlying mechanism remains unclear. Here we experimentally demonstrate that curcumin inhibited the ubiquitin-proteasome system (UPS) function, activated autophagy, and reduced protein levels of protein kinase B (Akt) in a dose- and time-dependent manner in 3T3-L1 adipocytes, accompanied with attenuation of insulin-stimulated Akt phosphorylation, plasma membrane translocation of glucose transporter type 4 (GLUT4), and glucose uptake. These in vitro inhibitory effects of curcumin on Akt protein expression and insulin action were reversed by pharmacological and genetic inhibition of autophagy but not by inhibition of the UPS and caspases. In addition, Akt reduction in adipose tissues of mice treated with curcumin could be recovered by administration of autophagy inhibitor bafilomycin A1 (BFA). This new finding provides a novel mechanism by which curcumin induces insulin resistance in adipocytes. PMID:27113027

  4. Na/H Exchange Regulatory Factor 1, a Novel AKT-associating Protein, Regulates Extracellular Signal-regulated Kinase Signaling through a B-Raf–Mediated Pathway

    PubMed Central

    Wang, Bin; Yang, Yanmei

    2008-01-01

    Na/H exchange regulatory factor 1 (NHERF1) is a scaffolding protein that regulates signaling and trafficking of several G protein-coupled receptors (GPCRs), including the parathyroid hormone receptor (PTH1R). GPCRs activate extracellular signal-regulated kinase (ERK)1/2 through different mechanisms. Here, we characterized NHERF1 regulation of PTH1R-stimulated ERK1/2. Parathyroid hormone (PTH) stimulated ERK1/2 phosphorylation by a protein kinase A (PKA)-dependent, but protein kinase C-, cyclic adenosine 5′-monophosphate-, and Rap1-independent pathway in Chinese hamster ovary cells stably transfected with the PTH1R and engineered to express NHERF1 under the control of tetracycline. NHERF1 blocked PTH-induced ERK1/2 phosphorylation downstream of PKA. This suggested that NHERF1 inhibitory effects on ERK1/2 occur at a postreceptor locus. Forskolin activated ERK1/2, and this effect was blocked by NHERF1. NHERF1 interacted with AKT and inhibited ERK1/2 activation by decreasing the stimulatory effect of 14-3-3 binding to B-Raf, while increasing the inhibitory influence of AKT negative regulation on ERK1/2 activation. This novel regulatory mechanism provides a new model by which cytoplasmic adapter proteins modulate ERK1/2 activation through a receptor-independent mechanism involving B-Raf. PMID:18272783

  5. Akt and Hippo Pathways in Ewing's Sarcoma Tumors and Their Prognostic Significance

    PubMed Central

    Ahmed, Atif A.; Abedalthagafi, Malak; Anwar, Ahmed E.; Bui, Marilyn M.

    2015-01-01

    Background: Ewing's sarcoma tumor is an aggressive malignancy of bone and soft tissue in children and young adults. Despite advances in modern therapy, metastasis occurs and results in high mortality. Intracellular molecules Yap, Akt, mTOR, and Erk are signaling pathway members that regulate the proliferation of tumor cells. Objective and Methods: We studied the immunohistochemical expression of these proteins in 36 tumor samples from adult and pediatric patients with Ewing's sarcoma tumors. Patients' age, sex, tumor site, tumor size, clinical stage and survival (overall and disease-free survival) were collected. Tissue microarrays slides were stained with antibodies against Yap, Akt, mTOR, and Erk proteins. Results: Tumors exhibited variable expression of Yap, Akt, mTOR, and Erk (from negative, low to high), with high levels of expression present in 31%, 53%, 77% and 0% respectively. Immunohistochemical expression of Akt was associated with worse overall and disease-free survival (p<0.05). The other biomarkers did not demonstrate any difference in survival between low versus high expression. Conclusion: Although Yap, Akt, mTOR, and Erk protein are all expressed in Ewing's sarcoma by immunohistochemistry, only Akt expression is associated with worse prognosis. Larger studies are needed to verify these results and plan targeted therapy, particularly against Akt. PMID:26366214

  6. KCTD20, a relative of BTBD10, is a positive regulator of Akt

    PubMed Central

    2013-01-01

    Background BTBD10 binds to Akt and protein phosphatase 2A (PP2A) and inhibits the PP2A-mediated dephosphorylation of Akt, thereby keeping Akt activated. Previous studies have suggested that BTBD10 plays an important role in preventing motor neuronal death and accelerating the growth of pancreatic beta cells. Because levels of BTBD10 expression are much lower in many non-nervous tissues than nervous tissues, there may be a relative of BTBD10 that has BTBD10-like function in non-neuronal cells. Results A 419-amino-acid BTBD10-like protein, named KCTD20 (potassium channel tetramerization protein domain containing 20), was to found to bind to all Akt isoforms and PP2A. Overexpression of KCTD20 increased Akt phosphorylation at Thr308, as BTBD10 did, which suggests that KCTD20 as well as BTBD10 positively regulates the function of Akt. KCTD20 was ubiquitously expressed in non-nervous as well as nervous tissues. Conclusions KCTD20 is a positive regulator of Akt and may play an important role in regulating the death and growth of some non-nervous and nervous cells. PMID:24156551

  7. Loss of PTEN stabilizes the lipid modifying enzyme cytosolic phospholipase A2α via AKT in prostate cancer cells

    PubMed Central

    Vignarajan, Soma; Xie, Chanlu; Yao, Mu; Sun, Yuting; Simanainen, Ulla; Sved, Paul; Liu, Tao; Dong, Qihan

    2014-01-01

    Aberrant increase in pAKT, due to a gain-of-function mutation of PI3K or loss-of-function mutation or deletion of PTEN, occurs in prostate cancer and is associated with poor patient prognosis. Cytosolic phospholipase A2α (cPLA2α) is a lipid modifying enzyme by catalyzing the hydrolysis of membrane arachidonic acid. Arachidonic acid and its metabolites contribute to survival and proliferation of prostate cancer cells. We examined whether AKT plays a role in promoting cPLA2α action in prostate cancer cells. We found a concordant increase in pAKT and cPLA2α levels in prostate tissue of prostate epithelial-specific PTEN-knockout but not PTEN-wide type mice. Restoration of PTEN expression or inhibition of PI3K action decreased cPLA2α expression in PTEN-mutated or deleted prostate cancer cells. An increase in AKT by Myr-AKT elevated cPLA2α protein levels, which could be diminished by inhibition of AKT phosphorylation without noticeable change in total AKT levels. pAKT levels had no influence on cPLA2α at mRNA levels but reduced cPLA2α protein degradation. Anti-AKT antibody co-immunoprecipitated cPLA2α and vice versa. Hence, AKT plays a role in enhancing cPLA2α protein stability in PTEN-null prostate cancer cells, revealing a link between oncogenic pathway and lipid metabolism. PMID:25026288

  8. AML sensitivity to YM155 is modulated through AKT and Mcl-1.

    PubMed

    de Necochea-Campion, Rosalia; Diaz Osterman, Carlos J; Hsu, Heng-Wei; Fan, Junjie; Mirshahidi, Saied; Wall, Nathan R; Chen, Chien-Shing

    2015-09-28

    HL60 and U937 (acute myeloid leukemia (AML) cell lines) were assessed for sensitivity to YM155, and found to have distinct sensitive and resistant phenotypes, respectively. In HL60 cells, YM155 inhibition of growth proliferation was due to apoptosis which was measured by annexin V/PI staining. YM155 induced apoptosis through activation of intrinsic and extrinsic pathways that also culminated in caspase-3 activity and PARP cleavage. YM155 sensitivity was partially associated with this compound's ability to down-regulate survivin transcription since this was more pronounced in the HL60 cell line. However, marked differences were also observed in XIAP, Bcl-2, and Mcl-1L, and Mcl-1s. Furthermore, YM155 treatment completely inhibited production of total Akt protein in HL60, but not U937 cells. Importantly, Akt activity (pAkt-Ser473) levels were maintained in YM155 treated U937 cells which may help stabilize other anti-apoptotic proteins. Combination treatments with an Akt inhibitor, MK-2206, reduced levels of pAkt-Ser473 in U937 cells and synergistically sensitized them to YM155 cytotoxicity. Collectively our results indicate that Akt signaling may be an important factor mediating YM155 response in AML, and combinatorial therapies with Akt inhibitors could improve treatment efficacy in YM155-resistant cells. PMID:26118775

  9. SIRT1 at the crossroads of AKT1 and ERβ in malignant pleural mesothelioma cells.

    PubMed

    Pinton, Giulia; Zonca, Sara; Manente, Arcangela G; Cavaletto, Maria; Borroni, Ester; Daga, Antonio; Jithesh, Puthen V; Fennell, Dean; Nilsson, Stefan; Moro, Laura

    2016-03-22

    In this report, we show that malignant pleural mesothelioma (MPM) patients whose tumors express high levels of AKT1 exhibit a significantly worse prognosis, whereas no significant correlation with AKT3 expression is observed. We provide data that establish a phosphorylation independent role of AKT1 in affecting MPM cell shape and anchorage independent cell growth in vitro and highlight the AKT1 isoform-specific nature of these effects.We describe that AKT1 activity is inhibited by the loss of SIRT1-mediated deacetylation and identify, by mass spectrometry, 11 unique proteins that interact with acetylated AKT1.Our data demonstrate a role of the AKT1/SIRT1/FOXM1 axis in the expression of the tumor suppressor ERβ. We further demonstrate an inhibitory feedback loop by ERβ, activated by the selective agonist KB9520, on this axis both in vitro and in vivo.Our data broaden the current knowledge of ERβ and AKT isoform-specific functions that could be valuable in the design of novel and effective therapeutic strategies for MPM. PMID:26885609

  10. SIRT1 at the crossroads of AKT1 and ERβ in malignant pleural mesothelioma cells

    PubMed Central

    Pinton, Giulia; Zonca, Sara; Manente, Arcangela G.; Cavaletto, Maria; Borroni, Ester; Daga, Antonio; Jithesh, Puthen V.; Fennell, Dean; Nilsson, Stefan; Moro, Laura

    2016-01-01

    In this report, we show that malignant pleural mesothelioma (MPM) patients whose tumors express high levels of AKT1 exhibit a significantly worse prognosis, whereas no significant correlation with AKT3 expression is observed. We provide data that establish a phosphorylation independent role of AKT1 in affecting MPM cell shape and anchorage independent cell growth in vitro and highlight the AKT1 isoform-specific nature of these effects. We describe that AKT1 activity is inhibited by the loss of SIRT1-mediated deacetylation and identify, by mass spectrometry, 11 unique proteins that interact with acetylated AKT1. Our data demonstrate a role of the AKT1/SIRT1/FOXM1 axis in the expression of the tumor suppressor ERβ. We further demonstrate an inhibitory feedback loop by ERβ, activated by the selective agonist KB9520, on this axis both in vitro and in vivo. Our data broaden the current knowledge of ERβ and AKT isoform-specific functions that could be valuable in the design of novel and effective therapeutic strategies for MPM. PMID:26885609

  11. Long-term effects of rapamycin treatment on insulin mediated phosphorylation of Akt/PKB and glycogen synthase activity

    SciTech Connect

    Varma, Shailly; Shrivastav, Anuraag; Changela, Sheena; Khandelwal, Ramji L.

    2008-04-01

    Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3{beta} (GSK-3{beta}) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-{alpha} (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.

  12. Dietary L-Lysine Suppresses Autophagic Proteolysis and Stimulates Akt/mTOR Signaling in the Skeletal Muscle of Rats Fed a Low-Protein Diet.

    PubMed

    Sato, Tomonori; Ito, Yoshiaki; Nagasawa, Takashi

    2015-09-23

    Amino acids, especially L-leucine, regulate protein turnover in skeletal muscle and have attracted attention as a means of increasing muscle mass in people suffering from malnutrition, aging (sarcopenia), or a bedridden state. We previously showed that oral administration of L-lysine (Lys) by gavage suppressed proteolysis in skeletal muscles of fasted rats. However, the intake of Lys in the absence of other dietary components is unlikely in a non-experimental setting, and other dietary components may interfere with the suppressive effect of Lys on proteolysis. We supplemented Lys to a 10% casein diet and investigated the effect of Lys on proteolysis and autophagy, a major proteolytic system, in the skeletal muscle of rats. The rate of proteolysis was evaluated from 3-methylhisitidine (MeHis) released from isolated muscles, in plasma, and excreted in urine. Supplementing lysine with the 10% casein diet decreased the rate of proteolysis induced by intake of a low-protein diet. The upregulated autophagy activity [light chain 3 (LC3)-II/total LC3] caused by a low-protein diet was reduced, and the Akt/mTOR signaling pathway was activated by Lys. Importantly, continuous feeding of a Lys-rich 10% casein diet for 15 days increased the masses of the soleus and gastrocnemius muscles. Taken together, supplementation of Lys to a low-protein diet suppresses autophagic proteolysis through the Akt/mTOR signaling pathway, and continuous feeding of a Lys-rich diet may increase skeletal muscle mass. PMID:26366928

  13. The Heart Protection Effect of Alcalase Potato Protein Hydrolysate Is through IGF1R-PI3K-Akt Compensatory Reactivation in Aging Rats on High Fat Diets

    PubMed Central

    Hu, Wei-Syun; Ting, Wei-Jen; Chiang, Wen-Dee; Pai, Peiying; Yeh, Yu-Lan; Chang, Chung-Ho; Lin, Wan-Teng; Huang, Chih-Yang

    2015-01-01

    The prevalence of obesity is high in older adults. Alcalase potato protein hydrolysate (APPH), a nutraceutical food, might have greater benefits and be more economical than hypolipidemic drugs. In this study, serum lipid profiles and heart protective effects were evaluated in high fat diet (HFD) induced hyperlipidemia in aging rats treated with APPH (15, 45 and 75 mg/kg/day) and probucol (500 mg/kg/day). APPH treatments reduced serum triacylglycerol (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels to the normal levels expressed in the control group. Additionally, the IGF1R-PI3K-Akt survival pathway was reactivated, and Fas-FADD (Fas-associated death domain) induced apoptosis was inhibited by APPH treatments (15 and 45 mg/kg/day) in HFD aging rat hearts. APPH (75 mg/kg/day) rather than probucol (500 mg/kg/day) treatment could reduce serum lipids without affecting HDL expression. The heart protective effect of APPH in aging rats with hyperlipidemia was through lowering serum lipids and enhancing the activation of the compensatory IGF1R-PI3K-Akt survival pathway. PMID:25950762

  14. The Heart Protection Effect of Alcalase Potato Protein Hydrolysate Is through IGF1R-PI3K-Akt Compensatory Reactivation in Aging Rats on High Fat Diets.

    PubMed

    Hu, Wei-Syun; Ting, Wei-Jen; Chiang, Wen-Dee; Pai, Peiying; Yeh, Yu-Lan; Chang, Chung-Ho; Lin, Wan-Teng; Huang, Chih-Yang

    2015-01-01

    The prevalence of obesity is high in older adults. Alcalase potato protein hydrolysate (APPH), a nutraceutical food, might have greater benefits and be more economical than hypolipidemic drugs. In this study, serum lipid profiles and heart protective effects were evaluated in high fat diet (HFD) induced hyperlipidemia in aging rats treated with APPH (15, 45 and 75 mg/kg/day) and probucol (500 mg/kg/day). APPH treatments reduced serum triacylglycerol (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels to the normal levels expressed in the control group. Additionally, the IGF1R-PI3K-Akt survival pathway was reactivated, and Fas-FADD (Fas-associated death domain) induced apoptosis was inhibited by APPH treatments (15 and 45 mg/kg/day) in HFD aging rat hearts. APPH (75 mg/kg/day) rather than probucol (500 mg/kg/day) treatment could reduce serum lipids without affecting HDL expression. The heart protective effect of APPH in aging rats with hyperlipidemia was through lowering serum lipids and enhancing the activation of the compensatory IGF1R-PI3K-Akt survival pathway. PMID:25950762

  15. Regulation of Heat Shock Proteins 27 and 70, p-Akt/p-eNOS and MAPKs by Naringin Dampens Myocardial Injury and Dysfunction In Vivo after Ischemia/Reperfusion

    PubMed Central

    Rani, Neha; Bharti, Saurabh; Manchanda, Mansi; Nag, T. C.; Ray, Ruma; Chauhan, S. S.; Kumari, Santosh; Arya, Dharamvir Singh

    2013-01-01

    Naringin has antioxidant properties that could improve redox-sensitive myocardial ischemia reperfusion (IR) injury. This study was designed to investigate whether naringin restores the myocardial damage and dysfunction in vivo after IR and the mechanisms underlying its cardioprotective effects. Naringin (20–80 mg/kg/day, p.o.) or saline were administered to rats for 14 days and the myocardial IR injury was induced on 15th day by occluding the left anterior descending coronary artery for 45 min and subsequent reperfusion for 60 min. Post-IR rats exhibited pronounced cardiac dysfunction as evidenced by significantly decreased mean arterial pressure, heart rate, +LVdP/dtmax (inotropic state), -LVdP/dtmax (lusitropic state) and increased left ventricular end diastolic pressure as compared to sham group, which was improved by naringin. Further, on histopathological and ultrastructural assessments myocardium and myocytes appeared more normal in structure and the infarct size was reduced significantly in naringin 40 and 80 mg/kg/day group. This amelioration of post-IR-associated cardiac injury by naringin was accompanied by increased nitric oxide (NO) bioavailability, decreased NO inactivation to nitrotyrosine, amplified protein expressions of Hsp27, Hsp70, β-catenin and increased p-eNOS/eNOS, p-Akt/Akt, and p-ERK/ERK ratio. In addition, IR-induced TNF-α/IKK-β/NF-κB upregulation and JNK phosphorylation were significantly attenuated by naringin. Moreover, western blotting and immunohistochemistry analysis of apoptotic signaling pathway further established naringin cardioprotective potential as it upregulated Bcl-2 expression and downregulated Bax and Caspase-3 expression with reduced TUNEL positivity. Naringin also normalized the cardiac injury markers (lactate dehydrogenase and creatine kinase-MB), endogenous antioxidant activities (superoxide dismutase, reduced glutathione and glutathione peroxidase) and lipid peroxidation levels. Thus, naringin restored IR injury

  16. Amyloid precursor protein cooperates with c-KIT mutation/overexpression to regulate cell apoptosis in AML1-ETO-positive leukemia via the PI3K/AKT signaling pathway.

    PubMed

    Yu, Guopan; Yin, Changxin; Jiang, Ling; Zheng, Zhongxin; Wang, Zhixiang; Wang, Chunli; Zhou, Hongsheng; Jiang, Xuejie; Liu, Qifa; Meng, Fanyi

    2016-09-01

    It has been reported that amyloid precursor protein (APP) promotes cell proliferation and metastasis in various types of solid cancers. In our previous study, we showed that APP is highly expressed and regulates leukemia cell migration in AML1‑ETO-positive (AE) leukemia. Whether APP is involved in the regulation of AE leukemia cell proliferation or apoptosis is unclear. In the present study we focused on the correlation of APP with c-KIT mutation/overexpression and cell proliferation and apoptosis in AE leukemia. APP and c-KIT expression detected by quantitative real-time (qPCR) method, and c-KIT mutations screened using PCR in bone marrow cells from 65 patients with AE leukemia before their first chemotherapy, were simultaneously assessed. Furthermore, the Kasumi-1 cell line was chosen as the cell model, and the APP gene was knocked down using siRNA technology. The correlation of cell cycle distribution and apoptosis and c-Kit expression with APP expression levels, as well as the regulation of the PI3K/AKT signaling pathway by APP were analyzed in the Kasumi-1 cell line. The results showed that peripheral white blood cell counts (P=0.008) and bone marrow cellularity (P=0.031), but not bone marrow blasts, were correlated with APP expression. Moreover, the patients with APP high expression had a significantly higher incidence of c-KIT mutations (P<0.001) and increased levels of c-KIT expression (P=0.001) and poorer disease outcome. In the Kasumi-1 cell line, as compared with the wild-type and negative control cells, cell apoptosis, both early (P<0.001) and late (P<0.001), was significantly increased when the APP gene was knocked down, concomitant with reduced levels of anti-apoptotic protein Bcl-2 and increased levels of caspase-3 and -9, however, no apparent change was observed in the cell cycle distribution (P>0.05). Moreover, the knockdown of APP markedly decreased c-KIT expression at both the transcription (as evidenced by qPCR analysis) and translation

  17. 17β-estradiol activates mTOR in chondrocytes by AKT-dependent and AKT-independent signaling pathways

    PubMed Central

    Tao, Yulei; Sun, Haibiao; Sun, Hongyan; Qiu, Xianxing; Xu, Changbo; Shi, Changxiu; Du, Jiahui

    2015-01-01

    To confirm whether 17β-estradiol (E2) activates mammalian target of rapamycin (mTOR) signaling pathway in chondrocytes and in what way activates mTOR. Human immortalized chondrocytes cell lines TC28a2 and C28/I2 were subjected to incubate with or without E2, LY294002 (the inhibitor of PI3K), rapamycin (the inhibitor of mTOR), or E2 in combination with LY294002 or rapamycin. Thereafter, protein levels of S6K1, p-S6K1, protein kinase B (AKT), and p-AKT were determined by Western blot analysis. Matrix metallopeptidase (MMP) 3 or MMP13 mRNA levels were evaluated by quantitative real-time PCR (qRT-PCR). Co-immunoprecipitation and Western blot analysis were performed to verify the interaction between ERα and mTOR. Both p-S6K1 and p-AKT protein levels in TC28a2 and C28/I2E2 cells were significantly increased by incubation with E2 (0.5 h and 1 h) (P < 0.05). Rapamycin did not affect the levels of p-AKT, but were significantly reduced by LY294002 or E2 in combination with LY294002. The levels of p-S6K1 were significantly decreased by incubation with LY294002, but the effect could be reversed by E2 in combination with LY294002. Rabbit anti-mTOR antibody was able to immunoprecipitate ERα after incubation with E2. Moreover, E2 inhibited the mRNA levels of MMP3 and MMP13 by mTOR pathway. E2 actives mTOR in chondrocytes through AKT-dependent and independent ways. PMID:26884863

  18. Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart.

    PubMed

    Xing, Yuan; Sun, Wanqing; Wang, Yishi; Gao, Feng; Ma, Heng

    2016-05-01

    Insulin protects cardiomyocytes from myocardial ischemia/reperfusion (MI/R) injury through activating Akt. However, phosphatase PHLPP-1 (PH domain leucine-rich repeat protein phosphatase-1) dephosphorylates and inactivates Akt. The balanced competitive interaction of insulin and PHLPP-1 has not been directly examined. In this study, we have identified the effect of mutual inhibition of insulin signaling and PHLPP-1 on the cardioprotective efficiency of Akt in aged heart. Young (3 months) and aged (20 months) Sprague Dawley (SD) rats were subjected to MI/Rin vivo. The PHLPP-1 level was higher in aged vs. young hearts at base. But, insulin treatment failed to decrease PHLPP-1 level during reperfusion in the aged hearts. Consequently, the cardioprotection of insulin-induced Akt activation was impaired in aged hearts, resulting in more susceptible to MI/R injury. In cultured rat ventricular myocytes, PHLPP-1 knockdown significantly enhanced insulin-induced Akt phosphorylation and reduced simulated hypoxia/reoxygenation-induced apoptosis. Contrary, PHLPP-1 overexpression terminated Akt phosphorylation and deteriorated myocytes apoptosis. Using in vivo aged animal models, we confirmed that cardiac PHLPP-1 knockdown or enhanced insulin sensitivity by exercise training dramatically increased insulin-induced Akt phosphorylation. Specifically, MI/R-induced cardiomyocyte apoptosis and infarct size were decreased and cardiac function was increased. More importantly, we found that insulin regulated the degradation of PHLPP-1 and insulin treatment could enhance the binding between PHLPP-1 and β-transducin repeat-containing protein (β-TrCP) to target for ubiquitin-dependent degradation. Altogether, we have identified a new mechanism by which insulin suppresses PHLPP-1 to enhance Akt activation. But, aged heart possesses lower insulin effectiveness and fails to decrease PHLPP-1 during MI/R, which subsequently limited Akt activity and cardioprotection. PHLPP-1 could be a

  19. Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart

    PubMed Central

    Xing, Yuan; Sun, Wanqing; Wang, Yishi; Gao, Feng; Ma, Heng

    2016-01-01

    Insulin protects cardiomyocytes from myocardial ischemia/reperfusion (MI/R) injury through activating Akt. However, phosphatase PHLPP-1 (PH domain leucine-rich repeat protein phosphatase-1) dephosphorylates and inactivates Akt. The balanced competitive interaction of insulin and PHLPP-1 has not been directly examined. In this study, we have identified the effect of mutual inhibition of insulin signaling and PHLPP-1 on the cardioprotective efficiency of Akt in aged heart. Young (3 mon) and aged (20 mon) Sprague Dawley (SD) rats were subjected to MI/R in vivo. The PHLPP-1 level was higher in aged vs. young hearts at base. But, insulin treatment failed to decrease PHLPP-1 level during reperfusion in the aged hearts. Consequently, the cardioprotection of insulin-induced Akt activation was impaired in aged hearts, resulting in more susceptible to MI/R injury. In cultured rat ventricular myocytes, PHLPP-1 knockdown significantly enhanced insulin-induced Akt phosphorylation and reduced simulated hypoxia/reoxygenation-induced apoptosis. Contrary, PHLPP-1 overexpression terminated Akt phosphorylation and deteriorated myocytes apoptosis. Using in vivo aged animal models, we confirmed that cardiac PHLPP-1 knockdown or enhanced insulin sensitivity by exercise training dramatically increased insulin-induced Akt phosphorylation. Specifically, MI/R-induced cardiomyocyte apoptosis and infarct size were decreased and cardiac function was increased. More importantly, we found that insulin regulated the degradation of PHLPP-1 and insulin treatment could enhance the binding between PHLPP-1 and β-transducin repeat-containing protein (β-TrCP) to target for ubiquitin-dependent degradation. Altogether, we have identified a new mechanism by which insulin suppresses PHLPP-1 to enhance Akt activation. But, aged heart possesses lower insulin effectiveness and fails to decrease PHLPP-1 during MI/R, which subsequently limited Akt activity and cardioprotection. PHLPP-1 could be a promising

  20. Myocardial ischemic post-conditioning attenuates ischemia reperfusion injury via PTEN/Akt signal pathway

    PubMed Central

    Li, Chun-Mei; Shen, Shu-Wen; Wang, Tao; Zhang, Xing-Hua

    2015-01-01

    Objectives: To investigate whether myocardial ischemic post-conditioning attenuates ischemia reperfusion injury via PTEN/Akt signal pathway. Design: Forty-five male Sprague-Dawley rats were randomly divided into three groups: Sham, Ischemia reperfusion (I/R) and Ischemic post-conditioning (IPost) group. After the experiment finished, myocardial infarction area was examined. Serum creatine phosphokinase and lactate dehydrogenase activity were detected at baseline and the end of reperfusion. The protein levels of PTEN, Akt, p-Akt, Bax and Bcl-2 were measured by Western blot method. Results: Myocardial infarct size was significantly reduced in IPost as compared to I/R. Results were confirmed by serum creatine phosphokinase and lactate dehydrogenase activity. In addition, PTEN and Bax protein expression were inhibited and the p-Akt and bcl-2 protein expression were enhanced in IPost compared with I/R (P < 0.05). At the same time, the ratio of Bax and Bcl-2 was decreased in IPost (P < 0.05). However, ischemic post conditioning did not affect the total Akt level (P > 0.05). Conclusions: We confirmed that ischemic post-conditioning protects the heart against reperfusion injury. It is important that we demonstrated that the cardioprotective effect of ischemic post-conditioning was involved in the inhibition of PTEN, activation of the PI3K/Akt pathway and reduction of the cardiomyocyte apoptosis. PMID:26629079

  1. Testosterone regulation of Akt/mTORC1/FoxO3a Signaling in Skeletal Muscle

    PubMed Central

    White, James P.; Gao, Song; Puppa, Melissa J.; Sato, Shuichi; Welle, Stephen L.; Carson, James A.

    2012-01-01

    Low endogenous testosterone production, known as hypogonadism is commonly associated with conditions inducing muscle wasting. Akt signaling can control skeletal muscle mass through mTOR regulation of protein synthesis and FoxO regulation of protein degradation, and this pathway has been previously identified as a target of androgen signaling. However, the testosterone sensitivity of Akt/mTOR signaling requires further understanding in order to grasp the significance of varied testosterone levels seen with wasting disease on muscle protein turnover regulation. Therefore, the purpose of this study is to determine the effect of androgen availability on muscle Akt/mTORC1/FoxO3a regulation in skeletal muscle and cultured C2C12 myotubes. C57BL/6 mice were either castrated for 42 days or castrated and treated with the nandrolone decanoate (ND) (6 mg/kg bw/wk). Testosterone loss (TL) significantly decreased volitional grip strength, body weight, and gastrocnemius (GAS) muscle mass, and ND reversed these changes. Related to muscle mass regulation, TL decreased muscle IGF-1 mRNA, the rate of myofibrillar protein synthesis, Akt phosphorylation, and the phosphorylation of Akt targets, GSK3β, PRAS40 and FoxO3a. TL induced expression of FoxO transcriptional targets, MuRF1, atrogin1 and REDD1. Muscle AMPK and raptor phosphorylation, mTOR inhibitors, were not altered by low testosterone. ND restored IGF-1 expression and Akt/mTORC1 signaling while repressing expression of FoxO transcriptional targets. Testosterone (T) sensitivity of Akt/mTORC1 signaling was examined in C2C12 myotubes, and mTOR phosphorylation was induced independent of Akt activation at low T concentrations, while a higher T concentration was required to activate Akt signaling. Interestingly, low concentration T was sufficient to amplify myotube mTOR and Akt signaling after 24h of T withdrawal, demonstrating the potential in cultured myotubes for a T initiated positive feedback mechanism to amplify Akt

  2. Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle.

    PubMed

    White, James P; Gao, Song; Puppa, Melissa J; Sato, Shuichi; Welle, Stephen L; Carson, James A

    2013-01-30

    Low endogenous testosterone production, known as hypogonadism is commonly associated with conditions inducing muscle wasting. Akt signaling can control skeletal muscle mass through mTOR regulation of protein synthesis and FoxO regulation of protein degradation, and this pathway has been previously identified as a target of androgen signaling. However, the testosterone sensitivity of Akt/mTOR signaling requires further understanding in order to grasp the significance of varied testosterone levels seen with wasting disease on muscle protein turnover regulation. Therefore, the purpose of this study is to determine the effect of androgen availability on muscle Akt/mTORC1/FoxO3a regulation in skeletal muscle and cultured C(2)C(12) myotubes. C57BL/6 mice were either castrated for 42 days or castrated and treated with the nandrolone decanoate (ND) (6 mg/kg bw/wk). Testosterone loss (TL) significantly decreased volitional grip strength, body weight, and gastrocnemius (GAS) muscle mass, and ND reversed these changes. Related to muscle mass regulation, TL decreased muscle IGF-1 mRNA, the rate of myofibrillar protein synthesis, Akt phosphorylation, and the phosphorylation of Akt targets, GSK3β, PRAS40 and FoxO3a. TL induced expression of FoxO transcriptional targets, MuRF1, atrogin1 and REDD1. Muscle AMPK and raptor phosphorylation, mTOR inhibitors, were not altered by low testosterone. ND restored IGF-1 expression and Akt/mTORC1 signaling while repressing expression of FoxO transcriptional targets. Testosterone (T) sensitivity of Akt/mTORC1 signaling was examined in C(2)C(12) myotubes, and mTOR phosphorylation was induced independent of Akt activation at low T concentrations, while a higher T concentration was required to activate Akt signaling. Interestingly, low concentration T was sufficient to amplify myotube mTOR and Akt signaling after 24 h of T withdrawal, demonstrating the potential in cultured myotubes for a T initiated positive feedback mechanism to amplify Akt

  3. Aerosol delivery of kinase-deficient Akt1 attenuates Clara cell injury induced by naphthalene in the lungs of dual luciferase mice.

    PubMed

    Minai-Tehrani, Arash; Park, Young-Chan; Hwang, Soon-Kyung; Kwon, Jung-Taek; Chang, Seung-Hee; Park, Sung-Jin; Yu, Kyeong-Nam; Kim, Ji-Eun; Shin, Ji-Young; Kim, Ji-Hye; Kang, Bitna; Hong, Seong-Ho; Cho, Myung-Haing

    2011-12-01

    Conventional lung cancer therapies are associated with poor survival rates; therefore, new approaches such as gene therapy are required for treating cancer. Gene therapies for treating lung cancer patients can involve several approaches. Among these, aerosol gene delivery is a potentially more effective approach. In this study, Akt1 kinase-deficient (KD) and wild-type (WT) Akt1 were delivered to the lungs of CMV-LucR-cMyc-IRES-LucF dual reporter mice through a nose only inhalation system using glucosylated polyethylenimine and naphthalene was administrated to the mice via intraperitoneal injection. Aerosol delivery of Akt1 WT and naphthalene treatment increased protein levels of downstream substrates of Akt signaling pathway while aerosol delivery of Akt1 KD did not. Our results showed that naphthalene affected extracellular signal-regulated kinase (ERK) protein levels, ERK-related signaling, and induced Clara cell injury. However, Clara cell injury induced by naphthalene was considerably attenuated in mice exposed to Akt1 KD. Furthermore, a dual luciferase activity assay showed that aerosol delivery of Akt1 WT and naphthalene treatment enhanced cap-dependent protein translation, while reduced cap-dependent protein translation was observed after delivering Akt1 KD. These studies demonstrated that our aerosol delivery is compatible for in vivo gene delivery. PMID:22122896

  4. DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance.

    PubMed

    Stronach, Euan A; Chen, Michelle; Maginn, Elaina N; Agarwal, Roshan; Mills, Gordon B; Wasan, Harpreet; Gabra, Hani

    2011-11-01

    Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors. PMID:22131882

  5. DNA-PK Mediates AKT Activation and Apoptosis Inhibition in Clinically Acquired Platinum Resistance12

    PubMed Central

    Stronach, Euan A; Chen, Michelle; Maginn, Elaina N; Agarwal, Roshan; Mills, Gordon B; Wasan, Harpreet; Gabra, Hani

    2011-01-01

    Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors. PMID:22131882

  6. Inhibition of Protein Kinase C Delta Attenuates Allergic Airway Inflammation through Suppression of PI3K/Akt/mTOR/HIF-1 Alpha/VEGF Pathway

    PubMed Central

    Li, Liang chang; Yan, Guang Hai

    2013-01-01

    Vascular endothelial growth factor (VEGF) is supposed to contribute to the pathogenesis of allergic airway disease. VEGF expression is regulated by a variety of stimuli such as nitric oxide, growth factors, and hypoxia-inducible factor-1 alpha (HIF-1α). Recently, inhibition of the mammalian target of rapamycin (mTOR) has been shown to alleviate cardinal asthmatic features, including airway hyperresponsiveness, eosinophilic inflammation, and increased vascular permeability in asthma models. Based on these observations, we have investigated whether mTOR is associated with HIF-1α-mediated VEGF expression in allergic asthma. In studies with the mTOR inhibitor rapamycin, we have elucidated the stimulatory role of a mTOR-HIF-1α-VEGF axis in allergic response. Next, the mechanisms by which mTOR is activated to modulate this response have been evaluated. mTOR is known to be regulated by phosphoinositide 3-kinase (PI3K)/Akt or protein kinase C-delta (PKC δ) in various cell types. Consistent with these, our results have revealed that suppression of PKC δ by rottlerin leads to the inhibition of PI3K/Akt activity and the subsequent blockade of a mTOR-HIF-1α-VEGF module, thereby attenuating typical asthmatic attack in a murine model. Thus, the present data indicate that PKC δ is necessary for the modulation of the PI3K/Akt/mTOR signaling cascade, resulting in a tight regulation of HIF-1α activity and VEGF expression. In conclusion, PKC δ may represent a valuable target for innovative therapeutic treatment of allergic airway disease. PMID:24312355

  7. Hepatic FOXO1 Target Genes Are Co-regulated by Thyroid Hormone via RICTOR Protein Deacetylation and MTORC2-AKT Protein Inhibition.

    PubMed

    Singh, Brijesh K; Sinha, Rohit A; Zhou, Jin; Tripathi, Madhulika; Ohba, Kenji; Wang, Mu-En; Astapova, Inna; Ghosh, Sujoy; Hollenberg, Anthony N; Gauthier, Karine; Yen, Paul M

    2016-01-01

    MTORC2-AKT is a key regulator of carbohydrate metabolism and insulin signaling due to its effects on FOXO1 phosphorylation. Interestingly, both FOXO1 and thyroid hormone (TH) have similar effects on carbohydrate and energy metabolism as well as overlapping transcriptional regulation of many target genes. Currently, little is known about the regulation of MTORC2-AKT or FOXO1 by TH. Accordingly, we performed hepatic transcriptome profiling in mice after FOXO1 knockdown in the absence or presence of TH, and we compared these results with hepatic FOXO1 and THRB1 (TRβ1) ChIP-Seq data. We identified a subset of TH-stimulated FOXO1 target genes that required co-regulation by FOXO1 and TH. TH activation of FOXO1 was directly linked to an increase in SIRT1-MTORC2 interaction and RICTOR deacetylation. This, in turn, led to decreased AKT and FOXO1 phosphorylation. Moreover, TH increased FOXO1 nuclear localization, DNA binding, and target gene transcription by reducing AKT-dependent FOXO1 phosphorylation in a THRB1-dependent manner. These events were associated with TH-mediated oxidative phosphorylation and NAD(+) production and suggested that downstream metabolic effects by TH can post-translationally activate other transcription factors. Our results showed that RICTOR/MTORC2-AKT can integrate convergent hormonal and metabolic signals to provide coordinated and sensitive regulation of hepatic FOXO1-target gene expression. PMID:26453307

  8. CREB is a regulatory target for the protein kinase Akt/PKB in the differentiation of pancreatic ductal cells into islet {beta}-cells mediated by hepatocyte growth factor

    SciTech Connect

    Li, Xin-Yu; Zhan, Xiao-Rong; Liu, Xiao-Min; Wang, Xiao-Chen

    2011-01-14

    Research highlights: {yields} CREB is a regulatory target for the protein kinase Akt/PKB in pancreatic duct cells. {yields} Activation of the PI3K/AKT/CREB pathway plays a critical role in the HGF-mediated differentiation of pancreatic duct cells in vivo. {yields} CREB was causally linked to the expression of transcription factors during PDEC differentiation induced by HGF. -- Abstract: We have previously reported that the PI3K/Akt signaling pathway is involved in hepatocyte growth factor (HGF)-induced differentiation of adult rat pancreatic ductal epithelial cells (PDECs) into islet {beta}-cells in vitro. The transcription factor CREB is one of the downstream key effectors of the PI3K/Akt signaling pathway. Recent studies showing that CREB is required for the survival of certain cell types prompted us to examine whether CREB is a nuclear target for activation via the HGF-dependent Ser/Thr kinase Akt/PKB in the differentiation of pancreatic duct cell into islet {beta}-cells. In this study, we first attempted to examine whether HGF modulates the Akt-dependent activation of target gene CREB and then investigated whether CREB activity affects the differentiation of HGF-induced PDECs. Finally, we studied the role of CREB in modulating the expression of transcription factors in PDECs during the differentiation of HGF-induced PDECs. Our results demonstrated that CREB is a regulatory target for the protein kinase Akt/PKB in the differentiation of pancreatic ductal cells into islet {beta}-cells mediated by HGF.

  9. Induction of apoptosis by the ginsenoside Rh2 by internalization of lipid rafts and caveolae and inactivation of Akt

    PubMed Central

    Park, E-K; Lee, EJ; Lee, S-H; Koo, KH; Sung, JY; Hwang, EH; Park, JH; Kim, C-W; Jeong, K-C; Park, B-K; Kim, Y-N

    2010-01-01

    Background and purpose: Lipid rafts and caveolae are membrane microdomains with important roles in cell survival signalling involving the Akt pathway. Cholesterol is important for the structure and function of these microdomains. The ginsenoside Rh2 exhibits anti-tumour activity. Because Rh2 is structurally similar to cholesterol, we investigated the possibility that Rh2 exerted its anti-tumour effect by modulating rafts and caveolae. Experimental approach: A431 cells (human epidermoid carcinoma cell line) were treated with Rh2 and the effects on cell apoptosis, raft localization and Akt activation measured. We also examined the effects of over-expression of Akt and active-Akt on Rh2-induced cell death. Key results: Rh2 induced apoptosis concentration- and time-dependently. Rh2 reduced the levels of rafts and caveolae in the plasma membrane and increased their internalization. Furthermore, Akt activity was decreased and consequently, Akt-dependent phosphorylation of Bad, a pro-survival protein, was decreased whereas the pro-apoptotic proteins, Bim and Bax, were increased upon Rh2 treatment. Unlike microdomain internalization induce by cholesterol depletion, Rh2-mediated internalization of rafts and caveolae was not reversed by cholesterol addition. Also, cholesterol addition did not restore Akt activation or rescue cells from Rh2-induced cell death. Rh2-induced cell death was attenuated in MDA-MB-231 cells over-expressing either wild-type or dominant-active Akt. Conclusions and implications: Rh2 induced internalization of rafts and caveolae, leading to Akt inactivation, and ultimately apoptosis. Because elevated levels of membrane rafts and caveolae, and Akt activation have been correlated with cancer development, internalization of these microdomains by Rh2 could potentially be used as an anti-cancer therapy. PMID:20590613

  10. Accelerated Tumor Growth Mediated by Sub-lytic Levels of Antibody-Induced Complement Activation is Associated with Activation of the PI3K/AKT Survival Pathway

    PubMed Central

    Wu, Xiaohong; Ragupathi, Govind; Panageas, Katherine; Hong, Feng; Livingston, Philip O.

    2013-01-01

    Purpose We addressed the possibility that low levels of tumor cell bound antibodies targeting gangliosides might accelerate tumor growth. Experimental Design To test this hypothesis, we treated mice with a range of mAb doses against GM2, GD2, GD3 and CD20 after challenge with tumors expressing these antigens and tested the activity of the same mAbs in-vitro. We also explored the mechanisms behind the complement-mediated tumor growth acceleration that we observed and an approach to overcome it. Results Serologically detectable levels of IgM-mAb against GM2 are able to delay or prevent tumor growth of high GM2-expressing cell lines both in-vitro and in a SCID mouse model, while very low levels of this mAb resulted in slight but consistent acceleration of tumor growth in both settings. Surprisingly, this is not restricted to IgM antibodies targeting GM2 but consistent against IgG-mAb targeting GD3 as well. These findings were mirrored by in-vitro studies with antibodies against these antigens as well as GD2 and CD20 (with Rituxan), and shown to be complement-dependent in all cases. Complement-mediated accelerated growth of cultured tumor cell lines initiated by low mAb levels was associated with activation of the PI3K/AKT survival pathway and significantly elevated levels of both p-AKT and p-PRAS40. This complement-mediated PI3K-activation and accelerated tumor growth in-vitro and in-vivo are eliminated by PI3K-inhibitors NVP-BEZ235 and Wortmannin. These PI3K-inhibitors also significantly increased efficacy of high doses of these 4 mAbs. Conclusion Our findings suggest that manipulation of the PI3K/AKT pathway and its signaling network can significantly increase the potency of passively administered mAbs and vaccine-induced-antibodies targeting a variety of tumor-cell-surface-antigens. PMID:23833306

  11. Low dose of IGF-I increases cell size of skeletal muscle satellite cells via Akt/S6K signaling pathway.

    PubMed

    Gao, Chun-qi; Zhi, Rui; Yang, Zhou; Li, Hai-chang; Yan, Hui-chao; Wang, Xiu-qi

    2015-11-01

    The objective of this study was to investigate the effect of insulin growth factor-I (IGF-I) on the size of pig skeletal muscle satellite cells (SCs). Using microarray, real-time RT-PCR, radioimmunoassay analysis and western blot, we first showed that supplementation of low-dose of IGF-I in culture medium resulted in enlarged cell size of Lantang SCs, only Akt and S6K were up-regulated at both the mRNA and protein levels among almost all of the mTOR pathway key genes, but had no effect on cell number. To elucidate the signaling mechanisms responsible for regulating cell size under low-dose of IGF-I treatment, we blocked Akt and S6K activity with the specific inhibitors MK2206 and PF4708671, respectively. Both inhibitors caused a decrease in cell size. In addition, MK2206 lowered the protein level of p-Akt (Ser473), p-S6K (Thr389), and p-rpS6 (Ser235/236), whereas PF4708671 lowered the protein level of p-S6K (Thr389) and p-rpS6 (Ser235/236). However, low dose of IGF-I didn't affect the protein level of p-mTOR (Ser2448) and p-mTOR (Ser2481). When both inhibitors were applied simultaneously, the effect was the same as that of the Akt inhibition alone. Taken together, we report for the first time that low-dose of IGF-I treatment increases cell size via Akt/S6K signaling pathway. PMID:25923195

  12. Amelioration of carbon tetrachloride-induced cirrhosis and portal hypertension in rat using adenoviral gene transfer of Akt

    PubMed Central

    Deng, Gang; Huang, Xiang-Jun; Luo, Hong-Wu; Huang, Fei-Zhou; Liu, Xun-Yang; Wang, Yong-Heng

    2013-01-01

    AIM: To investigate whether a virus constitutively expressing active Akt is useful to prevent cirrhosis induced by carbon tetrachloride (CCl4). METHODS: Using cre-loxp technique, we created an Ad-myr-HA-Akt virus, in which Akt is labeled by a HA tag and its expression is driven by myr promoter. Further, through measuring enzyme levels and histological structure, we determined the efficacy of this Ad-myr-HA-Akt virus in inhibiting the development of cirrhosis induced by CCl4 in rats. Lastly, using western blotting, we examined the expression levels and/or phosphorylation status of Akt, apoptotic mediators, endothelial nitric oxide synthase (eNOS), and markers for hepatic stellate cells activation to understand the underlying mechanisms of protective role of this virus. RESULTS: The Ad-myr-HA-Akt virus was confirmed using polymerase chain reaction amplification of inserted Akt gene and sequencing for full length of inserted fragment, which was consistent with the sequence reported in the GenBank. The concentrations of Ad-myr-HA-Akt and adenoviral enhanced green fluorescent protein (Ad-EGFP) virus used in the current study were 5.5 × 1011 vp/mL. The portal vein diameter, peak velocity of blood flow, portal blood flow and congestion index were significantly increased in untreated, saline and Ad-EGFP cirrhosis groups when compared to normal control after the virus was introduced to animal through tail veil injection. In contrast, these parameters in the Akt cirrhosis group were comparable to normal control group. Compared to the normal control, the liver function (Alanine aminotransferase, Aspartate aminotransferase and Albumin) was significantly impaired in the untreated, saline and Ad-EGFP cirrhosis groups. The Akt cirrhosis group showed significant improvement of liver function when compared to the untreated, saline and Ad-EGFP cirrhosis groups. The Hyp level and portal vein pressure in Akt cirrhosis groups were also significantly lower than other cirrhosis groups

  13. Erratum to: Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    PubMed

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-11-01

    The BMB Reports would like to correct in the reference of BMB Rep. 48(9), 531-536 titled "Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade". The ACKNOWLEDGEMENTS should be corrected as follows, "This work was supported by the National Research Foundation of Korea (NRF-2010-0009086, NRF-2012R1A1A2039992, and 2012M3A9C7050184) and the Brain Busan 21 Project." and not "This work was partially supported by the National Research Foundation of Korea (NRF-2010-0009086, NRF-2003-003-C00110, and 2012M3A9C7050184) and the Brain Busan 21 Project." The online version reflects this change. PMID:26612629

  14. Bone Morphogenetic Protein-2 (BMP-2) Activates NFATc1 Transcription Factor via an Autoregulatory Loop Involving Smad/Akt/Ca2+ Signaling.

    PubMed

    Mandal, Chandi C; Das, Falguni; Ganapathy, Suthakar; Harris, Stephen E; Choudhury, Goutam Ghosh; Ghosh-Choudhury, Nandini

    2016-01-15

    Bone remodeling is controlled by dual actions of osteoclasts (OCs) and osteoblasts (OBs). The calcium-sensitive nuclear factor of activated T cells (NFAT) c1 transcription factor, as an OC signature gene, regulates differentiation of OCs downstream of bone morphogenetic protein-2 (BMP-2)-stimulated osteoblast-coded factors. To analyze a functional link between BMP-2 and NFATc1, we analyzed bones from OB-specific BMP-2 knock-out mice for NFATc1 expression by immunohistochemical staining and found significant reduction in NFATc1 expression. This indicated a requirement of BMP-2 for NFATc1 expression in OBs. We showed that BMP-2, via the receptor-specific Smad pathway, regulates expression of NFATc1 in OBs. Phosphatidylinositol 3-kinase/Akt signaling acting downstream of BMP-2 also drives NFATc1 expression and transcriptional activation. Under the basal condition, NFATc1 is phosphorylated. Activation of NFAT requires dephosphorylation by the calcium-dependent serine/threonine phosphatase calcineurin. We examined the role of calcium in BMP-2-stimulated regulation of NFATc1 in osteoblasts. 1,2Bis(2aminophenoxy)ethaneN,N,N',N'-tetraacetic acid acetoxymethyl ester, an inhibitor of intracellular calcium abundance, blocked BMP-2-induced transcription of NFATc1. Interestingly, BMP-2 induced calcium release from intracellular stores and increased calcineurin phosphatase activity, resulting in NFATc1 nuclear translocation. Cyclosporin A, which inhibits calcineurin upstream of NFATc1, blocked BMP-2-induced NFATc1 mRNA and protein expression. Expression of NFATc1 directly increased its transcription and VIVIT peptide, an inhibitor of NFATc1, suppressed BMP-2-stimulated NFATc1 transcription, confirming its autoregulation. Together, these data show a role of NFATc1 downstream of BMP-2 in mouse bone development and provide novel evidence for the presence of a cross-talk among Smad, phosphatidylinositol 3-kinase/Akt, and Ca(2+) signaling for BMP-2-induced NFATc1 expression through

  15. Regulation of neutrophil apoptosis by modulation of PKB/Akt activation.

    PubMed

    Rane, Madhavi J; Klein, Jon B

    2009-01-01

    The serine/threonine kinase, Akt, also known as PKB (Protein Kinase B) is one important signal transduction pathway that mediates the delay of neutrophil apoptosis caused by inflammatory mediators. Proteins controlled by the PKB/Akt pathway have been reported to prevent or reverse apoptotic-signaling pathways and regulate cell survival. In this review we discuss the role of PKB/Akt activation in the regulation of neutrophil activation during inflammation, and the importance of resolving the inflammatory response by inhibiting PKB/Akt activation and neutrophil survival. Furthermore, we introduce the concept of a dynamic Akt signal complex that is altered when an extracellular signal is initiated such that changes in protein-protein interactions within the Akt signal complex regulates Akt activity and cell survival. Various substrates of PKB/Akt as well as positive and negative regulators of PKB/Akt activation are discussed which in turn inhibit or enhance cellular survival. PMID:19273208

  16. Development of a new model system to dissect isoform specific Akt signalling in adipocytes.

    PubMed

    Kajno, Esi; McGraw, Timothy E; Gonzalez, Eva

    2015-06-15

    Protein kinase B (Akt) kinases are critical signal transducers mediating insulin action. Genetic studies revealed that Akt1 and Akt2 signalling differentially contribute to sustain lipid and glucose homoeostasis; however Akt isoform-specific effectors remain elusive due to the lack of a suitable model system to mechanistically interrogate Akt isoform-specific signalling. To overcome those technical limitations we developed a novel model system that provides acute and specific control of signalling by Akt isoforms. We generated mutants of Akt1 and Akt2 resistant to the allosteric Akt inhibitor MK-2206. We then developed adipocyte cell lines, in which endogenous Akt1 or Akt2 has been replaced by their corresponding drug-resistant Akt mutant. Treatment of those cells with MK-2206 allowed for acute and specific control of either Akt1 or Akt2 function. Our data showed that Akt1(W80A) and Akt2(W80A) mutants are resistant to MK-2206, dynamically regulated by insulin and able to signal to Akt downstream effectors. Analyses of insulin action in this cellular system showed that Akt1 and Akt2 are both able to mediate insulin regulation of the transcription factor forkhead box O1 (FoxO1) and the glucose transporter 4 (GLUT4), revealing a redundant role for these Akt kinases in the control of glucose transport into fat cells. In contrast, Akt1 signalling is uniquely required for adipogenesis, by controlling the mitotic clonal expansion (MCE) of pre-adipocytes that precedes white adipose cell differentiation. Our data provide new insights into the role of Akt kinases in glucose transport and adipogenesis and support our model system as a valuable tool for the biochemical characterization of signalling by specific Akt isoforms. PMID:25856301

  17. Cross-talk between the Akt and NF-κB Signaling Pathways Inhibits MEHP-Induced Germ Cell Apoptosis

    PubMed Central

    Rogers, Rachel; Ouellet, Gregory; Moyer, Ben; Rasoulpour, Teresa; Hixon, Mary

    2008-01-01

    Phthalates are ubiquitous contaminants that target the testis during in utero and postnatal development. The PI3K/Akt and nuclear factor kappa B (NF-κB) signaling pathways have been implicated in germ cell survival following testicular injury. Here we observe that Akt kinase activity increases in the testes of postnatal day 28 wild-type mice following exposure to 500 mg/kg mono-(2-ethylhexyl) phthalate (MEHP), and that loss of Akt1 results in the premature onset of germ cell apoptosis. To further determine the basis for this sensitivity, we investigated the potential for cross-talk between the PI3K/Akt and NF-κB signaling pathways. We found a twofold increase in Akt1-dependent phosphorylation of the IκBα subunit following exposure to 500 mg/kg MEHP and decreased levels of the total IκBα protein. Examination of the expression of the NF-κB subunits, p50 and p65, in Akt1 wild-type testes following MEHP exposure revealed a twofold increase in p50 mRNA at 6 h. Interestingly, in Akt1-deficient testes, basal expression of both the p50 and p65 subunits was elevated 1.6- and 4-fold, respectively. This was due, at least in part, to increased levels of oxidative stress as measured by both superoxide anion formation and increased expression of SMAC/DIABLO, a proapoptotic mitochondrial protein. In wild-type testes, MEHP-induced Akt1-dependent transcription of the antiapoptotic mitochondrial target gene, Bcl-xL. Together, these results indicate that Akt1 plays a role in the initial protection of germ cells following MEHP-induced germ cell apoptosis and that this response is partially mediated by cross-talk with the NF-κB signaling pathway and an increased sensitivity to oxidative stress. PMID:18755736

  18. A cytotoxic protein (BF-CT1) purified from Bungarus fasciatus venom acts through apoptosis, modulation of PI3K/AKT, MAPKinase pathway and cell cycle regulation.

    PubMed

    Bhattacharya, Shamik; Das, Tanaya; Biswas, Archita; Gomes, Aparna; Gomes, Antony; Dungdung, Sandhya Rekha

    2013-11-01

    BF-CT1, a 13 kDa protein isolated from Bungarus fasciatus snake venom through CM cellulose ion exchange chromatography at 0.02 M NaCl salt gradient showed cytotoxicity in in vitro and in vivo experimental models. In in vivo Ehrlich ascites carcinoma (EAC) induced BALB/c mice model, BF-CT1 treatment reduced EAC cell count significantly through apoptotic cell death pathway as evidenced by FACS analysis, increased caspase 3, 9 activity and altered pro, antiapoptotic protein expression. BF-CT1 treatment caused cell shrinkage, chromatin condensation and induced apoptosis through increased caspase 3, caspase 9 activity, PARP cleavage and down regulation of heat shock proteins in U937 leukemic cell line. Cytosolic cytochrome C production was increased after BF-CT1 treatment upon U937 cell line. BF-CT1 treated U937 cell showed cell cycle arrest at sub G1 phase through cyclin D and CDK down regulation with up regulation of p15 and p16. It also down regulated PI3K/AKT pathway and MAPkinase pathway and promoted apoptosis and regulated cell proliferation in U937 cells. BF-CT1 prevented angiogenesis in in vitro U937 cell line through decreased VEGF and TGF-β1 production. PMID:23981271

  19. Myostatin inhibits IGF-I-induced myotube hypertrophy through Akt

    PubMed Central

    Morissette, Michael R.; Cook, Stuart A.; Buranasombati, Cattleya; Rosenberg, Michael A.

    2009-01-01

    Myostatin is a highly conserved negative regulator of skeletal muscle growth. Loss of functional myostatin in cattle, mice, sheep, dogs, and humans results in increased muscle mass. The molecular mechanisms responsible for this increase in muscle growth are not fully understood. Previously, we have reported that phenylephrine-induced cardiac muscle growth and Akt activation are enhanced in myostatin knockout mice compared with controls. Here we report that skeletal muscle from myostatin knockout mice show increased Akt protein expression and overall activity at baseline secondary to an increase in Akt mRNA. We examined the functional role of myostatin modulation of Akt in C2C12 myotubes, a well-established in vitro model of skeletal muscle hypertrophy. Adenoviral overexpression of myostatin attenuated the insulin-like growth factor-I (IGF-I)-mediated increase in myotube diameter, as well as IGF-I-stimulated Akt phosphorylation. Inhibition of myostatin by overexpression of the NH2-terminal portion of myostatin was sufficient to increase myotube diameter and Akt phosphorylation. Coexpression of myostatin and constitutively active Akt (myr-Akt) restored the increase in myotube diameter. Conversely, expression of dominant negative Akt (dn-Akt) with the inhibitory myostatin propeptide blocked the increase in myotube diameter. Of note, ribosomal protein S6 phosphorylation and atrogin-1/muscle atrophy F box mRNA were increased in skeletal muscle from myostain knockout mice. Together, these data suggest myostatin regulates muscle growth at least in part through regulation of Akt. PMID:19759331

  20. The inhibition of Bid expression by Akt leads to resistance to TRAIL-induced apoptosis in ovarian cancer cells

    PubMed Central

    Goncharenko-Khaider, N; Lane, D; Matte, I; Rancourt, C; Piché, A

    2010-01-01

    Epithelial ovarian cancer (EOC) cells often show increased activity of the PI3K/Akt pathway. In addition, we have previously shown that EOC ascites induce Akt activation in the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-sensitive EOC cell line, CaOV3, leading to TRAIL-mediated apoptosis inhibition. In this study, we investigated the role of Akt in intrinsic resistance to TRAIL, which is common in EOC cells. We report that Akt activation reduces the sensitivity of EOC cells to TRAIL. TRAIL-resistant SKOV3ip1 and COV2 cells were sensitized to TRAIL-induced apoptosis by PI3K or Akt inhibitors although inhibition of PI3K/Akt signaling pathway did not interfere with the recruitment and processing of caspase-8 to the death-inducing signaling complex. Conversely, overexpression of Akt1 in TRAIL-sensitive cells promoted resistance to TRAIL. Although the fact that TRAIL-induced caspase-8 activation was observed in both sensitive and resistant cell lines, Bid cleavage occurred only in sensitive cells or in SKOV3ip1 cells treated with LY294002. Bid expression was low in resistant cells and Akt activation downregulated its expression. Depletion of Bid by siRNA in OVCAR3 cells was associated with a decrease in TRAIL-mediated apoptosis. Overexpression of Bid only in SKOV3ip1 cells enhanced TRAIL-induced apoptosis. Simultaneous blockade of Akt pathway further increased TRAIL-induced apoptosis. Thus, Akt acts upstream of mitochondria and inhibits TRAIL-induced apoptosis by decreasing Bid protein levels and possibly inhibiting its cleavage. PMID:20661217

  1. Modulatory role of garlicin in migration and invasion of intrahepatic cholangiocarcinoma via PI3K/AKT pathway

    PubMed Central

    Xie, Kun; Nian, Jianze; Zhu, Xingyang; Geng, Xiaoping; Liu, Fubao

    2015-01-01

    Increasing evidences have indicated the role of garlicin in inhibiting the progression of various tumors including glioma, pulmonary carcinoma and pancreatic carcinoma, via mediating cell apoptosis or cell cycle. The regulatory effect and related molecular mechanism of garlicin in intrahepatic cholangiocarcinoma, however, remained unknown. This study thus aimed to investigate this scientific issue. HCCC-9810 cell line was treated with serially diluted garlicin, followed by cell proliferation assay using MTT approach. Transwell migration and invasion assays were further employed the regulatory effect of garlicin. The expression level of p-AKT and AKT proteins in tumor cells was quantified by Western blot. The growth of tumor cells was significantly inhibited by high concentration of garlicin (> 1.5 μM). Lower concentration of garlicin showed dose-dependent inhibition of tumor cell invasion and migration. After using specific agonist IGF-1 (50 ng/mL) of PI3K/AKT signaling pathway, such facilitating effects of garlicin were depressed (P < 0.05). Western blotting showed significantly decreased phosphorylation level of AKT after treated with gradient concentrations of garlicin, while leaving the total AKT protein level unchanged. Garlicin may inhibit the invasion and migration of intrahepatic cholangiocarcinoma cells via inhibiting PI3K/AKT signaling pathway. PMID:26823715

  2. Antiapoptotic activity of Akt is down-regulated by Ca2+ in myocardiac H9c2 cells. Evidence of Ca(2+)-dependent regulation of protein phosphatase 2Ac.

    PubMed

    Yasuoka, Chie; Ihara, Yoshito; Ikeda, Satoshi; Miyahara, Yoshiyuki; Kondo, Takahito; Kohno, Shigeru

    2004-12-01

    Cell survival signaling of the Akt/protein kinase B pathway was influenced by a change in the cytoplasmic free calcium concentration ([Ca2+]i) for over 2 h via the regulation of a Ser/Thr phosphatase, protein phosphatase 2Ac (PP2Ac), in rat myocardiac H9c2 cells. Akt was down-regulated when [Ca2+]i was elevated by thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, but was up-regulated when it was suppressed by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)ester (BAPTA-AM), a cell permeable Ca2+ chelator. The inactivation of Akt was well correlated with the susceptibility to oxidant-induced apoptosis in H9c2 cells. To investigate the mechanism of the Ca(2+)-dependent regulation of Akt via the regulation of PP2A, we examined the transcriptional regulation of PP2Acalpha in H9c2 cells with Ca2+ modulators. Transcription of the PP2Acalpha gene was increased by thapsigargin but decreased by BAPTA-AM. The promoter activity was examined and the cAMP response element (CRE) was found responsible for the Ca(2+)-dependent regulation of PP2Acalpha. Furthermore, phosphorylation of CRE-binding protein increased with thapsigargin but decreased with BAPTA-AM. A long term change of [Ca2+]i regulates PP2Acalpha gene transcription via CRE, resulting in a change in the activation status of Akt leading to an altered susceptibility to apoptosis. PMID:15375154

  3. Akt/Protein Kinase B-Dependent Phosphorylation and Inactivation of WEE1Hu Promote Cell Cycle Progression at G2/M Transition

    PubMed Central

    Katayama, Kazuhiro; Fujita, Naoya; Tsuruo, Takashi

    2005-01-01

    The serine/threonine kinase Akt is known to promote cell growth by regulating the cell cycle in G1 phase through activation of cyclin/Cdk kinases and inactivation of Cdk inhibitors. However, how the G2/M phase is regulated by Akt remains unclear. Here, we show that Akt counteracts the function of WEE1Hu. Inactivation of Akt by chemotherapeutic drugs or the phosphatidylinositide-3-OH kinase inhibitor LY294002 induced G2/M arrest together with the inhibitory phosphorylation of Cdc2. Because the increased Cdc2 phosphorylation was completely suppressed by wee1hu gene silencing, WEE1Hu was associated with G2/M arrest induced by Akt inactivation. Further analyses revealed that Akt directly bound to and phosphorylated WEE1Hu during the S to G2 phase. Serine-642 was identified as an Akt-dependent phosphorylation site. WEE1Hu kinase activity was not affected by serine-642 phosphorylation. We revealed that serine-642 phosphorylation promoted cytoplasmic localization of WEE1Hu. The nuclear-to-cytoplasmic translocation was mediated by phosphorylation-dependent WEE1Hu binding to 14-3-3θ but not 14-3-3β or -σ. These results indicate that Akt promotes G2/M cell cycle progression by inducing phosphorylation-dependent 14-3-3θ binding and cytoplasmic localization of WEE1Hu. PMID:15964826

  4. Enhanced Cardiac Akt/Protein Kinase B Signaling Contributes to Pathological Cardiac Hypertrophy in Part by Impairing Mitochondrial Function via Transcriptional Repression of Mitochondrion-Targeted Nuclear Genes

    PubMed Central

    Wende, Adam R.; O'Neill, Brian T.; Bugger, Heiko; Riehle, Christian; Tuinei, Joseph; Buchanan, Jonathan; Tsushima, Kensuke; Wang, Li; Caro, Pilar; Guo, Aili; Sloan, Crystal; Kim, Bum Jun; Wang, Xiaohui; Pereira, Renata O.; McCrory, Mark A.; Nye, Brenna G.; Benavides, Gloria A.; Darley-Usmar, Victor M.; Shioi, Tetsuo; Weimer, Bart C.

    2014-01-01

    Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity. PMID:25535334

  5. Reduced RKIP enhances nasopharyngeal carcinoma radioresistance by increasing ERK and AKT activity

    PubMed Central

    Yuan, Li; Yi, Hong-Mei; Yi, Hong; Qu, Jia-Quan; Zhu, Jin-Feng; Li, Li-Na; Xiao, Ta; Zheng, Zhen; Lu, Shan-Shan; Xiao, Zhi-Qiang

    2016-01-01

    Raf kinase inhibitory protein (RKIP) functions as a chemo-immunotherapeutic sensitizer of cancers, but regulation of RKIP on tumor radiosensitivity remains largely unexplored. In this study, we investigate the role and mechanism of RKIP in nasopharyngeal carcinoma (NPC) radioresistance. The results showed that RKIP was frequently downregulated in the radioresistant NPC tissues compared with radiosensitive NPC tissues, and its reduction correlated with NPC radioresistance and poor patient survival, and was an independent prognostic factor. In vitro radioresponse assay showed that RKIP overexpression decreased while RKIP knockdown increased NPC cell radioresistance. In the NPC xenografts, RKIP overexpression decreased while RKIP knockdown increased tumor radioresistance. Mechanistically, RKIP reduction promoted NPC cell radioresistance by increasing ERK and AKT activity, and AKT may be a downstream transducer of ERK signaling. Moreover, the levels of phospho-ERK−1/2 and phospho-AKT were increased in the radioresistant NPC tissues compared with radiosensitive ones, and negatively associated with RKIP expression, indicating that RKIP-regulated NPC radioresponse is mediated by ERK and AKT signaling in the clinical samples. Our data demonstrate that RKIP is a critical determinant of NPC radioresponse, and its reduction enhances NPC radioresistance through increasing ERK and AKT signaling activity, highlighting the therapeutic potential of RKIP-ERK-AKT signaling axis in NPC radiosensitization. PMID:26862850

  6. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells

    SciTech Connect

    Jeong, Yun-Jeong; Cho, Hyun-Ji; Magae, Junji; Lee, In-Kyu; Park, Keun-Gyu; Chang, Young-Chae

    2013-12-15

    Hypoxia-inducible factor (HIF)-1 plays an important role in tumor progression, angiogenesis and metastasis. In this study, we investigated the potential molecular mechanisms underlying the anti-angiogenic effect of ascofuranone, an isoprenoid antibiotic from Ascochyta viciae, in epidermal growth factor (EGF)-1 responsive human breast cancer cells. Ascofuranone significantly and selectively suppressed EGF-induced HIF-1α protein accumulation, whereas it did not affect the expression of HIF-1β. Furthermore, ascofuranone inhibited the transcriptional activation of vascular endothelial growth factor (VEGF) by reducing protein HIF-1α. Mechanistically, we found that the inhibitory effects of ascofuranone on HIF-1α protein expression are associated with the inhibition of synthesis HIF-1α through an EGF-dependent mechanism. In addition, ascofuranone suppressed EGF-induced phosphorylation of Akt/mTOR/p70S6 kinase, but the phosphorylation of ERK/JNK/p38 kinase was not affected by ascofuranone. These results suggest that ascofuranone suppresses EGF-induced HIF-1α protein translation through the inhibition of Akt/mTOR/p70S6 kinase signaling pathways and plays a novel role in the anti-angiogenic action. - Highlights: • Inhibitory effect of ascofuranone on HIF-1α expression is EGF-specific regulation. • Ascofuranone decreases HIF-1α protein synthesis through Akt/mTOR pathways. • Ascofuranone suppresses EGF-induced VEGF production and tumor angiogenesis.

  7. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells

    PubMed Central

    Park, SE; Sapkota, K; Kim, S; Kim, H; Kim, SJ

    2011-01-01

    BACKGROUND AND PURPOSE Kaempferol, a dietary flavonoid and phyto-oestrogen, is known to have anti-inflammatory properties. Microglial activation has been implicated in various neurodegenerative diseases. Anti-inflammatory effects of kaempferol and the underlying mechanisms were investigated by using LPS-stimulated microglial BV2 cells. EXPERIMENTAL APPROACH Cell viability was measured using MTT and neutral red assays. elisa, Western blot, immunocytochemistry and electrophoretic mobility-shift assay were used to analyse NO, PGE2, TNF-α and IL-1β production, inducible NOS (iNOS), COX-2 expression and the involvement of signalling pathways such as toll-like receptor-4 (TLR4), MAPK cascades, PKB (AKT) and NF-κB. Accumulation of reaction oxygen species (ROS) was measured by nitroblue tetrazolium and 2′7′-dichlorofluorescein diacetate assay. Matrix metalloproteinase activity was investigated by zymography and immunoblot assay. Phagocytotic activity was assessed by use of latex beads. KEY RESULTS Kaempferol significantly attenuated LPS-induced NO, PGE2, TNF-α, IL-1β and ROS production and phagocytosis in a concentration-dependent manner. Kaempferol suppressed the expression of iNOS, COX-2, MMP-3 and blocked the TLR4 activation. Moreover, kaempferol inhibited LPS-induced NF-κB activation and p38 MAPK, JNK and AKT phosphorylation. CONCLUSION AND IMPLICATIONS Kaempferol was able to reduce LPS-induced inflammatory mediators through the down-regulation of TLR4, NF-κB, p38 MAPK, JNK and AKT suggesting that kaempferol has therapeutic potential for the treatment of neuroinflammatory diseases. PMID:21449918

  8. The AKT/mTOR signaling pathway plays a key role in statin-induced myotoxicity.

    PubMed

    Bonifacio, Annalisa; Sanvee, Gerda M; Bouitbir, Jamal; Krähenbühl, Stephan

    2015-08-01

    Statins are drugs that lower blood cholesterol levels and reduce cardiovascular morbidity and mortality. They are generally well-tolerated, but myopathy is a potentially severe adverse reaction of these compounds. The mechanisms by which statins induce myotoxicity are not completely understood, but may be related to inhibition of the AKT signaling pathway. The current studies were performed to explore the down-stream effects of the statin-associated inhibition of AKT within the AKT signaling pathway and on myocyte biology and morphology in C2C12 myotubes and in mice in vivo. We exposed C2C12 myotubes to 10 μM or 50 μM simvastatin, atorvastatin or rosuvastatin for 24 h. Simvastatin and atorvastatin inhibited AKT phosphorylation and were cytotoxic starting at 10 μM, whereas similar effects were observed for rosuvastatin at 50 μM. Inhibition of AKT phosphorylation was associated with impaired phosphorylation of S6 kinase, ribosomal protein S6, 4E-binding protein 1 and FoxO3a, resulting in reduced protein synthesis, accelerated myofibrillar degradation and atrophy of C2C12 myotubes. Furthermore, impaired AKT phosphorylation was associated with activation of caspases and PARP, reflecting induction of apoptosis. Similar findings were detected in skeletal muscle of mice treated orally with 5 mg/kg/day simvastatin for 3 weeks. In conclusion, this study highlights the importance of the AKT/mTOR signaling pathway in statin-induced myotoxicity and reveals potential drug targets for treatment of patients with statin-associated myopathies. PMID:25913013

  9. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways

    PubMed Central

    CHUANG, WAN-LING; SU, CHIN-CHENG; LIN, PING-YI; LIN, CHI-CHEN; CHEN, YAO-LI

    2015-01-01

    Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicine, was previously reported to induce autophagy and inhibit the proliferation of the human HepG2 hepatocellular carcinoma cell line via an extrinsic pathway. In the present study, the effects of SJKJT-induced autophagy and the cytotoxic mechanisms mediating these effects were investigated in HepG2 cells. The cytotoxicity of SJKJT in the HepG2 cells was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results demonstrated that the half-maximal inhibitory concentration of SJKJT was 2.91 mg/ml at 24 h, 1.64 mg/ml at 48 h and 1.26 mg/ml at 72 h. The results of confocal fluorescence microscopy indicated that SJKJT resulted in the accumulation of green fluorescent protein-LC3 and vacuolation of the cytoplasm. Flow cytometric analysis revealed the accumulation of acidic vesicular organelles. Furthermore, western blot analysis, used to determine the expression levels of autophagy-associated proteins, demonstrated that the HepG2 cells treated with SJKJT exhibited LC3B-I/LC3B-II conversion, increased expression levels of Beclin, Atg-3 and Atg-5 and reduced expression levels of p62 and decreased signaling of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and the p38 mitogen-activated protein kinase pathways. Taken together, these findings may assist in the development of novel chemotherapeutic agents for the treatment of malignant types of liver cancer. PMID:25847489

  10. The protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation and increases sarcoplasmic/endoplasmic reticulum calcium ATPase 2 levels

    SciTech Connect

    King, Taj D.; Gandy, Johanna C.; Bijur, Gautam N. . E-mail: gautam@uab.edu

    2006-11-01

    The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3{alpha} and Ser9 of GSK3{beta}. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3{beta}, but not GSK3{alpha}. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels.

  11. A Hot-spot of In-frame Duplications Activates the Oncoprotein AKT1 in Juvenile Granulosa Cell Tumors

    PubMed Central

    Bessière, Laurianne; Todeschini, Anne-Laure; Auguste, Aurélie; Sarnacki, Sabine; Flatters, Delphine; Legois, Bérangère; Sultan, Charles; Kalfa, Nicolas; Galmiche, Louise; Veitia, Reiner A.

    2015-01-01

    Background Ovarian granulosa cell tumors are the most common sex-cord stromal tumors and have juvenile (JGCTs) and adult forms. In a previous study we reported the occurrence of activating somatic mutations of Gαs, which transduces mitogenic signals, in 30% of the analyzed JGCTs. Methods We have searched for alterations in other proteins involved in ovarian mitogenic signaling. We focused on the PI3K–AKT axis. As we found mutations in AKT1, we analyzed the subcellular localization of the mutated proteins and performed functional explorations using Western-blot and luciferase assays. Findings We detected in-frame duplications affecting the pleckstrin-homology domain of AKT1 in more than 60% of the tumors occurring in girls under 15 years of age. The somatic status of the mutations was confirmed when peritumoral DNA was available. The JGCTs without duplications carried point mutations affecting highly conserved residues. Several of these substitutions were somatic lesions. The mutated proteins carrying the duplications had a non-wild-type subcellular distribution, with a marked enrichment at the plasma membrane. This led to a striking degree of AKT1 activation demonstrated by a strong phosphorylation level and by reporter assays. Interpretation Our study incriminates somatic mutations of AKT1 as a major event in the pathogenesis of JGCTs. The existence of AKT inhibitors currently tested in clinical trials opens new perspectives for targeted therapies for these tumors, which are currently treated with standard non-specific chemotherapy protocols. PMID:26137586

  12. Aged black garlic extract inhibits HT29 colon cancer cell growth via the PI3K/Akt signaling pathway.

    PubMed

    Dong, Menghua; Yang, Guiqing; Liu, Hanchen; Liu, Xiaoxu; Lin, Sixiang; Sun, Dongning; Wang, Yishan

    2014-03-01

    Accumulating evidence indicates that aged black garlic extract (ABGE) may prove beneficial in preventing or inhibiting oncogenesis; however, the underlying mechanisms have not been fully elucidated. The present study aimed to investigate the effects of ABGE on the proliferation and apoptosis of HT29 colon cancer cells. Our results demonstrated that ABGE inhibited HT29 cell growth via the induction of apoptosis and cell cycle arrest. We further investigated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signal transduction pathway and the molecular mechanisms underlying the ABGE-induced inhibition of HT29 cell proliferation. We observed that ABGE may regulate the function of the PI3K/Akt pathway through upregulating PTEN and downregulating Akt and p-Akt expression, as well as suppressing its downstream target, 70-kDa ribosomal protein S6 kinase 1, at the mRNA and protein levels. In conclusion, these findings suggest that the PI3K/Akt signal transduction pathway is crucial for the development of colon cancer. ABGE inhibited the growth and induced apoptosis in HT29 cells through the inhibition of the PI3K/Akt pathway, suggesting that ABGE may be effective in the prevention and treatment of colon cancer in humans. PMID:24649105

  13. Constitutively active Akt1 expression in mouse pancreas requires S6 kinase 1 for insulinoma formation

    PubMed Central

    Alliouachene, Samira; Tuttle, Robyn L.; Boumard, Stephanie; Lapointe, Thomas; Berissi, Sophie; Germain, Stephane; Jaubert, Francis; Tosh, David; Birnbaum, Morris J.; Pende, Mario

    2008-01-01

    Factors that promote pancreatic β cell growth and function are potential therapeutic targets for diabetes mellitus. In mice, genetic experiments suggest that signaling cascades initiated by insulin and IGFs positively regulate β cell mass and insulin secretion. Akt and S6 kinase (S6K) family members are activated as part of these signaling cascades, but how the interplay between these proteins controls β cell growth and function has not been determined. Here, we found that although transgenic mice overexpressing the constitutively active form of Akt1 under the rat insulin promoter (RIP-MyrAkt1 mice) had enlarged β cells and high plasma insulin levels, leading to improved glucose tolerance, a substantial proportion of the mice developed insulinomas later in life, which caused decreased viability. This oncogenic transformation tightly correlated with nuclear exclusion of the tumor suppressor PTEN. To address the role of the mammalian target of rapamycin (mTOR) substrate S6K1 in the MyrAkt1-mediated phenotype, we crossed RIP-MyrAkt1 and S6K1-deficient mice. The resulting mice displayed reduced insulinemia and glycemia compared with RIP-MyrAkt1 mice due to a combined effect of improved insulin secretion and insulin sensitivity. Importantly, although the increase in β cell size in RIP-MyrAkt1 mice was not affected by S6K1 deficiency, the hyperplastic transformation required S6K1. Our results therefore identify S6K1 as a critical element for MyrAkt1-induced tumor formation and suggest that it may represent a useful target for anticancer therapy downstream of mTOR. PMID:18846252

  14. Sirt1 decreased adipose inflammation by interacting with Akt2 and inhibiting mTOR/S6K1 pathway in mice.

    PubMed

    Liu, Zhenjiang; Gan, Lu; Liu, Guannv; Chen, Yizhe; Wu, Tianjiao; Feng, Fei; Sun, Chao

    2016-08-01

    Sirtuin type 1 (Sirt1) and protein kinase B (Akt2) are associated with development of obesity and inflammation, but the molecular mechanisms of Sirt1 and Akt2 interaction on adipose inflammation remain unclear. To explore these mechanisms, a mouse model was used. Mice were fed with a high-fat diet (HFD) for 8 weeks, with interventions of resveratrol (RES) or nicotinamide (NAM) during the last 15 days. The HFD reduced Sirt1 mRNA in adipose tissue and elevated interleukin-6 (IL-6) expression. RES reduced the adipose tissue weight, increased the Sirt1 mRNA level, and reduced both mRNA and protein levels of IL-6, MCP-1, inducible nitric oxide synthase, and TNF-α by inhibiting phosphorylation of Akt2 in adipose tissue. Additionally, macrophage type I marker genes were reduced while macrophage type II marker genes were elevated by RES addition. Moreover, activation of Akt2 signal by using insulin significantly blunted the inhibitory effect of RES on adipose inflammation. Immunoprecipitation assay demonstrated that RES enhances the protein-protein interaction between Sirt1 and Akt2, but NAM inhibits this interaction. Furthermore, Sirt1 significantly reduced the levels of raptor and inactivated mammalian target of rapamycin (mTOR)C1 signal by interacting with Akt2, and confirmed that RES attenuated adipose inflammation by inhibiting the mTOR/S6K1 pathway via rapamycin. PMID:27317762

  15. Infectious bursal disease virus activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by interaction of VP5 protein with the p85{alpha} subunit of PI3K

    SciTech Connect

    Wei Li; Hou Lei; Zhu Shanshan; Wang Jing; Zhou Jiao; Liu Jue

    2011-08-15

    Phosphatidylinositol 3-kinase (PI3K)/Akt signaling is commonly activated upon virus infection and has been implicated in the regulation of diverse cellular functions such as proliferation and apoptosis. The present study demonstrated for the first time that infectious bursal disease virus (IBDV), the causative agent of a highly contagious disease in chickens, can induce Akt phosphorylation in cultured cells, by a mechanism that is dependent on PI3K. Inhibition of PI3K activation greatly enhanced virus-induced cytopathic effect and apoptotic cell death as evidenced by cleavage of poly-ADP ribose polymerase and activation of caspase-3. Investigations into the mechanism of PI3K/Akt activation revealed that IBDV activates PI3K/Akt signaling through binding of the non-structural protein VP5 to regulatory subunit p85{alpha} of PI3K resulting in the suppression of premature apoptosis and improved virus growth after infection. The results presented here provide a basis for understanding molecular mechanism of IBDV infection.

  16. Inhibition of miR301 enhances Akt-mediated cell proliferation by accumulation of PTEN in nucleus and its effects on cell-cycle regulatory proteins

    PubMed Central

    Jain, Mayur V.; Shareef, Ahmad; Likus, Wirginia; Cieślar-Pobuda, Artur; Ghavami, Saeid; Łos, Marek J.

    2016-01-01

    Micro-RNAs (miRs) represent an innovative class of genes that act as regulators of gene expression. Recently, the aberrant expression of several miRs has been associated with different types of cancers. In this study, we show that miR301 inhibition influences PI3K-Akt pathway activity. Akt overexpression in MCF7 and MDAMB468 cells caused downregulation of miR301 expression. This effect was confirmed by co-transfection of miR301-modulators in the presence of Akt. Cells overexpressing miR301-inhibitor and Akt, exhibited increased migration and proliferation. Experimental results also confirmed PI3K, PTEN and FoxF2 as regulatory targets for miR301. Furthermore, Akt expression in conjunction with miR301-inhibitor increased nuclear accumulation of PTEN, thus preventing it from downregulating the PI3K-signalling. In summary, our data emphasize the importance of miR301 inhibition on PI3K-Akt pathway-mediated cellular functions. Hence, it opens new avenues for the development of new anti-cancer agents preferentially targeting PI3K-Akt pathway. PMID:26967567

  17. Polydatin improves glucose and lipid metabolism in experimental diabetes through activating the Akt signaling pathway.

    PubMed

    Hao, Jie; Chen, Cheng; Huang, Kaipeng; Huang, Junying; Li, Jie; Liu, Peiqing; Huang, Heqing

    2014-12-15

    Recently, the effect of polydatin on lipid regulation has gained considerable attention. And previous study has demonstrated that polydatin has hypoglycemic effect on experimental diabetic rats. Repressed Akt pathway contributes to glucose and lipid disorders in diabetes. Thus, whether polydatin regulates glucose and lipid metabolism in experimental diabetic models through the Akt pathway arouses interest. The purpose was to explore the regulatory mechanism of polydain on glucose and lipid through Akt pathway. We used a diabetic rat model induced by high-fat and -sugar diet with low-dose of streptozocin and an insulin resistant HepG2 cell model induced by palmitic acid to clarify the role of polydatin on glucose and lipid metabolism. Here, we found that polydatin significantly attenuated fasting blood–glucose, glycosylated hemoglobin, glycosylated serum protein, total cholesterol, triglyceride, and low-density lipoprotein cholesterol in diabetic rats. Furthermore, polydatin significantly increased glucose uptake and consumption and decreased lipid accumulation in insulin resistant HepG2 cells. Polydatin markedly increased serum insulin levels in diabetic rats, and obviously activated the Akt signaling pathway in diabetic rat livers and insulin resistant HepG2 cells. Polydatin markedly increased phosphorylated GSK-3β, decreased the protein levels of G6Pase and SREBP-1c, and increased protein levels of GCK, LDLR, and phosphorylated IRS in livers and HepG2 cells. Overall, the results indicate that polydatin regulates glucose and lipid metabolism in experimental diabetic models, the underlying mechanism is probably associated with regulating the Akt pathway. The effect of polydatin on increased Akt phosphorylation is independent of prompting insulin secretion, but dependent of increasing IRS phosphorylation. PMID:25310908

  18. Phosphorylation of AKT and abdominal aortic aneurysm formation.

    PubMed

    Ghosh, Abhijit; Lu, Guanyi; Su, Gang; McEvoy, Brendan; Sadiq, Omar; DiMusto, Paul D; Laser, Adriana; Futchko, John S; Henke, Peter K; Eliason, Jonathan L; Upchurch, Gilbert R

    2014-01-01

    It is hypothesized that differential AKT phosphorylation between sexes is important in abdominal aortic aneurysm (AAA) formation. Male C57BL/6 mice undergoing elastase treatment showed a typical AAA phenotype (80% over baseline, P < 0.001) and significantly increased phosphorylated AKT-308 (p308) and total-AKT (T-AKT) at day 14 compared with female mice. Elastase-treated Raw cells produced increased p308 and significant amounts of matrix metalloproteinase 9 (MMP-9), and these effects were suppressed by LY294002 treatment, a known AKT inhibitor. Male and female rat aortic smooth muscle cells treated with elastase for 1, 6, or 24 hours demonstrated that the p308/T-AKT and AKT-Ser-473/T-AKT ratios peaked at 6 hours and were significantly higher in the elastase-treated cells compared with controls. Similarly, male cells had higher phosphorylated AKT/T-AKT levels than female cells. LY294002 also inhibited elastase-induced p308 formation more in female smooth muscle cells than in males, and the corresponding cell media had less pro-MMP-9. AKT siRNA significantly decreased secretion of pro-MMP-9, as well as pro-MMP-2 and active MMP-2 from elastase-treated male rat aortic smooth muscle cells. IHC of male mice AAA aortas showed increased p308, AKT-Ser-473, and T-AKT compared with female mice. Aortas from male AAA patients had a significantly higher p308/T-AKT ratio than female AAA tissues. These data suggest that AKT phosphorylation is important in the upstream regulation of MMP activity, and that differential phosphorylation may be important in sex differences in AAA. PMID:24332015

  19. Cafestol, a coffee-specific diterpene, induces apoptosis in renal carcinoma Caki cells through down-regulation of anti-apoptotic proteins and Akt phosphorylation.

    PubMed

    Choi, Min Jung; Park, Eun Jung; Oh, Jung Hwa; Min, Kyoung-Jin; Yang, Eun Sun; Kim, Young Ho; Lee, Tae Jin; Kim, Sang Hyun; Choi, Yung Hyun; Park, Jong-Wook; Kwon, Taeg Kyu

    2011-04-25

    Cafestol, one of the major compounds in coffee beans, has been reported for its tumor cell growth inhibitory activity and anti-carcinogenic activity, although the mechanism of action is poorly understood. In the present study, we investigated the effect of cafestol on the apoptotic pathway in human renal Caki cells and other cancer cell lines. Cafestol treatment inhibited Caki cells viability a dose-dependent manner by inducing apoptosis, as evidenced by DNA fragmentation and the accumulation of sub-G1 phase. Cafestol-induced apoptosis is associated with the reduction of mitochondrial membrane potential (MMP), activation of caspase 3, cytochrome c release, and down-regulation of anti-apoptotic proteins (Bcl-2, Bcl-xL, Mcl-1 and cFLIP). Cafestol-induced apoptosis was blocked by pretreatment with broad caspase inhibitor z-VAD-fmk, showing its dependence on caspases. Ectopic expression of Bcl-2 or Mcl-1 in Caki cells attenuates cafestol-induced apoptosis. In addition, we have also shown that cafestol inhibits phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, and PI3K inhibitor LY29004 significantly increases cafestol-induced apoptosis in Caki cells. Taken together, our results show the activity of cafestol to modulate multiple components in apoptotic response of human renal Caki cells and a potential as a therapeutic agent for preventing cancers such as renal carcinoma. PMID:21334318

  20. Rho GTPase/Rho Kinase Negatively Regulates Endothelial Nitric Oxide Synthase Phosphorylation through the Inhibition of Protein Kinase B/Akt in Human Endothelial Cells

    PubMed Central

    Ming, Xiu-Fen; Viswambharan, Hema; Barandier, Christine; Ruffieux, Jean; Kaibuchi, Kozo; Rusconi, Sandro; Yang, Zhihong

    2002-01-01

    Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene transfer in human umbilical vein endothelial cells (HUVECs), we show here that both active RhoA and ROCK not only downregulate eNOS gene expression as reported previously but also inhibit eNOS phosphorylation at Ser-1177 and cellular NO production with concomitant suppression of PKB activation. Moreover, coexpression of a constitutive active form of PKB restores the phosphorylation but not gene expression of eNOS in the presence of active RhoA. Furthermore, we show that thrombin inhibits eNOS phosphorylation, as well as expression via Rho/ROCK pathway. Expression of the active PKB reverses eNOS phosphorylation but has no effect on downregulation of eNOS expression induced by thrombin. Taken together, these data demonstrate that Rho/ROCK pathway negatively regulates eNOS phosphorylation through inhibition of PKB, whereas it downregulates eNOS expression independent of PKB. PMID:12446767

  1. Effects of streptozotocin-induced type 1 maternal diabetes on PI3K/AKT signaling pathway in the hippocampus of rat neonates.

    PubMed

    Hami, Javad; Kerachian, Mohammad-Amin; Karimi, Razieh; Haghir, Hossein; Sadr-Nabavi, Ariane

    2016-06-01

    Diabetes in pregnancy impairs hippocampus development in offspring, leading to behavioral problems and learning deficits. Phosphatidylinositol 3-kinase/protein kinase B (PKB/Akt) signaling pathway plays a pivotal role in the regulation of neuronal proliferation, survival and death. The present study was designed to examine the effects of maternal diabetes on PKB/Akt expression and phosphorylation in the developing rat hippocampus. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was killed at first postnatal day (P1). The hippocampal expression and phosphorylation level of PKB/Akt, one of the key molecules in PI3K/AKT signaling pathway, was evaluated using real-time polymerase chain reaction (PCR) and western blot analysis. We found a significant bilateral downregulation of AKT1 gene expression in the hippocampus of pups born to diabetic mothers (p < 0.05). Interestingly, our results revealed a marked upregulation of Akt1 gene in insulin-treated group compared with other groups (p < 0.05). The western blot analysis also showed the reduction of phosphorylation level of all AKT isoforms in both diabetic and insulin-treated groups compared with control (p < 0.05). Moreover, the results showed a significant increase in phosphorylation level of AKT in insulin-treated group compared with the diabetic group. These results represent that diabetes during pregnancy strongly influences the regulation of PKB/AKT in the developing rat hippocampus. Furthermore, although the control of glycemia by insulin administration is not sufficient to prevent the alterations in PKB/Akt expression, it modulates the phosphorylation process, thus ultimately resulting in a situation comparable to that found in the normal condition. PMID:26479041

  2. Atomic-level analysis of membrane-protein structure.

    PubMed

    Hendrickson, Wayne A

    2016-06-01

    Membrane proteins are substantially more challenging than natively soluble proteins as subjects for structural analysis. Thus, membrane proteins are greatly underrepresented in structural databases. Recently, focused consortium efforts and advances in methodology for protein production, crystallographic analysis and cryo-EM analysis have accelerated the pace of atomic-level structure determination of membrane proteins. PMID:27273628

  3. A KSHV microRNA Directly Targets G Protein-Coupled Receptor Kinase 2 to Promote the Migration and Invasion of Endothelial Cells by Inducing CXCR2 and Activating AKT Signaling

    PubMed Central

    Bai, Zhiqiang; Qin, Di; Yan, Qin; Zhu, Jianzhong; Krueger, Brian J.; Renne, Rolf; Gao, Shou-Jiang; Lu, Chun

    2015-01-01

    Kaposi's sarcoma (KS) is a highly disseminated angiogenic tumor of endothelial cells linked to infection by Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV encodes more than two dozens of miRNAs but their roles in KSHV-induced tumor dissemination and metastasis remain unknown. Here, we found that ectopic expression of miR-K12-3 (miR-K3) promoted endothelial cell migration and invasion. Bioinformatics and luciferase reporter analyses showed that miR-K3 directly targeted G protein-coupled receptor (GPCR) kinase 2 (GRK2, official gene symbol ADRBK1). Importantly, overexpression of GRK2 reversed miR-K3 induction of cell migration and invasion. Furthermore, the chemokine receptor CXCR2, which was negatively regulated by GRK2, was upregulated in miR-K3-transduced endothelial cells. Knock down of CXCR2 abolished miR-K3-induced cell migration and invasion. Moreover, miR-K3 downregulation of GRK2 relieved its direct inhibitory effect on AKT. Both CXCR2 induction and the release of AKT from GRK2 were required for miR-K3 maximum activation of AKT and induction of cell migration and invasion. Finally, deletion of miR-K3 from the KSHV genome abrogated its effect on the GRK2/CXCR2/AKT pathway and KSHV-induced migration and invasion. Our data provide the first-line evidence that, by repressing GRK2, miR-K3 facilitates cell migration and invasion via activation of CXCR2/AKT signaling, which likely contribute to the dissemination of KSHV-induced tumors. PMID:26402907

  4. Tetrandrine suppresses metastatic phenotype of prostate cancer cells by regulating Akt/mTOR/MMP-9 signaling pathway.

    PubMed

    Kou, Bo; Liu, Wei; He, Wenbo; Zhang, Yuanyuan; Zheng, Jianjie; Yan, Yang; Zhang, Yongjian; Xu, Suochun; Wang, Haichen

    2016-05-01

    Tetrandrine (TET), a bisbenzylisoquinoline alkaloid found in traditional Chinese medicines, exerts anticancer activity in vitro and in vivo. However, its potential role in the prostate cancer metastatic process has not yet been elucidated. Thus, we investigated the inhibition effect of tetrandrine on prostate cancer migration and invasion and the corresponding molecular basis underlying its anticancer activity. Cell migration and invasion were determined using the Transwell chamber model. The protein expression of Akt, phosphorylated Akt, the mammalian target of rapamycin (mTOR), phosphorylated mTOR and matrix metalloproteinases 9 (MMP-9) was detected by western blot in the presence or absence of tetrandrine or in the group tetrandrine combination with LY294002 (inhibitor of Akt) and rapamycin (inhibitor of mTOR). Our studies showed that excluding the effect of tetrandrine on cell proliferation, tetrandrine significantly inhibited cell migration and invasion in prostate cancer DU145 and PC3 cells. Furthermore, tetrandrine decreased the protein levels of p-Akt, p-mTOR, and MMP-9. While the inhibition of Akt or mTOR by the respective inhibitors could potentiate this effect of tetrandrine on prostate cancer cells, the studies indicate that tetrandrine inhibits the metastasis process by negatively regulating the Akt/mTOR/MMP-9 signaling pathway. These results suggest that tetrandrine might serve as a potential metastasis suppressor to treat cancer cells that have escaped surgical removal or that have disseminated widely. PMID:26935264

  5. Repression of AKT signaling by ARQ 092 in cells and tissues from patients with Proteus syndrome

    PubMed Central

    Lindhurst, Marjorie J.; Yourick, Miranda R.; Yu, Yi; Savage, Ronald E.; Ferrari, Dora; Biesecker, Leslie G.

    2015-01-01

    A somatic activating mutation in AKT1, c.49G>A, pGlu17Lys, that results in elevated AKT signaling in mutation-positive cells, is responsible for the mosaic overgrowth condition, Proteus syndrome. ARQ 092 is an allosteric pan-AKT inhibitor under development for treatment in cancer. We tested the efficacy of this drug for suppressing AKT signaling in cells and tissues from patients with Proteus syndrome. ARQ 092 reduced phosphorylation of AKT and downstream targets of AKT in a concentration-dependent manner in as little as two hours. While AKT signaling was suppressed with ARQ 092 treatment, cells retained their ability to respond to growth factor stimulation by increasing pAKT levels proportionally to untreated cells. At concentrations sufficient to decrease AKT signaling, little reduction in cell viability was seen. These results indicate that ARQ 092 can suppress AKT signaling and warrants further development as a therapeutic option for patients with Proteus syndrome. PMID:26657992

  6. Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats.

    PubMed

    Luo, Li; Lu, A-Ming; Wang, Yan; Hong, An; Chen, Yulan; Hu, Juan; Li, Xiaoning; Qin, Zheng-Hong

    2013-04-01

    Resistance exercise training (RET) remains the most effective treatment for the loss of muscle mass and strength in elderly people. However, the underlying cellular and molecular mechanisms are not well understood. Recent evidence suggests that autophagic signaling is altered in aged skeletal muscles. This study aimed to investigate if RET affects IGF-1 and its receptors, the Akt/mTOR, and Akt/FOXO3a signaling pathways and regulates autophagy and apoptosis in the gastrocnemius muscles of 18-20 month old rats. The results showed that 9 weeks of RET prevented the loss of muscle mass and improved muscle strength, accompanied by reduced LC3-II/LC3-I ratio, reduced p62 protein levels, and increased levels of autophagy regulatory proteins, including Beclin 1, Atg5/12, Atg7, and the lysosomal enzyme cathepsin L. RET also reduced cytochrome c level in the cytosol but increased its level in mitochondrial fraction, and inhibited cleaved caspase 3 production and apoptosis. Furthermore, RET upregulated the expression of IGF-1 and its receptors but downregulated the phosphorylation of Akt and mTOR. In addition, RET upregulated the expression of total AMPK, phosphorylated AMPK, and FOXO3a. Taken together, these results suggest that the benefits of RET are associated with increased autophagy activity and reduced apoptosis of muscle cells by modulating IGF-1 and its receptors, the Akt/mTOR and Akt/FOXO3a signaling pathways in aged skeletal muscles. PMID:23419688

  7. Akt attenuates apoptotic death through phosphorylation of H2A under hydrogen peroxide-induced oxidative stress in PC12 cells and hippocampal neurons

    PubMed Central

    Park, Ji Hye; Kim, Chung Kwon; Lee, Sang Bae; Lee, Kyung-Hoon; Cho, Sung-Woo; Ahn, Jee-Yin

    2016-01-01

    Although the essential role of protein kinase B (PKB)/Akt in cell survival signaling has been clearly established, the mechanism by which Akt mediates the cellular response to hydrogen peroxide (H2O2)-induced oxidative stress remains unclear. We demonstrated that Akt attenuated neuronal apoptosis through direct association with histone 2A (H2A) and phosphorylation of H2A at threonine 17. At early time points during H2O2 exposure of PC12 cells and primary hippocampal neurons, when the cells can tolerate the level of DNA damage, Akt was activated and phosphorylated H2A, leading to inhibition of apoptotic death. At later time points, Akt delivered the NAD+-dependent protein deacetylase Sirtuin 2 (Sirt 2) to the vicinity of phosphorylated H2A in response to irreversible DNA damage, thereby inducing H2A deacetylation and subsequently leading to apoptotic death. Ectopically expressed T17A-substituted H2A minimally interacted with Akt and failed to prevent apoptosis under oxidative stress. Thus Akt-mediated H2A phosphorylation has an anti-apoptotic function in conditions of H2O2-induced oxidative stress in neurons and PC12 cells. PMID:26899247

  8. An integrative genomic and proteomic analysis of PIK3CA, PTEN and AKT mutations in breast cancer

    SciTech Connect

    Stemke-Hale, Katherine; Gonzalez-Angulo, Ana Maria; Lluch, Ana; Neve, Richard M.; Kuo, Wen-Lin; Davies, Michael; Carey, Mark; Hu, Zhi; Guan, Yinghui; Sahin, Aysegul; Symmans, W. Fraser; Pusztai, Lajos; Nolden, Laura K.; Horlings, Hugo; Berns, Katrien; Hung, Mien-Chie; van de Vijver, Marc J.; Valero, Vicente; Gray, Joe W.; Bernards, Rene; Mills, Gordon B.; Hennessy, Bryan T.

    2008-05-06

    Phosphatidylinositol-3-kinase (PI3K)/AKT pathway aberrations are common in cancer. By applying mass spectroscopy-based sequencing and reverse phase protein arrays to 547 human breast cancers and 41 cell lines, we determined the subtype specificity and signaling effects of PIK3CA, AKT and PTEN mutations, and the effects of PIK3CA mutations on responsiveness to PI3K inhibition in-vitro and on outcome after adjuvant tamoxifen. PIK3CA mutations were more common in hormone receptor positive (33.8%) and HER2-positive (24.6%) than in basal-like tumors (8.3%). AKT1 (1.4%) and PTEN (2.3%) mutations were restricted to hormone receptor-positive cancers with PTEN protein levels also being significantly lower in hormone receptor-positive cancers. Unlike AKT1 mutations, PIK3CA (39%) and PTEN (20%) mutations were more common in cell lines than tumors, suggesting a selection for these but not AKT1 mutations during adaptation to culture. PIK3CA mutations did not have a significant impact on outcome in 166 hormone receptor-positive breast cancer patients after adjuvant tamoxifen. PIK3CA mutations, in comparison with PTEN loss and AKT1 mutations, were associated with significantly less and indeed inconsistent activation of AKT and of downstream PI3K/AKT signaling in tumors and cell lines, and PTEN loss and PIK3CA mutation were frequently concordant, suggesting different contributions to pathophysiology. PTEN loss but not PIK3CA mutations rendered cells sensitive to growth inhibition by the PI3K inhibitor LY294002. Thus, PI3K pathway aberrations likely play a distinct role in the pathogenesis of different breast cancer subtypes. The specific aberration may have implications for the selection of PI3K-targeted therapies in hormone receptor-positive breast cancer.

  9. Evidence for AKT-independent regulation of FOXO1 and FOXO3 in haematopoietic stem and progenitor cells.

    PubMed

    Liang, Raymond; Rimmelé, Pauline; Bigarella, Carolina L; Yalcin, Safak; Ghaffari, Saghi

    2016-03-18

    Transcription factors FOXOs (1, 3, 4) are essential for the maintenance of haematopoietic stem cells. FOXOs are evolutionary conserved substrates of the AKT serine threonine protein kinase that are also phosphorylated by several kinases other than AKT. Specifically, phosphorylation by AKT is known to result in the cytosolic localization of FOXO and subsequent inhibition of FOXO transcriptional activity. In addition to phosphorylation, FOXOs are regulated by a number of other post-translational modifications including acetylation, methylation, redox modulation, and ubiquitination that altogether determine these factors' output. Cumulating evidence raises the possibility that in stem cells, including in haematopoietic stem cells, AKT may not be the dominant regulator of FOXO. To address this question in more detail, we examined gene expression, subcellular localization, and response to AKT inhibition of FOXO1 and FOXO3, the main FOXO expressed in HSPCs (haematopoietic stem and progenitor cells). Here we show that while FOXO1 and FOXO3 transcripts are expressed at similar levels, endogenous FOXO3 protein is mostly nuclear compared to the cytoplasmic localization of FOXO1 in HSPCs. Furthermore, inhibition of AKT does not enhance nuclear localization of FOXO1 nor FOXO3. Nonetheless AKT inhibition in the context of loss of NAD-dependent SIRT1 deacetylase modulates FOXO3 localization in HSPCs. Together, these data suggest that FOXO3 is more active than FOXO1 in primitive haematopoietic stem and multipotent progenitor cells. In addition, they indicate that upstream regulators other than AKT, such as SIRT1, maintain nuclear FOXO localization and activity in HSPCs. PMID:26929388

  10. NFV, an HIV-1 protease inhibitor, induces growth arrest, reduced Akt signalling, apoptosis and docetaxel sensitisation in NSCLC cell lines.

    PubMed

    Yang, Y; Ikezoe, T; Nishioka, C; Bandobashi, K; Takeuchi, T; Adachi, Y; Kobayashi, M; Takeuchi, S; Koeffler, H P; Taguchi, H

    2006-12-18

    HIV-1 protease inhibitor (PI), nelfinavir (NFV) induced growth arrest and apoptosis of NCI-H460 and -H520, A549, EBC-1 and ABC-1 non-small-cell lung cancer (NSCLC) cells in association with upregulation of p21waf1, p27kip1 and p53, and downregulation of Bcl-2 and matrix metalloproteinase (MMP)-2 proteins. We found that NFV blocked Akt signalling in these cells as measured by Akt kinase assay with glycogen synthase kinase-3alpha/beta (GSK-3alpha/beta) as a substrate. To explore the role of Akt signalling in NFV-mediated growth inhibition of NSCLC cells, we blocked this signal pathway by transfection of Akt small interfering RNA (siRNA) in these cells; transient transfection of Akt siRNA in NCI-H460 cells decreased the level of Bcl-2 protein and slowed their proliferation compared to the nonspecific siRNA-transfected cells. Conversely, forced-expression of Akt partially reversed NFV-mediated growth inhibition of these cells, suggesting that Akt may be a molecular target of NFV in NSCLC cells. Also, we found that inhibition of Akt signalling by NFV enhanced the ability of docetaxel to inhibit the growth of NCI-H460 and -H520 cells, as measured by MTT assay. Importantly, NFV slowed the proliferation and induced apoptosis of NCI-H460 cells present as tumour xenografts in nude mice without adverse systemic effects. Taken together, this family of compounds might be useful for the treatment of individuals with NSCLC. PMID:17133272

  11. Depression of p53-independent Akt survival signals after high-LET radiation in mutated p53 cells

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takeo; Takahashi, Akihisa; Nakagawa, Yosuke

    Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses the activities of serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signals were analyzed with Western blotting analysis 1 h, 2 h, 3 h and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis.Akt-related protein levels were decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G _{2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and depresses cell growth by suppressing Akt-related signals, even in the mp53 cells.

  12. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide

    PubMed Central

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase—protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton’s lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism. PMID:27494022

  13. PI3K/AKT signaling modulates transcriptional expression of EWS/FLI1 through specificity protein 1

    PubMed Central

    Giorgi, Chiara; Boro, Aleksandar; Rechfeld, Florian; Lopez-Garcia, Laura A.; Gierisch, Maria E.; Schäfer, Beat W.; Niggli, Felix K.

    2015-01-01

    Ewing sarcoma (ES) is the second most frequent bone cancer in childhood and is characterized by the presence of the balanced translocation t(11;22)(q24;q12) in more than 85% of cases, generating a dysregulated transcription factor EWS/FLI1. This fusion protein is an essential oncogenic component of ES development which is necessary for tumor cell maintenance and represents an attractive therapeutic target. To search for modulators of EWS/FLI1 activity we screened a library of 153 targeted compounds and identified inhibitors of the PI3K pathway to directly modulate EWS/FLI1 transcription. Surprisingly, treatment of four different ES cell lines with BEZ235 resulted in down regulation of EWS/FLI1 mRNA and protein by ∼50% with subsequent modulation of target gene expression. Analysis of the EWS/FLI1 promoter region (−2239/+67) using various deletion constructs identified two 14bp minimal elements as being important for EWS/FLI1 transcription. We identified SP1 as modulator of EWS/FLI1 gene expression and demonstrated direct binding to one of these regions in the EWS/FLI1 promoter by EMSA and ChIP experiments. These results provide the first insights on the transcriptional regulation of EWS/FLI1, an area that has not been investigated so far, and offer an additional molecular explanation for the known sensitivity of ES cell lines to PI3K inhibition. PMID:26336820

  14. Shift from extracellular signal-regulated kinase to AKT/cAMP response element-binding protein pathway increases survival-motor-neuron expression in spinal-muscular-atrophy-like mice and patient cells.

    PubMed

    Branchu, Julien; Biondi, Olivier; Chali, Farah; Collin, Thibault; Leroy, Felix; Mamchaoui, Kamel; Makoukji, Joelle; Pariset, Claude; Lopes, Philippe; Massaad, Charbel; Chanoine, Christophe; Charbonnier, Frédéric

    2013-03-01

    Spinal muscular atrophy (SMA), a recessive neurodegenerative disease, is characterized by the selective loss of spinal motor neurons. No available therapy exists for SMA, which represents one of the leading genetic causes of death in childhood. SMA is caused by a mutation of the survival-of-motor-neuron 1 (SMN1) gene, leading to a quantitative defect in the survival-motor-neuron (SMN) protein expression. All patients retain one or more copies of the SMN2 gene, which modulates the disease severity by producing a small amount of stable SMN protein. We reported recently that NMDA receptor activation, directly in the spinal cord, significantly enhanced the transcription rate of the SMN2 genes in a mouse model of very severe SMA (referred as type 1) by a mechanism that involved AKT/CREB pathway activation. Here, we provide the first compelling evidence for a competition between the MEK/ERK/Elk-1 and the phosphatidylinositol 3-kinase/AKT/CREB signaling pathways for SMN2 gene regulation in the spinal cord of type 1 SMA-like mice. The inhibition of the MEK/ERK/Elk-1 pathway promotes the AKT/CREB pathway activation, leading to (1) an enhanced SMN expression in the spinal cord of SMA-like mice and in human SMA myotubes and (2) a 2.8-fold lifespan extension in SMA-like mice. Furthermore, we identified a crosstalk between ERK and AKT signaling pathways that involves the calcium-dependent modulation of CaMKII activity. Together, all these data open new perspectives to the therapeutic strategy for SMA patients. PMID:23467345

  15. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    PubMed

    Huang, Wei-Ru; Chiu, Hung-Chuan; Liao, Tsai-Ling; Chuang, Kuo-Pin; Shih, Wing-Ling; Liu, Hung-Jen

    2015-01-01

    Avian reovirus (ARV) protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128) of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication. PMID:26244501

  16. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways

    PubMed Central

    Huang, Wei-Ru; Chiu, Hung-Chuan; Liao, Tsai-Ling; Chuang, Kuo-Pin; Shih, Wing-Ling; Liu, Hung-Jen

    2015-01-01

    Avian reovirus (ARV) protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128) of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication. PMID:26244501

  17. Akt1 binds focal adhesion kinase via the Akt1 kinase domain independently of the pleckstrin homology domain.

    PubMed

    Basson, M D; Zeng, B; Wang, S

    2015-10-01

    Akt1 and focal adhesion kinase (FAK) are protein kinases that play key roles in normal cell signaling. Individually, aberrant expression of these kinases has been linked to a variety of cancers. Together, Akt1/FAK interactions facilitate cancer metastasis by increasing cell adhesion under conditions of increased extracellular pressure. Pathological and iatrogenic sources of pressure arise from tumor growth against constraining stroma or direct perioperative manipulation. We previously reported that 15 mmHg increased extracellular pressure causes Akt1 to both directly interact with FAK and to phosphorylate and activate it. We investigated the nature of the Akt1/FAK binding by creating truncations of recombinant FAK, conjugated to glutathione S-transferase (GST), to pull down full-length Akt1. Western blots probing for Akt1 showed that FAK/Akt1 binding persisted in FAK truncations consisting of only amino acids 1-126, FAK(NT1), which contains the F1 subdomain of its band 4.1, ezrin, radixin, and moesin (FERM) domain. Using FAK(NT1) as bait, we then pulled down truncated versions of recombinant Akt1 conjugated to HA (human influenza hemagglutinin). Probes for GST-FAK(NT1) showed Akt1-FAK binding to occur in the absence of the both the Akt1 (N)-terminal pleckstrin homology (PH) domain and its adjacent hinge region. The Akt1 (C)-terminal regulatory domain was equally unnecessary for Akt1/FAK co-immunoprecipitation. Truncations involving the Akt1 catalytic domain showed that the domain by itself was enough to pull down FAK. Additionally, a fragment spanning from the PH domain to half way through the catalytic domain demonstrated increased FAK binding compared to full length Akt1. These results begin to delineate the Akt1/FAK interaction and can be used to manipulate their force-activated signal interactions. Furthermore, the finding that the N-terminal half of the Akt1 catalytic domain binds so strongly to FAK when cleaved from the rest of the protein may suggest a means

  18. Metformin inhibits the proliferation of A431 cells by modulating the PI3K/Akt signaling pathway

    PubMed Central

    LIU, YINGSHAN; ZHANG, YAN; JIA, KUN; DONG, YUHAO; MA, WEIYUAN

    2015-01-01

    The ability of metformin, an antidiabetic drug with wide applications, to inhibit tumor cell growth has recently been discovered. The PI3K/Akt signaling pathway has been found to play an important role in the survival, proliferation and apoptosis of tumor cells. The aim of the present study was to explore the effect of metformin on the proliferation of A431 human squamous cell carcinoma cells and the underlying molecular mechanisms. A431 cells in the logarithmic growth phase were treated with 0, 15, 30, 45 and 60 mM metformin for 12, 24 and 36 h, respectively. Cell morphology with 45 mM metformin treatment for 24 h was observed under a microscope. The proliferation of A431 cells was detected by the Cell Counting kit-8 colorimetric method. The mRNA expression levels of PI3K and Akt were detected by reverse transcription-polymerase chain reaction (RT-PCR). The protein expression levels of PI3K, Akt and phosphorylated (p)-Akt were detected by western blot analysis. Metformin treatment caused morphological change in A431 cells and inhibited their proliferation in a significant time- and dose-dependent manner. RT-PCR results showed that the mRNA expression of PI3K was inhibited by metformin in a time- and dose-dependent manner (P<0.05). However, there was no significant change in the mRNA expression of Akt following metformin treatment (P>0.05). Western blotting results showed that the protein expression levels of PI3K and p-Akt were inhibited by metformin in a time- and dose-dependent manner (P<0.05). In conclusion, metformin significantly inhibited the proliferation of A431 cells in the current study, which may be strongly associated with the inhibition of the PI3K/Akt signaling pathway. PMID:25780442

  19. Computational Modeling of the Metabolic States Regulated by the Kinase Akt

    PubMed Central

    Mosca, Ettore; Alfieri, Roberta; Maj, Carlo; Bevilacqua, Annamaria; Canti, Gianfranco; Milanesi, Luciano

    2012-01-01

    Signal transduction and gene regulation determine a major reorganization of metabolic activities in order to support cell proliferation. Protein Kinase B (PKB), also known as Akt, participates in the PI3K/Akt/mTOR pathway, a master regulator of aerobic glycolysis and cellular biosynthesis, two activities shown by both normal and cancer proliferating cells. Not surprisingly considering its relevance for cellular metabolism, Akt/PKB is often found hyperactive in cancer cells. In the last decade, many efforts have been made to improve the understanding of the control of glucose metabolism and the identification of a therapeutic window between proliferating cancer cells and proliferating normal cells. In this context, we have modeled the link between the PI3K/Akt/mTOR pathway, glycolysis, lactic acid production, and nucleotide biosynthesis. We used a computational model to compare two metabolic states generated by two different levels of signaling through the PI3K/Akt/mTOR pathway: one of the two states represents the metabolism of a growing cancer cell characterized by aerobic glycolysis and cellular biosynthesis, while the other state represents the same metabolic network with a reduced glycolytic rate and a higher mitochondrial pyruvate metabolism. Biochemical reactions that link glycolysis and pentose phosphate pathway revealed their importance for controlling the dynamics of cancer glucose metabolism. PMID:23181020

  20. Yeast prions: Paramutation at the protein level?

    PubMed

    Tuite, Mick F

    2015-08-01

    Prions are proteins that have the potential to refold into a novel conformation that templates the conversion of like molecules to the altered infectious form. In the yeast Saccharomyces cerevisiae, trans-generational epigenetic inheritance can be mediated by a number of structurally and functionally diverse prions. Prionogenesis can confer both loss-of-function and gain-of-function properties to the prion protein and this in turn can have a major impact on host phenotype, short-term adaptation and evolution of new traits. Prionogenesis shares a number of properties in common with paramutation and can be considered as a mitotically and meiotically heritable change in protein conformation induced by trans-interactions between homologous proteins. PMID:26386407

  1. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    PubMed

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy. PMID:26739493

  2. Downregulation of AKT3 Increases Migration and Metastasis in Triple Negative Breast Cancer Cells by Upregulating S100A4

    PubMed Central

    Lange, Tobias; Nörz, Dominik; Herzberger, Christiane; Bach, Johanna; Grabinski, Nicole; Gräser, Lareen; Höppner, Frank; Nashan, Björn; Schumacher, Udo; Jücker, Manfred

    2016-01-01

    Background Treatment of breast cancer patients with distant metastases represents one of the biggest challenges in today’s gynecological oncology. Therefore, a better understanding of mechanisms promoting the development of metastases is of paramount importance. The serine/threonine kinase AKT was shown to drive cancer progression and metastasis. However, there is emerging data that single AKT isoforms (i.e. AKT1, AKT2 and AKT3) have different or even opposing functions in the regulation of cancer cell migration in vitro, giving rise to the hypothesis that inhibition of distinct AKT isoforms might have undesirable effects on cancer dissemination in vivo. Methods The triple negative breast cancer cell line MDA-MB-231 was used to investigate the functional roles of AKT in migration and metastasis. AKT single and double knockdown cells were generated using isoform specific shRNAs. Migration was analyzed using live cell imaging, chemotaxis and transwell assays. The metastatic potential of AKT isoform knockdown cells was evaluated in a subcutaneous xenograft mouse model in vivo. Results Depletion of AKT3, but not AKT1 or AKT2, resulted in increased migration in vitro. This effect was even more prominent in AKT2,3 double knockdown cells. Furthermore, combined downregulation of AKT2 and AKT3, as well as AKT1 and AKT3 significantly increased metastasis formation in vivo. Screening for promigratory proteins revealed that downregulation of AKT3 increases the expression of S100A4 protein. In accordance, depletion of S100A4 by siRNA approach reverses the increased migration induced by knockdown of AKT3. Conclusions We demonstrated that knockdown of AKT3 can increase the metastatic potential of triple negative breast cancer cells. Therefore, our results provide a rationale for the development of AKT isoform specific inhibitors. PMID:26741489

  3. Effect of dehydroepiandrosterone (DHEA) on Akt and protein kinase C zeta (PKCζ) phosphorylation in different tissues of C57BL6, insulin receptor substrate (IRS)1(-/-), and IRS2(-/-) male mice fed a high-fat diet.

    PubMed

    Aoki, Kazutaka; Tajima, Kazuki; Taguri, Masataka; Terauchi, Yasuo

    2016-05-01

    We have previously reported that dehydroepiandrosterone (DHEA) suppresses the activity and mRNA expression of the hepatic gluconeogenic enzyme glucose-6-phosphatase (G6Pase), and hepatic glucose production in db/db mice. Tyrosine phosphorylation levels of Insulin receptor substrate (IRS)1 and IRS2 reportedly differ between the liver and muscle tissue and the effect of DHEA on insulin signaling has not been elucidated. Therefore, we examined DHEA's effect on the liver and muscle tissue of IRS1(-/-) and IRS2(-/-) mice. Eight-week-old male C57BL6, IRS1(-/-), and IRS2(-/-) mice were fed a high-fat diet (HFD), or an HFD containing 0.2% DHEA for 4 weeks. In a separate experiment, 8-week-old male C57BL6 mice were fed an HFD or an HFD containing 0.2% androstenedione for 4 weeks. In an insulin tolerance test, DHEA administration decreased the initial plasma glucose levels in the C57BL6, IRS1(-/-), and IRS2(-/-) mice but did not decrease the ratios to the basal blood glucose level. Although DHEA administration increased Akt phosphorylation in the liver of the C57BL6, IRS1(-/-), and IRS2(-/-) mice, androstenedione administration did not increase Akt phosphorylation in the liver of C57BL6 mice. DHEA administration did not increase Akt and PKCζ phosphorylation in the muscle tissue of C57BL6, IRS1(-/-), or IRS2(-/-) mice. However, androstenedione administration increased Akt and PKCζ phosphorylation in the muscle tissue of C57BL6 mice. These findings suggest that the effect of DHEA on insulin action in the liver is self-mediated by DHEA or DHEA sulfate (DHEA-S) in the presence of IRS1, IRS2, or both. PMID:26976654

  4. High levels of plasma protein C in nephrotic syndrome.

    PubMed

    Pabinger-Fasching, I; Lechner, K; Niessner, H; Schmidt, P; Balzar, E; Mannhalter, C

    1985-02-18

    In patients with severe nephrotic syndrome determinations of plasma protein C: Ag levels (8 patients: 5 adults, 3 children) and protein C activity (3 out of 8 patients) revealed significantly elevated plasma protein C concentrations. Furthermore we observed a significant inverse correlation of protein C: Ag to AT III: Ag levels. No protein C: Ag could be detected in the urine of two patients studied. We conclude from our data, that changes of plasma protein C do not contribute to the high thrombotic tendency in nephrotic syndrome. PMID:3838827

  5. Effects of Dietary Crude Protein Levels and Cysteamine Supplementation on Protein Synthetic and Degradative Signaling in Skeletal Muscle of Finishing Pigs.

    PubMed

    Zhou, Ping; Zhang, Lin; Li, Jiaolong; Luo, Yiqiu; Zhang, Bolin; Xing, Shen; Zhu, Yuping; Sun, Hui; Gao, Feng; Zhou, Guanghong

    2015-01-01

    Dietary protein levels and cysteamine (CS) supplementation can affect growth performance and protein metabolism of pigs. However, the influence of dietary protein intake on the growth response of CS-treated pigs is unclear, and the mechanisms involved in protein metabolism remain unknown. Hence, we investigated the interactions between dietary protein levels and CS supplementation and the effects of dietary crude protein levels and CS supplementation on protein synthetic and degradative signaling in skeletal muscle of finishing pigs. One hundred twenty barrows (65.84 ± 0.61 kg) were allocated to a 2 × 2 factorial arrangement with five replicates of six pigs each. The primary variations were dietary crude protein (CP) levels (14% or 10%) and CS supplemental levels (0 or 700 mg/kg). The low-protein (LP) diets (10% CP) were supplemented with enough essential amino acids (EAA) to meet the NRC AA requirements of pigs and maintain the balanced supply of eight EAA including lysine, methionine, threonine, tryptophan, valine, phenylalanine, isoleucine, and leucine. After 41 days, 10 pigs per treatment were slaughtered. We found that LP diets supplemented with EAA resulted in decreased concentrations of plasma somatostatin (SS) (P<0.01) and plasma urea nitrogen (PUN) (P<0.001), while dietary protein levels did not affect other traits. However, CS supplementation increased the average daily gain (P<0.001) and lean percentage (P<0.05), and decreased the feed conversion ratio (P<0.05) and back fat (P<0.05). CS supplementation also increased the concentrations of plasma insulin-like growth factor 1 (IGF-1) (P<0.001), and reduced the concentrations of leptin, SS, and PUN (P<0.001). Increased mRNA abundance of Akt1 and IGF-1 signaling (P<0.001) and decreased mRNA abundance of Forkhead Box O (FOXO) 4 (P<0.01) and muscle atrophy F-box (P<0.001) were observed in pigs receiving CS. Additionally, CS supplementation increased the protein levels for the phosphorylated mammalian target

  6. Effects of Dietary Crude Protein Levels and Cysteamine Supplementation on Protein Synthetic and Degradative Signaling in Skeletal Muscle of Finishing Pigs

    PubMed Central

    Zhou, Ping; Zhang, Lin; Li, Jiaolong; Luo, Yiqiu; Zhang, Bolin; Xing, Shen; Zhu, Yuping; Sun, Hui; Gao, Feng; Zhou, Guanghong

    2015-01-01

    Dietary protein levels and cysteamine (CS) supplementation can affect growth performance and protein metabolism of pigs. However, the influence of dietary protein intake on the growth response of CS-treated pigs is unclear, and the mechanisms involved in protein metabolism remain unknown. Hence, we investigated the interactions between dietary protein levels and CS supplementation and the effects of dietary crude protein levels and CS supplementation on protein synthetic and degradative signaling in skeletal muscle of finishing pigs. One hundred twenty barrows (65.84 ± 0.61 kg) were allocated to a 2 × 2 factorial arrangement with five replicates of six pigs each. The primary variations were dietary crude protein (CP) levels (14% or 10%) and CS supplemental levels (0 or 700 mg/kg). The low-protein (LP) diets (10% CP) were supplemented with enough essential amino acids (EAA) to meet the NRC AA requirements of pigs and maintain the balanced supply of eight EAA including lysine, methionine, threonine, tryptophan, valine, phenylalanine, isoleucine, and leucine. After 41 days, 10 pigs per treatment were slaughtered. We found that LP diets supplemented with EAA resulted in decreased concentrations of plasma somatostatin (SS) (P<0.01) and plasma urea nitrogen (PUN) (P<0.001), while dietary protein levels did not affect other traits. However, CS supplementation increased the average daily gain (P<0.001) and lean percentage (P<0.05), and decreased the feed conversion ratio (P<0.05) and back fat (P<0.05). CS supplementation also increased the concentrations of plasma insulin-like growth factor 1 (IGF-1) (P<0.001), and reduced the concentrations of leptin, SS, and PUN (P<0.001). Increased mRNA abundance of Akt1 and IGF-1 signaling (P<0.001) and decreased mRNA abundance of Forkhead Box O (FOXO) 4 (P<0.01) and muscle atrophy F-box (P<0.001) were observed in pigs receiving CS. Additionally, CS supplementation increased the protein levels for the phosphorylated mammalian target

  7. PI3K/Akt pathway restricts epithelial adhesion of Dr+ Escherichia coli by down-regulating the expression of Decay Accelerating Factor (DAF)

    PubMed Central

    Banadakoppa, Manu; Goluszko, Pawel; Liebenthal, Daniel; Nowicki, Bogdan J.; Nowicki, Stella; Yallampalli, Chandra

    2014-01-01

    The urogenital microbial infection in pregnancy is an important cause of maternal and neonatal morbidity and mortality. Uropathogenic Escherichia coli strains which express Dr fimbriae (Dr+) are associated with unique gestational virulence and they utilize cell surface decay accelerating factor (DAF or CD55) as one of the cellular receptor before invading the epithelial cells. Previous studies in our laboratory established that nitric oxide reduces the rate of E. coli invasion by delocalizing the DAF protein from cell surface lipid rafts and down-regulating its expression. The phosphoinositide 3-kinase/ protein kinase B (PI3K/Akt) cell signal pathway plays an important role in host-microbe interaction because many bacteria including E. coli activate this pathway in order to establish infection. In the present study we showed that the PI3K/Akt pathway negatively regulates the expression of DAF on the epithelial cell surface and thus inhibits the adhesion of Dr+ E. coli to epithelial cells. Initially, using two human cell lines Ishikawa and HeLa which differ in constitutive activity of PI3K/Akt we showed that DAF levels were associated with the PI3K/Akt pathway. We then showed that the DAF gene expression was up-regulated and the Dr+ E. coli adhesion increased after the suppression of PI3K/Akt pathway in Ishikawa cells using inhibitor LY-294002, and a plasmid which allowed the expression of PI3K/Akt regulatory protein PTEN. The down-regulation of PTEN protein using PTEN-specific siRNA activated the PI3K/Akt pathway, down-regulated the DAF and decreased the adhesion of Dr+ E. coli. We conclude that the PI3K/Akt pathway regulated the DAF expression in a nitric oxide independent manner. PMID:24599886

  8. Akt-mediated regulation of NFκB and the essentialness of NFκB for the oncogenicity of PI3K and Akt

    PubMed Central

    Bai, Dong; Ueno, Lynn; Vogt, Peter K.

    2009-01-01

    The serine/threonine kinase Akt (cellular homolog of murine thymoma virus akt8 oncogene), also known as PKB (protein kinase B), is activated by lipid products of phosphatidylinositol 3-kinase (PI3K). Akt phosphorylates numerous protein targets that control cell survival, proliferation and motility. Previous studies suggest that Akt regulates transcriptional activity of the nuclear factor-κB (NFκB) by inducing phosphorylation and subsequent degradation of inhibitor of κB (IκB). We show here that NFκB-driven transcription increases in chicken embryonic fibroblasts (CEF) transformed by myristylated Akt (myrAkt). Accordingly, both a dominant negative mutant of Akt and Akt inhibitors repress NFκB-dependent transcription. The degradation of the IκB protein is strongly enhanced in Akt-transformed cells, and the loss of NFκB activity by introduction of a super-repressor of NFκB, IκBSR, interferes with PI3K- and Akt-induced oncogenic transformation of CEF. The phosphorylation of the p65 subunit of NFκB at serine 534 is also upregulated in Akt-transformed cells. Our data suggest that the stimulation of NFκB by Akt is dependent on the phosphorylation of p65 at S534, mediated by IKK (IκB kinase) α and β. Akt phosphorylates IKKα on T23, and this phosphorylation event is a prerequisite for the phosphorylation of p65 at S534 by IKKα and β. Our results demonstrate two separate functions of the IKK complex in NFκB activation in cells with constitutive Akt activity: the phosphorylation and consequent degradation of IκB and the phosphorylation of p65. The data further support the conclusion that NFκB activity is essential for PI3K- and Akt-induced oncogenic transformation. PMID:19609947

  9. An optogenetic system for interrogating the temporal dynamics of Akt

    PubMed Central

    Katsura, Yoshihiro; Kubota, Hiroyuki; Kunida, Katsuyuki; Kanno, Akira; Kuroda, Shinya; Ozawa, Takeaki

    2015-01-01

    The dynamic activity of the serine/threonine kinase Akt is crucial for the regulation of diverse cellular functions, but the precise spatiotemporal control of its activity remains a critical issue. Herein, we present a photo-activatable Akt (PA-Akt) system based on a light-inducible protein interaction module of Arabidopsis thaliana cryptochrome2 (CRY2) and CIB1. Akt fused to CRY2phr, which is a minimal light sensitive domain of CRY2 (CRY2-Akt), is reversibly activated by light illumination in several minutes within a physiological dynamic range and specifically regulates downstream molecules and inducible biological functions. We have generated a computational model of CRY2-Akt activation that allows us to use PA-Akt to control the activity quantitatively. The system provides evidence that the temporal patterns of Akt activity are crucial for generating one of the downstream functions of the Akt-FoxO pathway; the expression of a key gene involved in muscle atrophy (Atrogin-1). The use of an optical module with computational modeling represents a general framework for interrogating the temporal dynamics of biomolecules by predictive manipulation of optogenetic modules. PMID:26423353

  10. Berberine Induced Apoptosis of Human Osteosarcoma Cells by Inhibiting Phosphoinositide 3 Kinase/Protein Kinase B (PI3K/Akt) Signal Pathway Activation

    PubMed Central

    2016-01-01

    Background: Osteosarcoma is a malignant tumor with high mortality but effective therapy has not yet been developed. Berberine, an isoquinoline alkaloid component in several Chinese herbs including Huanglian, has been shown to induce growth inhibition and the apoptosis of certain cancer cells. The aim of this study was to determine the role of berberine on human osteosarcoma cell lines U2OS and its potential mechanism. Methods: The proliferation effect of U20S was exanimed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di- phenytetrazoliumromide (MTT) and the percentage of apoptotic cells were determined by flow cytometric analysis. The expression of PI3K, p-Akt, Bax, Bcl-2, cleavage-PARP and Caspase3 were detected by Western blott. Results: Berberine treatment caused dose-dependent inhibiting proliferation and inducing apoptosis of U20S cell. Mechanistically, berberine inhibits PI3K/AKT activation that, in turn, results in up-regulating the expression of Bax, and PARP and down-regulating the expression of Bcl-2 and caspase3. In all, berberine can suppress the proliferation and induce the apoptosis of U2OS cell through inhibiting the PI3K/Akt signaling pathway activation. Conclusion: Berberine can suppress the proliferation and induce the apoptosis of U2OS cell through inhibiting the PI3K/Akt signaling pathway activation. PMID:27398330

  11. Regulation of cell apoptosis and proliferation in pancreatic cancer through PI3K/Akt pathway via Polo-like kinase 1

    PubMed Central

    MAO, YONGHUAN; XI, LING; LI, QUAN; CAI, ZELING; LAI, YIMEI; ZHANG, XINHUA; YU, CHUNZHAO

    2016-01-01

    Pancreatic cancer has a poor prognosis. It is reported that the PI3K/Akt pathway is activated in many cancers, and inhibition of the PI3K/Akt pathway can induce cell apoptosis in most cancers. Polo-like kinase 1 (Plk1) is also overexpressed in most malignancies, and it controls multiple aspects of mitosis and apoptosis. Previous studies identified that PI3K/Akt-dependent phosphorylation of Plk1-Ser99 is required for metaphase-anaphase transition. In this study, we aimed to investigate the molecular mechanism of PI3K/Akt pathway regulating cell proliferation and apoptosis in pancreatic cancer cell lines (AsPC-1, BxPC-3, PANC-1). Immunohistochemistry (IHC) was used to assess Akt levels in human pancreatic tissues and pancreatic cancer tissues. MTT assay was used to detect cell proliferation. The mRNA was quantified by quantitative reverse transcription-PCR. Western blot analysis was used to detect the protein levels of p-Akt, Akt, Plk1, BAX, Bcl-2, XIAP, cleaved caspase-3 and caspase-3. Recombinant adenovirus vector containing Plk1-shRNA was constructed to inhibit Plk1 expression. Cell apoptosis was detected by flow cytometry and the apoptosis of tumor xenograft was assessed by TUNEL assay. The study showed that inhibition of PI3K/Akt pathway can induce cell apoptosis and reduce cell proliferation by downregulating Plk1 in vitro and in vivo. Additionally, Plk1 inhibition can lead to cancer cell apoptosis through inactivating XIAP, activating caspase-3, upregulating BAX and downregulating Bcl-2. Therefore, this study provided the molecular mechanism of PI3K/Akt pathway and Plk1 in the pancreatic cancer cell proliferation and apoptosis, which may benefit for the therapy of pancreatic cancer. PMID:27220401

  12. AKT-p53 axis protect cancer cells from autophagic cell death during nutrition deprivation.

    PubMed

    Sudhagar, S; Sathya, S; Gokulapriya, G; Lakshmi, B S

    2016-03-18

    An altered metabolism supports growth of tumor. AKT, a major signal integrator plays a key role in cell metabolism. We have shown that nutritional deprivation activates AKT as observed by increased phosphorylation of both Thr308 and Ser473. Pharmacological inhibition or silencing of AKT by siRNA affects cell viability during starvation. The tumor suppressor, p53 is also observed to be elevated during nutritional deprivation due to AKT. Silencing of AKT and p53 enhanced autophagy as evidenced by increased acidic vesicular organelles and LC3B II levels, suggesting AKT-p53 to play a significant role in cell survival through regulating autophagy during nutritional deprivation. PMID:26903300

  13. Dietary protein source and level alters growth in neon tetras.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritional studies for aquarium fish like the neon tetra are sparse in comparison with those for food fish. To determine the optimum dietary protein level and source for growth of neon tetras, diets were formulated to contain 25, 35, 45 and 55% dietary protein from either marine animal protein or ...

  14. Synaptic protein levels altered in vascular dementia

    PubMed Central

    Sinclair, Lindsey I; Tayler, Hannah M; Love, Seth

    2015-01-01

    Introduction Cerebral ischaemia is the defining pathophysiological abnormality in most forms of vascular dementia (VAD), but the pathogenesis of the dementia remains poorly understood. In Alzheimer's disease (AD), there is early loss of synaptic proteins, but these have been little studied in VAD. Materials and Methods We measured synaptophysin, postsynaptic density protein 95 (PSD-95), drebrin, synaptosomal-associated protein 25 (SNAP-25) and vascular endothelial growth factor (VEGF) by enzyme-linked immunosorbent assays in superior temporal cortex from 11 patients with VAD and, initially, 11 non-dementia controls. We corrected for neuronal content by measurement of neuron-specific enolase. A further 11 controls were subsequently used in a validation study. Simulation of post-mortem delay found that PSD-95 was stable at 4°C but declined slightly at RT. SNAP-25 and drebrin showed good post-mortem stability. Previous studies had shown good post-mortem preservation of synaptophysin and VEGF. Results The VAD cases had lower synaptophysin (but P > 0.05 in initial study), significantly lower SNAP-25 (P = 0.024) and significantly higher drebrin (P = 0.020). On comparison with the second control group, the reduction in synaptophysin was significant (P = 0.008), and the other results were confirmed. Conclusion There is probably a reduction in presynaptic proteins in the temporal cortex in VAD, although not as marked as in AD. In VAD, there is also an increase in drebrin, which may be a response to reduced synaptic input. PMID:25559750

  15. Temperature sensitivity of phospho-Ser{sup 473}-PKB/AKT

    SciTech Connect

    Oehler-Jaenne, Christoph; Bueren, Andre O. von; Vuong, Van; Hollenstein, Andreas; Grotzer, Michael A.; Pruschy, Martin

    2008-10-24

    The phospho-PKB/Akt status is often used as surrogate marker to measure activation of the PI3K/Akt/mTOR signal transduction pathway. Though, inconsistencies of the p-Ser{sup 473}-PKB/Akt status have raised doubts in the validity of p-Ser{sup 473}-PKB/Akt phosphorylation as endpoint. Here, we determined that p-Ser{sup 473}-PKB/Akt but not p-Thr{sup 308}-PKB/Akt phosphorylation is highly temperature sensitive. p-Ser{sup 473}-PKB/Akt phosphorylation was rapidly reduced to levels below 50% on exposure to 20-25 deg. C in murine and human cell lines including cells expressing constitutively active PI3K or lacking PTEN. Down-regulation of p-Ser{sup 473}-PKB/Akt was reversible and re-exposure to physiological temperature resulted in increased p-Ser{sup 473}-PKB/Akt phosphorylation levels. Phosphatase activity at low temperature was sustained at 75% baseline level and phosphatase inhibition prevented p-Ser{sup 473}-PKB/Akt dephosphorylation induced by the low temperature shift. Interestingly temperature-dependent deregulation of the p-Ser{sup 473}-PKB/Akt status was also observed in response to irradiation. Thus our data demonstrate that minimal additional stress factors deregulate the PI3K/Akt-survival pathway and the p-Ser{sup 473}-PKB/Akt status as experimental endpoint.

  16. YB-1 and MTA1 protein levels and not DNA or mRNA alterations predict for prostate cancer recurrence

    PubMed Central

    Sheridan, Christine Moore; Grogan, Tristan R.; Nguyen, Hao G.; Galet, Colette; Rettig, Matthew B.; Hsieh, Andrew C.; Ruggero, Davide

    2015-01-01

    Attempts to identify biomarkers to detect prostate tumorigenesis, and thus minimize prostate cancer progression and inform treatment decisions have primarily focused on alterations at the DNA and mRNA levels, ignoring alterations at the level of protein synthesis control. We have previously shown that the PI3K-AKT-mTOR pathway, frequently deregulated in prostate cancer, specifically induces the synthesis of proteins that contribute to metastasis, most notably YB-1 and MTA1, without altering mRNA levels thereby demonstrating the importance of translation control in driving the expression of these genes in cancer. Here, we analyze genomic sequencing and mRNA expression databases, as well as protein expression employing an annotated tissue microarray generated from 332 prostate cancer patients with 15 years of clinical follow-up to determine the combined prognostic capability of YB-1 and MTA1 alterations in forecasting prostate cancer outcomes. Remarkably, protein abundance, but not genomic or transcriptional alterations of YB-1 and MTA1, is predictive of disease recurrence, exhibiting a dose-dependent effect on time to PSA recurrence, an indicator of tumor relapse. Moreover, high protein levels of YB-1 and MTA1 are associated with a 3-fold increased risk for requiring future hormone therapy or radiation therapy. Importantly, YB-1 and MTA1 protein levels significantly increase the predictive capacity of a clinical model for prostate cancer recurrence. These findings demonstrate that protein abundance of YB-1 and MTA1, irrespective of DNA or mRNA status, can predict for prostate cancer relapse and uncover a vast underappreciated repository of biomarkers regulated at the level of protein expression. PMID:25797255

  17. Akt3 Deficiency in Macrophages Promotes Foam Cell Formation and Atherosclerosis in Mice

    PubMed Central

    Ding, Liang; Biswas, Sudipta; Morton, Richard E.; Smith, Jonathan D.; Hay, Nissim; Byzova, Tatiana; Febbraio, Maria; Podrez, Eugene

    2012-01-01

    Summary Akt, a serine-threonine protein kinase, exists as three isoforms. The Akt signaling pathway controls multiple cellular functions in the cardiovascular system, and the atheroprotective endothelial cell dependent role of Akt1 has been recently demonstrated. The role of Akt3 isoform in cardiovascular pathophysiology is not known. We explored the role of Akt3 in atherosclerosis using mice with a genetic ablation of the Akt3 gene. Using hyperlipidemic ApoE−/− mice, we demonstrated a macrophage dependent, atheroprotective role for Akt3. In vitro experiments demonstrated differential subcellular localization of Akt1 and Akt3 in macrophages, and showed that Akt3 specifically inhibits macrophage cholesteryl ester accumulation and foam cell formation, a critical early event in atherogenesis. Mechanistically, Akt3 suppresses foam cell formation by reducing lipoprotein uptake and promoting ACAT-1 degradation via the ubiquitin-proteasome pathway. These studies demonstrate the non-redundant atheroprotective role for Akt3 exerted via the previously unknown link between the Akt signaling pathway and cholesterol metabolism. PMID:22632897

  18. MiR-20b targets AKT3 and modulates vascular endothelial growth factor-mediated changes in diabetic retinopathy.

    PubMed

    Qin, Bo; Liu, Jinwen; Liu, Shenwen; Li, Baijun; Ren, Jing

    2016-08-01

    Diabetic retinopathy (DR) is the leading cause of new-onset blindness. The roles of microRNAs in diabetic retinopathy are largely unknown. The aim of this study is to investigate the role of miR-20b in DR. Transfection of miR-20b mimic in high glucose (HG)-treated human retinal endothelial cells (HRECs) increased miR-20b expression and decreased the expression level of VEGF mRNA, while transfection of miR-20b inhibitor in control HRECs reduced the miR-20b expression with a corresponding increase of VEGF mRNA. In vitro functional assay showed that transfection of miR-20b mimic prevented HG-induced increase in transendothelial permeability and tube formation in HRECs. Transfection of miR-20b inhibitor or treatment of VEGF increased transendothelial permeability and tube formation in control HRECs. Luciferase reported assay showed that AKT3 is a target of miR-20b. Transfection of miR-20b mimic prevented the up-regulation of AKT3 induced by HG without changing the protein levels of other isoforms of AKT, and silencing of AKT3 caused decrease of VEGF mRNA and protein levels as well as prevented HG-induced increase in transendothelial permeability and tube formation. Finally, we showed that miR-20b was down-regulated in the retina and retinal endothelial cells in diabetic rats, with a correlated up-regulation of VEGF and AKT3. Intravitreal injection of miR-20b mimic in the diabetic rat significantly increased the miR-20b expression and decreased the expression levels of AKT3 and VEGF in the retina tissues, and intravitreal delivery of AKT3 siRNA in the diabetic rat significantly decreased the expressions of AKT3 and VEGF. Collectively, miR-20b is important for the regulation of VEGF-mediated changes in HRECs and rat retinal tissues under hyperglycemic conditions possibly via targeting AKT3. PMID:27421659

  19. The Effect of Tianmai Xiaoke Pian on Insulin Resistance through PI3-K/AKT Signal Pathway.

    PubMed

    Wang, Nana; Li, Tiegang; Han, Ping

    2016-01-01

    In the clinical setting, given the potential adverse effects of thiazolidinediones and biguanides, we often have difficulty in treatment that no other insulin sensitizers are available for use in type 2 diabetic mellitus (T2DM) patients. Tianmai Xiaoke Pian (TMXKP) is a traditional Chinese medicine tablet, which is comprised of chromium picolinate, Tianhuafen, Maidong, and Wuweizi. To understand its mechanism of action on insulin resistance, TMXKP (50 mg/kg orally) was tested in T2DM rats (induced by a high-fat diet and streptozotocin). Eight weeks later, fasting blood glucose (FBG) and oral glucose tolerance tests (OGTT) were performed. Area under the curve (AUC) and homeostatic model assessment of insulin resistance (HOMA-IR) were calculated, and PI3-K/AKT signal pathway-related genes and proteins were tested by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis in muscle, adipose, and liver tissues, respectively. TMXKP significantly reduced FBG, OGTT, AUC, and HOMA-IR in diabetic rats (P < 0.05). Furthermore, we also observed that TMXKP could significantly decrease IRS-1, IRS-2, PI3-K p85α, and AKT2 gene expression and also IRS-1, IRS-2, PI3-K, AKT2, and p-AKT2 protein expression levels (P < 0.05) in diabetic rats. These findings confirm that TMXKP can alleviate insulin resistance in T2DM rats through the PI3K/AKT pathway. Thus TMXKP appears to be a promising insulin sensitizer. PMID:26640808

  20. PDK1-Akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex.

    PubMed

    Itoh, Yasuhiro; Higuchi, Maiko; Oishi, Koji; Kishi, Yusuke; Okazaki, Tomohiko; Sakai, Hiroshi; Miyata, Takaki; Nakajima, Kazunori; Gotoh, Yukiko

    2016-05-24

    Neurons migrate a long radial distance by a process known as locomotion in the developing mammalian neocortex. During locomotion, immature neurons undergo saltatory movement along radial glia fibers. The molecular mechanisms that regulate the speed of locomotion are largely unknown. We now show that the serine/threonine kinase Akt and its activator phosphoinositide-dependent protein kinase 1 (PDK1) regulate the speed of locomotion of mouse neocortical neurons through the cortical plate. Inactivation of the PDK1-Akt pathway impaired the coordinated movement of the nucleus and centrosome, a microtubule-dependent process, during neuronal migration. Moreover, the PDK1-Akt pathway was found to control microtubules, likely by regulating the binding of accessory proteins including the dynactin subunit p150(glued) Consistent with this notion, we found that PDK1 regulates the expression of cytoplasmic dynein intermediate chain and light intermediate chain at a posttranscriptional level in the developing neocortex. Our results thus reveal an essential role for the PDK1-Akt pathway in the regulation of a key step of neuronal migration. PMID:27170189

  1. 1,25-Dihydroxyvitamin D{sub 3} induces biphasic NF-{kappa}B responses during HL-60 leukemia cells differentiation through protein induction and PI3K/Akt-dependent phosphorylation/degradation of I{kappa}B

    SciTech Connect

    Tse, A.K.-W.; Wan, C.-K.; Shen, X.-L.; Zhu, G.-Y.; Cheung, H.-Y.; Yang, M.; Fong, W.-F. . E-mail: wffong@hkbu.edu.hk

    2007-05-01

    1,25-Dihydroxyvitamin D{sub 3} (VD{sub 3}) induces differentiation in a number of leukemia cell lines and under various conditions is able to either stimulate or inhibit nuclear factor kappa B (NF-{kappa}B) activity. Here we report a time-dependent biphasic regulation of NF-{kappa}B in VD{sub 3}-treated HL-60 leukemia cells. After VD{sub 3} treatment there was an early {approx} 4 h suppression and a late 8-72 h prolonged reactivation of NF-{kappa}B. The reactivation of NF-{kappa}B was concomitant with increased IKK activities, IKK-mediated I{kappa}B{alpha} phosphorylation, p65 phosphorylation at residues S276 and S536, p65 nuclear translocation and p65 recruitment to the NF-{kappa}B/vitamin D responsive element promoters. In parallel with NF-{kappa}B stimulation, there was an up-regulation of NF-{kappa}B controlled inflammatory and anti-apoptotic genes such as TNF{alpha}, IL-1{beta} and Bcl-xL. VD{sub 3}-triggered reactivation of NF-{kappa}B was associated with PI3K/Akt phosphorylation. PI3K/Akt antagonists suppressed VD{sub 3}-stimulated I{kappa}B{alpha} phosphorylation as well as NF-{kappa}B-controlled gene expression. The early {approx} 4 h VD{sub 3}-mediated NF-{kappa}B suppression coincided with a prolonged increase of I{kappa}B{alpha} protein which require de novo protein synthesis, lasted for as least 72 h and was insensitive to MAPK, IKK or PI3K/Akt inhibitors. Our data suggest a novel biphasic regulation of NF-{kappa}B in VD{sub 3}-treated leukemia cells and our results may have provided the first molecular explanation for the contradictory observations reported on VD{sub 3}-mediated immune-regulation.

  2. Diosgenin induces hypoxia-inducible factor-1 activation and angiogenesis through estrogen receptor-related phosphatidylinositol 3-kinase/Akt and p38 mitogen-activated protein kinase pathways in osteoblasts.

    PubMed

    Yen, Men Luh; Su, Jen Liang; Chien, Chung Liang; Tseng, Kuang Wen; Yang, Ching Yao; Chen, Wei Fang; Chang, Chiao Chia; Kuo, Min Liang

    2005-10-01

    Diosgenin, extracted from the root of wild yam (Dioscorea villosa), has been reported to demonstrate an opportunity for medical application. Vascular endothelial growth factor-A (VEGF-A) plays an important role in bone-related angiogenesis, a critical process occurring during bone formation and fracture healing. In this study, we examine whether diosgenin is able to induce VEGF-A expression and to promote angiogenesis in osteoblasts. For murine MC3T3-E1 preosteoblast-like cells, VEGF-A mRNA and protein expression seemed to be significantly elevated in response to diosgenin in a concentration-dependent fashion. Conditioned media prepared from cells treated with diosgenin induced strong angiogenic activity in either in vitro or ex vivo angiogenesis assay. Furthermore, diosgenin treatment increased the stability and activity of HIF-1alpha protein. Inhibition of HIF-1alpha activity by transfection with DN-HIF-1alpha significantly diminished diosgenin-mediated VEGF-A up-regulation. The use of pharmacological inhibitors or genetic inhibition revealed that both the phosphatidylinositol 3-kinase (PI3K)/Akt and p38 signaling pathways were potentially required for diosgenin-induced HIF-1 activation and subsequent VEGF-A up-regulation. It is noteworthy that an estrogen receptor binding assay revealed that diosgenin has the strong ability to replace [(3)H]estradiol bound to estrogen receptor (IC(50), 10 nM). In addition, the specific estrogen receptor antagonists ICI 182,780 (faslodex) and tamoxifen were noted to be able to strongly inhibit diosgenin-induced, src kinase-dependent Akt and p38 MAPK activation. Taken together, such results provide evidence that diosgenin up-regulates VEGF-A and promotes angiogenesis in preosteoblast-like cells by a hypoxia-inducible factor-1alpha-dependent mechanism involving the activation of src kinase, p38 MAPK, and Akt signaling pathways via estrogen receptor. PMID:15998873

  3. IKVAV regulates ERK1/2 and Akt signalling pathways in BMMSC population growth and proliferation

    PubMed Central

    Li, B; Qiu, T; Zhang, P; Wang, X; Yin, Y; Li, S

    2014-01-01

    Objectives The molecular mechanism of bone marrow mesenchymal stem cell (BMMSC) population growth and proliferation, induced by Isoleucyl-lysyl-valyl-alanyl-valine (IKVAV), was explored in this study. Materials and methods IKVAV peptides were synthesized by the solid-phase method. Influence of IKVAV on BMMSC population growth and proliferation were investigated by assays of CCK-8, flow cytometry, real-time PCR and western blotting. Results IKVAV peptide was found to induce proliferation and proliferating cell nuclear antigen (PCNA) synthesis of BMMSC in a dose- and time-dependent manner. Cell cycle analysis showed that the proportion of IKVAV-treated BMMSC in S phase in was higher than controls. Western blot results suggested that mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signalling pathways were activated by IKVAV by enhancing phosphorylation levels of ERK1/2 and Akt in the BMMSCs. Meanwhile, phosphorylation levels of ERK1/2 and Akt were partially blocked by ERK1/2 inhibitor (PD98059) and Akt inhibitor (wortmannin), respectively. Conclusions Our results demonstrated that IKVAV stimulated BMMSC population growth and proliferation by activating MAPK/ERK1/2 and PI3K/Akt signalling pathways. This study is the first to reveal an enhancement effect of IKVAV peptide on BMMSC at the signal transduction level, and the outcome could provide experimental evidence for application of IKVAV-grafted scaffolds in the field of BMMSC-based tissue engineering. PMID:24617901

  4. Downregulation of Rab25 activates Akt1 in head and neck squamous cell carcinoma

    PubMed Central

    SEVEN, DIDEM; DOGAN, SOYDAN; KILIÇ, ERKAN; KARAMAN, EMIN; KOSEOGLU, HIKMET; BUYRU, NUR

    2015-01-01

    Several studies have suggested that Ras-associated binding 25 protein (Rab25) is involved in the pathogenesis of human cancer. Although it has been demonstrated that the development of head and neck squamous cell carcinoma (HNSCC) is the result of an accumulation of multiple sequential genetic and epigenetic alterations in key genes with important functions in cell growth and the cell cycle, recent studies have indicated that HNSCC is a complex and heterogenous disease. To the best of our knowledge, there is no data regarding the regulation of the Rab25 gene at the mRNA or protein level in HNSCC. Furthermore, available data on Rab25 expression in other types of cancer are conflicting. The aim of the present study was to investigate whether Rab25 is involved in the development and/or progression of HNSCC, and to analyze the mechanisms underlying its effects in this type of cancer. The expression of Rab25 mRNA in HNSCC tissues and adjacent non-tumor tissue samples was measured using reverse transcription-quantitative polymerase chain reaction, while the level of the Rab25, Akt1 and phosphorylated-Akt1 proteins was measured using western blotting. Expression of Rab25 mRNA and protein was downregulated in 69.1% and 56.1% of tumor tissue samples, respectively. This downregulation was associated with an increase in p-Akt1 expression, in the absence of a change in total Akt1 protein levels, in tumor tissues compared with normal tissues. The current findings suggest that Rab25 acts as a tumor suppressor in HNSCC. PMID:26622777

  5. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits

    PubMed Central

    WANG, YAN; LI, YIGANG; SONG, LEI; LI, YANYAN; JIANG, SHAN; ZHANG, SONG

    2016-01-01

    Amniotic fluid-derived mesenchymal stem cells (AFMSCs) are an attractive cell source for applications in regenerative medicine, due to characteristics such as proliferative capacity and multipotency. In addition, Akt, a serine-threonine kinase, maintains stem cells by promoting viability and proliferation. Whether the transplantation of Akt-overexpressing AFMSCs protects the heart against ischemia-reperfusion (I/R) injury has yet to be elucidated. Accordingly, the Akt gene was overexpressed in AFMSCs using lentiviral transduction, and Akt-AFMSCs were transplanted into the ischemic myocardium of rabbits prior to reperfusion. Any protective effects resulting from this procedure were subsequently sought after three weeks later. A histological examination revealed that there was a decrease in intramyocardial inflammation and ultrastructural damage, and an increase in capillary density and in the levels of GATA binding protein 4, connexin 43 and cardiac troponin T in the Akt-AFMSC group compared with the control group. A significant decrease in cardiomyocyte apoptosis, accompanying an increase in phosphorylated Akt and B-cell lymphoma 2 (Bcl-2) and a decrease in caspase-3, was also observed. Furthermore, the left ventricular function was markedly augmented in the Akt-AFMSC group compared with the control group. These observations suggested that the protective effect of AFMSCs may be due to the delivery of secreted cytokines, promotion of neoangiogenesis, prevention of cardiomyocyte apoptosis, transdifferentiation into cardiomyocytes and promotion of the viability of AFMSCs, which are assisted by Akt gene modification. Taken together, the results of the present study have indicated that transplantation of Akt-AFMSCs is able to alleviate myocardial I/R injury and improve cardiac function. PMID:27151366

  6. Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor β-mediated phosphatidylinositol-3 kinase/Akt signaling

    PubMed Central

    Nguyen, Cuong Thach; Luong, Truc Thanh; Kim, Gyu-Lee; Pyo, Suhkneung; Rhee, Dong-Kwon

    2014-01-01

    Background Ginseng has been shown to exert antistress effects both in vitro and in vivo. However, the effects of ginseng on stress in brain cells are not well understood. This study investigated how Korean Red Ginseng (KRG) controls hydrogen peroxide-induced apoptosis via regulation of phosphatidylinositol-3 kinase (PI3K)/Akt and estrogen receptor (ER)-β signaling. Methods Human neuroblastoma SK-N-SH cells were pretreated with KRG and subsequently exposed to H2O2. The ability of KRG to inhibit oxidative stress-induced apoptosis was assessed in MTT cytotoxicity assays. Apoptotic protein expression was examined by Western blot analysis. The roles of ER-β, PI3K, and p-Akt signaling in KRG regulation of apoptosis were studied using small interfering RNAs and/or target antagonists. Results Pretreating SK-N-SH cells with KRG decreased expression of the proapoptotic proteins p-p53 and caspase-3, but increased expression of the antiapoptotic protein BCL2. KRG pretreatment was also associated with increased ER-β, PI3K, and p-Akt expression. Conversely, ER-β inhibition with small interfering RNA or inhibitor treatment increased p-p53 and caspase-3 levels, but decreased BCL2, PI3K, and p-Akt expression. Moreover, inhibition of PI3K/Akt signaling diminished p-p53 and caspase-3 levels, but increased BCL2 expression. Conclusion Collectively, the data indicate that KRG represses oxidative stress-induced apoptosis by enhancing PI3K/Akt signaling via upregulation of ER-β expression. PMID:25535479

  7. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway

    SciTech Connect

    Cheng, Chi-Chih; Hsueh, Chi-Mei; Chen, Chiu-Yuan; Chen, Tzu-Hsiu; Hsu, Shih-Lan

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-κB protein expression and NF-κB-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-κB pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-induced PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.

  8. Histone deacetylase inhibitor reverses multidrug resistance by attenuating the nucleophosmin level through PI3K/Akt pathway in breast cancer.

    PubMed

    Chen, Si-Ying; Zheng, Xiao-Wei; Cai, Jiang-Xia; Zhang, Wei-Peng; You, Hai-Sheng; Xing, Jian-Feng; Dong, Ya-Lin

    2016-07-01

    The development of multidrug resistance (MDR) is the major obstacle in the chemotherapy of breast cancer, and it restricts the application of antitumor drugs in the clinic. Therefore it is urgent to search for ways to reverse MDR and restore sensitivity to chemotherapeutics in breast carcinoma. Currently, histone deacetylase inhibitors (HDACIs) offer a promising strategy for tumor therapy as the effective anticancer drugs. Based on the potential resistant target of nucleophosmin (NPM), the purpose of this study was to explore the reversal effect of a new synthetic histone deacetylase inhibitor, FA17, on MDR in methotrexate-resistant breast cancer cells (MCF-7/MTX) and xenograft tumors. It was shown that the abnormal expression of NPM induced MDR and inhibited downstream mitochondrial apoptotic pathway by activating PI3K/Akt signaling pathway in MCF-7/MTX cells. The reversal effect and molecular mechanism of FA17 were investigated both in vitro and in vivo. We found that FA17 could significantly reverse resistance and sensitize MCF-7/MTX cells to methotrexate. FA17 obviously enhanced resistant cell apoptosis, inhibited expressions of NPM and efflux transporters. Additionally, FA17 could reverse MDR via inactivating PI3K/Akt pathway and accelerating mitochondrial apoptotic pathway both in MCF-7/MTX cells and in xenograft tumors. Taken together, the novel histone deacetylase inhibitor could effectively reverse drug resistance due to suppressing the activity of NPM and drug efflux pumps by PI3K/Akt and mitochondrial apoptotic pathway. The above not only indicated the potential applied value of FA17 in reversing MDR and enhancing the sensitivity of chemotherapy, but also confirmed the role of NPM in the development of MDR in breast cancer. PMID:27211281

  9. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response

    PubMed Central

    Chan, Tung O.; Zhang, Jin; Tiegs, Brian C.; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M.; Armen, Roger S.; Rodeck, Ulrich; Penn, Raymond B.

    2015-01-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr308 in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr308 dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser473) increased phosphatase resistance of the phosphorylated activation loop (pThr308) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr308 phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. PMID:26201515

  10. Endothelium-Independent Hypoxic Contraction Is Prevented Specifically by Nitroglycerin via Inhibition of Akt Kinase in Porcine Coronary Artery

    PubMed Central

    Liu, Huixia; Li, Yanjing; An, Yuanming; He, Peixin; Wu, Liling; Gao, Yuansheng; Dou, Dou

    2016-01-01

    Objective. Hypoxia-induced sustained contraction of porcine coronary artery is endothelium-independent and mediated by PI3K/Akt/Rho kinase. Nitroglycerin (NTG) is a vasodilator used to treat angina pectoris and acute heart failure. The present study was to determine the role of NTG in hypoxia-induced endothelium-independent contraction and the underlying mechanism. Methods and Results. Organ chamber technique was used to measure the isometric vessel tension of isolated porcine coronary arteries. Protein levels of phosphorylated and total Akt were determined by western blot. A sustained contraction of porcine coronary arteries induced by hypoxia was significantly reduced by NTG but not by isoproterenol. This contraction was also inhibited by DETA NONOate, 8-Br-cGMP, which can be reversed by ODQ, and Rp-8-Br-PET-cGMPS. The restored contraction was blocked by LY294002. The reduction of Akt-p at Ser-473 by NTG, DETA NONOate, and 8-Br-cGMP was significantly inhibited by ODQ, PKG-I. The decrease in Akt-p level by NTG and 8-Br-cGMP was prevented by calyculin A but not by okadaic acid. Conclusions. These results demonstrated that the endothelium-independent sustained hypoxic vasoconstriction can be prevented by NTG and that the inhibition of PI3K/Akt signaling pathway may be involved. PMID:26839558

  11. Synthesis and biological evaluation of a novel class of isatin analogs as dual inhibitors of tubulin polymerization and Akt pathway

    PubMed Central

    Krishnegowda, Gowdahalli; Gowda, A. S. Prakasha; Tagaram, Hephzibah Rani S.; Staveley-O’ Carroll, Kevin F; Irby, Rosalyn B.; Sharma, Arun K.; Amin, Shantu

    2011-01-01

    A novel series of 5,7-dibromoisatin analogs were synthesized and evaluated for their cytotoxicities against four human cancer cell lines including colon HT29, breast MCF-7, lung A549 and melanoma UACC903. Analogs 6, 11 and 13 displayed good in vitro anticancer activity on the HT29 human colon cancer cell line in the 1 µM range. Analogs 5, 9 and 12, containing a selenocyanate group in the alkyl chain were the most promising compounds on the breast cancer MCF-7 cell line. Biological assays relating to apoptosis were performed to understand the mechanism of action of these analogs. Compounds 5 and 6 were found to inhibit tubulin polymerization to the same extent as the anticancer drug vinblastine sulfate, but compounds 11 and 13 inhibited significantly better than vinblastine. Further western blot analysis suggested that compound 6 at 2 µM reduced both levels and phosphorylation state of Akt. Compounds 11 and 13 at 1 µM caused reduced Akt protein levels and strongly suppressed the phosphorylation of Akt. Therefore, 11 and 13 were demonstrated as efficient dual inhibitors of both tubulin polymerization and the Akt pathway and good candidates for further study. More importantly, the strategy of microtubule and Akt dual inhibitors might be a promising direction for developing novel drugs for cancer. PMID:21920762

  12. Up-regulation of survivin by AKT and hypoxia-inducible factor 1α contributes to cisplatin resistance in gastric cancer.

    PubMed

    Sun, Xue-Pu; Dong, Xuesong; Lin, Lele; Jiang, Xian; Wei, Zheng; Zhai, Bo; Sun, Bo; Zhang, Qiang; Wang, Xiaolong; Jiang, Hongchi; Krissansen, Geoffrey W; Qiao, Haiquan; Sun, Xueying

    2014-01-01

    This study investigated the contribution of survivin and its upstream regulators, AKT and hypoxia-inducible factor 1α (HIF-1α), to the resistance of gastric cancer cells to cisplatin (CDDP). We found that over-expression of survivin increased the resistance of SGC7901 and BGC823 gastric cancer cells to CDDP. Its over-expression abrogated CDDP-induced inhibition of cell proliferation and CDDP-induced cell apoptosis. In contrast, down-regulation of survivin expression using small hairpin RNA (shRNA) vectors and the small-molecule inhibitor YM155, or inhibition of survivin function using a recombinant cell-permeable dominant-negative survivin protein (dNSur9), promoted CDDP-induced apoptosis. CDDP-resistant sub-lines generated from the parental SGC7901 and BGC823 cells by exposure to increasing concentrations of CDDP expressed higher levels of HIF-1α and survivin in response to hypoxia, and higher levels of phosphorylated AKT (pAKT). Specific inhibition of AKT reduced the expression of HIF-1α and survivin, whereas specific inhibition or depletion of HIF-1α reduced survivin expression but had no effect on the expression of phosphorylated AKT. The expression levels of survivin affected the therapeutic efficacy of CDDP in treating gastric tumors in mice. Specific inhibition of survivin, AKT and HIF-1α enhanced the sensitivity of CDDP-resistant cells to CDDP. Specific inhibition of survivin, AKT and HIF-1α synergized with CDDP to suppress the growth of gastric tumors that had been engineered to overexpress survivin. In summary, the results provide evidence that up-regulation of survivin by AKT and HIF-1α contributes to CDDP resistance, indicating that inhibition of these pathways may be a potential strategy for overcoming CDDP resistance in the treatment of gastric cancer. PMID:24165223

  13. Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats.

    PubMed

    Rathinam, Ayyasamy; Pari, Leelavinothan

    2016-08-25

    Insulin signaling pathway is an important role in glucose utilization in tissues. Our Previous study has established that myrtenal has antihyperglycemic effect against diabetic rats. The aim of this study was to explore the molecular mechanism of myrtenal in Streptozotocin-induced diabetic rats. Experimental diabetes was induced by single intraperitoneal injection of Streptozotocin (STZ) (40 mg/kg bw) in Wistar albino rats. Diabetic rats were administered myrtenal (80 mg/kg bw) for a period of 28 days. Diabetic rats showed an increased the levels of plasma glucose, decreased the levels of plasma insulin, down-regulation of insulin receptor substrate 2 (IRS2), Akt and glucose transporter 2 (GLUT2) in liver and insulin receptor substrate 2 (IRS2), Akt and glucose transporter 4 (GLUT4) protein expression in skeletal muscle. However, myrtenal treated diabetic rats revealed decreased the levels of plasma glucose, improved the plasma insulin levels, up-regulation of IRS2, Akt and GLUT2 in liver and IRS2, Akt and GLUT4 protein expression in skeletal muscle. The up-regulation of glucose transporters enhances the glucose uptake in liver and skeletal muscle. The histopathology and immunohistochemical analysis of the pancreas also corroborates with the above findings. Our findings suggest that myrtenal could be a potent phytochemical in the management of diabetes. PMID:27417257

  14. Apigenin suppresses GLUT-1 and p-AKT expression to enhance the chemosensitivity to cisplatin of laryngeal carcinoma Hep-2 cells: an in vitro study

    PubMed Central

    Xu, Ying-Ying; Wu, Ting-Ting; Zhou, Shui-Hong; Bao, Yang-Yang; Wang, Qin-Ying; Fan, Jun; Huang, Ya-Ping

    2014-01-01

    Glucose transporter-1 (GLUT-1) and PI3K/Akt are known to be closely involved in resistance to chemotherapy. Co-targeted therapy reducing GLUT-1 expression and PI3K/Akt pathway activity may overcome the chemoresistance of human cancers. Apigenin may inhibit the expression of GLUT-1 and the PI3K/Akt pathway. We hypothesized that over-expression of GLUT-1 and p-Akt was associated with the resistance to cisplatin of laryngeal carcinoma Hep-2 cells. We explored whether apigenin inhibited GLUT-1 and p-Akt, resulting in sensitization of laryngeal carcinoma Hep-2 cells to cisplatin. Real-time RT-PCR and Western blotting confirmed the presence of GLUT-1 mRNA, and GLUT-1 and p-Akt proteins in Hep-2 cells. We found that resistance or insensitivity of Hep-2 cells to cisplatin might be associated with such expression. Apigenin markedly enhanced the cisplatin-induced suppression of Hep-2 cell growth. This effect was concentration- and time-dependent. Thus apigenin may significantly reduce the levels of GLUT-1 mRNA, and GLUT-1 and p-Akt proteins, in cisplatin-treated Hep-2 cells, in a concentration- and time-dependent manner. To conclude, overexpression of GLUT-1 mRNA may be associated with the resistance to cisplatin of laryngeal carcinoma Hep-2 cells. Apigenin may enhance the sensitivity to cisplatin of laryngeal carcinoma cells via inhibition of GLUT-1 and p-Akt expression. PMID:25120770

  15. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages

    PubMed Central

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A.; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05) gradually with increasing age. Bama mini-pigs had generally higher (P<0.05) muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but

  16. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages.

    PubMed

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05) gradually with increasing age. Bama mini-pigs had generally higher (P<0.05) muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but

  17. The E-Id protein axis modulates the activities of the PI3K-AKT-mTORC1-Hif1a and c-myc/p19Arf pathways to suppress innate variant TFH cell development, thymocyte expansion, and lymphomagenesis.

    PubMed

    Miyazaki, Masaki; Miyazaki, Kazuko; Chen, Shuwen; Chandra, Vivek; Wagatsuma, Keisuke; Agata, Yasutoshi; Rodewald, Hans-Reimer; Saito, Rintaro; Chang, Aaron N; Varki, Nissi; Kawamoto, Hiroshi; Murre, Cornelis

    2015-02-15

    It is now well established that the E and Id protein axis regulates multiple steps in lymphocyte development. However, it remains unknown how E and Id proteins mechanistically enforce and maintain the naïve T-cell fate. Here we show that Id2 and Id3 suppressed the development and expansion of innate variant follicular helper T (TFH) cells. Innate variant TFH cells required major histocompatibility complex (MHC) class I-like signaling and were associated with germinal center B cells. We found that Id2 and Id3 induced Foxo1 and Foxp1 expression to antagonize the activation of a TFH transcription signature. We show that Id2 and Id3 acted upstream of the Hif1a/Foxo/AKT/mTORC1 pathway as well as the c-myc/p19Arf module to control cellular expansion. We found that mice depleted for Id2 and Id3 expression developed colitis and αβ T-cell lymphomas. Lymphomas depleted for Id2 and Id3 expression displayed elevated levels of c-myc, whereas p19Arf abundance declined. Transcription signatures of Id2- and Id3-depleted lymphomas revealed similarities to genetic deficiencies associated with Burkitt lymphoma. We propose that, in response to antigen receptor and/or cytokine signaling, the E-Id protein axis modulates the activities of the PI3K-AKT-mTORC1-Hif1a and c-myc/p19Arf pathways to control cellular expansion and homeostatic proliferation. PMID:25691468

  18. Extrapancreatic roles of glimepiride on osteoblasts from rat manibular bone in vitro: Regulation of cytodifferentiation through PI3-kinases/Akt signalling pathway.

    PubMed

    Ma, Pan; Xiong, Wei; Liu, Hongchen; Ma, Junli; Gu, Bin; Wu, Xia

    2011-04-01

    Glimepiride, a third-generation sulfonylurea, has also been reported to have extrapancreatic functions including activation of PI3-kinase (PI3K) and Akt in rat adipocytes, skeletal muscle and endothelial cells. It is tempting to speculate that glimepiride would improve bone-implant contact in diabetic patients by mediating the activity of GLUT1 and 3 via the PI3K/Akt pathway. In this study, we investigated the effects of glimepiride on rat mandible osteoblasts cultured under two different levels of glucose. Cell proliferation was determined by the MTT assay. The supernatant was used to measure alkaline phosphatase (ALP) activity. Glucose uptake was determined by measuring the rate of 2-deoxy-d-glucose (2-DG) uptake. Western blotting was performed used to determine collagen I and PI3K/Akt expression. RT-PCR was performed used to determine osteocalcin (OCN) mRNA expression. We found that hyperglycemia down-regulated proliferation, ALP activity, OCN mRNA and GLUT3 protein expression in rat osteoblasts, and upregulated collagen I and GLUT1 protein expressions. Glimepiride enhanced the proliferation, ALP activity and OCN mRNA levels, and upregulated collagen I and GLUT1 and 3 protein expressions of rat osteoblasts at two different glucose concentrations. This study also provides the first evidence that glimepiride stimulates the phosphorylation of PI3K/Akt in osteoblasts and ameliorated the damage caused by high concentrations of glucose through the PI3K/Akt pathway. PMID:21055727

  19. Translation Levels Control Multi-Spanning Membrane Protein Expression

    PubMed Central

    Brown, Cecilia; Bostrom, Jenny; Fuh, Germaine; Lee, Chingwei V.; Huang, Arthur; Vandlen, Richard L.; Yansura, Daniel G.

    2012-01-01

    Attempts to express eukaryotic multi-spanning membrane proteins at high-levels have been generally unsuccessful. In order to investigate the cause of this limitation and gain insight into the rate limiting processes involved, we have analyzed the effect of translation levels on the expression of several human membrane proteins in Escherichia coli (E. coli). These results demonstrate that excessive translation initiation rates of membrane proteins cause a block in protein synthesis and ultimately prevent the high-level accumulation of these proteins. Moderate translation rates allow coupling of peptide synthesis and membrane targeting, resulting in a significant increase in protein expression and accumulation over time. The current study evaluates four membrane proteins, CD20 (4-transmembrane (TM) helixes), the G-protein coupled receptors (GPCRs, 7-TMs) RA1c and EG-VEGFR1, and Patched 1 (12-TMs), and demonstrates the critical role of translation initiation rates in the targeting, insertion and folding of integral membrane proteins in the E. coli membrane. PMID:22563408

  20. Orexin A Affects INS-1 Rat Insulinoma Cell Proliferation via Orexin Receptor 1 and the AKT Signaling Pathway

    PubMed Central

    Chen, Li; Zhao, Yuyan; Zheng, Delu; Ju, Shujing; Shen, Yang; Guo, Lei

    2013-01-01

    Our aim is to investigate the role of the AKT/PKB (protein kinase B) signaling pathway acting via orexin receptor 1 (OX1R) and the effects of orexin A (OXA) on cell proliferation in the insulin-secreting beta-cell line (INS-1 cells). Rat INS-1 cells were exposed to different concentrations of OXA in vitro and treated with OX1R antagonist (SB334867), PI3K antagonist (wortmannin), AKT antagonist (PF-04691502), or negative control. INS-1 amount of cell proliferation, viability and apoptosis, insulin secretion, OX1R protein expression, caspase-3 activity, and AKT protein levels were determined. We report that OXA (10−10 to 10−6 M) stimulates INS-1 cell proliferation and viability, reduces the proapoptotic activity of caspase-3 to protect against apoptotic cell death, and increases insulin secretion. Additionally, AKT phosphorylation was stimulated by OXA (10−10 to 10−6 M). However, the OX1R antagonist SB334867 (10−6 M), the PI3K antagonist wortmannin (10−8 M), the AKT antagonist PF-04691502 (10−6 M), or the combination of both abolished the effects of OXA to a certain extent. These results suggest that the upregulation of OXA-OX1R mediated by AKT activation may inhibit cell apoptosis and promote cell proliferation in INS-1 cells. This finding provides functional evidence of the biological actions of OXA in rat insulinoma cells. PMID:24382962

  1. PI3K and AKT: Unfaithful Partners in Cancer.

    PubMed

    Faes, Seraina; Dormond, Olivier

    2015-01-01

    The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway regulates multiple cellular processes. An overactivation of the pathway is frequently present in human malignancies and plays a key role in cancer progression. Hence, its inhibition has become a promising approach in cancer therapy. However, the development of resistances, such as the abrogation of negative feedback mechanisms or the activation of other proliferative signaling pathways, has considerably limited the anticancer efficacy of PI3K/AKT inhibitors. In addition, emerging evidence points out that although AKT is acknowledged as the major downstream effector of PI3K, both PI3K and AKT can operate independently of each other in cancer, revealing another level of complexity in this pathway. Here, we highlight the complex relationship between PI3K and AKT in cancer and further discuss the consequences of this relationship for cancer therapy. PMID:26404259

  2. PI3K and AKT: Unfaithful Partners in Cancer

    PubMed Central

    Faes, Seraina; Dormond, Olivier

    2015-01-01

    The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway regulates multiple cellular processes. An overactivation of the pathway is frequently present in human malignancies and plays a key role in cancer progression. Hence, its inhibition has become a promising approach in cancer therapy. However, the development of resistances, such as the abrogation of negative feedback mechanisms or the activation of other proliferative signaling pathways, has considerably limited the anticancer efficacy of PI3K/AKT inhibitors. In addition, emerging evidence points out that although AKT is acknowledged as the major downstream effector of PI3K, both PI3K and AKT can operate independently of each other in cancer, revealing another level of complexity in this pathway. Here, we highlight the complex relationship between PI3K and AKT in cancer and further discuss the consequences of this relationship for cancer therapy. PMID:26404259

  3. Human Papillomaviruses, p16INK4a and Akt expression in basal cell carcinoma

    PubMed Central

    2011-01-01

    Background The pathogenic role of beta-HPVs in non melanoma skin cancer (NMSC), is not still completely understood, and literature data indicate that they might be at least cofactors in the development of certain cutaneous squamous cell carcinomas. However, only few reports contain data on basal cell carcinoma (BCC). The HPVs interact with many cellular proteins altering their function or the expression levels, like the p16INK4a and Akt. Our study aimed to determine the presence of different beta -HPV types and the expression of p16INK4a and Akt in BCC, the commonest NMSC, in the normal appearing perilesional skin and in forehead swab of 37 immunocompetent patients. Methods The expression of p16INK4a and Akt, by immunohistochemistry, and the HPV DNA, by nested PCR, were investigated in each sample. Results No correspondence of HPV types between BCC and swab samples was found, whereas a correspondence between perilesional skin and BCC was ascertained in the 16,7% of the patients. In BCC, 16 different types of beta HPV were found and the most frequent types were HPV107 (15,4%), HPV100 (11,5%) and HPV15 (11,5%) all belonging to the beta HPV species 2. Immunohistochemistry detected significant p16INK4a expression in almost all tumor samples (94,3%) with the highest percentages (> 30%) of positive cells detected in 8 cases. A statistically significant (p = 0,012) increase of beta HPV presence was detected in p16INK4a strongly positive samples, in particular of species 2. pAkt expression was detected in all tumor samples with only 2 cases showing rare positive cells, whereas Akt2 expression was found in 14 out of 35 BCC (40%); in particular in HPV positive samples over-expressing p16INK4a. Conclusions Our data show that p16INK4a and pAkt are over-expressed in BCC and that the high expression of p16INK4a and of Akt2 isoform is often associated with the presence of beta-HPV species 2 (i.e. HPV 15). The association of these viruses with the up-regulation of p16INK4a and Akt

  4. miR-93 Promotes Cell Proliferation in Gliomas through Activation of PI3K/Akt Signaling Pathway

    PubMed Central

    Jiang, Lili; Wang, Chanjuan; Lei, Fangyong; Zhang, Longjuan; Zhang, Xin; Liu, Aibin; Wu, Geyan; Zhu, Jinrong; Song, Libing

    2015-01-01

    The PI3K/Akt signaling pathway is frequently activated in various human cancer types and plays essential roles in development and progression of cancers. Multiple regulators, such as phosphatase and tensin homolog (PTEN) and PH domain leucine rich repeat protein phosphatases (PHLPP), have also found to be involved in suppression of the PI3K/Akt signaling pathway. However, how suppressive effects mediated by these regulators are concomitantly disrupted in cancers, which display constitutively activated PI3K/Akt signaling, remains puzzling. In the present study, we reported that the expression of miR-93 was markedly upregulated in glioma cell lines and clinical glioma tissues. Statistical analysis revealed that miR-93 levels significantly correlated with clinicopathologic grade and overall survival in gliomas. Furthermore, we found that overexpressing miR-93 promoted, but inhibition of miR-93 reduced, glioma cell proliferation and cell-cycle progression. We demonstrated that miR-93 activated PI3K/Akt signaling through directly suppressing PTEN, PHLPP2 and FOXO3 expression via targeting their 3′UTRs. Therefore, our results suggest that miR-93 might play an important role in glioma progression and uncover a novel mechanism for constitutive PI3K/Akt activation in gliomas. PMID:25823655

  5. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-07-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application. PMID:27408334

  6. PDK1 regulates growth through Akt and S6K in Drosophila

    PubMed Central

    Rintelen, Felix; Stocker, Hugo; Thomas, George; Hafen, Ernst

    2001-01-01

    The insulin/insulin-like growth factor-1 signaling pathway promotes growth in invertebrates and vertebrates by increasing the levels of phosphatidylinositol 3,4,5-triphosphate through the activation of p110 phosphatidylinositol 3-kinase. Two key effectors of this pathway are the phosphoinositide-dependent protein kinase 1 (PDK1) and Akt/PKB. Although genetic analysis in Caenorhabditis elegans has implicated Akt as the only relevant PDK1 substrate, cell culture studies have suggested that PDK1 has additional targets. Here we show that, in Drosophila, dPDK1 controls cellular and organism growth by activating dAkt and S6 kinase, dS6K. Furthermore, dPDK1 genetically interacts with dRSK but not with dPKN, encoding two substrates of PDK1 in vitro. Thus, the results suggest that dPDK1 is required for dRSK but not dPKN activation and that it regulates insulin-mediated growth through two main effector branches, dAkt and dS6K. PMID:11752451

  7. Regulation of Akt during torpor in the hibernating ground squirrel, Ictidomys tridecemlineatus

    PubMed Central

    McMullen, David C.

    2010-01-01

    The 13-lined ground squirrel (Ictidomys tridecemlineatus) is capable of entering into extended periods of torpor during winter hibernation. The state of torpor represents a hypometabolic shift wherein the rate of oxygen consuming processes are strongly repressed in an effort to maintain cellular homeostasis as the availability of food energy becomes limited. We are interested in studying hibernation/torpor because of the robust state of tolerance to constrained oxygen delivery, oligemia, and hypothermia achieved by the tissues of hibernating mammals. The role of the serine/threonine kinase Akt (also known as PKB) has been examined in torpor in previous studies. However, this is the first study that examines the level of Akt phosphorylation in the liver during the two transition phases of the hibernation cycle: entrance into torpor, and the subsequent arousal from torpor. Our results indicate that Akt is activated in the squirrel liver by phosphorylation of two key residues (Thr308 and Ser473) during entrance into torpor and arousal from torpor. Moreover, we observed increased phosphorylation of key substrates of Akt during the two transition stages of torpor. Finally, this study reports the novel finding that PRAS40, a component of the TORC1 multi-protein complex and a potentially important modulator of metabolism, is regulated during torpor. PMID:20352231

  8. CD133 promotes gallbladder carcinoma cell migration through activating Akt phosphorylation

    PubMed Central

    Zhen, Jiaojiao; Ai, Zhilong

    2016-01-01

    Gallbladder carcinoma (GBC) is the fifth most common malignancy of gastrointestinal tract. The prognosis of gallbladder carcinoma is extremely terrible partially due to metastasis. However, the mechanisms underlying gallbladder carcinoma metastasis remain largely unknown. CD133 is a widely used cancer stem cell marker including in gallbladder carcinoma. Here, we found that CD133 was highly expressed in gallbladder carcinoma as compared to normal tissues. CD133 was located in the invasive areas in gallbladder carcinoma. Down-regulation expression of CD133 inhibited migration and invasion of gallbladder carcinoma cell without obviously reducing cell proliferation. Mechanism analysis revealed that down-regulation expression of CD133 inhibited Akt phosphorylation and increased PTEN protein level. The inhibitory effect of CD133 down-regulation on gallbladder carcinoma cell migration could be rescued by Akt activation. Consistent with this, addition of Akt inhibitor Wortmannin markedly inhibited the migration ability of CD133-overexpressing cells. Thus, down-regulation of CD133 inhibits migration of gallbladder carcinoma cells through reducing Akt phosphorylation. These findings explore the fundamental biological aspect of CD133 in gallbladder carcinoma progression, providing insights into gallbladder carcinoma cell migration. PMID:26910892

  9. PTEN Tumor Suppressor Network in PI3K-Akt Pathway Control.

    PubMed

    Georgescu, Maria-Magdalena

    2010-12-01

    The PI3K-Akt pathway is a major survival pathway activated in cancer. Efforts to develop targeted therapies have not been fully successful, mainly because of extensive internal intrapathway or external interpathway negative feedback loops or because of networking between pathway suppressors. The PTEN tumor suppressor is the major brake of the pathway and a common target for inactivation in somatic cancers. This review will highlight the networking of PTEN with other inhibitors of the pathway, relevant to cancer progression. PTEN constitutes the main node of the inhibitory network, and a series of convergences at different levels in the PI3K-Akt pathway, starting from those with growth factor receptors, will be described. As PTEN exerts enzymatic activity as a phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) phosphatase, thus opposing the activity of PI3K, the concerted actions to increase the availability of PIP(3) in cancer cells, relying either on other phosphoinositide enzymes or on the intrinsic regulation of PTEN activity by other molecules, will be discussed. In particular, the synergy between PTEN and the circle of its direct interacting proteins will be brought forth in an attempt to understand both the activation of the PI3K-Akt pathway and the connections with other parallel oncogenic pathways. The understanding of the interplay between the modulators of the PI3K-Akt pathway in cancer should eventually lead to the design of therapeutic approaches with increased efficacy in the clinic. PMID:21779440

  10. Dietary protein level and performance of growing Baladi kids

    PubMed Central

    Abdelrahman, M. M.; Aljumaah, R. S.

    2014-01-01

    A study was conducted to evaluate the effect of feeding different levels of protein to black Baladi breed kids. Weanling Baladi kids (n=18; 75 to 90 days old) were selected and individually housed at our experimental farm. Kids were divided randomly to one of the three treatments for 12 weeks. The three dietary treatments were: T1: control ration, formulated according to NRC to cover the protein (level 1) and other nutrients requirements. T2: ration formulated to cover only 75% of protein (level 2) recommended by NRC. T3: control diet + 2.4 g undegradable methionine (Smartamine®)/day/kid (level 3). Feed intake, initial and monthly body weights were recorded. Blood samples were collected monthly and analyzed for metabolites and Co, Zn and Cu levels. Decreasing the dietary level of protein (T2) negatively affected (P<0.05) the total live weight gain, average daily gain and feed conversion ratio when compared with the control and T3 groups. Moreover, treatment, time and time × treatment caused a significant change on Co concentration in blood serum with higher value at the end of the experiment. Treatments had a significant effect (P<0.05) on blood serum cholesterol and protein levels. Undegradable methionine supplementation (T3) significantly increased longissimus dorsi weight, fat thickness and omental fat%. In conclusion, feeding Baladi kids below the NRC requirements of protein negatively affect the growth performance and feed efficiency. The recommended protein level by NRC for growing kids cover the requirements of growing black Baladi kids for maximum growth and productivity. PMID:27175130

  11. Protein engineering strategies with potential applications for altering clinically relevant cellular pathways at the protein level.

    PubMed

    Regan, Lynne; Hinrichsen, Michael R; Oi, Curran

    2016-05-01

    All diseases can be fundamentally viewed as the result of malfunctioning cellular pathways. Protein engineering offers the potential to develop new tools that will allow these dysfunctional pathways to be better understood, in addition to potentially providing new routes to restore proper function. Here we discuss different approaches that can be used to change the intracellular activity of a protein by intervening at the protein level: targeted protein sequestration, protein recruitment, protein degradation, and selective inhibition of binding interfaces. The potential of each of these tools to be developed into effective therapeutic treatments will also be discussed, along with any major barriers that currently block their translation into the clinic. PMID:27031866

  12. Protein expression analyses at the single cell level.

    PubMed

    Ohno, Masae; Karagiannis, Peter; Taniguchi, Yuichi

    2014-01-01

    The central dogma of molecular biology explains how genetic information is converted into its end product, proteins, which are responsible for the phenotypic state of the cell. Along with the protein type, the phenotypic state depends on the protein copy number. Therefore, quantification of the protein expression in a single cell is critical for quantitative characterization of the phenotypic states. Protein expression is typically a dynamic and stochastic phenomenon that cannot be well described by standard experimental methods. As an alternative, fluorescence imaging is being explored for the study of protein expression, because of its high sensitivity and high throughput. Here we review key recent progresses in fluorescence imaging-based methods and discuss their application to proteome analysis at the single cell level. PMID:25197931

  13. Galactose-1 phosphate uridylyltransferase (GalT) gene: A novel positive regulator of the PI3K/Akt signaling pathway in mouse fibroblasts.

    PubMed

    Balakrishnan, Bijina; Chen, Wyman; Tang, Manshu; Huang, Xiaoping; Cakici, Didem Demirbas; Siddiqi, Anwer; Berry, Gerard; Lai, Kent

    2016-01-29

    The vital importance of the Leloir pathway of galactose metabolism has been repeatedly demonstrated by various uni-/multicellular model organisms, as well human patients who have inherited deficiencies of the key GAL enzymes. Yet, other than the obvious links to the glycolytic pathway and glycan biosynthetic pathways, little is known about how this metabolic pathway interacts with the rest of the metabolic and signaling networks. In this study, we compared the growth and the expression levels of the key components of the PI3K/Akt growth signaling pathway in primary fibroblasts derived from normal and galactose-1 phosphate uridylyltransferase (GalT)-deficient mice, the latter exhibited a subfertility phenotype in adult females and growth restriction in both sexes. The growth potential and the protein levels of the pAkt(Thr308), pAkt(Ser473), pan-Akt, pPdk1, and Hsp90 proteins were significantly reduced by 62.5%, 60.3%, 66%, 66%, and 50%, respectively in the GalT-deficient cells. Reduced expression of phosphorylated Akt proteins in the mutant cells led to diminished phosphorylation of Gsk-3β (-74%). Protein expression of BiP and pPten were 276% and 176% higher respectively in cells with GalT-deficiency. Of the 24 genes interrogated using QIAGEN RT(2) Profiler PCR Custom Arrays, the mRNA abundance of Akt1, Pdpk1, Hsp90aa1 and Pi3kca genes were significantly reduced at least 2.03-, 1.37-, 2.45-, and 1.78-fold respectively in mutant fibroblasts. Both serum-fasted normal and GalT-deficient cells responded to Igf-1-induced activation of Akt phosphorylation at +15 min, but the mutant cells have lower phosphorylation levels. The steady-state protein abundance of Igf-1 receptor was also significantly reduced in mutant cells. Our results thus demonstrated that GalT deficiency can effect down-regulation of the PI3K/Akt growth signaling pathway in mouse fibroblasts through distinct mechanisms targeting both gene and protein expression levels. PMID:26773505

  14. Molecular and functional interactions between AKT and SOX2 in breast carcinoma

    PubMed Central

    Mir, Perihan; Konantz, Martina; Pereboom, Tamara C.; Paczulla, Anna M.; Merz, Britta; Fehm, Tanja; Perner, Sven; Rothfuss, Oliver C.; Kanz, Lothar; Schulze-Osthoff, Klaus; Lengerke, Claudia

    2015-01-01

    The transcription factor SOX2 is a key regulator of pluripotency in embryonic stem cells and plays important roles in early organogenesis. Recently, SOX2 expression was documented in various cancers and suggested as a cancer stem cell (CSC) marker. Here we identify the Ser/Thr-kinase AKT as an upstream regulator of SOX2 protein turnover in breast carcinoma (BC). SOX2 and pAKT are co-expressed and co-regulated in breast CSCs and depletion of either reduces clonogenicity. Ectopic SOX2 expression restores clonogenicity and in vivo tumorigenicity of AKT-inhibited cells, suggesting that SOX2 acts as a functional downstream AKT target. Mechanistically, we show that AKT physically interacts with the SOX2 protein to modulate its subcellular distribution. AKT kinase inhibition results in enhanced cytoplasmic retention of SOX2, presumably via impaired nuclear import, and in successive cytoplasmic proteasomal degradation of the protein. In line, blockade of either nuclear transport or proteasomal degradation rescues SOX2 expression in AKT-inhibited BC cells. Finally, AKT inhibitors efficiently suppress the growth of SOX2-expressing putative cancer stem cells, whereas conventional chemotherapeutics select for this population. Together, our results suggest the AKT/SOX2 molecular axis as a regulator of BC clonogenicity and AKT inhibitors as promising drugs for the treatment of SOX2-positive BC. PMID:26498353

  15. Molecular and functional interactions between AKT and SOX2 in breast carcinoma.

    PubMed

    Schaefer, Thorsten; Wang, Hui; Mir, Perihan; Konantz, Martina; Pereboom, Tamara C; Paczulla, Anna M; Merz, Britta; Fehm, Tanja; Perner, Sven; Rothfuss, Oliver C; Kanz, Lothar; Schulze-Osthoff, Klaus; Lengerke, Claudia

    2015-12-22

    The transcription factor SOX2 is a key regulator of pluripotency in embryonic stem cells and plays important roles in early organogenesis. Recently, SOX2 expression was documented in various cancers and suggested as a cancer stem cell (CSC) marker. Here we identify the Ser/Thr-kinase AKT as an upstream regulator of SOX2 protein turnover in breast carcinoma (BC). SOX2 and pAKT are co-expressed and co-regulated in breast CSCs and depletion of either reduces clonogenicity. Ectopic SOX2 expression restores clonogenicity and in vivo tumorigenicity of AKT-inhibited cells, suggesting that SOX2 acts as a functional downstream AKT target. Mechanistically, we show that AKT physically interacts with the SOX2 protein to modulate its subcellular distribution. AKT kinase inhibition results in enhanced cytoplasmic retention of SOX2, presumably via impaired nuclear import, and in successive cytoplasmic proteasomal degradation of the protein. In line, blockade of either nuclear transport or proteasomal degradation rescues SOX2 expression in AKT-inhibited BC cells. Finally, AKT inhibitors efficiently suppress the growth of SOX2-expressing putative cancer stem cells, whereas conventional chemotherapeutics select for this population. Together, our results suggest the AKT/SOX2 molecular axis as a regulator of BC clonogenicity and AKT inhibitors as promising drugs for the treatment of SOX2-positive BC. PMID:26498353

  16. Source and level of supplemental protein for growing lambs.

    PubMed

    Dabiri, N; Thonney, M L

    2004-11-01

    Two 3 x 2 factorial growth trials and a companion metabolism trial with 13, 15, or 17% dietary CP (DM basis), with or without 3% of the DM replaced with slowly degraded menhaden fish meal, were conducted to determine if level of dietary protein influences whether slowly degraded protein improves lamb growth and protein use. The growth trials included 32 and 34 pens of two weanling lambs initially weighing 23 to 26 kg and fed for 42 d. The metabolism trial included 12 additional lambs fed in metabolism cages with a 2-wk adjustment period, a 1-wk preliminary period, and a 7-d collection period. Plasma urea N (PUN) was measured in all lambs at the conclusion of the second growth trial and at the end of the metabolism trial. There was a protein level x protein source interaction (P = 0.05) for PUN of the 12 lambs in the metabolism trial but not for the 68 lambs in the second growth trial. Replacement of part of the soybean meal protein with protein from fish meal did not affect ADG or G:F at any protein level, but it lowered (P = 0.08) PUN in the second growth trial. Plasma urea N values were higher (P = 0.002) in lambs fed diets with 15 or 17% CP; however, ADG (P = 0.037 in Exp. 1 and P = 0.055 in Exp. 2), and G:F (P = 0.094 in Exp. 1 and P = 0.003 in Exp. 2) were lower for lambs fed the diets with 13% CP. There was little difference in ADG or G:F between lambs fed the diets with 15 or 17% CP, suggesting that a CP level of 15% with supplemental protein from soybean meal would be optimal for 25- to 40-kg growing Finnsheep x Dorset lambs. PMID:15542470

  17. Soy protein isolate molecular level contributions to bulk adhesive properties

    NASA Astrophysics Data System (ADS)

    Shera, Jeanne Norton

    Increasing environmental awareness and the recognized health hazards of formaldehyde-based resins has prompted a strong demand for environmentally-responsible adhesives for wood composites. Soy protein-based adhesives have been shown to be commercially viable with 90-day shelf stability and composite physical properties comparable to those of commercial formaldehyde-based particleboards. The main research focus is to isolate and characterize the molecular level features in soy protein isolate responsible for providing mechanical properties, storage stability, and water resistance during adhesive formulation, processing, and wood composite fabrication. Commercial composite board will be reviewed to enhance our understanding of the individual components and processes required for particleboard production. The levels of protein structure will be defined and an overview of current bio-based technology will be presented. In the process, the logic for utilizing soy protein as a sole binder in the adhesive will be reinforced. Variables such as adhesive components, pH, divalent ions, blend aging, protein molecular weight, formulation solids content, and soy protein functionalization will relate the bulk properties of soy protein adhesives to the molecular configuration of the soybean protein. This work has demonstrated that when intermolecular beta-sheet interactions and protein long-range order is disrupted, viscosity and mechanical properties decrease. Storage stability can be maintained through the stabilization of intermolecular beta-sheet interactions. When molecular weight is reduced through enzymatic digestion, long-range order is disrupted and viscosity and mechanical properties decrease accordingly. Processibility and physical properties must be balanced to increase solids while maintaining low viscosity, desirable mechanical properties, and adequate storage stability. The structure of the soybean protein must be related to the particleboard bulk mechanical

  18. Glycoprotein nonmetastatic melanoma protein B extracellular fragment shows neuroprotective effects and activates the PI3K/Akt and MEK/ERK pathways via the Na+/K+-ATPase

    PubMed Central

    Ono, Yoko; Tsuruma, Kazuhiro; Takata, Masafumi; Shimazawa, Masamitsu; Hara, Hideaki

    2016-01-01

    Glycoprotein nonmetastatic melanoma protein B (GPNMB) plays important roles in various types of cancer and amyotrophic lateral sclerosis (ALS). The details of GPNMB function and its interacting protein have not been clarified. Therefore, to identify GPNMB binding partners on the cell membrane, we used membrane protein library/BLOTCHIP-MS technology, which enables us to analyze all cell membrane proteins as binding partners of the GPNMB extracellular fragment. As a result of a comprehensive search, we identified the alpha subunits of Na+/K+-ATPase (NKA) as a possible binding partner. We confirmed the interaction between the GPNMB extracellular fragment and NKA by immunoprecipitation and immunostaining in NSC-34 cells. Indeed, endogenous GPNMB extracellular fragment bound to and colocalized with NKA alpha subunits. Furthermore, exogenous GPNMB extracellular fragment, i.e., human recombinant GPNMB, also bound to and colocalized with NKA alpha subunits. Additionally, we found that the GPNMB extracellular fragment had neuroprotective effects and activated the phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathways via NKA. These findings indicated that NKA may act as a novel “receptor” for the GPNMB extracellular fragment, offering additional molecular targets for the treatment of GPNMB-related diseases, including various types of cancer and ALS. PMID:26988030

  19. Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation.

    PubMed

    Toulany, Mahmoud; Rodemann, H Peter

    2015-12-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a key cascade downstream of several protein kinases, especially membrane-bound receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) family members. Hyperactivation of the PI3K/Akt pathway is correlated with tumor development, progression, poor prognosis, and resistance to cancer therapies, such as radiotherapy, in human solid tumors. Akt/PKB (Protein Kinase B) members are the major kinases that act downstream of PI3K, and these are involved in a variety of cellular functions, including growth, proliferation, glucose metabolism, invasion, metastasis, angiogenesis, and survival. Accumulating evidence indicates that activated Akt is one of the major predictive markers for solid tumor responsiveness to chemo/radiotherapy. DNA double-strand breaks (DNA-DSB), are the prime cause of cell death induced by ionizing radiation. Preclinical in vitro and in vivo studies have shown that constitutive activation of Akt and stress-induced activation of the PI3K/Akt pathway accelerate the repair of DNA-DSB and, consequently, lead to therapy resistance. Analyzing dysregulations of Akt, such as point mutations, gene amplification or overexpression, which results in the constitutive activation of Akt, might be of special importance in the context of radiotherapy outcomes. Such studies, as well as studies of the mechanism(s) by which activated Akt1 regulates repair of DNA-DSB, might help to identify combinations using the appropriate molecular targeting strategies with conventional radiotherapy to overcome radioresistance in solid tumors. In this review, we discuss the dysregulation of the components of upstream regulators of Akt as well as specific modifications of Akt isoforms that enhance Akt activity. Likewise, the mechanisms by which Akt interferes with repair of DNA after exposure to ionizing radiation, will be reviewed. Finally, the current status of Akt targeting in combination with radiotherapy will

  20. Neuroprotective effects of rhynchophylline against ischemic brain injury via regulation of the Akt/mTOR and TLRs signaling pathways.

    PubMed

    Huang, Houcai; Zhong, Rongling; Xia, Zhi; Song, Jie; Feng, Liang

    2014-01-01

    Rhynchophylline (Rhy) is an alkaloid isolated from Uncaria which has long been recommended for the treatment of central nervous diseases. In our study, the neuroprotective effect of Rhy was investigated in a stroke model, namely permanent middle cerebral artery occlusion (pMCAO). Rats were injected intraperitoneally once daily for four consecutive days before surgery and then received one more injection after surgery. The protein and mRNA levels of p-Akt, p-mTOR, apoptosis-related proteins (p-BAD and cleaved caspase-3), TLR2/4/9, NF-κB, MyD88, BDNF and claudin-5 were examined. Following pMCAO, Rhy treatment not only ameliorated neurological deficits, infarct volume and brain edema, but also increased claudin-5 and BDNF expressions (p < 0.05). Moreover, Rhy could activate PI3K/Akt/mTOR signaling while inhibiting TLRs/NF-κB pathway. Wortmannin, a selective PI3K inhibitor, could abolish the neuroprotective effect of Rhy and reverse the increment in p-Akt, p-mTOR and p-BAD levels. In conclusion, we hypothesize that Rhy protected against ischemic damage, probably via regulating the Akt/mTOR pathway. PMID:25079660

  1. A residue level protein-protein interaction model in electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Song, Xueyu

    2014-03-01

    The osmotic second virial coefficients B2 are directly related to the solubility of protein molecules in electrolyte solutions and can be useful to narrow down the search parameter space of protein crystallization conditions. Using a residue level model of protein-protein interaction in electrolyte solutions B2 of bovine pancreatic trypsin inhibitor and lysozyme in various solution conditions such as salt concentration, pH and temperature are calculated using an extended Fast Multipole Methods in combination with the boundary element formulation. Overall, the calculated B2 are well correlated with the experimental observations for various solution conditions. In combination with our previous work on the binding affinity calculations of protein complexes it is demonstrated that our residue level model can be used as a reliable model to describe protein-protein interaction in solutions.

  2. Vitamin E succinate induces apoptosis via the PI3K/AKT signaling pathways in EC109 esophageal cancer cells

    PubMed Central

    Yang, Peng; Zhao, Jiaying; Hou, Liying; Yang, Lei; Wu, Kun; Zhang, Linyou

    2016-01-01

    Esophageal cancer is the fourth most common gastrointestinal cancer, it generally has a poor prognosis and novel strategies are required for prevention and treatment. Vitamin E succinate (VES) is a potential chemical agent for cancer prevention and therapy as it exerts anti-tumor effects in a variety of cancers. However, the role of VES in tumorigenesis and progression of cancer remains to be elucidated. The present study aimed to determine the effects of VES in regulating the survival and apoptosis of human esophageal cancer cells. EC109 human esophageal cancer cells were used to investigate the anti-proliferative effects of VES. The MTT and Annexin V-fluorescein isothiocyanate/propidium iodide assays demonstrated that VES inhibited cell proliferation and induced apoptosis in esophageal cancer cells. Furthermore, VES downregulated constitutively active basal levels of phosphorylated (p)-serine-threonine kinase AKT (AKT) and p-mammalian target of rapamycin (mTOR), and decreased the phosphorylation of AKT substrates Bcl-2-associated death receptor and caspase-9, in addition to mTOR effectors, ribosomal protein S6 kinase β1 and eIF4E-binding protein 1. Phosphoinositide-3-kinase (PI3K) inhibitor, LY294002 suppressed p-AKT and p-mTOR, indicating PI3K is a common upstream mediator. The apoptosis induced by VES was increased by inhibition of AKT or mTOR with their respective inhibitor in esophageal cancer cells. The results of the present study suggested that VES targeted the PI3K/AKT signaling pathways and induced apoptosis in esophageal cancer cells. Furthermore, the current study suggests that VES may be useful in a combinational therapeutic strategy employing an mTOR inhibitor. PMID:27357907

  3. Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells.

    PubMed

    Kuo, Po-Lin; Hsu, Ya-Ling; Cho, Chien-Yu

    2006-12-01

    This study is the first to investigate the anticancer effect of plumbagin in human breast cancer cells. Plumbagin exhibited cell proliferation inhibition by inducing cells to undergo G2-M arrest and autophagic cell death. Blockade of the cell cycle was associated with increased p21/WAF1 expression and Chk2 activation, and reduced amounts of cyclin B1, cyclin A, Cdc2, and Cdc25C. Plumbagin also reduced Cdc2 function by increasing the association of p21/WAF1/Cdc2 complex and the levels of inactivated phospho-Cdc2 and phospho-Cdc25C by Chk2 activation. Plumbagin triggered autophagic cell death but not predominantly apoptosis. Pretreatment of cells with autophagy inhibitor bafilomycin suppressed plumbagin-mediated cell death. We also found that plumbagin inhibited survival signaling through the phosphatidylinositol 3-kinase/AKT signaling pathway by blocking the activation of AKT and downstream targets, including the mammalian target of rapamycin, forkhead transcription factors, and glycogen synthase kinase 3beta. Phosphorylation of both of mammalian target of rapamycin downstream targets, p70 ribosomal protein S6 kinase and 4E-BP1, was also diminished. Overexpression of AKT by AKT cDNA transfection decreased plumbagin-mediated autophagic cell death, whereas reduction of AKT expression by small interfering RNA potentiated the effect of plumbagin, supporting the inhibition of AKT being beneficial to autophagy. Furthermore, suppression of AKT by plumbagin enhanced the activation of Chk2, resulting in increased inactive phosphorylation of Cdc25C and Cdc2. Further investigation revealed that plumbagin inhibition of cell growth was also evident in a nude mouse model. Taken together, these results imply a critical role for AKT inhibition in plumbagin-induced G2-M arrest and autophagy of human breast cancer cells. PMID:17172425

  4. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    SciTech Connect

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  5. PTEN-DEFICIENT TUMORS DEPEND ON AKT2 FOR MAINTENANCE AND SURVIVAL

    PubMed Central

    Chin, Y. Rebecca; Yuan, Xin; Balk, Steven P.; Toker, Alex

    2014-01-01

    Loss of PTEN is a common event in many cancers and leads to hyperactivation of the PI 3-K/Akt signaling pathway. The mechanisms by which Akt isoforms mediate signaling to phenotypes associated with PTEN-inactivation in cancer have not been defined. Here we show that Akt2 is exclusively required for PTEN-deficient prostate tumor spheroid maintenance whereas Akt1 is dispensable. shRNA silencing of Akt2 but not Akt1 promotes regression of prostate cancer xenografts. Mechanistically, we show that Akt2 silencing up-regulates p21 and the pro-apoptotic protein Bax and downregulates the insulin-like growth factor receptor-1. We also show that p21 is an effector of Akt2 in mediating prostate tumor maintenance. Moreover, Akt2 is also exclusively required for the maintenance and survival of other PTEN-deficient solid tumors, including breast cancer and glioblastoma. These findings identify a specific function for Akt2 in mediating survival of PTEN-deficient tumors and provide a rationale for developing therapeutics targeting Akt2. PMID:24838891

  6. A component of green tea (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins

    SciTech Connect

    Qin Jie; Xie Liping . E-mail: xielp@zjuem.zju.edu.cn; Zheng Xiangyi; Wang Yunbin; Bai Yu; Shen Huafeng; Li Longcheng; Dahiya, Rajvir

    2007-03-23

    Bladder cancer is the fourth most common cancer in men and ninth most common in women. It has a protracted course of progression and is thus an ideal candidate for chemoprevention strategies and trials. This study was conducted to evaluate the chemopreventive/antiproliferative potential of (-)-epigallocatechin gallate (EGCG, the major phytochemical in green tea) against bladder cancer and its mechanism of action. Using the T24 human bladder cancer cell line, we found that EGCG treatment caused dose- and time-dependent inhibition of cellular proliferation and cell viability, and induced apoptosis. Mechanistically, EGCG inhibits phosphatidylinositol 3'-kinase/Akt activation that, in turn, results in modulation of Bcl-2 family proteins, leading to enhanced apoptosis of T24 cells. These findings suggest that EGCG may be an important chemoprevention agent for the management of bladder cancer.

  7. Dysregulation of AKT Pathway by SMYD2-Mediated Lysine Methylation on PTEN1,2

    PubMed Central

    Nakakido, Makoto; Deng, Zhenzhong; Suzuki, Takehiro; Dohmae, Naoshi; Nakamura, Yusuke; Hamamoto, Ryuji

    2015-01-01

    Phosphatase and tensin homologue (PTEN), one of the well-characterized tumor suppressor proteins, counteracts the phosphatidylinositol 3-kinase-AKT pathway through its unique lipid phosphatase activity. The functions of PTEN are regulated by a variety of posttranslational modifications such as acetylation, oxidation, ubiquitylation, phosphorylation, and SUMOylation. However, methylation of PTEN has not been reported so far. In this study, we demonstrated that the oncogenic protein lysine methyltransferase SET and MYND domain containing 2 (SMYD2) methylates PTEN at lysine 313 in vitro and in vivo. Knockdown of SMYD2 suppressed the cell growth of breast cancer cells and attenuated phosphorylation levels of AKT, indicating that SMYD2-mediated methylation negatively regulates PTEN tumor suppressor activity and results in activation of the phosphatidylinositol 3-kinase-AKT pathway. Furthermore, PTEN protein with lysine 313 substitution diminished phosphorylation of PTEN at serine 380, which is known to inactivate tumor suppressor functions of PTEN. Taken together, our findings unveil a novel mechanism of PTEN dysregulation regulated by lysine methylation in human cancer. PMID:25925379

  8. Dysregulation of AKT Pathway by SMYD2-Mediated Lysine Methylation on PTEN.

    PubMed

    Nakakido, Makoto; Deng, Zhenzhong; Suzuki, Takehiro; Dohmae, Naoshi; Nakamura, Yusuke; Hamamoto, Ryuji

    2015-04-01

    Phosphatase and tensin homologue (PTEN), one of the well-characterized tumor suppressor proteins, counteracts the phosphatidylinositol 3-kinase-AKT pathway through its unique lipid phosphatase activity. The functions of PTEN are regulated by a variety of posttranslational modifications such as acetylation, oxidation, ubiquitylation, phosphorylation, and SUMOylation. However, methylation of PTEN has not been reported so far. In this study, we demonstrated that the oncogenic protein lysine methyltransferase SET and MYND domain containing 2 (SMYD2) methylates PTEN at lysine 313 in vitro and in vivo. Knockdown of SMYD2 suppressed the cell growth of breast cancer cells and attenuated phosphorylation levels of AKT, indicating that SMYD2-mediated methylation negatively regulates PTEN tumor suppressor activity and results in activation of the phosphatidylinositol 3-kinase-AKT pathway. Furthermore, PTEN protein with lysine 313 substitution diminished phosphorylation of PTEN at serine 380, which is known to inactivate tumor suppressor functions of PTEN. Taken together, our findings unveil a novel mechanism of PTEN dysregulation regulated by lysine methylation in human cancer. PMID:25925379

  9. SILAM for quantitative proteomics of liver Akt1/PKBα after burn injury

    PubMed Central

    LU, X.-M.; TOMPKINS, R.G.; FISCHMAN, A.J.

    2012-01-01

    Akt1/protein kinase Bα (Akt1/PKBα) is a downstream mediator of the insulin signaling system. In this study we explored mechanism(s) for its role in burn injury. Akt1/PKBα in liver extracts from mice with burn injury fed with (2H7)-L-Leu was immunoprecipitated and isolated with SDS-PAGE. Two tryptic peptides, one in the kinase loop and a control peptide just outside of the loop were sequenced via nano-LC interfaced with quadruple time-of-flight tandem mass spectrometry (Q-TOF tandem MS). Their relative isotopologue abundances were determined by stable isotope labeling by amino acids in mammalians (SILAM). Relative quantifications based on paired heavy/light peptides were obtained in 3 steps. The first step included homogenization of mixtures of equal amounts of tissue from burned and sham-treated animals (i.e., isotope dilution) and acquisition of uncorrected data based on parent monoisotopic MS ion ratios. The second step included determination of isotopic enrichment of the kinase from burned mice on Day 7 and the third step enrichment correction of partially labeled heavy and light monoisotopic MS ion ratios for relative quantification of bioactivity (loop peptide) and expression level (control peptide). Protein synthesis and enrichment after injury were found to be dependent on tissue and turnover of individual proteins. Three heavy and light monoisotopic ion ratios for albumin peptides from burned mice indicated ~55% enrichment and ~16.7-fold downregulation. In contract, serum amyloid P had ~66% enrichment and was significantly upregulated. Akt1/PKBα had ~56% enrichment and kinase level in response to the burn injury was upregulated compared with the control peptide. However, kinase bioactivity, represented by the Cys296 peptide, was significantly reduced. Overall, we demonstrated that i) quantitative proteomics can be performed without completely labeled mice; ii) measurement of enrichment of acyl-tRNAs is unnecessary and iii) Cys296 plays an important role

  10. Systematic Analysis Reveals Elongation Factor 2 and α-Enolase as Novel Interaction Partners of AKT2.

    PubMed

    Bottermann, Katharina; Reinartz, Michael; Barsoum, Marian; Kötter, Sebastian; Gödecke, Axel

    2013-01-01

    AKT2 is one of the three isoforms of the protein kinase AKT being involved in the modulation of cellular metabolism. Since protein-protein interactions are one possibility to convey specificity in signal transduction, we performed AKT2-protein interaction analysis to elucidate their relevance for AKT2-dependent cellular functions. We identified heat shock protein 90 kDa (HSP90), Cdc37, heat shock protein 70 kDa (HSP70), 78 kDa glucose regulated protein (GRP78), tubulin, GAPDH, α-enolase and elongation factor 2 (EF2) as AKT2-interacting proteins by a combination of tandem affinity purification and mass spectrometry in HEK293T cells. Quantitative MS-analysis using stable isotope labeling by amino acids in cell culture (SILAC) revealed that only HSP90 and Cdc37 interact stably with AKT2, whereas the other proteins interact with low affinity with AKT2. The interactions of AKT2 with α-enolase and EF2 were further analyzed in order to uncover the functional relevance of these newly discovered binding partners. Despite the interaction of AKT2 and α-enolase, which was additionally validated by proximity ligation assay (PLA), no significant impact of AKT on α-enolase activity was detected in activity measurements. AKT stimulation via insulin and/or inhibition with the ATP-competitive inhibitor CCT128930 did not alter enzymatic activity of α-enolase. Interestingly, the direct interaction of AKT2 and EF2 was found to be dynamically regulated in embryonic rat cardiomyocytes. Treatment with the PI3-kinase inhibitor LY294002 before stimulation with several hormones stabilized the complex, whereas stimulation alone led to complex dissociation which was analyzed in situ with PLA. Taken together, these findings point to new aspects of AKT2-mediated signal transduction in protein synthesis and glucose metabolism. PMID:23823123

  11. Multi-level machine learning prediction of protein-protein interactions in Saccharomyces cerevisiae.

    PubMed

    Zubek, Julian; Tatjewski, Marcin; Boniecki, Adam; Mnich, Maciej; Basu, Subhadip; Plewczynski, Dariusz

    2015-01-01

    Accurate identification of protein-protein interactions (PPI) is the key step in understanding proteins' biological functions, which are typically context-dependent. Many existing PPI predictors rely on aggregated features from protein sequences, however only a few methods exploit local information about specific residue contacts. In this work we present a two-stage machine learning approach for prediction of protein-protein interactions. We start with the carefully filtered data on protein complexes available for Saccharomyces cerevisiae in the Protein Data Bank (PDB) database. First, we build linear descriptions of interacting and non-interacting sequence segment pairs based on their inter-residue distances. Secondly, we train machine learning classifiers to predict binary segment interactions for any two short sequence fragments. The final prediction of the protein-protein interaction is done using the 2D matrix representation of all-against-all possible interacting sequence segments of both analysed proteins. The level-I predictor achieves 0.88 AUC for micro-scale, i.e., residue-level prediction. The level-II predictor improves the results further by a more complex learning paradigm. We perform 30-fold macro-scale, i.e., protein-level cross-validation experiment. The level-II predictor using PSIPRED-predicted secondary structure reaches 0.70 precision, 0.68 recall, and 0.70 AUC, whereas other popular methods provide results below 0.6 threshold (recall, precision, AUC). Our results demonstrate that multi-scale sequence features aggregation procedure is able to improve the machine learning results by more than 10% as compared to other sequence representations. Prepared datasets and source code for our experimental pipeline are freely available for download from: http://zubekj.github.io/mlppi/ (open source Python implementation, OS independent). PMID:26157620

  12. Thr308 determines Akt1 nuclear localization in insulin-stimulated keratinocytes

    SciTech Connect

    Goren, Itamar; Mueller, Elke; Pfeilschifter, Josef

    2008-07-18

    Here, we determined the localization and activation of protein kinase B (Akt) in acute cutaneous wound tissue in mice. Akt1 represented the major Akt isoform that was expressed and activated in wound margin keratinocytes and also in the cultured human keratinocyte line HaCaT. Mutation of Akt1 protein, exchanging the activation-essential Ser473 and Thr308 residues for inactive Ala or phosphorylation-mimicking Asp and Glu residues, revealed that phosphorylation of Ser473 represented an essential prerequisite for auto-phosphorylation of Thr308 within the Akt1 protein in keratinocytes. Moreover, cell culture experiments and transfection studies using Thr308 mutated Akt1 proteins demonstrated that phosphorylation of Akt1 at Thr308 appeared to selectively exclude the active kinase from the nucleus and direct the kinase to the cytoplasmic compartment in keratinocytes upon insulin stimulation. In summary, our data show that phosphorylation of Thr308 during insulin-mediated Akt1 activation is an essential prerequisite to exclude Akt1 from the nuclear compartment.

  13. Progesterone is neuroprotective against ischemic brain injury through its effects on the PI3K/Akt signaling pathway

    PubMed Central

    Ishrat, Tauheed; Sayeed, Iqbal; Atif, Fahim; Hua, Fang; Stein, Donald G.

    2012-01-01

    We tested the hypothesis that the phosphatidylinositol-3 kinase (PI3K/Akt) pathway mediates some of the neuroprotective effects of progesterone (PROG) after ischemic stroke. We examined whether PROG acting through the PI3K/Akt pathway could affect the expression of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF). Rats underwent permanent focal cerebral ischemia (pMCAO) by electro-coagulation and received intraperitoneal injections of PROG (8mg/kg) or vehicle at 1h post-occlusion and subcutaneous injections at 6, 24, and 48h. PAkt/Akt levels, apoptosis and apoptosis-related proteins (pBAD, BAD, caspase-3, and cleaved caspase-3) were analyzed by TUNEL assays, Western blotting and immunohistochemistry at 24h post-pMCAO. VEGF and BDNF were analyzed at 24, 72h and 14 days post-pMCAO with Western blots. Following pMCAO, PROG treatment significantly (p<0.05) reduced ischemic lesion size and edema. Treatment with PROG significantly (p<0.05) decreased VEGF at 24 and 72h but increased VEGF expression 14d after injury. The treatment also increased BDNF, and attenuated apoptosis by increasing Akt phosphorylation compared to vehicle-alone. The selective PI3K inhibitor Wortmannin compromised PROG-induced neuroprotective effects and reduced the elevation of pAkt levels in the ischemic penumbra. Our findings lead us to suggest that the PI3K/Akt pathway can play a role in mediating the neuroprotective effects of PROG after stroke by altering the expression of trophic factors in the brain. PMID:22450229

  14. Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells.

    PubMed

    Gu, Zhennan; Wu, Jiansheng; Wang, Shihua; Suburu, Janel; Chen, Haiqin; Thomas, Michael J; Shi, Lihong; Edwards, Iris J; Berquin, Isabelle M; Chen, Yong Q

    2013-09-01

    AKT is a serine-threonine protein kinase that plays important roles in cell growth, proliferation and apoptosis. It is activated after binding to phosphatidylinositol phosphates (PIPs) with phosphate groups at positions 3,4 and 3,4,5 on the inositol ring. In spite of extensive research on AKT, one aspect has been largely overlooked, namely the role of the fatty acid chains on PIPs. PIPs are phospholipids composed of a glycerol backbone with fatty acids at the sn-1 and sn-2 position and inositol at the sn-3 position. Here, we show that polyunsaturated fatty acids (PUFAs) modify phospholipid content. Docosahexaenoic acid (DHA), an ω3 PUFA, can replace the fatty acid at the sn-2 position of the glycerol backbone, thereby changing the species of phospholipids. DHA also inhibits AKT(T308) but not AKT(S473) phosphorylation, alters PI(3,4,5)P3 (PIP3) and phospho-AKT(S473) protein localization, decreases pPDPK1(S241)-AKT and AKT-BAD interaction and suppresses prostate tumor growth. Our study highlights a potential novel mechanism of cancer inhibition by ω3 PUFA through alteration of PIP3 and AKT localization and affecting the AKT signaling pathway. PMID:23633519

  15. Visual detection of Akt mRNA in living cell using gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Tian, Caiping; Li, Siwen; Wang, Zhaohui; Gu, Yueqing

    2014-09-01

    PI3K-Akt signaling pathway plays the key role in cell apoptosis and survival, and the components of PI3K /Akt signaling pathway are often abnormally expressed in human tumors. Therefore, determination of the Akt (protein kinase B, PKB) messenger ribonucleic acid (mRNA) expression is significantly important in understanding the mechanism of tumor progression. In this study, we designed a special hairpin deoxyribonucleic acid (DNA) functionalized with gold nanoparticles and fluorescein isothiocyanate(FITC) as a beacon for detecting human Akt mRNA. Spectrofluorometer was used to detect the fluorescence quenching and recovery of the beacons, and laser confocal scanning microscopy was adopted to image Akt mRNA in cells. The results showed that this beacon could sensitively and quantitatively measure the Akt mRNA in living cells . This strategy is potentially useful for the cellular imaging of RNA or protein expression in living cells.

  16. Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells

    PubMed Central

    Gopal, Y.N. Vashisht; Deng, Wanleng; Woodman, Scott E.; Komurov, Kakajan; Ram, Prahlad; Smith, Paul D.; Davies, Michael A.

    2014-01-01

    The majority of melanomas demonstrate constitutive activation of the RAS-RAF-MEK-MAPK pathway. AZD6244 is a selective MEK1/2 inhibitor which markedly reduces tumor P-MAPK levels, but it produced few clinical responses in melanoma patients. An improved understanding of the determinants of resistance to AZD6244 may lead to improved patient selection and effective combinatorial approaches. The effects of AZD6244 on cell growth and survival were tested in a total of 14 Braf-mutant and 3 wild-type human cutaneous melanoma cell lines. Quantitative assessment of phospho-protein levels in the Braf-mutant cell lines by reverse phase protein array (RPPA) analysis showed no significant association between P-MEK or P-MAPK levels and AZD6244 sensitivity, but activation-specific markers in the PI3K-AKT pathway correlated with resistance. We also identified resistant cell lines without basal activation of the PI3K-AKT pathway. RPPA characterization of the time-dependent changes in signaling pathways revealed that AZD6244 produced durable and potent inhibition of P-MAPK in sensitive and resistant Braf-mutant cell lines, but several resistant lines demonstrated AZD6244-induced activation of AKT. In contrast, sensitive cell lines demonstrated AZD6244 treatment-induced upregulation of PTEN protein and mRNA expression. Inhibition of AKT, TORC1/2, or IGF1R blocked AZD6244-induced activation of AKT and resulted in synergistic cell killing with AZD6244. These findings identify basal and treatment-induced regulation of the PI3K-AKT pathway as a critical regulator of AZD6244 sensitivity in Braf-mutant cutaneous melanoma cells, the novel regulation of PTEN expression by AZD6244 in sensitive cells, and suggest new combinatorial approaches for patients. PMID:20959481

  17. Cadmium Activates Multiple Signaling Pathways That Coordinately Stimulate Akt Activity to Enhance c-Myc mRNA Stability

    PubMed Central

    Tsai, Jia-Shiuan; Chao, Cheng-Han; Lin, Lih-Yuan

    2016-01-01

    Cadmium is a known environmental carcinogen. Exposure of Cd leads to the activation of several proto-oncogenes in cells. We investigated here the mechanism of c-Myc expression in hepatic cells under Cd treatment. The c-Myc protein and mRNA levels increased in dose- and time-dependent manners in HepG2 cells with Cd treatment. This increase was due to an increase in c-Myc mRNA stability. To explore the mechanism involved in enhancing the mRNA stability, several cellular signaling factors that evoked by Cd treatment were analyzed. PI3K, p38, ERK and JNK were activated by Cd. However, ERK did not participate in the Cd-induced c-Myc expression. Further analysis revealed that mTORC2 was a downstream factor of p38. PI3K, JNK and mTORC2 coordinately activated Akt. Akt was phosphorylated at Thr450 in the untreated cells. Cd treatment led to additional phosphorylation at Thr308 and Ser473. Blocking any of the three signaling factors resulted in the reduction of phosphorylation level at all three Akt sites. The activated Akt phosphorylated Foxo1 and allowed the modified protein to translocate into the cytoplasm. We conclude that Cd-induced accumulation of c-Myc requires the activation of several signaling pathways. The signals act coordinately for Akt activation and drive the Foxo1 from the nucleus to the cytoplasm. Reduction of Foxo1 in the nucleus reduces the transcription of its target genes that may affect c-Myc mRNA stability, resulting in a higher accumulation of the c-Myc proteins. PMID:26751215

  18. DPF2 regulates OCT4 protein level and nuclear distribution.

    PubMed

    Liu, Chao; Zhang, Dijuan; Shen, Yuxian; Tao, Xiaofang; Liu, Lihua; Zhong, Yongwang; Fang, Shengyun

    2015-12-01

    The amount of transcription factor OCT4 is strictly regulated. A tight regulation of OCT4 levels is crucial for mammalian embryonic development and oncogenesis. However, the mechanisms underlying regulation of OCT4 protein expression and nuclear distribution are largely unknown. Here, we report that DPF2, a plant homeodomain (PHD) finger protein, is upregulated during H9 cell differentiation induced by retinoic acid. Endogenous interaction between DPF2 and OCT4 in P19 cells was revealed by an immunoprecipitation assay. GST-pull down assay proved that OCT4 protein in H9 cells and recombinant OCT4 can precipitate with DPF2 in vitro. In vitro ubiquitination assay demonstrated DPF2 might serve as an E3 ligase. Knock down of dpf2 using siRNA increased OCT4 protein level and stability in P19 cells. DPF2 siRNAs also up-regulates OCT4 but not NANOG in H9 cells. However, RA fails to downregulates OCT4 protein level in cells infected by lenitviruses containing DPF2 siRNA. Moreover, overexpression of both DPF2 and OCT4 in 293 cells proved the DPF2-OCT4 interaction. DPF2 but not PHD2 mutant DPF2 enhanced ubiquitination and degradation of OCT4 in 293 cells co-expressed DPF2 and OCT4. Both wild type DPF2 and PHD2 mutant DPF2 redistributes nuclear OCT4 without affecting DPF2-OCT4 interaction. Further analysis indicated that DPF2 decreases monomeric and mono-ubiquitinated OCT4, assembles poly-ubiquitin chains on OCT4 mainly through Ub-K48 linkage. These findings contribute to an understanding of how OCT4 protein level and nuclear distribution is regulated by its associated protein. PMID:26417682

  19. Regulation of Bax/mitochondria interaction by AKT.

    PubMed

    Simonyan, Lilit; Renault, Thibaud T; Novais, Maria João da Costa; Sousa, Maria João; Côrte-Real, Manuela; Camougrand, Nadine; Gonzalez, Cécile; Manon, Stéphen

    2016-01-01

    Bax-dependent mitochondrial permeabilization during apoptosis is controlled by multiple factors, including the phosphorylation by the protein kinase AKT. We used the heterologous co-expression of human Bax and AKT1 in yeast to investigate how the kinase modulates the different steps underlying Bax activation. We found that AKT activated Bax and increased its cellular content. Both effects were dependent on Ser184, but a phosphorylation of this residue did not fully explain the effects of AKT. Additional experiments with mutants substituted on Ser184 suggested that the regulation of Bax dynamic equilibrium between the cytosol and mitochondria might be more tightly regulated by Bcl-xL when Bax is phosphorylated. PMID:26763134

  20. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    NASA Astrophysics Data System (ADS)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  1. Electro-acupuncture at points of Zusanli and Quchi exerts anti-apoptotic effect through the modulation of PI3K/Akt signaling pathway.

    PubMed

    Xue, Xiehua; You, Yongmei; Tao, Jing; Ye, Xiaoqian; Huang, Jia; Yang, Shanli; Lin, Zhicheng; Hong, Zhenfeng; Peng, Jun; Chen, Lidian

    2014-01-13

    We evaluated the neuroprotective effect of electro-acupuncture (EA) on cerebral ischemia-reperfusion (IR) injury and deeply investigated the relationship between this neuroprotective effect and PI3K/Akt pathway. Rats underwent focal cerebral IR injured by suture method and received the in vivo therapeutic efficacy of EA at points of Zusanli(ST36) and Quchi(LI11) after the operation. We found that the EA treatment significantly (p<0.05) improved neurological deficit and cerebral infarction. Furthermore, EA profoundly activated PI3K/Akt signaling resulted in the inhibition of cerebral cell apoptosis in the ischemic penumbra. Simultaneously EA increased the expression of PI3K, p-Akt, p-Bad and Bcl-2 at the protein level and the expression of Bcl-2 at the mRNA level. On the contrary, EA inhibited the Bax and cleaved Caspase-3-positive expression. The selective PI3K inhibitor LY294002 compromised EA-induced neuroprotective effects and reduced the elevation of p-Akt, p-Bad and Bcl-2 levels. Our data suggested that the PI3K/Akt pathway played a critical role in mediating the neuroprotective effects of EA treatment at points of Zusanli and Quchi after the ischemic stroke. PMID:24157854

  2. Suppressing cyclooxygenase-2 prevents nonalcoholic and inhibits apoptosis of hepatocytes that are involved in the Akt/p53 signal pathway.

    PubMed

    Wu, Jialing; Chen, Chong; Hu, Xi; Cai, Xianbin; Guan, Yinghong; Hu, Hui; Wang, Qinjia; Chen, Xiaofeng; Cai, Bozhi; Jing, Xubin

    2016-01-22

    Cyclooxygenase-2 (COX-2) can exert pro-inflammatory effects in nonalcoholic steatohepatitis (NASH). The aim of this study was to determine if the inhibition of COX-2 attenuates hepatocyte apoptosis in steatohepatitis and to examine the underlying molecular mechanism. Male wild type C57BL6/J mice and COX-2 knock out (COX-2-/-) mice were fed a methionine choline deficient (MCD) diet for 3 weeks. The wild type mice were also treated with celecoxib or a combination of celecoxib and a Akt specific inhibitor, miltefosine (MTF). After that, liver histology, serum alanine aminotransferase (ALT) levels, hepatic triglyceride (TG) levels, hepatocyte apoptosis, phosphorylated Akt (Ser473, pAkt) and p53 protein levels in mice livers were assessed. Celecoxib attenuated the severity of liver steatohepatitis and reduced the number of apoptotic cells, accompanied by increasing the activity of Akt and decreasing expression of p53. On the contrary, MTF can abrogate the effects of celecoxib on anti-apoptosis and anti-steatohepatitis. Moreover, the effects on the COX-2-/- mice that were fed the MCD diet were similar to that for celecoxib. The findings suggested that suppressing COX-2 can improve steatohepatitis by inhibiting hepatocyte apoptosis in mice via regulating the Akt/p53 pathway. Celecoxib treatment may be a favorable treatment option for NASH. PMID:26723251

  3. Non-thermal plasma induces AKT degradation through turn-on the MUL1 E3 ligase in head and neck cancer

    PubMed Central

    Kim, Sun-Yong; Kim, Haeng-Jun; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Shin, Yoo Seob; Kim, Yeon Soo; Lee, Keunho; Kim, Chul-Ho

    2015-01-01

    Recent research on non-thermal plasma (NTP, an ionized gas) has identified it as a novel cancer therapeutic tool. However, the molecular mechanism remains unclear. In this study, we demonstrated NTP induced cell death of head and neck cancer (HNC) through the AKT ubiquitin–proteasome system. NTP increased the gene expression of mitochondrial E3 ubiquitin protein ligase 1 (MUL1), an E3 ligase for AKT, and NTP-induced HNC cell death was prevented by MUL1 siRNA. We also showed that MUL1 inhibited the level of AKT and p-AKT and MUL1 expression was increased by NTP-induced ROS. Furthermore, we optimized and manufactured a new type of NTP, a liquid type of NTP (LTP). In syngeneic and xenograft in vivo tumor models, LTP inhibited tumor progression by increasing the MUL1 level and reducing p-AKT levels, indicating that LTP also has an anti-cancer effect through the same mechanism as that of NTP. Taken together, our results suggest that NTP and LTP have great potential for HNC therapy. PMID:26450902

  4. PI3K/Akt Pathway Contributes to Neurovascular Unit Protection of Xiao-Xu-Ming Decoction against Focal Cerebral Ischemia and Reperfusion Injury in Rats

    PubMed Central

    Xiang, Jun; Zhang, Yong; Wang, Guo-Hua; Bao, Jie; Li, Wen-Wei; Zhang, Wen; Xu, Li-Li; Cai, Ding-Fang

    2013-01-01

    In the present study, we used a focal cerebral ischemia and reperfusion rat model to investigate the protective effects of Xiao-Xu-Ming decoction (XXMD) on neurovascular unit and to examine the role of PI3K (phosphatidylinositol 3-kinase)/Akt pathway in this protection. The cerebral ischemia was induced by 90 min of middle cerebral artery occlusion. Cerebral infarct area was measured by tetrazolium staining, and neurological function was observed at 24 h after reperfusion. DNA fragmentation assay, combined with immunofluorescence, was performed to evaluate apoptosis of neuron, astrocyte, and vascular endothelial cell which constitute neurovascular unit. The expression levels of proteins involved in PI3K/Akt pathway were detected by Western blot. The results showed that XXMD improved neurological function, decreased cerebral infarct area and neuronal damage, and attenuated cellular apoptosis in neurovascular unit, while these effects were abolished by inhibition of PI3K/Akt with LY294002. We also found that XXMD upregulated p-PDKl, p-Akt, and p-GSK3β expression levels, which were partly reversed by LY294002. In addition, the increases of p-PTEN and p-c-Raf expression levels on which LY294002 had no effect were also observed in response to XXMD treatment. The data indicated the protective effects of XXMD on neurovascular unit partly through the activation of PI3K/Akt pathway. PMID:23781261

  5. CLOCK-BMAL1 regulate the cardiac L-type calcium channel subunit CACNA1C through PI3K-Akt signaling pathway.

    PubMed

    Chen, Yanhong; Zhu, Didi; Yuan, Jiamin; Han, Zhonglin; Wang, Yao; Qian, Zhiyong; Hou, Xiaofeng; Wu, Tingting; Zou, Jiangang

    2016-09-01

    The heterodimerized transcription factors CLOCK-BMAL1 regulate the cardiomyocyte circadian rhythms. The L-type calcium currents play important role in the cardiac electrogenesis and arrhythmogenesis. Whether and how the CLOCK-BMAL1 regulate the cardiac L-type calcium channels are yet to be determined. The functions of the L-type calcium channels were evaluated with patch clamping techniques. Recombinant adenoviruses of CLOCK and BMAL1 were used in the expression experiments. We reported that the expressions and functions of CACNA1C (the α-subunit of the L-type calcium channels) showed circadian rhythms, with the peak at zeitgeber time 3 (ZT3). The endocardial action potential durations 90 (APD90) were correspondingly longer at ZT3. The protein levels of the phosphorylated Akt at threonine 308 (pAkt T308) also showed circadian rhythms. Overexpressions of CLOCK-BMAL1 significantly reduced the levels of CACNA1C while increasing the levels of pAkt T308 and pik3r1. Furthermore, the inhibitory effects of CLOCK-BMAL1 on CACNA1C could be abolished by the Akt inhibitor MK2206 or the PDK1 inhibitor GSK2334470. Collectively, our findings suggested that the expressions of the cardiac CACNA1C were under the CLOCK-BMAL1 regulation, probably through the PI3K-Akt signal pathway. PMID:27376484

  6. Targeted Apoptotic Effects of Thymoquinone and Tamoxifen on XIAP Mediated Akt Regulation in Breast Cancer

    PubMed Central

    Rajput, Shashi; Kumar, B. N. Prashanth; Sarkar, Siddik; Das, Subhasis; Azab, Belal; Santhekadur, Prasanna K.; Das, Swadesh K.; Emdad, Luni; Sarkar, Devanand; Fisher, Paul B.; Mandal, Mahitosh

    2013-01-01

    X-linked inhibitor of apoptosis protein (XIAP) is constitutively expressed endogenous inhibitor of apoptosis, exhibit its antiapoptotic effect by inactivating key caspases such as caspase-3, caspase-7 and caspase-9 and also play pivotal role in rendering cancer chemoresistance. Our studies showed the coadministration of TQ and TAM resulting in a substantial increase in breast cancer cell apoptosis and marked inhibition of cell growth both in vitro and in vivo. Anti-angiogenic and anti-invasive potential of TQ and TAM was assessed through in vitro studies. This novel combinatorial regimen leads to regulation of multiple cell signaling targets including inactivation of Akt and XIAP degradation. At molecular level, TQ and TAM synergistically lowers XIAP expression resulting in binding and activation of caspase-9 in apoptotic cascade, and interfere with cell survival through PI3-K/Akt pathway by inhibiting Akt phosphorylation. Cleaved caspase-9 further processes other intracellular death substrates such as PARP thereby shifting the balance from survival to apoptosis, indicated by rise in the sub-G1 cell population. This combination also downregulates the expression of Akt-regulated downstream effectors such as Bcl-xL, Bcl-2 and induce expression of Bax, AIF, cytochrome C and p-27. Consistent with these results, overexpression studies further confirmed the involvement of XIAP and its regulatory action on Akt phosphorylation along with procaspase-9 and PARP cleavage in TQ-TAM coadministrated induced apoptosis. The ability of TQ and TAM in inhibiting XIAP was confirmed through siRNA-XIAP cotransfection studies. This novel modality may be a promising tool in breast cancer treatment. PMID:23613836

  7. Oncogenic NanogP8 expression regulates cell proliferation and migration through the Akt/mTOR signaling pathway in human gastric cancer – SGC-7901cell line

    PubMed Central

    Jiang, Zheng; Liu, Yao; Wang, Chuan

    2016-01-01

    Background Although elevated expression of NanogP8 has been detected in many human tumor tissues, its role in gastric tumorigenesis remains unclear. Therefore, this study aimed to investigate the function and regulatory mechanism of NanogP8 in gastric cancer. Methods In this study, NanogP8 cDNA was amplified by real time polymerase chain reaction from the human gastric cancer cell line SGC-7901. The shRNA for RNA interference was established. The NanogP8, pAkt, Akt, pERK, ERK, p-mTOR, and mTOR proteins were detected by using the Western blot assay. Cell viability was evaluated by using the CCK-8 assay. Cell migration and invasion were also examined by using the transwell assay. Results The results indicated that the NanogP8 overexpression promoted proliferation and migration of SGC-7901 cell line, whereas its ablation exerted opposite effects. Interestingly, NanogP8 activated Akt, a key mediator of survival signals, and without affecting total Akt protein level. The NanogP8-increased gastric cell proliferation was downregulated by Akt inhibition. Our results further showed that increasing NanogP8 expression in human gastric cancer cells promoted cell proliferation by activating the AKT/mTOR pathway and further maintained gastric cell survival. Conclusion Our findings extend the knowledge regarding the oncogenic functions and proved that the NanogP8 regulates cell proliferation and migration by Akt/mTOR signaling pathway in human gastric cancer SGC-7901cell line. PMID:27563247

  8. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    SciTech Connect

    Roffe, Suzy; Hagai, Yosey; Pines, Mark; Halevy, Orna

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  9. Expression of phosphorylated Akt/mTOR and clinical significance in human ameloblastoma

    PubMed Central

    Li, Ning; Sui, Jianfu; Liu, Hao; Zhong, Ming; Zhang, Min; Wang, Yan; Hao, Fengyu

    2015-01-01

    This study aimed to evaluate the expression of AKT and phosphorylated AKT (p-Akt) in human ameloblastoma (AB). Immunohistochemistry showed human AB was positive for Akt and Akt expression was mainly found in the cytoplasm of epithelial cells. The Akt expression in AB was significantly higher than that in normal oral mucosa (NOM), but still lower than that in oral squamous cell carcinoma (OSCC). NOM was negative for p-Akt, but AB was positive for p-Akt. In some AB tissues, p-Akt expression was found in both cytoplasm and nucleus. Akt expression in AB was significantly different from that in NOM and OSCC. The p-Akt in AB was markedly higher than that in NOM, but lower than that in OSCC. mTOR expressed in cytoplasm in AB, but not in NOM. P-mTOR expressed on cell membrane in NOM, while in cytoplasm and nucleus in Ab. Results of western blot assay showed that Akt expression was found in all the AB tissues, and increased in tissues with malignant transformation. In addition, the p-Akt expression also markedly increased in AB, but was still lower than that in OSCC tissues. Compared to NOM, mTOR and p-mTOR expression significantly increased in AB. BandScan 5.0 software was used to detect the optical density of protein bands. Results showed p-Akt, mTOR and p-mTOR expression in AB was markedly different from that in control group. PMID:26131097

  10. Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus

    PubMed Central

    Liu, Pengda; Begley, Michael; Michowski, Wojciech; Inuzuka, Hiroyuki; Ginzberg, Miriam; Gao, Daming; Tsou, Peiling; Gan, Wenjian; Papa, Antonella; Kim, Byeong Mo; Wan, Lixin; Singh, Amrik; Zhai, Bo; Yuan, Min; Wang, Zhiwei; Gygi, Steven P.; Lee, Tae Ho; Lu, Kun-Ping; Toker, Alex; Pandolfi, Pier Paolo; Asara, John M.; Kirschner, Marc W.; Sicinski, Piotr; Cantley, Lewis; Wei, Wenyi

    2014-01-01

    Akt, also known as protein kinase B, plays key roles in cell proliferation, survival and metabolism. Akt hyperactivation contributes to many pathophysiological conditions, including human cancers1–3, and is closely associated with poor prognosis and chemo- or radio-therapeutic resistance4. Phosphorylation of Akt at S473 (ref. 5) and T308 (ref. 6) activates Akt. However, it remains unclear whether further mechanisms account for full Akt activation, and whether Akt hyperactivation is linked to misregulated cell cycle progression, another cancer hallmark7. Here we report that Akt activity fluctuates across the cell cycle, mirroring cyclin A expression. Mechanistically, phosphorylation of S477 and T479 at the Akt extreme carboxy terminus by cyclin-dependent kinase 2 (Cdk2)/cyclin A or mTORC2, under distinct physiological conditions, promotes Akt activation through facilitating, or functionally compensating for, S473 phosphorylation. Furthermore, deletion of the cyclin A2 allele in the mouse olfactory bulb leads to reduced S477/T479 phosphorylation and elevated cellular apoptosis. Notably, cyclin A2-deletion-induced cellular apoptosis in mouse embryonic stem cells is partly rescued by S477D/T479E-Akt1, supporting a physiological role for cyclin A2 in governing Akt activation. Together, the results of our study show Akt S477/T479 phosphorylation to be an essential layer of the Akt activation mechanism to regulate its physiological functions, thereby providing a new mechanistic link between aberrant cell cycle progression and Akt hyperactivation in cancer. PMID:24670654

  11. Fragile Histidine Triad (FHIT) Suppresses Proliferation and Promotes Apoptosis in Cholangiocarcinoma Cells by Blocking PI3K-Akt Pathway

    PubMed Central

    Huang, Qiang; Liu, Zhen; Xie, Fang; Liu, Chenhai; Shao, Feng; Zhu, Cheng-lin; Hu, Sanyuan

    2014-01-01

    Fragile histidine triad (FHIT) is a tumor suppressor protein that regulates cancer cell proliferation and apoptosis. However, its exact mechanism of action is poorly understood. Phosphatidylinositol 3-OH kinase (PI3K)-Akt-survivin is an important signaling pathway that was regulated by FHIT in lung cancer cells. To determine whether FHIT can regulate this pathway in cholangiocarcinoma QBC939 cells, we constructed an FHIT expression plasmid and used it to transfect QBC939 cells. Protein and mRNA expression were measured by western blotting and qRT-PCR, respectively. The viability and apoptosis of QBC939 cells were then assessed using MTT assays and flow cytometry. Our results revealed that the expression of survivin and Bcl-2 was downregulated, and caspase 3 was upregulated, in cells overexpressing FHIT. In addition, FHIT suppressed the phosphorylation of Akt. The changes in cell proliferation and apoptosis were obvious in cells overexpressing FHIT which parallels that of treatment with LY294002, a potent inhibitor of phosphoinositide 3-kinases. Treatment with LY294002 further decreased the expression of survivin and Bcl-2 and increased caspase-3 levels. These results suggest that FHIT can block the PI3K-Akt-survivin pathway by suppressing the phosphorylation of Akt and the expression of survivin and Bcl-2 and upregulating caspase 3. PMID:24757411

  12. DISC1 regulates expression of the neurotrophin VGF through the PI3K/AKT/CREB pathway.

    PubMed

    Rodríguez-Seoane, Carmen; Ramos, Adriana; Korth, Carsten; Requena, Jesús R

    2015-11-01

    Disrupted in schizophrenia (DISC1) is a risk factor for chronic mental disease. In a previous proteomic study, we reported that knocking down DISC1 results in a sharp decrease in the levels of the neuropeptide precursor VGF (non-acronymic) and leads to reduced activation of cAMP response element-binding protein (CREB) and protein kinase B (AKT) in neurons. The main objective of this study is to complete the characterization of the route, or routes, involving AKT and CREB through which DISC1 modulates the expression of VGF. For that we explored known players upstream of AKT and the DISC1 binding partners glycogen synthase kinase-3 beta and Phosphodiesterase-4, which might in turn reach out to CREB in murine neuron primary culture. We found that DISC1 modulates the activation of Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). Furthermore, pharmacological inhibition of PI3K resulted in decreased expression of VGF. All this suggests that the PI3K/AKT pathway plays a role in mediating the effects of DISC1 silencing on VGF expression. Given the important roles of VGF in mental disease, and its drugability, the DISC1-VGF connection might prove to be important for efforts to develop new therapies for these diseases. PMID:26212236

  13. Smoking, COPD and 3-Nitrotyrosine Levels of Plasma Proteins

    SciTech Connect

    Jin, Hongjun; Webb-Robertson, Bobbie-Jo M.; Peterson, Elena S.; Tan, Ruimin; Bigelow, Diana J.; Scholand, Mary Beth; Hoidal, John R.; Pounds, Joel G.; Zangar, Richard C.

    2011-09-01

    BACKGROUND: Nitric oxide is a physiologically regulator of endothelial function and hemodynamics. Oxidized products of nitric oxide can form nitrotyrosine, which is a marker of nitrative stress. Cigarette smoking decreases exhaled nitric oxide, and the underlying mechanism may be important in the cardiovascular toxicity of cigarette smoke, although it is not clear if this effect results from decreased nitric oxide production or oxidation of nitric oxide to reactive, nitrating, species. These processes would be expected to have opposite effects on nitrotyrosine levels, a marker of nitrative stress. OBJECTIVE: In this study, we determine the effects of smoking and chronic obstructive pulmonary disease (COPD) on circulating levels of nitrotyrosine, and thereby gain insight into the processes regulating nitrotyrosine formation. METHODS: A custom antibody microarray platform was used to analyze the levels of 3-nitrotyrosine modifications on 24 proteins in plasma. Plasma samples from 458 individuals were analyzed. RESULTS: Nitrotyrosine levels in circulating proteins were uniformly reduced in smokers but increased in COPD patients. We also observed a persistent suppression of nitrotyrosine in former smokers. CONCLUSIONS: Smoking broadly suppresses the levels of 3-nitrotyrosine in plasma proteins, suggesting that cigarette smoke suppresses endothelial nitric oxide production. In contrast, the increase in nitrotyrosine levels in COPD patients most likely results from inflammatory processes. This study provides the first evidence that smoking has irreversible effects on endothelial production of nitric oxide, and provides insight into how smoking could induce a loss of elasticity in the vasculature and a long-term increase in the risk of cardiovascular disease.

  14. The novel miR-9500 regulates the proliferation and migration of human lung cancer cells by targeting Akt1

    PubMed Central

    Yoo, J K; Jung, H Y; Lee, J M; Yi, H; Oh, S-H; Ko, H Y; Yoo, H; Kim, H-R; Song, H; Kim, S; Kim, J K

    2014-01-01

    MicroRNAs have crucial roles in lung cancer cell development. They regulate cell growth, proliferation and migration by mediating the expression of tumor suppressor genes and oncogenes. We identified and characterized the novel miR-9500 in human lung cancer cells. The miR-9500 forms a stem-loop structure and is conserved in other mammals. The expression levels of miR-9500 were reduced in lung cancer cells and lung cancer tissues compared with normal tissues, as verified by TaqMan miRNA assays. It was confirmed that the putative target gene, Akt1, was directly suppressed by miR-9500, as demonstrated by a luciferase reporter assay. The miR-9500 significantly repressed the protein expression levels of Akt1, as demonstrated via western blot, but did not affect the corresponding mRNA levels. Akt1 has an important role in lung carcinogenesis, and depletion of Akt1 has been shown to have antiproliferative and anti-migratory effects in previous studies. In the current study, the overexpression of miR-9500 inhibited cell proliferation and the expression of cell cycle-related proteins. Likewise, the overexpression of miR-9500 impeded cell migration in human lung cancer cells. In an in vivo assay, miR-9500 significantly suppressed Fluc expression compared with NC and ASO-miR-9500, suggesting that cell proliferation was inhibited in nude mice. Likewise, miR-9500 repressed tumorigenesis and metastasis by targeting Akt1. These data indicate that miR-9500 might be applicable for lung cancer therapy. PMID:24658401

  15. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    PubMed

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC. PMID:26921637

  16. Predicting Abdominal Aortic Aneurysm Target Genes by Level-2 Protein-Protein Interaction

    PubMed Central

    Fu, Yi; Cui, Qinghua; Kong, Wei

    2015-01-01

    Abdominal aortic aneurysm (AAA) is frequently lethal and has no effective pharmaceutical treatment, posing a great threat to human health. Previous bioinformatics studies of the mechanisms underlying AAA relied largely on the detection of direct protein-protein interactions (level-1 PPI) between the products of reported AAA-related genes. Thus, some proteins not suspected to be directly linked to previously reported genes of pivotal importance to AAA might have been missed. In this study, we constructed an indirect protein-protein interaction (level-2 PPI) network based on common interacting proteins encoded by known AAA-related genes and successfully predicted previously unreported AAA-related genes using this network. We used four methods to test and verify the performance of this level-2 PPI network: cross validation, human AAA mRNA chip array comparison, literature mining, and verification in a mouse CaPO4 AAA model. We confirmed that the new level-2 PPI network is superior to the original level-1 PPI network and proved that the top 100 candidate genes predicted by the level-2 PPI network shared similar GO functions and KEGG pathways compared with positive genes. PMID:26496478

  17. Chewing the fat for Akt1 inhibition and oncosuppression.

    PubMed

    Nowinski, Sara M; Solmonson, Ashley; Mills, Edward M

    2016-03-01

    The catabolic and energy-dissipating actions of mitochondrial uncoupling proteins (UCPs) conflict with many of the bioenergetic hallmarks of malignancy. We have recently demonstrated that overexpression of mitochondrial uncoupling protein 3 (Ucp3) in the basal epidermis impedes skin tumorigenesis through a novel pathway of thymoma viral proto-oncogene 1 (Akt1) inhibition via increased mitochondrial lipid catabolism. PMID:27308618

  18. Tamoxifen enhances erlotinib-induced cytotoxicity through down-regulating AKT-mediated thymidine phosphorylase expression in human non-small-cell lung cancer cells.

    PubMed

    Ko, Jen-Chung; Chiu, Hsien-Chun; Syu, Jhan-Jhang; Jian, Yi-Jun; Chen, Chien-Yu; Jian, Yun-Ting; Huang, Yi-Jhen; Wo, Ting-Yu; Lin, Yun-Wei

    2014-03-01

    Tamoxifen is a triphenylethylene nonsteroidal estrogen receptor (ER) antagonist used worldwide as an adjuvant hormone therapeutic agent in the treatment of breast cancer. However, the molecular mechanism of tamoxifen-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Thymidine phosphorylase (TP) is an enzyme of the pyrimidine salvage pathway which is upregulated in cancers. In this study, tamoxifen treatment inhibited cell survival in two NSCLC cells, H520 and H1975. Treatment with tamoxifen decreased TP mRNA and protein levels through AKT inactivation. Furthermore, expression of constitutively active AKT (AKT-CA) vectors significantly rescued the decreased TP protein and mRNA levels in tamoxifen-treated NSCLC cells. In contrast, combination treatment with PI3K inhibitors (LY294002 or wortmannin) and tamoxifen further decreased the TP expression and cell viability of NSCLC cells. Knocking down TP expression by transfection with small interfering RNA of TP enhanced the cytotoxicity and cell growth inhibition of tamoxifen. Erlotinib (Tarceva, OSI-774), an orally available small molecular inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, is approved for clinical treatment of NSCLC. Compared to a single agent alone, tamoxifen combined with erlotinib resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-AKT and phospho-ERK1/2, and reduced TP protein levels. These findings may have implications for the rational design of future drug regimens incorporating tamoxifen and erlotinib for the treatment of NSCLC. PMID:24447935

  19. SchA-p85-FAK complex dictates isoform-specific activation of Akt2 and subsequent PCBP1-mediated post-transcriptional regulation of TGFβ-mediated epithelial to mesenchymal transition in human lung cancer cell line A549.

    PubMed

    Xue, Xinying; Wang, Xin; Liu, Yuxia; Teng, Guigen; Wang, Yong; Zang, Xuefeng; Wang, Kaifei; Zhang, Jinghui; Xu, Yali; Wang, Jianxin; Pan, Lei

    2014-08-01

    A post-transcriptional pathway by which TGF-β modulates expression of specific proteins, Disabled-2 (Dab2) and Interleukin-like EMT Inducer (ILEI), inherent to epithelial to mesenchymal transition (EMT) in murine epithelial cells through Akt2-mediated phosphorylation of poly r(C) binding protein (PCBP1), has been previously elucidated. The aims of the current study were to determine if the same mechanism is operative in the non-small cell lung cancer (NSCLC) cell line, A549, and to delineate the underlying mechanism. Steady-state transcript and protein expression levels of Dab2 and ILEI were examined in A549 cells treated with TGF-β for up to 48 h. Induction of translational de-repression in this model was quantified by polysomal fractionation followed by qRT-PCR. The underlying mechanism of isoform-specific activation of Akt2 was elucidated through a combination of co-immunoprecipitation studies. TGF-β induced EMT in A549 cells concomitant with translational upregulation of Dab2 and ILEI proteins through isoform-specific activation of Akt2 followed by phosphorylation of PCBP1 at serine-43. Our experiments further elucidated that the adaptor protein SchA is phosphorylated at tyrosine residues following TGF-β treatment, which initiated a signaling cascade resulting in the sequential recruitment of p85 subunit of PI3K and focal adhesion kinase (FAK). The SchA-FAK-p85 complex subsequently selectively recruited and activated Akt2, not Akt1. Inhibition of the p85 subunit through phosphorylated 1257 peptide completely attenuated EMT in these cells. We have defined the underlying mechanism responsible for isoform-specific recruitment and activation of Akt2, not Akt1, during TGF-β-mediated EMT in A549 cells. Inhibition of the formation of this complex thus represents an important and novel therapeutic target in metastatic lung carcinoma. PMID:24819169

  20. Pristimerin, a quinonemethide triterpenoid, induces apoptosis in pancreatic cancer cells through the inhibition of pro-survival Akt/NF-κB/mTOR signaling proteins and anti-apoptotic Bcl-2

    PubMed Central

    DEEB, DORRAH; GAO, XIAOHUA; LIU, YONG BO; PINDOLIA, KIRIT; GAUTAM, SUBHASH C.

    2014-01-01

    Lack of effective therapeutics for pancreatic cancer at the present time underscores the dire need for safe and effective agents for the treatment of this malignancy. In the present study, we have evaluated the anticancer activity and the mechanism of action of pristimerin (PM), a quinonemethide triterpenoid, against MiaPaCa-2 and Panc-1 pancreatic ductal adenocarcinoma (PDA) cell lines. Treatment with PM inhibited the proliferation and induced apoptosis in both cell lines as characterized by the increased Annexin V-binding and cleavage of PARP-1 and procaspases -3, -8 and -9. PM also induced mitochondrial depolarization and the release of cytochrome c from the mitochondria. The induction of apoptosis by PM was associated with the inhibition of the pro-survival Akt, NF-κB and mTOR signaling proteins and their downstream intermediaries such as Foxo-3α and cyclin D1 (Akt); Cox-2 and VEGF (NF-κB); p-S6K1 and p-4E-BP1 (mTOR) as well as PKCɛ. Treatment with PM also inhibited the expression of anti-apoptotic Bcl-2 and survivin but not Bcl-xL. The downregulation of Bcl-2 by PM was not due to proteasomal or lysosomal proteolytic degradation of Bcl-2, since treatment with PM in the presence of proteasomal inhibitors MG132 or lactacystin (LAC) or calpain inhibitor MG101 failed to block the downregulation of Bcl-2 by PM. On the other hand, RT-PCR analysis showed the inhibition of Bcl-2 mRNA by PM in a dose-related manner, indicating that inhibition of Bcl-2 by PM is mediated through the suppression of Bcl-2 gene expression. Thus, the mechanistic understanding of the antitumor activity of pristimerin could facilitate in vivo efficacy studies of pristimerin for pancreatic cancer. PMID:24603988

  1. ORMDL proteins regulate ceramide levels during sterile inflammation.

    PubMed

    Cai, Lin; Oyeniran, Clement; Biswas, Debolina D; Allegood, Jeremy; Milstien, Sheldon; Kordula, Tomasz; Maceyka, Michael; Spiegel, Sarah

    2016-08-01

    The bioactive sphingolipid metabolite, ceramide, regulates physiological processes important for inflammation and elevated levels of ceramide have been implicated in IL-1-mediated events. Although much has been learned about ceramide generation by activation of sphingomyelinases in response to IL-1, the contribution of the de novo pathway is not completely understood. Because yeast ORM1 and ORM2 proteins negatively regulate ceramide levels through inhibition of serine palmitoyltransferase, the first committed step in ceramide biosynthesis, we examined the functions of individual mammalian ORM orthologs, ORM (yeast)-like (ORMDL)1-3, in regulation of ceramide levels. In HepG2 liver cells, downregulation of ORMDL3 markedly increased the ceramide precursors, dihydrosphingosine and dihydroceramide, primarily from de novo biosynthesis based on [U-(13)C]palmitate incorporation into base-labeled and dual-labeled dihydroceramides, whereas downregulation of each isoform increased dihydroceramides [(13)C]labeled in only the amide-linked fatty acid. IL-1 and the IL-6 family cytokine, oncostatin M, increased dihydroceramide and ceramide levels in HepG2 cells and concomitantly decreased ORMDL proteins. Moreover, during irritant-induced sterile inflammation in mice leading to induction of the acute-phase response, which is dependent on IL-1, expression of ORMDL proteins in the liver was strongly downregulated and accompanied by increased ceramide levels in the liver and accumulation in the blood. Together, our results suggest that ORMDLs may be involved in regulation of ceramides during IL-1-mediated sterile inflammation. PMID:27313060

  2. Illuminating the phosphatidylinositol 3-kinase/Akt pathway

    NASA Astrophysics Data System (ADS)

    Ni, Qiang; Fosbrink, Matthew; Zhang, Jin

    2008-02-01

    Genetically encodable fluorescent biosensors based on fluorescence resonance energy transfer (FRET) are being developed for analyzing spatiotemporal dynamics of various signaling events in living cells, as these events are often dynamically regulated and spatially compartmentalized within specific signaling context. In particular, to investigate the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in the cellular context, we have developed a series of such biosensors that enable dynamic visualization of several key signaling events in this pathway, namely InPAkt for lipid second messenger dynamics, BAKR for Akt activity, and ReAktion for the action of Akt during its multi-step activation process. Discussed here are several studies that have been carried out with these novel biosensors. First, we examined nuclear phosphatidylinositol-3,4,5-triphosphate (PIP 3) in living cells using nucleus-targeted InPAkt. Second, we analyzed signal propagation from the plasma membrane to the nucleus by using plasma membrane-targeted InPAkt and nucleus-targeted BKAR to simultaneously monitor PIP 3 dynamics and Akt activity in the same cell. Of note, results from these co-imaging experiments suggest that active Akt can dissociate from the plasma membrane and translocate into the nucleus in the presence of high levels of PIP 3 at the plasma membrane. This finding has led to a further study of the action of Akt during its activation process, particularly focusing on how Akt dissociates from the membrane. In this regard, a live-cell molecular analysis using ReAktion reveals a conformational change in Akt that is critically dependent on the existence of a phosphorylatable T308 in the activation loop. Subsequently this has led to the discovery of new regulatory roles of this critical phosphorylation event of Akt for ensuring its proper activation and function.

  3. Activation of PI3K/Akt and ERK signaling pathways antagonized sinomenine-induced lung cancer cell apoptosis.

    PubMed

    Zhou, Liping; Luan, Hong; Liu, Qingpeng; Jiang, Tingshu; Liang, Hongyuan; Dong, Xihua; Shang, Hong

    2012-05-01

    Sinomenine (SIN) is a bioactive component derived from a Chinese medicinal plant. Our previous studies demonstrated that SIN has cytotoxic effects on human lung cancer cells. However, the antitumor molecular mechanisms of SIN have yet to be elucidated in detail. In the present study, we further explored the effects of SIN on NCI-H460 human lung cancer cell viability and apoptosis and investigated the regulation and function of PI3K/Akt and ERK signaling pathways during SIN-induced apoptosis in various lung cancer cell lines. NCI-H460 cells were incubated with 200 µg/ml SIN for the indicated times (0, 24, 48 or 72 h). Cell viability was assessed by MTT assay. Akt, p-Akt, ERK1/2 and p-ERK1/2 protein levels were detected by western blotting, respectively. Two different selective inhibitors (LY294002 for the PI3K pathway; PD98059 for the MEK/ERK pathway) were used to characterize the relative roles of PI3K/Akt and ERK in SIN-induced apoptosis. Apoptosis was determined by flow cytometry. SIN inhibited the proliferation of NCI-H460 cells in a time-dependent manner, which was accompanied with significant activation of pAkt and pERK. LY294002 and PD98059 both significantly increased SIN-induced apoptosis in NCI-H460, NCI-H226 and NCI-H522 cells. Our findings suggest that the activation of the PI3K/Akt and ERK signaling pathways antagonize SIN-induced lung cancer cell apoptosis and molecules that inhibit these pathways should potentiate the effects of SIN. This study represents a significant step forward in our understanding of the signal transduction pathways associated with the apoptosis elicited by SIN. PMID:22367396

  4. Predicting Protein-Protein Interactions from the Molecular to the Proteome Level.

    PubMed

    Keskin, Ozlem; Tuncbag, Nurcan; Gursoy, Attila

    2016-04-27

    Identification of protein-protein interactions (PPIs) is at the center of molecular biology considering the unquestionable role of proteins in cells. Combinatorial interactions result in a repertoire of multiple functions; hence, knowledge of PPI and binding regions naturally serve to functional proteomics and drug discovery. Given experimental limitations to find all interactions in a proteome, computational prediction/modeling of protein interactions is a prerequisite to proceed on the way to complete interactions at the proteome level. This review aims to provide a background on PPIs and their types. Computational methods for PPI predictions can use a variety of biological data including sequence-, evolution-, expression-, and structure-based data. Physical and statistical modeling are commonly used to integrate these data and infer PPI predictions. We review and list the state-of-the-art methods, servers, databases, and tools for protein-protein interaction prediction. PMID:27074302

  5. Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells.

    PubMed

    Zakikhani, Mahvash; Blouin, Marie-José; Piura, Esther; Pollak, Michael N

    2010-08-01

    Rapamycin and its analogues inhibit mTOR, which leads to decreased protein synthesis and decreased cancer cell proliferation in many experimental systems. Adenosine 5'- monophosphate-activated protein kinase (AMPK) activators such as metformin have similar actions, in keeping with the TSC2/1 pathway linking activation of AMPK to inhibition of mTOR. As mTOR inhibition by rapamycin is associated with attenuation of negative feedback to IRS-1, rapamycin is known to increase activation of AKT, which may reduce its anti-neoplastic activity. We observed that metformin exposure decreases AKT activation, an action opposite to that of rapamycin. We show that metformin (but not rapamycin) exposure leads to increased phosphorylation of IRS-1 at Ser(789), a site previously reported to inhibit downstream signaling and to be an AMPK substrate phosphorylated under conditions of cellular energy depletion. siRNA methods confirmed that reduction of AMPK levels attenuates both the IRS-1 Ser(789) phosphorylation and the inhibition of AKT activation associated with metformin exposure. Although both rapamycin and metformin inhibit mTOR (the former directly and the latter through AMPK signaling), our results demonstrate previously unrecognized differences between these agents. The data are consistent with the observation that maximal induction of apoptosis and inhibition of proliferation are greater for metformin than rapamycin. PMID:20135346

  6. EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function

    PubMed Central

    Phuchareon, Janyaporn; McCormick, Frank; Eisele, David W.; Tetsu, Osamu

    2015-01-01

    Nonsmall cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. About 14% of NSCLCs harbor mutations in epidermal growth factor receptor (EGFR). Despite remarkable progress in treatment with tyrosine kinase inhibitors (TKIs), only 5% of patients achieve tumor reduction >90%. The limited primary responses are attributed partly to drug resistance inherent in the tumor cells before therapy begins. Recent reports showed that activation of receptor tyrosine kinases (RTKs) is an important determinant of this innate drug resistance. In contrast, we demonstrate that EGFR inhibition promotes innate drug resistance despite blockade of RTK activity in NSCLC cells. EGFR TKIs decrease both the mitogen-activated protein kinase (MAPK) and Akt protein kinase pathways for a short time, after which the Ras/MAPK pathway becomes reactivated. Akt inhibition selectively blocks the transcriptional activation of Ets-1, which inhibits its target gene, dual specificity phosphatase 6 (DUSP6), a negative regulator specific for ERK1/2. As a result, ERK1/2 is activated. Furthermore, elevated c-Src stimulates Ras GTP-loading and activates Raf and MEK kinases. These observations suggest that not only ERK1/2 but also Akt activity is essential to maintain Ets-1 in an active state. Therefore, despite high levels of ERK1/2, Ets-1 target genes including DUSP6 and cyclins D1, D3, and E2 remain suppressed by Akt inhibition. Reduction of DUSP6 in combination with elevated c-Src renews activation of the Ras/MAPK pathway, which enhances cell survival by accelerating Bim protein turnover. Thus, EGFR TKIs evoke innate drug resistance by preventing Akt activity and inactivating Ets-1 function in NSCLC cells. PMID:26150526

  7. EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function.

    PubMed

    Phuchareon, Janyaporn; McCormick, Frank; Eisele, David W; Tetsu, Osamu

    2015-07-21

    Nonsmall cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. About 14% of NSCLCs harbor mutations in epidermal growth factor receptor (EGFR). Despite remarkable progress in treatment with tyrosine kinase inhibitors (TKIs), only 5% of patients achieve tumor reduction >90%. The limited primary responses are attributed partly to drug resistance inherent in the tumor cells before therapy begins. Recent reports showed that activation of receptor tyrosine kinases (RTKs) is an important determinant of this innate drug resistance. In contrast, we demonstrate that EGFR inhibition promotes innate drug resistance despite blockade of RTK activity in NSCLC cells. EGFR TKIs decrease both the mitogen-activated protein kinase (MAPK) and Akt protein kinase pathways for a short time, after which the Ras/MAPK pathway becomes reactivated. Akt inhibition selectively blocks the transcriptional activation of Ets-1, which inhibits its target gene, dual specificity phosphatase 6 (DUSP6), a negative regulator specific for ERK1/2. As a result, ERK1/2 is activated. Furthermore, elevated c-Src stimulates Ras GTP-loading and activates Raf and MEK kinases. These observations suggest that not only ERK1/2 but also Akt activity is essential to maintain Ets-1 in an active state. Therefore, despite high levels of ERK1/2, Ets-1 target genes including DUSP6 and cyclins D1, D3, and E2 remain suppressed by Akt inhibition. Reduction of DUSP6 in combination with elevated c-Src renews activation of the Ras/MAPK pathway, which enhances cell survival by accelerating Bim protein turnover. Thus, EGFR TKIs evoke innate drug resistance by preventing Akt activity and inactivating Ets-1 function in NSCLC cells. PMID:26150526

  8. Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt.

    PubMed

    Chen, Jialin; Chen, Peng; Backman, Ludvig J; Zhou, Qingjun; Danielson, Patrik

    2016-01-01

    The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway. PMID:27174608

  9. Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt

    PubMed Central

    Chen, Jialin; Chen, Peng; Backman, Ludvig J.; Zhou, Qingjun; Danielson, Patrik

    2016-01-01

    The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway. PMID:27174608

  10. Interdomain conformational changes in Akt activation revealed by chemical cross-linking and tandem mass spectrometry.

    PubMed

    Huang, Bill X; Kim, Hee-Yong

    2006-06-01

    Akt, a serine/threonine kinase, plays a critical role in cell survival. Upon growth factor receptor stimulation, cytosolic Akt is recruited to the plasma membrane by phospholipid binding and activated through phosphorylation at Thr(308) and Ser(473). Although crystal structures for the parts of Akt have been reported, neither the three-dimensional structure of the whole molecule nor sequential conformational changes during activation have been demonstrated. In this study, we demonstrated that Akt undergoes dramatic interdomain conformational changes during activation processes by probing the three-dimensional structure of full-length Akt in solution using chemical cross-linking and tandem mass spectrometry. The cross-linking results not only provided new structural information but also revealed distinctive spatial arrangements of individual domains in the Akt molecule in resting, membrane-interacted, phosphorylated, and substrate-bound states. Our data allowed a new model for stepwise interdomain conformational changes in Akt activation sequence, setting a stage for the further investigation on Akt-membrane, Akt-protein, and/or Akt-drug interactions in solution to understand molecular mechanisms involved in physiological and pathophysiological processes of cell survival. PMID:16531397

  11. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability

    PubMed Central

    Silva, Ana; Yunes, J. Andrés; Cardoso, Bruno A.; Martins, Leila R.; Jotta, Patrícia Y.; Abecasis, Miguel; Nowill, Alexandre E.; Leslie, Nick R.; Cardoso, Angelo A.; Barata, Joao T.

    2008-01-01

    Mutations in the phosphatase and tensin homolog (PTEN) gene leading to PTEN protein deletion and subsequent activation of the PI3K/Akt signaling pathway are common in cancer. Here we show that PTEN inactivation in human T cell acute lymphoblastic leukemia (T-ALL) cells is not always synonymous with PTEN gene lesions and diminished protein expression. Samples taken from patients with T-ALL at the time of diagnosis very frequently showed constitutive hyperactivation of the PI3K/Akt pathway. In contrast to immortalized cell lines, most primary T-ALL cells did not harbor PTEN gene alterations, displayed normal PTEN mRNA levels, and expressed higher PTEN protein levels than normal T cell precursors. However, PTEN overexpression was associated with decreased PTEN lipid phosphatase activity, resulting from casein kinase 2 (CK2) overexpression and hyperactivation. In addition, T-ALL cells had constitutively high levels of ROS, which can also downmodulate PTEN activity. Accordingly, both CK2 inhibitors and ROS scavengers restored PTEN activity and impaired PI3K/Akt signaling in T-ALL cells. Strikingly, inhibition of PI3K and/or CK2 promoted T-ALL cell death without affecting normal T cell precursors. Overall, our data indicate that T-ALL cells inactivate PTEN mostly in a nondeletional, posttranslational manner. Pharmacological manipulation of these mechanisms may open new avenues for T-ALL treatment. PMID:18830414

  12. The Paradox of Akt-mTOR Interactions

    PubMed Central

    Vadlakonda, Lakshmipathi; Dash, Abhinandita; Pasupuleti, Mukesh; Anil Kumar, Kotha; Reddanna, Pallu

    2013-01-01

    The serine threonine protein kinase, Akt, is at the central hub of signaling pathways that regulates cell growth, differentiation, and survival. The reciprocal relation that exists between the two activating phosphorylation sites of Akt, T308 and S473, and the two mTOR complexes, C1 and C2, forms the central controlling hub that regulates these cellular functions. In our previous review “PI3Kinase (PI3K)-AKT-mTOR and Wnt signaling pathways in cell cycle” we discussed the reciprocal relation between mTORC1 and C2 complexes in regulating cell metabolism and cell cycle progression in cancer cells. We present in this article, a hypothesis that activation of Akt-T308 phosphorylation in the presence of high ATP:AMP ratio promotes the stability of its phosphorylations and activates mTORC1 and the energy consuming biosynthetic processes. Depletion of energy leads to inactivation of mTORC1, activation of AMPK, FoxO, and promotes constitution of mTORC2 that leads to phosphorylation of Akt S473. Akt can also be activated independent of PI3K; this appears to have an advantage under situations like dietary restrictions, where insulin/insulin growth factor signaling could be a casualty. PMID:23802099

  13. Low copper and high manganese levels in prion protein plaques

    USGS Publications Warehouse

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  14. Site Specific Activation of AKT Protects Cells from Death Induced by Glucose Deprivation

    PubMed Central

    Gao, Meng; Liang, Jiyong; Lu, Yiling; Guo, Huifang; German, Peter; Bai, Shanshan; Jonasch, Eric; Yang, Xingsheng; Mills, Gordon B.; Ding, Zhiyong

    2013-01-01

    The serine/threonine kinase AKT is a key mediator of cancer cell survival. We demonstrate that transient glucose deprivation modestly induces AKT phosphorylation at both Thr308 and Ser473. In contrast, prolonged glucose deprivation induces selective AKTThr308 phosphorylation and phosphorylation of a distinct subset of AKT downstream targets leading to cell survival under metabolic stress. Glucose deprivation-induced AKTThr308 phosphorylation is dependent on PDK1 and PI3K but not EGFR or IGF1R. Prolonged glucose deprivation induces the formation of a complex of AKT, PDK1, and the GRP78 chaperone protein, directing phosphorylation of AKTThr308 but AKTSer473. Our results reveal a novel mechanism of AKT activation under prolonged glucose deprivation that protects cells from metabolic stress. The selective activation of AKTThr308 phosphorylation that occurs during prolonged nutrient deprivation may provide an unexpected opportunity for the development and implementation of drugs targeting cell metabolism and aberrant AKT signaling. PMID:23396361

  15. Livers with Constitutive mTORC1 Activity Resist Steatosis Independent of Feedback Suppression of Akt

    PubMed Central

    Kenerson, Heidi L.; Subramanian, Savitha; McIntyre, Rebecca; Kazami, Machiko; Yeung, Raymond S.

    2015-01-01

    Insulin resistance is an important contributing factor in non-alcoholic fatty liver disease. AKT and mTORC1 are key components of the insulin pathway, and play a role in promoting de novo lipogenesis. However, mTORC1 hyperactivity per se does not induce steatosis in mouse livers, but instead, protects against high-fat diet induced steatosis. Here, we investigate the in vivo mechanism of steatosis-resistance secondary to mTORC1 activation, with emphasis on the role of S6K1-mediated feedback inhibition of AKT. Mice with single or double deletion of Tsc1 and/or S6k1 in a liver-specific or whole-body manner were generated to study glucose and hepatic lipid metabolism between the ages of 6–14 weeks. Following 8 weeks of high-fat diet, the Tsc1-/-;S6k1-/- mice had lower body weights but higher liver TG levels compared to that of the Tsc1-/- mice. However, the loss of S6k1 did not relieve feedback inhibition of Akt activity in the Tsc1-/- livers. To overcome Akt suppression, Pten was deleted in Tsc1-/- livers, and the resultant mice showed improved glucose tolerance compared with the Tsc1-/- mice. However, liver TG levels were significantly reduced in the Tsc1-/-;Pten-/- mice compared to the Pten-/- mice, which was restored with rapamycin. We found no correlation between liver TG and serum NEFA levels. Expression of lipogenic genes (Srebp1c, Fasn) were elevated in the Tsc1-/-;Pten-/- livers, but this was counter-balanced by an up-regulation of Cpt1a involved in fatty acid oxidation and the anti-oxidant protein, Nrf2. In summary, our in vivo models showed that mTORC1-induced resistance to steatosis was dependent on S6K1 activity, but not secondary to AKT suppression. These findings confirm that AKT and mTORC1 have opposing effects on hepatic lipid metabolism in vivo. PMID:25646773

  16. All Akt Isoforms (Akt1, Akt2, Akt3) Are Involved in Normal Hearing, but Only Akt2 and Akt3 Are Involved in Auditory Hair Cell Survival in the Mammalian Inner Ear

    PubMed Central

    Brand, Yves; Levano, Soledad; Radojevic, Vesna; Naldi, Arianne Monge; Setz, Cristian; Ryan, Allen F.; Pak, Kwang; Hemmings, Brian A.; Bodmer, Daniel

    2015-01-01

    The kinase Akt is a key downstream mediator of the phosphoinositide-3-kinase signaling pathway and participates in a variety of cellular processes. Akt comprises three isoforms each encoded by a separate gene. There is evidence to indicate that Akt is involved in the survival and protection of auditory hair cells in vitro. However, little is known about the physiological role of Akt in the inner ear—especially in the intact animal. To elucidate this issue, we first analyzed the mRNA expression of the three Akt isoforms in the inner ear of C57/BL6 mice by real-time PCR. Next, we tested the susceptibility to gentamicin-induced auditory hair cell loss in isoform-specific Akt knockout mice compared to wild-types (C57/BL6) in vitro. To analyze the effect of gene deletion in vivo, hearing and cochlear microanatomy were evaluated in Akt isoform knockout animals. In this study, we found that all three Akt isoforms are expressed in the cochlea. Our results further indicate that Akt2 and Akt3 enhance hair cell resistance to ototoxicity, while Akt1 does not. Finally, we determined that untreated Akt1 and Akt2/Akt3 double knockout mice display significant hearing loss, indicating a role for these isoforms in normal hearing. Taken together, our results indicate that each of the Akt isoforms plays a distinct role in the mammalian inner ear. PMID:25811375

  17. MYOCARDIAL AKT: THE OMNIPRESENT NEXUS

    PubMed Central

    Sussman, Mark A.; Völkers, Mirko; Fischer, Kimberlee; Bailey, Brandi; Cottage, Christopher T.; Din, Shabana; Gude, Natalie; Avitabile, Daniele; Alvarez, Roberto; Sundararaman, Balaji; Quijada, Pearl; Mason, Matt; Konstandin, Mathias H.; Malhowski, Amy; Cheng, Zhaokang; Khan, Mohsin; McGregor, Michael

    2013-01-01

    One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses. PMID:21742795

  18. Genetic Evidence Supports a Major Role for Akt1 in VSMCs During Atherogenesis

    PubMed Central

    Rotllan, Noemi; Wanschel, Amarylis C.; Fernandez-Hernando, Ana; Salerno, Alessandro G.; Offermanns, Stefan; Sessa, William C.; Fernández-Hernando, Carlos

    2015-01-01

    Rationale Coronary artery disease (CAD), the direct result of atherosclerosis, is the most common cause of death in Western societies. Vascular smooth muscle cell (VSMC) apoptosis occurs during the progression of atherosclerosis and in advanced lesions, promotes plaque necrosis, a common feature of high-risk/vulnerable atherosclerotic plaques. Akt1, a serine-threonine protein kinase, regulates several key endothelial cell (EC) and VSMC functions including cell growth, migration, survival and vascular tone. While global deficiency of Akt1 results in impaired angiogenesis and massive atherosclerosis, the specific contribution of VSMC Akt1 remains poorly characterized. Objective To investigate the contribution of VSMC Akt1 during atherogenesis and in established atherosclerotic plaques. Methods and Results We generated two mouse models in which Akt1 expression can be suppressed specifically in VSCMs before (Apoe−/−Akt1fl/flSm22αCRE) and after (Apoe−/−Akt1fl/flSM-MHC-CreERT2E) the formation of atherosclerotic plaques. This approach allows us to interrogate the role of Akt1 during the initial and late steps of atherogenesis. Absence of Akt1 in VSMCs during the progression of atherosclerosis results in larger atherosclerotic plaques characterized by bigger necrotic core areas, enhanced VSMC apoptosis and reduced fibrous cap and collagen content. In contrast, VSMC Akt1 inhibition in established atherosclerotic plaques does not influence lesion size but markedly reduces the relative fibrous cap area in plaques and increases VSMC apoptosis. Conclusions Akt1 expression in VSMCs influences early and late stages of atherosclerosis. Absence of Akt1 in VSMCs induces features of plaque vulnerability including fibrous cap thinning and extensive necrotic core areas. These observations suggest that interventions enhancing Akt1 expression specifically in VSMCs may lessen plaque progression. PMID:25868464

  19. Nitric Oxide Synthase and Breast Cancer: Role of TIMP-1 in NO-mediated Akt Activation

    PubMed Central

    Ridnour, Lisa A.; Barasch, Kimberly M.; Windhausen, Alisha N.; Dorsey, Tiffany H.; Lizardo, Michael M.; Yfantis, Harris G.; Lee, Dong H.; Switzer, Christopher H.; Cheng, Robert Y. S.; Heinecke, Julie L.; Brueggemann, Ernst; Hines, Harry B.; Khanna, Chand; Glynn, Sharon A.; Ambs, Stefan; Wink, David A.

    2012-01-01

    Prediction of therapeutic response and cancer patient survival can be improved by the identification of molecular markers including tumor Akt status. A direct correlation between NOS2 expression and elevated Akt phosphorylation status has been observed in breast tumors. Tissue inhibitor matrix metalloproteinase-1 (TIMP-1) has been proposed to exert oncogenic properties through CD63 cell surface receptor pathway initiation of pro-survival PI3k/Akt signaling. We employed immunohistochemistry to examine the influence of TIMP-1 on the functional relationship between NOS2 and phosphorylated Akt in breast tumors and found that NOS2-associated Akt phosphorylation was significantly increased in tumors expressing high TIMP-1, indicating that TIMP-1 may further enhance NO-induced Akt pathway activation. Moreover, TIMP-1 silencing by antisense technology blocked NO-induced PI3k/Akt/BAD phosphorylation in cultured MDA-MB-231 human breast cancer cells. TIMP-1 protein nitration and TIMP-1/CD63 co-immunoprecipitation was observed at NO concentrations that induced PI3k/Akt/BAD pro-survival signaling. In the survival analysis, elevated tumor TIMP-1 predicted poor patient survival. This association appears to be mainly restricted to tumors with high NOS2 protein. In contrast, TIMP-1 did not predict poor survival in patient tumors with low NOS2 expression. In summary, our findings suggest that tumors with high TIMP-1 and NOS2 behave more aggressively by mechanisms that favor Akt pathway activation. PMID:22957045

  20. PI3 kinase directly phosphorylates Akt1/2 at Ser473/474 in the insulin signal transduction pathway

    PubMed Central

    Tsuchiya, A; Kanno, T; Nishizaki, T

    2014-01-01

    Insulin stimulated translocation of the glucose transporter GLUT4 from the cytosol to the plasma membrane in a concentration (1 nM–1 μM)-dependent manner and increased glucose uptake in 3T3-L1 adipocytes. Insulin-induced GLUT4 translocation to the cell surface was prevented by the phosphoinositide 3 kinase (PI3K) inhibitor wortmannin, the 3-phosphoinositide-dependent protein kinase 1 (PDK1) inhibitor BX912 or the Akt1/2 inhibitor MK2206, and by knocking-down PI3K, PDK1 or Akt1/2. Insulin increased phosphorylation of Akt1/2 at Thr308/309 and Ser473/474, to activate Akt1/2, in the adipocytes. Insulin-induced phosphorylation of Akt1/2 was suppressed by wortmannin and knocking-down PI3K, while no significant inhibition of the phosphorylation was obtained with BX912 or knocking-down PDK1. In the cell-free Akt assay, PI3K phosphorylated Akt1 both at Thr308 and Ser473 and Akt2 at Ser474 alone. In contrast, PDK1 phosphorylates Akt1 at Thr308 and Akt2 at Thr309. The results of this study indicate that PI3K activates Akt1, independently of PDK1, and Akt2 by cooperating with PDK1 in the insulin signal transduction pathway linked to GLUT4 translocation. PMID:24169049

  1. Equol inhibits proliferation of human gastric carcinoma cells via modulating Akt pathway

    PubMed Central

    Yang, Zhi-Ping; Zhao, Yan; Huang, Fang; Chen, Jie; Yao, Ya-Hong; Li, Jun; Wu, Xiao-Nan

    2015-01-01

    AIM: To investigate the anti-tumor effects of equol in gastric cancer cells and the underlying molecular mechanisms. METHODS: MGC-803 cells were employed for in vitro experiments in this study. Cells were treated with control (vehicle, 0.1% DMSO) or equol under specified dose titration or time courses. Cell viability was examined by MTS assay, and the levels of Ki67 were determined by qPCR and immunofluorescent assay. Changes in cell cycle distribution and apoptosis rate were detected by flow cytometry. The mRNA expression of cyclin E1 and P21WAF1 was determined by qPCR. The protein levels of cell cycle regulators, PARP and Caspase-3 cleavage, and the phosphorylation of Akt were examined by Western blot. In addition, to characterize the role of elevated Akt activation in the anti-tumor effect exerted by equol, Ly294002, a PI3K/AKT pathway inhibitor, was used to pretreat MGC-803 cells. RESULTS: Equol (5, 10, 20, 40, or 80 μmol/L) inhibited viability of MGC-803 cells in a dose- and time-dependent manner after treatment for 24, 36, or 48 h (P < 0.05 for all). Equol also decreased the mRNA (P < 0.05 for 12 and 24 h treatment) and protein levels of Ki67. Equol treatment significantly induced G0/G1 cell cycle arrest (P < 0.05), with the percentages of G0/G1 cells of 32.23% ± 3.62%, 36.31% ± 0.24%, 45.58% ± 2.29%, and 65.10% ± 2.04% for equol (0, 10, 20, or 30 μmol/L) treatment, respectively, accompanied by a significant decrease of CDK2/4 (P < 0.05 for 24 and 48 h treatment) and Cyclin D1/Cyclin E1 (P < 0.05), and an increased level of P21WAF1 (P < 0.05). A marked increase of apoptosis was observed, with the percentages of apoptotic cells of 5.01% ± 0.91%, 14.57% ± 0.99%, 37.40% ± 0.58%, and 38.46% ± 2.01% for equol (0, 5, 10, or 20 μmol/L) treatment, respectively, accompanied by increased levels of cleaved PARP and caspase-3. In addition, we found that equol treatment increased P-Akt (Ser473 and Thr308) at 12 and 24 h compared to vehicle-treated control

  2. Zipper-interacting protein kinase promotes epithelial-mesenchymal transition, invasion and metastasis through AKT and NF-kB signaling and is associated with metastasis and poor prognosis in gastric cancer patients.

    PubMed

    Li, Jian; Deng, Zhijuan; Wang, Zhu; Wang, Dong; Zhang, Longjuan; Su, Qiao; Lai, Yingrong; Li, Bin; Luo, Zexing; Chen, Xu; Chen, Yu; Huang, Xiaohui; Ma, Jieyi; Wang, Wenjian; Bi, Jiong; Guan, Xinyuan

    2015-04-10

    Zipper-interacting Protein Kinase (ZIPK) belongs to the death-associated protein kinase family. ZIPK has been characterized as a tumor suppressor in various tumors, including gastric cancer. On the other hand, ZIPK also promotes cell survival. In this study, both in vitro and in vivo assays indicated that ZIPK promoted cell growth, proliferation, migration, invasion, tumor formation and metastasis in nude mice. ZIPK induced epithelial-mesenchymal transition (EMT) with increasing expression of β-catenin, mesenchymal markers, Snail and Slug, and with decreasing expression of E-cadherin. Furthermore, ZIPK activated the AKT/IκB/NF-κB pathway, which can promote EMT and metastasis. Additionally, ZIPK expression was detected in human primary gastric cancer and their matched metastatic lymph node samples by immunohistochemistry. Increased expression of ZIPK in lymph node metastases was significantly associated with stage VI and abdominal organ invasion. Survival analysis revealed that patients with increased ZIPK expression in metastatic lymph nodes had poor disease-specific survival. Taken together, our study reveals that ZIPK is a pro-oncogenic factor, which promotes cancer metastasis. PMID:25831050

  3. Diallyl trisulfide, a constituent of processed garlic, inactivates Akt to trigger mitochondrial translocation of BAD and caspase-mediated apoptosis in human prostate cancer cells.

    PubMed

    Xiao, Dong; Singh, Shivendra V

    2006-03-01

    We have shown previously that apoptosis induction by diallyl trisulfide (DATS), a constituent of processed garlic, in PC-3 and DU145 human prostate cancer cells is associated with c-Jun N-terminal kinase and extracellular signal-regulated kinase-mediated phosphorylation of Bcl-2. However, pharmacological inhibition of these kinases offers only partial protection against the cell death caused by DATS. Here, we demonstrate that DATS inactivates Akt to trigger apoptosis in prostate cancer cells. Treatment of PC-3/DU145 cells with apoptosis inducing concentration of DATS (40 microM) resulted in a rapid decrease in Ser(473) and Thr(308) phosphorylation of Akt leading to inhibition of its kinase activity. The DATS-mediated inactivation of Akt was associated with downregulation of insulin-like growth factor receptor 1 protein level and inhibition of its autophosphorylation. DATS treatment (40 microM) also caused a decrease in Ser(155) and Ser(136) phosphorylation of BAD (a proapoptotic protein), which is a downstream target of Akt. Phosphorylation sequesters BAD in the cytoplasm owing to increased binding with 14-3-3 proteins. The interaction between BAD and 14-3-3beta was reduced markedly upon a 4 h treatment with 40 microM DATS in both cell lines. Consistent with these results, DATS treatment (40 microM, 4 h) promoted mitochondrial translocation of BAD as revealed by immunocytochemistry. Ectopic expression of constitutively active Akt conferred statistically significant protection against DATS-induced apoptosis. The DATS-induced apoptosis in both cell lines was significantly attenuated in the presence of pan caspase inhibitor zVAD-fmk and caspase 9 specific inhibitor zLEHD-fmk. In conclusion, the present study demonstrates that DATS-induced apoptosis in human prostate cancer cells is mediated, at least in part, by inactivation of Akt signaling axis. PMID:16169930

  4. Angiotensin II Signaling in Human Preadipose Cells: Participation of ERK1,2-Dependent Modulation of Akt

    PubMed Central

    Dünner, Natalia; Quezada, Carolina; Berndt, F. Andrés; Cánovas, José; Rojas, Cecilia V.

    2013-01-01

    The renin-angiotensin system expressed in adipose tissue has been implicated in the modulation of adipocyte formation, glucose metabolism, triglyceride accumulation, lipolysis, and the onset of the adverse metabolic consequences of obesity. As we investigated angiotensin II signal transduction mechanisms in human preadipose cells, an interplay of extracellular-signal-regulated kinases 1 and 2 (ERK1,2) and Akt/PKB became evident. Angiotensin II caused attenuation of phosphorylated Akt (p-Akt), at serine 473; the p-Akt/Akt ratio decreased to 0.5±0.2-fold the control value without angiotensin II (p<0.001). Here we report that the reduction of phosphorylated Akt associates with ERK1,2 activities. In the absence of angiotensin II, inhibition of ERK1,2 activation with U0126 or PD98059 resulted in a 2.1±0.5 (p<0.001) and 1.4±0.2-fold (p<0.05) increase in the p-Akt/Akt ratio, respectively. In addition, partial knockdown of ERK1 protein expression by the short hairpin RNA technique also raised phosphorylated Akt in these cells (the p-Akt/Akt ratio was 1.5±0.1-fold the corresponding control; p<0.05). Furthermore, inhibition of ERK1,2 activation with U0126 prevented the reduction of p-Akt/Akt by angiotensin II. An analogous effect was found on the phosphorylation status of Akt downstream effectors, the forkhead box (Fox) proteins O1 and O4. Altogether, these results indicate that angiotensin II signaling in human preadipose cells involves an ERK1,2-dependent attenuation of Akt activity, whose impact on the biological functions under its regulation is not fully understood. PMID:24098385

  5. Mitochondrial genome depletion in human liver cells abolishes bile acid-induced apoptosis: role of the Akt/mTOR survival pathway and Bcl-2 family proteins.

    PubMed

    Marin, Jose J G; Hernandez, Alicia; Revuelta, Isabel E; Gonzalez-Sanchez, Ester; Gonzalez-Buitrago, Jose M; Perez, Maria J

    2013-08-01

    Acute accumulation of bile acids in hepatocytes may cause cell death. However, during long-term exposure due to prolonged cholestasis, hepatocytes may develop a certain degree of chemoresistance to these compounds. Because mitochondrial adaptation to persistent oxidative stress may be involved in this process, here we have investigated the effects of complete mitochondrial genome depletion on the response to bile acid-induced hepatocellular injury. A subline (Rho) of human hepatoma SK-Hep-1 cells totally depleted of mitochondrial DNA (mtDNA) was obtained, and bile acid-induced concentration-dependent activation of apoptosis/necrosis and survival signaling pathways was studied. In the absence of changes in intracellular ATP content, Rho cells were highly resistant to bile acid-induced apoptosis and partially resistant to bile acid-induced necrosis. In Rho cells, both basal and bile acid-induced generation of reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, was decreased. Bile acid-induced proapoptotic signals were also decreased, as evidenced by a reduction in the expression ratios Bax-α/Bcl-2, Bcl-xS/Bcl-2, and Bcl-xS/Bcl-xL. This was mainly due to a downregulation of Bax-α and Bcl-xS. Moreover, in these cells the Akt/mTOR pathway was constitutively activated in a ROS-independent manner and remained similarly activated in the presence of bile acid treatment. In contrast, ERK1/2 activation was constitutively reduced and was not activated by incubation with bile acids. In conclusion, these results suggest that impaired mitochondrial function associated with mtDNA alterations, which may occur in liver cells during prolonged cholestasis, may activate mechanisms of cell survival accounting for an enhanced resistance of hepatocytes to bile acid-induced apoptosis. PMID:23597504

  6. O-GlcNAcylation enhances the invasion of thyroid anaplastic cancer cells partially by PI3K/Akt1 pathway

    PubMed Central

    Zhang, Peng; Wang, Chunli; Ma, Tao; You, Shengyi

    2015-01-01

    Background The PI3K family participates in multiple signaling pathways to regulate cellular functions. PI3K/Akt signaling pathway plays an important role in tumorigenesis and development. O-GlcNAcylation, a posttranslational modification, is thought to modulate a wide range of biological processes, such as transcription, cell growth, signal transduction, and cell motility. O-GlcNAcylation is catalyzed by the nucleocytoplasmic enzymes, OGT and OGA, which adds or removes O-GlcNAc moieties, respectively. Abnormal O-GlcNAcylation has been implicated in a variety of human diseases. However, the role of O-GlcNAcylation in tumorigenesis and progression of cancer is still under-investigated. Understanding the O-GlcNAc-associated molecular mechanism might be significant for diagnosis and therapy of cancer. Methods Human thyroid anaplastic cancer 8305C cells were used to evaluate the role of O-GlcNAcylation in tumorigenesis and progression of cancer. The global O-GlcNAc level of intracellular proteins was up-regulated by OGA inhibitor Thiamet-G treatment or OGT over-expression. Cell proliferation was assessed by MTT assay. Invasion in vitro was determined by Transwell assay, and phosphorylation of Akt1 at Ser473 was assessed by Western blot for activity of Akt1. PI3K-specific inhibitor LY294002 and RNA interference of Akt1 were used to investigate the impact of PI3K/Akt signaling on the regulation of O-GlcNAcylation during tumor progression. Results Cell models with remarkably up-regulated O-GlcNAcylation were constructed, and then cell proliferation and invasion were determined. The results indicated that the proliferation was not affected by OGA inhibition or OGT overexpression, while the invasion of 8305C cells with OGA inhibition or OGT overexpression was obviously increased. Akt1 activity was stimulated by elevated O-GlcNAcylation by mediating phosphorylation at Ser473. The enhanced invasion of thyroid cancer cells by Thiamet-G treatment or OGT overexpression was

  7. The phosphoinositide 3-kinase/Akt-signal pathway mediates proliferation and secretory function of hepatic sinusoidal endothelial cells in rats after partial hepatectomy

    SciTech Connect

    Chen Ping . E-mail: chenping@263.net; Zhang Lin; Ding Jiming; Zhu Jin; Li Ying; Duan Shigang; Yan Hongtao; Huan Yongwei; Dong Jiahong

    2006-04-14

    Objective: To investigate the role of AKT signaling pathway in hepatic sinusoidal endothelial cells (SECs) early after partial hepatectomy in rats and the regulatory mechanisms involved. Methods: The animal model of 70% hepatectomy was made. Hepatic SECs were isolated and cultured according to Braet et al.'s method with some modifications. The cultured hepatic SECs were divided into two groups: 70% partial hepatectomy groups and LY294002 group (LY). We observed the expressions of AKT and NF-{kappa}B in cultured hepatic SECs by Western blot, measured the levels of NO, NOs, IL-6, and HGF in the supernatants of hepatic SEC cultures and [{sup 3}H]thymidine incorporation, and analyzed cell cycle of cultured hepatic SECs by flow cytometer. The relationship of the Akt pathway with secretions and proliferation of hepatic SECs after partial hepatectomy was probed. Results: The levels of Akt protein expression increased significantly after partial hepatectomy in OG group and with a peak at 24 h post operation. Meanwhile, there was a markedly increase in phosphorylated Akt protein during 2-72 h after operation. But the expression and activity of Akt protein did not change significantly after partial hepatectomy in the LY group. So, partial hepatectomy can marked induce Akt expression and result in rapid and marked phosphorylation of Akt from 2 to 72 h thereafter. The changes of NF-{kappa}B expression in cultured hepatic SECs were similar to those of Akt expression after operation. The concentrations of HGF and IL-6 in the supernatants of cultured hepatic SECs were relatively low in the LY group, and were markedly increased after partial hepatectomy, with a peak at 24 h in the OG group. There were significant differences between the OG and LY groups at 6 and 24 h (P < 0.05). Both NO and NOS secretion was increased in the OG group compared to the LY group within 24 h after partial hepatectomy. But the secretion of NO and NOS was increased more markedly in the LY group than that

  8. Akt2 and nucleophosmin/B23 function as an oncogenic unit in human lung cancer cells

    SciTech Connect

    Kim, Chung Kwon; Nguyen, Truong L.X.; Lee, Sang Bae; Park, Sang Bum; Lee, Kyung-Hoon; Cho, Sung-Woo; Ahn, Jee-Yin

    2011-04-15

    The signaling network of protein kinase B(PKB)/Akt has been implicated in survival of lung cancer cells. However, understanding the relative contribution of the different isoform of Akt network is nontrival. Here, we report that Akt2 is highly expressed in human lung adenocarcinoma cell line A549 cells. Suppression of Akt2 expression in A549 cells results in notable inhibition of cell poliferation, soft agar growth, and invasion, accompanying by a decrease of nucleophosmin/B23 protein. Overexpression of Akt1 restores cancerous growth of A549 cells in B23-knockdown (KD) cells while Akt2 overexpression did not restore proliferating potential in cells with downregulated B23, thus suggesting Akt2 requires B23 to drive proliferation of lung cancer cell. Loss of functional Akt2 and B23 has similar defects on cell proliferation, apoptotic resistance and cell cycle regulation, while loss of Akt1 has less defects on cell proliferation, survial and cell cycle progression in A549 cells. Moreover, overexpression of B23 rescues the proliferative block induced as a consequence of loss of Akt2. Thus our data suggest that Akt2/B23 functions as an oncogenic unit to drive tumorigenesis of A549 lung cancer cells.

  9. Activation of the PI3K/AKT pathway correlates with prognosis in stage II colon cancer

    PubMed Central

    Malinowsky, K; Nitsche, U; Janssen, K-P; Bader, F G; Späth, C; Drecoll, E; Keller, G; Höfler, H; Slotta-Huspenina, J; Becker, K-F

    2014-01-01

    Background: Patients with UICC/AJCC stage II colon cancer have a high 5-year overall survival rate after surgery. Nevertheless, a significant subgroup of patients develops tumour recurrence. Currently, there are no clinically established biomarkers available to identify this patient group. We applied reverse-phase protein arrays (RPPA) for phosphatidylinositide-3-kinase pathway activation mapping to stratify patients according to their risk of tumour recurrence after surgery. Methods: Full-length proteins were extracted from formalin-fixed, paraffin-embedded tissue samples of 118 patients who underwent curative resection. RPPA technology was used to analyse expression and/or phosphorylation levels of six major factors of the phosphatidylinositide-3-kinase pathway. Oncogenic mutations of KRAS and BRAF, and DNA microsatellite status, currently discussed as prognostic markers, were analysed in parallel. Results: Expression of phospho-AKT (HR=3.52; P=0.032), S6RP (HR=6.3; P=0.044), and phospho-4E-BP1 (HR=4.12; P=0.011) were prognostic factors for disease-free survival. None of the molecular genetic alterations were significantly associated with prognosis. Conclusions: Our data indicate that activation of the PI3K/AKT pathway evidenced on the protein level might be a valuable prognostic marker to stratify patients for their risk of tumour recurrence. Beside adjuvant chemotherapy targeting of upregulated PI3K/AKT signalling may be an attractive strategy for treatment of high-risk patients. PMID:24619078

  10. Ascertaining effects of nanoscale polymeric interfaces on competitive protein adsorption at the individual protein level.

    PubMed

    Song, Sheng; Xie, Tian; Ravensbergen, Kristina; Hahm, Jong-in

    2016-02-14

    With the recent development of biomaterials and biodevices with reduced dimensionality, it is critical to comprehend protein adhesion processes to nanoscale solid surfaces, especially those occurring in a competitive adsorption environment. Complex sequences of adhesion events in competitive adsorption involving multicomponent protein systems have been extensively investigated, but our understanding is still limited primarily to macroscopic adhesion onto chemically simple surfaces. We examine the competitive adsorption behavior from a binary protein mixture containing bovine serum albumin and fibrinogen at the single protein level. We subsequently evaluate a series of adsorption and displacement processes occurring on both the macroscopic homopolymer and nanoscopic diblock copolymer surfaces, while systematically varying the protein concentration and incubation time. We identify the similarities and dissimilarities in competitive protein adsorption behavior between the two polymeric surfaces, the former presenting chemical uniformity at macroscale versus the latter exhibiting periodic nanointerfaces of chemically alternating polymeric segments. We then present our novel experimental finding of a large increase in the nanointerface-engaged residence time of the initially bound proteins and further explain the origin of this phenomenon manifested on nanoscale diblock copolymer surfaces. The outcomes of this study may provide timely insight into nanoscale competitive protein adsorption that is much needed in designing bioimplant and tissue engineering materials. In addition, the fundamental understanding gained from this study can be beneficial for the development of highly miniaturized biodevices and biomaterials fabricated by using nanoscale polymeric materials and interfaces. PMID:26794230

  11. The Effect of Tianmai Xiaoke Pian on Insulin Resistance through PI3-K/AKT Signal Pathway

    PubMed Central

    Wang, Nana; Li, Tiegang; Han, Ping

    2016-01-01

    In the clinical setting, given the potential adverse effects of thiazolidinediones and biguanides, we often have difficulty in treatment that no other insulin sensitizers are available for use in type 2 diabetic mellitus (T2DM) patients. Tianmai Xiaoke Pian (TMXKP) is a traditional Chinese medicine tablet, which is comprised of chromium picolinate, Tianhuafen, Maidong, and Wuweizi. To understand its mechanism of action on insulin resistance, TMXKP (50 mg/kg orally) was tested in T2DM rats (induced by a high-fat diet and streptozotocin). Eight weeks later, fasting blood glucose (FBG) and oral glucose tolerance tests (OGTT) were performed. Area under the curve (AUC) and homeostatic model assessment of insulin resistance (HOMA-IR) were calculated, and PI3-K/AKT signal pathway-related genes and proteins were tested by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis in muscle, adipose, and liver tissues, respectively. TMXKP significantly reduced FBG, OGTT, AUC, and HOMA-IR in diabetic rats (P < 0.05). Furthermore, we also observed that TMXKP could significantly decrease IRS-1, IRS-2, PI3-K p85α, and AKT2 gene expression and also IRS-1, IRS-2, PI3-K, AKT2, and p-AKT2 protein expression levels (P < 0.05) in diabetic rats. These findings confirm that TMXKP can alleviate insulin resistance in T2DM rats through the PI3K/AKT pathway. Thus TMXKP appears to be a promising insulin sensitizer. PMID:26640808

  12. Morphine Suppresses T helper Lymphocyte Differentiation to Th1 Type Through PI3K/AKT Pathway.

    PubMed

    Mao, Mao; Qian, Yanning; Sun, Jie

    2016-04-01

    To investigate the effect of morphine on T helper lymphocyte differentiation and PI3K/AKT pathway mechanism, CD4+ lymphocytes were treated by phorbol-myristate-acetate (25 ng/ml) (PMA) plus ionomycin (1 μg/ml) in the presence of various concentrations of morphine (25, 50, 100, 200 ng/ml) for 4 h. Th1 and Th2 subsets, supernatant cytokines, and PI3K, AKT, and protein kinase C-theta (PKC-θ) levels were detected. The Th1 cell percentage, Th1-derived cytokines, and ratio of Th1/Th2 decreased in the presence of morphine in a concentration-dependent manner. However, Th2 cell percentage kept stable after morphine treatment. The phosphorylation of PI3K and AKT decreased, but the phosphorylation of PKC-θ did not change in the presence of morphine. The decreased percentage of Th1 cells and ratio of Th1/Th2 was recovered by naloxone concentration-dependently. Morphine can inhibit the differentiation of Th1 lymphocytes and decrease the ratio of Th1/Th2 via the pathway of PI3K/AKT. The effect can be inhibited by naloxone. PMID:26883517

  13. Akt- and CREB-Mediated Prostate Cancer Cell Proliferation Inhibition by Nexrutine, a Phellodendron amurense Extract1

    PubMed Central

    Garcia, Gretchen E; Nicole, Arevalo; Bhaskaran, Shylesh; Gupta, Ashima; Kyprianou, Natasha; Kumar, Addanki P

    2006-01-01

    Abstract Evidence from epidemiological studies suggests that plant-based diets can reduce the risk of prostate cancer. However, very little information is available concerning the use of botanicals in preventing prostate cancer. As a first step toward developing botanicals as prostate cancer preventives, we examined the effect of Nexrutine on human prostate cancer cells. Nexrutine is a herbal extract developed from Phellodendron amurense. Phellodendron extracts have been used traditionally in Chinese medicine for hundreds of years as an anti-diarrheal, astringent, and anti-inflammatory agent. The present study investigated its potential antitumor effect on human prostate cancer cells. Our results suggest that it inhibits tumor cell proliferation through apoptosis induction and inhibition of cell survival signaling. The results of the present study indicate that Nexrutine treatment 1) inhibits the proliferation of both androgen-responsive and androgen-independent human prostate cancer cells through induction of apoptosis; 2) reduces levels of pAkt, phosphorylated cAMP response-binding protein (pCREB), and CREB DNA-binding activity; and 3) induces apoptosis in prostate cancer cells stably overexpressing Bcl-2. Further Akt kinase activity was reduced in cells treated with Nexrutine, and ectopic expression of myristoylated Akt protected from Nexrutine induced inhibition of proliferation, implicating a role for Akt signaling. PMID:16820098

  14. Neutrophil AKT2 regulates heterotypic cell-cell interactions during vascular inflammation.

    PubMed

    Li, Jing; Kim, Kyungho; Hahm, Eunsil; Molokie, Robert; Hay, Nissim; Gordeuk, Victor R; Du, Xiaoping; Cho, Jaehyung

    2014-04-01

    Interactions between platelets, leukocytes, and activated endothelial cells are important during microvascular occlusion; however, the regulatory mechanisms of these heterotypic cell-cell interactions remain unclear. Here, using intravital microscopy to evaluate mice lacking specific isoforms of the serine/threonine kinase AKT and bone marrow chimeras, we found that hematopoietic cell-associated AKT2 is important for neutrophil adhesion and crawling and neutrophil-platelet interactions on activated endothelial cells during TNF-α-induced venular inflammation. Studies with an AKT2-specific inhibitor and cells isolated from WT and Akt KO mice revealed that platelet- and neutrophil-associated AKT2 regulates heterotypic neutrophil-platelet aggregation under shear conditions. In particular, neutrophil AKT2 was critical for membrane translocation of αMβ2 integrin, β2-talin1 interaction, and intracellular Ca2+ mobilization. We found that the basal phosphorylation levels of AKT isoforms were markedly increased in neutrophils and platelets isolated from patients with sickle cell disease (SCD), an inherited hematological disorder associated with vascular inflammation and occlusion. AKT2 inhibition reduced heterotypic aggregation of neutrophils and platelets isolated from SCD patients and diminished neutrophil adhesion and neutrophil-platelet aggregation in SCD mice, thereby improving blood flow rates. Our results provide evidence that neutrophil AKT2 regulates αMβ2 integrin function and suggest that AKT2 is important for neutrophil recruitment and neutrophil-platelet interactions under thromboinflammatory conditions such as SCD. PMID:24642468

  15. Regulation of Akt signaling by Sirtuins: Its implication in cardiac hypertrophy and aging

    PubMed Central

    Pillai, Vinodkumar B.; Sundaresan, Nagalingam R.; Gupta, Mahesh P.

    2014-01-01

    Cardiac hypertrophy is a multifactorial disease characterized by multiple molecular alterations. One of these alterations is change in activity of Akt, which plays a central role in regulating a variety of cellular processes ranging from cell survival to aging. Akt activation is mainly achieved by its binding to phosphatidylinositol 3,4,5 triphosphate (PIP3). This results in a conformational change that exposes the kinase domain of Akt for phosphorylation and activation by its upstream kinase PDK1 in the cell membrane. Recent studies have shown that sirtuin isoforms SIRT1, SIRT3 and SIRT6 play an essential role in the regulation of Akt activation. While SIRT1 deacetylates Akt to promote PIP3 binding and activation, SIRT3 controls ROS-mediated Akt activation and SIRT6 transcriptionally represses Akt at the level of chromatin. In the first part of this review, we discuss the mechanisms by which sirtuins regulate Akt activation and how they influence other post-translational modifications of Akt. In the latter part of the review, we summarize the implications of sirtuin-dependent regulation of Akt signaling in the control of major cellular processes like cellular growth, angiogenesis, apoptosis, autophagy and aging; which are involved in the initiation and progression of several diseases. PMID:24436432

  16. Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt.

    PubMed

    Murata, Hiroaki; Ihara, Yoshito; Nakamura, Hajime; Yodoi, Junji; Sumikawa, Koji; Kondo, Takahito

    2003-12-12

    Glutaredoxin (GRX) is a small dithiol protein involved in various cellular functions, including the redox regulation of certain enzyme activities. GRX functions via a disulfide exchange reaction by utilizing the active site Cys-Pro-Tyr-Cys. Here we demonstrated that overexpression of GRX protected cells from hydrogen peroxide (H2O2)-induced apoptosis by regulating the redox state of Akt. Akt was transiently phosphorylated, dephosphorylated, and then degraded in cardiac H9c2 cells undergoing H2O2-induced apoptosis. Under stress, Akt underwent disulfide bond formation between Cys-297 and Cys-311 and dephosphorylation in accordance with an increased association with protein phosphatase 2A. Overexpression of GRX protected Akt from H2O2-induced oxidation and suppressed recruitment of protein phosphatase 2A to Akt, resulting in a sustained phosphorylation of Akt and inhibition of apoptosis. This effect was reversed by cadmium, an inhibitor of GRX. Furthermore an in vitro assay revealed that GRX reduced oxidized Akt in concert with glutathione, NADPH, and glutathione-disulfide reductase. Thus, GRX plays an important role in protecting cells from apoptosis by regulating the redox state of Akt. PMID:14522978

  17. Garlic Oil Suppressed Nitrosodiethylamine-Induced Hepatocarcinoma in Rats by Inhibiting PI3K-AKT-NF-κB Pathway.

    PubMed

    Zhang, Cui-Li; Zeng, Tao; Zhao, Xiu-Lan; Xie, Ke-Qin

    2015-01-01

    To explore the underlying mechanisms for the protective effects of garlic oil (GO) against nitrosodiethylamine (NDEA)-induced hepatocarcinoma, 60 male Wistar rats were randomized into 4 groups (n=15): control group, NDEA group, and two GO plus NDEA groups. The rats in GO plus NDEA groups were pretreated with GO (20 or 40 mg/kg) for 7 days. Then, all rats except those in control group were gavaged with NDEA for 20 weeks, and the rats in GO plus NDEA groups were continuously administered with GO. The results showed that GO co-treatment significantly suppressed the NDEA-induced increases of alpha fetal protein (AFP) level in serum, nuclear atypia in H&E staining, sirius red-positive areas and proliferating cell nuclear antigen (PCNA) expression. The molecular mechanisms exploration revealed that the protein levels of phosphatidylinositol 3 kinase (PI3K)-p85, PI3K-p110, total AKT, p-AKT (Ser473) and p-AKT (Thr308) in the liver of NDEA group rats were higher than those in control group rats. In addition, NDEA treatment induced IκB degradation and NF-κB p65 phosphorylation, and up-regulated the protein levels of downstream pro-inflammatory mediators. GO co-treatment significantly reversed all the above adverse effects induced by NDEA. These results suggested that the protective effects of GO against NDEA-induced hepatocarcinoma might be associated with the suppression of PI3K- AKT-NF-κB pathway. PMID:25999787

  18. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    SciTech Connect

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung; Lee, Joo Young

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. Black-Right-Pointing-Pointer PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. Black-Right-Pointing-Pointer p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. Black-Right-Pointing-Pointer Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl{sub 2}. Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1{alpha}. A PI3K inhibitor (LY294002) attenuated CoCl{sub 2}-induced nuclear accumulation and transcriptional activation of HIF-1{alpha}. In addition, HIF-1{alpha}-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl{sub 2}-induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1{alpha}. However, p38 was not involved in HIF-1{alpha} activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K/Akt

  19. Effect of Crude Protein Levels in Concentrate and Concentrate Levels in Diet on In vitro Fermentation

    PubMed Central

    Van Dung, Dinh; Shang, Weiwei; Yao, Wen

    2014-01-01

    The effect of concentrate mixtures with crude protein (CP) levels 10%, 13%, 16%, and 19% and diets with roughage to concentrate ratios 80:20, 60:40, 40:60, and 20:80 (w/w) were determined on dry matter (DM) and organic matter (OM) digestibility, and fermentation metabolites using an in vitro fermentation technique. In vitro fermented attributes were measured after 4, 24, and 48 h of incubation respectively. The digestibility of DM and OM, and total volatile fatty acid (VFA) increased whereas pH decreased with the increased amount of concentrate in the diet (p<0.001), however CP levels of concentrate did not have any influence on these attributes. Gas production reduced with increased CP levels, while it increased with increasing concentrate levels. Ammonia nitrogen (NH3-N) concentration and microbial CP production increased significantly (p<0.05) by increasing CP levels and with increasing concentrate levels in diet as well, however, no significant difference was found between 16% and 19% CP levels. Therefore, 16% CP in concentrate and increasing proportion of concentrate up to 80% in diet all had improved digestibility of DM and organic matter, and higher microbial protein production, with improved fermentation characteristics. PMID:25050017

  20. Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity.

    PubMed

    Gingras, Andrée-Anne; White, Phillip James; Chouinard, P Yvan; Julien, Pierre; Davis, Teresa A; Dombrowski, Luce; Couture, Yvon; Dubreuil, Pascal; Myre, Alexandre; Bergeron, Karen; Marette, André; Thivierge, M Carole

    2007-02-15

    The ability of the skeletal musculature to use amino acids to build or renew constitutive proteins is gradually lost with age and this is partly due to a decline in skeletal muscle insulin sensitivity. Since long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) from fish oil are known to improve insulin-mediated glucose metabolism in insulin-resistant states, their potential role in regulating insulin-mediated protein metabolism was investigated in this study. Experimental data are based on a switchback design composed of three 5 week experimental periods using six growing steers to compare the effect of a continuous abomasal infusion of LCn-3PUFA-rich menhaden oil with an iso-energetic control oil mixture. Clamp and insulin signalling observations were combined with additional data from a second cohort of six steers. We found that enteral LCn-3PUFA potentiate insulin action by increasing the insulin-stimulated whole-body disposal of amino acids from 152 to 308 micromol kg(-1) h(-1) (P=0.006). The study further showed that in the fed steady-state, chronic adaptation to LCn-3PUFA induces greater activation (P<0.05) of the Akt-mTOR-S6K1 signalling pathway. Simultaneously, whole-body total flux of phenylalanine was reduced from 87 to 67 micromol kg(-1) h(-1) (P=0.04) and oxidative metabolism was decreased (P=0.05). We conclude that chronic feeding of menhaden oil provides a novel nutritional mean to enhance insulin-sensitive aspects of protein metabolism. PMID:17158167

  1. Linker for Activation of T-cell Family Member2 (LAT2) a Lipid Raft Adaptor Protein for AKT Signaling, Is an Early Mediator of Alkylphospholipid Anti-leukemic Activity*

    PubMed Central

    Thomé, Carolina H.; dos Santos, Guilherme A.; Ferreira, Germano A.; Scheucher, Priscila S.; Izumi, Clarice; Leopoldino, Andreia M.; Simão, Ana Maria; Ciancaglini, Pietro; de Oliveira, Kleber T.; Chin, Alice; Hanash, Samir M.; Falcão, Roberto P.; Rego, Eduardo M.; Greene, Lewis J.; Faça, Vitor M.

    2012-01-01

    Lipid rafts are highly ordered membrane domains rich in cholesterol and sphingolipids that provide a scaffold for signal transduction proteins; altered raft structure has also been implicated in cancer progression. We have shown that 25 μm 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC), an alkylphospholipid, targets high cholesterol domains in model membranes and induces apoptosis in leukemia cells but spares normal hematopoietic and epithelial cells under the same conditions. We performed a quantitative (SILAC) proteomic screening of ODPC targets in a lipid-raft-enriched fraction of leukemic cells to identify early events prior to the initiation of apoptosis. Six proteins, three with demonstrated palmitoylation sites, were reduced in abundance. One, the linker for activation of T-cell family member 2 (LAT2), is an adaptor protein associated with lipid rafts in its palmitoylated form and is specifically expressed in B lymphocytes and myeloid cells. Interestingly, LAT2 is not expressed in K562, a cell line more resistant to ODPC-induced apoptosis. There was an early loss of LAT2 in the lipid-raft-enriched fraction of NB4 cells within 3 h following treatment with 25 μm ODPC. Subsequent degradation of LAT2 by proteasomes was observed. Twenty-five μm ODPC inhibited AKT activation via myeloid growth factors, and LAT2 knockdown in NB4 cells by shRNA reproduced this effect. LAT2 knockdown in NB4 cells also decreased cell proliferation and increased cell sensitivity to ODPC (7.5×), perifosine (3×), and arsenic trioxide (8.5×). Taken together, these data indicate that LAT2 is an early mediator of the anti-leukemic activity of alkylphospholipids and arsenic trioxide. Thus, LAT2 may be used as a target for the design of drugs for cancer therapy. PMID:23001822

  2. Linker for activation of T-cell family member2 (LAT2) a lipid raft adaptor protein for AKT signaling, is an early mediator of alkylphospholipid anti-leukemic activity.

    PubMed

    Thomé, Carolina H; dos Santos, Guilherme A; Ferreira, Germano A; Scheucher, Priscila S; Izumi, Clarice; Leopoldino, Andreia M; Simão, Ana Maria; Ciancaglini, Pietro; de Oliveira, Kleber T; Chin, Alice; Hanash, Samir M; Falcão, Roberto P; Rego, Eduardo M; Greene, Lewis J; Faça, Vitor M

    2012-12-01

    Lipid rafts are highly ordered membrane domains rich in cholesterol and sphingolipids that provide a scaffold for signal transduction proteins; altered raft structure has also been implicated in cancer progression. We have shown that 25 μm 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC), an alkylphospholipid, targets high cholesterol domains in model membranes and induces apoptosis in leukemia cells but spares normal hematopoietic and epithelial cells under the same conditions. We performed a quantitative (SILAC) proteomic screening of ODPC targets in a lipid-raft-enriched fraction of leukemic cells to identify early events prior to the initiation of apoptosis. Six proteins, three with demonstrated palmitoylation sites, were reduced in abundance. One, the linker for activation of T-cell family member 2 (LAT2), is an adaptor protein associated with lipid rafts in its palmitoylated form and is specifically expressed in B lymphocytes and myeloid cells. Interestingly, LAT2 is not expressed in K562, a cell line more resistant to ODPC-induced apoptosis. There was an early loss of LAT2 in the lipid-raft-enriched fraction of NB4 cells within 3 h following treatment with 25 μm ODPC. Subsequent degradation of LAT2 by proteasomes was observed. Twenty-five μm ODPC inhibited AKT activation via myeloid growth factors, and LAT2 knockdown in NB4 cells by shRNA reproduced this effect. LAT2 knockdown in NB4 cells also decreased cell proliferation and increased cell sensitivity to ODPC (7.5×), perifosine (3×), and arsenic trioxide (8.5×). Taken together, these data indicate that LAT2 is an early mediator of the anti-leukemic activity of alkylphospholipids and arsenic trioxide. Thus, LAT2 may be used as a target for the design of drugs for cancer therapy. PMID:23001822

  3. The PTEN/PI3K/AKT Pathway in vivo, Cancer Mouse Models

    PubMed Central

    Carnero, Amancio; Paramio, Jesus M.

    2014-01-01

    When PI3K (phosphatidylinositol-3 kinase) is activated by receptor tyrosine kinases, it phosphorylates PIP2 to generate PIP3 and activates the signaling pathway. Phosphatase and tensin homolog deleted on chromosome 10 dephosphorylates PIP3 to PIP2, and thus, negatively regulates the pathway. AKT (v-akt murine thymoma viral oncogene homolog; protein kinase B) is activated downstream of PIP3 and mediates physiological processes. Furthermore, substantial crosstalk exists with other signaling networks at all levels of the PI3K pathway. Because of its diverse array, gene mutations, and amplifications and also as a consequence of its central role in several signal transduction pathways, the PI3K-dependent axis is frequently activated in many tumors and is an attractive therapeutic target. The preclinical testing and analysis of these novel therapies requires appropriate and well-tailored systems. Mouse models in which this pathway has been genetically modified have been essential in understanding the role that this pathway plays in the tumorigenesis process. Here, we review cancer mouse models in which the PI3K/AKT pathway has been genetically modified. PMID:25295225

  4. Singularity analysis of the AKT signaling pathway reveals connections between cancer and metabolic diseases

    NASA Astrophysics Data System (ADS)

    Wang, Guanyu

    2010-12-01

    Connections between cancer and metabolic diseases may consist in the complex network of interactions among a common set of biomolecules. By applying singularity and bifurcation analysis, the phenotypes constrained by the AKT signaling pathway are identified and mapped onto the parameter space, which include cancer and certain metabolic diseases. By considering physiologic properties (sensitivity, robustness and adaptivity) the AKT pathway must possess in order to efficiently sense growth factors and nutrients, the region of normal responses is located. To optimize these properties, the intracellular concentration of the AKT protein must be sufficiently high to saturate its enzymes; the strength of the positive feedback must be stronger than that of the negative feedback. The analysis illuminates the parameter space and reveals system-level mechanisms in regulating biological functions (cell growth, survival, proliferation and metabolism) and how their deregulation may lead to the development of diseases. The analytical expressions summarize the synergistic interactions among many molecules, which provides valuable insights into therapeutic interventions. In particular, a strategy for overcoming the limitations of mTOR inhibition is proposed for cancer therapy.

  5. Akt Specific Activator SC79 Protects against Early Brain Injury following Subarachnoid Hemorrhage.

    PubMed

    Zhang, Dingding; Zhang, Huasheng; Hao, Shuangying; Yan, Huiying; Zhang, Zihuan; Hu, Yangchun; Zhuang, Zong; Li, Wei; Zhou, Mengliang; Li, Kuanyu; Hang, Chunhua

    2016-06-15

    A growing body of evidence demonstrates that Akt may serve as a therapeutic target for treatment of early brain injury following subarachnoid hemorrhage (SAH). The purpose of the current study was to evaluate the neuroprotective effect of Akt specific activator SC79 in an experimental rat model of SAH. SAH was induced by injecting 300 μL of blood into the prechiasmatic cistern. Intracerebroventricular (ICV) injection of SC79 (30 min post-SAH) induced the p-Akt (Ser473) expression in a dose-dependent manner. A single ICV dose treatment of SC79 (100 μg/rat) significantly increased the expression of Bcl-2 and p-GSK-3β (Ser9), decreased the protein levels of Bax, cytoplasm cytochrome c, and cleaved caspase-3, indicating the antiapoptotic effect of SC79. As a result, the number of apoptotic cells was reduced 24 h post SAH. Moreover, SC79 treatment alleviated SAH-induced oxidative stress, restored mitochondrial morphology, and improved neurological deficits. Strikingly, treatment of SC79 provided a beneficial outcome against neurologic deficit with a therapeutic window of at least 4 h post SAH by ICV injection and 30 min post SAH by intraperitoneal injection. Collectively, SC79 exerts its neuroprotective effect likely through the dual activities of antioxidation and antiapoptosis. These data provide a basic platform to consider SC79 as a novel therapeutic agent for treatment of SAH. PMID:26983552

  6. Cellular context–mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis

    PubMed Central

    Hellesøy, Monica; Lorens, James B.

    2015-01-01

    The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis. PMID:26023089

  7. Prediabetes Linked to Excess Glucagon in Transgenic Mice with Pancreatic Active AKT1

    PubMed Central

    Albury-Warren, Toya M.; Pandey, Veethika; Spinel, Lina P.; Masternak, Michal M.; Altomare, Deborah A

    2015-01-01

    Protein Kinase B/AKT, has three isoforms (AKT1-3) and is renowned for its central role in the regulation of cell growth and proliferation, due to its constitutive activation in various cancers. AKT2, which is highly expressed in insulin responsive tissues, has been identified as a primary regulator of glucose metabolism as Akt2 knockout mice (Akt2−/−) are glucose intolerant and insulin resistant. However, the role of AKT1 in glucose metabolism is not as clearly defined. We previously showed that mice with myristoylated Akt1 (AKT1Myr) expressed through a bicistronic Pdx1-TetA and TetO-MyrAkt1 system were susceptible to islet cell carcinomas, and in this study we characterized an early onset, prediabetic phenotype. Beginning at weaning (3 weeks of age), the glucose intolerant AKT1Myr mice exhibited non-fasted hyperglycemia, which progressed to fasted hyperglycemia by 5 months of age. The glucose intolerance was attributed to a fasted hyperglucagonemia, and hepatic insulin resistance detectable by reduced phosphorylation of the insulin receptor following insulin injection into the inferior vena cava. In contrast, treatment with doxycycline diet to turn-off the transgene, caused attenuation of the non-fasted and fasted hyperglycemia, thus affirming AKT1 hyperactivation as the trigger. Collectively, this model highlights a novel glucagon-mediated mechanism by which AKT1 hyperactivation affects glucose homeostasis, and provides an avenue to better delineate the molecular mechanisms responsible for diabetes mellitus and the potential association with pancreatic cancer. PMID:26487674

  8. Prediabetes linked to excess glucagon in transgenic mice with pancreatic active AKT1.

    PubMed

    Albury-Warren, Toya M; Pandey, Veethika; Spinel, Lina P; Masternak, Michal M; Altomare, Deborah A

    2016-01-01

    Protein kinase B/AKT has three isoforms (AKT1-3) and is renowned for its central role in the regulation of cell growth and proliferation, due to its constitutive activation in various cancers. AKT2, which is highly expressed in insulin-responsive tissues, has been identified as a primary regulator of glucose metabolism as Akt2 knockout mice (Akt2(-/-)) are glucose-intolerant and insulin-resistant. However, the role of AKT1 in glucose metabolism is not as clearly defined. We previously showed that mice with myristoylated Akt1 (AKT1(Myr)) expressed through a bicistronic Pdx1-TetA and TetO-MyrAkt1 system were susceptible to islet cell carcinomas, and in this study we characterized an early onset, prediabetic phenotype. Beginning at weaning (3 weeks of age), the glucose-intolerant AKT1(Myr) mice exhibited non-fasted hyperglycemia, which progressed to fasted hyperglycemia by 5 months of age. The glucose intolerance was attributed to a fasted hyperglucagonemia, and hepatic insulin resistance detectable by reduced phosphorylation of the insulin receptor following insulin injection into the inferior vena cava. In contrast, treatment with doxycycline diet to turn off the transgene caused attenuation of the non-fasted and fasted hyperglycemia, thus affirming AKT1 hyperactivation as the trigger. Collectively, this model highlights a novel glucagon-mediated mechanism by which AKT1 hyperactivation affects glucose homeostasis and provides an avenue to better delineate the molecular mechanisms responsible for diabetes mellitus and the potential association with pancreatic cancer. PMID:26487674

  9. G-protein coupled receptor 34 activates Erk and phosphatidylinositol 3-kinase/Akt pathways and functions as alternative pathway to mediate p185Bcr-Abl-induced transformation and leukemogenesis.

    PubMed

    Zuo, Bo; Li, Mei; Liu, Yulan; Li, Kun; Ma, Shuyun; Cui, Meihua; Qin, Yazhen; Zhu, Honghu; Pan, Xiuying; Guo, Jingzhu; Dai, Zonghan; Yu, Weidong

    2015-07-01

    Tyrosine 177 and the Src homology 2 (SH2) domain play important roles in linking p185Bcr-Abl to downstream pathways critical for cell growth and survival. However, a mutant p185(Y177FR552L) (p185(YR)), in which tyrosine 177 and arginine 552 in the SH2 domain are mutated, is still capable of transforming hematopoietic cells in vitro. Transplant of these cells into syngeneic mice also leads to leukemogenesis, albeit with a phenotype distinct from that produced by wild-type p185Bcr-Abl (p185(wt))-transformed cells. Here we show that G-protein coupled receptor 34 (Gpr34) expression is markedly up-regulated in p185(YR)-transformed cells compared to those transformed by p185(wt). Knockdown of Gpr34 in p185(YR) cells is sufficient to suppress growth factor-independent proliferation and survival in vitro and attenuate leukemogenesis in vivo. The Erk and phosphatidylinositol 3-kinase/Akt pathways are activated in p185(YR) cells and the activation is dependent on Gpr34 expression. These studies identify Gpr34 as an alternative pathway that may mediate p185Bcr-Abl-induced transformation and leukemogenesis. PMID:25363403

  10. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: role of the PI3K/AKT pathway and associated microRNAs.

    PubMed

    Banerjee, Nivedita; Kim, Hyemee; Krenek, Kimberly; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2015-08-01

    The cytotoxic and anti-inflammatory properties of mango polyphenolics including gallic acid and gallotannins have been demonstrated in numerous types of cancers. We hypothesized that the phosphoinositide 3-kinase (PI3K)/AKT pathway and the expression of related miRNAs are involved in the chemotherapeutic activities of mango polyphenolics in a mouse xenograft model for breast cancer. The objectives of this research were to determine the tumor-cytotoxic activities of mango polyphenolics and the underlying molecular mechanisms involving posttranscriptional targets in BT474 breast cancer cells and xenografts in mice. In vitro findings showed cytotoxic effects of mango polyphenolics in BT474 breast cancer cells within a concentration range of 2.5 to 20 mg/L gallic acid equivalents. Mango polyphenolics suppressed the expression of PI3K, AKT, hypoxia inducible factor-1α, and vascular endothelial growth factor (VEGF) mRNA, and pAKT, AKT, pPI3K (p85), VEGF and nuclear factor-kappa B protein levels. The involvement of miR-126 was verified by using antagomiR for miR-126, where mango reversed the effect of the antagomiR of miR-126. In vivo, the intake of mango polyphenolics decreased the tumor volume by 73% in BT474 xenograft-bearing mice compared with the control group. In addition, mango reduced the expression of nuclear factor-kappa B (p65), pAKT, pPI3K, mammalian target of rapamycin, hypoxia inducible factor-1α, and VEGF protein in athymic nude mice. A screening for miRNA expression changes confirmed that mango polyphenolics modulated the expression of cancer-associated miRNAs including miR-126 in the xenografted tumors. In summary, mango polyphenolics have a chemotherapeutic potential against breast cancer that at least in part is mediated through the PI3K/AKT pathway and miR-126. PMID:26194618

  11. The effect of estrogen on the proliferation of endometrial cancer cells is mediated by ERRγ through AKT and ERK1/2.

    PubMed

    Sun, Yan; Wang, Cuicui; Yang, Hui; Ma, Xiaoxin

    2014-09-01

    The objective of this study was to explore the effects and underlying mechanism of estrogen-related receptor γ (ERRγ) on the proliferation of endometrial carcinoma cells. Ishikawa cells, human endometrial cancer cells, were treated with estrogen. Immunofluorescence was used to observe the expression of ERRγ. Stable transfection with the plasmid containing ERRγ shRNA was carried out to knock down the expression of ERRγ in Ishikawa cells. MTT assays were performed to analyze the proliferation of Ishikawa cells. The activation of extracellular signal-regulated protein kinase (ERK)1/2 and activated protein kinase B (AKT) signaling pathways was identified using specific phosphorylated antibodies against ERK1/2 and AKT. PD98059, a MEK inhibitor, and LY294002, a PI3K inhibitor, were used in the inhibition experiments. ERRγ could translocate from the cytoplasm to the nucleus in Ishikawa cells after exposure to estrogen. Knockdown of ERRγ inhibited estrogen-induced proliferation of Ishikawa cells. More interestingly, knockdown of ERRγ abolished the activation of ERK1/2 and AKT in the Ishikawa cells treated with estrogen. Inhibition of AKT in Ishikawa cells with LY294002 resulted in a significant reduction in the levels of phospho-ERK1/2, whereas inhibition of ERK1/2 with PD98059 exerted no effects on AKT activation. Our data showed that ERRγ mediated the effects of estrogen on the proliferation of endometrial cancer cells through the activation AKT and ERK1/2 signaling pathways, which indicated that ERRγ plays a key role in endometrial cancer. PMID:25068805

  12. Gardenamide A Protects RGC-5 Cells from H2O2-Induced Oxidative Stress Insults by Activating PI3K/Akt/eNOS Signaling Pathway

    PubMed Central

    Wang, Rikang; Peng, Lizhi; Zhao, Jiaqiang; Zhang, Laitao; Guo, Cuiping; Zheng, Wenhua; Chen, Heru

    2015-01-01

    Gardenamide A (GA) protects the rat retinal ganglion (RGC-5) cells against cell apoptosis induced by H2O2. The protective effect of GA was completely abrogated by the specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and the specific protein kinase B (Akt) inhibitor Akt VIII respectively, indicating that the protective mechanism of GA is mediated by the PI3K/Akt signaling pathway. The specific extracellular signal-regulated kinase (ERK1/2) inhibitor PD98059 could not block the neuroprotection of GA. GA attenuated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) induced by H2O2. Western blotting showed that GA promoted the phosphorylation of ERK1/2, Akt and endothelial nitric oxide synthase (eNOS), respectively, and effectively reversed the H2O2-inhibited phosphorylation of these three proteins. LY294002 completely inhibited the GA-activated phosphorylation of Akt, while only partially inhibiting eNOS. This evidence implies that eNOS may be activated directly by GA. PD98059 attenuated only partially the GA-induced phosphorylation of ERK1/2 with/without the presence of H2O2, indicating that GA may activate ERK1/2 directly. All these results put together confirm that GA protects RGC-5 cells from H2O2 insults via the activation of PI3K/Akt/eNOS signaling pathway. Whether the ERK1/2 signaling pathway is involved requires further investigations. PMID:26389892

  13. PKC and AKT Modulate cGMP/PKG Signaling Pathway on Platelet Aggregation in Experimental Sepsis.

    PubMed

    Lopes-Pires, M Elisa; Naime, Ana C Antunes; Almeida Cardelli, Nádia J; Anjos, Débora J; Antunes, Edson; Marcondes, Sisi

    2015-01-01

    Sepsis severity has been positively correlated with platelet dysfunction, which may be due to elevations in nitric oxide (NO) and cGMP levels. Protein kinase C, Src kinases, PI3K and AKT modulate platelet activity in physiological conditions, but no studies evaluated the role of these enzymes in platelet aggregation in sepsis. In the present study we tested the hypothesis that in sepsis these enzymes positively modulate upstream the NO-cGMP pathway resulting in platelet inhibition. Rats were injected with lipopolysaccharide (LPS, 1 mg/kg, i.p.) and blood was collected after 6 h. Platelet aggregation was induced by ADP (10 μM). Western blotting assays were carried out to analyze c-Src and AKT activation in platelets. Intraplatelet cGMP levels were determined by enzyme immunoassay kit. Phosphorylation of c-SRC at Tyr416 was the same magnitude in platelets of control and LPS group. Incubation of the non-selective Src inhibitor PP2 (10 μM) had no effect on platelet aggregation of LPS-treated rats. LPS increased intraplatelet cGMP levels by 5-fold compared with control group, which was accompanied by 76% of reduction in ADP-induced platelet aggregation. The guanylyl cyclase inhibitor ODQ (25 μM) and the PKG inhibitor Rp-8-Br-PET-cGMPS (25 μM) fully reversed the inhibitory effect of LPS on platelet aggregation. Likewise, the PKC inhibitor GF109203X (10 μM) reversed the inhibition by LPS of platelet aggregation and decreased cGMP levels in platelets. AKT phosphorylation at Thr308 was significantly higher in platelets of LPS compared with control group, which was not reduced by PI3K inhibition. The AKT inhibitor API-1 (20 μM) significantly increased aggregation and reduced cGMP levels in platelets of LPS group. However, the PI3K inhibitor wortmannin and LY29004 had no effect on platelet aggregation of LPS-treated rats. Therefore, inhibition of ADP-induced platelet aggregation after LPS injection is mediated by cGMP/PKG-dependent mechanisms, and PKC and AKT act

  14. PKC and AKT Modulate cGMP/PKG Signaling Pathway on Platelet Aggregation in Experimental Sepsis

    PubMed Central

    Lopes-Pires, M. Elisa; Naime, Ana C. Antunes; Almeida Cardelli, Nádia J.; Anjos, Débora J.; Antunes, Edson; Marcondes, Sisi

    2015-01-01

    Sepsis severity has been positively correlated with platelet dysfunction, which may be due to elevations in nitric oxide (NO) and cGMP levels. Protein kinase C, Src kinases, PI3K and AKT modulate platelet activity in physiological conditions, but no studies evaluated the role of these enzymes in platelet aggregation in sepsis. In the present study we tested the hypothesis that in sepsis these enzymes positively modulate upstream the NO-cGMP pathway resulting in platelet inhibition. Rats were injected with lipopolysaccharide (LPS, 1 mg/kg, i.p.) and blood was collected after 6 h. Platelet aggregation was induced by ADP (10 μM). Western blotting assays were carried out to analyze c-Src and AKT activation in platelets. Intraplatelet cGMP levels were determined by enzyme immunoassay kit. Phosphorylation of c-SRC at Tyr416 was the same magnitude in platelets of control and LPS group. Incubation of the non-selective Src inhibitor PP2 (10 μM) had no effect on platelet aggregation of LPS-treated rats. LPS increased intraplatelet cGMP levels by 5-fold compared with control group, which was accompanied by 76% of reduction in ADP-induced platelet aggregation. The guanylyl cyclase inhibitor ODQ (25 μM) and the PKG inhibitor Rp-8-Br-PET-cGMPS (25 μM) fully reversed the inhibitory effect of LPS on platelet aggregation. Likewise, the PKC inhibitor GF109203X (10 μM) reversed the inhibition by LPS of platelet aggregation and decreased cGMP levels in platelets. AKT phosphorylation at Thr308 was significantly higher in platelets of LPS compared with control group, which was not reduced by PI3K inhibition. The AKT inhibitor API-1 (20 μM) significantly increased aggregation and reduced cGMP levels in platelets of LPS group. However, the PI3K inhibitor wortmannin and LY29004 had no effect on platelet aggregation of LPS-treated rats. Therefore, inhibition of ADP-induced platelet aggregation after LPS injection is mediated by cGMP/PKG-dependent mechanisms, and PKC and AKT act

  15. Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser157) and dephosphorylation of PI3K and Akt

    PubMed Central

    Kwon, Hyuk-Woo; Shin, Jung-Hae; Cho, Hyun-Jeong; Rhee, Man Hee; Park, Hwa-Jin

    2015-01-01

    Background Binding of adhesive proteins (i.e., fibrinogen, fibronectin, vitronectin) to platelet integrin glycoprotein IIb/IIIa (αIIb/β3) by various agonists (thrombin, collagen, adenosine diphosphate) involve in strength of thrombus. This study was carried out to evaluate the antiplatelet effect of total saponin from Korean Red Ginseng (KRG-TS) by investigating whether KRG-TS inhibits thrombin-induced binding of fibrinogen and fibronectin to αIIb/β3. Methods We investigated the effect of KRG-TS on phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and dephosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt, affecting binding of fibrinogen and fibronectin to αIIb/β3, and clot retraction. Results KRG-TS had an antiplatelet effect by inhibiting the binding of fibrinogen and fibronectin to αIIb/β3 via phosphorylation of VASP (Ser157), and dephosphorylation of PI3K and Akt on thrombin-induced platelet aggregation. Moreover, A-kinase inhibitor Rp-8-Br-cyclic adenosine monophosphates (cAMPs) reduced KRG-TS-increased VASP (Ser157) phosphorylation, and increased KRG-TS-inhibited fibrinogen-, and fibronectin-binding to αIIb/β3. These findings indicate that KRG-TS interferes with the binding of fibrinogen and fibronectin to αIIb/β3 via cAMP-dependent phosphorylation of VASP (Ser157). In addition, KRG-TS decreased the rate of clot retraction, reflecting inhibition of αIIb/β3 activation. In this study, we clarified ginsenoside Ro (G-Ro) in KRG-TS inhibited thrombin-induced platelet aggregation via both inhibition of [Ca2+]i mobilization and increase of cAMP production. Conclusion These results strongly indicate that KRG-TS is a beneficial herbal substance inhibiting fibrinogen-, and fibronectin-binding to αIIb/β3, and clot retraction, and may prevent platelet αIIb/β3-mediated thrombotic disease. In addition, we demonstrate that G-Ro is a novel compound with antiplatelet characteristics of KRG-TS. PMID:26843825

  16. Ascertaining effects of nanoscale polymeric interfaces on competitive protein adsorption at the individual protein level

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Xie, Tian; Ravensbergen, Kristina; Hahm, Jong-In

    2016-02-01

    With the recent development of biomaterials and biodevices with reduced dimensionality, it is critical to comprehend protein adhesion processes to nanoscale solid surfaces, especially those occurring in a competitive adsorption environment. Complex sequences of adhesion events in competitive adsorption involving multicomponent protein systems have been extensively investigated, but our understanding is still limited primarily to macroscopic adhesion onto chemically simple surfaces. We examine the competitive adsorption behavior from a binary protein mixture containing bovine serum albumin and fibrinogen at the single protein level. We subsequently evaluate a series of adsorption and displacement processes occurring on both the macroscopic homopolymer and nanoscopic diblock copolymer surfaces, while systematically varying the protein concentration and incubation time. We identify the similarities and dissimilarities in competitive protein adsorption behavior between the two polymeric surfaces, the former presenting chemical uniformity at macroscale versus the latter exhibiting periodic nanointerfaces of chemically alternating polymeric segments. We then present our novel experimental finding of a large increase in the nanointerface-engaged residence time of the initially bound proteins and further explain the origin of this phenomenon manifested on nanoscale diblock copolymer surfaces. The outcomes of this study may provide timely insight into nanoscale competitive protein adsorption that is much needed in designing bioimplant and tissue engineering materials. In addition, the fundamental understanding gained from this study can be beneficial for the development of highly miniaturized biodevices and biomaterials fabricated by using nanoscale polymeric materials and interfaces.With the recent development of biomaterials and biodevices with reduced dimensionality, it is critical to comprehend protein adhesion processes to nanoscale solid surfaces, especially those

  17. Blood glucose fluctuation accelerates renal injury involved to inhibit the AKT signaling pathway in diabetic rats.

    PubMed

    Ying, Changjiang; Zhou, Xiaoyan; Chang, Zhenzhen; Ling, Hongwei; Cheng, Xingbo; Li, Wei

    2016-07-01

    Blood glucose fluctuation is associated with diabetic nephropathy. However, the mechanism by which blood glucose fluctuation accelerates renal injury is not fully understood. The aim of the present study was to assess the effects of blood glucose fluctuation on diabetic nephropathy in rats and investigate its underlying mechanism. Diabetes in the rats was induced by a high sugar, high-fat diet, and a single dose of STZ (35 mg/kg)-injected intraperitoneally. Unstable blood sugar models were induced by subcutaneous insulin injection and intravenous glucose injection alternately. Body weight, glycosylated hemoglobin A1c (HbAlc), blood urea nitrogen (BUN), serum creatinine (Scr), and Creatinine clearance (Ccr) were assessed. T-SOD activity and MDA level were measured by assay kit. Change in renal tissue ultrastructure was observed by light microscopy and electron microscopy. Phosphorylated ser/thr protein kinase (p-AKT) (phosphor-Ser473), phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β) (phosphor-Ser9), Bcl-2-associated X protein (BAX), B cell lymphoma/leukemia 2 (BCL-2), and cleaved-cysteinyl aspartate-specific proteinase-3 (caspase-3) levels were detected by immunohistochemistry and Western blot. We observed that BUN and Scr were increased in diabetic rats, and Ccr was decreased. Furthermore, blood glucose fluctuations could exacerbate the Ccr changes. Renal tissue ultrastructure was also seriously injured by glucose variability in diabetic rats. In addition, glucose fluctuation increased the oxidative stress of renal tissue. Moreover, fluctuating blood glucose decreased p-AKT level and BCL-2, and increased p-GSK-3β, BAX, cleaved-caspase-3 levels, and ratio of BAX/BCL-2 in the kidneys of diabetic rats. In conclusion, these results suggest that blood glucose fluctuation accelerated renal injury is due, at least in part to its oxidative stress promoting and inhibiting the AKT signaling pathway in diabetic rats. PMID:26860515

  18. Gastrointestinal growth factors and hormones have divergent effects on Akt activation

    PubMed Central

    Berna, Marc J.; Tapia, Jose A.; Sancho, Veronica; Thill, Michelle; Pace, Andrea; Hoffmann, K. Martin; Gonzalez-Fernandez, Lauro; Jensen, Robert T.

    2009-01-01

    Akt is a central regulator of apoptosis, cell growth and survival. Growth factors and some G-protein-coupled receptors (GPCR) regulate Akt. Whereas growth-factor activation of Akt has been extensively studied, the regulation of Akt by GPCR's, especially gastrointestinal hormones/neurotransmitters, remains unclear. To address this area, in this study the effects of GI growth factors and hormones/neurotransmitters were investigate in rat pancreatic acinar cells which are high responsive to these agents. Pancreatic acini expressed Akt and 5 of 7 known pancreatic growth-factors stimulate Akt phosphorylation (T308, S473) and translocation. These effects are mediated by p85 phosphorylation and activation of PI3K. GI hormones increasing intracellular cAMP had similar effects. However, GI-hormones/neurotransmitters[CCK, bombesin,carbachol] activating phospholipase C (PLC) inhibited basal and growth-factor-stimulated Akt activation. Detailed studies with CCK, which has both physiological and pathophysiological effects on pancreatic acinar cells at different concentrations, demonstrated CCK has a biphasic effect: at low concentrations(pM) stimulating Akt by a Src-dependent mechanism and at higher concentrations(nM) inhibited basal and stimulated Akt translocation, phosphorylation and activation, by de-phosphorylating p85 resulting in decreasing PI3K activity. This effect required activation of both limbs of the PLC-pathway and a protein tyrosine phosphatase, but was not mediated by p44/42 MAPK, Src or activation of a serine phosphatase. Akt inhibition by CCK was also found in vivo and in Panc-1 cancer cells where it inhibited serum-mediated rescue from apoptosis. These results demonstrate that GI growth factors as well as gastrointestinal hormones/neurotransmitters with different cellular basis of action can all regulate Akt phosphorylation in pancreatic acinar cells. This regulation is complex with phospholipase C agents such as CCK, because both stimulatory and inhibitory

  19. Insulin Attenuates Beta-Amyloid-Associated Insulin/Akt/EAAT Signaling Perturbations in Human Astrocytes.

    PubMed

    Han, Xiaojuan; Yang, Liling; Du, Heng; Sun, Qinjian; Wang, Xiang; Cong, Lin; Liu, Xiaohui; Yin, Ling; Li, Shan; Du, Yifeng

    2016-08-01

    The excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2), mostly located on astrocytes, are the main mediators for glutamate clearance in humans. Malfunctions of these transporters may lead to excessive glutamate accumulation and subsequent excitotoxicity to neurons, which has been implicated in many kinds of neurodegenerative disorders including Alzheimer's disease (AD). Yet, the specific mechanism of the glutamate system dysregulation remains vague. To explore whether the insulin/protein kinase B (Akt)/EAAT signaling in human astrocytes could be disturbed by beta-amyloid protein (Aβ) and be protected by insulin, we incubated HA-1800 cells with varying concentrations of Aβ1-42 oligomers and insulin. Then the alterations of several key substrates in this signal transduction pathway were determined. Our results showed that expressions of insulin receptor, phospho-insulin receptor, phospho-protein kinase B, phospho-mammalian target of rapamycin, and EAAT1 and EAAT2 were decreased by the Aβ1-42 oligomers in a dose-dependent manner (p < 0.05) and this trend could be recovered by insulin treatment (p < 0.05). However, the expressions of total Akt and mTOR were invariant (p > 0.05), and the mRNA levels of EAAT1 and EAAT2 were also unchanged (p > 0.05). Taken together, this study indicates that Aβ1-42 oligomers could cause disturbances in insulin/Akt/EAAT signaling in astrocytes, which might be responsible for AD onset and progression. Additionally, insulin can exert protective functions to the brain by modulating protein modifications or expressions. PMID:26358886

  20. Coprinus comatus Cap Inhibits Adipocyte Differentiation via Regulation of PPARγ and Akt Signaling Pathway

    PubMed Central

    Jang, Sun-Hee; Kang, Suk Nam; Jeon, Beong-Sam; Ko, Yeoung-Gyu; Kim, Hong-Duck; Won, Chung-Kil; Kim, Gon-Sup; Cho, Jae-Hyeon

    2014-01-01

    This study assessed the effects of Coprinus comatus cap (CCC) on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD) and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the Akt pathway in 3T3

  1. ERK and AKT phosphorylation status in lung cancer and emphysema using nanocapillary isoelectric focusing

    PubMed Central

    Crosbie, Philip A J; Crosbie, Emma J; Aspinall-O'Dea, Mark; Walker, Michael; Harrison, Rebecca; Pernemalm, Maria; Shah, Rajesh; Joseph, Leena; Booton, Richard; Pierce, Andrew; Whetton, Anthony D

    2016-01-01

    Background Emphysema is an independent risk factor for the development of lung cancer in smokers. Activation of oncogenic signalling proteins AKT and ERK by phosphorylation has an established role in the development of lung cancer and has also been implicated in the pathogenesis of emphysema. The aim of this study was to compare the protein level and phosphorylation status of AKT and ERK in paired lung cancer and emphysema tissue using a highly sensitive phosphoprotein analysis approach. Methods An antibody-based, nanocapillary isoelectric focusing (cIEF) assay was used to determine the relative quantities and phosphorylation status of AKT and ERK in tumour and matched lung tissue from patients, with or without evidence of emphysema, undergoing curative resection for non-small cell lung cancer. Results 20 patients with adenocarcinoma (n=9) or squamous cell carcinoma (n=11) of the lung were included (mean age 67.3 years (SD 7.5, range 47–80 years)), 12 were men and all were current (n=10) or former smokers (n=10). Paired macroscopically normal lung tissue was either histologically normal (n=7) or showed emphysema (n=13). Total and phosphorylated AKT levels were fourfold (p=0.0001) and fivefold (p=0.001) higher in tumour compared with matched lung, respectively. There was no correlation with tumour histology, stage or differentiation; however, total AKT signal in tumour was significantly correlated with fluorodeoxyglucose avidity on positron emission tomography-CT scan (r=0.53, p=0.035). Total ERK was not differentially expressed, but doubly phosphorylated (activated) ERK was threefold higher in emphysema (23.5%, SD 9.2) than either matched tumour (8.8%, SD 8.6) or normal lung tissue (8.3%, SD 9.0) and correlated with the histological severity of emphysema (p=0.005). Conclusions cIEF offers opportunities for quantifying subtle shifts in the phosphorylation status of oncoproteins in nanogram amounts of lung tissue. ERK activation is a feature of emphysema. PMID

  2. Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARγ and Akt signaling pathway.

    PubMed

    Park, Hyoung Joon; Yun, Jisoo; Jang, Sun-Hee; Kang, Suk Nam; Jeon, Beong-Sam; Ko, Yeoung-Gyu; Kim, Hong-Duck; Won, Chung-Kil; Kim, Gon-Sup; Cho, Jae-Hyeon

    2014-01-01

    This study assessed the effects of Coprinus comatus cap (CCC) on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD) and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the Akt pathway in 3T3

  3. Characterization of protein expression levels with label-free detected reverse phase protein arrays.

    PubMed

    Guo, Xuexue; Deng, Yihong; Zhu, Chenggang; Cai, Junlong; Zhu, Xiangdong; Landry, James P; Zheng, Fengyun; Cheng, Xunjia; Fei, Yiyan

    2016-09-15

    In reverse-phase protein arrays (RPPA), one immobilizes complex samples (e.g., cellular lysate, tissue lysate or serum etc.) on solid supports and performs parallel reactions of antibodies with immobilized protein targets from the complex samples. In this work, we describe a label-free detection of RPPA that enables quantification of RPPA data and thus facilitates comparison of studies performed on different samples and on different solid supports. We applied this detection platform to characterization of phosphoserine aminotransferase (PSAT) expression levels in Acanthamoeba lysates treated with artemether and the results were confirmed by Western blot studies. PMID:27372609

  4. Salmonella induce autophagy in melanoma by the downregulation of AKT/mTOR pathway.

    PubMed

    Lee, C-H; Lin, S-T; Liu, J-J; Chang, W-W; Hsieh, J-L; Wang, W-K

    2014-03-01

    Salmonella have been demonstrated to inhibit tumor growth. However, the mechanism of Salmonella-induced tumor cell death is less defined. Autophagy is a cellular process that mediates the degradation of long-lived proteins and unwanted organelles in the cytosol. Tumor cells frequently display lower levels of basal autophagic activity than their normal counterparts and fail to increase autophagic activity in response to stresses. Autophagy is involved in the cell defense elimination of bacteria. The signaling pathways leading to activation of Salmonella-induced autophagy in tumor cells remain to be elucidated. We used autophagy inhibitor (3-Methyladenine) and apoptosis inhibitor (Z-VAD-FMK) to demonstrate that Salmonella may induce cell death via apoptosis and autophagic pathway. Meanwhile, we suggested that Salmonella induce autophagy in a dose- and time-dependent manner. The autophagic markers were increased after tumor cell infected with Salmonella. In addition, the protein express levels of phosph-protein kinase B (P-AKT), phosph-mammalian targets of rapamycin (P-mTOR), phosph-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells were decreased by western analysis after Salmonella infection. In conclusion, our results point out that Salmonella induce the autophagic signaling pathway via downregulation of AKT/mTOR pathway. Herein, our findings that Salmonella in controlling tumor growth may induce autophagic signal pathway. PMID:24451116

  5. Involvement of PI3K/Akt/FoxO3a and PKA/CREB Signaling Pathways in the Protective Effect of Fluoxetine Against Corticosterone-Induced Cytotoxicity in PC12 Cells.

    PubMed

    Zeng, Bingqing; Li, Yiwen; Niu, Bo; Wang, Xinyi; Cheng, Yufang; Zhou, Zhongzhen; You, Tingting; Liu, Yonggang; Wang, Haitao; Xu, Jiangping

    2016-08-01

    The selective serotonin reuptake inhibitor fluoxetine is neuroprotective in several brain injury models. It is commonly used to treat major depressive disorder and related conditions, but its mechanism of action remains incompletely understood. Activation of the phosphatidylinositol-3-kinase/protein kinase B/forkhead box O3a (PI3K/Akt/FoxO3a) and protein kinase A/cAMP-response element binding protein (PKA/CREB) signaling pathways has been strongly implicated in the pathogenesis of depression and might be the downstream target of fluoxetine. Here, we used PC12 cells exposed to corticosterone (CORT) to study the neuroprotective effects of fluoxetine and the involvement of the PI3K/Akt/FoxO3a and PKA/CREB signaling pathways. Our results show that CORT reduced PC12 cells viability by 70 %, and that fluoxetine showed a concentration-dependent neuroprotective effect. Neuroprotective effects of fluoxetine were abolished by inhibition of PI3K, Akt, and PKA using LY294002, KRX-0401, and H89, respectively. Treatment of PC12 cells with fluoxetine resulted in increased phosphorylation of Akt, FoxO3a, and CREB. Fluoxetine also dose-dependently rescued the phosphorylation levels of Akt, FoxO3a, and CREB, following administration of CORT (from 99 to 110, 56 to 170, 80 to 170 %, respectively). In addition, inhibition of PKA and PI3K/Akt resulted in decreased levels of p-CREB, p-Akt, and p-FoxO3a in the presence of fluoxetine. Furthermore, fluoxetine reversed CORT-induced upregulation of p53-upregulated modulator of apoptosis (Puma) and Bcl-2-interacting mediator of cell death (Bim) via the PI3K/Akt/FoxO3a signaling pathway. H89 treatment reversed the effect of fluoxetine on the mRNA level of brain-derived neurotrophic factor, which was decreased in the presence of CORT. Our data indicate that fluoxetine elicited neuroprotection toward CORT-induced cell death that involves dual regulation from PI3K/Akt/FoxO3a and PKA/CREB pathways. PMID:27412469

  6. Effects of soy protein and calcium levels on mineral bioaccessibility and protein digestibility from enteral formulas.

    PubMed

    Galán, María Gimena; Drago, Silvina Rosa

    2014-09-01

    Enteral formulas (EF) are complex food systems which have all the nutrients in their matrix for the complete human nourishment. However, there are components in EF which can interact with minerals, reducing their absorption, and thereof the EF nutritional quality. The effect of soy protein (SP) and Ca content on Fe, Zn, and Ca bioaccessibility and protein digestibility (%DP) was assessed using a response surface design in EF. Tested SP levels were 2.5-5.0 g/100 mL of total protein. Ca levels were adjusted with Ca citrate within a range between 50 and 100 mg/100 mL. SP content negatively influenced %DP and Fe, Zn and Ca bioaccessibility. As SP content increased, mineral bioaccessibility and %DP decreased, probably due to the increased levels of phytic acid and trypsin inhibitors from SP. Ca content only affected %DCa, which had a direct relationship with Ca levels, while did not affect Fe and Zn bioaccessibility or %DP. Since Ca citrate did not impair Fe and Zn bioaccessibility, it could be an appropriate Ca source for EF fortification. PMID:25079612

  7. Hyaluronan Activates Cell Motility of v-Src-transformed Cells via Ras-Mitogen–activated Protein Kinase and Phosphoinositide 3-Kinase-Akt in a Tumor-specific Manner

    PubMed Central

    Sohara, Yasuyoshi; Ishiguro, Naoki; Machida, Kazuya; Kurata, Hisashi; Thant, Aye Aye; Senga, Takeshi; Matsuda, Satoru; Kimata, Koji; Iwata, Hisashi; Hamaguchi, Michinari

    2001-01-01

    We investigated the production of hyaluronan (HA) and its effect on cell motility in cells expressing the v-src mutants. Transformation of 3Y1 by v-src virtually activated HA secretion, whereas G2A v-src, a nonmyristoylated form of v-src defective in cell transformation, had no effect. In cells expressing the temperature-sensitive mutant of v-Src, HA secretion was temperature dependent. In addition, HA as small as 1 nM, on the other side, activated cell motility in a tumor-specific manner. HA treatment strongly activated the motility of v-Src–transformed 3Y1, whereas it showed no effect on 3Y1- and 3Y1-expressing G2A v-src. HA-dependent cell locomotion was strongly blocked by either expression of dominant-negative Ras or treatment with a Ras farnesyltransferase inhibitor. Similarly, both the MEK1 inhibitor and the kinase inhibitor clearly inhibited HA-dependent cell locomotion. In contrast, cells transformed with an active MEK1 did not respond to the HA. Finally, an anti-CD44–neutralizing antibody could block the activation of cell motility by HA as well as the HA-dependent phosphorylation of mitogen-activated protein kinase and Akt. Taken together, these results suggest that simultaneous activation of the Ras-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway by the HA-CD44 interaction is required for the activation of HA-dependent cell locomotion in v-Src–transformed cells. PMID:11408591

  8. C-reactive protein levels in hereditary angioedema.

    PubMed

    Hofman, Z L M; Relan, A; Hack, C E

    2014-07-01

    Hereditary angioedema (HAE) patients experience recurrent episodes of angioedema attacks that can be painful, disfiguring and even life-threatening. The disorder results from a mutation in the gene that controls the synthesis of C1-inhibitor (C1INH). C1INH is a major regulator of activation of the contact system. It is often assumed that attacks results from uncontrolled local activation of the contact system with subsequent formation of bradykinin. To evaluate the involvement of inflammatory reactions in HAE, we analysed C-reactive protein (CRP) levels. HAE patients included in a clinical database of recombinant human C1-inhibitor (rhC1INH) studies were evaluated. For the current study we analysed CRP levels when patients were asymptomatic, during a clinical attack and in a follow-up period, and correlated these with the clinical manifestations of the attack. Data from 68 HAE patients were analysed and included CRP levels on 273 occasions. While asymptomatic, 20% of the patients analysed had increased CRP. At the onset of the attack (P = 0·049) and during the next 24 h CRP rose significantly (P = 0·002) in patients with an abdominal location, and post-attack levels were significantly higher in these patients than in patients with attacks at other locations (P = 0·034). In conclusion, CRP levels are elevated in a substantial proportion of asymptomatic HAE patients. Levels of CRP increase significantly during an abdominal attack. These data suggest low-grade systemic inflammatory reactions in HAE patients as well as a triggering event for attacks that starts prior to symptom onset. PMID:24588117

  9. Leptin exerts proliferative and anti-apoptotic effects on goose granulosa cells through the PI3K/Akt/mTOR signaling pathway.

    PubMed

    Wen, Rui; Hu, Shenqiang; Xiao, Qihai; Han, Chunchun; Gan, Chao; Gou, Hua; Liu, Hehe; Li, Liang; Xu, Hengyong; He, Hua; Wang, Jiwen

    2015-05-01

    Leptin was known as a pivotal regulator for the control of food intake and energy expenditure. However, leptin has also been found to be involved in the regulation of female reproductive system through interactions with pathways in the hypothalamic-hypophyseal axis and direct action at the ovarian level. In the present study, granulosa cells from goose ovarian preovulatory (F1-F3) follicles were cultured with leptin (0, 1, 10 or 100ng/ml). The proliferative and anti-apoptotic actions of leptin in granulosa cells were revealed by CCK-8, BrdU and TUNEL assays. Quantitative real-time PCR and Western blot analyses further indicated that leptin treatment led to increased expression of cyclin D1, cyclin D2, cyclin D3 and bcl-2, and decreased expression of p21 and caspase-3. The effects were involved in the activation of the PI3K/Akt/mTOR signaling pathway, as leptin treatment enhanced the expression of PI3K, Akt1, Akt2, Raptor, mTOR, S6K and p-S6K. Moreover, blockade of the PI3K/Akt/mTOR pathway attenuated the influences of leptin on proliferation and apoptosis of granulosa cells, considering that activated factors by leptin were inhibited in the presence of either 20μM LY294002 (a PI3K inhibitor) or 10μM rapamycin (an mTOR inhibitor). In addition, leptin had a modulatory effect on the expression of its receptor at the transcriptional and translational levels, and blockade of PI3K/Akt/mTOR inhibited both basal and leptin-induced Lepr gene and protein expression. These findings suggest that leptin exerts its proliferative and anti-apoptotic effects on goose granulosa cells through the PI3K/Akt/mTOR signaling pathway via interaction with its receptor. PMID:25576904

  10. MECHANISMS OF SPHINGOSINE-1-PHOSPHATE INDUCED AKT DEPENDENT SMOOTH MUSCLE CELL MIGRATION

    PubMed Central

    Roztocil, Elisa; Nicholl, Suzanne M.; Davies, Mark G.

    2008-01-01

    Background Sphingosine-1-phosphate (S-1-P) is a bioactive sphingolipid released from activated platelets, which stimulates migration of vascular smooth muscle cells (VSMC) in vitro. S-1-P will activate akt, which can regulate multiple cellular functions including cell migration. Akt activation is downstream of phosphatidyl-inositol 3′ kinase (PI3-K) and Phosphoinositide-dependent protein kinase-1 (PDK1). Objective To examine the regulation of akt signaling during smooth muscle cell migration in response to S-1-P. Methods Murine arterial SMCs were cultured in vitro. Linear wound and Boyden microchemotaxis assays of migration were performed in the presence of S-1-P with and without an akt inhibitor (aktI). Assays were performed for PI3-K, PDK1, akt and GSK3β activation in the presence of various inhibitors and after transfection with the Gβγ inhibitor. βARKCT. Results S-1-P induced time dependent PI3-K, PDK1 and akt activation. The migratory responses in both assays to S-1-P were blocked by akt inhibitor (aktI). Activation of akt and dephosphorylation of its downstream kinase, GSK3 β, were inhibited by aktI. Inhibition of PI3-K with LY294002 significantly reduced both PI3-K and akt activation. Inhibition of G βγ inhibited akt activation through a reduction in both PI3-K and PDK1 activation. While inhibition of the ras with manumycin A had no effect, inhibition of rho with C3 limited both PI3K and akt activation. PDK1 responses were unchanged by inhibition of GTPases. Inhibition of reactive oxygen species generation with N-acetylcysteine and of EGFR with AG1478 inhibited PDK1 activation in response to S-1-P. Conclusion S-1-P mediated migration is akt dependent. S-1-P mediated akt phosphorylation is controlled by G βγ dependent, PI3-K activation, which requires the GTPase rho and Gβγ. PDK1 activation requires Gβγ reactive oxygen species generation and EGFR activation. PMID:19081473

  11. Ramentaceone, a Naphthoquinone Derived from Drosera sp., Induces Apoptosis by Suppressing PI3K/Akt Signaling in Breast Cancer Cells.

    PubMed

    Kawiak, Anna; Lojkowska, Ewa

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in processes critical for breast cancer progression and its upregulation confers increased resistance of cancer cells to chemotherapy and radiation. The present study aimed at determining the activity of ramentaceone, a constituent of species in the plant genera Drosera, toward breast cancer cells and defining the involvement of PI3K/Akt inhibition in ramentaceone-mediated cell death induction. The results showed that ramentaceone exhibited high antiproliferative activity toward breast cancer cells, in particular HER2-overexpressing breast cancer cells. The mode of cell death induced by ramentaceone was through apoptosis as determined by cytometric analysis of caspase activity and Annexin V staining. Apoptosis induction was found to be mediated by inhibition of PI3K/Akt signaling and through targeting its downstream anti-apoptotic effectors. Ramentaceone inhibited PI3-kinase activity, reduced the expression of the PI3K protein and inhibited the phosphorylation of the Akt protein in breast cancer cells. The expression of the anti-apoptotic Bcl-2 protein was decreased and the levels of the pro-apoptotic proteins, Bax and Bak, were elevated. Moreover, inhibition of PI3K and silencing of Akt expression increased the sensitivity of cells to ramentaceone-induced apoptosis. In conclusion, our results indicate that ramentaceone induces apoptosis in breast cancer cells through PI3K/Akt signaling inhibition. These findings suggest further investigation of ramentaceone as a potential therapeutic agent in breast cancer therapy, in particular HER2-positive breast cancer. PMID:26840401

  12. Ramentaceone, a Naphthoquinone Derived from Drosera sp., Induces Apoptosis by Suppressing PI3K/Akt Signaling in Breast Cancer Cells

    PubMed Central

    Kawiak, Anna; Lojkowska, Ewa

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in processes critical for breast cancer progression and its upregulation confers increased resistance of cancer cells to chemotherapy and radiation. The present study aimed at determining the activity of ramentaceone, a constituent of species in the plant genera Drosera, toward breast cancer cells and defining the involvement of PI3K/Akt inhibition in ramentaceone-mediated cell death induction. The results showed that ramentaceone exhibited high antiproliferative activity toward breast cancer cells, in particular HER2-overexpressing breast cancer cells. The mode of cell death induced by ramentaceone was through apoptosis as determined by cytometric analysis of caspase activity and Annexin V staining. Apoptosis induction was found to be mediated by inhibition of PI3K/Akt signaling and through targeting its downstream anti-apoptotic effectors. Ramentaceone inhibited PI3-kinase activity, reduced the expression of the PI3K protein and inhibited the phosphorylation of the Akt protein in breast cancer cells. The expression of the anti-apoptotic Bcl-2 protein was decreased and the levels of the pro-apoptotic proteins, Bax and Bak, were elevated. Moreover, inhibition of PI3K and silencing of Akt expression increased the sensitivity of cells to ramentaceone-induced apoptosis. In conclusion, our results indicate that ramentaceone induces apoptosis in breast cancer cells through PI3K/Akt signaling inhibition. These findings suggest further investigation of ramentaceone as a potential therapeutic agent in breast cancer therapy, in particular HER2-positive breast cancer. PMID:26840401

  13. Quercetin protects oligodendrocyte precursor cells from oxygen/glucose deprivation injury in vitro via the activation of the PI3K/Akt signaling pathway.

    PubMed

    Wang, X-Q; Yao, R-Q; Liu, X; Huang, J-J; Qi, D-S; Yang, L-H

    2011-10-10

    The aim of this study was to investigate the protection of quercetin (QUE) on oligodendrocyte precursor cells (OPCs) from oxygen/glucose deprivation (OGD)-induced injury in vitro and explore whether the PI3K/Akt signaling pathway contributed to the protection provided by quercetin. The OGD condition was induced by including 2mM sodium dithionite (Na(2)S(2)O(4)) in glucose-free DMEM medium. The concentration of QUE in this study ranged from 3μM to 81μM. OPCs were identified by immunocytochemical staining. Cell viability was analyzed using the water soluble tetrazolium salt-8 (WST-8) and lactate dehydrogenase assay (LDH). The morphological changes of the nucleus were measured using Hoechst 33258 nuclear staining, and the ratio of apoptotic cells was determined by FITC annexin V- and propidium iodide (PI) flow cytometry assay kit. In addition, the levels of pro-apoptotic proteins such as cleaved-caspase-3 and Bax and the anti-apoptotic proteins p-Akt and Bcl-2 were quantified using western blotting. The results showed that the OPC cell survival rate was significantly increased by incubation in conditioned medium supplemented with QUE as measured by the WST-8 assay, while the LDH release rate was significantly decreased as analyzed by the LDH assay. Furthermore, apoptosis assay showed that the apoptosis ratio of OPCs was also dramatically reduced by QUE. Western blotting showed that the expression levels of Bax and cleaved-caspase-3 proteins were down-regulated, while Bcl-2 and p-Akt were up-regulated. Further study showed that the increase in p-Akt by QUE was reduced by the PI3K inhibitor LY294002. These results indicated that QUE effectively protected OPCs from OGD-induced injury and that the mechanism might be related to the activation of the PI3K/Akt signaling pathway. PMID:21803128

  14. KNK437, abrogates hypoxia-induced radioresistance by dual targeting of the AKT and HIF-1{alpha} survival pathways

    SciTech Connect

    Oommen, Deepu; Prise, Kevin M.

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer KNK437, a benzylidene lactam compound, is a novel radiosensitizer. Black-Right-Pointing-Pointer KNK437 inhibits AKT signaling and abrogates the accumulation of HIF-1{alpha} under hypoxia. Black-Right-Pointing-Pointer KNK437 abrogates hypoxia induced resistance to radiation. -- Abstract: KNK437 is a benzylidene lactam compound known to inhibit stress-induced synthesis of heat shock proteins (HSPs). HSPs promote radioresistance and play a major role in stabilizing hypoxia inducible factor-1{alpha} (HIF-1{alpha}). HIF-1{alpha} is widely responsible for tumor resistance to radiation under hypoxic conditions. We hypothesized that KNK437 sensitizes cancer cells to radiation and overrides hypoxia-induced radioresistance via destabilizing HIF-1{alpha}. Treatment of human cancer cells MDA-MB-231 and T98G with KNK437 sensitized them to ionizing radiation (IR). Surprisingly, IR did not induce HSPs in these cell lines. As hypothesized, KNK437 abrogated the accumulation of HIF-1{alpha} in hypoxic cells. However, there was no induction of HSPs under hypoxic conditions. Moreover, the proteosome inhibitor MG132 did not restore HIF-1{alpha} levels in KNK437-treated cells. This suggested that the absence of HIF-1{alpha} in hypoxic cells was not due to the enhanced protein degradation. HIF-1{alpha} is mainly regulated at the level of post-transcription and AKT is known to modulate the translation of HIF-1{alpha} mRNA. Interestingly, pre-treatment of cells with KNK437 inhibited AKT signaling. Furthermore, down regulation of AKT by siRNA abrogated HIF-1{alpha} levels under hypoxia. Interestingly, KNK437 reduced cell survival in hypoxic conditions and inhibited hypoxia-induced resistance to radiation. Taken together, these data suggest that KNK437 is an effective radiosensitizer that targets multiple pro-survival stress response pathways.

  15. Coactivation of the PI3K/Akt and ERK signaling pathways in PCB153-induced NF-κB activation and caspase inhibition

    SciTech Connect

    Liu, Changjiang; Yang, Jixin; Fu, Wenjuan; Qi, Suqin; Wang, Chenmin; Quan, Chao; Yang, Kedi

    2014-06-15

    Polychlorinated biphenyls (PCBs) are a group of persistent and widely distributed environmental pollutants that have various deleterious effects, e.g., neurotoxicity, endocrine disruption and reproductive abnormalities. In order to verify the hypothesis that the PI3K/Akt and MAPK pathways play important roles in hepatotoxicity induced by PCBs, Sprague–Dawley (SD) rats were dosed with PCB153 intraperitoneally at 0, 4, 16 and 32 mg/kg for five consecutive days; BRL cells (rat liver cell line) were treated with PCB153 (0, 1, 5, and 10 μM) for 24 h. Results indicated that the PI3K/Akt and ERK pathways were activated in vivo and in vitro after exposure to PCB153, and protein levels of phospho-Akt and phospho-ERK were significantly increased. Nuclear factor-κB (NF-κB) activation and caspase-3, -8 and -9 inhibition caused by PCB153 were also observed. Inhibiting the ERK pathway significantly attenuated PCB153-induced NF-κB activation, whereas inhibiting the PI3K/Akt pathway hardly influenced phospho-NF-κB level. However, inhibiting the PI3K/Akt pathway significantly elevated caspase-3, -8 and -9 activities, while the ERK pathway only synergistically regulated caspase-9. Proliferating cell nuclear antigen (PCNA), a reliable indicator of cell proliferation, was also induced. Moreover, PCB153 led to hepatocellular hypertrophy and elevated liver weight. Taken together, PCB153 leads to aberrant proliferation and apoptosis of hepatocytes through NF-κB activation and caspase inhibition, and coactivated PI3K/Akt and ERK pathways play critical roles in PCB153-induced hepatotoxicity. - Highlights: • PCB153 led to hepatotoxicity through NF-κB activation and caspase inhibition. • The PI3K/Akt and ERK pathways were coactivated in vivo and in vitro by PCB153. • The ERK pathway regulated levels of phospho-NF-κB and caspase-9. • The PI3K/Akt pathway regulated levels of caspase-3, -8 and -9.

  16. G protein-coupled receptor 30 mediates estrogen-induced proliferation of primordial germ cells via EGFR/Akt/β-catenin signaling pathway.

    PubMed

    Ge, Chutian; Yu, Minli; Zhang, Caiqiao

    2012-07-01

    In vertebrates, estrogens are required for the normal development and function of postnatal gonads. However, it remains unclear whether estrogens are able to modulate development of the fetal germ cells. Here, we show that, unexpectedly, chicken primordial germ cells (PGC) lacking estrogen receptor α/β still proliferate in response to 17β-estradiol (E(2)). This is due to the capacity of G protein-coupled receptor 30 (GPR30), existing on PGC, to directly bind E(2). Knockdown experiments suggest that GPR30 is required for E(2)-stimulated PGC proliferation. Furthermore, this estrogen-induced activation of GPR30 is revealed to occur through the Gβγ-subunit protein-dependent and through the matrix metalloproteinase-dependent transactivation of the epidermal growth factor receptor. Epidermal growth factor receptor activation results in a series of intracellular events, including activation of the phosphatidylinositol 3-kinase/serine-threonine kinase/β-catenin pathway, which are followed by the induction of c-fos, c-myc, cyclin D1/E, and B-cell lymphoma 2 expression, and the inhibition of B-cell lymphoma 2-associated X protein expression and caspase3/9 activity. This eventually leads to decreased apoptosis and increased PGC proliferation. Collectively, these findings offer novel insights into the dynamic mechanism of estrogen action on PGC proliferation and suggest that E(2)/GPR30 signaling might play an important role in regulating fetal germ cell development, particularly at the stage before sexual differentiation. PMID:22635679

  17. PCDq: human protein complex database with quality index which summarizes different levels of evidences of protein complexes predicted from H-Invitational protein-protein interactions integrative dataset

    PubMed Central

    2012-01-01

    Background Proteins interact with other proteins or biomolecules in complexes to perform cellular functions. Existing protein-protein interaction (PPI) databases and protein complex databases for human proteins are not organized to provide protein complex information or facilitate the discovery of novel subunits. Data integration of PPIs focused specifically on protein complexes, subunits, and their functions. Predicted candidate complexes or subunits are also important for experimental biologists. Description Based on integrated PPI data and literature, we have developed a human protein complex database with a complex quality index (PCDq), which includes both known and predicted complexes and subunits. We integrated six PPI data (BIND, DIP, MINT, HPRD, IntAct, and GNP_Y2H), and predicted human protein complexes by finding densely connected regions in the PPI networks. They were curated with the literature so that missing proteins were complemented and some complexes were merged, resulting in 1,264 complexes comprising 9,268 proteins with 32,198 PPIs. The evidence level of each subunit was assigned as a categorical variable. This indicated whether it was a known subunit, and a specific function was inferable from sequence or network analysis. To summarize the categories of all the subunits in a complex, we devised a complex quality index (CQI) and assigned it to each complex. We examined the proportion of consistency of Gene Ontology (GO) terms among protein subunits of a complex. Next, we compared the expression profiles of the corresponding genes and found that many proteins in larger complexes tend to be expressed cooperatively at the transcript level. The proportion of duplicated genes in a complex was evaluated. Finally, we identified 78 hypothetical proteins that were annotated as subunits of 82 complexes, which included known complexes. Of these hypothetical proteins, after our prediction had been made, four were reported to be actual subunits of the

  18. Specific and redundant roles of PKBα/AKT1 and PKBβ/AKT2 in human pancreatic islets.

    PubMed

    Dietrich, Maren G; Zuellig, Richard A; Spinas, Giatgen A; Lehmann, Roger; Tschopp, Oliver; Niessen, Markus

    2015-10-15

    Protein kinase Bα (PKBα)/AKT1 and PKBβ/AKT2 are required for normal peripheral insulin action but their role in pancreatic β cells remains enigmatic as indicated by the relatively mild islet phenotype of mice with deficiency for either one of these two isoforms. In this study we have analysed proliferation, apoptosis, β cell size and glucose-stimulated insulin secretion in human islets overexpressing either PKBα or PKBβ. Our results reveal redundant and specific functions. Overexpression of either isoform resulted in increased β cell size, but insulin production and secretion remained unchanged. Proliferation and apoptosis of β cells were only significantly stimulated and inhibited, respectively, by PKBα/AKT1. Importantly, overexpression of PKBα/AKT1 in dissociated islets increased the ratio of β cells to non-β cells. These results confirm our previous findings obtained with rodent islets and strongly indicate that PKBα/AKT1 can regulate β cell mass also in human islets. PMID:26318486

  19. The AKT-mTOR signalling pathway in kidney cancer tissues

    NASA Astrophysics Data System (ADS)

    Spirina, L. V.; Usynin, Y. A.; Kondakova, I. V.; Yurmazov, Z. A.; Slonimskaya, E. M.; Kolegova, E. S.

    2015-11-01

    An increased expression of phospho-AKT, m-TOR, glycogen regulator GSK-3-beta and transcription inhibitor 4E-BP1 was observed in kidney cancer tissues. Tumor size growth was associated with a high level of c-Raf and low content of phospho-m-TOR. Cancer metastasis development led to a decreased PTEN and phospho-AKT expression.

  20. Sputum and BAL Clara cell secretory protein and surfactant protein D levels in asthma.

    PubMed

    Emmanouil, P; Loukides, S; Kostikas, K; Papatheodorou, G; Papaporfyriou, A; Hillas, G; Vamvakaris, I; Triggidou, R; Katafigiotis, P; Kokkini, A; Papiris, S; Koulouris, N; Bakakos, P

    2015-06-01

    Clara cell secretory protein (CC16) is associated with Th2 modulation. Surfactant protein D (SPD) plays an important role in surfactant homeostasis and eosinophil chemotaxis. We measured CC16 and SPD in sputum supernatants of 84 asthmatic patients and 12 healthy controls. In 22 asthmatics, we additionally measured CC16 and SPD levels in BAL and assessed smooth muscle area (SMA), reticular basement membrane (RBM) thickness, and epithelial detachment (ED) in bronchial biopsies. Induced sputum CC16 and SPD were significantly higher in patients with severe asthma (SRA) compared to mild-moderate and healthy controls. BAL CC16 and SPD levels were also higher in SRA compared to mild-moderate asthma. CC16 BAL levels correlated with ED, while SPD BAL levels correlated with SMA and RBM. Severity represented a significant covariate for these associations. CC16 and SPD levels are upregulated in SRA and correlate with remodeling indices, suggesting a possible role of these biomarkers in the remodeling process. PMID:25728058

  1. Honey bee protein atlas at organ-level resolution.

    PubMed

    Chan, Queenie W T; Chan, Man Yi; Logan, Michelle; Fang, Yuan; Higo, Heather; Foster, Leonard J

    2013-11-01

    Genome sequencing has provided us with gene lists but cannot tell us where and how their encoded products work together to support life. Complex organisms rely on differential expression of subsets of genes/proteins in organs and tissues, and, in concert, evolved to their present state as they function together to improve an organism's overall reproductive fitness. Proteomics studies of individual organs help us understand their basic functions, but this reductionist approach misses the larger context of the whole organism. This problem could be circumvented if all the organs in an organism were comprehensively studied by the same methodology and analyzed together. Using honey bees (Apis mellifera L.) as a model system, we report here an initial whole proteome of a complex organism, measuring 29 different organ/tissue types among the three honey bee castes: queen, drone, and worker. The data reveal that, e.g., workers have a heightened capacity to deal with environmental toxins and queens have a far more robust pheromone detection system than their nestmates. The data also suggest that workers altruistically sacrifice not only their own reproductive capacity but also their immune potential in favor of their queen. Finally, organ-level resolution of protein expression offers a systematic insight into how organs may have developed. PMID:23878156

  2. Honey bee protein atlas at organ-level resolution

    PubMed Central

    Chan, Queenie W.T.; Chan, Man Yi; Logan, Michelle; Fang, Yuan; Higo, Heather; Foster, Leonard J.

    2013-01-01

    Genome sequencing has provided us with gene lists but cannot tell us where and how their encoded products work together to support life. Complex organisms rely on differential expression of subsets of genes/proteins in organs and tissues, and, in concert, evolved to their present state as they function together to improve an organism's overall reproductive fitness. Proteomics studies of individual organs help us understand their basic functions, but this reductionist approach misses the larger context of the whole organism. This problem could be circumvented if all the organs in an organism were comprehensively studied by the same methodology and analyzed together. Using honey bees (Apis mellifera L.) as a model system, we report here an initial whole proteome of a complex organism, measuring 29 different organ/tissue types among the three honey bee castes: queen, drone, and worker. The data reveal that, e.g., workers have a heightened capacity to deal with environmental toxins and queens have a far more robust pheromone detection system than their nestmates. The data also suggest that workers altruistically sacrifice not only their own reproductive capacity but also their immune potential in favor of their queen. Finally, organ-level resolution of protein expression offers a systematic insight into how organs may have developed. PMID:23878156

  3. Resveratrol induces cell cycle arrest in human gastric cancer MGC803 cells via the PTEN-regulated PI3K/Akt signaling pathway.

    PubMed

    Jing, Xiaoping; Cheng, Weiwei; Wang, Shiying; Li, Pin; He, Li

    2016-01-01

    Resveratrol is a polyphenolic compound that is extracted from Polygonum cuspidatum and is used in traditional Chinese medicine. Previous data have shown that resveratrol inhibits the growth of human gastric cancer. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and trypan blue assays showed that resveratrol significantly decreased the survival rate of MGC803 cells in a concentration- and time-dependent manner. Our flow cytometric analysis showed that resveratrol treatment arrested the cells at the G0/G1 phase of the cell cycle. Furthermore, western blotting demonstrated that resveratrol decreased the protein expression of phospho-glycogen synthase kinase 3β (p-GSK3β), cyclin D1, phospho-phosphatase and tensin homologue (p-PTEN), phospho-phosphatidylinositol 3'-OH kinase (p-PI3K), and phospho-protein kinase B (p-PKB/Akt). We also found that resveratrol inhibited the progression of the cell cycle in MGC803 cells by repressing p-PI3K and p-Akt expression. Meanwhile, resveratrol did not decrease the phosphorylation level of Akt when the PTEN gene expression was knocked down by an siRNA in the MGC803 cells. Taken together, these results suggest that resveratrol induced cell cycle arrest in human gastric cancer MGC803 cells by regulating the PTEN/PI3K/Akt signaling pathway. PMID:26530632

  4. Co-Inhibition of GLUT-1 Expression and the PI3K/Akt Signaling Pathway to Enhance the Radiosensitivity of Laryngeal Carcinoma Xenografts In Vivo

    PubMed Central

    Xu, Bin; Zhou, Min-Li; Zhou, Shui-Hong; Fan, Jun; Lu, Zhong-Jie

    2015-01-01

    In the present study, we investigated the role of GLUT-1 and PI3K/Akt signaling in radioresistance of laryngeal carcinoma xenografts. Volume, weight, radiosensitization, and the rate of inhibition of tumor growth in the xenografts were evaluated in different groups. Apoptosis was evaluated by TUNEL assay. In addition, mRNA and protein levels of GLUT-1, p-Akt, and PI3K in the xenografts were measured. Treatment with LY294002, wortmannin, wortmannin plus GLUT-1 AS-ODN, and LY294002 plus GLUT-1 AS-ODN after X-ray irradiation significantly reduced the size and weight of the tumors, rate of tumor growth, and apoptosis in tumors compared to that observed in the 10-Gy group (p<0.05). In addition, mRNA and protein expression of GLUT-1, p-Akt, and PI3K was downregulated. The E/O values of LY294002, LY294002 plus GLUT-1 AS-ODN, wortmannin, and wortmannin plus GLUT-1 AS-ODN were 2.7, 1.1, 1.8, and 1.8, respectively. Taken together, these data indicate that GLUT-1 AS-ODN as well as the inhibitors of PI3K/Akt signaling may act as radiosensitizers of laryngeal carcinoma in vivo. PMID:26600164

  5. WNK1, the kinase mutated in an inherited high-blood-pressure syndrome, is a novel PKB (protein kinase B)/Akt substrate.

    PubMed Central

    Vitari, Alberto C; Deak, Maria; Collins, Barry J; Morrice, Nick; Prescott, Alan R; Phelan, Anne; Humphreys, Sian; Alessi, Dario R

    2004-01-01

    Recent evidence indicates that mutations in the gene encoding the WNK1 [with no K (lysine) protein kinase-1] results in an inherited hypertension syndrome called pseudohypoaldosteronism type II. The mechanisms by which WNK1 is regulated or the substrates it phosphorylates are currently unknown. We noticed that Thr-60 of WNK1, which lies N-terminal to the catalytic domain, is located within a PKB (protein kinase B) phosphorylation consensus sequence. We found that PKB phosphorylated WNK1 efficiently compared with known substrates, and both peptide map and mutational analysis revealed that the major PKB site of phosphorylation was Thr-60. Employing a phosphospecific Thr-60 WNK1 antibody, we demonstrated that IGF1 (insulin-like growth factor) stimulation of HEK-293 cells induced phosphorylation of endogenously expressed WNK1 at Thr-60. Consistent with PKB mediating this phosphorylation, inhibitors of PI 3-kinase (phosphoinositide 3-kinase; wortmannin and LY294002) but not inhibitors of mammalian target of rapamycin (rapamycin) or MEK1 (mitogen-activated protein kinase kinase-1) activation (PD184352), inhibited IGF1-induced phosphorylation of endogenous WNK1 at Thr-60. Moreover, IGF1-induced phosphorylation of endogenous WNK1 did not occur in PDK1-/- ES (embryonic stem) cells, in which PKB is not activated. In contrast, IGF1 still induced normal phosphorylation of WNK1 in PDK1(L155E/L155E) knock-in ES cells in which PKB, but not S6K (p70 ribosomal S6 kinase) or SGK1 (serum- and glucocorticoid-induced protein kinase 1), is activated. Our study provides strong pharmacological and genetic evidence that PKB mediates the phosphorylation of WNK1 at Thr-60 in vivo. We also performed experiments which suggest that the phosphorylation of WNK1 by PKB is not regulating its kinase activity or cellular localization directly. These results provide the first connection between the PI 3-kinase/PKB pathway and WNK1, suggesting a mechanism by which this pathway may influence blood

  6. Reduced Apoptosis by Ethanol and Its Association with PKC-δ and Akt Signaling in Ischemic Stroke

    PubMed Central

    Hafeez, Adam; Elmadhoun, Omar; Peng, Changya; Ding, Jamie Y.; Geng, Xiaokun; Guthikonda, Murali; Ding, Yuchuan

    2014-01-01

    Along with thrombolytic therapy, which has a number of limitations, stroke outcome may be improved with neuroprotective therapies that disrupt ischemic cell death. Recent research has shown a neuroprotective role of ethanol administration during ischemic stroke, such as its ability to reduce infarct volume and neurologic deficit. In order to investigate this further, we assessed the hypothesis that ethanol’s neuroprotective effect is through reduction of apoptosis and the modulation of the important apoptotic PKC-δ and Akt signaling pathway. Ethanol (1.5 g/kg) was given by intraperitoneal injections to 54 Sprague-Dawley rats after 2 hours of middle cerebral artery (MCA) occlusion, followed by 3 or 24 hours of reperfusion. We measured apoptotic cell death, PKC-δ, and Akt mRNA and protein expressions in each of ischemic groups with or without ethanol treatment using ELISA, real-time PCR and Western blot analysis. Our results showed that cell death was significantly increased in rats following 2 hour MCA occlusion and 24 hour reperfusion. Subsequently, cell death was significantly reduced by an administration of ethanol. We further found that ethanol administration, prior to either 3 or 24 hours of reperfusion, significantly decreased the expression of PKC-δ while simultaneously increasing the expression Akt at both mRNA and protein levels at the two points. In conclusion, our study suggests that ethanol administration following ischemic stroke modulates the gene and protein profile in such a way that it increased expression of anti-apoptotic Akt and decreased the pro-apoptotic PKC-δ. This ultimately results in a decrease in neuronal apoptosis, thus conferring neuroprotection. PMID:25489491

  7. Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis

    PubMed Central

    Nowinski, Sara M.; Solmonson, Ashley; Rundhaug, Joyce E.; Rho, Okkyung; Cho, Jiyoon; Lago, Cory U.; Riley, Christopher L.; Lee, Sunhee; Kohno, Shohei; Dao, Christine K.; Nikawa, Takeshi; Bratton, Shawn B.; Wright, Casey W.; Fischer, Susan M.; DiGiovanni, John; Mills, Edward M.

    2015-01-01

    To support growth, tumour cells reprogramme their metabolism to simultaneously upregulate macromolecular biosynthesis while maintaining energy production. Uncoupling proteins (UCPs) oppose this phenotype by inducing futile mitochondrial respiration that is uncoupled from ATP synthesis, resulting in nutrient wasting. Here using a UCP3 transgene targeted to the basal epidermis, we show that forced mitochondrial uncoupling inhibits skin carcinogenesis by blocking Akt activation. Similarly, Akt activation is markedly inhibited in UCP3 overexpressing primary human keratinocytes. Mechanistic studies reveal that uncoupling increases fatty acid oxidation and membrane phospholipid catabolism, and impairs recruitment of Akt to the plasma membrane. Overexpression of Akt overcomes metabolic regulation by UCP3, rescuing carcinogenesis. These findings demonstrate that mitochondrial uncoupling is an effective strategy to limit proliferation and tumorigenesis through inhibition of Akt, and illuminate a novel mechanism of crosstalk between mitochondrial metabolism and growth signalling. PMID:26310111

  8. Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis.

    PubMed

    Nowinski, Sara M; Solmonson, Ashley; Rundhaug, Joyce E; Rho, Okkyung; Cho, Jiyoon; Lago, Cory U; Riley, Christopher L; Lee, Sunhee; Kohno, Shohei; Dao, Christine K; Nikawa, Takeshi; Bratton, Shawn B; Wright, Casey W; Fischer, Susan M; DiGiovanni, John; Mills, Edward M

    2015-01-01

    To support growth, tumour cells reprogramme their metabolism to simultaneously upregulate macromolecular biosynthesis while maintaining energy production. Uncoupling proteins (UCPs) oppose this phenotype by inducing futile mitochondrial respiration that is uncoupled from ATP synthesis, resulting in nutrient wasting. Here using a UCP3 transgene targeted to the basal epidermis, we show that forced mitochondrial uncoupling inhibits skin carcinogenesis by blocking Akt activation. Similarly, Akt activation is markedly inhibited in UCP3 overexpressing primary human keratinocytes. Mechanistic studies reveal that uncoupling increases fatty acid oxidation and membrane phospholipid catabolism, and impairs recruitment of Akt to the plasma membrane. Overexpression of Akt overcomes metabolic regulation by UCP3, rescuing carcinogenesis. These findings demonstrate that mitochondrial uncoupling is an effective strategy to limit proliferation and tumorigenesis through inhibition of Akt, and illuminate a novel mechanism of crosstalk between mitochondrial metabolism and growth signalling. PMID:26310111

  9. PP2A inhibition results in hepatic insulin resistance despite Akt2 activation.

    PubMed

    Galbo, Thomas; Perry, Rachel J; Nishimura, Erica; Samuel, Varman T; Quistorff, Bjørn; Shulman, Gerald I

    2013-10-01

    In the liver, insulin suppresses hepatic gluconeogenesis by activating Akt, which inactivates the key gluconeogenic transcription factor FoxO1 (Forkhead Box O1). Recent studies have implicated hyperactivity of the Akt phosphatase Protein Phosphatase 2A (PP2A) and impaired Akt signaling as a molecular defect underlying insulin resistance. We therefore hypothesized that PP2A inhibition would enhance insulin-stimulated Akt activity and decrease glucose production. PP2A inhibitors increased hepatic Akt phosphorylation and inhibited FoxO1in vitro and in vivo, and suppressed gluconeogenesis in hepatocytes. Paradoxically, PP2A inhibition exacerbated insulin resistance in vivo. This was explained by phosphorylation of both hepatic glycogen synthase (GS) (inactivation) and phosphorylase (activation) resulting in impairment of glycogen storage. Our findings underline the significance of GS and Phosphorylase as hepatic PP2A substrates and importance of glycogen metabolism in acute plasma glucose regulation. PMID:24150286

  10. CCN1/Cyr61-PI3K/AKT signaling promotes retinal neovascularization in oxygen-induced retinopathy

    PubMed Central

    DI, YU; ZHANG, YIOU; NIE, QINGZHU; CHEN, XIAOLONG

    2015-01-01

    Retinal neovascularization (RNV) is a characteristic pathological finding of retinopathy of prematurity (ROP). Cysteine-rich 61 [Cyr61, also known as CCN family member 1 (CCN1)] has been reported to mediate angiogenesis. The aim of the present study was to investigate the mechanisms of CCN1/Cyr61-phosphoinositide 3-kinase (PI3K)/AKT signaling in ROP. The contribution of CCN1 to human umbilical vein endothelial cell (HUVEC) proliferation and apoptosis under hypoxic conditions was determined using a cell counting kit-8 (CCK-8) and Annexin V/propidium iodide (PI) staining, respectively, as well as using siRNA targeting CCN1 (CCN1 siRNA). The cells exposed to hypoxia were also treated with the PI3K/AKT inhibitor, LY294002. In addition, mouse pups with oxygen-induced retinopathy (OIR) were administered an intravitreal injection of CCN1 siRNA. RNV was assessed by magnesium-activated adenosine diphosphatease (ADPase) staining. RT-qPCR, western blot analysis, immunofluorescence staining and immunohistochemistry were used to detect the distribution and expression of CCN1, PI3K and AKT. Exposure to hypoxia increased the neovascularization clock hour scores (from 1.23±0.49 to 5.60±0.73, P<0.05) and the number of preretinal neovascular cells, as well as the mRNA and protein expression levels of CCN1, PI3K and AKT (all P<0.05). The injection of CCN1 siRNA decreased the neovascularization clock hour scores and the number of preretinal neovascular cells (1.53±0.72 vs. 4.76±1.04; 12.0±2.8 vs. 31.4±2.6, respectively, both P<0.05), as well as the mRNA and protein expression levels of CCN1, PI3K and AKT (protein, −45.3, −22.5 and −28.4%; mRNA, −43.7, −58.7 and −42.9%, respectively, all P<0.05) compared to the administration of scrambled siRNA under hypoxic conditions. Treatment with LY294002 decreased the mRNA and protein expression levels of CCN1 in the cells exposed to hypoxia (both P<0.05). The administration of CCN1 siRNA resulted in less severe

  11. Receptor for activated C kinase 1 (RACK1) promotes the progression of OSCC via the AKT/mTOR pathway.

    PubMed

    Zhang, Xuefeng; Liu, Na; Ma, Danhua; Liu, Ling; Jiang, Lu; Zhou, Yu; Zeng, Xin; Li, Jing; Chen, Qianming

    2016-08-01

    Our previous study suggested that receptor for activated C kinase 1 (RACK1) contribute to the progression of oral squamous cell carcinoma (OSCC). The aim of this study is to elucidate the mechanism by which RACK1 regulates cell growth in OSCC using in vitro and in vivo models. The effects of RACK1 knockdown with lentivirus based shRNA in stable cell lines were evaluated by Q-PCR and western blot analysis. RACK1 silencing effects on the cell cycle in OSCC cells were detected by flow cytometry and western blot analysis. The effect of RACK1 silencing on inhibiting the progression of OSCC was illustrated using a xenografted mouse model. RACK1 and relevant signaling pathways were investigated in tissues and cells using immunohistochemistry and/or western blot analysis. Stable silencing of the RACK1 gene resulted in a distinct G1 and G2 phase arrest by downregulating Cyclin B1 and Cyclin D1. Depleted RACK1 led to markedly decreased tumor volume and the expression of Ki67, CD34, and VEGF in vivo. The expression of RACK1 and p-AKT has a parallel pattern in different stages of oral carcinogenesis tissues. In addition, the protein level of RACK1 was positively correlated with p-AKT in OSCC tissue samples and cell lines. We found specific transient knockdown of RACK1 could downregulate the protein levels of p-AKT, p-mTOR, and p-S6 in a dose-dependent manner. This study demonstrates that RACK1-dependent OSCC growth and survival may be related to the increased activation of the AKT/mTOR/S6 pathway. PMID:27279145

  12. Gankyrin facilitates follicle-stimulating hormone-driven ovarian cancer cell proliferation through the PI3K/AKT/HIF-1α/cyclin D1 pathway.

    PubMed

    Chen, J; Bai, M; Ning, C; Xie, B; Zhang, J; Liao, H; Xiong, J; Tao, X; Yan, D; Xi, X; Chen, X; Yu, Y; Bast, R C; Zhang, Z; Feng, Y; Zheng, W

    2016-05-12

    Gankyrin is a regulatory subunit of the 26kD proteasome complex. As a novel oncoprotein, gankyrin is expressed aberrantly in cancers from several different sites and has been shown to contribute to oncogenesis in endometrial and cervical carcinomas. Neither gankyrin's contribution to the development of epithelial ovarian cancer nor its interaction with follicle-stimulating hormone (FSH)-driven proliferation in ovarian cancer has been studied. Here we have found that gankyrin is overexpressed in ovarian cancers compared with benign ovarian cystadenomas and that gankyrin regulates FSH upregulation of cyclin D1. Importantly, gankyrin regulates PI3K/AKT signaling by downregulating PTEN. Prolonged AKT activation by FSH stimulation of the FSH receptor (FSHR) promotes gankyrin expression, which, in turn, enhances AKT activation by inhibiting PTEN. Overexpression of gankyrin decreases hypoxia inducible factor-1α (HIF-1α) protein levels, but has little effect on HIF-1α mRNA levels, which could be attributed to gankyrin mediating HIF-1α protein stability via the ubiquitin-proteasome pathway. Reduction in HIF-1α protein stability led to attenuation of the binding with cyclin D1 promoter, resulted in abolishment of the negative regulation of cyclin D1 by HIF-1α, which promotes proliferation of ovarian cancer cells. Our results document that gankyrin regulates HIF-1α protein stability and cyclin D1 expression, ultimately mediating FSH-driven ovarian cancer cell proliferation. PMID:26364616

  13. DESC1, a novel tumor suppressor, sensitizes cells to apoptosis by downregulating the EGFR/AKT pathway in esophageal squamous cell carcinoma.

    PubMed

    Ng, Hoi Yan; Ko, Josephine Mun-Yee; Yu, Valen Zhuoyou; Ip, Joseph Chok Yan; Dai, Wei; Cal, Santiago; Lung, Maria Li

    2016-06-15

    Esophageal cancer is ranked as the eighth most common cancer and the sixth leading cause of cancer deaths worldwide. To identify candidate tumor suppressor genes related to esophageal squamous cell carcinoma (ESCC) development, a cDNA microarray analysis was performed using paired tumor and nontumor tissue samples from ESCC patients. Differentially expressed in squamous cell carcinoma 1 (DESC1), which belongs to the Type II transmembrane serine protease family, was frequently downregulated in ESCC. This study aims to elucidate the molecular mechanism for the tumor suppressive function of DESC1 in ESCC. We show that DESC1 reduced cell viability and sensitized cells to apoptosis, when cells were under apoptotic stimuli. The proapoptotic effect of DESC1 was mediated through downregulating AKT1 activation and the restoration of AKT activation by the introduction of the constitutively active AKT, myr-AKT, abolished the apoptosis-sensitizing effect of DESC1. DESC1 also reduced EGFR protein level, which was abrogated when the proteolytic function of DESC1 was lost, suggesting that DESC1 cleaved EGFR and downregulated the EGFR/AKT pathway to favor apoptosis. The transmembrane localization and the structural domains provide an opportunity for DESC1 to interact with the extracellular environment. The importance of such interaction was highlighted by the finding that DESC1 reduced cell colony formation ability in three-dimensional culture. In line with this, DESC1 reduced tumor growth kinetics in the in vivo orthotopic tumorigenesis assay. Taken together, our novel findings suggest how DESC1 may suppress ESCC development by sensitizing cells to apoptosis under an apoptotic stimulus through downregulating the EGFR/AKT signaling pathway. PMID:26856390

  14. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits.

    PubMed

    Wang, Yan; Li, Yigang; Song, Lei; Li, Yanyan; Jiang, Shan; Zhang, Song

    2016-07-01

    Amniotic fluid-derived mesenchymal stem cells (AFMSCs) are an attractive cell source for applications in regenerative medicine, due to characteristics such as proliferative capacity and multipotency. In addition, Akt, a serine‑threonine kinase, maintains stem cells by promoting viability and proliferation. Whether the transplantation of Akt-overexpressing AFMSCs protects the heart against ischemia‑reperfusion (I/R) injury has yet to be elucidated. Accordingly, the Akt gene was overexpressed in AFMSCs using lentiviral transduction, and Akt‑AFMSCs were transplanted into the ischemic myocardium of rabbits prior to reperfusion. Any protective effects resulting from this procedure were subsequently sought after three weeks later. A histological examination revealed that there was a decrease in intramyocardial inflammation and ultrastructural damage, and an increase in capillary density and in the levels of GATA binding protein 4, connexin 43 and cardiac troponin T in the Akt‑AFMSC group compared with the control group. A significant decrease in cardiomyocyte apoptosis, accompanying an increase in phosphorylated Akt and B‑cell lymphoma 2 (Bcl-2) and a decrease in caspase‑3, was also observed. Furthermore, the left ventricular function was markedly augmented in the Akt‑AFMSC group compared with the control group. These observations suggested that the protective effect of AFMSCs may be due to the delivery of secreted cytokines, promotion of neoangiogenesis, prevention of cardiomyocyte apoptosis, transdifferentiation into cardiomyocytes and promotion of the viability of AFMSCs, which are assisted by Akt gene modification. Taken together, the results of the present study have indicated that transplantation of Akt-AFMSCs is able to alleviate myocardial I/R injury and improve cardiac function. PMID:27151366

  15. Dissecting the EGFR-PI3K-AKT pathway in oral cancer highlights the role of the EGFR variant III and its clinical relevance

    PubMed Central

    2013-01-01

    Background Dysregulated epidermal growth factor receptor (EGFR)-phosphoinositide-3-kinase (PI3K)-AKT signaling is considered pivotal for oral cancer, and the pathway is a potential candidate for therapeutic targeting. Results A total of 108 archival samples which were from surgically resected oral cancer were examined. Immunohistochemical staining showed the protein expression of membranous wild-type EGFR and cytoplasmic phosphorylated AKT was detected in 63.9% and 86.9% of the specimens, respectively. In 49.1% of the samples, no phosphatase and tensin homolog (PTEN) expression was detected. With regard to the EGFR variant III (EGFRvIII), 75.0% of the samples showed positive expression for moderate to severe staining, 31.5% of which had high expression levels. Real-time polymerase chain reaction assays for gene copy number assessment of PIK3CA revealed that 24.8% of the samples had alterations, and of EGFR showed that 49.0% had amplification. Direct sequencing of PIK3CA g