Science.gov

Sample records for akzo nobel surface

  1. Akzo Nobel Morris Plant Implements a Site-Wide Energy Efficiency Plan

    SciTech Connect

    2003-01-01

    Akzo Nobel's Surface Chemistry plant in Morris, Illinois, implemented an energy efficiency plan, which included a plant-wide energy efficiency assessment. The assessment revealed opportunities to save an estimated $1.2 million per year in operating and energy costs, reduce environmental impacts, and improve production capacity.

  2. The 2007 Nobel Prize in Chemistry for surface chemistry: understanding nanoscale phenomena at surfaces.

    PubMed

    Bowker, Michael

    2007-11-01

    The 2007 Nobel Prize in Chemistry was awarded to Gerhard Ertl for his seminal work in the area of surface science, particularly at the gas-solid interface. Although Ertl began his career at a time when the term "nanotechnology" was not yet known, his contributions to the field have paved the way for many future scientists in this area and led to a deeper understanding of catalysis and other surface-specific processes at the nanoscale. Here, we summarize the scientific developments that guided early progress in surface science, and we explore the major advancements in Ertl's career, including his work on adsorption and oxidation of small molecules on metal surfaces. Significant contributions of other key scientists to this rich area are also presented.

  3. Alfred Nobel and the Nobel Prizes. Fact Sheets on Sweden.

    ERIC Educational Resources Information Center

    Swedish Inst., Stockholm.

    The life and personality of Alfred Nobel and the Nobel Prizes established by his will are discussed. Nobel was a 19th century Swedish industrialist who was fluent in six languages. He invented dynamite. At his death in 1896, his estate amounted to $9,200,000. His will stipulated that the income from his estate should be divided annually into five…

  4. Nobel Laureate surgeons.

    PubMed

    Toledo-Pereyra, Luis H

    2006-01-01

    Eminent surgeons who received the Nobel Prize in Physiology or Medicine for their work and accomplishments are considered Nobel Laureate surgeons. There are nine such distinguished individuals who achieved this award. In chronological order, from earliest to latest, we encounter: 1. Theodor Kocher, 1909, thyroid gland pathology; 2. Allvar Gullstrand, 1911, dioptrics of the eye; 3. Alexis Carrel, 1912, vascular suture and organ transplant; 4. Robert Barany, 1914, vestibular system; 5. Frederick Banting, 1923, discovery of insulin; 6. Walter Hess, 1949, midbrain function; 7. Werner Forssmannn, 1956, cardiac catheterization; 8. Charles Huggins, 1966, hormones and cancer; 9. Joseph Murray, 1990, organ transplantation. These extraordinary Nobel Laureate surgeons had in common four significant qualities expressed by four letters, CDFI, representing commitment, determination, focus, and innovation. The examples of a sustained path of accomplishment and success set by these unique personalities serve as a vivid guide for future generations of surgeons. PMID:16835135

  5. Nobel physics laureate migration

    NASA Astrophysics Data System (ADS)

    Johnston, Hamish

    2015-11-01

    The movement of talented researchers across international borders has been the lifeblood of physics for more than a century. In these infographics, Hamish Johnston delves into the archives to discover which countries have gained the most physics Nobel laureates, and which have suffered the worst brain drains.

  6. Nobel Prize in Chemistry

    NASA Astrophysics Data System (ADS)

    2000-01-01

    The Royal Swedish Academy has awarded the 1999 Nobel Prize in Chemistry to Ahmed H. Zewail (California Institute of Technology, Pasadena, CA) "for his studies of the transition states of chemical reactions using femtosecond spectroscopy". Zewail's work has taken the study of the rates and mechanisms of chemical reactions to the ultimate degree of detail - the time scale of bond making and bond breaking.

  7. LHC Nobel Symposium Proceedings

    NASA Astrophysics Data System (ADS)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  8. Nobel Prizes: Contributions to Cardiology

    PubMed Central

    Mesquita, Evandro Tinoco; Marchese, Luana de Decco; Dias, Danielle Warol; Barbeito, Andressa Brasil; Gomes, Jonathan Costa; Muradas, Maria Clara Soares; Lanzieri, Pedro Gemal; Gismondi, Ronaldo Altenburg

    2015-01-01

    The Nobel Prize was created by Alfred Nobel. The first prize was awarded in 1901 and Emil Adolf von Behring was the first laureate in medicine due to his research in diphtheria serum. Regarding cardiology, Nobel Prize’s history permits a global comprehension of progress in pathophysiology, diagnosis and therapeutics of various cardiac diseases in last 120 years. The objective of this study was to review the major scientific discoveries contemplated by Nobel Prizes that contributed to cardiology. In addition, we also hypothesized why Carlos Chagas, one of our most important scientists, did not win the prize in two occasions. We carried out a non-systematic review of Nobel Prize winners, selecting the main studies relevant to heart diseaseamong the laureates. In the period between 1901 and 2013, 204 researches and 104 prizes were awarded in Nobel Prize, of which 16 (15%) studies were important for cardiovascular area. There were 33 (16%) laureates, and two (6%) were women. Fourteen (42%) were American, 15 (45%) Europeans and four (13%) were from other countries. There was only one winner born in Brazil, Peter Medawar, whose career was all in England. Reviewing the history of the Nobel Prize in physiology or medicine area made possible to identify which researchers and studies had contributed to advances in the diagnosis, prevention and treatment of cardiovascular diseases. Most winners were North Americans and Europeans, and male. PMID:25945466

  9. Nobel prizes: contributions to cardiology.

    PubMed

    Mesquita, Evandro Tinoco; Marchese, Luana de Decco; Dias, Danielle Warol; Barbeito, Andressa Brasil; Gomes, Jonathan Costa; Muradas, Maria Clara Soares; Lanzieri, Pedro Gemal; Gismondi, Ronaldo Altenburg

    2015-08-01

    The Nobel Prize was created by Alfred Nobel. The first prize was awarded in 1901 and Emil Adolf von Behring was the first laureate in medicine due to his research in diphtheria serum. Regarding cardiology, Nobel Prize's history permits a global comprehension of progress in pathophysiology, diagnosis and therapeutics of various cardiac diseases in last 120 years. The objective of this study was to review the major scientific discoveries contemplated by Nobel Prizes that contributed to cardiology. In addition, we also hypothesized why Carlos Chagas, one of our most important scientists, did not win the prize in two occasions. We carried out a non-systematic review of Nobel Prize winners, selecting the main studies relevant to heart diseaseamong the laureates. In the period between 1901 and 2013, 204 researches and 104 prizes were awarded in Nobel Prize, of which 16 (15%) studies were important for cardiovascular area. There were 33 (16%) laureates, and two (6%) were women. Fourteen (42%) were American, 15 (45%) Europeans and four (13%) were from other countries. There was only one winner born in Brazil, Peter Medawar, whose career was all in England. Reviewing the history of the Nobel Prize in physiology or medicine area made possible to identify which researchers and studies had contributed to advances in the diagnosis, prevention and treatment of cardiovascular diseases. Most winners were North Americans and Europeans, and male. PMID:25945466

  10. Nobel prizes: contributions to cardiology.

    PubMed

    Mesquita, Evandro Tinoco; Marchese, Luana de Decco; Dias, Danielle Warol; Barbeito, Andressa Brasil; Gomes, Jonathan Costa; Muradas, Maria Clara Soares; Lanzieri, Pedro Gemal; Gismondi, Ronaldo Altenburg

    2015-08-01

    The Nobel Prize was created by Alfred Nobel. The first prize was awarded in 1901 and Emil Adolf von Behring was the first laureate in medicine due to his research in diphtheria serum. Regarding cardiology, Nobel Prize's history permits a global comprehension of progress in pathophysiology, diagnosis and therapeutics of various cardiac diseases in last 120 years. The objective of this study was to review the major scientific discoveries contemplated by Nobel Prizes that contributed to cardiology. In addition, we also hypothesized why Carlos Chagas, one of our most important scientists, did not win the prize in two occasions. We carried out a non-systematic review of Nobel Prize winners, selecting the main studies relevant to heart diseaseamong the laureates. In the period between 1901 and 2013, 204 researches and 104 prizes were awarded in Nobel Prize, of which 16 (15%) studies were important for cardiovascular area. There were 33 (16%) laureates, and two (6%) were women. Fourteen (42%) were American, 15 (45%) Europeans and four (13%) were from other countries. There was only one winner born in Brazil, Peter Medawar, whose career was all in England. Reviewing the history of the Nobel Prize in physiology or medicine area made possible to identify which researchers and studies had contributed to advances in the diagnosis, prevention and treatment of cardiovascular diseases. Most winners were North Americans and Europeans, and male.

  11. Nobel Prize 2012: Haroche & Wineland

    NASA Astrophysics Data System (ADS)

    Georgescu, Iulia

    2012-11-01

    The 2012 Nobel Prize in Physics has been awarded to Serge Haroche and David J. Wineland "for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems".

  12. Landau's Nobel Prize in Physics

    NASA Astrophysics Data System (ADS)

    Larsson, M.; Balatsky, A. V.

    2016-06-01

    Work of Lev Landau had a profound impact on the physics in 20th century. Landau had created the paradigms that had framed the conversations on the outstanding problems in physics for decades. He had laid foundations for our understanding of quantum matter like superfluidity, superconductivity and the theory of Fermi liquid. Here we present some Nobel Archive data on the winning nomination that led to the Nobel Prize in Physics in 1962.

  13. 76 FR 78949 - Notice of Lodging of Consent Decree Under the Comprehensive Environmental Response, Compensation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... that on December 9, 2011, a proposed Consent Decree in United States of America v. Akzo Nobel Chemicals... should refer to United States of America v. Akzo Nobel Chemicals, Inc., D.J. Ref. 90- 11-2-912/2....

  14. How to Become a Nobel Laureate

    SciTech Connect

    Huefner, J.

    2005-06-14

    We discuss the family background and the educational careers of Nobel laureates in science as well as the age, at which they perform the Nobel work. As an example, we describe the discovery of the nuclear shell model.

  15. LHC Nobel Symposium Proceedings

    NASA Astrophysics Data System (ADS)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  16. Improbable Research and the Ig Nobel Prizes

    NASA Astrophysics Data System (ADS)

    Abrahams, Marc

    2008-10-01

    The Ig Nobel Prizes honor achievements that first make people laugh, then make them think. Marc Abrahams, father of the Ig Nobel Prize ceremony and editor of the magazine Annals of Improbable Research, will show us some of the most outstanding Ig Nobel winners. He will also discuss why Ohio has been such a good producer of Ig Nobel Prize winners, and of improbable research.

  17. Gender and Science: Women Nobel Laureates

    ERIC Educational Resources Information Center

    Charyton, Christine; Elliott, John O.; Rahman, Mohammed A.; Woodard, Jeness L.; DeDios, Samantha

    2011-01-01

    Women and their creativity are underrepresented in science. To date, few women have been awarded the Nobel Prize in science. Eleven female Nobel laureates in physics, chemistry and physiology/medicine between 1901 and 2006 were compared with 37 males who received the Nobel Prize in the same area one year prior and one year after the women. Data…

  18. Explaining High Abilities of Nobel Laureates

    ERIC Educational Resources Information Center

    Shavinina, Larisa

    2004-01-01

    Although the Nobel Prize is associated with a rare, superior degree of intellectually creative achievement, high abilities of Nobel laureates are far from well explained. This paper argues that Nobel laureates' high abilities are determined in part by their extracognitive abilities, that is, specific feelings, preferences, beliefs and intuitive…

  19. A Nobel Gift

    NASA Astrophysics Data System (ADS)

    Sellers, George

    2009-04-01

    From the Feature Editor Often when teachers get together, at summer conferences, workshops, or even just in the break room, talk revolves around teaching. What do you hear in this off-the-cuff "teacher talk"? It might be a quick description of something funny that happened in the classroom. It might be a story about something that inspired you. It might be a more serious anecdote that makes one ponder. At an American Chemical Society meeting, I was chatting with George Sellers, a high school chemistry teacher who was then teaching in Florida. In the course of our conversation, he shared an anecdote about the Nobel Laureate Sir Harold Kroto. It really struck a chord with me. I wondered how stories like this, and other stories you share with your fellow teachers every day, could reach a wider audience. Hearing about the experiences of other teachers can help us realize our place in a wider community of educators. Stories can help us to recharge. They can make us laugh. They can inspire us. As a result, I'd like to offer the forum of this "Teacher Talk" feature. It's particularly for stories from high school teachers, and will appear occasionally, as accepted submissions arise. I thank George for sharing his story, and encourage you to listen to your own teacher talk for a story you might share with us. Send your submission to the Editorial Office, indicating it is for the Teacher Talk feature. In this article, George Sellers recalls a Saturday symposium for local high school chemistry teachers at Florida Southern College held in the summer of 2005.

  20. Heroes in endocrinology: Nobel Prizes.

    PubMed

    de Herder, Wouter W

    2014-09-01

    The Nobel Prize in Physiology or Medicine was first awarded in 1901. Since then, the Nobel Prizes in Physiology or Medicine, Chemistry and Physics have been awarded to at least 33 distinguished researchers who were directly or indirectly involved in research into the field of endocrinology. This paper reflects on the life histories, careers and achievements of 11 of them: Frederick G Banting, Roger Guillemin, Philip S Hench, Bernardo A Houssay, Edward C Kendall, E Theodor Kocher, John J R Macleod, Tadeus Reichstein, Andrew V Schally, Earl W Sutherland, Jr and Rosalyn Yalow. All were eminent scientists, distinguished lecturers and winners of many prizes and awards.

  1. Heroes in endocrinology: Nobel Prizes.

    PubMed

    de Herder, Wouter W

    2014-09-01

    The Nobel Prize in Physiology or Medicine was first awarded in 1901. Since then, the Nobel Prizes in Physiology or Medicine, Chemistry and Physics have been awarded to at least 33 distinguished researchers who were directly or indirectly involved in research into the field of endocrinology. This paper reflects on the life histories, careers and achievements of 11 of them: Frederick G Banting, Roger Guillemin, Philip S Hench, Bernardo A Houssay, Edward C Kendall, E Theodor Kocher, John J R Macleod, Tadeus Reichstein, Andrew V Schally, Earl W Sutherland, Jr and Rosalyn Yalow. All were eminent scientists, distinguished lecturers and winners of many prizes and awards. PMID:25055817

  2. Heroes in endocrinology: Nobel Prizes

    PubMed Central

    de Herder, Wouter W

    2014-01-01

    The Nobel Prize in Physiology or Medicine was first awarded in 1901. Since then, the Nobel Prizes in Physiology or Medicine, Chemistry and Physics have been awarded to at least 33 distinguished researchers who were directly or indirectly involved in research into the field of endocrinology. This paper reflects on the life histories, careers and achievements of 11 of them: Frederick G Banting, Roger Guillemin, Philip S Hench, Bernardo A Houssay, Edward C Kendall, E Theodor Kocher, John J R Macleod, Tadeus Reichstein, Andrew V Schally, Earl W Sutherland, Jr and Rosalyn Yalow. All were eminent scientists, distinguished lecturers and winners of many prizes and awards. PMID:25055817

  3. [Two Nobel prizes for psychiatry].

    PubMed

    Knezević, Aleksandar; Knezević, Vladimir

    2008-01-01

    It was pointed out that both Nobel prizes for medicine in the field of psychiatry have lost their importance in contemporary medicine. Modern achievements in psychiatry have suppresed both psychosurgery of Egas Moniz and malaria treatment of Wagner-Jauregg as methods in the treatment of mental diseases. PMID:19368289

  4. Cosmic pioneers scoop Nobel prize

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2011-11-01

    The 2011 Nobel Prize for Physics has been awarded to Saul Perlmutter from the Lawrence Berkeley National Laboratory, US, Adam Riess at Johns Hopkins University in Baltimore and Brian Schmidt from the Australian National University, Weston Creek, "for the discovery of the accelerating expansion of the universe through observations of distant supernovae".

  5. How Einstein Got the Nobel Prize.

    ERIC Educational Resources Information Center

    Pais, Abraham

    1982-01-01

    Discusses why the Nobel Committee for Physics waited so long before giving Einstein the Nobel Prize and why they did not award it for relativity, but for the photoelectric effect instead. Focuses on the judgments of leading scientists who made nominations as well as committee members' decisions. (Author/JN)

  6. Optics pioneers scoop Nobel prize

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2009-11-01

    Three physicists who carried out pioneering work in former industrial research labs have picked up this year's Nobel Prize for Physics. One half of the SEK 10m prize has been awarded to Charles Kao, 75, for his work at the UK-based Standard Telephones and Cables (STC) on the transmission of light in optical fibres, which underpinned the telecommunications revolution. The other half of the prize is shared between Willard Boyle, 85, and George Smith, 79, of Bell Laboratories in New Jersey, US, for inventing the charge-coupled device (CCD) - an imaging semiconductor circuit that forms the basis of most digital cameras.

  7. Scientific Productivity and Idea Acceptance in Nobel Laureates

    ERIC Educational Resources Information Center

    Charyton, Christine; DeDios, Samantha Lynn; Nygren, Thomas Eugene

    2015-01-01

    We investigated how new ideas become accepted for Nobel laureates in science. Archival data were collected for 204 Nobel laureates from 1980 to 2009 in physics, chemistry, and medicine or physiology. Acceptance was evaluated for Nobel laureates by Prize area and three key publications in the Nobel laureates' publishing careers: (a) first…

  8. Science Underlying 2008 Nobel Prizes

    NASA Astrophysics Data System (ADS)

    Caldwell, Bernadette A.

    2009-01-01

    JCE offers a wealth of materials for teaching and learning chemistry that you can explore online. In the list below, Bernadette Caldwell of the Editorial Staff suggests additional resources that are available through JCE for teaching the science behind some of the 2008 Nobel Prizes . Discovering and Applying the Chemistry of GFP The Royal Swedish Academy of Sciences awarded the 2008 Nobel Prize in Chemistry for the discovery and development of the green fluorescent protein, GFP to three scientists: Osamu Shimomura, Martin Chalfie, and Roger Y. Tsien. These scientists led the field in discovering and introducing a fluorescing protein from jellyfish into cells and genes under study, which allows researchers to witness biochemistry in action. Now tags are available that emit light in different colors, revealing myriad biological processes and their interactions simultaneously. Identifying HPV and HIV, HIV's Replication Cycle, and HIV Virus-Host Interactions The Nobel Assembly at Karolinska Institutet awarded the 2008 Nobel Prize in Medicine or Physiology for their discovery of human immunodeficiency virus (HIV) to two scientists: Françoise Barré-Sinoussi and Luc Montagnier; and for his discovery of human papilloma viruses [HPV] causing cervical cancer to one scientist, Harald zur Hausen. Diseases caused by these infectious agents significantly affect global health. While isolating and studying the virus, researchers discovered HIV is an uncommon retrovirus that infects humans and relies on the host to make its viral DNA, infecting and killing the host's white blood cells, ultimately destroying the immune systems of infected humans. Related Resources at JCE Online The Journal has published articles relating to GFP specifically, and more generally to fluorescing compounds applied to biochemistry. The Journal has also published an article and a video on protease inhibition—a strategy to suppress HIV's biological processes. With the video clips, an accompanying guide

  9. Is the Nobel Prize good for science?

    PubMed

    Casadevall, Arturo; Fang, Ferric C

    2013-12-01

    The Nobel Prize is arguably the best known and most prestigious award in science. Here we review the effect of the Nobel Prize and acknowledge that it has had many beneficial effects on science. However, ever since its inaugural year in 1901, the Nobel Prize has also been beset by controversy, mostly involving the selection of certain individuals and the exclusion of others. In this regard, the Nobel Prize epitomizes the winner-takes-all economics of credit allocation and distorts the history of science by personalizing discoveries that are truly made by groups of individuals. The limitation of the prize to only 3 individuals at a time when most scientific discovery is the result of collaborative and cooperative research is arguably the major cause of Nobel Prize controversies. A simple solution to this problem would be to eliminate the restriction on the number of individuals who could be awarded the prize, a measure that would recognize all who contribute, from students to senior investigators. There is precedent for such a change in the Nobel Peace Prize, which has often gone to organizations. Changing the Nobel Prize to more fairly allocate credit would reduce the potential for controversy and directly benefit the scientific enterprise by promoting cooperation and collaboration of scientists within a field to reduce the negative consequences of competition between individual scientists.

  10. Is the Nobel Prize good for science?

    PubMed

    Casadevall, Arturo; Fang, Ferric C

    2013-12-01

    The Nobel Prize is arguably the best known and most prestigious award in science. Here we review the effect of the Nobel Prize and acknowledge that it has had many beneficial effects on science. However, ever since its inaugural year in 1901, the Nobel Prize has also been beset by controversy, mostly involving the selection of certain individuals and the exclusion of others. In this regard, the Nobel Prize epitomizes the winner-takes-all economics of credit allocation and distorts the history of science by personalizing discoveries that are truly made by groups of individuals. The limitation of the prize to only 3 individuals at a time when most scientific discovery is the result of collaborative and cooperative research is arguably the major cause of Nobel Prize controversies. A simple solution to this problem would be to eliminate the restriction on the number of individuals who could be awarded the prize, a measure that would recognize all who contribute, from students to senior investigators. There is precedent for such a change in the Nobel Peace Prize, which has often gone to organizations. Changing the Nobel Prize to more fairly allocate credit would reduce the potential for controversy and directly benefit the scientific enterprise by promoting cooperation and collaboration of scientists within a field to reduce the negative consequences of competition between individual scientists. PMID:24008752

  11. Fullerene discoverers win nobel prize

    SciTech Connect

    Rotman, D.

    1996-10-16

    Two Rice University (Houston) chemists, Robert F. Curl and Richard E. Smalley, and a scientist at the University of Sussex (Brighton, U.K.), Harold W. Kroto, have won the 1996 Nobel Prize in Chemistry for the joint discovery of buckminsterfullerenes - soccer ball-shaped carbon molecules. The novel form of carbon, which was initially synthesized by the scientists in 1985 as C{sub 60} and C{sub 70} has led to the development of {open_quotes}an entirely new branch of chemistry... with consequences in such diverse areas as astrochemistry, superconductivity, and material chemistry/physics,{close_quotes} according to the Swedish Academy of Sciences (Stockholm). For chemists, the structure is {open_quotes}uniquely beautiful and satisfying,{close_quotes} the academy says.

  12. Perspectives on 2014 Nobel Prize.

    PubMed

    Eichenbaum, Howard

    2015-06-01

    In celebration of the 2014 Nobel Prize in Physiology or Medicine, this issue of Hippocampus includes a collection of commentaries from a broad range of perspectives on the significance of position coding neurons in the hippocampal region. From the perspective of this student of hippocampal physiology, it is argued that place cells and grid cells reflect the outcome of experiments that strongly select the information available and correspondingly observe singular "trigger features" of these neurons. Notably, however, in more naturalistic situations where multiple dimensions of information are available, hippocampal neurons have mixed selectivity wherein population-firing patterns reflect the organization of many features of experience. Thus, while discoveries on position coding were major breakthroughs in penetrating the hippocampal code, future studies exploring more complex behaviors hold the promise of revealing the full contribution of the hippocampal region to cognition and memory.

  13. Perspectives on 2014 Nobel Prize.

    PubMed

    Eichenbaum, Howard

    2015-06-01

    In celebration of the 2014 Nobel Prize in Physiology or Medicine, this issue of Hippocampus includes a collection of commentaries from a broad range of perspectives on the significance of position coding neurons in the hippocampal region. From the perspective of this student of hippocampal physiology, it is argued that place cells and grid cells reflect the outcome of experiments that strongly select the information available and correspondingly observe singular "trigger features" of these neurons. Notably, however, in more naturalistic situations where multiple dimensions of information are available, hippocampal neurons have mixed selectivity wherein population-firing patterns reflect the organization of many features of experience. Thus, while discoveries on position coding were major breakthroughs in penetrating the hippocampal code, future studies exploring more complex behaviors hold the promise of revealing the full contribution of the hippocampal region to cognition and memory. PMID:25787853

  14. Particle theorists scoop Nobel prize

    NASA Astrophysics Data System (ADS)

    2008-11-01

    Every year the award of the Nobel Prize for Physics goes through a familiar pattern - a few days' heightened speculation, a warm congratulation and, more often than not, a trailing dispute. This year has been no exception. The three new laureates, whose predictions and concepts on symmetry breaking have become cornerstones of the Standard Model, had long been tipped to win at some point. Makoto Kobayashi, 64, of the KEK lab, and Toshihide Maskawa, 68, of the University of Kyoto, both in Japan, share one half of the SwKr 10m (about £800 000) prize for their work in 1972 on the mechanism of broken symmetry, which led to the prediction of a new family of quarks. Yoichiro Nambu, 87, of the University of Chicago in the US, wins the other half of the prize for realizing in 1960 how to apply spontaneous symmetry breaking to particle physics.

  15. Nobel Prize in Physiology or Medicine

    MedlinePlus

    ... Medicine Prize Literature Prize Peace Prize Prize in Economic Sciences Quick Facts Nomination Nomination Physics Prize Chemistry ... Medicine Prize Literature Prize Peace Prize Prize in Economic Sciences Nomination Archive Ceremonies Ceremonies Ceremony Archive Nobel ...

  16. Gerhard Ertl, Nobel Laureate for Chemistry 2007

    NASA Astrophysics Data System (ADS)

    Kawai, Maki

    In year 2007, Nobel prize for Chemistry was awarded to Prof. Gerhard Ertl, former director of Fritz Haber Institute, Berlin. The article is to introduce the brilliant achievement of Prof. Ertl in part.

  17. Nobel Prize in Chemistry: Celebrating optical nanoscopy

    NASA Astrophysics Data System (ADS)

    Orrit, Michel

    2014-12-01

    The award of this year's Nobel Prize in Chemistry to the pioneers of various optical schemes capable of achieving super-resolution and single-molecule detection is recognition of a revolution in optical imaging.

  18. Nobel Prize 2014: Akasaki, Amano & Nakamura

    NASA Astrophysics Data System (ADS)

    Heber, Joerg

    2014-11-01

    The 2014 Nobel Prize in Physics has been awarded to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura "for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources."

  19. Nobel Prize 2011: Perlmutter, Schmidt & Riess

    NASA Astrophysics Data System (ADS)

    Wright, Alison

    2011-11-01

    The 2011 Nobel Prize in Physics has been awarded to Saul Perlmutter, Brian Schmidt and Adam Riess, "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae".

  20. Scientists share nobel prize for "nanoscopy".

    PubMed

    2014-12-01

    Three scientists were awarded the 2014 Nobel Prize in Chemistry for their contributions to developing super-resolved fluorescence microscopy, which allows biologists to study cells on a nanometer scale. PMID:25477087

  1. [Surgeons and Neurosurgeons as Nobel Prize Winners].

    PubMed

    Chrastina, Jan; Jančálek, Radim; Hrabovský, Dušan; Novák, Zdeněk

    2016-01-01

    Since 1901 Nobel Prize is awarded for exceptional achievements in physics, chemistry, literature, peace, economy (since 1968) and medicine or physiology. The first aim of the paper is to provide an overview of surgeons - winners of Nobel Prize for medicine or physiology. Although the prominent neurosurgeons were frequently nominated as Nobel Prize candidates, surprisingly no neurosurgeon received this prestigious award so far despite that the results of their research transgressed the relatively narrow limits of neurosurgical speciality.The most prominent leaders in the field of neurosurgery, such as Victor Horsley, Otfrid Foerster, Walter Dandy and Harvey Cushing are discussed from the point of their nominations. The overview of the activity of the Portuguese neurologists and Nobel Prize Winter in 1949 Egas Moniz (occasionally erroneously reported as neurosurgeon) is also provided. Although his work on brain angiography has fundamentally changed the diagnostic possibilities in neurology and neurosurgery, he was eventually awarded Nobel Prize for the introduction of the currently outdated frontal lobotomy.The fact that none of the above mentioned prominent neurosurgeons has not been recognised by Nobel Prize, may be attributed to the fact that their extensive work cannot be captured in a short summary pinpointing its groundbreaking character. PMID:27256150

  2. [Surgeons and Neurosurgeons as Nobel Prize Winners].

    PubMed

    Chrastina, Jan; Jančálek, Radim; Hrabovský, Dušan; Novák, Zdeněk

    2016-01-01

    Since 1901 Nobel Prize is awarded for exceptional achievements in physics, chemistry, literature, peace, economy (since 1968) and medicine or physiology. The first aim of the paper is to provide an overview of surgeons - winners of Nobel Prize for medicine or physiology. Although the prominent neurosurgeons were frequently nominated as Nobel Prize candidates, surprisingly no neurosurgeon received this prestigious award so far despite that the results of their research transgressed the relatively narrow limits of neurosurgical speciality.The most prominent leaders in the field of neurosurgery, such as Victor Horsley, Otfrid Foerster, Walter Dandy and Harvey Cushing are discussed from the point of their nominations. The overview of the activity of the Portuguese neurologists and Nobel Prize Winter in 1949 Egas Moniz (occasionally erroneously reported as neurosurgeon) is also provided. Although his work on brain angiography has fundamentally changed the diagnostic possibilities in neurology and neurosurgery, he was eventually awarded Nobel Prize for the introduction of the currently outdated frontal lobotomy.The fact that none of the above mentioned prominent neurosurgeons has not been recognised by Nobel Prize, may be attributed to the fact that their extensive work cannot be captured in a short summary pinpointing its groundbreaking character.

  3. The Nobel Connection to the Space Program

    NASA Astrophysics Data System (ADS)

    Ng, E. N.; Nash, R. L.

    2007-09-01

    The 2006 Nobel Prize in Physics was heralded by some in the press as the "First Nobel Prize for Space Exploration." Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, "The COBE results provided increased support for the Big Bang scenario for the origin of the Universe. These measurements also marked the inception of cosmology as a precise science." NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark. We have organized this lengthy paper into nine, fairly independent sections for ease of reading:1."Michael Jordan or Mia Hamm" - Introduction and Background2."Connecting the Dots Between the Heavens and Earth" - From Newton to Bethe3."From Cosmic Noise to the Big Bang" - The First Nobel

  4. The Nobel Laureates in Chemistry: A Numeration of Nobelists.

    ERIC Educational Resources Information Center

    Jovanovski, Gligor

    2002-01-01

    Describes the Nobel Chemistry prize and categorizes the number of laureates per field of chemistry, country, and age in the history of Nobel Prizes. Explains who receives the award and laureates' effect on chemistry. (YDS)

  5. Nobel Prize for blue LEDs

    NASA Astrophysics Data System (ADS)

    Kraftmakher, Yaakov

    2015-05-01

    A brief review of lighting technologies is presented. Unavoidable restrictions for incandescent light bulbs caused by the Planck distribution and properties of the human eye are illustrated. The efficiency and luminous efficacy of thermal radiation are calculated for various temperatures; the results clearly show the limitations for thermal radiators. The only way to overcome these limitations is using non-thermal radiators, such as fluorescent lamps and light-emitting diodes (LEDs). Unique advantages of LEDs undoubtedly made a revolution in this field. A crucial element of this progress is the blue LEDs (Nobel Prize 2014). Some experiments with a blue and a green LED are described: (i) the luminescence triggered in a green-yellow phosphor inside a white LED by the blue LED; (ii) radiant spectra and ‘efficiency droop’ in the LEDs; (iii) modulation of the blue LED up to 4 MHz; and (iv) the h/e ratio from the turn-on voltage of the green LED. The experiments are suitable for undergraduate laboratories and usable as classroom demonstrations.

  6. Nobel Connection to the Space Program

    NASA Astrophysics Data System (ADS)

    Ng, Edward W.; Nash, Rebecca

    2007-09-01

    The 2006 Nobel Prize in Physics was heralded by some in the press as the "First Nobel Prize for Space Exploration." Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, "The COBE results provided increased support for the Big Bang scenario for the origin of the Universe... These measurements also marked the inception of cosmology as a precise science." NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons (of either gender) are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark. We have organized this paper into nine, fairly independent sections for ease of reading: I. "Michael Jordan or Mia Hamm" - Introduction and Background II. "Connecting the Dots Between the Heavens and Earth" - From Newton to Bethe III. "From Cosmic Noise to the Big Bang" - The

  7. Therapeutic Pneumothorax and the Nobel Prize.

    PubMed

    Hansson, Nils; Polianski, Igor J

    2015-08-01

    At the turn of the 20th century, the epidemic proportions of tuberculosis puzzled great parts the scientific community. Thus it is not surprising that well-known scholars who worked on particularly promising solutions to fight the disease were nominated for the Nobel Prize for Physiology or Medicine, perhaps the most prestigious benchmark of scientific excellence. The authors have gathered files on the Italian phtisiologist Carlo Forlanini (1847 to 1918) at the Nobel Prize archive for Physiology or Medicine in Solna, Sweden. Drawing on these files and contemporary publications, the authors discuss the origin of artificial pneumothorax for treating pulmonary tuberculosis, show how it became an international gold standard operation, and trace why the Nobel committee finally chose not to award Forlanini. Twenty Nobel Prize nominations for Forlanini were submitted from 1912 to 1919 exclusively by Italian scholars. In 1913 and 1914, Forlanini was on the shortlist of the Nobel Committee and thus one of the prime candidates for the prestigious prize. Important aspects of the rise, fall, and revival of the artificial pneumothorax from 1815 to 2015 are highlighted along with its benefits and risks. PMID:26234863

  8. Therapeutic Pneumothorax and the Nobel Prize.

    PubMed

    Hansson, Nils; Polianski, Igor J

    2015-08-01

    At the turn of the 20th century, the epidemic proportions of tuberculosis puzzled great parts the scientific community. Thus it is not surprising that well-known scholars who worked on particularly promising solutions to fight the disease were nominated for the Nobel Prize for Physiology or Medicine, perhaps the most prestigious benchmark of scientific excellence. The authors have gathered files on the Italian phtisiologist Carlo Forlanini (1847 to 1918) at the Nobel Prize archive for Physiology or Medicine in Solna, Sweden. Drawing on these files and contemporary publications, the authors discuss the origin of artificial pneumothorax for treating pulmonary tuberculosis, show how it became an international gold standard operation, and trace why the Nobel committee finally chose not to award Forlanini. Twenty Nobel Prize nominations for Forlanini were submitted from 1912 to 1919 exclusively by Italian scholars. In 1913 and 1914, Forlanini was on the shortlist of the Nobel Committee and thus one of the prime candidates for the prestigious prize. Important aspects of the rise, fall, and revival of the artificial pneumothorax from 1815 to 2015 are highlighted along with its benefits and risks.

  9. Shirin Ebadi: A Muslim Woman Nobel Peace Laureate

    ERIC Educational Resources Information Center

    Ahmad, Iftikhar

    2004-01-01

    The Nobel Peace Prize is recognized as one of the most prestigious global awards. Each year the Norwegian Nobel Committee, which is appointed by Norway's parliament to select the winner, receives many nominations from around the world. Shirin Ebadi, who is from Iran, became the eleventh female Nobel Peace laureate in 2003. Ebadi is the third…

  10. [Karl Sudhoff and the Nobel Prize].

    PubMed

    Hansson, Nils

    2015-01-01

    Drawing on files in the Nobel Prize archive for Physiology or Medicine in Solna, Sweden, this paper illuminates the Nobel Prize nominations for and by Karl Sudhoff from 1918 to 1923. He was nominated by Max Cloetta and Max Neuburger, and Sudhoff himself put forward Julius Hirschberg, Erwin Payr and Georg Sticker. Even though none of the proposals led to a prize, the nomination letters offer insights in the relationships between leading historians of medicine in the immediate post-war years. The study is part of a project exploring the construction and enactment of scientific excellence. PMID:26821496

  11. [Karl Sudhoff and the Nobel Prize].

    PubMed

    Hansson, Nils

    2015-01-01

    Drawing on files in the Nobel Prize archive for Physiology or Medicine in Solna, Sweden, this paper illuminates the Nobel Prize nominations for and by Karl Sudhoff from 1918 to 1923. He was nominated by Max Cloetta and Max Neuburger, and Sudhoff himself put forward Julius Hirschberg, Erwin Payr and Georg Sticker. Even though none of the proposals led to a prize, the nomination letters offer insights in the relationships between leading historians of medicine in the immediate post-war years. The study is part of a project exploring the construction and enactment of scientific excellence.

  12. LED firm rejects Nobel laureate's olive branch

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2014-12-01

    Nobel laureate Shuji Nakamura says that he is not going to try and improve relations with his former employer, which he sued in 2001 over his development of the blue light-emitting diode (LED), after receiving a snub from them last month.

  13. Nobel Prize 2013: Englert and Higgs

    NASA Astrophysics Data System (ADS)

    Wright, Alison

    2013-11-01

    The Nobel Prize in Physics 2013 has been awarded to François Englert and Peter Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider".

  14. Nobel Recognizes Seminal Work in DNA Repair.

    PubMed

    2015-12-01

    Three scientists will share this year's Nobel Prize in Chemistry for pioneering research that established the inherent instability of DNA and the cellular mechanisms underlying its repair. Their discoveries of how living cells function have aided in developing new cancer therapies.

  15. Nobel laureates in the history of the vitamins.

    PubMed

    Souganidis, Ellie

    2012-01-01

    Research on vitamins has advanced considerably over the past 100 years with numerous advancements in the fields of biochemistry, medicine, and nutrition. The purpose of this article is to present the history of vitamins using Nobel Prizes as a framework for each vitamin-related discovery. The Nobel Prize Presentation Speech and Nobel Lecture were reviewed for each Nobel Laureate who received an award for vitamin-related research. The original scientific work of a number of awardees was also utilized as a primary source of the history. Nobel Prizes were awarded primarily for the identification, isolation, and synthesis of vitamins. Additional awards recognized the role of specific vitamins in disease processes. The awarding of over 10 Nobel Prizes in Chemistry, Physiology or Medicine in the last century has recognized the seminal work of numerous scientists and physicians and showcased multiple important advancements in vitamins research.

  16. [A Nobel Prize for DNA repair].

    PubMed

    Jordan, Bertrand

    2016-01-01

    This year's Nobel Prize for chemistry recognizes the seminal contributions of three researchers who discovered the existence and the basic mechanisms of DNA repair: base excision repair, mismatch repair, and nucleotide excision repair. They have since been joined by many scientists elucidating diverse aspects of these complex mechanisms that now constitute a thriving research field with many applications, notably for understanding oncogenesis and devising more effective therapies. PMID:26850617

  17. Nanoscopy with Focused Light (Nobel Lecture).

    PubMed

    Hell, Stefan W

    2015-07-01

    A picture is worth a thousand words-This doesn't only apply to everyday life but also to the natural sciences. It is, therefore, probably not by chance that the historical beginning of modern natural sciences very much coincides with the invention of light microscopy. S. W. Hell shows in his Nobel Lecture that the diffraction resolution barrier has been overcome by using molecular state transitions (e.g. on/off) to make nearby molecules transiently discernible.

  18. [A Nobel Prize for DNA repair].

    PubMed

    Jordan, Bertrand

    2016-01-01

    This year's Nobel Prize for chemistry recognizes the seminal contributions of three researchers who discovered the existence and the basic mechanisms of DNA repair: base excision repair, mismatch repair, and nucleotide excision repair. They have since been joined by many scientists elucidating diverse aspects of these complex mechanisms that now constitute a thriving research field with many applications, notably for understanding oncogenesis and devising more effective therapies.

  19. [Women in natural sciences--Nobel Prize winners].

    PubMed

    Zuskin, Eugenija; Mustajbegović, Jadranka; Lipozencić, Jasna; Kolcić, Ivana; Spoljar-Vrzina, Sanja; Polasek, Ozren

    2006-01-01

    Alfred Bernhard Nobel was the founder of the Nobel Foundation, which has been awarding world-known scientists since 1901, for their contribution to the welfare of mankind. The life and accomplishments of Alfred Bernhard Nobel are described as well as scientific achivements of 11 women, Nobel prize winners in the field of physics, chemistry, physiology and/or medicine. They are Marie Sklodowska Curie, Maria Goeppert Mayer, Irene Joliot-Curie, Dorothy Crowfoot Hodgkin, Gerty Theresa Radnitz Cori, Rosalyn Sussman Yalow, Barbara McClintock, Rita Levi-Montalcini, Gertrude Elion, Christine Nusslein-Volhard and Linda B. Buck.

  20. [Women in natural sciences--Nobel Prize winners].

    PubMed

    Zuskin, Eugenija; Mustajbegović, Jadranka; Lipozencić, Jasna; Kolcić, Ivana; Spoljar-Vrzina, Sanja; Polasek, Ozren

    2006-01-01

    Alfred Bernhard Nobel was the founder of the Nobel Foundation, which has been awarding world-known scientists since 1901, for their contribution to the welfare of mankind. The life and accomplishments of Alfred Bernhard Nobel are described as well as scientific achivements of 11 women, Nobel prize winners in the field of physics, chemistry, physiology and/or medicine. They are Marie Sklodowska Curie, Maria Goeppert Mayer, Irene Joliot-Curie, Dorothy Crowfoot Hodgkin, Gerty Theresa Radnitz Cori, Rosalyn Sussman Yalow, Barbara McClintock, Rita Levi-Montalcini, Gertrude Elion, Christine Nusslein-Volhard and Linda B. Buck. PMID:16802565

  1. Nobel Centennial Essays: A Century of Chemical Dynamics Traced through the Nobel Prizes. 1901: Jacobus van't Hoff

    NASA Astrophysics Data System (ADS)

    van Houten, Josh

    2001-12-01

    December 2001 marks the centenary of the Nobel Prize. During the 20th century, the Nobel Prize was awarded 13 times, to a total of 22 recipients, for work involving various aspects of chemical dynamics--beginning with Jacobus van't Hoff in 1901, and continuing through Ahmed Zewail in 1999. Examining those prizes provides some interesting insights into the history and the evolution of chemical dynamics. In this essay, the first of a series of articles commemorating the Nobel centennial, the work of the first Nobel Laureate in chemical dynamics, Jacobus van't Hoff (1901), is examined.

  2. Who can get the next Nobel Prize in infectious diseases?

    PubMed

    Ergonul, Onder; Yalcin, Can Ege; Erkent, Mahmut Alp; Demirci, Mert; Uysal, Sanem Pinar; Ay, Nur Zeynep; Omeroglu, Asena

    2016-04-01

    The aim of this paper is to deliver a perspective on future Nobel prizes by reviewing the features of Nobel prizes awarded in the infectious diseases-related (IDR) field over the last 115 years. Thirty-three out of 106 Nobel prizes (31%) in Physiology or Medicine have been awarded for IDR topics. Out of 58 Nobel laureates for IDR topics, two have been female; 67% have been medical doctors. The median age of Nobel laureates in Physiology or Medicine was found to be lower than the median age of laureates in Literature (p<0.001). Since the Second World War, US-affiliated scientists have dominated the Nobel prizes (53%); however before 1945, German scientists did so (p=0.005). The new antimicrobials received Nobel prizes until 1960; however no treatment study was awarded the Prize until the discovery of artemisinin and ivermectin, for which the Nobel Prize was awarded in 2015. Collaborative works have increasingly been appreciated. In the future, more female laureates would be expected in the IDR field. Medical graduates and scientists involved in multi-institutional and multidisciplinary collaborative efforts seem to have an advantage. PMID:26945715

  3. What to do to win a Nobel prize

    NASA Astrophysics Data System (ADS)

    Foundationeer, Second; chrischievious; Hasler, John; nvrao; dedalus22; Martin

    2014-11-01

    In reply to the infographic "Illustrating a century of Nobels" and a related physicsworld.com blog post "What type of physics should you do if you want to bag a Nobel prize?" (2 October, http://ow.ly/CmCzl, see also pp22-23).

  4. The Nobel Prize Economics Lectures as a Teaching Tool.

    ERIC Educational Resources Information Center

    Zahka, William J.

    1990-01-01

    Proposes using some of the 26 Nobel Prize lectures as teaching tools in economics courses. Notes lectures are reprinted in economic journals. Lists titles of lectures from 1969 to 1988; identifies level of difficulty; and categorizes the lectures by subject field. Outlines George Stigler's 1982 Nobel lecture and gives suggestions for teaching. (NL)

  5. Is the Nobel Prize in chemistry still relevant?

    PubMed

    Mukhopadhyay, Rajendrani

    2009-10-01

    No other prize in science matches the iconic stature of the Nobels. But they only recognize individuals in the categories of physics, chemistry, and physiology/medicine. In the modern era of multidisciplinary, multiple-team endeavors, are the Nobel Prizes outdated?

  6. Nobel physics prize to Charpak for inventing particle detectors

    SciTech Connect

    Schwarzschild, B.

    1993-01-01

    This article describes the work of Georges Charpak of France leading to his receipt of the 1992 Nobel Prize in Physics. The Nobel Prize was awarded to Charpak [open quotes]for his invention and development of particle detectors, in particular the multiwire proportional chamber.[close quotes] Historical aspects of Charpak's life and research are given.

  7. Who can get the next Nobel Prize in infectious diseases?

    PubMed

    Ergonul, Onder; Yalcin, Can Ege; Erkent, Mahmut Alp; Demirci, Mert; Uysal, Sanem Pinar; Ay, Nur Zeynep; Omeroglu, Asena

    2016-04-01

    The aim of this paper is to deliver a perspective on future Nobel prizes by reviewing the features of Nobel prizes awarded in the infectious diseases-related (IDR) field over the last 115 years. Thirty-three out of 106 Nobel prizes (31%) in Physiology or Medicine have been awarded for IDR topics. Out of 58 Nobel laureates for IDR topics, two have been female; 67% have been medical doctors. The median age of Nobel laureates in Physiology or Medicine was found to be lower than the median age of laureates in Literature (p<0.001). Since the Second World War, US-affiliated scientists have dominated the Nobel prizes (53%); however before 1945, German scientists did so (p=0.005). The new antimicrobials received Nobel prizes until 1960; however no treatment study was awarded the Prize until the discovery of artemisinin and ivermectin, for which the Nobel Prize was awarded in 2015. Collaborative works have increasingly been appreciated. In the future, more female laureates would be expected in the IDR field. Medical graduates and scientists involved in multi-institutional and multidisciplinary collaborative efforts seem to have an advantage.

  8. Learning by Viewing - Nobel Labs 360

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2013-01-01

    First of all, my thanks to the Nobel Lindau Foundation for their inspiration and leadership in sharing the excitement of scientific discovery with the public and with future scientists! I have had the pleasure of participating twice in the Lindau meetings, and recently worked with the Nobel Labs 360 project to show how we are building the world's greatest telescope yet, the James Webb Space Telescope (JWST). For the future, I see the greatest challenges for all the sciences in continued public outreach and inspiration. Outreach, so the public knows why we are doing what we are doing, and what difference it makes for them today and in the long-term future. Who knows what our destiny may be? It could be glorious, or not, depending on how we all behave. Inspiration, so that the most creative and inquisitive minds can pursue the scientific and engineering discoveries that are at the heart of so much of human prosperity, health, and progress. And, of course, national and local security depend on those discoveries too; scientists have been working with "the government" throughout recorded history. For the Lindau Nobel experiment, we have a truly abundant supply of knowledge and excitement, through the interactions of young scientists with the Nobelists, and through the lectures and the video recordings we can now share with the whole world across the Internet. But the challenge is always to draw attention! With 7 billion inhabitants on Earth, trying to earn a living and have some fun, there are plenty of competing opportunities and demands on us all. So what will draw attention to our efforts at Lindau? These days, word of mouth has become word of (computer) mouse, and ideas propagate as viruses ( or memes) across the Internet according to the interests of the participants. So our challenge is to find and match those interests, so that the efforts of our scientists, photographers, moviemakers, and writers are rewarded by our public. The world changes every day, so there

  9. The Nobel Prize in Chemistry for 2001

    NASA Astrophysics Data System (ADS)

    Ault, Addison

    2002-05-01

    The Royal Swedish Academy of Sciences awarded shares of the Nobel Prize in Chemistry for the year 2001 to three scientists for their development of methods for the efficient catalytic production of just one member of a pair of enantiomers. One-half of the prize was divided equally between William S. Knowles and Ryoji Noyori. The other half of the prize was awarded to K. Barry Sharpless. This paper briefly discusses their discoveries and the significance of the discoveries. It includes an annotated bibliography of their most relevant and easily obtained publications.

  10. [Space coding: a Nobel prize diary].

    PubMed

    Rondi-Reig, Laure

    2015-02-01

    The Nobel Prize in Medecine or Physiology for 2014 has been awarded to three neuroscientists: John O'Keefe, May-Britt Moser and Edvard Moser for "their discoveries of cells that constitute a positioning system in the brain". This rewards innovative ideas which led to the development of intracerebral recording techniques in freely moving animals, thus providing links between behavior and physiology. This prize highlights how neural activity sustains our ability to localize ourselves and move around in the environment. This research provides key insights on how the brain drives behavior. PMID:25744268

  11. 78 FR 42804 - SST Truck Company, LLC, a Navistar, Inc. Company Including On-Site Leased Workers From Employee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... of determination was published in the Federal Register on January 4, 2013 (78 FR 768). At the request... Business Machines (IBM), Akzo Nobel, US Security, ASF Logistics, LLC, Briggs Equipment, William Thomas... reports that workers leased from Encore, International Business Machines (IBM), Akzo Nobel, US...

  12. Nobel Centennial Essays. A Century of Chemical Dynamics Traced through the Nobel Prizes. 1903: Svante Arrhenius

    NASA Astrophysics Data System (ADS)

    van Houten, Josh

    2002-01-01

    This, the second of a series of thirteen articles on Nobel Laureates in chemical dynamics, features the work of Svante Arrhenius, who won the Nobel Prize in 1902 for his electrolytic theory of dissociation. The first article in this series, which appeared in the December 2001 issue of this Journal discussed Jacobus van't Hoff's contribution to our understanding of the nature of molecules in solution and to the study of solution-phase reaction dynamics. Arrhenius's electrolytic dissociation theory extended van't Hoff's ideas about the nature of molecules in solution into the realm of aqueous salts and acids and bases. Not only did this allow for correction of the van't Hoff equation as applied to electrolytes (the so-called van't Hoff i-factor), but it also showed how van't Hoff's principles of chemical dynamics could be applied to ionic solutions. The studies of catalysis by Ostwald (Nobel 1909, to be discussed in the February 2002 issue of this Journal in the next essay in this series) were guided by the work of van't Hoff and Arrhenius, both of whom had worked with Ostwald. Although it was not mentioned specifically in his Nobel presentation, the well-known Arrhenius equation relating reaction rate constants to activation energies and temperature is fundamental to all subsequent studies of reaction energetics and catalysis, and no modern discussion of chemical dynamics could begin without it. Arrhenius is best remembered today by teachers and students of chemistry because the definition of acids and bases and also the equation relating reaction rate constants to temperature through the activation energy that are both named for him.

  13. Perspectives on the 2010 Nobel Prize in physics for graphene.

    PubMed

    Dresselhaus, Mildred S; Araujo, Paulo T

    2010-11-23

    The 2010 Nobel Prize in physics was awarded to Andre Geim and Konstantin Novoselov for their groundbreaking experiments regarding the two-dimensional material graphene. Some personal perspectives about this award are presented.

  14. Pat Thiel talks about Nobel Prize winner Dan Shechtman

    ScienceCinema

    Thiel, Pat

    2016-07-12

    Ames Laboratory senior scientist and Iowa State University Distinguished Professor of Chemistry Pat Thiel talks about her friend and colleague Dan Shechtman who received the 2011 Nobel Prize for Chemistry.

  15. Nobel Prizes and the emerging virus concept.

    PubMed

    Norrby, Erling

    2008-01-01

    The existence of infectious agents smaller than bacteria was demonstrated already during the 1890s. After this discovery it took more than 50 years before a resilient definition of viruses could be given. There were separate developments of knowledge concerning plant viruses, bacterial viruses and animal viruses. In the mid-1930s, Wendell Stanley at the Rockefeller Institute for Medical Research at Princeton described the purification and crystallization of tobacco mosaic virus. The finding of an "infectious protein" led to him receiving a Nobel Prize in Chemistry in 1946. In studies initiated at the end of the 1930s, bacteriophages were used as a model for replicating genes. They led to important insights into the unique characteristics of virus-cell interactions. However, an understanding of the chemical nature of animal virus particles and their mode of replication was slow in coming. Not until the early 1950s did tissue culture techniques become available, which allowed studies also of an extended number of animal viruses. This article discusses the emergence of concepts which eventually allowed a description of viruses. The unique real-time analyses of the state of knowledge provided by the Nobel Prize archives were used in the investigation. These archives remain secret for 50 years. Besides all of the underlying documents of the Prize to Stanley, comprehensive investigations made in the mid 1950s of Seymour E. Cohen, Max Delbrück, Alfred D. Hershey and Salvador D. Luria (the latter three received a Prize in Medicine in 1969) and of André Lwoff (he shared a Prize in Medicine with Francois Jacob and Jaques Monod in 1965) were reviewed. The final phase of the evolution of our understanding of the virus concept closely paralleled the eventual insight into the chemical nature of the genetic material. Understanding the principle nature of barriers to the development of new concepts is of timeless value for fostering and facilitating new discoveries in science

  16. Blueprint for an Indian Nobel Laureate in Psychiatry*

    PubMed Central

    Singh, Ajai R.

    2015-01-01

    There are a number of spoofs and light-hearted writings in blogs, journalistic pieces and book form (even from former Nobel Laureates), which attempt at ‘understanding’ the secret of getting a Nobel. This is not one of them. It is more pedantic without necessarily being dry. It first analyses the meaning of the concept, ‘the greatest benefit of mankind’, which is the crux of the Nobel Will and the overarching requirement for a Nobel in Medicine. Further discussion in the paper is divided into 5 parts: (1)General qualities for a Nobel: The need to be really bright is a given; what is necessary is to be sufficiently crazy about a research topic to make it an obsession; be ready to forgo many creature comforts for long stretches of time; and after all this, be ready to accept that the Nobel may never happen, yet continue to do a type of research solely because it is intrinsically worth doing.(2)Nobel in Physiology or Medicine: Here, the key is to do fundamental/basic research to answer persistent, nagging, unanswered questions of medicine which others neglect because they are discomforting. Or, find treatments that change the whole manner a disease has been hitherto treated.(3)Nobel in Psychiatry: There are many Nobels waiting to be won, provided: (a) The branch becomes more precise; (b) Science, quantitative study and biology remain its bedrock; and (c) There is an almost obsessive preoccupation with unravelling the mysteries of the brain. One has to choose wisely where to put in efforts, e.g., fields like fundamental research into the causes of psychiatric disorders, especially schizophrenia, depression, bipolar disorders. Or their definitive treatments. Or, work at the cellular or molecular level of the neuron and brain; or, the glandular or genetic level of the systems connected with psychiatric disorders; or, in brain radio imaging. If other, or allied, fields are chosen, to work with finding quantitative data and attempt to pinpoint their precise

  17. Blueprint for an Indian nobel laureate in psychiatry.

    PubMed

    Singh, Ajai R

    2015-01-01

    There are a number of spoofs and light-hearted writings in blogs, journalistic pieces and book form (even from former Nobel Laureates), which attempt at 'understanding' the secret of getting a Nobel. This is not one of them. It is more pedantic without necessarily being dry. It first analyses the meaning of the concept, 'the greatest benefit of mankind', which is the crux of the Nobel Will and the overarching requirement for a Nobel in Medicine. Further discussion in the paper is divided into 5 parts: (1)General qualities for a Nobel: The need to be really bright is a given; what is necessary is to be sufficiently crazy about a research topic to make it an obsession; be ready to forgo many creature comforts for long stretches of time; and after all this, be ready to accept that the Nobel may never happen, yet continue to do a type of research solely because it is intrinsically worth doing.(2)Nobel in Physiology or Medicine: Here, the key is to do fundamental/basic research to answer persistent, nagging, unanswered questions of medicine which others neglect because they are discomforting. Or, find treatments that change the whole manner a disease has been hitherto treated.(3)Nobel in Psychiatry: There are many Nobels waiting to be won, provided: (a) The branch becomes more precise; (b) Science, quantitative study and biology remain its bedrock; and (c) There is an almost obsessive preoccupation with unravelling the mysteries of the brain. One has to choose wisely where to put in efforts, e.g., fields like fundamental research into the causes of psychiatric disorders, especially schizophrenia, depression, bipolar disorders. Or their definitive treatments. Or, work at the cellular or molecular level of the neuron and brain; or, the glandular or genetic level of the systems connected with psychiatric disorders; or, in brain radio imaging. If other, or allied, fields are chosen, to work with finding quantitative data and attempt to pinpoint their precise biological

  18. In Brief: IPCC and Gore share Nobel Peace Prize

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-10-01

    The Intergovernmental Panel on Climate Change (IPCC) and former U.S. Vice President Al Gore, Jr. have been named as co-recipients of the 2007 Nobel Peace Prize, the Norwegian Nobel Committee announced on 12 October. The Committee cited them "for their efforts to build up and disseminate greater knowledge about man-made climate change, and to lay the foundations for the measures that are needed to counteract such change."

  19. An Astrosocial Observation: The Nobel Connection to the Space Program

    NASA Technical Reports Server (NTRS)

    Ng, Edward W.; Nash, Rebecca L.

    2007-01-01

    The 2006 Nobel Prize in Physics was heralded by some in the press as the 'First Nobel Prize for Space Exploration.' Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, 'The COBE results provided increased support for the Big Bang scenario for the origin of the Universe... These measurements also marked the inception of cosmology as a precise science.' NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons (of either gender) are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark.

  20. Polio and Nobel prizes: looking back 50 years.

    PubMed

    Norrby, Erling; Prusiner, Stanley B

    2007-05-01

    In 1954, John Enders, Thomas Weller, and Frederick Robbins were awarded the Nobel Prize in Physiology or Medicine "for their discovery of the ability of poliomyelitis viruses to grow in cultures of various types of tissue."5370 This discovery provided for the first time opportunities to produce both inactivated and live polio vaccines. By searching previously sealed Nobel Committee archives, we were able to review the deliberations that led to the award. It appears that Sven Gard, who was Professor of Virus Research at the Karolinska Institute and an adjunct member of the Nobel Committee at the time, played a major role in the events leading to the awarding of the Prize. It appears that Gard persuaded the College of Teachers at the Institute to decide not to follow the recommendation by their Nobel Committee to give the Prize to Vincent du Vigneaud. Another peculiar feature of the 1954 Prize is that Weller and Robbins were included based on only two nominations submitted for the first time that year. In his speech at the Nobel Prize ceremony, Gard mentioned the importance of the discovery for the future production of vaccines, but emphasized the implications of this work for growing many different, medically important viruses. We can only speculate on why later nominations highlighting the contributions of scientists such as Jonas Salk, Hilary Koprowski, and Albert Sabin in the development of poliovirus vaccines have not been recognized by a Nobel Prize. PMID:17469121

  1. The Alfred Nobel rocket camera. An early aerial photography attempt

    NASA Astrophysics Data System (ADS)

    Ingemar Skoog, A.

    2010-02-01

    Alfred Nobel (1833-1896), mainly known for his invention of dynamite and the creation of the Nobel Prices, was an engineer and inventor active in many fields of science and engineering, e.g. chemistry, medicine, mechanics, metallurgy, optics, armoury and rocketry. Amongst his inventions in rocketry was the smokeless solid propellant ballistite (i.e. cordite) patented for the first time in 1887. As a very wealthy person he actively supported many Swedish inventors in their work. One of them was W.T. Unge, who was devoted to the development of rockets and their applications. Nobel and Unge had several rocket patents together and also jointly worked on various rocket applications. In mid-1896 Nobel applied for patents in England and France for "An Improved Mode of Obtaining Photographic Maps and Earth or Ground Measurements" using a photographic camera carried by a "…balloon, rocket or missile…". During the remaining of 1896 the mechanical design of the camera mechanism was pursued and cameras manufactured. In April 1897 (after the death of Alfred Nobel) the first aerial photos were taken by these cameras. These photos might be the first documented aerial photos taken by a rocket borne camera. Cameras and photos from 1897 have been preserved. Nobel did not only develop the rocket borne camera but also proposed methods on how to use the photographs taken for ground measurements and preparing maps.

  2. Maria Goeppert Mayer and the Nobel Prize

    NASA Astrophysics Data System (ADS)

    Johnson, Karen E.

    2013-04-01

    When Maria Goeppert Mayer was awarded the Nobel Prize in Physics in 1963, she was only the second woman to receive that award and there have been no additional female physics laureates since. Mayer was uniquely prepared to carry out her prize-winning work on the nuclear shell model. Furthermore, she worked with some of the most well-known figures in mid-twentieth century physics, and her award came at a time when American science was in ascendance. Why, then, is her name so little known beyond the physics community? There are several possible answers to this question, ranging from the personal (her modest reaction to public acclaim) and the scientific (the mathematically abstract nature of her prize-winning work), to the national (the nature of the issues commanding public attention in the 1960s). In this talk I will present an overview of the circumstances that enabled Mayer to make exceptional contributions to nuclear physics, and then examine some of the possible reasons why her exceptional status is not more widely known.

  3. Dr. Samuel Ting, nobel laureate, visits SSPF.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Nobel laureate Professor Samuel C. C. Ting of the Massachusetts Institute of Technology pauses for a photo in the Space Station Processing Facility. Dr. Ting is directing an experiment, an international collaboration of some 37 universities and laboratories, using a state-of-the-art particle physics detector called the Alpha Magnetic Spectrometer (AMS), which will fly on a future launch to the International Space Station. Using the unique environment of space, the AMS will study the properties and origin of cosmic particles and nuclei including antimatter and dark matter. AMS flew initially as a Space Shuttle payload on the June 1998 mission STS-91 that provided the investigating team with data on background sources and verified the detector's performance under actual space flight conditions. The detector's second space flight is scheduled to be launched on mission UF-4 October 2003 for installation on the Space Station as an attached payload. Current plans call for operating the detector for three years before it is returned to Earth on the Shuttle. Using the Space Station offers the science team the opportunity to conduct the long-duration research above the Earth's atmosphere necessary to collect sufficient data required to accomplish the science objectives.

  4. Muller's Nobel Prize Lecture: when ideology prevailed over science.

    PubMed

    Calabrese, Edward J

    2012-03-01

    This paper extends and confirms the report of Calabrese (Calabrese, E. J. (2011b). Muller's Nobel Lecture on dose-response for ionizing radiation: Ideology or science? Arch. Toxicol. 85, 1495-1498) that Hermann J. Muller knowingly made deceptive comments in his 1946 Nobel Prize Lecture (Muller, H. J. (1946). Nobel Prize Lecture. Stockholm, Sweden. Available at http://www.nobelprize.org/. Accessed December 12) concerning the dose-response. Supporting a linearity perspective, Muller stated there is "no escape from the conclusion that there is no threshold" while knowing the results of a recent study by Ernst Caspari and Curt Stern contradicted these comments. Recently uncovered private correspondence between Muller and Stern reveals Muller's scientific assessment of the Caspari and Stern manuscript in a letter from Muller to Stern 5 weeks (14 January 1947) after his Nobel Prize Lecture of 12 December 1946. Muller indicated that the manuscript was of acceptable scientific quality; he indicated the manuscript should be published, but the findings needed replication because it significantly challenged the linearity hypothesis. These findings complement the previous letter (12 November 1946 letter from Muller to Stern), which revealed that Muller received the Caspari and Stern manuscript, recognized it as significant, and recommended its replication 5 weeks before his Nobel Prize Lecture. Muller therefore supported this position immediately before and after his Nobel Prize Lecture. Muller's opinions on the Caspari and Stern manuscript therefore had not changed during the time leading up to his Lecture, supporting the premise that his Lecture comments were deceptive. These findings are of historical and practical significance because Muller's comments were a notable contributory factor, changing how risks would be assessed for carcinogens (i.e., changing from a threshold to a linear model) throughout the 20th century to the present.

  5. Muller's Nobel Prize Lecture: when ideology prevailed over science.

    PubMed

    Calabrese, Edward J

    2012-03-01

    This paper extends and confirms the report of Calabrese (Calabrese, E. J. (2011b). Muller's Nobel Lecture on dose-response for ionizing radiation: Ideology or science? Arch. Toxicol. 85, 1495-1498) that Hermann J. Muller knowingly made deceptive comments in his 1946 Nobel Prize Lecture (Muller, H. J. (1946). Nobel Prize Lecture. Stockholm, Sweden. Available at http://www.nobelprize.org/. Accessed December 12) concerning the dose-response. Supporting a linearity perspective, Muller stated there is "no escape from the conclusion that there is no threshold" while knowing the results of a recent study by Ernst Caspari and Curt Stern contradicted these comments. Recently uncovered private correspondence between Muller and Stern reveals Muller's scientific assessment of the Caspari and Stern manuscript in a letter from Muller to Stern 5 weeks (14 January 1947) after his Nobel Prize Lecture of 12 December 1946. Muller indicated that the manuscript was of acceptable scientific quality; he indicated the manuscript should be published, but the findings needed replication because it significantly challenged the linearity hypothesis. These findings complement the previous letter (12 November 1946 letter from Muller to Stern), which revealed that Muller received the Caspari and Stern manuscript, recognized it as significant, and recommended its replication 5 weeks before his Nobel Prize Lecture. Muller therefore supported this position immediately before and after his Nobel Prize Lecture. Muller's opinions on the Caspari and Stern manuscript therefore had not changed during the time leading up to his Lecture, supporting the premise that his Lecture comments were deceptive. These findings are of historical and practical significance because Muller's comments were a notable contributory factor, changing how risks would be assessed for carcinogens (i.e., changing from a threshold to a linear model) throughout the 20th century to the present. PMID:22166484

  6. The Energetic Universe: a Nobel Surprise

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert P.

    2015-01-01

    he history of cosmic expansion can be accurately traced using Type Ia supernovae (SN Ia) as standard candles. Over the past 40 years, this effort has improved its precision and extended its reach in redshift. Recently, the distances to SN Ia have been measured to a precision of ~5% using luminosity information that is encoded in the shape of the supernova's rest frame optical light curve. By combining observations of supernova distances as measured from their light curves and redshifts measured from spectra, we can detect changes in the cosmic expansion rate. This empirical approach was successfully exploited by the High-Z Supernova Team and by the Supernova Cosmology Project to detect cosmic expansion and to infer the presence of dark energy. The 2011 Nobel Prize in Physics was awarded to Perlmutter, Schmidt and Riess for this discovery. The world's sample of well-observed SN Ia light curves at high redshift and low, approaching 1000 objects, is now large enough to make statistical errors due to sample size a thing of the past. Systematic errors are now the challenge. To learn the properties of dark energy and determine, for example, whether it has an equation-of-state that is different from the cosmological constant demands higher precision and better accuracy. The largest systematic uncertainties come from light curve fitters, photometric calibration errors, and from uncertain knowledge of the scattering properties of dust along the line of sight. Efforts to use SN Ia spectra as luminosity indicators have had some success, but have not yet produced a big step forward. Fortunately, observations of SN Ia in the near infrared (NIR), from 1 to 2 microns, offer a very promising path to better knowledge of the Hubble constant and to improved constraints on dark energy. In the NIR, SN Ia are better standard candles and the effects of dust absorption are smaller. We have begun an HST program dubbed RAISIN (SN IA in the IR) to tighten our grip on dark energy properties

  7. The Transuranium Elements: Early History (Nobel Lecture)

    DOE R&D Accomplishments Database

    McMillan, E. M.

    1951-12-12

    In this talk the author tells of the circumstances that led to the discovery of neptunium, the first element beyond uranium, and the partial identification of plutonium, the next one beyond that. The part of the story that lies before 1939 has already been recounted here in the Nobel lectures of Fermi and Hahn. Rather the author starts with the discovery of fission by Hahn and Strassmann. News of this momentous discovery reached Berkeley early in 1939. The staff of the Radiation Laboratory was put into a state of great excitement and several experiments of a nature designed to check and extend the announced results were started, using ionization chambers and pulse amplifiers, cloud chambers, chemical methods, and so forth. The author decided to do an experiment of a very simple kind. When a nucleus of uranium absorbs a neutron and fission takes place, the two resulting fragments fly apart with great violence, sufficient to propel them through air or other matter for some distance. This distance, called the "range", is quantity of some interest, and the author undertook to measure it by observing the depth of penetration of the fission fragments in a stack of thin aluminum foils. The fission fragments came from a thin layer of uranium oxide spread on a sheet of paper, and exposed to neutrons from a beryllium target bombarded by 8 Mev deuterons in the 37-inch cyclotron. The aluminum foils, each with a thickness of about half a milligram per square centimeter, were stacked like the pages of a book in immediate contact with the layer of uranium oxide. After exposure to the neutrons, the sheets of aluminum were separated and examined for radioactivity by means of an ionization chamber. The fission fragments of course are radioactive atoms, and their activity is found where they stop.

  8. Pioneers in ozone research receive Nobel Prize in chemistry

    NASA Astrophysics Data System (ADS)

    The Royal Swedish Academy of Sciences has awarded its 1995 Nobel Prize in chemistry to three AGU members for their work in atmospheric chemistry, particularly concerning the formation and decomposition of ozone. Only one other Nobel prize has ever been awarded in the realm of atmospheric research. The honorees are professors Paul Crutzen of the Max-Planck Institute for Chemistry in Mainz, Germany; Mario Molina of the Massachusetts Institute of Technology; and F. Sherwood Rowland of the University of California, Irvine. The Academy credits the three with contributing to “our salvation from a global environmental problem that could have catastrophic consequences.”

  9. PREFACE: Nobel Symposium 129 on Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Bergström, Lars; Botner, Olga; Carlson, Per; Hulth, Per Olof; Ohlsson, Tommy

    2005-01-01

    Nobel Symposium 129 on Neutrino Physics was held at Haga Slott in Enköping, Sweden during August 19 24, 2004. Invited to the symposium were around 40 globally leading researchers in the field of neutrino physics, both experimental and theoretical. In addition to these participants, some 30 local researchers and graduate students participated in the symposium. The dominant theme of the lectures was neutrino oscillations, which after several years were recently verified by results from the Super-Kamiokande detector in Kamioka, Japan and the SNO detector in Sudbury, Canada. Discussion focused especially on effects of neutrino oscillations derived from the presence of matter and the fact that three different neutrinos exist. Since neutrino oscillations imply that neutrinos have mass, this is the first experimental observation that fundamentally deviates from the standard model of particle physics. This is a challenge to both theoretical and experimental physics. The various oscillation parameters will be determined with increased precision in new, specially designed experiments. Theoretical physics is working intensively to insert the knowledge that neutrinos have mass into the theoretical models that describe particle physics. It will probably turn out that the discovery of neutrino oscillations signifies a breakthrough in the description of the very smallest constituents of matter. The lectures provided a very good description of the intensive situation in the field right now. The topics discussed also included mass models for neutrinos, neutrinos in extra dimensions as well as the `seesaw mechanism', which provides a good description of why neutrino masses are so small. Also discussed, besides neutrino oscillations, was the new field of neutrino astronomy. Among the questions that neutrino astronomy hopes to answer are what the dark matter in the Universe consists of and where cosmic radiation at extremely high energies comes from. For this purpose, large neutrino

  10. Modular Curriculum: English, American Nobel Prize Winners in Literature.

    ERIC Educational Resources Information Center

    Phillips, James A.

    This independent study module treats those Americans who have been awarded the Nobel Prize in Literature. They include Sinclair Lewis, Eugene O'Neill, T. S. Eliot, William Faulkner, Ernest Hemingway, John Steinbeck, and Pearl Buck. Selections from the writings of these authors are included. Their works represent many literary genres and also…

  11. Nobel Laureate Mohamed ElBaradei: Preventing Nuclear Proliferation Peacefully

    ERIC Educational Resources Information Center

    Dufour, Joanne

    2006-01-01

    The 2005 Nobel Peace Prize was awarded 60 years after the first atomic bombs fell on the Japanese cities of Hiroshima and Nagasaki, killing more than 200,000 people; the peace prize raises the hopes of those working to rejuvenate global efforts to prevent the spread and development of nuclear arms. This article profiles the International Atomic…

  12. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Fry, Charles G.

    2004-01-01

    Nobel Prize in Medicine awarded in December 2003 to chemist Paul C. Lauterbur and physicist Peter Mansfield for the development of magnetic resonance imaging (MRI), a long overdue recognition of the huge impact MRI has had in medical diagnostics and research is mentioned. MRI was derived, and remains an extension of nuclear magnetic resonance…

  13. Using the Nobel Laureates in Economics to Teach Quantitative Methods

    ERIC Educational Resources Information Center

    Becker, William E.; Greene, William H.

    2005-01-01

    The authors show how the work of Nobel Laureates in economics can enhance student understanding and bring them up to date on topics such as probability, uncertainty and decision theory, hypothesis testing, regression to the mean, instrumental variable techniques, discrete choice modeling, and time-series analysis. (Contains 2 notes.)

  14. Single Molecules, Cells, and Super-Resolution Optics (Nobel Lecture).

    PubMed

    Betzig, Eric

    2015-07-01

    The resolution of a microscope is determined by the diffraction limit in classical microscopy, whereby objects that are separated by half a wavelength can no longer be visually separated. To go below the diffraction limit required several tricks and discoveries. In his Nobel Lecture, E. Betzig describes the developments that have led to modern super high-resolution microscopy.

  15. Nobel prize awarded to pioneers in ozone research

    SciTech Connect

    1996-12-31

    This article details the achievements of the three individuals who shared the 1995 Nobel Prize in Chemistry - Paul Crutzen, Mario Molina, and F. Sherwood Rowland - for their work in atmospheric chemistry, particularly the chemical processes that deplete the ozone layer. Background information about the ozone layer is presented as well as highlights of the ozone research done by the prize winners.

  16. E Pluribus Tres: The 2009 Nobel Prize in Chemistry

    PubMed Central

    Carter, Charles W.

    2009-01-01

    Summary This year’s Nobel Prize in Chemistry celebrates a multitude of research areas, making the difficult selection of those most responsible for providing atomic details of the nanomachine that makes proteins according to genetic instructions. The Ribosome and RNA polymerase (recognized in 2006) structures highlight a puzzling asymmetry at the origins of biology. PMID:20004159

  17. Eppur si muove! The 2013 Nobel Prize in Chemistry.

    PubMed

    Smith, Jeremy C; Roux, Benoît

    2013-12-01

    The 2013 Nobel Prize in Chemistry has been awarded to Martin Karplus, Michael Levitt, and Arieh Warshel for their work on developing computational methods to study complex chemical systems. Their work has led to mechanistic critical insights into chemical systems both large and small and has enabled progress in a number of different fields, including structural biology.

  18. E pluribus tres: the 2009 nobel prize in chemistry.

    PubMed

    Carter, Charles W

    2009-12-01

    This year's Nobel Prize in Chemistry celebrates a multitude of research areas, making the difficult selection of those most responsible for providing atomic details of the nanomachine that makes proteins according to genetic instructions. The Ribosome and RNA polymerase (recognized in 2006) structures highlight a puzzling asymmetry at the origins of biology.

  19. Pat Thiel talks about attending the Nobel Prize Award Ceremony

    ScienceCinema

    Thiel, Pat

    2016-07-12

    Pat Thiel, Ames Laboratory senior scientist and Iowa State University Distinguished Professor of Chemistry, was invited to be a guest at the ceremony on December 10th, in Stockholm, Sweden, where Danny Shechtman, Ames Laboratory scientist, received the 2011 Nobel Prize in Chemistry. Following her return to the Lab, Thiel shared some of her recollections of the momentous event.

  20. 2008 Nobel prize in Medicine for discoverers of HIV

    PubMed Central

    Lever, Andrew ML; Berkhout, Ben

    2008-01-01

    Françoise Barré-Sinoussi and Luc Montagnier, codiscoverers of HIV, the causative agent of AIDS, have been awarded the 2008 Nobel Prize in Physiology or Medicine. They share this prize with Harald zur Hausen who was responsible for establishing the link between human papilloma virus infection and cervical carcinoma. PMID:18854052

  1. The competition 'First Step to Nobel Prize in Physics'

    NASA Astrophysics Data System (ADS)

    Gorzkowski, W.; Surya, Y.; Żuberek, R.

    2011-07-01

    This paper presents the history of the competition First Step to Nobel Prize in Physics organized by Poland, its development from a national workshop in 1991/92 to an international competition nowadays and its organization, as well as the results obtained by the participants.

  2. How Robert A. Millikan Got the Physics Nobel Prize

    ERIC Educational Resources Information Center

    Panusch, Martin; Heering, Peter; Singh, Rajinder

    2010-01-01

    In 1923, R.A. Millikan was awarded the Nobel Prize in Physics for his work on the elementary charge of electricity and on the photoelectric effect. Recently, historical research had a focus on Millikan's publication practice, as well as on the role of his assistant, Harvey Fletcher. Several studies have raised doubts on whether Millikan can…

  3. The Competition "First Step to Nobel Prize in Physics"

    ERIC Educational Resources Information Center

    Gorzkowski, W.; Surya, Y; Zuberek, R

    2011-01-01

    This paper presents the history of the competition First Step to Nobel Prize in Physics organized by Poland, its development from a national workshop in 1991/92 to an international competition nowadays and its organization, as well as the results obtained by the participants. (Contains 1 table.)

  4. [Ralph M. Steinman, 2011 Nobel for his contributions on immunity].

    PubMed

    Bonifaz, Laura C

    2012-01-01

    Ralph M. Steinman was the recipient of the 2011 Nobel Prize of Physiology and Medicine due to the discovery of dendritic cells, which have a crucial role on the onset of acquired immunity, a fundamental event in the organism's defense. Today, dendritic cells are used in the development of vaccines and in cancer therapy. Steinman's contributions have been fundamental in the understanding of immunity.

  5. An Elusive Honor: Psychology, Behavior, and the Nobel Prize

    ERIC Educational Resources Information Center

    Pickren, Wade E.

    2003-01-01

    Apart from economics, the human sciences have not generally been rewarded with high honors from the world community. Psychology has been awarded the distinction of a Nobel Prize only when it has served a role in explicating human behavior in relation to economics. Yet psychological science has played no small part in the work of a number of Nobel…

  6. [The 2008 Nobel Prizes in medicine and physiology].

    PubMed

    Valdespino, José Luis; Ponce-de-León, Samuel; de Lourdes Garcia, María

    2009-01-01

    For the last century, the Nobel Prize in physiology and medicine has been awarded worldwide to significant discoveries. The prize allows the dissemination of information on the achievements of recipients, promotes understanding of scientific knowledge among the public and attracts young students to biomedical research. This paper briefly describes the prizes granted to the fields of physiology and medicine, emphasizing those that related to development of vaccines. PMID:19685833

  7. When a misperception favors a tragedy: Carlos Chagas and the Nobel Prize of 1921.

    PubMed

    Bestetti, Reinaldo B; Couto, Lucélio B; Cardinalli-Neto, Augusto

    2013-11-20

    Carlos Chagas, the discoverer of Chagas' disease was nominated to the Nobel Prize in 1921, but none did win the prize in that year. As a leader of a young scientist team, he discovered all aspects of the new disease from 1909 to 1920. It is still obscure why he did not win the Nobel Prize in 1921. Chagas was discarded by Gunnar Hedrèn on April 16, 1921. Hedrèn should have made a written report about the details of his evaluation to the Nobel Committee. However, such a document has not been found in the Nobel Committee Archives. No evidence of detractions made by Brazilian scientists on Chagas was found. Since Chagas nomination was consistent with the Nobel Committee requirements, as seen in the presentation letter by until now unknown Cypriano de Freitas, it become clear that Chagas did not win the Nobel Prize exclusively because the Nobel Committee did not perceive the importance of his discovery. Thus, it would be fair a posthumous Nobel Prize of 1921 to Carlos Chagas. A diploma of the Nobel Prize, as precedent with Dogmack in 1947, would recognize the merit of the scientist who made the most complete medical discovery of all times.

  8. A Century of Chemical Dynamics Traced through the Nobel Prizes. 1909: Wilhelm Ostwald

    NASA Astrophysics Data System (ADS)

    van Houten, Josh

    2002-02-01

    This, the third of a series of thirteen articles on Nobel Laureates in chemical dynamics, features the work of Wilhelm Ostwald, who won the Nobel Prize in 1909 for his work on catalysis, equilibria, and reaction rates. The first two articles in this series discussed two of Ostwald's students--Jacobus van't Hoff (Nobel 1901) and Svante Arrhenius (Nobel 1903). Ostwald's own studies of catalysis were guided by the work of those two former students. Ostwald's name remains associated with the catalytic process used to manufacture nitric acid from ammonia.

  9. [Weizsäcker, Bethe and the Nobel Prize].

    PubMed

    Schaaf, Michael

    2014-01-01

    For his work on nuclear physics Carl Friedrich von Weizsäcker was twice nominated for the Nobel Prize in physics. Bethe had worked on the energy production in stars at about the same time as Weizsäcker but independently from him. The Nobel Committee valued the structural depth of BETHE'S work more than Weizsäcker's temporal priority because Bethe had described the nuclear reactions quantitatively and had shown a much deeper understanding of the nuclear processes in the centre of stars whereas Weizsäcker had worked more qualitatively. There are no reasons to believe that political resentments towards Weizsäcker played any significant role in awarding of the Nobel Prize in Physics in 1967 only to Bethe. The lives and works of Weizsäcker and Bethe show some remarkable parallels, ranging from calculating the binding energy in nuclei to the energy production in sun-like and massive stars to peace- and disarmament initiatives.

  10. Towards Producing Black Nobel Laureates Affiliated with ``African Universities''

    NASA Astrophysics Data System (ADS)

    Kenneth, Jude

    While Africa has produced a handful Nobel laureate in literature and peace, it has continued to shy away from producing any in the other categories. The reason is not farfetched; our university system is not up to standard. It is saddening that in this century, African countries place emphasis on certificates and not on knowledge. This has made the continent produce students that lack the intellectual capability, experimental ability, fundamental training, creativity, and motivation to excel except they get a foreign training. It is this backdrop that precipitated the research into the methods of teaching and research in universities across Africa. The study is designed to identify the problems and proffer solution to them. Two important questions immediately come to mind. (1) What factors account for the difficulty in producing Nobel laureates affiliated with African universities? (2) What strategies could be adopted to improve teaching and research in African universities? Several factors were investigated which revolve around funding, the competence of the lecturers, quality of students admitted, attitude of the students, parents and government. Nigerian universities were investigated and important deductions were made. During the study an inquiry was made on the method of instruction at various universities, from result obtained, the study therefore concluded that adequate funding, the presence of erudite scholars and brilliant minds will produce future Nobel laureate affiliated with the continent. The study therefore recommended admission and employment of only students and lecturers who have got a thing for academics into the universities and adequate funding of universities and research centres.

  11. G-protein-coupled receptors and their (Bio) chemical significance win 2012 Nobel Prize in Chemistry.

    PubMed

    Lin, Hsi-Hsien

    2013-01-01

    G-protein-coupled receptors (GPCRs) are seven transmembrane cell surface proteins specialized in cellular communication. These receptors represent a major gateway through which cells convert external cues into intracellular signals and respond with appropriate actions. While the effects of hormones, neurotransmitters, and drugs on cells, tissues, organs, and even whole organisms are well described, the molecular identity of the direct targets and the diverse signaling mechanisms of these biological ligands have been slow and hard to define. The Nobel Prize in Chemistry for the year 2012 acknowledges the importance of GPCRs in these processes, especially for the contribution of Profs Robert J. Lefkowitz and Brian K. Kobilka to the studies of GPCRs. In this brief review, the seminal works accomplished by the two GPCR pioneers are summarized and the (bio) chemical significance of GPCRs in health and disease is discussed.

  12. Remembering Charles B. Huggins' Nobel Prize for Hormonal Treatment of Prostatic Cancer at its 50th Anniversary.

    PubMed

    Hansson, Nils; Moll, Friedrich; Schultheiss, Dirk; Krischel, Matthis

    2016-06-01

    Charles B. Huggins received the Nobel Prize in 1966. Based on archival sources from the Nobel archive we have found that nominators emphasised the practical therapeutic applications of his discoveries that were showing 25 yr after his key publications.

  13. A Century of Chemical Dynamics Traced through the Nobel Prizes. 1956: Hinshelwood and Semenov

    NASA Astrophysics Data System (ADS)

    van Houten, Josh

    2002-04-01

    This is the fifth in a series of thirteen monthly essays reviewing the Nobel Prizes in chemical dynamics during the 20th century. Cyril Hinshelwood and Nikolay Semenov received the Nobel Prize in 1956 "for their researches into the mechanism of chemical reactions," in particular, chain reactions.

  14. A Century of Chemical Dynamics Traced Through the Nobel Prizes. 1967: Eigen, Norrish, and Porter

    NASA Astrophysics Data System (ADS)

    van Houten, Josh

    2002-05-01

    The third Nobel Prize for research in chemical dynamics awarded during the middle decades of the Twentieth Century is reviewed. Manfred Eigen, Ronald Norrish, and George Porter received the Nobel Prize in 1967 "for studies of extremely fast chemical reactions, effected by disturbing the equilibrium by means of very short impulses of energy," i.e., temperature jump, pressure jump, and flash photolysis.

  15. The Nobel Prize in the Physics Class: Science, History, and Glamour

    ERIC Educational Resources Information Center

    Eshach, Haim

    2009-01-01

    This paper introduces a novel strategy for teaching physics: using the Nobel Physics Prize as an organizational theme for high school or even first year university physics, bringing together history, social contexts of science, and central themes in modern physics. The idea underlying the strategy is that the glamour and glitter of the Nobel Prize…

  16. Following Zahka: Using Nobel Prize Winners' Speeches and Ideas to Teach Economics

    ERIC Educational Resources Information Center

    Shanahan, Martin P.; Wilson, John K.; Becker, William E.

    2012-01-01

    Over 20 years ago, the late William Zahka (1990, 1998) outlined how the acceptance speeches of those who received the Nobel Memorial Prize in Economic Science could be used to teach undergraduates. This article updates and expands Zahka's work, identifying some of the issues discussed by recent Nobel Laureates, classifying their speeches by topic…

  17. ["If Berger had survived the second world war - he certainly would have been a candidate for the Nobel Prize". Hans Berger and the legend of the Nobel Prize].

    PubMed

    Gerhard, U-J; Schönberg, A; Blanz, B

    2005-03-01

    The public opinion pays much attention to the Nobel Prize as an indicator for the scientific efficiency of a university or a country in connection with foundation of so-called elite universities. The former holder of the psychiatric chair in Jena and discoverer of the electroencephalogram Hans Berger (1873 - 1941) came into discussion as candidate for the Nobel Prize in physiology or medicine. The current medical-historical publications maintain the view that Berger should have received the Nobel Prize in 1936 as well as in 1949. This was prevented in 1936 by an enactment from Hitler, which forbid him to accept the prize, and later in 1949 by Berger's own death. According to documents of the Nobel archives these statements can be disproved. Berger was only nominated three times out of 65 nominations in 1940. Because of his death the other two recommendations in 1942 and 1947 were never evaluated. PMID:15747225

  18. [On the Awarding of the First Nobel Prize for Physiology or Medicine to Emil von Behring].

    PubMed

    Hansson, Nils; Enke, Ulrike

    2015-12-01

    In his will of 1895, the Swedish inventor Alfred Nobel laid the foundation for prizes in physics, chemistry, physiology or medicine, literature, and peace to those who had "conferred the greatest benefit on mankind" during the last year. The Nobel Prize is today widely considered as the most prestigious international symbol of scientific excellence, but it still is an exciting research question how it gained such prestige. Drawing on files from the Emil von Behring Archive in Marburg, Germany, and the Archive of the Nobel Assembly for Physiology or Medicine in Stockholm this essay aims at shedding light on why the first Nobel Prize for Physiology or Medicine in 1901 was awarded the German immunologist Emil von Behring, and how this decision was viewed at that time. This study is part of a research project that explores mechanisms leading to scientific recognition by using the example of the Nobel Prize for Physiology or Medicine.

  19. [On the Awarding of the First Nobel Prize for Physiology or Medicine to Emil von Behring].

    PubMed

    Hansson, Nils; Enke, Ulrike

    2015-12-01

    In his will of 1895, the Swedish inventor Alfred Nobel laid the foundation for prizes in physics, chemistry, physiology or medicine, literature, and peace to those who had "conferred the greatest benefit on mankind" during the last year. The Nobel Prize is today widely considered as the most prestigious international symbol of scientific excellence, but it still is an exciting research question how it gained such prestige. Drawing on files from the Emil von Behring Archive in Marburg, Germany, and the Archive of the Nobel Assembly for Physiology or Medicine in Stockholm this essay aims at shedding light on why the first Nobel Prize for Physiology or Medicine in 1901 was awarded the German immunologist Emil von Behring, and how this decision was viewed at that time. This study is part of a research project that explores mechanisms leading to scientific recognition by using the example of the Nobel Prize for Physiology or Medicine. PMID:26676474

  20. ECONOMICS NOBEL: Dealing With Biases and Discrete Choices.

    PubMed

    Seife, C

    2000-10-20

    This year's Bank of Sweden Prize in Economic Sciences, given in honor of Alfred Nobel, goes to two researchers who gave the field of microeconomics--the study of individuals' economic behavior--new tools to help draw conclusions from imperfect data. James Heckman of the University of Chicago wins half of this year's prize for coming up with ways to deal with selection biases. Daniel McFadden of the University of California, Berkeley, tackled a different conundrum: how to quantify discrete choices rather than continuous ones. PMID:17844279

  1. Paul Ehrlich: the Nobel Prize in physiology or medicine 1908.

    PubMed

    Piro, Anna; Tagarelli, Antonio; Tagarelli, Giuseppe; Lagonia, Paolo; Quattrone, Aldo

    2008-01-01

    We wish to commemorate Paul Ehrlich on the centennial of his being awarded the Nobel Prize in Physiology or Medicine in 1908. His studies are now considered as milestones in immunology: the morphology of leukocytes; his side-chain theory where he defined the cellular receptor for first time; and his clarification of the difference between serum therapy and chemotherapy. Ehrlich also invented the first chemotherapeutic drug: compound 606, or Salvarsan. We have used some original documents from the Royal Society of London, where Ehrlich was a fellow, and from Leipzig University, where he took a degree in medicine.

  2. INTRODUCTION: Many-Body Theory of Atomic Systems: Proceedings of the Nobel Symposium 46

    NASA Astrophysics Data System (ADS)

    Lindgren, Ingvar; Lundqvist, Stig

    1980-01-01

    corresponding experimental results, which will eventually lead to a better understanding of the behaviour of many-electron systems and possibly also of many-fermion systems in general. In addition to the static properties of atomic systems there is nowadays a great interest in the dynamics of the excitation process, which is of fundamental importance for our understanding of photoelectron and photoabsorption spectra. The experimental data being produced in this field are enormous and many intricate physical problems appear, which can only be understood by considering the atom as a fully interacting many-body system. All the new developments mentioned here have opened entirely new areas in atomic many-body theory, and we are evidently just at the verge of a very interesting period of rapid progress. It is quite evident that we could have limited the Symposium to atomic problems of the type described here. However, related problems appear in atoms bound in solids and in atoms/molecules bound to solid surfaces. Therefore, we proposed to include also some aspects of these fields in our program, which brought together scientists with different backgrounds, such as atomic and molecular physicists, theoretical chemists, solid state and surface physicists as well as nuclear physicists and quantum- liquid experts. The Symposium then got a distinctive inter-disciplinary character at the same time as it was concentrated on the specific atomic many-body problem. The response to our invitations to the Nobel Symposium was overwhelming. Many other participants were suggested and we extended the number of participants as far as we could. With the wide scope of the Symposium program and small format with regard to number, only a few representatives of each major area could be invited. The symposium gave an excellent picture how the various areas are developing. The various methods to treat the many-body problem were thoroughly discussed and many new results were reported. The relativistic many

  3. [Commentary on the Nobel Prize that has been granted in Medicine-Physiology, Chemistry and Physics to noteable investigators].

    PubMed

    Zárate, Arturo; Apolinar, Leticia Manuel; Saucedo, Renata; Basurto, Lourdes

    2015-01-01

    The Nobel Prize was established by Alfred Nobel in 1901 to award people who have made outstanding achievements in physics, chemistry and medicine. So far, from 852 laureates, 45 have been female. Marie Curie was the first woman to receive the Nobel Prize in 1903 for physics and eight years later also for chemistry It is remarkable that her daughter Irene and her husband also received the Nobel Prize for chemistry in 1935. Other two married couples, Cori and Moser, have also been awarded the Nobel Prize. The present commentary attempts to show the female participation in the progress of scientific activities.

  4. [Commentary on the Nobel Prize that has been granted in Medicine-Physiology, Chemistry and Physics to noteable investigators].

    PubMed

    Zárate, Arturo; Apolinar, Leticia Manuel; Saucedo, Renata; Basurto, Lourdes

    2015-01-01

    The Nobel Prize was established by Alfred Nobel in 1901 to award people who have made outstanding achievements in physics, chemistry and medicine. So far, from 852 laureates, 45 have been female. Marie Curie was the first woman to receive the Nobel Prize in 1903 for physics and eight years later also for chemistry It is remarkable that her daughter Irene and her husband also received the Nobel Prize for chemistry in 1935. Other two married couples, Cori and Moser, have also been awarded the Nobel Prize. The present commentary attempts to show the female participation in the progress of scientific activities. PMID:25946543

  5. "Highly qualified loser"? Harvey Cushing and the Nobel Prize.

    PubMed

    Hansson, Nils; Schlich, Thomas

    2015-04-01

    Neurosurgery, in particular surgery of the brain, was recognized as one of the most spectacular transgressions of the traditional limits of surgical work. With their audacious, technically demanding, laboratory-based, and highly promising new interventions, prominent neurosurgeons were primary candidates for the Nobel Prize. Accordingly, neurosurgical pioneers such as Victor Horsley and, in particular, Harvey Cushing continued to be nominated for the prize. However, only António Egas Moniz was eventually awarded the prestigious award in 1949 for the introduction of frontal lobotomy, an intervention that would no longer be prize-worthy from today's perspective. Horsley and Cushing, who were arguably the most important proponents of early neurosurgery, remained "highly qualified losers," as such cases have been called. This paper examines the nominations, reviews, and discussions kept in the Nobel Archives to understand the reasons for this remarkable choice. At a more general level, the authors use the example of neurosurgery to explore the mechanisms of scientific recognition and what could be called the enacting of excellence in science and medicine. PMID:25554824

  6. A Staged Reading of the Play: No No Nobel

    NASA Astrophysics Data System (ADS)

    A Staged Reading of the Play: No No Nobel -- In Biology, what discovery is considered the most important breakthrough of the 20th century? In Chemistry, what pattern development enabled chemists and physicists to understand the nature of and ultimately the atomic physics of the elements? In Physics, what experiment and theory in nuclear physics led to the most important journalistic story of the 20th century? In Cosmology, what theory was developed that enabled the understanding of the now named Big Bang theory and the evolution of the universe? In Science Education, what graduate student made a most important observation and ultimately the identification of a remnant of a supernova explosion? Join us for a dramatic staged reading of No No Nobel and find out what unifies all the above questions. The playwright is the science historian David Cassidy and the staged reading is performed by the Baltimore Improv Group www.bigimprov.org . After the performance, the playwright, the director Mike Harris and the actors will be available for a talk-back audience discussion. Produced by Brian Schwartz, Brooklyn College and the Graduate Center of the City University of New York

  7. How to get the Nobel Prize in physics

    NASA Astrophysics Data System (ADS)

    Nordling, Carl

    1995-01-01

    Every year, on the 10th of December, one piece is added to the history of science. This is the day when the Nobel Prizes are awarded to those scientists who "during the preceding year have conferred the greatest benefit on mankind". The Nobel Prize carries the highest prestige and fame of all distinctions in the world of science. There have been many speculations regarding the prize: What effect does it have on its recipients? Does it boost their research activities or does it kill them? Is it merely an after-the-fact recognition of important steps in the history of science, or does it also create history by changing the directions along which science develops? What role does it play in the sociology of science? Is it a prize for leaders of big research teams or is there a preference for the genius working completely on his own? Are there equal opportunities for men and women, for Swedes and Russians, for black and white? Where does one find the track that leads to Stockholm?

  8. "Highly qualified loser"? Harvey Cushing and the Nobel Prize.

    PubMed

    Hansson, Nils; Schlich, Thomas

    2015-04-01

    Neurosurgery, in particular surgery of the brain, was recognized as one of the most spectacular transgressions of the traditional limits of surgical work. With their audacious, technically demanding, laboratory-based, and highly promising new interventions, prominent neurosurgeons were primary candidates for the Nobel Prize. Accordingly, neurosurgical pioneers such as Victor Horsley and, in particular, Harvey Cushing continued to be nominated for the prize. However, only António Egas Moniz was eventually awarded the prestigious award in 1949 for the introduction of frontal lobotomy, an intervention that would no longer be prize-worthy from today's perspective. Horsley and Cushing, who were arguably the most important proponents of early neurosurgery, remained "highly qualified losers," as such cases have been called. This paper examines the nominations, reviews, and discussions kept in the Nobel Archives to understand the reasons for this remarkable choice. At a more general level, the authors use the example of neurosurgery to explore the mechanisms of scientific recognition and what could be called the enacting of excellence in science and medicine.

  9. Yellow fever and Max Theiler: the only Nobel Prize for a virus vaccine

    PubMed Central

    Norrby, Erling

    2007-01-01

    In 1951, Max Theiler of the Rockefeller Foundation received the Nobel Prize in Physiology or Medicine for his discovery of an effective vaccine against yellow fever—a discovery first reported in the JEM 70 years ago. This was the first, and so far the only, Nobel Prize given for the development of a virus vaccine. Recently released Nobel archives now reveal how the advances in the yellow fever vaccine field were evaluated more than 50 years ago, and how this led to a prize for Max Theiler. PMID:18039952

  10. Nobel prize winner trading card (CIRCA 1952). Elie Metchnikoff.

    PubMed

    Hammerschmidt, Dale E

    2003-03-01

    Russian doctor and bacteriologist, born in Ivanowca in 1845. He began his studies in Kharkov, continuing them at the Universities of Giessen, Gothingen, and Munich, later being named Professor of Zoology in Odessa in 1870. In the Canary Islands, he completed some anthropological works, but dedicated himself especially to studies of marine fauna. In 1887, much taken by the work of Pasteur, he wrote to him asking for a position in his laboratories; in a short time he became one of the principal collaborators with the master, especially in works concerning bacteriology. These were an inspiration to him, and led him to his famous theory of phagocytosis, the defensive act whereby white blood cells protect an organism against pathogenic microbes. Metchnikoff supposed that old age was avoidable, and subscribed to the materialistic school of thought. He was awarded the Nobel Prize in 1908. (With the complements of the Jose Lopez Luis Cigarillo Factory, Tenerife).

  11. Honoring antiparasitics: The 2015 Nobel Prize in Physiology or Medicine.

    PubMed

    Chen, Wei-June

    2016-04-01

    Protozoa and helminths are the two main groups that cause parasitic diseases with a broad spectrum of clinical symptoms. Protozoa are unicellular organisms like the malaria parasite Plasmodium, which is responsible for the majority of deaths associated with parasitic infections. Helminths are alternative parasites that can produce debilitating diseases in hosts, some of which result in chronic infections. The discovery of effective therapeutic drugs is the key to improving health in regions of poverty and poor sanitation where these parasites usually occur. It is very encouraging that the 2015 Nobel Prize in Physiology or Medicine was awarded to Youyou Tu as well as William C. Campbell and Satoshi Õmura for their considerable contributions in discovering artemisinin and avermectin, respectively. Both drugs revolutionized therapies for filariasis and malaria, significantly reducing by large percentages their morbidity and mortality. PMID:27372164

  12. Honoring antiparasitics: The 2015 Nobel Prize in Physiology or Medicine.

    PubMed

    Chen, Wei-June

    2016-04-01

    Protozoa and helminths are the two main groups that cause parasitic diseases with a broad spectrum of clinical symptoms. Protozoa are unicellular organisms like the malaria parasite Plasmodium, which is responsible for the majority of deaths associated with parasitic infections. Helminths are alternative parasites that can produce debilitating diseases in hosts, some of which result in chronic infections. The discovery of effective therapeutic drugs is the key to improving health in regions of poverty and poor sanitation where these parasites usually occur. It is very encouraging that the 2015 Nobel Prize in Physiology or Medicine was awarded to Youyou Tu as well as William C. Campbell and Satoshi Õmura for their considerable contributions in discovering artemisinin and avermectin, respectively. Both drugs revolutionized therapies for filariasis and malaria, significantly reducing by large percentages their morbidity and mortality.

  13. Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize

    ScienceCinema

    Perlmutter, Saul

    2016-07-12

    The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department’s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.” DOE’s Office of Science has supported Dr. Perlmutter’s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter

  14. [Posthumous nomination for Medicine Nobel Prizes. I. The Romantic Era (1800-1848)].

    PubMed

    Cruz-Coke, R

    1997-04-01

    In the centennial of Alfred Nobel's death, the author proposes the nomination of great physicians of XIX century for a posthumous Medicine Nobel Prize. The valorization given by medical historians such as Garrison, Lavastine, Castiglioni, Lain Entralgo and Guerra, was used to select the best candidates. One to three names were assigned per year, from 1800 to 1848. Four categories of "Romantic Nobel Prizes" are assigned: a) Founders of basic disciplines (anatomy, chemistry, physiology etc); b) Masters of clinical and surgical medicine, pathology and specialties; c) Discoverers of transcendental diseases that are eponyms and d) Other great inventors or discoverers. A total of 66 nominees for the Nobel Prize, equally distributed between French, German and English physician, are presented. The omissions and limitation of this proposals are discussed. PMID:9460293

  15. Nobel Prize for Physical Therapy? Rise, Fall, and Revival of Medico-Mechanical Institutes.

    PubMed

    Hansson, Nils; Ottosson, Anders

    2015-08-01

    This historical vignette explores the considerations of the Nobel Prize Committee for Physiology or Medicine by vetting the Nobel Prize chances of Dr Gustaf Zander (1835-1920). His way to stardom started 150 years ago when he began mechanizing the passive and active movements that physical therapists manually used to treat diseases. A glance at his machines shows that they parallel surprisingly well what can be found in modern fitness studios. By combining files from the Nobel Prize Archive and sources from the first physical therapists, this vignette pieces together why Zander was considered one of the best candidates for the Nobel Prize in 1916. By providing this glimpse of history, questions about the origin of physical therapy concepts and the profession of the physical therapist are raised. PMID:25655882

  16. The Nobel Prize in the Physics Class: Science, History, and Glamour

    NASA Astrophysics Data System (ADS)

    Eshach, Haim

    2009-10-01

    This paper introduces a novel strategy for teaching physics: using the Nobel Physics Prize as an organizational theme for high school or even first year university physics, bringing together history, social contexts of science, and central themes in modern physics. The idea underlying the strategy is that the glamour and glitter of the Nobel Prize story may attract and motivate high school students to open-up to scientific topics and thus be spurred to pursue science. The two major arguments for the method are that if presented in story form Nobel Prizes naturally incorporate the philosophical and historical aspects of science and therefore enable teaching about science as well as teaching science itself; and that such instruction implements case-based teaching principles, which is how humans naturally think, learn, and remember. Finally, the paper presents the storycase of the Nobel Prize Einstein received for his discovery of the law of the photoelectric effect as a concrete illustration of classroom implementation.

  17. Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize

    SciTech Connect

    Perlmutter, Saul

    2012-01-13

    The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department’s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.” DOE’s Office of Science has supported Dr. Perlmutter’s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter

  18. [From Nobody to Nobel laureate? The case of Werner Forßmann].

    PubMed

    Hansson, N; Packy, L-M; Halling, T; Groß, D; Fangerau, H

    2015-03-01

    The surgeon and urologist Werner Forßmann (1904-1979) was awarded the Nobel Prize for Physiology or Medicine in 1956. At the time of the prize ceremony, several newspapers portrayed Forssmann as an unknown rural physician who suddenly had become an international star. Drawing on nominations and reports in the Nobel Prize Archive for Physiology or Medicine in Stockholm as well as correspondence from the private archive of the Forßmann family, this paper reconstructs why the Nobel Committee chose to award Forßmann. We show that Forssmann's work was appreciated in medical textbooks and that he enjoyed a relatively sound reputation in the international scientific community even before he became a Nobel Prize laureate. At a more general level, we use his example to explore some mechanisms of scientific recognition. PMID:25784449

  19. Nobel Prize for Physical Therapy? Rise, Fall, and Revival of Medico-Mechanical Institutes.

    PubMed

    Hansson, Nils; Ottosson, Anders

    2015-08-01

    This historical vignette explores the considerations of the Nobel Prize Committee for Physiology or Medicine by vetting the Nobel Prize chances of Dr Gustaf Zander (1835-1920). His way to stardom started 150 years ago when he began mechanizing the passive and active movements that physical therapists manually used to treat diseases. A glance at his machines shows that they parallel surprisingly well what can be found in modern fitness studios. By combining files from the Nobel Prize Archive and sources from the first physical therapists, this vignette pieces together why Zander was considered one of the best candidates for the Nobel Prize in 1916. By providing this glimpse of history, questions about the origin of physical therapy concepts and the profession of the physical therapist are raised.

  20. [From Nobody to Nobel laureate? The case of Werner Forßmann].

    PubMed

    Hansson, N; Packy, L-M; Halling, T; Groß, D; Fangerau, H

    2015-03-01

    The surgeon and urologist Werner Forßmann (1904-1979) was awarded the Nobel Prize for Physiology or Medicine in 1956. At the time of the prize ceremony, several newspapers portrayed Forssmann as an unknown rural physician who suddenly had become an international star. Drawing on nominations and reports in the Nobel Prize Archive for Physiology or Medicine in Stockholm as well as correspondence from the private archive of the Forßmann family, this paper reconstructs why the Nobel Committee chose to award Forßmann. We show that Forssmann's work was appreciated in medical textbooks and that he enjoyed a relatively sound reputation in the international scientific community even before he became a Nobel Prize laureate. At a more general level, we use his example to explore some mechanisms of scientific recognition.

  1. An interview with Nobel laureate Roy Glauber, Physics 2005.

    PubMed

    Glauber, Roy

    2009-01-01

    The field of quantum optics rests on the work of Roy Glauber, who helped elucidate the nature of light as both particles and waves. According to Glauber, quantum optics allowed "all sorts of experiments...that never could have been done before." He suggests that it was not his "small revelation" that the Nobel Committee awarded, but rather the decades of research that followed his own. Nonetheless, Glauber received one-half of the 2005 Nobel Prize in Physics "for his contribution to the quantum theory of optical coherence" while the other half was shared by John Hall and Theodor Hänsch for their work on laser-based precision spectroscopy. Glauber admits that the behavior of light seems strange and unintuitive--yet the phenomena that Einstein called "spooky action at a distance" may have many practical applications. In this candid interview, Glauber shares his thoughts about working at Los Alamos National Laboratory--his shock to learn that he was helping to build The Bomb, and his dismay about how it was used. At Los Alamos, Glauber met two of his major influences: Julian Schwinger, who was Glauber's thesis advisor at Harvard, and Los Alamos scientific director Robert Oppenheimer, who facilitated his early post-doctoral research. Glauber also tells a poignant account of how his marriage fell victim to the social upheaval of the 1960's, and how he was left to raise two children alone. Despite the difficulties of reconciling academia with family, Glauber is amused to find himself revered by women as "someone who has raised children and nonetheless had a successful academic career." PMID:19561567

  2. How citation boosts promote scientific paradigm shifts and nobel prizes.

    PubMed

    Mazloumian, Amin; Eom, Young-Ho; Helbing, Dirk; Lozano, Sergi; Fortunato, Santo

    2011-01-01

    Nobel Prizes are commonly seen to be among the most prestigious achievements of our times. Based on mining several million citations, we quantitatively analyze the processes driving paradigm shifts in science. We find that groundbreaking discoveries of Nobel Prize Laureates and other famous scientists are not only acknowledged by many citations of their landmark papers. Surprisingly, they also boost the citation rates of their previous publications. Given that innovations must outcompete the rich-gets-richer effect for scientific citations, it turns out that they can make their way only through citation cascades. A quantitative analysis reveals how and why they happen. Science appears to behave like a self-organized critical system, in which citation cascades of all sizes occur, from continuous scientific progress all the way up to scientific revolutions, which change the way we see our world. Measuring the "boosting effect" of landmark papers, our analysis reveals how new ideas and new players can make their way and finally triumph in a world dominated by established paradigms. The underlying "boost factor" is also useful to discover scientific breakthroughs and talents much earlier than through classical citation analysis, which by now has become a widespread method to measure scientific excellence, influencing scientific careers and the distribution of research funds. Our findings reveal patterns of collective social behavior, which are also interesting from an attention economics perspective. Understanding the origin of scientific authority may therefore ultimately help to explain how social influence comes about and why the value of goods depends so strongly on the attention they attract. PMID:21573229

  3. How Citation Boosts Promote Scientific Paradigm Shifts and Nobel Prizes

    PubMed Central

    Mazloumian, Amin; Eom, Young-Ho; Helbing, Dirk; Lozano, Sergi; Fortunato, Santo

    2011-01-01

    Nobel Prizes are commonly seen to be among the most prestigious achievements of our times. Based on mining several million citations, we quantitatively analyze the processes driving paradigm shifts in science. We find that groundbreaking discoveries of Nobel Prize Laureates and other famous scientists are not only acknowledged by many citations of their landmark papers. Surprisingly, they also boost the citation rates of their previous publications. Given that innovations must outcompete the rich-gets-richer effect for scientific citations, it turns out that they can make their way only through citation cascades. A quantitative analysis reveals how and why they happen. Science appears to behave like a self-organized critical system, in which citation cascades of all sizes occur, from continuous scientific progress all the way up to scientific revolutions, which change the way we see our world. Measuring the “boosting effect” of landmark papers, our analysis reveals how new ideas and new players can make their way and finally triumph in a world dominated by established paradigms. The underlying “boost factor” is also useful to discover scientific breakthroughs and talents much earlier than through classical citation analysis, which by now has become a widespread method to measure scientific excellence, influencing scientific careers and the distribution of research funds. Our findings reveal patterns of collective social behavior, which are also interesting from an attention economics perspective. Understanding the origin of scientific authority may therefore ultimately help to explain how social influence comes about and why the value of goods depends so strongly on the attention they attract. PMID:21573229

  4. How citation boosts promote scientific paradigm shifts and nobel prizes.

    PubMed

    Mazloumian, Amin; Eom, Young-Ho; Helbing, Dirk; Lozano, Sergi; Fortunato, Santo

    2011-05-04

    Nobel Prizes are commonly seen to be among the most prestigious achievements of our times. Based on mining several million citations, we quantitatively analyze the processes driving paradigm shifts in science. We find that groundbreaking discoveries of Nobel Prize Laureates and other famous scientists are not only acknowledged by many citations of their landmark papers. Surprisingly, they also boost the citation rates of their previous publications. Given that innovations must outcompete the rich-gets-richer effect for scientific citations, it turns out that they can make their way only through citation cascades. A quantitative analysis reveals how and why they happen. Science appears to behave like a self-organized critical system, in which citation cascades of all sizes occur, from continuous scientific progress all the way up to scientific revolutions, which change the way we see our world. Measuring the "boosting effect" of landmark papers, our analysis reveals how new ideas and new players can make their way and finally triumph in a world dominated by established paradigms. The underlying "boost factor" is also useful to discover scientific breakthroughs and talents much earlier than through classical citation analysis, which by now has become a widespread method to measure scientific excellence, influencing scientific careers and the distribution of research funds. Our findings reveal patterns of collective social behavior, which are also interesting from an attention economics perspective. Understanding the origin of scientific authority may therefore ultimately help to explain how social influence comes about and why the value of goods depends so strongly on the attention they attract.

  5. An interview with Nobel laureate Roy Glauber, Physics 2005.

    PubMed

    Glauber, Roy

    2009-06-26

    The field of quantum optics rests on the work of Roy Glauber, who helped elucidate the nature of light as both particles and waves. According to Glauber, quantum optics allowed "all sorts of experiments...that never could have been done before." He suggests that it was not his "small revelation" that the Nobel Committee awarded, but rather the decades of research that followed his own. Nonetheless, Glauber received one-half of the 2005 Nobel Prize in Physics "for his contribution to the quantum theory of optical coherence" while the other half was shared by John Hall and Theodor Hänsch for their work on laser-based precision spectroscopy. Glauber admits that the behavior of light seems strange and unintuitive--yet the phenomena that Einstein called "spooky action at a distance" may have many practical applications. In this candid interview, Glauber shares his thoughts about working at Los Alamos National Laboratory--his shock to learn that he was helping to build The Bomb, and his dismay about how it was used. At Los Alamos, Glauber met two of his major influences: Julian Schwinger, who was Glauber's thesis advisor at Harvard, and Los Alamos scientific director Robert Oppenheimer, who facilitated his early post-doctoral research. Glauber also tells a poignant account of how his marriage fell victim to the social upheaval of the 1960's, and how he was left to raise two children alone. Despite the difficulties of reconciling academia with family, Glauber is amused to find himself revered by women as "someone who has raised children and nonetheless had a successful academic career."

  6. INTRODUCTION: Physics of Low-dimensional Systems: Nobel Symposium 73

    NASA Astrophysics Data System (ADS)

    Lundqvist, Stig

    1989-01-01

    The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic systems have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas. A Nobel Symposium provides an excellent opportunity to bring together a group of prominent scientists for a stimulating exchange of new ideas and results. The Nobel Symposia are very small meetings by invitation only and the number of key international participants is typically in the range 25-40. These Symposia are arranged through a special Nobel Symposium Committee after proposal from individuals. This Symposium was sponsored by the Nobel Foundation through its Nobel Symposium Fund with grants from The

  7. From Stealing Fire to Cellular Reprogramming: A Scientific History Leading to the 2012 Nobel Prize

    PubMed Central

    Lensch, M. William; Mummery, Christine L.

    2013-01-01

    Cellular reprogramming was recently “crowned” with the award of the Nobel Prize to two of its groundbreaking researchers, Sir John Gurdon and Shinya Yamanaka. The recent link between reprogramming and stem cells makes this appear almost a new field of research, but its historical roots have actually spanned more than a century. Here, the Nobel Prize in Physiology or Medicine 2012 is placed in its historical context. PMID:24052937

  8. Nobel Prizes for surgeons: In recognition of the surgical healing strategy.

    PubMed

    Schlich, Thomas

    2007-04-01

    Theodor Kocher (1909), Alexis Carrel (1912), Antonio Egas Moniz (1949) and Joseph E. Murray (1990) received Nobel Prizes for their accomplishments in the field of surgery. This essay puts these achievements in the context of the history of surgery, in particular its recognition of a field of modern medicine. It characterizes the view of the body that is associated with modern surgery and the specific surgical healing strategy that the Nobel Prizes acknowledged.

  9. Nobel Prizes for surgeons: In recognition of the surgical healing strategy.

    PubMed

    Schlich, Thomas

    2007-04-01

    Theodor Kocher (1909), Alexis Carrel (1912), Antonio Egas Moniz (1949) and Joseph E. Murray (1990) received Nobel Prizes for their accomplishments in the field of surgery. This essay puts these achievements in the context of the history of surgery, in particular its recognition of a field of modern medicine. It characterizes the view of the body that is associated with modern surgery and the specific surgical healing strategy that the Nobel Prizes acknowledged. PMID:17448978

  10. Another Nobel Prize linked to synchrotron radiation work

    SciTech Connect

    Hasnain, S.

    2009-01-01

    The 2008 Nobel Prize in Chemistry went to Osamu Shimomura, Martin Chalfie and Roger Tsien 'for the discovery and development of the green fluorescent protein, GFP'. This year's Nobel Prize in Chemistry rewards the initial discovery of GFP and a series of important developments which have led to its use as a tagging tool in bioscience. By using DNA technology, researchers can now connect GFP to other interesting, but otherwise invisible, proteins. This glowing marker allows the movements, positions and interactions of the tagged proteins to be monitored. Osamu Shimomura was the first to isolate GFP from the jellyfish Aequorea victoria, found off the west coast of North America, and discovered the protein's green glow [Shimomura et al. (1962). J. Cell. Comp. Physiol. 59, 223-240]. Martin Chalfie demonstrated the value of GFP as a luminous genetic tag. In one of his first experiments he coloured six individual cells in the transparent roundworm Caenorhabditis elegans with the aid of GFP. He had obtained the GFP gene (gfp) clone from Prasher [Prasher et al. (1992). Gene, 111, 229-233] and expressed it in E. coli. The GFP protein displayed a bright green fluorescence in this heterologous organism, suggesting that it could indeed serve as a versatile genetic marker in virtually all organisms. Chalfie transformed C. elegans with gfp under the control of a promoter regulating the expression of {beta}-tubulin, abundant in six touch receptor neurons in C. elegans. The organism subsequently expressed GFP from distinct positions in its body and at distinct times in its development [Chalfie et al. (1994). Science, 263, 802-805]. Roger Tsien contributed to the general understanding of how GFP glows by determining the formation of the GFP chromophore, a chemical group that absorbs and emits light. Tsien is best known for extending the colour palette of GFP beyond green, allowing researchers to follow several different biological processes at the same time. According to background

  11. The 2009 Lindau Nobel Laureate Meeting: Peter Agre, Chemistry 2003

    PubMed Central

    Agre, Peter

    2009-01-01

    Peter Agre, born in 1949 in Northfield Minnesota, shared the 2003 Nobel Prize in Chemistry with Roderick MacKinnon for his discovery of aquaporins, the channel proteins that allow water to cross the cell membrane. Agre's interest medicine was inspired by the humanitarian efforts of the Medical Missionary program run by the Norwegians of his home community in Minnesota. Hoping to provide new treatments for diseases affecting the poor, he joined a cholera laboratory during medical school at Johns Hopkins. He found that he enjoyed biomedical research, and continued his laboratory studies for an additional year after medical school. Agre completed his clinical training at Case Western Hospitals of Cleveland and the University of North Carolina, and returned to Johns Hopkins in 1981. There, his serendipitous discovery of aquaporins was made while pursuing the identity of the Rhesus (Rh) antigen. For a century, physiologists and biophysicists had been trying to understand the mechanism by which fluid passed across the cell's plasma membrane. Biophysical evidence indicated a limit to passive diffusion of water, suggesting the existence of another mechanism for water transport across the membrane. The putative "water channel," however, could not be identified. In 1988, while attempting to purify the 30kDa Rh protein, Agre and colleagues began investigating a 28 kDa contaminant that they believed to be a proteolytic fragment of the Rh protein. Subsequent studies over the next 3-4 years revealed that the contaminant was a membrane-spanning oligomeric protein, unrelated to the Rh antigen, and that it was highly abundant in renal tubules and red blood cells. Still, they could not assign a function to it. The breakthrough came following a visit with his friend and former mentor John Parker. After Agre described the properties of the mysterious 28 kDa protein, Parker suggested that it might be the long-sought-after water channel. Agre and colleagues tested this idea by

  12. Nobel Prize Literature; A Selection of the Works of Forty-Four Nobel Prize Winning Authors in the Library of Dutchess Community College, with Biographical and Critical Sketches.

    ERIC Educational Resources Information Center

    Hubbard, Terry E., Comp.

    This bibliography is a compilation of works by 44 Nobel Prize winning authors presently available at the Dutchess Community College library. Each entry describes the piece of literature for which the author received an award, provides a brief sketch of the writer, includes a commentary on the themes of major works, and lists the writer's works. An…

  13. The 2009 Lindau Nobel Laureate Meeting: Aaron Ciechanover, Chemistry 2004

    PubMed Central

    Ciechanover, Aaron

    2009-01-01

    Aaron Ciechanover was born in Haifa, Israel in October 1947. He shared the Nobel Prize in Chemistry in 2004 with Avram Hershko and Irwin Rose for their discovery of ubiquitin-mediated protein degradation. When Ciechanover began his work on proteolysis, the field was outside the realm of scientific mainstream as many thought that the fundamental secrets relating to sequence specificity were relevant to the synthetic side, or code side. The notion that specific sequences could selectively guide a destructive process did not naturally occur to scientists including Ciechanover himself. The emergence of controversial evidence demonstrating a requirement for metabolic energy in intracellular protein degradation, refuted the idea that cellular proteolysis was an entirely exergonic process occurring in the lysosome and prompted Ciechanover, Hershko, and Rose to "launch an attack" on the system, in order to uncover true pathway. Later findings of Ciechanover and subsequent groups showed that not only was the process energy-dependent, but that 8% of the human genome is remarkably one large ubiquitin system. Following the recapitulation and reflection of his work, Ciechanover shares insights into his principal and philosophical approach to science and life altogether. The life and work of Aaron Ciechanover are deeply rooted and influenced by Judaism and Israel and it is therefore that with only brief intermission, Ciechanover spent his scientific career in Israel as he is - through his presence and work - able to contribute and shape presence and future of the State of Israel. PMID:19571788

  14. The citation wake of publications detects nobel laureates' papers.

    PubMed

    Klosik, David F; Bornholdt, Stefan

    2014-01-01

    For several decades, a leading paradigm of how to quantitatively assess scientific research has been the analysis of the aggregated citation information in a set of scientific publications. Although the representation of this information as a citation network has already been coined in the 1960s, it needed the systematic indexing of scientific literature to allow for impact metrics that actually made use of this network as a whole, improving on the then prevailing metrics that were almost exclusively based on the number of direct citations. However, besides focusing on the assignment of credit, the paper citation network can also be studied in terms of the proliferation of scientific ideas. Here we introduce a simple measure based on the shortest-paths in the paper's in-component or, simply speaking, on the shape and size of the wake of a paper within the citation network. Applied to a citation network containing Physical Review publications from more than a century, our approach is able to detect seminal articles which have introduced concepts of obvious importance to the further development of physics. We observe a large fraction of papers co-authored by Nobel Prize laureates in physics among the top-ranked publications.

  15. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Fry, Charles G.

    2004-07-01

    A review is given of the crucial work performed by Paul C. Lauterbur and Peter Mansfield that lead to their being awarded the Nobel Prize in Medicine in 2003. Lauterbur first expounded the idea of mapping spatial information from spectral data in nuclear magnetic resonance (NMR) through the application of magnetic field gradients (P. C. Lauterbur, Nature 1973 , 242, 190-191). One year later Mansfield and co-workers introduced the idea of selective excitation to NMR imaging (A. N. Garroway, P. K. Grannell, and P. Mansfield. J. Phys. C: Solid State Physics 1974 , 7, L457-L462). A major step in making the technique useful for clinical imaging came with Mansfield's publication of the method known as echo planar imaging (P. Mansfield, J. Phys. C: Solid State Physics 1977, 10 (3) , L55-L58). Lauterbur's and Mansfield's work captured the essence of scientific discovery, collaboration, and concerted effort to overcome significant technical issues, and were key to the development of the technique of magnetic resonance imaging (MRI). Examples of how MRI technology can be extended to chemical research are given, and limitations of the technique in this regard are discussed. Discussion of how to use commonly available NMR spectrometers for chemical imaging is also provided.

  16. Robert Koch: Nobel laureate and controversial figure in tuberculin research.

    PubMed

    Ligon, B Lee

    2002-10-01

    Tuberculosis has been a major cause of death for centuries. Likewise, anthrax has posed a deadly threat to both farm animals and humans and today poses a threat as a weapon of biological warfare. Cholera, which wreaked havoc in the East and threatened to enter Europe, also posed a deadly threat. The causes of these diseases remained mysteries for centuries. Nobel laureate Robert Koch (1843-1910), often called the founder of medical bacteriology, is credited with discovering the tubercle bacillus, Mycobacterium tuberculosis; with demonstrating for the first time in history the life cycle of the anthrax bacillus under controlled in vitro conditions; and with identifying Vibrio cholorae as the cause of cholera. In later life, he also was at the center of several controversies. This article provides a brief summary of Koch's exploration into bacteriology and, especially, his experience with tuberculosis and the controversies that developed in the latter part of his life, as well as his childhood and early adult years and the development of his now well-known "postulates."

  17. Scientific activity is a better predictor of nobel award chances than dietary habits and economic factors.

    PubMed

    Doi, Hideyuki; Heeren, Alexandre; Maurage, Pierre

    2014-01-01

    Several recent studies have described a strong correlation between nutritional or economic data and the number of Nobel awards obtained across a large range of countries. This sheds new light on the intriguing question of the key predictors of Nobel awards chances. However, all these studies have been focused on a single predictor and were only based on simple correlation and/or linear model analysis. The main aim of the present study was thus to clarify this debate by simultaneously exploring the influence of food consumption (cacao, milk, and wine), economic variables (gross domestic product) and scientific activity (number of publications and research expenditure) on Nobel awards. An innovative statistical analysis, hierarchical partitioning, has been used because it enables us to reduce collinearity problems by determining and comparing the independent contribution of each factor. Our results clearly indicate that a country's number of Nobel awards can be mainly predicted by its scientific achievements such as number of publications and research expenditure. Conversely, dietary habits and the global economy variable are only minor predictors; this finding contradicts the conclusions of previous studies. Dedicating a large proportion of the GDP to research and to the publication of a high number of scientific papers would thus create fertile ground for obtaining Nobel awards.

  18. Remembering Charles B. Huggins' Nobel Prize for Hormonal Treatment of Prostatic Cancer at its 50th Anniversary.

    PubMed

    Hansson, Nils; Moll, Friedrich; Schultheiss, Dirk; Krischel, Matthis

    2016-06-01

    Charles B. Huggins received the Nobel Prize in 1966. Based on archival sources from the Nobel archive we have found that nominators emphasised the practical therapeutic applications of his discoveries that were showing 25 yr after his key publications. PMID:26838478

  19. PREFACE: Nobel Symposium 141: Qubits for Future Quantum Information Nobel Symposium 141: Qubits for Future Quantum Information

    NASA Astrophysics Data System (ADS)

    Claeson, Tord; Delsing, Per; Wendin, Göran

    2009-12-01

    correction, have yet to be solved. It has been predicted that quantum computers will be able to perform certain complicated computations or simulations in minutes or hours instead of years as with present computers. So far there exist very few useful quantum algorithms; however there is hope that the development of these will be stimulated once there is a breakthrough in hardware. Remarkable progress has been made in quantum engineering and quantum measurements, but a large scale quantum computer is still far off. Quantum communication and cryptography are much closer to the market than a quantum computer. The development of quantum information has meant a large push in the field of quantum physics, that previously could only be studied in the microscopic world. Artificial atoms, realized by circuit technology and mimicking the properties of 'natural' atoms, are one example of the new possibilities opened up by quantum engineering. Several different types of qubits have been suggested. Some are based upon microscopic entities, like atoms and ions in traps, or nuclear spins in molecules. They can have long coherence times (i.e. a long period allowing many operations, of the order of 10 000, to be performed before the state needs to be refreshed) but they are difficult to integrate into large systems. Other qubits are based upon solid state components that facilitate integration and coupling between qubits, but they suffer from interactions with the environment and their coherent states have a limited lifetime. Advanced experiments have been performed with superconducting Josephson junctions and many breakthroughs have been reported in the last few years. They have an advantage in the inherent coherence of superconducting Cooper pairs over macroscopic distances. We chose to focus the Nobel Symposium on Qubits for Future Quantum Information on superconducting qubits to allow for depth in discussions, but at the same time to allow comparison with other types of qubits that may

  20. [Nitric oxide (NO)--Nobel prize in medicine and physiology for 1998].

    PubMed

    Derentowicz, P; Markiewicz, K; Wawrzyniak, M; Czerwińska-Kartowicz, I; Buława, E; Siwińska-Gołebiowska, H

    2000-01-01

    On October 12, 1998. The Nobel Assembly announced the award of the Nobel Prize in Medicine and Physiology to pharmacologists Robert Furchgott, Louis Ignarro, and Ferid Murad. The Nobel Committee decided to award the prize for their discoveries concerning--nitric oxide as a signalling molecule in the cardiovascular system. Nitric oxide (NO) has a key importance for vascular tonus, acts as a signal molecule in the nervous system and plays an important function in the immunological system. Nitric oxide is a multifunction molecule which controls the blood pressure, modulates gastrointestinal motility. It is produced in abnormal level intensifies septic shock and destruction of nervous tissue. NO is important in different branches of medicine. For instance NO gas has been used to reduced high blood pressure in the lung of infants. Several unknown NO applications in medicine are waiting for discovery.

  1. [Posthumous nomination for Medicine Nobel Prizes II. The positivism era (1849-1899)].

    PubMed

    Cruz-Coke, R

    1997-06-01

    The author proposes the nomination of great physicians of the second half of the XIX century for a posthumous Medicine Nobel Prize. The valorization given by medical historians Garrison, Lavastine, Castiglioni, Lain Entralgo and Guerra, is used to select the better candidates. One to three names are assigned by year from 1849 to 1899. Four categories of Nobel prizes are assigned: a) Basic biological disciplines, b) Clinical and surgical medicine, pathology and specialties, c) Discoverers of transcendental diseases that are eponyms and d) New medical technologies. A total of 84 nominees for the Nobel Prize are presented. These lists are presented as preliminary and tentative to allow an extensive debate about the history of medicine during the nineteenth century. PMID:9515294

  2. Chemistry in the News: 1998 Nobel Prizes in Chemistry and Medicine

    NASA Astrophysics Data System (ADS)

    Miller, Jennifer B.

    1999-01-01

    The Royal Swedish Academy of Sciences has awarded the 1998 Nobel Prize in Chemistry to Walter Kohn (University of California at Santa Barbara) for his development of the density-functional theory and to John A. Pople (Northwestern University at Evanston, Illinois) for his development of computational methods in quantum chemistry. The Nobel Assembly at the Karolinska Institute has awarded the 1998 Nobel Prize in Physiology or Medicine jointly to Robert F. Fuchgott (State University of New York Health Science Center at Brooklyn), Louis J. Ignarro (University of California at Los Angeles), and Ferid Murad (University of Texas Medical School at Houston) for identifying nitric oxide as a key biological signaling molecule in the cardiovascular system.

  3. The discovery of artemisinin and Nobel Prize in Physiology or Medicine

    PubMed Central

    Su, Xin-zhuan; Miller, Louis H.

    2016-01-01

    Summary The 2015 Nobel Prize in Physiology or Medicine was awarded to Professor Youyou Tu for her key contributions to the discovery of artemisinin. Artemisinin has saved millions of lives and represents one of the significant contributions of China to global health. Many scientists were involved in the previously unknown 523 Project, and the Nobel Prize given to a single person has not been without controversy. Here we summarized some key events in the 523 Project and present our views on the Award to help the public better understand the rationale of the Nobel committee’s decision, the significance of the discovery, and current issues related to artimisinin in treating malaria. PMID:26481135

  4. [Tuberculosis 110 years after the Nobel Prize awarded to Koch].

    PubMed

    Ritacco, Viviana; Kantor, Isabel N

    2015-01-01

    The Nobel Prize in Physiology or Medicine was awarded in 1905 to Robert Koch "for his investigations and discoveries in relation to tuberculosis (TB)". He discovered the causal agent of TB, described the four principles that since then have guided research in communicable diseases and also prepared the old tuberculin, a bacillary extract that failed as a healing element but allowed the early diagnosis of TB infection and promoted the understanding of cellular immunity. After his death, the most conspicuous achievements against TB were the BCG vaccine, and the discovery of streptomycin, the antibiotic that launched the era of the effective treatment of TB. Drug-resistance soon appeared. In Argentina, studies on drug resistance began in the 60s. In the 70s, shortened anti-TB drug schemes were introduced consisting in two-month treatment with four drugs, followed by four months with two drugs. The incidence of TB decreased worldwide, but the immune depression associated with awarded together with the misuse of anti-TB drugs allowed the emergence of multidrug resistance and extensive resistance, with the emergence of nosocomial outbreaks worldwide, including Argentina. New rapid diagnostic methods based on molecular biology were developed and also new drugs, but the treatment of multidrug resistant and extensively resistant TB is still difficult and expensive. TB research has marked several milestones in medical sciences, including the monumental Koch postulates, the tuberculin skin test that laid the basis for understanding cell-mediated immunity, the first design of randomized clinical trials and the use of combined multi-drug treatments. PMID:26707664

  5. [Tuberculosis 110 years after the Nobel Prize awarded to Koch].

    PubMed

    Ritacco, Viviana; Kantor, Isabel N

    2015-01-01

    The Nobel Prize in Physiology or Medicine was awarded in 1905 to Robert Koch "for his investigations and discoveries in relation to tuberculosis (TB)". He discovered the causal agent of TB, described the four principles that since then have guided research in communicable diseases and also prepared the old tuberculin, a bacillary extract that failed as a healing element but allowed the early diagnosis of TB infection and promoted the understanding of cellular immunity. After his death, the most conspicuous achievements against TB were the BCG vaccine, and the discovery of streptomycin, the antibiotic that launched the era of the effective treatment of TB. Drug-resistance soon appeared. In Argentina, studies on drug resistance began in the 60s. In the 70s, shortened anti-TB drug schemes were introduced consisting in two-month treatment with four drugs, followed by four months with two drugs. The incidence of TB decreased worldwide, but the immune depression associated with awarded together with the misuse of anti-TB drugs allowed the emergence of multidrug resistance and extensive resistance, with the emergence of nosocomial outbreaks worldwide, including Argentina. New rapid diagnostic methods based on molecular biology were developed and also new drugs, but the treatment of multidrug resistant and extensively resistant TB is still difficult and expensive. TB research has marked several milestones in medical sciences, including the monumental Koch postulates, the tuberculin skin test that laid the basis for understanding cell-mediated immunity, the first design of randomized clinical trials and the use of combined multi-drug treatments.

  6. [Avermectin, from winning the Nobel Prize to "innovation in China"].

    PubMed

    Chen, Jinsong; Liu, Mei; Zhang, Lixin

    2016-03-01

    The uprise of the superpower nations is always accompanied by the breakthrough and advances of technologies and innovations in the history. Natural products play very important role in human health, such as anticancer molecular taxol, anti-infection drug artemisinin that save a lot of lives, metabolic disease treatment, nutrition and health care. However, more has never been explored. With the 2015 Nobel Prize in Physiology or Medicine awarded to William C. Campbell, Satoshi Omura, and Youyou Tu for the discovery of avermectins and artemisinin respectively, the second "Golden age" in the development of natural product is dawning. China is a "world factory" and natural drugs-rich country, but how to upgrade and advance the industry and realize the China dream? Avermectins, produced by Streptomyces avermitilis, are pesticide with high efficiency and low levels of side effects. However, the low producer and expensive development pattern of high consumption, high contamination is not sustainable. Solving the problem, increasing the production and utilization of raw material, reducing the energy consumption and cost of production, decreasing environmental pollution are key to transform China into a power house. In this paper, we case-study avermectins to review the industry development driven by fundamental research. Institute of Microbiology, Chinese Academy.of Sciences increased the production of avermectin 1000 folds to 9 g/L, which out licensed to new Veyong biochemical Ltd and avermectin Coalitions. As a result, Merck Sharp and Dohme ceased the manufacture of avermectins. The success also shed lights on the improvement of other natural product drugs in China. PMID:27382795

  7. The fabulous legacy of a Nobel Prize Laureate

    PubMed Central

    Zitvogel, Laurence; Merad, Miriam; Kroemer, Guido

    2012-01-01

    The Nobel Prize in Physiology or Medecine 2011 was awarded to Ralph M. Steinman, Jules A. Hoffman and Bruce A. Beutler for the discovery of essential elements of innate immunity, in particular dendritic cells (DCs) and toll-like receptors (TLRs). Antigens become immunogenic and capable of triggering an adaptive immune response involving antigen-specific, MHC- restricted effector T cells, only if they are captured and presented by “accessory” cells. In 1972, Ralph M. Steinman and Zanvil Cohn identified in lymphoid tissues, cells with treelike, arborescent morphology that they named “dendritic cells” (DC) (from the greek word “tree” for tree, δένδρον) with a superior ability to induce alloreactive T cell proliferation in vitro (1978) and to stimulate the rejection of kidney allotransplants in rodents (1982). Thirty years after their discovery, DCare now known to play a seminal role in bridging innate and adaptive immunity, In addition DC are being used in numerous clinical studies all over the world to increase immunity to infectious or tumor-associated antigens. This effort involved the contribution of an international network of basicand clinical scientists spearheaded by Ralph M. Steinman to defineappropriate culture conditions to generate ex vivo DC from circulating or bone marrow precursors, to definefunctionally distinct DC subsets, to identifytheir maturation pathways including those relying on the stimulation of TLRs, and finally to develop DC based-vaccines to immunize patients infected with HIV or affected by cancer. Here, we will detail the history of DC and outline the therapeutic implications of Ralph M. Steinman’s seminal discovery.

  8. [Avermectin, from winning the Nobel Prize to "innovation in China"].

    PubMed

    Chen, Jinsong; Liu, Mei; Zhang, Lixin

    2016-03-01

    The uprise of the superpower nations is always accompanied by the breakthrough and advances of technologies and innovations in the history. Natural products play very important role in human health, such as anticancer molecular taxol, anti-infection drug artemisinin that save a lot of lives, metabolic disease treatment, nutrition and health care. However, more has never been explored. With the 2015 Nobel Prize in Physiology or Medicine awarded to William C. Campbell, Satoshi Omura, and Youyou Tu for the discovery of avermectins and artemisinin respectively, the second "Golden age" in the development of natural product is dawning. China is a "world factory" and natural drugs-rich country, but how to upgrade and advance the industry and realize the China dream? Avermectins, produced by Streptomyces avermitilis, are pesticide with high efficiency and low levels of side effects. However, the low producer and expensive development pattern of high consumption, high contamination is not sustainable. Solving the problem, increasing the production and utilization of raw material, reducing the energy consumption and cost of production, decreasing environmental pollution are key to transform China into a power house. In this paper, we case-study avermectins to review the industry development driven by fundamental research. Institute of Microbiology, Chinese Academy.of Sciences increased the production of avermectin 1000 folds to 9 g/L, which out licensed to new Veyong biochemical Ltd and avermectin Coalitions. As a result, Merck Sharp and Dohme ceased the manufacture of avermectins. The success also shed lights on the improvement of other natural product drugs in China.

  9. A Century of Chemical Dynamics Traced through the Nobel Prizes. 1999: Ahmed H. Zewail

    NASA Astrophysics Data System (ADS)

    van Houten, Josh

    2002-12-01

    The 1999 Nobel Prize was awarded to Ahmed Zewail "for his studies of the transition states of chemical reactions using femtosecond spectroscopy." His pioneering investigation of fundamental chemical reactions using ultra-short flashes allowed chemists, for the first time, to monitor reactions on the time scale on which the atoms are actually moving as bonds are broken and formed. The fundamental limit of femtosecond resolution represents the culmination of a century of progress in chemical dynamics that began with the first Nobel Prize awarded to Jacobus van't Hoff in 1901.

  10. ["A change in medical thinking?" or "over-eager literary activity?" August Bier, homeopathy and the Nobel Prize 1906-1936].

    PubMed

    Hansson, Nils

    2015-01-01

    This essay explains the nomination and evaluation procedure for the Nobel Prize for Physiology or Medicine. Its research is based on original files and on the example of August Karl Gustav Bier (1861-1949). It discusses the minutes of the Nobel Committee for physiology or medicine, which are kept in the Nobel Archives, as well as the unusually high number of nominations of August Bier and the nominations submitted by him; it also describes the reasons why August Bier, in the end, never received the Nobel Prize. The essay focuses mainly on the reception of Bier's homeopathic theses by the Nobel Prize Committee and his nominators. PMID:26137648

  11. ["A change in medical thinking?" or "over-eager literary activity?" August Bier, homeopathy and the Nobel Prize 1906-1936].

    PubMed

    Hansson, Nils

    2015-01-01

    This essay explains the nomination and evaluation procedure for the Nobel Prize for Physiology or Medicine. Its research is based on original files and on the example of August Karl Gustav Bier (1861-1949). It discusses the minutes of the Nobel Committee for physiology or medicine, which are kept in the Nobel Archives, as well as the unusually high number of nominations of August Bier and the nominations submitted by him; it also describes the reasons why August Bier, in the end, never received the Nobel Prize. The essay focuses mainly on the reception of Bier's homeopathic theses by the Nobel Prize Committee and his nominators.

  12. Mechanisms of DNA Repair by Photolyase and Excision Nuclease (Nobel Lecture).

    PubMed

    Sancar, Aziz

    2016-07-18

    Ultraviolet light damages DNA by converting two adjacent thymines into a thymine dimer which is potentially mutagenic, carcinogenic, or lethal to the organism. This damage is repaired by photolyase and the nucleotide excision repair system in E. coli by nucleotide excision repair in humans. The work leading to these results is presented by Aziz Sancar in his Nobel Lecture. PMID:27337655

  13. John Bardeen: The Only Person to Win Two Nobel Prizes in Physics

    ERIC Educational Resources Information Center

    Hoddeson, L.

    2011-01-01

    John Bardeen worked on the theory of solids throughout his physics career, winning two Nobel Prizes: the first in 1956 for the invention of the transistor with Walter Brattain and William Shockley; and the second in 1972 for the development with Leon Cooper and J Robert Schrieffer of the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity.…

  14. Introducing Taiwanese undergraduate students to the nature of science through Nobel Prize stories

    NASA Astrophysics Data System (ADS)

    Eshach, Haim; Hwang, Fu-Kwun; Wu, Hsin-Kai; Hsu, Ying-Shao

    2013-06-01

    Although there is a broad agreement among scientists and science educators that students should not only learn science, but also acquire some sense of its nature, it has been reported that undergraduate students possess an inadequate grasp of the nature of science (NOS). The study presented here examined the potential and effectiveness of Nobel Prize stories as a vehicle for teaching NOS. For this purpose, a 36-hour course, “Albert Einstein’s Nobel Prize and the Nature of Science,” was developed and conducted in Taiwan Normal University. Ten undergraduate physics students participated in the course. Analysis of the Views of Nature of Science questionnaires completed by the students before and after the course, as well as the students’ own presentations of Nobel Prize stories (with an emphasis on how NOS characteristics are reflected in the story), showed that the students who participated in the course enriched their views concerning all aspects of NOS. The paper concludes with some suggestions for applying the novel idea of using Nobel Prize stories in physics classrooms.

  15. Climate Change Draws World Attention: The 2007 Nobel Peace Award Goes to Gore and IPCC

    ERIC Educational Resources Information Center

    Bisland, Beverly Milner; Ahmad, Iftikhar

    2008-01-01

    In the fall of 2007, the Nobel Committee awarded their Peace Prize to the Intergovernmental Panel on Climate Change (a scientific intergovernmental body set up by the World Meteorological Organization and by the United Nations Environment Program) and to former Vice-President Al Gore, Jr. The committee praised the United Nations panel for creating…

  16. Rigoberta Menchu Tum: Nobel Laureate Leads International Movement for Peace and Indigenous Rights.

    ERIC Educational Resources Information Center

    Palmer, Paula

    1997-01-01

    Profiles Rigoberta Menchu Tum, a Maya-Quiche woman from Guatemala who in 1992, was the first indigenous person to receive the Nobel Peace Prize. The prize's youngest recipient, Menchu Tum is using the prize money and prestige to promote the international movement for peace and the rights of indigenous peoples and to contribute to indigenous…

  17. The 2014 Nobel Prize in Chemistry: a large-scale prize for achievements on the nanoscale.

    PubMed

    Choquet, Daniel

    2014-12-17

    The 2014 Nobel Prize in Chemistry awarded to Eric Betzig, Stefan W. Hell, and William E. Moerner "for the development of superresolved fluorescence microscopy" can be seen as a combined prize for single-molecule detection and superresolution imaging. Neurons, arguably the most morphologically complex cell type, are the subject of choice for this application, now generically called "nanoscopy."

  18. Richard Willstätter and the 1915 Nobel Prize in chemistry.

    PubMed

    Trauner, Dirk

    2015-10-01

    One hundred years after his Nobel Prize, Richard Willstätter's achievements and the fascinating role he played in 20th century chemistry are discussed in this Essay. Several of his discoveries, such as the anthocyanidins, cyclooctatetraene, the ortho-quinones, and the structure of cocaine, will forever be associated with his name.

  19. ["Process of the research and development received Nobel Prize in Chemistry 2002"].

    PubMed

    Yoshida, Tamio

    2004-01-01

    Mr. K. Tanaka engaged in Shimadzu Corporation received the Nobel Prize in Chemistry 2002 for the development of soft laser desorption ionization method for mass spectrometric analyses of biological macromolecules. In this paper, the process of the research and development of desorption ionization method and the produced laser desorption ionization time of flight mass spectrometer (LDI-TOFMS) are described.

  20. A Century of Chemical Dynamics Traced through the Nobel Prizes. 1981: Fukui and Hoffmann

    NASA Astrophysics Data System (ADS)

    van Houten, J.

    2002-06-01

    The 1981 Nobel Prize was awarded to Kenichi Fukui and Roald Hoffmann "for their theories, developed independently, concerning the course of chemical reactions." Those theories, which have come to be known as "frontier orbital theory" and the "Woodward-Hoffmann rules" respectively, remain important tools for predicting the course of organic reactions and they are frequently taught in courses in mechanistic organic chemistry.

  1. Nobel Peace Laureate Muhammad Yunus: A Banker Who Believes Credit is a Human Right

    ERIC Educational Resources Information Center

    Szpara, Michelle Yvonne; Ahmad, Iftikhar; Pederson, Patricia Velde

    2007-01-01

    The article profiles Nobel Peace Laureate Muhammad Yunus, founder of Grameen Bank (an independent financial institution in Bangladesh), as well as an economics professor at the University of Chittagong. In his birthplace of Bangladesh, 49.8 percent of people exist below the poverty line, and 73.2 percent of the women are categorized as "unpaid…

  2. Richard Willstätter and the 1915 Nobel Prize in chemistry.

    PubMed

    Trauner, Dirk

    2015-10-01

    One hundred years after his Nobel Prize, Richard Willstätter's achievements and the fascinating role he played in 20th century chemistry are discussed in this Essay. Several of his discoveries, such as the anthocyanidins, cyclooctatetraene, the ortho-quinones, and the structure of cocaine, will forever be associated with his name. PMID:26291186

  3. The 2014 Nobel Prize in Chemistry: a large-scale prize for achievements on the nanoscale.

    PubMed

    Choquet, Daniel

    2014-12-17

    The 2014 Nobel Prize in Chemistry awarded to Eric Betzig, Stefan W. Hell, and William E. Moerner "for the development of superresolved fluorescence microscopy" can be seen as a combined prize for single-molecule detection and superresolution imaging. Neurons, arguably the most morphologically complex cell type, are the subject of choice for this application, now generically called "nanoscopy." PMID:25521373

  4. 2005 Nobel Prize in Chemistry: Development of the Olefin Metathesis Method in Organic Synthesis

    ERIC Educational Resources Information Center

    Casey, Charles P.

    2006-01-01

    The 2005 Nobel Prize in Chemistry was awarded "for the development of the metathesis method in organic synthesis". The discoveries of the laureates provided a chemical reaction used daily in the chemical industry for the efficient and more environmentally friendly production of important pharmaceuticals, fuels, synthetic fibers, and many other…

  5. A Nobel Prize for membrane traffic: Vesicles find their journey’s end

    PubMed Central

    2013-01-01

    Cell biologists everywhere rejoiced when this year’s Nobel Prize in Physiology or Medicine was awarded to James Rothman, Randy Schekman, and Thomas Südhof for their contributions to uncovering the mechanisms governing vesicular transport. In this article, we highlight their achievements and also pay tribute to the pioneering scientists before them who set the stage for their remarkable discoveries. PMID:24215073

  6. [Ronald Ross, "doctor in spite of himself" and... Nobel Laureate in medicine].

    PubMed

    Morillon, M

    2011-12-01

    After becoming a military doctor at the behest of his father, Ronald Ross was destined to make a discovery of paramout importance, i.e., malaria transmission through mosquito bites. This landmark discovery that was the fruit of a combination of curiosity, tenacity and luck, earned him the Nobel Prize in Medicine. PMID:22393617

  7. One High-School Class Yields 8 PhDs and 2 Nobel Laureates in Physics.

    ERIC Educational Resources Information Center

    Physics Today, 1983

    1983-01-01

    Of the 718 graduates of the class of 1950, Bronx High School of Science, at least eight members became PhD physicists (including two Nobel prize winners). A list of these PhD physicists and comments about the school made at a reunion held in New York City (June 1982) are provided. (JN)

  8. The History of Molecular Structure Determination Viewed through the Nobel Prizes.

    ERIC Educational Resources Information Center

    Jensen, William P.; Palenik, Gus J.; Suh, Il-Hwan

    2003-01-01

    Discusses the importance of complex molecular structures. Emphasizes their individual significance through examination of the Nobel Prizes of the 20th century. Highlights prizes awarded to Conrad Rontgen, Francis H.C. Crick, James D. Watson, Maurice H.F. Wilkins, and others. (SOE)

  9. Artemisinin-A Gift from Traditional Chinese Medicine to the World (Nobel Lecture).

    PubMed

    Tu, Youyou

    2016-08-22

    Malaria has long been a devastating and life-threatening global epidemic disease in human history. Artemisinin, the active substance against malaria, was first isolated and tested in the 1970s in China. The important role played by traditional Chinese medicine in the discovery of artemisinin is described by Y. Tu in her Nobel Lecture.

  10. PILOT-SCALE INCINERATION OF CONTAMINATED SLUDGES FROM THE BOFORS-NOBEL SUPERFUND SITE

    EPA Science Inventory

    A detailed test program was performed at the U.S. Environmental Protection Agency’s (EPA’s) Incineration Research Facility (IRF) to help determine the effectiveness of incineration in treating two contaminated lagoon sludges from the Bofors-Nobel Superfund site in Mus...

  11. Mechanisms of DNA Repair by Photolyase and Excision Nuclease (Nobel Lecture).

    PubMed

    Sancar, Aziz

    2016-07-18

    Ultraviolet light damages DNA by converting two adjacent thymines into a thymine dimer which is potentially mutagenic, carcinogenic, or lethal to the organism. This damage is repaired by photolyase and the nucleotide excision repair system in E. coli by nucleotide excision repair in humans. The work leading to these results is presented by Aziz Sancar in his Nobel Lecture.

  12. Health-hazard evaluation report HETA 80-035-1635b, Bofors-Nobel/Lakeway Corporation, Muskegon, Michigan (revised)

    SciTech Connect

    Handke, J.L.; Lee, S.A.; Patnode, R.

    1986-05-01

    The International Chemical Workers Union requested an evaluation of dermatitis and reproductive system disorders among workers exposed to oryzalin, dichlorobenzidine (DCB), and benzidine at the Bofors-Nobel/Lakeway facility, Muskegon, Michigan. Exposure to DCB was measured from two personal breathing samples and the results ranged from not detectable to 6.5 micrograms/cubic meter mcg/cu m. Area samples for DCB were also taken. Surface-contamination samples revealed DCB on the packout locker-room surfaces and inside the operator's personal-protective equipment. Exposure to airborne oryzalin for six full-shift workers ranged from not detectable to 130mg/cu m, with a mean of 28mcg cu m. Dinitrochlorobenzene (DNCB) was detected in air at 70mcg/cu m and on surfaces at 6mcg/100 cm/sup 2/. Workers exposed to oryzalin reported no adverse reproductive effects. Of 36 workers exposed to DNCB, 19 had skin problems. Bladder cancer was documented in 10 workers with a mean time from first exposure to benzidine to diagnosis of 13.3 years. The authors conclude that a potential hazard existed from dichlorobenzidine exposure. The authors recommend improved housekeeping explanation of the medical-surveillance program to all workers, and continuation of the bladder cancer screening program.

  13. ROMANIAN SCIENTISTS IN THE NOMINATION DATABASE FOR THE NOBEL PRIZE IN PHYSIOLOGY OR MEDICINE, 1901-1951.

    PubMed

    Cernescu, Costin

    2014-01-01

    Nobelprize.org site is the most reliable and complete resource of information on the Nobel Prize and the Nobel Laureates. The nomination database for Physiology or Medicine, 1901-1951, offers exciting facts about the Romanian Schools of Medicine from Bucharest, Iaşi and Cluj. Between 1920-1950, four Romanian scientists were nominated for the Nobel Prize: Victor Babeş (1854-1926), Ion Cantacuzino (1863-1934), Thoma Ionescu (1860-1926) and Constantin Levaditi (1874-1953). This paper discusses these nominees, the nominators and the motivations, as well as the specific publications that endorse the candidates' scientific activity. Recommendations made by Romanian professors for foreign researchers to receive the Nobel Prize are also included.

  14. A Century of Chemical Dynamics Traced through the Nobel Prizes. 1986: Dudley Herschbach, Yuan Lee, and John Polanyi

    NASA Astrophysics Data System (ADS)

    van Houten, J.

    2002-08-01

    The 1986 Nobel Prize was awarded to Dudley Herschbach, Yuan Lee, and John Polanyi for their work extending chemical dynamics to the level of individual atoms and molecules, using molecular beam and infrared chemiluminescence experiments.

  15. No Silver Medal for Nobel Prize Contenders: Why Anesthesia Pioneers Were Nominated for but Denied the Award.

    PubMed

    Hansson, Nils; Fangerau, Heiner; Tuffs, Annette; Polianski, Igor J

    2016-07-01

    Taking the examples of the pioneers Carl Ludwig Schleich, Carl Koller, and Heinrich Braun, this article provides a first exploratory account of the history of anesthesiology and the Nobel Prize for physiology or medicine. Besides the files collected at the Nobel Archive in Sweden, which are presented here for the first time, this article is based on medical literature of the early 20th century. Using Nobel Prize nominations and Nobel committee reports as points of departure, the authors discuss why no anesthesia pioneer has received this coveted trophy. These documents offer a new perspective to explore and to better understand aspects of the history of anesthesiology in the first half of the 20th century. PMID:26982509

  16. ROMANIAN SCIENTISTS IN THE NOMINATION DATABASE FOR THE NOBEL PRIZE IN PHYSIOLOGY OR MEDICINE, 1901-1951.

    PubMed

    Cernescu, Costin

    2014-01-01

    Nobelprize.org site is the most reliable and complete resource of information on the Nobel Prize and the Nobel Laureates. The nomination database for Physiology or Medicine, 1901-1951, offers exciting facts about the Romanian Schools of Medicine from Bucharest, Iaşi and Cluj. Between 1920-1950, four Romanian scientists were nominated for the Nobel Prize: Victor Babeş (1854-1926), Ion Cantacuzino (1863-1934), Thoma Ionescu (1860-1926) and Constantin Levaditi (1874-1953). This paper discusses these nominees, the nominators and the motivations, as well as the specific publications that endorse the candidates' scientific activity. Recommendations made by Romanian professors for foreign researchers to receive the Nobel Prize are also included. PMID:26201125

  17. No Silver Medal for Nobel Prize Contenders: Why Anesthesia Pioneers Were Nominated for but Denied the Award.

    PubMed

    Hansson, Nils; Fangerau, Heiner; Tuffs, Annette; Polianski, Igor J

    2016-07-01

    Taking the examples of the pioneers Carl Ludwig Schleich, Carl Koller, and Heinrich Braun, this article provides a first exploratory account of the history of anesthesiology and the Nobel Prize for physiology or medicine. Besides the files collected at the Nobel Archive in Sweden, which are presented here for the first time, this article is based on medical literature of the early 20th century. Using Nobel Prize nominations and Nobel committee reports as points of departure, the authors discuss why no anesthesia pioneer has received this coveted trophy. These documents offer a new perspective to explore and to better understand aspects of the history of anesthesiology in the first half of the 20th century.

  18. Heike Kamerlingh Onnes and the Nobel Prize in Physics for 1913: The Highest Honor for the Lowest Temperatures

    NASA Astrophysics Data System (ADS)

    Reif-Acherman, Simón

    2013-12-01

    One century ago this year the Dutch experimental physicist Heike Kamerlingh Onnes (1853-1926) was awarded the Nobel Prize in Physics for his work in low-temperature physics, in particular for his production of liquid helium. I trace the route to his Nobel Prize within the context of his and his colleagues' research in his laboratory at the University of Leiden, and in light of his nominators and the nominations he received in the five years 1909-1913.

  19. ["In Stockholm they apparently had some kind of countermovement" - Ferdinand Sauerbruch (1875-1951) and the Nobel prize].

    PubMed

    Hansson, Nils; Schagen, Udo

    2014-01-01

    The archive of the Nobel Assembly for Physiology or Medicine in Solna, Sweden, is a remarkable repository that contains reports and dossiers of the Nobel Prize nominations of senior and junior physicians from around the world. Although this archive has begun to be used more by scholars, it has been insufficiently examined by historians of surgery. No other German surgeon was nominated as often as Ferdinand Sauerbruch for the Nobel Prize for Physiology or Medicine in the first half of the 20th century. This contribution reconstructs why and by whom Sauerbruch was nominated, and discusses the Nobel committee evaluations of his work. Political factors did not play an obvious role in the Nobel committee discussions, in spite of the fact that Adolf Hitler in 1937 had prohibited all German citizens to accept the Nobel Prize. The main reasons why Sauerbruch ultimately was not considered prize- worthy were that Sauerbruch's achievements were marked by scientific priority disputes, and that his work was not seen as original enough.

  20. ["In Stockholm they apparently had some kind of countermovement" - Ferdinand Sauerbruch (1875-1951) and the Nobel prize].

    PubMed

    Hansson, Nils; Schagen, Udo

    2014-01-01

    The archive of the Nobel Assembly for Physiology or Medicine in Solna, Sweden, is a remarkable repository that contains reports and dossiers of the Nobel Prize nominations of senior and junior physicians from around the world. Although this archive has begun to be used more by scholars, it has been insufficiently examined by historians of surgery. No other German surgeon was nominated as often as Ferdinand Sauerbruch for the Nobel Prize for Physiology or Medicine in the first half of the 20th century. This contribution reconstructs why and by whom Sauerbruch was nominated, and discusses the Nobel committee evaluations of his work. Political factors did not play an obvious role in the Nobel committee discussions, in spite of the fact that Adolf Hitler in 1937 had prohibited all German citizens to accept the Nobel Prize. The main reasons why Sauerbruch ultimately was not considered prize- worthy were that Sauerbruch's achievements were marked by scientific priority disputes, and that his work was not seen as original enough. PMID:25205399

  1. PREFACE: Nobel Symposium 141: Qubits for Future Quantum Information Nobel Symposium 141: Qubits for Future Quantum Information

    NASA Astrophysics Data System (ADS)

    Claeson, Tord; Delsing, Per; Wendin, Göran

    2009-12-01

    correction, have yet to be solved. It has been predicted that quantum computers will be able to perform certain complicated computations or simulations in minutes or hours instead of years as with present computers. So far there exist very few useful quantum algorithms; however there is hope that the development of these will be stimulated once there is a breakthrough in hardware. Remarkable progress has been made in quantum engineering and quantum measurements, but a large scale quantum computer is still far off. Quantum communication and cryptography are much closer to the market than a quantum computer. The development of quantum information has meant a large push in the field of quantum physics, that previously could only be studied in the microscopic world. Artificial atoms, realized by circuit technology and mimicking the properties of 'natural' atoms, are one example of the new possibilities opened up by quantum engineering. Several different types of qubits have been suggested. Some are based upon microscopic entities, like atoms and ions in traps, or nuclear spins in molecules. They can have long coherence times (i.e. a long period allowing many operations, of the order of 10 000, to be performed before the state needs to be refreshed) but they are difficult to integrate into large systems. Other qubits are based upon solid state components that facilitate integration and coupling between qubits, but they suffer from interactions with the environment and their coherent states have a limited lifetime. Advanced experiments have been performed with superconducting Josephson junctions and many breakthroughs have been reported in the last few years. They have an advantage in the inherent coherence of superconducting Cooper pairs over macroscopic distances. We chose to focus the Nobel Symposium on Qubits for Future Quantum Information on superconducting qubits to allow for depth in discussions, but at the same time to allow comparison with other types of qubits that may

  2. From the Big Bang to the Nobel Prize and the JWST

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2007-01-01

    I will describe the history of the universe, from the Big Bang to 2013, when the JWST is to be launched to look back towards our beginnings. I will discuss how the COBE results led to the Nobel Prize, how the COBE results have been confirmed and extended, and their implications for future observations. The James Webb Space Telescope will be used to examine every part of our history from the first stars and galaxies to the formation of individual stars and planets and the delivery of life-supporting materials to the Earth. I will describe the plans for the JWST and how observers may use it. With luck, the JWST may produce a Nobel Prize for some discovery we can only guess today.

  3. The 2010 Nobel Prize in physics—ground-breaking experiments on graphene

    NASA Astrophysics Data System (ADS)

    Hancock, Y.

    2011-11-01

    The 2010 Nobel Prize in physics was awarded to Professors Andre Geim and Konstantin Novoselov for their ground-breaking experiments on graphene, a single atomic layer of carbon, and more generally, for their pioneering work in uncovering a new class of materials, namely two-dimensional atomic crystals. This paper gives an accessible account and review of the story of graphene; from its first description in the literature, to the realization and confirmation of its remarkable properties, through to its impressive potential for broad-reaching applications. The story of graphene is written within the context of the enormous impact that Geim and Novoselovs' work has had on this field of research, and recounts their personal pathways of discovery, which ultimately led to their award of the 2010 Nobel Prize.

  4. The half-life of a "teachable moment": The case of Nobel laureates.

    PubMed

    Baram-Tsabari, Ayelet; Segev, Elad

    2015-04-01

    Some science-related events stimulate public interest, and create a teachable moment in which the underlying science temporarily becomes more interesting. Here, media attention, expressed by Google News reference volume, and changes in information seeking behavior, expressed by Google Trends, were used to estimate the length of a teachable moment for 2004-2011 Nobel Prize announcements. On average, Nobel Prize announcements attracted the attention of online users for no longer than a week. News coverage declined slower and occasionally displayed seasonal trends. There was a 50% drop in searches between the day of the announcement and the following day, and an analogous pattern for news coverage of all laureates varying for different disciplines. The affordances of using publicly available online data to identify the most effective teachable moments relating to science are discussed.

  5. The 2009 Lindau Nobel Laureate meeting: Martin Chalfie, Chemistry 2008.

    PubMed

    Chalfie, Martin

    2010-02-10

    American Biologist Martin Chalfie shared the 2008 Nobel Prize in Chemistry with Roger Tsien and Osamu Shimomura for their discovery and development of the Green Fluorescent Protein (GFP). Martin Chalfie was born in Chicago in 1947 and grew up in Skokie Illinois. Although he had an interest in science from a young age--learning the names of the planets and reading books about dinosaurs--his journey to a career in biological science was circuitous. In high school, Chalfie enjoyed his AP Chemistry course, but his other science courses did not make much of an impression on him, and he began his undergraduate studies at Harvard uncertain of what he wanted to study. Eventually he did choose to major in Biochemistry, and during the summer between his sophomore and junior years, he joined Klaus Weber's lab and began his first real research project, studying the active site of the enzyme aspartate transcarbamylase. Unfortunately, none of the experiments he performed in Weber's lab worked, and Chalfie came to the conclusion that research was not for him. Following graduation in 1969, he was hired as a teacher Hamden Hall Country Day School in Connecticut where he taught high school chemistry, algebra, and social sciences for 2 years. After his first year of teaching, he decided to give research another try. He took a summer job in Jose Zadunaisky's lab at Yale, studying chloride transport in the frog retina. Chalfie enjoyed this experience a great deal, and having gained confidence in his own scientific abilities, he applied to graduate school at Harvard, where he joined the Physiology department in 1972 and studied norepinephrine synthesis and secretion under Bob Pearlman. His interest in working on C. elegans led him to post doc with Sydney Brenner, at the Medical Research Council Laboratory of Molecular Biology in Cambridge, England. In 1982 he was offered position at Columbia University. When Chalfie first heard about GFP at a research seminar given by Paul Brehm in 1989

  6. Multiscale modeling of nerve agent hydrolysis mechanisms: a tale of two Nobel Prizes

    NASA Astrophysics Data System (ADS)

    Field, Martin J.; Wymore, Troy W.

    2014-10-01

    The 2013 Nobel Prize in Chemistry was awarded for the development of multiscale models for complex chemical systems, whereas the 2013 Peace Prize was given to the Organisation for the Prohibition of Chemical Weapons for their efforts to eliminate chemical warfare agents. This review relates the two by introducing the field of multiscale modeling and highlighting its application to the study of the biological mechanisms by which selected chemical weapon agents exert their effects at an atomic level.

  7. [The Nobel Prize for nitric oxide. The unjust exclusion of Dr. Salvador Moncada].

    PubMed

    de Berrazueta, J R

    1999-04-01

    The 1998 Nobel Prize in Physiology and Medicine has been awarded jointly to North-American scientists, Dr Robert F. Furchgott, Louis J. Ignarro and Ferid Murad, for their discoveries in relation to "nitric oxide as a signalling molecule in the cardiovascular system". This has raised an important polemic because of the exclusion the South-American scientist, now nationalized British, Dr. Salvador Moncada. This short historical review examines some of the fundamental contributions to the knowledge in this field. It shows the sequence of the discoveries and the communication of them to the scientific community by the rewarded scientists and by Dr. Moncada. It is based on some fundamental publications in order to better understand this story, which does not coincide with the writing in 1996 by the Lasker Prize Committee, and which in 1998 was re-written again by the Nobel Committee of the Swedish Academy. More than 90 universities, academies and societies have acknowledged Dr. Moncada up to now with priority in the discovery of the fact that nitric oxide is released by endothelial cells, and the revealing of its metabolic way. More than 20,000 citations of their fundamental papers endorse in the scientific community his primacy in this field. Even Robert Furchgott, author of the brilliant discovery of the endothelium derived relaxing factor, that opened this field to the science, declared about the award of the 1998 Nobel Prize: "I feel that the Nobel Prize Committee could have made an exception this year and chosen a fourth person, Salvador Moncada (to share the prize)".

  8. John Bardeen: the only person to win two Nobel Prizes in physics

    NASA Astrophysics Data System (ADS)

    Hoddeson, L.

    2011-11-01

    John Bardeen worked on the theory of solids throughout his physics career, winning two Nobel Prizes: the first in 1956 for the invention of the transistor with Walter Brattain and William Shockley; and the second in 1972 for the development with Leon Cooper and J Robert Schrieffer of the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. The transistor made possible the information revolution; the BCS theory helped lay the microscopic foundation for the modern theory of condensed matter physics.

  9. [The 2009 Nobel Prize in Medicine and its surprising message: lifestyle is associated with telomerase activity].

    PubMed

    Falus, András; Marton, István; Borbényi, Erika; Tahy, Adám; Karádi, Pál; Aradi, János; Stauder, Adrienne; Kopp, Mária

    2010-06-13

    The 2009 Nobel Prize in Physiology and Medicine was awarded to three scientists for their pioneer research on telomeres - and the enzyme that forms them - telomerase. Their work highlighted the considerable connection between the length of telomeres and intensive changes in lifestyle and nutrition (Ornish method) as well as behavioral and psychological factors. In this review the various elements of molecular, cell biological, nutritional and lifestyle changes are introduced and discussed.

  10. Theodore William Richards: apostle of atomic weights and Nobel Prize winner in 1914.

    PubMed

    Herschbach, Dudley R

    2014-12-15

    In recognition of his exact determinations of the atomic weights of a large number of the chemical elements, T. W. Richards received the Nobel Prize in Chemistry in 1914. His meticulous techniques resulted in "a degree of accuracy never before attained". This Essay follows Richards from his precocious youth to becoming a celebrated chemist and emphasizes his dedication to forseeing likely sources of error and how to avoid them.

  11. A Century of Chemical Dynamics Traced through the Nobel Prizes. 1983: Henry Taube

    NASA Astrophysics Data System (ADS)

    van Houten, J.

    2002-07-01

    The 1983 Nobel Prize was awarded to Henry Taube for his work on the mechanisms of electron transfer reactions, especially in metal complexes. Taube's work represents a watershed in the development of the mechanistic chemistry of inorganic transition metal complexes. His studies of those reactions is a central feature in courses in mechanistic inorganic chemistry, and his description of inner-sphere and outer-sphere electron transfer mechanisms remain as the textbook examples.

  12. Nils Gustav Dalén, the Unknown Nobel Prize Winner

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2009-01-01

    Hanging on the wall of my museum is a large "Map of Physics" published by the Central Scientific Company in 1938. On it is a list of the Nobel Prizes in physics, starting with Roentgen in 1901 and ending with Fermi in 1938. I can recognize every name except the one for 1912: Nils Gustav Dalén. Perhaps you have had the same experience when looking through the updated list.

  13. Let there be light--with gallium nitride: the 2014 Nobel Prize in Physics.

    PubMed

    Von Dollen, Paul; Pimputkar, Siddha; Speck, James S

    2014-12-15

    Significant gains in energy savings now underway can be traced to a single invention--the blue light-emitting diode. GaN-based blue LED technology not only resulted in efficient white light sources, but continues to enable a host of applications and scientific inquiries. The researchers primarily responsible for the development of the blue LED were awarded the 2014 Nobel Prize in Physics.

  14. Dissecting slander and crying for justice: Carlos Chagas and the Nobel Prize of 1921.

    PubMed

    Bestetti, Reinaldo B; Cardinalli-Neto, Augusto

    2013-10-01

    Chagas disease was discovered by Carlos Chagas in 1909. Chagas worked at Oswaldo Cruz Institute, where the bases of experimental medicine were settled in Brazil, and that had no connection with the Faculty of Medicine of Rio de Janeiro. Chagas had several enemies at Oswaldo Cruz Institute mainly because of his election to Head of Service in 1910, and for the position of Oswaldo Cruz Directorship in 1917. Furthermore, Chagas gained enemies at Faculty of Medicine of Rio de Janeiro, which did not like to see the economical political autonomy of Oswaldo Cruz Institute. This allowed the Institute not only to perform top experimental research, but also to take the leadership of research in the country. Chagas was nominated to the Nobel Prize of 1921 in December, 1920. None was awarded the Nobel Prize in that year. He seems to have been evaluated by the Noble Committee of Karolinska Institute from March to May of 1921. At that time, his enemies were denying his discovery of Trypanosoma cruzi, a key point in Chagas' nomination by Karolinska Institute, and giving no epidemiological importance for the disease. By the same way, the obligation of small pox vaccination was tarnishing his public image. Having taken into account the epidemiologic importance of Chagas disease, the strong historical mistake in the process of Chagas evaluation, and the inequity behind all these facts, we insist on a posthumous Nobel Prize for the man who made the most complete medical-scientist discovery of all time.

  15. Dissecting slander and crying for justice: Carlos Chagas and the Nobel Prize of 1921.

    PubMed

    Bestetti, Reinaldo B; Cardinalli-Neto, Augusto

    2013-10-01

    Chagas disease was discovered by Carlos Chagas in 1909. Chagas worked at Oswaldo Cruz Institute, where the bases of experimental medicine were settled in Brazil, and that had no connection with the Faculty of Medicine of Rio de Janeiro. Chagas had several enemies at Oswaldo Cruz Institute mainly because of his election to Head of Service in 1910, and for the position of Oswaldo Cruz Directorship in 1917. Furthermore, Chagas gained enemies at Faculty of Medicine of Rio de Janeiro, which did not like to see the economical political autonomy of Oswaldo Cruz Institute. This allowed the Institute not only to perform top experimental research, but also to take the leadership of research in the country. Chagas was nominated to the Nobel Prize of 1921 in December, 1920. None was awarded the Nobel Prize in that year. He seems to have been evaluated by the Noble Committee of Karolinska Institute from March to May of 1921. At that time, his enemies were denying his discovery of Trypanosoma cruzi, a key point in Chagas' nomination by Karolinska Institute, and giving no epidemiological importance for the disease. By the same way, the obligation of small pox vaccination was tarnishing his public image. Having taken into account the epidemiologic importance of Chagas disease, the strong historical mistake in the process of Chagas evaluation, and the inequity behind all these facts, we insist on a posthumous Nobel Prize for the man who made the most complete medical-scientist discovery of all time. PMID:23410487

  16. The curious case of the 1960 Nobel Prize to Burnet and Medawar.

    PubMed

    Silverstein, Arthur M

    2016-03-01

    The 1960 Nobel Prize was awarded to Macfarlane Burnet and Peter Medawar for immunological tolerance. The Nobel Archives reveal that the two were never nominated together by anyone; Burnet had repeatedly been nominated for his virology studies, and the Medawar group (including Rupert Billingham and Leslie Brent) had been nominated independently for their transplantation work. A review of the 1950s literature suggests that tolerance had not yet, by 1960, reached the level of acceptance and acclaim in the immunological community to appear to justify the award. Burnet probably should have received the Prize for his virus work, and perhaps also for his Clonal Selection Theory, whereas Billingham and Brent should have shared in a Prize with Medawar for transplantation. If a Prize were to be given for tolerance, most agree that Ray Owen should have shared in it, for his work on cattle chimerism. It is suggested that the 1960 Nobel Prize to Burnet and Medawar for immunological tolerance may have been given for the wrong reasons and to the wrong associates. PMID:26790994

  17. Special Issue on "Neutrino Oscillations: Celebrating the Nobel Prize in Physics 2015" in Nuclear Physics B

    NASA Astrophysics Data System (ADS)

    Ohlsson, Tommy

    2016-07-01

    In 2015, the Nobel Prize in Physics was awarded jointly to Takaaki Kajita from the Super-Kamiokande Collaboration and Arthur B. McDonald from the SNO Collaboration "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Furthermore, the Daya Bay, K2K and T2K, KamLAND, SNO, and Super-Kamiokande Collaborations shared the Fundamental Physics Breakthrough Prize the same year. In order to celebrate this successful and fruitful year for neutrino oscillations, the editors and the publisher of Nuclear Physics B decided to publish a Special Issue on neutrino oscillations. We invited prominent scientists in the area of neutrino physics that relates to neutrino oscillations to write contributions for this Special Issue, which was open to both original research articles as well as review articles. The authors of this Special Issue consist of e.g. the two Nobel Laureates, International Participants of the Nobel Symposium 129 on Neutrino Physics at Haga Slott in Enköping, Sweden (August 19-24, 2004), selected active researchers, and members from large experimental collaborations with major results in the last ten years. In total, this Special Issue consists of 28 contributions. Please note that the cover of this Special Issue contains a figure from each of the 26 contributions that have figures included.

  18. The curious case of the 1960 Nobel Prize to Burnet and Medawar.

    PubMed

    Silverstein, Arthur M

    2016-03-01

    The 1960 Nobel Prize was awarded to Macfarlane Burnet and Peter Medawar for immunological tolerance. The Nobel Archives reveal that the two were never nominated together by anyone; Burnet had repeatedly been nominated for his virology studies, and the Medawar group (including Rupert Billingham and Leslie Brent) had been nominated independently for their transplantation work. A review of the 1950s literature suggests that tolerance had not yet, by 1960, reached the level of acceptance and acclaim in the immunological community to appear to justify the award. Burnet probably should have received the Prize for his virus work, and perhaps also for his Clonal Selection Theory, whereas Billingham and Brent should have shared in a Prize with Medawar for transplantation. If a Prize were to be given for tolerance, most agree that Ray Owen should have shared in it, for his work on cattle chimerism. It is suggested that the 1960 Nobel Prize to Burnet and Medawar for immunological tolerance may have been given for the wrong reasons and to the wrong associates.

  19. Why there should be more science Nobel prizes and laureates - And why proportionate credit should be awarded to institutions.

    PubMed

    Charlton, Bruce G

    2007-01-01

    The four science Nobel prizes (physics, chemistry, medicine/physiology and economics) have performed extremely well as a method of recognizing the highest level of achievement. The prizes exist primarily to honour individuals but also have a very important function in science generally. In particular, the institutions and nations which have educated, nurtured or supported many Nobel laureates can be identified as elite in world science. However, the limited range of subjects and a maximum of 12 laureates per year mean that many major scientific achievements remain un-recognized; and relatively few universities can gather sufficient Nobel-credits to enable a precise estimate of their different levels of quality. I advocate that the Nobel committee should expand the number of Nobel laureates and Prize categories as a service to world science. (1) There is a large surplus of high quality prize candidates deserving of recognition. (2) There has been a vast expansion of research with a proliferation of major sub-disciplines in the existing categories. (3) Especially, the massive growth of the bio-medical sciences has created a shortage of Nobel recognition in this area. (4) Whole new fields of major science have emerged. I therefore suggest that the maximum of three laureates per year should always be awarded in the categories of physics, chemistry and economics, even when these prizes are for diverse and un-related achievements; that the number of laureates in the 'biology' category of physiology or medicine should be increased to six or preferably nine per year; and that two new Prize categories should be introduced to recognize achievements in mathematics and computing science. Together, these measures could increase the science laureates from a maximum of 12 to a minimum of 24, and increase the range of scientific coverage. In future, the Nobel committee should also officially allocate proportionate credit to institutions for each laureate, and a historical task

  20. Gore's Nobel May Bring Even More Attention on Campuses to Environmental Issues: Award for Combating Climate Change Implicitly Honors the Work of Academic Scientists

    ERIC Educational Resources Information Center

    Byrne, Richard; Monastersky, Richard

    2007-01-01

    When the Norwegian Nobel Committee announced that the 2007 Nobel Peace Prize would be shared by Al Gore, the former U.S. vice president, and the Intergovernmental Panel on Climate Change, the award implicitly celebrated a third party--academic institutions. Much of the research on global warming has come from university scientists, and higher…

  1. Nobel Prizes in Physics and Chemistry 2014: Celebrating the International Year of Light 2015, commemorating the Old Quantum Theory

    NASA Astrophysics Data System (ADS)

    Shi, Yu

    2015-01-01

    2015 is the International Year of Light and Light-based Technologies (IYL), while the physics and chemistry Nobel Prizes 2014 are both about light. The work leading to the two prizes share the same basic theoretical foundation: when an electron jumps from a higher energy level to a lower energy level, the energy difference is transformed into a photon. This basic way of light generation is a key part of the Old Quantum Theory. Interestingly, the date of announcing the 2014 Nobel Prize for physics coincided with the birthdays of Niels Bohr and, especially, of Planck's blackbody radiation formula. In connection with the two 2014 Nobel Prizes, we recall the development of the Old Quantum Theory by Planck, Einstein and Bohr.

  2. How the 1906 Nobel Prize in Physiology or Medicine was shared between Golgi and Cajal.

    PubMed

    Grant, Gunnar

    2007-10-01

    In 1906 the Nobel Prize in Physiology or Medicine was shared between Camillo Golgi and Ramón y Cajal in recognition of their work on the structure of the nervous system. Golgi's most impressive contribution was his method, described in 1873. This was applied in studies of the cerebellum, the olfactory bulb, hippocampus and the spinal cord. These studies together with his earlier work were included in his Opera Omnia, published in 1903. His method was highly praised by Cajal. His adherence to the reticular theory was opposed by Cajal, however, who had spelled out the neuron theory already in the late 1800s. Cajal's extraordinary contributions to the structure of the nervous system, based largely on the Golgi method and Ehrlich's methylene blue stain, were published in his Textura del Sistema Nerviosa de Hombre y de los Vertebrados, three volumes published from 1897 to 1904. Documents from the Nobel Archives reveal that Kölliker, Retzius and Fürst were the ones who proposed Golgi and Cajal for a shared prize. Golgi was nominated by Hertwig, as well. Cajal was proposed by Ziehen and Holmgren, and also by Retzius, as an alternative to a shared prize. Holmgren, who was commissioned to write the report to the Nobel Committee, found Cajal far superior to Golgi. Sundberg, asked for another evaluation, was more positive to Golgi's contributions than Holmgren. Gadelius supported Holmgren's views. The final vote gave a majority for a shared prize. The prize ceremony and the lectures were described in detail in Cajal's autobiography.

  3. TOPICAL REVIEW: The discovery, development and future of GMR: The Nobel Prize 2007

    NASA Astrophysics Data System (ADS)

    Thompson, Sarah M.

    2008-05-01

    One hundred and one years after J J Thomson was awarded the Nobel Prize for the discovery of the electron, the 2007 Nobel Prize for Physics was awarded to Professors Peter Grünberg and Albert Fert for the discovery of giant magnetoresistance (GMR) in which the spin as well as the charge of the electron is manipulated and exploited in nanoscale magnetic materials. The journey to GMR started with Lord Kelvin who 150 years ago in 1857 made the first observations of anisotropic magnetoresistance and includes Sir Neville Mott who in 1936 realized that electric current in metals could be considered as two independent spin channels. Modern technology also has a significant role to play in the award of this Nobel Prize: GMR is only manifest in nanoscale materials, and the development of nanotechnology growth techniques was a necessary pre-requisite; further, the considerable demands of the magnetic data storage industry to drive up the data density stored on a hard disk fuelled an enormous international research effort following the initial discovery with the result that more than 5 billion GMR read heads have been manufactured since 1997, ubiquitous in hard disks today. This technology drive continues to inspire exploration of the spin current in the field now known as spintronics, generating new ideas and applications. This review explores the science underpinning GMR and spintronics, the different routes to its discovery taken by Professors Grünberg and Fert, the new science, materials and applications that the discovery has triggered and the considerable potential for the future.

  4. The History of Molecular Structure Determination Viewed through the Nobel Prizes

    NASA Astrophysics Data System (ADS)

    Jensen, William P.; Palenik, Gus J.; Suh, Il-Hwan

    2003-07-01

    For the past 100 years, with only a few exceptions during war times, Nobel Prizes have been awarded annually to men and women who have made exceptionally important discoveries in science. In thirteen of those years, prizes were awarded to individuals whose contributions helped explain the molecular world of matter through interactions of waves or particles with atoms. From William C. Röntgen, who received the very first Nobel Prize in Physics in 1901 for his work with X-rays, to von Laue and the father-and-son Bragg team in the second decade of the century, who used X-rays to understand atomic arrangements, much progress had been made revealing secrets at the molecular level of matter. In the 1930s Debye, Davisson, and Thomson revealed further information using, among other techniques, diffraction of electrons by matter. In the 1960s Crick, Watson, Wilkins, Perutz, Kendrew, and Hodgkin received Nobel Prizes for revealing structures of significantly more complex molecules including the DNA double helix, myoglobin, hemoglobin, and vitamin B12. In the 1970s and 1980s Lipscomb would be recognized for organizing our picture of boron hydrides, Klug would use electron diffraction to determine structures of important nucleic acid protein complexes, Hauptman and Karle would bring us a powerful new way to solve structures, and Deisenhofer, Huber, and Michel would determine the three-dimensional structure of a photosynthetic reaction center. Finally, in 1994 Brockhouse and Shull were recognized for their work with neutrons. Crystallography has been used to answer increasingly complex questions in the past, and will certainly remain an important tool in the future.

  5. Enhancement of glioma-specific immunity in mice by "NOBEL", an insulin-like growth factor 1 receptor antisense oligodeoxynucleotide.

    PubMed

    Morin-Brureau, Mélanie; Hooper, Kirsten M; Prosniak, Michael; Sauma, Sami; Harshyne, Larry A; Andrews, David W; Hooper, D Craig

    2015-04-01

    Autologous glioblastoma multiforme tumor cells treated with an antisense oligodeoxynucleotide (AS-ODN) targeting insulin-like growth factor receptor-1 (IGF-1R) are the basis of a vaccine with therapeutic effects on tumor recurrence in a pilot clinical trial. As a preface to continued clinical investigation of this vaccination strategy, we have studied the contribution of an optimized IGF-1R AS-ODN, designated "NOBEL", to the induction of immunity to mouse GL261 glioma cells. The impact of NOBEL on mechanisms contributing to the development of GL261 immunity was first examined in the periphery. GL261 cells are naturally immunogenic when implanted into the flanks of congenic C57BL/6 mice, immunizing rather than forming tumors in around 50 % of these animals but causing tumors in the majority of mice lacking T and B lymphocytes. Overnight treatment with NOBEL in vitro reduces IGF-1R expression by GL261 cells but has minimal effect on cell viability and does not reduce the capacity of the cells to form tumors upon implantation. In contrast, tumors are extremely rare when GL261 cells are mixed with NOBEL at inoculation into the flanks of C57BL/6, and the recipient mice become immune to subcutaneous and intracranial challenge with untreated GL261. Adaptive immune mechanisms contribute to this effect, as immunocompromised mice fail to either fully control tumor formation or develop immunity following flank administration of the GL261/NOBEL mix. NOBEL's structure has known immunostimulatory motifs that likely contribute to the immunogenicity of the mix, but its specificity for IGF-1R mRNA is also important as a similarly structured sense molecule is not effective.

  6. [The Nobel Prize in Physiology or Medicine for 2006 for the discovery of RNA interference].

    PubMed

    Bernards, R

    2006-12-30

    The Nobel Prize in Physiology or Medicine has been awarded to Andrew Fire and Craig Mello for their discovery of RNA interference, i.e. the suppression of gene activity by double-stranded RNA. Small interfering RNA molecules (siRNAs), notably the antisense strand, recognise and inhibit the corresponding mRNA, thereby silencing the appropriate gene. RNA interference can help to determine the function of genes and may assist in the development ofnew drugs. It may also lead to a better understanding of mechanisms of drug resistance. In addition, siRNAs themselves may prove to have therapeutic value as many diseases are the result of alterations in gene activity.

  7. A Century of Chemical Dynamics Traced through the Nobel Prizes. 1998: Walter Kohn and John Pople

    NASA Astrophysics Data System (ADS)

    van Houten, Josh

    2002-11-01

    The 1998 Nobel Prize was awarded to Walter Kohn "for his development of the density-functional theory" and to John Pople "for his development of computational methods in quantum chemistry." They enabled improved energy calculations on molecules and other multi-atom systems. Chemists have taken advantage of those developments to perform calculations on systems during reactive encounters, thereby obtaining a better understanding of chemical dynamics and allowing for predictions regarding the course of chemical reactions based on the energies of various possible transition states.

  8. Chemistry in the News: 1997 Nobel Prizes in Chemistry and Medicine

    NASA Astrophysics Data System (ADS)

    1997-12-01

    Chemistry The Royal Swedish Academy of Sciences has awarded the 1997 Nobel Prize in Chemistry with one half to Paul D. Boyer (University of California, Los Angeles, USA) and John E. Walker (Medical Research Council Laboratory of Molecular Biology, Cambridge, UK) for elucidation of the mechanism of action of ATP synthase, which catalyzes the synthesis of adenosine triphosphate (ATP); and one half to Jens C. Skou (Aarhus University, Denmark) for the first discovery of an ion-transporting enzyme, Na+,K+-ATPase. The three laureates have performed pioneering work on enzymes that catalyze reactions of the "high-energy" compound adenosine triphosphate (ATP).

  9. [Henri Moissn, first French Nobel prize winner in chemistry: the man, the picture collector].

    PubMed

    Viel, C

    1999-03-01

    Born in Paris in September 1852, Henri Moisson died in February 1907, two months after receiving the Nobel prize for chemistry. After a short schooling at Meaux college, he was destined to be a clock maker. He owes his vocation for chemistry to Jules Plicque, a chemist and friend at the college. Henri Moisson attended Fremy's school of chemistry at the Paris Natural History Museum and undertook pharmaceutical studies. In this presentation, we take a look at Henri Moissan's child-hood and teenage years, his scientific education and offer a glimpse of the man and the picture collector.

  10. Nobel Prize in Chemistry. Development of the Olefin Metathesis Method in Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Casey, Charles P.

    2006-02-01

    The 2005 Nobel Prize in Chemistry was awarded to Yves Chauvin of the Institut Français du Pétrole, Robert H. Grubbs of CalTech, and Richard R. Schrock of MIT "for development of the metathesis method in organic synthesis". The discoveries of the laureates provided a chemical reaction now used daily in the chemical industry for the efficient and more environmentally friendly production of important pharmaceuticals, fuels, synthetic fibers, and many other products. This article tells the story of how olefin metathesis became a truly useful synthetic transformation and a triumph for mechanistic chemistry, and illustrates the importance of fundamental research. See JCE Featured Molecules .

  11. The mantle of the heavens: Reflections on the 2014 Nobel Prize for medicine or physiology.

    PubMed

    Morris, Richard G M

    2015-06-01

    The award of the Nobel Prize in Medicine or Physiology in 2014 for the discovery of place and grid cells was both a personal award to three great scientists and also a mark of the maturity of systems neuroscience as a discipline. This article offers both personal and scientific reflections on these discoveries, detailing both how getting to know all three winners had an impact on my life and the research questions that we shared in common work together. It ends with brief reflections on three important outstanding questions. PMID:25786661

  12. The 2014 Nobel Prize in Physiology or Medicine: a spatial model for cognitive neuroscience.

    PubMed

    Burgess, Neil

    2014-12-17

    Understanding how the cognitive functions of the brain arise from its basic physiological components has been an enticing final frontier in science for thousands of years. The Nobel Prize in Physiology or Medicine 2014 was awarded one half to John O'Keefe, the other half jointly to May-Britt Moser and Edvard I. Moser "for their discoveries of cells that constitute a positioning system in the brain." This prize recognizes both a paradigm shift in the study of cognitive neuroscience, and some of the amazing insights that have followed from it concerning how the world is represented within the brain. PMID:25521374

  13. Youyou Tu: significance of winning the 2015 Nobel Prize in Physiology or Medicine.

    PubMed

    Liu, Wenxiu; Liu, Yue

    2016-02-01

    Youyou Tu, a female scientist at the China Academy of Traditional Chinese Medicine in Beijing, is the first Chinese winner of the Nobel Prize in Physiology or Medicine. Based on the study of recipes which had been used for thousands of years to treat fever, Tu's group discovered that the plant artemesia annua, sweet wormwood, showed substantial inhibition of rodent malaria parasites. Her achievement and experience have inspired other researchers and emphasized the development of traditional Chinese medicine. Her award has led to a heated discussion about scientific research investment, fair treatment of research staff, and intellectual property right (IPR) protection in China. PMID:26885485

  14. Youyou Tu: significance of winning the 2015 Nobel Prize in Physiology or Medicine

    PubMed Central

    Liu, Wenxiu

    2016-01-01

    Youyou Tu, a female scientist at the China Academy of Traditional Chinese Medicine in Beijing, is the first Chinese winner of the Nobel Prize in Physiology or Medicine. Based on the study of recipes which had been used for thousands of years to treat fever, Tu’s group discovered that the plant artemesia annua, sweet wormwood, showed substantial inhibition of rodent malaria parasites. Her achievement and experience have inspired other researchers and emphasized the development of traditional Chinese medicine. Her award has led to a heated discussion about scientific research investment, fair treatment of research staff, and intellectual property right (IPR) protection in China. PMID:26885485

  15. The 2014 Nobel Prize in Physiology or Medicine: A Spatial Model for Cognitive Neuroscience

    PubMed Central

    Burgess, Neil

    2014-01-01

    Understanding how the cognitive functions of the brain arise from its basic physiological components has been an enticing final frontier in science for thousands of years. The Nobel Prize in Physiology or Medicine 2014 was awarded one half to John O’Keefe, the other half jointly to May-Britt Moser and Edvard I. Moser “for their discoveries of cells that constitute a positioning system in the brain.” This prize recognizes both a paradigm shift in the study of cognitive neuroscience, and some of the amazing insights that have followed from it concerning how the world is represented within the brain. PMID:25521374

  16. Youyou Tu: significance of winning the 2015 Nobel Prize in Physiology or Medicine.

    PubMed

    Liu, Wenxiu; Liu, Yue

    2016-02-01

    Youyou Tu, a female scientist at the China Academy of Traditional Chinese Medicine in Beijing, is the first Chinese winner of the Nobel Prize in Physiology or Medicine. Based on the study of recipes which had been used for thousands of years to treat fever, Tu's group discovered that the plant artemesia annua, sweet wormwood, showed substantial inhibition of rodent malaria parasites. Her achievement and experience have inspired other researchers and emphasized the development of traditional Chinese medicine. Her award has led to a heated discussion about scientific research investment, fair treatment of research staff, and intellectual property right (IPR) protection in China.

  17. The mantle of the heavens: Reflections on the 2014 Nobel Prize for medicine or physiology.

    PubMed

    Morris, Richard G M

    2015-06-01

    The award of the Nobel Prize in Medicine or Physiology in 2014 for the discovery of place and grid cells was both a personal award to three great scientists and also a mark of the maturity of systems neuroscience as a discipline. This article offers both personal and scientific reflections on these discoveries, detailing both how getting to know all three winners had an impact on my life and the research questions that we shared in common work together. It ends with brief reflections on three important outstanding questions.

  18. Radiation risk and nuclear medicine: An interview with a Nobel Prize winner

    SciTech Connect

    Yalow, R.S.

    1995-12-01

    In a speech given years ago at the Veterans Administration Medical Center, Bronx, NY, Rosalyn S. Yalow, 1977 Nobel Prize recipient for her invention of radioimmunoassay, made several salient points on the perception of fear or hazards from exposure to low-level radiation and low-level radioactive wastes. For the past three years, Yalow has been concerned with the general fear of radiation. In this interview, Newsline solicited Yalow`s views on public perceptions on radiation risk and what the nuclear medicine community can do to emphasize the fact that, if properly managed, the use of isotopes in medicine and other cases is not dangerous.

  19. Immunology's foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff.

    PubMed

    Kaufmann, Stefan H E

    2008-07-01

    One hundred years ago the birth of immunology was made official by the Nobel Prize award to Elie Metchnikoff and Paul Ehrlich. Metchnikoff discovered phagocytosis by macrophages and microphages as a critical host-defense mechanism and thus is considered the father of cellular innate immunity. Ehrlich described the side-chain theory of antibody formation and the mechanisms of how antibodies neutralize toxins and induce bacterial lysis with the help of complement and thus is considered one of the fathers of humoral adaptive immunity. Despite many discordant discussions in the initial phase after these discoveries, innate and adaptive responses are now known to be complementary partners in producing robust immunity.

  20. X-ray Studies Key to Nobel Prize Winning Work on Protein Receptors

    SciTech Connect

    Janet Smith; Robert Fischetti

    2013-02-04

    It was the advent of the first micro X-ray beam for structural biology at the Advanced Photon Source at Argonne National Laboratory that enabled the research that earned the 2012 Nobel Prize in Chemistry and lays the groundwork for countless new pharmaceuticals. 00:00 Introduction: Brian Stephenson, director Advanced Photon Source 02:50 An overview of the research: Janet Smith, scientific director of the GM/CA beamline at the APS 17:53 How X-rays were used: Robert Fischetti, associate division director for structural biology in Argonne National Laboratory's APS X-ray Science Division

  1. Reflections on the Nobel Prize for Medicine 2015--The Public Health Legacy and Impact of Avermectin and Artemisinin.

    PubMed

    Molyneux, David H; Ward, Steve A

    2015-12-01

    The award of the Nobel Prize to Dr Bill Campbell and Professor Satoshi Ōmura for their role in the discovery of avermectin and Professor Youyou Tu for her work on the development of artemisinin has been universally welcomed by the International Health community for what the Nobel Committee described as 'The discoveries of Avermectin and Artemisinin have revolutionized therapy for patients suffering from devastating parasitic diseases. Campbell, Ōmura and Tu have transformed the treatment of parasitic diseases. The global impact of their discoveries and the resulting benefit to mankind are immeasurable'. PMID:26552892

  2. The Limit of a strong Lobby: Why did August Bier and Ferdinand Sauerbruch never receive the Nobel Prize?

    PubMed

    Hansson, Nils; Schagen, Udo

    2014-01-01

    August Bier (1861-1949) and Ferdinand Sauerbruch (1875-1951) have remained two of the most influential figures during the first half of the 20th century in German and even in international surgery. They were jointly awarded Adolf Hitler's German Science Prize in 1937, but never the Nobel Prize for Physiology or Medicine, although no other German surgeons were nominated as often as Bier and Sauerbruch for the prestigeful award from 1901 to 1950. This contribution gives an overview of the reasons why and by whom Bier and Sauerbruch were nominated, and discusses the reasons of the Nobel Prize Committee for not awarding them. PMID:25094023

  3. Reflections on the Nobel Prize for Medicine 2015--The Public Health Legacy and Impact of Avermectin and Artemisinin.

    PubMed

    Molyneux, David H; Ward, Steve A

    2015-12-01

    The award of the Nobel Prize to Dr Bill Campbell and Professor Satoshi Ōmura for their role in the discovery of avermectin and Professor Youyou Tu for her work on the development of artemisinin has been universally welcomed by the International Health community for what the Nobel Committee described as 'The discoveries of Avermectin and Artemisinin have revolutionized therapy for patients suffering from devastating parasitic diseases. Campbell, Ōmura and Tu have transformed the treatment of parasitic diseases. The global impact of their discoveries and the resulting benefit to mankind are immeasurable'.

  4. The Limit of a strong Lobby: Why did August Bier and Ferdinand Sauerbruch never receive the Nobel Prize?

    PubMed

    Hansson, Nils; Schagen, Udo

    2014-01-01

    August Bier (1861-1949) and Ferdinand Sauerbruch (1875-1951) have remained two of the most influential figures during the first half of the 20th century in German and even in international surgery. They were jointly awarded Adolf Hitler's German Science Prize in 1937, but never the Nobel Prize for Physiology or Medicine, although no other German surgeons were nominated as often as Bier and Sauerbruch for the prestigeful award from 1901 to 1950. This contribution gives an overview of the reasons why and by whom Bier and Sauerbruch were nominated, and discusses the reasons of the Nobel Prize Committee for not awarding them.

  5. A review of Nobel prizes in medicine or physiology, 1901-87.

    PubMed

    Kantha, S S

    1989-03-01

    This review examines the awards of Nobel Prizes for Medicine or Physiology discipline between 1901 and 1987, in order to evaluate the advances made in biomedical sciences in the twentieth century. A total of 78 awards had been made amounting to 144 laureates. Countrywise, scientists from the USA lead the tally of Nobelists with 62 laureates, followed by those from Britain and Germany. In the first quarter (1901-25), majority of the awards were given to pioneering studies in microbiology and physiology. Following three decades (1926-55) show the emergence of biochemists as preferred winners with many of the nutrition-related discoveries receiving the recognition. During and immediately after the Second World War (between 1939 and 1957), pharmacology related studies were also awarded Nobel merit. Molecular biology, genetics and immunology had become the prime areas for recipients during the last three decades beginning with 1958. Apart from these four distinct speciality areas, classic discoveries in the fields of neurosciences and behavior, clinical medicine, experimental biology endocrinology had also been recognized at regular intervals. PMID:2654450

  6. Selman A. Waksman, Winner of the 1952 Nobel Prize for Physiology or Medicine

    PubMed Central

    2014-01-01

    The history of the discovery and development of streptomycin is reviewed here from the personal standpoint of a member of Dr. Selman Waksman's antibiotic screening research team. The team approach of eight individuals illustrates how the gradual enhancement of the screening methodology was developed. I illustrate three study periods with key aspects in the development of streptomycin which led to a Nobel Prize being granted to Professor Waksman. One item not previously emphasized is the employment of a submerged culture technique for large-scale production of streptomycin, thus enabling rapid animal testing and human clinical trials with Mycobacterium tuberculosis. Another is that purified streptomycin was shown by Dr. Waksman to be distinctly different from the substances called natural products, which are no longer patentable in the United States; therefore, streptomycin was found to be patentable. A third item not previously emphasized is his emphasis on the screening of actinomycetes, including the newly named Streptomyces genus. All of these factors contributed to the success of streptomycin in the treatment of tuberculosis. In combination, their successes led to Dr. Waksman's department becoming a new pharmacological research area, specializing in drug discovery. These unique accomplishments all burnish the prior rationales used by the Karolinska Institute in granting Dr. Waksman alone the 1952 Nobel Prize for Physiology or Medicine. PMID:24162573

  7. Communication; A Discussion at the Nobel Conference (5th, Gustavus Adolphus College, St. Peter, Minnesota, January 8-9, 1969).

    ERIC Educational Resources Information Center

    Roslansky, John D., Ed.

    This book consists of five lectures on communication given at the fifth Nobel Conference. Leroy G. Augenstein explores the positive and negative consequences of man's increasing capacity to manipulate and control the human mind. Peter Marler demonstrates that all the elements necessary for a communication system to qualify as a language exist…

  8. The Nobel Peace Prize and Peace Studies. "Styles of Leadership: An Undergraduate Course Based upon the Prize."

    ERIC Educational Resources Information Center

    Merikangas, Robert J.

    An undergraduate honors course on the Nobel Peace Prize winners at the University of Maryland focuses on styles of leadership and includes three main areas of attention: (1) the inner journey, or heart of the peacemaker, (2) leadership exercised through organizations and movements, and (3) the rhetoric of the leader. The course was divided into a…

  9. Super-resolved fluorescence microscopy: Nobel Prize in Chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner.

    PubMed

    Möckl, Leonhard; Lamb, Don C; Bräuchle, Christoph

    2014-12-15

    A big honor for small objects: The Nobel Prize in Chemistry 2014 was jointly awarded to Eric Betzig, Stefan Hell, and William E. Moerner "for the development of super-resolved fluorescence microscopy". This Highlight describes how the field of super-resolution microscopy developed from the first detection of a single molecule in 1989 to the sophisticated techniques of today.

  10. [The assessment process within science and the nomination of Carlos Chagas for the Nobel prize for Physiology or Medicine].

    PubMed

    Pittella, José Eymard Homem

    2009-01-01

    One of the greatest achievements in the history of medicine was the description of Chagas disease by the physician and scientist Carlos Chagas. A hundred years after the discovery of the disease, speculation still remains regarding the two official nominations of Carlos Chagas for the Nobel Prize, the biggest worldwide scientific award, in 1913 and in 1921. It has been accepted that the reason why the prize was not awarded to this brilliant scientist may have been the strong opposition that he faced in Brazil, from some physicians and researchers of that time. They went as far as questioning the existence of Chagas disease, thereby possibly influencing the decision of the Nobel Committee not to award the prize to him. Analysis of the database of the Nobel prize archives, with the revelation of the names of nominators, nominees and prizewinners spanning the years 1901-1951, brought information not only about what was considered to be a scientific achievement at that time, but also about who the important scientists were and what the relationships between them were. The non-recognition of Carlos Chagas' discoveries by the Nobel Committee appears to be more correctly explained by these factors than by the negative impact of the local opposition.

  11. Scientometric identification of elite 'revolutionary science' research institutions by analysis of trends in Nobel prizes 1947-2006.

    PubMed

    Charlton, Bruce G

    2007-01-01

    Most research is 'normal science' using Thomas Kuhn's term: checking, trial-and-error improvement and incremental extrapolation of already existing paradigms. By contrast, 'revolutionary science' changes the fundamental structures of science by making new theories, discoveries or technologies. Science Nobel prizes (in Physics, Chemistry, Physiology/Medicine and Economics) have the potential to be used as a new metric for measuring revolutionary science. Nobel laureates' nations and research institutions were measured between 1947 and 2006 in 20 year segments. The minimum threshold for inclusion was 3 Nobel prizes. Credit was allocated to each laureate's institution and nation of residence at the time of award. Over 60 years, the USA has 19 institutions which won three-plus Nobel prizes in 20 years, the UK has 4, France has 2 and Sweden and USSR 1 each. Four US institutions won 3 or more prizes in all 20 year segments: Harvard, Stanford, Berkeley and CalTech. The most successful institution in the past 20 years was MIT, with 11 prizes followed by Stanford (9), Columbia and Chicago (7). But the Western United States has recently become the world dominant region for revolutionary science, generating a new generation of elite public universities: University of Colorado at Boulder; University of Washington at Seattle; and the University of California institutions of Santa Barbara, Irvine, UCSF, and UCLA; also the Fred Hutchinson CRC in Seattle. Since 1986 the USA has 16 institutions which have won 3 plus prizes, but elsewhere in the world only the College de France has achieved this. In the UK Cambridge University, Cambridge MRC unit, Oxford and Imperial College have declined from 17 prizes in 1967-86 to only 3 since then. Harvard has also declined as a revolutionary science university from being the top Nobel-prize-winning institution for 40 years, to currently joint sixth position. Although Nobel science prizes are sporadically won by numerous nations and institutions

  12. 78 FR 68476 - Notice of Lodging of Proposed Consent Decree Under the Comprehensive Environmental Response...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... Settling Defendants, consisting of Air Products and Chemicals, Inc., Akzo Nobel Coatings, Inc., Alcatel..., Rohm and Haas Company, Seagrave Coatings Corp. (NJ), SI Group, Inc., Siegfried (USA), Inc., Simon....usdoj.gov/enrd/Consent_Decrees.html . We will provide a paper copy of the consent decree upon...

  13. 76 FR 36519 - Purified Carboxymethylcellulose from the Netherlands; Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... Sales at Less Than Fair Value, 70 FR 9041 (February 24, 2005), and accompanying Issues and Decision... sales of subject merchandise by Akzo Nobel Functional Chemicals B.V. were made at less than normal value... Finland, Mexico, the Netherlands, and Sweden, 70 FR 39734 (July 11, 2005) (CMC Order). On July 1,...

  14. Nobel Prize In Physics Awarded To Astronomer For NASA-Funded Research

    NASA Astrophysics Data System (ADS)

    2002-10-01

    Riccardo Giacconi, the "father of X-ray astronomy," has received the Nobel Prize in physics for "pioneering contributions to astrophysics," which have led to the discovery of cosmic X-ray sources. Giaconni, president of the Associated Universities Inc., in Washington, and Research Professor of Physics and Astronomy at Johns Hopkins University, Baltimore, discovered the first X-ray stars and the X-ray background in the 1960s and conceived of and led the implementation of the Uhuru and High Energy Astronomy Observatory-2 (HEAO-2) X-ray observatories in the 1970s. With funding from NASA, he also detected sources of X-rays that most astronomers now consider to contain black holes. Giacconi said that receiving the award confirms the importance of X-ray astronomy. "I think I'm one of the first to get the Nobel prize for work with NASA, so that's good for NASA and I think it's also good for the field," he said. "It's also nice for all the other people who've worked in this field. I recognize that I was never alone. I'm happy for me personally, I'm happy for my family, and I'm happy for the field and for NASA," Giacconi added. In 1976, Giacconi along with Harvey Tananbaum of the Harvard- Smithsonian Center for Astrophysics, Cambridge, Mass., submitted a proposal letter to NASA to initiate the study and design of a large X-ray telescope. In 1977 work began on the program, which was then known as the Advanced X-ray Astrophysics Facility and in 1998 renamed the Chandra X-ray Observatory. "Partnerships with universities and scientists are essential in our quest to answer the fundamental questions of the universe," said Dr. Ed Weiler, NASA Associate Administrator for Space Science, Headquarters, Washington. "Dr. Giacconi's achievements are a brilliant example of this synergy among NASA, universities and their community of scientists and students," he said. Giacconi is Principal Investigator for the ultradeep survey with Chandra - the "Chandra Deep Field South" - that has

  15. The brain on itself: Nobel laureates and the history of fundamental nervous system function.

    PubMed

    Langmoen, Iver A; Apuzzo, Michael L J

    2007-11-01

    The Nobel Prize in Physiology or Medicine has been given in recognition of work in the neurosciences a number of times. Laureates have been awarded for work on both fundamental and more complex nervous system functions. This review is restricted to contributions by 20th century laureates to the understanding of fundamental nervous system function on the cellular level. In 1906, Camillo Golgi and Ramón y Cajal were awarded for their work on the microscopic structure of the nervous system. Their achievement and those of others within this field, coupled with technological progress, gradually allowed more complex physiological studies. In 1932, the prize was awarded to Charles Sherrington and Edgar Adrian for their discoveries of how neurons function. They were followed in 1944 by Herbert Gasser and Joseph Erlanger who uncovered the highly differentiated functions of single nerve fibers. Alan Hodgkin and Andrew Huxley were awarded for the detection of the ionic mechanism of the action potential and its mathematical explanation in 1963. In 1991, Erwin Neher and Bernd Sakmann were awarded for their work on single ion channels. Although the scientists who proved the hypothesis (Fridjof Nansen, Wilhelm His, and August Forel) were never awarded by the Nobel Committee, their studies gave rise to one of the most fundamental questions in 20th century neuroscience: How is information carried from one neuron to another or to an effector cell? This was first solved in the vegetative nervous system, and, in 1936, Henry Dale and Otto Loewi received the prize for their discoveries relating to chemical transmission of nerve impulses. In 1963, John Eccles was awarded the prize for his work on the physiology of synapses. In 1970, Bernhard Katz received the Nobel Prize for the discovery of quantal release. Katz shared the prize with Julius Axelrod and Ulf von Euler, who were central in finding that transmitters are stored in presynaptic vesicles and that the effect in many synapses is

  16. The brain on itself: Nobel laureates and the history of fundamental nervous system function.

    PubMed

    Langmoen, Iver A; Apuzzo, Michael L J

    2007-11-01

    The Nobel Prize in Physiology or Medicine has been given in recognition of work in the neurosciences a number of times. Laureates have been awarded for work on both fundamental and more complex nervous system functions. This review is restricted to contributions by 20th century laureates to the understanding of fundamental nervous system function on the cellular level. In 1906, Camillo Golgi and Ramón y Cajal were awarded for their work on the microscopic structure of the nervous system. Their achievement and those of others within this field, coupled with technological progress, gradually allowed more complex physiological studies. In 1932, the prize was awarded to Charles Sherrington and Edgar Adrian for their discoveries of how neurons function. They were followed in 1944 by Herbert Gasser and Joseph Erlanger who uncovered the highly differentiated functions of single nerve fibers. Alan Hodgkin and Andrew Huxley were awarded for the detection of the ionic mechanism of the action potential and its mathematical explanation in 1963. In 1991, Erwin Neher and Bernd Sakmann were awarded for their work on single ion channels. Although the scientists who proved the hypothesis (Fridjof Nansen, Wilhelm His, and August Forel) were never awarded by the Nobel Committee, their studies gave rise to one of the most fundamental questions in 20th century neuroscience: How is information carried from one neuron to another or to an effector cell? This was first solved in the vegetative nervous system, and, in 1936, Henry Dale and Otto Loewi received the prize for their discoveries relating to chemical transmission of nerve impulses. In 1963, John Eccles was awarded the prize for his work on the physiology of synapses. In 1970, Bernhard Katz received the Nobel Prize for the discovery of quantal release. Katz shared the prize with Julius Axelrod and Ulf von Euler, who were central in finding that transmitters are stored in presynaptic vesicles and that the effect in many synapses is

  17. [The 2004 Nobel Prize in Chemistry for the discovery of ubiquitin-mediated protein degradation].

    PubMed

    Neefjes, J; Groothuis, T A M; Dantuma, N P

    2004-12-25

    This year's Nobel Prize in Chemistry has been awarded to Aaron Ciechanover, Avram Herskho and Irwin Rose for the discovery of ubiquitin-mediated protein degradation. In a series of groundbreaking experiments these scientists described the basic principles for a unique posttranslational modification based on the conjugation of the small protein ubiquitin to proteins deemed for degradation. Although ubiquitin started in 1980 as an unusual modification of certain proteins, it is now clear that it functions as a signal for degradation when it forms a polymer. Hundreds of proteins are involved in the controlled destruction of ubiquitin-labelled proteins in the cell. And hundreds of other proteins are involved in protein modification by mono-ubiquitin, so that other processes, such as the formation of another degradation compartment, the lysosome, can proceed normally.

  18. Nobel Prize Recipient Eric Betzig Presents Lecture on Efforts to Improve High-Resolution Microscopy | Poster

    Cancer.gov

    Eric Betzig, Ph.D., a 2014 recipient of the Nobel Prize in Chemistry and a scientist at Janelia Research Campus (JRC), Howard Hughes Medical Institute, in Ashburn, Va., visited NCI at Frederick on Sept. 10 to present a Distinguished Scientist lecture and discuss the latest high-resolution microscopy techniques. Betzig co-invented photoactivation localization microscopy (PALM) in collaboration with scientists at NIH. PALM achieves 10-fold improvement in spatial resolution of cells, going from the resolution limit of approximately 250 nm in standard optical microscopy down to approximately 20 nm, thus producing a so-called “super-resolution” image. Spatial resolution refers to the clarity of an image or, in other words, the smallest details that can be observed from an image.

  19. Nanoscopy—imaging life at the nanoscale: a Nobel Prize achievement with a bright future

    NASA Astrophysics Data System (ADS)

    Blom, Hans; Bates, Mark

    2015-10-01

    A grand scientific prize was awarded last year to three pioneering scientists, for their discovery and development of molecular ‘ON-OFF’ switching which, when combined with optical imaging, can be used to see the previously invisible with light microscopy. The Royal Swedish Academy of Science announced on October 8th their decision and explained that this achievement—rooted in physics and applied in biology and medicine—was awarded with the Nobel Prize in Chemistry for controlling fluorescent molecules to create images of specimens smaller than anything previously observed with light. The story of how this noble switch in optical microscopy was achieved and how it was engineered to visualize life at the nanoscale is highlighted in this invited comment.

  20. Pilot-scale incineration of contaminated sludges from the Bofors-Nobel superfund site

    SciTech Connect

    King, C.; Waterland, L.R.

    1993-01-01

    A detailed test program was performed at the U.S. EPA Incineration Research Facility to help determine the effectiveness of incineration in treating two contaminated lagoon sludges from the Bofors-Nobel Superfund Site in Muskegon, MI. The sludges tested were contaminated with various organic contaminants and trace metals. Three incineration tests were conducted for each sludge, for a total of six tests, in the facility's rotary kiln incineration system. Test results suggested that incineration under the conditions tested represented an effective treatment option for both sludges. Particulate emissions at the scrubber exit were high during incineration of one of the sludges while cadmium and lead collection efficiencies were low. This suggested the wet scrubber system may not be an appropriate choice for air pollution control.

  1. The meaning of the 2006 Nobel Peace Prize. Microcredit evangelism, health, and social policy.

    PubMed

    Bond, Patrick

    2007-01-01

    The awarding of the 2006 Nobel Peace Prize to Muhammad Yunus, founder of the Grameen Bank, provides an opportunity to consider the use and abuse of microfinancing, especially because credit continues to be touted as a poverty-reduction strategy associated with health education and health care financing strategies. Not only is the Grameen diagnosis of poverty dubious, but many structural problems also plague the model, ranging from financial accounting to market failures. In Southern Africa, to illustrate, microcredit schemes for peasants and small farmers have been attempted for more than 70 years, on the basis that modem capitalism and peasant/informal system gaps can be bridged by an expanded financial system. The results have been disappointing. A critical reading of political economy posits an organic linkage between the "developed" and "underdeveloped" economies that is typically not mitigated by capitalist financial markets, but instead is often exacerbated. When applied to health and social policy, microcredit evangelism becomes especially dangerous.

  2. Emil Theodor Kocher (1841-1917)--orthopaedic surgeon and the first surgeon Nobel Prize winner.

    PubMed

    Bumbasirević, Marko Z; Zagorac, Slavisa G; Lesić, Aleksandar R

    2013-01-01

    Theodor Emil Kocher (1841-1917), born in Bern, educated in many universities in Europe. Kocher as many surgeons of that time performed orthopedic surgery, general surgery, neurosurgery and endocrine surgery, but he become famous in orthopaedic surgery and endocrine surgery. He is remember as a surgeon who described the approach to the hip joint, elbow joint, maneuver for the reduction of dislocated shoulder joint. He introduced many instruments and many of them, such as Kocher clamp is still in use. Most important Kocher work was the thyroid gland surgery, and he received the Nobel Prize for Medicine in 1909, for-in this matter. His nature of meticulous surgeon, scientific and hard working person, dedicated to his patients and students made- found him the place in a history of medicine.

  3. The 2015 Nobel Prize in Chemistry The Discovery of Essential Mechanisms that Repair DNA Damage.

    PubMed

    Lindahl, Tomas; Modrich, Paul; Sancar, Aziz

    2016-01-01

    The Royal Swedish Academy awarded the Nobel Prize in Chemistry for 2015 to Tomas Lindahl, Paul Modrich and Aziz Sancar for their discoveries in fundamental mechanisms of DNA repair. This pioneering research described three different essential pathways that correct DNA damage, safeguard the integrity of the genetic code to ensure its accurate replication through generations, and allow proper cell division. Working independently of each other, Tomas Lindahl, Paul Modrich and Aziz Sancar delineated the mechanisms of base excision repair, mismatch repair and nucleotide excision repair, respectively. These breakthroughs challenged and dismissed the early view that the DNA molecule was very stable, paving the way for the discovery of human hereditary diseases associated with distinct DNA repair deficiencies and a susceptibility to cancer. It also brought a deeper understanding of cancer as well as neurodegenerative or neurological diseases, and let to novel strategies to treat cancer.

  4. The 2009 Nobel Prize in Chemistry: Thomas A. Steitz and the Structure of the Ribosome

    PubMed Central

    Zhao, Peter

    2011-01-01

    Over the past 200 years, there have been countless groundbreaking discoveries in biology and medicine at Yale University. However, one particularly noteworthy discovery with profoundly important and broad consequences happened here in just the past two decades. In 2009, Thomas Steitz, the Sterling Professor of Molecular Biophysics & Biochemistry, was awarded the Nobel Prize in Chemistry for “studies of the structure and function of the ribosome,” along with Venkatraman Ramakrishnan of the MRC Laboratory of Molecular Biology and Ada E. Yonath of the Weizmann Institute of Science. This article covers the historical context of Steitz’s important discovery, the techniques his laboratory used to study the ribosome, and the impact that this research has had, and will have, on the future of biological and medical research. PMID:21698044

  5. The 2009 Nobel Prize in Chemistry: Thomas A. Steitz and the structure of the ribosome.

    PubMed

    Zhao, Peter

    2011-06-01

    Over the past 200 years, there have been countless groundbreaking discoveries in biology and medicine at Yale University. However, one particularly noteworthy discovery with profoundly important and broad consequences happened here in just the past two decades. In 2009, Thomas Steitz, the Sterling Professor of Molecular Biophysics & Biochemistry, was awarded the Nobel Prize in Chemistry for "studies of the structure and function of the ribosome," along with Venkatraman Ramakrishnan of the MRC Laboratory of Molecular Biology and Ada E. Yonath of the Weizmann Institute of Science. This article covers the historical context of Steitz's important discovery, the techniques his laboratory used to study the ribosome, and the impact that this research has had, and will have, on the future of biological and medical research.

  6. [The Coris, a married couple native to Prague and Nobel laureates].

    PubMed

    Cech, P

    2001-01-19

    The husband and wife Carl Ferdinand Cori (1896-1984) and Gerty Theresa Radnitz-Cori (1896-1957), two of five Prague-born Nobel laureates (the only ones in medicine), have so much slipped away from the citizens' memory in the course of the half-century totalitarian rule over the country of birth, that hardly anybody knows them nowadays, nothing to say of their relation to Prague. At pains to rescue them from oblivion, a recent search for the lost traces of Coris and their ancestors had revealed a number of hitherto unknown facts that have fundamentally contributed to the Corian genealogy; identification of both forgotten birth-houses (6 Salmovská st., 29 Petrská st.) at long last resulted in placement of memorial tablets (October 26th, 2000) to display the birth-place's pride and gratitude.

  7. The 2015 Nobel Prize in Chemistry The Discovery of Essential Mechanisms that Repair DNA Damage.

    PubMed

    Lindahl, Tomas; Modrich, Paul; Sancar, Aziz

    2016-01-01

    The Royal Swedish Academy awarded the Nobel Prize in Chemistry for 2015 to Tomas Lindahl, Paul Modrich and Aziz Sancar for their discoveries in fundamental mechanisms of DNA repair. This pioneering research described three different essential pathways that correct DNA damage, safeguard the integrity of the genetic code to ensure its accurate replication through generations, and allow proper cell division. Working independently of each other, Tomas Lindahl, Paul Modrich and Aziz Sancar delineated the mechanisms of base excision repair, mismatch repair and nucleotide excision repair, respectively. These breakthroughs challenged and dismissed the early view that the DNA molecule was very stable, paving the way for the discovery of human hereditary diseases associated with distinct DNA repair deficiencies and a susceptibility to cancer. It also brought a deeper understanding of cancer as well as neurodegenerative or neurological diseases, and let to novel strategies to treat cancer. PMID:27183258

  8. Nobel Prize centenary: Robert Bárány and the vestibular system.

    PubMed

    Lopez, Christophe; Blanke, Olaf

    2014-11-01

    The hundredth anniversary of Robert Bárány's Nobel Prize in Medicine offers the opportunity to highlight the importance of his discoveries on the physiology and pathophysiology of the vestibular organs. Bárány developed the method of caloric vestibular stimulation that revolutionized the investigation of the semicircular canals and that is still widely used today. Caloric vestibular stimulation launched experimental vestibular research that was relevant to comprehend the evolution of human locomotion, and Bárány's tests continue to be used in neuroscience to understand the influence of vestibular signals on bodily perceptions, cognition and emotions. Only during the last 20 years has caloric vestibular stimulation been merged with brain imaging to localize the human vestibular cortex. PMID:25517362

  9. [Ilya Ilich Metchnikov and Paul Ehrlich: 1908 Nobel Prize winners for their research on immunity].

    PubMed

    Lokaj, J; John, C

    2008-11-01

    The Nobel Prize in Physiology or Medicine in 1908 was awarded to Ilya I. Mechnikov and Paul Ehrlich for recognition of their work on immunity. Mechnikov have discovered phagocytes and phagocytosis as the basis of natural cellular immunity. His ,,phagocytic theory" is the principle of immunological concept "self and not self" as the prerequisition of physiological inflammation, and selfmaintaining of organism. Ehrlich developed the methods for standardization of antibody activity in immune sera, described neutralizing and complement-depending effect of antibodies and enunciated the ,"ide-chain" theory of the formation of antibodies. Their concept of the key-stone of immunity was different, but they expressed the basic paradigma of immunology: immunity imply the protection of identity and guarantee the integrity of organism. Both are the founders of immunology as the scientific discipline. Discoveries and conceptions of I. Mechnikov and P. Ehrlich exceedingly influenced development of immunology and are also applicable, instructive and suggestive in contemporary immunology and microbiology. PMID:19069024

  10. [Ilya Ilich Metchnikov and Paul Ehrlich: 1908 Nobel Prize winners for their research on immunity].

    PubMed

    Lokaj, J; John, C

    2008-11-01

    The Nobel Prize in Physiology or Medicine in 1908 was awarded to Ilya I. Mechnikov and Paul Ehrlich for recognition of their work on immunity. Mechnikov have discovered phagocytes and phagocytosis as the basis of natural cellular immunity. His ,,phagocytic theory" is the principle of immunological concept "self and not self" as the prerequisition of physiological inflammation, and selfmaintaining of organism. Ehrlich developed the methods for standardization of antibody activity in immune sera, described neutralizing and complement-depending effect of antibodies and enunciated the ,"ide-chain" theory of the formation of antibodies. Their concept of the key-stone of immunity was different, but they expressed the basic paradigma of immunology: immunity imply the protection of identity and guarantee the integrity of organism. Both are the founders of immunology as the scientific discipline. Discoveries and conceptions of I. Mechnikov and P. Ehrlich exceedingly influenced development of immunology and are also applicable, instructive and suggestive in contemporary immunology and microbiology.

  11. INTRODUCTION: The Physics of Chaos and Related Problems: Proceedings of the 59th Nobel Symposium

    NASA Astrophysics Data System (ADS)

    Lundqvist, Stig

    1985-01-01

    The physics of non-linear phenomena has developed in a remarkable way over the last couple of decades and has accelerated over the last few years, in particular because of the recent progress in the study of chaotic behaviour. In particular the discovery of the universal properties of the transition into chaos for certain classes of systems has stimulated much recent work in different directions both theoretically and experimentally. Chaos theory has become a real challenge to physicists in many different fields and also in many other disciplines such as astronomy, chemistry, medicine, meteorology and economics and social theory. The study of chaos-related phenomena has a truly interdisciplinary character and makes use of important concepts and methods from other disciplines. For the description of chaotic structures one needs a new, recently developed geometry called fractal geometry. For the discussion of the enormous richness of ordered structures which appear, one uses the theory of pattern recognition. In order to study even the simplest theoretical models describing chaos, a computer is essential. It should finally be mentioned that important aspects of computer science are related to the theory of order and chaos. A Nobel Symposium provides an excellent opportunity to bring together a group of prominent scientists for a stimulating exchange of new ideas and results. The Nobel Symposia are very small meetings by invitation only and the number of key participants is typically in the range 20-40. These symposia are organized through a special Nobel Symposium Committee after proposals from individuals. This symposium was sponsored by the Nobel Foundation through its Nobel Symposium Fund with grants from The Tercentenary Fund of the Bank of Sweden and The Knut Alice Wallenberg Foundation. Additional support was obtained from the Royal Academy of Sciences, The Nordic Institute for Theoretical Atomic Physics (NORDITA), Chalmers University of Technology and

  12. INTRODUCTION: The Physics of Chaos and Related Problems: Proceedings of the 59th Nobel Symposium

    NASA Astrophysics Data System (ADS)

    Lundqvist, Stig

    1985-01-01

    The physics of non-linear phenomena has developed in a remarkable way over the last couple of decades and has accelerated over the last few years, in particular because of the recent progress in the study of chaotic behaviour. In particular the discovery of the universal properties of the transition into chaos for certain classes of systems has stimulated much recent work in different directions both theoretically and experimentally. Chaos theory has become a real challenge to physicists in many different fields and also in many other disciplines such as astronomy, chemistry, medicine, meteorology and economics and social theory. The study of chaos-related phenomena has a truly interdisciplinary character and makes use of important concepts and methods from other disciplines. For the description of chaotic structures one needs a new, recently developed geometry called fractal geometry. For the discussion of the enormous richness of ordered structures which appear, one uses the theory of pattern recognition. In order to study even the simplest theoretical models describing chaos, a computer is essential. It should finally be mentioned that important aspects of computer science are related to the theory of order and chaos. A Nobel Symposium provides an excellent opportunity to bring together a group of prominent scientists for a stimulating exchange of new ideas and results. The Nobel Symposia are very small meetings by invitation only and the number of key participants is typically in the range 20-40. These symposia are organized through a special Nobel Symposium Committee after proposals from individuals. This symposium was sponsored by the Nobel Foundation through its Nobel Symposium Fund with grants from The Tercentenary Fund of the Bank of Sweden and The Knut Alice Wallenberg Foundation. Additional support was obtained from the Royal Academy of Sciences, The Nordic Institute for Theoretical Atomic Physics (NORDITA), Chalmers University of Technology and

  13. Bose-Einstein condensation in a dilute gas: the first 70 years and some recent experiments (Nobel Lecture).

    PubMed

    Cornell, Eric A; Wieman, Carl E

    2002-06-17

    Bose-Einstein condensates of dilute gases offer a rich field to study fundamental quantum-mechanical processes, manipulation of the speed at which light propogates, observation of atomic pair-formation and superfluidity, or even simulating white dwarf stars. Still more radical applications are on the horizon. However, their initial creation was a masterpiece of experimental physics. After an initial process of laser cooling (which itself won its developers the 1997 Nobel Prize), atoms in a magnetic-optical trap must be safely transferred into a purely magnetic trap, where the condensation process begins at 170 nK and 20 nK a pure condensate of 2000 atoms could be created. More astonishingly, Wieman and Cornell showed these low temperatures could be achieved in "bench scale" equipment rather than the massive pieces normally demanded by cryoscience. For their 1995 discovery of this new state of matter, they were awarded the 2001 Nobel Prize in Physics. PMID:12465486

  14. Bose-Einstein condensation in a dilute gas: the first 70 years and some recent experiments (Nobel Lecture).

    PubMed

    Cornell, Eric A; Wieman, Carl E

    2002-06-17

    Bose-Einstein condensates of dilute gases offer a rich field to study fundamental quantum-mechanical processes, manipulation of the speed at which light propogates, observation of atomic pair-formation and superfluidity, or even simulating white dwarf stars. Still more radical applications are on the horizon. However, their initial creation was a masterpiece of experimental physics. After an initial process of laser cooling (which itself won its developers the 1997 Nobel Prize), atoms in a magnetic-optical trap must be safely transferred into a purely magnetic trap, where the condensation process begins at 170 nK and 20 nK a pure condensate of 2000 atoms could be created. More astonishingly, Wieman and Cornell showed these low temperatures could be achieved in "bench scale" equipment rather than the massive pieces normally demanded by cryoscience. For their 1995 discovery of this new state of matter, they were awarded the 2001 Nobel Prize in Physics.

  15. The Nobel Prize as a Reward Mechanism in the Genomics Era: Anonymous Researchers, Visible Managers and the Ethics of Excellence.

    PubMed

    Zwart, Hub

    2010-09-01

    The Human Genome Project (HGP) is regarded by many as one of the major scientific achievements in recent science history, a large-scale endeavour that is changing the way in which biomedical research is done and expected, moreover, to yield considerable benefit for society. Thus, since the completion of the human genome sequencing effort, a debate has emerged over the question whether this effort merits to be awarded a Nobel Prize and if so, who should be the one(s) to receive it, as (according to current procedures) no more than three individuals can be selected. In this article, the HGP is taken as a case study to consider the ethical question to what extent it is still possible, in an era of big science, of large-scale consortia and global team work, to acknowledge and reward individual contributions to important breakthroughs in biomedical fields. Is it still viable to single out individuals for their decisive contributions in order to reward them in a fair and convincing way? Whereas the concept of the Nobel prize as such seems to reflect an archetypical view of scientists as solitary researchers who, at a certain point in their careers, make their one decisive discovery, this vision has proven to be problematic from the very outset. Already during the first decade of the Nobel era, Ivan Pavlov was denied the Prize several times before finally receiving it, on the basis of the argument that he had been active as a research manager (a designer and supervisor of research projects) rather than as a researcher himself. The question then is whether, in the case of the HGP, a research effort that involved the contributions of hundreds or even thousands of researchers worldwide, it is still possible to "individualise" the Prize? The "HGP Nobel Prize problem" is regarded as an exemplary issue in current research ethics, highlighting a number of quandaries and trends involved in contemporary life science research practices more broadly.

  16. A Century of Chemical Dynamics Traced through the Nobel Prizes. 1995: Paul Crutzen, Sherwood Rowland, and Mario Molina

    NASA Astrophysics Data System (ADS)

    van Houten, Josh

    2002-10-01

    The 1995 Nobel Prize was awarded to Paul Crutzen, Sherwood Rowland, and Mario Molina "for their work in atmospheric chemistry, particularly concerning the formation and decomposition of ozone". Collectively, their work established atmospheric chemistry as a major focus at the end of the twentieth century. The results have drawn attention to significant environmental issues in particular, the threat posed to the ozone layer by chlorofluorocarbons.

  17. The Nobel Prize as a Reward Mechanism in the Genomics Era: Anonymous Researchers, Visible Managers and the Ethics of Excellence.

    PubMed

    Zwart, Hub

    2010-09-01

    The Human Genome Project (HGP) is regarded by many as one of the major scientific achievements in recent science history, a large-scale endeavour that is changing the way in which biomedical research is done and expected, moreover, to yield considerable benefit for society. Thus, since the completion of the human genome sequencing effort, a debate has emerged over the question whether this effort merits to be awarded a Nobel Prize and if so, who should be the one(s) to receive it, as (according to current procedures) no more than three individuals can be selected. In this article, the HGP is taken as a case study to consider the ethical question to what extent it is still possible, in an era of big science, of large-scale consortia and global team work, to acknowledge and reward individual contributions to important breakthroughs in biomedical fields. Is it still viable to single out individuals for their decisive contributions in order to reward them in a fair and convincing way? Whereas the concept of the Nobel prize as such seems to reflect an archetypical view of scientists as solitary researchers who, at a certain point in their careers, make their one decisive discovery, this vision has proven to be problematic from the very outset. Already during the first decade of the Nobel era, Ivan Pavlov was denied the Prize several times before finally receiving it, on the basis of the argument that he had been active as a research manager (a designer and supervisor of research projects) rather than as a researcher himself. The question then is whether, in the case of the HGP, a research effort that involved the contributions of hundreds or even thousands of researchers worldwide, it is still possible to "individualise" the Prize? The "HGP Nobel Prize problem" is regarded as an exemplary issue in current research ethics, highlighting a number of quandaries and trends involved in contemporary life science research practices more broadly. PMID:20730106

  18. Lord Rutherford of Nelson, his 1908 Nobel Prize in Chemistry, and why he didn't get a second prize

    NASA Astrophysics Data System (ADS)

    Jarlskog, Cecilia

    2008-11-01

    'I have dealt with many different transformations with various periods of time, but the quickest that I have met was my own transformation in one moment from a physicist to a chemist.' Ernest Rutherford (Nobel Banquet, 1908) This article is about how Ernest Rutherford (1871-1937) got the 1908 Nobel Prize in Chemistry and why he did not get a second Prize for his subsequent outstanding discoveries in physics, specially the discovery of the atomic nucleus and the proton. Who were those who nominated him and who did he nominate for the Nobel Prizes? In order to put the Prize issue into its proper context, I will briefly describe Rutherford's whereabouts. Rutherford, an exceptionally gifted scientist who revolutionized chemistry and physics, was moulded in the finest classical tradition. What were his opinions on some scientific issues such as Einstein's photon, uncertainty relations and the future prospects for atomic energy? What would he have said about the 'Theory of Everything'? Extended version of an invited talk presented at the conference 'Neutrino 2008', Christchurch, NZ, 25-31 May 2008

  19. From the Big Bang to the Nobel Prize and on to James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2008-01-01

    The history of the universe in a nutshell, from the Big Bang to now, and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA's Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein's biggest mistake, show how Edwin Hubble discovered the expansion of the universe, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA's plans for the next great telescope in space, the James Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where stars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.

  20. From the Big Bang to the Nobel Prize and on to James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2008-01-01

    The history of the universe in a nutshell, from the Big Bang to now. and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA's Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein's biggest mistake, show how Edwin Hubble discovered the expansion of the universe, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA's plans for the next great telescope in space, the James Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where stars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.

  1. From the Big Bang to the Nobel Prize and on to James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2009-01-01

    The history of the universe in a nutshell, from the Big Bang to now, and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA s Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein s biggest mistake, show how Edwin Hubble discovered the expansion of the universe, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA s plans for the next great telescope in space, the James Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where stars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.

  2. From the Big Bang to the Nobel Prize and on to the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2008-01-01

    The history of the universe in a nutshell, from the Big Bang to now. and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA's Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein's biggest mistake, show how Edwin Hubble discovered the expansion of the univerre, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA's plans for the next great telescope in space, the Jarnes Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where rtars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.

  3. Joseph Erlanger (1874-1965): the cardiovascular investigator who won a Nobel Prize in neurophysiology.

    PubMed

    Breathnach, Caoimhghín S; Moynihan, John B

    2014-11-01

    Born in San Francisco in 1874 into the family of German immigrants in which he was the only one to proceed beyond elementary education, Joseph Erlanger graduated from the University of California (Berkeley) in 1894. He was about to enter the local Cooper Medical School when he was told that the new medical school in Johns Hopkins University (Baltimore) aimed to surpass all others, and there he graduated and was later coached for a career in academic life by William H Howell (1860-1945). In due course he held the Chairs of Physiology in the University of Wisconsin (Madison) and Washington University at St Louis, Missouri. He showed that the Bundle of His is indeed the functional link between the atria and the ventricles in the mammalian heart and that the Korotkoff sounds are produced by a 'breaker' phenomenon resulting from instability of the pulse wave in a partially occluded artery. With Herbert S Gasser (1888-1963) he was awarded the Nobel Prize in 1944 for their work on action currents in peripheral nerve fibres. The history of science occupied him during his retirement. He died at St Louis in 1965. PMID:24585622

  4. A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits.

    PubMed

    Jaskolski, Mariusz; Dauter, Zbigniew; Wlodawer, Alexander

    2014-09-01

    As a contribution to the celebration of the year 2014, declared by the United Nations to be 'The International Year of Crystallography', the FEBS Journal is dedicating this issue to papers showcasing the intimate union between macromolecular crystallography and structural biology, both in historical perspective and in current research. Instead of a formal editorial piece, by way of introduction, this review discusses the most important, often iconic, achievements of crystallographers that led to major advances in our understanding of the structure and function of biological macromolecules. We identified at least 42 scientists who received Nobel Prizes in Physics, Chemistry or Medicine for their contributions that included the use of X-rays or neutrons and crystallography, including 24 who made seminal discoveries in macromolecular sciences. Our spotlight is mostly, but not only, on the recipients of this most prestigious scientific honor, presented in approximately chronological order. As a summary of the review, we attempt to construct a genealogy tree of the principal lineages of protein crystallography, leading from the founding members to the present generation.

  5. Michael S. Brown, MD and Joseph L. Goldstein, MD. 1985 Nobel laureates in medicine.

    PubMed

    Brown, M S; Goldstein, J L

    1996-02-01

    When Michael S. Brown, MD and Joseph L. Goldstein, MD first met as interns at the Massachusetts General Hospital in 1966, they could hardly have imagined that their careers would continue to be intertwined some 30 years later. It was shortly following their arrival as clinical associates at the National Institutes of Health in 1968 that the pair developed an interest in abnormalities of cholesterol metabolism. Bolstered by epidemiologic data that showed elevated cholesterol levels in many patients with myocardial infarction, Brown and Goldstein, who relocated to the University of Texas Southwestern Medical Center in 1972, began a search for receptors important in cholesterol homeostasis. These studies, performed in their early stages while juggling clinical duties at Parkland Hospital, culminated in a series of scientific achievements which merited among other honors the Hazen Award in 1982, the Lasker Award in 1985, and the Nobel Prize in Medicine in 1985. Today, as Regental Professors of the University of Texas, Brown and Goldstein head a laboratory group which continues to test the cutting edge of medical research. Although impressed with the pace of technological advances in biology, the declining role of clinically oriented physicians in biomedical research troubles the pair. Interviewed in their library in Dallas, Brown and Goldstein spoke about the complicated balance of science, medicine, and education necessary to produce another generation of successful investigators.

  6. Turbulence theory and infrared images falsify the 2011 Nobel Prize in Physics

    NASA Astrophysics Data System (ADS)

    Gibson, Carl

    2012-11-01

    Turbulence defined by the inertial vortex force explains Planck scale big bang processes as temporary, rendering a permanent Einstein cosmological constant Λ and a positive expansion rate of the universe driven by anti-gravitational dark energy forces unnecessary. Large kinematic viscosity stresses during the plasma epoch from 1011 s to 1013 s cause fragmentation by proto-super-cluster-voids at 1012 s and proto-galaxies at the 1013 s transition to gas. Fragmentation of gas proto-galaxies is at Earth-mass planet viscous scales in Jeans mass clumps of a trillion planets. These Proto-Globular-star-Clusters (PGCs) freeze to form the dark matter of galaxies according to the Gibson (1996) Hydro-Gravitational-Dynamics (HGD) theory, and as observed by Schild (1996) by quasar microlensing. White dwarf carbon stars explode as Supernovae Ia events (SNeIa) when their mass increases to 1.44 solar, providing the standard candles used to justify the Nobel Prize claim of a positive expansion rate. However, if all stars form from primordial planet mergers in PGC clumps as claimed by HGD cosmology, the SNeIa become subject to a systematic dimming error depending on the line of sight to the event. New space telescope infrared images strongly support HGD cosmology.

  7. [Nobel prize in physiology of medicine for year 2000 for research of signal transduction in the nervous system].

    PubMed

    Gispen, W H

    2000-11-11

    The three Nobel laureates Arvid Carlsson, Paul Greengard and Eric Kandel have made pioneering discoveries concerning slow synaptic transmission between neurons. As common theme, for which the Nobel Prize in Physiology or Medicine for 2000 is given, the Nobel Assembly chose 'signal transduction in the nervous system'. The work of Carlsson led to the discovery of dopamine as transmitter in the brain and opened the way for the development of the levodopa therapy of patients suffering from Parkinson's disease. His later work concentrated on the dopamine hypothesis of schizophrenia and the rationale for the mechanism of action of antipsychotics. Greengard pioneered the field of receptor-mediated phosphorylation and dephosphorylation of brain proteins. He was the first to describe the cyclic-AMP-dependent protein kinase in the brain and the activation of this kinase following dopamine receptor activation. A substrate enriched in cells that bear dopamine receptors is 'dopamine- and cyclic-AMP-regulated phosphoprotein' (DARPP-32). Phosphorylation by the cyclic-AMP-dependent kinase influences its protein phosphatase inhibiting capacity and, as such, DARPP-32 is an important 'feed-forward activator' in the dopamine signal transduction cascade. Kandel received the prize for his contributions to our understanding of the neural substrate of learning and memory. Most of his work was carried out in the sea slug Aplysia in which he was able to relate three psychologically defined forms of learning--habituation, sensitisation, and classical conditioning--to subcellular processes and intercellular signalling. Kandel is known all over the world for his eminent textbook Principles of Neural Science which inspired generations of young neuroscientists. It seems that it is not so much the signal transduction that joins these laureates but their outstanding conceptual approach to, in fact, three different themes of the neurosciences during the second part of the last century.

  8. The 2009 Lindau Nobel Laureate Meeting: Sir Harold Kroto, Chemistry 1996

    PubMed Central

    Kroto, Harold

    2010-01-01

    English Chemist Harold Kroto shared the 1996 Nobel Prize in Chemistry with Robert Curl and Richard Smalley for their discovery of Fullerenes (C60), molecules composed completely of carbon (C60) that form hollow spheres (also known as Buckyballs), tubes, or ellipsoids. These structures hold the potential for use in future technologies ranging from drug development and antimicrobial agents, to armor and superconductors. Harold Kroto was born in Wisbech, Cambridgeshire in 1939 and grew up in Bolton. Educated at Bolton School, he entered Sheffield University in 1958 to study Chemistry. During his time there he played tennis for the university team, illustrated the university's magazine covers, and played folk music with other students. Enjoying his time at Sheffield very much, he chose to stay on and complete a Ph.D. in Chemistry under Richard Dixon. Following graduation in 1964, Kroto went on to post doc at the National Research Council (NRC) in Ottowa, Canada where microwave spectroscopy became his specialty. After two years of study at the NRC he spent a year at Bell Laboratories. He then accepted a position as a tutorial fellow at the University of Sussex, where he was soon offered a permanent position. There, he applied his expertise in microwave spectroscopy to the field of astronomy and spent several fruitful years detecting long carbon chains in the interstellar medium. Upon hearing of the work of Richard Smalley at Rice, who developed a laser that could vaporize graphite, Kroto thought they could use Smalley's instrument to see carbon chains similar to those they had observed in interstellar matter. He suggested his idea for an experiment to Bob Curl, also at Rice. In 1985 he traveled to Rice to perform the experiment (and also to visit a half-price bookstore he'd heard about in Houston). Although he felt certain that the apparatus would create the carbon chains, the experiment revealed a totally unexpected result: the spontaneous formation of spherical shapes

  9. [Maria Skłodowska-Curie--her chemistry at the centenary of the second Nobel Prize].

    PubMed

    Zagórski, Zbigniew Paweł; Kornacka, Ewa Maria

    2012-01-01

    The article presents from the perspective of one hundred years the work of Maria Curie-Skłodowska, which in many cases was ahead of the state of knowledge of the time. It opened new horizons and for this reason we made many digressions. The fact of awarding her the Nobel Prize twice is a sensation enough to present the values of careful activity of the Nobel Prize Committee that emphasizes the importance of Maria's achievements. A significant element of Maria Skłodowska-Curie's achievements was still mysterious character of the radiation in her time, and only chemical approach made it possible to organise the phenomena and explain the origin of the radiation. The essence of the research was an arduous separation of components following the track of growing radiation of successive fractions of preparations. This research was a start of the technology of educement of dispersed elements in great mass of materials. We underline the paramount role of the chemical research Maria Skłodowska conducted while still in Warsaw in the laboratories of the Museum of Industry and Agriculture under the guidance of an excellent chemist Józef Jerzy Boguski. Her research in Paris was the origin of the semi-commercial scale in chemistry and setting aside a special shed outside the university building was the beginning of the institutes that now function beyond universities and are key element of scientific and technical progress. Technology of splitting developed by Maria Skłodowska-Curie was applied also by other radiochemists, e.g. By Otto Hahn. Lively movement in radiochemistry of her lifetime resulted in Maria's disputes with e.g. German chemist Marckwald, who questioned the originality of polonium. The scientific disputes like this one Maria won triumphantly although in several others she had to accept opponents' argument, as in the case of radon. Her experiments were planned with utmost rationality as it was with the rejection of the hypothesis saying that radioactivity was

  10. The 2009 Lindau Nobel Laureate Meeting: Sir Harold Kroto, Chemistry 1996.

    PubMed

    Kroto, Harold

    2010-01-01

    English Chemist Harold Kroto shared the 1996 Nobel Prize in Chemistry with Robert Curl and Richard Smalley for their discovery of Fullerenes (C(60;)), molecules composed completely of carbon (C(60;)) that form hollow spheres (also known as Buckyballs), tubes, or ellipsoids. These structures hold the potential for use in future technologies ranging from drug development and antimicrobial agents, to armor and superconductors. Harold Kroto was born in Wisbech, Cambridgeshire in 1939 and grew up in Bolton. Educated at Bolton School, he entered Sheffield University in 1958 to study Chemistry. During his time there he played tennis for the university team, illustrated the university's magazine covers, and played folk music with other students. Enjoying his time at Sheffield very much, he chose to stay on and complete a Ph.D. in Chemistry under Richard Dixon. Following graduation in 1964, Kroto went on to post doc at the National Research Council (NRC) in Ottowa, Canada where microwave spectroscopy became his specialty. After two years of study at the NRC he spent a year at Bell Laboratories. He then accepted a position as a tutorial fellow at the University of Sussex, where he was soon offered a permanent position. There, he applied his expertise in microwave spectroscopy to the field of astronomy and spent several fruitful years detecting long carbon chains in the interstellar medium. Upon hearing of the work of Richard Smalley at Rice, who developed a laser that could vaporize graphite, Kroto thought they could use Smalley's instrument to see carbon chains similar to those they had observed in interstellar matter. He suggested his idea for an experiment to Bob Curl, also at Rice. In 1985 he traveled to Rice to perform the experiment (and also to visit a half-price bookstore he'd heard about in Houston). Although he felt certain that the apparatus would create the carbon chains, the experiment revealed a totally unexpected result: the spontaneous formation of spherical

  11. [Maria Skłodowska-Curie--her chemistry at the centenary of the second Nobel Prize].

    PubMed

    Zagórski, Zbigniew Paweł; Kornacka, Ewa Maria

    2012-01-01

    The article presents from the perspective of one hundred years the work of Maria Curie-Skłodowska, which in many cases was ahead of the state of knowledge of the time. It opened new horizons and for this reason we made many digressions. The fact of awarding her the Nobel Prize twice is a sensation enough to present the values of careful activity of the Nobel Prize Committee that emphasizes the importance of Maria's achievements. A significant element of Maria Skłodowska-Curie's achievements was still mysterious character of the radiation in her time, and only chemical approach made it possible to organise the phenomena and explain the origin of the radiation. The essence of the research was an arduous separation of components following the track of growing radiation of successive fractions of preparations. This research was a start of the technology of educement of dispersed elements in great mass of materials. We underline the paramount role of the chemical research Maria Skłodowska conducted while still in Warsaw in the laboratories of the Museum of Industry and Agriculture under the guidance of an excellent chemist Józef Jerzy Boguski. Her research in Paris was the origin of the semi-commercial scale in chemistry and setting aside a special shed outside the university building was the beginning of the institutes that now function beyond universities and are key element of scientific and technical progress. Technology of splitting developed by Maria Skłodowska-Curie was applied also by other radiochemists, e.g. By Otto Hahn. Lively movement in radiochemistry of her lifetime resulted in Maria's disputes with e.g. German chemist Marckwald, who questioned the originality of polonium. The scientific disputes like this one Maria won triumphantly although in several others she had to accept opponents' argument, as in the case of radon. Her experiments were planned with utmost rationality as it was with the rejection of the hypothesis saying that radioactivity was

  12. [An illustrious unknown. Giuseppe Levi among science, anti-fascism and Nobel Prizes].

    PubMed

    Grignolio, Andrea; De Sio, Fabio

    2009-01-01

    The anatomist Giuseppe Levi (1872-1965) is unanimously considered one of the major figures of Italian biomedical sciences in the 20th century. His fame, however, is mainly derived from having nurtured three Nobel Prize winners, namely Salvador E. Luria, Rita Levi Montalcini and Renato Dulbecco. In reappraising Levi's role in the development of Italian science and culture in general, this article aims at questioning both the narrowness of earlier accounts and a certain kind of genealogical approach to the history of scientific disciplines and academic schools. We will here consider Giuseppe Levi as an instance of two major cultural phenomena: the development of experimental biology in Italy and continental Europe and the anti-fascist socialist culture expressed by a part of the Italian intellectuals. In so doing, we will reassess the historical specificity of the scientific maturation of Levi's three famous students, on the one hand, while on the other we will consider in some depth the cultural and moral environment in which Levi thrived and his role as a moral example for his students. Such revision, we will argue, have a direct bearing on more general historiographical issues, namely, the need for a stronger contextualization of the birth and consolidation of research traditions, implying a rejection of simplistic genealogical reconstructions, and the role of academic schools and institutional settings in the definition of novel, multidisciplinary scientific approaches. Finally, the following will highlight the importance of a more careful outlook on the master-pupil relationship in academic context, addressing issues of both continuity and rupture. The article is subdivided in two main sections, the first devoted to Levi as a scientist, the second to his Anti-fascism.

  13. Full rehabilitation with nobel clinician® and procera implant bridge®: case report

    PubMed Central

    SPINELLI, D.; OTTRIA, L.; DE VICO, G.; BOLLERO, R.; BARLATTANI, A.; BOLLERO, P.

    2013-01-01

    SUMMARY Implant surgery has been changing in different ways following improvements of computer technologies. Since its beginning, according to the original procedures of Branemårk system implants, guide-lines in implants-supported prosthetic rehabilitation have been founding on the placement of fixtures in a fairly upright position, after maxillary sinus floor elevation; while in the case of interforaminal rehabilitation, an upright distal implant may need to be placed anterior to the mental foramina without nerve damage (although the consequence would have been bilateral cantilevers to provide good chewing capacity). Some authors have proposed engaging the molar/tuberosity area: Bahat and Venturelli demonstrated these areas reliable and predictable alternative to distal cantilever prostheses or sinus elevation procedures. In recent years, the immediate loading of tilted implants with a provisional restoration has been proposed for the treatment of the atrophic maxilla. Tilted posterior implants in either arches could avoid (cantilever length) and provide to a better load distribution. Further studies have showed excellent outcomes for both tilted and axial implants; indeed this protocol allows to use longer implants, improve bone anchorage and avoid bone grafting procedures. Malò at al., in a retrospective clinical study, showed important results using two posterior tilted implants and two anterior non-tilted ones in the so-called All-on-four technique (Nobel Biocare, Göteborg, Sweden). Instead of the great loss of bone (amount and quality) in long-term edentuly the clinically documented computer-guided implantology software is able, through posterior tilted implants, to improve load distribution. Many authors have reported reduced surgical invasion (sinus grafting surgery is needless), shorter treatment time, lower cost, natural aesthetic profiles and functional bite. PMID:24175051

  14. [An illustrious unknown. Giuseppe Levi among science, anti-fascism and Nobel Prizes].

    PubMed

    Grignolio, Andrea; De Sio, Fabio

    2009-01-01

    The anatomist Giuseppe Levi (1872-1965) is unanimously considered one of the major figures of Italian biomedical sciences in the 20th century. His fame, however, is mainly derived from having nurtured three Nobel Prize winners, namely Salvador E. Luria, Rita Levi Montalcini and Renato Dulbecco. In reappraising Levi's role in the development of Italian science and culture in general, this article aims at questioning both the narrowness of earlier accounts and a certain kind of genealogical approach to the history of scientific disciplines and academic schools. We will here consider Giuseppe Levi as an instance of two major cultural phenomena: the development of experimental biology in Italy and continental Europe and the anti-fascist socialist culture expressed by a part of the Italian intellectuals. In so doing, we will reassess the historical specificity of the scientific maturation of Levi's three famous students, on the one hand, while on the other we will consider in some depth the cultural and moral environment in which Levi thrived and his role as a moral example for his students. Such revision, we will argue, have a direct bearing on more general historiographical issues, namely, the need for a stronger contextualization of the birth and consolidation of research traditions, implying a rejection of simplistic genealogical reconstructions, and the role of academic schools and institutional settings in the definition of novel, multidisciplinary scientific approaches. Finally, the following will highlight the importance of a more careful outlook on the master-pupil relationship in academic context, addressing issues of both continuity and rupture. The article is subdivided in two main sections, the first devoted to Levi as a scientist, the second to his Anti-fascism. PMID:21563384

  15. [George H. Whipple. Nobel Prize in Physiology or Medicine in 1934. Whipple's disease, pernicious anemia, and other contributions to medicine].

    PubMed

    Ortiz-Hidalgo, Carlos

    2002-01-01

    George Hoyot Whipple (1878-1976) was awarded the Nobel Prize in Physiology and Medicine in 1934, along with Minot and Murphy for their studies in pernicious anemia. Whipple's name has been given to the bacterial disease which he describes in 1907 that we know today as Whipple's disease or intestinal lipodystrophy. He gave the name of thalasemia to the Mediterranean anemia of Cooley, and made diverse contributions to hematology and general pathology. He worked with William Welch in the Department of Pathology at Johns Hopkins Hospital and later became director of the University of Rochester. He died in 1976 at the age of 98.

  16. The Nobel Prize as a Reward Mechanism in the Genomics Era: Anonymous Researchers, Visible Managers and the Ethics of Excellence

    PubMed Central

    2010-01-01

    The Human Genome Project (HGP) is regarded by many as one of the major scientific achievements in recent science history, a large-scale endeavour that is changing the way in which biomedical research is done and expected, moreover, to yield considerable benefit for society. Thus, since the completion of the human genome sequencing effort, a debate has emerged over the question whether this effort merits to be awarded a Nobel Prize and if so, who should be the one(s) to receive it, as (according to current procedures) no more than three individuals can be selected. In this article, the HGP is taken as a case study to consider the ethical question to what extent it is still possible, in an era of big science, of large-scale consortia and global team work, to acknowledge and reward individual contributions to important breakthroughs in biomedical fields. Is it still viable to single out individuals for their decisive contributions in order to reward them in a fair and convincing way? Whereas the concept of the Nobel prize as such seems to reflect an archetypical view of scientists as solitary researchers who, at a certain point in their careers, make their one decisive discovery, this vision has proven to be problematic from the very outset. Already during the first decade of the Nobel era, Ivan Pavlov was denied the Prize several times before finally receiving it, on the basis of the argument that he had been active as a research manager (a designer and supervisor of research projects) rather than as a researcher himself. The question then is whether, in the case of the HGP, a research effort that involved the contributions of hundreds or even thousands of researchers worldwide, it is still possible to “individualise” the Prize? The “HGP Nobel Prize problem” is regarded as an exemplary issue in current research ethics, highlighting a number of quandaries and trends involved in contemporary life science research practices more broadly. PMID:20730106

  17. The Contributions of Paul Ehrlich to Pharmacology: A Tribute on the Occasion of the Centenary of His Nobel Prize

    PubMed Central

    Bosch, Fèlix; Rosich, Laia

    2008-01-01

    On the centenary of Paul Ehrlich's Nobel Prize, this German researcher deserves to be remembered as a pioneer in a large number of scientific disciplines. As a result of his enthusiasm and scientific abilities, dedication, and contacts with other scientists of his time, he was able to make countless contributions in fields as diverse as histology, haematology, immunology, oncology, microbiology and pharmacology, among others. Although the Swedish award was meant to recognize the standardization of the manufacture of antidiphtheria serum, it was the discovery of arsphenamine (Salvarsan) for the treatment of syphilis which won him wider international acclaim. From a pharmacological perspective, Ehrlich's outstanding contributions include dissemination of the ‘magic bullet’ concept for the synthesis of antibacterials, introduction of concepts such as chemoreceptor and chemotherapy, and linking the chemical structure of compounds to their pharmacological activity. These achievements took place within the framework he established for the transition from experimental pharmacology to therapeutic pharmacology. He introduced a modern research system based on the synthesis of multiple chemical structures for pharmacological screening in animal models of disease states. These contributions were undoubtedly decisive in propitiating the wider development of antibiotics decades later. For these reasons, it is fitting to mark the 100th anniversary of the Nobel Prize awarded to this great scientist by commemorating the importance of his contributions to the advance of pharmacology. PMID:18679046

  18. The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his Nobel Prize.

    PubMed

    Bosch, Fèlix; Rosich, Laia

    2008-01-01

    On the centenary of Paul Ehrlich's Nobel Prize, this German researcher deserves to be remembered as a pioneer in a large number of scientific disciplines. As a result of his enthusiasm and scientific abilities, dedication, and contacts with other scientists of his time, he was able to make countless contributions in fields as diverse as histology, haematology, immunology, oncology, microbiology and pharmacology, among others. Although the Swedish award was meant to recognize the standardization of the manufacture of antidiphtheria serum, it was the discovery of arsphenamine (Salvarsan) for the treatment of syphilis which won him wider international acclaim. From a pharmacological perspective, Ehrlich's outstanding contributions include dissemination of the 'magic bullet' concept for the synthesis of antibacterials, introduction of concepts such as chemoreceptor and chemotherapy, and linking the chemical structure of compounds to their pharmacological activity. These achievements took place within the framework he established for the transition from experimental pharmacology to therapeutic pharmacology. He introduced a modern research system based on the synthesis of multiple chemical structures for pharmacological screening in animal models of disease states. These contributions were undoubtedly decisive in propitiating the wider development of antibiotics decades later. For these reasons, it is fitting to mark the 100th anniversary of the Nobel Prize awarded to this great scientist by commemorating the importance of his contributions to the advance of pharmacology.

  19. INTRODUCTION: Nobel Symposium 135: Physics of Planetary Systems (18 22 June 2007, Lidingö, Stockholm, Sweden)

    NASA Astrophysics Data System (ADS)

    Piskunov, Nikolai; Rickman, Hans; Gustafsson, Bengt

    2008-07-01

    Since the discovery of the first planet, orbiting a sun-like star outside of our solar system, astronomy has changed dramatically. This event inspired a wide spectrum of activities not just in observational astronomy but in all fields related to planets from star formation to astrobiology. The discovery itself was the result of long and systematic work on perfecting measuring techniques and collecting data. Once the required level of precision was reached news about extrasolar planets started to appear frequently not just in scientific journals but also in the general media. Although fast progress is quite obvious in many areas related to planetary sciences for this Nobel symposium, dedicated to the Physics of Planetary Systems, we selected five topics where a number of particularly important breakthroughs happened in the last decade. These are: detection of exoplanets planet birthplaces: observations and modelling planet formation evolution of planetary systems planet characterization. We dedicated a full session, consisting of a few review talks and a joint discussion, to each of these topics. The format was a success, but what made this meeting so remarkable was the quality of the talks. We are very thankful to the world leading scientists for coming to Lidingö and making this symposium a truly memorable event. This book contains most of their contributions for you to enjoy. We are very thankful to the Nobel Foundation for generous sponsorship which made this symposium possible.

  20. Written on the Writer's Face: Facial Width-to-Height Ratio among Nominees and Laureates of the Nobel Prize in Literature

    ERIC Educational Resources Information Center

    Lebuda, Izabela; Karwowski, Maciej

    2016-01-01

    This study examined the relationship between facial width-to-height ratio (fWHR), an established marker of testosterone level and dominance, and eminent writers' achievement. The fWHR of laureates (N = 39) and nominees (N = 247) of the Nobel Prize in Literature 1901-1950 was measured together with historiometric data. It was demonstrated that…

  1. Lymphology, medical ignorance/ignoramics and the Nobel connection: Howard Florey, Joshua Lederberg, and Françoise Barre-Sinoussi.

    PubMed

    Witte, M H

    2008-12-01

    Intriguing interludes with Nobel laureates have marked the history of Lymphology. Bounded (or rather unbounded) by a mutual fascination with ignorance and the unknown, their curiosity converged around microbes, infections, and host responses mediated by the lymphatic system. These studies transcended a simple "molecular model of life".

  2. Nobel Chemistry in the Laboratory: Synthesis of a Ruthenium Catalyst for Ring-Closing Olefin Metathesis--An Experiment for the Advanced Inorganic or Organic Laboratory

    ERIC Educational Resources Information Center

    Greco, George E.

    2007-01-01

    An experiment for the upper-level undergraduate laboratory is described in which students synthesize a ruthenium olefin metathesis catalyst, then use the catalyst to carry out the ring-closing metathesis of diethyl diallylmalonate. The olefin metathesis reaction was the subject of the 2005 Nobel Prize in chemistry. The catalyst chosen for this…

  3. The 2009 Lindau Nobel Laureate Meeting: Werner Arber, Physiology or Medicine 1978

    PubMed Central

    Arber, Werner

    2010-01-01

    Swiss microbial geneticist, Werner Arber shared the 1978 Nobel Prize in Physiology or Medicine with Hamilton Smith and Daniel Nathans for their discovery of restriction endonucleases. Werner Arber was born in Granichen, Switzerland in 1929. Following a public school education, he entered the Swiss Polytechnical School in Zurich in 1949, working toward a diploma in natural sciences. There, his first research experience involved isolating and characterizing an isomer of chlorine. Following graduation in 1953, Arber joined a graduate program at the University of Geneva, taking on an assistanceship in electron microscopy (EM), in which he studied gene transfer in the bacterial virus (bacteriophage) lambda. Eventually encountering limitations with EM as a tool, he began using microbial genetics as a methodology for his studies. The study of microbial genetics had been possible for a relatively short time: DNA had been discovered to carry genetic information only a decade before he d entered the field. After earning his Ph.D. in 1958, Arber continued to develop skills in microbial genetics, working with colleagues in the United States for a short time before returning to Geneva at beginning of 1960. There, he continued working on lambda transduction in E. coli, but found that the virus would not efficiently propagate. Recalling research done seven years earlier by Joe Bertani and Jean Weigle on "host-controlled restriction-modification", he realized there must be a host-controlled modification of the invading DNA, and sought to identify the mechanism. Based on Grete Kallengerger s work that demonstrated degradation of both irradiated and non-irradiated phage lambda following injection in a host, Arber and his graduate student, Daisy Dussoix further investigated the fate of DNA, and found that restriction and modification (later determined to be postreplicative nuclotide methylation) directly affected DNA, but did not cause mutations. They also found that theses were

  4. The 2009 Lindau Nobel Laureate Meeting: Werner Arber, physiology or medicine 1978.

    PubMed

    Arber, Werner

    2010-01-01

    Swiss microbial geneticist, Werner Arber shared the 1978 Nobel Prize in Physiology or Medicine with Hamilton Smith and Daniel Nathans for their discovery of restriction endonucleases. Werner Arber was born in Granichen, Switzerland in 1929. Following a public school education, he entered the Swiss Polytechnical School in Zurich in 1949, working toward a diploma in natural sciences. There, his first research experience involved isolating and characterizing an isomer of chlorine. Following graduation in 1953, Arber joined a graduate program at the University of Geneva, taking on an assistanceship in electron microscopy (EM), in which he studied gene transfer in the bacterial virus (bacteriophage) lambda. Eventually encountering limitations with EM as a tool, he began using microbial genetics as a methodology for his studies. The study of microbial genetics had been possible for a relatively short time: DNA had been discovered to carry genetic information only a decade before he d entered the field. After earning his Ph.D. in 1958, Arber continued to develop skills in microbial genetics, working with colleagues in the United States for a short time before returning to Geneva at beginning of 1960. There, he continued working on lambda transduction in E. coli, but found that the virus would not efficiently propagate. Recalling research done seven years earlier by Joe Bertani and Jean Weigle on "host-controlled restriction-modification", he realized there must be a host-controlled modification of the invading DNA, and sought to identify the mechanism. Based on Grete Kallengerger s work that demonstrated degradation of both irradiated and non-irradiated phage lambda following injection in a host, Arber and his graduate student, Daisy Dussoix further investigated the fate of DNA, and found that restriction and modification (later determined to be postreplicative nuclotide methylation) directly affected DNA, but did not cause mutations. They also found that theses were

  5. The first Nobel Peace Prize, Henry Dunant (founder of the International Red Cross) and his "Mémoirs".

    PubMed

    Ottaviani, Raimonda; Vanni, Paolo; Baccolo, Grazia M; Guerin, Elizabeth; Vanni, Duccio

    2003-06-01

    To celebrate the memory and work of Henry Dunant, on the centenary of the presentation of the first Nobel Peace Prize, rightly awarded to Dunant for his having founded the institution of the International Red Cross, this paper presents the reader with some insights into his activities and sufferings, his trials and tribulations, and the hope and strength of his character. The ceaseless efforts made by Dunant to bring about the Institution which today represents Hope for so many suffering people who are silent victims of wars and atrocities, are fleetingly presented. The authors' intention is to give due recognition to Dunant for his work, and to highlight the humanity and the moral and social worth of the face behind the International Red Cross.

  6. Little known ophthalmic interests of Emil von Behring, the first Nobel Prize Laureate in Medicine or Physiology.

    PubMed

    Grzybowski, Andrzej; Wilhelm, Helmut

    2013-06-01

    Although the work for which Emil von Behring (1854-1917) was awarded the first Nobel Prize Winner for Medicine or Physiology in 1901 was on serum therapy, not only was he trained and worked as an ophthalmologist but he also wrote his doctoral dissertation on a practical ophthalmological topic whilst in Berlin under Carl Schweigger (1830-1905). He later worked for 3 years as an assistant and co-worker with the famous Polish ophthalmologist Boleslaw Wicherkiewicz (1847-1915), in Poznan where he described an interesting ophthalmic case in a scientific journal. His life and work in other fields have been well studied, but his interests and relationship to ophthalmology that played an important role in, at least part of, Behring's life have never previously been analysed thoroughly.

  7. Charles J. Pedersen: innovator in macrocyclic chemistry and co-recipient of the 1987 Nobel Prize in chemistry.

    PubMed

    Izatt, Reed M

    2007-02-01

    Charles J. Pedersen began life in Korea where his father was employed as an engineer at a gold mine in a remote region of that country. He received his primary and secondary school education in Japan and university training in the United States. He was employed as an organic research chemist at DuPont for 42 years. The signal accomplishment of this unusual individual was his serendipitous discovery of macrocyclic polyethers and of their selective complexation of alkali metal cations. This discovery sparked the development of a new field of chemistry and led to his sharing the Nobel Prize in Chemistry in 1987. An attempt is made to understand Pedersen as a person in this article.

  8. [G-protein coupled receptors. Nobel Prize 2012 for chemistry to Robert J. Lefkowitz and Brian Kobilka].

    PubMed

    Bockaert, Joël

    2012-12-01

    The 2012 Nobel Prize for chemistry has been won by Robert J. Lefkowitz and Brian Kobilka for their work on G protein-coupled receptors (GPCRs). Those receptors (3% of human genome) evolutionary are derived from one 1 or 2 ancestors and are able to recognize external message as different as light, odorants, gustative molecules and intercellular messages such as hormones and neurotransmitters. They are targets of 30-40% of therapeutic drugs. Robert J. Lefkowitz has been one of the leaders of the field from more than 40 years and has built several key concepts of the domain. Brian Kobilka was successful, in 2007, in producing a crystal structure of the β2-adrenergic receptor. This paved the way for the production of a series of almost 50 GPCR crystal structures both in inactive and active forms.

  9. Superfund Record of Decision (EPA Region 5): Bofors-Nobel site, Muskegon, MI. (First remedial action), September 1990

    SciTech Connect

    Not Available

    1990-09-17

    The 85-acre Bofors Nobel site is an active specialty chemical production plant in Edelston Township, Muskegon County, Michigan. An inactive landfill is also located in the eastern portion of the site. Onsite wetlands lie within the floodplain of Big Black Creek, which runs through the southern portion of the site. The site overlies a lacustrine aquifer, a potential drinking water source, which has been contaminated as a result of site activities. During the 1960s and early 1970s, sludge, wastewater, and waste liquids from plant operations were discharged into 10 onsite lagoons. The Record of Decision (ROD) addresses remediation of the lagoons, as well as upgrading the current ground water treatment system. A subsequent final ROD will address other contaminated soil and complete restoration of the aquifer. The primary contaminants of concern affecting the soil, sludge, and ground water are VOCs including benzene.

  10. Measuring revolutionary biomedical science 1992-2006 using Nobel prizes, Lasker (clinical medicine) awards and Gairdner awards (NLG metric).

    PubMed

    Charlton, Bruce G

    2007-01-01

    The Nobel prize for medicine or physiology, the Lasker award for clinical medicine, and the Gairdner international award are given to individuals for their role in developing theories, technologies and discoveries which have changed the direction of biomedical science. These distinctions have been used to develop an NLG metric to measure research performance and trends in 'revolutionary' biomedical science with the aim of identifying the premier revolutionary science research institutions and nations from 1992-2006. I have previously argued that the number of Nobel laureates in the biomedical field should be expanded to about nine per year and the NLG metric attempts to predict the possible results of such an expansion. One hundred and nineteen NLG prizes and awards were made during the past fifteen years (about eight per year) when overlapping awards had been removed. Eighty-five were won by the USA, revealing a massive domination in revolutionary biomedical science by this nation; the UK was second with sixteen awards; Canada had five, Australia four and Germany three. The USA had twelve elite centres of revolutionary biomedical science, with University of Washington at Seattle and MIT in first position with six awards and prizes each; Rockefeller University and Caltech were jointly second placed with five. Surprisingly, Harvard University--which many people rank as the premier world research centre--failed to reach the threshold of three prizes and awards, and was not included in the elite list. The University of Oxford, UK, was the only institution outside of the USA which featured as a significant centre of revolutionary biomedical science. Long-term success at the highest level of revolutionary biomedical science (and probably other sciences) probably requires a sufficiently large number of individually-successful large institutions in open competition with one another--as in the USA. If this model cannot be replicated within smaller nations, then it implies

  11. Ilya Ilich Metchnikoff (1845-1915) and Paul Ehrlich (1854-1915): the centennial of the 1908 Nobel Prize in Physiology or Medicine.

    PubMed

    Schmalstieg, Frank C; Goldman, Armond S

    2008-05-01

    Ilya Metchnikoff and Paul Ehrlich shared the 1908 Nobel Prize in Physiology or Medicine - Metchnikoff for discovering the major types and functions of phagocytes and Ehrlich for discovering the types of blood leukocytes, helping to uncover how to generate and use antibodies to protect against bacterial toxins, and formulating the receptor concept of antibodies binding to antigens. In 1908 phagocytic and humoral defences were thought to be unrelated but it was realized much later that they influence one other. Thus, it is fitting that the 1908 Nobel Laureates in Physiology or Medicine remain closely connected in the minds of modern immunologists. Metchnikoff and Ehrlich shared qualities of natural curiosity and tenacity coupled with remarkable inductive-mechanistic thinking and a zest for experimentation. However, their approaches to and methods of research were decidedly different - Metchnikoff's by evolutionary biology and an approach to experimentation via microscopy and Ehrlich's by an imaginative side-chain theory and organic chemistry.

  12. Revisiting the 1981 Nobel Prize to Roger Sperry, David Hubel, and Torsten Wiesel on the occasion of the centennial of the Prize to Golgi and Cajal.

    PubMed

    Berlucchi, Giovanni

    2006-12-01

    In 1981 the Nobel Prize for Medicine or Physiology was awarded to Roger Sperry for his work on the functional specialization of the cerebral hemispheres, and to David Hubel and Torsten Wiesel for their work on information processing in the visual system. The present paper points to some important links between the work of Sperry and that of Hubel and Wiesel and to their influences on neuroscience in the best tradition going back to Cajal. PMID:16997764

  13. A great honor and a huge challenge for China: You-you TU getting the Nobel Prize in Physiology or Medicine.

    PubMed

    Yuan, Da; Yang, Xue; Guo, Jun-Chao

    2016-05-01

    Public excitement over the award of the 2015 Nobel Prize in Physiology or Medicine to the Chinese medical scientist You-you TU for the discovery of a herbal anti-malarial, may mislead the Chinese people into believing that traditional Chinese herbal medi-cine can be used to cure all disease without any ad-verse effects. The aim of this paper is to explain the advantages and disadvantages of herbal traditional Chinese medicine (TCM) objectively. PMID:27143269

  14. Revisiting the 1981 Nobel Prize to Roger Sperry, David Hubel, and Torsten Wiesel on the occasion of the centennial of the Prize to Golgi and Cajal.

    PubMed

    Berlucchi, Giovanni

    2006-12-01

    In 1981 the Nobel Prize for Medicine or Physiology was awarded to Roger Sperry for his work on the functional specialization of the cerebral hemispheres, and to David Hubel and Torsten Wiesel for their work on information processing in the visual system. The present paper points to some important links between the work of Sperry and that of Hubel and Wiesel and to their influences on neuroscience in the best tradition going back to Cajal.

  15. A great honor and a huge challenge for China: You-you TU getting the Nobel Prize in Physiology or Medicine

    PubMed Central

    Yuan, Da; Yang, Xue; Guo, Jun-Chao

    2016-01-01

    Public excitement over the award of the 2015 Nobel Prize in Physiology or Medicine to the Chinese medical scientist You-you TU for the discovery of a herbal anti-malarial, may mislead the Chinese people into believing that traditional Chinese herbal medicine can be used to cure all disease without any adverse effects. The aim of this paper is to explain the advantages and disadvantages of herbal traditional Chinese medicine (TCM) objectively. PMID:27143269

  16. A great honor and a huge challenge for China: You-you TU getting the Nobel Prize in Physiology or Medicine.

    PubMed

    Yuan, Da; Yang, Xue; Guo, Jun-Chao

    2016-05-01

    Public excitement over the award of the 2015 Nobel Prize in Physiology or Medicine to the Chinese medical scientist You-you TU for the discovery of a herbal anti-malarial, may mislead the Chinese people into believing that traditional Chinese herbal medi-cine can be used to cure all disease without any ad-verse effects. The aim of this paper is to explain the advantages and disadvantages of herbal traditional Chinese medicine (TCM) objectively.

  17. The failed attribution of the Nobel Prize for Medicine or Physiology to Viktor Hamburger for the discovery of Nerve Growth Factor.

    PubMed

    Ribatti, Domenico

    2016-06-01

    The announcement in October 1986 that the Nobel Prize for Physiology or Medicine was to awarded to Rita Levi Montalcini and Stanley Cohen for the discovery of nerve growth factor (NGF) and epidermal growth factor, respectively, caused many to wonder why Viktor Hamburger in whose laboratory the initial work was done had not been included in the award. This article try to reconstruct the history of the discovery of NGF with the aim to re-establish a correct dynamic of the events.

  18. [Nobel Prize winning laureates in physiology or medicine for the year 2000--a few comments on discoveries related to signal transduction].

    PubMed

    Klenerová, V; Hynie, S

    2001-05-01

    The Nobel Assembly awarded The Nobel Prize in Physiology or Medicine for 2000 jointly to Arvid Carlsson, Paul Greengard and Eric Kandel for their discoveries concerning signal transduction in the nervous system. On the examples of their predecessors we attempted to demonstrate how results of basic research serve as building blocks for new discoveries and for the application of research results into the praxis. We presented not only the basic discoveries of laureates of Nobel Prize for year 2000 (biological role of dopamine, regulation of cell functions by phosphorylation of proteins, changes in transduction of signals during processes of memory), but we also mentioned previous discoveries that helped in the research of the last laureates. These discoveries concerned not only the storage and metabolism of transmitters, formulation of the concept of cyclic AMP as a second messenger of hormonal action, the role of G-proteins in transduction processes in receptor-effector complexes, processes of phosphorylation of proteins as regulators of cell functions, but we also mentioned the discovery of other second messengers and substances functioning as local hormones (prostaglandins and related compounds). Most of the described discoveries have not only the value as stones that can help to fill still incomplete mosaic of our present knowledge, but they also represent the immediate basis for the development and use of very important remedies, such as are antiparkinsonics, antidepressive drugs, nonsteroidal antiinflammatory drugs, etc.

  19. Water channel proteins: from their discovery in 1985 in Cluj-Napoca, Romania, to the 2003 Nobel Prize in Chemistry.

    PubMed

    Benga, Gh

    2006-10-30

    small indeed, of The New Land was Columbus; later, others, including Amerigo Vespucci (from whom the name derived), have better "seen" and in the subsequent years many explorers discovered the complexity of the Americas. Consequently, the initial discovery of the first water channel by Benga's group must be properly credited; the omission of Gheorghe Benga from the 2003 Nobel Prize in Chemistry (half of which was awarded to Peter Agre "for the discovery of the water channels") was a new mistake in the award of Nobel Prizes. Benga's claim is presented on the web site of the Ad Astra Association (www.ad-astra.ro/benga). As can be seen on this site his recognition as a discoverer of the first water channel protein from the human RBC membrane is growing. Thousands of science-related professionals from hundreds of academic and research units, as well as participants in several international scientific events, have signed as supporters of Benga; his priority is also mentioned in several comments on the 2003 Nobel Prize as presented on the site.

  20. Water, from Gilgamesh Epic to Nobel Laureate Richard Feynman: a look into polywater and the memory of water.

    PubMed

    De Santo, Luca Salvatore; Bisaccia, Carmela; De Santo, Rosa Maria

    2009-01-01

    Water is a complex source of imagination, dreams and rituals, where cultural differences ebb and flow, where a plethora of meanings and interpretations interlink and wash over one another. Water has an ambivalent character as stated in most of the ancient cosmogonies and in the Epic of Gilgamesh. Water's composition was discovered by the London scientist Henry Cavendish in about 1781. Although it is an apparently simple molecule (H2O), it has a highly complex and anomalous character. The anomalous properties of water are those where the behavior of liquid water is quite different from what is found with other liquids. As often stated, life depends indeed on these anomalous properties of water. Notably there are 12 phase, 22 density, 12 material, 11 thermodynamic and 9 physical anomalies. A powerful look into the water molecule was given by Nobel Prize recipient Richard P. Feynman as published in Six easy pieces. A look into the most recent quest for more knowledge about water leads us to the concept of pathological science. The cases of "polywater" and "the memory of water" are indeed paradigmatic episodes of fraudulent research published in journals with high impact factors. In conclusion, men came out of water engineered to handle water, and water greatly affects mythology and philosophy and is a strong presence in the arts and science. PMID:20013738

  1. Do Nobel Laureates Create Prize-Winning Networks? An Analysis of Collaborative Research in Physiology or Medicine

    PubMed Central

    Wagner, Caroline S.; Horlings, Edwin; Whetsell, Travis A.; Mattsson, Pauline; Nordqvist, Katarina

    2015-01-01

    Nobel Laureates in Physiology or Medicine who received the Prize between 1969 and 2011 are compared to a matched group of scientists to examine productivity, impact, coauthorship and international collaboration patterns embedded within research networks. After matching for research domain, h-index, and year of first of publication, we compare bibliometric statistics and network measures. We find that the Laureates produce fewer papers but with higher average citations. The Laureates also produce more sole-authored papers both before and after winning the Prize. The Laureates have a lower number of coauthors across their entire careers than the matched group, but are equally collaborative on average. Further, we find no differences in international collaboration patterns. The Laureates coauthor network reveals significant differences from the non-Laureate network. Laureates are more likely to build bridges across a network when measuring by average degree, density, modularity, and communities. Both the Laureate and non-Laureate networks have “small world” properties, but the Laureates appear to exploit “structural holes” by reaching across the network in a brokerage style that may add social capital to the network. The dynamic may be making the network itself highly attractive and selective. These findings suggest new insights into the role "star scientists" in social networks and the production of scientific discoveries. PMID:26230622

  2. The 1932 and 1944 Nobel Prizes in physiology or medicine: rewards for ground-breaking studies in neurophysiology.

    PubMed

    Grant, Gunnar

    2006-12-01

    In 1932 Sherrington and Adrian were awarded the Nobel Prize in Physiology or Medicine "for their discoveries regarding the functions of neurons" and in 1944 Erlanger and Gasser were awarded the same prize "for their discoveries relating to the highly differentiated functions of single nerve fibres." Sherrington made important discoveries on the reflex functions of the spinal cord, formulated the concept of the "synapse," defined the principle of the "final common path," studied "reciprocal innervation" and showed that central inhibition was an active phenomenon. He distinguished three types of receptors: extero-, intero-, and proprioceptive, studied the proprioceptive reflexes in the decerebrate animal and mapped their pathways in the spinal cord. Adrian made fundamental discoveries on the function of single nerve fibers, developed new techniques for the amplification of the weak signals and discovered that increased stimulation resulted in increased frequency of the impulses, the amplitude being unaffected. Erlanger and Gasser introduced the cathode-ray oscillograph and demonstrated the existence of three main groups of nerve fibers, A, B, and C, the conduction velocities of which were in approximately linear relationship with the fiber diameter, the A-fibers being the fastest and thickest and the C-fibers the slowest and having the finest diameter. Together the contributions by the four Laureates paved the way to modern neurophysiology. PMID:16997762

  3. Water, from Gilgamesh Epic to Nobel Laureate Richard Feynman: a look into polywater and the memory of water.

    PubMed

    De Santo, Luca Salvatore; Bisaccia, Carmela; De Santo, Rosa Maria

    2009-01-01

    Water is a complex source of imagination, dreams and rituals, where cultural differences ebb and flow, where a plethora of meanings and interpretations interlink and wash over one another. Water has an ambivalent character as stated in most of the ancient cosmogonies and in the Epic of Gilgamesh. Water's composition was discovered by the London scientist Henry Cavendish in about 1781. Although it is an apparently simple molecule (H2O), it has a highly complex and anomalous character. The anomalous properties of water are those where the behavior of liquid water is quite different from what is found with other liquids. As often stated, life depends indeed on these anomalous properties of water. Notably there are 12 phase, 22 density, 12 material, 11 thermodynamic and 9 physical anomalies. A powerful look into the water molecule was given by Nobel Prize recipient Richard P. Feynman as published in Six easy pieces. A look into the most recent quest for more knowledge about water leads us to the concept of pathological science. The cases of "polywater" and "the memory of water" are indeed paradigmatic episodes of fraudulent research published in journals with high impact factors. In conclusion, men came out of water engineered to handle water, and water greatly affects mythology and philosophy and is a strong presence in the arts and science.

  4. Do Nobel Laureates Create Prize-Winning Networks? An Analysis of Collaborative Research in Physiology or Medicine.

    PubMed

    Wagner, Caroline S; Horlings, Edwin; Whetsell, Travis A; Mattsson, Pauline; Nordqvist, Katarina

    2015-01-01

    Nobel Laureates in Physiology or Medicine who received the Prize between 1969 and 2011 are compared to a matched group of scientists to examine productivity, impact, coauthorship and international collaboration patterns embedded within research networks. After matching for research domain, h-index, and year of first of publication, we compare bibliometric statistics and network measures. We find that the Laureates produce fewer papers but with higher average citations. The Laureates also produce more sole-authored papers both before and after winning the Prize. The Laureates have a lower number of coauthors across their entire careers than the matched group, but are equally collaborative on average. Further, we find no differences in international collaboration patterns. The Laureates coauthor network reveals significant differences from the non-Laureate network. Laureates are more likely to build bridges across a network when measuring by average degree, density, modularity, and communities. Both the Laureate and non-Laureate networks have "small world" properties, but the Laureates appear to exploit "structural holes" by reaching across the network in a brokerage style that may add social capital to the network. The dynamic may be making the network itself highly attractive and selective. These findings suggest new insights into the role "star scientists" in social networks and the production of scientific discoveries. PMID:26230622

  5. Santiago Ramón y Cajal and Ivan Petrovic Pavlov: their parallel scientific lives, schools and nobel prizes.

    PubMed

    Rozo, Jairo A; Rodríguez-Moreno, Antonio

    2015-01-01

    Santiago Ramón y Cajal was not only a great scientist but he was also a dedicated teacher who managed to create his own School in Spain. Cajal was active at the end of the XIX and the beginning of the XX century, a period in which Ivan Petrovich Pavlov, another great contemporary scientist, also established a strong School in Russia. While these two acclaimed scientists shared a similar vision on science, a view they also conveyed to their disciples, they applied quite distinct criteria in the way they dealt with their followers. Interestingly, despite the geographic and idiomatic barriers that had to be overcome, the paths of these two great figures of XX century science crossed at least three times. First when they competed for the City of Moscow Prize, second when they both attended the "Congreso Internacional de Medicina de Madrid" (Medicine International Congress in Madrid) in 1903 and finally, they competed on four consecutive occasions for the Nobel Prize in Physiology or Medicine. Here we discuss their scientific vision, their different attitudes in the interaction with disciples and the distinct circumstances in which their paths crossed. PMID:26082688

  6. [The 2004 Nobel Prize for Physiology or Medicine for research into smell receptors and the organization of the olfactory system].

    PubMed

    Burbach, J P H

    2004-12-25

    The 2004 Nobel Prize for Physiology or Medicine has been awarded to Richard Axel and Linda B. Buck, for their discovery of smell receptors and the organisation of the olfactory system. Their original discovery concerned the identification of some 1000 genes that code for smell receptors in the olfactory epithelium of the rat. They also demonstrated that each receptor can only be activated by a limited number of odourants and that there is some overlap in specificity with other smell receptors. Odourants in inhaled air are specifically recognized and bound by the smell receptors on the olfactory neurones in the nasal epithelium. The activated neurones send an electrical signal to the mitral cells, the dendrites of which lie in the glomeruli of the olfactory bulb. In each olfactory neuron only one smell receptor gene is expressed. Neurones with the same type of receptor are spread throughout the epithelium but converge in the same glomerulus. An olfactory map is formed by means of mitral-cell projections which run to the cerebral cortex as well as to other parts of the brain. Possibly the information gained about odourants will be applied in the areas of physiology and pathophysiology; in the field of pharmacology for example where odourants may be used in the treatment of disorders of fertility, behaviour or mood.

  7. Santiago Ramón y Cajal and Ivan Petrovic Pavlov: their parallel scientific lives, schools and nobel prizes.

    PubMed

    Rozo, Jairo A; Rodríguez-Moreno, Antonio

    2015-01-01

    Santiago Ramón y Cajal was not only a great scientist but he was also a dedicated teacher who managed to create his own School in Spain. Cajal was active at the end of the XIX and the beginning of the XX century, a period in which Ivan Petrovich Pavlov, another great contemporary scientist, also established a strong School in Russia. While these two acclaimed scientists shared a similar vision on science, a view they also conveyed to their disciples, they applied quite distinct criteria in the way they dealt with their followers. Interestingly, despite the geographic and idiomatic barriers that had to be overcome, the paths of these two great figures of XX century science crossed at least three times. First when they competed for the City of Moscow Prize, second when they both attended the "Congreso Internacional de Medicina de Madrid" (Medicine International Congress in Madrid) in 1903 and finally, they competed on four consecutive occasions for the Nobel Prize in Physiology or Medicine. Here we discuss their scientific vision, their different attitudes in the interaction with disciples and the distinct circumstances in which their paths crossed.

  8. Do Nobel Laureates Create Prize-Winning Networks? An Analysis of Collaborative Research in Physiology or Medicine.

    PubMed

    Wagner, Caroline S; Horlings, Edwin; Whetsell, Travis A; Mattsson, Pauline; Nordqvist, Katarina

    2015-01-01

    Nobel Laureates in Physiology or Medicine who received the Prize between 1969 and 2011 are compared to a matched group of scientists to examine productivity, impact, coauthorship and international collaboration patterns embedded within research networks. After matching for research domain, h-index, and year of first of publication, we compare bibliometric statistics and network measures. We find that the Laureates produce fewer papers but with higher average citations. The Laureates also produce more sole-authored papers both before and after winning the Prize. The Laureates have a lower number of coauthors across their entire careers than the matched group, but are equally collaborative on average. Further, we find no differences in international collaboration patterns. The Laureates coauthor network reveals significant differences from the non-Laureate network. Laureates are more likely to build bridges across a network when measuring by average degree, density, modularity, and communities. Both the Laureate and non-Laureate networks have "small world" properties, but the Laureates appear to exploit "structural holes" by reaching across the network in a brokerage style that may add social capital to the network. The dynamic may be making the network itself highly attractive and selective. These findings suggest new insights into the role "star scientists" in social networks and the production of scientific discoveries.

  9. Santiago Ramón y Cajal and Ivan Petrovic Pavlov: their parallel scientific lives, schools and nobel prizes

    PubMed Central

    Rozo, Jairo A.; Rodríguez-Moreno, Antonio

    2015-01-01

    Santiago Ramón y Cajal was not only a great scientist but he was also a dedicated teacher who managed to create his own School in Spain. Cajal was active at the end of the XIX and the beginning of the XX century, a period in which Ivan Petrovich Pavlov, another great contemporary scientist, also established a strong School in Russia. While these two acclaimed scientists shared a similar vision on science, a view they also conveyed to their disciples, they applied quite distinct criteria in the way they dealt with their followers. Interestingly, despite the geographic and idiomatic barriers that had to be overcome, the paths of these two great figures of XX century science crossed at least three times. First when they competed for the City of Moscow Prize, second when they both attended the “Congreso Internacional de Medicina de Madrid” (Medicine International Congress in Madrid) in 1903 and finally, they competed on four consecutive occasions for the Nobel Prize in Physiology or Medicine. Here we discuss their scientific vision, their different attitudes in the interaction with disciples and the distinct circumstances in which their paths crossed. PMID:26082688

  10. Nobel metal alloyed thin-films with optical properties on demand

    NASA Astrophysics Data System (ADS)

    Gong, Chen; Leite, Marina S.

    Metallic materials with tunable optical responses can enable the unprecedented control of optoelectronic and nanophotonic devices with enhanced performance, such as thin-film solar cells, metamaterials and metasurfaces for tunable absorbers and optical filters, among others. Here we present the alloying of noble metals, Ag, Au and Cu, to develop a novel class of material with optical response not achieved by pure metals. We fabricate binary mixtures with controlled chemical composition by co-sputtering. Ellipsometry and surface plasmon polariton coupling angle measurements are in excellent agreement when determining the real part of the dielectric function (ɛ1). Surprisingly, in some cases, a mixture provides a material with higher surface plasmon polariton quality factor than the corresponding pure metals. Our approach paves the way to implement metallic nanostructures with tunable absorption/transmission, overcoming the current limitation of the dielectric function of noble metals.

  11. Which are the best nations and institutions for revolutionary science 1987-2006? Analysis using a combined metric of Nobel prizes, Fields medals, Lasker awards and Turing awards (NFLT metric).

    PubMed

    Charlton, Bruce G

    2007-01-01

    I have previously suggested that Nobel prizes can be used as a scientometric measurement of 'revolutionary science'; and that for this purpose it would be better if more Nobel prizes were awarded, especially in three new subjects of mathematics, medicine and computing science which have become major sciences over recent decades. In the following analysis of the last 20 years from 1987 to 2006, I use three prestigious prizes in mathematics (Fields medal), medicine (Lasker award for Clinical Medical Research) and computing science (A.M. Turing award) which are plausible surrogates for Nobel prizes. The combined Nobel-Fields-Lasker-Turing (NFLT) metric is strongly dominated by the USA. However the distribution implies that revolutionary science may be somewhat more broadly distributed than the pure Nobel metric suggests. The UK and France seem to be significant nations in some types of revolutionary science (although the UK has declined substantially as a centre of revolutionary science); and Germany, Switzerland, Japan, Russia, Denmark and Norway also feature. The top world institutions for revolutionary science according to NFLT are MIT, Stanford and Princeton - all in the USA - and the USA has 19 institutions with at least three prize-winners. Second is France, with three institutions having three or more winners; the UK and Norway have one each. The NFLT metric confirms previous observations that many public universities in the Western USA have now become a major focus of revolutionary science; and that Harvard has declined from its previous status as the top world centre of revolutionary science to about seventh-place. This analysis confirms the potential value of increasing the number of Nobel prizes as a means of identifying and monitoring centres of excellence in revolutionary science. PMID:17234353

  12. The failed attribution of the Nobel Prize for Medicine or Physiology to Viktor Hamburger for the discovery of Nerve Growth Factor.

    PubMed

    Ribatti, Domenico

    2016-06-01

    The announcement in October 1986 that the Nobel Prize for Physiology or Medicine was to awarded to Rita Levi Montalcini and Stanley Cohen for the discovery of nerve growth factor (NGF) and epidermal growth factor, respectively, caused many to wonder why Viktor Hamburger in whose laboratory the initial work was done had not been included in the award. This article try to reconstruct the history of the discovery of NGF with the aim to re-establish a correct dynamic of the events. PMID:26930162

  13. Tadeus Reichstein, co-winner of the Nobel Prize for Physiology or Medicine: on the occasion of the 110th anniversary of his birth in Poland.

    PubMed

    Wincewicz, Andrzej; Sulkowska, Mariola; Sulkowski, Stanislaw

    2007-01-01

    Tadeus Reichstein (1897-1996) was the first scientist born in Poland to receive the Nobel Prize in Medicine or Physiology (1950) for the "discovery of hormones of the adrenal cortex, their structure and biological effects", as stated by the Nobel Prize Committee. His family being deeply devoted to Polish cultural and historical heritage, his first name was given to him after Tadeus Kosciuszko, a chief commander of the 18th century Polish uprising named the Kosciuszko Insurrection. As a child, he emigrated with his family to Switzerland, where he was much later to become involved in numerous research studies on steroids on an international scale. It was Tadeus Reichstein who isolated and synthesized desoxycorticosterone, which still remains the drug of first choice in the treatment of Addison's disease. Additionally, thanks to his strategy for the mass production of Vitamin C, the cost of this agent was drastically reduced thus enabling its widespread therapeutic use. In our divided world so often torn by tremendous conflicts, there is a great need to both remember and commemorate such distinguished people as Tadeus Reichstein who, despite the apparent "borders" between different nationalities and cultures, have demonstrated through their work the huge need for harmonious collaboration in the development of science.

  14. Nobel prize for the artemisinin and ivermectin discoveries: a great boost towards elimination of the global infectious diseases of poverty.

    PubMed

    Tambo, Ernest; Khater, Emad I M; Chen, Jun-Hu; Bergquist, Robert; Zhou, Xiao-Nong

    2015-01-01

    The Millennium Development Goals (MDGs) made a marked transformation for neglected and vulnerable communities in the developing countries from the start, but infectious diseases of poverty (IDoPs) continue to inflict a disproportionate global public health burden with associated consequences, thereby contributing to the vicious cycle of poverty and inequity. However, the effectiveness and large-scale coverage of artemisinin combination therapy (ACT) have revolutionized malaria treatment just as the control of lymphatic filariasis (LF) and onchocerciasis have benefitted from harnessing the broad-spectrum effect of avermectin-based derivatives. The paradigm shift in therapeutic approach, effected by these two drugs and their impact on community-based interventions of parasitic diseases plaguing the endemic low- and middle-income countries (LIMCs), led to the Nobel Prize in Physiology or Medicine in 2015. However, the story would not be complete without mentioning praziquantel. The huge contribution of this drug in modernizing the control of schistosomiasis and also some intestinal helminth infections had already shifted the focus from control to potential elimination of this disease. Together, these new drugs have provided humankind with powerful new tools for the alleviation of infectious diseases that humans have lived with since time immemorial. These drugs all have broad-spectrum effects, yet they are very safe and can even be packaged together in various combinations. The strong effect on so many of the great infectious scourges in the developing countries has not only had a remarkable influence on many endemic diseases, but also contributed to improving the cost structure of healthcare. Significant benefits include improved quality of preventive and curative medicine, promotion of community-based interventions, universal health coverage and the fostering of global partnerships. The laudable progress and benefits achieved are indispensable in championing

  15. Nobel prize for the artemisinin and ivermectin discoveries: a great boost towards elimination of the global infectious diseases of poverty.

    PubMed

    Tambo, Ernest; Khater, Emad I M; Chen, Jun-Hu; Bergquist, Robert; Zhou, Xiao-Nong

    2015-01-01

    The Millennium Development Goals (MDGs) made a marked transformation for neglected and vulnerable communities in the developing countries from the start, but infectious diseases of poverty (IDoPs) continue to inflict a disproportionate global public health burden with associated consequences, thereby contributing to the vicious cycle of poverty and inequity. However, the effectiveness and large-scale coverage of artemisinin combination therapy (ACT) have revolutionized malaria treatment just as the control of lymphatic filariasis (LF) and onchocerciasis have benefitted from harnessing the broad-spectrum effect of avermectin-based derivatives. The paradigm shift in therapeutic approach, effected by these two drugs and their impact on community-based interventions of parasitic diseases plaguing the endemic low- and middle-income countries (LIMCs), led to the Nobel Prize in Physiology or Medicine in 2015. However, the story would not be complete without mentioning praziquantel. The huge contribution of this drug in modernizing the control of schistosomiasis and also some intestinal helminth infections had already shifted the focus from control to potential elimination of this disease. Together, these new drugs have provided humankind with powerful new tools for the alleviation of infectious diseases that humans have lived with since time immemorial. These drugs all have broad-spectrum effects, yet they are very safe and can even be packaged together in various combinations. The strong effect on so many of the great infectious scourges in the developing countries has not only had a remarkable influence on many endemic diseases, but also contributed to improving the cost structure of healthcare. Significant benefits include improved quality of preventive and curative medicine, promotion of community-based interventions, universal health coverage and the fostering of global partnerships. The laudable progress and benefits achieved are indispensable in championing

  16. Views on Science Policy of the 1983 U.S. Nobel Laureates in Science. Hearing before the Committee on Science and Technology, U.S. House of Representatives, Ninety-Eighth Congress, Second Session, March 8, 1984.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science and Technology.

    Four of the 1983 United States Nobel laureates in science provided the U.S. House of Representatives Committee on Science and Technology with their views about the current state of American science and U.S. government science policy as well as comments on one or more aspects which they believed should be brought to the committee's attention. These…

  17. EDITORIAL: Nobel Prize in Physiology or Medicine 2003 awarded to Paul Lauterbur and Peter Mansfield for discoveries concerning magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Leach, Martin O.

    2004-02-01

    The award of the Nobel Prize in Physiology or Medicine recognizes discoveries concerning the use of magnetic resonance to visualize different structures. The Assembly's decision to recognize the discoveries underpinning efficient spatial mapping of biological properties reflects the singular importance of imaging to the medical application of this technique. Without this, abnormalities in morphology cannot be recognized. Equally, the wealth of physiological information that can be obtained by manipulation of the magnetic resonance signal is of little value unless localized to identified organs, pathology or areas of tissue. Based on these early discoveries, a wide range of imaging and measurement techniques, together with enabling instrumentation, have been developed over the last 30 years. Commercial equipment became available in the early 1980s, and some 60 million MRI examinations are now performed each year. The power of the technique, and the range of applications, continues to develop rapidly. The full text of this editorial is given in the PDF file below.

  18. Georg von Békésy, Nobel Laureate in Physiology, Experimental Physicist and Art Collector was Born 100 Years Ago

    NASA Astrophysics Data System (ADS)

    Kovács, László

    Georg von Békésy was born one hundred years ago, on July 3, 1899 in Budapest, Hungary. He graduated from the University of Bern as a chemist in 1921. He received a Ph.D. in physics in Budapest under the supervision of Charles Tangl in 1923. From 1926 to 1947 he worked in Hungary's best-equipped research laboratory, in the Postal Experimental Institution as a postal engineer. Here he lead basic physical research on ear preparations and on realistic models of the ear, made by himself, to investigate the structure and the working of the ear and, first of all, the inner ear (cochlea). For the results of his research in Hungary, Békésy received the Nobel Prize in Physiology in 1961. The paper also introduces Georg von Békésy as a passionate art collector and expert.

  19. The discovery by Gh. Benga of the first water channel protein in 1985 in Cluj-Napoca, Romania, A few years before P. Agre (2003 Nobel Prize in Chemistry).

    PubMed

    Cucuianu, M

    2006-01-01

    The first water channel protein, now called aquaporin 1, was identified or "seen" in situ in the human red blood cell membrane by Benga's group in 1985. It was again "seen" when it was by chance purified by Agre'group in 1988 and was again identified when its main feature, the water transport property, was found by Agre's group in 1992. Consequently, the omission of Gh. Benga from the 2003 Nobel Prize in Chemistry (half of which was awarded to P. Agre "for the discovery of the water channels") is a new mistake in the award of Nobel Prizes. The growing recognition of the priority of Gh. Benga over P. Agre in the discovery of water channels is documented in this paper.

  20. Historical Account And Branching To Rarefied Gas Dynamics Of Atomic and Molecular Beams : A Continuing And Fascinating Odyssey Commemorated By Nobel Prizes Awarded To 23 Laureates In Physics And Chemistry

    NASA Astrophysics Data System (ADS)

    Campargue, Roger

    2005-05-01

    This Historical Account derived in part from D. R. Herschbach was presented as an opening lecture of the Molecular Beam Session organized at the 24th International Symposium on Rarefied Gas Dynamics held in Bari, Italy, in July 2004. The emphasis is on the impressive results due to the molecular beam techniques in the last century. The first section summarizes the historical beam experiments performed by 14 Nobel Prize laureates having used the thermally effusive sources to establish the basic principles of Modern Physics. The second section is on the branching of Molecular Beams to Rarefied Gas Dynamics having permitted to investigate the physics of supersonic free jets and transform the molecular beam techniques. Finally, the last section relates the spectacular molecular beam experiments in helium free jet ultracooling, molecular spectroscopy, chemical reaction dynamics, clustering and modification of low density matter, and biomolecule mass spectrometry, rewarded by nine Nobel Prizes in Chemistry from 1986 to 2002.

  1. Vascular access: an historical perspective from Sir William Harvey to the 1956 Nobel prize to André F. Cournand, Werner Forssmann, and Dickinson W. Richards.

    PubMed

    Sette, Piersandro; Dorizzi, Romolo M; Azzini, Anna M

    2012-01-01

    Sir William Harvey (1578-1657), who had many precursors, discovered blood circulation in 1628 after a significant number of anatomic dissection of cadavers; his studies were continued by Sir Christopher Wren and Daniel Johann Major. The first central vein catheterization was performed on a horse by Stephen Hales, an English Vicar. In 1844, a century later, the French biologist Claude Bernard attempted the first carotid artery cannulation and repeated the procedure in the jugular vein, again on a horse. He was first to report the complications now well known to be associated with this maneuver. In 1929 Werner Forssmann tried cardiac catheterization on himself, but could not investigate the procedure further since his findings were rejected and ridiculed by colleagues. His work was continued by André Frédéric Cournand and Dickinson Woodruff Richards Jr in the United States. In 1956 the three physicians shared the Nobel Prize for Medicine for their studies on vascular and cardiac systems. The genius and the perseverance of the three physicians paved the way towards peripheral and central catheter vein placement, one of the most frequently performed maneuvers in hospitals. Its history still remains unknown to most and deserves a short description. PMID:21983826

  2. Bone transplantation and tissue engineering, part IV. Mesenchymal stem cells: history in orthopedic surgery from Cohnheim and Goujon to the Nobel Prize of Yamanaka.

    PubMed

    Hernigou, Philippe

    2015-04-01

    In 1867 the German pathologist Cohnheim hypothesized that non-hematopoietic, bone marrow-derived cells could migrate through the blood stream to distant sites of injury and participate in tissue regeneration. In 1868, the French physiologist Goujon studied the osteogenic potential of bone marrow on rabbits. Friedenstein demonstrated the existence of a nonhematopoietic stem cell within bone marrow more than a hundred years later. Since this discovery, the research on mesenchymal stem cell (MSC) has explored their therapeutic potential. The prevalent view during the second century was that mature cells were permanently locked into the differentiated state and could not return to a fully immature, pluripotent stem-cell state. Recently, Japanese scientist (first orthopaedist) Shinya Yamanaka proved that introduction of a small set of transcription factors into a differentiated cell was sufficient to revert the cell to a pluripotent state. Yamanaka shared the Nobel Prize in Physiology or Medicine and opened a new door for potential applications of MSCs. This manuscript describes the concept of MSCs from the period when it was relegated to the imagination to the beginning of the twenty-first century and their application in orthopaedic surgery.

  3. Bone transplantation and tissue engineering, part IV. Mesenchymal stem cells: history in orthopedic surgery from Cohnheim and Goujon to the Nobel Prize of Yamanaka.

    PubMed

    Hernigou, Philippe

    2015-04-01

    In 1867 the German pathologist Cohnheim hypothesized that non-hematopoietic, bone marrow-derived cells could migrate through the blood stream to distant sites of injury and participate in tissue regeneration. In 1868, the French physiologist Goujon studied the osteogenic potential of bone marrow on rabbits. Friedenstein demonstrated the existence of a nonhematopoietic stem cell within bone marrow more than a hundred years later. Since this discovery, the research on mesenchymal stem cell (MSC) has explored their therapeutic potential. The prevalent view during the second century was that mature cells were permanently locked into the differentiated state and could not return to a fully immature, pluripotent stem-cell state. Recently, Japanese scientist (first orthopaedist) Shinya Yamanaka proved that introduction of a small set of transcription factors into a differentiated cell was sufficient to revert the cell to a pluripotent state. Yamanaka shared the Nobel Prize in Physiology or Medicine and opened a new door for potential applications of MSCs. This manuscript describes the concept of MSCs from the period when it was relegated to the imagination to the beginning of the twenty-first century and their application in orthopaedic surgery. PMID:25750132

  4. A list of personal perspectives with selected quotations, along with lists of tributes, historical notes, Nobel and Kettering awards related to photosynthesis.

    PubMed

    Krogmann, David W

    2002-01-01

    The history of photosynthesis research can be found in original papers and books. However, a special history is available from the prefatory chapters and the personal perspectives of various researchers who published them in several journals over the last 40 years. We have compiled a list of such perspectives published since 1964. Selection is not easy, especially of authors who were not directly engaged in photosynthesis research; some are included for their special insights related to central issues in the study of photosynthesis. Our journal, Photosynthesis Research, contains other valuable historic data in the occasional tributes, obituaries and historical notes, that have been published. Lists of these items are included. This article ends by listing the Nobel prizes related to photosynthesis and the Kettering Awards for Excellence in Photosynthesis Research. Wherever possible, a web page address is provided. The web page addresses have been taken from the article 'Photosynthesis and the Web: 2001' by Larry Orr and Govindjee, available at http://www.life.uiuc.edu/govindjee/photoweb and at http://photoscience.la.asu.edu/photosyn/ photoweb/default.html.When I find a bit of leisureI trifle with my papers.This is one of the lesserfrailities.'- Horace, Satires I, IV. PMID:16245099

  5. Vascular access: an historical perspective from Sir William Harvey to the 1956 Nobel prize to André F. Cournand, Werner Forssmann, and Dickinson W. Richards.

    PubMed

    Sette, Piersandro; Dorizzi, Romolo M; Azzini, Anna M

    2012-01-01

    Sir William Harvey (1578-1657), who had many precursors, discovered blood circulation in 1628 after a significant number of anatomic dissection of cadavers; his studies were continued by Sir Christopher Wren and Daniel Johann Major. The first central vein catheterization was performed on a horse by Stephen Hales, an English Vicar. In 1844, a century later, the French biologist Claude Bernard attempted the first carotid artery cannulation and repeated the procedure in the jugular vein, again on a horse. He was first to report the complications now well known to be associated with this maneuver. In 1929 Werner Forssmann tried cardiac catheterization on himself, but could not investigate the procedure further since his findings were rejected and ridiculed by colleagues. His work was continued by André Frédéric Cournand and Dickinson Woodruff Richards Jr in the United States. In 1956 the three physicians shared the Nobel Prize for Medicine for their studies on vascular and cardiac systems. The genius and the perseverance of the three physicians paved the way towards peripheral and central catheter vein placement, one of the most frequently performed maneuvers in hospitals. Its history still remains unknown to most and deserves a short description.

  6. Superamphiphobic surfaces.

    PubMed

    Chu, Zonglin; Seeger, Stefan

    2014-04-21

    Superamphiphobicity is an effect where surface roughness and surface chemistry combine to generate surfaces which are both superhydrophobic and superoleophobic, i.e., contact angles (θCA) greater than 150° along with low contact angle hysteresis (CAH) not only towards probing water but also for low-surface-tension 'oils'. In this review, we summarize the research on superamphiphobic surfaces, including the characterization of superamphiphobicity, different techniques towards the fabrication of surface roughness and surface modification with low-surface-energy materials as well as their functional applications.

  7. The use of computer-guided flapless dental implant surgery (NobelGuide) and immediate function to support a fixed full-arch prosthesis in fresh-frozen homologous patients with bone grafts.

    PubMed

    Nocini, Pier Francesco; Castellani, Roberto; Zanotti, Guglielmo; Bertossi, Dario; Luciano, Umberto; De Santis, Daniele

    2013-11-01

    The behavior of fresh-frozen homologous bone (FFB) when used in combination with computer-guided implant surgery has not been investigated yet, and there is a lack of clinical evidence in the literature. The purpose of this retrospective study is to evaluate the implant survival and related fixed full-arch prostheses at the 1- to 5-year follow-up when performed with immediate function using a flapless surgical procedure and computer-aided technology (NobelGuide; Nobel Biocare AB, Goteborg, Sweden) in patients previously treated with FFB grafts. Furthermore, the related values of torque and complications observed were analyzed and discussed. Clinical charts of patients with edentulous arches treated with FFB grafts and NobelGuide system with at least 1 year follow-up were reviewed retrospectively.A total of 65 patients met the criteria of inclusion, receiving a total of 342 implants and 77 full-arch prostheses, with a mean follow-up of 32.87 months (range, 1-5 years). Survival of implants and prostheses was high, reaching 96.5% and 95%, respectively. Factors significantly related to failure of the implants were smoking, position of the implant as last distal abutment, and fracture of basal maxillary bone. Prostheses survival was influenced by bruxism, failure of multiple implants, and torque level of implant equal to 0 at implant insertion. All implants and prostheses failures occurred in the first year. A higher torque level at implant insertion did not correspond to a lower risk of implant failure.Within the limitations of our retrospective study, this treatment modality was predictable with high survival rates and high insertion torque. However, a few implant and prosthetic failures were found, together with several complications. PMID:24220464

  8. Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal.

    PubMed

    López-Muñoz, Francisco; Boya, Jesús; Alamo, Cecilio

    2006-10-16

    Exactly 100 years ago, the Nobel Prize for Physiology and Medicine was awarded to Santiago Ramón y Cajal, "in recognition of his meritorious work on the structure of the nervous system". Cajal's great contribution to the history of science is undoubtedly the postulate of neuron theory. The present work makes a historical analysis of the circumstances in which Cajal formulated his theory, considering the authors and works that influenced his postulate, the difficulties he encountered for its dissemination, and the way it finally became established. At the time when Cajal began his neurohistological studies, in 1887, Gerlach's reticular theory (a diffuse protoplasmic network of the grey matter of the nerve centres), also defended by Golgi, prevailed among the scientific community. In the first issue of the Revista Trimestral de Histología Normal y Patológica (May, 1888), Cajal presented the definitive evidence underpinning neuron theory, thanks to staining of the axon of the small, star-shaped cells of the molecular layer of the cerebellum of birds, whose collaterals end up surrounding the Purkinje cell bodies, in the form of baskets or nests. He thus demonstrated once and for all that the relationship between nerve cells was not one of continuity, but rather of contiguity. Neuron theory is one of the principal scientific conquests of the 20th century, and which has withstood, with scarcely any modifications, the passage of more than a 100 years, being reaffirmed by new technologies, as the electron microscopy. Today, no neuroscientific discipline could be understood without recourse to the concept of neuronal individuality and nervous transmission at a synaptic level, as basic units of the nervous system.

  9. Nitrogen and Oxygen Budget ExpLoration (NOBEL) for ESA M5-call: Measurement requirements to understand the atmospheric escape/budget

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Dandouras, Iannis; Rème, Henri; Marghitu, Octav

    2016-04-01

    The NOBEL mission aims to study the thermal and non-thermal escape of major atmospheric components (nitrogen, oxygen, and their isotopes) from the Earth, a magnetized planet. This requires the first-time exploration of the Earth's entire exosphere as well as the first-time examination of isotope ratios in an extended altitude range from the upper ionosphere (800 km high) up to the magnetosphere. The measurement quality should allow connecting the various types of escape from the Earth to the different gravity mass-filtering and chemical reactions on a geological time scale, such that the result will be used as a good reference to understand the atmospheric/ionospheric evolution of magnetized planets based on their 17,18O/16O isotope ratio and N/O ratio. Since the solar EUV and solar wind conditions during solar maximum at present are comparable to the solar minimum conditions 1-2 billion years ago, the escaping amount and the isotope and N/O ratios should be obtained as a function of external forcing (solar and geomagnetic conditions) to allow a scaling to the past. To achieve these goals, the ion measurements in this mission should be able to separate nitrogen species (N, N2, N+ and N2+) from oxygen (O, O+), near the exobase, in the exosphere (for modelling thermal escape, hydrodynamics escape, and the pre-acceleration amount of non-thermal escape) and up in the magnetosphere (for modelling non-thermal escape and circulation of all ions). Furthermore, these aims require the capability to measure isotope ratios of cold oxygen ions and neutrals. We briefly discuss why we focus on the exosphere, on isotope ratios, and nitrogen measurements, and finally describe the current idea of a mission profile using a spinning satellite in a 500 km × 33000 km altitude high-inclination orbit.

  10. Surface tension effects on submerged electrosprays

    PubMed Central

    Marín, Álvaro G.; Loscertales, Ignacio G.; Barrero, Antonio

    2012-01-01

    Electrosprays are a powerful technique to generate charged micro/nanodroplets. In the last century, the technique has been extensively studied, developed, and recognized with a shared Nobel price in Chemistry in 2002 for its wide spread application in mass spectrometry. However, nowadays techniques based on microfluidic devices are competing to be the next generation in atomization techniques. Therefore, an interesting development would be to integrate the electrospray technique into a microfluidic liquid-liquid device. Several works in the literature have attempted to build a microfluidic electrospray with disputable results. The main problem for its integration is the lack of knowledge of the working parameters of the liquid-liquid electrospray. The “submerged electrosprays” share similar properties as their counterparts in air. However, in the microfluidic generation of micro/nanodroplets, the liquid-liquid interfaces are normally stabilized with surface active agents, which might have critical effects on the electrospray behavior. In this work, we review the main properties of the submerged electrosprays in liquid baths with no surfactant, and we methodically study the behavior of the system for increasing surfactant concentrations. The different regimes found are then analyzed and compared with both classical and more recent experimental, theoretical and numerical studies. A very rich phenomenology is found when the surface tension is allowed to vary in the system. More concretely, the lower states of electrification achieved with the reduced surface tension regimes might be of interest in biological or biomedical applications in which excessive electrification can be hazardous for the encapsulated entities. PMID:24155865

  11. [Advances in the investigation of structure and function of G protein-coupled receptors (by awarding the Nobel Prize for Chemistry in 2012 to Robert Lefkowitz and Bryan Kobilka)].

    PubMed

    Shpakov, A O

    2013-01-01

    The Nobel Prize for Chemistry in 2012 was awarded to Robert Lefkowitz and Bryan Kobilka "for studies in G-protein-coupled receptors" (GPCR). In this review the most important discoveries of these Nobel Prize winners dealing with investigation of the structure and functions of GPCR were discussed and analyzed. In the 1980s, they were the first in the world to clone GPCR--the 32-adrenergic receptor. After 20 years, the team led by B. Kobilka for the first time prepared this receptor in the crystalline form and established its three-dimensional structure. In these studies, unique approaches for purification and crystallization of other receptors were developed. In 1980s, R. Lefkowitz and his colleagues discovered beta-arrestins that regulate signal transduction occurring via GPCR. Later they revealed that beta-arrestins were the most important members of signal transduction and were responsible for the signal transduction from the hormone-activated receptor to intracellular signaling cascades independently of heterotrimeric G-proteins. These and other outstanding discoveries of R. Lefkowitz and B. Kobilka have become the basis for the novel area of molecular biology and pharmacology--the molecular endocrinology of GPCR.

  12. Surface Tension

    NASA Technical Reports Server (NTRS)

    Theissen, David B.; Man, Kin F.

    1996-01-01

    The effect of surface tension is observed inmany everyday situations. For example, a slowly leaking faucet drips because the force surface tension allows the water to cling to it until a sufficient mass of water is accumulated to break free.

  13. Surface finishing

    NASA Technical Reports Server (NTRS)

    Kinzler, J. A.; Hefferman, J. T.; Fehrenkamp, L. G.; Lee, W. S. (Inventor)

    1980-01-01

    A surface of an article adapted for relative motion with a fluid environment is finished by coating the surface with a fluid adhesive, covering the adhesive with a sheet of flexible film material under tension on the film material whereby the tensioned film material is bonded to the surface by the adhesive.

  14. Gepirone. Organon.

    PubMed

    Leslie, R A

    2001-08-01

    Gepirone, a pyridinyl piperazine 5-HT1A receptor agonist, has been developed by Fabre-Kramer as an antidepressant. Bristol-Myers Squibb (BMS) outlicensed the compound to Fabre-Kramer in 1993 and is no longer involved in its development [337393]. In May 1998, NV Organon (a subsidiary of Akzo Nobel) licensed the rights to the drug product for further development and marketing from Fabre-Kramer and, by October 1999, had submitted the drug for approval in the US [347133]. In December 2000, the company expected US and European launches in 2002 and 2003, respectively [402686]. Mechanism of action studies have demonstrated that gepirone, compared to buspirone, possesses a much greater selectivity for 5-HT1A receptors over dopamine D2 receptors. Long-term studies have shown that gepirone has a differential action at presynaptic (agonist) and post-synaptic (partial agonist) 5-HT1A receptors. However, further studies are still required to determine the relative contribution of pre- and post-synaptic 5-HT1A receptors to the therapeutic action of gepirone and related compounds. In March 2001, according to Schroder Salomon Smith Barney, Akzo Nobel targeted peak sales of Euro 300 million for gepirone [409013]. This amount was reiterated in an April 2001 report by HSBC Securities, which stated that gepirone was expected to achieve this figure in 2009 or 2010 [409014].

  15. Superhydrophobic surfaces

    SciTech Connect

    Wang, Evelyn N; McCarthy, Matthew; Enright, Ryan; Culver, James N; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2015-03-24

    Surfaces having a hierarchical structure--having features of both microscale and nanoscale dimensions--can exhibit superhydrophobic properties and advantageous condensation and heat transfer properties. The hierarchical surfaces can be fabricated using biological nanostructures, such as viruses as a self-assembled nanoscale template.

  16. Surface Treatment

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Lowther, Sharon E. (Inventor); St.Clair, Terry L. (Inventor)

    2003-01-01

    A simple surface treatment process is provided which offers a high performance surface for a variety of applications at low cost. This novel surface treatment, which is particularly useful for Ti-6Al-4V alloys, is achieved by forming oxides on the surface with a two-step chemical process and without mechanical abrasion. First, after solvent degreasing, sulfuric acid is used to generate a fresh titanium surface. Next, an alkaline perborate solution is used to form an oxide on the surface. This acid-followed-by-base treatment is cost effective and relatively safe to use in commercial applications. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond that exhibits excellent durability after the bonded specimens have been subjected to a harsh 72 hour water boil immersion. Phenylethynyl containing adhesives were used to evaluate this surface treatment with a novel coupling agent containing both trialkoxysilane and phenylethynyl groups. 8 Claims, 16 Drawing Sheets

  17. Surface Tension

    SciTech Connect

    2011-01-01

    Surface tension in the kitchen sink. At Berkeley Lab's Molecular Foundry, scientists study surface tension to understand how molecules "self-assemble." The coin trick in the video uses the re-arrangement of water molecules to seemingly create order out of disorder. The same principle can be used to create order in otherwise hard-to-handle nano materials. Scientists can then transfer these ordered materials onto surfaces by dipping them through the air-water interface, or (as we've recently shown) squeeze them so that they collapse into the water as two-molecule-thick nano sheets. http://newscenter.lbl.gov/feature-stories/2011/10/17/shaken-not-stirred/

  18. Monopolar surfaces.

    PubMed

    van Oss, C J; Chaudhury, M K; Good, R J

    1987-11-01

    Following the development of a methodology for determining the apolar components as well as the electron donor and the electron acceptor parameters of the surface tension of polar surfaces, surfaces of a number of quite common materials were found to manifest virtually only electron donor properties and no, or hardly, any electron acceptor properties. Such materials may be called monopolar; they can strongly interact with bipolar materials (e.g., with polar liquids such as water); but one single polar parameter of a monopolar material cannot contribute to its energy of cohesion. Monopolar materials manifesting only electron acceptor properties also may exist, but they do not appear to occur in as great an abundance. Among the electron donor monopolar materials are: polymethylmethacrylate, polyvinylalcohol, polyethyleneglycol, proteins, many polysaccharides, phospholipids, nonionic surfactants, cellulose esters, etc. Strongly monopolar materials of the same sign repel each other when immersed or dissolved in water or other polar liquids. The interfacial tension between strongly monopolar surfaces and water has a negative value. This leads to a tendency for water to penetrate between facing surfaces of a monopolar substance and hence, to repulsion between the molecules or particles of such a monopolar material, when immersed in water, and thus to pronounced solubility or dispersibility. Monopolar repulsion energies can far outweigh Lifshitz-van der Waals attractions as well as electrostatic and "steric" repulsions. In aqueous systems the commonly observed stabilization effects, which usually are ascribed to "steric" stabilization, may in many instances be attributed to monopolar repulsion between nonionic stabilizing molecules. The repulsion between monopolar molecules of the same sign can also lead to phase separation in aqueous solutions (or suspensions), where not only two, but multiple phases are possible. Negative interfacial tensions between monopolar

  19. Surface Variety

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02175 Surface Variety This image of part of Aram Chaos shows two different surface textures with distinctly different brightnesses. The lighter layer appears to be on top (therefore younger) than the darker surface.

    Image information: VIS instrument. Latitude 2.1N, Longitude 338.7E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Eroded Surfaces

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 19 August 2003

    The knobby terrain and eroded impact crater observed in this THEMIS image of the Eumenides Dorsum region are evidence to a surface that has been heavily modified and stripped over time. Variable layering of material within the impact crater suggest a succession of events which eroded the surface and exposed possibly different units. Slope streaks and dust avalanches are also observed within the impact crater and point to recent and continued modification of the surface.

    Image information: VIS instrument. Latitude 4.9, Longitude 203.6 East (156.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Surface mining

    SciTech Connect

    Not Available

    1989-06-01

    This paper reports on a GAO study of attorney and expert witness fees awarded as a result of litigation brought under the Surface Mining Control and Reclamation Act. As of March 24, 1989, a total of about $1.4 million had been awarded in attorney fees and expenses - about $1.3 subject to the provisions of the Employee Retirement Income Security Act, a comparison of its features with provisions of ERISA showed that the plan differed from ERISA provisions in areas such as eligibility, funding, and contribution limits.

  2. Surface studies of gallium nitride quantum dots grown using droplet epitaxy on bulk, native substrates

    NASA Astrophysics Data System (ADS)

    Jones, Christina; Jeon, Sunyeol; Goldman, Rachel; Yacoby, Yizhak; Clarke, Roy

    Gallium nitride (GaN) and its applications in light-emitting diodes play an integral part in efficient, solid-state lighting, as evidenced by its recognition in the 2014 Nobel prize in physics. In order to push this technology towards higher efficiency and reliability and lower cost, we must understand device growth on bulk GaN substrates, which have lower defect densities and strain than template GaN substrates grown on sapphire. In this work, we present our findings on the surface properties of GaN quantum dots (QDs) grown on commercial bulk GaN. QDs are grown using the droplet epitaxy method and analyzed using a surface X-ray diffraction technique called Coherent Bragg Rod Analysis (COBRA), which uses phase retrieval to reconstruct atomic positions near the substrate surface. While several QD growth conditions in our study produce dense QDs, COBRA reveals that only low nitridation temperatures result in GaN QDs that are coherent with the bulk GaN substrate. Results are supported with atomic force microscopy and high-resolution transmission electron microscopy.

  3. Fractured Surface

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03084 Fractured Surface

    These fractures and graben are part of Gordii Fossae, a large region that has undergone stresses which have cracked the surface.

    Image information: VIS instrument. Latitude 16.6S, Longitude 234.3E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Oxide surfaces.

    PubMed

    Willmott, Phil

    2008-07-01

    Although the history of metal oxides and their surfaces goes back several decades to landmark studies, such as Mott and Peierls' explanation of electrical insulation in materials that are predicted in band theory to be conducting, or the observation by Morin of the superfast metal-to-insulator transition in vanadium dioxide, it is only in the last two decades that the world of condensed matter physics has become increasingly dominated by research into complex metal oxides. This has been driven most notably by an attempt to better understand and describe the fundamental physical processes behind their seemingly endless spectrum of properties, which in turn has also led to the discovery of novel phenomena, most prominently demonstrated by the discovery of high-temperature superconductivity in 1986, colossal magnetoresistance in 1994, and most recently, the formation of a two-dimensional conducting layer at the interface between two band insulators in 2004. One important reason why metal oxides, particularly in the form of thin films, have become such a popular subject for basic condensed matter research is that they offer a uniquely versatile materials base for the development of novel technologies. They owe this versatility both to the many different elemental combinations that lead to structurally similar forms, and also to the fact that in many cases, the strong interaction between the valence electrons means that there is a subtle interplay between structure and magnetic and electronic properties. This aspect has led in recent years to the birth or renaissance of research fields such as spintronics, orbital ordering, and multiferroics. Surfaces and interfaces are especially interesting in these strongly-correlated electron systems, where the rearrangement of electrical charge resulting from a minimization of surface or interfacial energy can have unexpected and often exciting consequences. Indeed, as the drive to miniaturize devices well below the micron size

  5. Theodor Billroth's vision and Karl Ziegler's action: commemoration of the 40th day of death and the 50th anniversary of conferment of Nobel Prize for Chemistry of Karl Ziegler.

    PubMed

    Kapischke, Matthias; Pries, Alexandra

    2014-02-01

    Alloplastic materials are broadly used in modern surgery. Until the middle of the 20th century, metal materials and especially silver were used because of their antimicrobial properties. With the development of a new catalytic process for the production of high-density polyethylene and polypropylene materials, a new era of prosthesis was introduced. These polymers are integral part of our everyday operations surgery, especially in hernia repair. The famous surgeon Billroth mentioned to his pupil Czerny in 1878: "If we could artificially produce tissues of the density and toughness of fascia and tendon, the secret of the radical cure of hernia would be discovered". The polypropylene developed by Karl Ziegler gave the surgeon a material for daily practice, which in its properties (nearly) achieved Billroth's initial vision. In 1963 the Nobel Prize for Chemistry was awarded to Karl Ziegler and Giulio Natta in Stockholm. Furthermore, August 11, 2013 will be the 40th anniversary of Karl Ziegler's death. This manuscript honors both days.

  6. Theodor Billroth's vision and Karl Ziegler's action: commemoration of the 40th day of death and the 50th anniversary of conferment of Nobel Prize for Chemistry of Karl Ziegler.

    PubMed

    Kapischke, Matthias; Pries, Alexandra

    2014-02-01

    Alloplastic materials are broadly used in modern surgery. Until the middle of the 20th century, metal materials and especially silver were used because of their antimicrobial properties. With the development of a new catalytic process for the production of high-density polyethylene and polypropylene materials, a new era of prosthesis was introduced. These polymers are integral part of our everyday operations surgery, especially in hernia repair. The famous surgeon Billroth mentioned to his pupil Czerny in 1878: "If we could artificially produce tissues of the density and toughness of fascia and tendon, the secret of the radical cure of hernia would be discovered". The polypropylene developed by Karl Ziegler gave the surgeon a material for daily practice, which in its properties (nearly) achieved Billroth's initial vision. In 1963 the Nobel Prize for Chemistry was awarded to Karl Ziegler and Giulio Natta in Stockholm. Furthermore, August 11, 2013 will be the 40th anniversary of Karl Ziegler's death. This manuscript honors both days. PMID:24387785

  7. Titanium dental implant surfaces obtained by anodic spark deposition - From the past to the future.

    PubMed

    Kaluđerović, Milena R; Schreckenbach, Joachim P; Graf, Hans-Ludwig

    2016-12-01

    Commercial titanium-based dental implants are obtained applying various methods such as machining, acid etching, anodization, plasma spraying, grit blasting or combination techniques yielding materials with smooth or micro-roughened surfaces. Those techniques are used to optimize the surface properties and to maximize biocompatibility and bioactivity with bone tissue. Present review is focused on the material surfaces obtained by anodic spark deposition (ASD). From the early 1980s till present, the results of numerous studies have shown that anodically oxidized surfaces with different dopants express a positive effect on osteoblasts behavior in vitro and osseointegration in vivo. Those surfaces demonstrated a high biocompatibility and rapid osseointegration in clinical application. This paper provides an overview of the preparation of implant surfaces by employing ASD process. Moreover, reviewed are clinically used ASD implant surfaces (Ticer, TiUnite, Osstem, etc.). The electrolyte variations in ASD process and their influence on surface properties are given herein. Using different electrolytes, anode voltages and temperatures, the above fabrication process can yield various surface morphologies from smooth to rough, porous surfaces. Furthermore, ASD enables thickening of oxide layers and enrichment with different dopands from used electrolyte, which hinder release of potentially toxic titanium ions in surrounding tissue. Particularly exciting results were achieved by calcium and phosphorus doping of the oxide layer (Ticer, ZL Microdent; TiUnite, Nobel Biocare Holding AB) which significantly increased the osteocompatibility. Ticer, a dental implant with anodically oxidized surface and the first among similar materials employed in clinical practice, was found to promote fast osteoblast cell differentiation and mineralization processes. Moreover, Ticer accelerate the integration with the bone, increase the bone/implant contact and improve primary and secondary

  8. Identification card and codification of the chemical and morphological characteristics of 14 dental implant surfaces.

    PubMed

    Dohan Ehrenfest, David M; Vazquez, Lydia; Park, Yeong-Joon; Sammartino, Gilberto; Bernard, Jean-Pierre

    2011-10-01

    Dental implants are commonly used in daily practice; however, most surgeons do not really know the characteristics of these biomedical devices they are placing in their patients. The objective of this work is to describe the chemical and morphological characteristics of 14 implant surfaces available on the market and to establish a simple and clear identification (ID) card for all of them, following the classification procedure developed in the Dohan Ehrenfest et al (2010) Codification (DEC) system. Fourteen implant surfaces were characterized: TiUnite (Nobel Biocare), Ospol (Ospol), Kohno HRPS (Sweden & Martina), Osseospeed (AstraTech), Ankylos (Dentsply Friadent), MTX (Zimmer), Promote (Camlog), BTI Interna (Biotechnology Institute), EVL Plus (SERF), Twinkon Ref (Tekka), Ossean (Intra-Lock), NanoTite (Biomet 3I), SLActive (ITI Straumann), Integra-CP/NanoTite (Bicon). Three samples of each implant were analyzed. Superficial chemical composition was analyzed using X-ray photoelectron spectroscopy/electron spectroscopy for chemical analysis, and the 100 nm in-depth profile was established using Auger electron spectroscopy. The microtopography was quantified using light interferometry. The general morphology and nanotopography were evaluated using a field emission-scanning electron microscope. Finally, the characterization code of each surface was established using the DEC system, and the main characteristics of each surface were summarized in a reader-friendly ID card. From a chemical standpoint, of the 14 different surfaces, 10 were based on a commercially pure titanium (grade 2 or 4), 3 on a titanium-aluminum alloy (grade 5 titanium), and one on a calcium phosphate core. Nine surfaces presented different forms of chemical impregnation or discontinuous coating of the titanium core, and 3 surfaces were covered with residual aluminablasting particles. Twelve surfaces presented different degrees of inorganic pollutions, and 2 presented a severe organic pollution

  9. An evaluation of corrosion protection by two epoxy primers on 2219-T87 and 7075-T73 aluminum

    NASA Technical Reports Server (NTRS)

    Mendrek, M. J.

    1992-01-01

    A comparison of the corrosion protection provided by two amine epoxy primers was made using salt fog, alternate immersion, and total immersion as exposure media. The study is the result of a request to use an unqualified low volatile organic carbon (VOC) primer (AKZO 463-6-78) in place of the current primer (AKZO 463-6-3) because environmental regulations have eliminated use of the current primer in many states. Primed, scribed samples of 2219-T87 and 7075-T73 aluminum were exposed to 5-percent NaCl salt fog and 3.5-percent NaCl alternate immersion for a period of 90 days. In addition, electrode samples immersed in 3.5-percent NaCl were tested using electrochemical impedance spectroscopy (EIS). The EG&G model 368 ac impedance measurement system was used to monitor changing properties of AKZO 463-6-78 and AKZO 463-6-3 primed 2219-T87 aluminum for a period of 30 days. The response of the corroding system of a frequency scan can be modeled in terms of an equivalent circuit consisting of resistors and capacitors in a specific arrangement. Each resistor/capacitor combination represents physical processes taking place within the electrolyte, at the electrolyte/primer surface, within the coating, and at the coating/substrate surface. Values for the resistors and capacitors are assigned following a nonlinear least squares fit of the data to the equivalent circuit. Changes in the values of equivalent circuit parameters during the 30-day exposure allow assessment of the time to and mechanism of coating breakdown.

  10. Toroidal surfaces compared with spherocylindrical surfaces

    NASA Astrophysics Data System (ADS)

    Malacara-Doblado, Daniel; Malacara-Hernandez, Daniel; Garcia-Marquez, Jorge L.

    1995-08-01

    Toroidal and sphero-cylindrical optical surfaces are two different kinds of surfaces (Menchaca and Malacara, 1986), but they are almost identical in the vicinity of the optical axis. The separation between these two surfaces increases when the distance to the optical axis increases. In this work the separation between these two surfaces outside of the central region is analytically studied.

  11. Overview on surface representations for freeform surfaces

    NASA Astrophysics Data System (ADS)

    Gross, H.; Brömel, A.; Beier, M.; Steinkopf, R.; Hartung, J.; Zhong, Y.; Oleszko, M.; Ochse, D.

    2015-09-01

    Freeform surfaces are a new and exciting opportunity in lens design. The technological boundary conditions for manufacturing surfaces with reduced symmetry are complicated. Recently the progress in understanding and controlling this kind of components is ready for use in commercial products. Nearly all procedures of classical design development are changing, if freeform surfaces are used. The mathematical description of the surfaces, the optimization algorithms in lens design and their convergence, the initial design approaches, the evaluation of performance over the field of view, the data transfer in the mechanical design software and in the manufacturing machines, the metrology for characterization of real surfaces and the return of the real surfaces into the simulation are affected. In this contribution, in particular an overview on possible mathematical formulations of the surfaces is given. One of the requirements on the descriptions is a good performance to correct optical aberrations. After fabrication of real surfaces, there are typical deviations seen in the shape. First more localized deformations are observed, which are only poorly described by mode expansions. Therefore a need in describing the surface with localized finite support exists. Secondly the classical diamond turning grinding process typically shows a regular ripple structure. These midfrequency errors are best described by special approaches. For all these cases it would be the best to have simple, robust solutions, that allow for fast calculation in fitting measured surfaces and in raytrace.

  12. 54. CLEARANCE OF SITE PRIOR TO CONSTRUCTION OF BREAKER BUILDING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. CLEARANCE OF SITE PRIOR TO CONSTRUCTION OF BREAKER BUILDING, AND CONSTRUCTION OF EMBANKMENT FOR RAILROAD SPUR. c.1898 (AKZO No. A-3) - Avery Island Salt Works, Akzo Salt Incorporated, Avery Island, Iberia Parish, LA

  13. Fast Disinfecting Antimicrobial Surfaces

    PubMed Central

    Madkour, Ahmad E.; Dabkowski, Jeffery M.; Nüsslein, Klaus; Tew, Gregory N.

    2013-01-01

    Silicon wafers and glass surfaces were functionalized with facially amphiphilic antimicrobial copolymers using the “grafting from” technique. Surface initiated atom transfer radical polymerization (ATRP) was used to grow poly(butylmethacrylate)-co-poly(Boc-aminoethyl methacrylate) from the surfaces. Upon Boc-deprotection, these surfaces became highly antimicrobial and killed S. aureus and E. coli 100% in less than 5 min. The molecular weight and grafting density of the polymer were controlled by varying the polymerization time and initiator surface density. Antimicrobial studies showed that the killing efficiency of these surfaces was independent of polymer layer thickness or grafting density within the range of surfaces studied. PMID:19177651

  14. Computer aided surface representation

    SciTech Connect

    Barnhill, R.E.

    1990-02-19

    The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a surface defined on a surface''. Sometimes properties of an already defined surface are desired, which is geometry processing''. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.

  15. Computer aided surface representation

    SciTech Connect

    Barnhill, R E

    1987-11-01

    The aims of this research are the creation of new surface forms and the determination of geometric and physical properties of surfaces. The full sweep from constructive mathematics through the implementation of algorithms and the interactive computer graphics display of surfaces is utilized. Both three-dimensional and multi- dimensional surfaces are considered. Particular emphasis is given to the scientific computing solution of Department of Energy problems. The methods that we have developed and that we are proposing to develop allow applications such as: Producing smooth contour maps from measured data, such as weather maps. Modeling the heat distribution inside a furnace from sample measurements. Terrain modeling based on satellite pictures. The investigation of new surface forms includes the topics of triangular interpolants, multivariate interpolation, surfaces defined on surfaces and monotone and/or convex surfaces. The geometric and physical properties considered include contours, the intersection of surfaces, curvatures as a interrogation tool, and numerical integration.

  16. Designing Superoleophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Tuteja, Anish; Choi, Wonjae; Ma, Minglin; Mabry, Joseph M.; Mazzella, Sarah A.; Rutledge, Gregory C.; McKinley, Gareth H.; Cohen, Robert E.

    2007-12-01

    Understanding the complementary roles of surface energy and roughness on natural nonwetting surfaces has led to the development of a number of biomimetic superhydrophobic surfaces, which exhibit apparent contact angles with water greater than 150 degrees and low contact angle hysteresis. However, superoleophobic surfaces—those that display contact angles greater than 150 degrees with organic liquids having appreciably lower surface tensions than that of water—are extremely rare. Calculations suggest that creating such a surface would require a surface energy lower than that of any known material. We show how a third factor, re-entrant surface curvature, in conjunction with chemical composition and roughened texture, can be used to design surfaces that display extreme resistance to wetting from a number of liquids with low surface tension, including alkanes such as decane and octane.

  17. Surface characteristics of thermally treated titanium surfaces

    PubMed Central

    Lee, Yang-Jin; Cui, De-Zhe; Jeon, Ha-Ra; Chung, Hyun-Ju; Park, Yeong-Joon; Kim, Ok-Su

    2012-01-01

    Purpose The characteristics of oxidized titanium (Ti) surfaces varied according to treatment conditions such as duration time and temperature. Thermal oxidation can change Ti surface characteristics, which affect many cellular responses such as cell adhesion, proliferation, and differentiation. Thus, this study was conducted to evaluate the surface characteristics and cell response of thermally treated Ti surfaces. Methods The samples were divided into 4 groups. Control: machined smooth titanium (Ti-S) was untreated. Group I: Ti-S was treated in a furnace at 300℃ for 30 minutes. Group II: Ti-S was treated at 500℃ for 30 minutes. Group III: Ti-S was treated at 750℃ for 30 minutes. A scanning electron microscope, atomic force microscope, and X-ray diffraction were used to assess surface characteristics and chemical composition. The water contact angle and surface energy were measured to assess physical properties. Results The titanium dioxide (TiO2) thickness increased as the treatment temperature increased. Additional peaks belonging to rutile TiO2 were only found in group III. The contact angle in group III was significantly lower than any of the other groups. The surface energy significantly increased as the treatment temperature increased, especially in group III. In the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, after 24 hours of incubation, the assessment of cell viability showed that the optical density of the control had a higher tendency than any other group, but there was no significant difference. However, the alkaline phosphatase activity increased as the temperature increased, especially in group III. Conclusions Consequently, the surface characteristics and biocompatibility increased as the temperature increased. This indicates that surface modification by thermal treatment could be another useful method for medical and dental implants. PMID:22803009

  18. Fluorinated silica microchannel surfaces

    DOEpatents

    Kirby, Brian J.; Shepodd, Timothy Jon

    2005-03-15

    A method for surface modification of microchannels and capillaries. The method produces a chemically inert surface having a lowered surface free energy and improved frictional properties by attaching a fluorinated alkane group to the surface. The coating is produced by hydrolysis of a silane agent that is functionalized with either alkoxy or chloro ligands and an uncharged C.sub.3 -C.sub.10 fluorinated alkane chain. It has been found that the extent of surface coverage can be controlled by controlling the contact time from a minimum of about 2 minutes to a maximum of 120 minutes for complete surface coverage.

  19. Extremal surface barriers

    NASA Astrophysics Data System (ADS)

    Engelhardt, Netta; Wall, Aron C.

    2014-03-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy.

  20. Laser Surface Profiler

    SciTech Connect

    Butler, M.A.; Chu, A.

    1998-11-24

    By accurately measuring the angle of reflection of a laser beam incident on a reflective surface with a position sensitive detector, changes in the surface normal direction (slope of the surface) can be determined directly. An instrument has been built that makes repeated measurements over the surface, and uses this data to produce a grayscale image of the slope. The resolution of this system to changes in the surface normal direction is found to be better than 0.01 degrees. By focusing the Iaser beam to achieve a lateral resolution of 5 pm, the resolvable surface height change due to a variation in slope is estimated to be <1 nm.

  1. PREFACE: Vibrations at surfaces Vibrations at surfaces

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  2. Ivermectin: A Reflection on Simplicity (Nobel Lecture).

    PubMed

    Campbell, William C

    2016-08-22

    Parasitic diseases including river blindness and lymphatic filariasis affect hundreds of millions of people annually. The discovery of the drug ivermectin has provided humankind with a powerful new means to combat these severe diseases. To a very large extent the drug was brought about by "simple" science.

  3. Nobel Lecture: Graphene: Materials in the Flatland

    NASA Astrophysics Data System (ADS)

    Novoselov, K. S.

    2011-07-01

    Much like the world described in Abbott’s Flatland, graphene is a two-dimensional object. And, as “Flatland” is “a romance of many dimensions,” graphene is much more than just a flat crystal. It possesses a number of unusual properties which are often unique or superior to those in other materials. In this brief lecture I would like to explain the reason for my (and many other people’s) fascination with this material, and invite the reader to share some of the excitement I’ve experienced while researching it.

  4. A nobel tale of postwar injustice

    SciTech Connect

    Crawford, Elisabeth Lewin Sime, Ruth Walker, Mark

    1997-09-01

    Recently released Swedish documents reveal why Lise Meitner, codiscoverer of nuclear fission, did not receive the 1946 physics prize for her theoretical interpretation of the process. {copyright} {ital 1997 American Institute of Physics.}

  5. Ivermectin: A Reflection on Simplicity (Nobel Lecture).

    PubMed

    Campbell, William C

    2016-08-22

    Parasitic diseases including river blindness and lymphatic filariasis affect hundreds of millions of people annually. The discovery of the drug ivermectin has provided humankind with a powerful new means to combat these severe diseases. To a very large extent the drug was brought about by "simple" science. PMID:27243156

  6. The Transuranium Elements - Present Status: Nobel Lecture

    DOE R&D Accomplishments Database

    Seaborg, G. T.

    1951-12-12

    The discovery of the transuranium elements and the work done on them up to the present time are reviewed. The properties of these elements, their relationship to other elements, their place in the periodic table, and the possibility of production and identification of other transuranium elements are discussed briefly.

  7. Graphene: materials in the Flatland (Nobel lecture).

    PubMed

    Novoselov, Kostya S

    2011-07-25

    Much like the world described in Abbott's "Flatland", graphene is a two-dimensional object. And, as "Flatland" is "A Romance of Many Dimensions", graphene is much more than just a flat crystal. It possesses a number of unusual properties which are often unique or superior to those in other materials. In this brief lecture I would like to explain the reason for my (and many other people's) fascination with this material, and invite the reader to share some of the excitement I've experienced while researching it. PMID:21732505

  8. Natural and artificial nobel gas hydrologic tracers

    SciTech Connect

    Hudson, G.B.

    1994-06-01

    Noble gas isotopes provide opportunities for ground water tracing. Both naturally occurring tracers and artificially injected tracers can be used. The equilibration of water with the earth`s atmosphere records the temperature and atmospheric pressure during ground water recharge. This temperature/pressure record can be used to distinguish cold recharge from warmer recharge with a resolution of 1-2 C temperature and 500m in altitude. The radioactive decay of U and Th produce large concentrations of 4He in old ground water and this 4He signature can be useful in tracing the small addition of old water (>10,000 yr.) to young water (<100 yr.). The decay of 3H present either form nuclear testing or cosmic ray interactions leads to detectable amounts of 3He in young ground water (<50 yr.). By measuring both 3H and 3He, the mean age of the 3H in the water can be calculated. In addition to these natural tracers, isotopically enriched noble gas isotopes are readily available at low cost and can be used an non-hazardous water tracers. This inert, persistent, and harmless tracing technique can used in many situations at a cost of about one dollar per million gallons of water traced.

  9. The Intrinsic Fragility of DNA (Nobel Lecture).

    PubMed

    Lindahl, Tomas

    2016-07-18

    Our cells contain common molecules, such as water or oxygen, that can damage DNA. In his studies Tomas Lindahl has shown how specific repair enzymes remove and replace damaged parts of DNA in a process of vital importance.

  10. The Early Antiproton Work [Nobel Lecture

    DOE R&D Accomplishments Database

    Chamberlain, O.

    1959-12-15

    Early work on the antiproton, particularly that part which led to the first paper on the subject, is described. Conclusions that can be drawn purely from the existence of the antiproton are discussed. (W.D.M.)

  11. Durable low surface-energy surfaces

    NASA Technical Reports Server (NTRS)

    Willis, Paul B. (Inventor); McElroy, Paul M. (Inventor); Hickey, Gregory H. (Inventor)

    1993-01-01

    A formulation for forming a low surface-energy surface on a substrate having (i) a fluoroalkyl silane having a low surface energy part, (ii) a liquid crystal silane operable for enhancing the orientation of the molecules of the fluoroalkyl silane and for crosslinking with the fluoroalkyl silane, and, (iii) a transport medium for applying the fluoroalkyl silane and the liquid crystal silane to the surface of a substrate. In one embodiment the formulation can includes a crosslinking agent for crosslinking the fluoroalkyl silane. In another embodiment the formulation has a condensation catalyst for enhancing chemical bonding of the fluoroalkyl silane to the substrate. The transport medium can be an alcohol such as methanol or ethanol.

  12. Laser textured surface gradients

    NASA Astrophysics Data System (ADS)

    Ta, Van Duong; Dunn, Andrew; Wasley, Thomas J.; Li, Ji; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Esenturk, Emre; Connaughton, Colm; Shephard, Jonathan D.

    2016-05-01

    This work demonstrates a novel technique for fabricating surfaces with roughness and wettability gradients and their subsequent applications for chemical sensors. Surface roughness gradients on brass sheets are obtained directly by nanosecond laser texturing. When these structured surfaces are exposed to air, their wettability decreases with time (up to 20 days) achieving both spatial and temporal wettability gradients. The surfaces are responsive to organic solvents. Contact angles of a series of dilute isopropanol solutions decay exponentially with concentration. In particular, a fall of 132° in contact angle is observed on a surface gradient, one order of magnitude higher than the 14° observed for the unprocessed surface, when the isopropanol concentration increased from 0 to 15.6 wt%. As the wettability changes gradually over the surface, contact angle also changes correspondingly. This effect offers multi-sensitivity at different zones on the surface and is useful for accurate measurement of chemical concentration.

  13. Durable superoleophobic polypropylene surfaces.

    PubMed

    Brown, Philip S; Bhushan, Bharat

    2016-08-01

    Polypropylene (PP) is a popular plastic material used in consumer packaging. It would be desirable if such plastic containers were liquid repellent and not so easily fouled by their contents. Existing examples of superoleophobic surfaces typically rely on poorly adhered coatings or delicate surface structures, resulting in poor mechanical durability. Here, we report a facile method for creating superoleophobic PP surfaces via incorporation of nanoparticles (NPs) into the polymer surface. A solvent-NP-PP mixture was spin coated at high temperature to achieve the necessary roughness. Such surfaces were further functionalized with fluorosilane to result in a durable, super-repellent surface. They were also found to exhibit some repellency towards shampoos. This method of incorporating NPs into polymer surfaces could also prove useful in improving the anti-bacterial, mechanical and liquid-repellent properties of plastic devices.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. PMID:27354730

  14. EPA Permeable Surface Research

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  15. On neutron surface waves

    SciTech Connect

    Ignatovich, V. K.

    2009-01-15

    It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.

  16. Silica reusable surface insulation

    NASA Technical Reports Server (NTRS)

    Goldstein, H. E.; Smith, M.; Leiser, D. B. (Inventor)

    1976-01-01

    A reusable silica surface insulation material is provided by bonding amorphous silica fibers with colloidal silica at an elevated temperature. The surface insulation is ordinarily manufactured in the form of blocks (i.e., tiles).

  17. Demonstration of Surface Tension.

    ERIC Educational Resources Information Center

    Rosenthal, Andrew J.

    2001-01-01

    Surface tension is a fundamental obstacle in the spontaneous formation of bubbles, droplets, and crystal nuclei in liquids. Describes a simple overhead projector demonstration that illustrates the power of surface tension that can prevent so many industrial processes. (ASK)

  18. Surface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For many years, surface drip irrigation has been used to irrigation high value vegetable crops. In recent years, surface drip of row crops has been increasing throughout the United States. Surface drip irrigation can precisely deliver water and nutrients to the crop root zone. This article provides ...

  19. Surface Conductive Glass.

    ERIC Educational Resources Information Center

    Tanaka, John; Suib, Steven L.

    1984-01-01

    Discusses the properties of surface-conducting glass and the chemical nature of surface-conducting stannic (tin) oxide. Also provides the procedures necessary for the preparation of surface-conducting stannic oxide films on glass substrates. The experiment is suitable for the advanced inorganic chemistry laboratory. (JN)

  20. PSC: protein surface classification.

    PubMed

    Tseng, Yan Yuan; Li, Wen-Hsiung

    2012-07-01

    We recently proposed to classify proteins by their functional surfaces. Using the structural attributes of functional surfaces, we inferred the pairwise relationships of proteins and constructed an expandable database of protein surface classification (PSC). As the functional surface(s) of a protein is the local region where the protein performs its function, our classification may reflect the functional relationships among proteins. Currently, PSC contains a library of 1974 surface types that include 25,857 functional surfaces identified from 24,170 bound structures. The search tool in PSC empowers users to explore related surfaces that share similar local structures and core functions. Each functional surface is characterized by structural attributes, which are geometric, physicochemical or evolutionary features. The attributes have been normalized as descriptors and integrated to produce a profile for each functional surface in PSC. In addition, binding ligands are recorded for comparisons among homologs. PSC allows users to exploit related binding surfaces to reveal the changes in functionally important residues on homologs that have led to functional divergence during evolution. The substitutions at the key residues of a spatial pattern may determine the functional evolution of a protein. In PSC (http://pocket.uchicago.edu/psc/), a pool of changes in residues on similar functional surfaces is provided.

  1. The neutral surface layer above rough surfaces

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi; Sahlee, Erik

    2014-05-01

    It is generally accepted that turbulent fluxes (momentum and scalar fluxes) are approx. constant with height above horizontal surfaces with low roughness. But what will happen when the roughness sub-layer is large as found over cities, forests and rough seas? In a study of the kinematic structure of the near neutral atmospheric surface layer, Högström, Hunt and Smedman, 2002, it was demonstrated that a model with detached eddies from above the surface layer impinging on to the surface (Hunt and Morison, 2000) could explain some of the observed features in the neutral atmospheric boundary layer. Thus the detached eddy model proved successful in explaining the dynamic structure of the near neutral atmospheric surface layer, especially the shape of the spectra of the wind components and scalars and corresponding fluxes. Here we make the hypothesis that the detached-eddy model can also be used to explain the experimental results related to the 3-dimensional turbulence structure above rough surfaces. Measurements are taken both over land (grass and forest) and over sea (Baltic Sea and hurricane Fabian in the Atlantic) above the roughness sub-layer. Analysis of the turbulence structure shows a striking similarity between the different sites. Hunt, J.C.R and Morrison, J.F., 2000: Eddy structure in turbulent boundary layers, Euro. J. Mech. B-Fluids, 19, 673-694. Högström, U., Hunt, J.C.R., and Smedman, A., 2002: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer, Bound.-Layer Meteorol., 103,101-124.

  2. Surface cleanliness measurement procedure

    DOEpatents

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.

  3. Surface freezing of water.

    PubMed

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided. PMID:27330895

  4. Surface freezing of water.

    PubMed

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided.

  5. DNA ELECTROPHORESIS AT SURFACES

    SciTech Connect

    RAFAILOVICH, MIRIAM; SOKOLOV, JONATHAN; GERSAPPE, DILIP

    2003-09-01

    During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in the different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.

  6. Periodic minimal surfaces

    NASA Astrophysics Data System (ADS)

    Mackay, Alan L.

    1985-04-01

    A minimal surface is one for which, like a soap film with the same pressure on each side, the mean curvature is zero and, thus, is one where the two principal curvatures are equal and opposite at every point. For every closed circuit in the surface, the area is a minimum. Schwarz1 and Neovius2 showed that elements of such surfaces could be put together to give surfaces periodic in three dimensions. These periodic minimal surfaces are geometrical invariants, as are the regular polyhedra, but the former are curved. Minimal surfaces are appropriate for the description of various structures where internal surfaces are prominent and seek to adopt a minimum area or a zero mean curvature subject to their topology; thus they merit more complete numerical characterization. There seem to be at least 18 such surfaces3, with various symmetries and topologies, related to the crystallographic space groups. Recently, glyceryl mono-oleate (GMO) was shown by Longley and McIntosh4 to take the shape of the F-surface. The structure postulated is shown here to be in good agreement with an analysis of the fundamental geometry of periodic minimal surfaces.

  7. Interactions of silica surfaces

    SciTech Connect

    Vigil, G.; Xu, Z.; Steinberg, S.; Israelachvili, J. . Dept. of Chemical and Nuclear Engineering and Materials Dept.)

    1994-07-01

    Adhesion, friction, and colloidal forces in air and aqueous salt solutions have been measured between various silica surfaces prepared by depositing amorphous but highly smooth silica films on mica. The results show four interesting and interrelated phenomena: (i) the adhesion of silica surfaces in air increases slowly with contact time, especially in humid air where the contacting surfaces become separated by an [approximately]20-[angstrom]-thick layer of hydrated silica or silica gel; (ii) the friction of two silica surfaces exhibits large sticking or stiction spikes, whose magnitude increases in the presence of water and when the surfaces are kept in contact longer before sliding; (iii) the non-DLVO repulsion commonly seen at short range (<40 A) between silica surfaces immersed in aqueous solutions is monotonically repulsive, with no oscillatory component, and is quite unlike theoretical expectations and previous measurements of forces due to solvent structure; (iv) dynamic contact angle measurements reveal time-dependent effects which cannot be due to a fixed surface chemical heterogeneity or roughness. The results indicate that silica surfaces undergo slow structural and chemical changes during interactions with water and with each other. More specifically, the authors propose that the unusual interfacial and colloidal properties of silica are due, not to hydration effects, but to the presence of an [approximately]10-[angstrom]-thick gel-like layer of protruding silanol and silicilic acid groups that grow on the surfaces in the presence of water. These protruding groups react chemically (sinter) with similar groups located on an opposing surface and give rise to the unusual time-dependent adhesion, friction, and non-DLVO forces observed. The proposed mechanism in terms of a surface layer of silica gel is consistent with the known surface chemistry of silica and accounts for the results reported and for other unusual surface and colloidal properties of silica.

  8. On orbit surfacing of thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Racette, G. W.

    1984-01-01

    Substrates to be contaminated and contamination source were prepared. Additional information on paint spray method apparatus was obtained. Silver teflon second surface mirror samples and S 13 GLO paint samples were mounted, photographed under the microscope and measured to establish baseline data. Atomic oxygen cleaning and spray painting are being considered. Electrostatic powder and plasma spray coating systems appear to have serious drawbacks.

  9. Collapse of Surface Nanobubbles

    NASA Astrophysics Data System (ADS)

    Chen, Longquan; Chan, Chon U.; Arora, Manish; Ohl, Claus-Dieter

    2014-11-01

    Surface nanobubbles are nanoscopic gaseous domains that entrap on immersed solid surfaces in water. They are surprisingly stable and are difficult to be distinguished from polymeric/hydrophobic drops and solid particles (contamination). Here, we report a comparative study of contact line motion across surface nanobubbles, polymeric drops and solid particles. We show that surface nanobubbles spontaneously collapse once contact line touches them while a fast jump process and a pinning process are observed on polymeric drops and on solid particles, respectively. These distinct contact line dynamics provide a new approach to identify surface nanobubbles. The collapse of surface nanobubbles demonstrates their gaseous property and also indicates that they are metastable. The collapse process last few milliseconds with a characteristic speed of 0.1 mm/s, which is much longer and slower than that of hydrodynamic phenomena. We further show that the collapse phenomenon can be explained with a microscopic contact line dynamics.

  10. EDITORIAL: Three decades of scanning tunnelling microscopy that changed the course of surface science Three decades of scanning tunnelling microscopy that changed the course of surface science

    NASA Astrophysics Data System (ADS)

    Ramachandra Rao, M. S.; Margaritondo, Giorgio

    2011-11-01

    Three decades ago, with a tiny tip of platinum, the scientific world saw the real space imaging of single atoms with unprecedented spatial resolution. This signalled the birth of one of the most versatile surface probes, based on the physics of quantum mechanical tunnelling: the scanning tunnelling microscope (STM). Invented in 1981 by Gerd Binnig and Heinrich Rohrer of IBM, Zurich, it led to their award of the 1986 Nobel Prize. Atoms, once speculated to be abstract entities used by theoreticians for mere calculations, can be seen to exist for real with the nano-eye of an STM tip that also gives real-space images of molecules and adsorbed complexes on surfaces. From a very fundamental perspective, the STM changed the course of surface science and engineering. STM also emerged as a powerful tool to study various fundamental phenomena relevant to the properties of surfaces in technological applications such as tribology, medical implants, catalysis, sensors and biology—besides elucidating the importance of local bonding geometries and defects, non-periodic structures and the co-existence of nano-scale phases. Atom-level probing, once considered a dream, has seen the light with the evolution of STM. An important off-shoot of STM was the atomic force microscope (AFM) for surface mapping of insulating samples. Then followed the development of a flurry of techniques under the general name of scanning probe microscopy (SPM). These techniques (STM, AFM, MFM, PFM etc) designed for atomic-scale-resolution imaging and spectroscopy, have led to brand new developments in surface analysis. All of these novel methods enabled researchers in recent years to image and analyse complex surfaces on microscopic and nanoscopic scales. All of them utilize a small probe for sensing the surface. The invention of AFM by Gerd Binnig, Calvin Quate and Christopher Gerber opened up new opportunities for characterization of a variety of materials, and various industrial applications could be

  11. EDITORIAL: Three decades of scanning tunnelling microscopy that changed the course of surface science Three decades of scanning tunnelling microscopy that changed the course of surface science

    NASA Astrophysics Data System (ADS)

    Ramachandra Rao, M. S.; Margaritondo, Giorgio

    2011-11-01

    Three decades ago, with a tiny tip of platinum, the scientific world saw the real space imaging of single atoms with unprecedented spatial resolution. This signalled the birth of one of the most versatile surface probes, based on the physics of quantum mechanical tunnelling: the scanning tunnelling microscope (STM). Invented in 1981 by Gerd Binnig and Heinrich Rohrer of IBM, Zurich, it led to their award of the 1986 Nobel Prize. Atoms, once speculated to be abstract entities used by theoreticians for mere calculations, can be seen to exist for real with the nano-eye of an STM tip that also gives real-space images of molecules and adsorbed complexes on surfaces. From a very fundamental perspective, the STM changed the course of surface science and engineering. STM also emerged as a powerful tool to study various fundamental phenomena relevant to the properties of surfaces in technological applications such as tribology, medical implants, catalysis, sensors and biology—besides elucidating the importance of local bonding geometries and defects, non-periodic structures and the co-existence of nano-scale phases. Atom-level probing, once considered a dream, has seen the light with the evolution of STM. An important off-shoot of STM was the atomic force microscope (AFM) for surface mapping of insulating samples. Then followed the development of a flurry of techniques under the general name of scanning probe microscopy (SPM). These techniques (STM, AFM, MFM, PFM etc) designed for atomic-scale-resolution imaging and spectroscopy, have led to brand new developments in surface analysis. All of these novel methods enabled researchers in recent years to image and analyse complex surfaces on microscopic and nanoscopic scales. All of them utilize a small probe for sensing the surface. The invention of AFM by Gerd Binnig, Calvin Quate and Christopher Gerber opened up new opportunities for characterization of a variety of materials, and various industrial applications could be

  12. Surface modification to waveguides

    DOEpatents

    Timberlake, J.R.; Ruzic, D.N.; Moore, R.L.; Cohen, S.A.; Manos, D.M.

    1982-06-16

    A method is described for treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1..mu.. to 5..mu.. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  13. Impact of surface chemistry

    PubMed Central

    Somorjai, Gabor A.; Li, Yimin

    2011-01-01

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas–solid, liquid–solid, and solid–solid interfaces under reaction conditions are emphasized. PMID:20880833

  14. Landsat surface reflectance data

    USGS Publications Warehouse

    ,

    2015-01-01

    Landsat satellite data have been produced, archived, and distributed by the U.S. Geological Survey since 1972. Users rely on these data for historical study of land surface change and require consistent radiometric data processed to the highest science standards. In support of the guidelines established through the Global Climate Observing System, the U.S. Geological Survey has embarked on production of higher-level Landsat data products to support land surface change studies. One such product is Landsat surface reflectance.

  15. Surface modification to waveguides

    DOEpatents

    Timberlake, John R.; Ruzic, David N.; Moore, Richard L.; Cohen, Samuel A.; Manos, Dennis M.

    1983-01-01

    A method of treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1.mu. to 5.mu. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  16. Tribological properties of surfaces

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    The real area of contact between two solid surfaces is only a small portion of the apparent area. Deformation of these areas can result in solid state contact through surface films. For clean solid to solid contact strong adhesive bonding occurs across the interface. Under these conditions many properties of the solid such as the metallurgical and chemical nature of metals can influence adhesion, friction, and wear behavior. The presence of gases, liquids, and solid films on the surface of solids alter markedly tribological characteristics. These surface films can also considerably change the mechanical effects of solid state contact on bulk material behavior.

  17. Martian surface simulations

    NASA Technical Reports Server (NTRS)

    Gaskell, R. W.

    1992-01-01

    Current scenarios for a Mars landing involve the extensive analysis of the surface near the landing site. Pinpoint landing, for example, requires a detailed mapping of the area from orbit for landmark identification and landing site selection, and the use by the lander of its own imaging data to recognize these landmarks and to guide itself safely to the surface. Hazard avoidance requires sufficient orbital imaging to ensure that safe landing sites exist, with the lander using its sensory data to find one of them. Once on the surface, a rover must be able to avoid or surmount obstacles, travel across surfaces with varying compositions and slopes, and navigate to a desired destination. Computer simulated Martian surfaces are being constructed to aid in the development of these exploration technologies. These surface simulations attempt to mimic the specific geologic episodes that built the surface, such as cratering, lava flows, and aeolian activity. Each episode takes a preexisting surface as a starting point, alters it in some way, and stores the new surface for further processing. This modular construction makes it possible for new processes to be included without altering existing software.

  18. Chemistry of ferroelectric surfaces.

    PubMed

    Garrity, K; Kolpak, A M; Ismail-Beigi, S; Altman, E I

    2010-07-20

    It has been recognized since the 1950s that the polar and switchable nature of ferroelectric surfaces can potentially lead to polarization direction-dependent surface chemistry. Recent theoretical studies and advances in growing high quality epitaxial ferroelectric thin films have motivated a flurry of experimental studies aimed at creating surfaces with switchable adsorption and catalytic properties, as well as films whose polarization direction switches depending on the gas phase environment. This research news article briefly reviews the key findings of these studies. These include observations that the adsorption strengths, and in certain cases the activation energies for reactions, of polar molecules on the surfaces of ferroelectric materials are sensitive to the polarization direction. For bare ferroelectric surfaces, the magnitudes of these differences are not large, but are still comparable to the energy barrier required to switch the polarization of approximately 10 nm thick films. Highlights of a recent study where chemical switching of a thin film ferroelectric was demonstrated are presented. Attempts to use the ferroelectric polarization to influence the behavior of supported catalytic metals will also be described. It will be shown that the tendency of the metals to cluster into particles makes it difficult to alter the chemical properties of the metal surface, since it is separated from the ferroelectric by several layers of metal atoms. An alternate approach to increasing the reactivity of ferroelectric surfaces is suggested that involves modifying the surface with atoms that bind strongly to the surface and thus remain atomically dispersed.

  19. Mars surface transportation options

    NASA Technical Reports Server (NTRS)

    Leitner, Jeffrey M.; Alred, John W.

    1986-01-01

    As the number of scientific experiments for the surface of Mars grows, the need for effective surface transportation becomes critical. Because of the diversity of the experiments proposed, as well as the desire to explore Mars from the equator to the poles, the optimum surface vehicle configuration is not obvious. Five candidate vehicles are described, with an estimate of their size and performance. In order to maximize the success of a manned Mars mission, it appears that two vehicles should be designed for surface transportation: an advanced long-range rover, and a remotely-piloted airplane.

  20. Martian surface simulations

    NASA Astrophysics Data System (ADS)

    Gaskell, R. W.

    1993-06-01

    Computer generated surfaces have been created to aid in imaging, landing and rover studies for Mars and the moon. They are also being applied to the study of cratering histories. The surfaces are generated in steps which attempt to mimic geologic episodes. Surface roughness is realized fractally, while craters and other specific features have shapes and distributions dictated by observation. Surface materials are assigned appropriate albedos, making the images more realistic. With the inclusion of correlations between crater and rock distributions, the simulations are beginning to acquire a predictive capability.

  1. Incompressible Flows Free Surfaces

    1992-02-01

    NASA-VOF3D is a three-dimensional, transient, free surface, incompressible fluid dynamics program. It is specifically designed to calculate confined flows in a low gravity environment in which surface physics must be accurately treated. It allows multiple free surfaces with surface tension and wall adhesion and includes a partial cell treatment that allows curved boundaries and internal obstacles. Variable mesh spacing is permitted in all three coordinate directions. Boundary conditions available are rigid free-slip wall, rigid no-slipmore » wall, continuative, periodic, and specified pressure outflow boundary.« less

  2. Surface nanobubbles and nanodroplets

    NASA Astrophysics Data System (ADS)

    Lohse, Detlef; Zhang, Xuehua

    2015-07-01

    Surface nanobubbles are nanoscopic gaseous domains on immersed substrates which can survive for days. They were first speculated to exist about 20 years ago, based on stepwise features in force curves between two hydrophobic surfaces, eventually leading to the first atomic force microscopy (AFM) image in 2000. While in the early years it was suspected that they may be an artifact caused by AFM, meanwhile their existence has been confirmed with various other methods, including through direct optical observation. Their existence seems to be paradoxical, as a simple classical estimate suggests that they should dissolve in microseconds, due to the large Laplace pressure inside these nanoscopic spherical-cap-shaped objects. Moreover, their contact angle (on the gas side) is much smaller than one would expect from macroscopic counterparts. This review will not only give an overview on surface nanobubbles, but also on surface nanodroplets, which are nanoscopic droplets (e.g., of oil) on (hydrophobic) substrates immersed in water, as they show similar properties and can easily be confused with surface nanobubbles and as they are produced in a similar way, namely, by a solvent exchange process, leading to local oversaturation of the water with gas or oil, respectively, and thus to nucleation. The review starts with how surface nanobubbles and nanodroplets can be made, how they can be observed (both individually and collectively), and what their properties are. Molecular dynamic simulations and theories to account for the long lifetime of the surface nanobubbles are then reported on. The crucial element contributing to the long lifetime of surface nanobubbles and nanodroplets is pinning of the three-phase contact line at chemical or geometric surface heterogeneities. The dynamical evolution of the surface nanobubbles then follows from the diffusion equation, Laplace's equation, and Henry's law. In particular, one obtains stable surface nanobubbles when the gas influx from

  3. Robust omniphobic surfaces

    PubMed Central

    Tuteja, Anish; Choi, Wonjae; Mabry, Joseph M.; McKinley, Gareth H.; Cohen, Robert E.

    2008-01-01

    Superhydrophobic surfaces display water contact angles greater than 150° in conjunction with low contact angle hysteresis. Microscopic pockets of air trapped beneath the water droplets placed on these surfaces lead to a composite solid-liquid-air interface in thermodynamic equilibrium. Previous experimental and theoretical studies suggest that it may not be possible to form similar fully-equilibrated, composite interfaces with drops of liquids, such as alkanes or alcohols, that possess significantly lower surface tension than water (γlv = 72.1 mN/m). In this work we develop surfaces possessing re-entrant texture that can support strongly metastable composite solid-liquid-air interfaces, even with very low surface tension liquids such as pentane (γlv = 15.7 mN/m). Furthermore, we propose four design parameters that predict the measured contact angles for a liquid droplet on a textured surface, as well as the robustness of the composite interface, based on the properties of the solid surface and the contacting liquid. These design parameters allow us to produce two different families of re-entrant surfaces— randomly-deposited electrospun fiber mats and precisely fabricated microhoodoo surfaces—that can each support a robust composite interface with essentially any liquid. These omniphobic surfaces display contact angles greater than 150° and low contact angle hysteresis with both polar and nonpolar liquids possessing a wide range of surface tensions. PMID:19001270

  4. Lunar Surface-to-Surface Power Transfer

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2007-01-01

    A human lunar outpost, under NASA study for construction in the 2020's, has potential requirements to transfer electric power up to 50-kW across the lunar surface from 0.1 to 10-km distances. This power would be used to operate surface payloads located remotely from the outpost and/or outpost primary power grid. This paper describes concept designs for state-of-the-art technology power transfer subsystems including AC or DC power via cables, beamed radio frequency power and beamed laser power. Power transfer subsystem mass and performance are calculated and compared for each option. A simplified qualitative assessment of option operations, hazards, costs and technology needs is also described. Based on these concept designs and performance analyses, a DC power cabling subsystem is recommended to minimize subsystem mass and to minimize mission and programmatic costs and risks. Avenues for additional power transfer subsystem studies are recommended.

  5. Nanograins, roughness and organic matters on a glossy fault surface with striation - An example from an exhumed subduction megasplay fault, the Nobeoka Thrust, Japan

    NASA Astrophysics Data System (ADS)

    Kitamura, Y.; Kimura, G.; Kameda, J.; Yamaguchi, A.; Kouketsu, Y.; Hamahashi, M.; Fukuchi, R.; Hamada, Y.; Fujimoto, K.; Hashimoto, Y.; Saito, S.; Kawasaki, R.; Koge, H.; Shimizu, M.; Fujii, T.

    2013-12-01

    Friction on the fault plane controls the behavior of faulting during seismic slip. Recent studies suggest that the frictional process on faults shows scale dependency [e.g. Li and Kim, 2008]. It is critically important to observe structures on the fault planes in various scales, especially in smaller scale in the sub-micron range. The roughness on fault planes has long been thought to hold fractal property [e.g. Candela et al., 2009], however, a recent work observed that a mirror fault plane, when examined up to nanometer-scale, does not obey self-affine roughness [Siman-Tov et al., 2013]. Their observation revealed that the fault surface is coated by grains of several ten nanometers in diameter. In this abstract, we show a detailed observation of a glossy fault plane with striations sampled from drilled core of the Nobeoka Thrust taken by a scientific drilling project, the Nobeoka Thrust Drilling Project (NOBELL). The NOBELL recovered cores with a total depth of 255 m penetrating the Nobeoka Thrust at 41 m below ground surface. The visual observation of the cores and the wireline log of the borehole clearly differentiate the hanging wall and the footwall [Hamahashi et al., in revision]. In this study, we analyzed a fault plane just below the Nobeoka Thrust main fault core on which gloss and striation develop using an integrated apparatus of Confocal Laser Scanning Microscope (CLSM) and Atomic Force Microscope (AFM) (SHIMADZU SFT-3500/4500). We also analyzed the sample surface applying Raman spectroscopy. The sample surface was imaged by the CLSM and AFM in various scale and its topography was obtained. The bright and dark colored area image on the sample surface was mapped using CLSM. The high surface topography corresponds to the dark colored area and the low land to the bright area. The X-Z measurement by CLSM revealed an interface of around 1 micrometer below the surface. The interference fringe was observed at the rim of dark area. These facts suggest that the

  6. Bacteria-surface interactions

    PubMed Central

    Tuson, Hannah H.; Weibel, Douglas B.

    2013-01-01

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field. PMID:23930134

  7. Protective Surfacing for Playgrounds.

    ERIC Educational Resources Information Center

    Frost, Joe L.

    Noting that 90 percent of serious playground injuries result from falls to hard surfaces, this paper reviews the advantages and disadvantages of various playground surfacing materials in terms of cost, climate, durability, aesthetics, and play value. Findings are based on the personal experience of the author, government documents, laboratory…

  8. Mechanically durable superhydrophobic surfaces.

    PubMed

    Verho, Tuukka; Bower, Chris; Andrew, Piers; Franssila, Sami; Ikkala, Olli; Ras, Robin H A

    2011-02-01

    Development of durable non-wetting surfaces is hindered by the fragility of the microscopic roughness features that are necessary for superhydrophobicity. Mechanical wear on superhydrophobic surfaces usually shows as increased sticking of water, leading to loss of non-wettability. Increased wear resistance has been demonstrated by exploiting hierarchical roughness where nanoscale roughness is protected to some degree by large scale features, and avoiding the use of hydrophilic bulk materials is shown to help prevent the formation of hydrophilic defects as a result of wear. Additionally, self-healing hydrophobic layers and roughness patterns have been suggested and demonstrated. Nevertheless, mechanical contact not only causes damage to roughness patterns but also surface contamination, which shortens the lifetime of superhydrophobic surfaces in spite of the self-cleaning effect. The use of photocatalytic effect and reduced electric resistance have been suggested to prevent the accumulation of surface contaminants. Resistance to organic contaminants is more challenging, however, oleophobic surface patterns which are non-wetting to organic liquids have been demonstrated. While the fragility of superhydrophobic surfaces currently limits their applicability, development of mechanically durable surfaces will enable a wide range of new applications in the future. PMID:21274919

  9. Chemical Reactions at Surfaces

    SciTech Connect

    Michael Henderson and Nancy Ryan Gray

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  10. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  11. Environmental surface asepsis.

    PubMed

    Palenik, Charles John

    2005-09-01

    Environmental surface disinfection is easily accomplished with precleaning and disinfection techniques, and prepared surfaces or difficult-to-clean items can be covered with impermeable barriers. When carried out effectively, both practitioners and patients are protected from exposure to microorganisms that transmit disease and cause illness.

  12. Touching the Surface.

    ERIC Educational Resources Information Center

    Sussman, Beverly

    1992-01-01

    Author describes five self-developed activities that utilize readily available materials to help students understand surface tension in liquids. The hands-on activities allow students to see that strong bonds hold molecules together in a liquid and the molecules seem to stretch producing a "skin" at the surface of liquids. (PR)

  13. Mechanically durable superhydrophobic surfaces.

    PubMed

    Verho, Tuukka; Bower, Chris; Andrew, Piers; Franssila, Sami; Ikkala, Olli; Ras, Robin H A

    2011-02-01

    Development of durable non-wetting surfaces is hindered by the fragility of the microscopic roughness features that are necessary for superhydrophobicity. Mechanical wear on superhydrophobic surfaces usually shows as increased sticking of water, leading to loss of non-wettability. Increased wear resistance has been demonstrated by exploiting hierarchical roughness where nanoscale roughness is protected to some degree by large scale features, and avoiding the use of hydrophilic bulk materials is shown to help prevent the formation of hydrophilic defects as a result of wear. Additionally, self-healing hydrophobic layers and roughness patterns have been suggested and demonstrated. Nevertheless, mechanical contact not only causes damage to roughness patterns but also surface contamination, which shortens the lifetime of superhydrophobic surfaces in spite of the self-cleaning effect. The use of photocatalytic effect and reduced electric resistance have been suggested to prevent the accumulation of surface contaminants. Resistance to organic contaminants is more challenging, however, oleophobic surface patterns which are non-wetting to organic liquids have been demonstrated. While the fragility of superhydrophobic surfaces currently limits their applicability, development of mechanically durable surfaces will enable a wide range of new applications in the future.

  14. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  15. The Martian Surface

    NASA Astrophysics Data System (ADS)

    Bell, Jim

    2008-06-01

    Dedication; Acknowledgements; Foreword; Part I. Introduction and Historical Perspective: 1. Exploration of the Martian surface: 1992-2007; 2. Historical context: the pre-MGS view of Mars' surface composition; Part II. Elemental Composition: Orbital and In Situ Surface Measurements: Part II. A. Results and Interpretations from New In Situ APXS Measurements: 3. Martian surface chemistry: APXS results from the Pathfinder landing site; 4. Mars exploration rovers - chemical composition by the APXS; Part II. B. Results and Interpretations from New Orbital Elemental Measurements: 5. Elemental abundances determined via the Mars Odyssey GRS; 6. Volatiles on Mars: scientific results from the Mars Odyssey Neutron Spectrometer; Part III. Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices: Part III. A. Visible to Near-IR Telescopic and Orbital Measurements: 7. Mineralogy of the Martian surface from Mars Express OMEGA Observations; 8. Visible to near-IR multispectral orbital observations; Part III. B. Mid-IR and Magnetic Orbital Measurements: 9. Global mineralogy mapped from the Mars Global Surveyor Thermal Emission Spectrometer; 10. The compositional diversity and physical properties mapped from the Mars Odyssey Thermal Emission Imaging System; 11. Mars' crustal magnetization: a window into the past; Part III. C. Observations from Surface Landers/Rovers: 12. Multispectral imaging from Mars Pathfinder; 13. Mars Exploration Rover Pancam multispectral imaging of rocks, soil, and dust at Gusev Crater and Meridiani Planum ; 14. The mineralogy of Gusev Crater and Meridiani Planum derived from the Miniature Thermal Emission Spectrometers on the Spirit and Opportunity Rovers; 15. Iron mineralogy and aqueous alteration on Mars from the MER Mössbauer Spectrometers; 16. Magnetic properties results from surface landers and rovers; Part III. D: 17. Martian meteorites as crustal samples; Part IV. Physical Properties of Surface Materials: 18. The thermal inertia of the surface of

  16. Electrohydrodynamics Near Hydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Maduar, S. R.; Belyaev, A. V.; Lobaskin, V.; Vinogradova, O. I.

    2015-03-01

    We show that an electro-osmotic flow near the slippery hydrophobic surface depends strongly on the mobility of surface charges, which are balanced by counterions of the electrostatic diffuse layer. For a hydrophobic surface with immobile charges, the fluid transport is considerably amplified by the existence of a hydrodynamic slippage. In contrast, near the hydrophobic surface with mobile adsorbed charges, it is also controlled by an additional electric force, which increases the shear stress at the slipping interface. To account for this, we formulate electrohydrodynamic boundary conditions at the slipping interface, which should be applied to quantify electro-osmotic flows instead of hydrodynamic boundary conditions. Our theoretical predictions are fully supported by dissipative particle dynamics simulations with explicit charges. These results lead to a new interpretation of zeta potential of hydrophobic surfaces.

  17. Collapse of Surface Nanobubbles

    NASA Astrophysics Data System (ADS)

    Chan, Chon U.; Chen, Longquan; Arora, Manish; Ohl, Claus-Dieter

    2015-03-01

    Surface attached nanobubbles populate surfaces submerged in water. These nanobubbles have a much larger contact angle and longer lifetime than predicted by classical theory. Moreover, it is difficult to distinguish them from hydrophobic droplets, e.g., polymeric contamination, using standard atomic force microscopy. Here, we report fast dynamics of a three phase contact line moving over surface nanobubbles, polymeric droplets, and hydrophobic particles. The dynamics is distinct: across polymeric droplets the contact line quickly jumps and hydrophobic particles pin the contact line, while surface nanobubbles rapidly shrink once merging with the contact line, suggesting a method to differentiate nanoscopic gaseous, liquid, and solid structures. Although the collapse process of surface nanobubbles occurs within a few milliseconds, we show that it is dominated by microscopic dynamics rather than bulk hydrodynamics.

  18. Surface nanoscale axial photonics.

    PubMed

    Sumetsky, M; Fini, J M

    2011-12-19

    Dense photonic integration promises to revolutionize optical computing and communications. However, efforts towards this goal face unacceptable attenuation of light caused by surface roughness in microscopic devices. Here we address this problem by introducing Surface Nanoscale Axial Photonics (SNAP). The SNAP platform is based on whispering gallery modes circulating around the optical fiber surface and undergoing slow axial propagation readily described by the one-dimensional Schrödinger equation. These modes can be steered with dramatically small nanoscale variation of the fiber radius, which is quite simple to introduce in practice. Extremely low loss of SNAP devices is achieved due to the low surface roughness inherent in a drawn fiber surface. In excellent agreement with the developed theory, we experimentally demonstrate localization of light in quantum wells, halting light by a point source, tunneling through potential barriers, dark states, etc. This demonstration has intriguing potential applications in filtering, switching, slowing light, and sensing.

  19. Electrohydrodynamics near hydrophobic surfaces.

    PubMed

    Maduar, S R; Belyaev, A V; Lobaskin, V; Vinogradova, O I

    2015-03-20

    We show that an electro-osmotic flow near the slippery hydrophobic surface depends strongly on the mobility of surface charges, which are balanced by counterions of the electrostatic diffuse layer. For a hydrophobic surface with immobile charges, the fluid transport is considerably amplified by the existence of a hydrodynamic slippage. In contrast, near the hydrophobic surface with mobile adsorbed charges, it is also controlled by an additional electric force, which increases the shear stress at the slipping interface. To account for this, we formulate electrohydrodynamic boundary conditions at the slipping interface, which should be applied to quantify electro-osmotic flows instead of hydrodynamic boundary conditions. Our theoretical predictions are fully supported by dissipative particle dynamics simulations with explicit charges. These results lead to a new interpretation of zeta potential of hydrophobic surfaces.

  20. Surface topography by caustics.

    PubMed

    Theocaris, P S; Gdoutos, E E

    1976-06-01

    The optical method of caustics, initially developed for recording abrupt plate slopes created by singularities in elastic stress fields, was extended to incorporate the study of the general case of any type of surface. A universal technique, based on the general theory of caustics developed in this paper, was formulated to study the topography of any surface from its corresponding caustics obtained by illuminating the surface by a parallel, convergent, or divergent light beam. The special case of an axisymmetric mirror with elliptical cross section, whose ellipticity varies from zero to infinity, was studied extensively to show the potentialities of the technique developed. It was shown that the caustics obtained are very sensitive to the particular form of the surface considered. From the procedure developed in this paper it was concluded that the method of caustics can be successfully used to record the topography of any surface with large or infinitesimal slopes.

  1. Interactive separating streak surfaces.

    PubMed

    Ferstl, Florian; Bürger, Kai; Theisel, Holger; Westermann, Rüdiger

    2010-01-01

    Streak surfaces are among the most important features to support 3D unsteady flow exploration, but they are also among the computationally most demanding. Furthermore, to enable a feature driven analysis of the flow, one is mainly interested in streak surfaces that show separation profiles and thus detect unstable manifolds in the flow. The computation of such separation surfaces requires to place seeding structures at the separation locations and to let the structures move correspondingly to these locations in the unsteady flow. Since only little knowledge exists about the time evolution of separating streak surfaces, at this time, an automated exploration of 3D unsteady flows using such surfaces is not feasible. Therefore, in this paper we present an interactive approach for the visual analysis of separating streak surfaces. Our method draws upon recent work on the extraction of Lagrangian coherent structures (LCS) and the real-time visualization of streak surfaces on the GPU. We propose an interactive technique for computing ridges in the finite time Lyapunov exponent (FTLE) field at each time step, and we use these ridges as seeding structures to track streak surfaces in the time-varying flow. By showing separation surfaces in combination with particle trajectories, and by letting the user interactively change seeding parameters such as particle density and position, visually guided exploration of separation profiles in 3D is provided. To the best of our knowledge, this is the first time that the reconstruction and display of semantic separable surfaces in 3D unsteady flows can be performed interactively, giving rise to new possibilities for gaining insight into complex flow phenomena.

  2. PREFACE: Nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the Ångstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network ‘NanoCluster’, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfaces—prototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (‘Micro-Nano’) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real

  3. Surface Habitat Systems

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  4. Dynamics of surface melting

    SciTech Connect

    Elsayed-Ali, H.E.

    1990-08-01

    The objectives of this program is to study the phenomenon of surface melting of single crystals of metals, to test for its existence, and to investigate its dynamics. Both conventional static electron diffraction and dynamic ultrafast electron diffraction are used in our study. This year, the ultrahigh vacuum facility containing the picosecond electron reflection high-energy electron diffraction system was equipped with a cylindrical mirror analyzer and a static electron gum for Auger spectroscopy. An image analysis system capable of acquiring the pulsed diffraction patterns was assembled and used in analysis of picosecond laser heated surfaces. A large set of time-resolved experiments were conducted to study the thermal response of Pb(110) to picosecond laser heating. The surface Debye-Waller effect was used to time-resolve the evolution of surface temperature. This provided us with a picosecond time-resolved surface lattice temperature probe. Results for laser fluences below surface melting show agreement with a heat-diffusion model. The temperature dependence of the Pb(100) along the (110) and the (001) azimuths using x-ray photoelectron forward scattering of the 4f{sub 7/2} core-level photoelectrons confirmed, for the first time, surface melting of Pb(100) at temperatures as low as 560 K.

  5. Choking loops on surfaces.

    PubMed

    Feng, Xin; Tong, Yiying

    2013-08-01

    We present a method for computing "choking" loops--a set of surface loops that describe the narrowing of the volumes inside/outside of the surface and extend the notion of surface homology and homotopy loops. The intuition behind their definition is that a choking loop represents the region where an offset of the original surface would get pinched. Our generalized loops naturally include the usual 2g handles/tunnels computed based on the topology of the genus-g surface, but also include loops that identify chokepoints or bottlenecks, i.e., boundaries of small membranes separating the inside or outside volume of the surface into disconnected regions. Our definition is based on persistent homology theory, which gives a measure to topological structures, thus providing resilience to noise and a well-defined way to determine topological feature size. More precisely, the persistence computed here is based on the lower star filtration of the interior or exterior 3D domain with the distance field to the surface being the associated 3D Morse function. PMID:23744260

  6. Dynamics at Surfaces

    SciTech Connect

    Sylvia Ceyer, Nancy Ryan Gray

    2010-05-04

    The 2009 Gordon Conference on Dynamics at Surfaces is the 30th anniversary of a meeting held every two years that is attended by leading researchers in the area of experimental and theoretical dynamics at liquid and solid surfaces. The conference focuses on the dynamics of the interaction of molecules with either liquid or solid surfaces, the dynamics of the outermost layer of liquid and solid surfaces and the dynamics at the liquid-solid interface. Specific topics that are featured include state-to-state dynamics, non-adiabatic interactions in molecule-metal systems, photon induced desorption from semiconductor and metal surfaces, ultrafast x-ray and electron diffraction as probes of the dynamics of ablation, ultrafast vibrational spectroscopy of water surface dynamics, dynamics of a single adsorbate, growth at nano-scale mineral surfaces, dynamics of atom recombination on interstellar dust grains and the dynamics of the interaction of water with lipid bilayers. The conference brings together investigators from a variety of scientific disciplines including chemistry, physics, materials science, geology and biophysics.

  7. Large Surface Measuring Machine

    NASA Astrophysics Data System (ADS)

    Egdall, Mark; Breidenthal, Robert S.

    1983-09-01

    A new surface measuring concept developed under government contract at Itek Optical Systems has been previously reported by Allen Greenleaf. The method uses four steerable distance-measuring interferometers at the corners of a tetrahedron to determine the posi-tions of a retroreflecting target at various locations on the surface being measured. A small wooden breadboard had been built and tested, demonstrating the feasibility of the concept. This paper reports the building of a scaled-up prototype surface measuring machine to allow the measurement of large aspheric surfaces. A major advantage of the device is that, unlike conventional interferometry, it provides surface measurement in absolute coordinates, thus allowing direct determination of radius of curvature. In addition, the device is self-calibrating. Measurements of a 24-inch mirror have been made with the new machine, giving repeatability of 4 µ m peak sag in the curvature and accuracy of 0.7 μm rms in the surface figure at best focus. The device is currently being used in the production grinding of large aspheric mirrors at Itek. The device is potentially scalable to other industries where highly accurate measurement of unusual surfaces is required.

  8. Progressive Response Surfaces

    NASA Technical Reports Server (NTRS)

    Romero, V. J.; Swiler, L. P.

    2004-01-01

    Response surface functions are often used as simple and inexpensive replacements for computationally expensive computer models that simulate the behavior of a complex system over some parameter space. Progressive response surfaces are ones that are built up progressively as global information is added from new sample points in the parameter space. As the response surfaces are globally upgraded based on new information, heuristic indications of the convergence of the response surface approximation to the exact (fitted) function can be inferred. Sampling points can be incrementally added in a structured fashion, or in an unstructured fashion. Whatever the approach, at least in early stages of sampling it is usually desirable to sample the entire parameter space uniformly. At later stages of sampling, depending on the nature of the quantity being resolved, it may be desirable to continue sampling uniformly over the entire parameter space (Progressive response surfaces), or to switch to a focusing/economizing strategy of preferentially sampling certain regions of the parameter space based on information gained in early stages of sampling (Adaptive response surfaces). Here we consider Progressive response surfaces where a balanced indication of global response over the parameter space is desired.We use a variant of Moving Least Squares to fit and interpolate structured and unstructured point sets over the parameter space. On a 2-D test problem we compare response surface accuracy for three incremental sampling methods: Progressive Lattice Sampling; Simple-Random Monte Carlo; and Halton Quasi-Monte-Carlo sequences. We are ultimately after a system for constructing efficiently upgradable response surface approximations with reliable error estimates.

  9. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (Inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  10. Planetary surface weathering

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1986-01-01

    The weathering of planetary surfaces is treated. Both physical and chemical weathering (reactions between minerals or mineraloids and planetary volatiles through oxidation, hydration, carbonation, or solution processes) are discussed. Venus, earth, and Mars all possess permanent atmospheres such that weathering should be expected to significantly affect their respective surfaces. In contrast, Mercury and the moon lack permanent atmospheres but conceivably could experience surface weathering in response to transient atmospheres generated by volcanic or impact cratering events. Weathering processes can be postulated for other rocky objects including Io, Titan, asteroids, and comets.

  11. Localized acoustic surface modes

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  12. Vortex pairs on surfaces

    SciTech Connect

    Koiller, Jair

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  13. Morpheus Surface Approach

    NASA Video Gallery

    This animation shows the Project Morpheus lander flying a kilometer-long simulated surface approach while avoiding hazards in a landing field. The approach takes place at the Shuttle Landing Facili...

  14. Triangulation of NURBS Surfaces

    NASA Technical Reports Server (NTRS)

    Samareh-Abolhassani, Jamshid

    1994-01-01

    A technique is presented for triangulation of NURBS surfaces. This technique is built upon an advancing front technique combined with grid point projection. This combined approach has been successfully implemented for structured and unstructured grids.

  15. Surface and submicron physics

    SciTech Connect

    Wright, H. A.

    1982-01-01

    The following research projects are briefly described: resonance ionization mass spectroscopy, an extreme uv transmission grating monochrometers, electon attenuation lengths in solids, surface enhanced Raman spectroscopy, and easy events in irradiated liquid water. (WHK)

  16. Sea Surface Salinity

    NASA Video Gallery

    The heat of the sun also forces evaporation at the ocean's surface, which puts water vapor into the atmosphere but leaves minerals and salts behind, keeping the ocean salty. The salinity of the oce...

  17. Mars Surface Mission Workshop

    NASA Technical Reports Server (NTRS)

    Duke, M. B. (Editor)

    1997-01-01

    A workshop was held at the Lunar and Planetary Institute on September 4-5, 1997, to address the surface elements of the Mars Reference Mission now being reviewed by NASA. The workshop considered the current reference mission and addressed the types of activities that would be expected for science and resource exploration and facilities operations. A set of activities was defined that can be used to construct "vignettes" of the surface mission. These vignettes can form the basis for describing the importance of the surface mission, for illustrating aspects of the surface mission, and for allowing others to extend and revise these initial ideas. The topic is rich with opportunities for additional conceptualization. It is recommended that NASA consider supporting university design teams to conduct further analysis of the possibilities.

  18. Surface Plasmon Based Spectrometer

    NASA Astrophysics Data System (ADS)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  19. Biological surface science

    NASA Astrophysics Data System (ADS)

    Kasemo, Bengt

    2002-03-01

    Biological surface science (BioSS), as defined here is the broad interdisciplinary area where properties and processes at interfaces between synthetic materials and biological environments are investigated and biofunctional surfaces are fabricated. Six examples are used to introduce and discuss the subject: Medical implants in the human body, biosensors and biochips for diagnostics, tissue engineering, bioelectronics, artificial photosynthesis, and biomimetic materials. They are areas of varying maturity, together constituting a strong driving force for the current rapid development of BioSS. The second driving force is the purely scientific challenges and opportunities to explore the mutual interaction between biological components and surfaces. Model systems range from the unique water structures at solid surfaces and water shells around proteins and biomembranes, via amino and nucleic acids, proteins, DNA, phospholipid membranes, to cells and living tissue at surfaces. At one end of the spectrum the scientific challenge is to map out the structures, bonding, dynamics and kinetics of biomolecules at surfaces in a similar way as has been done for simple molecules during the past three decades in surface science. At the other end of the complexity spectrum one addresses how biofunctional surfaces participate in and can be designed to constructively participate in the total communication system of cells and tissue. Biofunctional surfaces call for advanced design and preparation in order to match the sophisticated (bio) recognition ability of biological systems. Specifically this requires combined topographic, chemical and visco-elastic patterns on surfaces to match proteins at the nm scale and cells at the micrometer scale. Essentially all methods of surface science are useful. High-resolution (e.g. scanning probe) microscopies, spatially resolved and high sensitivity, non-invasive optical spectroscopies, self-organizing monolayers, and nano- and microfabrication

  20. Surface Temperatures of Exoplanets

    NASA Astrophysics Data System (ADS)

    Weisfeiler, M.; Turcotte, D. L.; Kellogg, L. H.

    2015-12-01

    In the search for habitable exoplanets, the planet's surface temperature plays a crucial role. Unfortunately, direct measurements of surface temperature are not available at this time. Many physical processes influence the surface temperature distribution of a planet. However, the dominating influence is an energy balance between the stellar radiation input and the radiative surface loss of heat. With the further assumptions of a uniform planetary surface temperature, no filtering of the incoming radiation, and black body emission, the only variables are the stellar luminosity and the radial distance of the exoplanet from the star. For the solar system, agreement with observations is quite good except for Venus. The agreement is good for both the inner planets and the outer planets. In this paper we systematically look at methods of improving the zero order approach given above. We consider the filtering of the incoming radiation and the grey body emission. This accounts for the greenhouse effect and can explain the surface temperature of Venus. We systematically vary the filtering of incoming radiation and the emissivities of the daytime and nighttime surfaces. There is evidence that greenhouse heating on the Earth is primarily at nighttime. Different emissivities can explain this effect. It is straightforward to extend the energy balance analysis to include the latitude dependence of surface temperature. Good agreement is obtained at low latitudes but temperature buffering and heat transport by the oceans and atmosphere are clearly important at high latitudes. It is also straightforward to estimate the difference between the daytime and nighttime temperatures. The important parameter is the rotation rate of the exoplanet. The roles of the oceans and the atmosphere in moderating this difference on the Earth will be discussed. Some exoplanets are sufficiently close to their star to have temperatures above the melting temperatures and even the vaporization

  1. Theory of lifting surfaces

    NASA Technical Reports Server (NTRS)

    Prandtl , L

    1920-01-01

    The general basis of the theory of lifting surfaces is discussed. The problem of the flow of a fluid about a lifting surface of infinite span is examined in terms of the existence of vortexes in the current. A general theory of permanent flow is discussed. Formulas for determining the influence of aspect ratio that may be applied to all wings, whatever their plane form, are given.

  2. Multifunctional thin film surface

    DOEpatents

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  3. Computer aided surface representation

    SciTech Connect

    Barnhill, R.E.

    1989-02-09

    The central research problem of this project is the effective representation and display of surfaces, interpolating to given information, in three or more dimensions. In a typical problem, we wish to create a surface from some discrete information. If this information is itself on another surface, the problem is to determine a surface defined on a surface,'' which is discussed below. Often, properties of an already constructed surface are desired: such geometry processing'' is described below. The Summary of Proposed Research from our original proposal describes the aims of this research project. This Summary and the Table of Contents from the original proposal are enclosed as an Appendix to this Progress Report. The broad sweep from constructive mathematics through algorithms and computer graphics displays is utilized in the research. The wide range of activity, directed in both theory and applications, makes this project unique. Last month in the first Ardent Titan delivered in the State of Arizona came to our group, funded by the DOE and Arizona State University. Although the Titan is a commercial product, its newness requires our close collaboration with Ardent to maximize results. During the past year, four faculty members and several graduate research assistants have worked on this DOE project. The gaining of new professionals is an important aspect of this project. A listing of the students and their topics is given in the Appendix. The most significant publication during the past year is the book, Curves and Surfaces for Computer Aided Geometric Design, by Dr. Gerald Farin. This 300 page volume helps fill a considerable gap in the subject and includes many new results on Bernstein-Bezier curves and surfaces.

  4. Lights illuminate surfaces superluminally

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.; Zhong, Qi; Lilleskov, Elias

    2016-07-01

    When a light bulb is turned on, light moves away from it at speed c, by definition. When light from this bulb illuminates a surface, however, this illumination front is not constrained to move at speed c. A simple proof is given that this illumination front always moves faster than c. Generalized, when any compact light source itself varies, this information spreads across all of the surfaces it illuminates at speeds faster than light.

  5. Handsfree Surface Analysis

    2006-11-01

    The HANDSFREE SURFACE ANALYSIS software code enables unattended analysis of surfaces by desorption electrospray (DESI) and liquid-junction surface sampling probe (SSP) mass spectrometry. The software allows automated lane scanning, imaging (e.g. lane rastering), spot and array sampling, and array scanning methods by controlling the movement of the sample attached to a computer-controlled stage. The software is able to collect, visualize and analyze mass spectrometry data real-time for surface analysis purposes by interacting with mass spectrometrymore » instrumentation software. The software also enables data post processing for imaging and other analytical purposes. The software also contains image analysis approaches to control the sampling capillary-to-surface distance when used with DESI, and for automated formation and real-time reoptimization of the sampling probe-to-surface liquid microjunction when used with SSP. Control of these distances is essential to automated, hands-free operation of a DESI or SSP mass spectrometry system.« less

  6. Nobel Lecture: From the Big Bang to the Nobel Prize and beyond

    NASA Astrophysics Data System (ADS)

    Mather, John C.

    NASA’s Cosmic Background Explorer satellite mission, the COBE, laid the foundations for modern cosmology by measuring the spectrum and anisotropy of the cosmic microwave background radiation and discovering the cosmic infrared background radiation. I describe the history of the COBE project, its scientific context, the people who built it, and the scientific results. The COBE observed the universe on the largest scales possible by mapping the cosmic microwave and infrared background radiation fields and determining their spectra. It produced conclusive evidence that the hot Big Bang theory of the early universe is correct, showed that the early universe was very uniform but not perfectly so, and that the total luminosity of post Big Bang objects is twice as great as previously believed. The COBE concept was developed by a Mission Definition Study Team appointed by NASA in 1976, based on three competing proposals submitted in 1974. The COBE was built in-house by Goddard Space Flight Center, with a helium cryostat provided by Ball Aerospace, and was launched on a Delta rocket built by McDonnell Douglas. It is in a circular orbit 900km above the Earth, in a plane inclined 99° to the equator and roughly perpendicular to the line to the Sun. It carried three instruments, a far infrared absolute spectrophotometer (FIRAS), a differential microwave radiometer with three channels (DMR), and a diffuse infrared background experiment (DIRBE). The helium cryostat cooled the FIRAS and DIRBE for 10months until the helium was exhausted, but operations continued for a total of 4years . Subsequent observations have confirmed the COBE results and led to measurements of the main cosmological parameters with a precision of a few percent.

  7. Iron oxide surfaces

    NASA Astrophysics Data System (ADS)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  8. Lunar Surface Operations. Part 2; Surface Duration

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    The objectives of this slide presentation are to review the activities on the lunar surface during the stay. The objectives include (1) Summarize Lunar Module Basics emphasizing module layout and storage. (2) Identify the primary activities occurring during each of the lunar s urface timelines, (3) List the EVA Prep tasks, (4) Identify the EVA Objectives, (5) Identify the activities associated with Post EVA (6) Describe the lessons learned during both EVA and Non EVA activities. Included are overview drawings of the Lunar Roving Vehicle, pictures of the tools, and sample return containers. There are also time lines for the Apollo 11, and Apollo 12 through 14, Apollo 15, Apollo 16 and Apollo 17. Diagrams of the EVA suits are shown, including the Liquid Cooling Garment, and the Pressure Garment Assembly. The activity prior to the EVA are reviewed. The science mission assignments of each mission are viewed. The activities after the EVA are reviewed

  9. Mars Surface Environmental Issues

    NASA Technical Reports Server (NTRS)

    Charles, John

    2002-01-01

    Planetary exploration by astronauts will require extended periods of habitation on a planet's surface, under the influence of environmental factors that are different from those of Earth and the spacecraft that delivered the crew to the planet. Human exploration of Mars, a possible near-term planetary objective, can be considered a challenging scenario. Mission scenarios currently under consideration call for surface habitation periods of from 1 to 18 months on even the earliest expeditions. Methods: Environmental issues associated with Mars exploration have been investigated by NASA and the National Space Biomedical Research Institute (NSBRI) as part of the Bioastronautics Critical Path Roadmap Project (see http ://criticalpath.jsc.nasa.gov). Results: Arrival on Mars will immediately expose the crew to gravity only 38% of that at Earth's surface in possibly the first prolonged exposure to gravity other than the 1G of Earth's surface and the zero G of weightless space flight, with yet unknown effects on crew physiology. The radiation at Mars' surface is not well documented, although the planet's bulk and even its thin atmosphere may moderate the influx of galactic cosmic radiation and energetic protons from solar flares. Secondary radiation from activated components of the soil must also be considered. Ultrafine and larger respirable and nonrespirable particles in Martian dust introduced into the habitat after surface excursions may induce pulmonary inflammation exacerbated by the additive reactive and oxidizing nature of the dust. Stringent decontamination cannot eliminate mechanical and corrosive effects of the dust on pressure suits and exposed machinery. The biohazard potential of putative indigenous Martian microorganisms may be assessed by comparison with analog environments on Earth. Even in their absence, human microorganisms, if not properly controlled, can be a threat to the crew's health. Conclusions: Mars' surface offers a substantial challenge to the

  10. In Situ Surface Characterization

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Leger, Patrick C.; Yanovsky, Igor

    2011-01-01

    Operation of in situ space assets, such as rovers and landers, requires operators to acquire a thorough understanding of the environment surrounding the spacecraft. The following programs help with that understanding by providing higher-level information characterizing the surface, which is not immediately obvious by just looking at the XYZ terrain data. This software suite covers three primary programs: marsuvw, marsrough, and marsslope, and two secondary programs, which together use XYZ data derived from in situ stereo imagery to characterize the surface by determining surface normal, surface roughness, and various aspects of local slope, respectively. These programs all use the Planetary Image Geometry (PIG) library to read mission-specific data files. The programs themselves are completely multimission; all mission dependencies are handled by PIG. The input data consists of images containing XYZ locations as derived by, e.g., marsxyz. The marsuvw program determines surface normals from XYZ data by gathering XYZ points from an area around each pixel and fitting a plane to those points. Outliers are rejected, and various consistency checks are applied. The result shows the orientation of the local surface at each point as a unit vector. The program can be run in two modes: standard, which is typically used for in situ arm work, and slope, which is typically used for rover mobility. The difference is primarily due to optimizations necessary for the larger patch sizes in the slope case. The marsrough program determines surface roughness in a small area around each pixel, which is defined as the maximum peak-to-peak deviation from the plane perpendicular to the surface normal at that pixel. The marsslope program takes a surface normal file as input and derives one of several slope-like outputs from it. The outputs include slope, slope rover direction (a measure of slope radially away from the rover), slope heading, slope magnitude, northerly tilt, and solar energy

  11. How to clean surfaces

    NASA Astrophysics Data System (ADS)

    Bennett, Jean M.

    2004-06-01

    Various cleaning methods are available depending on the sizes of the parts, mounted or unmounted, and purpose of the cleaning. Dust and other particle contamination affect scattering and act as nuclei for defects in optical coatings. In some cases, these defects can initiate laser damage. Noncontact cleaning methods to eliminate particle contamination include blowing large particles from surfaces with an air bulb, "canned air," or a nitrogen gas jet, for a gentle cleaning and CO2 snow for more aggressive particle removal. Laser assisted particle removal is a new high tech method. A strip coating material applied to the surface and subsequently removed will remove large fresh particles and often fingerprints. Contamination films affect the quality and adherence of optical coatings. These are usually removed (from unmounted optics) by cleaning the surface in a detergent and water bath followed by extensive rinsing and non-contact drying. Alternate methods when immersion in water is not possible are drag wiping, or spraying or squirting organic solvents over the surface. Before cleaning, surfaces must be visually inspected to determine the type and location of the contamination, to decide if cleaning is necessary, and what type of cleaning technique to use. Finally, bad cleaning is much worse than no cleaning! Illustrations of the cleaning methods described above will be given.

  12. Surface roughness measurements

    NASA Technical Reports Server (NTRS)

    Howard, Thomas G.

    1994-01-01

    The Optics Division is currently in the research phase of producing grazing-incidence mirrors to be used in x-ray detector applications. The traditional method of construction involves labor-intensive glass grinding. This also culminates in a relatively heavy mirror. For lower resolution applications, the mirrors may be of a replicated design which involves milling a mandrel as a negative of the final shape and electroplating the cylindrical mirror onto it. The mirror is then separated from the mandrel by cooling. The mandrel will shrink more than the 'shell' (mirror) allowing it to be pulled from the mandrel. Ulmer (2) describes this technique and its variations in more detail. To date, several mirrors have been tested at MSFC by the Optical Fabrication Branch by focusing x-ray energy onto a detector with limited success. Little is known about the surface roughness of the actual mirror. Hence, the attempt to gather data on these surfaces. The test involves profiling the surface of a sample, replicating the surface as described above, and then profiling the replicated surface.

  13. Surface inspection operator interface

    NASA Astrophysics Data System (ADS)

    Creek, Russell C.

    1992-03-01

    Surface inspection systems are widely used in many industries including steel, tin, aluminum, and paper. These systems generally use machine vision technology to detect defective surface regions and can generate very high data output rates which can be difficult for line operators to absorb and use. A graphical, windowing interface is described which provides the operators with an overview of the surface quality of the inspected web while still allowing them to select individual defective regions for display. A touch screen is used as the only operator input. This required alterations to some screen widgets due to subtle ergonomic differences of touch screen input over mouse input. The interface, although developed for inspecting coated steel, has been designed to be adaptable to other surface inspection applications. Facility is provided to allow the detection, classification, and display functions of the inspection system to be readily changed. Modifications can be implemented on two main levels; changes that reflect the configuration of the hardware system and control the detection and classification components of the surface inspection system are accessible only to authorized staff while those affecting the display and alarm settings of defect types may be changed by operators and this can generally be done dynamically.

  14. Anticipating land surface change.

    PubMed

    Streeter, Richard; Dugmore, Andrew J

    2013-04-01

    The interplay of human actions and natural processes over varied spatial and temporal scales can result in abrupt transitions between contrasting land surface states. Understanding these transitions is a key goal of sustainability science because they can represent abrupt losses of natural capital. This paper recognizes flickering between alternate land surface states in advance of threshold change and critical slowing down in advance of both threshold changes and noncritical transformation. The early warning signals we observe are rises in autocorrelation, variance, and skewness within millimeter-resolution thickness measurements of tephra layers deposited in A.D. 2010 and A.D. 2011. These signals reflect changing patterns of surface vegetation, which are known to provide early warning signals of critical transformations. They were observed toward migrating soil erosion fronts, cryoturbation limits, and expanding deflation zones, thus providing potential early warning signals of land surface change. The record of the spatial patterning of vegetation contained in contemporary tephra layers shows how proximity to land surface change could be assessed in the widespread regions affected by shallow layers of volcanic fallout (those that can be subsumed within the existing vegetation cover). This insight shows how we could use tephra layers in the stratigraphic record to identify "near misses," close encounters with thresholds that did not lead to tipping points, and thus provide additional tools for archaeology, sustainability science, and contemporary land management.

  15. Epidermal surface lipids

    PubMed Central

    2009-01-01

    A layer of lipids, which are of both sebaceous and keratinocyte origin, covers the surface of the skin. The apparent composition of surface lipids varies depending on the selected method of sampling. Lipids produced by the epidermal cells are an insignificant fraction of the total extractable surface lipid on areas rich in sebaceous glands. Due to the holocrine activity of the sebaceous gland, its product of secretion (sebum) is eventually released to the surface of the skin and coats the fur as well. Lipids of epidermal origin fill the spaces between the cells, like mortar or cement. The sebaceous lipids are primarily non polar lipids as triglycerides, wax esters and squalene, while epidermal lipids are a mixture of ceramides, free fatty acids and cholesterol. The composition of the sebaceous lipids is unique and intriguing and elevated sebum excretion is a major factor involved in the pathophysiology of acne. Recent studies have elucidated the roles that epidermal surface lipids have on normal skin functions and acne. PMID:20224687

  16. Asteroid Surface Geophysics

    NASA Astrophysics Data System (ADS)

    Murdoch, N.; Sánchez, P.; Schwartz, S. R.; Miyamoto, H.

    The regolith-covered surfaces of asteroids preserve records of geophysical processes that have occurred both at their surfaces and sometimes also in their interiors. As a result of the unique microgravity environment that these bodies possess, a complex and varied geophysics has given birth to fascinating features that we are just now beginning to understand. The processes that formed such features were first hypothesized through detailed spacecraft observations and have been further studied using theoretical, numerical, and experimental methods that often combine several scientific disciplines. These multiple approaches are now merging toward a further understanding of the geophysical states of the surfaces of asteroids. In this chapter we provide a concise summary of what the scientific community has learned so far about the surfaces of these small planetary bodies and the processes that have shaped them. We also discuss the state of the art in terms of experimental techniques and numerical simulations that are currently being used to investigate regolith processes occurring on small-body surfaces and that are contributing to the interpretation of observations and the design of future space missions.

  17. Surface energy of zinc

    SciTech Connect

    Bilello, J.C.; Dew-Hughes, D.; Pucino, A.T.

    1983-04-01

    The influence of temperature and associated dislocation microstructure on the energetics of basal plane cleavage in zinc crystals has been investigated using the method of Hull, Beardmore, and Valentine (HBV). A marked temperature dependence was observed in the zinc surface energy, over the range 77--298 /sup 0/K, contrary to previous expectations. Plastic relaxation was associated with crack initiation at 77 /sup 0/K, but not propagation; while at room temperature a plastic zone of 1200--1500 ..mu..m in depth was produced by crack extension. The surface energy could be estimated, independent of the usual Griffith analysis, by measuring the energy dissipation in a fully relaxed deformed zone associated with an explosively formed precursor crack. This method yielded surface energies of 0.066 to 0.079 J m/sup -2/ which was in good agreement with previous work. It is demonstrated that the cleavage surface energy of zinc is well below the thermodynamic surface energy and that this discrepancy is not related to plastic deformation.

  18. Anticipating land surface change

    PubMed Central

    Streeter, Richard; Dugmore, Andrew J.

    2013-01-01

    The interplay of human actions and natural processes over varied spatial and temporal scales can result in abrupt transitions between contrasting land surface states. Understanding these transitions is a key goal of sustainability science because they can represent abrupt losses of natural capital. This paper recognizes flickering between alternate land surface states in advance of threshold change and critical slowing down in advance of both threshold changes and noncritical transformation. The early warning signals we observe are rises in autocorrelation, variance, and skewness within millimeter-resolution thickness measurements of tephra layers deposited in A.D. 2010 and A.D. 2011. These signals reflect changing patterns of surface vegetation, which are known to provide early warning signals of critical transformations. They were observed toward migrating soil erosion fronts, cryoturbation limits, and expanding deflation zones, thus providing potential early warning signals of land surface change. The record of the spatial patterning of vegetation contained in contemporary tephra layers shows how proximity to land surface change could be assessed in the widespread regions affected by shallow layers of volcanic fallout (those that can be subsumed within the existing vegetation cover). This insight shows how we could use tephra layers in the stratigraphic record to identify “near misses,” close encounters with thresholds that did not lead to tipping points, and thus provide additional tools for archaeology, sustainability science, and contemporary land management. PMID:23530230

  19. Iron oxide surfaces

    NASA Astrophysics Data System (ADS)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  20. Analytical caustic surfaces

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1987-01-01

    This document discusses the determination of caustic surfaces in terms of rays, reflectors, and wavefronts. Analytical caustics are obtained as a family of lines, a set of points, and several types of equations for geometries encountered in optics and microwave applications. Standard methods of differential geometry are applied under different approaches: directly to reflector surfaces, and alternatively, to wavefronts, to obtain analytical caustics of two sheets or branches. Gauss/Seidel aberrations are introduced into the wavefront approach, forcing the retention of all three coefficients of both the first- and the second-fundamental forms of differential geometry. An existing method for obtaining caustic surfaces through exploitation of the singularities in flux density is examined, and several constant-intensity contour maps are developed using only the intrinsic Gaussian, mean, and normal curvatures of the reflector. Numerous references are provided for extending the material of the present document to the morphologies of caustics and their associated diffraction patterns.

  1. Hot Billet Surface Qualifier

    SciTech Connect

    Tzyy-Shuh Chang

    2007-04-30

    OG Technologies, Inc. (OGT), developed a prototype of a Hot Billet Surface Qualifier (“Qualifier”) based on OGT’s patented HotEye™ technology and other proprietary imaging and computing technologies. The Qualifier demonstrated its ability of imaging the cast billets in line with high definition pictures, pictures capable of supporting the detection of surface anomalies on the billets. The detection will add the ability to simplify the subsequent process and to correct the surface quality issues in a much more timely and efficient manner. This is challenging due to the continuous casting environment, in which corrosive water, temperature, vibration, humidity, EMI and other unbearable factors exist. Each installation has the potential of 249,000 MMBTU in energy savings per year. This represents a cost reduction, reduced emissions, reduced water usage and reduced mill scale.

  2. Excitonic surface lattice resonances

    NASA Astrophysics Data System (ADS)

    Humphrey, A. D.; Gentile, M. J.; Barnes, W. L.

    2016-08-01

    Electromagnetic resonances are important in controlling light at the nanoscale. The most studied such resonance is the surface plasmon resonance that is associated with metallic nanostructures. Here we explore an alternative resonance, the surface exciton-polariton resonance, one based on excitonic molecular materials. Our study is based on analytical and numerical modelling. We show that periodic arrays of suitable molecular nanoparticles may support surface lattice resonances that arise as a result of coherent interactions between the particles. Our results demonstrate that excitonic molecular materials are an interesting alternative to metals for nanophotonics; they offer the prospect of both fabrication based on supramolecular chemistry and optical functionality arising from the way the properties of such materials may be controlled with light.

  3. Surface Hopping by Consensus.

    PubMed

    Martens, Craig C

    2016-07-01

    We present a new stochastic surface hopping method for modeling molecular dynamics with electronic transitions. The approach, consensus surface hopping (CSH), is a numerical framework for solving the semiclassical limit Liouville equation describing nuclear dynamics on coupled electronic surfaces using ensembles of trajectories. In contrast to existing techniques based on propagating independent classical trajectories that undergo stochastic hops between the electronic states, the present method determines the probabilities of transition of each trajectory collectively with input from the entire ensemble. The full coherent dynamics of the coupled system arise naturally at the ensemble level and ad hoc corrections, such as momentum rescaling to impose strict trajectory energy conservation and artificial decoherence to avoid the overcoherence of the quantum states associated with independent trajectories, are avoided. PMID:27345103

  4. Stereoscopic surface perception.

    PubMed

    Anderson, B L

    1999-12-01

    Physiological, computational, and psychophysical studies of stereopsis have assumed that the perceived surface structure of binocularly viewed images is primarily specified by the pattern of binocular disparities in the two eyes' views. A novel set of stereoscopic phenomena are reported that demonstrate the insufficiency of this view. It is shown that the visual system computes the contrast relationships along depth discontinuities to infer the depth, lightness, and opacity of stereoscopically viewed surfaces. A novel theoretical framework is introduced to explain these results. It is argued that the visual system contains mechanisms that enforce two principles of scene interpretation: a generic view principle that determines qualitative scene geometry, and anchoring principles that determine how image data are quantitatively partitioned between different surface attributes. PMID:10624955

  5. Direct heating surface combustor

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Shire, L. I.; Mroz, T. S. (Inventor)

    1978-01-01

    The combustor utilizes a non-adiabatic flame to provide low-emission combustion for gas turbines. A fuel-air mixture is directed through a porous wall, the other side of which serves as a combustion surface. A radiant heat sink disposed adjacent to and spaced from the combustion surface controls the combustor flame temperature in order to prevent the formation of oxides of nitrogen. A secondary air flow cools the heat sink. Additionally, up to 100% of secondary air flow is mixed with the combustion products at the direct heating surface combustor to dilute such products thereby reducing exit temperature. However, if less than 100% secondary air is mixed to the combustor, the remainder may be added to the combustion products further downstream.

  6. Vortex/surface interaction

    NASA Technical Reports Server (NTRS)

    Bodstein, G. C. R.; George, A. R.; Hui, C. Y.

    1993-01-01

    This paper considers the interaction of a vortex generated upstream in a flow field with a downstream aerodynamic surface that possesses a large chord. The flow is assumed to be steady, incompressible, inviscid and irrotational, and the surface to be semiinfinite. The vortex is considered to be a straight vortex filament. To lowest order the problem is modeled using potential theory, where the 3D Laplace's equation for the velocity potential on the surface is solved exactly. The closed-form equation for pressure distribution obtained from this theory is found to have a square root singularity at the leading-edge. It also converges, as x goes to infinity, to the solution of the 2D point-vortex/infinite plane problem. The pressure coefficient presents an anti-symmetric behavior, near the leading-edge and a symmetric behavior as x goes to infinity.

  7. Dual surface interferometer

    DOEpatents

    Pardue, R.M.; Williams, R.R.

    1980-09-12

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  8. Dual surface interferometer

    DOEpatents

    Pardue, Robert M.; Williams, Richard R.

    1982-01-01

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  9. Magnetic surface anisotropy

    NASA Astrophysics Data System (ADS)

    Rado, George T.

    1992-02-01

    Selected aspects of magnetic surface anisotropy are reviewed. The emphasis is on methods for deducing reliable surface anisotropy values from experiments such as ferromagnetic resonance at microwave frequencies and Brillouin scattering at optical frequencies. The methods used are the "general exchange boundary condition method" and the "effective volume anisotropy method". The essence of the former is the supplementing of the equation of motion of the magnetization with the general exchange boundary condition whereas the latter consists of using the "stratagem" of effective volume anisotropy. We find that use of the general exchange boundary condition method is not only preferable in principle but often actually necessary to prevent the prediction of wrong surface anisotropy values and to permit the prediction of some observable Brillouin shifts.

  10. Surface-water surveillance

    SciTech Connect

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  11. Martian surface materials

    NASA Technical Reports Server (NTRS)

    Moore, H. J.

    1991-01-01

    A semiquantitative appreciation for the physical properties of the Mars surface materials and their global variations can be gained from the Viking Lander and remote sensing observations. Analyses of Lander data yields estimates of the mechanical properties of the soil-like surface materials and best guess estimates can be made for the remote sensing signatures of the soil-like materials at the landing sites. Results show that significant thickness of powderlike surface materials with physical properties similar to drift material are present on Mars and probably pervasive in the Tharsis region. It also appears likely that soil-like materials similar to crusty to cloddy material are typical for Mars, and that soil-like material similar to blocky material are common on Mars.

  12. Uranus satellites - Surface properties

    NASA Technical Reports Server (NTRS)

    Veverka, J.; Brown, R. H.; Bell, Jeffrey F.

    1991-01-01

    The post-Voyager knowledge of the photometric, colorimetric, spectral, and thermal properties of the Uranian satellites is reviewed, focusing on such fundamental physical properties as albedo, color, and surface texture. While albedo variations of at least a factor of 2 exist, color differences are almost absent (Miranda) or subdued (Oberon). In the case of Titania, the strong opposition effect reported by ground-based observers was confirmed by Voyager. Voyager did not observe the opposition parts of the phase curves of the other satellites. Voyager thermal observations of Ariel and Miranda suggest that both have highly porous regoliths, thermophysically similar to those of Jupiter's icy satellites. At the time of the flyby (south pole facing the sun), maximum surface temperatures reached or exceeded 85 K, but nighttime polar temperatures are predicted to drop to 20 to 30 K because each pole spends about 40 yr in darkness. Ground-based spectroscopy identified water ice as an important surface constituent.

  13. Unidirectional superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Prakash, Manu; Bush, John

    2007-11-01

    It has long been known that the hairy, waxy cuticle of water-walking insects renders them water-repellent; they thus exhibit high static contact angles. We have recently demonstrated that by the virtue of the geometry and flexibility of the hair, the integument is also directionally anisotropic and so plays a key propulsive role. We here report our attempts to design and implement an analogous synthetic surface that exhibits unidirectional adhesion. The surface effectively acts like a fluidic-diode; allowing contact lines to advance in only one direction. When vibrated randomly, drops suspended on the surface advance in only one direction. Applications in valve-less pumps and drop transport in microfluidic devices are discussed.

  14. Changes on Titan's surface

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Lopes, R. M. C.; Coustenis, A.; Malaska, M. J.; Sotin, C.; Rodriguez, S.; Janssen, M. A.; Drossart, P.; Lawrence, K. J.; Matsoukas, C. K.; Hirtzig, M.; Le Mouelic, S.; Jaumann, R.; Brown, R. H.; Bratsolis, E.

    2015-12-01

    Cassini's Visual and Infrared Mapping Spectrometer (VIMS) and the Titan Radar Mapper have investigated Titan's surface since 2004, unveiling a complex, dynamic and Earth-like surface. Understanding the distribution and interplay of geologic processes is important for constraining models of its interior, surface-atmospheric interactions, and climate evolution. We focus on understanding the origin of the major geomorphological units identified by Lopes et al. (2010, 2015) [1,2], Malaska et al. (2015) [3] and regions we studied in Solomonidou et al. (2014; 2015) [4,5]. Here, we investigate the nature of: Undifferentiated Plains, Hummocky/Mountainous terrains, candidate cryovolcanic sites, Labyrinth, and Dunes in terms of surface albedo behavior and spectral evolution with time to identify possible changes. Using a radiative transfer code, we find that temporal variations of surface albedo occur for some areas. Tui Regio and Sotra Patera, both candidate cryovolcanic regions, change with time, becoming darker and brighter respectively in surface albedo. In contrast, we find that the Undifferentiated Plains and the suggested evaporitic areas [6] in the equatorial regions do not present any significant changes. We are able to report the differences and similarities among the various regions and provide constraints on their chemical composition and specific processes of origin. Our results support the hypothesis that both endogenic and exogenic processes have played important roles in shaping Titan's geologic evolution. Such a variety of geologic processes and their relationship to the methane cycle make Titan important for astrobiology and habitability studies and particularly significant in solar system studies. [1] Lopes, R.M.C., et al.: Icarus, 205, 540-588, 2010; [2] Lopes, R.M.C., et al.: JGR, 118, 416-435, 2013; [3] Malaska, M., et al : Icarus, submitted, 2015;[4] Solomonidou et al.: JGR, 119, 1729-1747, 2014; [5] Solomonidou, A., et al.: In press, 2015; [6] Barnes

  15. Cigarette makers pioneered many of our black arts of disinformation, including the funding of research to distract from the hazards of smoking. Ten Nobel prizes were the result. By funding distraction research, the cigarette industry became an important source of academic corruption, helping also to forge other forms of denialism on a global scale.

    NASA Astrophysics Data System (ADS)

    Proctor, R. N.

    2014-12-01

    Cigarette Disinformation: Origins and Global Impact Robert N. Proctor The cigarette is the deadliest artifact in the history of human civilization. And whereas "only" a hundred million people died in the 20th century from smoking, we are presently on a pace to have several times that toll in the present century. Much of that catastrophe would not be possible without a massive campaign of disinformation. The cigarette industry pioneered many of the black arts of disinformation, cleverly exploiting the inherent skepticism of science to claim that "more research" was needed to resolve a purported "cigarette controversy." Cigarette makers funded hundreds of millions of dollars worth of "distraction research," most of which was solid empirical science but off topic, focusing on basic biology and biochemistry, viral and genetic causes of disease, and other "cigarette friendly" topics. At least ten Nobel prizes were the result. Cigarette skepticism was thus more complex than we normally imagine: the tobacco industry corrupted science by funding "alternative causation," meaning anything that could be used to draw attention away from cigarettes as a source of disease. The cigarette industry by this means became the most important source of academic corruption since the Nazi era. That corruption has also helped forge other forms of denialism and corruption on a global scale.

  16. Surface Aesthetics and Analysis.

    PubMed

    Çakır, Barış; Öreroğlu, Ali Rıza; Daniel, Rollin K

    2016-01-01

    Surface aesthetics of an attractive nose result from certain lines, shadows, and highlights with specific proportions and breakpoints. Analysis emphasizes geometric polygons as aesthetic subunits. Evaluation of the complete nasal surface aesthetics is achieved using geometric polygons to define the existing deformity and aesthetic goals. The relationship between the dome triangles, interdomal triangle, facet polygons, and infralobular polygon are integrated to form the "diamond shape" light reflection on the nasal tip. The principles of geometric polygons allow the surgeon to analyze the deformities of the nose, define an operative plan to achieve specific goals, and select the appropriate operative technique.

  17. Low surface brightness galaxies

    NASA Technical Reports Server (NTRS)

    Vanderhulst, J. M.; Deblok, W. J. G.; Mcgaugh, S. S.; Bothun, G. D.

    1993-01-01

    A program to investigate the properties of low surface brightness (LSB) galaxies involving surface photometry in U, B, V, R, I, and H-alpha, HI imaging with the Westerbork Synthesis Radio Telescope (WSRT) and the very large array (VLA) and spectrophotometry of H2 regions in LSB galaxies is underway. The goal is to verify the idea that LSB galaxies have low star formation rates because the local gas density falls below the critical density for star formation, and to study the stellar population and abundances in LSB galaxies. Such information should help understanding the evolutionary history of LSB galaxies. Some preliminary results are reported.

  18. Compliant layer chucking surface

    DOEpatents

    Blaedel, Kenneth L.; Spence, Paul A.; Thompson, Samuel L.

    2004-12-28

    A method and apparatus are described wherein a thin layer of complaint material is deposited on the surface of a chuck to mitigate the deformation that an entrapped particle might cause in the part, such as a mask or a wafer, that is clamped to the chuck. The harder particle will embed into the softer layer as the clamping pressure is applied. The material composing the thin layer could be a metal or a polymer for vacuum or electrostatic chucks. It may be deposited in various patterns to affect an interrupted surface, such as that of a "pin" chuck, thereby reducing the probability of entrapping a particle.

  19. Strongly correlated surface states

    NASA Astrophysics Data System (ADS)

    Alexandrov, Victor A.

    Everything has an edge. However trivial, this phrase has dominated theoretical condensed matter in the past half a decade. Prior to that, questions involving the edge considered to be more of an engineering problem rather than a one of fundamental science: it seemed self-evident that every edge is different. However, recent advances proved that many surface properties enjoy a certain universality, and moreover, are 'topologically' protected. In this thesis I discuss a selected range of problems that bring together topological properties of surface states and strong interactions. Strong interactions alone can lead to a wide spectrum of emergent phenomena: from high temperature superconductivity to unconventional magnetic ordering; interactions can change the properties of particles, from heavy electrons to fractional charges. It is a unique challenge to bring these two topics together. The thesis begins by describing a family of methods and models with interactions so high that electrons effectively disappear as particles and new bound states arise. By invoking the AdS/CFT correspondence we can mimic the physical systems of interest as living on the surface of a higher dimensional universe with a black hole. In a specific example we investigate the properties of the surface states and find helical spin structure of emerged particles. The thesis proceeds from helical particles on the surface of black hole to a surface of samarium hexaboride: an f-electron material with localized magnetic moments at every site. Interactions between electrons in the bulk lead to insulating behavior, but the surfaces found to be conducting. This observation motivated an extensive research: weather the origin of conduction is of a topological nature. Among our main results, we confirm theoretically the topological properties of SmB6; introduce a new framework to address similar questions for this type of insulators, called Kondo insulators. Most notably we introduce the idea of Kondo

  20. Surface controlled blade stabilizer

    DOEpatents

    Russell, Larry R.

    1983-01-01

    Drill string stabilizer apparatus, controllable to expand and retract entirely from the surface by control of drill string pressure, wherein increase of drill string pressure from the surface closes a valve to create a piston means which is moved down by drill string pressure to expand the stabilizer blades, said valve being opened and the piston moving upward upon reduction of drill string pressure to retract the stabilizer blades. Upward and downward movements of the piston and an actuator sleeve therebelow are controlled by a barrel cam acting between the housing and the actuator sleeve.