Sample records for akt-dependent vegf-mediated mechanism

  1. Forskolin increases angiogenesis through the coordinated cross-talk of PKA-dependent VEGF expression and Epac-mediated PI3K/Akt/eNOS signaling.

    PubMed

    Namkoong, Seung; Kim, Chun-Ki; Cho, Young-Lai; Kim, Ji-Hee; Lee, Hansoo; Ha, Kwon-Soo; Choe, Jongseon; Kim, Pyeung-Hyeun; Won, Moo-Ho; Kwon, Young-Geun; Shim, Eun Bo; Kim, Young-Myeong

    2009-06-01

    Forskolin, a potent activator of adenylyl cyclases, has been implicated in modulating angiogenesis, but the underlying mechanism has not been clearly elucidated. We investigated the signal mechanism by which forskolin regulates angiogenesis. Forskolin stimulated angiogenesis of human endothelial cells and in vivo neovascularization, which was accompanied by phosphorylation of CREB, ERK, Akt, and endothelial nitric oxide synthase (eNOS) as well as NO production and VEGF expression. Forskolin-induced CREB phosphorylation, VEGF promoter activity, and VEGF expression were blocked by the PKA inhibitor PKI.Moreover, phosphorylation of ERK by forskolin was inhibited by the MEK inhibitor PD98059, but not PKI. The forskolin-induced Akt/eNOS/NO pathway was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, but not significantly suppressed by PKI. These inhibitors and a NOS inhibitor partially inhibited forskolin-induced angiogenesis. The exchange protein directly activated by cAMP (Epac) activator, 8CPT-2Me-cAMP, promoted the Akt/eNOS/NO pathway and ERK phosphorylation,but did not induce CREB phosphorylation and VEGF expression. The angiogenic effect of the Epac activator was diminished by the inhibition of PI3K and MEK, but not by the PKA inhibitor. Small interfering RNA-mediated knockdown of Epac1 suppressed forskolin-induced angiogenesis and phosphorylation of ERK, Akt, and eNOS, but not CREB phosphorylation and VEGF expression. These results suggest that forskolin stimulates angiogenesis through coordinated cross-talk between two distinct pathways, PKA-dependent VEGF expression and Epac-dependent ERKactivation and PI3K/Akt/eNOS/NO signaling.

  2. Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription.

    PubMed

    Fernández, Jaime G; Rodríguez, Diego A; Valenzuela, Manuel; Calderon, Claudia; Urzúa, Ulises; Munroe, David; Rosas, Carlos; Lemus, David; Díaz, Natalia; Wright, Mathew C; Leyton, Lisette; Tapia, Julio C; Quest, Andrew Fg

    2014-09-09

    Early in cancer development, tumour cells express vascular endothelial growth factor (VEGF), a secreted molecule that is important in all stages of angiogenesis, an essential process that provides nutrients and oxygen to the nascent tumor and thereby enhances tumor-cell survival and facilitates growth. Survivin, another protein involved in angiogenesis, is strongly expressed in most human cancers, where it promotes tumor survival by reducing apoptosis as well as favoring endothelial cell proliferation and migration. The mechanisms by which cancer cells induce VEGF expression and angiogenesis upon survivin up-regulation remain to be fully established. Since the PI3K/Akt signalling and β-catenin-Tcf/Lef dependent transcription have been implicated in the expression of many cancer-related genes, including survivin and VEGF, we evaluated whether survivin may favor VEGF expression, release from tumor cells and induction of angiogenesis in a PI3K/Akt-β-catenin-Tcf/Lef-dependent manner. Here, we provide evidence linking survivin expression in tumor cells to increased β-catenin protein levels, β-catenin-Tcf/Lef transcriptional activity and expression of several target genes of this pathway, including survivin and VEGF, which accumulates in the culture medium. Alternatively, survivin downregulation reduced β-catenin protein levels and β-catenin-Tcf/Lef transcriptional activity. Also, using inhibitors of PI3K and the expression of dominant negative Akt, we show that survivin acts upstream in an amplification loop to promote VEGF expression. Moreover, survivin knock-down in B16F10 murine melanoma cells diminished the number of blood vessels and reduced VEGF expression in tumors formed in C57BL/6 mice. Finally, in the chick chorioallantoid membrane assay, survivin expression in tumor cells enhanced VEGF liberation and blood vessel formation. Importantly, the presence of neutralizing anti-VEGF antibodies precluded survivin-enhanced angiogenesis in this assay. These

  3. CCL5 promotes VEGF-dependent angiogenesis by down-regulating miR-200b through PI3K/Akt signaling pathway in human chondrosarcoma cells

    PubMed Central

    Liu, Guan-Ting; Chen, Hsien-Te; Tsou, Hsi-Kai; Tan, Tzu-Wei; Fong, Yi-Chin; Chen, Po-Chen; Yang, Wei-Hung; Wang, Shih-Wei; Chen, Jui-Chieh; Tang, Chih-Hsin

    2014-01-01

    Chondrosarcoma is the second most common primary malignant bone cancer, with potential for local invasion and distant metastasis. Chemokine CCL5 (formerly RANTES) of the CC-chemokine family plays a crucial role in metastasis. Angiogenesis is essential for the cancer metastasis. However, correlation of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is still unknown. CCL5-mediated VEGF expression was assessed by qPCR, ELISA, and Western blotting. CCL5-induced angiogenesis was examined by migration and tube formation in endothelial progenitor cells in vitro. CCL5 increased VEGF expression and also promoted chondrosarcoma conditional medium-mediated angiogenesis in vitro and in vivo. Stimulation of chondrosarcoma with CCL5 augmented PI3K and Akt phosphorylation, while PI3K and Akt inhibitor or siRNA abolished CCL5-induced VEGF expression and angiogenesis. We also demonstrated CCL5 inhibiting miR-200b expression and miR-200b mimic reversing the CCL5-enhanced VEGF expression and angiogenesis. Moreover, in chondrosarcoma patients showed the positive correlation between CCL5 and VEGF; negative correlation between CCL5 and miR-200b. Taken together, results demonstrate CCL5 promoting VEGF-dependent angiogenesis in human chondrosarcoma cells by down-regulating miR-200b through PI3K/Akt signaling pathway. PMID:25301739

  4. EZH2 promotes tumor progression via regulating VEGF-A/AKT signaling in non-small cell lung cancer.

    PubMed

    Geng, Jian; Li, Xiao; Zhou, Zhanmei; Wu, Chin-Lee; Dai, Meng; Bai, Xiaoyan

    2015-04-10

    Enhancer of Zeste Homologue 2 (EZH2) accounts for aggressiveness and unfavorable prognosis of tumor. We investigated the mechanisms and signaling pathways of EZH2 in non-small cell lung carcinoma (NSCLC) progression. Increased expression of EZH2, vascular endothelial growth factor-A (VEGF-A) and AKT phosphorylation correlated with differentiation, lymph node metastasis, size and TNM stage in NSCLC. There was a positive correlation between EZH2 and VEGF-A expression and high EZH2 expression, as an independent prognostic factor, predicted a shorter overall survival time for NSCLC patients. The expression of VEGF-A and phosphorylated Ser(473)-AKT, cell proliferation, migration and metastasis were enhanced in EZH2-overexpressing A549 cells, but inhibited in parental H2087 cells with EZH2 silencing or GSK126 treatment. AKT activity was enhanced by recombinant human VEGF-165 but suppressed by bevacizumab. An AKT inhibitor MK-2206 blocked VEGF-A expression and AKT phosphorylation in parental H2087 and EZH2-overexpressing A549 cells. EZH2 activity was not affected by either VEGF-A stimulation/depletion or MK-2206 inhibition. These results demonstrate that EZH2 promotes lung cancer progression via the VEGF-A/AKT signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Silencing of VEGF inhibits human osteosarcoma angiogenesis and promotes cell apoptosis via VEGF/PI3K/AKT signaling pathway

    PubMed Central

    Peng, Ningning; Gao, Shuming; Guo, Xu; Wang, Guangya; Cheng, Cai; Li, Min; Liu, Kehun

    2016-01-01

    Background: Osteosarcoma is a kind of highly malignant tumor and the growth and metastasis is closely related to angiogenesis. Vascular endothelial growth factor (VEGF) is an important angiogenesis-promoting factor. In the current study, we investigated the effects of suppressed VEGF on osteosarcoma and its molecular mechanism provided for a basis by targeting angiogenesis. Material/Methods: We established bearing human osteosarcoma Wistar rats model by subcutaneous inoculation of human SaOS-2 cells and the adenovirus vector Ad-VEGF-siRNA was constructed for further study. We assessed the efficiency of VEGF silencing and its influence on SaOS-2 cells. The expression of mRNA and protein were detected by RT-PCR and western blotting, respectively. Intratumoral microvessel density (MVD), VEGF and CD31 were evaluated by immunohistochemistry. We detected the cell apoptotic rates by flow cytometry. Results: Our results indicated that Ad-VEGF-siRNA could effectively suppressed the expression of VEGF expression, inhibited the proliferation capability and promoted apoptosis of SaOS-2 cells in vitro. Silencing of VEGF expression also suppress osteosarcoma tumor growth and reduce osteosarcoma angiogenesis in the Wistar rats model in vivo. Furthermore, We found that phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) activation were considerably reduced while inhibition VEGF expression in SaOS-2 cells. Conclusion: Our data demonstrated that VEGF silencing could suppress cells proliferation, promote cells apoptosis and reduce osteosarcoma angiogenesis through inactivation of VEGF/PI3K/AKT signaling pathway. PMID:27158386

  6. Developmental Regulation of NO-Mediated VEGF-Induced Effects in the Lung

    PubMed Central

    Bhandari, Vineet; Choo-Wing, Rayman; Lee, Chun G.; Yusuf, Kamran; Nedrelow, Jonathan H.; Ambalavanan, Namasivayam; Malkus, Herbert; Homer, Robert J.; Elias, Jack A.

    2008-01-01

    Vascular endothelial growth factor (VEGF) is known to have a pivotal role in lung development and in a variety of pathologic conditions in the adult lung. Our earlier studies have shown that NO is a critical mediator of VEGF-induced vascular and extravascular effects in the adult murine lung. As significant differences have been reported in the cytokine responses in the adult versus the neonatal lung, we hypothesized that there may be significant differences in VEGF-induced alterations in the developing as opposed to the mature lung. Furthermore, nitric oxide (NO) mediation of these VEGF-induced effects may be developmentally regulated. Using a novel externally regulatable lung-targeted transgenic murine model, we found that VEGF-induced pulmonary hemorrhage was mediated by NO-dependent mechanisms in adults and newborns. VEGF enhanced surfactant production in adults as well as increased surfactant and lung development in newborns, via an NO-independent mechanism. While the enhanced survival in hyperoxia in the adult was partly NO-dependent, there was enhanced hyperoxia-induced lung injury in the newborn. In addition, human amniotic fluid VEGF levels correlated positively with surfactant phospholipids. Tracheal aspirate VEGF levels had an initial spike, followed by a decline, and then a subsequent rise, in human neonates with an outcome of bronchopulmonary dysplasia or death. Our data show that VEGF can have injurious as well as potentially beneficial developmental effects, of which some are NO dependent, others NO independent. This opens up the possibility of selective manipulation of any VEGF-based intervention using NO inhibitors for maximal potential clinical benefit. PMID:18441284

  7. Developmental regulation of NO-mediated VEGF-induced effects in the lung.

    PubMed

    Bhandari, Vineet; Choo-Wing, Rayman; Lee, Chun G; Yusuf, Kamran; Nedrelow, Jonathan H; Ambalavanan, Namasivayam; Malkus, Herbert; Homer, Robert J; Elias, Jack A

    2008-10-01

    Vascular endothelial growth factor (VEGF) is known to have a pivotal role in lung development and in a variety of pathologic conditions in the adult lung. Our earlier studies have shown that NO is a critical mediator of VEGF-induced vascular and extravascular effects in the adult murine lung. As significant differences have been reported in the cytokine responses in the adult versus the neonatal lung, we hypothesized that there may be significant differences in VEGF-induced alterations in the developing as opposed to the mature lung. Furthermore, nitric oxide (NO) mediation of these VEGF-induced effects may be developmentally regulated. Using a novel externally regulatable lung-targeted transgenic murine model, we found that VEGF-induced pulmonary hemorrhage was mediated by NO-dependent mechanisms in adults and newborns. VEGF enhanced surfactant production in adults as well as increased surfactant and lung development in newborns, via an NO-independent mechanism. While the enhanced survival in hyperoxia in the adult was partly NO-dependent, there was enhanced hyperoxia-induced lung injury in the newborn. In addition, human amniotic fluid VEGF levels correlated positively with surfactant phospholipids. Tracheal aspirate VEGF levels had an initial spike, followed by a decline, and then a subsequent rise, in human neonates with an outcome of bronchopulmonary dysplasia or death. Our data show that VEGF can have injurious as well as potentially beneficial developmental effects, of which some are NO dependent, others NO independent. This opens up the possibility of selective manipulation of any VEGF-based intervention using NO inhibitors for maximal potential clinical benefit.

  8. 18β-Glycyrrhetinic acid suppresses TNF-α induced matrix metalloproteinase-9 and vascular endothelial growth factor by suppressing the Akt-dependent NF-κB pathway.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Dilshara, Matharage Gayani; Park, Sang Rul; Choi, Yung Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kim, Gi-Young

    2014-08-01

    Little is known about the molecular mechanism through which 18β-glycyrrhetinic acid (GA) inhibits metastasis and invasion of cancer cells. Therefore, this study aimed to investigate the effects of GA on the expression of matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) in various types of cancer cells. We found that treatment with GA reduces tumor necrosis factor-α (TNF-α)-induced Matrigel invasion with few cytotoxic effects. Our findings also showed that MMP-9 and VEGF expression increases in response to TNF-α; however, GA reverses their expression. In addition, GA inhibited inhibitory factor kappa B degradation, sustained nuclear factor-kappa B (NF-κB) subunits, p65 and p50, in the cytosol compartments, and consequently suppressed the TNF-α-induced DNA-binding activity and luciferase activity of NF-κB. Specific NF-κB inhibitors, pyrrolidine dithiocarbamate, MG132, and PS-1145, also attenuated TNF-α-mediated MMP-9 and VEGF expression as well as activity by suppressing their regulatory genes. Furthermore, phosphorylation of TNF-α-induced phosphatidyl-inositol 3 kinase (PI3K)/Akt was significantly downregulated in the presence of GA accompanying with the inhibition of NF-κB activity, and as presumed, the specific PI3K/Akt inhibitor LY294002 significantly decreased MMP-9 and VEGF expression as well as activity. These results suggest that GA operates as a potential anti-invasive agent by downregulating MMP-9 and VEGF via inhibition of PI3K/Akt-dependent NF-κB activity. Taken together, GA might be an effective anti-invasive agent by suppressing PI3K/Akt-mediated NF-κB activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Metastasis-associated protein 2 promotes the metastasis of non-small cell lung carcinoma by regulating the ERK/AKT and VEGF signaling pathways

    PubMed Central

    Zhang, Bin; Tao, Feng; Zhang, Hao

    2018-01-01

    Non-small cell lung carcinoma (NSCLC) is the most common cause of cancer-associated mortality in the world and accounts for ~85% of human lung cancers. Metastasis-associated protein 2 (MTA2) is a component of the histone deacetylase complex and serves a role in tumor progression; however, the mechanism through which MTA2 is involved in the progression of NSCLC remains unclear. The aim of the present study was to investigate the expression and function of MTA2 and the MTA2-mediated signaling pathway in NSCLC cells. Expression of MTA2 and its target genes was analyzed in MTA2-overexpressing and anti-MTA2 antibody (AbMTA2)-treated NSCLC cells, as well as growth, migration, invasion and apoptotic-resistance. The inhibitory effects on tumor formation were analyzed using AbMTA2-treated NSCLC cells and in a mouse model. Histological assessment was conducted to analyze the expressions levels of extracellular signal-regulated kinase (ERK), RAC-α serine/threonine protein kinase (AKT) and vascular endothelial growth factor (VEGF) in experimental tumors. Results of the present study demonstrated that MTA2 was overexpressed in NSCLC cells. The growth, migration and invasion of NSCLC cells were markedly inhibited by AbMTA2. In addition, it was observed that the ERK/AKT and VEGF signaling pathways were both upregulated in MTA2-overexpressing NSCLC cells, and downregulated following silencing of MTA2 activation. ERK and AKT phosphorylation levels were downregulated in NSCLC cells and tumors following MTA2 silencing. The in vivo study demonstrated that tumor growth was markedly inhibited following siRNA-MTA2 treatment. In conclusion, the results of the present study suggested that MTA2 silencing may significantly inhibit the growth and aggressiveness of NSCLC cells. Results from the present study indicated that the mechanism underlying the MTA2-mediated invasive potential of NSCLC cells involved the ERK/AKT and VEGF signaling pathways, which may be a potential therapeutic target

  10. Adiponectin promotes VEGF-A-dependent angiogenesis in human chondrosarcoma through PI3K, Akt, mTOR, and HIF-α pathway.

    PubMed

    Lee, Hsiang-Ping; Lin, Chih-Yang; Shih, Jhao-Sheng; Fong, Yi-Chin; Wang, Shih-Wei; Li, Te-Mao; Tang, Chih-Hsin

    2015-11-03

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. On the other hand, angiogenesis is a critical step in tumor growth and metastasis. However, the relationship of adiponectin with vascular endothelial growth factor-A (VEGF-A) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study we first demonstrated that the expression of adiponectin was correlated with tumor stage of human chondrosarcoma tissues. In addition, we also found that adiponectin increased VEGF-A expression in human chondrosarcoma cells and subsequently induced migration and tube formation in human endothelial progenitor cells (EPCs). Adiponectin promoted VEGF-A expression through adiponectin receptor (AdipoR), phosphoinositide 3 kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF)-1α signaling cascades. Knockdown of adiponectin decreased VEGF-A expression and also abolished chondrosarcoma conditional medium-mediated tube formation in EPCs in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. Therefore, adiponectin is crucial for tumor angiogenesis and growth, which may represent a novel target for anti-angiogenic therapy in human chondrosarcoma.

  11. Adiponectin promotes VEGF-A-dependent angiogenesis in human chondrosarcoma through PI3K, Akt, mTOR, and HIF-α pathway

    PubMed Central

    Shih, Jhao-Sheng; Fong, Yi-Chin; Wang, Shih-Wei; Li, Te-Mao; Tang, Chih-Hsin

    2015-01-01

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. On the other hand, angiogenesis is a critical step in tumor growth and metastasis. However, the relationship of adiponectin with vascular endothelial growth factor-A (VEGF-A) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study we first demonstrated that the expression of adiponectin was correlated with tumor stage of human chondrosarcoma tissues. In addition, we also found that adiponectin increased VEGF-A expression in human chondrosarcoma cells and subsequently induced migration and tube formation in human endothelial progenitor cells (EPCs). Adiponectin promoted VEGF-A expression through adiponectin receptor (AdipoR), phosphoinositide 3 kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF)-1α signaling cascades. Knockdown of adiponectin decreased VEGF-A expression and also abolished chondrosarcoma conditional medium-mediated tube formation in EPCs in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. Therefore, adiponectin is crucial for tumor angiogenesis and growth, which may represent a novel target for anti-angiogenic therapy in human chondrosarcoma. PMID:26468982

  12. Mechanism of estrogen-mediated attenuation of hepatic injury following trauma-hemorrhage: Akt-dependent HO-1 up-regulation.

    PubMed

    Hsu, Jun-Te; Kan, Wen-Hong; Hsieh, Chi-Hsun; Choudhry, Mashkoor A; Schwacha, Martin G; Bland, Kirby I; Chaudry, Irshad H

    2007-10-01

    Protein kinase B (Akt) is known to be involved in proinflammatory and chemotactic events in response to injury. Akt activation also leads to the induction of heme oxygenase (HO)-1. Up-regulation of HO-1 mediates potent, anti-inflammatory effects and attenuates organ injury. Although studies have shown that 17beta-estradiol (E2) prevents organ damage following trauma-hemorrhage, it remains unknown whether Akt/HO-1 plays any role in E2-mediated attenuation of hepatic injury following trauma-hemorrhage. To study this, male rats underwent trauma-hemorrhage (mean blood pressure, approximately 40 mmHg for 90 min), followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, E2 (1 mg/kg body weight), E2 plus the PI-3K inhibitor (Wortmannin), or the estrogen receptor (ER) antagonist (ICI 182,780). At 2 h after sham operation or trauma-hemorrhage, plasma alpha-GST and hepatic tissue myeloperoxidase (MPO) activity, IL-6, TNF-alpha, ICAM-1, cytokine-induced neutrophil chemoattractant-1, and MIP-2 levels were measured. Hepatic Akt and HO-1 protein levels were also determined. Trauma-hemorrhage increased hepatic injury markers (alpha-GST and MPO activity), cytokines, ICAM-1, and chemokine levels. These parameters were markedly improved in the E2-treated rats following trauma-hemorrhage. E2 treatment also increased hepatic Akt activation and HO-1 expression compared with vehicle-treated, trauma-hemorrhage rats, which were abolished by coadministration of Wortmannin or ICI 182,780. These results suggest that the salutary effects of E2 on hepatic injury following trauma-hemorrhage are in part mediated via an ER-related, Akt-dependent up-regulation of HO-1.

  13. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway.

    PubMed

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D

    2006-01-01

    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway.

  14. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Sorescu, George; Boyd, Nolan; Shiojima, Ichiro; Walsh, Kenneth; Du, Jie; Jo, Hanjoong

    2002-01-01

    Recently, we have shown that shear stress stimulates NO(*) production by the protein kinase B/Akt (Akt)-dependent mechanisms in bovine aortic endothelial cells (BAEC) (Go, Y. M., Boo, Y. C., Park, H., Maland, M. C., Patel, R., Pritchard, K. A., Jr., Fujio, Y., Walsh, K., Darley-Usmar, V., and Jo, H. (2001) J. Appl. Physiol. 91, 1574-1581). Akt has been believed to regulate shear-dependent production of NO(*) by directly phosphorylating endothelial nitric-oxide synthase (eNOS) at the Ser(1179) residue (eNOS-S(1179)), but a critical evaluation using specific inhibitors or dominant negative mutants (Akt(AA) or Akt(AAA)) has not been reported. In addition, other kinases, including protein kinase A (PKA) and AMP kinase have also shown to phosphorylate eNOS-S(1179). Here, we show that shear-dependent phosphorylation of eNOS-S(1179) is mediated by an Akt-independent, but a PKA-dependent, mechanism. Expression of Akt(AA) or Akt(AAA) in BAEC by using recombinant adenoviral constructs inhibited phosphorylation of eNOS-S(1179) if cells were stimulated by vascular endothelial growth factor (VEGF), but not by shear stress. As shown before, expression of Akt(AA) inhibited shear-dependent NO(*) production, suggesting that Akt is still an important regulator in NO production. Further studies showed that a selective inhibitor of PKA, H89, inhibited shear-dependent phosphorylation of eNOS-S(1179) and NO(*) production. In contrast, H89 did not inhibit phosphorylation of eNOS-S(1179) induced by expressing a constitutively active Akt mutant (Akt(Myr)) in BAEC, showing that the inhibitor did not affect the Akt pathway. 8-Bromo-cAMP alone phosphorylated eNOS-S(1179) within 5 min without activating Akt, in an H89-sensitive manner. Collectively, these results demonstrate that shear stimulates phosphorylation of eNOS-S(1179) in a PKA-dependent, but Aktindependent manner, whereas the NO(*) production is regulated by the mechanisms dependent on both PKA and Akt. A coordinated interaction

  15. Inhibitory effects of vinpocetine on the progression of atherosclerosis are mediated by Akt/NF-κB dependent mechanisms in apoE-/- mice.

    PubMed

    Zhuang, Jianhui; Peng, Wenhui; Li, Hailing; Lu, Yuyan; Wang, Ke; Fan, Fan; Li, Shuang; Xu, Yawei

    2013-01-01

    Recent studies have found additional roles for vinpocetine, a potent phosphodiesterase type I inhibitor, in anti-proliferation and anti-inflammation of vascular smooth muscle cells and cancer cells via different mechanisms. In this study, we attempted to investigate whether vinpocetine protected against atherosclerotic development in apoE(-/-) mice and explore the underlying anti-atherogenic mechanisms in macrophages. Vinpocetine markedly decreased atherosclerotic lesion size in apoE(-/-) mice measured by oil red O. Masson's trichrome staining and immunohistochemical analyses revealed that vinpocetine significantly increased the thickness of fibrous cap, reduced the size of lipid-rich necrotic core and attenuated inflammation. In vitro experiments exhibited a significant decrease in monocyte adhesion treated with vinpocetine. Further, active TNF-α, IL-6, monocyte chemoattractant protein-1 and matrix metalloproteinase-9 expression induced by ox-LDL were attenuated by vinpocetine in a dose-dependent manner. Similarly, ox-LDL-induced reactive oxygen species were significantly repressed by vinpocetine. Both western blot and luciferase activity assay showed that vinpocetine inhibited the enhanced Akt, IKKα/β, IκBα phosphorylation and NF-κB activity induced by ox-LDL, and the inhibition of NF-κB activity was partly caused by Akt dephosphorylation. However, knockdown of PDE1B did not affect Akt, IKKα/β and IκBα phosphorylation. These results suggest that vinpocetine exerts anti-atherogenic effects through inhibition of monocyte adhesion, oxidative stress and inflammatory response, which are mediated by Akt/NF-κB dependent pathway but independent of PDE1 blockade in macrophages.

  16. Akt mediated ROS-dependent selective targeting of mutant KRAS tumors.

    PubMed

    Iskandar, Kartini; Rezlan, Majidah; Pervaiz, Shazib

    2014-10-01

    Reactive oxygen species (ROS) play a critical role in a variety of cellular processes, ranging from cell survival and proliferation to cell death. Previously, we reported the ability of a small molecule compound, C1, to induce ROS dependent autophagy associated apoptosis in human cancer cell lines and primary tumor cells (Wong C. et al. 2010). Our ongoing investigations have unraveled a hitherto undefined novel signaling network involving hyper-phosphorylation of Akt and Akt-mediated ROS production in cancer cell lines. Interestingly, drug-induced Akt activation is selectively seen in cell lines that carry mutant KRAS; HCT116 cells that carry the V13D KRAS mutation respond favorably to C1 while HT29 cells expressing wild type KRAS are relatively resistant. Of note, not only does the compound target mutant KRAS expressing cells but also induces RAS activation as evidenced by the PAK pull down assay. Corroborating this, pharmacological inhibition as well as siRNA mediated silencing of KRAS or Akt, blocked C1-induced ROS production and rescued tumor colony forming ability in HCT116 cells. To further confirm the involvement of KRAS, we made use of mutant KRAS transformed RWPE-1 prostate epithelial cells. Notably, drug-induced ROS generation and death sensitivity was significantly higher in RWPE-1-KRAS cells than the RWPE-1-vector cells, thus confirming the results obtained with mutant KRAS colorectal carcinoma cell line. Lastly, we made use of HCT116 mutant KRAS knockout cells (KO) where the mutant KRAS allele had been deleted, thus expressing a single wild-type KRAS allele. Exposure of the KO cells to C1 failed to induce Akt activation and mitochondrial ROS production. Taken together, results show the involvement of activated Akt in ROS-mediated selective targeting of mutant KRAS expressing tumors, which could have therapeutic implications given the paucity of chemotherapeutic strategies specifically targeting KRAS mutant cancers. Copyright © 2014. Published by

  17. Inhibitory Effects of Vinpocetine on the Progression of Atherosclerosis Are Mediated by Akt/NF-κB Dependent Mechanisms in apoE-/- Mice

    PubMed Central

    Zhuang, Jianhui; Peng, Wenhui; Li, Hailing; Lu, Yuyan; Wang, Ke; Fan, Fan; Li, Shuang; Xu, Yawei

    2013-01-01

    Background Recent studies have found additional roles for vinpocetine, a potent phosphodiesterase type I inhibitor, in anti-proliferation and anti-inflammation of vascular smooth muscle cells and cancer cells via different mechanisms. In this study, we attempted to investigate whether vinpocetine protected against atherosclerotic development in apoE-/- mice and explore the underlying anti-atherogenic mechanisms in macrophages. Methodology/Principal Findings Vinpocetine markedly decreased atherosclerotic lesion size in apoE-/- mice measured by oil red O. Masson’s trichrome staining and immunohistochemical analyses revealed that vinpocetine significantly increased the thickness of fibrous cap, reduced the size of lipid-rich necrotic core and attenuated inflammation. In vitro experiments exhibited a significant decrease in monocyte adhesion treated with vinpocetine. Further, active TNF-α, IL-6, monocyte chemoattractant protein-1and matrix metalloproteinase-9 expression induced by ox-LDL were attenuated by vinpocetine in a dose-dependent manner. Similarly, ox-LDL-induced reactive oxygen species were significantly repressed by vinpocetine. Both western blot and luciferase activity assay showed that vinpocetine inhibited the enhanced Akt, IKKα/β, IκBα phosphorylation and NF-κB activity induced by ox-LDL, and the inhibition of NF-κB activity was partly caused by Akt dephosphorylation. However, knockdown of PDE1B did not affect Akt, IKKα/β and IκBα phosphorylation. Conclusions These results suggest that vinpocetine exerts anti-atherogenic effects through inhibition of monocyte adhesion, oxidative stress and inflammatory response, which are mediated by Akt/NF-κB dependent pathway but independent of PDE1 blockade in macrophages. PMID:24349299

  18. Stretch-Induced Hypertrophy Activates NFkB-Mediated VEGF Secretion in Adult Cardiomyocytes

    PubMed Central

    Leychenko, Anna; Konorev, Eugene; Jijiwa, Mayumi; Matter, Michelle L.

    2011-01-01

    Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF), which acts as an angiogenic factor and a modulator of cardiomyocyte function, is regulated by mechanical stretch. Mechanical stretch promotes VEGF secretion in neonatal cardiomyocytes. Whether this effect is retained in adult cells and the molecular mechanism mediating stretch-induced VEGF secretion has not been elucidated. Our objective was to investigate whether cyclic mechanical stretch induces VEGF secretion in adult cardiomyocytes and to identify the molecular mechanism mediating VEGF secretion in these cells. Isolated primary adult rat cardiomyocytes (ARCMs) were subjected to cyclic mechanical stretch at an extension level of 10% at 30 cycles/min that induces hypertrophic responses. Cyclic mechanical stretch induced a 3-fold increase in VEGF secretion in ARCMs compared to non-stretch controls. This increase in stretch-induced VEGF secretion correlated with NFkB activation. Cyclic mechanical stretch-mediated VEGF secretion was blocked by an NFkB peptide inhibitor and expression of a dominant negative mutant IkBα, but not by inhibitors of the MAPK/ERK1/2 or PI3K pathways. Chromatin immunoprecipitation assays demonstrated an interaction of NFkB with the VEGF promoter in stretched primary cardiomyocytes. Moreover, VEGF secretion is increased in the stretched myocardium during pressure overload-induced hypertrophy. These findings are the first to demonstrate that NFkB activation plays a role in mediating VEGF secretion upon cyclic mechanical stretch in adult cardiomyocytes. Signaling by NFkB initiated in response to cyclic mechanical stretch may therefore coordinate the hypertrophic response in adult

  19. Effect and possible mechanism of monocyte-derived VEGF on monocyte-endothelial cellular adhesion after electrical burns.

    PubMed

    Ruan, Qiongfang; Zhao, Chaoli; Ye, Ziqing; Ruan, Jingjing; Xie, Qionghui; Xie, Weiguo

    2015-06-01

    One of the major obstacles in the treatment of severe electrical burns is properly handling the resulting uncontrolled inflammation. Such inflammation often causes secondary injury and necrosis, thus complicating patient outcomes. Vascular endothelial grow factor (VEGF) has emerged as an important mediator for the recruitment of monocytes to the site inflammation. This study was designed to explore the effects and possible mechanism of VEGF on monocyte-endothelial cellular adhesion. To do so, we used a cultured human monocytic cell line (THP-1) that was stimulated with serum derived from rats that had received electrical burns. Serum was obtained from rats that had received electrical burns. Both the VEGF and soluble flt-1 (sflt-1) concentrations of the serum were determined by double-antibody sandwich ELISA. The concentrations of VEGF, sflt-1, and TNF-α obtained from the cell-free cultured supernatant of THP-1 cells that had been exposed to the serum were then determined by double-antibody sandwich ELISA. Serum-stimulated THP-1 cells were added to wells with a monolayer of endothelial cells to detect the level of monocyte-endothelial cells adhesion. Finally, the state of phosphorylation of AKT was determined by Western blotting. Both in vivo and in vitro studies showed that compared to controls, the levels of VEGF were significantly increased after electrical burns. This increased was accompanied by a reduction of sflt-1 levels. Furthermore, the serum of rats that had received electrical burns was able to both activate monocytes to secrete TNF-α and enhance monocyte-endothelial cell adhesion. Treatment with the serum also resulted in an up-regulation of the phosphorylation of AKT, but had no effect on the total levels of AKT. Phosphatidylinositide 3-kinases (PI3K) inhibition decreased the number of THP-1 cells that were adhered to endothelial cells. Finally, sequestering VEGF with sflt-1 was able to reduce the effect on monocyte-endothelial cells adhesion by

  20. Arrestin-dependent angiotensin AT1 receptor signaling regulates Akt and mTor-mediated protein synthesis.

    PubMed

    Kendall, Ryan T; Lee, Mi-Hye; Pleasant, Dorea L; Robinson, Katherine; Kuppuswamy, Dhandapani; McDermott, Paul J; Luttrell, Louis M

    2014-09-19

    Control of protein synthesis is critical to both cell growth and proliferation. The mammalian target of rapamycin (mTOR) integrates upstream growth, proliferation, and survival signals, including those transmitted via ERK1/2 and Akt, to regulate the rate of protein translation. The angiotensin AT1 receptor has been shown to activate both ERK1/2 and Akt in arrestin-based signalsomes. Here, we examine the role of arrestin-dependent regulation of ERK1/2 and Akt in the stimulation of mTOR-dependent protein translation by the AT1 receptor using HEK293 and primary vascular smooth muscle cell models. Nascent protein synthesis stimulated by both the canonical AT1 receptor agonist angiotensin II (AngII), and the arrestin pathway-selective agonist [Sar(1)-Ile(4)-Ile(8)]AngII (SII), is blocked by shRNA silencing of βarrestin1/2 or pharmacological inhibition of Akt, ERK1/2, or mTORC1. In HEK293 cells, SII activates a discrete arrestin-bound pool of Akt and promotes Akt-dependent phosphorylation of mTOR and its downstream effector p70/p85 ribosomal S6 kinase (p70/85S6K). In parallel, SII-activated ERK1/2 helps promote mTOR and p70/85S6K phosphorylation, and is required for phosphorylation of the known ERK1/2 substrate p90 ribosomal S6 kinase (p90RSK). Thus, arrestins coordinate AT1 receptor regulation of ERK1/2 and Akt activity and stimulate protein translation via both Akt-mTOR-p70/85S6K and ERK1/2-p90RSK pathways. These results suggest that in vivo, arrestin pathway-selective AT1 receptor agonists may promote cell growth or hypertrophy through arrestin-mediated mechanisms despite their antagonism of G protein signaling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Sorcin is involved during embryo implantation via activating VEGF/PI3K/Akt pathway in mice.

    PubMed

    Gupta, Kanchan; Sirohi, Vijay Kumar; Kumari, Suparna; Shukla, Vinay; Manohar, Murli; Popli, Pooja; Dwivedi, Anila

    2018-02-01

    Our earlier studies have demonstrated the cyclic variation and also the altered expression of sorcin in endometrium during early-to-mid-secretory phase transition in women with unexplained infertility. The current study was undertaken to establish the functional role of sorcin in endometrial receptivity in mice. Results indicated that sorcin was highly expressed during the window of implantation in mice and functional blockage of sorcin caused significant reduction in number of implanted blastocyst. The receptivity markers (i.e.Integrin β3, HBEGF, IGFBP1, WNT4 and Cyclin E)) were found to be downregulated in sorcin knocked down uterine horn on day 5 as compared to untreated horn. The reduced attachment and expansion of BeWo spheroids on RL95-2 endometrial cells with sorcin knock down, in in vitro model of endometrium-trophoblast interaction further supported these findings. Uterine sorcin expression pattern during estrous cycle and in delayed implantation mice model suggested the upregulation of sorcin by estrogen. The functional blockade of sorcin induced the intracellular Ca +2 levels in endometrial epithelial cells (EECs), which indicated that altered Ca +2 homeostasis might be responsible for implantation failure. Sorcin silencing led to significant reduction in the expression of angiogenic factor VEGF and its downstream effector molecules i.e. PI3K, Akt and NOS. The migratory and invasive properties of HUVECs were abrogated by anti-VEGF or by adding culture media from sorcin blocked EECs, which indicated that sorcin might mediate angiogenesis during implantation. Taken together, sorcin is involved in the regulation of Ca +2 -mediated angiogenesis via VEGF/PI3K/Akt pathway in endometrial cells and plays a crucial role in preparing the endometrium for implantation. © 2018 Society for Endocrinology.

  2. VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2–dependent Ca2+ signaling

    PubMed Central

    Favia, Annarita; Desideri, Marianna; Gambara, Guido; D’Alessio, Alessio; Ruas, Margarida; Esposito, Bianca; Del Bufalo, Donatella; Parrington, John; Ziparo, Elio; Palombi, Fioretta; Galione, Antony; Filippini, Antonio

    2014-01-01

    Vascular endothelial growth factor (VEGF) and its receptors VEGFR1/VEGFR2 play major roles in controlling angiogenesis, including vascularization of solid tumors. Here we describe a specific Ca2+ signaling pathway linked to the VEGFR2 receptor subtype, controlling the critical angiogenic responses of endothelial cells (ECs) to VEGF. Key steps of this pathway are the involvement of the potent Ca2+ mobilizing messenger, nicotinic acid adenine-dinucleotide phosphate (NAADP), and the specific engagement of the two-pore channel TPC2 subtype on acidic intracellular Ca2+ stores, resulting in Ca2+ release and angiogenic responses. Targeting this intracellular pathway pharmacologically using the NAADP antagonist Ned-19 or genetically using Tpcn2−/− mice was found to inhibit angiogenic responses to VEGF in vitro and in vivo. In human umbilical vein endothelial cells (HUVECs) Ned-19 abolished VEGF-induced Ca2+ release, impairing phosphorylation of ERK1/2, Akt, eNOS, JNK, cell proliferation, cell migration, and capillary-like tube formation. Interestingly, Tpcn2 shRNA treatment abolished VEGF-induced Ca2+ release and capillary-like tube formation. Importantly, in vivo VEGF-induced vessel formation in matrigel plugs in mice was abolished by Ned-19 and, most notably, failed to occur in Tpcn2−/− mice, but was unaffected in Tpcn1−/− animals. These results demonstrate that a VEGFR2/NAADP/TPC2/Ca2+ signaling pathway is critical for VEGF-induced angiogenesis in vitro and in vivo. Given that VEGF can elicit both pro- and antiangiogenic responses depending upon the balance of signal transduction pathways activated, targeting specific VEGFR2 downstream signaling pathways could modify this balance, potentially leading to more finely tailored therapeutic strategies. PMID:25331892

  3. Minoxidil Induction of VEGF Is Mediated by Inhibition of HIF-Prolyl Hydroxylase

    PubMed Central

    Yum, Soohwan; Jeong, Seongkeun; Kim, Dohoon; Lee, Sunyoung; Kim, Wooseong; Yoo, Jin-Wook; Kwon, Oh Sang; Kim, Dae-Duk; Min, Do Sik; Jung, Yunjin

    2017-01-01

    The topical application of minoxidil may achieve millimolar concentrations in the skin. We investigated whether millimolar minoxidil could induce vascular endothelial growth factor (VEGF), a possible effector for minoxidil-mediated hair growth, and how it occurred at the molecular level. Cell-based experiments were performed to investigate a molecular mechanism underlying the millimolar minoxidil induction of VEGF. The inhibitory effect of minoxidil on hypoxia-inducible factor (HIF) prolyl hydroxylase-2 (PHD-2) was tested by an in vitro von Hippel–Lindau protein (VHL) binding assay. To examine the angiogenic potential of millimolar minoxidil, a chorioallantoic membrane (CAM) assay was used. In human keratinocytes and dermal papilla cells, millimolar minoxidil increased the secretion of VEGF, which was not attenuated by a specific adenosine receptor antagonist that inhibits the micromolar minoxidil induction of VEGF. Millimolar minoxidil induced hypoxia-inducible factor-1α (HIF-1α), and the induction of VEGF was dependent on HIF-1. Moreover, minoxidil applied to the dorsal area of mice increased HIF-1α and VEGF in the skin. In an in vitro VHL binding assay, minoxidil directly inhibited PHD-2, thus preventing the hydroxylation of cellular HIF-1α and VHL-dependent proteasome degradation and resulting in the stabilization of HIF-1α protein. Minoxidil inhibition of PHD-2 was reversed by ascorbate, a cofactor of PHD-2, and the minoxidil induction of cellular HIF-1α was abrogated by the cofactor. Millimolar minoxidil promoted angiogenesis in the CAM assay, an in vivo angiogenic test, and this was nullified by the specific inhibition of VEGF. Our data demonstrate that PHD may be the molecular target for millimolar minoxidil-mediated VEGF induction via HIF-1. PMID:29295567

  4. GPER mediates activation of HIF1α/VEGF signaling by estrogens.

    PubMed

    De Francesco, Ernestina Marianna; Pellegrino, Michele; Santolla, Maria Francesca; Lappano, Rosamaria; Ricchio, Emilia; Abonante, Sergio; Maggiolini, Marcello

    2014-08-01

    Biological responses to estrogens in normal and malignant tissues are mainly mediated by the estrogen receptors ERα and ERβ, which function as ligand-activated transcription factors. In addition, the G protein-coupled receptor GPR30 (GPER) mediates estrogenic signaling in breast cancer cells and cancer-associated fibroblasts (CAF) that contribute to cancer progression. In this study, we evaluated the role elicited by GPER in the estrogen-regulated expression and function of vascular endothelial growth factor (VEGF) in ER-negative breast cancer cells and CAF. We demonstrated that 17β-estradiol (E2) and the GPER-selective ligand G-1 triggered a GPER/EGFR/ERK/c-fos signaling pathway that leads to increased VEGF via upregulation of HIF1α. In further extending the mechanisms involved in E2-supported angiogenesis, we also showed that conditioned medium from CAF treated with E2 and G-1 promoted human endothelial tube formation in a GPER-dependent manner. In vivo, ligand-activated GPER was sufficient to enhance tumor growth and the expression of HIF1α, VEGF, and the endothelial marker CD34 in a mouse xenograft model of breast cancer. Our findings offer important new insights into the ability of estrogenic GPER signaling to trigger HIF1α-dependent VEGF expression that supports angiogenesis and progression in breast cancer. ©2014 American Association for Cancer Research.

  5. Cellular context–mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis

    PubMed Central

    Hellesøy, Monica; Lorens, James B.

    2015-01-01

    The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis. PMID:26023089

  6. Leptin promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-27b in human chondrosarcoma cells.

    PubMed

    Yang, Wei-Hung; Chang, An-Chen; Wang, Shih-Wei; Wang, Shoou-Jyi; Chang, Yung-Sen; Chang, Tzu-Ming; Hsu, Shao-Keh; Fong, Yi-Chin; Tang, Chih-Hsin

    2016-06-27

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the chief lymphangiogenic mediator, and makes crucial contributions to tumor lymphangiogenesis. Leptin is an adipocytokine and has been indicated to facilitate tumorigenesis, angiogenesis and metastasis. However, the effect of leptin on VEGF-C regulation and lymphangiogenesis in human chondrosarcoma has hugely remained a mystery. Our results showed a clinical correlation between leptin and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that leptin promoted VEGF-C production and secretion in human chondrosarcoma cells. The conditioned medium from leptin-treated chondrosarcoma cells induced lymphangiogenesis of human lymphatic endothelial cells. We also found that leptin-induced VEGF-C is mediated by the FAK, PI3K and Akt signaling pathway. Furthermore, the expression of microRNA-27b was negatively regulated by leptin via the FAK, PI3K and Akt cascade. Our study is the first to describe the mechanism of leptin-promoted lymphangiogenesis by upregulating VEGF-C expression in chondrosarcomas. Thus, leptin could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis.

  7. [Exendin-4 promotes paracrine action of adipose-derived stem cells through PI3K/Akt signaling pathways].

    PubMed

    Zhou, Hao; Yang, Junjie; Wagn, Jing; Hu, Shunying; Chen, Guanghui; Chen, Yundai

    2014-10-01

    To investigate the mechanism by which exendin-4 promotes paracrine secretion of cytokines by adipose-derived stem cells (ADSCs). In vitro cultured SD rat ADSCs (fourth passage) with or without exendin-4 treatment underwent flow cytometry to characterize the surface markers. MTT assay was performed to assess the proliferation of the cells exposed to different concentrations (0-20 nm/L) of exendin-4, and the paracrine secretion of cytokines (bFGF, VEGF, HGF, and IGF-1) by the ADSCs was evaluated by qPCR. The changes in the expressions of p-Akt in the cells were analyzed by Western blotting and qPCR in response to exendin-4 (10 nm/L) with or without exposure to PI3K/Akt inhibitor LY-294002 (50 nm/L); bFGF, VEGF, HGF, and IGF-1 production in the cells were detected using ELISA kits. Treatment with exendin-4 for 12 h did not affect the surface marker profile of the ADSCs but promoted the cell proliferation (P<0.05). Exendin-4 significantly increased the mRNA expressions of VEGF, bFGF, HGF, and IGF-1 in a concentration-dependent manner, and 10 nm/L was the optimum concentration (P<0.05). Exendin-4 treatment resulted in significantly increased p-Akt expressions in the ADSCs, and PI3K/Akt inhibitor not only reversed such effects of exendin-4 on p-Akt but also diminished the exendin-4- mediated up-regulation of the paracrine cytokines. Exendin-4 can concentration-dependently promote the proliferative and paracrine capacities of ADSCs partially through the PI3K/Akt signaling pathway without affecting the surface marker profile of the cells.

  8. TRPC3- and ETB receptor-mediated PI3K/AKT activation induces vasogenic edema formation following status epilepticus.

    PubMed

    Kim, Ji-Eun; Kang, Tae-Cheon

    2017-10-01

    Status epilepticus (SE, a prolonged seizure activity) is a high risk factor of developing vasogenic edema, which leads to secondary complications following SE. In the present study, we investigated whether transient receptor potential canonical channel-3 (TRPC3) may link vascular endothelial growth factor (VEGF) pathway to NFκB/ET B receptor axis in the rat piriform cortex during vasogenic edema formation. Following SE, TRPC3 and ET B receptor independently activated phosphatidylinositol 3 kinase (PI3K)/AKT/eNOS signaling pathway. SN50 (a NFκB inhibitor) attenuated the up-regulations of eNOS, TRPC3 and ET B receptor expressions following SE, accompanied by reductions in PI3K/AKT phosphorylations. Inhibition of SE-induced VEGF over-expression by leptomycin B also abrogated PI3K and AKT phosphorylations, but not TRPC3 expression. Wortmannin (a PI3K inhibitor) and 3CAI (an AKT inhibitor) effectively inhibited up-regulation of eNOS expressions and vasogenic edema lesion following SE. These findings indicate that PI3K/AKT may be common down-stream molecules for TRPC3- and ET B receptor signaling pathways during vasogenic edema formation. In addition, the present data demonstrate for the first time that TRPC3 may integrate VEGF- and NFκB-mediated vasogenic edema formation following SE. Thus, we suggest that PI3K/AKT signaling pathway may be one of considerable therapeutic targets for vasogenic edema. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Reactive Oxygen Species-Mediated Loss of Synaptic Akt1 Signaling Leads to Deficient Activity-Dependent Protein Translation Early in Alzheimer's Disease.

    PubMed

    Ahmad, Faraz; Singh, Kunal; Das, Debajyoti; Gowaikar, Ruturaj; Shaw, Eisha; Ramachandran, Arathy; Rupanagudi, Khader Valli; Kommaddi, Reddy Peera; Bennett, David A; Ravindranath, Vijayalakshmi

    2017-12-01

    Synaptic deficits are known to underlie the cognitive dysfunction seen in Alzheimer's disease (AD). Generation of reactive oxygen species (ROS) by β-amyloid has also been implicated in AD pathogenesis. However, it is unclear whether ROS contributes to synaptic dysfunction seen in AD pathogenesis and, therefore, we examined whether altered redox signaling could contribute to synaptic deficits in AD. Activity dependent but not basal translation was impaired in synaptoneurosomes from 1-month old presymptomatic APP Swe /PS1ΔE9 (APP/PS1) mice, and this deficit was sustained till middle age (MA, 9-10 months). ROS generation leads to oxidative modification of Akt1 in the synapse and consequent reduction in Akt1-mechanistic target of rapamycin (mTOR) signaling, leading to deficiency in activity-dependent protein translation. Moreover, we found a similar loss of activity-dependent protein translation in synaptoneurosomes from postmortem AD brains. Loss of activity-dependent protein translation occurs presymptomatically early in the pathogenesis of AD. This is caused by ROS-mediated loss of pAkt1, leading to reduced synaptic Akt1-mTOR signaling and is rescued by overexpression of Akt1. ROS-mediated damage is restricted to the synaptosomes, indicating selectivity. We demonstrate that ROS-mediated oxidative modification of Akt1 contributes to synaptic dysfunction in AD, seen as loss of activity-dependent protein translation that is essential for synaptic plasticity and maintenance. Therapeutic strategies promoting Akt1-mTOR signaling at synapses may provide novel target(s) for disease-modifying therapy in AD. Antioxid. Redox Signal. 27, 1269-1280.

  10. Perlecan Domain V Induces VEGf Secretion in Brain Endothelial Cells through Integrin α5β1 and ERK-Dependent Signaling Pathways

    PubMed Central

    Clarke, Douglas N.; Al Ahmad, Abraham; Lee, Boyeon; Parham, Christi; Auckland, Lisa; Fertala, Andrezj; Kahle, Michael; Shaw, Courtney S.; Roberts, Jill; Bix, Gregory J.

    2012-01-01

    Perlecan Domain V (DV) promotes brain angiogenesis by inducing VEGF release from brain endothelial cells (BECs) following stroke. In this study, we define the specific mechanism of DV interaction with the α5β1 integrin, identify the downstream signal transduction pathway, and further investigate the functional significance of resultant VEGF release. Interestingly, we found that the LG3 portion of DV, which has been suggested to possess most of DV’s angio-modulatory activity outside of the brain, binds poorly to α5β1 and induces less BEC proliferation compared to full length DV. Additionally, we implicate DV’s DGR sequence as an important element for the interaction of DV with α5β1. Furthermore, we investigated the importance of AKT and ERK signaling in DV-induced VEGF expression and secretion. We show that DV increases the phosphorylation of ERK, which leads to subsequent activation and stabilization of eIF4E and HIF-1α. Inhibition of ERK activity by U0126 suppressed DV-induced expression and secretion of VEGR in BECs. While DV was capable of phosphorylating AKT we show that AKT phosphorylation does not play a role in DV’s induction of VEGF expression or secretion using two separate inhibitors, LY294002 and Akt IV. Lastly, we demonstrate that VEGF activity is critical for DV increases in BEC proliferation, as well as angiogenesis in a BEC-neuronal co-culture system. Collectively, our findings expand our understanding of DV’s mechanism of action on BECs, and further support its potential as a novel stroke therapy. PMID:23028886

  11. Heterotypic contact reveals a COX-2-mediated suppression of osteoblast differentiation by endothelial cells: A negative modulatory role for prostanoids in VEGF-mediated cell: cell communication?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarkin, Claire E.; Garonna, Elena; Pitsillides, Andrew A.

    In bone, angiogenesis must be initiated appropriately, but limited once remodelling or repair is complete. Our recent findings have supported a role for prostaglandins (PG), known modulators of osteoblast (OB) and endothelial cell (EC) behaviour, in facilitating VEGF-mediated paracrine communication from OBs to 'remotely located' ECs, but the mechanism(s) regulating OB:EC crosstalk when these cells are closely opposed are undefined. In this study we have examined: (i) the effects of exogenous PGE{sub 2} on VEGF-driven events in ECs, and (ii) the role of endogenous COX-2-derived prostanoids in mediating communication between intimately opposed OBs and ECs in direct contact. Exposure ofmore » ECs to PGE{sub 2} increased ERK1/2 phosphorylation, COX-2 induction, 6-keto-PGF{sub 1{alpha}} release and EC proliferation. In contrast, PGE{sub 2} attenuated VEGF{sub 165}-induced VEGFR2/Flk1 phosphorylation, ERK1/2 activation and proliferation of ECs, suggesting that exogenous PGE{sub 2} restricts the actions of VEGF. However, the COX-2-selective inhibitor, NS398, also attenuated VEGF-induced proliferation, implying a distinct role for endogenous COX-2 activity in regulating EC behaviour. To examine the effect of OB:EC proximity and the role of COX-2 products further, we used a confrontational co-culture model. These studies showed that COX-2 blockade with NS398 enhanced EC-dependent increases in OB differentiation, that this effect was reversed by exogenous PGH{sub 2} (immediate COX-2 product), and that exogenous VEGF did not influence EC-dependent OB differentiation under these conditions. Our findings indicate that locally produced prostanoids may serve distinct roles depending on OB:EC proximity and negatively modulate VEGF-mediated changes in EC behaviour when these cells are closely opposed to control angiogenesis during bone (re)modelling.« less

  12. TLR2 ligands induce cardioprotection against ischaemia/reperfusion injury through a PI3K/Akt-dependent mechanism

    PubMed Central

    Ha, Tuanzhu; Hu, Yulong; Liu, Li; Lu, Chen; McMullen, Julie R.; Kelley, Jim; Kao, Race L.; Williams, David L.; Gao, Xiang; Li, Chuanfu

    2010-01-01

    Aims Toll-like receptor (TLR)-mediated signalling pathways have been implicated in myocardial ischaemia/reperfusion (I/R) injury. Activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway protects the myocardium from ischaemic injury. We hypothesized that the modulation of TLR2 would induce cardioprotection against I/R injury via activation of the PI3K/Akt signalling. Methods and results Mice were treated with TLR2 ligands, peptidoglycan (PGN) or Pam3CSK4, respectively, 1 h before the hearts were subjected to ischaemia (1 h), followed by reperfusion (4 h). Infarct size was determined by triphenyltetrazolium chloride staining. Cardiac function and haemodynamic performance were evaluated. Infarct size was significantly reduced in PGN- or Pam3CSK4-treated mice compared with untreated I/R mice. Administration of TLR2 ligands improved cardiac function following I/R. PGN treatment increased the levels of phospho-Akt and phospho-GSK-3β (glycogen synthase kinase-3β), compared with untreated I/R hearts. PGN stimulation increased TLR2 tyrosine phosphorylation and association of the p85 subunit of PI3K with TLR2. To investigate the role of PI3K/Akt signalling in PGN-induced cardioprotection, we administered the PI3K inhibitor, Wortmannin, to the mice 15 min before PGN treatment. We also administered PGN to kinase-deficient Akt (kdAkt) transgenic mice 1 h before myocardial I/R. Both PI3K inhibition and kdAkt mice abolished the cardioprotection induced by PGN. To examine the role of TLR2 in PGN-induced cardioprotection, we administrated PGN to TLR2 knockout mice 1 h before the hearts were subjected to I/R. PGN-induced cardioprotection was lost in TLR2-deficient mice. Conclusion These results demonstrate that TLR2 ligands induced cardioprotection, which is mediated through a TLR2/PI3K/Akt-dependent mechanism. PMID:20421349

  13. VEGF increases paracellular permeability in brain endothelial cells via upregulation of EphA2.

    PubMed

    Miao, Ziwei; Dong, Yanbin; Fang, Wengang; Shang, Deshu; Liu, Dongxin; Zhang, Ke; Li, Bo; Chen, Yu-Hua

    2014-05-01

    Neurological disorders are associated with an increase in the permeability of human brain microvascular endothelial cells (HBMEC). Our previous findings have indicated that EphA2 could increase the permeability of HBMEC. Recent evidence has linked EphA2 and vascular endothelial growth factor (VEGF) to abnormalities in the vascular response. However, it is unclear whether EphA2 is involved in the VEGF-induced changes in the permeability of HBMEC. Here, changes in permeability were determined by measuring transendothelial electrical resistance (TEER) and the flux of FITC-dextran. We found that knockdown of EphA2 in HBMEC abolished the VEGF-induced reduction in TEER and increase in flux of fluorescent dextran. Moreover, VEGF-induced redistribution of ZO-1 and the recruitment of detergent-soluble occludin and claudin-5 were also prevented. Further results showed that VEGF increased EphA2 expression in a time- and dose-dependent manner, which was inhibited by a neutralizing antibody against VEGFR2 or SU1498. VEGF-induced EphA2 expression was suppressed in the brain endothelium following treatments with the PI3K inhibitor LY294002, Akt inhibitor or transfection with the dominant-negative PI3K mutants (Δp110). Similar results were obtained when ERK1/2 activation was inhibited by PD98059 or ERK1/2 siRNA transfection. Our data suggest that VEGF upregulates the expression of EphA2 in HBMEC through binding to VEGFR2 and subsequently activating the intracellular PI3K/Akt and ERK1/2 signaling pathways, which contribute to an increase in paracellular permeability. These data reveal a novel role for VEGF as a regulator of EphA2 expression in the brain endothelial cells and provide insights into the molecular mechanisms of VEGF-mediated changes in paracellular permeability. Copyright © 2014 Wiley Periodicals, Inc.

  14. Reactive Oxygen Species-Mediated Loss of Synaptic Akt1 Signaling Leads to Deficient Activity-Dependent Protein Translation Early in Alzheimer's Disease

    PubMed Central

    Ahmad, Faraz; Singh, Kunal; Das, Debajyoti; Gowaikar, Ruturaj; Shaw, Eisha; Ramachandran, Arathy; Rupanagudi, Khader Valli; Kommaddi, Reddy Peera; Bennett, David A.

    2017-01-01

    Abstract Aims: Synaptic deficits are known to underlie the cognitive dysfunction seen in Alzheimer's disease (AD). Generation of reactive oxygen species (ROS) by β-amyloid has also been implicated in AD pathogenesis. However, it is unclear whether ROS contributes to synaptic dysfunction seen in AD pathogenesis and, therefore, we examined whether altered redox signaling could contribute to synaptic deficits in AD. Results: Activity dependent but not basal translation was impaired in synaptoneurosomes from 1-month old presymptomatic APPSwe/PS1ΔE9 (APP/PS1) mice, and this deficit was sustained till middle age (MA, 9–10 months). ROS generation leads to oxidative modification of Akt1 in the synapse and consequent reduction in Akt1-mechanistic target of rapamycin (mTOR) signaling, leading to deficiency in activity-dependent protein translation. Moreover, we found a similar loss of activity-dependent protein translation in synaptoneurosomes from postmortem AD brains. Innovation: Loss of activity-dependent protein translation occurs presymptomatically early in the pathogenesis of AD. This is caused by ROS-mediated loss of pAkt1, leading to reduced synaptic Akt1-mTOR signaling and is rescued by overexpression of Akt1. ROS-mediated damage is restricted to the synaptosomes, indicating selectivity. Conclusions: We demonstrate that ROS-mediated oxidative modification of Akt1 contributes to synaptic dysfunction in AD, seen as loss of activity-dependent protein translation that is essential for synaptic plasticity and maintenance. Therapeutic strategies promoting Akt1-mTOR signaling at synapses may provide novel target(s) for disease-modifying therapy in AD. Antioxid. Redox Signal. 27, 1269–1280. PMID:28264587

  15. GIV/Girdin Links Vascular Endothelial Growth Factor Signaling to Akt Survival Signaling in Podocytes Independent of Nephrin

    PubMed Central

    Wang, Honghui; Misaki, Taro; Taupin, Vanessa; Eguchi, Akiko; Ghosh, Pradipta

    2015-01-01

    Podocytes are critically involved in the maintenance of the glomerular filtration barrier and are key targets of injury in many glomerular diseases. Chronic injury leads to progressive loss of podocytes, glomerulosclerosis, and renal failure. Thus, it is essential to maintain podocyte survival and avoid apoptosis after acute glomerular injury. In normal glomeruli, podocyte survival is mediated via nephrin-dependent Akt signaling. In several glomerular diseases, nephrin expression decreases and podocyte survival correlates with increased vascular endothelial growth factor (VEGF) signaling. How VEGF signaling contributes to podocyte survival and prevents apoptosis remains unknown. We show here that Gα–interacting, vesicle-associated protein (GIV)/girdin mediates VEGF receptor 2 (VEGFR2) signaling and compensates for nephrin loss. In puromycin aminonucleoside nephrosis (PAN), GIV expression increased, GIV was phosphorylated by VEGFR2, and p-GIV bound and activated Gαi3 and enhanced downstream Akt2, mammalian target of rapamycin complex 1 (mTORC1), and mammalian target of rapamycin complex-2 (mTORC2) signaling. In GIV-depleted podocytes, VEGF-induced Akt activation was abolished, apoptosis was triggered, and cell migration was impaired. These effects were reversed by introducing GIV but not a GIV mutant that cannot activate Gαi3. Our data indicate that after PAN injury, VEGF promotes podocyte survival by triggering assembly of an activated VEGFR2/GIV/Gαi3 signaling complex and enhancing downstream PI3K/Akt survival signaling. Because of its important role in promoting podocyte survival, GIV may represent a novel target for therapeutic intervention in the nephrotic syndrome and other proteinuric diseases. PMID:25012178

  16. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells: IMPLICATIONS IN VEGF-DEPENDENT ANGIOGENESIS AND DIABETIC WOUND HEALING.

    PubMed

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-13

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β-catenin activation.

    PubMed

    Wang, Haibo; Han, Xiaokun; Wittchen, Erika S; Hartnett, M Elizabeth

    2016-01-01

    -catenin transcriptional inhibitors, XAV939 or JW67, or transfection with p22phox siRNA and compared to appropriate controls. Compared to the non-lasered control, TNF-α and VEGF protein were increased in the RPE/choroids in a murine laser-induced CNV model (p<0.05). An intravitreal neutralizing antibody to mouse TNF-α reduced CNV volume, and VEGF protein in the RPE/choroids (p<0.01) and oxidized phospholipids within CNV compared to IgG control (p<0.05). In cultured RPE cells and compared to controls, TNF-α induced ROS generation and increased activation of NOX4, an isoform of NADPH oxidase; both were prevented by pretreatment with the apocynin or VAS2870 or knockdown of p22phox, a subunit of NADPH oxidase. TNF-α treatment increased VEGF expression (p<0.001) and the formation of a transcriptional complex of β-catenin and T-cell transcriptional factor; both were prevented by pretreatment with apocynin or knockdown of p22phox. Inhibition of β-catenin by XAV939, but not the nuclear factor kappa B inhibitor, Bay 11-7082, prevented TNF-α-induced VEGF upregulation. Our results support the thinking that TNF-α contributes to CNV by upregulating VEGF production in RPE cells through ROS-dependent activation of β-catenin signaling. These results provide mechanisms of crosstalk between inflammatory mediator, TNF-α, and ROS in RPE cells.

  18. Metformin combined with quercetin synergistically repressed prostate cancer cells via inhibition of VEGF/PI3K/Akt signaling pathway.

    PubMed

    Sun, Shuben; Gong, Fanger; Liu, Ping; Miao, Qilong

    2018-04-17

    The aim of present study was to examine whether metformin in association with quercetin has any synergistically anti-tumor effects on prostate cancer. Our findings showed that metformin in combination with quercetin synergistically inhibited the growth, migration and invasion of both PC-3 and LNCaP cells. Co-treatment of these two agents induced more apoptosis than single agent treatment. The co-treatment-induced apoptosis was caspase-dependent and accompanied by the down-regulation of Bcl-2 family members. Our data also indicated that co-treatment of metformin and quercetin strongly inhibited the VEGF/Akt/PI3K pathway. Moreover, these two agents acted synergistically to repress the growth of human prostate cancer cell xenograft in vivo in nude mice. In conclusion, our findings indicate that the combination therapy of metformin and quercetin exerted synergistic antitumor effects in prostate cancers via inhibition of VEGF/Akt/PI3K pathway. Thus, combination treatment of metformin and quercetin would be a promising therapeutic strategy for prostate cancer patients. Copyright © 2017. Published by Elsevier B.V.

  19. Taspine downregulates VEGF expression and inhibits proliferation of vascular endothelial cells through PI3 kinase and MAP kinase signaling pathways.

    PubMed

    Zhao, Jing; Zhao, Le; Chen, Wei; He, Langchong; Li, Xu

    2008-01-01

    Taspine is an active component isolated from Radix et Rhizoma Leonticis with inhibiting tumor angiogenic properties. The molecular mechanism(s) of taspine on tumor angiogenic inhibition have not been well documented. The aim of this study was to elucidate in detail the effects of taspine on genetic expressions of VEGF in human umbilical vein endothelial cells, and on VEGFR2-mediated intracellular signaling of human umbilical vein endothelial cells. The genetic expression of vascular endothelial growth factor (VEGF) in the human umbilical vein endothelial cells (HUVECs) treated with taspine in vitro was measured by the ELISA and RT-PCR methods. The effects of taspine on cell proliferation of HUVECs and HUVECs induced by VEGF165 were considered by using MTT assay. And also, a western blot was used to detect Akt and Erk1/2 expressions and their phosphorylation levels in HUVECs treated with taspine. Our results show that VEGF protein and mRNA expressions in the cells treated with taspine were significantly decreased. Taspine also significantly inhibited cell proliferation of HUVECs induced by VEGF165. HUVECs treated with taspine showed decreased Akt and Erk1/2 activities.

  20. CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells.

    PubMed

    Yan, Zhaoyong; Qu, Kai; Zhang, Jing; Huang, Qichao; Qu, Ping; Xu, Xinsen; Yuan, Peng; Huang, Xiaojun; Shao, Yongping; Liu, Chang; Zhang, Hongxin; Xing, Jinliang

    2015-10-01

    Although previous evidence indicates close involvement of CD147 in the pathogenesis of liver fibrosis, the underlying molecular mechanisms and its therapeutic value remain largely unknown. In the present study, we investigated the biological roles of CD147 in liver fibrosis and assessed its therapeutic value as a target molecule in the CCl4-induced liver fibrosis mouse model. We found that CD147 was highly expressed in both hepatocytes and SECs (sinusoidal endothelial cells) in fibrotic liver tissues. Additionally, it was significantly associated with the fibrosis stage. TGF-β1 (transforming growth factor β1) was found to be mainly responsible for the up-regulation of CD147. Bioinformatic and experimental data suggest a functional link between CD147 expression and VEGF-A (vascular endothelial growth factor A)/VEGR-2 (VEGF receptor 2) signalling-mediated angiogenesis in fibrotic liver tissues. Furthermore, we observed that the CD147-induced activation of the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway promotes the production of VEGF-A in hepatocytes and expression of VEGFR-2 in SECs, which was found to enhance the angiogenic capability of SECs. Finally, our data indicate that blocking of CD147 using an mAb (monoclonal antibody) attenuated liver fibrosis progression via inhibition of VEGF-A/VEGFR-2 signalling and subsequent amelioration of microvascular abnormality in the CCl4-induced mouse model. Our findings suggest a novel functional mechanism that CD147 may promote liver fibrosis progression via inducing the VEGF-A/VEGFR-2 signalling pathway-mediated cross-talk between hepatocytes and SECs. New strategies based on the intervention of CD147 can be expected for prevention of liver fibrosis. © 2015 Authors; published by Portland Press Limited.

  1. Activated PAR-2 regulates pancreatic cancer progression through ILK/HIF-α-induced TGF-α expression and MEK/VEGF-A-mediated angiogenesis.

    PubMed

    Chang, Li-Hsun; Pan, Shiow-Lin; Lai, Chin-Yu; Tsai, An-Chi; Teng, Che-Ming

    2013-08-01

    Tissue factor initiates the process of thrombosis and activates cell signaling through protease-activated receptor-2 (PAR-2). The aim of this study was to investigate the pathological role of PAR-2 signaling in pancreatic cancer. We first demonstrated that activated PAR-2 up-regulated the protein expression of both hypoxia-inducible factor-1α (HIF-1α) and HIF-2α, resulting in enhanced transcription of transforming growth factor-α (TGF-α). Down-regulation of HIFs-α by siRNA or YC-1, an HIF inhibitor, resulted in depleted levels of TGF-α protein. Furthermore, PAR-2, through integrin-linked kinase (ILK) signaling, including the p-AKT, promoted HIF protein expression. Diminishing ILK by siRNA decreased the levels of PAR-2-induced p-AKT, HIFs-α, and TGF-α; our results suggest that ILK is involved in the PAR-2-mediated TGF-α via an HIF-α-dependent pathway. Furthermore, the culture medium from PAR-2-treated pancreatic cancer cells enhanced human umbilical vein endothelial cell proliferation and tube formation, which was blocked by the MEK inhibitor, PD98059. We also found that activated PAR-2 enhanced tumor angiogenesis through the release of vascular endothelial growth factor-A (VEGF-A) from cancer cells, independent of the ILK/HIFs-α pathways. Consistent with microarray analysis, activated PAR-2 induced TGF-A and VEGF-A gene expression. In conclusion, the activation of PAR-2 signaling induced human pancreatic cancer progression through the induction of TGF-α expression by ILK/HIFs-α, as well as through MEK/VEGF-A-mediated angiogenesis, and it plays a role in the interaction between cancer progression and cancer-related thrombosis. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation

    PubMed Central

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E. M.; Jenkins, Jermaine L.; Heimiller, Chelsea; Maines, Mahin D.

    2016-01-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1–3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T308 before S473 autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present in hBVR. Phosphorylation of glycogen synthase kinase 3 (GSK3) isoforms α/β by Akts inhibits their activity; nonphosphorylated GSK3β inhibits activation of various genes. We examined the role of hBVR in PDK1/Akt1/GSK3 signaling and Akt1 in hBVR phosphorylation. hBVR activates phosphorylation of Akt1 at S473 independent of hBVR’s kinase competency. hBVR and Akt1 coimmunoprecipitated, and in-cell Förster resonance energy transfer (FRET) and glutathione S-transferase pulldown analyses identified Akt1 pleckstrin homology domain as the interactive domain. hBVR activates phosphorylation of Akt1 at S473 independent of hBVR’s kinase competency. Site-directed mutagenesis, mass spectrometry, and kinetic analyses identified S230 in hBVR 225RNRYLSF sequence as the Akt1 target. Underlined amino acids are the essential residues of the signaling motifs. In cells, hBVR-activated Akt1 increased both GSK3α/β and forkhead box of the O class transcription class 3 (FoxO3) phosphorylation and inhibited total GSK3 activity; depletion of hBVR released inhibition and stimulated glucose uptake. Immunoprecipitation analysis showed that PDK1 and hBVR interact through hBVR’s PDK1 binding 161RFGFPAFS motif and formation of the PDK1/hBVR/Akt1 complex. sihBVR blocked complex formation. Findings identify hBVR as a previously unknown coactivator of Akt1 and as a key mediator of Akt1/GSK3 pathway, as well as define a key role for hBVR in Akt1 activation by PDK1.—Miralem, T., Lerner-Marmarosh, N

  3. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation.

    PubMed

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E M; Jenkins, Jermaine L; Heimiller, Chelsea; Maines, Mahin D

    2016-08-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1-3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T(308) before S(473) autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present in hBVR. Phosphorylation of glycogen synthase kinase 3 (GSK3) isoforms α/β by Akts inhibits their activity; nonphosphorylated GSK3β inhibits activation of various genes. We examined the role of hBVR in PDK1/Akt1/GSK3 signaling and Akt1 in hBVR phosphorylation. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. hBVR and Akt1 coimmunoprecipitated, and in-cell Förster resonance energy transfer (FRET) and glutathione S-transferase pulldown analyses identified Akt1 pleckstrin homology domain as the interactive domain. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. Site-directed mutagenesis, mass spectrometry, and kinetic analyses identified S(230) in hBVR (225)RNRYLSF sequence as the Akt1 target. Underlined amino acids are the essential residues of the signaling motifs. In cells, hBVR-activated Akt1 increased both GSK3α/β and forkhead box of the O class transcription class 3 (FoxO3) phosphorylation and inhibited total GSK3 activity; depletion of hBVR released inhibition and stimulated glucose uptake. Immunoprecipitation analysis showed that PDK1 and hBVR interact through hBVR's PDK1 binding (161)RFGFPAFS motif and formation of the PDK1/hBVR/Akt1 complex. sihBVR blocked complex formation. Findings identify hBVR as a previously unknown coactivator of Akt1 and as a key mediator of Akt1/GSK3 pathway, as well as define a key role for hBVR in Akt1 activation by PDK1.-Miralem, T., Lerner

  4. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage.

    PubMed

    Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer Mi; Doh, Kyung-Oh; Hui, Chi-Chung; Sung, Hoon-Ki

    2017-11-01

    Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders.

  5. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage

    PubMed Central

    Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer MI; Doh, Kyung-Oh; Hui, Chi-chung; Sung, Hoon-Ki

    2017-01-01

    Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders. PMID:29039412

  6. Heat Stress-Induced PI3K/mTORC2-Dependent AKT Signaling Is a Central Mediator of Hepatocellular Carcinoma Survival to Thermal Ablation Induced Heat Stress

    PubMed Central

    Thompson, Scott M.; Callstrom, Matthew R.; Jondal, Danielle E.; Butters, Kim A.; Knudsen, Bruce E.; Anderson, Jill L.; Lien, Karen R.; Sutor, Shari L.; Lee, Ju-Seog; Thorgeirsson, Snorri S.; Grande, Joseph P.; Roberts, Lewis R.; Woodrum, David A.

    2016-01-01

    Thermal ablative therapies are important treatment options in the multidisciplinary care of patients with hepatocellular carcinoma (HCC), but lesions larger than 2–3 cm are plagued with high local recurrence rates and overall survival of these patients remains poor. Currently no adjuvant therapies exist to prevent local HCC recurrence in patients undergoing thermal ablation. The molecular mechanisms mediating HCC resistance to thermal ablation induced heat stress and local recurrence remain unclear. Here we demonstrate that the HCC cells with a poor prognostic hepatic stem cell subtype (Subtype HS) are more resistant to heat stress than HCC cells with a better prognostic hepatocyte subtype (Subtype HC). Moreover, sublethal heat stress rapidly induces phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dependent-protein kinase B (AKT) survival signaling in HCC cells in vitro and at the tumor ablation margin in vivo. Conversely, inhibition of PI3K/mTOR complex 2 (mTORC2)-dependent AKT phosphorylation or direct inhibition of AKT function both enhance HCC cell killing and decrease HCC cell survival to sublethal heat stress in both poor and better prognostic HCC subtypes while mTOR complex 1 (mTORC1)-inhibition has no impact. Finally, we showed that AKT isoforms 1, 2 and 3 are differentially upregulated in primary human HCCs and that overexpression of AKT correlates with worse tumor biology and pathologic features (AKT3) and prognosis (AKT1). Together these findings define a novel molecular mechanism whereby heat stress induces PI3K/mTORC2-dependent AKT survival signaling in HCC cells and provide a mechanistic rationale for adjuvant AKT inhibition in combination with thermal ablation as a strategy to enhance HCC cell killing and prevent local recurrence, particularly at the ablation margin. PMID:27611696

  7. The omega-3 polyunsaturated fatty acid docosahexaenoic acid inhibits proliferation and progression of non-small cell lung cancer cells through the reactive oxygen species-mediated inactivation of the PI3K /Akt pathway.

    PubMed

    Yin, Yuanqin; Sui, Chengguang; Meng, Fandong; Ma, Ping; Jiang, Youhong

    2017-05-03

    Docosahexaenoic acid(DHA) inhibits tumor growth and progression in various cancers, including lung cancer. However, the mechanisms involved remain unclear. The aim of this study was to identify the mechanism of DHA in inhibiting progression of non-small cell lung cancer (NSCLC) in vitro. The proliferation of A549 was tested by MTT, and cell apoptosis was analysed using flow cytometer. The migration and invasion were examined respectively by wound healing assay and Transwell invasion assay. The level of ROS (reactive oxygen species, ROS) was checked by DCF (dichlorodihydrofluorescein, DCF) production in cells. The apoptosis associated protein (caspase-3, PARP,Bax,Bcl-2 and survivin) and metastases associated proteins including HEF1, MMP9 and VEGF were detected by Western blot, and the same method was used in the expression of PI3K and Akt. DHA inhibited proliferation and induced apoptosis of A549 cells. Moreover, it suppressed the invasion and metastasis of A549 cells, while downregulating the levels of metastasis-associated proteins, including HEF1, matrix metallopeptidase (MMP9), and vascular endothelial growth factor (VEGF), in a dose -dependent manner. In addition, DHA inactivated Akt phosphorylation. All of these responses were associated with the accumulation of intracellular ROS. DHA downregulated the level of antioxidant enzymes such as catalase, while the antioxidant N-acetyl-cysteine (NAC) reversed the effect of DHA, which further validated our findings. The present study demonstrates that DHA inhibits the development of non-small lung tumors through an ROS-mediated inactivation of the PI3K/Akt signaling pathway.

  8. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism.

    PubMed

    Frampton, Gabriel; Invernizzi, Pietro; Bernuzzi, Francesca; Pae, Hae Yong; Quinn, Matthew; Horvat, Darijana; Galindo, Cheryl; Huang, Li; McMillin, Matthew; Cooper, Brandon; Rimassa, Lorenza; DeMorrow, Sharon

    2012-02-01

    Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies.

  9. Mechanism of Salutary Effects of Astringinin on Rodent Hepatic Injury following Trauma-Hemorrhage: Akt-Dependent Hemeoxygenase-1 Signaling Pathways

    PubMed Central

    Liu, Fu-Chao; Hwang, Tsong-Long; Lau, Ying-Tung; Yu, Huang-Ping

    2011-01-01

    Astringinin can attenuate organ injury following trauma-hemorrhage, the mechanism remains unknown. Protein kinase B/hemeoxygenase-1 (Akt/HO-1) pathway exerts potent anti-inflammatory effects in various tissues. The aim of this study is to elucidate whether Akt/HO-1 plays any role in astringinin-mediated attenuation of hepatic injury following trauma-hemorrhage. For study this, male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure 35–40 mmHg for 90 min) followed by fluid resuscitation. A single dose of astringinin (0.3 mg/kg body weight) with or without a PI3K inhibitor (wortmannin) or a HO antagonist (chromium-mesoporphyrin) was administered during resuscitation. Various parameters were measured at 24 h post-resuscitation. Results showed that trauma-hemorrhage increased plasma aspartate and alanine aminotransferases (AST and ALT) concentrations and hepatic myeloperoxidase activity, cytokine induced neutrophil chemoattractant (CINC)-1, CINC-3, intercellular adhesion molecule-1, and interleukin-6 levels. These parameters were significantly improved in the astringinin-treated rats subjected to trauma-hemorrhage. Astringinin treatment also increased hepatic Akt activation and HO-1 expression as compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of wortmannin or chromium-mesoporphyrin abolished the astringinin-induced beneficial effects on post-resuscitation pro-inflammatory responses and hepatic injury. These findings collectively suggest that the salutary effects of astringinin administration on attenuation of hepatic injury after trauma-hemorrhage are likely mediated via Akt dependent HO-1 up-regulation. PMID:22022464

  10. Mechanism of salutary effects of astringinin on rodent hepatic injury following trauma-hemorrhage: Akt-dependent hemeoxygenase-1 signaling pathways.

    PubMed

    Liu, Fu-Chao; Hwang, Tsong-Long; Lau, Ying-Tung; Yu, Huang-Ping

    2011-01-01

    Astringinin can attenuate organ injury following trauma-hemorrhage, the mechanism remains unknown. Protein kinase B/hemeoxygenase-1 (Akt/HO-1) pathway exerts potent anti-inflammatory effects in various tissues. The aim of this study is to elucidate whether Akt/HO-1 plays any role in astringinin-mediated attenuation of hepatic injury following trauma-hemorrhage. For study this, male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure 35-40 mmHg for 90 min) followed by fluid resuscitation. A single dose of astringinin (0.3 mg/kg body weight) with or without a PI3K inhibitor (wortmannin) or a HO antagonist (chromium-mesoporphyrin) was administered during resuscitation. Various parameters were measured at 24 h post-resuscitation. Results showed that trauma-hemorrhage increased plasma aspartate and alanine aminotransferases (AST and ALT) concentrations and hepatic myeloperoxidase activity, cytokine induced neutrophil chemoattractant (CINC)-1, CINC-3, intercellular adhesion molecule-1, and interleukin-6 levels. These parameters were significantly improved in the astringinin-treated rats subjected to trauma-hemorrhage. Astringinin treatment also increased hepatic Akt activation and HO-1 expression as compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of wortmannin or chromium-mesoporphyrin abolished the astringinin-induced beneficial effects on post-resuscitation pro-inflammatory responses and hepatic injury. These findings collectively suggest that the salutary effects of astringinin administration on attenuation of hepatic injury after trauma-hemorrhage are likely mediated via Akt dependent HO-1 up-regulation.

  11. Constitutively Active Akt Induces Ectodermal Defects and Impaired Bone Morphogenetic Protein Signaling

    PubMed Central

    Segrelles, Carmen; Moral, Marta; Lorz, Corina; Santos, Mirentxu; Lu, Jerry; Cascallana, José Luis; Lara, M. Fernanda; Carbajal, Steve; Martínez-Cruz, Ana Belén; García-Escudero, Ramón; Beltran, Linda; Segovia, José C.; Bravo, Ana

    2008-01-01

    Aberrant activation of the Akt pathway has been implicated in several human pathologies including cancer. However, current knowledge on the involvement of Akt signaling in development is limited. Previous data have suggested that Akt-mediated signaling may be an essential mediator of epidermal homeostasis through cell autonomous and noncell autonomous mechanisms. Here we report the developmental consequences of deregulated Akt activity in the basal layer of stratified epithelia, mediated by the expression of a constitutively active Akt1 (myrAkt) in transgenic mice. Contrary to mice overexpressing wild-type Akt1 (Aktwt), these myrAkt mice display, in a dose-dependent manner, altered development of ectodermally derived organs such as hair, teeth, nails, and epidermal glands. To identify the possible molecular mechanisms underlying these alterations, gene profiling approaches were used. We demonstrate that constitutive Akt activity disturbs the bone morphogenetic protein-dependent signaling pathway. In addition, these mice also display alterations in adult epidermal stem cells. Collectively, we show that epithelial tissue development and homeostasis is dependent on proper regulation of Akt expression and activity. PMID:17959825

  12. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism

    PubMed Central

    Frampton, Gabriel; Invernizzi, Pietro; Bernuzzi, Francesca; Pae, Hae Yong; Quinn, Matthew; Horvat, Darijana; Galindo, Cheryl; Huang, Li; McMillin, Matthew; Cooper, Brandon; Rimassa, Lorenza; DeMorrow, Sharon

    2015-01-01

    Background and objectives Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. Methods The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. Results Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. Conclusions Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies. PMID:22068162

  13. CD147 induces up-regulation of vascular endothelial growth factor in U937-derived foam cells through PI3K/AKT pathway.

    PubMed

    Zong, JiaXin; Li, YunTian; Du, DaYong; Liu, Yang; Yin, YongJun

    2016-11-01

    Intraplaque angiogenesis has been recognized as an important risk factor for the rupture of advanced atherosclerotic plaques in recent years. CD147, also called Extracellular Matrix Metalloproteinase Inducer, has been found the ability to promote angiogenesis in many pathological conditions such as cancer diseases and rheumatoid arthritis via the up-regulation of vascular endothelial growth factor (VEGF), a critical mediator of angiogenesis. We investigated whether CD147 would also induce the up-regulation of VEGF in the foam cells formation process and explored the probable signaling pathway. The results showed the expression of CD147 and VEGF was significantly higher in U937-derived foam cells. After CD147 stealth siRNA transfection treatment, the production of VEGF was reduced depended on the inhibition efficiency of CD147 siRNAs.The special signaling pathway inhibitors LY294002, SP600125, SB203580 and U0126 were added to cultures respectively and the results showed LY294002 dose-dependently inhibited the expression of VEGF. The reduction of phospho-Akt was observed in both LY294002 and siRNA groups, suggested that the phosphatidylinositol 3-kinase/Akt pathway may be the probable signaling pathway underlying CD147 induced up-regulation of VEGF in U937-derived foam cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Valproic acid inhibits the angiogenic potential of cervical cancer cells via HIF-1α/VEGF signals.

    PubMed

    Zhao, Y; You, W; Zheng, J; Chi, Y; Tang, W; Du, R

    2016-11-01

    Cervical cancer is one of the most prevalent malignancies in women worldwide. Therefore, the investigation about the molecular pathogenesis and related therapy targets of cervical cancer is an emergency. The objective of the present study is to investigate the effects of valproic acid (VPA), a histone deacetylase inhibitor, on the angiogenesis of cervical cancer. The effects and mechanisms of VPA on in vitro angiogenesis and vascular endothelial growth factor (VEGF) expression of human cervical cancer HeLa and SiHa cells were investigated. Our present study reveals that 1 mM VPA can significantly inhibit the in vitro angiogenic potential and VEGF expression of human cervical cancer HeLa and SiHa cells. Further, the transcription and protein levels of hypoxia inducible factor-1α (HIF-1α), and not HIF-1β, are significantly inhibited in VPA-treated cervical cancer cells. Over expression of HIF-1α can obviously reverse VPA-induced VEGF down regulation. VPA-treatment decreases the activation of Akt and ERK1/2 in both HeLa and SiHa cells in a time-dependent manner. The inhibitor of Akt (LY 294002) or ERK1/2 (PD98059) can inhibit VEGF alone and cooperatively reinforce the suppression effects of VPA on HIF-1α and VEGF expression. Collectively, our data reveal that the inhibition of PI3K/Akt and ERK1/2 signals are involved in VPA-induced HIF-1α and VEGF suppression of cervical cancer cells.

  15. Reactive oxygen species mediate Cr(VI)-induced carcinogenesis through PI3K/AKT-dependent activation of GSK-3β/β-catenin signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Young-Ok; Pratheeshkumar, Poyil; Wang, Lei

    Cr(VI) compounds are known human carcinogens that primarily target the lungs. Cr(VI) produces reactive oxygen species (ROS), but the exact effects of ROS on the signaling molecules involved in Cr(VI)-induced carcinogenesis have not been extensively studied. Chronic exposure of human bronchial epithelial cells to Cr(VI) at nanomolar concentrations (10–100 nM) for 3 months not only induced cell transformation, but also increased the potential of these cells to invade and migrate. Injection of Cr(VI)-stimulated cells into nude mice resulted in the formation of tumors. Chronic exposure to Cr(VI) increased levels of intracellular ROS and antiapoptotic proteins. Transfection with catalase or superoxidemore » dismutase (SOD) prevented Cr(VI)-mediated increases in colony formation, cell invasion, migration, and xenograft tumors. While chronic Cr(VI) exposure led to activation of signaling cascades involving PI3K/AKT/GSK-3β/β-catenin and PI3K/AKT/mTOR, transfection with catalase or SOD markedly inhibited Cr(VI)-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the Cr(VI)-mediated increase in total and active β-catenin proteins and colony formation. In particular, Cr(VI) suppressed autophagy of epithelial cells under nutrition deprivation. Furthermore, there was a marked induction of AKT, GSK-3β, β-catenin, mTOR, and carcinogenic markers in tumor tissues formed in mice after injection with Cr(VI)-stimulated cells. Collectively, our findings suggest that ROS is a key mediator of Cr(VI)-induced carcinogenesis through the activation of PI3K/AKT-dependent GSK-3β/β-catenin signaling and the promotion of cell survival mechanisms via the inhibition of apoptosis and autophagy. - Highlights: • Chronic exposure to Cr(VI) induces carcinogenic properties in BEAS-2B cells. • ROS play an important role in Cr(VI)-induced tumorigenicity of BEAS-2B cells. • PI3K/AKT/GSK-3β/β-catenin signaling involved in

  16. Antiangiogenic treatment diminishes renal injury and dysfunction via regulation of local AKT in early experimental diabetes.

    PubMed

    Bai, Xiaoyan; Li, Xiao; Tian, Jianwei; Zhou, Zhanmei

    2014-01-01

    In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin was administered in 12 week-old streptozotocin-induced male Sprague Dawley rats. The levels of VEGF-A, AKT, phosphorylated Ser⁴⁷³-AKT, phosphorylated Thr³⁰⁸-AKT, nephrin, angiotensin II (Ang II), angiotensin type II receptor 1 (ATR1) were examined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemistry. Interactions between phosphorylated Thr³⁰⁸-AKT and either nephrin in podocytes or Ang II in renal tubules were studied, respectively, using confocal immunofluorescence microscopy and immunoprecipitation. Silencing VEGF-A in podocytes upregulated phosphorylated Thr³⁰⁸-AKT and nephrin. Silencing VEGF-A in NRK-52E cells upregulated phosphorylated Thr³⁰⁸-AKT while downregulated Ang II and ATR1. MK-2206 enhanced VEGF-A expression in both podocytes and NRK-52E cells by inhibiting AKT activities. In diabetic rat kidneys, VEGF-A was upregulated and phosphorylated Thr³⁰⁸-AKT colocalized with either nephrin in podocytes or Ang II in renal tubules. With the endostatin treatment, the level of VEGF-A decreased while phosphorylated Thr³⁰⁸-AKT increased in both glomeruli and renal tubules. Treatment with endostatin upregulated nephrin in podocytes while downregulated Ang II and AT1R in renal tubules. Glomerular mesangial expansion was attenuated by the endostatin treatment, however, differences did not reach statistical significance. Endostatin ameliorated the interstitial fibrosis

  17. Antiangiogenic Treatment Diminishes Renal Injury and Dysfunction via Regulation of Local AKT in Early Experimental Diabetes

    PubMed Central

    Zhou, Zhanmei

    2014-01-01

    In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin was administered in 12 week-old streptozotocin-induced male Sprague Dawley rats. The levels of VEGF-A, AKT, phosphorylated Ser473-AKT, phosphorylated Thr308-AKT, nephrin, angiotensin II (Ang II), angiotensin type II receptor 1 (ATR1) were examined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemistry. Interactions between phosphorylated Thr308-AKT and either nephrin in podocytes or Ang II in renal tubules were studied, respectively, using confocal immunofluorescence microscopy and immunoprecipitation. Silencing VEGF-A in podocytes upregulated phosphorylated Thr308-AKT and nephrin. Silencing VEGF-A in NRK-52E cells upregulated phosphorylated Thr308-AKT while downregulated Ang II and ATR1. MK-2206 enhanced VEGF-A expression in both podocytes and NRK-52E cells by inhibiting AKT activities. In diabetic rat kidneys, VEGF-A was upregulated and phosphorylated Thr308-AKT colocalized with either nephrin in podocytes or Ang II in renal tubules. With the endostatin treatment, the level of VEGF-A decreased while phosphorylated Thr308-AKT increased in both glomeruli and renal tubules. Treatment with endostatin upregulated nephrin in podocytes while downregulated Ang II and AT1R in renal tubules. Glomerular mesangial expansion was attenuated by the endostatin treatment, however, differences did not reach statistical significance. Endostatin ameliorated the interstitial fibrosis, urine albumin excretion rate

  18. Long-term continuous corticosterone treatment decreases VEGF receptor-2 expression in frontal cortex.

    PubMed

    Howell, Kristy R; Kutiyanawalla, Ammar; Pillai, Anilkumar

    2011-01-01

    Stress and increased glucocorticoid levels are associated with many neuropsychiatric disorders including schizophrenia and depression. Recently, the role of vascular endothelial factor receptor-2 (VEGFR2/Flk1) signaling has been implicated in stress-mediated neuroplasticity. However, the mechanism of regulation of VEGF/Flk1 signaling under long-term continuous glucocorticoid exposure has not been elucidated. We examined the possible effects of long-term continuous glucocorticoid exposure on VEGF/Flk1 signaling in cultured cortical neurons in vitro, mouse frontal cortex in vivo, and in post mortem human prefrontal cortex of both control and schizophrenia subjects. We found that long-term continuous exposure to corticosterone (CORT, a natural glucocorticoid) reduced Flk1 protein levels both in vitro and in vivo. CORT treatment resulted in alterations in signaling molecules downstream to Flk1 such as PTEN, Akt and mTOR. We demonstrated that CORT-induced changes in Flk1 levels are mediated through glucocorticoid receptor (GR) and calcium. A significant reduction in Flk1-GR interaction was observed following CORT exposure. Interestingly, VEGF levels were increased in cortex, but decreased in serum following CORT treatment. Moreover, significant reductions in Flk1 and GR protein levels were found in postmortem prefrontal cortex samples from schizophrenia subjects. The alterations in VEGF/Flk1 signaling following long-term continuous CORT exposure represents a molecular mechanism of the neurobiological effects of chronic stress.

  19. VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantino Rosa Santos, Susana; Instituto de Biopatologia Quimica, Faculdade de Medicina de Lisboa/Unidade de Biopatologia Vascular, Instituto de Medicina Molecular, Lisbon; Instituto Gulbenkian de Ciencia

    2007-05-01

    Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this processmore » required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF + KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention.« less

  20. Imatinib-mediated inactivation of Akt regulates ABCG2 function in head and neck squamous cell carcinoma.

    PubMed

    Chu, Theresa S; Chen, Jocelyn S; Lopez, Jay Patrick; Pardo, Francisco S; Aguilera, Joseph; Ongkeko, Weg M

    2008-09-01

    To investigate whether the mechanism for the reversal of ABCG2 (also known as ABCP, MXR, and BCRP)-mediated drug resistance by imatinib mesylate (Gleevec, STI571; Novartis Pharmaceuticals Corp, East Hanover, New Jersey) is caused by the downregulation of Akt kinase. The adenosine triphosphatase-binding cassette protein ABCG2 has been suggested to be involved in the resistance against various anticancer drugs. Recent studies show that imatinib reverses ABCG2-mediated drug resistance to topotecan hydrochloride and SN-38. In addition, we have previously reported that imatinib downregulates Akt kinase activity, which is elevated in head and neck squamous cell carcinoma. Flow cytometric analysis was used to determine the levels of drug or dye extrusion from the cells. We used Akt kinase inhibitors, transfection with short interfering RNA (siRNA) Akt, and the tyrosine kinase inhibitor imatinib to show that these treatments decreased the side population by 50% to 70% in Hoechst 33342 extrusion studies. Doxorubicin hydrochloride extrusion experiments also demonstrated 20% to 26% decrease in doxorubicin efflux on cells treated with imatinib, 1L6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, and transfection with siRNA Akt. With Western blot and immunofluorescence experiments, our data suggest that ABCG2 translocation is the mechanism by which imatinib and Akt regulate drug resistance. Clonogenic survival assays performed with imatinib-treated cells resulted in a dose-dependent decrease in cell survival compared with the control population. Our findings demonstrate that imatinib confers greater doxorubicin retention, presumably via inhibition of Akt, which regulates ABCG2 function.

  1. Curcumin Suppresses Proliferation and Migration of MDA-MB-231 Breast Cancer Cells through Autophagy-Dependent Akt Degradation

    PubMed Central

    Zhang, Yemin; Zhou, Yu; Li, Mingxin; Wang, Changhua

    2016-01-01

    Previous studies have evidenced that the anticancer potential of curcumin (diferuloylmethane), a main yellow bioactive compound from plant turmeric was mediated by interfering with PI3K/Akt signaling. However, the underlying molecular mechanism is still poorly understood. This study experimentally revealed that curcumin treatment reduced Akt protein expression in a dose- and time-dependent manner in MDA-MB-231 breast cancer cells, along with an activation of autophagy and suppression of ubiquitin-proteasome system (UPS) function. The curcumin-reduced Akt expression, cell proliferation, and migration were prevented by genetic and pharmacological inhibition of autophagy but not by UPS inhibition. Additionally, inactivation of AMPK by its specific inhibitor compound C or by target shRNA-mediated silencing attenuated curcumin-activated autophagy. Thus, these results indicate that curcumin-stimulated AMPK activity induces activation of the autophagy-lysosomal protein degradation pathway leading to Akt degradation and the subsequent suppression of proliferation and migration in breast cancer cell. PMID:26752181

  2. Akt-mediated anti-apoptotic effects of substance P in Anti-Fas-induced apoptosis of human tenocytes

    PubMed Central

    Backman, Ludvig J; Danielson, Patrik

    2013-01-01

    Substance P (SP) and its receptor, the neurokinin-1 receptor (NK-1 R), are expressed by human tenocytes, and they are both up-regulated in cases of tendinosis, a condition associated with excessive apoptosis. It is known that SP can phosphorylate/activate the protein kinase Akt, which has anti-apoptotic effects. This mechanism has not been studied for tenocytes. The aims of this study were to investigate if Anti-Fas treatment is a good apoptosis model for human tenocytes in vitro, if SP protects from Anti-Fas-induced apoptosis, and by which mechanisms SP mediates an anti-apoptotic response. Anti-Fas treatment resulted in a time- and dose-dependent release of lactate dehydrogenase (LDH), i.e. induction of cell death, and SP dose-dependently reduced the Anti-Fas-induced cell death through a NK-1 R specific pathway. The same trend was seen for the TUNEL assay, i.e. SP reduced Anti-Fas-induced apoptosis via NK-1 R. In addition, it was shown that SP reduces Anti-Fas-induced decrease in cell viability as shown with crystal violet assay. Protein analysis using Western blot confirmed that Anti-Fas induces cleavage/activation of caspase-3 and cleavage of PARP; both of which were inhibited by SP via NK-1 R. Finally, SP treatment resulted in phosphorylation/activation of Akt as shown with Western blot, and it was confirmed that the anti-apoptotic effect of SP was, at least partly, induced through the Akt-dependent pathway. In conclusion, we show that SP reduces Anti-Fas-induced apoptosis in human tenocytes and that this anti-apoptotic effect of SP is mediated through NK-1 R and Akt-specific pathways. PMID:23577779

  3. AKT-dependent phosphorylation of the SAM domain induces oligomerization and activation of the scaffold protein CNK1.

    PubMed

    Fischer, Adrian; Weber, Wilfried; Warscheid, Bettina; Radziwill, Gerald

    2017-01-01

    Scaffold proteins are hubs for the coordination of intracellular signaling networks. The scaffold protein CNK1 promotes several signal transduction pathway. Here we demonstrate that sterile motif alpha (SAM) domain-dependent oligomerization of CNK1 stimulates CNK1-mediated signaling in growth factor-stimulated cells. We identified Ser22 located within the SAM domain as AKT-dependent phosphorylation site triggering CNK1 oligomerization. Oligomeric CNK1 increased the affinity for active AKT indicating a positive AKT feedback mechanism. A CNK1 mutant lacking the SAM domain and the phosphorylation-defective mutant CNK1 S22A antagonizes oligomerization and prevents CNK1-driven cell proliferation and matrix metalloproteinase 14 promoter activation. The phosphomimetic mutant CNK1 S22D constitutively oligomerizes and stimulates CNK1 downstream signaling. Searching the COSMIC database revealed Ser22 as putative target for oncogenic activation of CNK1. Like the phosphomimetic mutant CNK1 S22D , the oncogenic mutant CNK1 S22F forms clusters in serum-starved cells comparable to clusters of CNK1 in growth factor-stimulated cells. CNK1 clusters induced by activating Ser22 mutants correlate with enhanced cell invasion and binding to and activation of ADP ribosylation factor 1 associated with tumor formation. Mutational analysis indicate that EGF-triggered phosphorylation of Thr8 within the SAM domain prevents AKT binding and antagonizes CNK1-mediated AKT signaling. Our findings reveal SAM domain-dependent oligomerization by AKT as switch for CNK1 activation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Protective Effect of Ad-VEGF-Bone Mesenchymal Stem Cells on Cerebral Infarction.

    PubMed

    Chen, Bo; Zhang, Feng; Li, Qiao-Yu; Gong, Aihua; Lan, Qing

    2016-01-01

    To understand the mechanism of intracerebroventricular transplantation of vascular endothelial growth factor (VEGF) genemodified bone mesenchymal stem cells (BMSCs) in rats after cerebral infarction. The middle cerebral artery occlusion ischemia/reperfusion (MCAO I/R) model was established in rats using the Zea-Longa suture method. A recombinant adenovirus (Ad-VEGF) was engineered to express VEGF. The rats were divided into 3 groups. Control BMSC infected with control adenovirus (BMSC-Ad), BMSC infected by Ad-VEGF (BMSC-Ad-VEGF), and phosphate buffered saline (PBS) suspension were injected into the intracerebroventricular system of the rats in groups 1, 2 and 3 respectively, 24 hours after middle cerebral artery occlusion (MCAO). The neurological function of rats was evaluated with the modified Neurological Severity Scores (mNSS). The infarct volume of brain in rats was determined using 2,3,5-triphenyltetrazolium chloride (TTC) stain at 14 days. GFAP and pGSK3β expression of ischemic penumbra was determined using immunohistochemical method. GFAP, pAKT, AKT, and pGSK3β expressions were determined with Western blot. Functional improvement was accelerated in animals receiving BMSC-Ad, while improvement at all times between 7 days and 28 days post MCAO was significantly greater in animals transplanted with BMSC-Ad-VEGF than for other treated animals. The number of GFAP-labeled cells was prevented by post-ischemic BMSC-Ad-VEGF treatment; pMCAO activate the PI3K/AKT/GSK3β pathway to reduce reactive gliosis. Our findings demonstrate that PI3K/AKT/GSK3β pathway could reduce reactive gliosis, ameliorate neurological deficit, diminish the percentage of cerebral infarction volume in rats, and facilitate angiogenesis.

  5. Gallic acid targets acute myeloid leukemia via Akt/mTOR-dependent mitochondrial respiration inhibition.

    PubMed

    Gu, Ruixin; Zhang, Minqin; Meng, Hu; Xu, Dandan; Xie, Yonghua

    2018-06-05

    Gallic acid is one of the many phenolic acids that can be found in dietary substances and traditional medicine herbs. The anti-cancer activities of gallic acid have been shown in various cancers but its underlying molecular mechanisms are not well understood. In this study, we show Akt/mammalian target of rapamycin (mTOR)-dependent inhibition of mitochondrial respiration as a mechanism of gallic acid's action in acute myeloid leukemia (AML). Gallic acid significantly induces apoptosis of AML cell lines, primary mononuclear cells (MNC) and CD34 stem/progenitors isolated form AML patients via caspase-dependent pathway. It also significantly enhances two standard AML chemotherapeutic agents' efficacy in vitro cell culture system and in vivo xenograft model. Gallic acid inhibits dose- and time-dependent mitochondrial respiration, leading to decreased ATP production and oxidative stress. Overexpression of constitutively active Akt restores gallic acid-mediated inhibition of mTOR signaling, mitochondrial dysfunction, energy crisis and apoptosis. Our results demonstrate that mitochondrial respiration inhibition by gallic acid is a consequence of Akt/mTOR signaling suppression. Our findings suggest that combination therapy with gallic acid may enhance antileukemic efficacy of standard chemotherapeutic agents in AML. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Ubiquitin-dependent Regulation of Phospho-AKT Dynamics by the Ubiquitin E3 Ligase, NEDD4-1, in the Insulin-like Growth Factor-1 Response*

    PubMed Central

    Fan, Chuan-Dong; Lum, Michelle A.; Xu, Chao; Black, Jennifer D.; Wang, Xinjiang

    2013-01-01

    AKT is a critical effector kinase downstream of the PI3K pathway that regulates a plethora of cellular processes including cell growth, death, differentiation, and migration. Mechanisms underlying activated phospho-AKT (pAKT) translocation to its action sites remain unclear. Here we show that NEDD4-1 is a novel E3 ligase that specifically regulates ubiquitin-dependent trafficking of pAKT in insulin-like growth factor (IGF)-1 signaling. NEDD4-1 physically interacts with AKT and promotes HECT domain-dependent ubiquitination of exogenous and endogenous AKT. NEDD4-1 catalyzes K63-type polyubiquitin chain formation on AKT in vitro. Plasma membrane binding is the key step for AKT ubiquitination by NEDD4-1 in vivo. Ubiquitinated pAKT translocates to perinuclear regions, where it is released into the cytoplasm, imported into the nucleus, or coupled with proteasomal degradation. IGF-1 signaling specifically stimulates NEDD4-1-mediated ubiquitination of pAKT, without altering total AKT ubiquitination. A cancer-derived plasma membrane-philic mutant AKT(E17K) is more effectively ubiquitinated by NEDD4-1 and more efficiently trafficked into the nucleus compared with wild type AKT. This study reveals a novel mechanism by which a specific E3 ligase is required for ubiquitin-dependent control of pAKT dynamics in a ligand-specific manner. PMID:23195959

  7. A VEGF-dependent gene signature enriched in mesenchymal ovarian cancer predicts patient prognosis.

    PubMed

    Yin, Xia; Wang, Xiaojie; Shen, Boqiang; Jing, Ying; Li, Qing; Cai, Mei-Chun; Gu, Zhuowei; Yang, Qi; Zhang, Zhenfeng; Liu, Jin; Li, Hongxia; Di, Wen; Zhuang, Guanglei

    2016-08-08

    We have previously reported surrogate biomarkers of VEGF pathway activities with the potential to provide predictive information for anti-VEGF therapies. The aim of this study was to systematically evaluate a new VEGF-dependent gene signature (VDGs) in relation to molecular subtypes of ovarian cancer and patient prognosis. Using microarray profiling and cross-species analysis, we identified 140-gene mouse VDGs and corresponding 139-gene human VDGs, which displayed enrichment of vasculature and basement membrane genes. In patients who received bevacizumab therapy and showed partial response, the expressions of VDGs (summarized to yield VDGs scores) were markedly decreased in post-treatment biopsies compared with pre-treatment baselines. In contrast, VDGs scores were not significantly altered following bevacizumab treatment in patients with stable or progressive disease. Analysis of VDGs in ovarian cancer showed that VDGs as a prognostic signature was able to predict patient outcome. Correlation estimation of VDGs scores and molecular features revealed that VDGs was overrepresented in mesenchymal subtype and BRCA mutation carriers. These findings highlighted the prognostic role of VEGF-mediated angiogenesis in ovarian cancer, and proposed a VEGF-dependent gene signature as a molecular basis for developing novel diagnostic strategies to aid patient selection for VEGF-targeted agents.

  8. 20(S)-Protopanaxadiol enhances angiogenesis via HIF-1α-mediated VEGF secretion by activating p70S6 kinase and benefits wound healing in genetically diabetic mice

    PubMed Central

    Zhang, Er-Yun; Gao, Bo; Shi, Hai-Lian; Huang, Ling-Fang; Yang, Li; Wu, Xiao-Jun; Wang, Zheng-Tao

    2017-01-01

    Impaired angiogenesis is one of the crucial factors that impede the wound healing process in diabetic foot ulcers (DFUs). In this study, we found that 20(S)-protopanaxadiol (PPD), an aglycone of ginsenosides in Panax notoginseng, stimulated angiogenesis and benefited wound healing in genetically diabetic mice. In HUVECs, PPD promoted cell proliferation, tube formation and VEGF secretion accompanied by increased nuclear translocalization of HIF-1α, which led to elevated VEGF mRNA expression. PPD activated both PI3K/Akt/mTOR and Raf/MEK/ERK signaling pathways in HUVECs, which were abrogated by LY294002 and PD98059. Furthermore, these two pathways had crosstalk through p70S6K, as LY294002, PD98059 and p70S6K siRNA abolished the angiogenic responses of PPD. In the excisional wound splinting model established in db/db diabetic mice, PPD (0.6, 6 and 60 mg ml−1) accelerated wound closure, which was reflected by a significantly reduced wound area and epithelial gaps, as well as elevated VEGF expression and capillary formation. In addition, PPD activated PI3K/Akt/ERK signaling pathways, as well as enhanced p70S6K activity and HIF-1α synthesis in the wounds. Overall, our results revealed that PPD stimulated angiogenesis via HIF-1α-mediated VEGF expression by activating p70S6K through PI3K/Akt/mTOR and Raf/MEK/ERK signaling cascades, which suggests that the compound has potential use in wound healing therapy in patients suffering from DFUs. PMID:29075038

  9. The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway

    PubMed Central

    Mattoon, Dawn R; Lamothe, Betty; Lax, Irit; Schlessinger, Joseph

    2004-01-01

    Background Gab1 is a docking protein that recruits phosphatidylinositol-3 kinase (PI-3 kinase) and other effector proteins in response to the activation of many receptor tyrosine kinases (RTKs). As the autophosphorylation sites on EGF-receptor (EGFR) do not include canonical PI-3 kinase binding sites, it is thought that EGF stimulation of PI-3 kinase and its downstream effector Akt is mediated by an indirect mechanism. Results We used fibroblasts isolated from Gab1-/- mouse embryos to explore the mechanism of EGF stimulation of the PI-3 kinase/Akt anti-apoptotic cell signaling pathway. We demonstrate that Gab1 is essential for EGF stimulation of PI-3 kinase and Akt in these cells and that these responses are mediated by complex formation between p85, the regulatory subunit of PI-3 kinase, and three canonical tyrosine phosphorylation sites on Gab1. Furthermore, complex formation between Gab1 and the protein tyrosine phosphatase Shp2 negatively regulates Gab1 mediated PI-3 kinase and Akt activation following EGF-receptor stimulation. We also demonstrate that tyrosine phosphorylation of ErbB3 may lead to recruitment and activation of PI-3 kinase and Akt in Gab1-/- MEFs. Conclusions The primary mechanism of EGF-induced stimulation of the PI-3 kinase/Akt anti-apoptotic pathway occurs via the docking protein Gab1. However, in cells expressing ErbB3, EGF and neuroregulin can stimulate PI-3 kinase and Akt activation in a Gab1-dependent or Gab1-independent manner. PMID:15550174

  10. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conducemore » to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free

  11. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Qing-Mei, E-mail: 34713316@qq.com; Jiang, Ping, E-mail: jiangping@163.com; Yang, Min, E-mail: YangMin@163.com

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferationmore » and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and

  12. Up-regulation of VEGF and its receptor in refractory leukemia cells

    PubMed Central

    Wang, Lei; Zhang, Wenjun; Ding, Yi; Xiu, Bing; Li, Ping; Dong, Yan; Zhu, Qi; Liang, Aibin

    2015-01-01

    Objective: To analyze the causative mechanisms in refractory leukemia cells. Methods: Vascular endothelial growth factor (VEGF) blood plasma concentrations in 35 de novo, 6 relapse, 20 remission leukemia patients and 10 healthy kids were determined via ELISA analyses. Transcription levels of the VEGF receptors (VEGFR) Fms-like tyrosine kinase-1 (Flt-1) and kinase-domain insert containing receptor (KDR) were determined in participants’ leucocytes with RT-PCR. Apoptosis rates as well as Cyt-C and Caspase-3 expression was determined in Jurkat, JurkatBcl-2, healthy and recurrent leukemia leukocytes with and without VP-16 applications via flow cytometry. Total Akt (t-Akt) expression and its phosphorylation (p-AKT) status in leukocytes of the participants were analyzed with western blots. Results: Healthy children and the remission group had the lowest blood plasma VEGF concentrations (91.16 ± 41.34 vs. 135.80 ± 111.28 pg/ml), followed by de novo leukemia patients (362.49 ± 195.68 pg/ml-494.19 ± 186.23 pg/ml) and relapse patients (574.37 ± 278.45 pg/ml) (P < 0.01). The same trend was statistically significant visible for Flt-1 and KDR expressions in leukocytes of the participants. Stable Bcl-2 overexpression led to reduced apoptosis rates as well as Cyt-C and Caspase-3 expressions in Jurkat cells after VP-16 application, which was similar in leucocytes of remission patients. In contrast to no phosphorylation in healthy children, Akt was phosphorylated in 10% remission samples, 30% de novo leukemia samples and in 67% of recurrent leukemia leucocytes. Conclusion: High VEGF plus VEGFR expression and AKT phosphorylation are highest in leukocytes of remission patients, suggesting VEGF signaling as a cause of reduced apoptosis susceptibility upon treatments. PMID:26191229

  13. ERK1/2/COX-2/PGE2 signaling pathway mediates GPR91-dependent VEGF release in streptozotocin-induced diabetes

    PubMed Central

    Li, Tingting; Hu, Jianyan; Du, Shanshan; Chen, Yongdong; Wang, Shuai

    2014-01-01

    Purpose Retinal vascular dysfunction caused by vascular endothelial growth factor (VEGF) is the major pathological change that occurs in diabetic retinopathy (DR). It has recently been demonstrated that G protein-coupled receptor 91 (GPR91) plays a major role in both vasculature development and retinal angiogenesis. In this study, we examined the signaling pathways involved in GPR91-dependent VEGF release during the early stages of retinal vascular change in streptozotocin-induced diabetes. Methods Diabetic rats were assigned randomly to receive intravitreal injections of shRNA lentiviral particles targeting GPR91 (LV.shGPR91) or control particles (LV.shScrambled). Accumulation of succinate was assessed by gas chromatography-mass spectrometry (GC-MS). At 14 weeks, the ultrastructure and function of the retinal vessels of diabetic retinas with or without shRNA treatment were assessed using hematoxylin and eosin (HE) staining, transmission electron microscopy (TEM), and Evans blue dye permeability. The expression of GPR91, extracellular signal-regulated kinases 1 and 2 (ERK1/2) and cyclooxygenase-2 (COX-2) were measured using immunofluorescence and western blotting. COX-2 and VEGF mRNA were determined by quantitative RT–PCR. Prostaglandin E2 (PGE2) and VEGF secretion were detected using an enzyme-linked immunosorbent assay. Results Succinate exhibited abundant accumulation in diabetic rat retinas. The retinal telangiectatic vessels, basement membrane thickness, and Evans blue dye permeability were attenuated by treatment with GPR91 shRNA. In diabetic rats, knockdown of GPR91 inhibited the activities of ERK1/2 and COX-2 as well as the expression of PGE2 and VEGF. Meanwhile, COX-2, PGE2, and VEGF expression was inhibited by ERK1/2 inhibitor U0126 and COX-2 inhibitor NS-398. Conclusions Our data suggest that hyperglycemia causes succinate accumulation and GPR91 activity in retinal ganglion cells, which mediate VEGF-induced retinal vascular change via the ERK1/2/COX-2

  14. Akt-mediated anti-apoptotic effects of substance P in Anti-Fas-induced apoptosis of human tenocytes.

    PubMed

    Backman, Ludvig J; Danielson, Patrik

    2013-06-01

    Substance P (SP) and its receptor, the neurokinin-1 receptor (NK-1 R), are expressed by human tenocytes, and they are both up-regulated in cases of tendinosis, a condition associated with excessive apoptosis. It is known that SP can phosphorylate/activate the protein kinase Akt, which has anti-apoptotic effects. This mechanism has not been studied for tenocytes. The aims of this study were to investigate if Anti-Fas treatment is a good apoptosis model for human tenocytes in vitro, if SP protects from Anti-Fas-induced apoptosis, and by which mechanisms SP mediates an anti-apoptotic response. Anti-Fas treatment resulted in a time- and dose-dependent release of lactate dehydrogenase (LDH), i.e. induction of cell death, and SP dose-dependently reduced the Anti-Fas-induced cell death through a NK-1 R specific pathway. The same trend was seen for the TUNEL assay, i.e. SP reduced Anti-Fas-induced apoptosis via NK-1 R. In addition, it was shown that SP reduces Anti-Fas-induced decrease in cell viability as shown with crystal violet assay. Protein analysis using Western blot confirmed that Anti-Fas induces cleavage/activation of caspase-3 and cleavage of PARP; both of which were inhibited by SP via NK-1 R. Finally, SP treatment resulted in phosphorylation/activation of Akt as shown with Western blot, and it was confirmed that the anti-apoptotic effect of SP was, at least partly, induced through the Akt-dependent pathway. In conclusion, we show that SP reduces Anti-Fas-induced apoptosis in human tenocytes and that this anti-apoptotic effect of SP is mediated through NK-1 R and Akt-specific pathways. © 2013 The Authors Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  15. Hepatoprotective Effects of Corilagin Following Hemorrhagic Shock are Through Akt-Dependent Pathway

    PubMed Central

    Liu, Fu-Chao; Chaudry, Irshad H.; Yu, Huang-Ping

    2017-01-01

    ABSTRACT Corilagin, a component of Phyllanthus urinaria extract, possesses antioxidant, thrombolytic, antiatherogenic, and hepatoprotective properties, but the mechanism underlying these effects remains unclear. Previous studies showed that the Akt (protein kinase B) signaling pathway exerts anti-inflammatory and organ protective effects. The aim of this study was to investigate the mechanism of action of corilagin and determine whether these effects are mediated through the Akt-dependent pathway in a trauma-hemorrhagic shock-induced liver injury rodent model. Hemorrhagic shock was induced in male Sprague–Dawley rats; mean blood pressure was maintained at 35 mm Hg to 40 mm Hg for 90 min, followed by fluid resuscitation. During resuscitation, three doses of corilagin alone (1 mg/kg, 5 mg/kg, or 10 mg/kg, intravenously) were administered. Furthermore, a single dose of corilagin (5 mg/kg) with and without Wortmannin (1 mg/kg, PI3K inhibitor), Wortmannin alone, or vehicle was administered. Twenty-four hours after resuscitation, plasma alanine aminotransferase and aspartate aminotransferase concentration and hepatic parameters were measured. One-way ANOVA was used for statistical analysis. Hepatic myeloperoxidase activity and the concentrations of plasma alanine aminotransferase and aspartate aminotransferase, interleukin-6, tumor necrosis factor-α, intercellular adhesion molecule-1, and cytokine-induced neutrophil chemoattractant-1 (CINC-1) and CINC-3 increased following hemorrhagic shock. These parameters were significantly attenuated in corilagin-treated rats following hemorrhagic shock. Hepatic phospho-Akt expression was also higher in corilagin-treated rats than in vehicle-treated rats. The elevation of phospho-Akt was abolished by combined treatment with Wortmannin and corilagin. Our results suggest that corilagin exerts its protective effects on hemorrhagic shock-induced liver injury, at least, via the Akt-dependent pathway. PMID:27559697

  16. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism.

    PubMed

    Qi, Di; Tang, Xumao; He, Jing; Wang, Daoxin; Zhao, Yan; Deng, Wang; Deng, Xinyu; Zhou, Guoqi; Xia, Jing; Zhong, Xi; Pu, Shenglan

    2016-09-08

    Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin's effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS.

  17. Computational Model of Gab1/2-Dependent VEGFR2 Pathway to Akt Activation

    PubMed Central

    Tan, Wan Hua; Popel, Aleksander S.; Mac Gabhann, Feilim

    2013-01-01

    Vascular endothelial growth factor (VEGF) signal transduction is central to angiogenesis in development and in pathological conditions such as cancer, retinopathy and ischemic diseases. However, no detailed mass-action models of VEGF receptor signaling have been developed. We constructed and validated the first computational model of VEGFR2 trafficking and signaling, to study the opposing roles of Gab1 and Gab2 in regulation of Akt phosphorylation in VEGF-stimulated endothelial cells. Trafficking parameters were optimized against 5 previously published in vitro experiments, and the model was validated against six independent published datasets. The model showed agreement at several key nodes, involving scaffolding proteins Gab1, Gab2 and their complexes with Shp2. VEGFR2 recruitment of Gab1 is greater in magnitude, slower, and more sustained than that of Gab2. As Gab2 binds VEGFR2 complexes more transiently than Gab1, VEGFR2 complexes can recycle and continue to participate in other signaling pathways. Correspondingly, the simulation results show a log-linear relationship between a decrease in Akt phosphorylation and Gab1 knockdown while a linear relationship was observed between an increase in Akt phosphorylation and Gab2 knockdown. Global sensitivity analysis demonstrated the importance of initial-concentration ratios of antagonistic molecular species (Gab1/Gab2 and PI3K/Shp2) in determining Akt phosphorylation profiles. It also showed that kinetic parameters responsible for transient Gab2 binding affect the system at specific nodes. This model can be expanded to study multiple signaling contexts and receptor crosstalk and can form a basis for investigation of therapeutic approaches, such as tyrosine kinase inhibitors (TKIs), overexpression of key signaling proteins or knockdown experiments. PMID:23805312

  18. Thymosin β4 promotes endothelial progenitor cell angiogenesis via a vascular endothelial growth factor‑dependent mechanism.

    PubMed

    Zhao, Yanbo; Song, Jiale; Bi, Xukun; Gao, Jing; Shen, Zhida; Zhu, Junhui; Fu, Guosheng

    2018-06-20

    Endothelial progenitor cells (EPCs) are a promising cell source for tissue repair and regeneration, predominantly through angiogenesis promotion. Paracrine functions serve a pivotal role in EPC‑mediated angiogenesis, which may be impaired by various cardiovascular risk factors. Therefore, it is important to identify a solution that optimizes the paracrine function of EPCs. Thymosin β4 (Tβ4) is a peptide with the potential to promote tissue regeneration and wound healing. A previous study demonstrated that Tβ4 enhances the EPC‑mediated angiogenesis of the ischemic myocardium. In the present study, whether Tβ4 improved angiogenesis by enhancing the paracrine effects of EPCs was investigated. A tube formation assay was used to assess the effect of angiogenesis, and the paracrine effects were measured using an ELISA kit. The results indicated that Tβ4 improved the paracrine effects of EPCs, evidenced by an increase in the expression of vascular endothelial growth factor (VEGF). EPC‑conditioned medium (EPC‑CM) significantly promoted human umbilical vein endothelial cell angiogenesis in vitro, which was further enhanced by pretreatment with Tβ4. The effect of Tβ4 pretreated EPC‑CM on angiogenesis was abolished by VEGF neutralizing antibody in vitro, indicating that increased VEGF secretion had a pivotal role in Tβ4‑mediated EPC angiogenesis. Furthermore, transplantation of EPCs pretreated with Tβ4 into infarcted rat hearts resulted in significantly higher VEGF expression in the border zone, compared with EPC transplantation alone. To further investigate whether the Akt/eNOS pathway was involved in Tβ4‑induced VEGF secretion in EPCs, the expression levels of VEGF in EPC‑CM were significantly decreased following knockdown of Akt or eNOS by small interfering RNA transfection. In conclusion, Tβ4 significantly increased angiogenesis by enhancing the paracrine effects of EPCs, evidenced by the increased expression of VEGF. The RAC‑α serine

  19. Akt/PKB Controls the Activity-Dependent Bulk Endocytosis of Synaptic Vesicles

    PubMed Central

    Smillie, Karen J; Cousin, Michael A

    2012-01-01

    Activity-dependent bulk endocytosis (ADBE) is the dominant SV endocytosis mode during intense neuronal activity. The dephosphorylation of Ser774 on dynamin I is essential for triggering of ADBE, as is its subsequent rephosphorylation by glycogen synthase kinase 3 (GSK3). We show that in primary cultures of cerebellar granule neurons the protein kinase Akt phosphorylates GSK3 during intense neuronal activity, ensuring that GSK3 is inactive during intense stimulation to aid dynamin I dephosphorylation. Furthermore, when a constitutively active form of Akt was overexpressed in primary neuronal cultures, ADBE was inhibited with no effect on clathrin-mediated endocytosis. Thus Akt has two major regulatory roles (i) to ensure efficient dynamin I dephosphorylation via acute activity-dependent inhibition of GSK3 and (ii) to negatively regulate ADBE when activated in the longer term. This is the first demonstration of a role for Akt in SV recycling and suggests a key role for this protein kinase in modulating synaptic strength during elevated neuronal activity. PMID:22487004

  20. Crataegus special extract WS 1442 causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of endothelial NO synthase but not via activation of estrogen receptors.

    PubMed

    Anselm, Eric; Socorro, Vanesca Frota Madeira; Dal-Ros, Stéphanie; Schott, Christa; Bronner, Christian; Schini-Kerth, Valérie B

    2009-03-01

    This study determined whether the Crataegus (Hawthorn species) special extract WS 1442 stimulates the endothelial formation of nitric oxide (NO), a vasoprotective factor, and characterized the underlying mechanism. Vascular reactivity was assessed in porcine coronary artery rings, reactive oxygen species (ROS) formation in artery sections by microscopy, and phosphorylation of Akt and endothelial NO synthase (eNOS) in endothelial cells by Western blot analysis. WS 1442 caused endothelium-dependent relaxations in coronary artery rings, which were reduced by N-nitro-L-arginine (a competitive inhibitor of NO synthase) and by charybdotoxin plus apamin (two inhibitors of endothelium-derived hyperpolarizing factor-mediated responses). Relaxations to WS 1442 were inhibited by intracellular ROS scavengers and inhibitors of Src and PI3-kinase, but not by an estrogen receptor antagonist. WS 1442 stimulated the endothelial formation of ROS in artery sections, and a redox-sensitive phosphorylation of Akt and eNOS in endothelial cells. WS 1442 induced endothelium-dependent NO-mediated relaxations of coronary artery rings through the redox-sensitive Src/PI3-kinase/Akt-dependent phosphorylation of eNOS.

  1. DNA–PKcs–SIN1 complexation mediates low-dose X-ray irradiation (LDI)-induced Akt activation and osteoblast differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yong; Fang, Shi-ji; Zhu, Li-juan

    Highlights: • LDI increases ALP activity, promotes type I collagen (Col I)/Runx2 mRNA expression. • LDI induces DNA–PKcs activation, which is required for osteoblast differentiation. • Akt activation mediates LDI-induced ALP activity and Col I/Runx2 mRNA increase. • DNA–PKcs–SIN1 complexation mediates LDI-induced Akt Ser-473 phosphorylation. • DNA–PKcs–SIN1 complexation is important for osteoblast differentiation. - Abstract: Low-dose irradiation (LDI) induces osteoblast differentiation, however the underlying mechanisms are not fully understood. In this study, we explored the potential role of DNA-dependent protein kinase catalytic subunit (DNA–PKcs)–Akt signaling in LDI-induced osteoblast differentiation. We confirmed that LDI promoted mouse calvarial osteoblast differentiation, which wasmore » detected by increased alkaline phosphatase (ALP) activity as well as mRNA expression of type I collagen (Col I) and runt-related transcription factor 2 (Runx2). In mouse osteoblasts, LDI (1 Gy) induced phosphorylation of DNA–PKcs and Akt (mainly at Ser-473). The kinase inhibitors against DNA–PKcs (NU-7026 and NU-7441) or Akt (LY294002, perifosine and MK-2206), as well as partial depletion of DNA–PKcs or Akt1 by targeted-shRNA, dramatically inhibited LDI-induced Akt activation and mouse osteoblast differentiation. Further, siRNA-knockdown of SIN1, a key component of mTOR complex 2 (mTORC2), also inhibited LDI-induced Akt Ser-473 phosphorylation as well as ALP activity increase and Col I/Runx2 expression in mouse osteoblasts. Co-immunoprecipitation (Co-IP) assay results demonstrated that LDI-induced DNA–PKcs–SIN1 complexation, which was inhibited by NU-7441 or SIN1 siRNA-knockdown in mouse osteoblasts. In summary, our data suggest that DNA–PKcs–SIN1 complexation-mediated Akt activation (Ser-473 phosphorylation) is required for mouse osteoblast differentiation.« less

  2. Akt/protein kinase B activation by adenovirus vectors contributes to NFkappaB-dependent CXCL10 expression.

    PubMed

    Liu, Qiang; White, Lindsay R; Clark, Sharon A; Heffner, Daniel J; Winston, Brent W; Tibbles, Lee Anne; Muruve, Daniel A

    2005-12-01

    In gene therapy, the innate immune system is a significant barrier to the effective application of adenovirus (Ad) vectors. In kidney epithelium-derived (REC) cells, serotype 5 Ad vectors induce the expression of the chemokine CXCL10 (IP-10), a response that is dependent on NFkappaB. Compared to the parental vector AdLuc, transduction with the RGD-deleted vector AdL.PB resulted in reduced CXCL10 activation despite increasing titers, implying that RGD-alpha(V) integrin interactions contribute to adenovirus induction of inflammatory genes. Akt, a downstream effector of integrin signaling, was activated within 10 min of transduction with Ad vectors in a dose-dependent manner. Akt activation was not present following transduction with AdL.PB, confirming the importance of capsid-alpha(V) integrin interactions in Ad vector Akt activation. Inhibition of the phosphoinositide-3-OH kinase/Akt pathway by Wortmannin or Ly294002 compounds decreased Ad vector induction of CXCL10 mRNA. Similarly, adenovirus-mediated overexpression of the dominant negative AktAAA decreased CXCL10 mRNA expression compared to the reporter vector AdLacZ alone. The effect of Akt on CXCL10 mRNA expression occurred via NFkappaB-dependent transcriptional activation, since AktAAA overexpression and Ly294002 both inhibited CXCL10 and NFkappaB promoter activation in luciferase reporter experiments. These results show that Akt plays a role in the Ad vector activation of NFkappaB and CXCL10 expression. Understanding the mechanism underlying the regulation of host immunomodulatory genes by adenovirus vectors will lead to strategies that will improve the efficacy and safety of these agents for clinical use.

  3. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels ofmore » α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer

  4. PPARγ controls pregnancy outcome through activation of EG-VEGF: new insights into the mechanism of placental development.

    PubMed

    Garnier, Vanessa; Traboulsi, Wael; Salomon, Aude; Brouillet, Sophie; Fournier, Thierry; Winkler, Carine; Desvergne, Beatrice; Hoffmann, Pascale; Zhou, Qun-Yong; Congiu, Cenzo; Onnis, Valentina; Benharouga, Mohamed; Feige, Jean-Jacques; Alfaidy, Nadia

    2015-08-15

    PPARγ-deficient mice die at E9.5 due to placental abnormalities. The mechanism by which this occurs is unknown. We demonstrated that the new endocrine factor EG-VEGF controls the same processes as those described for PPARγ, suggesting potential regulation of EG-VEGF by PPARγ. EG-VEGF exerts its functions via prokineticin receptor 1 (PROKR1) and 2 (PROKR2). This study sought to investigate whether EG-VEGF mediates part of PPARγ effects on placental development. Three approaches were used: 1) in vitro, using human primary isolated cytotrophoblasts and the extravillous trophoblast cell line (HTR-8/SVneo); 2) ex vivo, using human placental explants (n = 46 placentas); and 3) in vivo, using gravid wild-type PPARγ(+/-) and PPARγ(-/-) mice. Major processes of placental development that are known to be controlled by PPARγ, such as trophoblast proliferation, migration, and invasion, were assessed in the absence or presence of PROKR1 and PROKR2 antagonists. In both human trophoblast cell and placental explants, we demonstrated that rosiglitazone, a PPARγ agonist, 1) increased EG-VEGF secretion, 2) increased EG-VEGF and its receptors mRNA and protein expression, 3) increased placental vascularization via PROKR1 and PROKR2, and 4) inhibited trophoblast migration and invasion via PROKR2. In the PPARγ(-/-) mouse placentas, EG-VEGF levels were significantly decreased, supporting an in vivo control of EG-VEGF/PROKRs system during pregnancy. The present data reveal EG-VEGF as a new mediator of PPARγ effects during pregnancy and bring new insights into the fine mechanism of trophoblast invasion. Copyright © 2015 the American Physiological Society.

  5. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival

    PubMed Central

    Li, Xuezhi; Lavigne, Pierre; Lavoie, Christine

    2015-01-01

    Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses. PMID:26446845

  6. Rifaximin, a non-absorbable antibiotic, inhibits the release of pro-angiogenic mediators in colon cancer cells through a pregnane X receptor-dependent pathway.

    PubMed

    Esposito, Giuseppe; Gigli, Stefano; Seguella, Luisa; Nobile, Nicola; D'Alessandro, Alessandra; Pesce, Marcella; Capoccia, Elena; Steardo, Luca; Cirillo, Carla; Cuomo, Rosario; Sarnelli, Giovanni

    2016-08-01

    Activation of intestinal human pregnane X receptor (PXR) has recently been proposed as a promising strategy for the chemoprevention of inflammation-induced colon cancer. The present study was aimed at evaluating the effect of rifaximin, a non-absorbable antibiotic, in inhibiting angiogenesis in a model of human colorectal epithelium and investigating the role of PXR in its mechanism of action. Caco-2 cells were treated with rifaximin (0.1, 1.0 and 10.0 µM) in the presence or absence of ketoconazole (10 µM) and assessed for cell proliferation, migration and expression of proliferating cell nuclear antigen (PCNA). The release of vascular endothelial growth factor (VEGF) and nitric oxide (NO), expression of Akt, mechanistic target of rapamycin (mTOR), p38 mitogen activated protein kinases (MAPK), nuclear factor κB (NF-κB) and metalloproteinase-2 and -9 (MMP-2 and -9) were also evaluated. Treatment with rifaximin 0.1, 1.0 and 10.0 µM caused significant and concentration-dependent reduction of cell proliferation, cell migration and PCNA expression in the Caco-2 cells vs. untreated cells. Treatment downregulated VEGF secretion, NO release, VEGFR-2 expression, MMP-2 and MMP-9 expression vs. untreated cells. Rifaximin treatment also resulted in a concentration-dependent decrease in the phosphorylation of Akt, mTOR, p38MAPK and inhibition of hypoxia-inducible factor 1-α (HIF-1α), p70S6K and NF-κB. Ketoconazole (PXR antagonist) treatment inhibited these effects. These findings demonstrated that rifaximin causes PXR-mediated inhibition of angiogenic factors in Caco-2 cell line and may be a promising anticancer tool.

  7. Magnolol suppresses vascular endothelial growth factor-induced angiogenesis by inhibiting Ras-dependent mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways.

    PubMed

    Kim, Ki Mo; Kim, No Soo; Kim, Jinhee; Park, Jong-Shik; Yi, Jin Mu; Lee, Jun; Bang, Ok-Sun

    2013-01-01

    Magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, has been reported to possess anticancer activity. Recent studies have also demonstrated that magnolol inhibits cell growth and induces the apoptosis of cancer cells. However, the effects of magnolol on vascular endothelial growth factor (VEGF)-induced angiogenesis in endothelial cells have not been studied. In the present study, we have used human umbilical vein endothelial cells (HUVECs) to investigate the antiangiogenic effect and molecular mechanism of magnolol. Magnolol inhibited the VEGF-induced proliferation, chemotactic motility and tube formation of HUVECs in vitro as well as the vessel sprouting of the aorta ex vivo. Furthermore, magnolol inhibited VEGF-induced Ras activation and subsequently suppressed extracellular signal-regulated kinase (ERK), phosphatidylinositol-3-kinase (PI3K)/Akt and p38, but not Src and focal adhesion kinase (FAK). Interestingly, the knockdown of Ras by short interfering RNA produced inhibitory effects that were similar to the effects of magnolol on VEGF-induced angiogenic signaling events, such as ERK and Akt/eNOS activation, and resulted in the inhibition of proliferation, migration, and vessel sprouting in HUVECs. In combination, these results demonstrate that magnolol is an inhibitor of angiogenesis and suggest that this compound could be a potential candidate in the treatment of angiogenesis-related diseases.

  8. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt.

    PubMed

    Bai, Dong; Ueno, Lynn; Vogt, Peter K

    2009-12-15

    The serine/threonine kinase Akt (cellular homolog of murine thymoma virus akt8 oncogene), also known as PKB (protein kinase B), is activated by lipid products of phosphatidylinositol 3-kinase (PI3K). Akt phosphorylates numerous protein targets that control cell survival, proliferation and motility. Previous studies suggest that Akt regulates transcriptional activity of the nuclear factor-kappaB (NFkappaB) by inducing phosphorylation and subsequent degradation of inhibitor of kappaB (IkappaB). We show here that NFkappaB-driven transcription increases in chicken embryonic fibroblasts (CEF) transformed by myristylated Akt (myrAkt). Accordingly, both a dominant negative mutant of Akt and Akt inhibitors repress NFkappaB-dependent transcription. The degradation of the IkappaB protein is strongly enhanced in Akt-transformed cells, and the loss of NFkappaB activity by introduction of a super-repressor of NFkappaB, IkappaBSR, interferes with PI3K- and Akt-induced oncogenic transformation of CEF. The phosphorylation of the p65 subunit of NFkappaB at serine 534 is also upregulated in Akt-transformed cells. Our data suggest that the stimulation of NFkappaB by Akt is dependent on the phosphorylation of p65 at S534, mediated by IKK (IkappaB kinase) alpha and beta. Akt phosphorylates IKKalpha on T23, and this phosphorylation event is a prerequisite for the phosphorylation of p65 at S534 by IKKalpha and beta. Our results demonstrate two separate functions of the IKK complex in NFkappaB activation in cells with constitutive Akt activity: the phosphorylation and consequent degradation of IkappaB and the phosphorylation of p65. The data further support the conclusion that NFkappaB activity is essential for PI3K- and Akt-induced oncogenic transformation. Copyright (c) 2009 UICC.

  9. Neuropilin-2 mediates VEGF-C–induced lymphatic sprouting together with VEGFR3

    PubMed Central

    Xu, Yunling; Yuan, Li; Mak, Judy; Pardanaud, Luc; Caunt, Maresa; Kasman, Ian; Larrivée, Bruno; del Toro, Raquel; Suchting, Steven; Medvinsky, Alexander; Silva, Jillian; Yang, Jian; Thomas, Jean-Léon; Koch, Alexander W.; Alitalo, Kari

    2010-01-01

    Vascular sprouting is a key process-driving development of the vascular system. In this study, we show that neuropilin-2 (Nrp2), a transmembrane receptor for the lymphangiogenic vascular endothelial growth factor C (VEGF-C), plays an important role in lymphatic vessel sprouting. Blocking VEGF-C binding to Nrp2 using antibodies specifically inhibits sprouting of developing lymphatic endothelial tip cells in vivo. In vitro analyses show that Nrp2 modulates lymphatic endothelial tip cell extension and prevents tip cell stalling and retraction during vascular sprout formation. Genetic deletion of Nrp2 reproduces the sprouting defects seen after antibody treatment. To investigate whether this defect depends on Nrp2 interaction with VEGF receptor 2 (VEGFR2) and/or 3, we intercrossed heterozygous mice lacking one allele of these receptors. Double-heterozygous nrp2vegfr2 mice develop normally without detectable lymphatic sprouting defects. In contrast, double-heterozygote nrp2vegfr3 mice show a reduction of lymphatic vessel sprouting and decreased lymph vessel branching in adult organs. Thus, interaction between Nrp2 and VEGFR3 mediates proper lymphatic vessel sprouting in response to VEGF-C. PMID:20065093

  10. Decursin inhibits VEGF-mediated inner blood-retinal barrier breakdown by suppression of VEGFR-2 activation.

    PubMed

    Kim, Jin Hyoung; Kim, Jeong Hun; Lee, You Mie; Ahn, Eun-Mi; Kim, Kyu-Won; Yu, Young Suk

    2009-09-01

    The blood-retinal barrier (BRB) is essential for the normal structural and functional integrity of the retina, whose breakdown could cause the serious vision loss. Vascular endothelial growth factor (VEGF), as a permeable factor, induces alteration of tight junction proteins to result in BRB breakdown. Herein, we demonstrated that decursin inhibits VEGF-mediated inner BRB breakdown through suppression of VEGFR-2 signaling pathway. In retinal endothelial cells, decursin inhibited VEGF-mediated hyperpermeability. Decursin prevented VEGF-mediated loss of tight junction proteins including zonula occludens-1 (ZO-1), ZO-2, and occludin in retinal endothelial cells, which was also supported by restoration of tight junction proteins in intercellular junction. In addition, decursin significantly inhibited VEGF-mediated vascular leakage from retinal vessels, which was accompanied by prevention of loss of tight junction proteins in retinal vessels. Decursin significantly suppressed VEGF-induced VEGFR-2 phosphrylation that consequently led to inhibition of extracellular signal-regulated kinase (ERK) 1/2 activation. Moreover, decursin induced no cytotoxicity to retinal endothelial cells and no retinal toxicity under therapeutic concentrations. Therefore, our results suggest that decursin prevents VEGF-mediated BRB breakdown through blocking of loss of tight junction proteins, which might be regulated by suppression of VEGFR-2 activation. As a novel inhibitor to BRB breakdown, decursin could be applied to variable retinopathies with BRB breakdown.

  11. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy.

    PubMed

    Pepe, Martino; Mamdani, Mohammed; Zentilin, Lorena; Csiszar, Anna; Qanud, Khaled; Zacchigna, Serena; Ungvari, Zoltan; Puligadda, Uday; Moimas, Silvia; Xu, Xiaobin; Edwards, John G; Hintze, Thomas H; Giacca, Mauro; Recchia, Fabio A

    2010-06-25

    Vascular endothelial growth factor (VEGF)-B selectively binds VEGF receptor (VEGFR)-1, a receptor that does not mediate angiogenesis, and is emerging as a major cytoprotective factor. To test the hypothesis that VEGF-B exerts non-angiogenesis-related cardioprotective effects in nonischemic dilated cardiomyopathy. AAV-9-carried VEGF-B(167) cDNA (10(12) genome copies) was injected into the myocardium of chronically instrumented dogs developing tachypacing-induced dilated cardiomyopathy. After 4 weeks of pacing, green fluorescent protein-transduced dogs (AAV-control, n=8) were in overt congestive heart failure, whereas the VEGF-B-transduced (AAV-VEGF-B, n=8) were still in a well-compensated state, with physiological arterial Po(2). Left ventricular (LV) end-diastolic pressure in AAV-VEGF-B and AAV-control was, respectively, 15.0+/-1.5 versus 26.7+/-1.8 mm Hg and LV regional fractional shortening was 9.4+/-1.6% versus 3.0+/-0.6% (all P<0.05). VEGF-B prevented LV wall thinning but did not induce cardiac hypertrophy and did not affect the density of alpha-smooth muscle actin-positive microvessels, whereas it normalized TUNEL-positive cardiomyocytes and caspase-9 and -3 activation. Consistently, activated Akt, a major negative regulator of apoptosis, was superphysiological in AAV-VEGF-B, whereas the proapoptotic intracellular mediators glycogen synthase kinase (GSK)-3beta and FoxO3a (Akt targets) were activated in AAV-control, but not in AAV-VEGF-B. Cardiac VEGFR-1 expression was reduced 4-fold in all paced dogs, suggesting that exogenous VEGF-B(167) exerted a compensatory receptor stimulation. The cytoprotective effects of VEGF-B(167) were further elucidated in cultured rat neonatal cardiomyocytes exposed to 10(-8) mol/L angiotensin II: VEGF-B(167) prevented oxidative stress, loss of mitochondrial membrane potential, and, consequently, apoptosis. We determined a novel, angiogenesis-unrelated cardioprotective effect of VEGF-B(167) in nonischemic dilated cardiomyopathy

  12. MDM2 restrains estrogen-mediated AKT activation by promoting TBK1-dependent HPIP degradation

    PubMed Central

    Shostak, K; Patrascu, F; Göktuna, S I; Close, P; Borgs, L; Nguyen, L; Olivier, F; Rammal, A; Brinkhaus, H; Bentires-Alj, M; Marine, J-C; Chariot, A

    2014-01-01

    Restoration of p53 tumor suppressor function through inhibition of its interaction and/or enzymatic activity of its E3 ligase, MDM2, is a promising therapeutic approach to treat cancer. However, because the MDM2 targetome extends beyond p53, MDM2 inhibition may also cause unwanted activation of oncogenic pathways. Accordingly, we identified the microtubule-associated HPIP, a positive regulator of oncogenic AKT signaling, as a novel MDM2 substrate. MDM2-dependent HPIP degradation occurs in breast cancer cells on its phosphorylation by the estrogen-activated kinase TBK1. Importantly, decreasing Mdm2 gene dosage in mouse mammary epithelial cells potentiates estrogen-dependent AKT activation owing to HPIP stabilization. In addition, we identified HPIP as a novel p53 transcriptional target, and pharmacological inhibition of MDM2 causes p53-dependent increase in HPIP transcription and also prevents HPIP degradation by turning off TBK1 activity. Our data indicate that p53 reactivation through MDM2 inhibition may result in ectopic AKT oncogenic activity by maintaining HPIP protein levels. PMID:24488098

  13. Molecular characterization of EG-VEGF-mediated angiogenesis: differential effects on microvascular and macrovascular endothelial cells.

    PubMed

    Brouillet, Sophie; Hoffmann, Pascale; Benharouga, Mohamed; Salomon, Aude; Schaal, Jean-Patrick; Feige, Jean-Jacques; Alfaidy, Nadia

    2010-08-15

    Endocrine gland derived vascular endothelial growth factor (EG-VEGF) also called prokineticin (PK1), has been identified and linked to several biological processes including angiogenesis. EG-VEGF is abundantly expressed in the highest vascularized organ, the human placenta. Here we characterized its angiogenic effect using different experimental procedures. Immunohistochemistry was used to localize EG-VEGF receptors (PROKR1 and PROKR2) in placental and umbilical cord tissue. Primary microvascular placental endothelial cell (HPEC) and umbilical vein-derived macrovascular EC (HUVEC) were used to assess its effects on proliferation, migration, cell survival, pseudovascular organization, spheroid sprouting, permeability and paracellular transport. siRNA and neutralizing antibody strategies were used to differentiate PROKR1- from PROKR2-mediated effects. Our results show that 1) HPEC and HUVEC express both types of receptors 2) EG-VEGF stimulates HPEC's proliferation, migration and survival, but increases only survival in HUVECs. and 3) EG-VEGF was more potent than VEGF in stimulating HPEC sprout formation, pseudovascular organization, and it significantly increases HPEC permeability and paracellular transport. More importantly, we demonstrated that PROKR1 mediates EG-VEGF angiogenic effects, whereas PROKR2 mediates cellular permeability. Altogether, these data characterized angiogenic processes mediated by EG-VEGF, depicted a new angiogenic factor in the placenta, and suggest a novel view of the regulation of angiogenesis in placental pathologies.

  14. Shengui Sansheng San extraction is an angiogenic switch via regulations of AKT/mTOR, ERK1/2 and Notch1 signal pathways after ischemic stroke.

    PubMed

    Liu, Bowen; Luo, Cheng; Zheng, Zhaoguang; Xia, Zhenyan; Zhang, Qian; Ke, Chienchih; Liu, Renshyan; Zhao, Yonghua

    2018-05-15

    As a traditional Chinese herbal formula, Shengui Sansheng San (SSS) has been employed for stroke treatment more than 300 years. We hypothesize that SSS extraction is an angiogenic switch in penumbra post-stroke, and corresponding mechanisms are investigated. In present study, rats were subjected to permanent middle cerebral artery occlusion model (MCAo) and were treated with low, middle and high doses of SSS extraction. We assessed neurological function and survival rate, and measured infarct volume by 2,3,5-triphenyltetrazolium chloride staining on day 7 after ischemia. von Willebrand factor (vWF), stromal cell-derived factor-1 alpha (SDF-1α) /chemokine (C-X-C motif) receptor 4 (CXCR4) axis, vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) as well as protein kinase B (AKT)/mammalian target of rapamycin (mTOR) /hypoxia-inducible factor-1 alpha (HIF-1α), extracellular signal-regulated kinase 1/2 (ERK1/2) and Notch1 signaling pathways were respectively investigated by immunofluorescence assay or western blotting in vivo and oxygen-glucose-deprived (OGD) brain microvascular endothelial cells (BMECs); simultaneously, wound healing of BMECs and tube formation assay were administrated. Compared to MCAo group, SSS extraction could significantly improve neurological functional scores, survival rate and cerebral infarct volume, enhance vWF + vascular density and perimeter, SDF-1α/CXCR4 axis, VEGF expression, as well as activate AKT/mTOR/HIF-1α and ERK1/2 and inhibit Notch1 pathways in penumbra. In vitro, containing SSS extraction serum increased BMEC migration, capillary formation and VEGF expression via up-regulations of AKT/mTOR and ERK1/2 pathways in OGD BMECs, but ERK inhibitor (U0126) reversed the result of VEGF expression in high dose of SSS group. Additionally, VEGFR2 and Notch1 expressions were suppressed by containing SSS extraction serum. All results were in dose dependent manner. Our study firstly demonstrates that SSS extraction is an

  15. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells.

    PubMed

    Deb, Tushar B; Coticchia, Christine M; Dickson, Robert B

    2004-09-10

    c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.

  16. Mechanism of phytoestrogen puerarin-mediated cytoprotection following oxidative injury: Estrogen receptor-dependent up-regulation of PI3K/Akt and HO-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Yong Pil; Jeong, Hye Gwang

    2008-12-15

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. The phytoestrogen puerarin, the main isoflavone glycoside found in the root of Pueraria lobata, has been used for various medicinal purposes in traditional Chinese medicines for thousands of years. Recent studies have indicated that the estrogen receptor (ER), through interaction with p85, regulates phosphoinositide 3-kinase (PI3K) activity, revealing a physiologic, non-nuclear function of ER that may be relevant in cytoprotection. In this study, we demonstrate that the phytoestrogen puerarin inhibits tert-butyl hydroperoxide (t-BHP)-induced oxidative injury via an ER-dependent G{beta}1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of Hepa1c1c7 and HepG2 cellsmore » with puerarin significantly reduced t-BHP-induced caspase-3 activation and subsequent cell death. Also, puerarin up-regulated HO-1 expression and this expression conferred cytoprotection against oxidative injury induced by t-BHP. Moreover, puerarin induced Nrf2 nuclear translocation, which is upstream of puerarin-induced HO-1 expression, and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Puerarin-induced up-regulation of HO-1 and cytoprotection against t-BHP were abolished by silencing Nrf2 expression with specific siRNA. Also, puerarin-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that puerarin augments cellular antioxidant defense capacity through ER-dependent HO-1 induction via the G{beta}1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress.« less

  17. Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia.

    PubMed

    Hulse, R P; Beazley-Long, N; Hua, J; Kennedy, H; Prager, J; Bevan, H; Qiu, Y; Fernandes, E S; Gammons, M V; Ballmer-Hofer, K; Gittenberger de Groot, A C; Churchill, A J; Harper, S J; Brain, S D; Bates, D O; Donaldson, L F

    2014-11-01

    Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform. We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking the proximal splicing event - leading to the preferential expression of VEGF-A165b over VEGF165a - prevents pain in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a. After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicing mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain. We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic strategy. Copyright © 2014. Published by Elsevier Inc.

  18. Grape juice causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of eNOS.

    PubMed

    Anselm, Eric; Chataigneau, Marta; Ndiaye, Mamadou; Chataigneau, Thierry; Schini-Kerth, Valérie B

    2007-01-15

    An enhanced endothelial formation of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), is thought to contribute to the protective effect of moderate consumption of red wine on coronary diseases. The present study has characterized endothelium-dependent relaxations to Concord grape juice (CGJ), a non-alcoholic rich source of grape-derived polyphenols, in the coronary artery. Porcine coronary artery rings were suspended in organ chambers for the measurement of changes in isometric tension in the presence of indomethacin. NO formation was assessed by electron spin resonance spectroscopy, and the phosphorylation of Src, Akt and endothelial NO synthase (eNOS) by Western blot analysis in cultured endothelial cells. Endothelium-dependent relaxations to CGJ were slightly but significantly reduced by L-NA, not affected by charybdotoxin (CTX) plus apamin (APA, two inhibitors of EDHF-mediated responses) whereas the combination of L-NA, CTX plus APA reduced maximal relaxation to about 50%. In the presence of CTX plus APA, relaxations to CGJ were markedly reduced by the membrane permeant mimetic of superoxide dismutase (SOD), MnTMPyP, the membrane permeant analogue of catalase polyethyleneglycol-catalase (PEG-catalase), PP2, an inhibitor of Src kinase, and by wortmannin, an inhibitor of the PI3-kinase. CGJ stimulated the formation of reactive oxygen species and the N(omega)-nitro-L-arginine-, PP2- and wortmannin-sensitive formation of NO in endothelial cells. The formation of NO was associated with a redox-sensitive and time-dependent phosphorylation of Src, Akt and eNOS. CGJ induces endothelium-dependent relaxations of coronary arteries, which involve a NO-mediated component and also, to a minor extent, an EDHF-mediated component. In addition, CGJ-induced NO formation is due to the redox-sensitive activation of Src kinase with the subsequent PI3-kinase/Akt-dependent phosphorylation of eNOS.

  19. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177.

    PubMed

    Walther, Stefanie; Pluteanu, Florentina; Renz, Susanne; Nikonova, Yulia; Maxwell, Joshua T; Yang, Li-Zhen; Schmidt, Kurt; Edwards, Joshua N; Wakula, Paulina; Groschner, Klaus; Maier, Lars S; Spiess, Joachim; Blatter, Lothar A; Pieske, Burkert; Kockskämper, Jens

    2014-09-01

    Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling. Copyright © 2014 the American Physiological Society.

  20. Pressure and inflammatory stimulation induced increase of cadherin-11 is mediated by PI3K/Akt pathway in synovial fibroblasts from temporomandibular joint.

    PubMed

    Wu, M; Xu, T; Zhou, Y; Lu, H; Gu, Z

    2013-10-01

    The goal of the study was to investigate the expression of cadherin-11 in synovial fibroblasts (SFs) under mechanical or inflammatory stimuli, and its potential relationship with PI3K/Akt signaling pathway. SFs separated from rat temporomandibular joint (TMJ) were treated with hydrostatic pressures (HP) of 30, 60, 90, and 120 kPa, as well as tumor necrosis factor-α (TNF-α) for 12, 24, 48, and 72 h. The location of cadherin-11 was observed by immunofluorescence microscopy, and its expression was detected by real-time PCR and Western blot. We also studied the activation of PI3K/Akt signaling pathway in SFs with HP or TNF-α stimulation. The results showed that increased expression of cadherin-11 could be found in the cell-cell contact site of SFs in response to HP and inflammatory stimulation. The mRNA and protein expression of cadherin-11 was positively correlated with the intensity of HP and the duration time of TNF-α treatment. Increased expression of vascular endothelial growth factor-D (VEGF-D) and activation of Akt were also found. Treatment with PI3K inhibitor LY294002 attenuated the pressure or inflammatory cytokine induction increases of cadherin-11, VEGF-D, and FGF-2 both in mRNA and protein levels. These findings suggest that cadherin-11 may play important roles in SFs following exposure to mechanical loading and inflammatory stimulation. In addition, PI3K/Akt pathway was associated with pressure or inflammation-induced cadherin-11 expression, which may involve in the pathogenesis of temporomandibular diseases. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  1. Distinct Akt phosphorylation states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake.

    PubMed

    Beg, Muheeb; Abdullah, Nazish; Thowfeik, Fathima Shazna; Altorki, Nasser K; McGraw, Timothy E

    2017-06-07

    Insulin, downstream of Akt activation, promotes glucose uptake into fat and muscle cells to lower postprandial blood glucose, an enforced change in cellular metabolism to maintain glucose homeostasis. This effect is mediated by the Glut4 glucose transporter. Growth factors also enhance glucose uptake to fuel an anabolic metabolism required for tissue growth and repair. This activity is predominantly mediated by the Glut1. Akt is activated by phosphorylation of its kinase and hydrophobic motif (HM) domains. We show that insulin-stimulated Glut4-mediated glucose uptake requires PDPK1 phosphorylation of the kinase domain but not mTORC2 phosphorylation of the HM domain. Nonetheless, an intact HM domain is required for Glut4-mediated glucose uptake. Whereas, Glut1-mediated glucose uptake also requires mTORC2 phosphorylation of the HM domain, demonstrating both phosphorylation-dependent and independent roles of the HM domain in regulating glucose uptake. Thus, mTORC2 links Akt to the distinct physiologic programs related to Glut4 and Glut1-mediated glucose uptake.

  2. RIP1 regulates TNF-α-mediated lymphangiogenesis and lymphatic metastasis in gallbladder cancer by modulating the NF-κB-VEGF-C pathway.

    PubMed

    Li, Cheng-Zong; Jiang, Xiao-Jie; Lin, Bin; Hong, Hai-Jie; Zhu, Si-Yuan; Jiang, Lei; Wang, Xiao-Qian; Tang, Nan-Hong; She, Fei-Fei; Chen, Yan-Ling

    2018-01-01

    Tumor necrosis factor alpha (TNF-α) enhances lymphangiogenesis in gallbladder carcinoma (GBC) via activation of nuclear factor (NF-κB)-dependent vascular endothelial growth factor-C (VEGF-C). Receptor-interacting protein 1 (RIP1) is a multifunctional protein in the TNF-α signaling pathway and is highly expressed in GBC. However, whether RIP1 participates in the signaling pathway of TNF-α-mediated VEGF-C expression that enhances lymphangiogenesis in GBC remains unclear. The RIP1 protein levels in the GBC-SD and NOZ cells upon stimulation with increasing concentrations of TNF-α as indicated was examined using Western blot. Lentiviral RIP1 shRNA and siIκBα were constructed and transduced respectively them into NOZ and GBC-SD cells, and then PcDNA3.1-RIP1 vectors was transduced into siRIP1 cell lines to reverse RIP1 expression. The protein expression of RIP1, inhibitor of NF-κB alpha (IκBα), p-IκBα, TAK1, NF-κB essential modulator were examined through immunoblotting or immunoprecipitation. Moreover, VEGF-C mRNA levels were measured by quantitative real-time polymerase chain reaction, VEGF-C protein levels were measured by immunoblotting and enzyme-linked immunosorbent assay, and VEGF-C promoter and NF-κB activities were quantified using a dual luciferase reporter assay. The association of NF-κB with the VEGF-C promoter was analysed by chromatin immunoprecipitation assay. A three-dimensional coculture method and orthotopic transplantation nude mice model were used to evaluate lymphatic tube-forming and metastasis ability in GBC cells. The expression of RIP1 protein, TNF-α protein and lymphatic vessels in human GBC tissues was examined by immunohistochemistry, and the dependence between RIP1 protein with TNF-α protein and lymphatic vessel density was analysed. TNF-α dose- and time-dependently increased RIP1 protein expression in the GBC-SD and NOZ cells of GBC, and the strongest effect was observed with a concentration of 50 ng/ml. RIP1 is fundamental

  3. Syndecan-1-Dependent Suppression of PDK1/Akt/Bad Signaling by Docosahexaenoic Acid Induces Apoptosis in Prostate Cancer1

    PubMed Central

    Hu, Yunping; Sun, Haiguo; Owens, Rick T; Gu, Zhennan; Wu, Jansheng; Chen, Yong Q; O'Flaherty, Joseph T; Edwards, Iris J

    2010-01-01

    Evidence indicates that diets enriched in n-3 polyunsaturated fatty acids (n-3 PUFAs) reduce the risk of prostate cancer, but biochemical mechanisms are unclear. Syndecan-1 (SDC-1), a transmembrane heparan sulfate proteoglycan, supports the integrity of the epithelial compartment. In tumor cells of epithelial lineage, SDC-1 is generally downregulated. This may result in perturbation of homeostasis and lead to progression of malignancy. Our studies have shown that the n-3 PUFA species, docosahexaenoic acid (DHA), increases SDC-1 expression in prostate tissues of Pten knockout (PtenP-/-) mice/cells and human prostate cancer cells. We have now determined that DHA-mediated up-regulation of SDC-1 induces apoptosis. Bovine serum albumin-bound DHA and exogenous human recombinant SDC-1 ecotodomain were delivered to PC3 and LNCaP cells in the presence or absence of SDC-1 small interfering (si)RNA. In the presence of control siRNA, both DHA and SDC-1 ectodomain induced apoptosis, whereas SDC-1 silencing blocked DHA-induced but not SDC-1 ectodomain-induced apoptosis. Downstream effectors of SDC-1 signaling linked to n-3 PUFA-induced apoptosis involved the 3′-phosphoinositide-dependent kinase 1 (PDK1)/Akt/Bad integrating network. A diet enriched in n-3 PUFA decreased phosphorylation of PDK1, Akt (T308), and Bad in prostates of PtenP-/- mice. Similar results were observed in human prostate cancer cells in response to DHA and SDC-1 ectodomain. The effect of DHA on PDK1/Akt/Bad signaling was abrogated by SDC-1 siRNA. These findings define a mechanism by which SDC-1-dependent suppression of phosphorylation of PDK1/Akt/Bad mediates n-3 PUFA-induced apoptosis in prostate cancer. PMID:20927321

  4. PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells.

    PubMed

    Deng, Xiaobei; Rui, Wei; Zhang, Fang; Ding, Wenjun

    2013-06-01

    It has been well documented in in vitro studies that ambient airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM(2.5)) is capable of inducing oxidative stress, which plays a key role in PM(2.5)-mediated cytotoxicity. Although nuclear factor erythroid-2-related factor 2 (Nrf2) has been shown to regulate the intracellular defense mechanisms against oxidative stress, a potential of the Nrf2-mediated cellular defense against oxidative stress induced by PM(2.5) remains to be determined. This study was aimed to explore the potential signaling pathway of Nrf2-mediated defense mechanisms against PM(2.5)-induced oxidative stress in human type II alveolar epithelial A549 cells. We exposed A549 cells to PM(2.5) particles collected from Beijing at a concentration of 16 μg/cm(2). We observed that PM(2.5) triggered an increase of intracellular reactive oxygen species (ROS) in a time-dependent manner during a period of 2 h exposure. We also found that Nrf2 overexpression suppressed and Nrf2 knockdown increased PM(2.5)-induced ROS generation. Using Western blot and confocal microscopy, we found that PM(2.5) exposure triggered significant translocation of Nrf2 into nucleus, resulting in AKT phosphorylation and significant transcription of ARE-driven phases II enzyme genes, such as NAD(P)H:quinone oxidoreductase (NQO-1), heme oxygenase-1 (HO-1), and glutamate-cysteine ligase catalytic subunit (GCLC) in A549 cells. Evaluation of signaling pathways showed that a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), but not an ERK 1/2 inhibitor (PD98059) or a p38 MAPK (SB203580), significantly down-regulated PM(2.5)-induced Nrf2 nuclear translocation and HO-1 mRNA expression, indicating PI3K/AKT is involved in the signaling pathway leads to the PM(2.5)-induced nuclear translocation of Nrf2 and subsequent Nrf2-mediated HO-1 transcription. Taken together, our results suggest that PM(2.5)-induced ROS may function as signaling molecules to activate Nrf

  5. An oxidative DNA “damage” and repair mechanism localized in the VEGF promoter is important for hypoxia-induced VEGF mRNA expression

    PubMed Central

    Pastukh, Viktor; Roberts, Justin T.; Clark, David W.; Bardwell, Gina C.; Patel, Mita; Al-Mehdi, Abu-Bakr; Borchert, Glen M.

    2015-01-01

    In hypoxia, mitochondria-generated reactive oxygen species not only stimulate accumulation of the transcriptional regulator of hypoxic gene expression, hypoxia inducible factor-1 (Hif-1), but also cause oxidative base modifications in hypoxic response elements (HREs) of hypoxia-inducible genes. When the hypoxia-induced base modifications are suppressed, Hif-1 fails to associate with the HRE of the VEGF promoter, and VEGF mRNA accumulation is blunted. The mechanism linking base modifications to transcription is unknown. Here we determined whether recruitment of base excision DNA repair (BER) enzymes in response to hypoxia-induced promoter modifications was required for transcription complex assembly and VEGF mRNA expression. Using chromatin immunoprecipitation analyses in pulmonary artery endothelial cells, we found that hypoxia-mediated formation of the base oxidation product 8-oxoguanine (8-oxoG) in VEGF HREs was temporally associated with binding of Hif-1α and the BER enzymes 8-oxoguanine glycosylase 1 (Ogg1) and redox effector factor-1 (Ref-1)/apurinic/apyrimidinic endonuclease 1 (Ape1) and introduction of DNA strand breaks. Hif-1α colocalized with HRE sequences harboring Ref-1/Ape1, but not Ogg1. Inhibition of BER by small interfering RNA-mediated reduction in Ogg1 augmented hypoxia-induced 8-oxoG accumulation and attenuated Hif-1α and Ref-1/Ape1 binding to VEGF HRE sequences and blunted VEGF mRNA expression. Chromatin immunoprecipitation-sequence analysis of 8-oxoG distribution in hypoxic pulmonary artery endothelial cells showed that most of the oxidized base was localized to promoters with virtually no overlap between normoxic and hypoxic data sets. Transcription of genes whose promoters lost 8-oxoG during hypoxia was reduced, while those gaining 8-oxoG was elevated. Collectively, these findings suggest that the BER pathway links hypoxia-induced introduction of oxidative DNA modifications in promoters of hypoxia-inducible genes to transcriptional

  6. Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells.

    PubMed

    Lin, Chih-Yang; Wang, Shih-Wei; Chen, Yen-Ling; Chou, Wen-Yi; Lin, Ting-Yi; Chen, Wei-Cheng; Yang, Chen-Yu; Liu, Shih-Chia; Hsieh, Chia-Chu; Fong, Yi-Chin; Wang, Po-Chuan; Tang, Chih-Hsin

    2017-08-03

    Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis.

  7. Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells

    PubMed Central

    Lin, Chih-Yang; Wang, Shih-Wei; Chen, Yen-Ling; Chou, Wen-Yi; Lin, Ting-Yi; Chen, Wei-Cheng; Yang, Chen-Yu; Liu, Shih-Chia; Hsieh, Chia-Chu; Fong, Yi-Chin; Wang, Po-Chuan; Tang, Chih-Hsin

    2017-01-01

    Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis. PMID:28771226

  8. Paclitaxel targets VEGF-mediated angiogenesis in ovarian cancer treatment

    PubMed Central

    Ai, Bin; Bie, Zhixin; Zhang, Shuai; Li, Ailing

    2016-01-01

    Ovarian cancer is one of the gynecologic cancers with the highest mortality, wherein vascular endothelial growth factor (VEGF) is involved in regulating tumor vascularization, growth, migration, and invasion. VEGF-mediated angiogenesis in tumors has been targeted in various cancer treatments, and anti-VEGF therapy has been used clinically for treatment of several types of cancer. Paclitaxel is a natural antitumor agent in the standard front-line treatment that has significant efficiency to treat advanced cancers, including ovarian cancer. Although platinum/paclitaxel-based chemotherapy has good response rates, most patients eventually relapse because the disease develops drug resistance. We aim to review the recent advances in paclitaxel treatment of ovarian cancer via antiangiogenesis. Single-agent therapy may be used in selected cases of ovarian cancer. However, to prevent drug resistance, drug combinations should be identified for optimal effectiveness and existing therapies should be improved. PMID:27648354

  9. Resveratrol Promotes Nerve Regeneration via Activation of p300 Acetyltransferase-Mediated VEGF Signaling in a Rat Model of Sciatic Nerve Crush Injury.

    PubMed

    Ding, Zhuofeng; Cao, Jiawei; Shen, Yu; Zou, Yu; Yang, Xin; Zhou, Wen; Guo, Qulian; Huang, Changsheng

    2018-01-01

    Peripheral nerve injuries are generally associated with incomplete restoration of motor function. The slow rate of nerve regeneration after injury may account for this. Although many benefits of resveratrol have been shown in the nervous system, it is not clear whether resveratrol could promote fast nerve regeneration and motor repair after peripheral nerve injury. This study showed that the motor deficits caused by sciatic nerve crush injury were alleviated by daily systematic resveratrol treatment within 10 days. Resveratrol increased the number of axons in the distal part of the injured nerve, indicating enhanced nerve regeneration. In the affected ventral spinal cord, resveratrol enhanced the expression of several vascular endothelial growth factor family proteins (VEGFs) and increased the phosphorylation of p300 through Akt signaling, indicating activation of p300 acetyltransferase. Inactivation of p300 acetyltransferase reversed the resveratrol-induced expression of VEGFs and motor repair in rats that had undergone sciatic nerve crush injury. The above results indicated that daily systematic resveratrol treatment promoted nerve regeneration and led to rapid motor repair. Resveratrol activated p300 acetyltransferase-mediated VEGF signaling in the affected ventral spinal cord, which may have thus contributed to the acceleration of nerve regeneration and motor repair.

  10. Ginkgo biloba exocarp extracts inhibits angiogenesis and its effects on Wnt/β-catenin-VEGF signaling pathway in Lewis lung cancer.

    PubMed

    Han, Dongdong; Cao, Chengjie; Su, Ya; Wang, Jun; Sun, Jian; Chen, Huasheng; Xu, Aihua

    2016-11-04

    A fruit of Ginkgo biloba L. also known as Ginkgo biloba, can be used for the treatment of cancer in Chinese traditional medicine. The scientific name of succulent skin, which is the episperm of Ginkgo nuts, is exocarp. Experiment shows that Ginkgo biloba exocarp extracts (GBEE) has the effects of immune promotion, cancer inhibition and etc. Study on the activity of GBEE against Lewis lung cancer (LLC) angiogenesis and its partial molecular mechanism. The effect of GBEE on proliferation of LLC cells was detected by MTT method in vitro. The metastasis model of LLC was set up. The C57BL/6J mice were randomly separated into normal control, model control, positive control and GBEE (50, 100, 200mg/kg) treatment groups, n=10. The mice in normal group and model group were both intragastric gavage (i.g.) normal saline (NS) in a volume of 0.1mL/10g (b.w.), positive group were intraperitoneal (i.p.) injection cyclophosphamide (CPA) at a dose of 20mg/kg (b.w.) , the GBEE treatment groups were respectively i.g. GBEE 50, 100, and 200mg/kg (b.w.), once a day for 20d. After treatment, we calculated the tumor inhibition rate and anti-metastasis rate. The microvessel density (MVD) was measured by immunohistochemistry method in transplanted tumor. The expression levels of vascular en-dothelial growth factor (VEGF) and VEGFR2 mRNA or Wnt3a, β-catenin, VEGF, VEGFR2 and p-Akt/Akt protein expression were respectively tested by Quantitative Reverse transcription Polymerase chain reaction (qRT-PCR) or western blot in vitro and vivo. GBEE suppressed the growth of LLC cells in a dose-dependent way at the dose of 5, 10, 20, 40, 80 and 160µg/mL in vitro. It can suppressed Wnt3a and β-catenin protein expression and the content of mRNA of VEGF and VEGFR2 in LLC cells significantly. In vivo, we discovered GBEE can retard the growth of LLC transplanted tumor in a dose-dependent way at the dose of 50, 100, 200mg/kg, suppressing tumor lung metastasis. The expression of CD34 was reduced, which

  11. PKBγ/AKT3 loss-of-function causes learning and memory deficits and deregulation of AKT/mTORC2 signaling: Relevance for schizophrenia

    PubMed Central

    Floyd, Kirsten; Law, Amanda J.

    2017-01-01

    Psychiatric genetic studies have identified genome-wide significant loci for schizophrenia. The AKT3/1q44 locus is a principal risk region and gene-network analyses identify AKT3 polymorphisms as a constituent of several neurobiological pathways relevant to psychiatric risk; the neurobiological mechanisms remain unknown. AKT3 shows prenatal enrichment during human neocortical development and recurrent copy number variations involving the 1q43-44 locus are associated with cortical malformations and intellectual disability, implicating an essential role in early brain development. Here, we investigated the role of AKT3 as it relates to aspects of learning and memory and behavioral function, relevant to schizophrenia and cognitive disability, utilizing a novel murine model of Akt3 genetic deficiency. Akt3 heterozygous (Akt3-/+) or null mice (Akt3-/-) were assessed in a comprehensive test battery. Brain biochemical studies were conducted to assess the impact of Akt3 deficiency on cortical Akt/mTOR signaling. Akt3-/+ and Akt3-/- mice exhibited selective deficits of temporal order discrimination and spatial memory, tasks critically dependent on intact prefrontal-hippocampal circuitry, but showed normal prepulse inhibition, fear conditioned learning, memory for novel objects and social function. Akt3 loss-of-function, reduced brain size and dramatically impaired cortical Akt Ser473 activation in an allele-dose dependent manner. Such changes were observed in the absence of altered Akt1 or Akt2 protein expression. Concomitant reduction of the mTORC2 complex proteins, Rictor and Sin1 identifies a potential mechanism. Our findings provide novel insight into the neurodevelopmental role of Akt3, identify a non-redundant role for Akt3 in the development of prefrontal cortical-mediated cognitive function and show that Akt3 is potentially the dominant regulator of AKT/mTOR signaling in brain. PMID:28467426

  12. Akt-Dependent Cytokine Production in Mast Cells

    PubMed Central

    Kitaura, Jiro; Asai, Koichi; Maeda-Yamamoto, Mari; Kawakami, Yuko; Kikkawa, Ushio; Kawakami, Toshiaki

    2000-01-01

    Cross-linking of FcεRI induces the activation of three protein tyrosine kinases, Lyn, Syk, and Bruton's tyrosine kinase (Btk), leading to the secretion of a panel of proinflammatory mediators from mast cells. This study showed phosphorylation at Ser-473 and enzymatic activation of Akt/protein kinase B, the crucial survival kinase, upon FcεRI stimulation in mouse mast cells. Phosphorylation of Akt is regulated positively by Btk and Syk and negatively by Lyn. Akt in turn can regulate positively the transcriptional activity of interleukin (IL)-2 and tumor necrosis factor (TNF)-α promoters. Transcription from the nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein 1 (AP-1) sites within these promoters is under the control of Akt activity. Accordingly, the signaling pathway involving IκB-α, a cytoplasmic protein that binds NF-κB and inhibits its nuclear translocation, appears to be regulated by Akt in mast cells. Catalytic activity of glycogen synthase kinase (GSK)-3β, a serine/threonine kinase that phosphorylates NF-AT and promotes its nuclear export, seems to be inhibited by Akt. Importantly, Akt regulates the production and secretion of IL-2 and TNF-α in FcεRI-stimulated mast cells. Altogether, these results revealed a novel function of Akt in transcriptional activation of cytokine genes via NF-κB, NF-AT, and AP-1 that contributes to the production of cytokines. PMID:10974038

  13. Chotosan ameliorates cognitive and emotional deficits in an animal model of type 2 diabetes: possible involvement of cholinergic and VEGF/PDGF mechanisms in the brain

    PubMed Central

    2012-01-01

    Background Diabetes is one of the risk factors for cognitive deficits such as Alzheimer’s disease. To obtain a better understanding of the anti-dementia effect of chotosan (CTS), a Kampo formula, we investigated its effects on cognitive and emotional deficits of type 2 diabetic db/db mice and putative mechanism(s) underlying the effects. Methods Seven-week-old db/db mice received daily administration of CTS (375 – 750 mg/kg, p.o.) and the reference drug tacrine (THA: 2.5 mg/kg, i.p.) during an experimental period of 7 weeks. From the age of 9-week-old, the animals underwent the novel object recognition test, the modified Y-maze test, and the water maze test to elucidate cognitive performance and the elevated plus maze test to elucidate anxiety-related behavior. After completing behavioral studies, Western blotting and immunohistochemical studies were conducted. Results Compared with age-matched non-diabetic control strain (m/m) mice, db/db mice exhibited impaired cognitive performance and an increased level of anxiety. CTS ameliorated cognitive and emotional deficits of db/db mice, whereas THA improved only cognitive performance. The phosphorylated levels of Akt and PKCα in the hippocampus were significantly lower and higher, respectively, in db/db mice than in m/m mice. Expression levels of the hippocampal cholinergic marker proteins and the number of the septal cholinergic neurons were also reduced in db/db mice compared with those in m/m mice. Moreover, the db/db mice had significantly reduced levels of vasculogenesis/angiogenesis factors, vascular endothelial growth factor (VEGF), VEGF receptor type 2, platelet-derived growth factor-B, and PDGF receptor β, in the hippocampus. CTS and THA treatment reversed these neurochemical and histological alterations caused by diabetes. Conclusion These results suggest that CTS ameliorates diabetes-induced cognitive deficits by protecting central cholinergic and VEGF/PDGF systems via Akt signaling pathway and

  14. Chotosan ameliorates cognitive and emotional deficits in an animal model of type 2 diabetes: possible involvement of cholinergic and VEGF/PDGF mechanisms in the brain.

    PubMed

    Zhao, Qi; Niu, Yimin; Matsumoto, Kinzo; Tsuneyama, Koichi; Tanaka, Ken; Miyata, Takeshi; Yokozawa, Takako

    2012-10-20

    Diabetes is one of the risk factors for cognitive deficits such as Alzheimer's disease. To obtain a better understanding of the anti-dementia effect of chotosan (CTS), a Kampo formula, we investigated its effects on cognitive and emotional deficits of type 2 diabetic db/db mice and putative mechanism(s) underlying the effects. Seven-week-old db/db mice received daily administration of CTS (375 - 750 mg/kg, p.o.) and the reference drug tacrine (THA: 2.5 mg/kg, i.p.) during an experimental period of 7 weeks. From the age of 9-week-old, the animals underwent the novel object recognition test, the modified Y-maze test, and the water maze test to elucidate cognitive performance and the elevated plus maze test to elucidate anxiety-related behavior. After completing behavioral studies, Western blotting and immunohistochemical studies were conducted. Compared with age-matched non-diabetic control strain (m/m) mice, db/db mice exhibited impaired cognitive performance and an increased level of anxiety. CTS ameliorated cognitive and emotional deficits of db/db mice, whereas THA improved only cognitive performance. The phosphorylated levels of Akt and PKCα in the hippocampus were significantly lower and higher, respectively, in db/db mice than in m/m mice. Expression levels of the hippocampal cholinergic marker proteins and the number of the septal cholinergic neurons were also reduced in db/db mice compared with those in m/m mice. Moreover, the db/db mice had significantly reduced levels of vasculogenesis/angiogenesis factors, vascular endothelial growth factor (VEGF), VEGF receptor type 2, platelet-derived growth factor-B, and PDGF receptor β, in the hippocampus. CTS and THA treatment reversed these neurochemical and histological alterations caused by diabetes. These results suggest that CTS ameliorates diabetes-induced cognitive deficits by protecting central cholinergic and VEGF/PDGF systems via Akt signaling pathway and that CTS exhibits the anxiolytic effect via

  15. RIP1 regulates TNF-α-mediated lymphangiogenesis and lymphatic metastasis in gallbladder cancer by modulating the NF-κB-VEGF-C pathway

    PubMed Central

    Lin, Bin; Hong, Hai-Jie; Zhu, Si-Yuan; Jiang, Lei; Wang, Xiao-Qian; Tang, Nan-Hong; She, Fei-Fei; Chen, Yan-Ling

    2018-01-01

    Background Tumor necrosis factor alpha (TNF-α) enhances lymphangiogenesis in gallbladder carcinoma (GBC) via activation of nuclear factor (NF-κB)-dependent vascular endothelial growth factor-C (VEGF-C). Receptor-interacting protein 1 (RIP1) is a multifunctional protein in the TNF-α signaling pathway and is highly expressed in GBC. However, whether RIP1 participates in the signaling pathway of TNF-α-mediated VEGF-C expression that enhances lymphangiogenesis in GBC remains unclear. Methods The RIP1 protein levels in the GBC-SD and NOZ cells upon stimulation with increasing concentrations of TNF-α as indicated was examined using Western blot. Lentiviral RIP1 shRNA and siIκBα were constructed and transduced respectively them into NOZ and GBC-SD cells, and then PcDNA3.1-RIP1 vectors was transduced into siRIP1 cell lines to reverse RIP1 expression. The protein expression of RIP1, inhibitor of NF-κB alpha (IκBα), p-IκBα, TAK1, NF-κB essential modulator were examined through immunoblotting or immunoprecipitation. Moreover, VEGF-C mRNA levels were measured by quantitative real-time polymerase chain reaction, VEGF-C protein levels were measured by immunoblotting and enzyme-linked immunosorbent assay, and VEGF-C promoter and NF-κB activities were quantified using a dual luciferase reporter assay. The association of NF-κB with the VEGF-C promoter was analysed by chromatin immunoprecipitation assay. A three-dimensional coculture method and orthotopic transplantation nude mice model were used to evaluate lymphatic tube-forming and metastasis ability in GBC cells. The expression of RIP1 protein, TNF-α protein and lymphatic vessels in human GBC tissues was examined by immunohistochemistry, and the dependence between RIP1 protein with TNF-α protein and lymphatic vessel density was analysed. Results TNF-α dose- and time-dependently increased RIP1 protein expression in the GBC-SD and NOZ cells of GBC, and the strongest effect was observed with a concentration of 50

  16. Role of SIRT1-mediated mitochondrial and Akt pathways in glioblastoma cell death induced by Cotinus coggygria flavonoid nanoliposomes

    PubMed Central

    Wang, Gang; Wang, Jun Jie; To, Tony SS; Zhao, Hua Fu; Wang, Jing

    2015-01-01

    Flavonoids, the major polyphenol components in Cotinus coggygria (CC), have been found to show an anticancer effect in our previous study; however, the exact mechanisms of inducing human glioblastoma (GBM) cell death remain to be resolved. In this study, a novel polyvinylpyrrolidone K-30/sodium dodecyl sulfate and polyethyleneglycol-coated liposome loaded with CC flavonoids (CCFs) was developed to enhance solubility and the antibrain tumor effect, and the molecular mechanism regarding how CCF nanoliposomes (CCF-NLs) induce apoptotic cell death in vitro was investigated. DBTRG-05MG GBM cell lines treated with CCF-NLs showed potential antiproliferative effects. Regarding the underlying mechanisms of inducing apoptosis in DBTRG-05MG GBM cells, CCF-NLs were shown to downregulate the expression of antiapoptotic B-cell lymphoma/leukemia 2 (Bcl-2), an apoptosis-related protein family member, but the expression of proapoptotic Bcl-2-associated X protein was enhanced compared with that in controls. CCF-NLs also inhibited the activity of caspase-3 and -9, which is the initiator caspase of the extrinsic and intrinsic apoptotic pathways. Blockade of caspase activation consistently induced apoptosis and inhibited growth in CCF-NL-treated DBTRG-05MG cells. This study further investigated the role of the Akt pathway in the apoptotic cell death by CCF-NLs, showing that CCF-NLs deactivated Akt. Specifically, CCF-NLs downregulated the expression of p-Akt and SIRT1 as well as the level of phosphorylated p53. Together, these results indicated SIRT1/p53-mediated cell death was induced by CCF-NLs, but not by extracellular signal-regulated kinase, in DBTRG-05MG cells. Overall, this study suggested caspase-dependent activation of both the intrinsic and extrinsic signaling pathways, probably through blockade of the SIRT1/p53-mediated mitochondrial and Akt pathways to exert the proapoptotic effect of CCF-NLs in DBTRG-05MG GBM cells. PMID:26345416

  17. Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells.

    PubMed

    Kim, Dong Hwan; Sung, Bokyung; Kang, Yong Jung; Hwang, Seong Yeon; Kim, Min Jeong; Yoon, Jeong-Hyun; Im, Eunok; Kim, Nam Deuk

    2015-12-01

    The effects of sulforaphane (a natural product commonly found in broccoli) was investigated on hypoxia inducible factor-1α (HIF-1α) expression in HCT116 human colon cancer cells and AGS human gastric cancer cells. We found that hypoxia-induced HIF-1α protein expression in HCT116 and AGS cells, while treatment with sulforaphane markedly and concentration-dependently inhibited HIF-1α expression in both cell lines. Treatment with sulforaphane inhibited hypoxia-induced vascular endothelial growth factor (VEGF) expression in HCT116 cells. Treatment with sulforaphane modulated the effect of hypoxia on HIF-1α stability. However, degradation of HIF-1α by sulforaphane was not mediated through the 26S proteasome pathway. We also found that the inhibition of HIF-1α by sulforaphane was not mediated through AKT and extracellular signal-regulated kinase phosphorylation under hypoxic conditions. Finally, hypoxia-induced HCT116 cell migration was inhibited by sulforaphane. These data suggest that sulforaphane may inhibit human colon cancer progression and cancer cell angiogenesis by inhibiting HIF-1α and VEGF expression. Taken together, these results indicate that sulforaphane is a new and potent chemopreventive drug candidate for treating patients with human colon cancer.

  18. Up-regulation of Thrombospondin-2 in Akt1-null Mice Contributes to Compromised Tissue Repair Due to Abnormalities in Fibroblast Function*

    PubMed Central

    Bancroft, Tara; Bouaouina, Mohamed; Roberts, Sophia; Lee, Monica; Calderwood, David A.; Schwartz, Martin; Simons, Michael; Sessa, William C.; Kyriakides, Themis R.

    2015-01-01

    Vascular remodeling is essential for tissue repair and is regulated by multiple factors, including thrombospondin-2 (TSP2) and hypoxia/VEGF-induced activation of Akt. In contrast to TSP2 knock-out (KO) mice, Akt1 KO mice have elevated TSP2 expression and delayed tissue repair. To investigate the contribution of increased TSP2 to Akt1 KO mice phenotypes, we generated Akt1/TSP2 double KO (DKO) mice. Full-thickness excisional wounds in DKO mice healed at an accelerated rate when compared with Akt1 KO mice. Isolated dermal Akt1 KO fibroblasts expressed increased TSP2 and displayed altered morphology and defects in migration and adhesion. These defects were rescued in DKO fibroblasts or after TSP2 knockdown. Conversely, the addition of exogenous TSP2 to WT cells induced cell morphology and migration rates that were similar to those of Akt1 KO cells. Akt1 KO fibroblasts displayed reduced adhesion to fibronectin with manganese stimulation when compared with WT and DKO cells, revealing an Akt1-dependent role for TSP2 in regulating integrin-mediated adhesions; however, this effect was not due to changes in β1 integrin surface expression or activation. Consistent with these results, Akt1 KO fibroblasts displayed reduced Rac1 activation that was dependent upon expression of TSP2 and could be rescued by a constitutively active Rac mutant. Our observations show that repression of TSP2 expression is a critical aspect of Akt1 function in tissue repair. PMID:25389299

  19. Endomembrane H-Ras Controls Vascular Endothelial Growth Factor-induced Nitric-oxide Synthase-mediated Endothelial Cell Migration*

    PubMed Central

    Haeussler, Dagmar J.; Pimentel, David R.; Hou, Xiuyun; Burgoyne, Joseph R.; Cohen, Richard A.; Bachschmid, Markus M.

    2013-01-01

    We demonstrate for the first time that endomembrane-delimited H-Ras mediates VEGF-induced activation of endothelial nitric-oxide synthase (eNOS) and migratory response of human endothelial cells. Using thiol labeling strategies and immunofluorescent cell staining, we found that only 31% of total H-Ras is S-palmitoylated, tethering the small GTPase to the plasma membrane but leaving the function of the large majority of endomembrane-localized H-Ras unexplained. Knockdown of H-Ras blocked VEGF-induced PI3K-dependent Akt (Ser-473) and eNOS (Ser-1177) phosphorylation and nitric oxide-dependent cell migration, demonstrating the essential role of H-Ras. Activation of endogenous H-Ras led to recruitment and phosphorylation of eNOS at endomembranes. The loss of migratory response in cells lacking endogenous H-Ras was fully restored by modest overexpression of an endomembrane-delimited H-Ras palmitoylation mutant. These studies define a newly recognized role for endomembrane-localized H-Ras in mediating nitric oxide-dependent proangiogenic signaling. PMID:23548900

  20. Doxycycline Inhibits Inflammation-Induced Lymphangiogenesis in Mouse Cornea by Multiple Mechanisms

    PubMed Central

    Huang, Jingwen; Zhou, Jingwen; Qiu, Sujuan; Liang, Dan

    2014-01-01

    Lymphangiogenesis is significantly involved in the pathogenesis of diseases, including graft rejection, cancer metastasis and various inflammatory conditions. The inhibition of lymphangiogenesis has become a new therapeutic target for the treatment of these diseases. Here, we explored the anti-lymphangiogenic effects of doxycycline in inflammation-induced lymphangiogenesis (ILA) in the cornea and the underlying mechanisms. In the present study, mice with ILA of the cornea were treated with topical doxycycline (0.1%) or vehicle control. Lymphangiogenesis was quantified using corneal immunostaining of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1). Human dermal lymphatic endothelial cells (HDLECs) and a murine macrophage cell line (RAW264.7) were used to further explore the underlying mechanisms of doxycycline-mediated anti-lymphangiogenesis in vitro. Our results showed that doxycycline treatment dramatically inhibited ILA in the mouse cornea (p<0.001), with a significant decrease in vascular endothelial growth factor (VEGF)-C/VEGF receptor 3 signalling, macrophage infiltration and inflammatory cytokine expression. Doxycycline also significantly inhibited VEGF-C-induced HDLEC proliferation in vitro by modulating the PI3K/Akt/endothelial nitric oxide (NO) synthase (eNOS) pathway and significantly suppressed interleukin-1β (IL-1β), TNF-α and VEGF-C production in the RAW264.7 cell line by modulating the PI3K/Akt/nuclear factor-kappaB (NF-κB) pathway. Additionally, doxycycline treatment dramatically reduced the phosphorylation of NF-κBp65, Akt and eNOS in ILA and significantly inhibited matrix metalloproteinases (MMPs) activity in vitro and in ILA. In conclusion, doxycycline inhibited ILA, possibly through suppression of VEGF-C signalling, macrophage function and MMPs activity. This observation suggests that doxycycline is a potential therapeutic agent for lymphangiogenesis-related diseases. PMID:25268699

  1. Cycles of Ubiquitination and Deubiquitination Critically Regulate Growth Factor-Mediated Activation of Akt Signaling

    PubMed Central

    Yang, Wei-Lei; Jin, Guoxiang; Li, Chien-Feng; Jeong, Yun Seong; Moten, Asad; Xu, Dazhi; Feng, Zizhen; Chen, Wei; Cai, Zhen; Darnay, Bryant; Gu, Wei; Lin, Hui-Kuan

    2013-01-01

    K63-linked ubiquitination of Akt is a posttranslational modification that plays a critical role in growth factor-mediated membrane recruitment and activation of Akt. Although E3 ligases involved in growth factor-induced Akt ubiquitination have been defined, the deubiquitinating enzyme (DUB) that triggers deubiquitination of Akt and the function of Akt deubiquitination remain largely unclear. Here, we showed that CYLD was a DUB for Akt and suppressed growth factor-mediated Akt ubiquitination and activation. CYLD directly removed ubiquitin moieties on Akt under serum-starved conditions. CYLD dissociated from Akt upon growth factor stimulation, thereby allowing E3 ligases to induce ubiquitination and activation of Akt. CYLD deficiency also promoted cancer cell proliferation, survival, glucose uptake and growth of prostate tumors. Our findings reveal the crucial role of cycles of ubiquitination and deubiquitination of Akt in its membrane recruitment and activation, and further identifies CYLD as a molecular switch for these processes. PMID:23300340

  2. Sirt2 Deacetylase Is a Novel AKT Binding Partner Critical for AKT Activation by Insulin*

    PubMed Central

    Ramakrishnan, Gopalakrishnan; Davaakhuu, Gantulga; Kaplun, Ludmila; Chung, Wen-Cheng; Rana, Ajay; Atfi, Azeddine; Miele, Lucio; Tzivion, Guri

    2014-01-01

    AKT/PKB kinases transmit insulin and growth factor signals downstream of phosphatidylinositol 3-kinase (PI3K). AKT activation involves phosphorylation at two residues, Thr308 and Ser473, mediated by PDK1 and the mammalian target of rapamycin complex 2 (mTORC2), respectively. Impaired AKT activation is a key factor in metabolic disorders involving insulin resistance, whereas hyperactivation of AKT is linked to cancer pathogenesis. Here, we identify the cytoplasmic NAD+-dependent deacetylase, Sirt2, as a novel AKT interactor, required for optimal AKT activation. Pharmacological inhibition or genetic down-regulation of Sirt2 diminished AKT activation in insulin and growth factor-responsive cells, whereas Sirt2 overexpression enhanced the activation of AKT and its downstream targets. AKT was prebound with Sirt2 in serum or glucose-deprived cells, and the complex dissociated following insulin treatment. The binding was mediated by the pleckstrin homology and the kinase domains of AKT and was dependent on AMP-activated kinase. This regulation involved a novel AMP-activated kinase-dependent Sirt2 phosphorylation at Thr101. In cells with constitutive PI3K activation, we found that AKT also associated with a nuclear sirtuin, Sirt1; however, inhibition of PI3K resulted in dissociation from Sirt1 and increased association with Sirt2. Sirt1 and Sirt2 inhibitors additively inhibited the constitutive AKT activity in these cells. Our results suggest potential usefulness of Sirt1 and Sirt2 inhibitors in the treatment of cancer cells with up-regulated PI3K activity and of Sirt2 activators in the treatment of insulin-resistant metabolic disorders. PMID:24446434

  3. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1–AKT interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Xian-Ying; Chen, Wei; Fan, Jun-Ting

    2013-02-15

    In the present paper, we examined the effects of a natural cyclopeptide RA-V on human breast cancer cells and the underlying mechanisms. RA-V significantly inhibited the growth of human breast cancer MCF-7, MDA-MB-231 cells and murine breast cancer 4T1 cells. In addition, RA-V triggered mitochondrial apoptotic pathway which was indicated by the loss of mitochondrial membrane potential, the release of cytochrome c, and the activation of caspase cascade. Further study showed that RA-V dramatically inhibited phosphorylation of AKT and 3-phosphoinositide dependent protein kinase 1 (PDK1) in MCF-7 cells. Moreover, RA-V disrupted the interaction between PDK1 and AKT in MCF-7 cells.more » Furthermore, RA-V-induced apoptosis could be enhanced by phosphatidylinositol 3-kinase inhibitor or attenuated by over-expression of AKT in all the three kinds of breast cancer cells. Taken together, this study shows that RA-V, which can induce mitochondria-mediated apoptosis, exerts strong anti-tumor activity against human breast cancer. The underlying anti-cancer mechanism of RA-V is related to the blockage of the interaction between PDK1 and AKT. - Highlights: ► Plant cyclopeptide RA-V kills human breast cancer cells. ► RA-V triggered mitochondrial apoptotic pathway in human breast cancer cells. ► RA-V inhibited phosphorylation of AKT and PDK1 in breast cancer MCF-7 cells. ► Its mechanism is related to the blockage of the interaction between PDK1 and AKT.« less

  4. Mefloquine effectively targets gastric cancer cells through phosphatase-dependent inhibition of PI3K/Akt/mTOR signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yanwei; Chen, Sen; Xue, Rui

    Deregulation of PI3K/Akt/mTOR pathway has been recently identified to play a crucial role in the progress of human gastric cancer. In this study, we show that mefloquine, a FDA-approved anti-malarial drug, effectively targets human gastric cancer cells. Mefloquine potently inhibits proliferation and induces apoptosis of a panel of human gastric cancer cell lines, with EC{sub 50} ∼0.5–0.7 μM. In two independent gastric cancer xenograft mouse models, mefloquine significantly inhibits growth of both tumors. The combination of mefloquine with paclitaxel enhances the activity of either drug alone in in vitro and in vivo. In addition, mefloquine potently decreased phosphorylation of PI3K, Akt, mTOR andmore » rS6. Overexpression of constitutively active Akt significantly restored mefloquine-mediated inhibition of mTOR phosphorylation and growth, and induction of apoptosis, suggesting that mefloquine acts on gastric cancer cells via suppressing PI3K/Akt/mTOR pathway. We further show that mefloquine-mediated inhibition of Akt/mTOR singaling is phosphatase-dependent as pretreatment with calyculin A does-dependently reversed mefloquine-mediated inhibition of Akt/mTOR phosphorylation. Since mefloquine is already available for clinic use, these results suggest that it is a useful addition to the treatment armamentarium for gastric cancer. - Highlights: • Mefloquine targets a panel of gastric cancer cell lines in vitro and in vivo. • Combination of mefloquine and paclitaxel is synergistic. • Mefloquine acts on gastric cancer via inhibition of PI3K/Akt/mTOR pathway. • Mefloquine can be repurposed for gastric cancer treatment.« less

  5. The PI3K/Akt pathway is required for LPS activation of microglial cells.

    PubMed

    Saponaro, Concetta; Cianciulli, Antonia; Calvello, Rosa; Dragone, Teresa; Iacobazzi, Francesco; Panaro, Maria Antonietta

    2012-10-01

    Upregulation of inflammatory responses in the brain is associated with a number of neurodegenerative diseases. Microglia are activated in neurodegenerative diseases, producing pro-inflammatory mediators. Critically, lipopolysaccharide (LPS)-induced microglial activation causes dopaminergic neurodegeneration in vitro and in vivo. The signaling mechanisms triggered by LPS to stimulate the release of pro-inflammatory mediators in microglial cells are still incompletely understood. To further explore the mechanisms of LPS-mediated inflammatory response of microglial cells, we studied the role of phosphatidylinositol 3-kinase (PI3K)/Akt signal transduction pathways known to be activated by toll-like receptor-4 signaling through LPS. In the current study, we report that the activation profile of LPS-induced pAkt activation preceded those of LPS-induced NF-κB activation, suggesting a role for PI3K/Akt in the pathway activation of NF-κB-dependent inflammatory responses of activated microglia. These results, providing the first evidence that PI3K dependent signaling is involved in the inflammatory responses of microglial cells following LPS stimulation, may be useful in preventing inflammatory based neurodegenerative processes.

  6. VEGF Receptor 2 (VEGFR2) Activation Is Essential for Osteocyte Survival Induced by Mechanotransduction.

    PubMed

    de Castro, Luis F; Maycas, Marta; Bravo, Beatriz; Esbrit, Pedro; Gortazar, Arancha

    2015-02-01

    Mechanical loading plays a key role in bone formation and maintenance. While unloading induces osteocyte apoptosis and bone loss in vivo, mechanical stimuli prevents osteocyte death through a mechanism involving β-catenin accumulation and ERK nuclear translocation. Vascular endothelial growth factor (VEGF) has a crucial role in bone formation, but its interaction with osteocytes is not completely understood. Of interest, VEGF receptor 2 (VEGFR2) has recently been shown to mediate the mechanical response of endothelial cells. The present study aimed to evaluate the putative role of the VEGF system in osteocyte mechanosensing. We show that either short (10 min) mechanical stimulus by pulsatile fluid flow (FF) (10 dyn/cm(2), 8 Hz) or exogenous VEGF165 (6 ng/ml) similarly stimulated cell viability, ERK phosphorylation, and β-catenin membrane translocation. A VEGFR2 antagonist (SU5416) or transfection with specific VEGFR2 siRNAs (siVEGFR2) decreased these events. FF for 10 min increased VEGFR2 phosphorylation at both Tyr-1059 and Tyr-1175; an effect that was mimicked by VEGF165 but was unaffected by a VEGF neutralizing antibody. Subsequently (at 6 h), this mechanical stimulus induced VEGF gene overexpression, which was prevented by siVEGFR2 transfection. Depletion of the structural protein caveolin-1 by using siRNA technology impaired FF-induced VEGFR2 phosphorylation. In conclusion, these in vitro findings point to caveolin-1-dependent VEGFR2 activation as an important mechanism whereby mechanical stimuli promote osteocyte viability. © 2014 Wiley Periodicals, Inc.

  7. HIF-1α/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs)

    PubMed Central

    2013-01-01

    Introduction Carcinoma-associated fibroblasts (CAFs) play a pivotal role in cancer progression by contributing to invasion, metastasis and angiogenesis. Solid tumors possess a unique microenvironment characterized by local hypoxia, which induces gene expression changes and biological features leading to poor outcomes. Hypoxia Inducible Factor 1 (HIF-1) is the main transcription factor that mediates the cell response to hypoxia through different mechanisms that include the regulation of genes strongly associated with cancer aggressiveness. Among the HIF-1 target genes, the G-protein estrogen receptor (GPER) exerts a stimulatory role in diverse types of cancer cells and in CAFs. Methods We evaluated the regulation and function of the key angiogenic mediator vascular endothelial growth factor (VEGF) in CAFs exposed to hypoxia. Gene expression studies, Western blotting analysis and immunofluorescence experiments were performed in CAFs and breast cancer cells in the presence of cobalt chloride (CoCl2) or cultured under low oxygen tension (2% O2), in order to analyze the involvement of the HIF-1α/GPER signaling in the biological responses to hypoxia. We also explored the role of the HIF-1α/GPER transduction pathway in functional assays like tube formation in human umbilical vein endothelial cells (HUVECs) and cell migration in CAFs. Results We first determined that hypoxia induces the expression of HIF-1α and GPER in CAFs, then we ascertained that the HIF-1α/GPER signaling is involved in the regulation of VEGF expression in breast cancer cells and in CAFs exposed to hypoxia. We also assessed by ChIP assay that HIF-1α and GPER are both recruited to the VEGF promoter sequence and required for VEGF promoter stimulation upon hypoxic condition. As a biological counterpart of these findings, conditioned medium from hypoxic CAFs promoted tube formation in HUVECs in a HIF-1α/GPER dependent manner. The functional cooperation between HIF-1α and GPER in CAFs was also

  8. Akt Regulates TNFα Synthesis Downstream of RIP1 Kinase Activation during Necroptosis

    PubMed Central

    McNamara, Colleen R.; Ahuja, Ruchita; Osafo-Addo, Awo D.; Barrows, Douglas; Kettenbach, Arminja; Skidan, Igor; Teng, Xin; Cuny, Gregory D.; Gerber, Scott; Degterev, Alexei

    2013-01-01

    Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation. PMID:23469174

  9. Neutral endopeptidase inhibits neuropeptide-mediated transactivation of the insulin-like growth factor receptor-Akt cell survival pathway.

    PubMed

    Sumitomo, M; Milowsky, M I; Shen, R; Navarro, D; Dai, J; Asano, T; Hayakawa, M; Nanus, D M

    2001-04-15

    G-protein coupled receptor (GPCR) agonists such as neuropeptides activate the insulin-like growth factor-1 receptor (IGF-IR) or the serine-threonine protein kinase Akt, suggesting that neuropeptides-GPCR signaling can cross-communicate with IGF-IR-Akt signaling pathways. Neutral endopeptidase 24.11 (NEP) is a cell-surface peptidase that cleaves and inactivates the neuropeptides endothelin-1 (ET-1) and bombesin, which are implicated in progression to androgen-independent prostate cancer (PC). We investigated the mechanisms of NEP regulation of neuropeptide-mediated cell survival in PC cells, including whether neuropeptide substrates of NEP induce phosphorylations of IGF-IR and Akt in PC cells. Western analyses revealed ET-1 and bombesin treatment induced phosphorylation of IGF-IRbeta and Akt independent of IGF-I in TSU-Pr1, DU145, and PC-3 PC cells, which lack NEP expression, but not in NEP-expressing LNCaP cells. Recombinant NEP and induced NEP expression in TSU-Pr1 cells using a tetracycline-repressive expression system inhibited ET-1-mediated phosphorylation of IGF-IRbeta and Akt, and blocked the protective effects of ET-1 against apoptosis induced by serum starvation. Incubation of TSU-Pr1 cells with specific kinase inhibitors together with ET-1 or bombesin showed that IGF-IR activation is required for neuropeptide-induced Akt phosphorylation, and that neuropeptide-induced Akt activation is predominantly mediated by Src and phosphatidylinositol 3-kinase but not by mitogen-activated protein kinase or protein kinase C. These data show that the neuropeptides ET-1 and bombesin stimulate ligand-independent activation of the IGF-IR, which results in Akt activation, and that this cross-communication between GPCR and IGF-IR signaling is inhibited by NEP.

  10. GDF15 regulates Kv2.1-mediated outward K+ current through the Akt/mTOR signalling pathway in rat cerebellar granule cells.

    PubMed

    Wang, Chang-Ying; Huang, An-Qi; Zhou, Meng-Hua; Mei, Yan-Ai

    2014-05-15

    GDF15 (growth/differentiation factor 15), a novel member of the TGFβ (transforming growth factor β) superfamily, plays critical roles in the central and peripheral nervous systems, but the signal transduction pathways and receptor subtypes involved are not well understood. In the present paper, we report that GDF15 specifically increases the IK (delayed-rectifier outward K+ current) in rat CGNs (cerebellar granule neurons) in time- and concentration-dependent manners. The GDF15-induced amplification of the IK is mediated by the increased expression and reduced lysosome-dependent degradation of the Kv2.1 protein, the main α-subunit of the IK channel. Exposure of CGNs to GDF15 markedly induced the phosphorylation of ERK (extracellular-signal-regulated kinase), Akt and mTOR (mammalian target of rapamycin), but the GDF15-induced IK densities and increased expression of Kv2.1 were attenuated only by Akt and mTOR, and not ERK, inhibitors. Pharmacological inhibition of the Src-mediated phosphorylation of TGFβR2 (TGFβ receptor 2), not TGFβR1, abrogated the effect of GDF15 on IK amplification and Kv2.1 induction. Immunoprecipitation assays showed that GDF15 increased the tyrosine phosphorylation of TGFβRII in the CGN lysate. The results of the present study reveal a novel regulation of Kv2.1 by GDF15 mediated through the TGFβRII-activated Akt/mTOR pathway, which is a previously uncharacterized Smad-independent mechanism of GDF15 signalling.

  11. A Review of VEGF/VEGFR-Targeted Therapeutics for Recurrent Glioblastoma

    PubMed Central

    Reardon, David A.; Turner, Scott; Peters, Katherine B.; Desjardins, Annick; Gururangan, Sridharan; Sampson, John H.; McLendon, Roger E.; Herndon, James E.; Jones, Lee W.; Kirkpatrick, John P.; Friedman, Allan H.; Vredenburgh, James J.; Bigner, Darell D.; Friedman, Henry S.

    2011-01-01

    Glioblastoma, the most common primary malignant brain tumor among adults, is a highly angiogenic and deadly tumor. Angiogenesis in glioblastoma, driven by hypoxia-dependent and independent mechanisms, is primarily mediated by vascular endothelial growth factor (VEGF), and generates blood vessels with distinctive features. The outcome for patients with recurrent glioblastoma is poor because of ineffective therapies. However, recent encouraging rates of radiographic response and progression-free survival, and adequate safety, led the FDA to grant accelerated approval of bevacizumab, a humanized monoclonal antibody against VEGF, for the treatment of recurrent glioblastoma in May 2009. These results have triggered significant interest in additional antiangiogenic agents and therapeutic strategies for patients with both recurrent and newly diagnosed glioblastoma. Given the potent antipermeability effect of VEGF inhibitors, the Radiologic Assessment in Neuro- Oncology (RANO) criteria were recently implemented to better assess response among patients with glioblastoma. Although bevacizumab improves survival and quality of life, eventual tumor progression is the norm. Better understanding of resistance mechanisms to VEGF inhibitors and identification of effective therapy after bevacizumab progression are currently a critical need for patients with glioblastoma. PMID:21464146

  12. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Young-Ok; Wang, Lei; Poyil, Pratheeshkumar

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate.more » Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3β, and β-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the cadmium-mediated increase in total and active β-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3β, β-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3β/β-catenin signaling in this process. -- Highlights: ► Chronic exposure to cadmium induces carcinogenic properties in BEAS-2B cells. ► ROS involved in cadmium-induced tumorigenicity of BEAS-2B cells. ► Cadmium activates ROS-dependent AKT/GSK-3β/β-catenin-mediated signaling. ► ROS-dependent

  13. TNF-α and LPS activate angiogenesis via VEGF and SIRT1 signalling in human dental pulp cells.

    PubMed

    Shin, M R; Kang, S K; Kim, Y S; Lee, S Y; Hong, S C; Kim, E-C

    2015-07-01

    To assess whether SIRT1 and VEGF are responsible for tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-induced angiogenesis and to examine the molecular mechanism(s) of action in human dental pulp cells (HDPCs). Immortalized HDPCs obtained from Prof. Takashi Takata (Hiroshima University, Japan) were treated with LPS (1 μg mL(-1) ) and TNF-α (10 ng mL(-1) ) for 24 h. mRNA and protein levels were examined by RT-PCR and Western blotting, respectively. Migration and tube formation were examined in human umbilical vein endothelial cells (HUVECs). The data were analysed by one-way anova. Statistical analysis was performed at α = 0.05. LPS and TNF-α upregulated VEGF and SIRT1 mRNA and protein levels. Inhibition of SIRT1 activity by sirtinol and SIRT1 siRNA or inhibition of the VEGF receptor by CBO-P11 significantly attenuated LPS + TNF-α-stimulated MMPs production in HDPCs, as well as migration and tube formation in HUVECs (P < 0.05). Furthermore, sirtinol, SIRT1 siRNA and CBO-P11 attenuated phosphorylation of Akt, extracellular signal-regulated kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) and the nuclear translocation of NF-κB p65. Pre-treatment with inhibitors of p38, ERK, JNK, PI3K and NF-κB decreased LPS + TNF-α-induced VEGF and SIRT1 expression, MMPs activity in HDPCs and angiogenesis (P < 0.05) in HUVECs. TNF-α and LPS led to upregulation of VEGF and SIRT1, and subsequent upregulation of MMP-2 and MMP-9 production, and promote angiogenesis via pathways involving PI3K, p38, ERK, JNK and NF-κB. The results suggest that inhibition of SIRT1 and VEGF might attenuate pro-inflammatory mediator-induced pulpal disease. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. Nucleolin mediated pro-angiogenic role of Hydroxysafflor Yellow A in ischaemic cardiac dysfunction: Post-transcriptional regulation of VEGF-A and MMP-9.

    PubMed

    Zou, Jiang; Wang, Nian; Liu, Manting; Bai, Yongping; Wang, Hao; Liu, Ke; Zhang, Huali; Xiao, Xianzhong; Wang, Kangkai

    2018-05-01

    Hydroxysafflor Yellow A (HSYA), a most representative ingredient of Carthamus tinctorius L., had long been used in treating ischaemic cardiovascular diseases in China and exhibited prominently anticoagulant and pro-angiogenic activities, but the underlying mechanisms remained largely unknown. This study aimed to further elucidate the pro-angiogenic effect and mechanism of HSYA on ischaemic cardiac dysfunction. A C57 mouse model of acute myocardial infarction (AMI) was firstly established, and 25 mg/kg HSYA was intraperitoneally injected immediately after operation and given once, respectively, each morning and evening for 2 weeks. It was found that HSYA significantly improved ischaemia-induced cardiac haemodynamics, enhanced the survival rate, alleviated the myocardial injury and increased the expressions of CD31, vascular endothelial growth factor-A (VEGF-A) and nucleolin in the ischaemic myocardium. In addition, HSYA promoted the migration and tube formation of human umbilical vein endothelial cells (HUVECs), enhanced the expressions of nucleolin, VEGF-A and matrix metalloproteinase-9 (MMP-9) in a dose- and time-dependent manner. However, down-regulation of nucleolin expression sharply abrogated the effect mentioned above of HSYA. Further protein-RNA coimmunoprecipitation and immunoprecipitation-RT-PCR assay showed that nucleolin binded to VEGF-A and MMP-9 mRNA and overexpression of nucleolin up-regulated the mRNA expressions of VEGF-A and MMP-9 in the HUVECs through enhancing the stability of VEGF-A and MMP-9 mRNA. Furthermore, HSYA increased the mRNA expressions of VEGF-A and MMP-9 in the extract of antinucleolin antibody-precipitated protein from the heart of AMI mice. Our data revealed that nucleolin mediated the pro-angiogenic effect of HSYA through post-transcriptional regulation of VEGF-A and MMP-9 expression, which contributed to the protective effect of HSYA on ischaemic cardiac dysfunction. © 2018 The Authors. Journal of Cellular and Molecular

  15. Retinal Angiogenesis Is Mediated by an Interaction between the Angiotensin Type 2 Receptor, VEGF, and Angiopoietin

    PubMed Central

    Sarlos, Stella; Rizkalla, Bishoy; Moravski, Christina J.; Cao, Zemin; Cooper, Mark E.; Wilkinson-Berka, Jennifer L.

    2003-01-01

    There is evidence that angiotensin II, vascular endothelial growth factor (VEGF), angiopoietins, and their cognate receptors participate in retinal angiogenesis. We investigated whether angiotensin type 2-receptor blockade (AT2-RB) reduces retinal angiogenesis and alters the expression of VEGF/VEGF-R2 and angiopoietin-Tie2. Retinopathy of prematurity (ROP) was induced in Sprague Dawley (SD) rats by exposure to 80% oxygen from postnatal (P) days 0 to 11, followed by 7 days in room air. ROP shams were in room air from P0–18. A group of ROP rats received the AT2-RB, PD123319, by mini-osmotic pump (5 mg/kg/day) from P11–18 (angiogenesis period). Evaluation of the retinal status of the AT2 receptor indicated that this receptor, as assessed by real-time PCR, immunohistochemistry, and in vitro autoradiography, was present in the retina, was more abundant than the AT1 receptor in the neonatal retina, and was increased in the ROP model. AT2-RB reduced retinal angiogenesis. VEGF and VEGF-R2 mRNA were increased in ROP and localized to blood vessels, ganglion cells, and the inner nuclear layer, and were decreased by PD123319. Angiopoietin2 and Tie2, but not angiopoietin1 mRNA were increased with ROP, and angiopoietin2 was reduced with PD123319. This study has identified a potential retinoprotective role for AT2-RB possibly mediated via interactions with VEGF- and angiopoietin-dependent pathways. PMID:12937129

  16. Loss of epigenetic Kruppel-like factor 4 histone deacetylase (KLF-4-HDAC)-mediated transcriptional suppression is crucial in increasing vascular endothelial growth factor (VEGF) expression in breast cancer.

    PubMed

    Ray, Alpana; Alalem, Mohamed; Ray, Bimal K

    2013-09-20

    Vascular endothelial growth factor (VEGF) is recognized as an important angiogenic factor that promotes angiogenesis in a series of pathological conditions, including cancer, inflammation, and ischemic disorders. We have recently shown that the inflammatory transcription factor SAF-1 is, at least in part, responsible for the marked increase of VEGF levels in breast cancer. Here, we show that SAF-1-mediated induction of VEGF is repressed by KLF-4 transcription factor. KLF-4 is abundantly present in normal breast epithelial cells, but its level is considerably reduced in breast cancer cells and clinical cancer tissues. In the human VEGF promoter, SAF-1- and KLF-4-binding elements are overlapping, whereas SAF-1 induces and KLF-4 suppresses VEGF expression. Ectopic overexpression of KLF-4 and RNAi-mediated inhibition of endogenous KLF-4 supported the role of KLF-4 as a transcriptional repressor of VEGF and an inhibitor of angiogenesis in breast cancer cells. We show that KLF-4 recruits histone deacetylases (HDACs) -2 and -3 at the VEGF promoter. Chronological ChIP assays demonstrated the occupancy of KLF-4, HDAC2, and HDAC3 in the VEGF promoter in normal MCF-10A cells but not in MDA-MB-231 cancer cells. Co-transfection of KLF-4 and HDAC expression plasmids in breast cancer cells results in synergistic repression of VEGF expression and inhibition of angiogenic potential of these carcinoma cells. Together these results identify a new mechanism of VEGF up-regulation in cancer that involves concomitant loss of KLF-4-HDAC-mediated transcriptional repression and active recruitment of SAF-1-mediated transcriptional activation.

  17. VEGF isoforms have differential effects on permeability of human pulmonary microvascular endothelial cells.

    PubMed

    Ourradi, Khadija; Blythe, Thomas; Jarrett, Caroline; Barratt, Shaney L; Welsh, Gavin I; Millar, Ann B

    2017-06-02

    Alternative splicing of Vascular endothelial growth factor-A mRNA transcripts (commonly referred as VEGF) leads to the generation of functionally differing isoforms, the relative amounts of which have potentially significant physiological outcomes in conditions such as acute respiratory distress syndrome (ARDS). The effect of such isoforms on pulmonary vascular permeability is unknown. We hypothesised that VEGF 165 a and VEGF 165 b isoforms would have differing effects on pulmonary vascular permeability caused by differential activation of intercellular signal transduction pathways. To test this hypothesis we investigated the physiological effect of VEGF 165 a and VEGF 165 b on Human Pulmonary Microvascular Endothelial Cell (HPMEC) permeability using three different methods: trans-endothelial electrical resistance (TEER), Electric cell-substrate impedance sensing (ECIS) and FITC-BSA passage. In addition, potential downstream signalling pathways of the VEGF isoforms were investigated by Western blotting and the use of specific signalling inhibitors. VEGF 165 a increased HPMEC permeability using all three methods (paracellular and transcellular) and led to associated VE-cadherin and actin stress fibre changes. In contrast, VEGF 165 b decreased paracellular permeability and did not induce changes in VE-cadherin cell distribution. Furthermore, VEGF 165 a and VEGF 165 b had differing effects on both the phosphorylation of VEGF receptors and downstream signalling proteins pMEK, p42/44MAPK, p38 MAPK, pAKT and peNOS. Interestingly specific inhibition of the pMEK, p38 MAPK, PI3 kinase and eNOS pathways blocked the effects of both VEGF 165 a and VEGF 165 b on paracellular permeability and the effect of VEGF 165 a on proliferation/migration, suggesting that this difference in cellular response is mediated by an as yet unidentified signalling pathway(s). This study demonstrates that the novel isoform VEGF 165 a and VEGF 165 b induce differing effects on permeability in

  18. Overexpression of the miR-141/200c cluster promotes the migratory and invasive ability of triple-negative breast cancer cells through the activation of the FAK and PI3K/AKT signaling pathways by secreting VEGF-A.

    PubMed

    Choi, Sul Ki; Kim, Hoe Suk; Jin, Tiefeng; Hwang, Eun Hye; Jung, Minji; Moon, Woo Kyung

    2016-08-02

    -transduced MDA-MB-231 cells, the miR-141/200c cluster-transduced MDA-MB-231 cells exhibited a significant increase in vascular endothelial growth factor (VEGF)-A secretion and integrin-alphaV (integrin-αV) expression. Treatment with an anti-VEGF-A-neutralizing antibody inhibited the increase in migration and invasion in both the miR-200b/200a/429- and miR-141/200c-transduced MDA-MB-231 cells but significantly reduced the phosphorylation of FAK and AKT in only the miR-141/200c cluster-transduced MDA-MB-231 cells. Taken together, our data demonstrate a mechanism in which the miR-141/200c cluster, through FAK- and PI3K/AKT-mediated signaling by means of increased VEGF-A secretion, promotes the migratory and invasive abilities of MDA-MB-231 cells.

  19. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Chun-Hsu; Lin, Wen-Hsin; Chien, Yi-Chung

    Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viabilitymore » was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.« less

  20. Akt SUMOylation regulates cell proliferation and tumorigenesis.

    PubMed

    Li, Rong; Wei, Jie; Jiang, Cong; Liu, Dongmei; Deng, Lu; Zhang, Kai; Wang, Ping

    2013-09-15

    Proto-oncogene Akt plays essential roles in cell proliferation and tumorigenesis. Full activation of Akt is regulated by phosphorylation, ubiquitination, and acetylation. Here we report that SUMOylation of Akt is a novel mechanism for its activation. Systematically analyzing the role of lysine residues in Akt activation revealed that K276, which is located in a SUMOylation consensus motif, is essential for Akt activation. Ectopic or endogenous Akt1 could be modified by SUMOylation. RNA interference-mediated silencing of UBC9 reduced Akt SUMOylation, which was promoted by SUMO E3 ligase PIAS1 and reversed by the SUMO-specific protease SENP1. Although multiple sites on Akt could be SUMOylated, K276 was identified as a major SUMO acceptor site. K276R or E278A mutation reduced SUMOylation of Akt but had little effect on its ubiquitination. Strikingly, these mutations also completely abolished Akt kinase activity. In support of these results, we found that expression of PIAS1 and SUMO1 increased Akt activity, whereas expression of SENP1 reduced Akt1 activity. Interestingly, the cancer-derived mutant E17K in Akt1 that occurs in various cancers was more efficiently SUMOylated than wild-type Akt. Moreover, SUMOylation loss dramatically reduced Akt1 E17K-mediated cell proliferation, cell migration, and tumorigenesis. Collectively, our findings establish that Akt SUMOylation provides a novel regulatory mechanism for activating Akt function. ©2013 AACR.

  1. Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phosphatidylinositol 3-kinase/AKT pathway.

    PubMed

    Wang, Wei; Peng, Yizhi; Wang, Yuanyuan; Zhao, Xiaohui; Yuan, Zhiqiang

    2009-09-01

    1. Hypoxia-induced cardiomyocyte apoptosis contributes significantly to cardiac dysfunction following trauma, shock and burn injury. There is evidence that heat shock protein (HSP) 90 is anti-apoptotic in cardiomyocytes subjected to a variety of apoptotic stimuli. Because HSP90 acts as an upstream regulator of the serine/threonine protein kinase Akt survival pathway during cellular stress, we hypothesized that HSP90 exerts a cardioprotective effect via the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. 2. Neonatal rat cardiomyocytes were subjected to normoxia or hypoxia in the absence or presence of the HSP90 inhibitor geldanamycin (1 μg/mL). Cardiomyocyte apoptosis was assessed by release of lactate dehydrogenase (LDH), terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) staining and caspase 3 activity. Expression of HSP90, Akt, Bad and cytochrome c release was determined by western blot analysis. 3. Following exposure of cells to hypoxia, HSP90 was markedly elevated in a time-dependent manner, reaching a peak at 6 h (eightfold increase). Geldanamycin significantly increased hypoxia-induced release of LDH by 114%, the percentage of apoptotic cardiomyocytes by 102% and caspase 3 activity by 78%. Pretreatment of cells with geldanamycin also suppressed phosphorylation of both Akt and its downstream target Bad, but promoted the mitochondrial release of cytochrome c. 4. In conclusion, HSP90 activity is enhanced in cardiomyocytes following hypoxic insult. The anti-apoptotic effect of HSP90 on cardiomyocytes subjected to hypoxia is mediated, at least in part, by the PI3-K/Akt pathway. Key words: apoptosis, cardiomyocyte, heart failure, heat shock protein 90, hypoxia, phosphatidylinositol 3-kinase/Akt signalling pathway, serine/threonine protein kinase Akt.

  2. Effects of SIRT1 gene knock-out via activation of SREBP2 protein-mediated PI3K/AKT signaling on osteoarthritis in mice.

    PubMed

    Yu, Fei; Zeng, Hui; Lei, Ming; Xiao, De-Ming; Li, Wei; Yuan, Hao; Lin, Jian-Jing

    2016-10-01

    This study investigated the effects of SIRT1 gene knock-out on osteoarthritis in mice, and the possible roles of SREBP2 protein and the PI3K/AKT signaling pathway in the effects. Mice were randomly divided into a normal group and a SIRT1 gene knock-out group (6 mice in each group). In these groups, one side of the knee anterior cruciate ligament was traversed, and the ipsilateral medial meniscus was cut to establish an osteoarthritis model of knee joint. The countralateral synovial bursa was cut out, serving as controls. The knee joint specimens were then divided into four groups: SIRT1 +/+ control group (group A, n=6); SIRT1 +/+ osteoarthritis group (group B, n=6); SIRT1 -/- control group (group C, n=6); SIRT1 -/- osteoarthritis group (group D, n=6). HE staining, Masson staining, Safranin O-Fast Green staining and Van Gieson staining were used to observe the morphological changes in the articular cartilage of the knee. Immunohistochemical staining was employed to detect the expression of SIRT1, SREBP2, VEGF, AKT, HMGCR and type II collagen proteins. SA-β-gal staining was utilized to evaluate chondrocyte aging. The results showed clear knee joint cartilage destruction and degeneration in the SIRT1 -/- osteoarthritis group. The tidal line was twisted and displaced anteriorly. Type II collagen was destroyed and distributed unevenly. Compared with the SIRT1 +/+ osteoarthritis group and SIRT1 -/- control group, SIRT1 protein expression was not obviously changed in the SIRT1 -/- osteoarthritis group (P>0.05), while the expression levels of the SREBP2, VEGF and HMGCR proteins were significantly increased (P<0.05) and the levels of AKT and type II collagen proteins were significantly decreased (P<0.05). SIRT1 gene knock-out may aggravate cartilage degeneration in osteoarthritis by activating the SREBP2 protein-mediated PI3K/AKT signalling pathway, suggesting that SIRT1 gene may play a protective role against osteoarthritis.

  3. Macrophage migration inhibitory factor limits activation-induced apoptosis of platelets via CXCR7-dependent Akt signaling.

    PubMed

    Chatterjee, Madhumita; Borst, Oliver; Walker, Britta; Fotinos, Anna; Vogel, Sebastian; Seizer, Peter; Mack, Andreas; Alampour-Rajabi, Setareh; Rath, Dominik; Geisler, Tobias; Lang, Florian; Langer, Harald F; Bernhagen, Jürgen; Gawaz, Meinrad

    2014-11-07

    Macrophage migration inhibitory factor (MIF) is released on platelet activation. Circulating MIF could potentially regulate platelets and thereby platelet-mediated inflammatory and regenerative mechanisms. However, the effect of MIF on platelets is unknown. The present study evaluated MIF in regulating platelet survival and thrombotic potential. MIF interacted with CXCR4-CXCR7 on platelets, defining CXCR7 as a hitherto unrecognized receptor for MIF on platelets. MIF internalized CXCR4, but unlike CXCL12 (SDF-1α), it did not phosphorylate Erk1/2 after CXCR4 ligation because of the lack of CD74 and failed in subsequent CXCR7 externalization. MIF did not alter the activation status of platelets. However, MIF rescued platelets from activation and BH3 mimetic ABT-737-induced apoptosis in vitro via CXCR7 and enhanced circulating platelet survival when administered in vivo. The antiapoptotic effect of MIF was absent in Cxcr7(-/-) murine embryonic cells but pronounced in CXCR7-transfected Madin-Darby canine kidney cells. This prosurvival effect was attributed to the MIF-CXCR7-initiated PI3K-Akt pathway. MIF induced CXCR7-Akt-dependent phosphorylation of BCL-2 antagonist of cell death (BAD) both in vitro and in vivo. Consequentially, MIF failed to rescue Akt(-/-) platelets from thrombin-induced apoptosis when challenged ex vivo, also in prolonging platelet survival and in inducing BAD phosphorylation among Akt(-/-) mice in vivo. MIF reduced thrombus formation under arterial flow conditions in vitro and retarded thrombotic occlusion after FeCl3-induced arterial injury in vivo, an effect mediated through CXCR7. MIF interaction with CXCR7 modulates platelet survival and thrombotic potential both in vitro and in vivo and thus could regulate thrombosis and inflammation. © 2014 American Heart Association, Inc.

  4. Penfluridol suppresses glioblastoma tumor growth by Akt-mediated inhibition of GLI1

    PubMed Central

    Ranjan, Alok; Srivastava, Sanjay K.

    2017-01-01

    Glioblastoma (GBM) is the most common brain tumor with poor survival rate. Our results show that penfluridol, an antipsychotic drug significantly reduced the survival of ten adult and pediatric glioblastoma cell lines with IC50 ranging 2–5 μM after 72 hours of treatment and induced apoptosis. Penfluridol treatment suppressed the phosphorylation of Akt at Ser473 and reduced the expression of GLI1, OCT4, Nanog and Sox2 in several glioblastoma cell lines in a concentration-dependent manner. Inhibiting Akt with LY294002 and siRNA, or inhibiting GLI1 using GANT61, cyclopamine, siRNA and CRISPR/Cas9 resulted in enhanced cell growth suppressive effects of penfluridol. On the other hand, overexpression of GLI1 significantly attenuated the effects of penfluridol. Our results further demonstrated that penfluridol treatment inhibited the growth of U87MG tumors by 65% and 72% in subcutaneous and intracranial in vivo glioblastoma tumor models respectively. Immunohistochemical and western blot analysis of tumors revealed reduced pAkt (Ser 473), GLI1, OCT4 and increase in caspase-3 cleavage and TUNEL staining, confirming in vitro findings. Taken together, our results indicate that overall glioblastoma tumor growth suppression by penfluridol was associated with Akt-mediated inhibition of GLI1. PMID:28380428

  5. Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells.

    PubMed

    Tsurutani, Junji; Castillo, S Sianna; Brognard, John; Granville, Courtney A; Zhang, Chunyu; Gills, Joell J; Sayyah, Jacqueline; Dennis, Phillip A

    2005-07-01

    Retrospective studies have shown that patients with tobacco-related cancers who continue to smoke after their diagnoses have lower response rates and shorter median survival compared with patients who stop smoking. To provide insight into the biologic basis for these clinical observations, we tested whether two tobacco components, nicotine or the tobacco-specific carcinogen, 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), could activate the Akt pathway and increase lung cancer cell proliferation and survival. Nicotine or NNK, rapidly and potently, activated Akt in non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC) cells. Nicotinic activation of Akt increased phosphorylation of multiple downstream substrates of Akt in a time-dependent manner, including GSK-3, FKHR, tuberin, mTOR and S6K1. Since nicotine or NNK bind to cell surface nicotinic acetylcholine receptors (nAchR), we used RT-PCR to assess expression of nine alpha and three beta nAchR subunits in five NSCLC cell lines and two types of primary lung epithelial cells. NSCLC cells express multiple nAchR subunits in a cell line-specific manner. Agonists of alpha3/alpha4 or alpha7 subunits activated Akt in a time-dependent manner, suggesting that tobacco components utilize these subunits to activate Akt. Cellular outcomes after nicotine or NNK administration were also assessed. Nicotine or NNK increased proliferation of NSCLC cells in an Akt-dependent manner that was closely linked with changes in cyclin D1 expression. Despite similar induction of proliferation, only nicotine decreased apoptosis caused by serum deprivation and/or chemotherapy. Protection conferred by nicotine was NFkappaB-dependent. Collectively, these results identify tobacco component-induced, Akt-dependent proliferation and NFkappaB-dependent survival as cellular processes that could underlie the detrimental effects of smoking in cancer patients.

  6. Resistance of Akt kinases to dephosphorylation through ATP-dependent conformational plasticity.

    PubMed

    Chan, Tung O; Zhang, Jin; Rodeck, Ulrich; Pascal, John M; Armen, Roger S; Spring, Maureen; Dumitru, Calin D; Myers, Valerie; Li, Xue; Cheung, Joseph Y; Feldman, Arthur M

    2011-11-15

    Phosphorylation of a threonine residue (T308 in Akt1) in the activation loop of Akt kinases is a prerequisite for deregulated Akt activity frequently observed in neoplasia. Akt phosphorylation in vivo is balanced by the opposite activities of kinases and phosphatases. Here we describe that targeting Akt kinase to the cell membrane markedly reduced sensitivity of phosphorylated Akt to dephosphorylation by protein phosphatase 2A. This effect was amplified by occupancy of the ATP binding pocket by either ATP or ATP-competitive inhibitors. Mutational analysis revealed that R273 in Akt1 and the corresponding R274 in Akt2 are essential for shielding T308 in the activation loop against dephosphorylation. Thus, occupancy of the nucleotide binding pocket of Akt kinases enables intramolecular interactions that restrict phosphatase access and sustain Akt phosphorylation. This mechanism provides an explanation for the "paradoxical" Akt hyperphosphorylation induced by ATP-competitive inhibitor, A-443654. The lack of phosphatase resistance further contributes insight into the mechanism by which the human Akt2 R274H missense mutation may cause autosomal-dominant diabetes mellitus.

  7. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer

    2011-12-01

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival ofmore » wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.« less

  8. Ferulic Acid Exerts Anti-Angiogenic and Anti-Tumor Activity by Targeting Fibroblast Growth Factor Receptor 1-Mediated Angiogenesis.

    PubMed

    Yang, Guang-Wei; Jiang, Jin-Song; Lu, Wei-Qin

    2015-10-12

    Most anti-angiogenic therapies currently being evaluated target the vascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here, we identified ferulic acid as a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor and a novel agent with potential anti-angiogenic and anti-cancer activities. Ferulic acid demonstrated inhibition of endothelial cell proliferation, migration and tube formation in response to basic fibroblast growth factor 1 (FGF1). In ex vivo and in vivo angiogenesis assays, ferulic acid suppressed FGF1-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of ferulic acid on different molecular components and found that ferulic acid suppressed FGF1-triggered activation of FGFR1 and phosphatidyl inositol 3-kinase (PI3K)-protein kinase B (Akt) signaling. Moreover, ferulic acid directly inhibited proliferation and blocked the PI3K-Akt pathway in melanoma cell. In vivo, using a melanoma xenograft model, ferulic acid showed growth-inhibitory activity associated with inhibition of angiogenesis. Taken together, our results indicate that ferulic acid targets the FGFR1-mediated PI3K-Akt signaling pathway, leading to the suppression of melanoma growth and angiogenesis.

  9. Matrine combined with cisplatin synergistically inhibited urothelial bladder cancer cells via down-regulating VEGF/PI3K/Akt signaling pathway.

    PubMed

    Liao, Xiao-Zhong; Tao, Lan-Ting; Liu, Jia-Hui; Gu, Yue-Yu; Xie, Jun; Chen, Yuling; Lin, Mei-Gui; Liu, Tao-Li; Wang, Dong-Mei; Guo, Hai-Yan; Mo, Sui-Lin

    2017-01-01

    Cisplatin is one of the first-line drugs for urothelial bladder cancer (UBC) treatment. However, its considerable side effects and the emergence of drug resistance are becoming major limitations for its application. This study aimed to investigate whether matrine and cisplatin could present a synergistic anti-tumor effect on UBC cells. Cell viability assay was used to assess the suppressive effect of matrine and cisplatin on the proliferation of the UBC cells. Wound healing assay and transwell assay were applied respectively to determine the migration and invasion ability of the cells. The distribution of cell cycles, the generation of reactive oxygen species (ROS) and the apoptosis rate were detected by flow cytometry (FCM). The expressions of the relative proteins in apoptotic signal pathways and the epithelial-mesenchymal transition (EMT) related genes were surveyed by western blotting. The binding modes of the drugs within the proteins were detected by CDOCKER module in DS 2.5. Both matrine and cisplatin could inhibit the growth of the UBC cells in a time- and dose-dependent manner. When matrine combined with cisplatin at the ratio of 2000:1, they presented a synergistic inhibitory effect on the UBC cells. The combinative treatment could impair cell migration and invasion ability, arrest cell cycle in the G1 and S phases, increase the level of ROS, and induce apoptosis in EJ and T24 cells in a synergistic way. In all the treated groups, the expressions of E-cadherin, β-catenin, Bax, and Cleaved Caspase-3 were up-regulated, while the expressions of Fibronectin, Vimentin, Bcl-2, Caspase-3, p-Akt, p-PI3K, VEGFR2, and VEGF proteins were down-regulated, and among them, the combination of matrine and cisplatin showed the most significant difference. Molecular docking algorithms predicted that matrine and cisplatin could be docked into the same active sites and interact with different residues within the tested proteins. Our results suggested that the combination of

  10. Avian leukosis virus subgroup J induces VEGF expression via NF-κB/PI3K-dependent IL-6 production.

    PubMed

    Gao, Yanni; Zhang, Yao; Yao, Yongxiu; Guan, Xiaolu; Liu, Yongzhen; Qi, Xiaole; Wang, Yongqiang; Liu, Changjun; Zhang, Yanping; Gao, Honglei; Nair, Venugopal; Wang, Xiaomei; Gao, Yulong

    2016-12-06

    Avian leukosis virus subgroup J (ALV-J) is an oncogenic virus causing hemangiomas and myeloid tumors in chickens. Interleukin-6 (IL-6) is a multifunctional pro-inflammatory interleukin involved in many types of cancer. We previously demonstrated that IL-6 expression was induced following ALV-J infection in chickens. The aim of this study is to characterize the mechanism by which ALV-J induces IL-6 expression, and the role of IL-6 in tumor development. Our results demonstrate that ALV-J infection increases IL-6 expression in chicken splenocytes, peripheral blood lymphocytes, and vascular endothelial cells. IL-6 production is induced by the ALV-J envelope protein gp85 and capsid protein p27 via PI3K- and NF-κB-mediated signaling. IL-6 in turn induced expression of vascular endothelial growth factor (VEGF)-A and its receptor, VEGFR-2, in vascular endothelial cells and embryonic vascular tissues. Suppression of IL-6 using siRNA inhibited the ALV-J induced VEGF-A and VEGFR-2 expression in vascular endothelial cells, indicating that the ALV-J-induced VEGF-A/VEGFR-2 expression is mediated by IL-6. As VEGF-A and VEGFR-2 are important factors in oncogenesis, our findings suggest that ALV-J hijacks IL-6 to promote tumorigenesis, and indicate that IL-6 could potentially serve as a therapeutic target in ALV-J infections.

  11. Fibroblast Growth Factor signaling regulates the expansion of A6-expressing hepatocytes in association with AKT-dependent β-catenin activation

    PubMed Central

    Utley, Sarah; James, David; Mavila, Nirmala; Nguyen, Marie V.; Vendryes, Christopher; Salisbury, S. Michael; Phan, Jennifer; Wang, Kasper S.

    2014-01-01

    Background & Aims Fibroblast Growth Factors (FGFs) promote the proliferation and survival of hepatic progenitor cells (HPCs) via AKT-dependent β-catenin activation. Moreover, the emergence of hepatocytes expressing the HPC marker A6 during 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver injury is mediated partly by FGF and β-catenin signaling. Herein, we investigate the role of FGF signaling and AKT-mediated β-catenin activation in acute DDC liver injury. Methods Transgenic mice were fed DDC chow for 14 days concurrent with either Fgf10 over-expression or inhibition of FGF signaling via expression of soluble dominant-negative FGF Receptor (R)-2IIIb. Results After 14 days of DDC treatment, there was an increase in periportal cells expressing FGFR1, FGFR2, and AKT-activated phospho-Serine 552 (pSer552) β-CATENIN in association with up-regulation of genes encoding FGFR2IIIb ligands, Fgf7, Fgf10, and Fgf22. In response to Fgf10 over-expression, there was an increase in the number of pSer552-β-CATENIN(positive)+ive periportal cells as well as cells co-positive for A6 and hepatocyte marker, Hepatocyte Nuclear Factor-4α (HNF4α). A similar expansion of A6+ive cells was observed after Fgf10 over-expression with regular chow and after partial hepatectomy during ethanol toxicity. Inhibition of FGF signaling increased the periportal A6+iveHNF4α+ive cell population while reducing centrolobular A6+ive HNF4α+ive cells. AKT inhibition with Wortmannin attenuated FGF10-mediated A6+iveHNF4α+ive cell expansion. In vitro analyses using FGF10 treated HepG2 cells demonstrated AKT-mediated β-CATENIN activation but not enhanced cell migration. Conclusion During acute DDC treatment, FGF signaling promotes the expansion of A6-expressing liver cells partly via AKT-dependent activation of β-CATENIN expansion of A6+ive periportal cells and possibly by reprogramming of centrolobular hepatocytes. PMID:24365171

  12. Toll-like receptor 2 mediates mesenchymal stem cell-associated myocardial recovery and VEGF production following acute ischemia-reperfusion injury

    PubMed Central

    Abarbanell, Aaron M.; Wang, Yue; Herrmann, Jeremy L.; Weil, Brent R.; Poynter, Jeffrey A.; Manukyan, Mariuxi C.

    2010-01-01

    Toll-like receptor 2 (TLR2), a key component of the innate immune system, is linked to inflammation and myocardial dysfunction after ischemia-reperfusion injury (I/R). Treatment of the heart with mesenchymal stem cells (MSCs) is known to improve myocardial recovery after I/R in part by paracrine factors such as VEGF. However, it is unknown whether TLR2 activation on the MSCs affects MSC-mediated myocardial recovery and VEGF production. We hypothesized that the knockout of TLR2 on the MSCs (TLR2KO MSCs) would 1) improve MSC-mediated myocardial recovery and 2) increase myocardial and MSC VEGF release. With the isolated heart perfusion system, Sprague-Dawley rat hearts were subjected to I/R and received one of three intracoronary treatments: vehicle, male wild-type MSCs (MWT MSCs), or TL2KO MSCs. All treatments were performed immediately before ischemia, and heart function was measured continuously. Postreperfusion, heart homogenates were analyzed for myocardial VEGF production. Contrary to our hypothesis, only MWT MSC treatment significantly improved the recovery of left ventricular developed pressure and the maximal positive and negative values of the first derivative of pressure. In addition, VEGF production was greatest in hearts treated with MWT MSCs. To investigate MSC production of VEGF, MSCs were activated with TNF in vitro and the supernatants collected for ELISA. In vitro basal levels of MSC VEGF production were similar. However, with TNF activation, MWT MSCs produced significantly more VEGF, whereas activated TLR2KO MSC production of VEGF was unchanged. Finally, we observed that MWT MSCs proliferated more rapidly than TLR2KO MSCs. These data indicate that TLR2 may be essential to MSC-mediated myocardial recovery and VEGF production. PMID:20173040

  13. Mechanisms of lectin and antibody-dependent polymorphonuclear leukocyte-mediated cytolysis.

    PubMed

    Tsunawaki, S; Ikenami, M; Mizuno, D; Yamazaki, M

    1983-04-01

    The mechanisms of tumor lysis by polymorphonuclear leukocytes (PMNs) were investigated. In antibody-dependent PMN-mediated cytolysis (ADPC), sensitized tumor cells were specifically lysed via Fc receptors on PMNs. On the other hand, lectin-dependent PMN-mediated cytolysis (LDPC) caused nonspecific lysis of several murine tumors after recognition of carbohydrate moieties on the cell membrane of both PMNs and tumor cells. Both ADPC and LDPC depended on glycolysis, and cytotoxicity was mediated by reactive oxygen species; LDPC was dependent on superoxide and ADPC on the myeloperoxidase system. The participation of reactive oxygen species in PMN cytotoxicity was also demonstrated by pharmacological triggering with phorbol myristate acetate. These results indicate that reactive oxygen species have an important role In tumor killing by PMNs and that ADPC and LDPC have partly different cytolytic processes as well as different recognition steps.

  14. VEGF-Trap: a VEGF blocker with potent antitumor effects.

    PubMed

    Holash, Jocelyn; Davis, Sam; Papadopoulos, Nick; Croll, Susan D; Ho, Lillian; Russell, Michelle; Boland, Patricia; Leidich, Ray; Hylton, Donna; Burova, Elena; Ioffe, Ella; Huang, Tammy; Radziejewski, Czeslaw; Bailey, Kevin; Fandl, James P; Daly, Tom; Wiegand, Stanley J; Yancopoulos, George D; Rudge, John S

    2002-08-20

    Vascular endothelial growth factor (VEGF) plays a critical role during normal embryonic angiogenesis and also in the pathological angiogenesis that occurs in a number of diseases, including cancer. Initial attempts to block VEGF by using a humanized monoclonal antibody are beginning to show promise in human cancer patients, underscoring the importance of optimizing VEGF blockade. Previous studies have found that one of the most effective ways to block the VEGF-signaling pathway is to prevent VEGF from binding to its normal receptors by administering decoy-soluble receptors. The highest-affinity VEGF blocker described to date is a soluble decoy receptor created by fusing the first three Ig domains of VEGF receptor 1 to an Ig constant region; however, this fusion protein has very poor in vivo pharmacokinetic properties. By determining the requirements to maintain high affinity while extending in vivo half life, we were able to engineer a very potent high-affinity VEGF blocker that has markedly enhanced pharmacokinetic properties. This VEGF-Trap effectively suppresses tumor growth and vascularization in vivo, resulting in stunted and almost completely avascular tumors. VEGF-Trap-mediated blockade may be superior to that achieved by other agents, such as monoclonal antibodies targeted against the VEGF receptor.

  15. Anti-tumor effect of evodiamine by inducing Akt-mediated apoptosis in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Shi, Le; Liang, Tao

    Background: Evodiamine is an alkaloid extracted from Euodia rutaecarpa (Juss.) Benth. There is little information about the mechanisms of evodiamine on the apoptosis of hepatocellular carcinoma (HCC). Materials and methods: A xenograft model and CCK8 assay were used to investigate the anti-HCC effect of evodiamine. The effect of evodiamine on apoptosis was evaluated by DAPI staining and flow cytometry. Western blot analyses and immunohistochemistry were processed to assess the protein expressions of Akt and apoptotic proteins. Results: Evodiamine suppressed tumor growth, improved the expression of cleaved-caspase3 and decreased tumor specific growth factor (TSGF) and alpha fetoprotein (AFP) activities. Furthermore, evodiaminemore » inhibited cell viability and induced cell cycle arrest. DAPI staining revealed nuclear condensation in evodiamine-treated groups. Meanwhile, evodiamine increased the number of apoptotic cells. Furthermore, evodiamine suppressed Akt and regulated apoptotic proteins in HepG2 cells. Evodiamine decreased p-Akt levels activated by SC79, which led to the increase of bax/bcl-2 and cleaved-caspase3. Conclusions: Our findings suggested that evodiamine could exert anti-HCC effect through inducing Akt-mediated apoptosis. Evodiamine has the potential to be a therapeutic medicine for HCCs. - Highlights: • Anti-tumor effect of evodiamine in hepatocellular carcinoma. • Evodiamine induces apoptosis in hepatocellular carcinoma. • The correlation between induction of apoptosis and Akt expression.« less

  16. Grb-2–associated binder 1 (Gab1) regulates postnatal ischemic and VEGF-induced angiogenesis through the protein kinase A–endothelial NOS pathway

    PubMed Central

    Xiong, Yan; Huo, Yingqing; Han, Jingyan; Yang, Xiao; Zhang, Rongli; Zhu, De-Sheng; Klein-Heßling, Stefan; Zhang, Xiaoyu; Han, Xiaofan; Li, Yanli; Shen, Bin; He, Yulong; Shibuya, Masabumi; Feng, Gen-Sheng; Luo, Jincai

    2011-01-01

    The intracellular signaling mechanisms underlying postnatal angiogenesis are incompletely understood. Herein we show that Grb-2–associated binder 1 (Gab1) plays a critical role in ischemic and VEGF-induced angiogenesis. Endothelium-specific Gab1 KO (EGKO) mice displayed impaired angiogenesis in the ischemic hindlimb despite normal induction of VEGF expression. Matrigel plugs with VEGF implanted in EGKO mice induced fewer capillaries than those in control mice. The vessels and endothelial cells (ECs) derived from EGKO mice were defective in vascular sprouting and tube formation induced by VEGF. Biochemical analyses revealed a substantial reduction of endothelial NOS (eNOS) activation in Gab1-deficient vessels and ECs following VEGF stimulation. Interestingly, the phosphorylation of Akt, an enzyme known to promote VEGF-induced eNOS activation, was increased in Gab1-deficient vessels and ECs whereas protein kinase A (PKA) activity was significantly decreased. Introduction of an active form of PKA rescued VEGF-induced eNOS activation and tube formation in EGKO ECs. Reexpression of WT or mutant Gab1 molecules in EGKO ECs revealed requirement of Gab1/Shp2 association for the activation of PKA and eNOS. Taken together, these results identify Gab1 as a critical upstream signaling component in VEGF-induced eNOS activation and tube formation, which is dependent on PKA. Of note, this pathway is conserved in primary human ECs for VEGF-induced eNOS activation and tube formation, suggesting considerable potential in treatment of human ischemic diseases. PMID:21282639

  17. GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment.

    PubMed

    De Francesco, Ernestina M; Sims, Andrew H; Maggiolini, Marcello; Sotgia, Federica; Lisanti, Michael P; Clarke, Robert B

    2017-12-06

    The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells. We analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1. We first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors (n = 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation. These findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor

  18. Protein Kinase D-dependent Phosphorylation and Nuclear Export of Histone Deacetylase 5 Mediates Vascular Endothelial Growth Factor-induced Gene Expression and Angiogenesis*S⃞

    PubMed Central

    Ha, Chang Hoon; Wang, Weiye; Jhun, Bong Sook; Wong, Chelsea; Hausser, Angelika; Pfizenmaier, Klaus; McKinsey, Timothy A.; Olson, Eric N.; Jin, Zheng-Gen

    2008-01-01

    Vascular endothelial growth factor (VEGF) is essential for normal and pathological angiogenesis. However, the signaling pathways linked to gene regulation in VEGF-induced angiogenesis are not fully understood. Here we demonstrate a critical role of protein kinase D (PKD) and histone deacetylase 5 (HDAC5) in VEGF-induced gene expression and angiogenesis. We found that VEGF stimulated HDAC5 phosphorylation and nuclear export in endothelial cells through a VEGF receptor 2-phospholipase Cγ-protein kinase C-PKD-dependent pathway. We further showed that the PKD-HDAC5 pathway mediated myocyte enhancer factor-2 transcriptional activation and a specific subset of gene expression in response to VEGF, including NR4A1, an orphan nuclear receptor involved in angiogenesis. Specifically, inhibition of PKD by overexpression of the PKD kinase-negative mutant prevents VEGF-induced HDAC5 phosphorylation and nuclear export as well as NR4A1 induction. Moreover, a mutant of HDAC5 specifically deficient in PKD-dependent phosphorylation inhibited VEGF-mediated NR4A1 expression, endothelial cell migration, and in vitro angiogenesis. These findings suggest that the PKD-HDAC5 pathway plays an important role in VEGF regulation of gene transcription and angiogenesis. PMID:18332134

  19. Modified rice bran hemicellulose inhibits vascular endothelial growth factor-induced angiogenesis in vitro via VEGFR2 and its downstream signaling pathways

    PubMed Central

    ZHU, Xia; OKUBO, Aya; IGARI, Naoki; NINOMIYA, Kentaro; EGASHIRA, Yukari

    2016-01-01

    Angiogenesis is implicated in diverse pathological conditions such as cancer, rheumatoid arthritis, psoriasis, atherosclerosis, and retinal neovascularization. In the present study, we investigated the effects of modified rice bran hemicellulose (MRBH), a water-soluble hemicellulose preparation from rice bran treated with shiitake enzymes, on vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and its mechanism. We found that MRBH significantly inhibited VEGF-induced tube formation in human umbilical vein endothelial cells (HUVECs) co-cultured with human dermal fibroblasts. We also observed that MRBH dose-dependently suppressed the VEGF-induced proliferation and migration of HUVECs. Furthermore, examination of the anti-angiogenic mechanism indicated that MRBH reduced not only VEGF-induced activation of VEGF receptor 2 but also of the downstream signaling proteins Akt, extracellular signal-regulated protein kinase 1/2, and p38 mitogen-activated protein kinase. These findings suggest that MRBH has in vitro anti-angiogenic effects that are partially mediated through the inhibition of VEGF signaling. PMID:28439487

  20. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chien-Ju

    Honokiol, an active constituent extracted from the bark of Magnolia officinalis, possesses anticancer effects. Apoptosis is classified as type I programmed cell death, while autophagy is type II programmed cell death. We previously proved that honokiol induces cell cycle arrest and apoptosis of U87 MG glioma cells. Subsequently in this study, we evaluated the effect of honokiol on autophagy of glioma cells and examined the molecular mechanisms. Administration of honokiol to mice with an intracranial glioma increased expressions of cleaved caspase 3 and light chain 3 (LC3)-II. Exposure of U87 MG cells to honokiol also induced autophagy in concentration- andmore » time-dependent manners. Results from the addition of 3-methyladenine, an autophagy inhibitor, and rapamycin, an autophagy inducer confirmed that honokiol-induced autophagy contributed to cell death. Honokiol decreased protein levels of PI3K, phosphorylated (p)-Akt, and p-mammalian target of rapamycin (mTOR) in vitro and in vivo. Pretreatment with a p53 inhibitor or transfection with p53 small interfering (si)RNA suppressed honokiol-induced autophagy by reversing downregulation of p-Akt and p-mTOR expressions. In addition, honokiol caused generation of reactive oxygen species (ROS), which was suppressed by the antioxidant, vitamin C. Vitamin C also inhibited honokiol-induced autophagic and apoptotic cell death. Concurrently, honokiol-induced alterations in levels of p-p53, p53, p-Akt, and p-mTOR were attenuated following vitamin C administration. Taken together, our data indicated that honokiol induced ROS-mediated autophagic cell death through regulating the p53/PI3K/Akt/mTOR signaling pathway. - Highlights: • Exposure of mice with intracranial gliomas to honokiol induces cell apoptosis and autophagy. • Honokiol triggers autophagy of human glioma cells via the PISK/AKT/mTOR signaling pathway. • P53 induces autophagy via regulating the AKT/mTOR pathway in honokiol-treated glioma cells. • ROS

  1. Endothelial Cell Autonomous Role of Akt1: Regulation of Vascular Tone and Ischemia-Induced Arteriogenesis.

    PubMed

    Lee, Monica Y; Gamez-Mendez, Ana; Zhang, Jiasheng; Zhuang, Zhenwu; Vinyard, David J; Kraehling, Jan; Velazquez, Heino; Brudvig, Gary W; Kyriakides, Themis R; Simons, Michael; Sessa, William C

    2018-04-01

    The importance of PI3K/Akt signaling in the vasculature has been demonstrated in several models, as global loss of Akt1 results in impaired postnatal ischemia- and VEGF-induced angiogenesis. The ubiquitous expression of Akt1, however, raises the possibility of cell-type-dependent Akt1-driven actions, thereby necessitating tissue-specific characterization. Herein, we used an inducible, endothelial-specific Akt1-deleted adult mouse model (Akt1iECKO) to characterize the endothelial cell autonomous functions of Akt1 in the vascular system. Endothelial-targeted ablation of Akt1 reduces eNOS (endothelial nitric oxide synthase) phosphorylation and promotes both increased vascular contractility in isolated vessels and elevated diastolic blood pressures throughout the diurnal cycle in vivo. Furthermore, Akt1iECKO mice subject to the hindlimb ischemia model display impaired blood flow and decreased arteriogenesis. Endothelial Akt1 signaling is necessary for ischemic resolution post-injury and likely reflects the consequence of NO insufficiency critical for vascular repair. © 2018 American Heart Association, Inc.

  2. Adiponectin promotes VEGF-C-dependent lymphangiogenesis by inhibiting miR-27b through a CaMKII/AMPK/p38 signaling pathway in human chondrosarcoma cells.

    PubMed

    Huang, Chun-Yin; Chang, An-Chen; Chen, Hsien-Te; Wang, Shih-Wei; Lo, Yuan-Shun; Tang, Chih-Hsin

    2016-09-01

    Chondrosarcoma is the second most frequently occurring type of bone malignancy characterized by distant metastatic propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumour lymphangiogenesis and lymphatic metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. In recent years, adiponectin has also been indicated as facilitating tumorigenesis, angiogenesis and metastasis. However, the effect of adiponectin on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has remained largely a mystery. In the present study, we have shown a clinical correlation between adiponectin and VEGF-C, as well as tumour stage, in human chondrosarcoma tissues. We further demonstrated that adiponectin promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium from adiponectin-treated cells significantly induced tube formation and migration of human lymphatic endothelial cells. In addition, adiponectin knock down inhibited lymphangiogenesis in vitro and in vivo We also found that adiponectin-induced VEGF-C is mediated by the calmodulin-dependent protein kinase II (CaMKII), AMP-activated protein kinase (AMPK) and p38 signaling pathway. Furthermore, the expression of miR-27b was negatively regulated by adiponectin via the CaMKII, AMPK and p38 cascade. The present study is the first to describe the mechanism of adiponectin-promoted lymphangiogenesis by up-regulating VEGF-C expression in chondrosarcomas. Thus, adiponectin could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  3. Aberrant, ectopic expression of VEGF and VEGF receptors 1 and 2 in malignant colonic epithelial cells. Implications for these cells growth via an autocrine mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahluwalia, Amrita; Jones, Michael K.; Department of Medicine, University of California, Irvine, CA

    2013-08-09

    Highlights: •Malignant colonic epithelial cells express VEGF and its receptors. •Cultured colon cancer cells secrete VEGF into the medium. •Inhibition of VEGF receptor significantly decreases colon cancer cell proliferation. •VEGF is critical for colon cancer cell growth. -- Abstract: Vascular endothelial growth factor A (referred to as VEGF) is implicated in colon cancer growth. Currently, the main accepted mechanism by which VEGF promotes colon cancer growth is via the stimulation of angiogenesis, which was originally postulated by late Judah Folkman. However, the cellular source of VEGF in colon cancer tissue; and, the expression of VEGF and its receptors VEGF-R1 andmore » VEGF-R2 in colon cancer cells are not fully known and are subjects of controversy. Material and methods: We examined and quantified expression of VEGF, VEGF-R1 and VEGF-R2 in three different human colonic tissue arrays containing sections of adenocarcinoma (n = 43) and normal mucosa (n = 41). In human colon cancer cell lines HCT116 and HT29 and normal colon cell lines NCM356 and NCM460, we examined expression of VEGF, VEGF-R1 and VEGF-R2 mRNA and protein, VEGF production and secretion into the culture medium; and, the effect of a potent, selective inhibitor of VEGF receptors, AL-993, on cell proliferation. Results: Human colorectal cancer specimens had strong expression of VEGF in cancer cells and also expressed VEGF-R1 and VEGF-R2.In vitro studies showed that human colon cancer cell lines, HCT116 and HT29, but not normal colonic cell lines, express VEGF, VEGF-R1 and VEGF-R2 and secrete VEGF into the medium up to a concentration 2000 pg/ml within 48 h. Furthermore, we showed that inhibition of VEGF receptors using a specific VEGF-R inhibitor significantly reduced proliferation (by >50%) of cultured colon cancer cell lines. Conclusions: Our findings support the contention that VEGF generated by colon cancer cells stimulates their growth directly through an autocrine mechanism that is

  4. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Fang; Li, Xiuli; Kong, Jian

    2013-11-08

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarianmore » cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.« less

  5. VEGF signaling mediates bladder neuroplasticity and inflammation in response to BCG

    PubMed Central

    2011-01-01

    chronic BCG instillation into the mouse bladder promotes a significant increase in peripheral nerve density that was mimicked by VEGF instillation. Effects of BCG were abolished by pre-treatment with neutralizing VEGF antibody. The present results implicate the VEGF pathway as a key modulator of inflammation and nerve plasticity, introduces a new animal model for investigation of VEGF-induced nerve plasticity, and suggests putative mechanisms underlying this phenomenon. PMID:22059553

  6. PI3K/AKT signaling inhibits NOTCH1 lysosome-mediated degradation.

    PubMed

    Platonova, Natalia; Manzo, Teresa; Mirandola, Leonardo; Colombo, Michela; Calzavara, Elisabetta; Vigolo, Emilia; Cermisoni, Greta Chiara; De Simone, Daria; Garavelli, Silvia; Cecchinato, Valentina; Lazzari, Elisa; Neri, Antonino; Chiaramonte, Raffaella

    2015-06-06

    The pathways of NOTCH and PI3K/AKT are dysregulated in about 60% and 48% of T-cell acute lymphoblastic leukemia (T-ALL) patients, respectively. In this context, they interact and cooperate in controlling tumor cell biology. Here, we propose a novel mechanism by which the PI3K/AKT pathway regulates NOTCH1 in T-ALL, starting from the evidence that the inhibition of PI3K/AKT signaling induced by treatment with LY294002 or transient transfection with a dominant negative AKT mutant downregulates NOTCH1 protein levels and activity, without affecting NOTCH1 transcription. We showed that the withdrawal of PI3K/AKT signaling was associated to NOTCH1 phosphorylation in tyrosine residues and monoubiquitination of NOTCH1 detected by Ubiquitin capture assay. Co-immunoprecipitation assay and colocalization analysis further showed that the E3 ubiquitin ligase c-Cbl interacts and monoubiquitinates NOTCH1, activating its lysosomal degradation. These results suggest that the degradation of NOTCH1 could represent a mechanism of control by which NOTCH1 receptors are actively removed from the cell surface. This mechanism is finely regulated by the PI3K/AKT pathway in physiological conditions. In pathological conditions characterized by PI3K/AKT hyperactivation, such as T-ALL, the excessive AKT signaling could lead to NOTCH1 signaling dysregulation. Therefore, a therapeutic strategy directed to PI3K/AKT in T-ALL could contemporaneously inhibit the dysregulated NOTCH1 signaling. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Suppression of Akt/Foxp3-mediated miR-183 expression blocks Sp1-mediated ADAM17 expression and TNFα-mediated NFκB activation in piceatannol-treated human leukemia U937 cells.

    PubMed

    Liu, Wen-Hsin; Chang, Long-Sen

    2012-09-01

    To address the mechanism of piceatannol in inhibiting TNFα-mediated pathway, studies on piceatannol-treated human leukemia U937 cells were conducted. Piceatannol treatment reduced TNFα shedding and NFκB activation and decreased the release of soluble TNFα into the culture medium of U937 cells. Moreover, ADAM17 expression was down-regulated in piceatannol-treated cells. Over-expression of ADAM17 abrogated the ability of piceatannol to suppress TNFα-mediated NFκB activation. Piceatannol-evoked β-TrCP up-regulation promoted Sp1 degradation, thus reducing transcriptional level of ADAM17 gene in U937 cells. Piceatannol treatment induced p38 MAPK phosphorylation but inactivation of Akt and ERK. In contrast to p38 MAPK inhibitor or restoration of ERK activation, transfection of constitutive active Akt abolished the effect of piceatannol on β-TrCP, Sp1 and ADAM17 expression. Piceatannol-elicited down-regulation of miR-183 expression was found to cause β-TrCP up-regulation. Inactivation of Akt resulted in Foxp3 down-regulation and reduced miR-183 expression in piceatannol-treated cells. Knock-down of Foxp3 and chromatin immunoprecipitating revealed that Foxp3 genetically regulated transcription of miR-183 gene. Taken together, our data indicate that suppression of Akt/Foxp3-mediated miR-183 expression blocks Sp1-mediated ADAM17 expression in piceatannol-treated U937 cells. Consequently, piceatannol suppresses TNFα shedding, leading to inhibition of TNFα/NFκB pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinoi, Eiichi; Iezaki, Takashi; Fujita, Hiroyuki

    2014-07-18

    Highlights: • Akt is preferentially phosphorylated in BAT and sWAT of aP2-GDF5 mice. • PI3K/Akt signaling is involved in GDF5-induced brown adipogenesis. • PI3K/Akt signaling regulates GDF5-induced Smad5 phosphorylation. - Abstract: We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylationmore » of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5{sup Rgsc451} mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.« less

  9. Albendazole inhibits HIF-1α-dependent glycolysis and VEGF expression in non-small cell lung cancer cells.

    PubMed

    Zhou, Fang; Du, Jin; Wang, Jianjun

    2017-04-01

    Albendazole (ABZ) has an anti-tumor ability and inhibits HIF-1α activity. HIF-1α is associated with glycolysis and vascular endothelial cell growth factor (VEGF) expression, which plays an important role in cancer progression. These clues indicate that ABZ exerts an anti-cancer effect by regulating glycolysis and VEGF expression. The aim of this study is to clarify the effects of ABZ on non-small cell lung cancer (NSCLC) cells and explore the underlying molecular mechanisms. The expression levels of HIF-1α and VEGF were detected using western blot analysis, and the effect of ABZ on glycolysis was evaluated by measuring the relative activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) and detecting the production of lactate in A549 and H1299 cells. The results showed that ABZ decreased the expression levels of HIF-1α and VEGF and suppressed glycolysis in under hypoxia, but not normoxic condition. Inhibiting HIF-1α also suppressed glycolysis and VEGF expression. Additionally, ABZ inhibited the volume and weight, decreased the relative activities of HK, PK, and LDH, and reduced the levels of HIF-1α and VEGF of A549 xenografts in mouse models. In conclusion, ABZ inhibited growth of NSCLC cells by suppressing HIF-1α-dependent glycolysis and VEGF expression.

  10. Sorafenib induces cathepsin B-mediated apoptosis of bladder cancer cells by regulating the Akt/PTEN pathway. The Akt inhibitor, perifosine, enhances the sorafenib-induced cytotoxicity against bladder cancer cells

    PubMed Central

    Amantini, Consuelo; Morelli, Maria Beatrice; Santoni, Matteo; Soriani, Alessandra; Cardinali, Claudio; Farfariello, Valerio; Eleuteri, Anna Maria; Bonfili, Laura; Mozzicafreddo, Matteo; Nabissi, Massimo; Cascinu, Stefano; Santoni, Giorgio

    2015-01-01

    Sorafenib, a tyrosine kinase inhibitor, has been demonstrated to exert anti-tumor effects. However, the molecular mechanisms underlying its effects on bladder cancer remain unknown. Here, we evaluated the mechanisms responsible for the sorafenib-induced anti-tumor effects on 5637 and T24 bladder cancer cells. We demonstrated that sorafenib reduces cell viability, stimulates lysosome permeabilization and induces apoptosis of bladder cancer cells. These effects are dependent by the activation of cathepsin B released from lysosomes. The sorafenib-increased cathepsin B activity induced the proteolysis of Bid into tBid that stimulates the intrinsic pathway of apoptosis characterized by mitochondrial membrane depolarization, oxygen radical generation and cytochrome c release. Moreover, we found that cathepsin B enzymatic activity, induced by sorafenib, is dependent on its dephosphorylation via PTEN activation and Akt inactivation. Pretreatment with orthovanadate rescued bladder cancer cells from apoptosis. In addition, the Akt inhibitor perifosine increased the sensitivity of bladder cancer cells to sorafenib-induced cytotoxicity. Overall, our results show that apoptotic cell death induced by sorafenib in bladder cancer cells is dependent on cathepsin B activity and involved PTEN and Akt signaling pathways. The Akt inhibitor perifosine increased the cytotoxic effects of sorafenib in bladder cancer cells. PMID:26097873

  11. Enhancement of VEGF-Mediated Angiogenesis by 2-N,6-O-Sulfated Chitosan-Coated Hierarchical PLGA Scaffolds.

    PubMed

    Yu, Yuanman; Chen, Jie; Chen, Rui; Cao, Lingyan; Tang, Wei; Lin, Dan; Wang, Jing; Liu, Changsheng

    2015-05-13

    Rapid and controlled vascularization within scaffolds remains one of the key limitations in tissue engineering applications. This study describes the fabrication and characterization of 2-N,6-O-sulfated chitosan (26SCS)-coated hierarchical scaffold composed of poly(lactic-co-glycolic acid) (PLGA) microspheres, as a desirable vehicle for vascular endothelial growth factor (VEGF) delivery and consequent angiogenic boosting in vitro. Owing to the hierarchical porous structure and high affinity between VEGF and 26SCS, the 26SCS-modified PLGA (S-PLGA) scaffold possesses excellent entrapment and sustained release of VEGF. Using human umbilical vein endothelial cells (HUVECs) as a cell model, the VEGF-loaded S-PLGA scaffold shows desirable cell viability and attachment. The bioactivity of released VEGF is validated by intracellular nitric oxide secretion and capillary tube formation, demonstrating the improved capacity of VEGF-mediated pro-angiogenesis ascribed to 26SCS incorporation. Such a strategy will afford an effective method to prepare a scaffold with promoted angiogenesis.

  12. Malignant Pleural Effusion and ascites Induce Epithelial-Mesenchymal Transition and Cancer Stem-like Cell Properties via the Vascular Endothelial Growth Factor (VEGF)/Phosphatidylinositol 3-Kinase (PI3K)/Akt/Mechanistic Target of Rapamycin (mTOR) Pathway*

    PubMed Central

    Yin, Tao; Wang, Guoping; He, Sisi; Shen, Guobo; Su, Chao; Zhang, Yan; Wei, Xiawei; Ye, Tinghong; Li, Ling; Yang, Shengyong; Li, Dan; Guo, Fuchun; Mo, Zeming; Wan, Yang; Ai, Ping; Zhou, Xiaojuan; Liu, Yantong; Wang, Yongsheng; Wei, Yuquan

    2016-01-01

    Malignant pleural effusion (PE) and ascites, common clinical manifestations in advanced cancer patients, are associated with a poor prognosis. However, the biological characteristics of malignant PE and ascites are not clarified. Here we report that malignant PE and ascites can induce a frequent epithelial-mesenchymal transition program and endow tumor cells with stem cell properties with high efficiency, which promotes tumor growth, chemoresistance, and immune evasion. We determine that this epithelial-mesenchymal transition process is mainly dependent on VEGF, one initiator of the PI3K/Akt/mechanistic target of rapamycin (mTOR) pathway. From the clinical observation, we define a therapeutic option with VEGF antibody for malignant PE and ascites. Taken together, our findings clarify a novel biological characteristic of malignant PE and ascites in cancer progression and provide a promising and available strategy for cancer patients with recurrent/refractory malignant PE and ascites. PMID:27756837

  13. Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis.

    PubMed

    Maddika, Subbareddy; Ande, Sudharsana Rao; Wiechec, Emilia; Hansen, Lise Lotte; Wesselborg, Sebastian; Los, Marek

    2008-04-01

    Here, we show that CDK2, an S-phase cyclin-dependent kinase, is a novel target for Akt during cell cycle progression and apoptosis. Akt phosphorylates CDK2 at threonine 39 residue both in vitro and in vivo. Although CDK2 threonine 39 phosphorylation mediated by Akt enhances cyclin-A binding, it is dispensable for its basal binding and the kinase activity. In addition, for the first time, we report a transient nucleo-cytoplasmic shuttling of Akt during specific stages of the cell cycle, in particular during the late S and G2 phases. The Akt that is re-localized to the nucleus phosphorylates CDK2 and causes the temporary cytoplasmic localization of the CDK2-cyclin-A complex. The CDK2 cytoplasmic redistribution is required for cell progression from S to G2-M phase, because the CDK2 T39A mutant, which lacks the phosphorylation site and is defective in cytoplasmic localization, severely affects cell cycle progression at the transition from S to G2-M. Interestingly, we also show that the Akt/CDK2 pathway is constitutively activated by some anticancer drugs, such as methotrexate and docetaxel, and under these conditions it promotes, rather than represses, cell death. Thus, the constitutive activation of the Akt/CDK2 pathway and changed subcellular localization promotes apoptosis. By contrast, the transient, physiological Akt/CDK2 activation is necessary for cell cycle progression.

  14. Inhibition of hydrogen peroxide signaling by 4-hydroxynonenal due to differential regulation of Akt1 and Akt2 contributes to decreases in cell survival and proliferation in hepatocellular carcinoma cells.

    PubMed

    Shearn, Colin T; Reigan, Philip; Petersen, Dennis R

    2012-07-01

    Dysregulation of cell signaling by electrophiles such as 4-hydroxynonenal (4-HNE) is a key component in the pathogenesis of chronic inflammatory liver disease. Another consequence of inflammation is the perpetuation of oxidative damage by the production of reactive oxidative species such as hydrogen peroxide. Previously, we have demonstrated Akt2 as a direct target of 4-HNE in hepatocellular carcinoma cells. In the present study, we used the hepatocellular carcinoma cell line HepG2 as model to understand the combinatorial effects of 4-HNE and hydrogen peroxide. We demonstrate that 4-HNE inhibits hydrogen peroxide-mediated phosphorylation of Akt1 but not Akt2. Pretreatment of HepG2 cells with 4-HNE prevented hydrogen peroxide stimulation of Akt-dependent phosphorylation of downstream targets and intracellular Akt activity compared with untreated control cells. Using biotin hydrazide capture, it was confirmed that 4-HNE treatment resulted in carbonylation of Akt1, which was not observed in untreated control cells. Using a synthetic GSK3α/β peptide as a substrate, treatment of recombinant human myristoylated Akt1 (rAkt1) with 20 or 40 μΜ 4-HNE inhibited rAkt1 activity by 29 and 60%, respectively. We further demonstrate that 4-HNE activates Erk via a PI3 kinase and PP2A-dependent mechanism leading to increased Jnk phosphorylation. At higher concentrations, 4-HNE decreased both cell survival and proliferation as evidenced by MTT assays and EdU incorporation as well as decreased expression of cyclin D1 and β-catenin, an effect only moderately increased by the addition of hydrogen peroxide. The ability of 4-HNE to exert combinatorial effects on Erk, Jnk, and Akt-dependent cell survival pathways provides additional insight into the mechanisms of cellular damage associated with chronic inflammation. Published by Elsevier Inc.

  15. Polylysine-modified polyethylenimine (PEI-PLL) mediated VEGF gene delivery protects dopaminergic neurons in cell culture and in rat models of Parkinson's Disease (PD).

    PubMed

    Sheikh, Muhammad Abid; Malik, Yousra Saeed; Xing, Zhenkai; Guo, Zhaopei; Tian, Huayu; Zhu, Xiaojuan; Chen, Xuesi

    2017-05-01

    Parkinson's Disease (PD) is a chronic neurodegenerative disorder characterized by motor deficits which result from the progressive loss of dopaminergic neurons. Gene therapy using growth factors such as VEGF seems to be a viable approach for potential therapeutic treatment of PD. In this study, we utilized a novel non-viral gene carrier designated as PEI-PLL synthesized by our laboratory to deliver VEGF gene to study its effect by using both cell culture as well as animal models of PD. For cell culture experiments, we utilized 6-hydroxydopamine (6-OHDA) mediated cell death model of MN9D cells following transfection with either a control plasmid or VEGF expressing plasmid. As compared to control transfected cells, PEI-PLL mediated VEGF gene delivery to MN9D cells resulted in increased cell viability, increase in the number of Tyrosine hydroxylase (TH) positive cells and decreased apoptosis following 6-OHDA insult. Next, we studied the therapeutic potential of PEI-PLL mediated VEGF gene delivery in SNPc by using unilateral 6-OHDA Medial forebrain bundle (MFB) lesion model of PD in rats. VEGF administration prevented the loss of motor functions induced by 6-OHDA as determined by behavior analysis. Similarly, VEGF inhibited the 6-OHDA mediated loss of DA neurons in Substantia Nigra Pars Compacta (SNPc) as well as DA nerve fibers in striatum as determined by TH immunostaining. In addition, PEI-PLL mediated VEGF gene delivery also prevented apoptosis and microglial activation in PD rat models. Together, these results clearly demonstrated the beneficial effects of PEI-PLL mediated VEGF gene delivery on dopaminergic system in both cell culture and animal models of PD. In this report, we exploited the potential of PEI-PLL to deliver VEGF gene for the potential therapeutic treatment of PD by using both cell culture and animal models of PD. To the best of our knowledge, this is the first report describing the use of novel polymeric gene carriers for the delivery of VEGF gene

  16. Differential roles of ERRFI1 in EGFR and AKT pathway regulation affect cancer proliferation.

    PubMed

    Cairns, Junmei; Fridley, Brooke L; Jenkins, Gregory D; Zhuang, Yongxian; Yu, Jia; Wang, Liewei

    2018-03-01

    AKT signaling is modulated by a complex network of regulatory proteins and is commonly deregulated in cancer. Here, we present a dual mechanism of AKT regulation by the ERBB receptor feedback inhibitor 1 (ERRFI1). We show that in cells expressing high levels of EGFR, ERRF1 inhibits growth and enhances responses to chemotherapy. This is mediated in part through the negative regulation of AKT signaling by direct ERRFI1-dependent inhibition of EGFR In cells expressing low levels of EGFR, ERRFI1 positively modulates AKT signaling by interfering with the interaction of the inactivating phosphatase PHLPP with AKT, thereby promoting cell growth and chemotherapy desensitization. These observations broaden our understanding of chemotherapy response and have important implications for the selection of targeted therapies in a cell context-dependent manner. EGFR inhibition can only sensitize EGFR-high cells for chemotherapy, while AKT inhibition increases chemosensitivity in EGFR-low cells. By understanding these mechanisms, we can take advantage of the cellular context to individualize antineoplastic therapy. Finally, our data also suggest targeting of EFFRI1 in EGFR-low cancer as a promising therapeutic approach. © 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  17. Akt-dependent glucose metabolism promotes Mcl-1 synthesis to maintain cell survival and resistance to Bcl-2 inhibition.

    PubMed

    Coloff, Jonathan L; Macintyre, Andrew N; Nichols, Amanda G; Liu, Tingyu; Gallo, Catherine A; Plas, David R; Rathmell, Jeffrey C

    2011-08-01

    Most cancer cells utilize aerobic glycolysis, and activation of the phosphoinositide 3-kinase/Akt/mTOR pathway can promote this metabolic program to render cells glucose dependent. Although manipulation of glucose metabolism may provide a means to specifically eliminate cancer cells, mechanistic links between cell metabolism and apoptosis remain poorly understood. Here, we examined the role and metabolic regulation of the antiapoptotic Bcl-2 family protein Mcl-1 in cell death upon inhibition of Akt-induced aerobic glycolysis. In the presence of adequate glucose, activated Akt prevented the loss of Mcl-1 expression and protected cells from growth factor deprivation-induced apoptosis. Mcl-1 associated with and inhibited the proapoptotic Bcl-2 family protein Bim, contributing to cell survival. However, suppression of glucose metabolism led to induction of Bim, decreased expression of Mcl-1, and apoptosis. The proapoptotic Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, shows clinical promise, but Mcl-1 upregulation can promote resistance. Importantly, inhibition of glucose metabolism or mTORC1 overcame Mcl-1-mediated resistance in diffuse large B cell leukemic cells. Together these data show that Mcl-1 protein synthesis is tightly controlled by metabolism and that manipulation of glucose metabolism may provide a mechanism to suppress Mcl-1 expression and sensitize cancer cells to apoptosis.

  18. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Yun-Jeong; Cho, Hyun-Ji; Magae, Junji

    2013-12-15

    Hypoxia-inducible factor (HIF)-1 plays an important role in tumor progression, angiogenesis and metastasis. In this study, we investigated the potential molecular mechanisms underlying the anti-angiogenic effect of ascofuranone, an isoprenoid antibiotic from Ascochyta viciae, in epidermal growth factor (EGF)-1 responsive human breast cancer cells. Ascofuranone significantly and selectively suppressed EGF-induced HIF-1α protein accumulation, whereas it did not affect the expression of HIF-1β. Furthermore, ascofuranone inhibited the transcriptional activation of vascular endothelial growth factor (VEGF) by reducing protein HIF-1α. Mechanistically, we found that the inhibitory effects of ascofuranone on HIF-1α protein expression are associated with the inhibition of synthesis HIF-1α throughmore » an EGF-dependent mechanism. In addition, ascofuranone suppressed EGF-induced phosphorylation of Akt/mTOR/p70S6 kinase, but the phosphorylation of ERK/JNK/p38 kinase was not affected by ascofuranone. These results suggest that ascofuranone suppresses EGF-induced HIF-1α protein translation through the inhibition of Akt/mTOR/p70S6 kinase signaling pathways and plays a novel role in the anti-angiogenic action. - Highlights: • Inhibitory effect of ascofuranone on HIF-1α expression is EGF-specific regulation. • Ascofuranone decreases HIF-1α protein synthesis through Akt/mTOR pathways. • Ascofuranone suppresses EGF-induced VEGF production and tumor angiogenesis.« less

  19. Lithium ions attenuate serum-deprivation-induced apoptosis in PC12 cells through regulation of the Akt/FoxO1 signaling pathways.

    PubMed

    Zeng, Zhiwen; Wang, Haitao; Shang, Fu; Zhou, Lihua; Little, Peter J; Quirion, Remi; Zheng, Wenhua

    2016-03-01

    Lithium is currently used in the treatment of mental illness. We have previously reported that lithium stimulated the protein kinase B/Forkhead box O1 (Akt/FoxO1) pathway in rats. However, little information is available regarding its neuroprotective role of this pathway and underlying mechanisms. PC12 cells treated with serum deprivation were used as a toxicity model to study the protective effect of lithium and its underlying mechanisms. Cell viability was determined by methyl thiazolyl tetrazolium assay and Hoechst staining. FoxO1 subcellular location and its overexpression were used to study the underlying mechanisms. Various pathway inhibitors were used to investigate the possible pathways, while the phosphorylation of Akt and FoxO1 was analyzed by Western blot. Lithium pretreatment dose-dependently reduced PC12 cell apoptosis induced by serum starvation. The protective effect of lithium was abolished by LY294002, a PI3K-specific inhibitor, and Akt inhibitor Akt inhibitor VIII, whereas mitogen-activated protein kinase kinase (MEK kinase) inhibitor U0126 had no effect. Lithium induced the phosphorylation of Akt and FoxO1 in a time- and concentration-dependent manner. Lithium-induced phosphorylation of Akt and FoxO1 is mediated by the PI3K/Akt pathway. Serum deprivation caused nuclear translocation of FoxO1 while application of lithium reversed the effect of serum deprivation. Moreover, overexpression of FoxO1 enhanced cell apoptosis induced by serum withdrawal. Finally, lithium was found to reduce the exogenous and endogenous FoxO1 protein levels in PC12 cells in a concentration-dependent fashion. The protective effect of lithium against serum starvation cell death is mediated by the PI3K/Akt/FoxO1 pathway.

  20. Calcineurin mediates AKT dephosphorylation in the ischemic rat retina.

    PubMed

    Park, Chang Hwan; Kim, Yoon Sook; Kim, Young Hee; Choi, Mee Young; Yoo, Ji Myong; Kang, Sang Soo; Choi, Wan Sung; Cho, Gyeong Jae

    2008-10-09

    Calcineurin (CaN) is a calcium/calmodulin-dependent protein phosphatase that has an important role in ischemia-induced apoptosis. The serine/threonine kinase, Akt, which is also known as protein kinase B, has an important role in the cell death/survival pathways. Akt is activated by its phosphorylation, which is positively regulated by phosphatidylinositol 3-kinase (PI3K) and negatively regulated by a class of protein phosphatases (PPs) in tissue. However, the relationship between CaN and Akt after transient ischemia remains unclear. In the present study, we investigated whether CaN is involved in neuronal cell apoptosis and Akt dephosphorylation that occur during ischemic injury. We examined the interdependence between CaN and Akt/protein kinase B (PKB) in the rat retina after transient ischemia. After ischemic damage, we detected changes in levels of CaN, Akt and Bad in rats in the presence or absence FK506, CaN inhibitor. Our results show that CaN cleavage reduced Akt phosphorylation at Thr308 and Ser473, and led to apoptosis via dephosphorylation of the proapoptotic Bcl-2 family member Bad. After treatment with FK506, Akt and Bad dephosphorylation was greatly reduced. The total number of TUNEL-positive neurons was reduced by intravitreal injection of FK506 after transient ischemia. These results indicate that CaN cleavage negatively regulates Akt phosphorylation and is involved in retinal cell apoptosis after transient ischemia.

  1. Mechanical Stimulation and IGF-1 Enhance mRNA Translation Rate in Osteoblasts Via Activation of the AKT-mTOR Pathway.

    PubMed

    Bakker, Astrid D; Gakes, Tom; Hogervorst, Jolanda M A; de Wit, Gerard M J; Klein-Nulend, Jenneke; Jaspers, Richard T

    2016-06-01

    Insulin-like growth factor-1 (IGF-1) is anabolic for muscle by enhancing the rate of mRNA translation via activation of AKT and subsequent activation of the mammalian target of rapamycin complex 1 (mTOR), thereby increasing cellular protein production. IGF-1 is also anabolic for bone, but whether the mTOR pathway plays a role in the rate of bone matrix protein production by osteoblasts is unknown. We hypothesized that anabolic stimuli such as mechanical loading and IGF-1 stimulate protein synthesis in osteoblasts via activation of the AKT-mTOR pathway. MC3T3-E1 osteoblasts were either or not subjected for 1 h to mechanical loading by pulsating fluid flow (PFF) or treated with or without human recombinant IGF-1 (1-100 ng/ml) for 0.5-6 h, to determine phosphorylation of AKT and p70S6K (downstream of mTOR) by Western blot. After 4 days of culture with or without the mTOR inhibitor rapamycin, total protein, DNA, and gene expression were quantified. IGF-1 (100 ng/ml) reduced IGF-1 gene expression, although PFF enhanced IGF-1 expression. IGF-1 did not affect collagen-I gene expression. IGF-1 dose-dependently enhanced AKT and p70S6K phosphorylation at 2 and 6 h. PFF enhanced phosphorylation of AKT and p70S6K already within 1 h. Both IGF-1 and PFF enhanced total protein per cell by ∼30%, but not in the presence of rapamycin. Our results show that IGF-1 and PFF activate mTOR, thereby stimulating the rate of mRNA translation in osteoblasts. The known anabolic effect of mechanical loading and IGF-1 on bone may thus be partly explained by mTOR-mediated enhanced protein synthesis in osteoblasts. © 2015 Wiley Periodicals, Inc.

  2. HULC long noncoding RNA silencing suppresses angiogenesis by regulating ESM-1 via the PI3K/Akt/mTOR signaling pathway in human gliomas.

    PubMed

    Zhu, Yu; Zhang, Xuebin; Qi, Lisha; Cai, Ying; Yang, Ping; Xuan, Geng; Jiang, Yuan

    2016-03-22

    Tumor angiogenesis plays a critical role in the tumor progression. Highly upregulated in liver cancer (HULC) is a long noncoding RNA (lncRNA) that acts as an oncogene in gliomas. We found that HULC, vascular endothelial growth factor (VEGF), and ESM-1 (endothelial cell specific molecule 1) expression and microvessel density were positively correlated with grade dependency in glioma patient tissues, and that HULC silencing suppressed angiogenesis by inhibiting glioma cells proliferation and invasion. This process induced anoikis and blocked the cell cycle at G1/S phase via the PI3K/Akt/mTOR signaling pathway, thus regulating the tumor-related genes involved in the above biological behavior in human glioma U87MG and U251 cells. However, these effects were reversed by ESM-1 overexpression, suggesting a mediating role of ESM-1 in the pro-angiogenesis effect of HULC. Our results define the mechanism of the pro-angiogenesis activity of HULC, which shows potential for application as a therapeutic target in glioma.

  3. Hyperforin inhibits Akt1 kinase activity and promotes caspase-mediated apoptosis involving Bad and Noxa activation in human myeloid tumor cells.

    PubMed

    Merhi, Faten; Tang, Ruoping; Piedfer, Marion; Mathieu, Julie; Bombarda, Isabelle; Zaher, Murhaf; Kolb, Jean-Pierre; Billard, Christian; Bauvois, Brigitte

    2011-01-01

    The natural phloroglucinol hyperforin HF displays anti-inflammatory and anti-tumoral properties of potential pharmacological interest. Acute myeloid leukemia (AML) cells abnormally proliferate and escape apoptosis. Herein, the effects and mechanisms of purified HF on AML cell dysfunction were investigated in AML cell lines defining distinct AML subfamilies and primary AML cells cultured ex vivo. HF inhibited in a time- and concentration-dependent manner the growth of AML cell lines (U937, OCI-AML3, NB4, HL-60) by inducing apoptosis as evidenced by accumulation of sub-G1 population, phosphatidylserine externalization and DNA fragmentation. HF also induced apoptosis in primary AML blasts, whereas normal blood cells were not affected. The apoptotic process in U937 cells was accompanied by downregulation of anti-apoptotic Bcl-2, upregulation of pro-apoptotic Noxa, mitochondrial membrane depolarization, activation of procaspases and cleavage of the caspase substrate PARP-1. The general caspase inhibitor Z-VAD-fmk and the caspase-9- and -3-specific inhibitors, but not caspase-8 inhibitor, significantly attenuated apoptosis. HF-mediated apoptosis was associated with dephosphorylation of active Akt1 (at Ser(473)) and Akt1 substrate Bad (at Ser(136)) which activates Bad pro-apoptotic function. HF supppressed the kinase activity of Akt1, and combined treatment with the allosteric Akt1 inhibitor Akt-I-VIII significantly enhanced apoptosis of U937 cells. Our data provide new evidence that HF's pro-apoptotic effect in AML cells involved inhibition of Akt1 signaling, mitochondria and Bcl-2 members dysfunctions, and activation of procaspases -9/-3. Combined interruption of mitochondrial and Akt1 pathways by HF may have implications for AML treatment.

  4. Hyperforin Inhibits Akt1 Kinase Activity and Promotes Caspase-Mediated Apoptosis Involving Bad and Noxa Activation in Human Myeloid Tumor Cells

    PubMed Central

    Merhi, Faten; Tang, Ruoping; Piedfer, Marion; Mathieu, Julie; Bombarda, Isabelle; Zaher, Murhaf; Kolb, Jean-Pierre; Billard, Christian; Bauvois, Brigitte

    2011-01-01

    Background The natural phloroglucinol hyperforin HF displays anti-inflammatory and anti-tumoral properties of potential pharmacological interest. Acute myeloid leukemia (AML) cells abnormally proliferate and escape apoptosis. Herein, the effects and mechanisms of purified HF on AML cell dysfunction were investigated in AML cell lines defining distinct AML subfamilies and primary AML cells cultured ex vivo. Methodology and Results HF inhibited in a time- and concentration-dependent manner the growth of AML cell lines (U937, OCI-AML3, NB4, HL-60) by inducing apoptosis as evidenced by accumulation of sub-G1 population, phosphatidylserine externalization and DNA fragmentation. HF also induced apoptosis in primary AML blasts, whereas normal blood cells were not affected. The apoptotic process in U937 cells was accompanied by downregulation of anti-apoptotic Bcl-2, upregulation of pro-apoptotic Noxa, mitochondrial membrane depolarization, activation of procaspases and cleavage of the caspase substrate PARP-1. The general caspase inhibitor Z-VAD-fmk and the caspase-9- and -3-specific inhibitors, but not caspase-8 inhibitor, significantly attenuated apoptosis. HF-mediated apoptosis was associated with dephosphorylation of active Akt1 (at Ser473) and Akt1 substrate Bad (at Ser136) which activates Bad pro-apoptotic function. HF supppressed the kinase activity of Akt1, and combined treatment with the allosteric Akt1 inhibitor Akt-I-VIII significantly enhanced apoptosis of U937 cells. Significance Our data provide new evidence that HF's pro-apoptotic effect in AML cells involved inhibition of Akt1 signaling, mitochondria and Bcl-2 members dysfunctions, and activation of procaspases -9/-3. Combined interruption of mitochondrial and Akt1 pathways by HF may have implications for AML treatment. PMID:21998731

  5. The mechanisms how heparin affects the tumor cell induced VEGF and chemokine release from platelets to attenuate the early metastatic niche formation

    PubMed Central

    Ponert, Jan Moritz; Schwarz, Svenja; Haschemi, Reza; Müller, Jens; Pötzsch, Bernd; Bendas, Gerd

    2018-01-01

    Metastasis is responsible for the majority of cancer associated fatalities. Tumor cells leaving the primary tumor and entering the blood flow immediately interact with platelets. Activated platelets contribute in different ways to cancer cell survival and proliferation, e.g. in formation of the early metastatic niche by release of different growth factors and chemokines. Here we show that a direct interaction between platelets and MV3 melanoma or MCF7 breast cancer cells induces platelet activation and a VEGF release in citrated plasma that cannot be further elevated by the coagulation cascade and generated thrombin. In contrast, the release of platelet-derived chemokines CXCL5 and CXCL7 depends on both, a thrombin-mediated platelet activation and a direct interaction between tumor cells and platelets. Preincubation of platelets with therapeutic concentrations of unfractionated heparin reduces the tumor cell initiated VEGF release from platelets. In contrast, tumor cell induced CXCL5 and CXCL7 release from platelets was not impacted by heparin pretreatment in citrated plasma. In defibrinated, recalcified plasma, on the contrary, heparin is able to reduce CXCL5 and CXCL7 release from platelets by thrombin inhibition. Our data indicate that different chemokines and growth factors in diverse platelet granules are released in tightly regulated processes by various trigger mechanisms. We show for the first time that heparin is able to reduce the mediator release induced by different tumor cells both in a contact and coagulation dependent manner. PMID:29346400

  6. Fractionated Ionizing Radiation Promotes Epithelial-Mesenchymal Transition in Human Esophageal Cancer Cells through PTEN Deficiency-Mediated Akt Activation.

    PubMed

    He, Enhui; Pan, Fei; Li, Guangchao; Li, Jingjing

    2015-01-01

    In some esophageal cancer patients, radiotherapy may not prevent distant metastasis thus resulting in poor survival. The underlying mechanism of metastasis in these patients is not well established. In this study, we have demonstrated that ionizing radiation may induce epithelial-mesenchymal transition (EMT) accompanied with increased cell migration and invasion, through downregulation of phosphatase and tensin homolog (PTEN), and activation of Akt/GSK-3β/Snail signaling. We developed a radioresistant (RR) esophageal squamous cancer cell line, KYSE-150/RR, by fractionated ionizing radiation (IR) treatment, and confirmed its radioresistance using a clonogenic survival assay. We found that the KYSE-150/RR cell line displayed typical morphological and molecular characteristics of EMT. In comparison to the parental cells, KYSE-150/RR cells showed an increase in post-IR colony survival, migration, and invasiveness. Furthermore, a decrease in PTEN in KYSE-150/RR cells was observed. We postulated that over-expression of PTEN may induce mesenchymal-epithelial transition in KYSE-150/RR cells and restore IR-induced increase of cell migration. Mechanistically, fractionated IR inhibits expression of PTEN, which leads to activation of Akt/GSK-3β signaling and is associated with the elevated levels of Snail protein, a transcription factor involved in EMT. Correspondingly, treatment with LY294002, a phosphatidylinositol-3-kinase inhibitor, mimicked PTEN overexpression effect in KYSE-150/RR cells, further suggesting a role for the Akt/GSK-3β/Snail signaling in effects mediated through PTEN. Together, these results strongly suggest that fractionated IR-mediated EMT in KYSE-150/RR cells is through PTEN-dependent pathways, highlighting a direct proinvasive effect of radiation treatment on tumor cells.

  7. EGFR trans-activation mediates pleiotrophin-induced activation of Akt and Erk in cultured osteoblasts.

    PubMed

    Fan, Jian-Bo; Liu, Wei; Yuan, Kun; Zhu, Xin-Hui; Xu, Da-Wei; Chen, Jia-Jia; Cui, Zhi-Ming

    2014-05-09

    Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts' functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The force-dependent mechanism of DnaK-mediated mechanical folding

    PubMed Central

    Perales-Calvo, Judit; Giganti, David; Stirnemann, Guillaume; Garcia-Manyes, Sergi

    2018-01-01

    It is well established that chaperones modulate the protein folding free-energy landscape. However, the molecular determinants underlying chaperone-mediated mechanical folding remain largely elusive, primarily because the force-extended unfolded conformation fundamentally differs from that characterized in biochemistry experiments. We use single-molecule force-clamp spectroscopy, combined with molecular dynamics simulations, to study the effect that the Hsp70 system has on the mechanical folding of three mechanically stiff model proteins. Our results demonstrate that, when working independently, DnaJ (Hsp40) and DnaK (Hsp70) work as holdases, blocking refolding by binding to distinct substrate conformations. Whereas DnaK binds to molten globule–like forms, DnaJ recognizes a cryptic sequence in the extended state in an unanticipated force-dependent manner. By contrast, the synergetic coupling of the Hsp70 system exhibits a marked foldase behavior. Our results offer unprecedented molecular and kinetic insights into the mechanisms by which mechanical force finely regulates chaperone binding, directly affecting protein elasticity. PMID:29487911

  9. Curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway.

    PubMed

    Tian, Binqiang; Zhao, Yingmei; Liang, Tao; Ye, Xuxiao; Li, Zuowei; Yan, Dongliang; Fu, Qiang; Li, Yonghui

    2017-08-01

    We have previously reported that curcumin inhibits urothelial tumor development in a rat bladder carcinogenesis model. In this study, we report that curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. Curcumin inhibits IGF2 expression at the transcriptional level and decreases the phosphorylation levels of IGF1R and IRS-1 in bladder cancer cells and N-methyl-N-nitrosourea (MNU)-induced urothelial tumor tissue. Ectopic expression of IGF2 and IGF1R, but not IGF1, in bladder cancer cells restored this process, suggesting that IGF2 is a target of curcumin. Moreover, introduction of constitutively active AKT1 abolished the inhibitory effect of curcumin on cell proliferation, migration, and restored the phosphorylation levels of 4E-BP1 and S6K1, suggesting that curcumin functions via suppressing IGF2-mediated AKT/mTOR signaling pathway. In summary, our results reveal that suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway is one of the mechanisms of action of curcumin. Our findings suggest a new therapeutic strategy against human bladder cancer caused by aberrant activation of IGF2, which are useful for translational application of curcumin.

  10. Carbonate-mediated Mars-van Krevelen mechanism for CO oxidation on cobalt-doped ceria catalysts: facet-dependence and coordination-dependence.

    PubMed

    Liu, Bing; Li, Wenping; Song, Weiyu; Liu, Jian

    2018-06-13

    Carbonate intermediates have been reported to play an active role in CO oxidation over ceria-based catalysts in recent experimental studies. However, the detailed CO oxidation mechanism involving carbonate intermediates over ceria-based catalysts remains obscure. In this work, we carried out systematic density functional theory calculations corrected by on-site Coulomb interactions (DFT+U) to investigate the complete CO oxidation mechanism involving carbonate intermediates over cobalt-doped CeO2 catalysts, aiming to unravel how the carbonate participates in CO oxidation and shed light on the underlying factors that control the carbonate-mediated reaction mechanism. A novel carbonate-mediated Mars-van Krevelen (M-vK) mechanism was proposed, in which the carbonate acts as an active intermediate rather than a spectator and can react with CO to form CO2. This carbonate-mediated M-vK mechanism is facet-dependent because it is predominant on the (110) surface whereas the conventional M-vK mechanism is more favorable on (111) and (100) surfaces. The origin of facet-dependence was discussed by analyzing the geometric and electronic structures. It is found that the negatively charged bent CO2- intermediate formed on the (110) surface plays a critical role in the carbonate-mediated M-vK mechanism, whereas the formation of a neutral linear CO2 intermediate on (111) and (100) surfaces hinders the carbonate-mediated M-vK mechanism. The surface oxygen vacancy hinders the formation of carbonate intermediates, indicating that the carbonate-mediated M-vK mechanism is also vacancy-dependent. The formation of carbonate intermediates on different metal (Ti, V, W, Mo and Re) doped CeO2(110) surfaces was studied and the results indicate that the coordination environment of the dopant species is a key factor that determines the carbonate-mediated M-vK mechanism. This study provides atomic-scale insights into the reaction mechanism involving carbonate intermediates and the structure-mechanism

  11. Tetrandrine suppresses lung cancer growth and induces apoptosis, potentially via the VEGF/HIF-1α/ICAM-1 signaling pathway

    PubMed Central

    Chen, Zhuo; Zhao, Liang; Zhao, Feng; Yang, Guanghai; Wang, Jian Jun

    2018-01-01

    The present study investigated the effect of tetrandrine on lung cancer cell growth and apoptosis, and its possible underlying molecular mechanism. A549 human lung cancer cells were incubated with between 2.5 and 10 µM tetrandrine for 12, 24 and 48 h, following which the effect of tetrandrine on cell viability and apoptosis were assessed using an MTT assay and flow cytometry. ELISA and western blotting were used to analyze VEGF activity, and the expression of poly (ADP-ribose) polymerase (PARP), phosphorylated protein kinase B (Akt), Bcl-2-associated X protein (Bax), hypoxia inducible factor (HIF)-1α and inter-cellular adhesion molecule-1 (ICAM-1). Tetrandrine effectively suppressed the growth of and induced apoptosis in A549 lung cancer cells. The expression of PARP, Bax, intercellular adhesion molecule-1 (ICAM-1) and vascular endothelial growth factor (VEGF) was significantly upregulated, and the phosphorylation of Akt and expression of HIF-1α was significantly suppressed in A549 lung cancer cells. Therefore, tetrandrine may suppress cell viability and induce apoptosis via the VEGF/HIF-1α/ICAM-1 signaling pathway. PMID:29849794

  12. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ruochan; Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008; Fu, Sha

    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis andmore » necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.« less

  13. mTOR Complex 2 mediates Akt Phosphorylation that Requires PKCε in Adult Cardiac Muscle Cells

    PubMed Central

    Moschella, Phillip C.; McKillop, John; Pleasant, Dorea L.; Harston, Rebecca K.; Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2013-01-01

    Our earlier work showed that mammalian target of rapamycin (mTOR) is essential to the development of various hypertrophic responses, including cardiomyocyte survival. mTOR forms two independent complexes, mTORC1 and mTORC2, by associating with common and distinct cellular proteins. Both complexes are sensitive to a pharmacological inhibitor, torin1, although only mTORC1 is inhibited by rapamycin. Since mTORC2 is known to mediate the activation of a prosurvival kinase, Akt, we analyzed whether mTORC2 directly mediates Akt activation or whether it requires the participation of another prosurvival kinase, PKC ε (epsilon isoform of protein kinase-C). Our studies reveal that treatment of adult feline cardiomyocytes in vitro with insulin results in Akt phosphorylation at S473 for its activation which could be augmented with rapamycin but blocked by torin1. Silencing the expression of Rictor (rapamycin-insensitive companion of mTOR), an mTORC2 component, with a sh-RNA in cardiomyocytes lowers both insulin-stimulated Akt and PKC ε phosphorylation. Furthermore, phosphorylation of PKC ε and Akt at the critical S729 and S473 sites respectively was blocked by torin1 or Rictor knockdown but not by rapamycin, indicating that the phosphorylation at these specific sites occurs downstream of mTORC2. Additionally, expression of DN-PKC ε significantly lowered the insulin-stimulated Akt S473 phosphorylation, indicating an upstream role for PKC ε in the Akt activation. Biochemical analyses also revealed that PKC ε was part of Rictor but not Raptor (a binding partner and component of mTORC1). Together, these studies demonstrate that mTORC2 mediates prosurvival signaling in adult cardiomyocytes where PKC ε functions downstream of mTORC2 leading to Akt activation. PMID:23673367

  14. mTOR complex 2 mediates Akt phosphorylation that requires PKCε in adult cardiac muscle cells.

    PubMed

    Moschella, Phillip C; McKillop, John; Pleasant, Dorea L; Harston, Rebecca K; Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2013-09-01

    Our earlier work showed that mammalian target of rapamycin (mTOR) is essential to the development of various hypertrophic responses, including cardiomyocyte survival. mTOR forms two independent complexes, mTORC1 and mTORC2, by associating with common and distinct cellular proteins. Both complexes are sensitive to a pharmacological inhibitor, torin1, although only mTORC1 is inhibited by rapamycin. Since mTORC2 is known to mediate the activation of a prosurvival kinase, Akt, we analyzed whether mTORC2 directly mediates Akt activation or whether it requires the participation of another prosurvival kinase, PKCε (epsilon isoform of protein kinase-C). Our studies reveal that treatment of adult feline cardiomyocytes in vitro with insulin results in Akt phosphorylation at S473 for its activation which could be augmented with rapamycin but blocked by torin1. Silencing the expression of Rictor (rapamycin-insensitive companion of mTOR), an mTORC2 component, with a sh-RNA in cardiomyocytes lowers both insulin-stimulated Akt and PKCε phosphorylation. Furthermore, phosphorylation of PKCε and Akt at the critical S729 and S473 sites respectively was blocked by torin1 or Rictor knockdown but not by rapamycin, indicating that the phosphorylation at these specific sites occurs downstream of mTORC2. Additionally, expression of DN-PKCε significantly lowered the insulin-stimulated Akt S473 phosphorylation, indicating an upstream role for PKCε in the Akt activation. Biochemical analyses also revealed that PKCε was part of Rictor but not Raptor (a binding partner and component of mTORC1). Together, these studies demonstrate that mTORC2 mediates prosurvival signaling in adult cardiomyocytes where PKCε functions downstream of mTORC2 leading to Akt activation. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. An EG-VEGF-dependent decrease in homeobox gene NKX3.1 contributes to cytotrophoblast dysfunction: a possible mechanism in human fetal growth restriction.

    PubMed

    Murthi, P; Brouillet, S; Pratt, A; Borg, Aj; Kalionis, B; Goffin, F; Tsatsaris, V; Munaut, C; Feige, Jj; Benharouga, M; Fournier, T; Alfaidy, N

    2015-07-21

    Idiopathic fetal growth restriction (FGR) is frequently associated with placental insufficiency. Previous reports have provided evidence that EG-VEGF (endocrine gland derived-vascular endothelial growth factor), a placental secreted protein, is expressed during the first trimester of pregnancy, controls both trophoblast proliferation and invasion, and its increased expression is associated with human FGR. In this study, we hypothesise that EG-VEGF-dependent change in placental homeobox gene expressions contribute to trophoblast dysfunction in idiopathic FGR. The changes in EG-VEGF-dependent homeobox gene expressions were determined using a Homeobox gene cDNA array on placental explants of 8-12 weeks' gestation after stimulation with EG-VEGF in vitro for 24 hours. The Homeobox gene array identified a >5-fold increase in HOXA9, HOXC8, HOXC10, HOXD1, HOXD8, HOXD9 and HOXD11, while NKX 3.1 showed a >2 fold-decrease in mRNA expression compared to untreated controls. Homeobox gene NKX3.1 was selected as a candidate because it is a downstream target of EG-VEGF and its expression and functional role are largely unknown in control and idiopathic FGR-affected placentae. Real-time PCR and immunoblotting showed a significant decrease in NKX3.1 mRNA and protein levels, respectively, in placentae from FGR compared to control pregnancies. Gene inactivation in vitro using short-interference RNA specific for NKX3.1 demonstrated an increase in BeWo cell differentiation and a decrease in HTR8-SVneo proliferation. We conclude that the decreased expression of homeobox gene NKX3.1 down-stream of EG-VEGF may contribute to the trophoblast dysfunction associated with idiopathic FGR pregnancies.

  16. VEGF-Induced Expression of miR-17–92 Cluster in Endothelial Cells Is Mediated by ERK/ELK1 Activation and Regulates Angiogenesis

    PubMed Central

    Chamorro-Jorganes, Aránzazu; Lee, Monica Y.; Araldi, Elisa; Landskroner-Eiger, Shira; Fernández-Fuertes, Marta; Sahraei, Mahnaz; Quiles del Rey, Maria; van Solingen, Coen; Yu, Jun; Fernández-Hernando, Carlos; Sessa, William C.

    2016-01-01

    Rationale: Several lines of evidence indicate that the regulation of microRNA (miRNA) levels by different stimuli may contribute to the modulation of stimulus-induced responses. The miR-17–92 cluster has been linked to tumor development and angiogenesis, but its role in vascular endothelial growth factor–induced endothelial cell (EC) functions is unclear and its regulation is unknown. Objective: The purpose of this study was to elucidate the mechanism by which VEGF regulates the expression of miR-17–92 cluster in ECs and determine its contribution to the regulation of endothelial angiogenic functions, both in vitro and in vivo. This was done by analyzing the effect of postnatal inactivation of miR-17–92 cluster in the endothelium (miR-17–92 iEC-KO mice) on developmental retinal angiogenesis, VEGF-induced ear angiogenesis, and tumor angiogenesis. Methods and Results: Here, we show that Erk/Elk1 activation on VEGF stimulation of ECs is responsible for Elk-1-mediated transcription activation (chromatin immunoprecipitation analysis) of the miR-17–92 cluster. Furthermore, we demonstrate that VEGF-mediated upregulation of the miR-17–92 cluster in vitro is necessary for EC proliferation and angiogenic sprouting. Finally, we provide genetic evidence that miR-17–92 iEC-KO mice have blunted physiological retinal angiogenesis during development and diminished VEGF-induced ear angiogenesis and tumor angiogenesis. Computational analysis and rescue experiments show that PTEN (phosphatase and tensin homolog) is a target of the miR-17–92 cluster and is a crucial mediator of miR-17-92–induced EC proliferation. However, the angiogenic transcriptional program is reduced when miR-17–92 is inhibited. Conclusions: Taken together, our results indicate that VEGF-induced miR-17–92 cluster expression contributes to the angiogenic switch of ECs and participates in the regulation of angiogenesis. PMID:26472816

  17. Carbon Monoxide Protects against Hepatic Ischemia/Reperfusion Injury via ROS-Dependent Akt Signaling and Inhibition of Glycogen Synthase Kinase 3β

    PubMed Central

    Kim, Hyo Jeong; Joe, Yeonsoo; Kong, Jin Sun; Jeong, Sun-Oh; Cho, Gyeong Jae; Ryter, Stefan W.

    2013-01-01

    Carbon monoxide (CO) may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R) injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β) in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury. PMID:24454979

  18. Carbon monoxide protects against hepatic ischemia/reperfusion injury via ROS-dependent Akt signaling and inhibition of glycogen synthase kinase 3β.

    PubMed

    Kim, Hyo Jeong; Joe, Yeonsoo; Kong, Jin Sun; Jeong, Sun-Oh; Cho, Gyeong Jae; Ryter, Stefan W; Chung, Hun Taeg

    2013-01-01

    Carbon monoxide (CO) may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R) injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β) in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury.

  19. Potent inhibition of VEGFR-2 activation by tight binding of green tea epigallocatechin gallate and apple procyanidins to VEGF: relevance to angiogenesis.

    PubMed

    Moyle, Christina W A; Cerezo, Ana B; Winterbone, Mark S; Hollands, Wendy J; Alexeev, Yuri; Needs, Paul W; Kroon, Paul A

    2015-03-01

    Excessive concentrations of vascular endothelial growth factor (VEGF) drive angiogenesis and cause complications such as increased growth of tumours and atherosclerotic plaques. The aim of this study was to determine the molecular mechanism underlying the potent inhibition of VEGF signalling by polyphenols. We show that the polyphenols epigallocatechin gallate from green tea and procyanidin oligomers from apples potently inhibit VEGF-induced VEGF receptor-2 (VEGFR-2) signalling in human umbilical vein endothelial cells by directly interacting with VEGF. The polyphenol-induced inhibition of VEGF-induced VEGFR-2 activation occurred at nanomolar polyphenol concentrations and followed bi-phasic inhibition kinetics. VEGF activity could not be recovered by dialysing VEGF-polyphenol complexes. Exposure of VEGF to epigallocatechin gallate or procyanidin oligomers strongly inhibited subsequent binding of VEGF to human umbilical vein endothelial cells expressing VEGFR-2. Remarkably, even though VEGFR-2 signalling was completely inhibited at 1 μM concentrations of polyphenols, endothelial nitric oxide synthase was shown to still be activated via the PI3K/Akt signalling pathway which is downstream of VEGFR-2. These data demonstrate for the first time that VEGF is a key molecular target for specific polyphenols found in tea, apples and cocoa which potently inhibit VEGF signalling and angiogenesis at physiological concentrations. These data provide a plausible mechanism which links bioactive compounds in food with their beneficial effects. © 2014 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CXCR4-mediated osteosarcoma growth and pulmonary metastasis is promoted by mesenchymal stem cells through VEGF.

    PubMed

    Zhang, Peng; Dong, Ling; Yan, Kang; Long, Hua; Yang, Tong-Tao; Dong, Ming-Qing; Zhou, Yong; Fan, Qing-Yu; Ma, Bao-An

    2013-10-01

    Chemokines and chemokine receptor 4 (CXCR4) play an important role in metastasis. CXCR4 is also expressed in the human osteosarcoma cell line 9607-F5M2 (F5M2), which has a high tumorigenic ability and potential for spontaneous pulmonary metastasis. Mesenchymal stem cells (MSCs) contribute to the formation of the tumor stroma and promote metastasis. However, mechanisms underlying the promotion of osteosarcoma growth and pulmonary metastasis by MSCs are still elusive. Our study co-injected the human MSCs and F5M2 cells into the caudal vein of nude mice. The total number of tumor nodules per lung was significantly increased in the F5M2+MSC group compared to the other groups (control, F5M2 cells alone and MSCs alone) at week six. Moreover, a high number of Dil-labeled MSCs was present also at the osteosarcoma metastasis sites in the lung. Using Transwell assays, we found that F5M2 cells migrate towards MSCs, while the CXCR4 inhibitor AMD3100 decreased the migration potential of F5M2 cells towards MSCs. Furthermore, upon treatment with F5M2-conditioned medium, MSCs expressed and secreted higher levels of VEGF as determined by immunohistochemistry, western blotting and ELISA, respectively. Importantly, co-cultured with F5M2 cells, MSCs expressed and secreted higher VEGF levels, while AMD3100 dramatically decreased the VEGF secretion by MSCs. However, CXCR4 expression on F5M2 cells was not significantly increased in the co-culture system. Additionally, VEGF increased the proliferation of both MSCs and F5M2 cells. These findings suggest that CXCR4-mediated osteosarcoma growth and pulmonary metastasis are promoted by MSCs through VEGF.

  1. Molecular dynamics-based model of VEGF-A and its heparin interactions.

    PubMed

    Uciechowska-Kaczmarzyk, Urszula; Babik, Sándor; Zsila, Ferenc; Bojarski, Krzysztof Kamil; Beke-Somfai, Tamás; Samsonov, Sergey A

    2018-06-01

    We present a computational model of the Vascular Endothelial Growth Factor (VEGF), an important regulator of blood vessels formation, which function is affected by its heparin interactions. Although structures of a receptor binding (RBD) and a heparin binding domain (HBD) of VEGF are known, there are structural data neither on the 12 amino acids interdomain linker nor on its complexes with heparin. We apply molecular docking and molecular dynamics techniques combined with circular dichroism spectroscopy to model the full structure of the dimeric VEGF and to propose putative molecular mechanisms underlying the function of VEGF/VEGF receptors/heparin system. We show that both the conformational flexibility of the linker and the formation of HBD-heparin-HBD sandwich-like structures regulate the mutual disposition of HBDs and so affect the VEGF-mediated signalling. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Akt activation by Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in ovarian cancer cells.

    PubMed

    Gocher, Angela M; Azabdaftari, Gissou; Euscher, Lindsey M; Dai, Shuhang; Karacosta, Loukia G; Franke, Thomas F; Edelman, Arthur M

    2017-08-25

    Hyperactivation of Akt is associated with oncogenic changes in the growth, survival, and chemoresistance of cancer cells. The PI3K/phosphoinositide-dependent kinase (PDK) 1 pathway represents the canonical mechanism for phosphorylation of Akt at its primary activation site, Thr-308. We observed that Ca 2+ /calmodulin (CaM)-dependent protein kinase kinase 2 (β) (CaMKK2) is highly expressed in high-grade serous ovarian cancer, and we investigated its role in Akt activation in ovarian cancer (OVCa) cell lines (OVCAR-3, SKOV-3, and Caov-3). Knockdown or pharmacological inhibition of CaMKK2 produced phenotypes expected of Akt inhibition, including reductions in cell growth and cell viability and in the regulation of Akt downstream targets involved in G 1 /S transition and apoptosis. CaMKK2 knockdown or inhibition decreased Akt phosphorylation at Thr-308 and Ser-473 to extents similar to those of PDK1 knockdown or PI3K inhibition. Combined CaMKK2 and PDK1 knockdown or CaMKK and PI3K inhibition, respectively, produced additive effects on p-Akt and cell growth, consistent with direct Akt phosphorylation by CaMKK2. This conclusion was supported by the absence of effects of CaMKK2 knockdown/inhibition on alternative means of activating Akt via p-Akt Thr-450, p-PDK1 Ser-241, or p-IRS1 Ser-636/639. Recombinant CaMKK2 directly activated recombinant Akt by phosphorylation at Thr-308 in a Ca 2+ /CaM-dependent manner. In OVCa cells, p-Akt Thr-308 was significantly inhibited by intracellular Ca 2+ i chelation or CaM inhibition. Ionomycin-induced Ca 2+ influx promoted p-Akt, an effect blocked by PDK1, and/or CaMKK2, siRNAs, and by PI3K and/or CaMKK inhibitors. CaMKK2 knockdown potentiated the effects of the chemotherapeutic drugs carboplatin and PX-866 to reduce proliferation and survival of OVCa cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. CCL11 promotes angiogenic activity by activating the PI3K/Akt pathway in HUVECs.

    PubMed

    Park, Jun Young; Kang, Yeo Wool; Choi, Byung Young; Yang, Young Chul; Cho, Byung Pil; Cho, Won Gil

    2017-08-01

    CCR3, the receptor for CCL11, is expressed on the surface of immune cells and even on non-immune cells. CCL11-CCR3 interactions can promote cell migration and proliferation. In this study, we investigated the effect of CCL11 on angiogenesis in HUVECs and also examined the molecular mechanisms of this process. We found that CCL11 induced mRNA transcription and protein expression of CCR3 in HUVECs. Moreover, the scratch wound healing assay and MTS proliferation assay both demonstrated that CCL11 promotes endothelial cell migration and induces weak proliferation. CCL11 directly induced microvessel sprouting from the rat aortic ring; these effects occurred earlier and to a greater extent than with VEGF stimulation. Furthermore, CCL11-induced phosphorylation of Akt was abolished by PI3K inhibitors. siRNA-mediated knockdown of CCR3 led to a significant reduction of PI3K phosphorylation. However, the phosphorylation levels of ERK1/2 were not changed, even after CCL11 treatment. Cumulatively, our data suggest that the CCL11-CCR3 interaction mainly activates PI3K/Akt signal transduction pathway in HUVECs.

  4. [VEGF165 transfected endothelial progenitor cells mediated by lentivirus alleviated ALI in rats].

    PubMed

    He, Zhaohui; He, Huiwei; Lu, Yuanhua; Chen, Zhi; Xu, Fanghua; Wang, Rongsheng; Yang, Chunli

    2017-11-01

    To investigate the protective effects of vascular endothelial growth factor-165 (VEGF165) transfected the endothelial progenitor cells (EPCs) mediated by lentivirus on acute lung injury (ALI) in rats. The mononuclear cells from the male Sprague-Dawley (SD) rats were isolated and cultured to get the EPCs for study. The lentivirus vector carrying the human VEGF165 gene was constructed. According to the random number table method, 90 male SD rats were divided into ALI model group, phosphate buffer solution (PBS) group, EPCs treatment group, none transfected EPCs treatment group and VEGF165 transfected EPCs treatment group, and the rats in each group were subdivided into 4, 12 and 48 hours subgroups, with 6 rats in each subgroup. The rat model of ALI was reproduced by intravenous injection of oleic acid (0.15 μL/g). Then each treatment group was given PBS, EPCs, none transfected EPCs and VEGF165 transfected EPCs respectively with the same volume of 0.2 mL. For the groups with cells, about 1×10 6 cells were contained. Abdominal aortic blood and lung tissue were harvested at 4, 12 and 48 hours. Arterial blood gas analysis was performed. The lung wet/dry weight ratio (W/D) was calculated. The expressions of induced nitric oxide synthase (iNOS), endothelin-1 (ET-1) and VEGF165 were determined by enzyme-linked immunosorbent assay (ELISA). After dyed with hematoxylin-eosin (HE), the lung tissue pathology was observed and the lung injury score was performed. Compared with the ALI model group, the arterial partial pressure of oxygen (PaO 2 ) in EPCs, none transfected EPCs and VEGF165 transfected EPCs treatment groups was significantly increased from 4 hours, and lung W/D, expressions of iNOS and ET-1 were significantly decreased, and VEGF165 expression was significantly increased. Compared with the EPCs treatment group, the increase in PaO 2 , the decrease in lung W/D and expressions of iNOS and ET-1, and the increase in VEGF165 expression in VEGF165 transfected EPCs

  5. Akt-Dependent Glucose Metabolism Promotes Mcl-1 Synthesis to Maintain Cell Survival and Resistance to Bcl-2 Inhibition

    PubMed Central

    Coloff, Jonathan L.; Macintyre, Andrew N.; Nichols, Amanda G.; Liu, Tingyu; Gallo, Catherine A.; Plas, David R.; Rathmell, Jeffrey C.

    2011-01-01

    Most cancer cells utilize aerobic glycolysis, and activation of the phosphatidyl-inositol 3-kinase (PI3K)/Akt/mTOR pathway can promote this metabolic program to render cells glucose-dependent. While manipulation of glucose metabolism may provide a means to specifically eliminate cancer cells, mechanistic links between cell metabolism and apoptosis remain poorly understood. Here we examine the role and metabolic regulation of the anti-apoptotic Bcl-2 family protein Mcl-1 in cell death upon inhibition of Akt-induced aerobic glycolysis. In the presence of adequate glucose, activated Akt prevented the loss of Mcl-1 expression and protected cells from growth factor-deprivation induced apoptosis. Mcl-1 associated with and inhibited the pro-apoptotic Bcl-2 family protein Bim, contributing to cell survival. However, suppression of glucose metabolism led to induction of Bim, decreased expression of Mcl-1, and apoptosis. The pro-apoptotic Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, shows clinical promise, but Mcl-1 upregulation can promote resistance. Importantly, inhibition of glucose metabolism or mTORC1 overcame Mcl-1-mediated resistance in diffuse large B cell leukemic cells. Together these data show that Mcl-1 protein synthesis is tightly controlled by metabolism and that manipulation of glucose metabolism may provide a mechanism to suppress Mcl-1 expression and sensitize cancer cells to apoptosis. PMID:21670080

  6. Akt2-Dependent Phosphorylation of Radixin in Regulation of Mrp-2 Trafficking in WIF-B Cells.

    PubMed

    Suda, Jo; Rockey, Don C; Karvar, Serhan

    2016-02-01

    The dominant ezrin/radixin/moesin protein in hepatocytes is radixin, which plays an important role in mediating the binding of F-actin to the plasma membrane after a conformational activation by phosphorylation at Thr564. Here we have investigated the importance of Akt-mediated radixin Thr564 phosphorylation on Mrp-2 distribution and function in WIF-B cells. Mrp-2 is an adenosine triphosphate (ATP)-binding cassette transporter that plays an important role in detoxification and chemoprotection by transporting a wide range of compounds, especially conjugates of lipophilic substances with glutathione, organic anions, and drug metabolites such as glucuronides. Akt1 and Akt2 expression were manipulated using dominant active and negative constructs as well as Akt1 and Akt2 siRNA. Cellular distribution of radixin and Mrp-2 was visualized by fluorescence microscopy. A 5-chloromethylfluorescein diacetate, which is a substrate of the Mrp-2 and is actively transported in canalicular lumina, was used to measure Mrp-2 function. Radixin phosphorylation was significantly increased in wild-type and dominant active Akt2 transfected cells. Furthermore, radixin and Mrp-2 were localized at the canalicular membrane, similar to control cells. In contrast, overexpression of dominant negative Akt2, siRNA knockdown of Akt2 and a specific Akt inhibitor prevented radixin phosphorylation and led to alteration of normal radixin and Mrp-2 localization; inhibition of Akt2, but not Akt1 function led to radixin localization to the cytoplasmic space. In addition, dominant negative and Akt2 knockdown led to a dramatically impaired hepatocyte secretory response, while wild-type and dominant active Akt2 transfected cells exhibited increased 5-chloromethylfluorescein diacetate excretion. In contrast to Akt2, Akt1 was not associated with radixin phosphorylation. These studies, therefore, identify Akt2 as a critical kinase that regulates radixin phosphorylation and leads to Mrp-2 translocation and

  7. Role of Growth Arrest and DNA Damage–inducible α in Akt Phosphorylation and Ubiquitination after Mechanical Stress-induced Vascular Injury

    PubMed Central

    Mitra, Sumegha; Sammani, Saad; Wang, Ting; Boone, David L.; Meyer, Nuala J.; Dudek, Steven M.; Moreno-Vinasco, Liliana; Garcia, Joe G. N.

    2011-01-01

    Rationale: The stress-induced growth arrest and DNA damage–inducible α (GADD45a) gene is up-regulated by mechanical stress with GADD45a knockout (GADD45a−/−) mice demonstrating both increased susceptibility to ventilator-induced lung injury (VILI) and reduced levels of the cell survival and vascular permeability signaling effector (Akt). However, the functional role of GADD45a in the pathogenesis of VILI is unknown. Objectives: We sought to define the role of GADD45a in the regulation of Akt activation induced by mechanical stress. Methods: VILI-challenged GADD45a−/− mice were administered a constitutively active Akt1 vector and injury was assessed by bronchoalveolar lavage cell counts and protein levels. Human pulmonary artery endothelial cells (EC) were exposed to 18% cyclic stretch (CS) under conditions of GADD45a silencing and used for immunoprecipitation, Western blotting or immunofluoresence. EC were also transfected with mutant ubiquitin vectors to characterize site-specific Akt ubiquitination. DNA methylation was measured using methyl-specific polymerase chain reaction assay. Measurements and Main Results: Studies exploring the linkage of GADD45a with mechanical stress and Akt regulation revealed VILI-challenged GADD45a−/− mice to have significantly reduced lung injury on overexpression of Akt1 transgene. Increased mechanical stress with 18% CS in EC induced Akt phosphorylation via E3 ligase tumor necrosis factor receptor–associated factor 6 (TRAF6)–mediated Akt K63 ubiquitination resulting in Akt trafficking and activation at the membrane. GADD45a is essential to this process because GADD45a-silenced endothelial cells and GADD45a−/− mice exhibited increased Akt K48 ubiquitination leading to proteasomal degradation. These events involve loss of ubiquitin carboxyl terminal hydrolase 1 (UCHL1), a deubiquitinating enzyme that normally removes K48 polyubiquitin chains bound to Akt thus promoting Akt K63 ubiquitination. Loss of GADD45a

  8. VEGF improves survival of mesenchymal stem cells in infarcted hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice

    2008-11-14

    Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16{sup INK}, p21 and p19{sup ARF}. VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs ormore » VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI.« less

  9. Activation of PI3K/AKT and MAPK Pathway through a PDGFRβ-Dependent Feedback Loop Is Involved in Rapamycin Resistance in Hepatocellular Carcinoma

    PubMed Central

    Yao, Li-Qing; Tan, Chang-Jun; Huang, Xiao-Yong; Ke, Ai-Wu; Dai, Zhi; Fan, Jia; Zhou, Jian

    2012-01-01

    Background Rapamycin is an attractive approach for the treatment and prevention of HCC recurrence after liver transplantation. However, the objective response rates of rapamycin achieved with single-agent therapy were modest, supporting that rapamycin resistance is a frequently observed characteristic of many cancers. Some studies have been devoted to understanding the mechanisms of rapamycin resistance, however, the mechanisms are cell-type-dependent and studies on rapamycin resistance in HCC are extremely limited. Methodology/Principal Findings The anti-tumor sensitivity of rapamycin was modest in vitro and in vivo. In both human and rat HCC cells, rapamycin up-regulated the expression and phosphorylation of PDGFRβ in a time and dose-dependent manner as assessed by RT-PCR and western blot analysis. Using siRNA mediated knockdown of PDGFRβ, we confirmed that subsequent activation of AKT and ERK was PDGFRβ-dependent and compromised the anti-tumor activity of rapamycin. Then, blockade of this PDGFRβ-dependent feedback loop by sorafenib enhanced the anti-tumor sensitivity of rapamycin in vitro and in an immunocompetent orthotopic rat model of HCC. Conclusions Activation of PI3K/AKT and MAPK pathway through a PDGFRβ-dependent feedback loop compromises the anti-tumor activity of rapamycin in HCC, and blockade of this feedback loop by sorafenib is an attractive approach to improve the anti-tumor effect of rapamycin, particularly in preventing or treating HCC recurrence after liver transplantation. PMID:22428038

  10. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma.

    PubMed

    Peng, Hong; Zhang, Qiuyang; Li, Jiali; Zhang, Ning; Hua, Yunpeng; Xu, Lixia; Deng, Yubin; Lai, Jiaming; Peng, Zhenwei; Peng, Baogang; Chen, Minhu; Peng, Sui; Kuang, Ming

    2016-03-29

    Tumor cells co-express vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) that interact each other to support a self-sustainable cell growth. So far, this autocrine VEGF loop is not reported in human intrahepatic cholangiocarcinoma (ICC). Apatinib is a highly selective VEGFR2 inhibitor, but its effects on ICC have not been investigated. In this study, we reported that VEGF and phosphorylated VEGFR2 were expressed at a significantly high level in ICC patient tissues (P<0.05). In vitro, treating ICC cell lines RBE and SSP25 with recombinant human VEGF (rhVEGF) induced phosphorylation of VEGFR1 (pVEGFR1) and VEGFR2 (pVEGFR2); however, only the VEGFR2 played a role in the anti-apoptotic cell growth through activating a PI3K-AKT-mTOR anti-apoptotic signaling pathway which generated more VEGF to enter this autocrine loop. Apatinib inhibited the anti-apoptosis induced by VEGF signaling, and promoted cell death in vitro. In addition, Apatinib treatment delayed xenograft tumor growth in vivo. In conclusion, the autocrine VEGF/VEGFR2 signaling promotes ICC cell survival. Apatinib inhibits anti-apoptotic cell growth through suppressing the autocrine VEGF signaling, supporting a potential role for using Apatinib in the treatment of ICC.

  11. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma

    PubMed Central

    Zhang, Ning; Hua, Yunpeng; Xu, Lixia; Deng, Yubin; Lai, Jiaming; Peng, Zhenwei; Peng, Baogang; Chen, Minhu; Peng, Sui; Kuang, Ming

    2016-01-01

    Tumor cells co-express vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) that interact each other to support a self-sustainable cell growth. So far, this autocrine VEGF loop is not reported in human intrahepatic cholangiocarcinoma (ICC). Apatinib is a highly selective VEGFR2 inhibitor, but its effects on ICC have not been investigated. In this study, we reported that VEGF and phosphorylated VEGFR2 were expressed at a significantly high level in ICC patient tissues (P<0.05). In vitro, treating ICC cell lines RBE and SSP25 with recombinant human VEGF (rhVEGF) induced phosphorylation of VEGFR1 (pVEGFR1) and VEGFR2 (pVEGFR2); however, only the VEGFR2 played a role in the anti-apoptotic cell growth through activating a PI3K-AKT-mTOR anti-apoptotic signaling pathway which generated more VEGF to enter this autocrine loop. Apatinib inhibited the anti-apoptosis induced by VEGF signaling, and promoted cell death in vitro. In addition, Apatinib treatment delayed xenograft tumor growth in vivo. In conclusion, the autocrine VEGF/VEGFR2 signaling promotes ICC cell survival. Apatinib inhibits anti-apoptotic cell growth through suppressing the autocrine VEGF signaling, supporting a potential role for using Apatinib in the treatment of ICC. PMID:26967384

  12. Betaine inhibits vascularization via suppression of Akt in the retinas of streptozotocin-induced hyperglycemic rats

    PubMed Central

    KIM, YOUNG-GIUN; LIM, HYUNG-HO; LEE, SUH-HA; SHIN, MAL-SOON; KIM, CHANG-JU; YANG, HYEON JEONG

    2015-01-01

    Diabetic retinopathy is a severe microvascular complication amongst patients with diabetes, and is the primary cause of visual loss through neovascularization. Betaine is one of the components of Fructus Lycii. In the present study, the effects of betaine on the expression levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1α in association with the Akt pathway were investigated in the retinas of streptozotocin (STZ)-induced diabetic rats using western blot and immunohistochemical analyses. The results of the present study revealed that the expression levels of VEGF, HIF-1α, and Akt were increased in the retinas of the STZ-induced diabetic rats. Betaine treatment attenuated this increase in VEGF and HIF-1α expression via suppression of diabetes-induced Akt activation in the retinas of the diabetic rats. The results suggested that betaine may potentially be used to delay the onset of complications associated with diabetic retinopathy via inhibition of retinal neovascularization in patients with diabetes. PMID:25891515

  13. EZH2 phosphorylation regulates Tat-induced HIV-1 transactivation via ROS/Akt signaling pathway.

    PubMed

    Zhang, Hong-Sheng; Liu, Yang; Wu, Tong-Chao; Du, Guang-Yuan; Zhang, Feng-Juan

    2015-12-21

    EZH2 plays a major role in HIV-1 latency, however, the molecular linkage between Tat-induced HIV-1 transactivation and EZH2 activity is not fully understood. It was shown Tat induced HIV-1 transactivation through inhibiting EZH2 activity. Tat decreased the levels of H3K27me3 and EZH2 occupy at the long terminal repeat (LTR) of HIV-1. We further showed for the first time that transfected with Tat construct resulted in an increase in phosphorylated EZH2 (p-EZH2), mediated by active Akt. ROS/Akt-dependent p-EZH2 was correlated with Tat-induced transactivation. Our study reveals that novel mechanisms allow Tat-induced HIV-1 transactivation by ROS/Akt-dependent downregulating the EZH2 epigenetic silencing machinery. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Macrophage migration inhibitory factor (MIF) knockout preserves cardiac homeostasis through alleviating Akt-mediated myocardial autophagy suppression in high-fat diet-induced obesity.

    PubMed

    Xu, X; Ren, J

    2015-03-01

    Macrophage migration inhibitory factor (MIF) has a role in the development of obesity and diabetes. However, whether MIF has a role in fat diet-induced obesity and associated cardiac anomalies still remains unknown. The aim of this study was to examine the impact of MIF knockout on high-fat diet-induced obesity, obesity-associated cardiac anomalies and the underlying mechanisms involved with a focus on Akt-mediated autophagy. Adult male wild-type (WT) and MIF knockout (MIF(-/-)) mice were placed on 45% high-fat diet for 5 months. Oxygen consumption, CO2 production, respiratory exchange ratio, locomotor activity and heat generation were measured using energy calorimeter. Echocardiographic, cardiomyocyte mechanical and intracellular Ca2+ properties were assessed. Apoptosis was examined using terminal dUTP nick end labeling staining and western blot analysis. Akt signaling pathway and autophagy markers were evaluated. Cardiomyocytes isolated from WT and MIF(-/-) mice were treated with recombinant mouse MIF (rmMIF). High-fat diet feeding elicited increased body weight gain, insulin resistance and caloric disturbance in WT and MIF(-/-) mice. High-fat diet induced unfavorable geometric, contractile and histological changes in the heart, the effects of which were alleviated by MIF knockout. In addition, fat diet-induced cardiac anomalies were associated with Akt activation and autophagy suppression, which were nullified by MIF deficiency. In cardiomyocytes from WT mice, autophagy was inhibited by exogenous rmMIF through Akt activation. In addition, MIF knockout rescued palmitic acid-induced suppression of cardiomyocyte autophagy, the effect of which was nullified by rmMIF. These results indicate that MIF knockout preserved obesity-associated cardiac anomalies without affecting fat diet-induced obesity, probably through restoring myocardial autophagy in an Akt-dependent manner. Our findings provide new insights for the role of MIF in obesity and associated cardiac

  15. Linoleic Acid Permeabilizes Gastric Epithelial Cells by Increasing Connexin43 Levels in the Cell Membrane Via a GPR40- and Akt-Dependent Mechanism

    PubMed Central

    Puebla, Carlos; Cisterna, Bruno A.; Salas, Daniela P.; Delgado-López, Fernando; Lampe, Paul D.; Sáez, Juan C.

    2016-01-01

    Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintain the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt. PMID:26869446

  16. AIP1 mediates VEGFR-3-dependent angiogenic and lymphangiogenic responses

    PubMed Central

    Zhou, Huanjiao Jenny; Chen, Xiaodong; Liu, Renjing; Zhang, Haifeng; Wang, Yingdi; Jin, Yu; Liang, Xiaoling; Lu, Lin; Xu, Zhe; Min, Wang

    2014-01-01

    Objective To investigate the novel function of AIP1 in VEGFR-3 signaling, and VEGFR-3-dependent angiogenesis and lymphangiogenesis. Approach/Results AIP1, a signaling scaffold protein, is highly expressed in the vascular endothelium. We have previously reported that AIP1 functions as an endogenous inhibitor in pathological angiogenesis by blocking VEGFR-2 activity. Surprisingly, here we observe that mice with a global deletion of AIP1 (AIP1-KO) exhibit reduced retinal angiogenesis with less sprouting and fewer branches. Vascular endothelial cell (but not neuronal)-specific deletion of AIP1 causes similar defects in retinal angiogenesis. The reduced retinal angiogenesis correlates with reduced expression in VEGFR-3 despite increased VEGFR-2 levels in AIP1-KO retinas. Consistent with the reduced expression of VEGFR-3, AIP1-KO mice show delayed developmental lymphangiogenesis in neonatal skin and mesentery, and mount weaker VEGF-C-induced cornea lymphangiogenesis. In vitro, human lymphatic EC with AIP1 siRNA knockdown, retinal EC and lymphatic EC isolated from AIP1-KO all show attenuated VEGF-C-induced VEGFR-3 signaling. Mechanistically, we demonstrate that AIP1 via vegfr-3-specific miR-1236 increases VEGFR-3 protein expression, and by directly binding to VEGFR-3 enhances VEGFR-3 endocytosis and stability. Conclusion Our in vivo and in vitro results provide the first insight into the mechanism by which AIP1 mediates VEGFR-3-dependent angiogenic and lymphangiogenic signaling. PMID:24407031

  17. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells

    PubMed Central

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-01

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. PMID:27872190

  18. Insulin-like growth factor-mediated muscle differentiation: collaboration between phosphatidylinositol 3-kinase-Akt-signaling pathways and myogenin.

    PubMed

    Tureckova, J; Wilson, E M; Cappalonga, J L; Rotwein, P

    2001-10-19

    The differentiation and maturation of skeletal muscle require interactions between signaling pathways activated by hormones and growth factors and an intrinsic regulatory network controlled by myogenic transcription factors. Insulin-like growth factors (IGFs) play key roles in muscle development in the embryo and in regeneration in the adult. To study mechanisms of IGF action in muscle, we developed a myogenic cell line that overexpresses IGF-binding protein-5. C2BP5 cells remain quiescent in low serum differentiation medium until the addition of IGF-I. Here we use this cell line to identify signaling pathways controlling IGF-mediated differentiation. Induction of myogenin by IGF-I and myotube formation were prevented by the phosphatidylinositol (PI) 3-kinase inhibitor, LY294002, even when included 2 days after growth factor addition, whereas expression of active PI 3-kinase could promote differentiation in the absence of IGF-I. Differentiation also was induced by myogenin but was blocked by LY294002. The differentiation-promoting effects of IGF-I were mimicked by a modified membrane-targeted inducible Akt-1 (iAkt), and iAkt was able to stimulate differentiation of C2 myoblasts and primary mouse myoblasts incubated with otherwise inhibitory concentrations of LY294002. These results show that an IGF-regulated PI 3-kinase-Akt pathway controls muscle differentiation by mechanisms acting both upstream and downstream of myogenin.

  19. Vitamin E Facilitates the Inactivation of the Kinase Akt by the Phosphatase PHLPP1

    PubMed Central

    Huang, Po-Hsien; Chuang, Hsiao-Ching; Chou, Chih-Chien; Wang, Huiling; Lee, Su-Lin; Yang, Hsiao-Ching; Chiu, Hao-Chieh; Kapuriya, Naval; Wang, Dasheng; Kulp, Samuel K.; Chen, Ching-Shih

    2014-01-01

    Vitamin E is a fat-soluble vitamin that includes isomers of tocopherols and tocotrienols which are known for their antioxidant properties. Tocopherols are the predominant form encountered in the diet and through supplementation, and have garnered interest for their potential cancer therapeutic and chemopreventive effects, which include the dephosphorylation of Akt, a serine/threonine kinase that plays a pivotal role in important cellular processes, such as cell growth, survival, metabolism and motility. Full catalytic activation of Akt requires phosphorylation at both Thr308 and Ser473. Dephosphorylation of Ser473 drastically reduces Akt catalytic activity and the number of downstream substrates it can regulate. The mechanism by which α- and γ-tocopherol facilitate the selective dephosphorylation of the kinase Akt at Ser473 was investigated. We showed that this site-specific Akt dephosphorylation was mediated through the pleckstrin homology (PH) domain-dependent recruitment to the plasma membrane of Akt and PHLPP1 (PH domain leucine-rich repeat protein phosphatase, isoform 1), a phosphatase that dephosphorylates Akt at Ser473. The ability of α- and γ-tocopherol to induce PHLPP-mediated Akt inhibition established PHLPP as a “druggable” target. We structurally optimized these tocopherols to obtain derivatives with greater in vitro potency and in vivo tumor-suppressive activity in two prostate xenograft tumor models. Binding affinities for the PH domains of Akt and PHLPP1 were greater than for other PH domain-containing proteins, which may underlie the preferential membrane recruitment of these proteins. Molecular modeling revealed the structural determinants of the interaction with the PH domain of Akt that may inform strategies for continued structural optimization. These findings describe a mechanism by which tocopherols facilitate the dephosphorylation of Akt at Ser473, thereby providing insights into the mode of antitumor action of tocopherols and a

  20. PKCδ Regulates Force Signaling during VEGF/CXCL4 Induced Dissociation of Endothelial Tubes

    PubMed Central

    Jamison, Joshua; Wang, James H-C.; Wells, Alan

    2014-01-01

    Wound healing requires the vasculature to re-establish itself from the severed ends; endothelial cells within capillaries must detach from neighboring cells before they can migrate into the nascent wound bed to initiate angiogenesis. The dissociation of these endothelial capillaries is driven partially by platelets' release of growth factors and cytokines, particularly the chemokine CXCL4/platelet factor-4 (PF4) that increases cell-cell de-adherence. As this retraction is partly mediated by increased transcellular contractility, the protein kinase c-δ/myosin light chain-2 (PKCδ/MLC-2) signaling axis becomes a candidate mechanism to drive endothelial dissociation. We hypothesize that PKCδ activation induces contractility through MLC-2 to promote dissociation of endothelial cords after exposure to platelet-released CXCL4 and VEGF. To investigate this mechanism of contractility, endothelial cells were allowed to form cords following CXCL4 addition to perpetuate cord dissociation. In this study, CXCL4-induced dissociation was reduced by a VEGFR inhibitor (sunitinib malate) and/or PKCδ inhibition. During combined CXCL4+VEGF treatment, increased contractility mediated by MLC-2 that is dependent on PKCδ regulation. As cellular force is transmitted to focal adhesions, zyxin, a focal adhesion protein that is mechano-responsive, was upregulated after PKCδ inhibition. This study suggests that growth factor regulation of PKCδ may be involved in CXCL4-mediated dissociation of endothelial cords. PMID:24699667

  1. PKCδ regulates force signaling during VEGF/CXCL4 induced dissociation of endothelial tubes.

    PubMed

    Jamison, Joshua; Wang, James H-C; Wells, Alan

    2014-01-01

    Wound healing requires the vasculature to re-establish itself from the severed ends; endothelial cells within capillaries must detach from neighboring cells before they can migrate into the nascent wound bed to initiate angiogenesis. The dissociation of these endothelial capillaries is driven partially by platelets' release of growth factors and cytokines, particularly the chemokine CXCL4/platelet factor-4 (PF4) that increases cell-cell de-adherence. As this retraction is partly mediated by increased transcellular contractility, the protein kinase c-δ/myosin light chain-2 (PKCδ/MLC-2) signaling axis becomes a candidate mechanism to drive endothelial dissociation. We hypothesize that PKCδ activation induces contractility through MLC-2 to promote dissociation of endothelial cords after exposure to platelet-released CXCL4 and VEGF. To investigate this mechanism of contractility, endothelial cells were allowed to form cords following CXCL4 addition to perpetuate cord dissociation. In this study, CXCL4-induced dissociation was reduced by a VEGFR inhibitor (sunitinib malate) and/or PKCδ inhibition. During combined CXCL4+VEGF treatment, increased contractility mediated by MLC-2 that is dependent on PKCδ regulation. As cellular force is transmitted to focal adhesions, zyxin, a focal adhesion protein that is mechano-responsive, was upregulated after PKCδ inhibition. This study suggests that growth factor regulation of PKCδ may be involved in CXCL4-mediated dissociation of endothelial cords.

  2. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    PubMed

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. VEGF(121)b, a new member of the VEGF(xxx)b family of VEGF-A splice isoforms, inhibits neovascularisation and tumour growth in vivo.

    PubMed

    Rennel, E S; Varey, A H R; Churchill, A J; Wheatley, E R; Stewart, L; Mather, S; Bates, D O; Harper, S J

    2009-10-06

    The key mediator of new vessel formation in cancer and other diseases is VEGF-A. VEGF-A exists as alternatively spliced isoforms - the pro-angiogenic VEGF(xxx) family generated by exon 8 proximal splicing, and a sister family, termed VEGF(xxx)b, exemplified by VEGF(165)b, generated by distal splicing of exon 8. However, it is unknown whether this anti-angiogenic property of VEGF(165)b is a general property of the VEGF(xxx)b family of isoforms. The mRNA and protein expression of VEGF(121)b was studied in human tissue. The effect of VEGF(121)b was analysed by saturation binding to VEGF receptors, endothelial migration, apoptosis, xenograft tumour growth, pre-retinal neovascularisation and imaging of biodistribution in tumour-bearing mice with radioactive VEGF(121)b. The existence of VEGF(121)b was confirmed in normal human tissues. VEGF(121)b binds both VEGF receptors with similar affinity as other VEGF isoforms, but inhibits endothelial cell migration and is cytoprotective to endothelial cells through VEGFR-2 activation. Administration of VEGF(121)b normalised retinal vasculature by reducing both angiogenesis and ischaemia. VEGF(121)b reduced the growth of xenografted human colon tumours in association with reduced microvascular density, and an intravenous bolus of VEGF(121)b is taken up into colon tumour xenografts. Here we identify a second member of the family, VEGF(121)b, with similar properties to those of VEGF(165)b, and underline the importance of the six amino acids of exon 8b in the anti-angiogenic activity of the VEGF(xxx)b isoforms.

  4. Revealing the role of phospholipase Cβ3 in the regulation of VEGF-induced vascular permeability

    PubMed Central

    Hoeppner, Luke H.; Phoenix, Kathryn N.; Clark, Karl J.; Bhattacharya, Resham; Gong, Xun; Sciuto, Tracey E.; Vohra, Pawan; Suresh, Sandip; Bhattacharya, Santanu; Dvorak, Ann M.; Ekker, Stephen C.; Dvorak, Harold F.; Claffey, Kevin P.

    2012-01-01

    VEGF induces vascular permeability (VP) in ischemic diseases and cancer, leading to many pathophysiological consequences. The molecular mechanisms by which VEGF acts to induce hyperpermeability are poorly understood and in vivo models that easily facilitate real-time, genetic studies of VP do not exist. In the present study, we report a heat-inducible VEGF transgenic zebrafish (Danio rerio) model through which VP can be monitored in real time. Using this approach with morpholino-mediated gene knock-down and knockout mice, we describe a novel role of phospholipase Cβ3 as a negative regulator of VEGF-mediated VP by regulating intracellular Ca2+ release. Our results suggest an important effect of PLCβ3 on VP and provide a new model with which to identify genetic regulators of VP crucial to several disease processes. PMID:22674805

  5. VEGF-A expression by HSV-1–infected cells drives corneal lymphangiogenesis

    PubMed Central

    Wuest, Todd R.

    2010-01-01

    Inflammatory lymphangiogenesis plays a crucial role in the development of inflammation and transplant rejection. The mechanisms of inflammatory lymphangiogenesis during bacterial infection, toll-like receptor ligand administration, and wound healing are well characterized and depend on ligands for the vascular endothelial grow factor receptor (VEGFR) 3 that are produced by infiltrating macrophages. But inflammatory lymphangiogenesis in nonlymphoid tissues during chronic viral infection is unstudied. Herpes simplex virus 1 (HSV-1) infection of the cornea is a leading cause of blindness and depends on aberrant host immune responses to antigen within the normally immunologically privileged cornea. We report that corneal HSV-1 infection drives lymphangiogenesis and that corneal lymphatics persist past the resolution of infection. The mechanism of HSV-1–induced lymphangiogenesis was distinct from the described mechanisms of inflammatory lymphangiogenesis. HSV-1–elicited lymphangiogenesis was strictly dependent on VEGF-A/VEGFR-2 signaling but not on VEGFR-3 ligands. Macrophages played no role in the induction of lymphangiogenesis and were not a detectable source of VEGF-A. Rather, using VEGF-A reporter transgenic mice, we have identified infected epithelial cells as the primary source of VEGF-A during HSV-1 infection. Our results indicate that HSV-1 directly induces vascularization of the cornea through up-regulation of VEGF-A expression. PMID:20026662

  6. Caffeic acid phenethyl ester suppresses melanoma tumor growth by inhibiting PI3K/AKT/XIAP pathway.

    PubMed

    Pramanik, Kartick C; Kudugunti, Shashi K; Fofaria, Neel M; Moridani, Majid Y; Srivastava, Sanjay K

    2013-09-01

    Melanoma is highly metastatic and resistant to chemotherapeutic drugs. Our previous studies have demonstrated that caffeic acid phenethyl ester (CAPE) suppresses the growth of melanoma cells and induces reactive oxygen species generation. However, the exact mechanism of the growth suppressive effects of CAPE was not clear. Here, we determined the potential mechanism of CAPE against melanoma in vivo and in vitro. Administration of 10 mg/kg/day CAPE substantially suppressed the growth of B16F0 tumor xenografts in C57BL/6 mice. Tumors from CAPE-treated mice showed reduced phosphorylation of phosphoinositide 3-kinase, AKT, mammalian target of rapamycin and protein level of X-linked inhibitor of apoptosis protein (XIAP) and enhanced the cleavage of caspase-3 and poly (ADP ribose) polymerase. In order to confirm the in vivo observations, melanoma cells were treated with CAPE. CAPE treatment suppressed the activating phosphorylation of phosphoinositide 3-kinase at Tyr 458, phosphoinositide-dependent kinase-1 at Ser 241, mammalian target of rapamycin at Ser 2448 and AKT at Ser 473 in B16F0 and SK-MEL-28 cells in a concentration and time-dependent study. Furthermore, the expression of XIAP, survivin and BCL-2 was downregulated by CAPE treatment in both cell lines. Significant apoptosis was observed by CAPE treatment as indicated by cleavage of caspase-3 and poly (ADP ribose) polymerase. AKT kinase activity was inhibited by CAPE in a concentration-dependent manner. CAPE treatment increased the nuclear translocation of XIAP, indicating increased apoptosis in melanoma cells. To confirm the involvement of reactive oxygen species in the inhibition of AKT/XIAP pathway, cells were treated with antioxidant N-acetyl-cysteine (NAC) prior to CAPE treatment. Our results indicate that NAC blocked CAPE-mediated AKT/XIAP inhibition and protected the cells from apoptosis. Because AKT regulates XIAP, their interaction was examined by immunoprecipitation studies. Our results show that CAPE

  7. Caffeic acid phenethyl ester suppresses melanoma tumor growth by inhibiting PI3K/AKT/XIAP pathway

    PubMed Central

    Srivastava, Sanjay K.

    2013-01-01

    Melanoma is highly metastatic and resistant to chemotherapeutic drugs. Our previous studies have demonstrated that caffeic acid phenethyl ester (CAPE) suppresses the growth of melanoma cells and induces reactive oxygen species generation. However, the exact mechanism of the growth suppressive effects of CAPE was not clear. Here, we determined the potential mechanism of CAPE against melanoma in vivo and in vitro. Administration of 10 mg/kg/day CAPE substantially suppressed the growth of B16F0 tumor xenografts in C57BL/6 mice. Tumors from CAPE-treated mice showed reduced phosphorylation of phosphoinositide 3-kinase, AKT, mammalian target of rapamycin and protein level of X-linked inhibitor of apoptosis protein (XIAP) and enhanced the cleavage of caspase-3 and poly (ADP ribose) polymerase. In order to confirm the in vivo observations, melanoma cells were treated with CAPE. CAPE treatment suppressed the activating phosphorylation of phosphoinositide 3-kinase at Tyr 458, phosphoinositide-dependent kinase-1 at Ser 241, mammalian target of rapamycin at Ser 2448 and AKT at Ser 473 in B16F0 and SK-MEL-28 cells in a concentration and time-dependent study. Furthermore, the expression of XIAP, survivin and BCL-2 was downregulated by CAPE treatment in both cell lines. Significant apoptosis was observed by CAPE treatment as indicated by cleavage of caspase-3 and poly (ADP ribose) polymerase. AKT kinase activity was inhibited by CAPE in a concentration-dependent manner. CAPE treatment increased the nuclear translocation of XIAP, indicating increased apoptosis in melanoma cells. To confirm the involvement of reactive oxygen species in the inhibition of AKT/XIAP pathway, cells were treated with antioxidant N-acetyl-cysteine (NAC) prior to CAPE treatment. Our results indicate that NAC blocked CAPE-mediated AKT/XIAP inhibition and protected the cells from apoptosis. Because AKT regulates XIAP, their interaction was examined by immunoprecipitation studies. Our results show that CAPE

  8. CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells.

    PubMed

    Wang, Li-Hong; Lin, Chih-Yang; Liu, Shih-Chia; Liu, Guan-Ting; Chen, Yen-Ling; Chen, Jih-Jung; Chan, Chia-Han; Lin, Ting-Yi; Chen, Chi-Kuan; Xu, Guo-Hong; Chen, Shiou-Sheng; Tang, Chih-Hsin; Wang, Shih-Wei

    2016-06-14

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumor lymphangiogenesis and lymphatic metastasis. Chemokine CCL5 has been reported to facilitate angiogenesis and metastasis in chondrosarcoma. However, the effect of chemokine CCL5 on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has largely remained a mystery. In this study, we showed a clinical correlation between CCL5 and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that CCL5 promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium (CM) from CCL5-overexpressed cells significantly induced tube formation of human lymphatic endothelial cells (LECs). Mechanistic investigations showed that CCL5 activated VEGF-C-dependent lymphangiogenesis by down-regulating miR-507. Moreover, inhibiting CCL5 dramatically reduced VEGF-C and lymphangiogenesis in the chondrosarcoma xenograft animal model. Collectively, we document for the first time that CCL5 induces tumor lymphangiogenesis by the induction of VEGF-C in human cancer cells. Our present study reveals miR-507/VEGF-C signaling as a novel mechanism in CCL5-mediated tumor lymphangiogenesis. Targeting both CCL5 and VEGF-C pathways might serve as the potential therapeutic strategy to block cancer progression and metastasis in chondrosarcoma.

  9. VEGF is a chemoattractant for FGF-2–stimulated neural progenitors

    PubMed Central

    Zhang, Huanxiang; Vutskits, Laszlo; Pepper, Michael S.; Kiss, Jozsef Z.

    2003-01-01

    Mmigration of undifferentiated neural progenitors is critical for the development and repair of the nervous system. However, the mechanisms and factors that regulate migration are not well understood. Here, we show that vascular endothelial growth factor (VEGF)-A, a major angiogenic factor, guides the directed migration of neural progenitors that do not display antigenic markers for neuron- or glia-restricted precursor cells. We demonstrate that progenitor cells express both VEGF receptor (VEGFR) 1 and VEGFR2, but signaling through VEGFR2 specifically mediates the chemotactic effect of VEGF. The expression of VEGFRs and the chemotaxis of progenitors in response to VEGF require the presence of fibroblast growth factor 2. These results demonstrate that VEGF is an attractive guidance cue for the migration of undifferentiated neural progenitors and offer a mechanistic link between neurogenesis and angiogenesis in the nervous system. PMID:14691144

  10. BIM-Mediated AKT Phosphorylation Is a Key Modulator of Arsenic Trioxide-Induced Apoptosis in Cisplatin-Sensitive and -Resistant Ovarian Cancer Cells

    PubMed Central

    Yuan, Zhu; Wang, Fang; Zhao, Zhiwei; Zhao, Xinyu; Qiu, Ji; Nie, Chunlai; Wei, Yuquan

    2011-01-01

    Background Chemo-resistance to cisplatin-centered cancer therapy is a major obstacle to the effective treatment of human ovarian cancer. Previous reports indicated that arsenic trioxide (ATO) induces cell apoptosis in both drug-sensitive and -resistant ovarian cancer cells. Principal Findings In this study, we determined the molecular mechanism of ATO-induced apoptosis in ovarian cancer cells. Our data demonstrated that ATO induced cell apoptosis by decreasing levels of phosphorylated AKT (p-AKT) and activating caspase-3 and caspase-9. Importantly, BIM played a critical role in ATO-induced apoptosis. The inhibition of BIM expression prevented AKT dephosphorylation and inhibited caspase-3 activation during cell apoptosis. However, surprisingly, gene silencing of AKT or FOXO3A had little effect on BIM expression and phosphorylation. Moreover, the activation of caspase-3 by ATO treatment improved AKT dephosphorylation, not only by cleaving the regulatory A subunit of protein phosphatase 2A (PP2A), but also by increasing its activation. Furthermore, our data indicated that the c-Jun N-terminal kinases (JNK) pathway is involved in the regulation of BIM expression. Conclusions We demonstrated the roles of BIM in ATO-induced apoptosis and the molecular mechanisms of BIM expression regulated by ATO during ovarian cancer cell apoptosis. Our findings suggest that BIM plays an important role in regulating p-AKT by activating caspase-3 and that BIM mediates the level of AKT phosphorylation to determine the threshold for overcoming cisplatin resistance in ovarian cancer cells. PMID:21655183

  11. Rictor Undergoes Glycogen Synthase Kinase 3 (GSK3)-dependent, FBXW7-mediated Ubiquitination and Proteasomal Degradation*

    PubMed Central

    Koo, Junghui; Wu, Xiaoyun; Mao, Zixu; Khuri, Fadlo R.; Sun, Shi-Yong

    2015-01-01

    Rictor, an essential component of mTOR complex 2 (mTORC2), plays a pivotal role in regulating mTOR signaling and other biological functions. Posttranslational regulation of rictor (e.g. via degradation) and its underlying mechanism are largely undefined and thus are the focus of this study. Chemical inhibition of the proteasome increased rictor ubiquitination and levels. Consistently, inhibition of FBXW7 with various genetic means including knockdown, knock-out, and enforced expression of a dominant-negative mutant inhibited rictor ubiquitination and increased rictor levels, whereas enforced expression of FBXW7 decreased rictor stability and levels. Moreover, we detected an interaction between FBXW7 and rictor. Hence, rictor is degraded through an FBXW7-mediated ubiquitination/proteasome mechanism. We show that this process is dependent on glycogen synthase kinase 3 (GSK3): GSK3 was associated with rictor and directly phosphorylated the Thr-1695 site in a putative CDC4 phospho-degron motif of rictor; mutation of this site impaired the interaction between rictor and FBXW7, decreased rictor ubiquitination, and increased rictor stability. Finally, enforced activation of Akt enhanced rictor levels and increased mTORC2 activity as evidenced by increased formation of mTORC2 and elevated phosphorylation of Akt, SGK1, and PKCα. Hence we suggest that PI3K/Akt signaling may positively regulate mTORC2 signaling, likely through suppressing GSK3-dependent rictor degradation. PMID:25897075

  12. Small molecule ONC201/TIC10 targets chemotherapy-resistant colorectal cancer stem-like cells in an Akt/Foxo3a/TRAIL-dependent manner

    PubMed Central

    Prabhu, Varun V.; Allen, Joshua E.; Dicker, David T.; El-Deiry, Wafik S.

    2015-01-01

    Self-renewing colorectal cancer stem/progenitor cells (CSCs) contribute to tumor maintenance and resistance to therapy. Therapeutic targeting of CSCs could improve treatment response and prolong patient survival. ONC201/TIC10 is a first-in-class anti-tumor agent that induces TRAIL pathway mediated cell death in cancer cells without observed toxicity. We have previously described that ONC201/TIC10 exposure leads to transcriptional induction of the TRAIL gene via transcription factor Foxo3a, which is activated by dual inactivation of Akt and ERK. The Akt and ERK pathways serve as important targets in CSCs. Foxo3a is a key mediator of Akt and ERK-mediated CSC regulation. We hypothesized that the potent anti-tumor effect of ONC201/TIC10 in colorectal cancer involves targeting CSCs and bulk tumor cells. ONC201/TIC10 depletes CD133(+), CD44(+) and Aldefluor(+) cells in vitro and in vivo. TIC10 significantly inhibits colonosphere formation of unsorted and sorted 5-Fluorouracil-resistant CSCs. ONC201/TIC10 significantly reduces CSC-initiated xenograft tumor growth in mice and prevents the passage of these tumors. ONC201/TIC10 treatment also decreased xenograft tumor initiation and was superior to 5-Fluorouracil treatment. Thus, ONC201/TIC10 inhibits CSC self-renewal in vitro and in vivo. ONC201/TIC10 inhibits Akt and ERK, consequently activating Foxo3a and significantly induces cell surface TRAIL and DR5 expression in both CSCs and non-CSCs. ONC201/TIC10-mediated anti-CSC effect is significantly blocked by the TRAIL sequestering antibody RIK-2. Overexpression of Akt, DR5 knockdown and Foxo3a knockdown rescues ONC201/TIC10-mediated depletion of CD44(+) cells and colonosphere inhibition. In conclusion, ONC201/TIC10 is a promising agent for colorectal cancer therapy that targets both non-CSCs and CSCs in an Akt-Foxo3a-TRAIL-dependent manner. PMID:25712124

  13. Small-Molecule ONC201/TIC10 Targets Chemotherapy-Resistant Colorectal Cancer Stem-like Cells in an Akt/Foxo3a/TRAIL-Dependent Manner.

    PubMed

    Prabhu, Varun V; Allen, Joshua E; Dicker, David T; El-Deiry, Wafik S

    2015-04-01

    Self-renewing colorectal cancer stem/progenitor cells (CSC) contribute to tumor maintenance and resistance to therapy. Therapeutic targeting of CSCs could improve treatment response and prolong patient survival. ONC201/TIC10 is a first-in-class antitumor agent that induces TRAIL pathway-mediated cell death in cancer cells without observed toxicity. We have previously described that ONC201/TIC10 exposure leads to transcriptional induction of the TRAIL gene via transcription factor Foxo3a, which is activated by dual inactivation of Akt and ERK. The Akt and ERK pathways serve as important targets in CSCs. Foxo3a is a key mediator of Akt and ERK-mediated CSC regulation. We hypothesized that the potent antitumor effect of ONC201/TIC10 in colorectal cancer involves targeting CSCs and bulk tumor cells. ONC201/TIC10 depletes CD133(+), CD44(+), and Aldefluor(+) cells in vitro and in vivo. TIC10 significantly inhibits colonosphere formation of unsorted and sorted 5-fluorouracil-resistant CSCs. ONC201/TIC10 significantly reduces CSC-initiated xenograft tumor growth in mice and prevents the passage of these tumors. ONC201/TIC10 treatment also decreased xenograft tumor initiation and was superior to 5-fluorouracil treatment. Thus, ONC201/TIC10 inhibits CSC self-renewal in vitro and in vivo. ONC201/TIC10 inhibits Akt and ERK, consequently activating Foxo3a and significantly induces cell surface TRAIL and DR5 expression in both CSCs and non-CSCs. ONC201/TIC10-mediated anti-CSC effect is significantly blocked by the TRAIL sequestering antibody RIK-2. Overexpression of Akt, DR5 knockdown, and Foxo3a knockdown rescues ONC201/TIC10-mediated depletion of CD44(+) cells and colonosphere inhibition. In conclusion, ONC201/TIC10 is a promising agent for colorectal cancer therapy that targets both non-CSCs and CSCs in an Akt-Foxo3a-TRAIL-dependent manner. ©2015 American Association for Cancer Research.

  14. Helicobacter pylori neutrophil-activating protein induces release of histamine and interleukin-6 through G protein-mediated MAPKs and PI3K/Akt pathways in HMC-1 cells.

    PubMed

    Tsai, Chung-Che; Kuo, Ting-Yu; Hong, Zhi-Wei; Yeh, Ying-Chieh; Shih, Kuo-Shun; Du, Shin-Yi; Fu, Hua-Wen

    2015-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) activates several innate leukocytes including neutrophils, monocytes, and mast cells. It has been reported that HP-NAP induces degranulation and interleukin-6 (IL-6) secretion of rat peritoneal mast cells. However, the molecular mechanism is not very clear. Here, we show that HP-NAP activates human mast cell line-1 (HMC-1) cells to secrete histamine and IL-6. The secretion depends on pertussis toxin (PTX)-sensitive heterotrimeric G proteins but not on Toll-like receptor 2. Moreover, HP-NAP induces PTX-sensitive G protein-mediated activation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38-mitogen-activated protein kinase (p38 MAPK), and Akt in HMC-1 cells. Inhibition of ERK1/2, p38 MAPK, or phosphatidylinositol 3-kinase (PI3K) suppresses HP-NAP-induced release of histamine and IL-6 from HMC-1 cells. Thus, the activation of HMC-1 cells by HP-NAP is through Gi-linked G protein-coupled receptor-mediated MAPKs and PI3K/Akt pathways.

  15. Dickkopf-3 Upregulates VEGF in Cultured Human Endothelial Cells by Activating Activin Receptor-Like Kinase 1 (ALK1) Pathway

    PubMed Central

    Busceti, Carla L.; Marchitti, Simona; Bianchi, Franca; Di Pietro, Paola; Riozzi, Barbara; Stanzione, Rosita; Cannella, Milena; Battaglia, Giuseppe; Bruno, Valeria; Volpe, Massimo; Fornai, Francesco; Nicoletti, Ferdinando; Rubattu, Speranza

    2017-01-01

    Dkk-3 is a member of the dickkopf protein family of secreted inhibitors of the Wnt pathway, which has been shown to enhance angiogenesis. The mechanism underlying this effect is currently unknown. Here, we used cultured HUVECs to study the involvement of the TGF-β and VEGF on the angiogenic effect of Dkk-3. Addition of hrDkk-3 peptide (1 or 10 ng/ml) to HUVECs for 6 or 12 h enhanced the intracellular and extracellular VEGF protein levels, as assessed by RTPCR, immunoblotting, immunocytochemistry and ELISA. The increase in the extracellular VEGF levels was associated to the VEGFR2 activation. Pharmacological blockade of VEGFR2 abrogated Dkk-3-induced endothelial cell tubes formation, indicating that VEGF is a molecular player of the angiogenic effects of Dkk-3. Moreover, Dkk-3 enhanced Smad1/5/8 phosphorylation and recruited Smad4 to the VEGF gene promoter, suggesting that Dkk-3 activated ALK1 receptor leading to a transcriptional activation of VEGF. This mechanism was instrumental to the increased VEGF expression and endothelial cell tubes formation mediated by Dkk-3, because both effects were abolished by siRNA-mediated ALK1 knockdown. In summary, we have found that Dkk-3 activates ALK1 to stimulate VEGF production and induce angiogenesis in HUVECs. PMID:28352232

  16. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response

    PubMed Central

    Chan, Tung O.; Zhang, Jin; Tiegs, Brian C.; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M.; Armen, Roger S.; Rodeck, Ulrich; Penn, Raymond B.

    2015-01-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr308 in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr308 dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser473) increased phosphatase resistance of the phosphorylated activation loop (pThr308) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr308 phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. PMID:26201515

  17. Regulation of AKT Phosphorylation at Ser473 and Thr308 by Endoplasmic Reticulum Stress Modulates Substrate Specificity in a Severity Dependent Manner

    PubMed Central

    Yung, Hong Wa

    2011-01-01

    Endoplasmic reticulum (ER) stress is a common factor in the pathophysiology of diverse human diseases that are characterised by contrasting cellular behaviours, from proliferation in cancer to apoptosis in neurodegenerative disorders. Coincidently, dysregulation of AKT/PKB activity, which is the central regulator of cell growth, proliferation and survival, is often associated with the same diseases. Here, we demonstrate that ER stress modulates AKT substrate specificity in a severity-dependent manner, as shown by phospho-specific antibodies against known AKT targets. ER stress also reduces both total and phosphorylated AKT in a severity-dependent manner, without affecting activity of the upstream kinase PDK1. Normalisation to total AKT revealed that under ER stress phosphorylation of Thr308 is suppressed while that of Ser473 is increased. ER stress induces GRP78, and siRNA-mediated knock-down of GRP78 enhances phosphorylation at Ser473 by 3.6 fold, but not at Thr308. Substrate specificity is again altered. An in-situ proximity ligation assay revealed a physical interaction between GRP78 and AKT at the plasma membrane of cells following induction of ER stress. Staining was weak in cells with normal nuclear morphology but stronger in those displaying rounded, condensed nuclei. Co-immunoprecipitation of GRP78 and P-AKT(Ser473) confirmed the immuno-complex consists of non-phosphorylated AKT (Ser473 and Thr308). The interaction is likely specific as AKT did not bind to all molecular chaperones, and GRP78 did not bind to p70 S6 kinase. These findings provide one mechanistic explanation for how ER stress contributes to human pathologies demonstrating contrasting cell fates via modulation of AKT signalling. PMID:21445305

  18. Inactivation of AKT Induces Cellular Senescence in Uterine Leiomyoma

    PubMed Central

    Xu, Xiaofei; Lu, Zhenxiao; Qiang, Wenan; Vidimar, Vania; Kong, Beihua

    2014-01-01

    Uterine leiomyomas (fibroids) are a major public health problem. Current medical treatments with GnRH analogs do not provide long-term benefit. Thus, permanent shrinkage or inhibition of fibroid growth via medical means remains a challenge. The AKT pathway is a major growth and survival pathway for fibroids. We propose that AKT inhibition results in a transient regulation of specific mechanisms that ultimately drive cells into cellular senescence or cell death. In this study, we investigated specific mechanisms of AKT inhibition that resulted in senescence. We observed that administration of MK-2206, an allosteric AKT inhibitor, increased levels of reactive oxygen species, up-regulated the microRNA miR-182 and several senescence-associated genes (including p16, p53, p21, and β-galactosidase), and drove leiomyoma cells into stress-induced premature senescence (SIPS). Moreover, induction of SIPS was mediated by HMGA2, which colocalized to senescence-associated heterochromatin foci. This study provides a conceivable molecular mechanism of SIPS by AKT inhibition in fibroids. PMID:24476133

  19. Autocrine VEGF signaling promotes cell proliferation through a PLC-dependent pathway and modulates Apatinib treatment efficacy in gastric cancer.

    PubMed

    Lin, Yi; Zhai, Ertao; Liao, Bing; Xu, Lixia; Zhang, Xinhua; Peng, Sui; He, Yulong; Cai, Shirong; Zeng, Zhirong; Chen, Minhu

    2017-02-14

    Tumor cells produce vascular endothelial growth factor (VEGF) which interact with the membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth in an angiogenesis-independent fashion. Apatinib, a highly selective VEGFR2 inhibitor, is the only effective drug for patients with terminal gastric cancer (GC) who have no other chemotherapeutic options. However, its treatment efficacy is still controversy and the mechanism behind remains undetermined. In this study, we aimed to investigate the role of autocrine VEGF signaling in the growth of gastric cancer cells and the efficacy of Apatinib treatment. The expression of phosphor VEGFR2 in gastric cancer cell lines was determined by real-time PCR, immunofluorescence, and Western blot. The gastric cancer cells were administrated with or without recombination human VEGF (rhVEGF), VEGFR2 neutralizing antibody, U73122, SU1498, and Apatinib. The nude mice were used for xenograft tumor model. we found that autocrine VEGF induced high VEGFR2-expression, promoted phosphorylation of VEGFR2, and further enhanced internalization of pVEGFR2 in gastric cancer cells. The autocrine VEGF was self-sustained through increasing VEGF mRNA and protein expression. It exerted pro-proliferative effect through a PLC-ERK1/2 dependent pathway. Furthermore, we demonstrated that in VEGFR2 overexpressing gastric cancer cells, Apatinib inhibited cell proliferation in vitro and delayed xenograft tumor growth in vivo. However, these effects were not observed in VEGFR2 low expressing gastric cancer cells. These results suggested that autocrine VEGF signaling promotes gastric cancer cell proliferation and enhances Apatinib treatment outcome in VEGFR2 overexpression gastric cancer cells both in vitro and in vivo. This study would enable better stratification of gastric cancer patients for clinical treatment decision.

  20. Autocrine VEGF signaling promotes cell proliferation through a PLC-dependent pathway and modulates Apatinib treatment efficacy in gastric cancer

    PubMed Central

    Xu, Lixia; Zhang, Xinhua; Peng, Sui; He, Yulong; Cai, Shirong; Zeng, Zhirong; Chen, Minhu

    2017-01-01

    Background Tumor cells produce vascular endothelial growth factor (VEGF) which interact with the membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth in an angiogenesis-independent fashion. Apatinib, a highly selective VEGFR2 inhibitor, is the only effective drug for patients with terminal gastric cancer (GC) who have no other chemotherapeutic options. However, its treatment efficacy is still controversy and the mechanism behind remains undetermined. In this study, we aimed to investigate the role of autocrine VEGF signaling in the growth of gastric cancer cells and the efficacy of Apatinib treatment. Methods The expression of phosphor VEGFR2 in gastric cancer cell lines was determined by real-time PCR, immunofluorescence, and Western blot. The gastric cancer cells were administrated with or without recombination human VEGF (rhVEGF), VEGFR2 neutralizing antibody, U73122, SU1498, and Apatinib. The nude mice were used for xenograft tumor model. Results we found that autocrine VEGF induced high VEGFR2-expression, promoted phosphorylation of VEGFR2, and further enhanced internalization of pVEGFR2 in gastric cancer cells. The autocrine VEGF was self-sustained through increasing VEGF mRNA and protein expression. It exerted pro-proliferative effect through a PLC-ERK1/2 dependent pathway. Furthermore, we demonstrated that in VEGFR2 overexpressing gastric cancer cells, Apatinib inhibited cell proliferation in vitro and delayed xenograft tumor growth in vivo. However, these effects were not observed in VEGFR2 low expressing gastric cancer cells. Conclusion These results suggested that autocrine VEGF signaling promotes gastric cancer cell proliferation and enhances Apatinib treatment outcome in VEGFR2 overexpression gastric cancer cells both in vitro and in vivo. This study would enable better stratification of gastric cancer patients for clinical treatment decision. PMID:28061477

  1. PTB-associated splicing factor inhibits IGF-1-induced VEGF upregulation in a mouse model of oxygen-induced retinopathy.

    PubMed

    Dong, Lijie; Nian, Hong; Shao, Yan; Zhang, Yan; Li, Qiutang; Yi, Yue; Tian, Fang; Li, Wenbo; Zhang, Hong; Zhang, Xiaomin; Wang, Fei; Li, Xiaorong

    2015-05-01

    Pathological retinal neovascularization, including retinopathy of prematurity and age-related macular degeneration, is the most common cause of blindness worldwide. Insulin-like growth factor-1 (IGF-1) has a direct mitogenic effect on endothelial cells, which is the basis of angiogenesis. Vascular endothelial growth factor (VEGF) activation in response to IGF-1 is well documented; however, the molecular mechanisms responsible for the termination of IGF-1 signaling are still not completely elucidated. Here, we show that the polypyrimidine tract-binding protein-associated splicing factor (PSF) is a potential negative regulator of VEGF expression induced by IGF stimulation. Functional analysis demonstrated that ectopic expression of PSF inhibits IGF-1-stimulated transcriptional activation and mRNA expression of the VEGF gene, whereas knockdown of PSF increased IGF-1-stimulated responses. PSF recruited Hakai to the VEGF transcription complex, resulting in inhibition of IGF-1-mediated transcription. Transfection with Hakai siRNA reversed the PSF-mediated transcriptional repression of VEGF gene transcription. In summary, these results show that PSF can repress the transcriptional activation of VEGF stimulated by IGF-1 via recruitment of the Hakai complex and delineate a novel regulatory mechanism of IGF-1/VEGF signaling that may have implications in the pathogenesis of neovascularization in ocular diseases.

  2. 17Beta-estradiol protects against oxidative stress-induced cell death through the glutathione/glutaredoxin-dependent redox regulation of Akt in myocardiac H9c2 cells.

    PubMed

    Urata, Yoshishige; Ihara, Yoshito; Murata, Hiroaki; Goto, Shinji; Koji, Takehiko; Yodoi, Junji; Inoue, Satoshi; Kondo, Takahito

    2006-05-12

    The GSH/glutaredoxin (GRX) system is involved in the redox regulation of certain enzyme activities, and this system protects cells from H2O2-induced apoptosis by regulating the redox state of Akt (Murata, H., Ihara, Y., Nakamura, H., Yodoi, J., Sumikawa, K., and Kondo, T. (2003) J. Biol. Chem. 278, 50226-50233). Estrogens, such as 17beta-estradiol (E2), play an important role in development, growth, and differentiation and appear to have protective effects on oxidative stress mediated by estrogen receptor alpha (ERalpha). However, the role of the ERbeta-mediated pathway in this cytoprotection and the involvement of E2 in the redox regulation are not well understood. In the present study, we demonstrated that E2 protected cardiac H9c2 cells, expressing ERbeta from H2O2-induced apoptosis concomitant with an increase in the activity of Akt. E2 induced the expression of glutaredoxin (GRX) as well as gamma-glutamylcysteine synthetase, a rate-limiting enzyme for the synthesis of GSH. Inhibitors for both gamma-glutamylcysteine synthetase and GRX and ICI182,780, a specific inhibitor of ERs, abolished the protective effect of E2 on cell survival as well as the activity of Akt, suggesting that ERbeta is involved in the cytoprotection and redox regulation by E2. Transcription of the GRX gene was enhanced by E2. The promoter activity of GRX was up-regulated by an ERbeta-dependent element. These results suggest that the GRX/GSH system is involved in the cytoprotective and genomic effects of E2 on the redox state of Akt, a pathway that is mediated, at least in part, by ERbeta. This mechanism may also play an antiapoptotic role in cancer cells during carcinogenesis or chemotherapy.

  3. Role of VEGF-C and VEGF-D in lymphangiogenesis in gastric cancer.

    PubMed

    Yonemura, Yutaka; Endo, Yoshio; Tabata, Kayoko; Kawamura, Taiichi; Yun, Hyo-Yung; Bandou, Etsurou; Sasaki, Takuma; Miura, Masahiro

    2005-10-01

    The molecular mechanisms of lymphangiogenesis induced by vascular endothelial growth factor (VEGF)-C and VEGF-D in gastric cancer were studied. VEGF-C and VEGF-D gene expression vectors were transfected into the gastric cancer cell line KKLS, which did not originally express VEGF-C and VEGF-D, and stable transfectants (KKLS/VEGF-C and KKLS/VEGF-D) were established. The cell lines were inoculated into the subserosal layer of the stomach and subcutaneous tissue of nude mice. VEGF-C and VEGF-D expression in KKLS/VEGF-C and KKLS/VEGF-D cells was found by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Expression of mouse VEGF receptor (VEGFR)-2 and mouse VEGFR-3 mRNA was detected in the KKLS/VEGF-C and KKLS/VEGF-D gastric tumors. Newly formed lymphatic vessels were detected not only in the periphery but also in the center of the tumors. The intratumor lymphatic vessels connected with the preexisting lymphatic vessels in the muscularis mucosa. The average numbers of lymphatic vessels in KKLS/VEGF-C (52.0 +/- 9.5) and KKLS/VEGF-D (16.4 +/- 0.6) gastric tumors were significantly higher than that in the KKLS/control vector tumors (4.0 +/- 1.4). VEGF-C and VEGF-D may induce neoformation of lymphatic vessels in experimental gastric tumors by the induction of VEGFR-3 expression.

  4. Role of Akt and Ca2+ on cell permeabilization via connexin43 hemichannels induced by metabolic inhibition.

    PubMed

    Salas, Daniela; Puebla, Carlos; Lampe, Paul D; Lavandero, Sergio; Sáez, Juan C

    2015-07-01

    Connexin hemichannels are regulated under physiological and pathological conditions. Metabolic inhibition, a model of ischemia, promotes surface hemichannel activation associated, in part, with increased surface hemichannel levels, but little is known about its underlying mechanism. Here, we investigated the role of Akt on the connexin43 hemichannel's response induced by metabolic inhibition. In HeLa cells stably transfected with rat connexin43 fused to EGFP (HeLa43 cells), metabolic inhibition induced a transient Akt activation necessary to increase the amount of surface connexin43. The increase in levels of surface connexin43 was also found to depend on an intracellular Ca2+ signal increase that was partially mediated by Akt activation. However, the metabolic inhibition-induced Akt activation was not significantly affected by intracellular Ca2+ chelation. The Akt-dependent increase in connexin43 hemichannel activity in HeLa43 cells also occurred after oxygen-glucose deprivation, another ischemia-like condition, and in cultured cortical astrocytes (endogenous connexin43 expression system) under metabolic inhibition. Since opening of hemichannels has been shown to accelerate cell death, inhibition of Akt-dependent phosphorylation of connexin43 hemichannels could reduce cell death induced by ischemia/reperfusion. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Context-Dependent Antagonism between Akt Inhibitors and Topoisomerase Poisons

    PubMed Central

    Gálvez-Peralta, Marina; Flatten, Karen S.; Loegering, David A.; Peterson, Kevin L.; Schneider, Paula A.; Erlichman, Charles

    2014-01-01

    Signaling through the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, which is aberrantly activated in >50% of carcinomas, inhibits apoptosis and contributes to drug resistance. Accordingly, several Akt inhibitors are currently undergoing preclinical or early clinical testing. To examine the effect of Akt inhibition on the activity of multiple widely used classes of antineoplastic agents, human cancer cell lines were treated with the Akt inhibitor A-443654 [(2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan-2-amine; ATP-competitive] or MK-2206 (8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-2H-[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3-one;dihydrochloride; allosteric inhibitor) or with small interfering RNA (siRNA) targeting phosphoinositide-dependent kinase 1 (PDK1) along with cisplatin, melphalan, camptothecin, or etoposide and assayed for colony formation. Surprisingly different results were observed when Akt inhibitors were combined with different drugs. Synergistic effects were observed in multiple cell lines independent of PI3K pathway status when A-443654 or MK-2206 was combined with the DNA cross-linking agents cisplatin or melphalan. In contrast, effects of the Akt inhibitors in combination with camptothecin or etoposide were more complicated. In HCT116 and DLD1 cells, which harbor activating PI3KCA mutations, A-443654 over a broad concentration range enhanced the effects of camptothecin or etoposide. In contrast, in cell lines lacking activating PI3KCA mutations, partial inhibition of Akt signaling synergized with camptothecin or etoposide, but higher A-443654 or MK-2206 concentrations (>80% inhibition of Akt signaling) or PDK1 siRNA antagonized the topoisomerase poisons by diminishing DNA synthesis, a process that contributes to effective DNA damage and killing by these agents. These results indicate that the effects of combining inhibitors of the PI3K/Akt pathway with certain classes of chemotherapeutic agents might be more

  6. Context-dependent antagonism between Akt inhibitors and topoisomerase poisons.

    PubMed

    Gálvez-Peralta, Marina; Flatten, Karen S; Loegering, David A; Peterson, Kevin L; Schneider, Paula A; Erlichman, Charles; Kaufmann, Scott H

    2014-05-01

    Signaling through the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, which is aberrantly activated in >50% of carcinomas, inhibits apoptosis and contributes to drug resistance. Accordingly, several Akt inhibitors are currently undergoing preclinical or early clinical testing. To examine the effect of Akt inhibition on the activity of multiple widely used classes of antineoplastic agents, human cancer cell lines were treated with the Akt inhibitor A-443654 [(2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan-2-amine; ATP-competitive] or MK-2206 (8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-2H-[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3-one;dihydrochloride; allosteric inhibitor) or with small interfering RNA (siRNA) targeting phosphoinositide-dependent kinase 1 (PDK1) along with cisplatin, melphalan, camptothecin, or etoposide and assayed for colony formation. Surprisingly different results were observed when Akt inhibitors were combined with different drugs. Synergistic effects were observed in multiple cell lines independent of PI3K pathway status when A-443654 or MK-2206 was combined with the DNA cross-linking agents cisplatin or melphalan. In contrast, effects of the Akt inhibitors in combination with camptothecin or etoposide were more complicated. In HCT116 and DLD1 cells, which harbor activating PI3KCA mutations, A-443654 over a broad concentration range enhanced the effects of camptothecin or etoposide. In contrast, in cell lines lacking activating PI3KCA mutations, partial inhibition of Akt signaling synergized with camptothecin or etoposide, but higher A-443654 or MK-2206 concentrations (>80% inhibition of Akt signaling) or PDK1 siRNA antagonized the topoisomerase poisons by diminishing DNA synthesis, a process that contributes to effective DNA damage and killing by these agents. These results indicate that the effects of combining inhibitors of the PI3K/Akt pathway with certain classes of chemotherapeutic agents might be more

  7. 3, 3′-Diindolylmethane Exhibits Antileukemic Activity In Vitro and In Vivo through a Akt-Dependent Process

    PubMed Central

    Gao, Ning; Cheng, Senping; Budhraja, Amit; Liu, E-Hu; Chen, Jieping; Chen, Deying; Yang, Zailin; Luo, Jia; Shi, Xianglin; Zhang, Zhuo

    2012-01-01

    3,3′-diindolylmethane (DIM), one of the active products derived from Brassica plants, is a promising antitumor agent. The present study indicated that DIM significantly induced apoptosis in U937 human leukemia cells in dose- and time-dependent manners. These events were also noted in other human leukemia cells (Jurkat and HL-60) and primary human leukemia cells (AML) but not in normal bone marrow mononuclear cells. We also found that DIM-induced lethality is associated with caspases activation, myeloid cell leukemia-1 (Mcl-1) down-regulation, p21cip1/waf1 up-regulation, and Akt inactivation accompanied by c-jun NH2-terminal kinase (JNK) activation. Enforced activation of Akt by a constitutively active Akt construct prevented DIM-mediated caspase activation, Mcl-1 down-regulation, JNK activation, and apoptosis. Conversely, DIM lethality was potentiated by the PI3K inhibitor LY294002. Interruption of the JNK pathway by pharmacologic or genetic approaches attenuated DIM-induced caspases activation, Mcl-1 down-regulation, and apoptosis. Lastly, DIM inhibits tumor growth of mouse U937 xenograft, which was related to induction of apoptosis and inactivation of Akt, as well as activation of JNK. Collectively, these findings suggest that DIM induces apoptosis in human leukemia cell lines and primary human leukemia cells, and exhibits antileukemic activity in vivo through Akt inactivation and JNK activation. PMID:22363731

  8. CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells

    PubMed Central

    Lin, Chih-Yang; Liu, Shih-Chia; Chen, Yen-Ling; Chen, Jih-Jung; Chan, Chia-Han; Lin, Ting-Yi; Chen, Chi-Kuan; Xu, Guo-Hong; Chen, Shiou-Sheng; Tang, Chih-Hsin; Wang, Shih-Wei

    2016-01-01

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumor lymphangiogenesis and lymphatic metastasis. Chemokine CCL5 has been reported to facilitate angiogenesis and metastasis in chondrosarcoma. However, the effect of chemokine CCL5 on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has largely remained a mystery. In this study, we showed a clinical correlation between CCL5 and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that CCL5 promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium (CM) from CCL5-overexpressed cells significantly induced tube formation of human lymphatic endothelial cells (LECs). Mechanistic investigations showed that CCL5 activated VEGF-C-dependent lymphangiogenesis by down-regulating miR-507. Moreover, inhibiting CCL5 dramatically reduced VEGF-C and lymphangiogenesis in the chondrosarcoma xenograft animal model. Collectively, we document for the first time that CCL5 induces tumor lymphangiogenesis by the induction of VEGF-C in human cancer cells. Our present study reveals miR-507/VEGF-C signaling as a novel mechanism in CCL5-mediated tumor lymphangiogenesis. Targeting both CCL5 and VEGF-C pathways might serve as the potential therapeutic strategy to block cancer progression and metastasis in chondrosarcoma. PMID:27166194

  9. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Cheng-Hung, E-mail: chchuang@hk.edu.tw; Liu, Chia-Hua; Lu, Ta-Jung

    2014-12-15

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay.more » We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down

  10. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response.

    PubMed

    Chan, Tung O; Zhang, Jin; Tiegs, Brian C; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M; Armen, Roger S; Rodeck, Ulrich; Penn, Raymond B

    2015-10-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr(308) in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr(308) dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser(473)) increased phosphatase resistance of the phosphorylated activation loop (pThr(308)) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr(308) phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. © 2015 Authors; published by Portland Press Limited.

  11. IKKα contributes to UVB-induced VEGF expression by regulating AP-1 transactivation

    PubMed Central

    Dong, Wen; Li, Yi; Gao, Ming; Hu, Meiru; Li, Xiaoguang; Mai, Sanyue; Guo, Ning; Yuan, Shengtao; Song, Lun

    2012-01-01

    Exposure to ultraviolet B (UVB) irradiation from sunlight induces the upregulation of VEGF, a potent angiogenic factor that is critical for mediating angiogenesis-associated photodamage. However, the molecular mechanisms related to UVB-induced VEGF expression have not been fully defined. Here, we demonstrate that one of the catalytic subunits of the IκB kinase complex (IKK), IKKα, plays a critical role in mediating UVB-induced VEGF expression in mouse embryonic fibroblasts (MEFs), which requires IKKα kinase activity but is independent of IKKβ, IKKγ and the transactivation of NF-κB. We further show that the transcriptional factor AP-1 functions as the downstream target of IKKα that is responsible for VEGF induction under UVB exposure. Both the accumulation of AP-1 component, c-Fos and the transactivation of AP-1 by UVB require the activated IKKα located within the nucleus. Moreover, nuclear IKKα can associate with c-Fos and recruit to the vegf promoter regions containing AP-1-responsive element and then trigger phosphorylation of the promoter-bound histone H3. Thus, our results have revealed a novel independent role for IKKα in controlling VEGF expression during the cellular UVB response by regulating the induction of the AP-1 component and phosphorylating histone H3 to facilitate AP-1 transactivation. Targeting IKKα shows promise for the prevention of UVB-induced angiogenesis and the associated photodamage. PMID:22169952

  12. Soyasaponins Can Blunt Inflammation by Inhibiting the Reactive Oxygen Species-Mediated Activation of PI3K/Akt/NF-kB Pathway

    PubMed Central

    Zha, Longying; Chen, Jiading; Sun, Suxia; Mao, Limei; Chu, Xinwei; Deng, Hong; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-01-01

    We and others have recently shown that soyasaponins abundant in soybeans can decrease inflammation by suppressing the nuclear factor kappa B (NF-kB)-mediated inflammation. However, the exact molecular mechanisms by which soyasaponins inhibit the NF-kB pathway have not been established. In this study in macrophages, soyasaponins (A1, A2 and I) inhibited the lipopolysaccharide (LPS)-induced release of inflammatory marker prostaglandin E2 (PGE2) to a similar extent as the NF-kB inhibitor (BAY117082). Soyasaponins (A1, A2 and I) also suppressed the LPS-induced expression of cyclooxygenase 2 (COX-2), another inflammatory marker, in a dose-dependent manner by inhibiting NF-kB activation. In defining the associated mechanisms, we found that soyasaponins (A1, A2 and I) blunted the LPS-induced IKKα/β phosphorylation, IkB phosphorylation and degradation, and NF-kB p65 phosphorylation and nuclear translocation. In studying the upstream targets of soyasaponins on the NF-kB pathway, we found that soyasaponins (A1, A2 and I) suppressed the LPS-induced activation of PI3K/Akt similarly as the PI3K inhibitor LY294002, which alone blocked the LPS-induced activation of NF-kB. Additionally, soyasaponins (A1, A2 and I) reduced the LPS-induced production of reactive oxygen species (ROS) to the same extent as the anti-oxidant N-acetyl-L-cysteine, which alone inhibited the LPS-induced phosphorylation of Akt, IKKα/β, IkBα, and p65, transactivity of NF-kB, PGE2 production, and malondialdehyde production. Finally, our results show that soyasaponins (A1, A2 and I) elevated SOD activity and the GSH/GSSG ratio. Together, these results show that soyasaponins (A1, A2 and I) can blunt inflammation by inhibiting the ROS-mediated activation of the PI3K/Akt/NF-kB pathway. PMID:25233217

  13. Angiomodulin is a specific marker of vasculature and regulates VEGF-A dependent neo-angiogenesis

    PubMed Central

    Hooper, Andrea T.; Shmelkov, Sergey V.; Gupta, Sunny; Milde, Till; Bambino, Kathryn; Gillen, Kelly; Goetz, Mollie; Chavala, Sai; Baljevic, Muhamed; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Thurston, Gavin; Yancopoulos, George D.; Vahdat, Linda; Evans, Todd; Rafii, Shahin

    2010-01-01

    Blood vessel formation is controlled by the balance between pro- and anti-angiogenic pathways. Although much is known about the factors that drive sprouting of neovessels, the factors that stabilize and pattern neovessels are undefined. The expression of angiomodulin (AGM), a VEGF-A binding protein, was increased in the vasculature of several human tumors as compared to normal tissue, raising the hypothesis that AGM may modulate VEGF-A-dependent vascular patterning. To elucidate the expression pattern of AGM, we developed an AGM knockin reporter mouse (AGMlacZ/+) wherein we demonstrate that AGM is predominantly expressed in the vasculature of developing embryos and adult organs. During physiological and pathological angiogenesis, AGM is upregulated in the angiogenic vasculature. Using the zebrafish model, we found that AGM is restricted to developing vasculature by 17-22 hpf. Blockade of AGM activity with morpholino oligomers (MO) results in prominent angiogenesis defects in vascular sprouting and remodeling. Concurrent knockdown of both AGM and VEGF-A results in synergistic angiogenesis defects. When VEGF-A is overexpressed, the compensatory induction of the VEGF-A receptor, VEGFR-2/flk-1, is blocked by the simultaneous injection of AGM MO. These results demonstrate that the vascular-specific marker AGM modulates vascular remodeling in part by temporizing the pro-angiogenic effects of VEGF-A. PMID:19542015

  14. Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2*

    PubMed Central

    Cury, Vivian; Moretti, Ana Iochabel Soares; Assis, Lívia; Bossini, Paulo; de Souza Crusca, Jaqueline; Neto, Carlos Benatti; Fangel, Renan; de Souza, Heraldo Possolo; Hamblin, Michael R; Parizotto, Nivaldo Antonio

    2013-01-01

    It is known that low level laser therapy is able to improve skin flap viability by increasing angiogenesis. However, the mechanism for new blood vessel formation is not completely understood. Here, we investigated the effects of 660 nm and 780 nm lasers at fluences of 30 and 40 J/cm2 on three important mediators activated during angiogenesis. Sixty male Wistar rats were used and randomly divided into five groups with twelve animals each. Groups were distributed as follows: skin flap surgery non-irradiated group as a control; skin flap surgery irradiated with 660 nm laser at a fluence of 30 or 40 J/cm2 and skin flap surgery irradiated with 780 nm laser at a fluence of 30 or 40 J/cm2. The random skin flap was performed measuring 10 × 4 cm, with a plastic sheet interposed between the flap and the donor site. Laser irradiation was performed on 24 points covering the flap and surrounding skin immediately after the surgery and for 7 consecutive days thereafter. Tissues were collected, and the number of vessels, angiogenesis markers (vascular endothelial growth factor, VEGF and hypoxia inducible factor, HIF-1α) and a tissue remodeling marker (matrix metalloproteinase, MMP-2) were analyzed. LLLT increased an angiogenesis, HIF-1α and VEGF expression and decrease MMP-2 activity. These phenomena were dependent on the fluences, and wavelengths used. In this study we showed that LLLT may improve the healing of skin flaps by enhancing the amount of new vessels formed in the tissue. Both 660 nm and 780 nm lasers were able to modulate VEGF secretion, MMP-2 activity and HIF-1α expression in a dose dependent manner. PMID:23831843

  15. MiRNA-21 mediates the antiangiogenic activity of metformin through targeting PTEN and SMAD7 expression and PI3K/AKT pathway

    PubMed Central

    Luo, Mao; Tan, Xiaoyong; Mu, Lin; Luo, Yulin; Li, Rong; Deng, Xin; Chen, Ni; Ren, Meiping; Li, Yongjie; Wang, Liqun; Wu, Jianbo; Wan, Qin

    2017-01-01

    Metformin, an anti-diabetic drug commonly used for type 2 diabetes therapy, is associated with anti-angiogenic effects in conditions beyond diabetes. miR-21 has been reported to be involved in the process of angiogenesis. However, the precise regulatory mechanisms by which the metformin-induced endothelial suppression and its effects on miR-21-dependent pathways are still unclear. Bioinformatic analysis and identification of miR-21 and its targets and their effects on metformin-induced antiangiogenic activity were assessed using luciferase assays, quantitative real-time PCR, western blots, scratch assays, CCK-8 assays and tubule formation assays. In this study, miR-21 was strikingly downregulated by metformin in a time- and dose-dependent manner. miR-21 directly targeted the 3′-UTR of PTEN and SMAD7, and negatively regulated their expression. Overexpression of miR-21 abrogated the metformin-mediated inhibition of endothelial cells proliferation, migration, tubule formation and the TGF-β-induced AKT, SMAD- and ERK-dependent phosphorylations, and conversely, down-regulation of miR-21 aggravated metformin’s action and revealed significant promotion effects. Our study broadens our understanding of the regulatory mechanism of miR-21 mediating metformin-induced anti-angiogenic effects, providing important implications regarding the design of novel miRNA-based therapeutic strategies against angiogenesis. PMID:28230206

  16. Pathophysiological consequences of VEGF-induced vascular permeability

    NASA Astrophysics Data System (ADS)

    Weis, Sara M.; Cheresh, David A.

    2005-09-01

    Although vascular endothelial growth factor (VEGF) induces angiogenesis, it also disrupts vascular barrier function in diseased tissues. Accordingly, VEGF expression in cancer and ischaemic disease has unexpected pathophysiological consequences. By uncoupling endothelial cell-cell junctions VEGF causes vascular permeability and oedema, resulting in extensive injury to ischaemic tissues after stroke or myocardial infarction. In cancer, VEGF-mediated disruption of the vascular barrier may potentiate tumour cell extravasation, leading to widespread metastatic disease. Therefore, by blocking the vascular permeability promoting effects of VEGF it may be feasible to reduce tissue injury after ischaemic disease and minimize the invasive properties of circulating tumour cells.

  17. Tumor microenvironment conditions alter Akt and Na+/H+ exchanger NHE1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer.

    PubMed

    Pedersen, A K; Mendes Lopes de Melo, J; Mørup, N; Tritsaris, K; Pedersen, S F

    2017-08-14

    Chronic angiogenesis is a hallmark of most tumors and takes place in a hostile tumor microenvironment (TME) characterized by hypoxia, low nutrient and glucose levels, elevated lactate and low pH. Despite this, most studies addressing angiogenic signaling use hypoxia as a proxy for tumor conditions. Here, we compared the effects of hypoxia and TME conditions on regulation of the Na + /H + exchanger NHE1, Ser/Thr kinases Akt1-3, and downstream effectors in endothelial cells. Human umbilical vein endothelial cells (HUVEC) and Ea.hy926 endothelial cells were exposed to simulated TME (1% hypoxia, low serum, glucose, pH, high lactate) or 1% hypoxia for 24 or 48 h, with or without NHE1 inhibition or siRNA-mediated knockdown. mRNA and protein levels of NHE1, Akt1-3, and downstream effectors were assessed by qPCR and Western blotting, vascular endothelial growth factor (VEGF) release by ELISA, and motility by scratch assay. Within 24 h, HIF-1α level and VEGF mRNA level were increased robustly by TME and modestly by hypoxia alone. The NHE1 mRNA level was decreased by both hypoxia and TME, and NHE1 protein was reduced by TME in Ea.hy926 cells. Akt1-3 mRNA was detected in HUVEC and Ea.hy926 cells, Akt1 most abundantly. Akt1 protein expression was reduced by TME yet unaffected by hypoxia, while Akt phosphorylation was increased by TME. The Akt loss was partly reversed by MCF-7 human breast cancer cell conditioned medium, suggesting that in vivo, the cancer cell secretome may compensate for adverse effects of TME on endothelial cells. TME, yet not hypoxia, reduced p70S6 kinase activity and ribosomal protein S6 phosphorylation and increased eIF2α phosphorylation, consistent with inhibition of protein translation. Finally, TME reduced Retinoblastoma protein phosphorylation and induced poly-ADP-ribose polymerase (PARP) cleavage consistent with inhibition of proliferation and induction of apoptosis. NHE1 knockdown, mimicking the effect of TME on NHE1 expression, reduced Ea.hy926

  18. Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cells.

    PubMed

    Chen, Meng-Chuan; Lee, Chi-Feng; Huang, Wen-Hsin; Chou, Tz-Chong

    2013-05-01

    The hypoxic environment in tumors is an important factor causing tumor angiogenesis by activating the key transcription factor, hypoxia-inducible factors-1α (HIF-1α). Magnolol isolated from Magnolia officinalis has been reported to exhibit an anticancer activity via elevation of apoptosis. However, whether magnolol inhibits tumor angiogenesis remains unknown. In the present study, we demonstrated that magnolol significantly inhibited angiogenesis in vitro and in vivo evidenced by the attenuation of hypoxia and vascular endothelial growth factor (VEGF)-induced tube formation of human umbilical vascular endothelial cells, vasculature generation in chicken chorioallantoic membrane and Matrigel plug. In hypoxic human bladder cancer cells (T24), treatment with magnolol inhibited hypoxia-stimulated H2O2 formation, HIF-1α induction including mRNA, protein expression, and transcriptional activity as well as VEGF secretion. Additionally, the enhanced degradation of HIF-1α protein via enhancing prolyl hydroxylase activity and the decreased newly-synthesized HIF-1α protein in hypoxic T24 cells may involve the reduction of HIF-1α protein accumulation by magnolol. Interestingly, magnolol also acts as a VEGFR2 antagonist, and subsequently attenuates the down-stream AKT/mTOR/p70S6K/4E-BP-1 kinase activation both in hypoxic T24 cells and tumor tissues. As expected, administration of magnolol greatly attenuated tumor growth, angiogenesis and the protein expression of HIF-1α, VEGF, CD31, a marker of endothelial cells, and carbonic anhydrase IX, an endogenous marker for hypoxia, in the T24 xenograft mouse model. Collectively, these findings strongly indicate that the anti-agngiogenic activity of magnolol is, at least in part, mediated by suppressing HIF-1α/VEGF-dependent pathways, and suggest that magnolol may be a potential drug for human bladder cancer therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. IGF-1 prevents ANG II-induced skeletal muscle atrophy via Akt- and Foxo-dependent inhibition of the ubiquitin ligase atrogin-1 expression

    PubMed Central

    Yoshida, Tadashi; Semprun-Prieto, Laura; Sukhanov, Sergiy

    2010-01-01

    Congestive heart failure is associated with activation of the renin-angiotensin system and skeletal muscle wasting. Angiotensin II (ANG II) has been shown to increase muscle proteolysis and decrease circulating and skeletal muscle IGF-1. We have shown previously that skeletal muscle-specific overexpression of IGF-1 prevents proteolysis and apoptosis induced by ANG II. These findings indicated that downregulation of IGF-1 signaling in skeletal muscle played an important role in the wasting effect of ANG II. However, the signaling pathways and mechanisms whereby IGF-1 prevents ANG II-induced skeletal muscle atrophy are unknown. Here we show ANG II-induced transcriptional regulation of two ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) that precedes the reduction of skeletal muscle IGF-1 expression, suggesting that activation of atrogin-1 and MuRF-1 is an initial mechanism leading to skeletal muscle atrophy in response to ANG II. IGF-1 overexpression in skeletal muscle prevented ANG II-induced skeletal muscle wasting and the expression of atrogin-1, but not MuRF-1. Dominant-negative Akt and constitutively active Foxo-1 blocked the ability of IGF-1 to prevent ANG II-mediated upregulation of atrogin-1 and skeletal muscle wasting. Our findings demonstrate that the ability of IGF-1 to prevent ANG II-induced skeletal muscle wasting is mediated via an Akt- and Foxo-1-dependent signaling pathway that results in inhibition of atrogin-1 but not MuRF-1 expression. These data suggest strongly that atrogin-1 plays a critical role in mechanisms of ANG II-induced wasting in vivo. PMID:20228261

  20. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis

    PubMed Central

    Li, Ni; Xue, Wei; Yuan, Huairui; Dong, Baijun; Ding, Yufeng; Liu, Yongfeng; Jiang, Min; Kan, Shan; Sun, Tongyu; Ren, Jiale; Pan, Qiang; Li, Xiang; Zhang, Peiyuan; Wang, Yan; Wang, Xiaoming; Li, Qintong

    2017-01-01

    Loss of phosphatase and tensin homolog (PTEN) and activation of the PI3K/AKT signaling pathway are hallmarks of prostate cancer (PCa). However, these alterations alone are insufficient for cells to acquire metastatic traits. Here, we have shown that the histone dimethyl transferase WHSC1 critically drives indolent PTEN-null tumors to become metastatic PCa. In a PTEN-null murine PCa model, WHSC1 overexpression in prostate epithelium cooperated with Pten deletion to produce a metastasis-prone tumor. Conversely, genetic ablation of Whsc1 prevented tumor progression in PTEN-null mice. Molecular characterization revealed that increased AKT activity due to PTEN loss directly phosphorylates WHSC1 at S172, preventing WHSC1 degradation by CRL4Cdt2 E3 ligase. Increased WHSC1 expression transcriptionally upregulates expression of RICTOR, a pivotal component of mTOR complex 2 (mTORC2), to further enhance AKT activity. Therefore, the AKT/WHSC1/mTORC2 signaling cascade represents a vicious feedback loop that elicits unrestrained AKT signaling. Furthermore, we determined that WHSC1 positively regulates Rac1 transcription to increase tumor cell motility. The biological importance of a WHSC1-mediated signaling cascade is substantiated by patient sample analysis in which WHSC1 signaling is tightly correlated with disease progression and recurrence. Taken together, our findings highlight a pivotal link between an epigenetic regulator, WHSC1, and key intracellular signaling molecules, AKT, RICTOR, and Rac1, to drive PCa metastasis. PMID:28319045

  1. Primary Cilium-Regulated EG-VEGF Signaling Facilitates Trophoblast Invasion.

    PubMed

    Wang, Chia-Yih; Tsai, Hui-Ling; Syu, Jhih-Siang; Chen, Ting-Yu; Su, Mei-Tsz

    2017-06-01

    Trophoblast invasion is an important event in embryo implantation and placental development. During these processes, endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is the key regulator mediating the crosstalk at the feto-maternal interface. The primary cilium is a cellular antenna receiving environmental signals and is crucial for proper development. However, little is known regarding the role of the primary cilium in early human pregnancy. Here, we demonstrate that EG-VEGF regulates trophoblast cell invasion via primary cilia. We found that EG-VEGF activated ERK1/2 signaling and subsequent upregulation of MMP2 and MMP9, thereby facilitating cell invasion in human trophoblast HTR-8/SVneo cells. Inhibition of ERK1/2 alleviated the expression of MMPs and trophoblast cell invasion after EG-VEGF treatment. In addition, primary cilia were observed in all the trophoblast cell lines tested and, more importantly, in human first-trimester placental tissue. The receptor of EG-VEGF, PROKR1, was detected in primary cilia. Depletion of IFT88, the intraflagellar transporter required for ciliogenesis, inhibited primary cilium growth, thereby ameliorating ERK1/2 activation, MMP upregulation, and trophoblast cell invasion promoted by EG-VEGF. These findings demonstrate a novel function of primary cilia in controlling EG-VEGF-regulated trophoblast invasion and reveal the underlying molecular mechanism. J. Cell. Physiol. 232: 1467-1477, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Efficient VEGF targeting delivery of DOX using Bevacizumab conjugated SiO2@LDH for anti-neuroblastoma therapy.

    PubMed

    Zhu, Rongrong; Wang, Zhaoqi; Liang, Peng; He, Xiaolie; Zhuang, Xizhen; Huang, Ruiqi; Wang, Mei; Wang, Qigang; Qian, Yechang; Wang, Shilong

    2017-11-01

    Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis and is highly expressed in carcinoma, which make it an important target for tumor targeting therapy. Neuroblastoma is the main cause for cancer-related death in children. Like most solid tumors, it is also accompanied with the overexpression of VEGF. Doxorubicin Hydrochloride (DOX), a typical chemotherapeutic agent, exhibits efficient anticancer activities for various cancers. However, DOX, without targeting ability, usually causes severe damage to normal tissues. To overcome the shortages, we designed a novel nano-composite, which is Bevacizumab (Bev) modified SiO 2 @LDH nanoparticles (SiO 2 @LDH-Bev), loading with DOX to achieve targeting ability and curative efficiency. SiO 2 @LDH-DOX and SiO 2 @LDH-Bev-DOX nanoparticles were synthesized and the physicochemical properties were characterized by TEM detection, Zeta potential analysis, FTIR, Raman and XPS analysis. Then in vitro and in vivo anti-neuroblastoma efficiency, targeting ability and mechanisms of anti-carcinoma and anti-angiogenesis of SiO 2 @LDH-Bev-DOX were explored. Our results indicated that we obtained the core-shell structure SiO 2 @LDH-Bev with an average diameter of 253±10nm and the amount of conjugated Bev was 4.59±0.38μg/mg SiO 2 @LDH-Bev. SiO 2 @LDH-Bev-DOX could improve the cellular uptake and the targeting effect of DOX to brain and tumor, enhance the anti-neuroblastoma and anti-angiogenesis efficiency both in vitro and in vivo, and alleviate side effects of DOX sharply, especially hepatic injury. In addition, we also demonstrated that angiogenesis inhibitory effect was mediated by DOX and VEGF triggered signal pathways, including PI3K/Akt, Raf/MEK/ERK, and adhesion related pathways. In summary, SiO 2 @LDH-Bev could be a potential VEGF targeting nanocarrier applied in VEGF positive cancer therapy. This paper explored that a novel core-shell structure nanomaterial SiO 2 @LDH and modified SiO 2 @LDH with

  3. Protein Kinase D1 Signaling in Angiogenic Gene Expression and VEGF-Mediated Angiogenesis.

    PubMed

    Ren, Bin

    2016-01-01

    Protein kinase D 1 (PKD-1) is a signaling kinase important in fundamental cell functions including migration, proliferation, and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease, and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  4. Protein Kinase D1 Signaling in Angiogenic Gene Expression and VEGF-Mediated Angiogenesis

    PubMed Central

    Ren, Bin

    2016-01-01

    Protein kinase D 1 (PKD-1) is a signaling kinase important in fundamental cell functions including migration, proliferation, and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease, and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis. PMID:27200349

  5. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulatingmore » the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.« less

  6. Adverse effects of anticancer agents that target the VEGF pathway.

    PubMed

    Chen, Helen X; Cleck, Jessica N

    2009-08-01

    Antiangiogenesis agents that target the VEGF/VEGF receptor pathway have become an important part of standard therapy in multiple cancer indications. With expanded clinical experience with this class of agents has come the increasing recognition of the diverse adverse effects related to disturbance of VEGF-dependent physiological functions and homeostasis in the cardiovascular and renal systems, as well as wound healing and tissue repair. Although most adverse effects of VEGF inhibitors are modest and manageable, some are associated with serious and life-threatening consequences, particularly in high-risk patients and in certain clinical settings. This Review examines the toxicity profiles of anti-VEGF antibodies and small-molecule inhibitors. The potential mechanisms of the adverse effects, risk factors, and the implications for selection of patients and management are discussed.

  7. Tamoxifen reduces P-gp-mediated multidrug resistance via inhibiting the PI3K/Akt signaling pathway in ER-negative human gastric cancer cells.

    PubMed

    Mao, Zonglei; Zhou, Jin; Luan, Junwei; Sheng, Weihua; Shen, Xiaochun; Dong, Xiaoqiang

    2014-03-01

    Multidrug resistance (MDR), mediated by overexpression of drug efflux transporters such as P-glycoprotein (P-gp), is a major problem limiting successful chemotherapy of gastric cancer. Tamoxifen (TAM), a triphenylethylene nonsteroidal antiestrogen agent, shows broad-spectrum antitumor properties. Emerging studies demonstrated that TAM could significantly reduce the MDR in a variety of human cancers. Here we investigated the effects and possible underlying mechanisms of action of TAM on the reversion of MDR in ER-negative human gastric cancer cells. Our results demonstrated that in MDR phenotype SGC7901/CDDP gastric cancer cells TAM dramatically lowered the IC50 of CDDP, 5-FU and ADM, increased the intracellular Rhodamine123 accumulation and induced G0/G1 phase arrest, while G2/M phase decreased accordingly. Furthermore, at the molecular level, TAM substantially decreased the expression of P-gp, p-Akt and the Akt-regulated downstream effectors such as p-GSK-3β, p-BAD, Bcl-XL and cyclinD1 proteins without affecting the expression of t-Akt, t-GSK-3β, t-BAD proteins in SGC7901/CDDP cells. Thus, our findings demonstrate that TAM reverses P-gp-mediated gastric cancer cell MDR via inhibiting the PI3K/Akt signaling pathway. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Genetic deletion of COX-2 diminishes VEGF production in mouse retinal Müller cells.

    PubMed

    Yanni, Susan E; McCollum, Gary W; Penn, John S

    2010-07-01

    Non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit COX activity, reduce the production of retinal VEGF and neovascularization in relevant models of ocular disease. We hypothesized that COX-2 mediates VEGF production in retinal Müller cells, one of its primary sources in retinal neovascular disease. The purpose of this study was to determine the role of COX-2 and its products in VEGF expression and secretion. These studies have more clearly defined the role of COX-2 and COX-2-derived prostanoids in retinal angiogenesis. Müller cells derived from wild-type and COX-2 null mice were exposed to hypoxia for 0-24 h. COX-2 protein and activity were assessed by western blot analysis and GC-MS, respectively. VEGF production was assessed by ELISA. Wild-type mouse Müller cells were treated with vehicle (0.1% DMSO), 10 microM PGE(2), or PGE(2) + 5 microM H-89 (a PKA inhibitor), for 12 h. VEGF production was assessed by ELISA. Hypoxia significantly increased COX-2 protein (p < 0.05) and activity (p < 0.05), and VEGF production (p < 0.0003). COX-2 null Müller cells produced significantly less VEGF in response to hypoxia (p < 0.05). Of the prostanoids, PGE(2) was significantly increased by hypoxia (p < 0.02). Exogenous PGE(2) significantly increased VEGF production by Müller cells (p < 0.0039), and this effect was inhibited by H-89 (p < 0.055). These data demonstrate that hypoxia induces COX-2, prostanoid production, and VEGF synthesis in Müller cells, and that VEGF production is at least partially COX-2-dependent. Our study suggests that PGE(2), signaling through the EP(2) and/or EP(4) receptor and PKA, mediates the VEGF response of Müller cells. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Beer elicits vasculoprotective effects through Akt/eNOS activation.

    PubMed

    Vilahur, Gemma; Casani, Laura; Mendieta, Guiomar; Lamuela-Raventos, Rosa M; Estruch, Ramon; Badimon, Lina

    2014-12-01

    There is controversy regarding the effect of alcohol beverage intake in vascular vasodilatory function in peripheral arteries. The effects of beer intake in coronary vasodilation remain unknown. We investigated whether regular beer intake (alcohol and alcohol-free) protects against hypercholesterolaemia-induced coronary endothelial dysfunction and the mechanisms behind this effect. Pigs were fed 10 days: (i) a Western-type hypercholesterolaemic diet (WD); (ii) WD+low-dose beer (12·5 g alcohol/day); (iii) WD+moderate-dose beer (25 g alcohol/day); or (iv) WD+moderate-dose alcohol-free-beer (0·0 g alcohol/day). Coronary responses to endothelium-dependent vasoactive drugs (acetylcholine: receptor mediated; calcium ionophore-A23189: nonreceptor mediated), endothelium-independent vasoactive drug (SNP) and L-NMMA (NOS-antagonist) were evaluated in the LAD coronary artery by flow Doppler. Coronary Akt/eNOS activation, MCP-1 expression, oxidative DNA damage and superoxide production were assessed. Lipid profile, lipoproteins resistance to oxidation and urinary isoxanthohumol concentration were evaluated. Alcoholic and nonalcoholic beer intake prevented WD-induced impairment of receptor- and non-receptor-operated endothelial-dependent coronary vasodilation. All animals displayed a similar vasodilatory response to SNP and L-NMMA blunted all endothelial-dependent vasorelaxation responses. Haemodynamic parameters remained unchanged. Coronary arteries showed lower DNA damage and increased Akt/eNOS axis activation in beer-fed animals. Animals taking beer showed HDL with higher antioxidant capacity, higher LDL resistance to oxidation and increased isoxanthohumol levels. Weight, lipids levels, liver enzymes and MCP-1 expression were not affected by beer intake. Non-alcoholic-related beer components protect against hyperlipemia-induced coronary endothelial dysfunction by counteracting vascular oxidative damage and preserving the Akt/eNOS pathway. Light-to-moderate beer

  10. Physiological activation of Akt by PHLPP1 deletion protects against pathological hypertrophy.

    PubMed

    Moc, Courtney; Taylor, Amy E; Chesini, Gino P; Zambrano, Cristina M; Barlow, Melissa S; Zhang, Xiaoxue; Gustafsson, Åsa B; Purcell, Nicole H

    2015-02-01

    To examine the role of physiological Akt signalling in pathological hypertrophy through analysis of PHLPP1 (PH domain leucine-rich repeat protein phosphatase) knock-out (KO) mice. To investigate the in vivo requirement for 'physiological' control of Akt activation in cardiac growth, we examined the effect of deleting the Akt phosphatase, PHLPP, on the induction of cardiac hypertrophy. Basal Akt phosphorylation increased nearly two-fold in the cardiomyocytes from PHLPP1 KO mice and physiological hypertrophy induced by swimming exercise was accentuated as assessed by increased heart size and myocyte cell area. In contrast, the development of pathophysiological hypertrophy induced by pressure overload and assessed by increases in heart size, myocyte cell area, and hypertrophic gene expression was attenuated. This attenuation coincided with decreased fibrosis and cell death in the KO mice. Cast moulding revealed increased capillary density basally in the KO hearts, which was further elevated relative to wild-type mouse hearts in response to pressure overload. In vitro studies with isolated myocytes in co-culture also demonstrated that PHLPP1 deletion in cardiomyocytes can enhance endothelial tube formation. Expression of the pro-angiogenic factor VEGF was also elevated basally and accentuated in response to transverse aortic constriction in hearts from KO mice. Our data suggest that enhancing Akt activity by inhibiting its PHLPP1-mediated dephosphorylation promotes processes associated with physiological hypertrophy that may be beneficial in attenuating the development of pathological hypertrophy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  11. Mutation of the 3-Phosphoinositide-Dependent Protein Kinase 1 (PDK1) Substrate-Docking Site in the Developing Brain Causes Microcephaly with Abnormal Brain Morphogenesis Independently of Akt, Leading to Impaired Cognition and Disruptive Behaviors

    PubMed Central

    Cordón-Barris, Lluís; Pascual-Guiral, Sònia; Yang, Shaobin; Giménez-Llort, Lydia; Lope-Piedrafita, Silvia; Niemeyer, Carlota; Claro, Enrique; Lizcano, Jose M.

    2016-01-01

    The phosphoinositide (PI) 3-kinase/Akt signaling pathway plays essential roles during neuronal development. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) coordinates the PI 3-kinase signals by activating 23 kinases of the AGC family, including Akt. Phosphorylation of a conserved docking site in the substrate is a requisite for PDK1 to recognize, phosphorylate, and activate most of these kinases, with the exception of Akt. We exploited this differential mechanism of regulation by generating neuron-specific conditional knock-in mice expressing a mutant form of PDK1, L155E, in which the substrate-docking site binding motif, termed the PIF pocket, was disrupted. As a consequence, activation of all the PDK1 substrates tested except Akt was abolished. The mice exhibited microcephaly, altered cortical layering, and reduced circuitry, leading to cognitive deficits and exacerbated disruptive behavior combined with diminished motivation. The abnormal patterning of the adult brain arises from the reduced ability of the embryonic neurons to polarize and extend their axons, highlighting the essential roles that the PDK1 signaling beyond Akt plays in mediating the neuronal responses that regulate brain development. PMID:27644329

  12. SPARC Overexpression Inhibits Cell Proliferation in Neuroblastoma and Is Partly Mediated by Tumor Suppressor Protein PTEN and AKT

    PubMed Central

    Bhoopathi, Praveen; Gorantla, Bharathi; Sailaja, G. S.; Gondi, Christopher S.; Gujrati, Meena; Klopfenstein, Jeffrey D.; Rao, Jasti S.

    2012-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is also known as BM-40 or Osteonectin, a multi-functional protein modulating cell–cell and cell–matrix interactions. In cancer, SPARC is not only linked with a highly aggressive phenotype, but it also acts as a tumor suppressor. In the present study, we sought to characterize the function of SPARC and its role in sensitizing neuroblastoma cells to radio-therapy. SPARC overexpression in neuroblastoma cells inhibited cell proliferation in vitro. Additionally, SPARC overexpression significantly suppressed the activity of AKT and this suppression was accompanied by an increase in the tumor suppressor protein PTEN both in vitro and in vivo. Restoration of neuroblastoma cell radio-sensitivity was achieved by overexpression of SPARC in neuroblastoma cells in vitro and in vivo. To confirm the role of the AKT in proliferation inhibited by SPARC overexpression, we transfected neuroblastoma cells with a plasmid vector carrying myr-AKT. Myr-AKT overexpression reversed SPARC-mediated PTEN and increased proliferation of neuroblastoma cells in vitro. PTEN overexpression in parallel with SPARC siRNA resulted in decreased AKT phosphorylation and proliferation in vitro. Taken together, these results establish SPARC as an effector of AKT-PTEN-mediated inhibition of proliferation in neuroblastoma in vitro and in vivo. PMID:22567126

  13. Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network.

    PubMed

    Fish, Jason E; Cantu Gutierrez, Manuel; Dang, Lan T; Khyzha, Nadiya; Chen, Zhiqi; Veitch, Shawn; Cheng, Henry S; Khor, Melvin; Antounians, Lina; Njock, Makon-Sébastien; Boudreau, Emilie; Herman, Alexander M; Rhyner, Alexander M; Ruiz, Oscar E; Eisenhoffer, George T; Medina-Rivera, Alejandra; Wilson, Michael D; Wythe, Joshua D

    2017-07-01

    The transcriptional pathways activated downstream of vascular endothelial growth factor (VEGF) signaling during angiogenesis remain incompletely characterized. By assessing the signals responsible for induction of the Notch ligand delta-like 4 (DLL4) in endothelial cells, we find that activation of the MAPK/ERK pathway mirrors the rapid and dynamic induction of DLL4 transcription and that this pathway is required for DLL4 expression. Furthermore, VEGF/ERK signaling induces phosphorylation and activation of the ETS transcription factor ERG, a prerequisite for DLL4 induction. Transcription of DLL4 coincides with dynamic ERG-dependent recruitment of the transcriptional co-activator p300. Genome-wide gene expression profiling identified a network of VEGF-responsive and ERG-dependent genes, and ERG chromatin immunoprecipitation (ChIP)-seq revealed the presence of conserved ERG-bound putative enhancer elements near these target genes. Functional experiments performed in vitro and in vivo confirm that this network of genes requires ERK, ERG and p300 activity. Finally, genome-editing and transgenic approaches demonstrate that a highly conserved ERG-bound enhancer located upstream of HLX (which encodes a transcription factor implicated in sprouting angiogenesis) is required for its VEGF-mediated induction. Collectively, these findings elucidate a novel transcriptional pathway contributing to VEGF-dependent angiogenesis. © 2017. Published by The Company of Biologists Ltd.

  14. Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF).

    PubMed

    Tan, B S; Tiong, K H; Choo, H L; Chung, F Fei-Lei; Hii, L-W; Tan, S H; Yap, I K S; Pani, S; Khor, N T W; Wong, S F; Rosli, R; Cheong, S-K; Leong, C-O

    2015-07-16

    p53 is the most frequently mutated tumor-suppressor gene in human cancers. Unlike other tumor-suppressor genes, p53 mutations mainly occur as missense mutations within the DNA-binding domain, leading to the expression of full-length mutant p53 protein. Mutant p53 proteins not only lose their tumor-suppressor function, but may also gain new oncogenic functions and promote tumorigenesis. Here, we showed that silencing of endogenous p53-R273H contact mutant, but not p53-R175H conformational mutant, reduced AKT phosphorylation, induced BCL2-modifying factor (BMF) expression, sensitized BIM dissociation from BCL-XL and induced mitochondria-dependent apoptosis in cancer cells. Importantly, cancer cells harboring endogenous p53-R273H mutant were also found to be inherently resistant to anoikis and lack BMF induction following culture in suspension. Underlying these activities is the ability of p53-R273H mutant to suppress BMF expression that is dependent on constitutively active PI3K/AKT signaling. Collectively, these findings suggest that p53-R273H can specifically drive AKT signaling and suppress BMF expression, resulting in enhanced cell survivability and anoikis resistance. These findings open the possibility that blocking of PI3K/AKT will have therapeutic benefit in mutant p53-R273H expressing cancers.

  15. Kank regulates RhoA-dependent formation of actin stress fibers and cell migration via 14-3-3 in PI3K-Akt signaling.

    PubMed

    Kakinuma, Naoto; Roy, Badal Chandra; Zhu, Yun; Wang, Yong; Kiyama, Ryoiti

    2008-05-05

    Phosphoinositide-3 kinase (PI3K)/Akt signaling is activated by growth factors such as insulin and epidermal growth factor (EGF) and regulates several functions such as cell cycling, apoptosis, cell growth, and cell migration. Here, we find that Kank is an Akt substrate located downstream of PI3K and a 14-3-3-binding protein. The interaction between Kank and 14-3-3 is regulated by insulin and EGF and is mediated through phosphorylation of Kank by Akt. In NIH3T3 cells expressing Kank, the amount of actin stress fibers is reduced, and the coexpression of 14-3-3 disrupted this effect. Kank also inhibits insulin-induced cell migration via 14-3-3 binding. Furthermore, Kank inhibits insulin and active Akt-dependent activation of RhoA through binding to 14-3-3. Based on these findings, we hypothesize that Kank negatively regulates the formation of actin stress fibers and cell migration through the inhibition of RhoA activity, which is controlled by binding of Kank to 14-3-3 in PI3K-Akt signaling.

  16. Identification of RhoGAP22 as an Akt-Dependent Regulator of Cell Motility in Response to Insulin▿‡

    PubMed Central

    Rowland, Alexander F.; Larance, Mark; Hughes, William E.; James, David E.

    2011-01-01

    Insulin exerts many of its metabolic actions via the canonical phosphatidylinositide 3 kinase (PI3K)/Akt pathway, leading to phosphorylation and 14-3-3 binding of key metabolic targets. We previously identified a GTPase-activating protein (GAP) for Rac1 called RhoGAP22 as an insulin-responsive 14-3-3 binding protein. Insulin increased 14-3-3 binding to RhoGAP22 fourfold, and this effect was PI3K dependent. We identified two insulin-responsive 14-3-3 binding sites (pSer16 and pSer395) within RhoGAP22, and mutagenesis studies revealed a complex interplay between the phosphorylation at these two sites. Mutating Ser16 to alanine blocked 14-3-3 binding to RhoGAP22 in vivo, and phosphorylation at Ser16 was mediated by the kinase Akt. Overexpression of a mutant RhoGAP22 that was unable to bind 14-3-3 reduced cell motility in NIH-3T3 fibroblasts, and this effect was dependent on a functional GAP domain. Mutation of the catalytic arginine of the GAP domain of RhoGAP22 potentiated growth factor-stimulated Rac1 GTP loading. We propose that insulin and possibly growth factors such as platelet-derived growth factor may play a novel role in regulating cell migration and motility via the Akt-dependent phosphorylation of RhoGAP22, leading to modulation of Rac1 activity. PMID:21969604

  17. Norcantharidin Facilitates LPS-Mediated Immune Responses by Up-Regulation of AKT/NF-κB Signaling in Macrophages

    PubMed Central

    Li, Ruimei; Tan, Binghe; Han, Honghui; Liu, Mingyao; Qian, Min; Du, Bing

    2012-01-01

    Norcantharidin (NCTD), a demethylated analog of cantharidin, is a common used clinical drug to inhibit proliferation and metastasis of cancer cells. But the role of NCTD in modulating immune responses remains unknown. Here, we investigated the function and mechanism of NCTD in regulation of TLR4 associated immune response in macrophages. We evaluated the influence of NCTD on host defense against invaded pathogens by acute peritonitis mouse model, ELISA, Q-PCR, nitrite quantification, phagocytosis assay and gelatin zymography assay. Our data showed that the survival and the serum concentrations of IL-6 and TNF-α were all enhanced by NCTD significantly in peritonitis mouse model. Accordingly, LPS-induced cytokine, nitric oxide and MMP-9 production as well as the phagocytosis of bacteria were all up-regulated by NCTD in a dose dependent manner in both RAW264.7 cells and bone marrow-derived macrophages (BMMs). Then we further analyzed TLR4 associated signaling pathway by Western blot, Immunofluorescence and EMSA in the presence or absence of LPS. The phosphorylation of AKT and p65 at serine 536 but not serine 468 was enhanced obviously by NCTD in a dose dependent manner, whereas the degradation of IκBα was little effected. Consequently, the nuclear translocation and DNA binding ability of NF-κB was also increased by NCTD obviously in RAW264.7 cells. Our results demonstrated that NCTD could facilitate LPS-mediated immune response through promoting the phosphorylation of AKT/p65 and transcriptional activity of NF-κB, thus reprofiling the traditional anti-tumor drug NCTD as a novel immune regulator in promoting host defense against bacterial infection. PMID:22984593

  18. Homocysteine impaired endothelial function through compromised vascular endothelial growth factor/Akt/endothelial nitric oxide synthase signalling.

    PubMed

    Yan, Ting-Ting; Li, Qian; Zhang, Xuan-Hong; Wu, Wei-Kang; Sun, Juan; Li, Lin; Zhang, Quan; Tan, Hong-Mei

    2010-11-01

    1. Hyperhomocysteinaemia (HHcy) is associated with endothelial dysfunction and has been recognized as a risk factor of cardiovascular disease. The present study aimed to investigate the effect of homocysteine (Hcy) on endothelial function in vivo and in vitro, and the underlying signalling pathways. 2. The HHcy animal model was established by intragastric administration with l-methionine in rats. Plasma Hcy and nitric oxide (NO) concentration were measured by fluorescence immunoassay or nitrate reductase method, respectively. Vasorelaxation in response to acetylcholine and sodium nitroprusside were carried out on aortic rings. Human umbilical vein endothelial cells (HUVEC) were treated with indicated concentrations of Hcy in the in vitro experiments. Intracellular NO level and NO concentration in culture medium were assayed. The alterations of possible signalling proteins were detected by western blot analysis. 3. l-methionine administration induced a significant increase in plasma Hcy and decrease in plasma NO. Endothelium-dependent relaxation of aortic rings in response to acetylcholine was impaired in l-methionine-administrated rats. The in vitro study showed that Hcy reduced both intracellular and culture medium NO levels. Furthermore, Hcy decreased phosphorylation of endothelial nitric oxide synthase (eNOS) at serine-1177 and phosphorylation of Akt at serine-473. Hcy-induced dephosphorylation of eNOS at Ser-1177 was partially reversed by insulin (Akt activator) and GF109203X (PKC inhibitor). Furthermore, Hcy reduced vascular endothelial growth factor (VEGF) expression in a dose-dependent manner. 4. In conclusion, Hcy impaired endothelial function through compromised VEGF/Akt/endothelial nitric oxide synthase signalling. These findings will be beneficial for further understanding the role of Hcy in cardiovascular disease. © 2010 Blackwell Publishing Asia Pty Ltd.

  19. β2-Glycoprotein I Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis by Suppressing the Phosphorylation of Extracellular Signal-Regulated Kinase 1/2, Akt, and Endothelial Nitric Oxide Synthase

    PubMed Central

    Chiu, Wen-Chin; Chiou, Tzeon-Jye; Chung, Meng-Ju; Chiang, An-Na

    2016-01-01

    Angiogenesis is the process of new blood vessel formation, and it plays a key role in various physiological and pathological conditions. The β2-glycoprotein I (β2-GPI) is a plasma glycoprotein with multiple biological functions, some of which remain to be elucidated. This study aimed to identify the contribution of 2-GPI on the angiogenesis induced by vascular endothelial growth factor (VEGF), a pro-angiogenic factor that may regulate endothelial remodeling, and its underlying mechanism. Our results revealed that β2-GPI dose-dependently decreased the VEGF-induced increase in endothelial cell proliferation, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the bromodeoxyuridine (BrdU) incorporation assays. Furthermore, incubation with both β2-GPI and deglycosylated β2-GPI inhibited the VEGF-induced tube formation. Our results suggest that the carbohydrate residues of β2-GPI do not participate in the function of anti-angiogenesis. Using in vivo Matrigel plug and angioreactor assays, we show that β2-GPI remarkably inhibited the VEGF-induced angiogenesis at a physiological concentration. Moreover, β2-GPI inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS). In summary, our in vitro and in vivo data reveal for the first time that β2-GPI inhibits the VEGF-induced angiogenesis and highlights the potential for β2-GPI in anti-angiogenic therapy. PMID:27579889

  20. Tocotrienols target PI3K/Akt signaling in anti-breast cancer therapy.

    PubMed

    Sylvester, Paul W; Ayoub, Nehad M

    2013-09-01

    The PI3K/Akt signaling pathway mediates mitogen-dependent growth and survival in various types of cancer cells, and inhibition of this pathway results in tumor cell growth arrest and apoptosis. Tocotrienols are natural forms of vitamin E that displays potent anticancer activity at treatment doses that had little or no effect on normal cell viability. Mechanistic studies revealed that the anticancer effects of γ-tocotrienol were associated with a suppression in PI3K/Akt signaling. Additional studies showed that cytotoxic LD50 doses of γ-tocotrienol were 3-5-fold higher than growth inhibitory IC50 treatment doses, suggesting that cytotoxic and antiproliferative effects of γ-tocotrienol might be mediated through different mechanisms. However, γ-tocotrienol-induced caspase activation and apoptosis in mammary tumor cells was also found to be associated with suppression in intracellular PI3K/Akt signaling and subsequent down-regulation of FLIP, an endogenous inhibitor of caspase processing and activation. Since breast cancer cells are significantly more sensitive to the inhibitory effects of γ-tocotrienol on PI3K/Akt signaling than normal cells, these findings suggest that γ-tocotrienol may provide significant health benefits in reducing the risk of breast cancer in women. Studies have also shown that combined treatment of γ-tocotrienol with other chemotherapeutic agents can result in a synergistic anticancer response. Combination therapy was most effective when the anticancer mechanism of action of γ-tocotrienol is complimentary to that of the other drug and can provide significant health benefits in the prevention and/or treatment of breast cancer, while at the same time avoiding tumor resistance or toxic effects that is commonly associated with high dose monotherapy.

  1. An Antagonistic Vascular Endothelial Growth Factor (VEGF) Variant Inhibits VEGF-Stimulated Receptor Autophosphorylation and Proliferation of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Siemeister, Gerhard; Schirner, Michael; Reusch, Petra; Barleon, Bernhard; Marme, Dieter; Martiny-Baron, Georg

    1998-04-01

    Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.

  2. The E3 ubiquitin ligases β-TrCP and FBXW7 cooperatively mediates GSK3-dependent Mcl-1 degradation induced by the Akt inhibitor API-1, resulting in apoptosis.

    PubMed

    Ren, Hui; Koo, Junghui; Guan, Baoxiang; Yue, Ping; Deng, Xingming; Chen, Mingwei; Khuri, Fadlo R; Sun, Shi-Yong

    2013-11-22

    The novel Akt inhibitor, API-1, induces apoptosis through undefined mechanisms. The current study focuses on revealing the mechanisms by which API-1 induces apoptosis. API-1 rapidly and potently reduced the levels of Mcl-1 primarily in API-1-senstive lung cancer cell lines. Ectopic expression of Mcl-1 protected cells from induction of apoptosis by API-1. API-1 treatment decreased the half-life of Mcl-1, whereas inhibition of the proteasome with MG132 rescued Mcl-1 reduction induced by API-1. API-1 decreased Mcl-1 levels accompanied with a rapid increase in Mcl-1 phosphorylation (S159/T163). Moreover, inhibition of GSK3 inhibited Mcl-1 phosphorylation and reduction induced by API-1 and antagonized the effect of API-1 on induction of apoptosis. Knockdown of either FBXW7 or β-TrCP alone, both of which are E3 ubiquitin ligases involved in Mcl-1 degradation, only partially rescued Mcl-1 reduction induced by API-1. However, double knockdown of both E3 ubiquitin ligases enhanced the rescue of API-1-induced Mcl-1 reduction. API-1 induces GSK3-dependent, β-TrCP- and FBXW7-mediated Mcl-1 degradation, resulting in induction of apoptosis.

  3. The E3 ubiquitin ligases β-TrCP and FBXW7 cooperatively mediates GSK3-dependent Mcl-1 degradation induced by the Akt inhibitor API-1, resulting in apoptosis

    PubMed Central

    2013-01-01

    Background The novel Akt inhibitor, API-1, induces apoptosis through undefined mechanisms. The current study focuses on revealing the mechanisms by which API-1 induces apoptosis. Results API-1 rapidly and potently reduced the levels of Mcl-1 primarily in API-1-senstive lung cancer cell lines. Ectopic expression of Mcl-1 protected cells from induction of apoptosis by API-1. API-1 treatment decreased the half-life of Mcl-1, whereas inhibition of the proteasome with MG132 rescued Mcl-1 reduction induced by API-1. API-1 decreased Mcl-1 levels accompanied with a rapid increase in Mcl-1 phosphorylation (S159/T163). Moreover, inhibition of GSK3 inhibited Mcl-1 phosphorylation and reduction induced by API-1 and antagonized the effect of API-1 on induction of apoptosis. Knockdown of either FBXW7 or β-TrCP alone, both of which are E3 ubiquitin ligases involved in Mcl-1 degradation, only partially rescued Mcl-1 reduction induced by API-1. However, double knockdown of both E3 ubiquitin ligases enhanced the rescue of API-1-induced Mcl-1 reduction. Conclusions API-1 induces GSK3-dependent, β-TrCP- and FBXW7-mediated Mcl-1 degradation, resulting in induction of apoptosis. PMID:24261825

  4. 2,5-hexanedione induces bone marrow mesenchymal stem cell apoptosis via inhibition of Akt/Bad signal pathway.

    PubMed

    Sun, Jingsong; Shi, Xiaoxia; Li, Shuangyue; Piao, Fengyuan

    2018-04-01

    2,5-Hexanedione (HD) is an important bioactive metabolite of n-hexane and mediates the neurotoxicity of parent compound. Studies show that HD induces apoptotic death of neural progenitor cells. However, its underlying mechanism remains unknown. Mesenchymal stem cells (MSCs) are multipotential stem cells with the ability to differentiate into various cell types and have been used as cell model for studying the toxic effects of chemicals on stem cells. In this study, we exposed rat bone marrow MSCs to 0, 10, 20, and 40 mM HD in vitro. Apoptosis and disruption of mitochondrial transmembrane potential were estimated by immunochemistry staining. The expression of Akt, Bad, phosphorylated Akt (p-Akt), and Bad (p-Bad) as well as cytochrome c in mitochondria and cytosol were examined by Western blot. Moreover, caspase 3 activity, viability, and death of cells were measured by spectrophotometry. Our results showed that HD induced cell apoptosis and increased caspase 3 activity. HD down-regulated the expression levels of p-Akt, p-Bad and induced MMP depolarization, followed by cytochrome c release. Moreover, HD led to a concentration-dependent increase in the MSCs death, which was relative to MSCs apoptosis. However, these toxic effects of HD on the MSCs were significantly mitigated in the presence of IGF, which could activate PI3 K/Akt pathway. These results indicated that HD induced mitochondria-mediated apoptosis in the MSCs via inhibiting Akt/Bad signaling pathway and apoptotic death of MSCs via the signaling pathway. These results might provide some clues for studying further the mechanisms of HD-induced stem cell apoptosis and adverse effect on neurogenesis. © 2017 Wiley Periodicals, Inc.

  5. Wall shear stress promotes intimal hyperplasia through the paracrine H2O2-mediated NOX-AKT-SVV axis.

    PubMed

    Zhang, Haolong; Yang, Zhipeng; Wang, Jing; Wang, Xuehu; Zhao, Yu; Zhu, Fangyu

    2018-05-27

    Oscillatory wall shear stress (WSS)-linked oxidative stress promotes intimal hyperplasia (IH) development, but the underlying mechanisms are not completely understood. We used an in vivo rabbit carotid arterial stenosis model representing different levels of WSS and found that WSS was increased at 1 month with 50% stenosis and was accompanied by VSMCs proliferation and interstitial collagen accumulation. Increased WSS promoted the expression of NOX, AKT, and survivin (SVV) and the proliferation/migration of VSMCs and reduced apoptosis. Our in vitro study suggested that H 2 O 2 promoted proliferation and migration while suppressing apoptosis in cultured human umbilical vascular endothelial cells. We demonstrated that the elevation of WSS promotes VSMC proliferation and migration through the H 2 O 2 -mediated NOX-AKT-SVV axis, thereby accelerating IH development. Copyright © 2017. Published by Elsevier Inc.

  6. Sensitivity to PI3K and AKT inhibitors is mediated by divergent molecular mechanisms in subtypes of DLBCL.

    PubMed

    Erdmann, Tabea; Klener, Pavel; Lynch, James T; Grau, Michael; Vočková, Petra; Molinsky, Jan; Tuskova, Diana; Hudson, Kevin; Polanska, Urszula M; Grondine, Michael; Mayo, Michele; Dai, Beiying; Pfeifer, Matthias; Erdmann, Kristian; Schwammbach, Daniela; Zapukhlyak, Myroslav; Staiger, Annette M; Ott, German; Berdel, Wolfgang E; Davies, Barry R; Cruzalegui, Francisco; Trneny, Marek; Lenz, Peter; Barry, Simon T; Lenz, Georg

    2017-07-20

    Activated B-cell-like (ABC) and germinal center B-cell-like diffuse large B-cell lymphoma (DLBCL) represent the 2 major molecular DLBCL subtypes. They are characterized by differences in clinical course and by divergent addiction to oncogenic pathways. To determine activity of novel compounds in these 2 subtypes, we conducted an unbiased pharmacologic in vitro screen. The phosphatidylinositol-3-kinase (PI3K) α/δ (PI3Kα/δ) inhibitor AZD8835 showed marked potency in ABC DLBCL models, whereas the protein kinase B (AKT) inhibitor AZD5363 induced apoptosis in PTEN-deficient DLBCLs irrespective of their molecular subtype. These in vitro results were confirmed in various cell line xenograft and patient-derived xenograft mouse models in vivo. Treatment with AZD8835 induced inhibition of nuclear factor κB signaling, prompting us to combine AZD8835 with the Bruton's tyrosine kinase inhibitor ibrutinib. This combination was synergistic and effective both in vitro and in vivo. In contrast, the AKT inhibitor AZD5363 was effective in PTEN-deficient DLBCLs through downregulation of the oncogenic transcription factor MYC. Collectively, our data suggest that patients should be stratified according to their oncogenic dependencies when treated with PI3K and AKT inhibitors. © 2017 by The American Society of Hematology.

  7. Methylglyoxal Mediates Adipocyte Proliferation by Increasing Phosphorylation of Akt1

    PubMed Central

    Jia, Xuming; Chang, Tuanjie; Wilson, Thomas W.; Wu, Lingyun

    2012-01-01

    Methylglyoxal (MG) is a highly reactive metabolite physiologically presented in all biological systems. The effects of MG on diabetes and hypertension have been long recognized. In the present study, we investigated the potential role of MG in obesity, one of the most important factors to cause metabolic syndrome. An increased MG accumulation was observed in the adipose tissue of obese Zucker rats. Cell proliferation assay showed that 5–20 µM of MG stimulated the proliferation of 3T3-L1 cells. Further study suggested that accumulated-MG stimulated the phosphorylation of Akt1 and its targets including p21 and p27. The activated Akt1 then increased the activity of CDK2 and accelerated the cell cycle progression of 3T3-L1 cells. The effects of MG were efficiently reversed by advanced glycation end product (AGE) breaker alagebrium and Akt inhibitor SH-6. In summary, our study revealed a previously unrecognized effect of MG in stimulating adipogenesis by up-regulation of Akt signaling pathway and this mechanism might offer a new approach to explain the development of obesity. PMID:22606274

  8. Efficacy of Histone Deacetylase and Estrogen Receptor Inhibition in Breast Cancer Cells Due to Concerted down Regulation of Akt

    PubMed Central

    Thomas, Scott; Thurn, K. Ted; Raha, Paromita; Chen, Stephanie; Munster, Pamela N.

    2013-01-01

    Hormonal therapy resistance remains a considerable barrier in the treatment of breast cancer. Activation of the Akt-PI3K-mTOR pathway plays an important role in hormonal therapy resistance. Our recent preclinical and clinical studies showed that the addition of a histone deacetylase inhibitor re-sensitized hormonal therapy resistant breast cancer to tamoxifen. As histone deacetylases are key regulators of Akt, we evaluated the effect of combined treatment with the histone deacetylase inhibitor PCI-24781 and tamoxifen on Akt in breast cancer cells. We demonstrate that while both histone deacetylase and estrogen receptor inhibition down regulate AKT mRNA and protein, their concerted effort results in down regulation of AKT activity with induction of cell death. Histone deacetylase inhibition exerts its effect on AKT mRNA through an estrogen receptor-dependent mechanism, primarily down regulating the most abundant isoform AKT1. Although siRNA depletion of AKT modestly induces cell death, when combined with an anti-estrogen, cytotoxicity is significantly enhanced. Thus, histone deacetylase regulation of AKT mRNA is a key mediator of this therapeutic combination and may represent a novel biomarker for predicting response to this regimen. PMID:23874830

  9. Inhibition of AKT signaling by supercritical CO2 extract of mango ginger (Curcuma amada Roxb.) in human glioblastoma cells.

    PubMed

    Ramachandran, Cheppail; Portalatin, Gilda; Quirin, Karl-W; Escalon, Enrique; Khatib, Ziad; Melnick, Steven J

    2015-12-01

    Mango ginger (Curcuma amada Roxb.) is a less-investigated herb for anticancer properties than other related Curcuma species. AKT (a serine/threonine protein kinase B, originally identified as an oncogene in the transforming retrovirus AKT8) plays a central role in the development and promotion of cancer. In this investigation, we have analyzed the effect of supercritical CO2 extract of mango ginger (CA) on the genetic pathways associated with AKT signaling in human glioblastoma cells. The inhibitory effect of supercritical CO2 extract of mango ginger (Curcuma amada) on AKT signaling was investigated in U-87MG glioblastoma cells. CA was highly cytotoxic to glioblastoma cell line (IC50=4.92±0.81 µg/mL) compared to mHypoE-N1 normal mouse hypothalamus cell line (IC50=40.57±0.06 µg/mL). CA inhibits AKT (protein Kinase B) and adenosine monophophate -activated protein kinase α (AMPKα) phosphorylation significantly in a dose-dependent manner. The cell migration which is necessary for invasion and metastasis was also inhibited by CA treatment, with about 43% reduction at 20 µg/mL concentration. Analysis of mRNA and protein expression of genes associated with apoptosis, cell proliferation and angiogenesis showed that CA modulates expression of genes associated with apoptosis (Bax, Bcl-2, Bcl-X, BNIP3, caspase-3, mutant p53 and p21), cell proliferation (Ki67) and angiogenesis vascular endothelial growth factor (VEGF). Additionally, heat shock protein 90 (HSP90) and AMPKα genes interacting with the AKT signaling pathway were also downregulated by CA treatment. These results indicate the molecular targets and mechanisms underlying the anticancer effect of CA in human glioblastoma cells.

  10. GRAMD1B regulates cell migration in breast cancer cells through JAK/STAT and Akt signaling.

    PubMed

    Khanna, Puja; Lee, Joan Shuying; Sereemaspun, Amornpun; Lee, Haeryun; Baeg, Gyeong Hun

    2018-06-22

    Dysregulated JAK/STAT signaling has been implicated in breast cancer metastasis, which is associated with high relapse risks. However, mechanisms underlying JAK/STAT signaling-mediated breast tumorigenesis are poorly understood. Here, we showed that GRAMD1B expression is upregulated on IL-6 but downregulated upon treatment with the JAK2 inhibitor AG490 in the breast cancer MDA-MB-231 cells. Notably, Gramd1b knockdown caused morphological changes of the cells, characterized by the formation of membrane ruffling and protrusions, implicating its role in cell migration. Consistently, GRAMD1B inhibition significantly enhanced cell migration, with an increase in the levels of the Rho family of GTPases. We also found that Gramd1b knockdown-mediated pro-migratory phenotype is associated with JAK2/STAT3 and Akt activation, and that JAK2 or Akt inhibition efficiently suppresses the phenotype. Interestingly, AG490 dose-dependently increased p-Akt levels, and our epistasis analysis suggested that the effect of JAK/STAT inhibition on p-Akt is via the regulation of GRAMD1B expression. Taken together, our results suggest that GRAMD1B is a key signaling molecule that functions to inhibit cell migration in breast cancer by negating both JAK/STAT and Akt signaling, providing the foundation for its development as a novel biomarker in breast cancer.

  11. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Hideki, E-mail: hkimura@u-fukui.ac.jp; Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui; Mikami, Daisuke

    Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area bymore » producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.« less

  12. YAP/TAZ Orchestrate VEGF Signaling during Developmental Angiogenesis.

    PubMed

    Wang, Xiaohong; Freire Valls, Aida; Schermann, Géza; Shen, Ying; Moya, Ivan M; Castro, Laura; Urban, Severino; Solecki, Gergely M; Winkler, Frank; Riedemann, Lars; Jain, Rakesh K; Mazzone, Massimilano; Schmidt, Thomas; Fischer, Tamás; Halder, Georg; Ruiz de Almodóvar, Carmen

    2017-09-11

    Vascular endothelial growth factor (VEGF) is a major driver of blood vessel formation. However, the signal transduction pathways culminating in the biological consequences of VEGF signaling are only partially understood. Here, we show that the Hippo pathway effectors YAP and TAZ work as crucial signal transducers to mediate VEGF-VEGFR2 signaling during angiogenesis. We demonstrate that YAP/TAZ are essential for vascular development as endothelium-specific deletion of YAP/TAZ leads to impaired vascularization and embryonic lethality. Mechanistically, we show that VEGF activates YAP/TAZ via its effects on actin cytoskeleton and that activated YAP/TAZ induce a transcriptional program to further control cytoskeleton dynamics and thus establish a feedforward loop that ensures a proper angiogenic response. Lack of YAP/TAZ also results in altered cellular distribution of VEGFR2 due to trafficking defects from the Golgi apparatus to the plasma membrane. Altogether, our study identifies YAP/TAZ as central mediators of VEGF signaling and therefore as important regulators of angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT.

    PubMed

    Leszczynska, Katarzyna B; Foskolou, Iosifina P; Abraham, Aswin G; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N; O'Neill, Eric E; Buffa, Francesca M; Hammond, Ester M

    2015-06-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage-induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain-containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors.

  14. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    PubMed Central

    Leszczynska, Katarzyna B.; Foskolou, Iosifina P.; Abraham, Aswin G.; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N.; O’Neill, Eric E.; Buffa, Francesca M.; Hammond, Ester M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage–induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain–containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors. PMID:25961455

  15. The Janus Face of VEGF in Stroke

    PubMed Central

    Geiseler, Samuel J.; Morland, Cecilie

    2018-01-01

    The family of vascular endothelial growth factors (VEGFs) are known for their regulation of vascularization. In the brain, VEGFs are important regulators of angiogenesis, neuroprotection and neurogenesis. Dysregulation of VEGFs is involved in a large number of neurodegenerative diseases and acute neurological insults, including stroke. Stroke is the main cause of acquired disabilities, and normally results from an occlusion of a cerebral artery or a hemorrhage, both leading to focal ischemia. Neurons in the ischemic core rapidly undergo necrosis. Cells in the penumbra are exposed to ischemia, but may be rescued if adequate perfusion is restored in time. The neuroprotective and angiogenic effects of VEGFs would theoretically make VEGFs ideal candidates for drug therapy in stroke. However, contradictory to what one might expect, endogenously upregulated levels of VEGF as well as the administration of exogenous VEGF is detrimental in acute stroke. This is probably due to VEGF-mediated blood–brain-barrier breakdown and vascular leakage, leading to edema and increased intracranial pressure as well as neuroinflammation. The key to understanding this Janus face of VEGF function in stroke may lie in the timing; the harmful effect of VEGFs on vessel integrity is transient, as both VEGF preconditioning and increased VEGF after the acute phase has a neuroprotective effect. The present review discusses the multifaceted action of VEGFs in stroke prevention and therapy. PMID:29734653

  16. Involvement of PI3K/Akt, ERK and p38 signaling pathways in emodin-mediated extrinsic and intrinsic human hepatoblastoma cell apoptosis.

    PubMed

    Cui, Yuting; Lu, Peiran; Song, Ge; Liu, Qian; Zhu, Di; Liu, Xuebo

    2016-06-01

    As a natural anthraquinone derivative, 1,3,8-trihydroxy-6-methylanthraquinone, known as emodin, has recently been reported to possess potential chemopreventive capacity, but the underlying molecular mechanism of its hepatocyte toxicity remains poorly clarified. The present research indicated that emodin targeted HepG2 cells without being cytotoxic to primary human hepatocyte cells in comparison with chrysophanol and rhein. The anti-proliferative effect of emodin was ascribed to occurrence of apoptosis, which characterized by higher ethidium bromide signal, brighter DAPI fluorescence, cleavages of procaspase-3 and poly (ADP-ribose) polymerase as well as quantitative result from Annexin V-FITC/PI double staining. Furthermore, emodin improved Bax/Bcl-2 ratio, elicited disruption of mitochondrial membrane potential and promoted efflux of cytochrome c to cytosol, indicative of features of mitochondria-dependent apoptotic signals. Emodin concurrently led to activations of Fas, Fas-L, caspase-8 and tBid, which provoked death receptor apoptotic signals. Notably, activated tBid relayed the Fas apoptotic signal to the mitochondrial pathway. Besides, emodin effectively attenuated phosphorylations of Akt and ERK and promoted phosphorylation of p38. Inhibitions of PI3K/Akt and ERK and activation of p38 mediated emodin-induced apoptosis through modulating the mitochondrial pathway and/or death receptor pathway. Additionally, there was a cross-talk between PI3K/Akt and MAPKs pathways in emodin-induced apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. 17β-estradiol activates mTOR in chondrocytes by AKT-dependent and AKT-independent signaling pathways

    PubMed Central

    Tao, Yulei; Sun, Haibiao; Sun, Hongyan; Qiu, Xianxing; Xu, Changbo; Shi, Changxiu; Du, Jiahui

    2015-01-01

    To confirm whether 17β-estradiol (E2) activates mammalian target of rapamycin (mTOR) signaling pathway in chondrocytes and in what way activates mTOR. Human immortalized chondrocytes cell lines TC28a2 and C28/I2 were subjected to incubate with or without E2, LY294002 (the inhibitor of PI3K), rapamycin (the inhibitor of mTOR), or E2 in combination with LY294002 or rapamycin. Thereafter, protein levels of S6K1, p-S6K1, protein kinase B (AKT), and p-AKT were determined by Western blot analysis. Matrix metallopeptidase (MMP) 3 or MMP13 mRNA levels were evaluated by quantitative real-time PCR (qRT-PCR). Co-immunoprecipitation and Western blot analysis were performed to verify the interaction between ERα and mTOR. Both p-S6K1 and p-AKT protein levels in TC28a2 and C28/I2E2 cells were significantly increased by incubation with E2 (0.5 h and 1 h) (P < 0.05). Rapamycin did not affect the levels of p-AKT, but were significantly reduced by LY294002 or E2 in combination with LY294002. The levels of p-S6K1 were significantly decreased by incubation with LY294002, but the effect could be reversed by E2 in combination with LY294002. Rabbit anti-mTOR antibody was able to immunoprecipitate ERα after incubation with E2. Moreover, E2 inhibited the mRNA levels of MMP3 and MMP13 by mTOR pathway. E2 actives mTOR in chondrocytes through AKT-dependent and independent ways. PMID:26884863

  18. Neuroprotection by stem cell factor in rat cortical neurons involves AKT and NFkappaB.

    PubMed

    Dhandapani, Krishnan M; Wade, F Marlene; Wakade, Chandramohan; Mahesh, Virendra B; Brann, Darrell W

    2005-10-01

    Stem cell factor (SCF) is a highly expressed cytokine in the central nervous system. In the present study, we demonstrate a neuroprotective role for SCF and its tyrosine kinase receptor, c-kit, against camptothecin-induced apoptosis and glutamate excitotoxicity in rat cortical neurons. This protection was blocked by pharmacological or molecular inhibition of either the MEK/ERK or PI3K/Akt signaling pathways. The importance of these pathways was further confirmed by the activation of both ERK, in a MEK-dependent manner, and Akt, via PI3K. Activation of Akt increased the binding of the p50 and p65 subunits of NFkappaB, which was also important for neuroprotection. Akt inhibition prevented NFkappaB binding, suggesting a role for Akt in SCF-induced NFkappaB. Pharmacological inhibition of NFkappaB or dominant negative IkappaB also prevented neuroprotection by SCF. SCF up-regulated the anti-apoptotic genes, bcl-2 and bcl-xL in an NFkappaB-dependent manner. Together, these findings demonstrate a neuroprotective role for SCF in cortical neurons, an effect that was mediated by Akt and ERK, as well as NFkappaB-mediated gene transcription. SCF represents a novel therapeutic target in the treatment of neurodegenerative disease.

  19. The effects of RNA interference mediated VEGF gene silencing on biological behavior of renal cell carcinoma and transplanted renal tumor in nude mice.

    PubMed

    Wang, Qi; Wang, Shuai; Sun, Si-Qiao; Cheng, Zhi-Hua; Zhang, Yang; Chen, Guang; Gu, Meng; Yao, Hai-Jun; Wang, Zhong; Zhou, Juan; Peng, Yu-Bing; Xu, Ming-Xi; Zhang, Ke; Sun, Xi-Wei

    2016-01-01

    This study was to explore the effects of RNA interference mediated vascular endothelial growth factor (VEGF) gene silencing on biological behavior of renal cell carcinoma (RCC), transplanted renal tumor and angiogenesis in nude mice. The specific siRNA sequence targeting VEGF were designed and synthesized to construct hVEGF-siRNA plasmid which was transfected into RCC 786-O cells. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used for the detection of VEGF gene expression and western blot was adopted for the examination of VEGF protein expression. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell growth as well as cell migration and invasion. The transplanted renal tumor models in nude mice were established, and the growth condition of nude mice, and VEGF protein expression in transplanted tumor slices and the microvessel density (MVD) were detected. The expression level of VEGF mRNA in VEGF-siRNA group was significant lower than that in the control group and negative group, suggesting that establishment of plasmid specifically inhibited the expression of VEGF gene The expression level of VEGF protein in VEGF-siRNA group was significant lower than that in the control group and negative group. VEGF gene silencing has the significant inhibition effects on proliferation, migration and invasion of RCC 786-O cells. The tumor weight, VEGF protein positive rate and MVD in VEGF-siRNA group were significant lower than those in negative group and blank group. The VEGF gene silencing could inhibit the cell proliferation, migration and invasion of RCC 786-O cells; inhibition of VEGF protein expression could prevent transplanted RCC growth and tumor angiogenesis.

  20. Role of CSL-dependent and independent Notch signaling pathways in cell apoptosis.

    PubMed

    Zeng, Chong; Xing, Rui; Liu, Jing; Xing, Feiyue

    2016-01-01

    Apoptosis is a normally biological phenomenon in various organisms, involving complexly molecular mechanisms with a series of signaling processes. Notch signaling is found evolutionarily conserved in many species, playing a critical role in embryonic development, normal tissue homeostasis, angiogenesis and immunoregulation. The focus of this review is on currently novel advances about roles of CSL-dependent and independent Notch signaling pathways in cell apoptosis. The CSL can bind Notch intracellular domain (NIC) to act as a switch in mediating transcriptional activation or inactivation of the Notch signaling pathway downstream genes in the nucleus. It shows that CSL-dependent signaling regulates the cell apoptosis through Hes-1-PTEN-AKT-mTOR signaling, but rather the CSL-independent signaling mediates the cell apoptosis possibly via NIC-mTORC2-AKT-mTOR signaling, providing a new insight into apoptotic mechanisms.

  1. Effects of Cyclic Mechanical Stretch on the Proliferation of L6 Myoblasts and Its Mechanisms: PI3K/Akt and MAPK Signal Pathways Regulated by IGF-1 Receptor.

    PubMed

    Fu, Shaoting; Yin, Lijun; Lin, Xiaojing; Lu, Jianqiang; Wang, Xiaohui

    2018-06-02

    Myoblast proliferation is crucial to skeletal muscle hypertrophy and regeneration. Our previous study indicated that mechanical stretch altered the proliferation of C2C12 myoblasts, associated with insulin growth factor 1 (IGF-1)-mediated phosphoinositide 3-kinase (PI3K)/Akt (also known as protein kinase B) and mitogen-activated protein kinase (MAPK) pathways through IGF-1 receptor (IGF-1R). The purpose of this study was to explore the same stretches on the proliferation of L6 myoblasts and its association with IGF-1-regulated PI3K/Akt and MAPK activations. L6 myoblasts were divided into three groups: control, 15% stretch, and 20% stretch. Stretches were achieved using FlexCell Strain Unit. Cell proliferation and IGF-1 concentration were detected by CCK8 and ELISA, respectively. IGF-1R expression, and expressions and activities of PI3K, Akt, and MAPKs (including extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38) were determined by Western blot. We found that 15% stretch promoted, while 20% stretch inhibited L6 myoblast proliferation. A 15% stretch increased IGF-1R level, although had no effect on IGF-1 secretion of L6 myoblasts, and PI3K/Akt and ERK1/2 (not p38) inhibitors attenuated 15% stretch-induced pro-proliferation. Exogenous IGF-1 reversed 20% stretch-induced anti-proliferation, accompanied with increases in IGF-1R level as well as PI3K/Akt and MAPK (ERK1/2 and p38) activations. In conclusion, stretch regulated L6 myoblasts proliferation, which may be mediated by the changes in PI3K/Akt and MAPK activations regulated by IGF-1R, despite no detectable IGF-1 from stretched L6 myoblasts.

  2. δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.

    PubMed

    Wang, Hong; Hong, Jungil; Yang, Chung S

    2016-11-01

    The cancer preventive activity of vitamin E is suggested by epidemiological studies and supported by animal studies with vitamin E forms, γ-tocopherol and δ-tocopherol (δ-T). Several recent large-scale cancer prevention trials with high dose of α-tocopherol, however, yielded disappointing results. Whether vitamin E prevents or promotes cancer is a serious concern. A better understanding of the molecular mechanisms of action of the different forms of tocopherols would enhance our understanding of this topic. In this study, we demonstrated that δ-T was the most effective tocopherol form in inhibiting prostate cancer cell growth, by inducing cell cycle arrest and apoptosis. By profiling the effects of δ-T on the cell signaling using the phospho-kinase array, we found that the most inhibited target was the phosphorylation of AKT on T308. Further study on the activation of AKT by EGFR and IGFR revealed that δ-T attenuated the EGF/IGF-induced activation of AKT (via the phosphorylation of AKT on T308 induced by the activation of PIK3). Expression of dominant active PIK3 and AKT in prostate cancer cell line DU145 in which PIK3, AKT, and PTEN are wild type caused the cells to be reflectory to the inhibition of δ-T, supporting that δ-T inhibits the PIK3-mediated activation of AKT. Our data also suggest that δ-T interferes with the EGF-induced EGFR internalization, which leads to the inhibition of the receptor tyrosine kinase-dependent activation of AKT. In summary, our results revealed a novel mechanism of δ-T in inhibiting prostate cancer cell growth, supporting the cancer preventive activity δ-T. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  3. Inflammation induced mTORC2-Akt-mTORC1 signaling promotes macrophage foam cell formation.

    PubMed

    Banerjee, Dipanjan; Sinha, Archana; Saikia, Sudeshna; Gogoi, Bhaskarjyoti; Rathore, Arvind K; Das, Anindhya Sundar; Pal, Durba; Buragohain, Alak K; Dasgupta, Suman

    2018-06-05

    The transformation of macrophages into lipid loaded foam cells is a critical and early event in the pathogenesis of atherosclerosis. Several recent reports highlighted that induction of TLR4 signaling promotes macrophage foam cell formation; however, the underlying molecular mechanisms have not been clearly elucidated. Here, we found that the TLR4 mediated inflammatory signaling communicated with mTORC2-Akt-mTORC1 metabolic cascade in macrophage and thereby promoting lipid uptake and foam cell formation. Mechanistically, LPS treatment markedly upregulates TLR4 mediated inflammatory pathway which by activating mTORC2 induces Akt phosphorylation at serine 473 and that aggravate mTORC1 dependent scavenger receptors expression and consequent lipid accumulation in THP-1 macrophages. Inhibition of mTORC2 either by silencing Rictor expression or inhibiting its association with mTOR notably prevents LPS induced Akt activation, scavenger receptors expression and macrophage lipid accumulation. Although suppression of mTORC1 expression by genetic knockdown of Raptor did not produce any significant change in Akt S473 phosphorylation, however, incubation with Akt activator in Rictor silenced cells failed to promote scavenger receptors expression and macrophage foam cell formation. Thus, present research explored the signaling pathway involved in inflammation induced macrophage foam cells formation and therefore, targeting this pathway might be useful for preventing macrophage foam cell formation. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Diallyl trisulfide exerts cardioprotection against myocardial ischemia-reperfusion injury in diabetic state, role of AMPK-mediated AKT/GSK-3β/HIF-1α activation

    PubMed Central

    Yu, Liming; Di, Wencheng; Dong, Xue; Li, Zhi; Xue, Xiaodong; Zhang, Jian; Wang, Qi; Xiao, Xiong; Han, Jinsong; Yang, Yang; Wang, Huishan

    2017-01-01

    Diallyl trisulfide (DATS), the major active ingredient in garlic, has been reported to confer cardioprotective effects. However, its effect on myocardial ischemia-reperfusion (MI/R) injury in diabetic state and the underlying mechanism are still unknown. We hypothesize that DATS reduces MI/R injury in diabetic state via AMPK-mediated AKT/GSK-3β/HIF-1α activation. Streptozotocin-induced diabetic rats received MI/R surgery with or without DATS (20mg/kg) treatment in the presence or absence of Compound C (Com.C, an AMPK inhibitor, 0.25mg/kg) or LY294002 (a PI3K inhibitor, 5mg/kg). We found that DATS significantly improved heart function and reduced myocardial apoptosis. Additionally, in cultured H9c2 cells, DATS (10μM) also attenuated simulated ischemia-reperfusion injury. We found that AMPK and AKT/GSK-3β/HIF-1α signaling were down-regulated under diabetic condition, while DATS markedly increased the phosphorylation of AMPK, ACC, AKT and GSK-3β as well as HIF-1α expression in MI/R-injured myocardium. However, these protective actions were all blunted by Com.C administration. Additionally, LY294002 abolished the stimulatory effect of DATS on AKT/GSK-3β/HIF-1α signaling without affecting AMPK signaling. While 2-methoxyestradiol (a HIF-1α inhibitor) reduced HIF-1α expression without affecting AKT/GSK-3β signaling. Taken together, these data showed that DATS protected against MI/R injury in diabetic state by attenuating cellular apoptosis via AMPK-mediated AKT/GSK-3β/HIF-1α signaling. Its cardioprotective effect deserves further study. PMID:29088824

  5. Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis

    PubMed Central

    Wu, Jason Boyang; Shao, Chen; Li, Xiangyan; Li, Qinlong; Hu, Peizhen; Shi, Changhong; Li, Yang; Chen, Yi-Ting; Yin, Fei; Liao, Chun-Peng; Stiles, Bangyan L.; Zhau, Haiyen E.; Shih, Jean C.; Chung, Leland W.K.

    2014-01-01

    Tumors from patients with high-grade aggressive prostate cancer (PCa) exhibit increased expression of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades monoamine neurotransmitters and dietary amines. Despite the association between MAOA and aggressive PCa, it is unclear how MAOA promotes PCa progression. Here, we found that MAOA functions to induce epithelial-to-mesenchymal transition (EMT) and stabilize the transcription factor HIF1α, which mediates hypoxia through an elevation of ROS, thus enhancing growth, invasiveness, and metastasis of PCa cells. Knockdown and overexpression of MAOA in human PCa cell lines indicated that MAOA induces EMT through activation of VEGF and its coreceptor neuropilin-1. MAOA-dependent activation of neuropilin-1 promoted AKT/FOXO1/TWIST1 signaling, allowing FOXO1 binding at the TWIST1 promoter. Importantly, the MAOA-dependent HIF1α/VEGF-A/FOXO1/TWIST1 pathway was activated in high-grade PCa specimens, and knockdown of MAOA reduced or even eliminated prostate tumor growth and metastasis in PCa xenograft mouse models. Pharmacological inhibition of MAOA activity also reduced PCa xenograft growth in mice. Moreover, high MAOA expression in PCa tissues correlated with worse clinical outcomes in PCa patients. These findings collectively characterize the contribution of MAOA in PCa pathogenesis and suggest that MAOA has potential as a therapeutic target in PCa. PMID:24865426

  6. Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis.

    PubMed

    Wu, Jason Boyang; Shao, Chen; Li, Xiangyan; Li, Qinlong; Hu, Peizhen; Shi, Changhong; Li, Yang; Chen, Yi-Ting; Yin, Fei; Liao, Chun-Peng; Stiles, Bangyan L; Zhau, Haiyen E; Shih, Jean C; Chung, Leland W K

    2014-07-01

    Tumors from patients with high-grade aggressive prostate cancer (PCa) exhibit increased expression of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades monoamine neurotransmitters and dietary amines. Despite the association between MAOA and aggressive PCa, it is unclear how MAOA promotes PCa progression. Here, we found that MAOA functions to induce epithelial-to-mesenchymal transition (EMT) and stabilize the transcription factor HIF1α, which mediates hypoxia through an elevation of ROS, thus enhancing growth, invasiveness, and metastasis of PCa cells. Knockdown and overexpression of MAOA in human PCa cell lines indicated that MAOA induces EMT through activation of VEGF and its coreceptor neuropilin-1. MAOA-dependent activation of neuropilin-1 promoted AKT/FOXO1/TWIST1 signaling, allowing FOXO1 binding at the TWIST1 promoter. Importantly, the MAOA-dependent HIF1α/VEGF-A/FOXO1/TWIST1 pathway was activated in high-grade PCa specimens, and knockdown of MAOA reduced or even eliminated prostate tumor growth and metastasis in PCa xenograft mouse models. Pharmacological inhibition of MAOA activity also reduced PCa xenograft growth in mice. Moreover, high MAOA expression in PCa tissues correlated with worse clinical outcomes in PCa patients. These findings collectively characterize the contribution of MAOA in PCa pathogenesis and suggest that MAOA has potential as a therapeutic target in PCa.

  7. Interleukin-10-induced gene expression and suppressive function are selectively modulated by the PI3K-Akt-GSK3 pathway

    PubMed Central

    Antoniv, Taras T; Ivashkiv, Lionel B

    2011-01-01

    Interleukin-10 (IL-10) is an immunosuppressive cytokine that inhibits inflammatory gene expression. Phosphatidylinositol 3-kinase (PI3K) -mediated signalling regulates inflammatory responses and can induce IL-10 production, but a role for PI3K signalling in cellular responses to IL-10 is not known. In this study we investigated the involvement of the PI3K-Akt-GSK3 signalling pathway in IL-10-induced gene expression and IL-10-mediated suppression of Toll-like receptor-induced gene expression in primary human macrophages. A combination of loss and gain of function approaches using kinase inhibitors, expression of constitutively active Akt, and RNA interference in primary human macrophages showed that expression of a subset of IL-10-inducible genes was dependent on PI3K-Akt signalling. The effects of PI3K-Akt signalling on IL-10 responses were mediated at least in part by glycogen synthase kinase 3 (GSK3). In accordance with a functional role for PI3K pathways in contributing to the suppressive actions of IL-10, PI3K signalling augmented IL-10-mediated inhibition of lipopolysaccharide-induced IL-1, IL-8 and cyclo-oxygenase-2 expression. The PI3K signalling selectively modulated IL-10 responses, as it was not required for inhibition of tumour necrosis factor expression or for induction of certain IL-10-inducible genes such as SOCS3. These findings identify a new mechanism by which PI3K-mediated signalling can suppress inflammation by regulating IL-10-mediated gene induction and anti-inflammatory function. PMID:21255011

  8. Hydrogen peroxide-induced Akt phosphorylation regulates Bax activation.

    PubMed

    Sadidi, Mahdieh; Lentz, Stephen I; Feldman, Eva L

    2009-05-01

    Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) are involved in many cellular processes that positively and negatively regulate cell fate. H(2)O(2), acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H(2)O(2) was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H(2)O(2)-induced activation of PI3K/Akt influences post-translational modification of Bax and inactivates a key component of the cell death machinery.

  9. Indigo naturalis and its component tryptanthrin exert anti-angiogenic effect by arresting cell cycle and inhibiting Akt and FAK signaling in human vascular endothelial cells.

    PubMed

    Chang, Hsin-Ning; Huang, Sheng-Teng; Yeh, Yuan-Chieh; Wang, Hsin-Shih; Wang, Tzu-Hao; Wu, Yi-Hong; Pang, Jong-Hwei S

    2015-11-04

    Indigo naturalis has been used to treat inflammatory diseases and dermatosis, including psoriasis, since thousands of years in China. It has been proven effective in our previous clinical studies on treating psoriasis, but the active component and the mechanism of how indigo naturalis working still needs to be clarified. Since the dysregulated angiogenesis is known to play an important role in the pathogenesis of psoriasis, the anti-angiogenic effect of indigo naturalis and tryptanthrin, a pure component of indigo naturalis, was investigated. The in vivo angiogenesis was studied by chick chorioallantoic membrane assay. The in vitro studies were performed using human vascular endothelial cells. Cell viability was determined by MTT assay. Cell cycle distribution was revealed by flow cytometry. The cellular messenger (m)RNA or protein expression level was analyzed by real-time RT-PCR or Western blot, respectively. Transwell filter migration assay and matrix gel-induced tube formation method were applied to examine the angiogenic potential. Indigo naturalis significantly inhibited the in vivo vascular endothelial growth factor (VEGF)-induced angiogenesis, as well as tryptanthrin. In vitro studies confirmed that indigo naturalis and tryptanthrin reduced the number of viable vascular endothelial cells. Tryptanthrin resulted in a cell cycle arrest and dose-dependently decreased the expressions of cyclin A, cyclin B, cyclin dependent kinase(CDK) 1 and 2, but not cyclin D and cyclin E, at both the mRNA and protein levels. The migration and tube formation of vascular endothelial cells were significantly inhibited by tryptanthrin in a dose-dependent manner. Result also showed that tryptanthrin could reduce the phosphorylated levels of both protein kinase B (PKB or Akt) and focal adhesion kinase (FAK). All together, these results demonstrated the anti-angiogenic effect of tryptanthrin, the acting component of indigo naturalis and revealed the underlying mechanism by inhibiting

  10. Momordin Ic couples apoptosis with autophagy in human hepatoblastoma cancer cells by reactive oxygen species (ROS)-mediated PI3K/Akt and MAPK signaling pathways.

    PubMed

    Mi, Yashi; Xiao, Chunxia; Du, Qingwei; Wu, Wanqiang; Qi, Guoyuan; Liu, Xuebo

    2016-01-01

    Momordin Ic is a principal saponin constituent of Fructus Kochiae, which acts as an edible and pharmaceutical product more than 2000 years in China. Our previous research found momordin Ic induced apoptosis by PI3K/Akt and MAPK signaling pathways in HepG2 cells. While the role of autophagy in momordin Ic induced cell death has not been discussed, and the connection between the apoptosis and autophagy is not clear yet. In this work, we reported momordin Ic promoted the formation of autophagic vacuole and expression of Beclin 1 and LC-3 in a dose- and time-dependent manner. Compared with momordin Ic treatment alone, the autophagy inhibitor 3-methyladenine (3-MA) also can inhibit apoptosis, while autophagy activator rapamycin (RAP) has the opposite effect, and the apoptosis inhibitor ZVAD-fmk also inhibited autophagy induced by momordin Ic. Momordin Ic simultaneously induces autophagy and apoptosis by suppressing the ROS-mediated PI3K/Akt and activating the ROS-related JNK and P38 pathways. Additionally, momordin Ic induces apoptosis by suppressing PI3K/Akt-dependent NF-κB pathways and promotes autophagy by ROS-mediated Erk signaling pathway. Those results suggest that momordin Ic has great potential as a nutritional preventive strategy in cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Insulin-like growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms.

    PubMed

    Granata, R; Trovato, L; Lupia, E; Sala, G; Settanni, F; Camussi, G; Ghidoni, R; Ghigo, E

    2007-04-01

    Angiogenesis is critical for development and repair, and is a prominent feature of many pathological conditions. Based on evidence that insulin-like growth factor binding protein (IGFBP)-3 enhances cell motility and activates sphingosine kinase (SphK) in human endothelial cells, we have investigated whether IGFBP-3 plays a role in promoting angiogenesis. IGFBP-3 potently induced network formation by human endothelial cells on Matrigel. Moreover, it up-regulated proangiogenic genes, such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP)-2 and -9. IGFBP-3 even induced membrane-type 1 MMP (MT1-MMP), which regulates MMP-2 activation. Decreasing SphK1 expression by small interfering RNA (siRNA), blocked IGFBP-3-induced network formation and inhibited VEGF, MT1-MMP but not IGF-I up-regulation. IGF-I activated SphK, leading to sphingosine-1-phosphate (S1P) formation. The IGF-I effect on SphK activity was blocked by specific inhibitors of IGF-IR, PI3K/Akt and ERK1/2 phosphorylation. The disruption of IGF-I signaling prevented the IGFBP-3 effect on tube formation, SphK activity and VEGF release. Blocking ERK1/2 signaling caused the loss of SphK activation and VEGF and IGF-I up-regulation. Finally, IGFBP-3 dose-dependently stimulated neovessel formation into subcutaneous implants of Matrigel in vivo. Thus, IGFBP-3 positively regulates angiogenesis through involvement of IGF-IR signaling and subsequent SphK/S1P activation.

  12. Shikonin inhibits oxidized LDL-induced monocyte adhesion by suppressing NFκB activation via up-regulation of PI3K/Akt/Nrf2-dependent antioxidation in EA.hy926 endothelial cells.

    PubMed

    Huang, Chin-Shiu; Lin, Ai-Hsuan; Yang, Ting-Chun; Liu, Kai-Li; Chen, Haw-Wen; Lii, Chong-Kuei

    2015-02-01

    Oxidized low-density lipoprotein (oxLDL) is a key contributor to atherogenesis through multiple mechanisms, including the reactive oxygen species (ROS)-mediated nuclear factor-kappaB (NFκB) signaling pathway. Although shikonin, one of the main active components isolated from the Chinese herb Lithospermum erythrorhizon, has been shown to possess cardioprotective, antioxidative, and anti-inflammatory effects, the mechanisms underlying these actions are not well understood. In this study, we used EA.hy926 endothelial-like cells to examine the anti-atherogenic activity of shikonin. Shikonin (0-1 μM) concentration-dependently induced heme oxygenase-1, glutamate cysteine ligase modifier subunit, catalase, superoxide dismutase 1, glutathione peroxidase 1, and glutathione reductase protein and mRNA expression and glutathione content via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/Nrf2 signaling pathway. In the presence of oxLDL (40 μg/ml), shikonin pretreatment reversed oxLDL-induced ROS production, antioxidant response element reporter activity, NFκB nuclear translocation, and intercellular adhesion molecule (ICAM)-1 and E-selectin expression and suppressed the increase of monocyte adhesion to endothelial cells. Nrf2 knockdown by using RNA interference attenuated the ability of shikonin to inhibit oxLDL-induced NFκB DNA binding activity, adhesion molecule expression, and monocyte adhesion. Taken together, these results suggest that shikonin protects against oxLDL-induced endothelial damage by suppressing ROS/NFκB-mediated ICAM-1 and E-selectin expression via up-regulation of PI3K/Akt/Nrf2-dependent antioxidant enzyme expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation

    PubMed Central

    Boedicker, James Q.; Garcia, Hernan G.; Johnson, Stephanie; Phillips, Rob

    2014-01-01

    As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution. PMID:24231252

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Man, Xiao-Yong; Li, Chun-Ming

    Vascular endothelial growth factor (VEGF) is one of the strongest regulators of physiological and pathological angiogenesis. VEGF receptor 2 (VEGFR-2), the primary receptor for VEGF, is thought to mediate major functional effects of VEGF. Previously, we have localized both VEGF and VEGFR-2 in human hair follicles. In this study, we further defined the expression and roles of VEGFR-2 on human hair follicle dermal papilla (DP) cells. The expression of VEGFR-2 on DP cells was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis separately, and localization of VEGFR-2 was defined by immunofluorescence. The effect of VEGF on DPmore » cells was analyzed by MTT assays and specific inhibitors. Finally, the role of VEGF involved in the signaling pathways was investigated by Western blot. RT-PCR and Western blot analysis demonstrated the expression of VEGFR-2 on DP cells. Immunostaining for VEGFR-2 showed strong signal on cultured human DP cells in vitro. Exogenous VEGF{sub 165} stimulated proliferation of DP cells in a dose-dependent manner. Furthermore, this stimulation was blocked by a VEGFR-2 neutralizing antibody (MAB3571) and an ERK inhibitor (PD98059). VEGF{sub 165}-induced phosphorylation of ERK1/2 was abolished by MAB3571 and PD98059, while the phosphorylation of p38, JNK and AKT were not changed by VEGF{sub 165}. Taken together, VEGFR-2 is expressed on primary human hair follicle DP cells and VEGF induces proliferation of DP cells through VEGFR-2/ERK pathway, but not p38, JNK or AKT signaling. -- Highlights: Black-Right-Pointing-Pointer We examine the expression of VEGFR-2 on cultured human dermal papilla (DP) cells. Black-Right-Pointing-Pointer VEGF{sub 165} stimulated proliferation of human DP cells in a dose-dependent manner. Black-Right-Pointing-Pointer This stimulation was through VEGFR-2-mediated activation of ERK.« less

  15. Fisetin inhibits epidermal growth factor-induced migration of ARPE-19 cells by suppression of AKT activation and Sp1-dependent MMP-9 expression.

    PubMed

    Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen; Hsieh, Yi-Hsien; Yang, Shun-Fa

    2017-01-01

    Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)-induced cell migration and the underlying mechanisms remain unclear. Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription-PCR (RT-PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1-dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases.

  16. Hepatocyte growth factor regulates cyclooxygenase-2 expression via β-catenin, Akt, and p42/p44 MAPK in human bronchial epithelial cells

    PubMed Central

    Lee, Young H.; Suzuki, Yuichiro J.; Griffin, Autumn J.; Day, Regina M.

    2008-01-01

    Hepatocyte growth factor (HGF) is upregulated in response to lung injury and has been implicated in tissue repair through its antiapoptotic and proliferative activities. Cyclooxygenase-2 (COX-2) is an inducible enzyme in the biosynthetic pathway of prostaglandins, and its activation has been shown to play a role in cell growth. Here, we report that HGF induces gene transcription of COX-2 in human bronchial epithelial cells (HBEpC). Treatment of HBEpC with HGF resulted in phosphorylation of the HGF receptor (c-Met), activation of Akt, and upregulation of COX-2 mRNA. Adenovirus-mediated gene transfer of a dominant negative (DN) Akt mutant revealed that HGF increased COX-2 mRNA in an Akt-dependent manner. COX-2 promoter analysis in luciferase reporter constructs showed that HGF regulation required the β-catenin-responsive T cell factor-4 binding element (TBE). The HGF activation of the COX-2 gene transcription was blocked by DN mutant of β-catenin or by inhibitors that blocked activation of Akt. Inhibition of p42/p44 MAPK pathway blocked HGF-mediated activation of β-catenin gene transcription but not Akt activation, suggesting that p42/p44 MAPK acts in a parallel mechanism for β-catenin activation. We also found that inhibition of COX-2 with NS-398 blocked HGF-induced growth in HBEpC. Together, the results show that the HGF increases COX-2 gene expression via an Akt-, MAPK-, and β-catenin-dependent pathway in HBEpC. PMID:18245266

  17. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity

    PubMed Central

    Oeck, S.; Al-Refae, K.; Riffkin, H.; Wiel, G.; Handrick, R.; Klein, D.; Iliakis, G.; Jendrossek, V.

    2017-01-01

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition. PMID:28209968

  18. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system

    PubMed Central

    Xu, Daichao; Shan, Bing; Lee, Byung-Hoon; Zhu, Kezhou; Zhang, Tao; Sun, Huawang; Liu, Min; Shi, Linyu; Liang, Wei; Qian, Lihui; Xiao, Juan; Wang, Lili; Pan, Lifeng; Finley, Daniel; Yuan, Junying

    2015-01-01

    Regulation of ubiquitin-proteasome system (UPS), which controls the turnover of short-lived proteins in eukaryotic cells, is critical in maintaining cellular proteostasis. Here we show that USP14, a major deubiquitinating enzyme that regulates the UPS, is a substrate of Akt, a serine/threonine-specific protein kinase critical in mediating intracellular signaling transducer for growth factors. We report that Akt-mediated phosphorylation of USP14 at Ser432, which normally blocks its catalytic site in the inactive conformation, activates its deubiquitinating activity in vitro and in cells. We also demonstrate that phosphorylation of USP14 is critical for Akt to regulate proteasome activity and consequently global protein degradation. Since Akt can be activated by a wide range of growth factors and is under negative control by phosphoinosotide phosphatase PTEN, we suggest that regulation of UPS by Akt-mediated phosphorylation of USP14 may provide a common mechanism for growth factors to control global proteostasis and for promoting tumorigenesis in PTEN-negative cancer cells. DOI: http://dx.doi.org/10.7554/eLife.10510.001 PMID:26523394

  19. PEDF attenuates insulin-dependent molecular pathways of glucose homeostasis in skeletal myocytes.

    PubMed

    Carnagarin, Revathy; Dharmarajan, Arun M; Dass, Crispin R

    2016-02-15

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic serpin associated with insulin resistance in metabolic disorders such as diabetes, metabolic syndrome, obesity and polycystic ovarian syndrome. While the mechanism of PEDF induced-insulin resistance of metabolic disorders has been attributed to its inflammatory and lipolytic effects, little evidence exists to support a direct role of PEDF in mediating insulin resistance. Here, we seminally provide evidence that PEDF can inhibit insulin signal transduction governing glucose homeostasis from the receptor to the effector phosphorylation through Akt/PKB-dependent and -independent pathways in mouse and human skeletal muscle cell lines. PEDF attenuates the insulin-dependent molecular axes of glucose metabolism. Exposure of skeletal myocytes to PEDF attenuates insulin-dependent insulin receptor autophosphorylation, tyrosine phosphorylation of insulin receptor substrate 1, and dual loop phosphorylation-activation of Akt. PEDF significantly inhibits the downstream effector - glycogen synthase kinase (and thereby the glycogenic axis of insulin signalling). PEDF turned off both the molecular switches of GLUT4 translocation: IRS-Akt/PKB-AS160 mediated and IR-pCbl-dependent GLUT4 translocation (the molecular axis of glucose uptake). These findings implicate a direct effect of PEDF on multiple insulin-dependent molecular mechanisms of glucose homeostasis in skeletal muscle cells, thereby enabling it to contribute to peripheral insulin resistance at the cellular level. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Upregulation of CREM/ICER suppresses wound endothelial CRE-HIF-1α-VEGF-dependent signaling and impairs angiogenesis in type 2 diabetes

    PubMed Central

    Bitar, Milad S.; Al-Mulla, Fahd

    2015-01-01

    Impaired angiogenesis and endothelial dysfunction in type 2 diabetes constitute dominant risk factors for non-healing wounds and most forms of cardiovascular disease. We propose that diabetes shifts the ‘angiogenic balance’ in favor of an excessive anti-angiogenic phenotype. Herein, we report that diabetes impairs in vivo sponge angiogenic capacity by decreasing VEGF expression and fibrovascular invasion, and reciprocally enhances the formation of angiostatic molecules, such as thrombospondins, NFκB and FasL. Defective in vivo angiogenesis prompted cellular studies in cultured endothelial cells derived from subcutaneous sponge implants (SIECs) of control and Goto-Kakizaki rats. Ensuing data from diabetic SIECs demonstrated a marked upregulation in cAMP-PKA-CREB signaling, possibly stemming from increased expression of adenylyl cyclase isoforms 3 and 8, and decreased expression of PDE3. Mechanistically, we found that oxidative stress and PKA activation in diabetes enhanced CREM/ICER expression. This reduces IRS2 cellular content by inhibiting cAMP response element (CRE) transcriptional activity. Consequently, a decrease in the activity of Akt-mTOR ensued with a concomitant reduction in the total and nuclear protein levels of HIF-1α. Limiting HIF-1α availability for the specific hypoxia response elements in diabetic SIECs elicited a marked reduction in VEGF expression, both at the mRNA and protein levels. These molecular abnormalities were illustrated functionally by a defect in various pro-angiogenic properties, including cell proliferation, migration and tube formation. A genetic-based strategy in diabetic SIECs using siRNAs against CREM/ICER significantly augmented the PKA-dependent VEGF expression. To this end, the current data identify the importance of CREM/ICER as a negative regulator of endothelial function and establish a link between CREM/ICER overexpression and impaired angiogenesis during the course of diabetes. Moreover, it could also point to

  1. Fasting mediated increase in p-BAD(ser155) and p-AKT(ser473) in the prefrontal cortex of mice.

    PubMed

    Pitchaimani, Vigneshwaran; Arumugam, Somasundaram; Thandavarayan, Rajarajan Amirthalingam; Karuppagounder, Vengadeshprabhu; Sreedhar, Remya; Afrin, Rejina; Harima, Meilei; Suzuki, Hiroshi; Miyashita, Shizuka; Nomoto, Mayumi; Sone, Hirohito; Suzuki, Kenji; Watanabe, Kenichi

    2014-09-05

    BAD-deficient mice and fasting have several common functional roles in seizures, beta-hydroxybutyrate (BHB) uptake in brain and alteration in counterregulatory hormonal regulation during hypoglycemia. Neuronal specific insulin receptor knockout (NIRKO) mice display impaired counterregulatory hormonal responses during hypoglycemia. In this study we investigated the fasting mediated expression of p-BAD(ser155) and p-AKT(ser473) in different regions of brain (prefrontal cortex, hippocampus, midbrain and hypothalamus). Fasting specifically increases p-BAD(ser155) and p-AKT(ser473) in prefrontal cortex and decreases in other regions of brain. Our results suggest that fasting may increase the uptake BHB by decreasing p-BAD(ser155) in the brain during hypoglycemia except prefrontal cortex and it uncovers specific functional area of p-BAD(ser155) and p-AKT(ser473) that may regulates counter regulatory hormonal response. Overall in support with previous findings, fasting mediated hypoglycemia activates prefrontal cortex insulin signaling which influences the hypothalamic paraventricular nucleus mediated activation of sympathoadrenal hormonal responses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis.

    PubMed

    Sinha, Sonam; Khan, Sajid; Shukla, Samriddhi; Lakra, Amar Deep; Kumar, Sudhir; Das, Gunjan; Maurya, Rakesh; Meeran, Syed Musthapa

    2016-08-01

    Available breast cancer therapeutic strategies largely target the primary tumor but are ineffective against tumor metastasis and angiogenesis. In our current study, we determined the effect of Cucurbitacin B (CuB), a plant triterpenoid, on the metastatic and angiogenic potential of breast cancer cells. CuB was found to inhibit cellular proliferation and induce apoptosis in breast cancer cells in a time- and dose-dependent manner. Further, CuB-treatment significantly inhibited the migratory and invasive potential of highly metastatic breast cancer MDA-MB-231 and 4T1 cells at sub-IC50 concentrations, where no significant apoptosis was observed. CuB was also found to inhibit migratory, invasive and tube-forming capacities of HUVECs in vitro. In addition, inhibition of pre-existing vasculature in chick embryo chorioallantoic membrane ex vivo further supports the anti-angiogenic effect of CuB. CuB-mediated anti-metastatic and anti-angiogenic effects were associated with the downregulation of VEGF/FAK/MMP-9 signaling, which has been validated by using FAK-inhibitor (FI-14). CuB-treatment resulted in a significant inhibition of VEGF-induced phosphorylation of FAK and MMP-9 expressions similar to the action of FI-14. CuB was also found to decrease the micro-vessel density as evidenced by the decreased expression of CD31, a marker for neovasculature. Further, CuB-treatment inhibited tumor growth, lung metastasis and angiogenesis in a highly metastatic 4T1-syngeneic mouse mammary cancer. Collectively, our findings suggest that CuB inhibited breast cancer metastasis and angiogenesis, at least in part, through the downregulation of VEGF/FAK/MMP-9 signaling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Retinoic acid-induced nNOS expression depends on a novel PI3K/Akt/DAX1 pathway in human TGW-nu-I neuroblastoma cells.

    PubMed

    Nagl, Florian; Schönhofer, Katrin; Seidler, Barbara; Mages, Jörg; Allescher, Hans-Dieter; Schmid, Roland M; Schneider, Günter; Saur, Dieter

    2009-11-01

    Neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) acts as a neurotransmitter and intracellular signaling molecule in the central and peripheral nervous system. NO regulates multiple processes like neuronal development, plasticity, and differentiation and is a mediator of neurotoxicity. The nNOS gene is highly complex with 12 alternative first exons, exon 1a-1l, transcribed from distinct promoters, leading to nNOS variants with different 5'-untranslated regions. Transcriptional control of the nNOS gene is not understood in detail. To investigate regulation of nNOS gene expression by retinoic acid (RA), we used the human neuroblastoma cell line TGW-nu-I as a model system. We show that RA induces nNOS transcription in a protein synthesis-dependent fashion. We identify the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway and the atypical orphan nuclear receptor DAX1 (NR0B1) as critical mediators involved in RA-induced nNOS gene transcription. RA treatment increases DAX1 expression via PI3K/Akt signaling. Upregulation of DAX1 expression in turn induces nNOS transcription in response to RA. These results identify nNOS as a target gene of a novel RA/PI3K/Akt/DAX1-dependent pathway in human neuroblastoma cells and stress the functional importance of the transcriptional regulator DAX1 for nNOS gene expression in response to RA treatment.

  4. Ursolic acid mediates photosensitization by initiating mitochondrial-dependent apoptosis

    NASA Astrophysics Data System (ADS)

    Lee, Yuan-Hao; Wang, Exing; Kumar, Neeru; Glickman, Randolph D.

    2013-02-01

    The signaling pathways PI3K/Akt and MAPK play key roles in transcription, translation and carcinogenesis, and may be activated by light exposure. These pathways may be modulated or inhibited by naturally-occurring compounds, such as the triterpenoid, ursolic acid (UA). Previously, the transcription factors p53 and NF-kB, which transactivate mitochondrial apoptosis-related genes, were shown to be differentially modulated by UA. Our current work indicates that UA causes these effects via the mTOR and insulin-mediated pathways. UA-modulated apoptosis, following exposure to UV radiation, is observed to correspond to differential levels of oxidative stress in retinal pigment epithelial (RPE) and skin melanoma (SM) cells. Flow cytometry analysis, DHE (dihydroethidium) staining and membrane permeability assay showed that UA pretreatment potentiated cell cycle arrest and radiation-induced apoptosis selectively on SM cells while DNA photo-oxidative damage (i.e. strand breakage) was reduced, presumably by some antioxidant activity of UA in RPE cells. The UA-mediated NF-κB activation in SM cells was reduced by rapamycin pretreatment, which indicates that these agents exert inter-antagonistic effects in the PI3K/Akt/mTOR pathway. In contrast, the antagonistic effect of UA on the PI3K/Akt pathway was reversed by insulin leading to greater NF-κB and p53 activation in RPE cells. MitoTracker, a mitochondrial functional assay, indicated that mitochondria in RPE cells experienced reduced oxidative stress while those in SM cells exhibited increased oxidative stress upon UA pretreatment. When rapamycin administration was followed by UA, mitochondrial oxidative stress was increased in RPE cells but decreased in SM cells. These results indicate that UA modulates p53 and NF-κB, initiating a mitogenic response to radiation that triggers mitochondria-dependent apoptosis.

  5. TRB3 reverses chemotherapy resistance and mediates crosstalk between endoplasmic reticulum stress and AKT signaling pathways in MHCC97H human hepatocellular carcinoma cells.

    PubMed

    Li, Yang; Zhu, Danxi; Hou, Lidan; Hu, Bin; Xu, Min; Meng, Xiangjun

    2018-01-01

    Tribbles homolog 3 (TRB3), a type of pseudokinase that contains a consensus serine/threonine kinase catalytic core structure, is upregulated in hepatocellular carcinoma. However, the effect of TRB3 expression in hepatocellular carcinoma and the molecular mechanisms underlying TRB3-mediated effects on tumorigenesis in hepatocellular carcinoma have not been fully elucidated. The present study focused on the effect of TRB3 expression in MHCC97H hepatocellular carcinoma cells and investigated the underlying molecular mechanisms in MHCC97H cells. In the present study, it was revealed that TRB3 was significantly overexpressed in the MHCC97H hepatocellular carcinoma cell compared with L-02 normal hepatic cells. Under endoplasmic reticulum (ER) stress induced by thapsigargin and tunicamycin, the levels of TRB3, CCAAT/enhancer binding protein homologous protein (CHOP), protein kinase B (AKT) and phosphorylated (p)AKT expression were upregulated. Furthermore, when the expression of TRB3 was silenced by short hairpin (sh)RNA, the survival of MHCC97H hepatocellular carcinoma cells was increased. Notably, following transduction with lentiviral containing TRB3-shRNA, cell survival also increased after treatment with chemotherapy drug cisplatin. The present study demonstrated that knockdown of CHOP by shRNA was able to reduce TRB3 expression, and the knockdown of TRB3 markedly increased the level of pAKT. TRB3 was overexpressed in MHCC97H hepatocellular carcinoma cells, particularly under endoplasmic reticulum stress. Knockdown of TRB3 was able to increase cell survival. Therefore, TRB3 expression may induce apoptosis and reverse resistance to chemotherapy in MHCC97H hepatic carcinoma cells. The present study suggests that TRB3 is a key molecule that mediates the crosstalk between ER stress and AKT signal pathways. Furthermore, the present study may provide further insight into the cancer biology of hepatocellular carcinoma and the development of anticancer drugs targeting the ER

  6. Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors.

    PubMed

    Brouillet, S; Hoffmann, P; Chauvet, S; Salomon, A; Chamboredon, S; Sergent, F; Benharouga, M; Feige, J J; Alfaidy, N

    2012-05-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.

  7. delta opioid receptors stimulate Akt-dependent phosphorylation of c-jun in T cells.

    PubMed

    Shahabi, Nahid A; McAllen, Kathy; Sharp, Burt M

    2006-02-01

    Activation of naive T cells markedly up-regulates the expression of delta opioid receptors (DORs). These receptors are bound by DOR peptides released by T cells, modulating T cell functions such as interleukin-2 production, cellular proliferation, and chemotaxis. Previous studies have shown that DOR agonists [e.g., [D-Ala(2)-D-Leu(5)]-enkephalin (DADLE)] modulate T cell antigen receptor signaling through mitogen-activated protein kinases (MAPKs; i.e., extracellular signal-regulated kinases 1 and 2) and that DORs directly induce phosphorylation of activating transcription factor-2 (implicated in cytokine gene transcription) and its association with the MAPK c-jun1 NH(2)-terminal kinase (JNK). Such observations suggest that DORs may induce the phosphorylation of c-jun. These experiments were performed to test this hypothesis and determine the potential roles of phosphoinositide 3-kinase (PI3K) and Akt (protein kinase B). DADLE (10(-10) to 10(-6) M) dose-dependently induced c-jun phosphorylation. This was blocked by pertussis toxin and the DOR-specific antagonist naltindole. Fluorescence flow cytometry showed that DADLE significantly stimulated c-jun phosphorylation by T cells. DADLE stimulated phosphorylation of membrane-associated Akt; wortmannin and LY294002 ([2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one]), specific inhibitors of PI3K, abolished the DADLE-induced phosphorylation of c-jun. Finally, inhibitors of Akt and JNK blocked DADLE-induced phosphorylation of c-jun. Thus, activated DORs directly stimulate c-jun phosphorylation through a PI3K-dependent pathway in T cells, apparently involving Akt. This implies that DORs activate JNK through a novel pathway dependent on PI3K and Akt, thereby regulating the function of activator protein-1 transcription complexes containing c-jun and other transcription partners.

  8. oxLDL induces endothelial cell proliferation via Rho/ROCK/Akt/p27kip1 signaling: opposite effects of oxLDL and cholesterol loading.

    PubMed

    Zhang, Chongxu; Adamos, Crystal; Oh, Myung-Jin; Baruah, Jugajyoti; Ayee, Manuela A A; Mehta, Dolly; Wary, Kishore K; Levitan, Irena

    2017-09-01

    Oxidized modifications of LDL (oxLDL) play a key role in the development of endothelial dysfunction and atherosclerosis. However, the underlying mechanisms of oxLDL-mediated cellular behavior are not completely understood. Here, we compared the effects of two major types of oxLDL, copper-oxidized LDL (Cu 2+ -oxLDL) and lipoxygenase-oxidized LDL (LPO-oxLDL), on proliferation of human aortic endothelial cells (HAECs). Cu 2+ -oxLDL enhanced HAECs' proliferation in a dose- and degree of oxidation-dependent manner. Similarly, LPO-oxLDL also enhanced HAEC proliferation. Mechanistically, both Cu 2+ -oxLDL and LPO-oxLDL enhance HAEC proliferation via activation of Rho, Akt phosphorylation, and a decrease in the expression of cyclin-dependent kinase inhibitor 1B (p27 kip1 ). Both Cu 2+ -oxLDL or LPO-oxLDL significantly increased Akt phosphorylation, whereas an Akt inhibitor, MK2206, blocked oxLDL-induced increase in HAEC proliferation. Blocking Rho with C3 or its downstream target ROCK with Y27632 significantly inhibited oxLDL-induced Akt phosphorylation and proliferation mediated by both Cu 2+ - and LPO-oxLDL. Activation of RhoA was blocked by Rho-GDI-1, which also abrogated oxLDL-induced Akt phosphorylation and HAEC proliferation. In contrast, blocking Rac1 in these cells had no effect on oxLDL-induced Akt phosphorylation or cell proliferation. Moreover, oxLDL-induced Rho/Akt signaling downregulated cell cycle inhibitor p27 kip1 Preloading these cells with cholesterol, however, prevented oxLDL-induced Akt phosphorylation and HAEC proliferation. These findings provide a new understanding of the effects of oxLDL on endothelial proliferation, which is essential for developing new treatments against neovascularization and progression of atherosclerosis. Copyright © 2017 the American Physiological Society.

  9. Short-term psychosocial stress protects photoreceptors from damage via corticosterone-mediated activation of the AKT pathway.

    PubMed

    Forkwa, Tembei K; Neumann, Inga D; Tamm, Ernst R; Ohlmann, Andreas; Reber, Stefan O

    2014-02-01

    Apoptotic death of photoreceptors in hereditary retinal degenerations can be prevented by neuroprotective molecules. Here, we report that adrenal glucocorticoids (GC) released during psychosocial stress protect photoreceptors from apoptosis after light damage. Psychosocial stress is known to be the main type of stressor humans are exposed to and was induced here in mice by 10h of chronic subordinate colony housing (CSC). Photoreceptor damage was generated by subsequent exposure to white light. Short-term psychosocial stress prior to illumination significantly reduced the number of apoptotic photoreceptors, an effect that was absent in adrenalectomized (ADX) mice. The neuroprotective effect was completely restored in ADX mice substituted with GC. Moreover, phosphorylation of retinal AKT increased following CSC or exogenous GC treatment, an effect that was again absent in ADX mice exposed to CSC. Finally, inhibition of AKT signaling with triciribine blocked the stress- and GC-mediated neuroprotective effects on photoreceptors. In summary, we provide evidence that 1) short-term psychosocial stress protects photoreceptors from light-induced damage and 2) the protective effect is most likely mediated by GC-induced activation of the AKT signaling pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Phospholipase D2 Mediates Survival Signaling through Direct Regulation of Akt in Glioblastoma Cells*♦

    PubMed Central

    Bruntz, Ronald C.; Taylor, Harry E.; Lindsley, Craig W.; Brown, H. Alex

    2014-01-01

    The lack of innovative drug targets for glioblastoma multiforme (GBM) limits patient survival to approximately 1 year following diagnosis. The pro-survival kinase Akt provides an ideal target for the treatment of GBM as Akt signaling is frequently activated in this cancer type. However, the central role of Akt in physiological processes limits its potential as a therapeutic target. In this report, we show that the lipid-metabolizing enzyme phospholipase D (PLD) is a novel regulator of Akt in GBM. Studies using a combination of small molecule PLD inhibitors and siRNA knockdowns establish phosphatidic acid, the product of the PLD reaction, as an essential component for the membrane recruitment and activation of Akt. Inhibition of PLD enzymatic activity and subsequent Akt activation decreases GBM cell viability by specifically inhibiting autophagic flux. We propose a mechanism whereby phosphorylation of beclin1 by Akt prevents binding of Rubicon (RUN domain cysteine-rich domain containing beclin1-interacting protein), an interaction known to inhibit autophagic flux. These findings provide a novel framework through which Akt inhibition can be achieved without directly targeting the kinase. PMID:24257753

  11. Pkb/Akt1 Mediates Wnt/GSK3β/β-Catenin Signaling-Induced Apoptosis in Human Cord Blood Stem Cells Exposed to Organophosphate Pesticide Monocrotophos

    PubMed Central

    Kashyap, Mahendra P.; Singh, Abhishek K.; Kumar, Vivek; Yadav, Dharmendra K.; Khan, Feroz; Jahan, Sadaf; Khanna, Vinay K.; Yadav, Sanjay

    2013-01-01

    Inhibition mechanisms of protein kinase B (Pkb)/Akt and its consequences on related cell signaling were investigated in human umbilical cord blood stem cells (hUCBSCs) exposed to monocrotophos (MCP, an organophosphate pesticide). In silico data reveal that MCP interacts with kinase and c-terminal regulatory domains of Akt1, resulting into a total docking score of 5.2748 and also forms H-bond between its N-H and Thr-291 residue of Akt1, in addition to possessing several hydrophobic interactions. The main cause of Akt inhibition is considered to be the strong hydrogen bond between N-H and Thr-291, and hydrophobic interactions at Glu-234, and Asp-292 in the vicinity, which is usually occupied by the ribose of ATP, and interaction with residue Phe-161, thus leading to a significant conformational change in that particular portion of the protein. In silico data on Akt inhibition were confirmed by examining the downregulation of phosphorylated (Thr308/Ser493) Akt1 in MCP-exposed hUCBSCs. MCP-mediated altered levels of pAkt downstream targets viz., downregulated pGSK3β (Ser9), unchanged GSK3αβ, and upregulated levels of Bad, P53, and caspase-9 further confirm the inhibition of pAkt. The cellular fate of such pAkt inhibition was confirmed by increased terminal deoxynucleotide transferase dUTP nick-end labeling positive cells, reduced mitochondrial membrane potential, and the activation of various MAPKs, proapoptotic markers-Bax, and caspases-9/3. Our data demonstrate that Akt1 plays a key role in MCP-induced apoptosis in hUCBSCs. We also identified that such cellular responses of human cord blood stem cells against MCP were due to strong binding and inhibition of kinase and AGC-Kinase-C terminal regulatory domains of Akt1. PMID:22897592

  12. Pkb/Akt1 mediates Wnt/GSK3β/β-catenin signaling-induced apoptosis in human cord blood stem cells exposed to organophosphate pesticide monocrotophos.

    PubMed

    Kashyap, Mahendra P; Singh, Abhishek K; Kumar, Vivek; Yadav, Dharmendra K; Khan, Feroz; Jahan, Sadaf; Khanna, Vinay K; Yadav, Sanjay; Pant, Aditya B

    2013-01-15

    Inhibition mechanisms of protein kinase B (Pkb)/Akt and its consequences on related cell signaling were investigated in human umbilical cord blood stem cells (hUCBSCs) exposed to monocrotophos (MCP, an organophosphate pesticide). In silico data reveal that MCP interacts with kinase and c-terminal regulatory domains of Akt1, resulting into a total docking score of 5.2748 and also forms H-bond between its N-H and Thr-291 residue of Akt1, in addition to possessing several hydrophobic interactions. The main cause of Akt inhibition is considered to be the strong hydrogen bond between N-H and Thr-291, and hydrophobic interactions at Glu-234, and Asp-292 in the vicinity, which is usually occupied by the ribose of ATP, and interaction with residue Phe-161, thus leading to a significant conformational change in that particular portion of the protein. In silico data on Akt inhibition were confirmed by examining the downregulation of phosphorylated (Thr308/Ser493) Akt1 in MCP-exposed hUCBSCs. MCP-mediated altered levels of pAkt downstream targets viz., downregulated pGSK3β (Ser9), unchanged GSK3αβ, and upregulated levels of Bad, P(53), and caspase-9 further confirm the inhibition of pAkt. The cellular fate of such pAkt inhibition was confirmed by increased terminal deoxynucleotide transferase dUTP nick-end labeling positive cells, reduced mitochondrial membrane potential, and the activation of various MAPKs, proapoptotic markers-Bax, and caspases-9/3. Our data demonstrate that Akt1 plays a key role in MCP-induced apoptosis in hUCBSCs. We also identified that such cellular responses of human cord blood stem cells against MCP were due to strong binding and inhibition of kinase and AGC-Kinase-C terminal regulatory domains of Akt1.

  13. Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling

    PubMed Central

    Miyazaki, Mitsunori; McCarthy, John J; Fedele, Mark J; Esser, Karyn A

    2011-01-01

    Abstract The mammalian target of rapamycin complex 1 (mTORC1) functions as a central integrator of a wide range of signals that modulate protein metabolism and cell growth. However, the contributions of individual pathways regulating mTORC1 activity in skeletal muscle are poorly defined. The purpose of this study was to determine the regulatory mechanisms that contribute to mTORC1 activation during mechanical overload-induced skeletal muscle hypertrophy. Consistent with previous studies, mechanical overload induced progressive hypertrophy of the plantaris muscle which was associated with significant increases in total RNA content and protein metabolism. mTORC1 was activated after a single day of overload as indicated by a significant increase in S6K1 phosphorylation at T389 and T421/S424. In contrast, Akt activity, as assessed by Akt phosphorylation status (T308 and S473), phosphorylation of direct downstream targets (glycogen synthase kinase 3 β, proline-rich Akt substrate 40 kDa and tuberous sclerosis 2 (TSC2)) and a kinase assay, was not significantly increased until 2–3 days of overload. Inhibition of phosphoinositide 3-kinase (PI3K) activity by wortmannin was sufficient to block insulin-dependent signalling but did not prevent the early activation of mTORC1 in response to overload. We identified that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)-dependent pathway was activated at day 1 after overload. In addition, a target of MEK/ERK signalling, phosphorylation of TSC2 at S664, was also increased at this early time point. These observations demonstrate that in vivo, mTORC1 activation at the early phase of mechanical overload in skeletal muscle occurs independently of PI3K/Akt signalling and provide evidence that the MEK/ERK pathway may contribute to mTORC1 activation through phosphorylation of TSC2. PMID:21300751

  14. Naringin induces autophagy-mediated growth inhibition by downregulating the PI3K/Akt/mTOR cascade via activation of MAPK pathways in AGS cancer cells.

    PubMed

    Raha, Suchismita; Yumnam, Silvia; Hong, Gyeong Eun; Lee, Ho Jeong; Saralamma, Venu Venkatarame Gowda; Park, Hyeon-Soo; Heo, Jeong Doo; Lee, Sang Joon; Kim, Eun Hee; Kim, Jin-A; Kim, Gon Sup

    2015-09-01

    Naringin, one of the major bioflavonoid of Citrus, has been demonstrated as potential anticancer agent. However, the underlying anticancer mechanism still needs to be explored further. This study investigated the inhibitory effect of Naringin on human AGS cancer cells. AGS cell proliferation was inhibited by Naringin in a dose- and time-dependent manner. Naringin did not induce apoptotic cell death, determined by no DNA fragmentation and the reduced Bax/Bcl-xL ratio. Growth inhibitory role of Naringin was observed by western blot analysis demonstrating downregulation of PI3K/Akt/mTOR cascade with an upregulated p21CIPI/WAFI. Formation of cytoplasmic vacuoles and autophagosomes were observed in Naringin-treated AGS cells, further confirmed by the activation of autophagic proteins Beclin 1 and LC3B with a significant phosphorylation of mitogen activated protein kinases (MAPKs). Collectively, our observed results determined that anti-proliferative activity of Naringin in AGS cancer cells is due to suppression of PI3K/Akt/mTOR cascade via induction of autophagy with activated MAPKs. Thus, the present finding suggests that Naringin induced autophagy- mediated growth inhibition shows potential as an alternative therapeutic agent for human gastric carcinoma.

  15. B-type natriuretic peptide expression and cardioprotection is regulated by Akt dependent signaling at early reperfusion.

    PubMed

    Breivik, L; Jensen, A; Guvåg, S; Aarnes, E K; Aspevik, A; Helgeland, E; Hovland, S; Brattelid, T; Jonassen, A K

    2015-04-01

    .9, p<0.05). In conclusion, Akt dependent signaling is involved in mediating the cardioprotection afforded by intermittent BNP infusion at early reperfusion, and may also participate in regulation of reperfusion induced BNP expression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. The angiogenic related functions of bone marrow mesenchymal stem cells are promoted by CBDL rat serum via the Akt/Nrf2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Cheng-Cheng; Chen, Bing; Gu, Jian-Teng

    Hepatopulmonary syndrome (HPS) is a complication of severe liver disease. It is characterized by an arterial oxygenation defect. Recent studies have demonstrated that pulmonary angiogenesis contributes to the abnormal gas exchange found in HPS. Additionally, mesenchymal stem cells (MSCs) are considered the stable source of VEGF-producing cells and have the potential to differentiate into multiple cell types. However, it has not been determined whether bone marrow mesenchymal stem cells (BM-MSCs) are mobilized and involved in the pulmonary angiogenesis in HPS. In this study, a CFU-F assay showed that the number of peripheral blood MSCs was increased in common bile ductmore » ligation (CBDL) rats; however, there was no significant difference found in the number of BM-MSCs. In vitro, CBDL rat serum induced the overexpression of CXCR4 and PCNA in BM-MSCs. Consistently, the directional migration as well as the proliferation ability of BM-MSCs were enhanced by CBDL rat serum, as determined by a transwell migration and MTT assays. Moreover, the secretion of VEGF by BM-MSCs increased after treatment with CBDL rat serum. We also found that the expression of phospho-Akt, phospho-ERK, and Nrf2 in BM-MSCs was significantly up-regulated by CBDL rat serum in a time dependent manner, and the blockage of the Akt/Nrf2 signalling pathway with an Akt Inhibitor or Nrf2 siRNA, instead of an ERK inhibitor, attenuated the migration, proliferation and paracrine capacity of BM-MSCs. In conclusion, these findings indicated that the number of MSCs increased in the peripheral blood of CBDL rats, and the Akt/Nrf2 pathway plays a vital role in promoting the angiogenic related functions of BM-MSCs, which could be a potent contributor to pulmonary angiogenesis in HPS. - Highlights: • Peripheral blood MSCs was increased in CBDL rats; however, the difference found for the number of BM-MSCs was not significant. • The directional migration, proliferation and ability to secrete VEGF of BM

  17. Celecoxib promotes c-FLIP degradation through Akt-independent inhibition of GSK3

    PubMed Central

    Chen, Shuzhen; Cao, Wei; Yue, Ping; Hao, Chunhai; Khuri, Fadlo R.; Sun, Shi-Yong

    2011-01-01

    Celecoxib is a COX2 inhibitor that reduces the risk of colon cancer. However, the basis for its cancer chemopreventive activity is not fully understood. In this study, we defined a mechanism of celecoxib action based on degradation of c-FLIP, a major regulator of the death receptor pathway of apoptosis. c-FLIP protein levels are regulated by ubiquitination and proteasome-mediated degradation. We found that celecoxib controlled c-FLIP ubiquitination through Akt-independent inhibition of GSK3 kinase, itself a candidate therapeutic target of interest in colon cancer. Celecoxib increased the levels of phosphorylated GSK3 (p-GSK3), including the α and β forms, even in cell lines where p-Akt levels were not increased. PI3K inhibitors abrogated Akt phosphorylation as expected but had no effect on celecoxib-induced GSK3 phosphorylation. In contrast, PKC inhibitors abolished celecoxib-induced GSK3 phosphorylation, implying that celecoxib influenced GSK3 phosphorylation through a mechanism relied upon PKC but not Akt. GSK3 blockade either by siRNA or kinase inhibitors was sufficient to attenuate c-FLIP levels. Combining celecoxib with GSK3 inhibition enhanced attenuation of c-FLIP and increased apoptosis. Proteasome inhibitor MG132 reversed the effects of GSK3 inhibition and increased c-FLIP ubiquitination, confirming that c-FLIP attenuation was mediated by proteasomal turnover as expected. Our findings reveal a novel mechanism through which the regulatory effects of c-FLIP on death receptor signaling are controlled by GSK3, which celecoxib acts at an upstream level to control independently of Akt. PMID:21868755

  18. Gene-gene interactions and gene polymorphisms of VEGFA and EG-VEGF gene systems in recurrent pregnancy loss.

    PubMed

    Su, Mei-Tsz; Lin, Sheng-Hsiang; Chen, Yi-Chi; Kuo, Pao-Lin

    2014-06-01

    Both vascular endothelial growth factor A (VEGFA) and endocrine gland-derived vascular endothelial growth factor (EG-VEGF) systems play major roles in angiogenesis. A body of evidence suggests VEGFs regulate critical processes during pregnancy and have been associated with recurrent pregnancy loss (RPL). However, little information is available regarding the interaction of these two major major angiogenesis-related systems in early human pregnancy. This study was conducted to investigate the association of gene polymorphisms and gene-gene interaction among genes in VEGFA and EG-VEGF systems and idiopathic RPL. A total of 98 women with history of idiopathic RPL and 142 controls were included, and 5 functional SNPs selected from VEGFA, KDR, EG-VEGF (PROK1), PROKR1 and PROKR2 were genotyped. We used multifactor dimensionality reduction (MDR) analysis to choose a best model and evaluate gene-gene interactions. Ingenuity pathways analysis (IPA) was introduced to explore possible complex interactions. Two receptor gene polymorphisms [KDR (Q472H) and PROKR2 (V331M)] were significantly associated with idiopathic RPL (P<0.01). The MDR test revealed that the KDR (Q472H) polymorphism was the best loci to be associated with RPL (P=0.02). IPA revealed EG-VEGF and VEGFA systems shared several canonical signaling pathways that may contribute to gene-gene interactions, including the Akt, IL-8, EGFR, MAPK, SRC, VHL, HIF-1A and STAT3 signaling pathways. Two receptor gene polymorphisms [KDR (Q472H) and PROKR2 (V331M)] were significantly associated with idiopathic RPL. EG-VEGF and VEGFA systems shared several canonical signaling pathways that may contribute to gene-gene interactions, including the Akt, IL-8, EGFR, MAPK, SRC, VHL, HIF-1A and STAT3.

  19. Expression of VEGF 111 and other VEGF-A variants in the rat uterus is correlated with stage of pregnancy.

    PubMed

    Whittington, Camilla M; Danastas, Kevin; Grau, Georges E; Murphy, Christopher R; Thompson, Michael B

    2017-02-01

    Vascular endothelial growth factor A is a major mediator of angiogenesis, a critically important process in vertebrate growth and development as well as pregnancy. Here we report for the first time the expression of a rare and unusually potent splice variant, VEGF 111 , in vivo in mammals. This variant has previously only been found in mammals in cultured human cells exposed to genotoxic agents. Our discovery of VEGF 111 in the uterus of both a eutherian (rat) and a marsupial (fat-tailed dunnart) suggests that the splice variant may be common to all mammals. As VEGF 111 is also expressed in the uterus of at least one lineage of lizards, the expression of this splice variant may be a widespread amniote phenomenon. We measured expression of VEGF 111 and two major VEGF-A splice variants in the uterus of pregnant rats, showing that the three variants show different expression patterns across pregnancy. Our results suggest that viviparous mammals possess a precisely regulated milieu of VEGF isoforms producing the angiogenesis required for successful pregnancy. The discovery of VEGF 111 in rat uterus paves the way for the development of in vivo models of VEGF 111 activity in a highly tractable laboratory animal, and is particularly significant in the context of early pregnancy loss and cancer research.

  20. IGF-1 activates hEAG K(+) channels through an Akt-dependent signaling pathway in breast cancer cells: role in cell proliferation.

    PubMed

    Borowiec, Anne-Sophie; Hague, Frédéric; Harir, Noria; Guénin, Stéphanie; Guerineau, François; Gouilleux, Fabrice; Roudbaraki, Morad; Lassoued, Kaiss; Ouadid-Ahidouch, Halima

    2007-09-01

    Previous work from our laboratory has shown that human ether à go-go (hEAG) K(+) channels are crucial for breast cancer cell proliferation and cell cycle progression. In this study, we investigated the regulation of hEAG channels by an insulin-like growth factor-1 (IGF-1), which is known to stimulate cell proliferation. Acute applications of IGF-1 increased K(+) current-density and hyperpolarized MCF-7 cells. The effects of IGF-1 were inhibited by hEAG inhibitors. Moreover, IGF-1 increased mRNA expression of hEAG in a time-dependent manner in parallel with an enhancement of cell proliferation. The MCF-7 cell proliferation induced by IGF-1 is inhibited pharmacologically by Astemizole or Quinidine or more specifically using siRNA against hEAG channel. Either mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3-kinase (PI3K) are known to mediate IGF-1 cell proliferative signals through the activation of extracellular signal-regulated kinase 1/2 (Erk 1/2) and Akt, respectively. In MCF-7 cells, IGF-1 rapidly stimulated Akt phosphorylation, whereas IGF-1 had little stimulating effect on Erk 1/2 which seems to be constitutively activated. The application of wortmannin was found to block the effects of IGF-1 on K(+) current. Moreover, the inhibition of Akt phosphorylation by the application of wortmannin or by a specific reduction of Akt kinase activity reduced the hEAG mRNA levels. Taken together, our results show, for the first time, that IGF-1 increases both the activity and the expression of hEAG channels through an Akt-dependent pathway. Since a hEAG channel is necessary for cell proliferation, its regulation by IGF-1 may thus play an important role in IGF-1 signaling to promote a mitogenic effect in breast cancer cells.

  1. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-{beta}1 from prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Gwenaelle; Harvey, Kevin; Slivova, Veronika

    2005-04-29

    Ganoderma lucidum (G. lucidum) is a popular medicinal mushroom that has been used as a home remedy for the general promotion of health and longevity in East Asia. The dried powder of G. lucidum, which was recommended as a cancer chemotherapy agent in traditional Chinese medicine, is currently popularly used worldwide in the form of dietary supplements. We have previously demonstrated that G. lucidum induces apoptosis, inhibits cell proliferation, and suppresses cell migration of highly invasive human prostate cancer cells PC-3. However, the molecular mechanism(s) responsible for the inhibitory effects of G. lucidum on the prostate cancer cells has notmore » been fully elucidated. In the present study, we examined the effect of G. lucidum on angiogenesis related to prostate cancer. We found that G. lucidum inhibits the early event in angiogenesis, capillary morphogenesis of the human aortic endothelial cells. These effects are caused by the inhibition of constitutively active AP-1 in prostate cancer cells, resulting in the down-regulation of secretion of VEGF and TGF-{beta}1 from PC-3 cells. Thus, G. lucidum modulates the phosphorylation of Erk1/2 and Akt kinases in PC-3 cells, which in turn inhibits the activity of AP-1. In summary, our results suggest that G. lucidum inhibits prostate cancer-dependent angiogenesis by modulating MAPK and Akt signaling and could have potential therapeutic use for the treatment of prostate cancer.« less

  2. Feedback regulation on PTEN/AKT pathway by the ER stress kinase PERK mediated by interaction with the Vault complex.

    PubMed

    Zhang, Wei; Neo, Suat Peng; Gunaratne, Jayantha; Poulsen, Anders; Boping, Liu; Ong, Esther Hongqian; Sangthongpitag, Kanda; Pendharkar, Vishal; Hill, Jeffrey; Cohen, Stephen M

    2015-03-01

    The high proliferation rate of cancer cells, together with environmental factors such as hypoxia and nutrient deprivation can cause Endoplasmic Reticulum (ER) stress. The protein kinase PERK is an essential mediator in one of the three ER stress response pathways. Genetic and pharmacological inhibition of PERK has been reported to limit tumor growth in xenograft models. Here we provide evidence that inactive PERK interacts with the nuclear pore-associated Vault complex protein and that this compromises Vault-mediated nuclear transport of PTEN. Pharmacological inhibition of PERK under ER stress results is abnormal sequestration of the Vault complex, leading to increased cytoplasmic PTEN activity and lower AKT activation. As the PI3K/PTEN/AKT pathway is crucial for many aspects of cell growth and survival, this unexpected effect of PERK inhibitors on AKT activity may have implications for their potential use as therapeutic agents. Copyright © 2014. Published by Elsevier Inc.

  3. Menin regulates Inhbb expression through an Akt/Ezh2-mediated H3K27 histone modification.

    PubMed

    Gherardi, Samuele; Ripoche, Doriane; Mikaelian, Ivan; Chanal, Marie; Teinturier, Romain; Goehrig, Delphine; Cordier-Bussat, Martine; Zhang, Chang X; Hennino, Ana; Bertolino, Philippe

    2017-04-01

    Although Men1 is a well-known tumour suppressor gene, little is known about the functions of Menin, the protein it encodes for. Since few years, numerous publications support a major role of Menin in the control of epigenetics gene regulation. While Menin interaction with MLL complex favours transcriptional activation of target genes through H3K4me3 marks, Menin also represses gene expression via mechanisms involving the Polycomb repressing complex (PRC). Interestingly, Ezh2, the PRC-methyltransferase that catalyses H3K27me3 repressive marks and Menin have been shown to co-occupy a large number of promoters. However, lack of binding between Menin and Ezh2 suggests that another member of the PRC complex is mediating this indirect interaction. Having found that ActivinB - a TGFβ superfamily member encoded by the Inhbb gene - is upregulated in insulinoma tumours caused by Men1 invalidation, we hypothesize that Menin could directly participate in the epigenetic-repression of Inhbb gene expression. Using Animal model and cell lines, we report that loss of Menin is directly associated with ActivinB-induced expression both in vivo and in vitro. Our work further reveals that ActivinB expression is mediated through a direct modulation of H3K27me3 marks on the Inhbb locus in Menin-KO cell lines. More importantly, we show that Menin binds on the promoter of Inhbb gene where it favours the recruitment of Ezh2 via an indirect mechanism involving Akt-phosphorylation. Our data suggests therefore that Menin could take an important part to the Ezh2-epigenetic repressive landscape in many cells and tissues through its capacity to modulate Akt phosphorylation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9 expression.

    PubMed

    Yoon, Sang-Oh; Shin, Sejeong; Lee, Ho-Jae; Chun, Hyo-Kon; Chung, An-Sik

    2006-11-01

    Matrix metalloproteinase (MMP)-9 plays a key role in tumor invasion. Inhibitors of MMP-9 were screened from Metasequoia glyptostroboides (Dawn redwood) and one potent inhibitor, isoginkgetin, a biflavonoid, was identified. Noncytotoxic levels of isoginkgetin decreased MMP-9 production profoundly, but up-regulated the level of tissue inhibitor of metalloproteinase (TIMP)-1, an inhibitor of MMP-9, in HT1080 human fibrosarcoma cells. The major mechanism of Ras-dependent MMP-9 production in HT1080 cells was phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor-kappaB (NF-kappaB) activation. Expression of dominant-active H-Ras and p85 (a subunit of PI3K) increased MMP-9 activity, whereas dominant-negative forms of these molecules decreased the level of MMP-9. H-Ras did not increase MMP-9 in the presence of a PI3K inhibitor, LY294002, and a NF-kappaB inhibitor, SN50. Further studies showed that isoginkgetin regulated MMP-9 production via PI3K/Akt/NF-kappaB pathway, as evidenced by the findings that isoginkgetin inhibited activities of both Akt and NF-kappaB. PI3K/Akt is a well-known key pathway for cell invasion, and isoginkgetin inhibited HT1080 tumor cell invasion substantially. Isoginkgetin was also quite effective in inhibiting the activities of Akt and MMP-9 in MDA-MB-231 breast carcinomas and B16F10 melanoma. Moreover, isoginkgetin treatment resulted in marked decrease in invasion of these cells. In summary, PI3K/Akt is a major pathway for MMP-9 expression and isoginkgetin markedly decreased MMP-9 expression and invasion through inhibition of this pathway. This suggests that isoginkgetin could be a potential candidate as a therapeutic agent against tumor invasion.

  5. Fisetin inhibits epidermal growth factor–induced migration of ARPE-19 cells by suppression of AKT activation and Sp1-dependent MMP-9 expression

    PubMed Central

    Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen

    2017-01-01

    Purpose Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)–induced cell migration and the underlying mechanisms remain unclear. Methods Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription–PCR (RT–PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Results Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Conclusions Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1–dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases. PMID:29296070

  6. Apatinib Inhibits Angiogenesis Via Suppressing Akt/GSK3β/ANG Signaling Pathway in Anaplastic Thyroid Cancer.

    PubMed

    Jin, Zhijian; Cheng, Xi; Feng, Haoran; Kuang, Jie; Yang, Weiping; Peng, Chenghong; Shen, Baiyong; Qiu, Weihua

    2017-01-01

    Anaplastic thyroid carcinoma (ATC) is one of the most lethal human malignancies, and there is no efficient method to slow its process. Apatinib, a novel tyrosine kinase inhibitor (TKI), has been confirmed for its efficacy and safety in the treatment of advanced gastric carcinoma patients. However, the effects of Apatinib in ATC are still unknown. In this study, we explored the effects and mechanisms of Apatinib on tumor growth and angiogenesis in vitro and in vitro in ATC cells. Angiogenesis antibodies array was utilized to detect the expression of angiogenesis-related genes after Apatinib treatment in ATC cells. In addition, we used Akt activator, Akt inhibitor and GSK3β inhibitor to further study the mechanism for how Apatinib suppressed angiogenesis. Apatinib treatment could suppress the growth of ATC cells in a dose- and time-dependent manner via inducing apoptosis and blocking cell cycle progression at G0/G1 phase. Moreover, Apatinib treatment decreased the expression of angiogenin (ANG) and inhibited angiogenesis of ATC cells in vitro and in vitro. We further confirmed that recombinant human ANG (rhANG) significantly abrogated Apatinib-mediated anti-angiogenic ability in ATC cells. Additionally, Apatinib treatment decreased the level of p-Akt and p-GSK3β. Moreover, the Apatinib-mediated decrease of ANG and anti-angiogenic ability were partly reversed when an Akt activator, SC79, was administered. Furthermore, the anti-angiogenic ability of Apatinib can be enhanced in the presence of Akt inhibitor, and the inhibition of GSK3β attenuated the anti-angiogenic ability of Apatinib. Our results demonstrated that Apatinib treatment inhibited tumor growth, and Apatinib-induced suppression of Akt/GSK3β/ANG signaling pathway may play an important role in the inhibition of angiogenesis in ATC, supporting a potential therapeutic approach for using Apatinib in the treatment of ATC. © 2017 The Author(s). Published by S. Karger AG, Basel.

  7. Antagonistic effects of acetylshikonin on LPS-induced NO and PGE2 production in BV2 microglial cells via inhibition of ROS/PI3K/Akt-mediated NF-κB signaling and activation of Nrf2-dependent HO-1.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Kyoung-Tae; Choi, Yung Hyun; Moon, Sung-Kwon; Kim, Wun-Jae; Kim, Gi-Young

    2015-10-01

    Although acetylshikonin (ACS) is known to have antioxidant and antitumor activities, whether ACS regulates the expression of proinflammatory mediators in lipopolysaccharide (LPS)-stimulated microglial cells remains unclear. In this study, it was found that ACS isolated from Lithospermum erythrorhizon inhibits LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) release by suppressing the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in BV2 microglial cells. Furthermore, ACS reduced the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) and subsequently suppressed iNOS and COX-2 expression. Consistent with these data, ACS attenuated the phosphorylation of PI3K and Akt and suppressed the DNA-binding activity of NF-κB by inducing the generation of reactive oxygen species (ROS) in LPS-stimulated cells. In addition, ACS enhanced heme oxygenase-1 (HO-1) expression via nuclear factor-erythroid 2-related factor 2 (Nrf2) activation. Zinc protoporphyrin, a specific HO-1 inhibitor, partially attenuated the antagonistic effects of ACS on LPS-induced NO and PGE2 production. By contrast, the presence of cobalt protoporphyrin, a specific HO-1 inducer, potently suppressed LPS-induced NO and PGE2 production. These data indicate that ACS downregulates proinflammatory mediators such as NO and PGE2 by suppressing PI3K/Akt-dependent NF-κB activity induced by ROS as well as inducing Nrf2-dependent HO-1 activity. Taken together, ACS might be a good candidate to regulate LPS-mediated inflammatory diseases.

  8. Fatty acid transport and transporters in muscle are critically regulated by Akt2.

    PubMed

    Jain, Swati S; Luiken, Joost J F P; Snook, Laelie A; Han, Xiao Xia; Holloway, Graham P; Glatz, Jan F C; Bonen, Arend

    2015-09-14

    Muscle contains various fatty acid transporters (CD36, FABPpm, FATP1, FATP4). Physiological stimuli (insulin, contraction) induce the translocation of all four transporters to the sarcolemma to enhance fatty acid uptake similarly to glucose uptake stimulation via glucose transporter-4 (GLUT4) translocation. Akt2 mediates insulin-induced, but not contraction-induced, GLUT4 translocation, but its role in muscle fatty acid transporter translocation is unknown. In muscle from Akt2-knockout mice, we observed that Akt2 is critically involved in both insulin-induced and contraction-induced fatty acid transport and translocation of fatty acid translocase/CD36 (CD36) and FATP1, but not of translocation of fatty acid-binding protein (FABPpm) and FATP4. Instead, Akt2 mediates intracellular retention of both latter transporters. Collectively, our observations reveal novel complexities in signaling mechanisms regulating the translocation of fatty acid transporters in muscle. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Imino proton exchange rates imply an induced-fit binding mechanism for the VEGF165-targeting aptamer, Macugen

    PubMed Central

    Lee, Joon-Hwa; Jucker, Fiona; Pardi, Arthur

    2008-01-01

    The 2′-fluoro/2′-O-methyl modified RNA aptamer Macugen is a potent inhibitor of the angiogenic regulatory protein, VEGF165. Macugen binds with high affinity to the heparin-binding domain (HBD) of VEGF165. Hydrogen exchange rates of the imino protons were measured for free Macugen and Macugen bound to the HBD or full-length VEGF to better understand the mechanism for high affinity binding. The results here show that the internal loop and hairpin loop of Macugen are highly dynamic in the free state and are greatly stabilized and/or protected from solvent upon protein binding. PMID:18485899

  10. Enhanced effect of VEGF165 on L-type calcium currents in guinea-pig cardiac ventricular myocytes.

    PubMed

    Xing, Wenlu; Gao, Chuanyu; Qi, Datun; Zhang, You; Hao, Peiyuan; Dai, Guoyou; Yan, Ganxin

    2017-01-01

    The mechanisms of vascular endothelial growth factor 165 (VEGF165) on electrical properties of cardiomyocytes have not been fully elucidated. The aim of this study is to test the hypothesis that VEGF165, an angiogenesis-initiating factor, affects L-type calcium currents (I Ca,L ) and cell membrane potential in cardiac myocytes by acting on VEGF type-2 receptors (VEGFR2). I Ca,L and action potentials (AP) were recorded by the whole-cell patch clamp method in isolated guinea-pig ventricular myocytes treated with different concentrations of VEGF165 proteins. Using a VEGFR2 inhibitor, we also tested the receptor of VEGF165 in cardiomyocytes. We found that VEGF165 increased I Ca,L in a concentration-dependent manner. SU5416, a VEGFR2 inhibitor, almost completely eliminated VEGF165-induced I Ca,L increase. VEGF165 had no significant influence on action potential 90 (APD90) and other properties of AP. We conclude that in guinea-pig ventricular myocytes, I Ca,L can be increased by VEGF165 in a concentration-dependent manner through binding to VEGFR2 without causing any significant alteration to action potential duration. Results of this study may further expound the safety of VEGF165 when used in the intervention of heart diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells.

    PubMed

    Gonzalez, Eva; Nagiel, Aaron; Lin, Alison J; Golan, David E; Michel, Thomas

    2004-09-24

    Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules in endothelial cells. To explore the role of this protein in receptor-modulated signaling pathways, we transfected bovine aortic endothelial cells (BAEC) with small interfering RNA (siRNA) duplexes to down-regulate caveolin-1 expression. Transfection of BAEC with duplex siRNA targeted against caveolin-1 mRNA selectively "knocked-down" the expression of caveolin-1 by approximately 90%, as demonstrated by immunoblot analyses of BAEC lysates. We used discontinuous sucrose gradients to purify caveolin-containing lipid rafts from siRNA-treated endothelial cells. Despite the near-total down-regulation of caveolin-1 expression, the lipid raft targeting of diverse signaling proteins (including the endothelial isoform of nitric-oxide synthase, Src-family tyrosine kinases, Galphaq and the insulin receptor) was unchanged. We explored the consequences of caveolin-1 knockdown on kinase pathways modulated by the agonists sphingosine-1 phosphate (S1P) and vascular endothelial growth factor (VEGF). siRNA-mediated caveolin-1 knockdown enhanced basal as well as S1P- and VEGF-induced phosphorylation of the protein kinase Akt and did not modify the basal or agonist-induced phosphorylation of extracellular signal-regulated kinases 1/2. Caveolin-1 knock-down also significantly enhanced the basal and agonist-induced activity of the small GTPase Rac. We used siRNA to down-regulate Rac expression in BAEC, and we observed that Rac knockdown significantly reduced basal, S1P-, and VEGF-induced Akt phosphorylation, suggesting a role for Rac activation in the caveolin siRNA-mediated increase in Akt phosphorylation. By using siRNA to knockdown caveolin-1 and Rac expression in cultured endothelial cells, we have found that caveolin-1 does not seem to be required for the targeting of signaling molecules to caveolae/lipid rafts and that caveolin-1 differentially modulates specific kinase pathways in

  12. Repetitive exposure to low-dose X-irradiation attenuates testicular apoptosis in type 2 diabetic rats, likely via Akt-mediated Nrf2 activation

    PubMed Central

    Zhao, Yuguang; Kong, Chuipeng; Chen, Xiao; Wang, Zhenyu; Wan, Zhiqiang; Jia, Lin; Liu, Qiuju; Wang, Yuehui; Li, Wei; Cui, Jiuwei; Han, Fujun; Cai, Lu

    2017-01-01

    To determine whether repetitive exposure to low-dose radiation (LDR) attenuates type 2 diabetes (T2DM)-induced testicular apoptotic cell death in a T2DM rat model, we examined the effects of LDR exposure on diabetic and age-matched control rats. We found that testicular apoptosis and oxidative stress levels were significantly higher in T2DM rats than in control rats. In addition, glucose metabolism-related Akt and GSK-3β function was downregulated and Akt negative regulators PTP1B and TRB3 were upregulated in the T2DM group. Superoxide dismutase (SOD) activity and catalase content were also found to be decreased in T2DM rats. These effects were partially prevented or reversed by repetitive LDR exposure. Nrf2 and its downstream genes NQO1, SOD, and catalase were significantly upregulated by repetitive exposure to LDR, suggesting that the reduction of T2DM-induced testicular apoptosis due to repetitive LDR exposure likely involves enhancement of testicular Akt-mediated glucose metabolism and anti-oxidative defense mechanisms. PMID:26704079

  13. Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia.

    PubMed

    Reynolds, C; Roderick, J E; LaBelle, J L; Bird, G; Mathieu, R; Bodaar, K; Colon, D; Pyati, U; Stevenson, K E; Qi, J; Harris, M; Silverman, L B; Sallan, S E; Bradner, J E; Neuberg, D S; Look, A T; Walensky, L D; Kelliher, M A; Gutierrez, A

    2014-09-01

    Treatment resistance in T-cell acute lymphoblastic leukemia (T-ALL) is associated with phosphatase and tensin homolog (PTEN) deletions and resultant phosphatidylinositol 3'-kinase (PI3K)-AKT pathway activation, as well as MYC overexpression, and these pathways repress mitochondrial apoptosis in established T-lymphoblasts through poorly defined mechanisms. Normal T-cell progenitors are hypersensitive to mitochondrial apoptosis, a phenotype that is dependent on the expression of proapoptotic BIM. In a conditional zebrafish model, MYC downregulation induced BIM expression in T-lymphoblasts, an effect that was blunted by expression of constitutively active AKT. In human T-ALL cell lines and treatment-resistant patient samples, treatment with MYC or PI3K-AKT pathway inhibitors each induced BIM upregulation and apoptosis, indicating that BIM is repressed downstream of MYC and PI3K-AKT in high-risk T-ALL. Restoring BIM function in human T-ALL cells using a stapled peptide mimetic of the BIM BH3 domain had therapeutic activity, indicating that BIM repression is required for T-ALL viability. In the zebrafish model, where MYC downregulation induces T-ALL regression via mitochondrial apoptosis, T-ALL persisted despite MYC downregulation in 10% of bim wild-type zebrafish, 18% of bim heterozygotes and in 33% of bim homozygous mutants (P=0.017). We conclude that downregulation of BIM represents a key survival signal downstream of oncogenic MYC and PI3K-AKT signaling in treatment-resistant T-ALL.

  14. N-acetyl-L-cysteine protects against cadmium-induced neuronal apoptosis by inhibiting ROS-dependent activation of Akt/mTOR pathway in mouse brain

    PubMed Central

    Chen, Sujuan; Ren, Qian; Zhang, Jinfei; Ye, Yangjing; Zhang, Zhen; Xu, Yijiao; Guo, Min; Ji, Haiyan; Xu, Chong; Gu, Chenjian; Gao, Wei; Huang, Shile; Chen, Long

    2014-01-01

    Aims This study explores the neuroprotective effects and mechanisms of N-acetyl-L-cysteine (NAC) in mice exposed to cadmium (Cd). Methods NAC (150 mg/kg) was intraperitoneally administered to mice exposed to Cd (10-50 mg/L) in drinking water for 6 weeks. The changes of cell damage and death, reactive oxygen species (ROS), antioxidant enzymes, as well as Akt/mammalian target of rapamycin (mTOR) signaling pathway in brain neurons were assessed. To verify the role of mTOR activation in Cd-induced neurotoxicity, mice also received a subacute regimen of intraperitoneally administered Cd (1 mg/kg) with/without rapamycin (7.5 mg/kg) for 11 days. Results Chronic exposure of mice to Cd induced brain damage or neuronal cell death, due to ROS induction. Co-administration of NAC significantly reduced Cd levels in the plasma and brain of the animals. NAC prevented Cd-induced ROS and significantly attenuated Cd-induced brain damage or neuronal cell death. The protective effect of NAC was mediated, at least partially, by elevating the activities of Cu/Zn-superoxide dismutase, catalase and glutathione peroxidase, as well as the level of glutathione in the brain. Furthermore, Cd-induced activation of Akt/mTOR pathway in the brain was also inhibited by NAC. Rapamycin in vitro and in vivo protected against Cd-induced neurotoxicity. Conclusions NAC protects against Cd-induced neuronal apoptosis in mouse brain partially by inhibiting ROS-dependent activation of Akt/mTOR pathway. The findings highlight that NAC may be exploited for prevention and treatment of Cd-induced neurodegenerative diseases. PMID:24299490

  15. Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horiuchi, Rie; Akimoto, Takayuki, E-mail: akimoto@m.u-tokyo.ac.jp; Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041

    2012-08-15

    Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in responsemore » to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: Black-Right-Pointing-Pointer The expression of Nanog, which is an essential regulator of 'stemness' was reduced during embryonic stem (ES) cell differentiation. Black-Right-Pointing-Pointer Cyclic mechanical strain attenuated the reduction of Nanog expression. Black-Right-Pointing-Pointer Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.« less

  16. Akt phosphorylation regulates the tumour-suppressor merlin through ubiquitination and degradation.

    PubMed

    Tang, Xiaoling; Jang, Sung-Wuk; Wang, Xuerong; Liu, Zhixue; Bahr, Scott M; Sun, Shi-Yong; Brat, Daniel; Gutmann, David H; Ye, Keqiang

    2007-10-01

    The neurofibromatosis-2 (NF2) tumour-suppressor gene encodes an intracellular membrane-associated protein, called merlin, whose growth-suppressive function is dependent on its ability to form interactions through its intramolecular amino-terminal domain (NTD) and carboxy-terminal domain (CTD). Merlin phosphorylation plays a critical part in dictating merlin NTD/CTD interactions as well as in controlling binding to its effector proteins. Merlin is partially regulated by phosphorylation of Ser 518, such that hyperphosphorylated merlin is inactive and fails to form productive intramolecular and intermolecular interactions. Here, we show that the protein kinase Akt directly binds to and phosphorylates merlin on residues Thr 230 and Ser 315, which abolishes merlin NTD/CTD interactions and binding to merlin's effector protein PIKE-L and other binding partners. Furthermore, Akt-mediated phosphorylation leads to merlin degradation by ubiquitination. These studies demonstrate that Akt-mediated merlin phosphorylation regulates the function of merlin in the absence of an inactivating mutation.

  17. Association of cytosolic sialidase Neu2 with plasma membrane enhances Fas-mediated apoptosis by impairing PI3K-Akt/mTOR-mediated pathway in pancreatic cancer cells.

    PubMed

    Nath, Shalini; Mandal, Chhabinath; Chatterjee, Uttara; Mandal, Chitra

    2018-02-12

    Modulation of sialylation by sialyltransferases and sialidases plays essential role in carcinogenesis. There are few reports on sialyltransferase, however, the contribution of cytosolic sialidase (Neu2) remains unexplored in pancreatic ductal adenocarcinoma (PDAC). We observed lower expression of Neu2 in different PDAC cells, patient tissues, and a significant strong association with clinicopathological characteristics. Neu2 overexpression guided drug-resistant MIAPaCa2 and AsPC1 cells toward apoptosis as evidenced by decreased Bcl2/Bax ratio, activation of caspase-3/caspase-6/caspase-8, PARP reduction, reduced CDK2/CDK4/CDK6, and cyclin-B1/cyclin-E with unaffected caspase-9. Neu2-overexpressed cells exhibited higher expression of Fas/CD95-death receptor, FasL, FADD, and Bid cleavage confirming extrinsic pathway-mediated apoptosis. α2,6-linked sialylation of Fas helps cancer cells to survive, which is a substrate for Neu2. Therefore, their removal should enhance Fas-mediated apoptosis. Neu2-overexpressed cells indeed showed increased enzyme activity even on membrane. Interestingly, this membrane-bound Neu2 exhibited enhanced association with Fas causing its desialylation and activation as corroborated by decreased association of Fas with α2,6-sialic acid-binding lectin. Additionally, enhanced cytosolic Neu2 inhibited the expression of several growth factor-mediated signaling molecules involved in PI3K/Akt-mTOR pathway probably through desialylation which in turn also causes Fas activation. Furthermore, Neu2-overexpressed cells exhibited reduced cell migration, invasion with decreased VEGF, VEGFR, and MMP9 levels. To the best of our knowledge, this is the first report of cytosolic Neu2 on membrane, its association with Fas, enhanced desialylation, activation, and Fas-mediated apoptosis. Taken together, our study ascertains a novel concept by which the function of Fas/CD95 could be modulated indicating a critical role of upstream Neu2 as a promising target for

  18. The activity of the anti-apoptotic fragment generated by the caspase-3/p120 RasGAP stress-sensing module displays strict Akt isoform specificity.

    PubMed

    Vanli, Güliz; Peltzer, Nieves; Dubuis, Gilles; Widmann, Christian

    2014-12-01

    The caspase-3/p120 RasGAP module acts as a stress sensor that promotes pro-survival or pro-death signaling depending on the intensity and the duration of the stressful stimuli. Partial cleavage of p120 RasGAP generates a fragment, called fragment N, which protects stressed cells by activating Akt signaling. Akt family members regulate many cellular processes including proliferation, inhibition of apoptosis and metabolism. These cellular processes are regulated by three distinct Akt isoforms: Akt1, Akt2 and Akt3. However, which of these isoforms are required for fragment N mediated protection have not been defined. In this study, we investigated the individual contribution of each isoform in fragment N-mediated cell protection against Fas ligand induced cell death. To this end, DLD1 and HCT116 isogenic cell lines lacking specific Akt isoforms were used. It was found that fragment N could activate Akt1 and Akt2 but that only the former could mediate the protective activity of the RasGAP-derived fragment. Even overexpression of Akt2 or Akt3 could not rescue the inability of fragment N to protect cells lacking Akt1. These results demonstrate a strict Akt isoform requirement for the anti-apoptotic activity of fragment N. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Beom Su; Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830; Park, Ji-Yun

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biologicalmore » process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal

  20. Long-term increase in mVEGF164 in mouse hindlimb muscle mediated by phage phiC31 integrase after nonviral DNA delivery.

    PubMed

    Portlock, Joylette L; Keravala, Annahita; Bertoni, Carmen; Lee, Solomon; Rando, Thomas A; Calos, Michele P

    2006-08-01

    Peripheral vascular disease (PVD), characterized by insufficient blood supply to extremities, can be a devastating illness. Although many gene therapy strategies for PVD using vascular endothelial growth factor (VEGF) have resulted in increased blood vessel formation, the vessels are often impermanent and regress after therapy, probably because of the short-lived VEGF expression mediated by gene therapy vectors (14 days or less). phiC31 integrase is a recombinase originally isolated from a bacteriophage of Streptomyces. This integrase performs efficient chromosomal integration of plasmid DNA into mammalian genomes that results in long-term transgene expression. In this study, gene transfer was achieved by intramuscular injection of VEGF and integrase plasmid DNAs into the tibialis anterior muscle in the mouse hindlimb, followed by electroporation of the muscle with needle electrodes. We observed VEGF levels significantly above background 40 days after injection in animals that received phiC31 integrase and the VEGF plasmid. Site-specific integration of plasmid DNA in the chromosomes of muscle tissue was verified by polymerase chain reaction at a common integration site. These results suggest the possible utility of the phiC31 integrase system to treat ischemic disease.

  1. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway

    PubMed Central

    Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-01-01

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1–42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1–42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1–42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1–42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway. PMID:26950279

  2. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

    PubMed

    Wang, Yan-Juan; Ren, Qing-Guo; Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-03-22

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1-42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1-42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1-42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1-42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

  3. Akt-Signal Integration Is Involved in the Differentiation of Embryonal Carcinoma Cells

    PubMed Central

    Chen, Bo; Xue, Zheng; Yang, Guanghui; Shi, Bingyang; Yang, Ben; Yan, Yuemin; Wang, Xue; Han, Daishu; Huang, Yue; Dong, Wenji

    2013-01-01

    The mechanism by which Akt modulates stem cell homeostasis is still incompletely defined. Here we demonstrate that Akt phosphorylates special AT-rich sequences binding protein 1 (SATB1) at serine 47 and protects SATB1 from apoptotic cleavage. Meanwhile, Akt phosphorylates Oct4 at threonine 228 and Klf4 at threonine 399, and accelerates their degradation. Moreover, PI3K/Akt signaling enhances the binding of SATB1 to Sox2, thereby probably impairing the formation of Oct4/Sox2 regulatory complexes. During retinoic acid (RA)-induced differentiation of mouse F9 embryonal carcinoma cells (ECCs), the Akt activation profile as well as its substrate spectrum is strikingly correlated with the down-regulation of Oct4, Klf4 and Nanog, which suggests Akt activation is coupled to the onset of differentiation. Accordingly, Akt-mediated phosphorylation is crucial for the capability of SATB1 to repress Nanog expression and to activate transcription of Bcl2 and Nestin genes. Taken together, we conclude that Akt is involved in the differentiation of ECCs through coordinated phosphorylations of pluripotency/differentiation factors. PMID:23762260

  4. LPS Increases 5-LO Expression on Monocytes via an Activation of Akt-Sp1/NF-κB Pathways.

    PubMed

    Lee, Seung Jin; Seo, Kyo Won; Kim, Chi Dae

    2015-05-01

    5-Lipoxygenase (5-LO) plays a pivotal role in the progression of atherosclerosis. Therefore, this study investigated the molecular mechanisms involved in 5-LO expression on monocytes induced by LPS. Stimulation of THP-1 monocytes with LPS (0~3 µg/ml) increased 5-LO promoter activity and 5-LO protein expression in a concentration-dependent manner. LPS-induced 5-LO expression was blocked by pharmacological inhibition of the Akt pathway, but not by inhibitors of MAPK pathways including the ERK, JNK, and p38 MAPK pathways. In line with these results, LPS increased the phosphorylation of Akt, suggesting a role for the Akt pathway in LPS-induced 5-LO expression. In a promoter activity assay conducted to identify transcription factors, both Sp1 and NF-κB were found to play central roles in 5-LO expression in LPS-treated monocytes. The LPS-enhanced activities of Sp1 and NF-κB were attenuated by an Akt inhibitor. Moreover, the LPS-enhanced phosphorylation of Akt was significantly attenuated in cells pretreated with an anti-TLR4 antibody. Taken together, 5-LO expression in LPS-stimulated monocytes is regulated at the transcriptional level via TLR4/Akt-mediated activations of Sp1 and NF-κB pathways in monocytes.

  5. Protein Kinase C-δ Mediates Neuronal Apoptosis in the Retinas of Diabetic Rats via the Akt Signaling Pathway

    PubMed Central

    Kim, Young-Hee; Kim, Yoon-Sook; Park, Chang-Hwan; Chung, In-Yong; Yoo, Ji-Myong; Kim, Jae-Geun; Lee, Byung-Ju; Kang, Sang-Soo; Cho, Gyeong-Jae; Choi, Wan-Sung

    2008-01-01

    OBJECTIVE—Protein kinase C (PKC)-δ, an upstream regulator of the Akt survival pathway, contributes to cellular dysfunction in the pathogenesis of diabetes. Herein, we examined the role of PKC-δ in neuronal apoptosis through Akt in the retinas of diabetic rats. RESEARCH DESIGN AND METHODS—We used retinas from 24- and 35-week-old male Otsuka Long-Evans Tokushima fatty (OLETF) diabetic and Long-Evans Tokushima Otsuka (LETO) nondiabetic rats. To assess whether PKC-δ affects Akt signaling and cell death in OLETF rat retinas, we examined 1) PKC-δ activity and apoptosis; 2) protein levels of phosphatidylinositol 3-kinase (PI 3-kinase) p85, heat shock protein 90 (HSP90), and protein phosphatase 2A (PP2A); 3) Akt phosphorylation; and 4) Akt binding to HSP90 or PP2A in LETO and OLETF retinas in the presence or absence of rottlerin, a highly specific PKC-δ inhibitor, or small interfering RNAs (siRNAs) for PKC-δ and HSP90. RESULTS—In OLETF retinas from 35-week-old rats, ganglion cell death, PKC-δ and PP2A activity, and Akt-PP2A binding were significantly increased and Akt phosphorylation and Akt-HSP90 binding were decreased compared with retinas from 24-week-old OLETF and LETO rats. Rottlerin and PKC-δ siRNA abrogated these effects in OLETF retinas from 35-week-old rats. HSP90 siRNA significantly increased ganglion cell death and Akt-PP2A complexes and markedly decreased HSP90-Akt binding and Akt phosphorylation in LETO retinas from 35-week-old rats compared with those from nontreated LETO rats. CONCLUSIONS—PKC-δ activation contributes to neuro-retinal apoptosis in diabetic rats by inhibiting Akt-mediated signaling pathways. PMID:18443201

  6. Celecoxib promotes c-FLIP degradation through Akt-independent inhibition of GSK3.

    PubMed

    Chen, Shuzhen; Cao, Wei; Yue, Ping; Hao, Chunhai; Khuri, Fadlo R; Sun, Shi-Yong

    2011-10-01

    Celecoxib is a COX-2 inhibitor that reduces the risk of colon cancer. However, the basis for its cancer chemopreventive activity is not fully understood. In this study, we defined a mechanism of celecoxib action based on degradation of cellular FLICE-inhibitory protein (c-FLIP), a major regulator of the death receptor pathway of apoptosis. c-FLIP protein levels are regulated by ubiquitination and proteasome-mediated degradation. We found that celecoxib controlled c-FLIP ubiquitination through Akt-independent inhibition of glycogen synthase kinase-3 (GSK3), itself a candidate therapeutic target of interest in colon cancer. Celecoxib increased the levels of phosphorylated GSK3, including the α and β forms, even in cell lines, where phosphorylated Akt levels were not increased. Phosphoinositide 3-kinase inhibitors abrogated Akt phosphorylation as expected but had no effect on celecoxib-induced GSK3 phosphorylation. In contrast, protein kinase C (PKC) inhibitors abolished celecoxib-induced GSK3 phosphorylation, implying that celecoxib influenced GSK3 phosphorylation through a mechanism that relied upon PKC and not Akt. GSK3 blockade either by siRNA or kinase inhibitors was sufficient to attenuate c-FLIP levels. Combining celecoxib with GSK3 inhibition enhanced attenuation of c-FLIP and increased apoptosis. Proteasome inhibitor MG132 reversed the effects of GSK3 inhibition and increased c-FLIP ubiquitination, confirming that c-FLIP attenuation was mediated by proteasomal turnover as expected. Our findings reveal a novel mechanism through which the regulatory effects of c-FLIP on death receptor signaling are controlled by GSK3, which celecoxib acts at an upstream level to control independently of Akt.

  7. Urinary bladder organ hypertrophy is partially regulated by Akt1-mediated protein synthesis pathway.

    PubMed

    Qiao, Li-Ya; Xia, Chunmei; Shen, Shanwei; Lee, Seong Ho; Ratz, Paul H; Fraser, Matthew O; Miner, Amy; Speich, John E; Lysiak, Jeffrey J; Steers, William D

    2018-05-15

    The present study aims to investigate the role of Akt in the regulation of urinary bladder organ hypertrophy caused by partial bladder outlet obstruction (pBOO). Male rats were surgically induced for pBOO. Real-time PCR and western blot were used to examine the levels of mRNA and protein. A phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was used to inhibit the activity of endogenous Akt. The urinary bladder developed hypertrophy at 2 weeks of pBOO. The protein but not mRNA levels of type I collagen and α-smooth muscle actin (αSMA) were increased in pBOO bladder when compared to sham control. The phosphorylation (activation) levels of Akt1 (p-Ser 473 ), mammalian target of rapamycin (mTOR), p70S6 kinase (p70S6K), and 4E-BP1 were also increased in pBOO bladder. LY294002 treatment reduced the phosphorylation levels of Akt1 and 4E-BP1, and the protein levels of type I collagen and αSMA in pBOO bladder. The mRNA and protein levels of proliferating cell nuclear antigen (PCNA) were increased in pBOO bladder, and PCNA up-regulation occurred in urothelial not muscular layer. LY294002 treatment had no effect on the mRNA and protein levels of PCNA in pBOO bladder. LY294002 treatment partially reduced the bladder weight caused by pBOO. pBOO-induced urinary bladder hypertrophy is attributable to fibrosis, smooth muscle cellular hypertrophy, and urothelium cell hyper-proliferation. Akt1-mediated protein synthesis in pBOO bladder contributes to type I collagen and αSMA but not PCNA up-regulation. Target of Akt1 is necessary but not sufficient in treatment of urinary bladder hypertrophy following pBOO. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Activation of the PI3K/Akt pathway mediates bone morphogenetic protein 2-induced invasion of pancreatic cancer cells Panc-1.

    PubMed

    Chen, Xiong; Liao, Jie; Lu, YeBin; Duan, XiaoHui; Sun, WeiJia

    2011-06-01

    Bone morphogenetic proteins (BMPs) signaling has an emerging role in pancreatic cancer. However, because of the multiple effects of different BMPs, no final conclusions have been made as to the role of BMPs in pancreatic cancer. In our studies, we have focused on bone morphogenetic protein 2(BMP-2) because it induces an epithelial to mesenchymal transition (EMT) and accelerates invasion in the human pancreatic cancer cell line Panc-1. It has been reported that the phosphatidylinositol 3-kinase (PI3K)/Akt pathway mediates invasion of gastric and colon cancer cells, which is unrevealed in pancreatic cancer cells. The objective of our study was to investigate whether BMP-2 mediated invasion might pass through the PI3K/Akt pathway. Our results show that expression of phosphorylation of Akt was increased by treatment with BMP-2, but not Noggin, a BMP-2 antagonist. Then pretreatment of Panc-1 cells with LY294002, an inhibitor of the PI3K/AKT pathway, significantly inhibited BMP-2-induced EMT and invasiveness. The data suggest that BMP-2 accelerates invasion of panc-1 cells via the PI3K/AKT pathway in panc-1 cells, which gives clues to searching new therapy targets in advanced pancreatic cancer.

  9. A phosphodiesterase 4B-dependent interplay between tumor cells and the microenvironment regulates angiogenesis in B-cell lymphoma

    PubMed Central

    Suhasini, Avvaru N.; Lin, An-Ping; Bhatnagar, Harshita; Kim, Sang-Woo; Moritz, August W.; Aguiar, Ricardo C. T.

    2015-01-01

    Angiogenesis associates with poor outcome in diffuse large B-cell lymphoma (DLBCL), but the contribution of the lymphoma cells to this process remains unclear. Addressing this knowledge gap may uncover unsuspecting proangiogenic signaling nodes and highlight alternative antiangiogenic therapies. Here we identify the second messenger cyclic-AMP (cAMP) and the enzyme that terminates its activity, phosphodiesterase 4B (PDE4B), as regulators of B-cell lymphoma angiogenesis. We first show that cAMP, in a PDE4B-dependent manner, suppresses PI3K/AKT signals to down-modulate VEGF secretion and vessel formation in vitro. Next, we create a novel mouse model that combines the lymphomagenic Myc transgene with germline deletion of Pde4b. We show that lymphomas developing in a Pde4b-null background display significantly lower microvessel density in association with lower VEGF levels and PI3K/AKT activity. We recapitulate these observations by treating lymphoma-bearing mice with the FDA-approved PDE4 inhibitor Roflumilast. Lastly, we show that primary human DLBCLs with high PDE4B expression display significantly higher microvessel density. Here, we defined an unsuspected signaling circuitry in which the cAMP generated in lymphoma cells downmodulates PI3K/AKT and VEGF secretion to negatively influence vessel development in the microenvironment. These data identify PDE4 as an actionable antiangiogenic target in DLBCL. PMID:26503641

  10. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells.

    PubMed

    Chen, Ying-Jung; Lin, Ku-Nan; Jhang, Li-Mei; Huang, Chia-Hui; Lee, Yuan-Chin; Chang, Long-Sen

    2016-05-25

    Several studies have revealed that natural compounds are valuable resources to develop novel agents against dysregulation of the EGF/EGFR-mediated matrix metalloproteinase-9 (MMP-9) expression in cancer cells. In view of the findings that EGF/EGFR-mediated MMP-9 expression is closely related to invasion and metastasis of breast cancer. To determine the beneficial effects of gallic acid on the suppression of breast cancer metastasis, we explored the effect of gallic acid on MMP-9 expression in EGF-treated MCF-7 breast cancer cells. Treatment with EGF up-regulated MMP-9 mRNA and protein levels in MCF-7 cells. EGF treatment induced phosphorylation of EGFR and elicited Src activation, subsequently promoting Akt/NFκB (p65) and ERK/c-Jun phosphorylation in MCF-7 cells. Activation of Akt/p65 and ERK/c-Jun was responsible for the MMP-9 up-regulation in EGF-treated cells. Gallic acid repressed the EGF-induced activation of EGFR and Src; furthermore, inactivation of Akt/p65 and ERK/c-Jun was a result of the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. Over-expression of constitutively active Akt and MEK1 or over-expression of constitutively active Src eradicated the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. A chromosome conformation capture assay showed that EGF induced a chromosomal loop formation in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun activation. Treatment with gallic acid, EGFR inhibitor, or Src inhibitor reduced DNA looping. Taken together, our data suggest that gallic acid inhibits the activation of EGFR/Src-mediated Akt and ERK, leading to reduced levels of p65/c-Jun-mediated DNA looping and thus inhibiting MMP-9 expression in EGF-treated MCF-7 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. FUT family mediates the multidrug resistance of human hepatocellular carcinoma via the PI3K/Akt signaling pathway.

    PubMed

    Cheng, L; Luo, S; Jin, C; Ma, H; Zhou, H; Jia, L

    2013-11-14

    The fucosyltransferase (FUT) family is the key enzymes in cell-surface antigen synthesis during various biological processes such as tumor multidrug resistance (MDR). The aim of this work was to analyze the alteration of FUTs involved in MDR in human hepatocellular carcinoma (HCC) cell lines. Using mass spectrometry (MS) analysis, the composition profiling of fucosylated N-glycans differed between drug-resistant BEL7402/5-FU (BEL/FU) cells and the sensitive line BEL7402. Further analysis of the expressional profiles of the FUT family in three pairs of parental and chemoresistant human HCC cell lines showed that FUT4, FUT6 and FUT8 were predominant expressed in MDR cell lines. The altered levels of FUT4, FUT6 and FUT8 were responsible for changed drug-resistant phenotypes of BEL7402 and BEL/FU cells both in vitro and in vivo. In addition, regulating FUT4, FUT6 or FUT8 expression markedly modulated the activity of the phosphoinositide 3 kinase (PI3K)/Akt signaling pathway and MDR-related protein 1 (MRP1) expression. Inhibition of the PI3K/Akt pathway by its specific inhibitor wortmannin, or by Akt small interfering RNA (siRNA), resulted in decreased MDR of BEL/FU cells, partly through the downregulation of MRP1. Taken together, our results suggest that FUT4-, FUT6- or FUT8-mediated MDR in human HCC is associated with the activation of the PI3K/Akt pathway and the expression of MRP1, but not of P-gp, indicating a possible novel mechanism by which the FUT family regulates MDR in human HCC.

  12. A Compartment Model of VEGF Distribution in Humans in the Presence of Soluble VEGF Receptor-1 Acting as a Ligand Trap

    PubMed Central

    Wu, Florence T. H.; Stefanini, Marianne O.; Mac Gabhann, Feilim; Popel, Aleksander S.

    2009-01-01

    Vascular endothelial growth factor (VEGF), through its activation of cell surface receptor tyrosine kinases including VEGFR1 and VEGFR2, is a vital regulator of stimulatory and inhibitory processes that keep angiogenesis – new capillary growth from existing microvasculature – at a dynamic balance in normal physiology. Soluble VEGF receptor-1 (sVEGFR1) – a naturally-occurring truncated version of VEGFR1 lacking the transmembrane and intracellular signaling domains – has been postulated to exert inhibitory effects on angiogenic signaling via two mechanisms: direct sequestration of angiogenic ligands such as VEGF; or dominant-negative heterodimerization with surface VEGFRs. In pre-clinical studies, sVEGFR1 gene and protein therapy have demonstrated efficacy in inhibiting tumor angiogenesis; while in clinical studies, sVEGFR1 has shown utility as a diagnostic or prognostic marker in a widening array of angiogenesis–dependent diseases. Here we developed a novel computational multi-tissue model for recapitulating the dynamic systemic distributions of VEGF and sVEGFR1. Model features included: physiologically-based multi-scale compartmentalization of the human body; inter-compartmental macromolecular biotransport processes (vascular permeability, lymphatic drainage); and molecularly-detailed binding interactions between the ligand isoforms VEGF121 and VEGF165, signaling receptors VEGFR1 and VEGFR2, non-signaling co-receptor neuropilin-1 (NRP1), as well as sVEGFR1. The model was parameterized to represent a healthy human subject, whereupon we investigated the effects of sVEGFR1 on the distribution and activation of VEGF ligands and receptors. We assessed the healthy baseline stability of circulating VEGF and sVEGFR1 levels in plasma, as well as their reliability in indicating tissue-level angiogenic signaling potential. Unexpectedly, simulated results showed that sVEGFR1 – acting as a diffusible VEGF sink alone, i.e., without sVEGFR1-VEGFR heterodimerization

  13. Phosphorylated VEGFR2 and hypertension: potential biomarkers to indicate VEGF-dependency of advanced breast cancer in anti-angiogenic therapy.

    PubMed

    Fan, Minhao; Zhang, Jian; Wang, Zhonghua; Wang, Biyun; Zhang, Qunlin; Zheng, Chunlei; Li, Ting; Ni, Chen; Wu, Zhenhua; Shao, Zhimin; Hu, Xichun

    2014-01-01

    The efficacy of anti-VEGF agents probably lies on VEGF-dependency. Apatinib, a specific tyrosine kinase inhibitor that targets VEGF receptor 2, was assessed in patients with advanced breast cancer (ABC) (ClinicalTrials.gov NCT01176669 and NCT01653561). This substudy was to explore the potential biomarkers for VEGF-dependency in apatinib-treated breast cancer. Eighty pretreated patients received apatinib 750 or 500 mg/day orally in 4-week cycles. Circulating biomarkers were measured using a multiplex assay, and tissue biomarkers were identified with immunostaining. Baseline characteristics and adverse events (AEs) were included in the analysis. Statistical confirmation of independent predictive factors for anti-tumor efficacy was performed using Cox and Logistic regression models. Median progression-free survival (PFS) was 3.8 months, and overall survival (OS) was 10.6 months, with 17.5 % of objective response rate. Prominent AEs (≥60 %) were hypertension, hand-foot skin reaction (HFSR), and proteinuria. Higher tumor phosphorylated VEGFR2 (p-VEGFR2) expressions (P = 0.001), higher baseline serum soluble VEGFR2 (P = 0.031), hypertension (P = 0.011), and HFSR (P = 0.018) were significantly related to longer PFS, whereas hypertension (P = 0.002) and HFSR (P = 0.001) were also related to OS. Based on multivariate analysis, only p-VEGFR2 (adjusted HR, 0.40; P = 0.013) and hypertension (adjusted HR, 0.58; P = 0.038) were independent predictive factors for both PFS and clinical benefit rate. Apatinib had substantial antitumor activity in ABC and manageable toxicity. p-VEGFR2 and hypertension may be surrogate predictors of VEGF-dependency of breast cancer, which may identify an anti-angiogenesis sensitive population.

  14. Glutamate Neonatal Excitotoxicity Modifies VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 Protein Expression Profiles During Postnatal Development of the Cerebral Cortex and Hippocampus of Male Rats.

    PubMed

    Castañeda-Cabral, Jose Luis; Beas-Zarate, Carlos; Gudiño-Cabrera, Graciela; Ureña-Guerrero, Monica E

    2017-09-01

    Vascular endothelial growth factor (VEGF) exerts both neuroprotective and proinflammatory effects in the brain, depending on the VEGF (A-E) and VEGF receptor (VEGFR1-3) types involved. Neonatal monosodium glutamate (MSG) treatment triggers an excitotoxic degenerative process associated with several neuropathological conditions, and VEGF messenger RNA (mRNA) expression is increased at postnatal day (PD) 14 in rat hippocampus (Hp) following the treatment. The aim of this work was to establish the changes in immunoreactivity to VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 proteins induced by neonatal MSG treatment (4 g/kg, subcutaneous, at PD1, 3, 5 and 7) in the cerebral motor cortex (CMC) and Hp. Samples collected from PD2 to PD60 from control and MSG-treated male Wistar rats were assessed by western blotting for each protein. Considering that immunoreactivity measured by western blotting is related to the protein expression level, we found that each protein in each cerebral region has a specific expression profile throughout the studied ages, and all profiles were differentially modified by MSG. Specifically, neonatal MSG treatment significantly increased the immunoreactivity to the following: (1) VEGF-A at PD8-PD10 in the CMC and at PD6-PD8 in the Hp; (2) VEGF-B at PD2, PD6 and PD10 in the CMC and at PD8-PD9 in the Hp; and (3) VEGFR-2 at PD6-PD8 in the CMC and at PD21-PD60 in the Hp. Also, MSG significantly reduced the immunoreactivity to the following: (1) VEGF-B at PD8-PD9 and PD45-PD60 in the CMC; and (2) VEGFR-1 at PD4-PD6 and PD14-PD21 in the CMC and at PD4, PD9-PD10 and PD60 in the Hp. Our results indicate that VEGF-mediated signalling is involved in the excitotoxic process triggered by neonatal MSG treatment and should be further characterized.

  15. GSK3β regulates AKT-induced central nervous system axon regeneration via an eIF2Bε-dependent, mTORC1-independent pathway.

    PubMed

    Guo, Xinzheng; Snider, William D; Chen, Bo

    2016-03-14

    Axons fail to regenerate after central nervous system (CNS) injury. Modulation of the PTEN/mTORC1 pathway in retinal ganglion cells (RGCs) promotes axon regeneration after optic nerve injury. Here, we report that AKT activation, downstream of Pten deletion, promotes axon regeneration and RGC survival. We further demonstrate that GSK3β plays an indispensable role in mediating AKT-induced axon regeneration. Deletion or inactivation of GSK3β promotes axon regeneration independently of the mTORC1 pathway, whereas constitutive activation of GSK3β reduces AKT-induced axon regeneration. Importantly, we have identified eIF2Bε as a novel downstream effector of GSK3β in regulating axon regeneration. Inactivation of eIF2Bε reduces both GSK3β and AKT-mediated effects on axon regeneration. Constitutive activation of eIF2Bε is sufficient to promote axon regeneration. Our results reveal a key role of the AKT-GSK3β-eIF2Bε signaling module in regulating axon regeneration in the adult mammalian CNS.

  16. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori

    2007-08-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as amore » Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85{alpha} and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1.« less

  17. Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas.

    PubMed

    Roskoski, Robert

    2017-06-01

    One Von Hippel-Lindau (VHL) tumor suppressor gene is lost in most renal cell carcinomas while the nondeleted allele exhibits hypermethylation-induced inactivation or inactivating somatic mutations. As a result of these genetic modifications, there is an increased production of VEGF-A and pro-angiogenic growth factors in this disorder. The important role of angiogenesis in the pathogenesis of renal cell carcinomas and other tumors has focused the attention of investigators on the biology of VEGFs and VEGFR1-3 and to the development of inhibitors of the intricate and multifaceted angiogenic pathways. VEGFR1-3 contain an extracellular segment with seven immunoglobulin-like domains, a transmembrane segment, a juxtamembrane segment, a protein kinase domain with an insert of about 70 amino acid residues, and a C-terminal tail. VEGF-A stimulates the activation of preformed VEGFR2 dimers by the auto-phosphorylation of activation segment tyrosines followed by the phosphorylation of additional protein-tyrosines that recruit phosphotyrosine binding proteins thereby leading to signalling by the ERK1/2, AKT, Src, and p38 MAP kinase pathways. VEGFR1 modulates the activity of VEGFR2, which is the chief pathway in vasculogenesis and angiogenesis. VEGFR3 and its ligands (VEGF-C and VEGF-D) are involved primarily in lymphangiogenesis. Small molecule VEGFR1/2/3 inhibitors including axitinib, cabozantinib, lenvatinib, sorafenib, sunitinib, and pazopanib are approved by the FDA for the treatment of renal cell carcinomas. Most of these agents are type II inhibitors of VEGFR2 and inhibit the so-called DFG-Asp out inactive enzyme conformation. These drugs are steady-state competitive inhibitors with respect to ATP and like ATP they form hydrogen bonds with the hinge residues that connect the small and large protein kinase lobes. Bevacizumab, a monoclonal antibody that binds to VEGF-A, is also approved for the treatment of renal cell carcinomas. Resistance to these agents invariably occurs

  18. Microsecond molecular dynamics simulations provide insight into the ATP-competitive inhibitor-induced allosteric protection of Akt kinase phosphorylation.

    PubMed

    Mou, Linkai; Cui, Tongwei; Liu, Weiguang; Zhang, Hong; Cai, Zhanxiu; Lu, Shaoyong; Gao, Guojun

    2017-05-01

    Akt is a serine/threonine protein kinase, a critical mediator of growth factor-induced survival in key cellular pathways. Allosteric signaling between protein intramolecular domains requires long-range communication mediated by hotspot residues, often triggered by ligand binding. Here, based on extensive 3 μs explicit solvent molecular dynamics (MD) simulations of Akt1 kinase domain in the unbound (apo) and ATP-competitive inhibitor, GDC-0068-bound states, we propose a molecular mechanism for allosteric regulation of Akt1 kinase phosphorylation by GDC-0068 binding to the ATP-binding site. MD simulations revealed that the apo Akt1 is flexible with two disengaged N- and C-lobes, equilibrated between the open and closed conformations. GDC-0068 occupancy of the ATP-binding site shifts the conformational equilibrium of Akt1 from the open conformation toward the closed conformation and stabilizes the closed state. This effect enables allosteric signal propagation from the GDC-0068 to the phosphorylated T308 (pT308) in the activation loop and restrains phosphatase access to pT308, thereby protecting the pT308 in the GDC-0068-bound Akt1. Importantly, functional hotspots involved in the allosteric communication from the GDC-0068 to the pT308 are identified. Our analysis of GDC-0068-induced allosteric protection of Akt kinase phosphorylation yields important new insights into the molecular mechanism of allosteric regulation of Akt kinase activity. © 2016 John Wiley & Sons A/S.

  19. Acute Ethanol Inhibition of γ Oscillations Is Mediated by Akt and GSK3β

    PubMed Central

    Wang, JianGang; Zhao, JingXi; Liu, ZhiHua; Guo, FangLi; Wang, Yali; Wang, Xiaofang; Zhang, RuiLing; Vreugdenhil, Martin; Lu, Chengbiao

    2016-01-01

    Hippocampal network oscillations at gamma band frequency (γ, 30–80 Hz) are closely associated with higher brain functions such as learning and memory. Acute ethanol exposure at intoxicating concentrations (≥50 mM) impairs cognitive function. This study aimed to determine the effects and the mechanisms of acute ethanol exposure on γ oscillations in an in vitro model. Ethanol (25–100 mM) suppressed kainate-induced γ oscillations in CA3 area of the rat hippocampal slices, in a concentration-dependent, reversible manner. The ethanol-induced suppression was reduced by the D1R antagonist SCH23390 or the PKA inhibitor H89, was prevented by the Akt inhibitor triciribine or the GSk3β inhibitor SB415286, was enhanced by the NMDA receptor antagonist D-AP5, but was not affected by the MAPK inhibitor U0126 or PI3K inhibitor wortmanin. Our results indicate that the intracellular kinases Akt and GSk3β play a critical role in the ethanol-induced suppression of γ oscillations and reveal new cellular pathways involved in the ethanol-induced cognitive impairment. PMID:27582689

  20. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    NASA Astrophysics Data System (ADS)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  1. Gα12 facilitates shortening in human airway smooth muscle by modulating phosphoinositide 3-kinase-mediated activation in a RhoA-dependent manner.

    PubMed

    Yoo, Edwin J; Cao, Gaoyuan; Koziol-White, Cynthia J; Ojiaku, Christie A; Sunder, Krishna; Jude, Joseph A; Michael, James V; Lam, Hong; Pushkarsky, Ivan; Damoiseaux, Robert; Di Carlo, Dino; Ahn, Kwangmi; An, Steven S; Penn, Raymond B; Panettieri, Reynold A

    2017-12-01

    PI3K-dependent activation of Rho kinase (ROCK) is necessary for agonist-induced human airway smooth muscle cell (HASMC) contraction, and inhibition of PI3K promotes bronchodilation of human small airways. The mechanisms driving agonist-mediated PI3K/ROCK axis activation, however, remain unclear. Given that G 12 family proteins activate ROCK pathways in other cell types, their role in M 3 muscarinic acetylcholine receptor-stimulated PI3K/ROCK activation and contraction was examined. Gα 12 coupling was evaluated using co-immunoprecipitation and serum response element (SRE)-luciferase reporter assays. siRNA and pharmacological approaches, as well as overexpression of a regulator of G-protein signaling (RGS) proteins were applied in HASMCs. Phosphorylation levels of Akt, myosin phosphatase targeting subunit-1 (MYPT1), and myosin light chain-20 (MLC) were measured. Contraction and shortening were evaluated using magnetic twisting cytometry (MTC) and micro-pattern deformation, respectively. Human precision-cut lung slices (hPCLS) were utilized to evaluate bronchoconstriction. Knockdown of M 3 receptors or Gα 12 attenuated activation of Akt, MYPT1, and MLC phosphorylation. Gα 12 coimmunoprecipitated with M 3 receptors, and p115RhoGEF-RGS overexpression inhibited carbachol-mediated induction of SRE-luciferase reporter. p115RhoGEF-RGS overexpression inhibited carbachol-induced activation of Akt, HASMC contraction, and shortening. Moreover, inhibition of RhoA blunted activation of PI3K. Lastly, RhoA inhibitors induced dilation of hPCLS. Gα 12 plays a crucial role in HASMC contraction via RhoA-dependent activation of the PI3K/ROCK axis. Inhibition of RhoA activation induces bronchodilation in hPCLS, and targeting Gα 12 signaling may elucidate novel therapeutic targets in asthma. These findings provide alternative approaches to the clinical management of airway obstruction in asthma. © 2017 The British Pharmacological Society.

  2. Chronic intermittent fasting improves the survival following large myocardial ischemia by activation of BDNF/VEGF/PI3K signaling pathway.

    PubMed

    Katare, Rajesh G; Kakinuma, Yoshihiko; Arikawa, Mikihiko; Yamasaki, Fumiyasu; Sato, Takayuki

    2009-03-01

    Chronic heart failure (CHF) is the major cause of death in the developed countries. Calorie restriction is known to improve the recovery in these patients; however, the exact mechanism behind this protective effect is unknown. Here we demonstrate the activation of cell survival PI3kinase/Akt and VEGF pathway as the mechanism behind the protection induced by intermittent fasting in a rat model of established chronic myocardial ischemia (MI). Chronic MI was induced in rats by occlusion of the left coronary artery. Two weeks later, the rats were randomly assigned to a normal feeding group (MI-NF) and an alternate-day feeding group (MI-IF). After 6 weeks of observation, we evaluated the effect of intermittent fasting on cellular and ventricular remodeling and long-term survival after CHF. Compared with the normally fed group, intermittent fasting markedly improved the survival of rats with CHF (88.5% versus 23% survival, P<0.05). The heart weight body weight ratio was significantly less in the MI-IF group compared to the MI-NF group (3.4+/-0.17 versus 3.9+/-0.18, P<0.05). Isolated heart perfusion studies exhibited well preserved cardiac functions in the MI-IF group compared to the MI-NF group (P<0.05). Molecular studies revealed the upregulation of angiogenic factors such asHIF-1-alpha (3010+/-350% versus 650+/-151%), BDNF (523+/-32% versus 110+/-12%), and VEGF (450+/-21% versus 170+/-30%) in the fasted hearts. Immunohistochemical studies confirmed increased capillary density (P<0.001) in the border area of the ischemic myocardium and synthesis VEGF by cardiomyocytes. Moreover fasting also upregulated the expression of other anti-apoptotic factors such as Akt and Bcl-2 and reduced the TUNEL positive apoptotic nuclei in the border zone. Chronic intermittent fasting markedly improves the long-term survival after CHF by activation through its pro-angiogenic, anti-apoptotic and anti-remodeling effects.

  3. Protective effect of Ginkgo biloba leaves extract, EGb761, on endotoxin-induced acute lung injury via a JNK- and Akt-dependent NFκB pathway.

    PubMed

    Lee, Chien-Ying; Yang, Jiann-Jou; Lee, Shiuan-Shinn; Chen, Chun-Jung; Huang, Yi-Chun; Huang, Kuang-Hua; Kuan, Yu-Hsiang

    2014-07-09

    Acute lung injury (ALI) is a clinical syndrome mainly caused by Gram-negative bacteria which is still in need of an effective therapeutic medicine. EGb761, an extract of Ginkgo biloba leaves, has several bioeffects including anti-inflammation, cardioprotection, neuroprotection, and free radical scavenging. Preadministration of EGb761 inhibited lipopolysaccharide (LPS)-induced histopathological changes and exchange of arterial blood gas. In addition, LPS-induced expression of proinflammatory mediators, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, macrophage inflammatory protein (MIP)-2, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were suppressed by EGb761. The activation of nuclear factor (NF)κB, a transcription factor of proinflammatory mediators, and phosphorylation of IκB, an inhibitor of NFκB, were also reduced by EGb761. Furthermore, we found the inhibitory concentration of EGb761 on phosphorylation of JNK and Akt was less than those of ERK and p38 MAPK. In conclusion, EGb761 is a potential protective agent for ALI, possibly via downregulating the JNK- and Akt-dependent NFκB activation pathway.

  4. Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease

    PubMed Central

    Fernández-Hernando, Carlos; Ackah, Eric; Yu, Jun; Suárez, Yajaira; Murata, Takahisa; Iwakiri, Yasuko; Prendergast, Jay; Miao, Robert Q.; Birnbaum, Morris J.; Sessa, William C.

    2013-01-01

    SUMMARY The Akt signaling pathway controls several cellular functions in the cardiovascular system; however, its role in atherogenesis is unknown. Here we show that the genetic ablation of Akt1 on an apolipoprotein E knockout background (ApoE−/−Akt1−/−) increases aortic lesion expansion and promotes coronary atherosclerosis. Mechanistically, lesion formation is due to enhanced expression of pro-inflammatory genes and endothelial cell and macrophage apoptosis. Bone marrow transfer experiments suggest that macrophages from ApoE−/−Akt1−/− donors were not sufficient to worsen atherogenesis when transferred to ApoE−/− recipients suggesting that lesion expansion in the ApoE−/− Akt1−/ strain may be of vascular origin. In the vessel wall, the loss of Akt1 increases inflammatory mediators and reduces eNOS phosphorylation suggesting that Akt1 exerts vascular protection against atherogenesis. The presence of coronary lesions in ApoE−/−/Akt1−/− mice provides a new model for studying the mechanisms of acute coronary syndrome in humans. PMID:18054314

  5. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    PubMed

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. PKB/Akt phosphorylation of ERRγ contributes to insulin-mediated inhibition of hepatic gluconeogenesis.

    PubMed

    Kim, Don-Kyu; Kim, Yong-Hoon; Hynx, Debby; Wang, Yanning; Yang, Keum-Jin; Ryu, Dongryeol; Kim, Kyung Seok; Yoo, Eun-Kyung; Kim, Jeong-Sun; Koo, Seung-Hoi; Lee, In-Kyu; Chae, Ho-Zoon; Park, Jongsun; Lee, Chul-Ho; Biddinger, Sudha B; Hemmings, Brian A; Choi, Hueng-Sik

    2014-12-01

    Insulin resistance, a major contributor to the pathogenesis of type 2 diabetes, leads to increased hepatic glucose production (HGP) owing to an impaired ability of insulin to suppress hepatic gluconeogenesis. Nuclear receptor oestrogen-related receptor γ (ERRγ) is a major transcriptional regulator of hepatic gluconeogenesis. In this study, we investigated insulin-dependent post-translational modifications (PTMs) altering the transcriptional activity of ERRγ for the regulation of hepatic gluconeogenesis. We examined insulin-dependent phosphorylation and subcellular localisation of ERRγ in cultured cells and in the liver of C57/BL6, leptin receptor-deficient (db/db), liver-specific insulin receptor knockout (LIRKO) and protein kinase B (PKB) β-deficient (Pkbβ (-/-)) mice. To demonstrate the role of ERRγ in the inhibitory action of insulin on hepatic gluconeogenesis, we carried out an insulin tolerance test in C57/BL6 mice expressing wild-type or phosphorylation-deficient mutant ERRγ. We demonstrated that insulin suppressed the transcriptional activity of ERRγ by promoting PKB/Akt-mediated phosphorylation of ERRγ at S179 and by eliciting translocation of ERRγ from the nucleus to the cytoplasm through interaction with 14-3-3, impairing its ability to promote hepatic gluconeogenesis. In addition, db/db, LIRKO and Pkbβ (-/-) mice displayed enhanced ERRγ transcriptional activity due to a block in PKBβ-mediated ERRγ phosphorylation during refeeding. Finally, the phosphorylation-deficient mutant ERRγ S179A was resistant to the inhibitory action of insulin on HGP. These results suggest that ERRγ is a major contributor to insulin action in maintaining hepatic glucose homeostasis.

  7. Protective Effects of Fisetin Against 6-OHDA-Induced Apoptosis by Activation of PI3K-Akt Signaling in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Watanabe, Ryoko; Kurose, Takumi; Morishige, Yuta; Fujimori, Ko

    2018-02-01

    6-Hydroxydopamine (6-OHDA) induces the production of reactive oxygen species (ROS) that are associated with various neurodegenerative diseases such as Parkinson's disease. 3,3',4',7-Tetrahydroxyflavone (fisetin), a plant flavonoid has a variety of physiological effects such as antioxidant activity. In this study, we investigated the molecular mechanism of the neuroprotective effects of fisetin against 6-OHDA-induced cell death in human neuroblastoma SH-SY5Y cells. 6-OHDA-mediated cell toxicity was reduced in a fisetin concentration-dependent manner. 6-OHDA-mediated elevation of the expression of the oxidative stress-related genes such as hemeoxygenase-1, NAD(P)H dehydrogenase quinone 1, NF-E2-related factor 2, and γ-glutamate-cysteine ligase modifier was suppressed by fisetin. Fisetin also lowered the ratio of the proapoptotic Bax protein and the antiapoptotic Bcl-2 protein in SH-SY5Y cells. Moreover, fisetin effectively suppressed 6-OHDA-mediated activation of caspase-3 and caspase-9, which leads to the cell death, while, 6-OHDA-induced caspase-3/7 activity was lowered. Furthermore, fisetin activated the PI3K-Akt signaling, which inhibits the caspase cascade, and fisetin-mediated inhibition of 6-OHDA-induced cell death was negated by the co-treatment with an Akt inhibitor. These results indicate that fisetin protects 6-OHDA-induced cell death by activating PI3K-Akt signaling in human neuronal SH-SY5Y cells. This is the first report that the PI3K-Akt signaling is involved in the fisetin-protected ROS-mediated neuronal cell death.

  8. Differential Receptor Binding and Regulatory Mechanisms for the Lymphangiogenic Growth Factors Vascular Endothelial Growth Factor (VEGF)-C and -D*

    PubMed Central

    Davydova, Natalia; Harris, Nicole C.; Roufail, Sally; Paquet-Fifield, Sophie; Ishaq, Musarat; Streltsov, Victor A.; Williams, Steven P.; Karnezis, Tara; Stacker, Steven A.; Achen, Marc G.

    2016-01-01

    VEGF-C and VEGF-D are secreted glycoproteins that induce angiogenesis and lymphangiogenesis in cancer, thereby promoting tumor growth and spread. They exhibit structural homology and activate VEGFR-2 and VEGFR-3, receptors on endothelial cells that signal for growth of blood vessels and lymphatics. VEGF-C and VEGF-D were thought to exhibit similar bioactivities, yet recent studies indicated distinct signaling mechanisms (e.g. tumor-derived VEGF-C promoted expression of the prostaglandin biosynthetic enzyme COX-2 in lymphatics, a response thought to facilitate metastasis via the lymphatic vasculature, whereas VEGF-D did not). Here we explore the basis of the distinct bioactivities of VEGF-D using a neutralizing antibody, peptide mapping, and mutagenesis to demonstrate that the N-terminal α-helix of mature VEGF-D (Phe93–Arg108) is critical for binding VEGFR-2 and VEGFR-3. Importantly, the N-terminal part of this α-helix, from Phe93 to Thr98, is required for binding VEGFR-3 but not VEGFR-2. Surprisingly, the corresponding part of the α-helix in mature VEGF-C did not influence binding to either VEGFR-2 or VEGFR-3, indicating distinct determinants of receptor binding by these growth factors. A variant of mature VEGF-D harboring a mutation in the N-terminal α-helix, D103A, exhibited enhanced potency for activating VEGFR-3, was able to promote increased COX-2 mRNA levels in lymphatic endothelial cells, and had enhanced capacity to induce lymphatic sprouting in vivo. This mutant may be useful for developing protein-based therapeutics to drive lymphangiogenesis in clinical settings, such as lymphedema. Our studies shed light on the VEGF-D structure/function relationship and provide a basis for understanding functional differences compared with VEGF-C. PMID:27852824

  9. The DEK oncogene activates VEGF expression and promotes tumor angiogenesis and growth in HIF-1α-dependent and -independent manners

    PubMed Central

    Li, Yang; Lv, Zhaohui; Zhu, Jie; Lin, Jing; Ding, Lihua; Ye, Qinong

    2016-01-01

    The DEK oncogene is overexpressed in various cancers and overexpression of DEK correlates with poor clinical outcome. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis, a process essential for tumor growth and metastasis. However, whether DEK enhances tumor angiogenesis remains unclear. Here, we show that DEK is a key regulator of VEGF expression and tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that DEK promoted VEGF transcription in breast cancer cells (MCF7, ZR75-1 and MDA-MB-231) by directly binding to putative DEK-responsive element (DRE) of the VEGF promoter and indirectly binding to hypoxia response element (HRE) upstream of the DRE through its interaction with the transcription factor hypoxia-inducible factor 1α (HIF-1α), a master regulator of tumor angiogenesis and growth. DEK is responsible for recruitment of HIF-1α and the histone acetyltransferase p300 to the VEGF promoter. DEK-enhanced VEGF increases vascular endothelial cell proliferation, migration and tube formation as well as angiogenesis in the chick chorioallantoic membrane. DEK promotes tumor angiogenesis and growth in nude mice in HIF-1α-dependent and -independent manners. Immunohistochemical staining showed that DEK expression positively correlates with the expression of VEGF and microvessel number in 58 breast cancer patients. Our data establish DEK as a sequence-specific binding transcription factor, a novel coactivator for HIF-1α in regulation of VEGF transcription and a novel promoter of angiogenesis. PMID:26988756

  10. Nelumbo nucifera Gaertn leaves extract inhibits the angiogenesis and metastasis of breast cancer cells by downregulation connective tissue growth factor (CTGF) mediated PI3K/AKT/ERK signaling.

    PubMed

    Chang, Chun-Hua; Ou, Ting-Tsz; Yang, Mon-Yuan; Huang, Chi-Chou; Wang, Chau-Jong

    2016-07-21

    Nelumbo nucifera Gaertn (Nymphaeaceae) has been recognized as a medicinal plant, which was distributed throughout the Asia. The aqueous extract of Nelumbo nucifera leaves extract (NLE) has various biologically active components such as polyphenols, flavonoids, oligomeric procyanidines. However, the role of NLE in breast cancer therapy is poorly understood. The purpose of this study was to identify the hypothesis that NLE can suppress tumor angiogenesis and metastasis through CTGF (connective tissue growth factor), which has been implicated in tumor angiogenesis and progression in breast cancer MDA-MB-231 cells. We examined the effects of NLE on angiogenesis in the chicken chorioallantoic membrane (CAM) model. The data showed that NLE could reduce the chorionic plexus at day 17 in CAM and the duration of this inhibition was dose-dependent. In Xenograft model, NLE treatment significantly reduced tumor weight and CD31 (capillary density) over control, respectively. We examined the role of angiogenesis involved restructuring of endothelium using human umbilical vein endothelial cell (HUVEC) in Matrigel angiogenesis model. The results indicated that vascular-like structure formation was further blocked by NLE treatment. Moreover, knockdown of CTGF expression markedly reduced the expression of MMP2 as well as VEGF, and attenuated PI3K-AKT-ERK activation, indication that these signaling pathways are crucial in mediating CTGF function. The present results suggest that NLE might be useful for treatment in therapy-resistance triple negative breast cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Resistin facilitates VEGF-C-associated lymphangiogenesis by inhibiting miR-186 in human chondrosarcoma cells.

    PubMed

    Su, Chen-Ming; Tang, Chih-Hsin; Chi, Meng-Ju; Lin, Chih-Yang; Fong, Yi-Chin; Liu, Yueh-Ching; Chen, Wei-Cheng; Wang, Shih-Wei

    2018-05-03

    Chondrosarcoma is a common primary malignant tumor of the bone that can metastasize through the vascular system to other organs. A key step in the metastatic process, lymphangiogenesis, involves vascular endothelial growth factor-C (VEGF-C). However, the effects of lymphangiogenesis in chondrosarcoma metastasis remain to be clarified. Accumulating evidence shows that resistin, a cytokine secreted from adipocytes and monocytes, also promotes tumor pathogenesis. Notably, chondrosarcoma can easily metastasize. In this study, we demonstrate that resistin enhances VEGF-C expression and lymphatic endothelial cells (LECs)-associated lymphangiogenesis in human chondrosarcoma cells. We also show that resistin triggers VEGF-C-dependent lymphangiogenesis via the c-Src signaling pathway and down-regulating micro RNA (miR)-186. Overexpression of resistin in chondrosarcoma cells significantly enhanced VEGF-C production and LECs-associated lymphangiogenesis in vitro and tumor-related lymphangiogenesis in vivo. Resistin levels were positively correlated with VEGF-C-dependent lymphangiogenesis via the down-regulation of miR-186 expression in clinical samples from chondrosarcoma tissue. This study is the first to evaluate the mechanism underlying resistin-induced promotion of LECs-associated lymphangiogenesis via the upregulation of VEGF-C expression in human chondrosarcomas. We suggest that resistin may represent a molecular target in VEGF-C-associated tumor lymphangiogenesis in chondrosarcoma metastasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Time-dependent activation of MAPK/Erk1/2 and Akt/GSK3 cascades: modulation by agomelatine.

    PubMed

    Musazzi, Laura; Seguini, Mara; Mallei, Alessandra; Treccani, Giulia; Pelizzari, Mariagrazia; Tornese, Paolo; Racagni, Giorgio; Tardito, Daniela

    2014-10-21

    The novel antidepressant agomelatine, a melatonergic MT1/MT2 agonist combined with 5-HT2c serotonin antagonist properties, showed antidepressant action in preclinical and clinical studies. There is a general agreement that the therapeutic action of antidepressants needs the activation of slow-onset adaptations in downstream signalling pathways finally regulating neuroplasticity. In the last several years, particular attention was given to cAMP-responsive element binding protein (CREB)-related pathways, since it was shown that chronic antidepressants increase CREB phosphorylation and transcriptional activity, through the activation of calcium/calmodulin-dependent (CaM) and mitogen activated protein kinase cascades (MAPK/Erk1/2). Aim of this work was to analyse possible effects of chronic agomelatine on time-dependent changes of different intracellular signalling pathways in hippocampus and prefrontal/frontal cortex of male rats. To this end, measurements were performed 1 h or 16 h after the last agomelatine or vehicle injection. We have found that in naïve rats chronic agomelatine, contrary to traditional antidepressants, did not increase CREB phosphorylation, but modulates the time-dependent regulation of MAPK/Erk1/2 and Akt/glycogen synthase kinase-3 (GSK-3) pathways. Our results suggest that the intracellular molecular mechanisms modulated by chronic agomelatine may be partly different from those of traditional antidepressants and involve the time-dependent regulation of MAPK/Erk1/2 and Akt/GSK-3 signalling pathways. This could exert a role in the antidepressant efficacy of the drug.

  13. Valsartan regulates the interaction of angiotensin II type 1 receptor and endothelial nitric oxide synthase via Src/PI3K/Akt signalling.

    PubMed

    Su, Kuo-Hui; Tsai, Jin-Yi; Kou, Yu Ru; Chiang, An-Na; Hsiao, Sheng-Huang; Wu, Yuh-Lin; Hou, Hsin-Han; Pan, Ching-Chian; Shyue, Song-Kun; Lee, Tzong-Shyuan

    2009-06-01

    Valsartan, a selective angiotensin II type 1 receptor (AT1R) blocker, has beneficial effects in the cardiovascular system in part by its increase of nitric oxide (NO) bioavailability, yet the mechanisms are unclear. We investigated the molecular mechanisms underlying this effect in endothelial cells (ECs). NO production was examined by Griess reagent assay, DAF-2 DA fluorescence staining and cGMP ELISA kits. Protein interaction was determined by western blotting and immunoprecipitation. Treating bovine or human aortic ECs with valsartan increased NO production, as evidenced by elevated level of stable NO metabolites and intracellular cGMP. Valsartan increased the phosphorylation but not the protein level of endothelial NO synthase (eNOS). Inhibition of phosphoinositide-3 kinase (PI3K)/Akt and Src pathways by specific inhibitors suppressed valsartan-induced NO release. In addition, valsartan increased the tyrosine residue phosphorylation of AT1R, which was attenuated by inhibition of Src but not PI3K activities. Valsartan also suppressed the interaction of eNOS and AT1R, which was blocked by Src or PI3K inhibition. Valsartan-induced NO production in ECs is mediated through Src/PI3K/Akt-dependent phosphorylation of eNOS. Valsartan-induced AT1R phosphorylation depends on Src but not PI3K, whereas valsartan-induced suppression of AT1R-eNOS interaction depends on Src/PI3K/Akt signalling. These results indicate a novel vasoprotective mechanism of valsartan in upregulating NO production in ECs.

  14. PI3 K/Akt/mTOR-mediated translational control regulates proliferation and differentiation of lineage-restricted RoSH stem cell lines

    PubMed Central

    Que, Jianwen; Lian, Qizhou; El Oakley, Reida M; Lim, Bing; Lim, Sai-Kiang

    2007-01-01

    Background We have previously derived highly similar lineage-restricted stem cell lines, RoSH and E-RoSH cell lines from mouse embryos and CD9hi SSEA-1- differentiated mouse embryonic stem cells, respectively. These cell lines are not pluripotent and differentiate readily into endothelial cells in vitro and in vivo. Results We investigated the signaling pathway that maintains proliferation of these cells in an undifferentiated state, and demonstrate that PI3 K/Akt/mTOR, but not Raf/MEK/Erk, signaling in these cells was active during proliferation and was downregulated during endothelial differentiation. Inhibition of PI3 K/Akt/mTOR signaling, but not Raf/MEK/Erk, reduced proliferation and induced expression of endothelial specific proteins. During differentiation or inhibition of PI3 K/Akt/mTOR signaling, cyclinD2 transcript abundance in ribosome-enriched RNA but not in total RNA was reduced with a corresponding reduction in protein level. In contrast, transcript abundance of endothelial-specific genes e.g. Kdr, Tek and Pdgfrα in ribosome-enriched RNA fraction was not reduced and their protein levels were increased. Together these observations suggested that translational control mediated by PI3K/Akt/mTOR signaling was critical in regulating proliferation and endothelial differentiation of lineage-restricted RoSH-like stem cell lines. Conclusion This study highlights translation regulation as a critical regulatory mechanism during proliferation and differentiation in stem cells. PMID:17892597

  15. Notch1 Signaling Sensitizes Tumor Necrosis Factor-related Apoptosis-inducing Ligand-induced Apoptosis in Human Hepatocellular Carcinoma Cells by Inhibiting Akt/Hdm2-mediated p53 Degradation and Up-regulating p53-dependent DR5 Expression*

    PubMed Central

    Wang, Chunmei; Qi, Runzi; Li, Nan; Wang, Zhengxin; An, Huazhang; Zhang, Qinghua; Yu, Yizhi; Cao, Xuetao

    2009-01-01

    Notch signaling plays a critical role in regulating cell proliferation, differentiation, and apoptosis. Our previous study showed that overexpression of Notch1 could inhibit human hepatocellular carcinoma (HCC) cell growth by arresting the cell cycle and inducing apoptosis. HCC cells are resistant to apoptotic induction by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), so new therapeutic approaches have been explored to sensitize HCC cells to TRAIL-induced apoptosis. We are wondering whether and how Notch1 signaling can enhance the sensitivity of HCC cells to TRAIL-induced apoptosis. In this study, we found that overexpression of ICN, the constitutive activated form of Notch1, up-regulated p53 protein expression in HCC cells by inhibiting proteasome degradation. p53 up-regulation was further observed in human primary hepatocellular carcinoma cells after activation of Notch signaling. Inhibition of the Akt/Hdm2 pathway by Notch1 signaling was responsible for the suppression of p53 proteasomal degradation, thus contributing to the Notch1 signaling-mediated up-regulation of p53 expression. Accordingly, Notch1 signaling could make HCC cells more sensitive to TRAIL-induced apoptosis, whereas Notch1 signaling lost the synergistic promotion of TRAIL-induced apoptosis in p53-silenced HepG2 HCC cells and p53-defective Hep3B HCC cells. The data suggest that enhancement of TRAIL-induced apoptosis by Notch1 signaling is dependent upon p53 up-regulation. Furthermore, Notch1 signaling could enhance DR5 expression in a p53-dependent manner. Taken together, Notch1 signaling sensitizes TRAIL-induced apoptosis in HCC cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. Thus, our results suggest that activation of Notch1 signaling may be a promising approach to improve the therapeutic efficacy of TRAIL-resistant HCC. PMID:19376776

  16. 3,4,5-Tricaffeoylquinic acid inhibits tumor necrosis factor-α-stimulated production of inflammatory mediators in keratinocytes via suppression of Akt- and NF-κB-pathways.

    PubMed

    Lee, Chung Soo; Lee, Seon Ae; Kim, Yun Jeong; Seo, Seong Jun; Lee, Min Won

    2011-11-01

    Keratinocytes may play an important role in the pathogenesis of skin disease in atopic dermatitis. Caffeoyl derivatives are demonstrated to have anti-inflammatory and anti-oxidant effects. However, the effect of 3,4,5-tricaffeoylquinic acid prepared from Aconium koreanum on the pro-inflammatory cytokine-stimulated keratinocyte responses remains uncertain. In human keratinocytes, we investigated the effect of 3,4,5-tricaffeoylquinic acid on the tumor necrosis factor (TNF)-α-stimulated production of inflammatory mediators in relation to the nuclear factor (NF)-κB and cell signaling Akt, which regulates the transcription genes involved in immune and inflammatory responses. 3,4,5-Tricaffeoylquinic acid inhibited the TNF-α-stimulated production of cytokines (IL-1β and IL-8) and chemokine (CCL17 and CCL27) in keratinocytes. Bay 11-7085 (an inhibitor of NF-κB activation) and Akt inhibitor attenuated the TNF-α-induced formation of inflammatory mediators. 3,4,5-Tricaffeoylquinic acid, Bay 11-7085, Akt inhibitor and N-acetylcysteine inhibited the TNF-α-induced activation of NF-κB, activation of Akt, and formation of reactive oxygen and nitrogen species. The results show that 3,4,5-tricaffeoylquinic acid seems to attenuate the TNF-α-stimulated inflammatory mediator production in keratinocytes by suppressing the activation of Akt and NF-κB pathways which may be mediated by reactive oxygen species. The findings suggest that 3,4,5-tricaffeoylquinic acid may exert an inhibitory effect against the pro-inflammatory mediator-induced skin disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. PHP14 regulates hepatic stellate cells migration in liver fibrosis via mediating TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway.

    PubMed

    Xu, Anjian; Li, Yanmeng; Zhao, Wenshan; Hou, Fei; Li, Xiaojin; Sun, Lan; Chen, Wei; Yang, Aiting; Wu, Shanna; Zhang, Bei; Yao, Jingyi; Wang, Huan; Huang, Jian

    2018-02-01

    Hepatic fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Migration of the activated HSCs to the site of injury is one of the key characteristics during the wound healing process. We have previously demonstrated that 14 kDa phosphohistidine phosphatase (PHP14) is involved in migration and lamellipodia formation of HSCs. However, the role of PHP14 in liver fibrosis remains unknown. In this study, we first assessed PHP14 expression and distribution in liver fibrotic tissues using western blot, immunohistochemistry, and double immunofluorescence staining. Next, we investigated the role of PHP14 in liver fibrosis and, more specifically, the migration of HSCs by Transwell assay and 3D collagen matrices assay. Finally, we explored the possible molecular mechanisms of the effects of PHP14 on these processes. Our results show that the PHP14 expression is up-regulated in fibrotic liver and mainly in HSCs. Importantly, TGF-β1 can induce PHP14 expression in HSCs accompanied with the activation of HSCs. Consistent with the previous study, PHP14 promotes HSCs migration, especially, promotes 3D floating collagen matrices contraction but inhibits stressed-released matrices contraction. Mechanistically, the PI3Kγ/AKT/Rac1 pathway is involved in migration regulated by PHP14. Moreover, PHP14 specifically mediates the TGF-β1 signaling to PI3Kγ/AKT pathway and regulates HSC migration, and thus participates in liver fibrosis. Our study identified the role of PHP14 in liver fibrosis, particularly HSC migration, and suggested a novel mediator of transducting TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway. PHP14 is up-regulated in fibrotic liver and activated hepatic stellate cells. The expression of PHP14 is induced by TGF-β1. The migration of hepatic stellate cells is regulated by PHP14. PHP14 is a mediator of TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway in hepatic stellate cells.

  18. SMAD-PI3K-Akt-mTOR Pathway Mediates BMP-7 Polarization of Monocytes into M2 Macrophages

    PubMed Central

    Rocher, Crystal; Singla, Dinender K.

    2013-01-01

    Previously we demonstrated that bone morphogenetic protein-7 (BMP-7) treatment polarizes monocytes into M2 macrophages and increases the expression of anti-inflammatory cytokines. Despite these findings, the mechanisms for the observed BMP-7 induced monocyte polarization into M2 macrophages are completely unknown. In this study, we demonstrate the mechanisms involved in the polarization of monocytes into M2 macrophages. Apoptotic conditioned media (ACM) was generated to mimic the stressed conditions, inducing monocyte polarization. Monocytes were treated with ACM along with BMP-7 and/or its inhibitor, follistatin, for 48 hours. Furthermore, an inhibitor of the PI3K pathway, LY-294002, was also studied. Our data show that BMP-7 induces polarization of monocytes into M2 macrophages while significantly increasing the expression of anti-inflammatory markers, arginase-1 and IL-10, and significantly (p<0.05) decreasing the expression of pro-inflammatory markers iNOS, IL-6, TNF-α and MCP-1; (p<0.05). Moreover, addition of the PI3K inhibitor, LY-294002, significantly (p<0.05) decreases upregulation of IL-10 and arginase-1, suggesting involvement of the PI3K pathway in M2 macrophage polarization. Next, following BMP-7 treatment, a significant (p<0.05) increase in p-SMAD1/5/8 and p-PI3K expression resulting in downstream activation of p-Akt and p-mTOR was observed. Furthermore, expression of p-PTEN, an inhibitor of the PI3K pathway, was significantly (p<0.05) increased in the ACM group. However, BMP-7 treatment inhibited its expression, suggesting involvement of the PI3K-Akt-mTOR pathway. In conclusion, we demonstrate that BMP-7 polarizes monocytes into M2 macrophages and enhances anti-inflammatory cytokine expression which is mediated by the activated SMAD-PI3K-Akt-mTOR pathway. PMID:24376781

  19. Kaempferol Suppresses Transforming Growth Factor-β1–Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-1791

    PubMed Central

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-01-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non–small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1–induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1–mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1–mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1–induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1–mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1–induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1–induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. PMID:26297431

  20. The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC

    PubMed Central

    Strickland, Sydney Webb

    2016-01-01

    ABSTRACT While the role of high-risk human papillomavirus (HPV) oncoproteins E6 and E7 in targeting p53 and retinoblastoma (Rb) has been intensively studied, how E6 and E7 manipulate cellular signaling cascades to promote the viral life cycle and cancer development is less understood. Keratinocytes containing the episomal HPV-16 genome had decreased activation of AKT, which was phenocopied by HPV-16 E7 expression alone. Attenuation of phosphorylated AKT (pAKT) by E7 was independent of the Rb degradation function of E7 but could be ablated by a missense mutation in the E7 carboxy terminus, H73E, thereby defining a novel structure-function phenotype for E7. Downstream of AKT, reduced phosphorylation of p70 S6K and 4E-BP1 was also observed in E7-expressing keratinocytes, which coincided with an increase in internal ribosomal entry site (IRES)-dependent translation that enhanced the expression of several cellular proteins, including MYC, Bax, and the insulin receptor. The decrease in pAKT mediated by E7 is in contrast to the widely observed increase of pAKT in invasive cervical cancers, suggesting that the activation of AKT signaling could be acquired during the progression from initial productive infections to invasive carcinomas. IMPORTANCE HPV causes invasive cervical cancers through the dysregulation of the cell cycle regulators p53 and Rb, which are degraded by the viral oncoproteins E6 and E7, respectively. Signaling cascades contribute to cancer progression and cellular differentiation, and how E6 and E7 manipulate those pathways remains unclear. The phosphoinositol 3-kinase (PI3K)/AKT pathway regulates cellular processes, including proliferation, cell survival, and cell differentiation. Surprisingly, we found that HPV-16 decreased the phosphorylation of AKT (pAKT) and that this is a function of E7 that is independent of the Rb degradation function. This is in contrast to the observed increase in AKT signaling in nearly 80% of cervical cancers, which typically

  1. Foxo-dependent Par-4 Upregulation Prevents Long-term Survival of Residual Cells Following PI3K-Akt Inhibition.

    PubMed

    Damrauer, Jeffrey S; Phelps, Stephanie N; Amuchastegui, Katie; Lupo, Ryan; Mabe, Nathaniel W; Walens, Andrea; Kroger, Benjamin R; Alvarez, James V

    2018-04-01

    Tumor recurrence is a leading cause of death and is thought to arise from a population of residual cells that survive treatment. These residual cancer cells can persist, locally or at distant sites, for years or decades. Therefore, understanding the pathways that regulate residual cancer cell survival may suggest opportunities for targeting these cells to prevent recurrence. Previously, it was observed that the proapoptotic protein (PAWR/Par-4) negatively regulates residual cell survival and recurrence in mice and humans. However, the mechanistic underpinnings on how Par-4 expression is regulated are unclear. Here, it is demonstrated that Par-4 is transcriptionally upregulated following treatment with multiple drugs targeting the PI3K-Akt-mTOR signaling pathway, and identify the Forkhead family of transcription factors as mediators of this upregulation. Mechanistically, Foxo3a directly binds to the Par-4 promoter and activates its transcription following inhibition of the PI3K-Akt pathway. This Foxo-dependent Par-4 upregulation limits the long-term survival of residual cells following treatment with therapeutics that target the PI3K-Akt pathway. Taken together, these results indicate that residual breast cancer tumor cell survival and recurrence requires circumventing Foxo-driven Par-4 upregulation and suggest that approaches to enforce Par-4 expression may prevent residual cell survival and recurrence. Mol Cancer Res; 16(4); 599-609. ©2018 AACR . ©2018 American Association for Cancer Research.

  2. The Mas receptor mediates modulation of insulin signaling by angiotensin-(1-7).

    PubMed

    Muñoz, Marina C; Giani, Jorge F; Burghi, Valeria; Mayer, Marcos A; Carranza, Andrea; Taira, Carlos A; Dominici, Fernando P

    2012-08-20

    Angiotensin (Ang)-(1-7) stimulates proteins belonging to the insulin signaling pathway and ameliorates the Ang II negative effects at this level. However, up to date, receptors involved and mechanisms behind these observations remain unknown. Accordingly, in the present study, we explored the in vivo effects of antagonism of the Ang-(1-7) specific Mas receptor on insulin signal transduction in rat insulin-target tissues. We evaluated the acute modulation of insulin-stimulated phosphorylation of Akt, GSK-3β (Glycogen synthase kinase-3β) and AS160 (Akt substrate of 160kDa) by Ang-(1-7) and/or Ang II in the presence and absence of the selective Mas receptor antagonist A-779 in insulin-target tissues of normal rats. Also using A-779, we determined whether the Mas receptor mediates the improvement of insulin sensitivity exerted by chronic Ang-(1-7) treatment in fructose-fed rats (FFR), a model of insulin resistance, dyslipidemia and mild hypertension. The two major findings of the present work are as follows; 1) Ang-(1-7) attenuates acute Ang II-mediated inhibition of insulin signaling components in normal rats via a Mas receptor-dependent mechanism; and 2). The Mas receptor appears to be involved in beneficial effects of Ang-(1-7) on the phosphorylation of crucial insulin signaling mediators (Akt, GSK-3β and AS160), in liver, skeletal muscle and adipose tissue of FFR. These results shed light into the mechanism by which Ang-(1-7) exerts its positive physiological modulation of insulin actions in classical metabolic tissues and reinforces the central role of Akt in these effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Stimulation of apical and basolateral VEGF-A and VEGF-C secretion by oxidative stress in polarized retinal pigment epithelial cells.

    PubMed

    Kannan, Ram; Zhang, Ning; Sreekumar, Parameswaran G; Spee, Christine K; Rodriguez, Anthony; Barron, Ernesto; Hinton, David R

    2006-12-22

    secretion of VEGF-A increased with 150 microM of tBH treatment as a function of time (1-5 h) with maximal increases at 5 h from 410 to 2080 pg/10(6) cells on the apical and 290 to 1680 pg/10(6) cells on basolateral domains. The pattern of VEGF-C secretion was similar. VEGF-A secretion was dose-dependent for the tBH range of 50-200 microM and apical secretion tended to be higher than basolateral secretion. Our data show that oxidative stress to RPE from tBH upregulates secretion of both VEGF-A and C. The secretion to the apical side was higher than that of basolateral side for VEGF-A and C. Given the role of VEGF in choroidal neovascularization, these data may be of value in understanding pathogenic mechanisms and designing antiangiogenic therapies.

  4. Protease-activated receptor-4 and purinergic receptor P2Y12 dimerize, co-internalize, and activate Akt signaling via endosomal recruitment of β-arrestin.

    PubMed

    Smith, Thomas H; Li, Julia G; Dores, Michael R; Trejo, JoAnn

    2017-08-18

    Vascular inflammation and thrombosis require the concerted actions of several different agonists, many of which act on G protein-coupled receptors (GPCRs). GPCR dimerization is a well-established phenomenon that can alter protomer function. In platelets and other cell types, protease-activated receptor-4 (PAR4) has been shown to dimerize with the purinergic receptor P2Y12 to coordinate β-arrestin-mediated Akt signaling, an important mediator of integrin activation. However, the mechanism by which the PAR4-P2Y12 dimer controls β-arrestin-dependent Akt signaling is not known. We now report that PAR4 and P2Y12 heterodimer internalization is required for β-arrestin recruitment to endosomes and Akt signaling. Using bioluminescence resonance energy transfer, immunofluorescence microscopy, and co-immunoprecipitation in cells expressing receptors exogenously and endogenously, we demonstrate that PAR4 and P2Y12 specifically interact and form dimers expressed at the cell surface. We also found that activation of PAR4 but not of P2Y12 drives internalization of the PAR4-P2Y12 heterodimer. Remarkably, activated PAR4 internalization was required for recruitment of β-arrestin to endocytic vesicles, which was dependent on co-expression of P2Y12. Interestingly, stimulation of the PAR4-P2Y12 heterodimer promotes β-arrestin and Akt co-localization to intracellular vesicles. Moreover, activated PAR4-P2Y12 internalization is required for sustained Akt activation. Thus, internalization of the PAR4-P2Y12 heterodimer is necessary for β-arrestin recruitment to endosomes and Akt signaling and lays the foundation for examining whether blockade of PAR4 internalization reduces integrin and platelet activation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Celecoxib activates PI-3K/Akt and mitochondrial redox signaling to enhance heme oxygenase-1-mediated anti-inflammatory activity in vascular endothelium.

    PubMed

    Hamdulay, Shahir S; Wang, Bufei; Birdsey, Graeme M; Ali, Faisal; Dumont, Odile; Evans, Paul C; Haskard, Dorian O; Wheeler-Jones, Caroline P; Mason, Justin C

    2010-04-15

    Although nonsteroidal anti-inflammatory drugs (NSAIDs) provide important control of pain and inflammation, they have been overshadowed by concerns regarding atherothrombotic complications. However, celecoxib seems to have a relatively good cardiovascular profile and may improve endothelial function in coronary heart disease. This led us to the hypothesis that celecoxib induces the vasculoprotective enzyme heme oxygenase-1 (HO-1). In human umbilical vein and aortic endothelial cells, 24-48 h treatment with celecoxib induced HO-1 mRNA and protein expression and increased HO-1 enzyme activity. This effect was not seen with rofecoxib or indomethacin. Supplementation of culture medium with iloprost or prostaglandin E(2) failed to reverse celecoxib-mediated HO-1 induction, indicating a cyclooxygenase-independent mechanism. Rather, this action of celecoxib involved generation of mitochondria-derived reactive oxygen species, Akt phosphorylation, and nuclear translocation of the transcription factor Nrf2, with N-acetylcysteine, PI-3K antagonist LY290042, and dominant-negative Akt abrogating the effects. Furthermore, celecoxib-induced HO-1 was inhibited by dominant-negative Nrf2. The functional significance of HO-1 induction was revealed by celecoxib-mediated inhibition of VCAM-1 expression, a response reversed by the HO-1 antagonist zinc protoporphyrin. HO-1 induction provides a molecular mechanism for clinical observations indicating relative freedom from atherothrombotic complications in patients taking celecoxib compared to other NSAIDs with comparable anti-inflammatory activity. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Vascular endothelial growth factor (VEGF) inhibition--a critical review.

    PubMed

    Moreira, Irina Sousa; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2007-03-01

    Angiogenesis, or formation of new blood capillaries from preexisting vessels, plays both beneficial and damaging roles in the organism. It is a result of a complex balance of positive and negative regulators, and vascular endothelial growth factor (VEGF) is one of the most important pro-angiogenic factors involved in tumor angiogenesis. VEGF increases vascular permeability, which might facilitate tumor dissemination via the circulation causing a greater delivery of oxygen and nutrients; it recruits circulating endothelial precursor cells, and acts as a survival factor for immature tumor blood vessels. The endotheliotropic activities of VEGF are mediated through the VEGF-specific tyrosine-kinase receptors: VEGFR-1, VEGFR-2 and VEGFR-3. VEGF and its receptors play a central role in tumor angiogenesis, and therefore the blockade of this pathway is a promising therapeutic strategy for inhibiting angiogenesis and tumor growth. A number of different strategies to inhibit VEGF signal transduction are in development and they include the development of humanized neutralizing anti-VEGF monoclonal antibodies, receptor antagonists, soluble receptors, antagonistic VEGF mutants, and inhibitors of VEGF receptor function. These agents can be divided in two broad classes, namely agents designed to target the VEGF activity and agents designed to target the surface receptor function. The main purpose of this review is to summarize all the available information regarding the importance of the pro-angiogenic factor VEGF in cancer therapy. After an overview of the VEGF family and their respective receptors, we shall focus our attention on the different VEGF-inhibitors existent nowadays. Agents based upon anti-VEGF therapy have provided solid proofs about their success, and therefore we believe that a critical review is of the utmost importance to help researchers in their future work.

  7. Akt-mediated phosphorylation of Oct4 is associated with the proliferation of stem-like cancer cells

    PubMed Central

    ZHAO, QING-WEI; ZHOU, YAN-WEN; LI, WEN-XIN; KANG, BO; ZHANG, XIAO-QIAN; YANG, YING; CHENG, JIE; YIN, SHENG-YONG; TONG, YING; HE, JIAN-QIN; YAO, HANG-PING; ZHENG, MIN; WANG, YING-JIE

    2015-01-01

    Oct4 protein encoded by POU5F1 plays a pivotal role in maintaining the self-renewal of pluripotent stem cells; however, its presence in cancer cells remains controversial. In the present study, we provided evidence that the transcripts of authentic OCT4 gene (OCT4A) and its multiple pseudogenes were detected in a variety of cancer cell lines. A few major bands were also detected by western blotting using an anti-Oct4A monoclonal antibody. Moreover, an anti-Oct4-pT235 antibody was used to identify a band in the majority of the tested cancer cell lines that coincided with one of the anti-Oct4A bands which was decreasable by a specific shRNA. The Oct4-pT235 signals were also detected in human glioblastoma and liver cancer specimens by immunofluorescence microscopy and immunohistochemistry. U87 glioblastoma cells were cultured in a neural stem cell medium to induce the formation of neurospheres rich in stem-like cancer cells. The levels of Oct4-pT235 in the sphere cells were markedly increased compared to their monolayer parental cells, a result that was accompanied by upregulation of the PI3K-Akt pathway. Akti-1/2, a specific inhibitor of Akt, effectively reduced the level of Oct4-pT235 and attenuated the proliferation of U87 sphere cells. ITE, an agonist of the aryl hydrocarbon receptor, also significantly attenuated the Akt-mediated phosphorylation of Oct4 in glioblastoma and liver cancer cells, and reduced their tumorigenic potential in a xenograft tumor model. Taken together, we concluded that the Akt-mediated phosphorylation of Oct4A or its homolog protein was associated with the proliferation of stem-like cancer cells that may serve as a novel biomarker and drug target for certain types of cancer. PMID:25625591

  8. MAPK signaling is required for LPS-induced VEGF in pulp stem cells.

    PubMed

    Botero, T M; Son, J S; Vodopyanov, D; Hasegawa, M; Shelburne, C E; Nör, J E

    2010-03-01

    Caries-induced pulpitis is typically accompanied by an increase in dental pulp microvascular density. However, the mechanisms by which dental pulp cells recognize lipopolysaccharides (LPSs) remain unclear. We hypothesized that Porphyromonas endodontalis and Escherichia coli LPSs induce vascular endothelial growth factor (VEGF) expression in dental pulp stem cells (DPSC) and human dental pulp fibroblasts (HDPF) through mitogen-activated protein kinase (MAPK) signaling. ELISA, semi-quantitative RT-PCR, immunofluorescence, and Western blots were used. Here, we observed that LPSs induced VEGF expression in DPSC and HDPF cells, and both cell types express Toll-like receptor 4 (TLR- 4). Notably, LPS-induced VEGF is associated with phosphorylation of protein kinase C (PKC zeta) and extracellular signal-regulator kinase (ERK1/2) and is dependent upon MAPK activation. Analysis of these data, collectively, unveils a signaling pathway responsible for synthesis of VEGF by pulp cells and suggests a novel therapeutic target for the management of vascular responses in teeth with pulpitis.

  9. Leptin-induced ER-α-positive breast cancer cell viability and migration is mediated by suppressing CCN5-signaling via activating JAK/AKT/STAT-pathway.

    PubMed

    Haque, Inamul; Ghosh, Arnab; Acup, Seth; Banerjee, Snigdha; Dhar, Kakali; Ray, Amitabha; Sarkar, Sandipto; Kambhampati, Suman; Banerjee, Sushanta K

    2018-01-25

    In menopausal women, one of the critical risk factors for breast cancer is obesity/adiposity. It is evident from various studies that leptin, a 16 kDa protein hormone overproduced in obese people, plays the critical role in neovascularization and tumorigenesis in breast and other organs. However, the mechanisms by which obesity influences the breast carcinogenesis remained unclear. In this study, by analyzing different estrogen receptor-α (ER-α)-positive and ER-α-negative BC cell lines, we defined the role of CCN5 in the leptin-mediated regulation of growth and invasive capacity. We analyzed the effect of leptin on cell viability of ER-α-positive MCF-7 and ZR-75-1 cell lines and ER-α-negative MDA-MB-231 cell line. Additionally, we also determined the effect of leptin on the epithelial-mesenchymal transition (EMT) bio-markers, in vitro invasion and sphere-formation of MCF-7 and ZR-75-1 cell lines. To understand the mechanism, we determined the impact of leptin on CCN5 expression and the functional role of CCN5 in these cells by the treatment of human recombinant CCN5 protein(hrCCN5). Moreover, we also determined the role of JAK-STAT and AKT in the regulation of leptin-induced suppression of CCN5 in BC cells. Present studies demonstrate that leptin can induce cell viability, EMT, sphere-forming ability and migration of MCF-7 and ZR-75-1 cell lines. Furthermore, these studies found that leptin suppresses the expression of CCN5 at the transcriptional level. Although the CCN5 suppression has no impact on the constitutive proliferation of MCF-7 and ZR-75-1 cells, it is critical for leptin-induced viability and necessary for EMT, induction of in vitro migration and sphere formation, as the hrCCN5 treatment significantly inhibits the leptin-induced viability, EMT, migration and sphere-forming ability of these cells. Mechanistically, CCN5-suppression by leptin is mediated via activating JAK/AKT/STAT-signaling pathways. These studies suggest that CCN5 serves as a

  10. CCNG2 Overexpression Mediated by AKT Inhibits Tumor Cell Proliferation in Human Astrocytoma Cells.

    PubMed

    Zhang, Danfeng; Wang, Chunhui; Li, Zhenxing; Li, Yiming; Dai, Dawei; Han, Kaiwei; Lv, Liquan; Lu, Yicheng; Hou, Lijun; Wang, Junyu

    2018-01-01

    The cyclin family protein CCNG2 has an important inhibitory role in cancer initiation and progression, but the exact mechanism is still unknown. In this study, we examined the relationship between CCNG2 and the malignancy of astrocytomas and whether the AKT pathway, which is upregulated in astrocytomas, may inhibit CCNG2 expression. CCNG2 expression was found to be negatively associated with the pathological grade and proliferative activity of astrocytomas, as the highest expression was found in control brain tissue ( N  = 31), whereas the lowest expression was in high-grade glioma tissue ( N  = 31). Additionally, CCNG2 overexpression in glioma cell lines, T98G and U251 inhibited proliferation and arrested cells in the G0/G1 phase. Moreover, CCNG2 overexpression could increase glioma cells apoptosis. In contrast, AKT activity increased in glioma cells that had low CCNG2 expression. Expression of CCNG2 was higher in cells treated with the AKT kinase inhibitor MK-2206 indicating that the presence of phosphorylated AKT may inhibit the expression of CCNG2. Inhibition of AKT also led to decreased colony formation in T98G and U251 cells and knocked down of CCNG2 reversed the result. Finally, overexpression of CCNG2 in glioma cells reduced tumor volume in a murine model. To conclude, low expression of CCNG2 correlated with the severity astrocytoma and CCNG2 overexpression could induce apoptosis and inhibit proliferation. Inhibition of AKT activity increased the expression of CCNG2. The present study highlights the regulatory consequences of CCNG2 expression and AKT activity in astrocytoma tumorigenesis and the potential use of CCNG2 in anticancer treatment.

  11. Delta-like 1/Fetal Antigen-1 (Dlk1/FA1) Is a Novel Regulator of Chondrogenic Cell Differentiation via Inhibition of the Akt Kinase-dependent Pathway*

    PubMed Central

    Chen, Li; Qanie, Diyako; Jafari, Abbas; Taipaleenmaki, Hanna; Jensen, Charlotte H.; Säämänen, Anna-Marja; Sanz, Maria Luisa Nueda; Laborda, Jorge; Abdallah, Basem M.; Kassem, Moustapha

    2011-01-01

    Delta-like 1 (Dlk1, also known as fetal antigen-1, FA1) is a member of Notch/Delta family that inhibits adipocyte and osteoblast differentiation; however, its role in chondrogenesis is still not clear. Thus, we overexpressed Dlk1/FA1 in mouse embryonic ATDC5 cells and tested its effects on chondrogenic differentiation. Dlk1/FA1 inhibited insulin-induced chondrogenic differentiation as evidenced by reduction of cartilage nodule formation and gene expression of aggrecan, collagen Type II and X. Similar effects were obtained either by using Dlk1/FA1-conditioned medium or by addition of a purified, secreted, form of Dlk1 (FA1) directly to the induction medium. The inhibitory effects of Dlk1/FA1 were dose-dependent and occurred irrespective of the chondrogenic differentiation stage: proliferation, differentiation, maturation, or hypertrophic conversion. Overexpression or addition of the Dlk1/FA1 protein to the medium strongly inhibited the activation of Akt, but not the ERK1/2, or p38 MAPK pathways, and the inhibition of Akt by Dlk1/FA1 was mediated through PI3K activation. Interestingly, inhibition of fibronectin expression by siRNA rescued the Dlk1/FA1-mediated inhibition of Akt, suggesting interaction of Dlk1/FA1 and fibronectin in chondrogenic cells. Our results identify Dlk1/FA1 as a novel regulator of chondrogenesis and suggest Dlk1/FA1 acts as an inhibitor of the PI3K/Akt pathways that leads to its inhibitory effects on chondrogenesis. PMID:21724852

  12. Activation of Akt rescues endoplasmic reticulum stress-impaired murine cardiac contractile function via glycogen synthase kinase-3β-mediated suppression of mitochondrial permeation pore opening.

    PubMed

    Zhang, Yingmei; Xia, Zhi; La Cour, Karissa H; Ren, Jun

    2011-11-01

    The present study was designed to examine the impact of chronic Akt activation on endoplasmic reticulum (ER) stress-induced cardiac mechanical anomalies, if any, and the underlying mechanism involved. Wild-type and transgenic mice with cardiac-specific overexpression of the active mutant of Akt (Myr-Akt) were subjected to the ER stress inducer tunicamycin (1 or 3 mg/kg). ER stress led to compromised echocardiographic (elevated left ventricular end-systolic diameter and reduced fractional shortening) and cardiomyocyte contractile function, intracellular Ca(2+) mishandling, and cell survival in wild-type mice associated with mitochondrial damage. In vitro ER stress induction in murine cardiomyocytes upregulated the ER stress proteins Gadd153, GRP78, and phospho-eIF2α, and promoted reactive oxygen species production, carbonyl formation, apoptosis, mitochondrial membrane potential loss, and mitochondrial permeation pore (mPTP) opening associated with overtly impaired cardiomyocyte contractile and intracellular Ca(2+) properties. Interestingly, these anomalies were mitigated by chronic Akt activation or the ER chaperon tauroursodeoxycholic acid (TUDCA). Treatment with tunicamycin also dephosphorylated Akt and its downstream signal glycogen synthase kinase 3β (GSK3β) (leading to activation of GSK3β), the effect of which was abrogated by Akt activation and TUDCA. The ER stress-induced cardiomyocyte contractile and mitochondrial anomalies were obliterated by the mPTP inhibitor cyclosporin A, GSK3β inhibitor SB216763, and ER stress inhibitor TUDCA. This research reported the direct relationship between ER stress and cardiomyocyte contractile and mitochondrial anomalies for the first time. Taken together, these data suggest that ER stress may compromise cardiac contractile and intracellular Ca(2+) properties, possibly through the Akt/GSK3β-dependent impairment of mitochondrial integrity.

  13. Promoting endothelial function by S-nitrosoglutathione through the HIF-1α/VEGF pathway stimulates neurorepair and functional recovery following experimental stroke in rats

    PubMed Central

    Khan, Mushfiquddin; Dhammu, Tajinder S; Matsuda, Fumiyo; Baarine, Mauhammad; Dhindsa, Tejbir Singh; Singh, Inderjit; Singh, Avtar K

    2015-01-01

    Background For stroke patients, stimulating neurorepair mechanisms is necessary to reduce morbidity and disability. Our previous studies on brain and spinal cord trauma show that exogenous treatment with the S-nitrosylating agent S-nitrosoglutathione (GSNO) – a nitric oxide and glutathione metabolite of the human body – stimulates neurorepair and aids functional recovery. Using a rat model of cerebral ischemia and reperfusion (IR) in this study, we tested the hypothesis that GSNO invokes the neurorepair process and improves neurobehavioral functions through the angiogenic HIF-1α/VEGF pathway. Methods Stroke was induced by middle cerebral artery occlusion for 60 minutes followed by reperfusion in adult male rats. The injured animals were treated with saline (IR group, n=7), GSNO (0.25 mg/kg, GSNO group, n=7), and GSNO plus the HIF-1α inhibitor 2-methoxyestra-diol (2-ME) (0.25 mg/kg GSNO + 5.0 mg/kg 2-ME, GSNO + 2-ME group, n=7). The groups were studied for either 7 or 14 days to determine neurorepair mediators and functional recovery. Brain capillary endothelial cells were used to show that GSNO promotes angiogenesis and that GSNO-mediated induction of VEGF and the stimulation of angiogenesis are dependent on HIF-1α activity. Results IR injury increased the expression of neurorepair mediators HIF-1α, VEGF, and PECAM-1 and vessel markers to a limited degree that correlate well with significantly compromised neurobehavioral functions compared with sham animals. GSNO treatment of IR not only remarkably enhanced further the expression of HIF-1α, VEGF, and PECAM-1 but also improved functioning compared with IR. The GSNO group also had a higher degree of vessel density than the IR group. Increased expression of VEGF and the degree of tube formation (angiogenesis) by GSNO were reduced after the inhibition of HIF-1α by 2-ME in an endothelial cell culture model. 2-ME treatment of the GSNO group also blocked not only GSNO’s effect of reduced infarct volume

  14. A DC-81-indole conjugate agent suppresses melanoma A375 cell migration partially via interrupting VEGF production and stromal cell-derived factor-1{alpha}-mediated signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Ming-Chu; Hu, Wan-Ping; Yu, Hsin-Su

    2011-09-01

    Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) chemicals are antitumor antibiotics inhibiting nucleic acid synthesis. An indole carboxylate-PBD hybrid with six-carbon spacer structure (IN6CPBD) has been previously demonstrated to induce melanoma cell apoptosis and reduce metastasis in mouse lungs. This study aimed at investigating the efficacy of the other hybrid compound with four-carbon spacer (IN4CPBD) and elucidating its anti-metastatic mechanism. Human melanoma A375 cells with IN4CPBD treatment underwent cytotoxicity and apoptosis-associated assays. Transwell migration assay, Western blotting, and ELISA were used for mechanistic study. IN4CPBD exhibited potent melanoma cytotoxicity through interrupting G1/S cell cycle progression, increasing DNA fragmentation and hypodipoidic DNA contents, and reducing mitochondrialmore » membrane potential. Caspase activity elevation suggested that both intrinsic and extrinsic pathways were involved in IN4CPBD-induced melanoma apoptosis. IN4CPBD up-regulated p53 and p21, thereby concomitantly derailing the equilibrium between Bcl-2 and Bax levels. Transwell migration assay demonstrated that stromal cell-derived factor-1{alpha} (SDF-1{alpha}) stimulated A375 cell motility, while kinase inhibitors treatment confirmed that Rho/ROCK, Akt, ERK1/2, and p38 MAPK pathways were involved in SDF-1{alpha}-enhanced melanoma migration. IN4CPBD not only abolished the SDF-1{alpha}-enhanced chemotactic motility but also suppressed constitutive MMP-9 and VEGF expression. Mechanistically, IN4CPBD down-regulated Akt, ERK1/2, and p38 MAPK total proteins and MYPT1 phosphorylation. In conclusion, beyond the fact that IN4CPBD induces melanoma cell apoptosis at cytotoxic dose, the interruption in the VEGF expression and the SDF-1{alpha}-related signaling at cytostatic dose may partially constitute the rationale for its in vivo anti-metastatic potency. - Research Highlights: > A novel carboxylate-PBD hybrid as anti-melanoma drug. > IN4CPBD interrupts

  15. Crosstalk of the EphA2 Receptor with a Serine/Threonine Phosphatase Suppresses the Akt-mTORC1 Pathway in Cancer Cells

    PubMed Central

    Yang, Nai-Ying; Fernandez, Carlos; Richter, Melanie; Xiao, Zhan; Valencia, Fatima; Tice, David A.; Pasquale, Elena B.

    2010-01-01

    Receptor tyrosine kinases of the Eph family play multiple roles in the physiological regulation of tissue homeostasis and in the pathogenesis of various diseases, including cancer. The EphA2 receptor is highly expressed in most cancer cell types, where it has disparate activities that are not well understood. It has been reported that interplay of EphA2 with oncogenic signaling pathways promotes cancer cell malignancy independently of ephrin ligand binding and receptor kinase activity. In contrast, stimulation of EphA2 signaling with ephrin-A ligands can suppress malignancy by inhibiting the Ras-MAP kinase pathway, integrin-mediated adhesion, and epithelial to mesenchymal transition. Here we show that ephrin-A1 ligand-dependent activation of EphA2 decreases the growth of PC3 prostate cancer cells and profoundly inhibits the Akt-mTORC1 pathway, which is hyperactivated due to loss of the PTEN tumor suppressor. Our results do not implicate changes in the activity of Akt upstream regulators (such as Ras family GTPases, PI3 kinase, integrins, or the Ship2 lipid phosphatase) in the observed loss of Akt T308 and S473 phosphorylation downstream of EphA2. Indeed, EphA2 can inhibit Akt phosphorylation induced by oncogenic mutations of not only PTEN but also PI3 kinase. Furthermore, it can decrease the hyperphosphorylation induced by constitutive membrane-targeting of Akt. Our data suggest a novel signaling mechanism whereby EphA2 inactivates the Akt-mTORC1 oncogenic pathway through Akt dephosphorylation mediated by a serine/threonine phosphatase. Ephrin-A1-induced Akt dephosphorylation was observed not only in PC3 prostate cancer cells but also in other cancer cell types. Thus, activation of EphA2 signaling represents a possible new avenue for anti-cancer therapies that exploit the remarkable ability of this receptor to counteract multiple oncogenic signaling pathways. PMID:20837138

  16. VEGF-A/VEGFR-2 signaling plays an important role for the motility of pancreas cancer cells.

    PubMed

    Doi, Yosuke; Yashiro, Masakazu; Yamada, Nobuya; Amano, Ryosuke; Noda, Satoru; Hirakawa, Kosei

    2012-08-01

    Pancreatic cancer is one of the most lethal solid tumors. Vascular endothelial growth factor receptors (VEGFRs) are expressed not only by endothelial cells but also by pancreatic cancer cells. VEGFRs might play an important role for the development of pancreatic cancer cells. The purpose of this study was to evaluate the efficacy of VEGF/VEGFR-2-targeted therapy in pancreatic carcinoma. Five pancreatic carcinoma cell lines were used. The expression level of VEGFR-2 of cancer cells was examined by RT-PCR and Western blot. The effects of VEGFs, bevacizumab as an anti-VEGF antibody, sunitinib as a tyrosine kinase inhibitor against VEGFRs, and VEGF-R2 siRNA on the motility activity of pancreatic cancer cells were examined by invasion assay and wound healing assay. The effect of VEGF, bevacizumab, and sunitinib on the phosphorylation of VEGFR-2 and downstream effecter molecules, MAPK and PI3K, was examined by western blot. Pancreatic cancer cell lines expressed VEGFR-2. VEGF-A significantly increased the motility of pancreas cancer cells, which was inhibited by VEGFR-2 siRNA. Conditioned medium from pancreas cancer cells significantly stimulated the motility of pancreas cancer cells. VEGF/VEGFR inhibitors, bevacizumab and sunitinib, significantly decreased the motility of pancreas cancer cells. VEGFR-2 phosphorylation level of pancreas cancer cells was increased by VEGF-A. Bevacizumab and sunitinib decreased the level of VEGFR-2 phosphorylation, p-ERK, and p-Akt expression. VEGF-A decreased zonula occludens (ZO-1) or ZO-2 expression in pancreas cancer cells. VEGF-A/VEGFR-2 signaling plays an important role in inducing invasion and migration of pancreatic cancer cells.

  17. The Akt signaling pathway is required for tissue maintenance and regeneration in planarians.

    PubMed

    Peiris, T Harshani; Ramirez, Daniel; Barghouth, Paul G; Oviedo, Néstor J

    2016-04-11

    Akt (PKB) is a serine threonine protein kinase downstream of the phosphoinositide 3-kinase (PI3K) pathway. In mammals, Akt is ubiquitously expressed and is associated with regulation of cellular proliferation, metabolism, cell growth and cell death. Akt has been widely studied for its central role in physiology and disease, in particular cancer where it has become an attractive pharmacological target. However, the mechanisms by which Akt signaling regulates stem cell behavior in the complexity of the whole body are poorly understood. Planarians are flatworms with large populations of stem cells capable of dividing to support adult tissue renewal and regeneration. The planarian ortholog Smed-Akt is molecularly conserved providing unique opportunities to analyze the function of Akt during cellular turnover and repair of adult tissues. Our findings abrogating Smed-Akt with RNA-interference in the planarian Schmidtea mediterranea led to a gradual decrease in stem cell (neoblasts) numbers. The reduced neoblast numbers largely affected the maintenance of adult tissues including the nervous and excretory systems and ciliated structures in the ventral epithelia, which impaired planarian locomotion. Downregulation of Smed-Akt function also resulted in an increase of cell death throughout the animal. However, in response to amputation, levels of cell death were decreased and failed to localize near the injury site. Interestingly, the neoblast mitotic response was increased around the amputation area but the regenerative blastema failed to form. We demonstrate Akt signaling is essential for organismal physiology and in late stages of the Akt phenotype the reduction in neoblast numbers may impair regeneration in planarians. Functional disruption of Smed-Akt alters the balance between cell proliferation and cell death leading to systemic impairment of adult tissue renewal. Our results also reveal novel roles for Akt signaling during regeneration, specifically for the timely

  18. BRAFV600E Negatively Regulates the AKT Pathway in Melanoma Cell Lines

    PubMed Central

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F.; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways. PMID:22880048

  19. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines.

    PubMed

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.

  20. A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165)

    NASA Astrophysics Data System (ADS)

    Koide, Hiroyuki; Yoshimatsu, Keiichi; Hoshino, Yu; Lee, Shih-Hui; Okajima, Ai; Ariizumi, Saki; Narita, Yudai; Yonamine, Yusuke; Weisman, Adam C.; Nishimura, Yuri; Oku, Naoto; Miura, Yoshiko; Shea, Kenneth J.

    2017-07-01

    Protein affinity reagents are widely used in basic research, diagnostics and separations and for clinical applications, the most common of which are antibodies. However, they often suffer from high cost, and difficulties in their development, production and storage. Here we show that a synthetic polymer nanoparticle (NP) can be engineered to have many of the functions of a protein affinity reagent. Polymer NPs with nM affinity to a key vascular endothelial growth factor (VEGF165) inhibit binding of the signalling protein to its receptor VEGFR-2, preventing receptor phosphorylation and downstream VEGF165-dependent endothelial cell migration and invasion into the extracellular matrix. In addition, the NPs inhibit VEGF-mediated new blood vessel formation in Matrigel plugs in vivo. Importantly, the non-toxic NPs were not found to exhibit off-target activity. These results support the assertion that synthetic polymers offer a new paradigm in the search for abiotic protein affinity reagents by providing many of the functions of their protein counterparts.

  1. Anti-metastasis effect of fucoidan from Undaria pinnatifida sporophylls in mouse hepatocarcinoma Hca-F cells.

    PubMed

    Wang, Peisheng; Liu, Zhichao; Liu, Xianli; Teng, Hongming; Zhang, Cuili; Hou, Lin; Zou, Xiangyang

    2014-01-01

    Metastasis is one of the major causes of cancer-related death. It is a complex biological process involving multiple genes, steps, and phases. It is also closely connected to many biological activities of cancer cells, such as growth, invasion, adhesion, hematogenous metastasis, and lymphatic metastasis. Fucoidan derived from Undaria pinnatifida sporophylls (Ups-fucoidan) is a sulfated polysaccharide with more biological activities than other fucoidans. However, there is no information on the effects of Ups-fucoidan on tumor invasion and metastasis. We used the mouse hepatocarcinoma Hca-F cell line, which has high invasive and lymphatic metastasis potential in vitro and in vivo, to examine the effect of Ups-fucoidan on cancer cell invasion and metastasis. Ups-fucoidan exerted a concentration- and time-dependent inhibitory effect on tumor metastasis in vivo and inhibited Hca-F cell growth, migration, invasion, and adhesion capabilities in vitro. Ups-fucoidan inhibited growth and metastasis by downregulating vascular endothelial growth factor (VEGF) C/VEGF receptor 3, hepatocyte growth factor/c-MET, cyclin D1, cyclin-dependent kinase 4, phosphorylated (p) phosphoinositide 3-kinase, p-Akt, p-extracellular signal regulated kinase (ERK) 1/2, and nuclear transcription factor-κB (NF-κB), and suppressed adhesion and invasion by downregulating L-Selectin, and upregulating protein levels of tissue inhibitor of metalloproteinases (TIMPs). The results suggest that Ups-fucoidan suppresses Hca-F cell growth, adhesion, invasion, and metastasis capabilities and that these functions are mediated through the mechanism involving inactivation of the NF-κB pathway mediated by PI3K/Akt and ERK signaling pathways.

  2. Anti-Metastasis Effect of Fucoidan from Undaria pinnatifida Sporophylls in Mouse Hepatocarcinoma Hca-F Cells

    PubMed Central

    Wang, Peisheng; Liu, Zhichao; Liu, Xianli; Teng, Hongming; Zhang, Cuili; Hou, Lin; Zou, Xiangyang

    2014-01-01

    Metastasis is one of the major causes of cancer-related death. It is a complex biological process involving multiple genes, steps, and phases. It is also closely connected to many biological activities of cancer cells, such as growth, invasion, adhesion, hematogenous metastasis, and lymphatic metastasis. Fucoidan derived from Undaria pinnatifida sporophylls (Ups-fucoidan) is a sulfated polysaccharide with more biological activities than other fucoidans. However, there is no information on the effects of Ups-fucoidan on tumor invasion and metastasis. We used the mouse hepatocarcinoma Hca-F cell line, which has high invasive and lymphatic metastasis potential in vitro and in vivo, to examine the effect of Ups-fucoidan on cancer cell invasion and metastasis. Ups-fucoidan exerted a concentration- and time-dependent inhibitory effect on tumor metastasis in vivo and inhibited Hca-F cell growth, migration, invasion, and adhesion capabilities in vitro. Ups-fucoidan inhibited growth and metastasis by downregulating vascular endothelial growth factor (VEGF) C/VEGF receptor 3, hepatocyte growth factor/c-MET, cyclin D1, cyclin-dependent kinase 4, phosphorylated (p) phosphoinositide 3-kinase, p-Akt, p-extracellular signal regulated kinase (ERK) 1/2, and nuclear transcription factor-κB (NF-κB), and suppressed adhesion and invasion by downregulating L-Selectin, and upregulating protein levels of tissue inhibitor of metalloproteinases (TIMPs). The results suggest that Ups-fucoidan suppresses Hca-F cell growth, adhesion, invasion, and metastasis capabilities and that these functions are mediated through the mechanism involving inactivation of the NF-κB pathway mediated by PI3K/Akt and ERK signaling pathways. PMID:25162296

  3. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis.

    PubMed

    Takyar, Seyedtaghi; Vasavada, Hema; Zhang, Jian-ge; Ahangari, Farida; Niu, Naiqian; Liu, Qing; Lee, Chun Geun; Cohn, Lauren; Elias, Jack A

    2013-09-23

    Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF-miR-1-Mpl-P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma.

  4. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism

    PubMed Central

    Yang, Yunlong; Zhang, Yin; Iwamoto, Hideki; Hosaka, Kayoko; Seki, Takahiro; Andersson, Patrik; Lim, Sharon; Fischer, Carina; Nakamura, Masaki; Abe, Mitsuhiko; Cao, Renhai; Skov, Peter Vilhelm; Chen, Fang; Chen, Xiaoyun; Lu, Yongtian; Nie, Guohui; Cao, Yihai

    2016-01-01

    The impact of discontinuation of anti-VEGF cancer therapy in promoting cancer metastasis is unknown. Here we show discontinuation of anti-VEGF treatment creates a time-window of profound structural changes of liver sinusoidal vasculatures, exhibiting hyper-permeability and enlarged open-pore sizes of the fenestrated endothelium and loss of VE-cadherin. The drug cessation caused highly leaky hepatic vasculatures permit tumour cell intravasation and extravasation. Discontinuation of an anti-VEGF antibody-based drug and sunitinib markedly promotes liver metastasis. Mechanistically, host hepatocyte, but not tumour cell-derived vascular endothelial growth factor (VEGF), is responsible for cancer metastasis. Deletion of hepatocyte VEGF markedly ablates the ‘off-drug'-induced metastasis. These findings provide mechanistic insights on anti-VEGF cessation-induced metastasis and raise a new challenge for uninterrupted and sustained antiangiogenic therapy for treatment of human cancers. PMID:27580750

  5. The proapoptotic effect of formononetin in human osteosarcoma cells: involvement of inactivation of ERK and Akt pathways.

    PubMed

    Liu, Yun; He, JinJie; Chen, XiaoMing; Li, Jian; Shen, MaoRong; Yu, WenJun; Yang, Yuan; Xiao, ZengMing

    2014-01-01

    Previous studies have shown that some phytoestrogens inhibits proliferation and induces apoptosis in estrogen-dependent cancers via estrogen receptor (ER)-mediated signaling pathway. In view of the expression of ER in human osteosarcoma cells, the purpose of this study is to investigate whether formononetin and calycosin, two of the major isoflavones in Radix astragali, could also elicit anti-tumor activity against osteosarcoma, along with the underlying mechanism. Human osteosarcoma cells U2OS were respectively treated with various concentrations of formononetin or calycosin. Cell proliferation was determined by MTT assay, while apoptosis by flow cytometry. Next, the expression levels of apoptosis-related genes ERK, Akt, Bcl-2, Bax and caspase-3 were quantified by real-time PCR and Western blotting. Formononetin exhibited higher anti-proliferative activities toward human osteosarcoma cells U2OS, when compared with calycosin. Therefore, U2OS cells were then respectively treated with various concentrations of formononetin, in order to elucidate the isoflavones-related signaling pathway. It was found that formononetin dose-dependently triggered apoptosis of U2OS cells in vitro. Furthermore, treatment of formononetin led to significant inactivation of ERK and Akt, followed by downregulation of Bcl-2, upregulation of Bax and finally increased expression of caspase-3. Formononetin is more effective than calycosin at promoting cell death of U2OS cells by induction of apoptosis, which is mediated by inactivation of ERK and Akt signaling pathways. Thus isoflavones, especially formononetin, may be useful as anti-cancer drugs for osteosarcoma through their apoptosis-inducing effects. © 2014 S. Karger AG, Basel.

  6. MYOCARDIAL AKT: THE OMNIPRESENT NEXUS

    PubMed Central

    Sussman, Mark A.; Völkers, Mirko; Fischer, Kimberlee; Bailey, Brandi; Cottage, Christopher T.; Din, Shabana; Gude, Natalie; Avitabile, Daniele; Alvarez, Roberto; Sundararaman, Balaji; Quijada, Pearl; Mason, Matt; Konstandin, Mathias H.; Malhowski, Amy; Cheng, Zhaokang; Khan, Mohsin; McGregor, Michael

    2013-01-01

    One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses. PMID:21742795

  7. Smad4 Inhibits VEGF-A and VEGF-C Expressions via Enhancing Smad3 Phosphorylation in Colon Cancer.

    PubMed

    Li, Xuemei; Li, Xinlei; Lv, Xiaohong; Xiao, Jianbing; Liu, Baoquan; Zhang, Yafang

    2017-09-01

    Smad4 is a critical factor in the TGF-β pathway and is involved in tumor progression and metastasis, but the role of Smad4 in colon cancer cells is unclear. The aim of this study is to explore the effect and the underlying mechanism of Smad4 on the growth, migration and apoptosis of colon cancer cells as well as vascular endothelial growth factor (VEGF)-A and VEGF-C secreted by these cells. In this study, we showed that Smad4, VEGF-A, and VEGF-C are independent prognostic factors of colon cancer, and Smad4 expression was negatively correlated with VEGF-A and -C in samples. We found that Smad4 mRNA and protein levels in colon cancer cells, particularly in HCT-116 cells, were significantly lower than those in the human intestinal epithelial cell line (HIEC). Smad4 overexpression promoted tumor cell apoptosis, inhibited VEGF-A and -C expression in vitro and in vivo, but had no effect on cell proliferation and migration. Tail vein injection of the virus inhibited xenograft growth in nude mice. Importantly, we also demonstrated that Smad4 could increase the phosphorylation level of Smad3, but not Smad2, which may be one of the mechanisms underlying these effects of Smad4 in colon cancer. Therefore, Smad4 may be a new target for the treatment of colon cancer. Anat Rec, 300:1560-1569, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: a novel potential therapeutic approach.

    PubMed

    Chade, Alejandro R; Kelsen, Silvia

    2012-05-15

    Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to

  9. Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: a novel potential therapeutic approach

    PubMed Central

    Kelsen, Silvia

    2012-01-01

    Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to

  10. Disruption of Akt kinase activation is important for immunosuppression induced by measles virus.

    PubMed

    Avota, E; Avots, A; Niewiesk, S; Kane, L P; Bommhardt, U; ter Meulen, V; Schneider-Schaulies, S

    2001-06-01

    Surface-contact-mediated signaling induced by the measles virus (MV) fusion and hemagglutinin glycoproteins is necessary and sufficient to induce T-cell unresponsiveness in vitro and in vivo. To define the intracellular pathways involved, we analyzed interleukin (IL)-2R signaling in primary human T cells and in Kit-225 cells. Unlike IL-2-dependent activation of JAK/STAT pathways, activation of Akt kinase was impaired after MV contact both in vitro and in vivo. MV interference with Akt activation was important for immunosuppression, as expression of a catalytically active Akt prevented negative signaling by the MV glycoproteins. Thus, we show here that MV exploits a novel strategy to interfere with T-cell activation during immunosuppression.

  11. VEGF-C and VEGF-D blockade inhibits inflammatory skin carcinogenesis.

    PubMed

    Alitalo, Annamari K; Proulx, Steven T; Karaman, Sinem; Aebischer, David; Martino, Stefania; Jost, Manuela; Schneider, Nicole; Bry, Maija; Detmar, Michael

    2013-07-15

    VEGF-C and VEGF-D were identified as lymphangiogenic growth factors and later shown to promote tumor metastasis, but their effects on carcinogenesis are poorly understood. Here, we have studied the effects of VEGF-C and VEGF-D on tumor development in the murine multistep chemical carcinogenesis model of squamous cell carcinoma by using a soluble VEGF-C/VEGF-D inhibitor. After topical treatment with a tumor initiator and repeated tumor promoter applications, transgenic mice expressing a soluble VEGF-C/VEGF-D receptor (sVEGFR-3) in the skin developed significantly fewer squamous cell tumors with a delayed onset when compared with wild-type mice or mice expressing sVEGFR-3 lacking the ligand-binding site. Epidermal proliferation was reduced in the carcinogen-treated transgenic skin, whereas epidermal keratinocyte proliferation in vitro was not affected by VEGF-C or VEGF-D, indicating indirect effects of sVEGFR-3 expression. Importantly, transgenic mouse skin was less sensitive to tumor promoter-induced inflammation, with reduced angiogenesis and blood vessel leakage. Cutaneous leukocytes, especially macrophages, were reduced in transgenic skin without major changes in macrophage polarization or blood monocyte numbers. Several macrophage-associated cytokines were also reduced in transgenic papillomas, although the dermal macrophages themselves did not express VEGFR-3. These findings indicate that VEGF-C/VEGF-D are involved in shaping the inflammatory tumor microenvironment that regulates early tumor progression. Our results support the use of VEGF-C/VEGF-D-blocking agents not only to inhibit metastatic progression, but also during the early stages of tumor growth. ©2013 AACR.

  12. PI3K/AKT/mTOR-mediated autophagy in the development of autism spectrum disorder.

    PubMed

    Zhang, Jun; Zhang, Ji-Xiang; Zhang, Qin-Liang

    2016-07-01

    To investigate the association between PI3K/AKT/mTOR-mediated autophagy and the pathogenesis of autism spectrum disorder (ASD). A sodium valproate (VPA)-induced baby rat model of ASD was built. Nine pregnant rats were randomly assigned into three groups, with three rats for each group: healthy control group, VPA group and mTOR inhibition group, receiving different drug administrations. Baby rats were grouped according to the maternal rats. Social interaction of baby rats (35days after birth) was observed and their bilateral hippocampes were sliced. We used electron microscope analysis for observation of autophagosome formation, double immunofluorescence staining for location of LC3 II, TUNEL assay for observation of cell apoptosis, Western Blot assay was used for measurement of LC3 II, P62, p53, Bcl-2, PI3K/AKT/mTOR-related proteins and p-S6. VPA group had significantly lowered ability of social interaction than the control group and mTOR inhibition group (both P<0.05). The control group and the mTOTR inhibition group presented the visual of autophagosomes, while VPA group seldom had autophagosomes. By comparison with VPA group, mTOR group had a remarkable green fluorescence in the hippocampal CA1 (P<0.05). Western Blot assay revealved that mTOR inhibition group had a significantly higher LC3 II expression, higher LC3 II/LC3 I ratio, higher Bcl-2 expression and lower p53 than VPA group (all P<0.05). TUNEL assay showed that mTOR inhibition group had a significant smaller number of apoptotic cells in the hippocampal CA1. Besides, lowered expressions of p-PI3K, p-AKT and p-S6 were identified in the baby rats in mTOR inhibition group compared with VPA group (all P<0.05). mTOR inhibition can increase PI3K/AKT/mTOR-mediated autophagic activity and improve social interaction in VPA-induced ASD, providing a novel target and direction for the treatment of ASD. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Dual effects of VEGF-B on activating cardiomyocytes and cardiac stem cells to protect the heart against short- and long-term ischemia-reperfusion injury.

    PubMed

    Li, Guo-Hua; Luo, Bin; Lv, Yan-Xia; Zheng, Fei; Wang, Lu; Wei, Meng-Xi; Li, Xian-Yu; Zhang, Lei; Wang, Jia-Ning; Chen, Shi-You; Tang, Jun-Ming; He, Xiaohua

    2016-05-04

    To investigate whether vascular endothelial growth factor B (VEGF-B) improves myocardial survival and cardiac stem cell (CSC) function in the ischemia-reperfusion (I/R) heart and promotes CSC mobilization and angiogenesis. One hour after myocardial ischemia and infarction, rats were treated with recombinant human VEGF-B protein following 24 h or 7 days of myocardial reperfusion. Twenty-four hours after myocardial I/R, VEGF-B increased pAkt and Bcl-2 levels, reduced p-p38MAPK, LC3-II/I, beclin-1, CK, CK-MB and cTnt levels, triggered cardiomyocyte protection against I/R-induced autophagy and apoptosis, and contributed to the decrease of infarction size and the improvement of heart function during I/R. Simultaneously, an in vitro hypoxia-reoxygenation (H/R)-induced H9c2 cardiomyocyte injury model was used to mimic I/R injury model in vivo; in this model, VEGF-B decreased LDH release, blocked H/R-induced apoptosis by inhibiting cell autophagy, and these special effects could be abolished by the autophagy inducer, rapamycin. Mechanistically, VEGF-B markedly activated the Akt signaling pathway while slightly inhibiting p38MAPK, leading to the blockade of cell autophagy and thus protecting cardiomyocyte from H/R-induced activation of the intrinsic apoptotic pathway. Seven days after I/R, VEGF-B induced the expression of SDF-1α and HGF, resulting in the massive mobilization and homing of c-Kit positive cells, triggering further angiogenesis and vasculogenesis in the infracted heart and contributing to the improvement of I/R heart function. VEGF-B could contribute to a favorable short- and long-term prognosis for I/R via the dual manipulation of cardiomyocytes and CSCs.

  14. Luteolin Suppresses Inflammatory Mediator Expression by Blocking the Akt/NFκB Pathway in Acute Lung Injury Induced by Lipopolysaccharide in Mice.

    PubMed

    Li, Yi-Ching; Yeh, Chung-Hsin; Yang, Ming-Ling; Kuan, Yu-Hsiang

    2012-01-01

    Acute lung injury (ALI), instilled by lipopolysaccharide (LPS), is a severe illness with excessive mortality and has no specific treatment strategy. Luteolin is an anti-inflammatory flavonoid and widely distributed in the plants. Pretreatment with luteolin inhibited LPS-induced histological changes of ALI and lung tissue edema. In addition, LPS-induced inflammatory responses, including increased vascular permeability, tumor necrosis factor (TNF)-α and interleukin (IL)-6 production, and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), were also reduced by luteolin in a concentration-dependent manner. Furthermore, luteolin suppressed activation of NFκB and its upstream molecular factor, Akt. These results suggest that the protection mechanism of luteolin is by inhibition of NFκB activation possibly via Akt.

  15. VEGF/Flk1 Signaling Cascade Transactivates Etv2 Gene Expression

    PubMed Central

    Rasmussen, Tara L.; Shi, Xiaozhong; Wallis, Alicia; Kweon, Junghun; Zirbes, Katie M.; Koyano-Nakagawa, Naoko; Garry, Daniel J.

    2012-01-01

    Previous reports regarding the genetic hierarchy between Ets related protein 71 (Er71/Etv2) and Flk1 is unclear. In the present study, we pursued a genetic approach to define the molecular cascade between Etv2 and Flk1. Using a transgenic Etv2-EYFP reporter mouse, we examined the expression pattern of Etv2 relative to Flk1 in the early conceptus. Etv2-EYFP was expressed in subset of Flk1 positive cells during primitive streak stages, suggesting that Flk1 is upstream of Etv2 during gastrulation. Analysis of reporter gene expression in Flk1 and Etv2 mutant mice further supports the hypothesis that Flk1 is necessary for Etv2 expression. The frequency of cells expressing Flk1 in Etv2 mutants is only modestly altered (21% decrease), whereas expression of the Etv2-EYFP transgenic reporter was severely reduced in the Flk1 null background. We further demonstrate using transcriptional assays that, in the presence of Flk1, the Etv2 promoter is activated by VEGF, the Flk1 ligand. Pharmacological inhibition studies demonstrate that VEGF mediated activation is dependent on p38 MAPK, which activates Creb. We identify the VEGF response element in the Etv2 promoter and demonstrate that Creb binds to this motif by EMSA and ChIP assays. In summary, we provide new evidence that VEGF activates Etv2 by signaling through Flk1, which activates Creb through the p38 MAPK signaling cascade. PMID:23185546

  16. Oolong tea prevents cardiomyocyte loss against hypoxia by attenuating p-JNK mediated hypertrophy and enhancing P-IGF1R, p-akt, and p-Badser136 activity and by fortifying NRF2 antioxidation system.

    PubMed

    Shibu, Marthandam Asokan; Kuo, Chia-Hua; Chen, Bih-Cheng; Ju, Da-Tong; Chen, Ray-Jade; Lai, Chao-Hung; Huang, Pei-Jane; Viswanadha, Vijaya Padma; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-02-01

    Tea, the most widely consumed natural beverage has been associated with reduced mortality risk from cardiovascular disease. Oolong tea is a partially fermented tea containing high levels of catechins, their degree of oxidation varies between 20%-80% causing differences in their active metabolites. In this study we examined the effect of oolong tea extract (OTE) obtained by oxidation at low-temperature for short-time against hypoxic injury and found that oolong tea provides cyto-protective effects by suppressing the JNK mediated hypertrophic effects and by enhancing the innate antioxidant mechanisms in neonatal cardiomyocytes and in H9c2 cells. OTE effectively attenuates 24 h hypoxia-triggered cardiomyocyte loss by suppressing caspase-3-cleavage and apoptosis in a dose-dependent manner. OTE also enhances the IGFIR/p-Akt associated survival-mechanism involving the elevation of p-Bad ser136 in a dose-dependent manner to aid cellular adaptations against hypoxic challenge. The results show the effects and mechanism of Oolong tea to provide cardio-protective benefits during hypoxic conditions. © 2017 Wiley Periodicals, Inc.

  17. The underlying mechanism of proinflammatory NF-κB activation by the mTORC2/Akt/IKKα pathway during skin aging

    PubMed Central

    Choi, Yeon Ja; Moon, Kyoung Mi; Chung, Ki Wung; Jeong, Ji Won; Park, Daeui; Kim, Dae Hyun; Yu, Byung Pal; Chung, Hae Young

    2016-01-01

    Mammalian target of rapamycin complex 2 (mTORC2), one of two different enzymatic complexes of mTOR, regulates a diverse set of substrates including Akt. mTOR pathway is one of well-known mediators of aging process, however, its role in skin aging has not been determined. Skin aging can be induced by physical age and ultraviolet (UV) irradiation which are intrinsic and extrinsic factors, respectively. Here, we report increased mTORC2 pathway in intrinsic and photo-induced skin aging, which is implicated in the activation of nuclear factor-κB (NF-κB). UVB-irradiated or aged mice skin revealed that mTORC2 activity and its component, rictor were significantly upregulated which in turn increased Akt activation and Akt-dependent IκB kinase α (IKKα) phosphorylation at Thr23 in vivo. We also confirmed that UVB induced the mTORC2/Akt/IKKα signaling pathway with HaCaT human normal keratinocytes. The increased mTORC2 signaling pathway during skin aging were associated to NF-κB activation. Suppression of mTORC2 activity by the treatment of a mTOR small inhibitor or knockdown of RICTOR partially rescued UVB-induced NF-κB activation through the downregulation of Akt/IKKα activity. Our data demonstrated the upregulation of mTORC2 pathway in intrinsic and photo-induced skin aging and its role in IKKα/NF-κB activation. These data not only expanded the functions of mTOR to skin aging but also revealed the therapeutic potential of inhibiting mTORC2 in ameliorating both intrinsic skin aging and photoaging. PMID:27486771

  18. MicroRNA-29b regulates TGF-β1-mediated epithelial–mesenchymal transition of retinal pigment epithelial cells by targeting AKT2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Min; Li, Hui; Liu, Xiaoqiang

    2016-07-15

    The role of microRNA (miRNA) in proliferative vitreoretinopathy (PVR) progression has not been studied extensively, especially in retinal pigment epithelial–mesenchymal transition (EMT) which is the main reason for formation of PVR. In this study, we first investigated the miRNA expression profile in transforming growth factor beta 1 (TGF-β1) mediated EMT of ARPE-19 cells. Among the five changed miRNAs, miR-29b showed the most significant downregulation. Enhanced expression of miR-29b could reverse TGF-β1 induced EMT through targeting Akt2. Akt2 downregulation could inhibit TGF-β1-induced EMT. Furthermore, inhibition of miR-29b in ARPE-19 cells directly triggered EMT process, which characterized by the phenotypic transition andmore » the upregulation of α-smooth muscle actin (α-SMA) and downregulation of E-cadherin and zona occludin-1 (ZO-1) with increased cell migration. Akt2-shRNA also inhibited miR-29 inhibitor-induced EMT process. These data indicate that miR-29b plays an important role in TGF-β1-mediated EMT in ARPE-19 cells by targeting Akt2. - Highlights: • MiR-29b expression is decreased in TGF-β1-induced EMT of ARPE-19 cells. • MiR-29b inhibits TGF-β1-induced EMT in ARPE-19 cells. • MiR-29b inhibitor induces EMT in ARPE-19 cells. • Akt2 is the target for miR-29b. • Downregulation of Akt2 prevents TGF-β1-induced EMT of ARPE-19 cells.« less

  19. Protein Kinase C alpha (PKCα) dependent signaling mediates endometrial cancer cell growth and tumorigenesis

    PubMed Central

    Haughian, James M.; Reno, Elaine M.; Thorne, Alicia M.; Bradford, Andrew P.

    2009-01-01

    Endometrial cancer is the most common invasive gynecologic malignancy, yet molecular mechanisms and signaling pathways underlying its etiology and pathophysiology remain poorly characterized. We sought to define a functional role for the protein kinase C (PKC) isoform, PKCα, in an established cell model of endometrial adenocarcinoma. Ishikawa cells depleted of PKCα protein grew slower, formed fewer colonies in anchorage-independent growth assays and exhibited impaired xenograft tumor formation in nude mice. Consistent with impaired growth, PKCα knockdown increased levels of the cyclin dependent kinase (CDK) inhibitors p21Cip1/WAF1 (p21) and p27Kip1 (p27). Despite the absence of functional phosphatase and tensin homologue (PTEN) protein in Ishikawa cells, PKCα knockdown reduced Akt phosphorylation at serine 473 and concomitantly inhibited phosphorylation of the Akt target, glycogen synthase kinase-3β (GSK-3β). PKCα knockdown also resulted in decreased basal ERK phosphorylation and attenuated ERK activation following EGF stimulation. p21 and p27 expression was not increased by treatment of Ishikawa cells with ERK and Akt inhibitors, suggesting PKCα regulates CDK expression independently of Akt and ERK. Immunohistochemical analysis of grade 1 endometrioid adenocarcinoma revealed aberrant PKCα expression, with foci of elevated PKCα staining, not observed in normal endometrium. These studies demonstrate a critical role for PKCα signaling in endometrial tumorigenesis by regulating expression of CDK inhibitors p21 and p27 and activation of Akt and ERK dependent proliferative pathways. Thus, targeting PKCα may provide novel therapeutic options in endometrial tumors. PMID:19672862

  20. BDE-47 and BDE-85 stimulate insulin secretion in INS-1 832/13 pancreatic β-cells through the thyroid receptor and Akt.

    PubMed

    Karandrea, Shpetim; Yin, Huquan; Liang, Xiaomei; Heart, Emma A

    2017-12-01

    PBDEs (polybrominated diphenyl ethers) are environmental pollutants that have been linked to the development of type 2 diabetes, however, the precise mechanisms are not clear. Particularly, their direct effect on insulin secretion is unknown. In this study, we show that two PBDE congeners, BDE-47 and BDE-85, potentiate glucose-stimulated insulin secretion (GSIS) in INS-1 832/13 cells. This effect of BDE-47 and BDE-85 on GSIS was dependent on thyroid receptor (TR). Both BDE-47 and BDE-85 (10μM) activated Akt during an acute exposure. The activation of Akt by BDE-47 and BDE-85 plays a role in their potentiation of GSIS, as pharmacological inhibition of PI3K, an upstream activator of Akt, significantly lowers GSIS compared to compounds alone. This study shows that BDE-47 and BDE-85 directly act on pancreatic β-cells to stimulate GSIS, and that this effect is mediated by the thyroid receptor (TR) and Akt activation. Copyright © 2017. Published by Elsevier B.V.

  1. Crosstalk between peroxisome proliferator-activated receptor δ and VEGF stimulates cancer progression

    PubMed Central

    Wang, Dingzhi; Wang, Haibin; Guo, Yong; Ning, Wei; Katkuri, Sharada; Wahli, Walter; Desvergne, Beatrice; Dey, Sudhansu K.; DuBois, Raymond N.

    2006-01-01

    Peroxisome proliferator-activated receptor (PPAR) δ is a member of the nuclear hormone receptor superfamily. PPARδ may ameliorate metabolic diseases such as obesity and diabetes. However, PPARδ's role in colorectal carcinogenesis remains controversial. Here, we present genetic and pharmacologic evidence demonstrating that deletion of PPARδ decreases intestinal adenoma growth in ApcMin/+ mice and inhibits tumor-promoting effects of a PPARδ agonist GW501516. More importantly, we found that activation of PPARδ up-regulated VEGF in colon carcinoma cells. VEGF directly promotes colon tumor epithelial cell survival through activation of PI3K–Akt signaling. These results not only highlight concerns about the use of PPARδ agonists for treatment of metabolic disorders in patients who are at high risk for colorectal cancer, but also support the rationale for developing PPARδ antagonists for prevention and/or treatment of cancer. PMID:17148604

  2. Programmed Death-1 Inhibition of Phosphatidylinositol 3-Kinase/AKT/Mechanistic Target of Rapamycin Signaling Impairs Sarcoidosis CD4+ T Cell Proliferation.

    PubMed

    Celada, Lindsay J; Rotsinger, Joseph E; Young, Anjuli; Shaginurova, Guzel; Shelton, Debresha; Hawkins, Charlene; Drake, Wonder P

    2017-01-01

    Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD4 + T cells. Up-regulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4 + T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1 + CD4 + T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P < 0.001). There was a negative correlation with PD-1 expression and proliferative capacity (r = -0.70, P < 0.001). Expression of key mediators of cell cycle progression, including PI3K and AKT, were significantly decreased. Gene and protein expression levels reverted to healthy control levels after PD-1 pathway blockade. Reduction in sarcoidosis CD4 + T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression.

  3. Programmed Death-1 Inhibition of Phosphatidylinositol 3-Kinase/AKT/Mechanistic Target of Rapamycin Signaling Impairs Sarcoidosis CD4+ T Cell Proliferation

    PubMed Central

    Celada, Lindsay J.; Rotsinger, Joseph E.; Young, Anjuli; Shaginurova, Guzel; Shelton, Debresha; Hawkins, Charlene

    2017-01-01

    Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD4+ T cells. Up-regulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4+ T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1+ CD4+ T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P < 0.001). There was a negative correlation with PD-1 expression and proliferative capacity (r = −0.70, P < 0.001). Expression of key mediators of cell cycle progression, including PI3K and AKT, were significantly decreased. Gene and protein expression levels reverted to healthy control levels after PD-1 pathway blockade. Reduction in sarcoidosis CD4+ T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression. PMID:27564547

  4. Targeting VEGF/VEGFRs Pathway in the Antiangiogenic Treatment of Human Cancers by Traditional Chinese Medicine.

    PubMed

    Zhang, Cheng; Wang, Ning; Tan, Hor-Yue; Guo, Wei; Li, Sha; Feng, Yibin

    2018-05-01

    Bearing in mind the doctrine of tumor angiogenesis hypothesized by Folkman several decades ago, the fundamental strategy for alleviating numerous cancer indications may be the strengthening application of notable antiangiogenic therapies to inhibit metastasis-related tumor growth. Under physiological conditions, vascular sprouting is a relatively infrequent event unless when specifically stimulated by pathogenic factors that contribute to the accumulation of angiogenic activators such as the vascular endothelial growth factor (VEGF) family and basic fibroblast growth factor (bFGF). Since VEGFs have been identified as the principal cytokine to initiate angiogenesis in tumor growth, synthetic VEGF-targeting medicines containing bevacizumab and sorafenib have been extensively used, but prominent side effects have concomitantly emerged. Traditional Chinese medicines (TCM)-derived agents with distinctive safety profiles have shown their multitarget curative potential by impairing angiogenic stimulatory signaling pathways directly or eliciting synergistically therapeutic effects with anti-angiogenic drugs mainly targeting VEGF-dependent pathways. This review aims to summarize ( a) the up-to-date understanding of the role of VEGF/VEGFR in correlation with proangiogenic mechanisms in various tissues and cells; ( b) the elaboration of antitumor angiogenesis mechanisms of 4 representative TCMs, including Salvia miltiorrhiza, Curcuma longa, ginsenosides, and Scutellaria baicalensis; and ( c) circumstantial clarification of TCM-driven therapeutic actions of suppressing tumor angiogenesis by targeting VEGF/VEGFRs pathway in recent years, based on network pharmacology.

  5. CXCR6 induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway.

    PubMed

    Wang, Jianhua; Lu, Yi; Wang, Jingchen; Koch, Alisa E; Zhang, Jian; Taichman, Russell S

    2008-12-15

    Previous studies show that the chemokine CXCL16 and its receptor CXCR6 are likely to contribute to prostate cancer (PCa). In this investigation, the role of the CXCR6 receptor in PCa was further explored. CXCR6 protein expression was examined using high-density tissue microarrays and immunohistochemistry. Expression of CXCR6 showed strong epithelial staining that correlated with Gleason score. In vitro and in vivo studies in PCa cell lines suggested that alterations in CXCR6 expression were associated with invasive activities and tumor growth. In addition, CXCR6 expression was able to regulate expression of the proangiogenic factors interleukin (IL)-8 or vascular endothelial growth factor (VEGF), which are likely to participate in the regulation of tumor angiogenesis. Finally, we found that CXCL16 signaling induced the activation of Akt, p70S6K, and eukaryotic initiation factor 4E binding protein 1 included in mammalian target of rapamycin (mTOR) pathways, which are located downstream of Akt. Furthermore, rapamycin not only drastically inhibited CXCL16-induced PCa cell invasion and growth but reduced secretion of IL-8 or VEGF levels and inhibited expression of other CXCR6 targets including CD44 and matrix metalloproteinase 3 in PCa cells. Together, our data shows for the first time that the CXCR6/AKT/mTOR pathway plays a central role in the development of PCa. Blocking the CXCR6/AKT/mTOR signaling pathway may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for PCa.

  6. Stem cell factor (SCF) protects osteoblasts from oxidative stress through activating c-Kit-Akt signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lei; Wu, Zhong; Yin, Gang

    2014-12-12

    Highlights: • SCF receptor c-Kit is functionally expressed in primary and transformed osteoblasts. • SCF protects primary and transformed osteoblasts from H{sub 2}O{sub 2}. • SCF activation of c-Kit in osteoblasts, required for its cyto-protective effects. • c-Kit mediates SCF-induced Akt activation in cultured osteoblasts. • Akt activation is required for SCF-regulated cyto-protective effects in osteoblasts. - Abstract: Osteoblasts regulate bone formation and remodeling, and are main target cells of oxidative stress in the progression of osteonecrosis. The stem cell factor (SCF)-c-Kit pathway plays important roles in the proliferation, differentiation and survival in a range of cell types, but littlemore » is known about its functions in osteoblasts. In this study, we found that c-Kit is functionally expressed in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. Its ligand SCF exerted significant cyto-protective effects against hydrogen peroxide (H{sub 2}O{sub 2}). SCF activated its receptor c-Kit in osteoblasts, which was required for its cyto-protective effects against H{sub 2}O{sub 2}. Pharmacological inhibition (by Imatinib and Dasatinib) or shRNA-mediated knockdown of c-Kit thus inhibited SCF-mediated osteoblast protection. Further investigations showed that protection by SCF against H{sub 2}O{sub 2} was mediated via activation of c-Kit-dependent Akt pathway. Inhibition of Akt activation, through pharmacological or genetic means, suppressed SCF-mediated anti-H{sub 2}O{sub 2} activity in osteoblasts. In summary, we have identified a new SCF-c-Kit-Akt physiologic pathway that protects osteoblasts from H{sub 2}O{sub 2}-induced damages, and might minimize the risk of osteonecrosis caused by oxidative stress.« less

  7. Akt1 deficiency diminishes skeletal muscle hypertrophy by reducing satellite cell proliferation.

    PubMed

    Moriya, Nobuki; Miyazaki, Mitsunori

    2018-05-01

    Skeletal muscle mass is determined by the net dynamic balance between protein synthesis and degradation. Although the Akt/mechanistic target of rapamycin (mTOR)-dependent pathway plays an important role in promoting protein synthesis and subsequent skeletal muscle hypertrophy, the precise molecular regulation of mTOR activity by the upstream protein kinase Akt is largely unknown. In addition, the activation of satellite cells has been indicated as a key regulator of muscle mass. However, the requirement of satellite cells for load-induced skeletal muscle hypertrophy is still under intense debate. In this study, female germline Akt1 knockout (KO) mice were used to examine whether Akt1 deficiency attenuates load-induced skeletal muscle hypertrophy through suppressing mTOR-dependent signaling and satellite cell proliferation. Akt1 KO mice showed a blunted hypertrophic response of skeletal muscle, with a diminished rate of satellite cell proliferation following mechanical overload. In contrast, Akt1 deficiency did not affect the load-induced activation of mTOR signaling and the subsequent enhanced rate of protein synthesis in skeletal muscle. These observations suggest that the load-induced activation of mTOR signaling occurs independently of Akt1 regulation and that Akt1 plays a critical role in regulating satellite cell proliferation during load-induced muscle hypertrophy.

  8. Effect of HIF-1a/VEGF signaling pathway on plasma progesterone and ovarian prostaglandin F₂a secretion during luteal development of pseudopregnant rats.

    PubMed

    Pan, X Y; Zhang, Z H; Wu, L X; Wang, Z C

    2015-08-03

    The corpus luteum is a temporary endocrine structure in mammals that plays an important role in the female reproductive cycle and is formed from a ruptured and ovulated follicle with rapid angiogenesis. Vascular endothelial growth factor (VEGF) is thought to be vital in normal and abnormal angiogenesis in the ovary, but the molecular regulation of luteal VEGF expression during corpus luteum development in vivo is still poorly understood at present. Therefore, we examined whether hypoxia-inducible factor-1a (HIF-1a) is induced and regulates VEGF expression and luteal function in vivo using a pseudopregnant rat model treated with a small-molecule inhibitor of HIF-1a, echinomycin. Corpus luteum development in the pseudopregnant rat ovary was determined after measuring plasma progesterone concentration and ovarian prostaglandin F2a content to reflect changes in HIF-1a and VEGF on different days of this developmental process. At day 7, the corpus luteum was formed and the expression of HIF- 1a/VEGF reached a maximum, while a significant decrease in HIF-1a/ VEGF expression was observed when luteolysis occurred at day 13. Additionally, echinomycin blocked luteal development by inhibiting VEGF expression mediated by HIF-1a and following luteal function by detecting the progesterone changes at day 7. These results demonstrated that HIF-1a-mediated VEGF expression might be an important mechanism regulating ovarian luteal development in mammals in vivo, which may provide new strategies for fertility control and for treating some types of ovarian dysfunction, such as polycystic ovarian syndrome, ovarian hyperstimulation syndrome, and ovarian neoplasia.

  9. Hsp27 regulates Akt activation and polymorphonuclear leukocyte apoptosis by scaffolding MK2 to Akt signal complex.

    PubMed

    Wu, Rui; Kausar, Hina; Johnson, Paul; Montoya-Durango, Diego E; Merchant, Michael; Rane, Madhavi J

    2007-07-27

    We have shown previously that Akt exists in a signal complex with p38 MAPK, MAPK-activated protein kinase-2 (MK2), and heat shock protein 27 (Hsp27) and MK2 phosphorylates Akt on Ser-473. Additionally, dissociation of Hsp27 from Akt, prior to Akt activation, induced polymorphonuclear leukocyte (PMN) apoptosis. However, the role of Hsp27 in regulating Akt activation was not examined. This study tested the hypothesis that Hsp27 regulates Akt activation and promotes cell survival by scaffolding MK2 to the Akt signal complex. Here we show that loss of Akt/Hsp27 interaction by anti-Hsp27 antibody treatment resulted in loss of Akt/MK2 interaction, loss of Akt-Ser-473 phosphorylation, and induced PMN apoptosis. Transfection of myristoylated Akt (AktCA) in HK-11 cells induced Akt-Ser-473 phosphorylation, activation, and Hsp27-Ser-82 phosphorylation. Cotransfection of AktCA with Hsp27 short interfering RNA, but not scrambled short interfering RNA, silenced Hsp27 expression, without altering Akt expression in HK-11 cells. Silencing Hsp27 expression inhibited Akt/MK2 interaction, inhibited Akt phosphorylation and Akt activation, and induced HK-11 cell death. Deletion mutagenesis studies identified acidic linker region (amino acids 117-128) on Akt as an Hsp27 binding region. Deletion of amino acids 117-128 on Akt resulted in loss of its interaction with Hsp27 and MK2 but not with Hsp90 as demonstrated by immunoprecipitation and glutathione S-transferase pulldown studies. Co-transfection studies demonstrated that constitutively active MK2 (MK2EE) phosphorylated Aktwt (wild type) on Ser-473 but failed to phosphorylate Akt(Delta117-128) mutant in transfixed cells. These studies collectively define a novel role of Hsp27 in regulating Akt activation and cellular apoptosis by mediating interaction between Akt and its upstream activator MK2.

  10. Phosphatidylserine Sensing by TAM Receptors Regulates AKT-Dependent Chemoresistance and PD-L1 Expression.

    PubMed

    Kasikara, Canan; Kumar, Sushil; Kimani, Stanley; Tsou, Wen-I; Geng, Ke; Davra, Viralkumar; Sriram, Ganapathy; Devoe, Connor; Nguyen, Khanh-Quynh N; Antes, Anita; Krantz, Allen; Rymarczyk, Grzegorz; Wilczynski, Andrzej; Empig, Cyril; Freimark, Bruce; Gray, Michael; Schlunegger, Kyle; Hutchins, Jeff; Kotenko, Sergei V; Birge, Raymond B

    2017-06-01

    Tyro3, Axl, and Mertk (collectively TAM receptors) are three homologous receptor tyrosine kinases that bind vitamin K-dependent endogenous ligands, Protein S (ProS), and growth arrest-specific factor 6 (Gas6), and act as bridging molecules to promote phosphatidylserine (PS)-mediated clearance of apoptotic cells (efferocytosis). TAM receptors are overexpressed in a vast array of tumor types, whereby the level of expression correlates with the tumor grade and the emergence of chemo- and radioresistance to targeted therapeutics, but also have been implicated as inhibitory receptors on infiltrating myeloid-derived cells in the tumor microenvironment that can suppress host antitumor immunity. In the present study, we utilized TAM-IFNγR1 reporter lines and expressed TAM receptors in a variety of epithelial cell model systems to show that each TAM receptor has a unique pattern of activation by Gas6 or ProS, as well as unique dependency for PS on apoptotic cells and PS liposomes for activity. In addition, we leveraged this system to engineer epithelial cells that express wild-type TAM receptors and show that although each receptor can promote PS-mediated efferocytosis, AKT-mediated chemoresistance, as well as upregulate the immune checkpoint molecule PD-L1 on tumor cells, Mertk is most dominant in the aforementioned pathways. Functionally, TAM receptor-mediated efferocytosis could be partially blocked by PS-targeting antibody 11.31 and Annexin V, demonstrating the existence of a PS/PS receptor (i.e., TAM receptor)/PD-L1 axis that operates in epithelial cells to foster immune escape. These data provide a rationale that PS-targeting, anti-TAM receptor, and anti-PD-L1-based therapeutics will have merit as combinatorial checkpoint inhibitors. Implications: Many tumor cells are known to upregulate the immune checkpoint inhibitor PD-L1. This study demonstrates a role for PS and TAM receptors in the regulation of PD-L1 on cancer cells. Mol Cancer Res; 15(6); 753-64. ©2017 AACR

  11. Doxycycline modulates VEGF-A expression: Failure of doxycycline-inducible lentivirus shRNA vector to knockdown VEGF-A expression in transgenic mice.

    PubMed

    Merentie, Mari; Rissanen, Riina; Lottonen-Raikaslehto, Line; Huusko, Jenni; Gurzeler, Erika; Turunen, Mikko P; Holappa, Lari; Mäkinen, Petri; Ylä-Herttuala, Seppo

    2018-01-01

    Vascular endothelial growth factor-A (VEGF-A) is the master regulator of angiogenesis, vascular permeability and growth. However, its role in mature blood vessels is still not well understood. To better understand the role of VEGF-A in the adult vasculature, we generated a VEGF-A knockdown mouse model carrying a doxycycline (dox)-regulatable short hairpin RNA (shRNA) transgene, which silences VEGF-A. The aim was to find the critical level of VEGF-A reduction for vascular well-being in vivo. In vitro, the dox-inducible lentiviral shRNA vector decreased VEGF-A expression efficiently and dose-dependently in mouse endothelial cells and cardiomyocytes. In the generated transgenic mice plasma VEGF-A levels decreased shortly after the dox treatment but returned back to normal after two weeks. VEGF-A expression decreased shortly after the dox treatment only in some tissues. Surprisingly, increasing the dox exposure time and dose led to elevated VEGF-A expression in some tissues of both wildtype and knockdown mice, suggesting that dox itself has an effect on VEGF-A expression. When the effect of dox on VEGF-A levels was further tested in naïve/non-transduced cells, the dox administration led to a decreased VEGF-A expression in endothelial cells but to an increased expression in cardiomyocytes. In conclusion, the VEGF-A knockdown was achieved in a dox-regulatable fashion with a VEGF-A shRNA vector in vitro, but not in the knockdown mouse model in vivo. Dox itself was found to regulate VEGF-A expression explaining the unexpected results in mice. The effect of dox on VEGF-A levels might at least partly explain its previously reported beneficial effects on myocardial and brain ischemia. Also, this effect on VEGF-A should be taken into account in all studies using dox-regulated vectors.

  12. Molecular Mechanisms of Bcl10-Mediated NF-kB Signal Transduction

    DTIC Science & Technology

    2006-03-08

    recruiting and activating the kinase, Akt , which is a critical mediator of pro-survival signals (3) (Figure 3). Figure 3. TCR-induced signaling...kinase and Akt rather than through upstream intermediates initiated by TCR ligation (34, 70). This suggests that TCR stimulation and CD28 co...P. Vito. 2004. Physical and functional interaction of CARMA1 and CARMA3 with Ikappa kinase gamma- NFkappaB essential modulator. J Biol Chem 279

  13. Akt/FOXO3a signaling modulates the endothelial stress response through regulation of heat shock protein 70 expression.

    PubMed

    Kim, Hyo-Soo; Skurk, Carsten; Maatz, Henrike; Shiojima, Ichiro; Ivashchenko, Yuri; Yoon, Suk-Won; Park, Young-Bae; Walsh, Kenneth

    2005-06-01

    To identify new antiapoptotic targets of the PI3K-Akt signaling pathway in endothelial cells, adenovirus-mediated Akt1 gene transfer and oligonucleotide microarrays were used to examine Akt-regulated transcripts. DNA microarray analysis revealed that HSP70 expression underwent the greatest fold activation of 12,532 transcripts examined in human umbilical vein endothelial cells (HUVEC) transduced with constitutively active Akt1. Akt1 gene transfer increased HSP70 transcript expression by 24.8-fold as determined by quantitative PCR and promoted a dose-dependent up-regulation of HSP70 protein as determined by Western immunoblot analysis. Gene transfer of FOXO3a, a downstream target of Akt in endothelial cells, significantly suppressed both basal and stress-induced HSP70 protein expression. FOXO3a induced caspase-9-dependent apoptosis in HUVEC, and cotransduction with Ad-HSP70 rescued endothelial cells from FOXO3a-induced apoptosis under basal and stress conditions. Our results identify HSP70 as a new antiapoptotic target of Akt-FOXO3a signaling in endothelial cells that controls viability through modulation of the stress-induced intrinsic cell death pathway.

  14. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    PubMed

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  15. Guggulsterone targets smokeless tobacco induced PI3K/Akt pathway in head and neck cancer cells.

    PubMed

    Macha, Muzafar A; Matta, Ajay; Chauhan, Shyam Singh; Siu, K W Michael; Ralhan, Ranju

    2011-02-24

    Epidemiological association of head and neck cancer with smokeless tobacco (ST) emphasizes the need to unravel the molecular mechanisms implicated in cancer development, and identify pharmacologically safe agents for early intervention and prevention of disease recurrence. Guggulsterone (GS), a biosafe nutraceutical, inhibits the PI3K/Akt pathway that plays a critical role in HNSCC development. However, the potential of GS to suppress ST and nicotine (major component of ST) induced HNSCC remains unexplored. We hypothesized GS can abrogate the effects of ST and nicotine on apoptosis in HNSCC cells, in part by activation of PI3K/Akt pathway and its downstream targets, Bax and Bad. Our results showed ST and nicotine treatment resulted in activation of PI3K, PDK1, Akt, and its downstream proteins--Raf, GSK3β and pS6 while GS induced a time dependent decrease in activation of PI3K/Akt pathway. ST and nicotine treatment also resulted in induction of Bad and Bax phosphorylation, increased the association of Bad with 14-3-3ζresulting in its sequestration in the cytoplasm of head and neck cancer cells, thus blocking its pro-apoptotic function. Notably, GS pre-treatment inhibited ST/nicotine induced activation of PI3K/Akt pathway, and inhibited the Akt mediated phosphorylation of Bax and Bad. In conclusion, GS treatment not only inhibited proliferation, but also induced apoptosis by abrogating the effects of ST/nicotine on PI3K/Akt pathway in head and neck cancer cells. These findings provide a rationale for designing future studies to evaluate the chemopreventive potential of GS in ST/nicotine associated head and neck cancer.

  16. Dual Regulation of Glycogen Synthase Kinase 3 (GSK3)α/β by Protein Kinase C (PKC)α and Akt Promotes Thrombin-mediated Integrin αIIbβ3 Activation and Granule Secretion in Platelets*

    PubMed Central

    Moore, Samantha F.; van den Bosch, Marion T. J.; Hunter, Roger W.; Sakamoto, Kei; Poole, Alastair W.; Hers, Ingeborg

    2013-01-01

    Glycogen synthase kinase-3 is a Ser/Thr kinase, tonically active in resting cells but inhibited by phosphorylation of an N-terminal Ser residue (Ser21 in GSK3α and Ser9 in GSK3β) in response to varied external stimuli. Recent work suggests that GSK3 functions as a negative regulator of platelet function, but how GSK3 is regulated in platelets has not been examined in detail. Here, we show that early thrombin-mediated GSK3 phosphorylation (0–30 s) was blocked by PKC inhibitors and largely absent in platelets from PKCα knock-out mice. In contrast, late (2–5 min) GSK3 phosphorylation was dependent on the PI3K/Akt pathway. Similarly, early thrombin-mediated inhibition of GSK3 activity was blocked in PKCα knock-out platelets, whereas the Akt inhibitor MK2206 reduced late thrombin-mediated GSK3 inhibition and largely prevented GSK3 inhibition in PKCα knock-out platelets. More importantly, GSK3 phosphorylation contributes to platelet function as knock-in mice where GSK3α Ser21 and GSK3β Ser9 were mutated to Ala showed a significant reduction in PAR4-mediated platelet aggregation, fibrinogen binding, and P-selectin expression, whereas the GSK3 inhibitor CHIR99021 enhanced these responses. Together, these results demonstrate that PKCα and Akt modulate platelet function by phosphorylating and inhibiting GSK3α/β, thereby relieving the negative effect of GSK3α/β on thrombin-mediated platelet activation. PMID:23239877

  17. Genistein Promotes Proliferation of Human Cervical Cancer Cells Through Estrogen Receptor-Mediated PI3K/Akt-NF-κB Pathway

    PubMed Central

    Chen, Hai-Hong; Chen, Shu-Ping; Zheng, Qiu-Ling; Nie, Shao-Ping; Li, Wen-Juan; Hu, Xiao-Juan; Xie, Ming-Yong

    2018-01-01

    Phytoestrogens are polyphenol compounds which have similar structure to 17β-estradiol (E2), a kind of main estrogen in women. Thus, phytoestrogens may affect the reproductive and endocrine systems, leading to the development of estrogen-related cancers. The effect of genistein (Gen), one of the most studied phytoestrogens, on human cervical cancer cells (HeLa) was investigated in this study. It was found that Gen at concentrations of 0.001, 0.01, 0.1 and 1 µmol·L-1 promoted the proliferation of HeLa cells in a dose-dependent manner. Gen increased the portion of HeLa cells in S phase and decreased the portion of the cells in G1 phase. Besides, apoptosis rate of the cells was significantly lower when treated with Gen compared with the control group. It was also found that the expression of ERα, Akt or nuclear NF-κB p65 protein was activated by Gen. The correlation between these three proteins may be as following: ERα was the upstream, followed by Akt, and then nuclear NF-κB p65 protein. In addition, the downstream genes of activated nuclear NF-κB p65 were found to be associated with cell cycle and apoptosis of cancer cells. Our results suggested that Gen may stimulate cell proliferation partially through the estrogen receptor-mediated PI3K/Akt-NF-κB pathway and the further activation of the downstream genes of nuclear NF-κB p65. PMID:29344275

  18. The PTEN/Akt Signaling Pathway Mediates Myocardial Apoptosis in Swine After Coronary Microembolization.

    PubMed

    Wang, Jiangyou; Chen, Han; Su, Qiang; Zhou, You; Liu, Tao; Li, Lang

    2016-09-01

    Phosphatase and the tensin homolog deleted on chromosome ten (PTEN) has been recognized as a promoter of apoptosis in various tissues and has been shown to be upregulated in circumstances of coronary microembolization (CME). We hypothesized that the upregulation of PTEN correlates with CME-induced myocardial apoptosis. Swine CME was induced by an intracoronary injection of inert plastic microspheres (diameter of 42 μm) into the left anterior descending coronary, with or without pretreatment of the PTEN small-interfering RNA (siRNA). Echocardiological measurements, a pathological examination, Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) staining, and Western blotting, were performed to assess their functional, morphological, and molecular effects in CME. PTEN was aberrantly upregulated in cardiomyocytes following CME. Downregulation of PTEN in vivo via siRNA was associated with improved cardiac function and attenuated myocardial apoptosis; concomitantly inhibited the expression of key proapoptotic proteins, such as phosphorylated Bad (p-Bad); cleaved caspase-3; and enhanced the expression of key antiapoptotic proteins, such as phosphorylated protein kinase B (p-Akt). However, there was no difference in the Akt-regulated downstream protein IκB kinases (IKKα, IKKβ, and IKKγ) among the sham, CME, and control siRNA groups. This study demonstrates, for the first time, that the PTEN/Akt signaling pathway contributes to cardiomyocyte apoptosis. The data generated from this study provide a rationale for the development of PTEN-based therapeutic strategies for CME-induced myocardial injury. © The Author(s) 2016.

  19. Netrin-1 induces the migration of Schwann cells via p38 MAPK and PI3K-Akt signaling pathway mediated by the UNC5B receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Jianwei; Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050; Sun, Xiaolei

    2015-08-14

    Schwann cells (SCs) play an essentially supportive role in the regeneration of injured peripheral nerve system (PNS). As Netrin-1 is crucial for the normal development of nervous system (NS) and can direct the process of damaged PNS regeneration, our study was designed to determine the role of Netrin-1 in RSC96 Schwann cells (an immortalized rat Schwann cell line) proliferation and migration. Our studies demonstrated that Netrin-1 had no effect on RSC96 cells proliferation, while significantly promoted RSC96 cells migration. The Netrin-1-induced RSC96 cells migration was significantly attenuated by inhibition of p38 and PI3K through pretreatment with SB203580 and LY294002 respectively,more » but not inhibition of MEK1/2 and JNK by U0126-EtOH and SP600125 individually. Treatment with Netrin-1 enhanced the phosphorylation of p38 and Akt. QRT-PCR indicated that Netrin-1 and only its receptors Unc5a, Unc5b and Neogenin were expressed in RSC96 cells, among which Unc5b expressed the most. And UNC5B protein was significantly increased after stimulated by Netrin-1. In conclusion, we show here that Netrin-1-enhanced SCs migration is mediated by activating p38 MAPK and PI3K-Akt signal cascades via receptor UNC5B, which suggests that Netrin-1 could serve as a new therapeutic strategy and has potential application value for PNS regeneration. - Highlights: • Netrin-1 attracts RSC96 Schwann cells migration in a dose dependent manner. • Netrin-1 induced Schwann cells migration is p38 and PI3K-Akt signaling dependent. • UNC5B may be dominant receptor mediating Netrin-1′ effect on RSC96 cells motility. • Netrin-1 may promote peripheral nerve repair by enhancing Schwann cells motility.« less

  20. The Phosphorylation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) by Engineered Surfaces with Electrostatically or Covalently Immobilized VEGF

    PubMed Central

    Anderson, Sean M.; Chen, Tom T.; Iruela-Arispe, M. Luisa; Segura, Tatiana

    2010-01-01

    Growth factors are a class of signaling proteins that direct cell fate through interaction with cell surface receptors. Although a myriad of possible cell fates stem from a growth factor binding to its receptor, the signaling cascades that result in one fate over another are still being elucidated. One possible mechanism by which nature modulates growth factor signaling is through the method of presentation of the growth factor – soluble or immobilized (matrix bound). Here we present the methodology to study signaling of soluble versus immobilized VEGF through VEGFR-2. We have designed a strategy to covalently immobilize VEGF using its heparin-binding domain to orient the molecule (bind) and a secondary functional group to mediate covalent binding (lock). This bind-and-lock approach aims to allow VEGF to assume a bioactive orientation before covalent immobilization. Surface plasmon resonance (SPR) demonstrated heparin and VEGF binding with surface densities of 60 ng/cm2 and 100 pg/cm2, respectively. ELISA experiments confirmed VEGF surface density and showed that electrostatically bound VEGF releases in cell medium and heparin solutions while covalently bound VEGF remains immobilized. Electrostatically bound VEGF and covalently bound VEGF phosphorylate VEGFR-2 in both VEGFR-2 transfected cells and VEGFR-2 endogenously producing cells. HUVECs plated on VEGF functionalized surfaces showed different morphologies between surface-bound VEGF and soluble VEGF. The surfaces synthesized in these studies allow for the study of VEGF/VEGFR-2 signaling induced by covalently bound, electrostatically bound, and soluble VEGF and may provide further insight into the design of materials for the generation of a mature and stable vasculature. PMID:19540581

  1. Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy.

    PubMed

    Bhashyam, Siva; Fields, Anjali V; Patterson, Brandy; Testani, Jeffrey M; Chen, Li; Shen, You-Tang; Shannon, Richard P

    2010-07-01

    We have shown that glucagon-like peptide-1 (GLP-1[7-36] amide) stimulates myocardial glucose uptake in dilated cardiomyopathy (DCM) independent of an insulinotropic effect. The cellular mechanisms of GLP-1-induced myocardial glucose uptake are unknown. Myocardial substrates and glucoregulatory hormones were measured in conscious, chronically instrumented dogs at control (n=6), DCM (n=9) and DCM after treatment with a 48-hour infusion of GLP-1 (7-36) amide (n=9) or vehicle (n=6). GLP-1 receptors and cellular pathways implicated in myocardial glucose uptake were measured in sarcolemmal membranes harvested from the 4 groups. GLP-1 stimulated myocardial glucose uptake (DCM: 20+/-7 nmol/min/g; DCM+GLP-1: 61+/-12 nmol/min/g; P=0.001) independent of increased plasma insulin levels. The GLP-1 receptors were upregulated in the sarcolemmal membranes (control: 98+/-2 density units; DCM: 256+/-58 density units; P=0.046) and were expressed in their activated (65 kDa) form in DCM. The GLP-1-induced increases in myocardial glucose uptake did not involve adenylyl cyclase or Akt activation but was associated with marked increases in p38alpha MAP kinase activity (DCM+vehicle: 97+/-22 pmol ATP/mg/min; DCM+GLP-1: 170+/-36 pmol ATP/mg/min; P=0.051), induction of nitric oxide synthase 2 (DCM+vehicle: 151+/-13 density units; DCM+GLP-1: 306+/-12 density units; P=0.001), and GLUT-1 translocation (DCM+vehicle: 21+/-3% membrane bound; DCM+GLP-1: 39+/-3% membrane bound; P=0.005). The effects of GLP-1 on myocardial glucose uptake were blocked by pretreatment with the p38alpha MAP kinase inhibitor or the nonspecific nitric oxide synthase inhibitor nitro-l-arginine. GLP-1 stimulates myocardial glucose uptake through a non-Akt-1-dependent mechanism by activating cellular pathways that have been identified in mediating chronic hibernation and the late phase of ischemic preconditioning.

  2. Blocking GSK3β-mediated dynamin1 phosphorylation enhances BDNF-dependent TrkB endocytosis and the protective effects of BDNF in neuronal and mouse models of Alzheimer's disease.

    PubMed

    Liu, Xiang-Hua; Geng, Zhao; Yan, Jing; Li, Ting; Chen, Qun; Zhang, Qun-Ye; Chen, Zhe-Yu

    2015-02-01

    Endocytosis of tropomyosin related kinase B (TrkB) receptors has critical roles in brain-derived neurotrophic factor (BDNF) mediated signal transduction and biological function, however the mechanism that is governing TrkB endocytosis is still not completely understood. In this study, we showed that GSK3β, a key kinase in neuronal development and survival, could regulate TrkB endocytosis through phosphorylating dynamin1 (Dyn1) but not dynamin2 (Dyn2). Moreover, we found that beta-amyloid (Aβ) oligomer exposure could impair BDNF-dependent TrkB endocytosis and Akt activation through enhancing GSK3β activity in cultured hippocampal neurons, which suggested that BDNF-induced TrkB endocytosis and the subsequent signaling were impaired in neuronal model of Alzheimer's disease (AD). Notably, we found that inhibiting GSK3β phosphorylating Dyn1 by using TAT-Dyn1SpS could rescue the impaired TrkB endocytosis and Akt activation upon BDNF stimuli under Aβ exposure. Finally, TAT-Dyn1SpS could facilitate BDNF-mediated neuronal survival and cognitive enhancement in mouse models of AD. These results clarified a role of GSK3β in BDNF-dependent TrkB endocytosis and the subsequent signaling, and provided a potential new strategy by inhibiting GSK3β-induced Dyn1 phosphorylation for AD treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Akt phosphorylates Prohibitin 1 to mediate its mitochondrial localization and promote proliferation of bladder cancer cells

    PubMed Central

    Jiang, L; Dong, P; Zhang, Z; Li, C; Li, Y; Liao, Y; Li, X; Wu, Z; Guo, S; Mai, S; Xie, D; Liu, Z; Zhou, F

    2015-01-01

    Bladder cancer (BC) is very common and associated with significant morbidity and mortality, though the molecular underpinnings of its origination and progression remain poorly understood. In this study, we demonstrate that Prohibitin 1 (PHB) was overexpressed in human BC tissues and that PHB upregulation was associated with poor prognosis. We also found that PHB was necessary and sufficient for BC cell proliferation. Interestingly, the overexpressed PHB was primarily found within mitochondria, and we provide the first direct evidence that phosphorylation by Akt at Thr258 of PHB induces this mitochondrial localization. Inhibiton of Akt reverses these effects and inhibited the proliferation of BC cells. Finally, the phosphorylation of PHB was required for BC cell proliferation, further implicating the importance of the Akt in BC. Taken together, these findings identify the Akt/PHB signaling cascade as a novel mechanism of cancer cell proliferation and provide the scientific basis for the establishment of PHB as a new prognostic marker and treatment target for BC. PMID:25719244

  4. Functional characterization of lysosomal interaction of Akt with VRK2.

    PubMed

    Hirata, Noriyuki; Suizu, Futoshi; Matsuda-Lennikov, Mami; Tanaka, Tsutomu; Edamura, Tatsuma; Ishigaki, Satoko; Donia, Thoria; Lithanatudom, Pathrapol; Obuse, Chikashi; Iwanaga, Toshihiko; Noguchi, Masayuki

    2018-06-05

    Serine-threonine kinase Akt (also known as PKB, protein kinase B), a core intracellular mediator of cell survival, is involved in various human cancers and has been suggested to play an important role in the regulation of autophagy in mammalian cells. Nonetheless, the physiological function of Akt in the lysosomes is currently unknown. We have reported previously that PtdIns(3)P-dependent lysosomal accumulation of the Akt-Phafin2 complex is a critical step for autophagy induction. Here, to characterize the molecular function of activated Akt in the lysosomes in the process of autophagy, we searched for the molecules that interact with the Akt complex at the lysosomes after induction of autophagy. By time-of-flight-mass spectrometry (TOF/MS) analysis, kinases of the VRK family, a unique serine-threonine family of kinases in the human kinome, were identified. VRK2 interacts with Akt1 and Akt2, but not with Akt3; the C terminus of Akt and the N terminus of VRK2 facilitate the interaction of Akt and VRK2 in mammalian cells. The kinase-dead form of VRK2A (KD VRK2A) failed to interact with Akt in coimmunoprecipitation assays. Bimolecular fluorescence complementation (BiFC) experiments showed that, in the lysosomes, Akt interacted with VRK2A but not with VRK2B or KD VRK2A. Immunofluorescent assays revealed that VRK2 and phosphorylated Akt accumulated in the lysosomes after autophagy induction. WT VRK2A, but not KD VRK2A or VRK2B, facilitated accumulation of phosphorylated Akt in the lysosomes. Downregulation of VRK2 abrogated the lysosomal accumulation of phosphorylated Akt and impaired nuclear localization of TFEB; these events coincided to inhibition of autophagy induction. The VRK2-Akt complex is required for control of lysosomal size, acidification, bacterial degradation, and for viral replication. Moreover, lysosomal VRK2-Akt controls cellular proliferation and mitochondrial outer-membrane stabilization. Given the roles of autophagy in the pathogenesis of human

  5. Exercise Training Stimulates Ischemia-Induced Neovascularization via Phosphatidylinositol 3-Kinase/Akt-Dependent Hypoxia-Induced Factor-1α Reactivation in Mice of Advanced Age

    PubMed Central

    Cheng, Xian Wu; Kuzuya, Masafumi; Kim, Weon; Song, Haizhen; Hu, Lina; Inoue, Aiko; Nakamura, Kae; Di, Qun; Sasaki, Takeshi; Tsuzuki, Michitaka; Shi, Guo-Ping; Okumura, Kenji; Murohara, Toyoaki

    2011-01-01

    Background Exercise stimulates the vascular response in pathological conditions, including ischemia; however, the molecular mechanisms by which exercise improves the impaired hypoxia-induced factor (HIF)-1α–mediated response to hypoxia associated with aging are poorly understood. Here, we report that swimming training (ST) modulates the vascular response to ischemia in aged (24-month-old) mice. Methods and Results Aged wild-type mice (MMP-2+/+) that maintained ST (swimming 1 h/d) from day 1 after surgery were randomly assigned to 4 groups that were treated with either vehicle, LY294002, or deferoxamine for 14 days. Mice that were maintained in a sedentary condition served as controls. ST increased blood flow, capillary density, and levels of p-Akt, HIF-1α, vascular endothelial growth factor, Fit-1, and matrix metalloproteinase-2 (MMP-2) in MMP-2+/+ mice. ST also increased the numbers of circulating endothelial progenitor cells and their function associated with activation of HIF-1α. All of these effects were diminished by LY294002, an inhibitor of phosphatidylinositol 3-kinase; enhanced by deferoxamine, an HIF-1α stabilizer; and impaired by knockout of MMP-2. Finally, bone marrow transplantation confirmed that ST enhanced endothelial progenitor cell homing to ischemic sites in aged mice. Conclusions ST can improve neovascularization in response to hypoxia via a phosphatidylinositol 3-kinase–dependent mechanism that is mediated by the HIF-1α/vascular endothelial growth factor/MMP-2 pathway in advanced age. PMID:20679550

  6. microRNA-21-induced Dissociation of PDCD4 from Rictor Contributes to Akt-IKKβ-mTORC1 axis to Regulate Select Renal Cancer Cell Invasion

    PubMed Central

    Bera, Amit; Das, Falguni; Ghosh-Choudhury, Nandini; Kasinath, Balakuntalam S.; Abboud, Hanna E.; Choudhury, Goutam Ghosh

    2014-01-01

    Renal cancer metastasis may result from oncogenic forces that contribute to the primary tumor. We have recently identified microRNA-21 as an oncogenic driver of renal cancer cells. The mechanism by which miR-21 controls renal cancer cell invasion is poorly understood. We show that miR-21 directly downregulates the proapoptotic protein PDCD4 to increase migration and invasion of ACHN and 786-O renal cancer cells as a result of phosphorylation/activation of Akt and IKKβ, which activate NFκB-dependent transcription. Constitutively active (CA) Akt or CA IKKβ blocks PDCD4-mediated inhibition and restores renal cancer cell migration and invasion. PDCD4 inhibits mTORC1 activity, which was reversed by CA IKKβ. Moreover, CA mTORC1 restores cell migration and invasion inhibited by PDCD4- and dominant negative IKKβ. Moreover, PDCD4 negatively regulates mTORC2-dependent Akt phosphorylation upstream of this cascade. We show that PDCD4 forms a complex with rictor, an exclusive component of mTORC2, and that this complex formation is reduced in renal cancer cells due to increased miR-21 expression resulting in enhanced phosphorylation of Akt. Thus our results identify a previously unrecognized signaling node where high miR-21 levels reduce rictor-PDCD4 interaction to increase phosphorylation of Akt and contribute to metastatic fitness of renal cancer cells. PMID:25016284

  7. Down-regulation of Akt by methanol extracts of Impatiens balsamina L. promotes apoptosis in human oral squamous cell carcinoma cell lines.

    PubMed

    Shin, Ji-Ae; Ryu, Mi Heon; Kwon, Ki-Han; Choi, BuYoung; Cho, Sung-Dae

    2015-07-01

    The apoptotic activity of methanol extracts of Impatiens balsamina L. (MEIB) and related mechanisms in human oral squamous cell carcinoma (OSCC) cells have been systematically investigated. The effects of MEIB on human OSCC cell lines were investigated using trypan blue exclusion assay, MTS assay, Western blot, 4'-6-diamidino-2-phenylindole (DAPI) staining, Live/Dead assay, Immunohistochemistry, reverse transcription-polymerase chain reaction, and promoter assay. MEIB decreased cell viability and induced apoptosis in HSC-4 cells. Higher levels of p-Akt expression were observed in OSCC than in normal oral mucosa (NOM), and it correlated with poor survival of the patients. MEIB dephosphorylated p-Akt and decreased Akt expression through proteasome-dependent degradation. LY294002 (PI3K inhibitor) decreased p-Akt and Akt, resulting in enhancing MEIB-induced apoptosis. MEIB down-regulated the expression level of survivin protein at the transcriptional level and YM155 (survivin inhibitor) decreased survivin, which facilitated MEIB-induced apoptosis. MEIB and LY294002 significantly increased Bax, thereby inducing the conformational change, mitochondrial translocation, and oligomerization. In addition, MEIB-induced growth inhibition and apoptosis in OSC-20, another human OSCC cells were mediated by regulating Akt and it downstream targets, survivin and Bax. These results suggest that MEIB may serve as a potential drug candidate for the treatment of human OSCC. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1.

    PubMed

    Corum, Daniel G; Tsichlis, Philip N; Muise-Helmericks, Robin C

    2014-01-01

    Our previous work has shown that Akt3 is required for mitochondrial biogenesis in primary human endothelial cells (ECs) and in Akt3-null mice; Akt3 affects subcellular localization of peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α), the master regulator of mitochondrial biogenesis. The purpose of this study is to determine the mechanism by which Akt3 controls the subcellular distribution of PGC-1α and to explore the effect on mitochondrial biogenesis and turnover during angiogenesis. Here we use standard biochemical analyses and Akt3-knockdown strategies to show that Akt3 controls the stabilization of chromosome maintenance region-1 (CRM-1), the major nuclear export receptor. Site-directed mutagenesis and association analyses show that PGC-1α nuclear export is CRM-1 dependent. Akt3 knockdown and CRM-1 overexpression cause 3-fold reductions in PGC-1α target gene expression, compared to control levels. Akt3 inhibition causes autophagy, as measured by autophagosome formation, in a CRM-1-dependent, Akt1/mTOR-independent pathway. In vivo, Akt3-null and heterozygous mice show dose-dependent decreases in angiogenesis compared to wild-type littermates (~5- and 2.5-fold decreases, respectively), as assessed by Matrigel plug assays. This correlates with an ~1.5-fold decrease in mitochondrial Cox IV expression. Our studies suggest that Akt3 is a regulator of mitochondrial dynamics in the vasculature via regulation of CRM-1-dependent nuclear export.

  9. n-3 Polyunsaturated Fatty Acids Reduce Neonatal Hypoxic/Ischemic Brain Injury by Promoting Phosphatidylserine Formation and Akt Signaling.

    PubMed

    Zhang, Wenting; Liu, Jia; Hu, Xiaoming; Li, Peiying; Leak, Rehana K; Gao, Yanqin; Chen, Jun

    2015-10-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate neonatal hypoxic/ischemic (H/I) brain damage, but the underlying mechanisms are not fully understood. This study tested the hypothesis that n-3 PUFAs enhance Akt-dependent prosurvival signaling by promoting the biosynthesis of phosphatidylserine in neuronal cell membranes. Dietary n-3 PUFA supplementation was initiated on the second day of pregnancy in dams. H/I was induced in 7-day-old rat pups by ipsilateral common carotid artery occlusion followed by hypoxia (8% oxygen for 2.5 hours). Neurological outcomes, brain tissue loss, cell death, and the activation of signaling events were assessed after H/I. The effects of n-3 PUFAs (docosahexaenoic acid and eicosapentaenoic acid) on oxygen-glucose deprivation-induced cell death and the underlying mechanism of protection were also examined in primary cortical neuron cultures. n-3 PUFAs reduced brain tissue loss at 7 days after H/I and improved neurological outcomes, whereas inhibition of PI3K/Akt signaling by LY294002 partially abrogated this neuroprotective effect. Docosahexaenoic acid/eicosapentaenoic acid also prevented ischemic neuronal death through the Akt prosurvival pathway in vitro. Furthermore, docosahexaenoic acid/eicosapentaenoic acid increased the production of phosphatidylserine, the major membrane-bound phospholipids, after ischemia both in vitro and in vivo. A reduction in membrane phosphatidylserine by shRNA-mediated knockdown of phosphatidylserine synthetase-1 attenuated Akt activation and neuronal survival after docosahexaenoic acid/eicosapentaenoic acid treatment in the oxygen-glucose deprivation model. n-3 PUFAs robustly protect against H/I-induced brain damage in neonates by activating Akt prosurvival pathway in compromised neurons. In addition, n-3 PUFAs promote the formation of membrane phosphatidylserine, thereby promoting Akt activity and improving cellular survival. © 2015 American Heart Association, Inc.

  10. Inhibition of SAPK2/p38 enhances sensitivity to mTORC1 inhibition by blocking IRES-mediated translation initiation in glioblastoma.

    PubMed

    Cloninger, Cheri; Bernath, Andrew; Bashir, Tariq; Holmes, Brent; Artinian, Nicholas; Ruegg, Teresa; Anderson, Lauren; Masri, Janine; Lichtenstein, Alan; Gera, Joseph

    2011-12-01

    A variety of mechanisms confer hypersensitivity of tumor cells to the macrolide rapamycin, the prototypic mTORC1 inhibitor. Several studies have shown that the status of the AKT kinase plays a critical role in determining hypersensitivity. Cancer cells in which AKT activity is elevated are exquisitely sensitive to mTORC1 inhibitors while cells in which the kinase is quiescent are relatively resistant. Our previous work has shown that a transcript-specific protein synthesis salvage pathway is operative in cells with quiescent AKT levels, maintaining the translation of crucial mRNAs involved in cell-cycle progression in the face of global eIF-4E-mediated translation inhibition. The activation of this salvage pathway is dependent on SAPK2/p38-mediated activation of IRES-dependent initiation of the cyclin D1 and c-MYC mRNAs, resulting in the maintenance of their protein expression levels. Here, we show that both genetic and pharmacologic inhibition of SAPK2/p38 in glioblastoma multiforme cells significantly reduces rapamycin-induced IRES-mediated translation initiation of cyclin D1 and c-MYC, resulting in increased G(1) arrest in vitro and inhibition of tumor growth in xenografts. Moreover, we observed that the AKT-dependent signaling alterations seen in vitro are also displayed in engrafted tumors cells and were able to show that combined inhibitor treatments markedly reduced the mRNA translational state of cyclin D1 and c-MYC transcripts in tumors isolated from mice. These data support the combined use of SAPK2/p38 and mTORC1 inhibitors to achieve a synergistic antitumor therapeutic response, particularly in rapamycin-resistant quiescent AKT-containing cells.

  11. Effectiveness of Panax ginseng on Acute Myocardial Ischemia Reperfusion Injury Was Abolished by Flutamide via Endogenous Testosterone-Mediated Akt Pathway

    PubMed Central

    Pei, Luo; Shaozhen, Hou; Gengting, Dong; Tingbo, Chen; Liang, Liu; Hua, Zhou

    2013-01-01

    Mechanisms for Panax ginseng's cardioprotective effect against ischemia reperfusion injury involve the estrogen-mediated pathway, but little is known about the role of androgen. A standardized Panax ginseng extract (RSE) was orally given with or without flutamide in a left anterior descending coronary artery ligation rat model. Infarct size, CK and LDH activities were measured. Time-related changes of NO, PI3K/Akt/eNOS signaling, and testosterone concentration were also investigated. RSE (80 mg/kg) significantly inhibited myocardial infarction and CK and LDH activities, while coadministration of flutamide abolished this effect of RSE. NO was increased by RSE and reached a peak after 15 min of ischemia; however, flutamide cotreatment suppressed this elevation. Western blot analysis showed that RSE significantly reversed the decreases of expression and activation of PI3K, Akt, and eNOS evoked by ischemia, whereas flutamide attenuated the effects of these protective mechanisms induced by RSE. RSE completely reversed the dropping of endogenous testosterone level induced by I/R injury. Flutamide plus RSE treatment not only abolished RSE's effect but also produced a dramatic change on endogenous testosterone level after pretreatment and ischemia. Our results for the first time indicate that blocking androgen receptor abolishes the ability of Panax ginseng to protect the heart from myocardial I/R injury. PMID:24282438

  12. Rapid elevation of sodium transport through insulin is mediated by AKT in alveolar cells

    PubMed Central

    Mattes, Charlott; Laube, Mandy; Thome, Ulrich H.

    2014-01-01

    Abstract Alveolar fluid clearance is driven by vectorial Na+ transport and promotes postnatal lung adaptation. The effect of insulin on alveolar epithelial Na+ transport was studied in isolated alveolar cells from 18–19‐day gestational age rat fetuses. Equivalent short‐circuit currents (ISC) were measured in Ussing chambers and different kinase inhibitors were used to determine the pathway of insulin stimulation. In Western Blot measurements the activation of mediators stimulated by insulin was analyzed. The ISC showed a fast dose‐dependent increase by insulin, which could be attributed to an increased ENaC (epithelial Na+ channel) activity in experiments with permeabilized apical or basolateral membrane. 5‐(N‐Ethyl‐N‐isopropyl)amiloride inhibition of ISC was not affected, however, benzamil‐sensitive ISC was increased in insulin‐stimulated monolayers. The application of LY‐294002 and Akti1/2 both completely blocked the stimulating effect of insulin on ISC. PP242 partly blocked the effect of insulin, whereas Rapamycin evoked no inhibition. Western Blot measurements revealed an increased phosphorylation of AKT after insulin stimulation. SGK1 activity was also increased by insulin as shown by Western Blot of pNDRG1. However, in Ussing chamber measurements, GSK650394, an inhibitor of SGK1 did not prevent the increase in ISC induced by insulin. The application of IGF‐1 mimicked the effect of insulin and increased the ENaC activity. In addition, an increased autophosphorylation of the IGF‐1R/IR was observed after insulin stimulation. We conclude that insulin rapidly increases epithelial Na+ transport by enhancing the activity of endogenous ENaC through activation of PI3K/AKT in alveolar cells. PMID:24760523

  13. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium.

    PubMed

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J; Wiegand, Stanley J; Rabinovitch, Marlene; Druzin, Maurice L; Brenner, Robert M; Giudice, Linda C; Nayak, Nihar R

    2008-10-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2-neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.

  14. Cyclooxygenase-2 up-regulates CCR7 expression via AKT-mediated phosphorylation and activation of Sp1 in breast cancer cells.

    PubMed

    Chuang, Chun-Wei; Pan, Mei-Ren; Hou, Ming-Feng; Hung, Wen-Chun

    2013-02-01

    Up-regulation of cyclooxygenase-2 (COX-2) is frequently found in human cancers and is significantly associated with tumor metastasis. Our previous results demonstrate that COX-2 and its metabolite prostaglandin E2 (PGE2) stimulate the expression of CCR7 chemokine receptor via EP2/EP4 receptors to promote lymphatic invasion in breast cancer cells. In this study, we address the underlying mechanism of COX-2/PGE2-induced CCR7 expression. We find that COX-2/PGE2 increase CCR7 expression via the AKT signaling pathway in breast cancer cells. Promoter deletion and mutation assays identify the Sp1 site located at the -60/-57 region of CCR7 gene promoter is critical for stimulation. Chromatin immunoprecipitation (ChIP) assay confirms that in vivo binding of Sp1 to human CCR7 promoter is increased by COX-2 and PGE2. Knockdown of Sp1 by shRNA reduces the induction of CCR7 by PGE2. We demonstrate for the first time that AKT may directly phosphorylate Sp1 at S42, T679, and S698. Phosphorylation-mimic Sp1 protein harboring S42D, T679D, and S698D mutation strongly activates CCR7 expression. In contrast, change of these three residues to alanine completely blocks the induction of CCR7 by PGE2. Pathological investigation demonstrates that CCR7 expression is strongly associated with phospho-AKT and Sp1 in 120 breast cancer tissues. Collectively, our results demonstrate that COX-2 up-regulates CCR7 expression via AKT-mediated phosphorylation and activation of Sp1 and this pathway is highly activated in metastatic breast cancer. Copyright © 2012 Wiley Periodicals, Inc.

  15. Cannabis and a lower BMI in psychosis: What is the role of AKT1?

    PubMed

    Liemburg, Edith J; Bruins, Jojanneke; van Beveren, Nico; Islam, Md Atiqul; Alizadeh, Behrooz Z

    2016-10-01

    Cannabis use has been associated with favorable outcomes on metabolic risk factors. The cause of this relation is still unknown. In this study we investigated whether this effect is mediated by the AKT1 gene, as activation of the related enzyme by cannabis may cause metabolic changes. Six Single Nucleotide Polymorphisms (SNPs) of the AKT1 gene (rs1130214, rs1130233, rs2494732, rs2498784, rs3730358, and rs3803300) of patients with psychotic disorders (n=623) were related to Body Mass Index (BMI), levels of glycosylated hemoglobin (HBA1c) and total metabolic risk. Next, mediation analysis was performed with BMI as outcome, cannabis as predictor, and AKT1 as mediator. Cannabis use was inversely related to BMI but not with levels of HBA1c and total metabolic risk. Moreover, out of 6 AKT1 SNPs, rs2494732 was associated with cannabis use, but AKT1 did not mediate the effect of cannabis on BMI. In conclusion, cannabis use is likely to be associated with a lower BMI in patients with a psychotic disorder. Moreover, AKT1 risk alleles may increase the incidence of cannabis use in patients with a psychotic disorder, but AKT1 does not appear to mediate the effect of cannabis on BMI. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Angiogenin in Parkinson Disease Models: Role of Akt Phosphorylation and Evaluation of AAV-Mediated Angiogenin Expression in MPTP Treated Mice

    PubMed Central

    Steidinger, Trent U.; Slone, Sunny R.; Ding, Huiping; Standaert, David G.; Yacoubian, Talene A.

    2013-01-01

    The angiogenic factor, angiogenin, has been recently linked to both Amyotrophic Lateral Sclerosis (ALS) and Parkinson Disease (PD). We have recently shown that endogenous angiogenin levels are dramatically reduced in an alpha-synuclein mouse model of PD and that exogenous angiogenin protects against cell loss in neurotoxin-based cellular models of PD. Here, we extend our studies to examine whether activation of the prosurvival Akt pathway is required for angiogenin's neuroprotective effects against 1-methyl-4-phenylpyridinium (MPP+), as observed in ALS models, and to test the effect of virally-mediated overexpression of angiogenin in an in vivo PD model. Using a dominant negative Akt construct, we demonstrate that inhibition of the Akt pathway does not reduce the protective effect of angiogenin against MPP+ toxicity in the dopaminergic SH-SY5Y cell line. Furthermore, an ALS-associated mutant of angiogenin, K40I, which fails to induce Akt phosphorylation, was similar to wildtype angiogenin in protection against MPP+. These results confirm previous work showing neuroprotective effects of angiogenin against MPP+, and indicate that Akt is not required for this protective effect. We also investigated whether adeno-associated viral serotype 2 (AAV2)-mediated overexpression of angiogenin protects against dopaminergic neuron loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model. We found that angiogenin overexpression using this approach does not reduce the MPTP-induced degeneration of dopaminergic cells in the substantia nigra, nor limit the depletion of dopamine and its metabolites in the striatum. Together, these findings extend the evidence for protective effects of angiogenin in vitro, but also suggest that further study of in vivo models is required to translate these effects into meaningful therapies. PMID:23409128

  17. Esculetin exerts antitumor effect on human gastric cancer cells through IGF-1/PI3K/Akt signaling pathway.

    PubMed

    Wang, Guijun; Lu, Meili; Yao, Yusheng; Wang, Jing; Li, Juan

    2017-11-05

    In this study, we aimed to investigate the antitumor effect of esculetin, a coumarin derivative extracted from natural plants, on human gastric cancer cells, and to illustrate the potential mechanisms. The results showed that esculetin exhibited anti-proliferative effects against gastric cancer cells and induced their apoptosis in a dose dependent manner with lower toxicity against normal gastric epithelial cells. Mechanism study indicated that esculetin induced gastric cancer MGC-803 cells apoptosis by triggering the activation of mitochondrial apoptotic pathway through reducing the mitochondrial membrane potential (MMP), increasing Bax/Bcl-2 ratio, activating caspase-3 and caspase-9 activity, and increasing cytochrome c release from mitochondria. Further study showed that the pro-apoptotic effects of esculetin were associated with down-regulation of insulin-like growth factor-1/ phosphatidylinositide 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling pathway. Activation of IGF-1/PI3K/Akt pathway by IGF-1 abrogated the pro-apoptotic effects of esculetin, while inhibition of IGF-1/PI3K/Akt pathway by triciribine or LY294002 enhanced the pro-apoptotic effects of esculetin. In addition, esculetin inhibited in vivo tumor growth with no obvious toxicity following subcutaneous inoculation of MGC-803 cells in nude mice, and inhibited activation of IGF-1/PI3K/Akt pathway in tumor tissue. These results indicate that esculetin could inhibit cell proliferation and induce apoptosis of gastric cancer cells through IGF-1/PI3K/Akt mediated mitochondrial apoptosis pathway, and may be a novel effective chemotherapeutic agent against gastric cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Osthole relaxes pulmonary arteries through endothelial phosphatidylinositol 3-kinase/Akt-eNOS-NO signaling pathway in rats.

    PubMed

    Yao, Li; Lu, Ping; Li, Yumei; Yang, Lijing; Feng, Hongxuan; Huang, Yong; Zhang, Dandan; Chen, Jianguo; Zhu, Daling

    2013-01-15

    Pulmonary arterial hypertension is a life-threatening disease lacking effective therapies. Osthole is a natural coumarin compound isolated from Angelica pubescens Maxim., which possesses hypotensive effect. Although its effects on isolated thoracic aorta (systemic circulating system) are clarified, it remains unclear whether Osthole relaxes isolated pulmonary arteries (PAs) (pulmonary circulating system). The aim of this study was to investigate the effects of Osthole on isolated PAs and the underlying mechanisms. We examined PA relaxation induced by Osthole in isolated human and rat PA rings with force-electricity transducers, the expression and activity of endothelial nitric oxide synthase (eNOS) and protein kinase B (Akt) with western blot, and nitric oxide (NO) production using DAF-FM DA fluorescent indicator. The results showed that Osthole elicited a dose-dependent vasorelaxation activity with phenylephrine-precontracted human and rat PA rings, which can be diminished by endothelium denudation and inhibition of eNOS, while having no effect on rat mesenteric arteries. Osthole increased NO release as well as activation of Akt and eNOS, indicated with increased phosphorylations of Akt at Ser-473 and eNOS at Ser-1177 in endothelial cells. PI3K inhibitor LY294002 also blocked Osthole induced vasodilation. In summary, dilative effect of Osthole was dependent on endothelial integrity and NO production, and was mediated by endothelial PI3K/Akt-eNOS-NO pathway. These may provide a new pulmonary vasodilator for the therapy of pulmonary arterial hypertension. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination.

    PubMed

    Graeber, Kai; Linkies, Ada; Steinbrecher, Tina; Mummenhoff, Klaus; Tarkowská, Danuše; Turečková, Veronika; Ignatz, Michael; Sperber, Katja; Voegele, Antje; de Jong, Hans; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, Gerhard

    2014-08-26

    Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the delay of germination 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.

  20. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination

    PubMed Central

    Graeber, Kai; Linkies, Ada; Steinbrecher, Tina; Mummenhoff, Klaus; Tarkowská, Danuše; Turečková, Veronika; Ignatz, Michael; Sperber, Katja; Voegele, Antje; de Jong, Hans; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, Gerhard

    2014-01-01

    Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the DELAY OF GERMINATION 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination. PMID:25114251

  1. Unifying mechanism for different fibrotic diseases

    PubMed Central

    Wernig, Gerlinde; Chen, Shih-Yu; Cui, Lu; Van Neste, Camille; Tsai, Jonathan M.; Kambham, Neeraja; Vogel, Hannes; Natkunam, Yaso; Gilliland, D. Gary; Nolan, Garry; Weissman, Irving L.

    2017-01-01

    Fibrotic diseases are not well-understood. They represent a number of different diseases that are characterized by the development of severe organ fibrosis without any obvious cause, such as the devastating diseases idiopathic pulmonary fibrosis (IPF) and scleroderma. These diseases have a poor prognosis comparable with endstage cancer and are uncurable. Given the phenotypic differences, it was assumed that the different fibrotic diseases also have different pathomechanisms. Here, we demonstrate that many endstage fibrotic diseases, including IPF; scleroderma; myelofibrosis; kidney-, pancreas-, and heart-fibrosis; and nonalcoholic steatohepatosis converge in the activation of the AP1 transcription factor c-JUN in the pathologic fibroblasts. Expression of the related AP1 transcription factor FRA2 was restricted to pulmonary artery hypertension. Induction of c-Jun in mice was sufficient to induce severe fibrosis in multiple organs and steatohepatosis, which was dependent on sustained c-Jun expression. Single cell mass cytometry revealed that c-Jun activates multiple signaling pathways in mice, including pAkt and CD47, which were also induced in human disease. αCD47 antibody treatment and VEGF or PI3K inhibition reversed various organ c-Jun–mediated fibroses in vivo. These data suggest that c-JUN is a central molecular mediator of most fibrotic conditions. PMID:28424250

  2. Genistein decreases A549 cell viability via inhibition of the PI3K/AKT/HIF‑1α/VEGF and NF‑κB/COX‑2 signaling pathways.

    PubMed

    Zhang, Juan; Su, Hongzheng; Li, Qingfeng; Li, Jing; Zhao, Qianfeng

    2017-04-01

    Genistein is an important chemopreventive agent against atherosclerosis and cancer. However, whether genistein is effective in the treatment of lung cancer, and its underlying mechanism, remains to be determined. The present study demonstrated that genistein treatment of A549 lung cancer cells decreased viability in a dose‑ and time‑dependent manner, and induced apoptosis. Additionally, A549 cells exhibited significantly increased reactive oxygen species formation and cytochrome‑c leakage, and activated caspase‑3, B‑cell lymphoma 2‑associated X protein and apoptosis inducing factor expression levels, which are involved in the mitochondrial apoptosis pathway. Furthermore, the phosphatidylinositol‑4,5‑biphosphate 3‑kinase (PI3K)/protein kinase B (AKT)/hypoxia‑inducible factor‑1α (HIF‑1α) and nuclear factor‑κB (NF‑κB)/cyclooxygenase‑2 (COX‑2) signaling pathways were significantly downregulated by genistein treatment. In conclusion, reduced proliferation and increased apoptosis in A549 lung cancer cells was associated with inhibition of the PI3K/AKT/HIF‑1α/ and NF‑κB/COX‑2 signaling pathways, which implicates genistein as a potential chemotherapeutic agent for the treatment of lung cancer.

  3. TGFβ1-mediated PI3K/Akt and p38 MAP kinase dependent alternative splicing of fibronectin extra domain A in human podocyte culture.

    PubMed

    Madne, Tarunkumar Hemraj; Dockrell, Mark Edward Carl

    2018-04-30

    Alternative splicing is an important gene regulation process to distribute proteins in health and diseases. Extra Domain A+ Fibronectin (EDA+Fn) is an alternatively spliced form of fibronectin (Fn) protein, present in the extra cellular matrix (ECM) and a recognised marker of various pathologies. TGFβ1 has been shown to induce alternative splicing of EDA+Fn in many cell types. Podocytes are spectacular cell type and play a key role in filtration and synthesise ECM proteins in renal physiology and pathology. In our previous study we have demonstrated expression and alternative splicing of EDA+Fn in basal condition in human podocytes culture. TGFβ1 further induced the basal expression and alternative splicing of EDA+Fn through Alk5 receptor and SR proteins. In this study, we have investigated TGFβ1 mediated signalling involved in alternative splicing of EDA+Fn in human podocytes. We have performed western blotting to characterise the expression of the EDA+Fn protein and other signalling proteins and RT-PCR to look for signalling pathways involved in regulation of alternative splicing of EDA+Fn in conditionally immortalised human podocytes culture.We have used TGFβ1 as a stimulator and SB431542, SB202190 and LY294002 for inhibitory studies. In this work, we have demonstrated in human podocytes culture TGFβ1 2.5ng/ml induced phosphorylation of Smad1/5/8, Smad2 and Smad3 via the ALK5 receptor. TGFβ1 significantly induced the PI3K/Akt pathway and the PI3K/Akt pathway inhibitor LY294002 significantly downregulated basal as well as TGFβ1 induced alternative splicing of EDA+Fn in human podocytes. In addition to this, TGFβ1 significantly induced the p38 MAP kinase signalling pathway and p38 MAP kinase signalling pathway inhibitor SB202190 downregulated the TGFβ1-mediated alternative splicing of EDA+Fn in human podocytes. The results with PI3K and p38 MAP kinase signalling pathway suggest that inhibiting PI3K signalling pathway downregulated the basal alternative

  4. Feline immunodeficiency virus envelope glycoprotein mediates apoptosis in activated PBMC by a mechanism dependent on gp41 function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Himanshu; Joshi, Anjali; Tompkins, Wayne A.

    2004-12-20

    Feline Immunodeficiency Virus (FIV) is a lentivirus that causes immunodeficiency in cats, which parallels HIV-1-induced immunodeficiency in humans. It has been established that HIV envelope (Env) glycoprotein mediates T cell loss via a mechanism that requires CXCR4 binding. The Env glycoprotein of FIV, similar to HIV, requires CXCR4 binding for viral entry, as well as inducing membrane fusion leading to syncytia formation. However, the role of FIV Env in T cell loss and the molecular mechanisms governing this process have not been elucidated. We studied the role of Env glycoprotein in FIV-mediated T cell apoptosis in an in vitro model.more » Our studies demonstrate that membrane-expressed FIV Env induces apoptosis in activated feline peripheral blood mononuclear cells (PBMC) by a mechanism that requires CXCR4 binding, as the process was inhibited by CXCR4 antagonist AMD3100 in a dose-dependent manner. Interestingly, studies regarding the role of CD134, the recently identified primary receptor of FIV, suggest that binding to CD134 may not be important for induction of apoptosis in PBMC. However, inhibiting Env-mediated fusion post CXCR4 binding by FIV gp41-specific fusion inhibitor also inhibited apoptosis. Under similar conditions, a fusion-defective gp41 mutant was unable to induce apoptosis in activated PBMC. Our findings are the first report suggesting the potential of FIV Env to mediate apoptosis in bystander cells by a process that is dependent on gp41 function.« less

  5. The proliferation of malignant melanoma cells could be inhibited by ranibizumab via antagonizing VEGF through VEGFR1.

    PubMed

    Li, Jiao; Cui, Yan; Wang, Qin; Guo, Dadong; Pan, Xuemei; Wang, Xingrong; Bi, Hongsheng; Chen, Wei; Liu, Zhengfeng; Zhao, Shengya

    2014-01-01

    Angiogenesis is an important mediator in tumor progression. Vascular endothelial growth factor (VEGF) is one of the major cytokines that can influence angiogenesis. However, the potential mechanism of tumor growth inhibition through anti-VEGF agents is still unclear. This study was performed to examine whether ranibizumab could inhibit malignant melanoma growth in vitro and to determine the safety of ranibizumab on human adult retinal pigment epithelium cell line (ARPE-19 cells). Malignant melanoma cells obtained from a clinic were cultured in vitro. VEGF concentrations secreted by malignant melanoma cells and the ARPE-19 cells were examined by enzyme-linked immunosorbent assay (ELISA). The two kinds of cells were both treated with VEGF and its antagonist, ranibizumab. The dynamic changes of the two types of cells were monitored by real-time cell electronic sensing (RT-CES) assay. The effect of ranibizumab on both types of cells was verified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl (MTT) assay. The expression of VEGF receptor 1 (VEGFR1) RNA in uveal melanoma was further investigated through the PCR technique. The levels of VEGF secreted by malignant melanoma cells were much higher than those of ARPE-19 cells, and were markedly decreased in the action of 0.1 mg/ml ranibizumab. However, there was no obvious reduction of VEGF in the presence of ranibizumab for ARPE-19 (p>0.05). Meanwhile, RT-CES showed that the viability of malignant melanoma cells increased greatly in the presence of VEGF. When VEGF was 20 ng/ml, viability of the malignant melanoma cells increased by 40% compared with the negative control. There was no evident effect on proliferation of ARPE-19 (p>0.05). Furthermore, the growth of malignant melanoma cells was obviously inhibited after ranibizumab intervention. When ranibizumab was administered at 0.25 mg/ml, the survival rate of the malignant melanoma cells decreased to 57.5%. Nevertheless, low-dose exposure to ranibizumab had only a slight

  6. Akt-dependent Activation of the Heart 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase (PFKFB2) Isoenzyme by Amino Acids*

    PubMed Central

    Novellasdemunt, Laura; Tato, Irantzu; Navarro-Sabate, Aurea; Ruiz-Meana, Marisol; Méndez-Lucas, Andrés; Perales, Jose Carlos; Garcia-Dorado, David; Ventura, Francesc; Bartrons, Ramon; Rosa, Jose Luis

    2013-01-01

    Reciprocal regulation of metabolism and signaling allows cells to modulate their activity in accordance with their metabolic resources. Thus, amino acids could activate signal transduction pathways that control cell metabolism. To test this hypothesis, we analyzed the effect of amino acids on fructose-2,6-bisphosphate (Fru-2,6-P2) metabolism. We demonstrate that amino acids increase Fru-2,6-P2 concentration in HeLa and in MCF7 human cells. In conjunction with this, 6-phosphofructo-2-kinase activity, glucose uptake, and lactate concentration were increased. These data correlate with the specific phosphorylation of heart 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB2) isoenzyme at Ser-483. This activation was mediated by the PI3K and p38 signaling pathways. Furthermore, Akt inactivation blocked PFKFB2 phosphorylation and Fru-2,6-P2 production, thereby suggesting that the above signaling pathways converge at Akt kinase. In accordance with these results, kinase assays showed that amino acid-activated Akt phosphorylated PFKFB2 at Ser-483 and that knockdown experiments confirmed that the increase in Fru-2,6-P2 concentration induced by amino acids was due to PFKFB2. In addition, similar effects on Fru-2,6-P2 metabolism were observed in freshly isolated rat cardiomyocytes treated with amino acids, which indicates that these effects are not restricted to human cancer cells. In these cardiomyocytes, the glucose consumption and the production of lactate and ATP suggest an increase of glycolytic flux. Taken together, these results demonstrate that amino acids stimulate Fru-2,6-P2 synthesis by Akt-dependent PFKFB2 phosphorylation and activation and show how signaling and metabolism are inextricably linked. PMID:23457334

  7. Activation of PI3K, Akt, and ERK during early rotavirus infection leads to V-ATPase-dependent endosomal acidification required for uncoating

    PubMed Central

    Kim, Deok-Song; Kim, Ji-Yun; Park, Jun-Gyu; Alfajaro, Mia Madel; Baek, Yeong-Bin; Cho, Eun-Hyo; Kwon, Joseph; Choi, Jong-Soon; Kang, Mun-Il; Park, Sang-Ik; Cho, Kyoung-Oh

    2018-01-01

    The cellular PI3K/Akt and/or MEK/ERK signaling pathways mediate the entry process or endosomal acidification during infection of many viruses. However, their roles in the early infection events of group A rotaviruses (RVAs) have remained elusive. Here, we show that late-penetration (L-P) human DS-1 and bovine NCDV RVA strains stimulate these signaling pathways very early in the infection. Inhibition of both signaling pathways significantly reduced production of viral progeny due to blockage of virus particles in the late endosome, indicating that neither of the two signaling pathways is involved in virus trafficking. However, immunoprecipitation assays using antibodies specific for pPI3K, pAkt, pERK and the subunit E of the V-ATPase co-immunoprecipitated the V-ATPase in complex with pPI3K, pAkt, and pERK. Moreover, Duolink proximity ligation assay revealed direct association of the subunit E of the V-ATPase with the molecules pPI3K, pAkt, and pERK, indicating that both signaling pathways are involved in V-ATPase-dependent endosomal acidification. Acidic replenishment of the medium restored uncoating of the RVA strains in cells pretreated with inhibitors specific for both signaling pathways, confirming the above results. Isolated components of the outer capsid proteins, expressed as VP4-VP8* and VP4-VP5* domains, and VP7, activated the PI3K/Akt and MEK/ERK pathways. Furthermore, psoralen-UV-inactivated RVA and CsCl-purified RVA triple-layered particles triggered activation of the PI3K/Akt and MEK/ERK pathways, confirming the above results. Our data demonstrate that multistep binding of outer capsid proteins of L-P RVA strains with cell surface receptors phosphorylates PI3K, Akt, and ERK, which in turn directly interact with the subunit E of the V-ATPase to acidify the late endosome for uncoating of RVAs. This study provides a better understanding of the RVA-host interaction during viral uncoating, which is of importance for the development of strategies aiming at

  8. Osseointegration of chitosan coated porous titanium alloy implant by reactive oxygen species-mediated activation of the PI3K/AKT pathway under diabetic conditions.

    PubMed

    Li, Xiang; Ma, Xiang-Yu; Feng, Ya-Fei; Ma, Zhen-Sheng; Wang, Jian; Ma, Tian-Cheng; Qi, Wei; Lei, Wei; Wang, Lin

    2015-01-01

    Chitosan coated porous titanium alloy implant (CTI) is demonstrated a promising approach to improve osseointegration capacity of pure porous titanium alloy implant (TI). Since chitosan has been demonstrated to exhibit antioxidant activity, we propose CTI may ameliorate the ROS overproduction, thus reverse the poor osseointegration under diabetic conditions, and investigate the underlying mechanisms. Primary rat osteoblasts incubated on the TI and the CTI were subjected to normal serum (NS), diabetic serum (DS), DS + NAC (a potent ROS inhibitor) and DS + LY294002 (a PI3K/AKT-specific inhibitor). In vivo study was performed on diabetic sheep implanted with TI or CTI into the bone defects on crista iliaca. Results showed that diabetes-induced ROS overproduction led to osteoblast dysfunction and apoptosis, concomitant with the inhibition of AKT in osteoblasts on the TI substrate. While CTI stimulated AKT phosphorylation through ROS attenuation, thus reversed osteoblast dysfunction evidenced by improved osteoblast adhesion, increased proliferation and ALP activity, and decreased cytotoxicity and apoptotic rate, which exerted same effect to NAC treatment on the TI. These effects were further confirmed by the improved osseointegration within the CTI in vivo evidenced by Micro-CT and histological examinations. In addition, the aforementioned promotive effects afforded by CTI were abolished by blocking PI3K/AKT pathway with addition of LY294002. These results demonstrate that the chitosan coating markedly ameliorates diabetes-induced impaired bio-performance of TI via ROS-mediated reactivation of PI3K/AKT pathway, which elicits a new surface functionalization strategy for better clinical performance of titanium implant in diabetic patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Platelet Vascular Endothelial Growth Factor is a Potential Mediator of Transfusion-Related Acute Lung Injury.

    PubMed

    Maloney, James P; Ambruso, Daniel R; Voelkel, Norbert F; Silliman, Christopher C

    The occurrence of non-hemolytic transfusion reactions is highest with platelet and plasma administration. Some of these reactions are characterized by endothelial leak, especially transfusion related acute lung injury (TRALI). Elevated concentrations of inflammatory mediators secreted by contaminating leukocytes during blood product storage may contribute to such reactions, but platelet-secreted mediators may also contribute. We hypothesized that platelet storage leads to accumulation of the endothelial permeability mediator vascular endothelial growth factor (VEGF), and that intravascular administration of exogenous VEGF leads to extensive binding to its lung receptors. Single donor, leukocyte-reduced apheresis platelet units were sampled over 5 days of storage. VEGF protein content of the centrifuged supernatant was determined by ELISA, and the potential contribution of VEGF from contaminating leukocytes was quantified. Isolated-perfused rat lungs were used to study the uptake of radiolabeled VEGF administered intravascularly, and the effect of unlabeled VEGF on lung leak. There was a time-dependent release of VEGF into the plasma fraction of the platelet concentrates (62 ± 9 pg/ml on day one, 149 ± 23 pg/ml on day 5; mean ± SEM, p<0.01, n=8) and a contribution by contaminating leukocytes was excluded. Exogenous 125I-VEGF bound avidly and specifically to the lung vasculature, and unlabeled VEGF in the lung perfusate caused vascular leak. Rising concentrations of VEGF occur during storage of single donor platelet concentrates due to platelet secretion or disintegration, but not due to leukocyte contamination. Exogenous VEGF at these concentrations rapidly binds to its receptors in the lung vessels. At higher VEGF concentrations, VEGF causes vascular leak in uninjured lungs. These data provide further evidence that VEGF may contribute to the increased lung permeability seen in TRALI associated with platelet products.

  10. Zebrafish WNK Lysine Deficient Protein Kinase 1 (wnk1) Affects Angiogenesis Associated with VEGF Signaling

    PubMed Central

    Chen, Wen-Chuan; Kou, Fong-Ji; Lu, Jeng-Wei; Wang, Horng-Dar; Huang, Chou-Long; Yuh, Chiou-Hwa

    2014-01-01

    The WNK1 (WNK lysine deficient protein kinase 1) protein is a serine/threonine protein kinase with emerging roles in cancer. WNK1 causes hypertension and hyperkalemia when overexpressed and cardiovascular defects when ablated in mice. In this study, the role of Wnk1 in angiogenesis was explored using the zebrafish model. There are two zebrafish wnk1 isoforms, wnk1a and wnk1b, and both contain all the functional domains found in the human WNK1 protein. Both isoforms are expressed in the embryo at the initiation of angiogenesis and in the posterior cardinal vein (PCV), similar to fms-related tyrosine kinase 4 (flt4). Using morpholino antisense oligonucleotides against wnk1a and wnk1b, we observed that wnk1 morphants have defects in angiogenesis in the head and trunk, similar to flk1/vegfr2 morphants. Furthermore, both wnk1a and wnk1b mRNA can partially rescue the defects in vascular formation caused by flk1/vegfr2 knockdown. Mutation of the kinase domain or the Akt/PI3K phosphorylation site within wnk1 destroys this rescue capability. The rescue experiments provide evidence that wnk1 is a downstream target for Vegfr2 (vascular endothelial growth factor receptor-2) and Akt/PI3K signaling and thereby affects angiogenesis in zebrafish embryos. Furthermore, we found that knockdown of vascular endothelial growth factor receptor-2 (flk1/vegfr2) or vascular endothelial growth factor receptor-3 (flt4/vegfr3) results in a decrease in wnk1a expression, as assessed by in situ hybridization and q-RT-PCR analysis. Thus, the Vegf/Vegfr signaling pathway controls angiogenesis in zebrafish via Akt kinase-mediated phosphorylation and activation of Wnk1 as well as transcriptional regulation of wnk1 expression. PMID:25171174

  11. Sustained Activation of Akt Elicits Mitochondrial Dysfunction to Block Plasmodium falciparum Infection in the Mosquito Host

    PubMed Central

    Drexler, Anna L.; Antonova-Koch, Yevgeniya; Sakaguchi, Danielle; Napoli, Eleonora; Wong, Sarah; Price, Mark S.; Eigenheer, Richard; Phinney, Brett S.; Pakpour, Nazzy; Pietri, Jose E.; Cheung, Kong; Georgis, Martha; Riehle, Michael

    2013-01-01

    The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3–5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the

  12. Guggulsterone Targets Smokeless Tobacco Induced PI3K/Akt Pathway in Head and Neck Cancer Cells

    PubMed Central

    Macha, Muzafar A.; Matta, Ajay; Chauhan, Shyam Singh; Siu, K. W. Michael; Ralhan, Ranju

    2011-01-01

    Background Epidemiological association of head and neck cancer with smokeless tobacco (ST) emphasizes the need to unravel the molecular mechanisms implicated in cancer development, and identify pharmacologically safe agents for early intervention and prevention of disease recurrence. Guggulsterone (GS), a biosafe nutraceutical, inhibits the PI3K/Akt pathway that plays a critical role in HNSCC development. However, the potential of GS to suppress ST and nicotine (major component of ST) induced HNSCC remains unexplored. We hypothesized GS can abrogate the effects of ST and nicotine on apoptosis in HNSCC cells, in part by activation of PI3K/Akt pathway and its downstream targets, Bax and Bad. Methods and Results Our results showed ST and nicotine treatment resulted in activation of PI3K, PDK1, Akt, and its downstream proteins - Raf, GSK3β and pS6 while GS induced a time dependent decrease in activation of PI3K/Akt pathway. ST and nicotine treatment also resulted in induction of Bad and Bax phosphorylation, increased the association of Bad with 14-3-3ζresulting in its sequestration in the cytoplasm of head and neck cancer cells, thus blocking its pro-apoptotic function. Notably, GS pre-treatment inhibited ST/nicotine induced activation of PI3K/Akt pathway, and inhibited the Akt mediated phosphorylation of Bax and Bad. Conclusions In conclusion, GS treatment not only inhibited proliferation, but also induced apoptosis by abrogating the effects of ST / nicotine on PI3K/Akt pathway in head and neck cancer cells. These findings provide a rationale for designing future studies to evaluate the chemopreventive potential of GS in ST / nicotine associated head and neck cancer. PMID:21383988

  13. Dynamics of VEGF matrix-retention in vascular network patterning

    NASA Astrophysics Data System (ADS)

    Köhn-Luque, A.; de Back, W.; Yamaguchi, Y.; Yoshimura, K.; Herrero, M. A.; Miura, T.

    2013-12-01

    Vascular endothelial growth factor (VEGF) is a central regulator of blood vessel morphogenesis, although its role in patterning of endothelial cells into vascular networks is not fully understood. It has been suggested that binding of soluble VEGF to extracellular matrix components causes spatially restricted cues that guide endothelial cells into network patterns. Yet, current evidence for such a mechanism remains indirect. In this study, we quantitatively analyse the dynamics of VEGF retention in a controlled in vitro situation of human umbilical vascular endothelial cells (HUVECs) in Matrigel. We show that fluorescent VEGF accumulates in pericellular areas and colocalizes with VEGF binding molecules. Analysis of fluorescence recovery after photobleaching reveals that binding/unbinding to matrix molecules dominates VEGF dynamics in the pericellular region. Computational simulations using our experimental measurements of kinetic parameters show that matrix retention of chemotactic signals can lead to the formation of reticular cellular networks on a realistic timescale. Taken together, these results show that VEGF binds to matrix molecules in proximity of HUVECs in Matrigel, and suggest that bound VEGF drives vascular network patterning.

  14. AKT capture by feline leukemia virus.

    PubMed

    Kawamura, Maki; Umehara, Daigo; Odahara, Yuka; Miyake, Ariko; Ngo, Minh Ha; Ohsato, Yoshiharu; Hisasue, Masaharu; Nakaya, Masa-Aki; Watanabe, Shinya; Nishigaki, Kazuo

    2017-04-01

    Oncogene-containing retroviruses are generated by recombination events between viral and cellular sequences, a phenomenon called "oncogene capture". The captured cellular genes, referred to as "v-onc" genes, then acquire new oncogenic properties. We report a novel feline leukemia virus (FeLV), designated "FeLV-AKT", that has captured feline c-AKT1 in feline lymphoma. FeLV-AKT contains a gag-AKT fusion gene that encodes the myristoylated Gag matrix protein and the kinase domain of feline c-AKT1, but not its pleckstrin homology domain. Therefore, it differs structurally from the v-Akt gene of murine retrovirus AKT8. AKT may be involved in the mechanisms underlying malignant diseases in cats.

  15. α-santalol inhibits the angiogenesis and growth of human prostate tumor growth by targeting vascular endothelial growth factor receptor 2-mediated AKT/mTOR/P70S6K signaling pathway

    PubMed Central

    2013-01-01

    Background VEGF receptor 2 (VEGFR2) inhibitors, as efficient antiangiogenesis agents, have been applied in the cancer treatment. However, recently, most of these anticancer drugs have some adverse effects. Discovery of novel VEGFR2 inhibitors as anticancer drug candidates is still needed. Methods We used α-santalol and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVECs) and Prostate tumor cells (PC-3 or LNCaP) in vitro. Tumor xenografts in nude mice were used to examine the in vivo activity of α-santalol. Results α-santalol significantly inhibits HUVEC proliferation, migration, invasion, and tube formation. Western blot analysis indicated that α-santalol inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including AKT, ERK, FAK, Src, mTOR, and pS6K in HUVEC, PC-3 and LNCaP cells. α-santalol treatment inhibited ex vivo and in vivo angiogenesis as evident by rat aortic and sponge implant angiogenesis assay. α-santalol significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model. The antiangiogenic effect by CD31 immunohistochemical staining indicated that α-santalol inhibited tumorigenesis by targeting angiogenesis. Furthermore, α-santalol reduced the cell viability and induced apoptosis in PC-3 cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Molecular docking simulation indicated that α-santalol form hydrogen bonds and aromatic interactions within the ATP-binding region of the VEGFR2 kinase unit. Conclusion α-santalol inhibits angiogenesis by targeting VEGFR2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy. PMID:24261856

  16. Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Qiu-Hua; Liu, Yuan; Wu, Shan-Shan

    Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamus–pituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our datamore » demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways. - Highlights: • We explored the effects of ghrelin on serum deprivation-induced MC3T3-E1 cells apoptosis. • Both ELISA and TUNEL were used to detect the apoptosis. • The receptor of ghrelin, GHSR, was expressed in MC3T

  17. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia.

    PubMed

    Tang, Chih-Hsin; Lu, Da-Yuu; Yang, Rong-Sen; Tsai, Huei-Yann; Kao, Ming-Ching; Fu, Wen-Mei; Chen, Yuh-Fung

    2007-07-15

    Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.

  18. Fatty Acid Binding Protein 4 Regulates VEGF-Induced Airway Angiogenesis and Inflammation in a Transgenic Mouse Model

    PubMed Central

    Ghelfi, Elisa; Yu, Chen-Wei; Elmasri, Harun; Terwelp, Matthew; Lee, Chun G.; Bhandari, Vineet; Comhair, Suzy A.; Erzurum, Serpil C.; Hotamisligil, Gökhan S.; Elias, Jack A.; Cataltepe, Sule

    2014-01-01

    Neovascularization of the airways occurs in several inflammatory lung diseases, including asthma. Vascular endothelial growth factor (VEGF) plays an important role in vascular remodeling in the asthmatic airways. Fatty acid binding protein 4 (FABP4 or aP2) is an intracellular lipid chaperone that is induced by VEGF in endothelial cells. FABP4 exhibits a proangiogenic function in vitro, but whether it plays a role in modulation of angiogenesis in vivo is not known. We hypothesized that FABP4 promotes VEGF-induced airway angiogenesis and investigated this hypothesis with the use of a transgenic mouse model with inducible overexpression of VEGF165 under a CC10 promoter [VEGF-TG (transgenic) mice]. We found a significant increase in FABP4 mRNA levels and density of FABP4-expressing vascular endothelial cells in mouse airways with VEGF overexpression. FABP4−/− mouse airways showed a significant decrease in neovessel formation and endothelial cell proliferation in response to VEGF overexpression. These alterations in airway vasculature were accompanied by attenuated expression of proinflammatory mediators. Furthermore, VEGF-TG/FABP4−/− mice showed markedly decreased expression of endothelial nitric oxide synthase, a well-known mediator of VEGF-induced responses, compared with VEGF-TG mice. Finally, the density of FABP4-immunoreactive vessels in endobronchial biopsy specimens was significantly higher in patients with asthma than in control subjects. Taken together, these data unravel FABP4 as a potential target of pathologic airway remodeling in asthma. PMID:23391391

  19. AKT delays the early-activated apoptotic pathway in UVB-irradiated keratinocytes via BAD translocation.

    PubMed

    Claerhout, Sofie; Decraene, David; Van Laethem, An; Van Kelst, Sofie; Agostinis, Patrizia; Garmyn, Marjan

    2007-02-01

    Upon irradiation with a high dose of UVB, keratinocytes undergo apoptosis as a protective mechanism. In previous work, we demonstrated the existence of an early-activated UVB-induced apoptotic pathway in growth factor-depleted human keratinocytes, which can be substantially delayed by the exclusive supplementation of IGF-1. We now show that in human keratinocytes, IGF-1 inhibits the onset of UVB-triggered apoptosis through a transcriptional independent, AKT-mediated mechanism, involving BAD serine 136 phosphorylation. Our results show that the early UVB-induced apoptosis in growth factor-depleted human keratinocytes is exclusively triggered through the mitochondrial pathway. It is accompanied by BAX translocation, cytochrome c release, and procaspase-9 cleavage, but not by procaspase-8 or BID cleavage. In human keratinocytes, IGF-1 supplementation inhibits these events in a transcription-independent manner. Both IGF-1 supplementation and the transduction of a membrane-targeted form of AKT result in a shift of the BH3-only protein BAD from the mitochondria to the cytoplasm, paralleled by an increase of AKT-specific Ser136 phospho-BAD bound to 14-3-3zeta protein. These data indicate that AKT-induced BAD phosphorylation and its subsequent cytoplasmic sequestration by 14-3-3zeta is a major mechanism responsible for the postponement of UVB-induced apoptosis in human keratinocytes.

  20. microRNA-21-induced dissociation of PDCD4 from rictor contributes to Akt-IKKβ-mTORC1 axis to regulate renal cancer cell invasion.

    PubMed

    Bera, Amit; Das, Falguni; Ghosh-Choudhury, Nandini; Kasinath, Balakuntalam S; Abboud, Hanna E; Choudhury, Goutam Ghosh

    2014-10-15

    Renal cancer metastasis may result from oncogenic forces that contribute to the primary tumor. We have recently identified microRNA-21 as an oncogenic driver of renal cancer cells. The mechanism by which miR-21 controls renal cancer cell invasion is poorly understood. We show that miR-21 directly downregulates the proapoptotic protein PDCD4 to increase migration and invasion of ACHN and 786-O renal cancer cells as a result of phosphorylation/activation of Akt and IKKβ, which activate NFκB-dependent transcription. Constitutively active (CA) Akt or CA IKKβ blocks PDCD4-mediated inhibition and restores renal cancer cell migration and invasion. PDCD4 inhibits mTORC1 activity, which was reversed by CA IKKβ. Moreover, CA mTORC1 restores cell migration and invasion inhibited by PDCD4 and dominant negative IKKβ. Moreover, PDCD4 negatively regulates mTORC2-dependent Akt phosphorylation upstream of this cascade. We show that PDCD4 forms a complex with rictor, an exclusive component of mTORC2, and that this complex formation is reduced in renal cancer cells due to increased miR-21 expression resulting in enhanced phosphorylation of Akt. Thus our results identify a previously unrecognized signaling node where high miR-21 levels reduce rictor-PDCD4 interaction to increase phosphorylation of Akt and contribute to metastatic fitness of renal cancer cells. Copyright © 2014 Elsevier Inc. All rights reserved.