Sample records for al atmos chem

  1. Characterising Biomass Burning Aerosol in WRF-Chem using the Volatility Basis Set, with Evaluation against SAMBBA Flight Data

    NASA Astrophysics Data System (ADS)

    Lowe, D.; Topping, D. O.; Archer-Nicholls, S.; Darbyshire, E.; Morgan, W.; Liu, D.; Allan, J. D.; Coe, H.; McFiggans, G.

    2015-12-01

    The burning of forests in the Amazonia region is a globally significant source of carbonaceous aerosol, containing both absorbing and scattering components [1]. In addition biomass burning aerosol (BBA) are also efficient cloud condensation nuclei (CCN), modifying cloud properties and influencing atmospheric circulation and precipitation tendencies [2]. The impacts of BBA are highly dependent on their size distribution and composition. A bottom-up emissions inventory, the Brazilian Biomass Burning Emissions Model (3BEM) [3], utilising satellite products to generate daily fire emission maps is used. Injection of flaming emissions within the atmospheric column is simulated using both a sub-grid plume-rise parameterisation [4], and simpler schemes, within the Weather Research and Forecasting Model with Chemistry (WRF-Chem, v3.4.1) [5]. Aerosol dynamics are simulated using the sectional MOSAIC scheme [6], incorporating a volatility basis set (VBS) treatment of organic aerosol [7]. For this work we have modified the 9-bin VBS to use the biomass burning specific scheme developed by May et al. [8]. The model has been run for September 2012 over South America (at a 25km resolution). We will present model results evaluating the modelled aerosol vertical distribution, size distribution, and composition against measurements taken by the FAAM BAe-146 research aircraft during the SAMBBA campaign. The main focus will be on investigating the factors controlling the vertical gradient of the organic mass to black carbon ratio of the measured aerosol. This work is supported by the Nature Environment Research Council (NERC) as part of the SAMBBA project under grant NE/J010073/1. [1] D. G. Streets et al., 2004, J. Geophys. Res., 109, D24212. [2] M. O. Andreae et al., 2004, Science, 303, 1337-1342. [3] K. Longo et al., 2010, Atmos. Chem. Phys., 10, 5,785-5,795. [4] S. Freitas et al., 2007, Atmos. Chem. Phys., 7, 3,385-3,398. [5] S. Archer-Nicholls et al., 2015, Geosci. Model Dev., 8

  2. Charactering biomass burning aerosol in the Weather Research and Forecasting model with Chemistry (WRF-Chem), with evaluation against SAMBBA flight data.

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Lowe, D.; Darbyshire, E.; Morgan, W.; Freitas, S. R.; Longo, K.; Coe, H.; McFiggans, G.

    2014-12-01

    . Longo et al., 2010, Atmos. Chem. Phys., 10, 5785-5795. 2. M. O. Andreae and P. Merlot, 2001, Global Biogeochem. Cy., 15(4), 955-966. 3. S. Freitas et al., 2007, Atmos. Chem. Phys., 7, 3385-3398. 4. G. Grell et al., 2011, Atmos. Chem. Phys., 11, 5289-5303. 5. R. Zavari et al., 2008, J. Geophys. Res., 113, D132024.

  3. Retrieval of tropospheric HCHO in El Salvador using ground based DOAS

    NASA Astrophysics Data System (ADS)

    Abarca, W.; Gamez, K.; Rudamas, C.

    2017-12-01

    Formaldehyde (HCHO) is the most abundant carbonyl in the atmosphere, being an intermediate product in the oxidation of most volatile organic compounds (VOCs). HCHO is carcinogenic, and highly water soluble [1]. HCHO can originate from biomass burning and fossil fuel combustion and has been observed from satellite and ground-based sensors by using the Differential Optical Absorption Spectroscopy (DOAS) technique [2].DOAS products can be used for air quality monitoring, validation of chemical transport models, validation of satellite tropospheric column density retrievals, among others [3]. In this study, we report on column density levels of HCHO measured by ground based Multi-Axis -DOAS in different locations of El Salvador in March, 2015. We have not observed large differences of the HCHO column density values at different viewing directions. This result points out a reasonably polluted and hazy atmosphere in the measuring sites, as reported by other authors [4]. Average values ranging from 1016 to 1017 molecules / cm2 has been obtained. The contribution of vehicular traffic and biomass burning to the column density levels in these sites of El Salvador will be discussed. [1] A. R. Garcia et al., Atmos. Chem. Phys. 6, 4545 (2006) [2] E. Peters et al., Atmos. Chem. Phys. 12, 11179 (2012) [3] T. Vlemmix, et al. Atmos. Meas. Tech., 8, 941-963, 2015 [4] A. Heckel et al., Atmos. Chem. Phys. 5, (2005)

  4. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Evangeliou, Nikolaos; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2015-04-01

    inversion method uses a Bayesian formulation considering uncertainties for the a priori source term and the observations (Eckhardt et al., 2008, Stohl et al., 2012). The a priori information on the source term is a first guess. The gamma dose rate observations are used to improve the first guess and to retrieve a reliable source term. The details of this method will be presented at the conference. This work is funded by the Bundesamt für Strahlenschutz BfS, Forschungsvorhaben 3612S60026. References Davoine, X. and Bocquet, M., Atmos. Chem. Phys., 7, 1549-1564, 2007. Devell, L., et al., OCDE/GD(96)12, 1995. Eckhardt, S., et al., Atmos. Chem. Phys., 8, 3881-3897, 2008. Saunier, O., et al., Atmos. Chem. Phys., 13, 11403-11421, 2013. Stohl, A., et al., Atmos. Environ., 32, 4245-4264, 1998. Stohl, A., et al., Atmos. Chem. Phys., 5, 2461-2474, 2005. Stohl, A., et al., Atmos. Chem. Phys., 12, 2313-2343, 2012.

  5. 78 FR 39720 - Atmos Pipeline and Storage, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... and Storage, LLC; Notice of Application Take notice that on June 14, 2013, Atmos Pipeline and Storage... authorizing the construction and operation of the Fort Necessity Gas Storage Project (Project) and associated...) \\2\\. \\1\\ Atmos Pipeline and Storage, LLC, 127 FERC ] 61,260 (2009). \\2\\ Atmos Pipeline and Storage...

  6. Using WRF-Chem to investigate the impact of night time nitrate radical chemistry and N2O5 heterogeneous chemistry on the chemical composition of the UK troposphere.

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Lowe, D.; Utembe, S.; McFiggans, G.

    2012-04-01

    of two flight periods: one during July 2010; the other during January 2011. We have run five model scenarios for both these periods: a base case, with standard emissions and chemistry; two scenarios with standard chemistry, but with halved and doubled NOx transport emissions respectively; and two scenarios with standard emissions, but one without N2O5 heterogeneous chemistry, and the other with the Cl- reaction pathway disabled. We will present results from the application of WRF-Chem to model the regional chemical composition of the atmosphere about the UK. Sensitivities to changing emission profiles and the impact of N2O5 heterogeneous chemistry will be discussed. Preliminary comparisons between model results and aircraft data will be shown. The strengths and weaknesses of our modelling approach, in particular the gains and drawbacks of using a fully coupled online model for use in this campaign, will be highlighted. The wider impacts of the processes investigated on the regional climate and air quality will be further discussed. Allan, B., et. al. (2000); J. Geophys. Res., 105, doi: 10.1046/j.1365-2370.2000.00208. Bertram, T. H., Thornton, J. A. (2009); Atmos. Chem. Phys., 9, 8351-8363, doi: 10.5194/acp-9-8351-2009 Grell, G., et. al. (2005); Atmos. Environ., 39, 6957- 6975. doi: 10.1016/j.atmosenv.2005.04.027 Topping, D., Lowe, D. & McFiggans, G. (2012); Geosci. Model Dev., 5, 1-13. doi:10.5194/gmd-5-1-2012 Watson, L., et. al. (2008); Atmos. Environ., 42, 7196- 7204, doi: 10.1016/j.atmosenv.2008.07.034 Zaveri, R. A., et. al. (2008); J. Geophys. Res., 113, doi:10.1029/2007JD008782

  7. Web portal on environmental sciences "ATMOS''

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Lykosov, V. N.; Fazliev, A. Z.

    2006-06-01

    The developed under INTAS grant web portal ATMOS (http://atmos.iao.ru and http://atmos.scert.ru) makes available to the international research community, environmental managers, and the interested public, a bilingual information source for the domain of Atmospheric Physics and Chemistry, and the related application domain of air quality assessment and management. It offers access to integrated thematic information, experimental data, analytical tools and models, case studies, and related information and educational resources compiled, structured, and edited by the partners into a coherent and consistent thematic information resource. While offering the usual components of a thematic site such as link collections, user group registration, discussion forum, news section etc., the site is distinguished by its scientific information services and tools: on-line models and analytical tools, and data collections and case studies together with tutorial material. The portal is organized as a set of interrelated scientific sites, which addressed basic branches of Atmospheric Sciences and Climate Modeling as well as the applied domains of Air Quality Assessment and Management, Modeling, and Environmental Impact Assessment. Each scientific site is open for external access information-computational system realized by means of Internet technologies. The main basic science topics are devoted to Atmospheric Chemistry, Atmospheric Spectroscopy and Radiation, Atmospheric Aerosols, Atmospheric Dynamics and Atmospheric Models, including climate models. The portal ATMOS reflects current tendency of Environmental Sciences transformation into exact (quantitative) sciences and is quite effective example of modern Information Technologies and Environmental Sciences integration. It makes the portal both an auxiliary instrument to support interdisciplinary projects of regional environment and extensive educational resource in this important domain.

  8. 77 FR 21760 - Atmos Energy Colorado/Kansas Division; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR12-19-000] Atmos Energy Colorado/Kansas Division; Notice of Baseline Filing Take notice that on March 30, 2012, Atmos Energy Colorado/Kansas Division (Atmos) submitted a baseline filing of their Statement of Operating Conditions for...

  9. 75 FR 31429 - Atmos Pipeline-Texas; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-27-000] Atmos Pipeline--Texas; Notice of Baseline Filing May 27, 2010. Take notice that on May 27, 2010, Atmos Pipeline--Texas submitted a baseline filing of its Statement of Operating Conditions for interruptible transportation...

  10. 77 FR 23244 - Atmos Energy Colorado/Kansas Division; Notice of Revised Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR12-22-000] Atmos Energy Colorado/Kansas Division; Notice of Revised Baseline Filing Take notice that on April 10, 2012, Atmos Energy Colorado/Kansas Division (Atmos) filed a revised baseline filing of their Statement of Operating...

  11. Advanced Multimission Operations System (ATMO)

    NASA Technical Reports Server (NTRS)

    Mandrake, Lucas; Thompson, David R.

    2013-01-01

    The HiiHat toolbox developed for CAT/ENVI provides principal investigators direct, immediate, flexible, and seamless interaction with their instruments and data from any location. Offering segmentation and neutral region division, it facilitates the discovery of key endmembers and regions of interest larger than a single pixel. Crucial to the analysis of hyperspectral data from Mars or Earth is the removal of unwanted atmospheric signatures. For Mars and the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), residual atmospheric CO2 absorption is both directly problematic and indicative of processing errors with implications to the scientific utility of any particular image region. Estimating this residual error becomes key both in selecting regions of low distortion, and also to select mitigating methods, such as neutral region division. This innovation, the ATMO estimator, provides a simple, 0-1 normalized scalar that estimates this distortion (see figure). The metric is defined as the coefficient of determination of a quadratic fit in the region of distorting atmospheric absorption (approx 2 micron). This mimics the behavior of existing CRISM team mineralogical indices to estimate the presence of known, interesting mineral signatures. This facilitates the ATMO metric's assimilation into existing planetary geology workflows.

  12. One decade of space-based isoprene emission estimates: Interannual variations and emission trends between 2005 and 2014

    NASA Astrophysics Data System (ADS)

    Bauwens, Maite; Stavrakou, Trissevgeni; Müller, Jean-François; De Smedt, Isabelle; Van Roozendael, Michel

    2016-04-01

    rainforests of Equatorial Africa and South America. The top-down isoprene fluxes are available at a resolution of 0.5°x0.5° between 2005 and 2014 at the GlobEmission website (http://www.globemission.eu). References: Arneth, A., et al.: Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO 2-isoprene interaction, Atmos. Chem. Phys., 7(1), 31-53, 2007. Arneth, A., et al.: Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation, Atmos. Chem. Phys., 11(15), 8037-8052, 2011. Bauwens, M., et al.: Satellite-based isoprene emission estimates (2007-2012) from the GlobEmission project, in ACCENT-Plus Symposium 2013 Proceedings., 2014. Stavrakou, T., et al.: Isoprene emissions over Asia 1979 - 2012: impact of climate and land-use changes, Atmos. Chem. Phys., 14(9), 4587-4605, doi:10.5194/acp-14-4587-2014, 2014. Stavrakou, T., et al.: How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?, Atmos. Chem. Phys., 15(20), 11861-11884, doi:10.5194/acp-15-11861-2015, 2015. Stavrakou, T., et al.: Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns, Atmos. Chem. Phys., 9(3), 1037-1060, doi:10.5194/acp-9-1037-2009, 2009.

  13. 76 FR 34975 - Atmos Pipeline-Texas; Notice of Petition for Rate Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-112-000] Atmos Pipeline-Texas; Notice of Petition for Rate Approval Take notice that on June 6, 2011, Atmos Pipeline-Texas (APT... transportation service. APT states the rate election reflects its cost-based transportation rates on file with...

  14. Developing a new parameterization framework for the heterogeneous ice nucleation of atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Ullrich, Romy; Hiranuma, Naruki; Hoose, Corinna; Möhler, Ottmar; Niemand, Monika; Steinke, Isabelle; Wagner, Robert

    2014-05-01

    Developing a new parameterization framework for the heterogeneous ice nucleation of atmospheric aerosol particles Ullrich, R., Hiranuma, N., Hoose, C., Möhler, O., Niemand, M., Steinke, I., Wagner, R. Aerosols of different nature induce microphysical processes of importance for the Earth's atmosphere. They affect not only directly the radiative budget, more importantly they essentially influence the formation and life cycles of clouds. Hence, aerosols and their ice nucleating ability are a fundamental input parameter for weather and climate models. During the previous years, the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber was used to extensively measure, under nearly realistic conditions, the ice nucleating properties of different aerosols. Numerous experiments were performed with a broad variety of aerosol types and under different freezing conditions. A reanalysis of these experiments offers the opportunity to develop a uniform parameterization framework of ice formation for many atmospherically relevant aerosols in a broad temperature and humidity range. The analysis includes both deposition nucleation and immersion freezing. The aim of this study is to develop this comprehensive parameterization for heterogeneous ice formation mainly by using the ice nucleation active site (INAS) approach. Niemand et al. (2012) already developed a temperature dependent parameterization for the INAS- density for immersion freezing on desert dust particles. In addition to a reanalysis of the ice nucleation behaviour of desert dust (Niemand et al. (2012)), volcanic ash (Steinke et al. (2010)) and organic particles (Wagner et al. (2010,2011)) this contribution will also show new results for the immersion freezing and deposition nucleation of soot aerosols. The next step will be the implementation of the parameterizations into the COSMO- ART model in order to test and demonstrate the usability of the framework. Hoose, C. and Möhler, O. (2012) Atmos

  15. Immersion freezing by SnomaxTM particles: Comparison of results from different instruments

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Stratmann, Frank; Rösch, Michael; Niedermeier, Dennis; Nilius, Björn; Möhler, Ottmar; Mitra, Subir K.; Koop, Thomas; Jantsch, Evelyn; Hiranuma, Naruki; Diehl, Karoline; Curtius, Joachim; Budke, Carsten; Boose, Yvonne; Augustin, Stefanie

    2014-05-01

    to work equally well, hence freezing by SnomaxTM can be considered to show no time dependence. Particularly data from LACIS and BINARY, i.e. from the "fastest" and "slowest" measurements, were found to agree very well. Acknowledgement: This work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525). Literature Budke et al. (2013), Investigation of Heterogeneous Ice Nucleation Using a Novel Optical Freezing Array, AIP Conference Proceedings, 1527, 949-951, doi: 10.1064/1.4803429. Bundke et al. (2008), The fast Ice Nucleus chamber FINCH, Atmos. Res. 90, 180-186. Chou et al. (2011), Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps, Atmos. Chem. Phys., 11, 4725-4738. Connolly, et al. (2009), Studies of heterogeneous freezing by three different desert dust samples, Atmos. Chem. Phys., 9, 2805-2824. Diehl et al. (2011), The Mainz vertical wind tunnel facility: A review of 25 years of laboratory experiments on cloud physics and chemistry. In: J.D. Pereira (Ed.), Wind tunnels: Aerodynamics, models, and experiments. Nova Science Publishers, Inc., Chapter 2. Diehl et al. (2009), Homogeneous freezing of single sulfuric and nitric acid solution drops levitated in an acoustic trap, Atm. Res., 94, 356-361, doi:10.1016/j.atmosres.2009.06.001. Hartmann et al. (2011), Homogeneous and heterogeneous ice nucleation at LACIS: Operating principle and theoretical studies, Atmos. Chem. Phys., 11, 1753-1767. Hartmann et al. (2013), Immersion freezing of ice nucleating active protein complexes, Atmos. Chem. Phys., 13, 5751-5766. Murray et al. (2012), Ice nucleation by particles immersed in supercooled cloud droplets, Chem. Soc. Rev., 41, 6519-6554. Niedermeier et al. (2014), A computationally-efficient description of heterogeneous freezing: A simplified version of the Soccer ball model, Geophys. Res. Lett., 10.1002/2013GL058684. Vali, G. (1971), Quantitative evaluation of experimental results on heterogeneous

  16. X-ray computed microtomography of sea ice - comment on "A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (2014)

    NASA Astrophysics Data System (ADS)

    Obbard, R. W.

    2015-07-01

    This comment addresses a statement made in "A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (Atmos. Chem. Phys., 14, 1587-1633, doi:10.5194/acp-14-1587-2014, 2014). Here we rebut the assertion that X-ray computed microtomography of sea ice fails to reveal liquid brine inclusions by discussing the phases present at the analysis temperature.

  17. 76 FR 2361 - Atmos Energy-Kentucky/Mid-States Division; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-77-000] Atmos Energy--Kentucky/Mid-States Division; Notice of Baseline Filing January 5, 2011. Take notice that on December 30, 2010, Atmos Energy--Kentucky/Mid- States Division submitted a revised baseline filing of their...

  18. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2014-05-01

    relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates on the other hand are observed routinely on a much denser grid and higher temporal resolution. Gamma dose rate measurements contain no explicit information on the observed spectrum of radionuclides and have to be interpreted carefully. Nevertheless, they provide valuable information for the inverse evaluation of the source term due to their availability (Saunier et al., 2013). We present a new inversion approach combining an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The gamma dose rates are calculated from the modelled activity concentrations. The inversion method uses a Bayesian formulation considering uncertainties for the a priori source term and the observations (Eckhardt et al., 2008). The a priori information on the source term is a first guess. The gamma dose rate observations will be used with inverse modelling to improve this first guess and to retrieve a reliable source term. The details of this method will be presented at the conference. This work is funded by the Bundesamt für Strahlenschutz BfS, Forschungsvorhaben 3612S60026. References Davoine, X. and Bocquet, M., Atmos. Chem. Phys., 7, 1549-1564, 2007. Devell, L., et al., OCDE/GD(96)12, 1995. Eckhardt, S., et al., Atmos. Chem. Phys., 8, 3881-3897, 2008. Saunier, O., et al., Atmos. Chem. Phys., 13, 11403-11421, 2013. Stohl, A., et al., Atmos. Environ., 32, 4245-4264, 1998. Stohl, A., et al., Atmos. Chem. Phys., 5, 2461-2474, 2005. Stohl, A., et al., Atmos. Chem. Phys., 12, 2313-2343, 2012.

  19. Aerosols increase upper tropospheric humidity over the North Western Pacific

    NASA Astrophysics Data System (ADS)

    Riuttanen, Laura; Bister, Marja; John, Viju; Sundström, Anu-Maija; Dal Maso, Miikka; Räisänen, Jouni; de Leeuw, Gerrit; Kulmala, Markku

    2014-05-01

    Water vapour in the upper troposphere is highly important for the global radiative transfer. The source of upper tropospheric humidity is deep convection, and aerosol effects on them have got attention only recently. E.g., aerosol effects on deep convective clouds have been missing in general circulation models (Quaas et al., 2009). In deep convection, aerosol effect on cloud microphysics may lead to more ice precipitation and less warm rain (Khain et al., 2005), and thus more water vapour in upper troposphere (Bister & Kulmala, 2011). China outflow region over the Pacific Ocean was chosen as a region for a more detailed study, with latitudes 25-45 N and three longitude slots: 120-149 E, 150-179 E and 150-179 W. In this study, we used satellite measurements of aerosol optical depth (AOD) and upper tropospheric humidity (UTH). AOD was obtained from the MODIS instrument onboard Terra satellite, that crosses the equator southward at 10:30 AM local solar time (Remer et al., 2005). UTH was obtained from a microwave humidity sounder (MHS) onboard MetOp-A satellite, with passing time at 9:30 PM local solar time. It measures relative humidity of a layer extending approximately from 500 to 200 hPa. We binned the AOD and UTH data according to daily rainfall product 3B42 from Tropical Rainfall Measuring Mission (TRMM) satellite. Binning the data according to the amount of precipitation gives us a new way to account for the possible aerosol invigoration effect on convection and to alleviate the contamination and causality problems in aerosol indirect effect studies. In this study, we show for the first time, based on satellite data, that there is a connection between upper tropospheric humidity and aerosols. Anthropogenic aerosols from China increase upper tropospheric humidity, which causes a significant positive local radiative forcing in libRadtran radiative transfer model (Mayer & Kylling, 2005). References: Bister, M. & Kulmala, M. (2011). Atmos. Chem. Phys., 11, 4577

  20. Quantifying Black Carbon emissions in high northern latitudes using an Atmospheric Bayesian Inversion

    NASA Astrophysics Data System (ADS)

    Evangeliou, Nikolaos; Thompson, Rona; Stohl, Andreas; Shevchenko, Vladimir P.

    2016-04-01

    Black carbon (BC) is the main light absorbing aerosol species and it has important impacts on air quality, weather and climate. The major source of BC is incomplete combustion of fossil fuels and the burning of biomass or bio-fuels (soot). Therefore, to understand to what extent BC affects climate change and pollutant dynamics, accurate knowledge of the emissions, distribution and variation of BC is required. Most commonly, BC emission inventory datasets are built by "bottom up" approaches based on activity data and emissions factors, but these methods are considered to have large uncertainty (Cao et al, 2006). In this study, we have used a Bayesian Inversion to estimate spatially resolved BC emissions. Emissions are estimated monthly for 2014 and over the domain from 180°W to 180°E and 50°N to 90°N. Atmospheric transport is modeled using the Lagrangian Particle Dispersion Model, FLEXPART (Stohl et al., 1998; 2005), and the inversion framework, FLEXINVERT, developed by Thompson and Stohl, (2014). The study domain is of particular interest concerning the identification and estimation of BC sources. In contrast to Europe and North America, where BC sources are comparatively well documented as a result of intense monitoring, only one station recording BC concentrations exists in the whole of Siberia. In addition, emissions from gas flaring by the oil industry have been geographically misplaced in most emission inventories and may be an important source of BC at high latitudes since a significant proportion of the total gas flared occurs at these high latitudes (Stohl et al., 2013). Our results show large differences with the existing BC inventories, whereas the estimated fluxes improve modeled BC concentrations with respect to observations. References Cao, G. et al. Atmos. Environ., 40, 6516-6527, 2006. Stohl, A. et al. Atmos. Environ., 32(24), 4245-4264, 1998. Stohl, A. et al. Atmos. Chem. Phys., 5(9), 2461-2474, 2005. Stohl, A. et al. Atmos. Chem. Phys., 13

  1. A Comparison of Measurements from ATMOS and Instruments Aboard the ER-2 Aircraft: Tracers of Atmospheric Transport

    NASA Technical Reports Server (NTRS)

    Chang, A. Y.; Salawitch, R. J.; Michelsen, H. A.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Rinsland, C. P.; Loewenstein, M.; Podolske, J. R.; Proffitt, M. H.; hide

    1996-01-01

    We compare volume mixing ratio profiles of N2O, O3, NO(y) H2O, CH4, and CO in the mid-latitude lower stratosphere measured by the ATMOS Fourier transform spectrometer on the ATLAS-3 Space Shuttle Mission with in situ measurements acquired from the NASA ER-2 aircraft during Nov 1994. ATMOS and ER-2 observations of [N2O] show good agreement, as do measured correlations of [O3], [NO(y)], [H2O], and [CH4] with [N2O]. Thus a consistent measure of the hydrogen (H2O, CH4) content of the lower stratosphere is provided by the two platforms. The similarity of [NO(y)] determined by detection of individual species by ATMOS and the total [NO(y)] measurement on the ER-2 provides strong corroboration for the accuracy of both techniques. A 25% discrepancy in lower stratospheric [CO] observed by ATMOS and the ER-2 remains unexplained. Otherwise, the agreement for measurements of long-lived tracers demonstrates the ability to combine ATMOS data with in situ observations for quantifying atmospheric transport.

  2. Improving and assessing vapour pressure estimation methods for organic compounds of atmospheric relevance using a Knudsen Effusion Mass Spectrometer (KEMS)

    NASA Astrophysics Data System (ADS)

    Booth, A. M.; Topping, D. O.; McFiggans, G. B.; Garforth, A.; Percival, C. J.

    2009-12-01

    functional groups and interaction parameters, derived from experimental data, to reliably predict boiling points and vapour pressures. A sensitivity study was undertaken to establish the impact of the new experimentally determined vapour pressures on partitioning models. Jacobson, M.C., et al. Rev Geophys, 38 (2), 267-294, 2000. Houghton et al. Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the IPCC., 881 pp., Cambridge University Press, 2001. Johnson, D. , et al. Atmo. Chem. Phys., Vol. 6, 419-431, 2006 Yu, J. Z., et al. J Atmos Chem. 34, 207-258, 1999 Booth, A.M. et al Atmos. Meas. Tech.,2,355-361, 2009 Nanoolal, Y. et al Fluid Phase Equilibria, 269,117-133., 2008. Barley, M. et al Atmos. Chem. Phys., -,to be submitted.

  3. Trace Gases and Aerosols Simulated Over the Indian Domain: Evaluation of the Model Wrf-Chem

    NASA Astrophysics Data System (ADS)

    Michael, M.; Yadav, A.; Tripathi, S. N.; Venkataraman, C.; Kanawade, V. P.

    2012-12-01

    As the anthropogenic emissions from the Asian countries contribute substantially to the global aerosol loading, the study of the distribution of trace gases and aerosols over this region has received increasing attention in recent years. In the present work, the aerosol properties over the Indian domain during the pre-monsoon season has been addressed. The "online" meteorological and chemical transport Weather Research and Forecasting-Chemistry (WRF-Chem) model has been implemented over Indian subcontinent for three consecutive summers in 2008, 2009 and 2010.The initial and boundary conditions are obtained from NCAR reanalysis data. The global emission inventories (REanalysis of the TROpospheric chemical composition (RETRO) and Emissions Database for Global Atmospheric Research (EDGAR)) have been used and are projected for the period of study using the method provided in Ohara et al. (2007). The emission rates of sulfur dioxide, black carbon, organic carbon and PM2.5 available in the global inventory are replaced with the high resolution emission inventory developed over India for the present study. The model simulates meteorological parameters, trace gases and particulate matter. Simulated mixing ratios of trace gases (Ozone, carbon monoxide, nitrogen oxides, and SO2) are compared with ground based as well as satellite observations over India with specific focus on Indo-Gangetic Plain. Simulated aerosol optical depth are in good agreement with those observed by Aerosol Robotic Network (AERONET). The vertical profiles of extinction coefficient have been compared with the Micro Pulse Lidar Network (MPLnet) data. The simulated mass concentration of BC shows very good agreement with those observed at a few ground stations. The vertical profiles of BC have also been compared with aircraft observations carried out during summer of 2008 and 2009, resulting in good agreement. This study shows that WRF-Chem model captures many important features of the observations and

  4. ATMOS Spacelab 1 science investigation

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Smith, M. A. H.; Twitty, J. T.; Russell, J. M., III

    1979-01-01

    Existing infrared spectra from high speed interferometer balloon flights were analyzed and experimental analysis techniques applicable to similar data from the ATMOS experiment (Spacelab 3) were investigated. Specific techniques under investigation included line-by-line simulation of the spectra to aid in the identification of absorbing gases, simultaneous retrieval of pressure and temperature profiles using carefully chosen pairs of CO2 absorption lines, and the use of these pressures and temperatures in the retrieval of gas concentration profiles for many absorbing species. A search for a new absorption features was also carried out, and special attention was given to identification of absorbing gases in spectral bandpass regions to be measured by the halogen occultation experiment.

  5. PERSPECTIVE: Snow matters in the polar regions

    NASA Astrophysics Data System (ADS)

    Sodeau, John

    2010-03-01

    relatively long history of this topic was surveyed extensively in 2007 and the answer is probably not related to the photolysis of the halogeno-carbons although the transformation processes are still not completely understood (Simpson et al 2007). This topic along with the potential involvement of both iodine and chlorine species is decidedly 'hot' in the intriguing world of polar cryochemistry. The Antony et al (2010) paper is actually entitled 'Is cloud seeding in coastal Antarctica linked to bromine and nitrate variability in snow?'. Although the nitrate ions were discussed in terms of being a simple nutrient in the study, the photochemistry of nitrate ions in snow has actually become an important focus of research in the laboratory. A further review by Grannas et al (2007) is recommended in this respect. But important questions remain regarding the fate of the NO and NO2 molecules produced in the primary photolytic channels, especially if concentrated into ice 'micropockets' (Hellebust et al 2007). Furthermore the impacts of newly discovered reactions such as HO2/NO to directly produce nitric acid, at the expense of NOx, have not yet been quantified in the polar ABL context (Cariolle et al 2008). Then there is peroxyacetylnitrate (PAN; Mills et al 2007) and other organo-nitrates and their possible interactions with mercury and the halides . . . Clearly, Antarctica is not chemically pristine and snow-ice interfaces in both the laboratory and the field have become a very challenging medium for exploring new and unexpected chemistry relevant to our atmosphere. References Abbatt J P D 1994 Heterogeneous reaction of HOBr with HBr and HCl on ice surfaces at 228 K Geophys. Res. Lett. 21 665-8 Antony R et al 2010 Is cloud seeding in coastal Antarctica linked to bromine and nitrate variability in snow? Environ. Res. Lett. 5 014009 Cariolle D et al 2008 Impact of the new HNO3-forming channel of the HO2 + NO reaction on tropospheric HNO3, NOx, HOx and ozone Atmos. Chem. Phys. 8

  6. Sulfur Geochemical Analysis and Interpretation with ChemCam on the Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Clegg, S. M.; Anderson, R. B.; Frydenvang, J.; Forni, O.; Newsom, H. E.; Blaney, D. L.; Maurice, S.; Wiens, R. C.

    2017-12-01

    The Curiosity rover has encountered many forms of sulfur including calcium sulfate veins [1], hydrated Mg sulfates, and Fe sulfates along the traverse through Gale crater. A new SO3 calibration model for the remote Laser-Induced Breakdown Spectroscopy (LIBS) technique used by the ChemCam instrument enables improved quantitative analysis of SO3, which has not been previously reported by ChemCam on a routine or quantitative basis. In this paper, the details of this new LIBS calibration model will be described and applied to many disparate Mars targets. Among them, Mavor contains a calcium sulfate vein surrounded by bedrock. In contrast, Jake M. is a float rock, Wernecke is a bedrock, Cumberland and Windjana are drill targets. In 2015 the ChemCam instrument team completed a re-calibration of major elements based on a significantly expanded set of >500 geochemical standards using the ChemCam testbed at Los Alamos National Laboratory [2]. In addition to these standards, the SO3 compositional range was recently extended with a series of doped samples containing various mixtures of Ca- and Mg-sulfate with basalt BHVO2. Spectra from these standards were processed per [4]. Calibration and Mars spectra were converted to peak-area-summed LIBS spectra that enables the SO3 calibration. These peak-area spectra were used to generate three overlapping partial least squares (PLS1) calibration sub-models as described by Anderson et al. [3, 5]. ChemCam analysis of Mavor involved a 3x3 raster in which locations 5 and 6 primarily probed Ca-sulfate material. The new ChemCam SO3 compositions for Mavor 5 and Mavor 6 are 48.6±1.2 and 50.3±1.2 wt% SO3, respectively. The LIBS spectra also recorded the presence of other elements that are likely responsible for the departure from pure Ca-sulfate chemistry. On the low-abundance side, the remaining 7 Mavor locations, Jake M., Cumberland, Windjana, and Wernecke all contain much lower SO3, between 1.4±0.5 wt% and 2.3±0.3 wt% SO3. [1] Nachon et

  7. A Comparison of Measurements from ATMOS and Instruments Aboard the ER-2 Aircraft: Tracers of Atmospheric Transport and Halogenated Gases

    NASA Technical Reports Server (NTRS)

    Chang, A. Y.; Salawitch, R. J.; Michelsen, H. A.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Rinsland, C. P.; Loewenstein, M.; Podolske, J. R.; Proffitt, M. H.; hide

    1996-01-01

    We compare volume mixing ratio profiles of N2O, O3, NO(y), H2O, CH4, and CO in the mid-latitude lower stratosphere measured by the ATMOS Fourier transform spectrometer on the ATLAS-3 Space Shuttle Mission with in situ measurements acquired from the NASA ER-2 aircraft during Nov 1994. ATMOS and ER-2 observations of (N2O) show good agreement, as do measured correlations of (O3), (NO(y)), (H2O), and (CH4) with (N2O). Thus a consistent measure of the hydrogen (H2O, CH4) content of the lower stratosphere is provided by the two platforms. The similarity of (NO(y)) determined by detection of individual species by ATMOS and the total (NOy) measurement on the ER-2 provides strong corroboration for the accuracy of both techniques. A 25% discrepancy in lower stratospheric (CO) observed by ATMOS and the ER-2 remains unexplained. Otherwise, the agreement for measurements of long-lived tracers demonstrates the ability to combine ATMOS data with in situ observations for quantifying atmospheric transport.

  8. Heavy Ozone Enrichments from ATMOS Infrared Solar Spectra

    NASA Technical Reports Server (NTRS)

    Irion, F. W.; Gunson, M. R.; Rinsland, C. P.; Yung, Y. L.; Abrams, M. C.; Chang, A. Y.; Goldman, A.

    1996-01-01

    Vertical enrichment profiles of stratospheric O-16O-16O-18 and O-16O-18O-16 (hereafter referred to as (668)O3 and (686)O3 respectively) have been derived from space-based solar occultation spectra recorded at 0.01 cm(exp-1) resolution by the ATMOS (Atmospheric Trace MOlecule Spectroscopy) Fourier transform infrared (FTIR) spectrometer. The observations, made during the Spacelab 3 and ATLAS-1, -2, and -3 shuttle missions, cover polar, mid-latitude and tropical regions between 26 to 2.6 mb inclusive (approximately 25 to 41 km). Average enrichments, weighted by molecular (48)O3 density, of (15 +/- 6)% were found for (668)O3 and (10 +/- 7)% for (686)O3. Defining the mixing ratio of (50)O3 as the sum of those for (668)O3 and (686)O3, an enrichment of (13 plus or minus 5)% was found for (50)O3 (1 sigma standard deviation). No latitudinal or vertical gradients were found outside this standard deviation. From a series of ground-based measurements by the ATMOS instrument at Table Mountain, California (34.4 deg N), an average total column (668)O3 enrichment of (17 +/- 4)% (1 sigma standard deviation) was determined, with no significant seasonal variation discernable. Possible biases in the spectral intensities that affect the determination of absolute enrichments are discussed.

  9. PubChemSR: A search and retrieval tool for PubChem

    PubMed Central

    Hur, Junguk; Wild, David J

    2008-01-01

    Background Recent years have seen an explosion in the amount of publicly available chemical and related biological information. A significant step has been the emergence of PubChem, which contains property information for millions of chemical structures, and acts as a repository of compounds and bioassay screening data for the NIH Roadmap. There is a strong need for tools designed for scientists that permit easy download and use of these data. We present one such tool, PubChemSR. Implementation PubChemSR (Search and Retrieve) is a freely available desktop application written for Windows using Microsoft .NET that is designed to assist scientists in search, retrieval and organization of chemical and biological data from the PubChem database. It employs SOAP web services made available by NCBI for extraction of information from PubChem. Results and Discussion The program supports a wide range of searching techniques, including queries based on assay or compound keywords and chemical substructures. Results can be examined individually or downloaded and exported in batch for use in other programs such as Microsoft Excel. We believe that PubChemSR makes it straightforward for researchers to utilize the chemical, biological and screening data available in PubChem. We present several examples of how it can be used. PMID:18482452

  10. ATMOS: Simulating molecular spectra towards the remote detection of biosignature gases

    NASA Astrophysics Data System (ADS)

    Sousa-Silva, Clara; Petkowski, Janusz; Seager, Sara

    2018-01-01

    The ability to identify molecules within spectral data is of importance for a variety of academic and industrial uses, in particular for the spectroscopic detection of life. A comprehensive analysis of any observational spectra requires information about the spectrum of each of its molecular components. However, knowledge of molecular spectra currently only exists for a few hundred molecules and, other than a handful of exceptions (e.g. water, NH3), most of their spectra are incomplete. Given the relatively low level of accuracy that observations often require, there is value in creating approximate models for the spectra of molecules, particularly for those about which we know very little or nothing at all. ATMOS (Approximate Theoretical MOlecular Spectra) can quickly provide spectral information for any given molecule, using a combination of experimental measurements, organic chemistry and quantum mechanics. ATMOS 1.0, presented here, can identify volatile molecules with significant spectral features in any given wavelength window within the infrared region and provide approximate spectra for thousands of gases.

  11. Immersion freezing induced by different kinds of coal fly ash: Comparing particle generation methods and measurement techniques

    NASA Astrophysics Data System (ADS)

    Grawe, Sarah; Augustin-Bauditz, Stefanie; Clemen, Hans-Christian; Eriksen-Hammer, Stine; Lubitz, Jasmin; Schneider, Johannes; Stratmann, Frank; Wex, Heike

    2017-04-01

    factor of 5 at most) when particles are generated via dry dispersion. Furthermore, we found that the ice nucleation ability of all samples is lowered significantly when changing from dry to wet particle generation. The aim of the study is to identify possible reasons for these observations. References: S. Grawe, S. Augustin-Bauditz, S. Hartmann, L. Hellner, J. B. C. Pettersson, A. Prager, F. Stratmann, and H. Wex, Atmos. Chem. Phys., 16, 13911-13928, 2016 S. Hartmann, D. Niedermeier, J. Voigtländer, T. Clauß, R. A. Shaw, H. Wex, A. Kiselev, and F. Stratmann, Atmos. Chem. Phys., 11, 1753-1767, 2011 C. Hoose and O. Möhler, Atmos. Chem. Phys., 12, 9817-9854, 2012 B. J. Murray, D. O'Sullivan, J. D. Atkinson, and M. E. Webb, Chem. Soc. Rev., 41, 6519-6554, 2012 N. S. Umo, B. J. Murray, M. T. Baeza-Romero, J. M. Jones, A. R. Lea-Langton, T. L. Malkin, D. O'Sullivan, L. Neve, J. M. C. Plane, and A. Williams, Atmos. Chem. Phys., 15, 5195-5210, 2015

  12. ChemCam Science Objectives for the Mars Science Laboratory (MSL) Rover

    NASA Technical Reports Server (NTRS)

    Wiens, R.; Maurice, S.; Bridges, N.; Clark, B.; Cremers, D.; Herkenhoff, K.; Kirkland, L.; Mangold, N.; Manhes, G.; Mauchien, P.

    2005-01-01

    ChemCam consists of two remote sensing instruments. One, a Laser-Induced Breakdown Spectroscopy (LIBS) instrument provides rapid elemental composition data on rocks and soils within 13 m of the rover. By using laser pulses, it can remove dust or profile through weathering layers remotely. The other instrument, the Remote Micro-Imager (RMI), provides the highest resolution images between 2 m and infinity. At approximately 80 Rad field of view, its resolution exceeds that of MER Pancam by at least a factor of four. The ChemCam instruments are described in a companion paper by Maurice et al. [1]. Here we present the science objectives for the ChemCam instrument package.

  13. ChemCam Science Objectives for the Mars Science Laboratory (MSL) Rover

    NASA Technical Reports Server (NTRS)

    Wiens, R.; Maurice, S.; Bridges, N.; Clark, B.; Cremers, D.; Herkenhoff, K.; Kirkland, L.; Mangold, N.; Manhes, G.; Mauchien, P.

    2005-01-01

    ChemCam consists of two remote sensing instruments. One, a Laser-Induced Breakdown Spectroscopy (LIBS) instrument provides rapid elemental composition data on rocks and soils within 13 m of the rover. By using laser pulses, it can remove dust or profile through weathering layers remotely. The other instrument, the Remote Micro-Imager (RMI), provides the highest resolution images between 2 m and infinity. At approximately 80 Rad field of view, its resolution exceeds that of MER Pancam by at least a factor of four. The ChemCam instruments are described in a companion paper by Maurice et al. Here we present the science objectives for the ChemCam instrument package.

  14. Investigating the heterogeneous freezing behavior of supercooled droplets containing different amounts of SNOMAX

    NASA Astrophysics Data System (ADS)

    Niedermeier, D.; Budke, C.; Koop, T.; Hartmann, S.; Augustin, S.; Stratmann, F.; Wex, H.

    2013-12-01

    bacteria, initiate the freezing process (Wolber et al. 1986). The Soccer ball model (Niedermeier et al., 2011) was used to parameterize the ice nucleation behavior of these INA macromolecules. One parameter set (mean contact angle and its standard deviation) could be derived that matches the experimental results of both devices. This parameterization can be used to describe the ice nucleation behavior of the INA bacteria in atmospheric models for a given number concentration being present in the atmosphere. Acknowledgement This work is funded by the German Research Foundation (DFG projects WE 4722/1-1 and KO 2944/2-1, both part of the research unit INUIT). References Budke et al., Proc.19th ICNAA, Fort Collins, CO, USA, 949-951, 2013. Hartmann et al., Atmos. Chem. Phys., 11, 1753-1767, 2011. Hartmann et al., Atmos. Chem. Phys., 13, 5751-5766, 2013. Hoose et al., Environ. Res. Lett. 5, 024009, 2010. Kanitz et al., Geophys. Res. Lett., 38, L17802, 2011. Niedermeier et al., Atmos. Chem. Phys., 11, 8767-8775, 2011. Murray et al., Chem. Soc. Rev., 41, 6519-6554, 2012. Wolber et al., P. Natl. A. Sci., 83, 7256-7260, 1986.

  15. Literature information in PubChem: associations between PubChem records and scientific articles.

    PubMed

    Kim, Sunghwan; Thiessen, Paul A; Cheng, Tiejun; Yu, Bo; Shoemaker, Benjamin A; Wang, Jiyao; Bolton, Evan E; Wang, Yanli; Bryant, Stephen H

    2016-01-01

    PubChem is an open archive consisting of a set of three primary public databases (BioAssay, Compound, and Substance). It contains information on a broad range of chemical entities, including small molecules, lipids, carbohydrates, and (chemically modified) amino acid and nucleic acid sequences (including siRNA and miRNA). Currently (as of Nov. 2015), PubChem contains more than 150 million depositor-provided chemical substance descriptions, 60 million unique chemical structures, and 225 million biological activity test results provided from over 1 million biological assay records. Many PubChem records (substances, compounds, and assays) include depositor-provided cross-references to scientific articles in PubMed. Some PubChem contributors provide bioactivity data extracted from scientific articles. Literature-derived bioactivity data complement high-throughput screening (HTS) data from the concluded NIH Molecular Libraries Program and other HTS projects. Some journals provide PubChem with information on chemicals that appear in their newly published articles, enabling concurrent publication of scientific articles in journals and associated data in public databases. In addition, PubChem links records to PubMed articles indexed with the Medical Subject Heading (MeSH) controlled vocabulary thesaurus. Literature information, both provided by depositors and derived from MeSH annotations, can be accessed using PubChem's web interfaces, enabling users to explore information available in literature related to PubChem records beyond typical web search results. Graphical abstractLiterature information for PubChem records is derived from various sources.

  16. The global impact of mineral dust on cloud droplet number concentration

    NASA Astrophysics Data System (ADS)

    Karydis, V.; Tsimpidi, A.; Bacer, S.; Pozzer, A.; Nenes, A.; Lelieveld, J.

    2016-12-01

    mineral dust on global atmospheric nitrate concentrations." Atmos. Chem. Phys. 16(3): 1491-1509. Kumar, et al. (2011). "Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals." Atmos. Chem. Phys. Discuss. 11(4): 12561-12605.

  17. Ozone Enhancement in the Lower Troposphere over East Asia Observed by OMI: Evidence of Transboundary Pollution Transport from China to Korea and Japan

    NASA Astrophysics Data System (ADS)

    Hayashida, S.; Ono, A.; Liu, X.; Yang, K.; Kanaya, Y.; Chance, K.

    2014-12-01

    Liu et al. (2010) developed an algorithm to retrieve ozone profiles from the ground to ~60 km from OMI ultraviolet radiances using the optimal estimation technique (Rogers, 2000). This algorithm is for derivation of an ozone profile divided into 24 layers, with three layers in the troposphere (0-3km, 3-6km, 6-9km). In this study, we report results for the analysis of lower tropospheric ozone over CEC using the OMI ozone profiles mentioned above. First, we show good correlation of OMI-derived ozone with aircraft measurements and ozonesonde measurements. Second, we show significant enhancement of ozone derived from OMI over CEC. To interpret this remarkable enhancement of ozone, we show correlation of ozone with carbon monoxide (CO) and hotspot numbers suggesting the effects of crop burning on ozone enhancement. Third, we also show complementary data obtained in the field campaign at Mt. Tai in 2005 and 2006 (Kayana et al., 2013) to demonstrate ozone enhancement in June every year and show the relationship with residue burning in fields over Shandong and Hebei Provinces. Finally, we show important evidence of transboundary pollution transport from China to Korea and Japan.References:Kanaya, Y., et al. (2013), Atmos. Chem. Phys., 13(16), 8265-8283.Liu, X., et al. (2010), Atmos. Chem. Phys., 10(5), 2521-2537.Rodgers, C. D. (2000), Inverse methods for atmospheric sounding: Theory and practice, World Scientific Publishing, Singapore.

  18. Characterization of Acremonium and Isaria ice nuclei

    NASA Astrophysics Data System (ADS)

    Pummer, Bernhard G.; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2014-05-01

    .J. et al. (2013) Atmos. Chem. Phys. 13, 6151-6164 Iannone R. et al. (2011) Atmos. Chem. Phys. 11, 1191-1201 Jayaweera K. and Flanagan P. (1982) Geophys. Res. Lett. 9, 94-97 Kieft T.L. and Ruscetti T. (1990) J. Bacteriol. 172, 3519-3523 Morris C.E. et al. (2013) Atmos. Chem. Phys. 13, 4223-4233 Pouleur S. et al. (1992) Appl. Environ. Microbiol. 58, 2960-2964 Pummer B. et al. (2013) Biogeosci. 10, 8083-8091 Tsumuki H. et al. (1995) Ann. Phytopathol. Soc. Jpn. 61, 334-339

  19. Predicting the thermal/structural performance of the atmospheric trace molecules spectroscopy /ATMOS/ Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Miller, J. M.

    1980-01-01

    ATMOS is a Fourier transform spectrometer to measure atmospheric trace molecules over a spectral range of 2-16 microns. Assessment of the system performance of ATMOS includes evaluations of optical system errors induced by thermal and structural effects. In order to assess the optical system errors induced from thermal and structural effects, error budgets are assembled during system engineering tasks and line of sight and wavefront deformations predictions (using operational thermal and vibration environments and computer models) are subsequently compared to the error budgets. This paper discusses the thermal/structural error budgets, modelling and analysis methods used to predict thermal/structural induced errors and the comparisons that show that predictions are within the error budgets.

  20. Polar Vortex Dynamics During Spring and Fall Diagnosed Using ATMOS Trace Gas Observation

    NASA Technical Reports Server (NTRS)

    Manney, G.; Michelsen, H.; Santee, M.; Gunson, M.; Irion, F.; Roche, A.; Livesey, N.

    1999-01-01

    Trace gases measured by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during the Mar/Apr 1992(AT-1), Apr 1993(AT-2), and Nov 1994(AT-3) space-shuttle missions have been mapped into equivalent latitude/potential temperature (EqL/0) coordinates.

  1. Modelling Contribution of Biogenic VOCs to New Particle Formation in the Jülich Plant Atmosphere Chamber

    NASA Astrophysics Data System (ADS)

    Liao, L.; Boy, M.; Mogensen, D.; Mentel, T. F.; Kleist, E.; Kiendler-Scharr, A.; Tillman, R.; Kulmala, M. T.; Dal Maso, M.

    2012-12-01

    new aerosol formation in the lower troposphere, developed by Boy, et al. (2006). We first evaluate the modelled results with measurements, and further we investigate the influence of different order of magnitude of terpene mixing ratios, especially isoprene and monoterpenes to the most important parameter of new particles formation, i.e. the formation rate (J1). Also, the influence of varying organic source rates on the sulphuric acid concentration available for particle formation is discussed. M. Boy et al., (2006). Atmos. Chem. Phys., 6, 4499-4517. M. Kulmala et al., (2004). Atmos. Chem. Phys., 4, 557-562. P. Tunved et al., (2006). Science, 14, 261-263. Th. F. Mentel et al., (2009). Atmos. Chem. Phys., 9, 4387-4406.

  2. Effect of climate change and CO2 inhibition on isoprene emissions in Europe calculated using the ALARO-0 regional climate model

    NASA Astrophysics Data System (ADS)

    Bauwens, Maite; Müller, Jean-François; Stavrakou, Trisevgeni; De Cruz, Lesley; Van Schaeybroeck, Bert; Termonia, Piet; De Troch, Rozemien; Berckmans, Julie; Hamdi, Rafiq

    2017-04-01

    11% lower and 26% higher than the present isoprene emissions over Europe. Giot, O. et al.: Validation of the ALARO-0 model within the EURO-CORDEX framework, Geosci. Model Dev. Discuss., 8, 8387-8409, 2015. Guenther, A. et al.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181-3210, 2006. Müller, J.-F. et al.: Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environmental model, Atmos. Chem. Phys., 8, 1329-1341, 2008 Stavrakou, T. et al.: Isoprene emissions over Asia 1979-2012 : impact of climate and land use changes, Atmos. Chem. Phys., 14, 4587-4605, 2014.

  3. Simulation of particle diversity and mixing state over Greater Paris: a model-measurement inter-comparison.

    PubMed

    Zhu, Shupeng; Sartelet, Karine N; Healy, Robert M; Wenger, John C

    2016-07-18

    Air quality models are used to simulate and forecast pollutant concentrations, from continental scales to regional and urban scales. These models usually assume that particles are internally mixed, i.e. particles of the same size have the same chemical composition, which may vary in space and time. Although this assumption may be realistic for continental-scale simulations, where particles originating from different sources have undergone sufficient mixing to achieve a common chemical composition for a given model grid cell and time, it may not be valid for urban-scale simulations, where particles from different sources interact on shorter time scales. To investigate the role of the mixing state assumption on the formation of particles, a size-composition resolved aerosol model (SCRAM) was developed and coupled to the Polyphemus air quality platform. Two simulations, one with the internal mixing hypothesis and another with the external mixing hypothesis, have been carried out for the period 15 January to 11 February 2010, when the MEGAPOLI winter field measurement campaign took place in Paris. The simulated bulk concentrations of chemical species and the concentrations of individual particle classes are compared with the observations of Healy et al. (Atmos. Chem. Phys., 2013, 13, 9479-9496) for the same period. The single particle diversity and the mixing-state index are computed based on the approach developed by Riemer et al. (Atmos. Chem. Phys., 2013, 13, 11423-11439), and they are compared to the measurement-based analyses of Healy et al. (Atmos. Chem. Phys., 2014, 14, 6289-6299). The average value of the single particle diversity, which represents the average number of species within each particle, is consistent between simulation and measurement (2.91 and 2.79 respectively). Furthermore, the average value of the mixing-state index is also well represented in the simulation (69% against 59% from the measurements). The spatial distribution of the mixing

  4. The COCCON Paris Experiment - Model-Data Comparison of XCO2 (and XCH4) in an Urban Environment

    NASA Astrophysics Data System (ADS)

    Vogel, F. R.; Staufer, J.; Frey, M.; Broquet, G.; Xueref-Remy, I.; Sha, M. K.; Blumenstock, T.; Te, Y. V.; Janssen, C.; Jeseck, P.; Chelin, P.; Fratacci, T.; Tu, Q.; Gross, J.; Schäfer, K.; Orphal, J.; Ciais, P.; Hase, F.

    2016-12-01

    Currently, over 50% of the global population lives in urban areas1 and the future population growth is also predicted to occur mostly in urban centers. While emissions of Greenhouse Gases and carbon-based air pollutants can be estimated quite precisely on national scale using fuel consumption statistics, typically to about 3%-40%2, higher uncertainties of 20%-50% are reported3 for urban GHG emissions. Atmospheric observations, when combined with inversion modelling can allow independently assessing such urban emission inventories4. This study investigates how well novel low-resolution FTS observations can be represented within atmospheric transport models used in such inversion systems, which would be the pre-requisite for a future system based on XCO2 observations. A network of five EM27sun instruments5,6was deployed across the Paris Metropolitan region (upwind, downwind and inside of Paris, diameter ca. 40km) for a three week period in spring 2015. Observed XCO2 significantly varies during this period ranging from 400.5ppm to 406ppm. A decrease in XCO2 throughout the day, likely driven by the biogenic CO2 uptake in the region, is recorded at all sites. Both observational and simulated XCO2 also clearly show that the emissions in the Paris region significantly increase XCO2 (0-2ppm), depending on meteorological conditions. The observational data is compared to three configurations of our XCO2 forward model to assess their performance. We find that all simulations and observations agree qualitatively and that the gradient of XCO2 over Paris can also be reproduced quantitatively for specific meteorological conditions and optimal model setup. 1United Nations, Department of Economic and Social Affairs, Population Division (2014). World Urbanization Prospects: The 2014 Revision 2Anders et al. 2014, Tellus B 2014, 66, 23616, http://dx.doi.org/10.3402/tellusb.v66.23616 3Wu et al. 2016, Atmos. Chem. Phys., 16, 7743-7771, doi:10.5194/acp-16-7743-2016 4Staufer et al. 2016

  5. Is Ozone Going Up Now?

    NASA Astrophysics Data System (ADS)

    Steinbrecht, W.; Froidevaux, L.; Davis, S. M.; Degenstein, D. A.; Wild, J.; Roth, C.; Kaempfer, N.; Leblanc, T.; Godin-Beekmann, S.; Vigouroux, C.; Swart, D. P. J.; Querel, R.; Harris, N.; Nedoluha, G. E.

    2016-12-01

    The last WMO ozone assessment (WMO, 2014) concluded that observations show significant ozone increase, 3% per decade (±2% per decade, 2σ), in the upper stratosphere since 2000. At other levels, or for total ozone, increases were not found or not significant. Overall, this is consistent with expectations from model simulations, (e.g. CCMVal2, Eyring et al., 2010). These simulations indicate that declining chlorine levels and stratospheric cooling due to CO2 increase should contribute roughly equal parts to ozone increase in the upper stratosphere. Shortly after the assessment, results from the SI2N initiative (Harris et al., 2015) confirmed increasing ozone in the upper stratosphere. However, the SI2N results indicated smaller increases (+1.5% per decade) than the WMO assessment, and substantially larger uncertainties (±5% per decade, 2σ). Differences can be attributed to time period, 1998 to 2012, compared to 2000 to 2013/14 for the assessment, and to larger assumed instrumental drift uncertainties, 6% per decade, (only 1 to 2% per decade in WMO 2014, see also Hubert et al., 2016). Here, we explore how additional ground-based and satellite data since 2013, as well as new and improved records, affect ozone trends and uncertainties. The focus will be on ozone in the upper stratosphere, because this is the region where the earliest signs of beginning ozone recovery are expected. ReferencesEyring, V., et al.: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models, Atmos. Chem. Phys., 10, 9451-9472, doi:10.5194/acp-10-9451-2010, 2010. Harris, N. R. P., et al.: Past changes in the vertical distribution of ozone - Part 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 15, 9965-9982, doi:10.5194/acp-15-9965-2015, 2015. Hubert, D., et al.: Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records, Atmos. Meas. Tech., 9, 2497-2534, doi:10.5194/amt-9

  6. Preface to Special Issue of ChemSusChem on Perovskite Optoelectronics.

    PubMed

    Bolink, Henk J; Mhaisalkar, Subodh G

    2017-10-09

    This Editorial introduces one of two companion Special Issues on "Halide Perovskites for Optoelectronics Applications" in ChemSusChem and Energy Technology following the ICMAT 2017 Conference in Singapore. More information on the other Special Issue can be found in the Editorial published in Energy Technology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry.

    PubMed

    Sumner, Andrew J; Woo, Joseph L; McNeill, V Faye

    2014-10-21

    The reactive uptake of glyoxal by atmospheric aerosols is believed to be a significant source of secondary organic aerosol (SOA). Several recent laboratory studies have been performed with the goal of characterizing this process, but questions remain regarding the effects of photochemistry on SOA growth. We applied GAMMA (McNeill et al. Environ. Sci. Technol. 2012, 46, 8075-8081), a photochemical box model with coupled gas-phase and detailed aqueous aerosol-phase chemistry, to simulate aerosol chamber studies of SOA formation by the uptake of glyoxal by wet aerosol under dark and irradiated conditions (Kroll et al. J. Geophys. Res. 2005, 110 (D23), 1-10; Volkamer et al. Atmos. Chem. Phys. 2009, 9, 1907-1928; Galloway et al. Atmos. Chem. Phys. 2009, 9, 3331- 306 3345 and Geophys. Res. Lett. 2011, 38, L17811). We find close agreement between simulated SOA growth and the results of experiments conducted under dark conditions using values of the effective Henry's Law constant of 1.3-5.5 × 10(7) M atm(-1). While irradiated conditions led to the production of some organic acids, organosulfates, and other oxidation products via well-established photochemical mechanisms, these additional product species contribute negligible aerosol mass compared to the dark uptake of glyoxal. Simulated results for irradiated experiments therefore fell short of the reported SOA mass yield by up to 92%. This suggests a significant light-dependent SOA formation mechanism that is not currently accounted for by known bulk photochemistry, consistent with recent laboratory observations of SOA production via photosensitizer chemistry.

  8. Laboratory studies of key gas-phase HOx-NOx coupling reactions.

    NASA Astrophysics Data System (ADS)

    Dillon, Terry J.; Dulitz, Katrin; Crowley, John N.

    2013-04-01

    The HOx (OH & HO2) and NOx (NO & NO2) families of atmospheric radicals are coupled via a number of gas-phase reactions. These reactions have a substantial impact by controlling radical propagation / termination in catalytic cycles, so modifying the oxidation power of the atmosphere and its rate of O3 production. However, field measurements {1-3} have demonstrated that our understanding of HOx - NOx chemistry is incomplete. We have identified four reactions (R1-R4) where the database is particularly unsatisfactory, leading to large uncertainties in atmospheric models {4-5}. HO2 + NO -> OH + NO2 (R1a) HO2 + NO (+ M) -> HNO3 (+ M) (R1b) NO2* + H2O -> NO2 + H2O (R2a) NO2* + H2O -> OH + HONO (R2b) NO3* + H2O -> NO3 + H2O (R3a) NO3* + H2O -> OH + HNO3 (R3b) OH + HNO3 -> H2O + NO3 (R4) In this experimental work, laser-based kinetic and spectroscopic tools were used to investigate recent observations {6-7} of HNO3 formation from the (otherwise radical propagating) HO2 + NO (R1), and OH formation following absorption of abundant, long wavelength photons by NO2 {8} and NO3 in the presence of water vapour (R2, R3). Uncertainties {9} associated with a classical HOx-NOx coupling reaction (R4) were also addressed. Critical photochemical parameters so derived have included absolute rate coefficients for (R1) and (R4) and product yields (R1b, R2b, R3b). The atmospheric implications of these results will be discussed. References: {1} Faloona, I. et al. J. Geophys. Res., 105, 3771-3783, 2000.; {2} Thakur, A.N. et al., Atmos. Environ., 33, 1403-1422, 1999.; {3} Wennberg, P.O. et al., Geophys. Res. Lett., 26, 1373-1376, 1999.; {4} Cariolle, D. et al., Atmos. Chem. Phys., 8, 4061-4068, 2008.; {5} Wennberg P.O. and Dabdub, D. Science, 319, 2008. ; {6} Butkovskaya, N. et al., J. Phys. Chem. A, 111, 9047-9053, 2007.; {7} Butkovskaya, N. et al., J. Phys. Chem. A, 109, 6509-6520, 2005.; {8} Li, S.P. et al., Science, 319, 1657-1660, 2008. {9} Brown, S.S. et al., J. Phys. Chem., 103, 3031

  9. Atmo-metabolomics: a new measurement approach for investigating aerosol composition and ecosystem functioning.

    NASA Astrophysics Data System (ADS)

    Rivas-Ubach, A.; Liu, Y.; Sardans, J.; Tfaily, M. M.; Kim, Y. M.; Bourrianne, E.; Paša-Tolić, L.; Penuelas, J.; Guenther, A. B.

    2016-12-01

    Aerosols play crucial roles in the processes controlling the composition of the atmosphere and the functioning of ecosystems. Gaining a deeper understanding of the chemical composition of aerosols is one of the major challenges for atmospheric and climate scientists and is beginning to be recognized as important for ecological research. Better comprehension of aerosol chemistry can potentially provide valuable information on atmospheric processes such as oxidation of organics and the production of cloud condensation nuclei as well as provide an approximation of the general status of an ecosystem through the measurement of certain stress biomarkers. In this study, we describe an efficient aerosol sampling method, the metabolite extraction and the analytical procedures for the chemical characterization of aerosols, namely, the atmo-metabolome. We used mass spectrometry (MS) coupled to liquid chromatography (LC-MS), gas chromatography (GC-MS) and Fourier transform ion cyclotron resonance (FT-ICR-MS) to characterize the atmo-metabolome of two marked seasons; spring and summer. Our sampling and extraction methods demonstrated to be suitable for aerosol chemical characterization with any of the analytical platforms used in this study. The atmo-metabolome between spring and summer showed overall statistically differences. We identified several metabolites that can be attributed to pollen and other plant-related aerosols. Spring aerosols exhibit higher concentrations of metabolites linked to higher plant activity while summer samples had higher concentrations of metabolites that may reflect certain oxidative stresses in primary producers. Moreover, the elemental composition of aerosols showed clear different between seasons. Summer aerosols were generally higher in molecular weight and with higher O/C ratios, indicating higher oxidation levels and condensation of compounds relative to spring. Our method represents an advanced approach for characterizing the composition of

  10. Profiles of Stratospheric Chlorine Nitrate from ATMOS/ATLAS 1 Infrared Solar Occultation Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Mahieu, E.; Goldman, A.; Ko, M. K. W.; Rodriguez, J. M.; Sze, N. D.

    1994-01-01

    Stratospheric volume mixing ration profiles of chlorine nitrate have been retrieved from 0.01-cm(sub -1) resolution infrared solar occutation spectra recorded at latitudes between 14 degrees N and 54 degrees S by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer during the ATLAS 1 shuttle mission (March 24 to April 2, 1992).

  11. Extension of the CAPRAM mechanism with the improved mechanism generator GECKO-A

    NASA Astrophysics Data System (ADS)

    Herrmann, H.; Bräuer, P.; Mouchel-Vallon, C.; Tilgner, A.; Wolke, R.; Aumont, B.

    2013-12-01

    oxidised mono- and diacids in the aqueous phase as well as interactions to inorganic cycles and the influence on the gas phase chemistry and composition. Results have been compared to results of previous versions and show a significant improvement in CAPRAM 3.5alpha when comparing the modelled data to literature data from field experiments. For example, in CAPRAM 3.5alpha there is a malonic acid production of about 80 ng/m3 compared to a few ng m-3 in CAPRAM 3.0n. The results in CAPRAM 3.5alpha confirm recent measurements by Bao et al. (2012), who measured up to 137 ng m-3. Moreover, several attempts have been undertaken to validate the mechanisms created by GECKO-A with own experiments, such as the HCCT-2010 campaign and LEAK chamber experiments. References Aumont, B et al., Atmos. Chem. Phys., 5, 2497-2517, 2005. Bräuer, P. et al., J. Atmos. Chem., 70(1), 1 - 34, 2013. Bao, L. et al., Atmos. Env., 47, 546 - 553, 2012. Tilgner, A. and Herrmann, H., Atmos. Environ., 44, 5415 - 5422, 2010. Wolke, R. et al., Atmos. Environ., 39, 4375 - 4388, 2005.

  12. Performance of the JULES land surface model for UK Biogenic VOC emissions

    NASA Astrophysics Data System (ADS)

    Hayman, Garry; Comyn-Platt, Edward; Vieno, Massimo; Langford, Ben

    2017-04-01

    :10.1111/j.1469-8137.2009.02859.x; (3) Grote and Niinemets, 2008: Plant Biol., 10, 8, doi:10.1055/s-2007-964975; (4) Best et al., 2011: Geosci. Model Dev., 4, 677, doi:10.5194/gmd-4-677-2011; (5) Clark et al., 2011: Geosci. Model Dev., 4, 701, doi:10.5194/gmd-4-701-2011; (6) Pacifico et al., 2011: Atmos. Chem. Phys., 11, 4371, doi:10.5194/acp-11-4371-2011; [7] Simpson et al., 2012: Atmos. Chem. Phys., 12, 7825, doi: 10.5194/acp-12-7825-2012; [8] Vieno et al., 2016: Atmos. Chem. Phys., 16, 265, doi: 10.5194/acp-16-265-2016.

  13. Assessing changes in stratospheric mean age of air and fractional release using historical trace gas observations

    NASA Astrophysics Data System (ADS)

    Laube, Johannes; Bönisch, Harald; Engel, Andreas; Röckmann, Thomas; Sturges, William

    2014-05-01

    Large-scale stratospheric transport is pre-dominantly governed by the Brewer-Dobson circulation. Due to climatic change a long-term acceleration of this residual stratospheric circulation has been proposed (e.g. Austin et al.,2006). Observational evidence has revealed indications for temporary changes (e.g. Bönisch et al., 2011) but a confirmation of a significant long-term trend is missing so far (e.g. Engel et al., 2009). A different aspect is a possible long-term change in the break-down of chemically important species such as chlorofluorocarbons as proposed by Butchart et al. 2001. Recent studies show significant differences adding up to more than 20 % in the chlorine released from such compounds (Newman et al., 2007; Laube et al., 2013). We here use a data set of three long-lived trace gases, namely SF6, CF2Cl2, and N2O, as measured in whole-air samples collected during balloon and aircraft flights between 1975 and 2011, to assess changes in stratospheric transport and chemistry. For this purpose we utilise the mean stratospheric transit times (or mean ages of air) in combination with a measure of the chemical decomposition (i.e. fractional release factors). We also evaluate the influence of different trend correction methods on these quantities and explore their variability with latitude, altitude, and season. References Austin, J. & Li, F.: On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air, Geophys. Res. Lett., 33, L17807, 2006. Bönisch, H., Engel, A., Birner, Th., Hoor, P., Tarasick, D. W., and Ray, E. A.: On the structural changes in the Brewer-Dobson circulation after 2000, Atmos. Chem. Phys., 11, 3937-3948, 2011. Butchart, N. & Scaife, A. A. Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799-802, 2001. Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T

  14. Optical design of the ATMOS Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Abel, I. R.; Reynolds, B. R.; Breckinridge, J. B.; Pritchard, J.

    1979-01-01

    The optical system design of the ATMOS Fourier transform spectrometer to be operated from Spacelab for the measurement of stratospheric trace molecules is described. The design contains features which can achieve the required fringe contrast of 80% and spectral resolution of 0.02/cm over a spectral range of 2-16 microns. In particular, the design is based on the following features which alleviate the usual requirements for alignment precision: (1) 'cat's eye' mirror configuration in the two arms of the interferometer for retroreflection stability, (2) tilt-compensated system of beamsplitter, compensator, and fold mirrors for wavefront directional stability, (3) paraboloidal 'cat's eye' primary mirror for wavefront stability against shear, (4) rotatable compensator for matching chromatic dispersion, and (5) wedged refractive components to avoid channel spectra due to the Fabry-Perot effect.

  15. 75 FR 80483 - American Midstream (Louisiana Intrastate), LLC; Atmos Energy-Kentucky/Mid-States Division; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-100-001; Docket No. PR10-68-001; Not Consolidated] American Midstream (Louisiana Intrastate), LLC; Atmos Energy-- Kentucky/Mid-States Division; Notice of Baseline Filings December 15, 2010. Take notice that on December 10...

  16. Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation?

    NASA Astrophysics Data System (ADS)

    Niedermeier, Dennis; Augustin-Bauditz, Stefanie; Hartmann, Susan; Wex, Heike; Ignatius, Karoliina; Stratmann, Frank

    2015-04-01

    active surface site density, which we named ns*, for the investigated feldspar sample. The comparison of these results with those of other studies elucidates the general feasibility of determining such an asymptotic value and also show that the value of ns* strongly depends on the method of the particle surface area determination. Acknowledgement This work is partly funded by the Federal Ministry of Education and Research (BMBF - project CLOUD 12) and by the German Research Foundation (DFG project WE 4722/1-1, part of the research unit INUIT, FOR 1525). D. Niedermeier acknowledges financial support from the Alexander von Humboldt-foundation. References Augustin et al.: Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989-11003, doi:10.5194/acp-13-10989-2013, 2013. Hartmann et al.: Immersion freezing of ice nucleation active protein complexes, Atmos. Chem. Phys., 13, 5751-5766, doi:10.5194/acp-13-5751-2013, 2013. Murray et al.: Ice nucleation by particles immersed in supercooled cloud droplets, Chem. Soc. Rev., 41, 6519-6554, 2012. Wex et al.: Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance, Atmos. Chem. Phys. Discuss., 14, 22321-22384, doi:10.5194/acpd-14-22321-2014, 2014.

  17. Exploiting PubChem for Virtual Screening

    PubMed Central

    Xie, Xiang-Qun

    2011-01-01

    Importance of the field PubChem is a public molecular information repository, a scientific showcase of the NIH Roadmap Initiative. The PubChem database holds over 27 million records of unique chemical structures of compounds (CID) derived from nearly 70 million substance depositions (SID), and contains more than 449,000 bioassay records with over thousands of in vitro biochemical and cell-based screening bioassays established, with targeting more than 7000 proteins and genes linking to over 1.8 million of substances. Areas covered in this review This review builds on recent PubChem-related computational chemistry research reported by other authors while providing readers with an overview of the PubChem database, focusing on its increasing role in cheminformatics, virtual screening and toxicity prediction modeling. What the reader will gain These publicly available datasets in PubChem provide great opportunities for scientists to perform cheminformatics and virtual screening research for computer-aided drug design. However, the high volume and complexity of the datasets, in particular the bioassay-associated false positives/negatives and highly imbalanced datasets in PubChem, also creates major challenges. Several approaches regarding the modeling of PubChem datasets and development of virtual screening models for bioactivity and toxicity predictions are also reviewed. Take home message Novel data-mining cheminformatics tools and virtual screening algorithms are being developed and used to retrieve, annotate and analyze the large-scale and highly complex PubChem biological screening data for drug design. PMID:21691435

  18. Aerosol Processing in Mixed-Phase Clouds in ECHAM5-HAM: Comparison of Single-Column Model Simulations to Observations

    NASA Astrophysics Data System (ADS)

    Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.; Herich, H.

    2007-12-01

    The global aerosol-climate model ECHAM5-HAM (Stier et al., 2005) has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme (Lohmann et al., 2007). Transfer, production and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland) (Verheggen et al, 2007). Although the single-column simulations can not be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when forcing non-equilibrium conditions. References: U. Lohmann et al., Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, Atmos. Chem. Phys. 7, 3425-3446 (2007) P. Stier et al., The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys. 5, 1125-1156 (2005) B. Verheggen et al., Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds, Accepted for publication in J. Geophys. Res. (2007)

  19. Observations on the Freezing of Supercooled Pollen Washing Water by a New Electrodynamic Balance

    NASA Astrophysics Data System (ADS)

    Tong, Haijie; Pope, Francis D.; Kalberer, Markus

    2014-05-01

    ., et al. (2012) Atmos. Chem. Phys., 12, 2541-2550. [5] Augustin, S., et al. (2013) Atmos. Chem. Phys., 13, 10989-11003.

  20. Stratospheric sulfuric acid aerosols: composition and temperature discrimination with the ATMOS data set

    NASA Technical Reports Server (NTRS)

    Eldering, A.; Irion, F. W.; Mills, F. P.; Steele, H. M.; Kahn, B. H.; Gunson, M. R.

    2000-01-01

    The ATMOS Fourier transform spectrometer was flown for a fourth time on the Space Shuttle as part of the ATLAS-3 instrument payload in November 1994. More than 190 sunrise and sunset occultation events provided measurements of more than 30 atmospheric trace gases at latitudes 3-49(deg)N and 65-72(deg)S, including observations both inside and outside the Antarctic polar vortex.

  1. PubChem promiscuity: a web resource for gathering compound promiscuity data from PubChem.

    PubMed

    Canny, Stephanie A; Cruz, Yasel; Southern, Mark R; Griffin, Patrick R

    2012-01-01

    Promiscuity counts allow for a better understanding of a compound's assay activity profile and drug potential. Although PubChem contains a vast amount of compound and assay data, it currently does not have a convenient or efficient method to obtain in-depth promiscuity counts for compounds. PubChem promiscuity fills this gap. It is a Java servlet that uses NCBI Entrez (eUtils) web services to interact with PubChem and provide promiscuity counts in a variety of categories along with compound descriptors, including PAINS-based functional group detection. http://chemutils.florida.scripps.edu/pcpromiscuity southern@scripps.edu

  2. PubChem promiscuity: a web resource for gathering compound promiscuity data from PubChem

    PubMed Central

    Canny, Stephanie A.; Cruz, Yasel; Southern, Mark R.; Griffin, Patrick R.

    2012-01-01

    Summary: Promiscuity counts allow for a better understanding of a compound's assay activity profile and drug potential. Although PubChem contains a vast amount of compound and assay data, it currently does not have a convenient or efficient method to obtain in-depth promiscuity counts for compounds. PubChem promiscuity fills this gap. It is a Java servlet that uses NCBI Entrez (eUtils) web services to interact with PubChem and provide promiscuity counts in a variety of categories along with compound descriptors, including PAINS-based functional group detection. Availability: http://chemutils.florida.scripps.edu/pcpromiscuity Contact: southern@scripps.edu PMID:22084255

  3. The immersion freezing behavior of mixtures of mineral dust and biological substances

    NASA Astrophysics Data System (ADS)

    Augustin, Stefanie; Schneider, Johannes; Schmidt, Susan; Niedermeier, Dennis; Ebert, Martin; Voigtländer, Jens; Rösch, Michael; Stratmann, Frank; Wex, Heike

    2014-05-01

    ., Niedermeier, D., Clauss, T., Voigtländer, J., Tomsche, L, Wex, H. and Stratmann, F., Atmos. Chem. Phys. Discuss., 13, 10989-11003, 2013. Hartmann, S., Augustin, S.,D. Niedermeier, J. Voigtlander, T. Clauss, H. Wex, and F. Stratmann, Atmos. Chem. Physics , 13, 5751-5766, 2013. Hoose, C., Kristjansson, J. E., Burrows, S. M., Environ. Res. Lett. 5, 024009, 2010. Kanitz, T., Seifert, P., Ansmann, A., Engelmann, R., Althausen, D., Casiccia, C., and Rohwer, E. G., Geophys. Res. Lett., 38, L17802, 2011. Murray, B. J., OSullivan, D., Atkinson, J. D. and Webb, M. E., Chem. Soc. Rev., 41, 6519-6554, 2012. Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S. and Grothe, H, Atmos. Chem. Phys., 12, 2541-2550, 2012. Wolber, P. K., Deininger, C. A., Southworth, M. W., Vandekerckhove, J., Vanmontagu, M. and Warren, G. J, Proc. Natl. Acad. Sci. USA, 83, 7256- 7260, 1986

  4. PubChem BioAssay: 2017 update

    PubMed Central

    Wang, Yanli; Bryant, Stephen H.; Cheng, Tiejun; Wang, Jiyao; Gindulyte, Asta; Shoemaker, Benjamin A.; Thiessen, Paul A.; He, Siqian; Zhang, Jian

    2017-01-01

    PubChem's BioAssay database (https://pubchem.ncbi.nlm.nih.gov) has served as a public repository for small-molecule and RNAi screening data since 2004 providing open access of its data content to the community. PubChem accepts data submission from worldwide researchers at academia, industry and government agencies. PubChem also collaborates with other chemical biology database stakeholders with data exchange. With over a decade's development effort, it becomes an important information resource supporting drug discovery and chemical biology research. To facilitate data discovery, PubChem is integrated with all other databases at NCBI. In this work, we provide an update for the PubChem BioAssay database describing several recent development including added sources of research data, redesigned BioAssay record page, new BioAssay classification browser and new features in the Upload system facilitating data sharing. PMID:27899599

  5. AdapChem

    NASA Technical Reports Server (NTRS)

    Oluwole, Oluwayemisi O.; Wong, Hsi-Wu; Green, William

    2012-01-01

    AdapChem software enables high efficiency, low computational cost, and enhanced accuracy on computational fluid dynamics (CFD) numerical simulations used for combustion studies. The software dynamically allocates smaller, reduced chemical models instead of the larger, full chemistry models to evolve the calculation while ensuring the same accuracy to be obtained for steady-state CFD reacting flow simulations. The software enables detailed chemical kinetic modeling in combustion CFD simulations. AdapChem adapts the reaction mechanism used in the CFD to the local reaction conditions. Instead of a single, comprehensive reaction mechanism throughout the computation, a dynamic distribution of smaller, reduced models is used to capture accurately the chemical kinetics at a fraction of the cost of the traditional single-mechanism approach.

  6. ChemCam Targeted Science at Gale Crater

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Blaney, D. L.; Clark, B. C.; Bridges, N. T.; Clegg, S. M.; Maurice, S.; Newsom, H. E.; Vaniman, D. T.; Herkenhoff, K. E.; Ollila, A. M.; Gasnault, O.; Pinet, P. C.; Dromart, G.; Barraclough, B. L.; Lasue, J.

    2011-12-01

    The MSL rover, Curiosity, uses a novel remote-sensing instrument, ChemCam, which combines laser-induced breakdown spectroscopy (LIBS) with a high resolution remote micro-imager (RMI). ChemCam uses a focused, pulsed laser beam at targets up to 7 m away to excite a light-emitting plasma. Spectral analysis identifies elements present and provides rapid semi-quantitative analyses. Repeated laser pulses remove dust and weathering coatings from rock samples to depths >0.5 mm and ~0.4 mm in diameter. The RMI, with ~20x20 mrad field of view, provides a broad-band image with 100 μm resolution. LIBS yields abundances of H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, Cl, K, Ca, Ti, V, Cr, Fe, Ni, Zr, Rb, Sr, As, Ba, and Pb. Interference from atmospheric constituents raises the detection limits of C, N, and O (e.g., >2% wt for C). LIBS is very sensitive to alkali and alkali earth elements, with some detection limits to ~1 ppm at close range. Conversely, LIBS is insensitive to F, Cl, S, P, and N, with detection limits of several wt. %. Pointing accuracy is ~3 mrad, however relative pointing accuracy is better, so line scans and rasters will enable analyses of targeted features to ~1 mm. At Gale Crater, determination of elements not previously analyzed in-situ, i.e., H, Li, Rb, Sr, and Ba, along with other elements will constrain aqueous, hydrothermal and vapor geochemical transport processes. Initial analyses after landing will characterize air fall dust and weathering coatings on local rocks, and profile the soil and surfacial materials including bedforms to investigate compositional differences in near-surface layers. Targets within the landing ellipse include fan and inverted channel deposits derived from the crater rim, which may contain alteration minerals produced by impact hydrothermal processes. Enigmatic deposits with bright fracture fill could represent lake sediments modified by injection of deposits from groundwater. During the drive to the Gale mound, ChemCam will

  7. Chem-2-Chem: A One-to-One Supportive Learning Environment for Chemistry

    NASA Astrophysics Data System (ADS)

    Báez-Galib, Rosita; Colón-Cruz, Héctor; Resto, Wilfredo; Rubin, Michael R.

    2005-12-01

    The Chem-2-Chem (C2C) tutoring mentoring program was developed at the University of Puerto Rico at Cayey, an undergraduate institution serving Hispanic students, to increase student retention and help students achieve successful general chemistry course outcomes. This program provides a supportive learning environment designed to address students' academic and emotional needs in a holistic way. Advanced chemistry students offered peer-led, personalized, and individualized learning experiences through tutoring and mentoring to approximately 21% of students enrolled in the general chemistry course. Final grades from official class lists of all general chemistry course sections were analyzed using Student's t -test, paired t -test, and χ 2 analysis. Results during the seven semesters studied show an increase of 29% in successful course outcomes defined as final letter grades of A, B, and C obtained by Chem-2-Chem participants. For each final grade, highly statistically significant differences between participants and nonparticipants were detected. There were also statistically significant differences between successful course outcomes obtained by participants and nonparticipants for each of the semesters studied. This research supports recent trends in chemical education to provide a social context for learning experiences. This peer-led learning strategy can serve as an effective model to achieve excellence in science courses at a wide range of educational institutions.

  8. Checking out ChemCam View

    NASA Image and Video Library

    2012-08-17

    This mosaic shows the calibration target for the Chemistry and Camera ChemCam instrument on NASA Curiosity rover, as seen by the ChemCam remote micro-imager. The 10 images incorporated in this mosaic were taken on Aug. 15.

  9. Air Quality Modeling and Forecasting over the United States Using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Boxe, C.; Hafsa, U.; Blue, S.; Emmanuel, S.; Griffith, E.; Moore, J.; Tam, J.; Khan, I.; Cai, Z.; Bocolod, B.; Zhao, J.; Ahsan, S.; Gurung, D.; Tang, N.; Bartholomew, J.; Rafi, R.; Caltenco, K.; Rivas, M.; Ditta, H.; Alawlaqi, H.; Rowley, N.; Khatim, F.; Ketema, N.; Strothers, J.; Diallo, I.; Owens, C.; Radosavljevic, J.; Austin, S. A.; Johnson, L. P.; Zavala-Gutierrez, R.; Breary, N.; Saint-Hilaire, D.; Skeete, D.; Stock, J.; Salako, O.

    2016-12-01

    WRF-Chem is the Weather Research and Forecasting (WRF) model coupled with Chemistry. The model simulates the emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology. The model is used for investigation of regional-scale air quality, field program analysis, and cloud-scale interactions between clouds and chemistry. The development of WRF-Chem is a collaborative effort among the community led by NOAA/ESRL scientists. The Official WRF-Chem web page is located at the NOAA web site. Our model development is closely linked with both NOAA/ESRL and DOE/PNNL efforts. Description of PNNL WRF-Chem model development is located at the PNNL web site as well as the PNNL Aerosol Modeling Testbed. High school and undergraduate students, representative of academic institutions throughout USA's Tri-State Area (New York, New Jersey, Connecticut), set up WRF-Chem on CUNY CSI's High Performance Computing Center. Students learned the back-end coding that governs WRF-Chems structure and the front-end coding that displays visually specified weather simulations and forecasts. Students also investigated the impact, to select baseline simulations/forecasts, due to the reaction, NO2 + OH + M → HOONO + M (k = 9.2 × 10-12 cm3 molecule-1 s-1, Mollner et al. 2010). The reaction of OH and NO2 to form gaseous nitric acid (HONO2) is among the most influential and in atmospheric chemistry. Till a few years prior, its rate coefficient remained poorly determined under tropospheric conditions because of difficulties in making laboratory measurements at 760 torr. These activities fosters student coding competencies and deep insights into weather forecast and air quality.

  10. Response to ``Comment on `Slow Debye-type peak observed in the dielectric response of polyalcohols' '' [J. Chem. Phys. 134, 037101 (2011)

    NASA Astrophysics Data System (ADS)

    Bergman, R.; Jansson, H.; Swenson, J.

    2011-01-01

    In our recent article [R. Bergman et al., J. Chem. Phys. 132, 044504 (2010)] we investigated some polyalcohols, i.e., glycerol, xylitol, and sorbitol by dielectric spectroscopy. In the study, a low-frequency peak of Debye character that normally is hidden by the large low-frequency dispersion due to conductivity was revealed by analyzing the real part of the permittivity and by using a thin Teflon film to suppress the low-frequency dispersion. We agree with the comment by Paluch et al. [J. Chem. Phys. 134, 037101 (2011)] that the Teflon film setup will indeed create a peak due to the dc conductivity. However, due to the fact that the location of the peak was almost identical in measurement with and without Teflon, we unfortunately mainly showed the data measured with Teflon, despite that it could also be observed in the real part of the permittivity without using the Teflon setup, as shown in our original article [R. Bergman et al., J. Chem. Phys. 132, 044504 (2010)]. Here, we show that the low-frequency peak of Debye character can also be observed by subtracting the dc conductivity. Furthermore, we show that the modulus representation used in Paluch et al. [J. Chem. Phys. 134, 037101 (2011).] is also not suitable for detecting processes hidden by the conductivity.

  11. Ice nucleation rates near ˜225 K

    NASA Astrophysics Data System (ADS)

    Amaya, Andrew J.; Wyslouzil, Barbara E.

    2018-02-01

    We have measured the ice nucleation rates, Jice, in supercooled nano-droplets with radii ranging from 6.6 nm to 10 nm and droplet temperatures, Td, ranging from 225 K to 204 K. The initial temperature of the 10 nm water droplets is ˜250 K, i.e., well above the homogeneous nucleation temperature for micron sized water droplets, TH ˜235 K. The nucleation rates increase systematically from ˜1021 cm-3 s-1 to ˜1022 cm-3 s-1 in this temperature range, overlap with the nucleation rates of Manka et al. [Phys. Chem. Chem. Phys. 14, 4505 (2012)], and suggest that experiments with larger droplets would extrapolate smoothly the rates of Hagen et al. [J. Atmos. Sci. 38, 1236 (1981)]. The sharp corner in the rate data as temperature drops is, however, difficult to match with available theory even if we correct classical nucleation theory and the physical properties of water for the high internal pressure of the nanodroplets.

  12. Droplet Growth Kinetics in Various Environments

    NASA Astrophysics Data System (ADS)

    Raatikainen, T. E.; Lathem, T. L.; Moore, R.; Lin, J. J.; Cerully, K. M.; Padro, L.; Lance, S.; Cozic, J.; Anderson, B. E.; Nenes, A.

    2012-12-01

    The largest uncertainties in the effects of atmospherics aerosols on the global radiation budget are related to their indirect effects on cloud properties (IPCC, the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007). Cloud formation is a kinetic process where the resulting cloud properties depend on aerosol properties and meteorological parameters such as updraft velocity (e.g. McFiggans et al., Atmos. Chem. Phys., 6, 2593-2649, 2006). Droplet growth rates are limited by the water vapor diffusion, but additional kinetic limitations, e.g., due to organic surface films, slow solute dissociation or highly viscous or glassy aerosol states have been hypothesized. Significant additional kinetic limitations can lead to increased cloud droplet number concentration, thus the effect is similar to those of increased aerosol number concentration or changes in vertical velocity (e.g. Nenes et al., Geophys. Res. Lett., 29, 1848, 2002). There are a few studies where slow droplet growth has been observed (e.g. Ruehl et al., Geophys. Res. Lett., 36, L15814, 2009), however, little is currently known about their global occurrence and magnitude. Cloud micro-physics models often describe kinetic limitations by an effective water vapor uptake coefficient or similar parameter. Typically, determining aerosol water vapor uptake coefficients requires experimental observations of droplet growth which are interpreted by a numerical droplet growth model where the uptake coefficient is an adjustable parameter (e.g. Kolb et al., Atmos. Chem. Phys., 10, 10561-10605, 2010). Such methods have not been practical for high time-resolution or long term field measurements, until a model was recently developed for analyzing Droplet Measurement Technologies (DMT) cloud condensation nuclei (CCN) counter data (Raatikainen et al., Atmos. Chem. Phys., 12, 4227-4243, 2012). Model verification experiments showed that the calibration aerosol droplet size can be predicted accurately

  13. Heterogeneous Uptake of HO2 Radicals onto Submicron Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Matthews, P. S.; George, I. J.; Brooks, B.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2012-12-01

    dependence was observed. A time dependence has been observed, with higher HO2 uptake coefficients measured at short reaction times with the uptake coefficient decreasing at longer times. A HO2 concentration dependence has also been observed whereby a higher uptake coefficient is measured at lower HO2 concentrations. The time dependence and HO2 concentration dependence may suggest an aerosol saturation mechanism. The HO2 uptake temperature dependence is currently being investigated, as well as uptake on to a wider range of inorganic and organic aerosols. This work was supported by the National Environment Research Council under grant number NE/F020651/1. PSJM is grateful to NERC for a research studentship. References (1) Sommariva, R. et al. Atmos. Chem. Phys.2006, 6, 1135-1153. (2) Whalley, L.K. et al. Atmos. Chem. Phys. 2010, 10, 1555-1576. (3) Mao, J. et al. Atmos. Chem. Phys. 2010, 10, 5823-5838. (4) Jaegle, L. et al. J. Geophys. Atm. 2000, 105, 3877-3892. (5) Taketani, F. et al. J. Phys. Chem. 2008, 112, 2370-2377. (6) Thornton, J. et al. J. Geophys. Atm. 2005, 110, D08309.

  14. The role of 2-methylglyceric acid and oligomer formation in the multiphase processing of secondary organic aerosol from isoprene and methacrolein photooxidation (CUMULUS project)

    NASA Astrophysics Data System (ADS)

    Giorio, Chiara; Brégonzio-Rozier, Lola; Siekmann, Frank; Cazaunau, Mathieu; Temime-Roussel, Brice; Langley DeWitt, Helen; Gratien, Aline; Michoud, Vincent; Pangui, Edouard; Morales, Sébastien; Ravier, Sylvain; Zielinski, Arthur T.; Tapparo, Andrea; Vermeylen, Reinhilde; Claeys, Magda; Voisin, Didier; Salque-Moreton, Guillaume; Kalberer, Markus; Doussin, Jean-François; Monod, Anne

    2017-04-01

    Biogenic volatile organic compounds (BVOCs) undergo atmospheric processing and form a wide range of oxidised and water-soluble compounds. These compounds could partition into atmospheric water droplets, and react within the aqueous phase producing higher molecular weight and less volatile compounds which could remain in the particle phase after water evaporation (Ervens et al., 2011). The aim of this work was the molecular characterisation of secondary organic aerosol (SOA) formed from the photooxidation of isoprene and methacrolein during cloud evapo-condensation cycles. The experiments were performed within the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), at the 4.2 m3 stainless steel CESAM chamber at LISA (Brégonzio-Rozier et al., 2016). In each experiment, isoprene or methacrolein was photooxidised with HONO and clouds have been produced to study oxidation processes in a multiphase environment that well simulates the interactions between VOCs, SOA particles and cloud droplets. During all the experiments, SOA was characterised online with a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and offline with gas chromatography mass spectrometry (GC-MS) and direct infusion nanoelectrospray ionisation high resolution mass spectrometry (nanoESI-HRMS). We observed that the main SOA compound in all experiments was 2-methylglyceric acid which undergoes oligomerisation reactions. A large number of long homologous series of oligomers were detected in all experiments, together with a complex co-oligomerised system made of monomers with a large variety of different structures. Comparison of SOA from multiphasic (smog chamber) experiments and samples from aqueous phase oxidation of methacrolein with •OH radical pointed out different types of oligomerisation reactions dominating the two different systems. Ervens et al. (2011) Atmos. Chem. Phys. 11, 11069 11102. Brégonzio-Rozier et al. (2016) Atmos. Chem. Phys

  15. Investigation of a Particle into Liquid Sampler to Study the Formation & Ageing of Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Munoz, A.; Vazquez, M.; Rodenas, M.; Vera, T.; Borrás, E.

    2012-12-01

    reports of the atmospheric degradation of Methyl Chavicol. Methyl Chavicol oxidation was investigated using a series of photosmog and ozonolysis experiments with varying ratios of NOx:VOC. An extensive range of instruments were used to monitor radical and product formation [including: LIF (HOx intermediates), LOPAP (HONO), FT-IR, PTR-MS, GC-FID, and SMPS]. Samples were collected using the PILS at 30 minute intervals with filters taken at the end of each experiment for comparison. A number of key oxidation products have been identified. Time profiles can be used to determine the importance of first, second & higher oxidation products and may indicate which species are undergoing oxidation or heterogeneous reactions during aerosol ageing. This data will allow for modelled vs. measured SOA composition comparison, with the potential to determine the rates of reactions for the condensed phase oxidation products formed. References Bouvier-Brown et al., Atmos. Chem. Phys. 9, 2061-2074, 2009. Goldstein and Galbally, Environ. Sci. Technol. 41, 1514-1521, 2007. Hallquist et al., Atmos. Chem. Phys. 9, 5155-5236, 2009. Lee et al., J. Geophys. Res. 111, D17305, 2006. Misztal et al., Atmos. Chem. Phys. Discuss. 10, 1517-1557, 2010. Solomon et al., Climate Change 2007: IPCC Report. Cambridge, 2007. Zhang et al., Geophys. Res. Lett. 34, L13801, 2007.

  16. LANL Researcher Roger Wiens Discusses ChemCam

    ScienceCinema

    Wiens, Roger

    2018-01-16

    Discussion of the ChemCam instrument on the Curiosity Rover that occurred during the NASA press conference prior to launch of the Mars Science Laboratory. The ChemCam instrument was developed by Los Alamos National Laboratory and the French Space Institute. Los Alamos National Laboratory researcher Roger Wiens discusses the instrument on this video. ChemCam uses a laser to "zap" features of the Martian landscape and then uses a spectrometer to gather information about the composition of the sample. ChemCam will help the Curiosity Rover determine whether Mars is or was habitable. The Rover is expected to touch down on the Red Planet on August 5, 2012.

  17. Consideration of HOMs in α- and β-pinene SOA model

    NASA Astrophysics Data System (ADS)

    Gatzsche, Kathrin; Iinuma, Yoshiteru; Mutzel, Anke; Berndt, Torsten; Wolke, Ralf

    2016-04-01

    known as extremely low-volatile organic compounds (ELVOCs) (Ehn et al. 2014). The importance of HOMs for the early aerosol growth makes them indispensable in SOA modeling. Thus, we included HOMs in our model framework. The measurements from the institute's own smog chamber LEAK are used as a base for model evaluation and process analysis, especially since HOMs were lately identified from LEAK data (Mutzel et al., 2015). The presentation will provide a sensitivity study for the kinetic approach as well as a comparison of measured and modeled SOA yields. References: Ehn, M., Thornton, J. A., Kleist, E. et al. (2014) Nature, 506, 476 - 479 Hallquist, M., Wenger, J. C., Baltensperger, U., et al. (2009) Atmos. Chem. Phys., 9, 5155 - 5236 Mutzel, A., Poulain, L., Berndt, T. et al. (2015) Environ. Sci. Technol., 49, 7754 - 7761 Pankow, J. F. (1994) Atmos. Environ., 28, 2, 189 - 193 Wolke, R., Sehili, A. M., Simmel, M., Knoth, O., Tilgner, A. and Herrmann, H. (2005) Atmos. Environ., 39, 4375 - 4388 Zaveri, R. A., Easter, R. C., Shilling J. E. and Seinfeld, J. H. (2014) Atmos. Chem. Phys., 14, 5153 - 5181

  18. Chem-Braze Abradable Seal Attachment

    DTIC Science & Technology

    1980-05-01

    bonding system for attaching sintered abradable seals such as FELTMETAL® to titanium -, steel- and nickel-base compressor blade tip-shrouds has been... blade tip-shrouds was developed. The improved Chem-Braze system incorporates glycerin as an inhibitor to prevent premature evaporation which prolongs...compressor blade tip-shrouds using the improved Chem-Braze system compared to attachment with gold-nickel braze. p. p. FORM . . yn

  19. Chemical Characterization and Mixing Sate of Ambient PM in Xi'an Winter

    NASA Astrophysics Data System (ADS)

    Chen, Yang

    2015-04-01

    chemical composition and mixing state of ambient PM in summer of Chongqing, and to provide scientific suggestion for policy makers for PM abatement. References Anderson, H. R. and Atkinson, R. W. (2007), Report to Health Department. Hersey, S. P., Craven, J. S., Schilling, K. a., Metcalf, a. R., Sorooshian, a., Chan, M. N., Flagan, R. C., and Seinfeld, J. H. (2011) Atmos. Chem. Phys., 11, 7417-7443. Huang, Y., Li, L., Li, J., Wang, X., Chen, H., Chen, J., Yang, X., Gross, D. S., Wang, H., Qiao, L., Chen, C., Hussein, T., Puustinen, A., Aalto, P. P., Mäkelä, J. M., Hämeri, K., and Kulmala, M.( 2013) Atmos. Chem. Phys., 13, 3931-3944. Stocker, T. F., Allen, S. K., Bex, V., and Midgley, P. M.(2013). IPCC. Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., Duan, F., and Chen, G.(2013) Atmos. Chem. Phys., 11, 5207-5219.

  20. The Effect of Pollution on Newly-Formed Particle Composition in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Vaattovaara, Petri

    2010-05-01

    the composition behaviour of the particles during multiple nucleation events. The overall results show a clear anthropogenic influence on the nucleation and Aitken mode particle compositions during the events. The SO2/MTOP and NOx/MTOP (MTOP, monoterpene oxidation products) ratios explain most strongly the variation in the nucleation mode composition during clean and pollution-affected events, suggesting also the importance of organic sulfur compounds, in addition to other sulfur, nitrogen and organic compounds, in particle formation, composition and properties. During the cleanest events, MTOP explain significantly the time behaviour of the 10 nm particle composition with an estimated organic fraction of over 95%. [1] P. Tunved et al., 2006, Science, 312, 261-263. [2] P. Vaattovaara et al., 2005, Atmos. Chem. Phys., 5, 3277-3287. [3] K. Hämeri et al., 2000, J. Geophys. Res. 105(D17), 22231-22242. [4] K. Sellegri et al., Atmos. Chem. Phys., 5, 373-384. [5] M. Boy et al., Atmos. Chem. Phys., 5, 863-878.

  1. LANL Researcher Roger Wiens Discusses ChemCam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Roger

    2012-02-15

    Discussion of the ChemCam instrument on the Curiosity Rover that occurred during the NASA press conference prior to launch of the Mars Science Laboratory. The ChemCam instrument was developed by Los Alamos National Laboratory and the French Space Institute. Los Alamos National Laboratory researcher Roger Wiens discusses the instrument on this video. ChemCam uses a laser to "zap" features of the Martian landscape and then uses a spectrometer to gather information about the composition of the sample. ChemCam will help the Curiosity Rover determine whether Mars is or was habitable. The Rover is expected to touch down on the Redmore » Planet on August 5, 2012.« less

  2. LIF-instrument for Airborne and Ground-Based Measurement of OH and HO2 Radicals in the Troposphere.

    NASA Astrophysics Data System (ADS)

    Broch, Sebastian; Bachner, Mathias; Dahlhoff, Knut; Holland, Frank; Hofzumahaus, Andreas; Jansen, Peter; Meier, Andreas; Raak, Dominik; Wolters, Jörg; Wahner, Andreas

    2010-05-01

    , which allows calibration of the OH measuring channel during flight at different altitudes. Furthermore, both inlet systems allow heating of the inlet tubes and contain flight safety features like de-icing and bird strike resistance. We present results of the characterisation of the new instrument especially with regard to the sensitivity achievable with the long inlet tubes and of laboratory testing of the OH "in-flight" calibration system. Literature: Holland et al., J. Atmos. Sci., 52, 3393, 1995 Holland et al., J. Geophys. Res., 108, 8246, 2003 Schlosser et al., J. Atmos. Chem., 56, 187, 2007 Schlosser et al., Atmos. Chem. Phys., 9, 7923, 2009 Eisele et al., J. Geophys. Res., 102, 27993, 1997

  3. Description of Mixed-Phase Clouds in Weather Forecast and Climate Models

    DTIC Science & Technology

    2014-09-30

    deficits, leading to freeze-up of both sea ice and the ocean surface. The surface albedo and processes impacting the energy content of the upper ocean...appear key to producing a temporal difference be- tween the freeze-up of the sea - ice surface and adjacent open water. While synoptic conditions, atmos...Leck, 2013: Cloud and boundary layer interactions over the Arctic sea - ice in late summer, Atmos. Chem. Phys. Discuss., 13, 13191-13244, doi

  4. High Excitation Rydberg Levels of Fe I from the ATMOS Solar Spectrum at 2.5 and 7 microns

    NASA Technical Reports Server (NTRS)

    Schoenfeld, W. G.; Chang, E. S.; Geller, M.; Johansson, S.; Nave, G.; Sauval, A. J.; Grevesse, N.

    1995-01-01

    The quadrupole-polarization theory has been applied to the 3d(sup 6)4S(D-6)4f and 5g subconfigurations of Fe I by a parametric fit, and the fitted parameters are used to predict levels in the 6g and 6h subconfigurations. Using the predicted values, we have computed the 4f-6g and 5g-6h transition arrays and made identifications in the ATMOS infrared solar spectrum. The newly identified 6g and 6h levels, based on ATMOS wavenumbers, are combined with the 5g levels and found to agree with the theoretical values with a root mean-squared-deviation of 0.042/ cm. Our approach yields a polarizability of 28.07 a(sub o, sup 2) and a quadrupole moment of 0.4360 +/- 0.0010 ea(sup 2, sub o) for Fe II, as well as an improved ionization potential of 63737.700 +/- 0.010/ cm for Fe I.

  5. ATMOS/ATLAS-3 Observations of Long-Lived Tracers and Descent in the Antarctic Vortex in November 1994

    NASA Technical Reports Server (NTRS)

    Abrams, M. C.; Manney, G. L.; Gunson, M. R.; Abbas, M. M.; Chang, A. Y.; Goldman, A.; Irion, F. W.; Michelsen, H. A.; Newchurch, M. J.; Rinsland, C. P.; hide

    1996-01-01

    Observations of the long-lived tracers N2O, CH4 and HF obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument in early November 1994 are used to estimate average descent rates during winter in the Antarctic polar vortex of 0.5 to 1.5 km/month in the lower stratosphere, and 2.5 to 3.5 km/month in the middle and upper stratosphere. Descent rates inferred from ATMOS tracer observations agree well with theoretical estimates obtained using radiative heating calculations. Air of mesospheric origin (N2O less than 5 ppbV) was observed at altitudes above about 25 km within the vortex. Strong horizontal gradients of tracer mixing ratios, the presence of mesospheric air in the vortex in early spring, and the variation with altitude of inferred descent rates indicate that the Antarctic vortex is highly isolated from midlatitudes throughout the winter from approximately 20 km to the stratopause. The 1994 Antarctic vortex remained well isolated between 20 and 30 km through at least mid-November.

  6. A Java API for working with PubChem datasets.

    PubMed

    Southern, Mark R; Griffin, Patrick R

    2011-03-01

    PubChem is a public repository of chemical structures and associated biological activities. The PubChem BioAssay database contains assay descriptions, conditions and readouts and biological screening results that have been submitted by the biomedical research community. The PubChem web site and Power User Gateway (PUG) web service allow users to interact with the data and raw files are available via FTP. These resources are helpful to many but there can also be great benefit by using a software API to manipulate the data. Here, we describe a Java API with entity objects mapped to the PubChem Schema and with wrapper functions for calling the NCBI eUtilities and PubChem PUG web services. PubChem BioAssays and associated chemical compounds can then be queried and manipulated in a local relational database. Features include chemical structure searching and generation and display of curve fits from stored dose-response experiments, something that is not yet available within PubChem itself. The aim is to provide researchers with a fast, consistent, queryable local resource from which to manipulate PubChem BioAssays in a database agnostic manner. It is not intended as an end user tool but to provide a platform for further automation and tools development. http://code.google.com/p/pubchemdb.

  7. Readying ChemCam

    NASA Image and Video Library

    2012-08-17

    This image shows the calibration target for the Chemistry and Camera ChemCam instrument on NASA Curiosity rover. The calibration target is one square and a group of nine circles that look dark in the black-and-white image.

  8. Gas phase emissions from cooking processes and their secondary aerosol production potential

    NASA Astrophysics Data System (ADS)

    Klein, Felix; Platt, Stephen; Bruns, Emily; Termime-roussel, Brice; Detournay, Anais; Mohr, Claudia; Crippa, Monica; Slowik, Jay; Marchand, Nicolas; Baltensperger, Urs; Prevot, Andre; El Haddad, Imad

    2014-05-01

    -ToF-MS) were used to quantify OA and VOC emissions, respectively. SOA production potential of the different emissions was quantified by introducing them into the PSI mobile smog chamber and a potential aerosol chamber (PAM) where they were photochemically aged. The measurements of primary emissions suggest that the COA factor identified in ambient atmospheric aerosols is mostly related to fat release from frying with vegetable oils or grilling fatty-meats. In contrast, vegetable cooking (boiling and frying) was associated with significant VOC emissions. The VOC emissions from frying consist mainly of aldehydes which are formed through breaking of fatty acids. Gas phase composition, emission factors and SAPP from all these processes will be presented. This work was supported by the Swiss National Science Foundation as well as the Swiss Federal Office for the Environment. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n.° 290605 (COFUND: PSI-FELLOW). J. Allan et al, Atmos. Chem. Phys. 10, 647-668 (2010) X.-F. Huang et al, Atmos. Chem. Phys. 10, 8933-8945 (2010) Y.-L. Sun et al, Atmos. Chem. Phys. 11, 1581-1602 (2011)

  9. Concentrations of carbonyl sulfide and hydrogen cyanide in the free upper troposphere and lower stratosphere deduced from ATMOS/Spacelab 3 infrared solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Zander, R.; Rinsland, C. P.; Russell, J. M., III; Farmer, C. B.; Norton, R. H.

    1988-01-01

    This paper presents the results on the volume mixing ratio profiles of carbonyl sulfide and hydrogen cyanide, deduced from the spectroscopic analysis of IR solar absorption spectra obtained in the occultation mode with the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during its mission aboard Spacelab 3. A comparison of the ATMOS measurements for both northern and southern latitudes with previous field investigations at low midlatitudes shows a relatively good agreement. Southern Hemisphere volume mixing ratio profiles for both molecules were obtained for the first time, as were the profiles for the Northern Hemisphere covering the upper troposphere and the lower stratosphere simultaneously.

  10. A physically-based approach of treating dust-water cloud interactions in climate models

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Karydis, V.; Barahona, D.; Sokolik, I. N.; Nenes, A.

    2011-12-01

    All aerosol-cloud-climate assessment studies to date assume that the ability of dust (and other insoluble species) to act as a Cloud Condensation Nuclei (CCN) is determined solely by their dry size and amount of soluble material. Recent evidence however clearly shows that dust can act as efficient CCN (even if lacking appreciable amounts of soluble material) through adsorption of water vapor onto the surface of the particle. This "inherent" CCN activity is augmented as the dust accumulates soluble material through atmospheric aging. A comprehensive treatment of dust-cloud interactions therefore requires including both of these sources of CCN activity in atmospheric models. This study presents a "unified" theory of CCN activity that considers both effects of adsorption and solute. The theory is corroborated and constrained with experiments of CCN activity of mineral aerosols generated from clays, calcite, quartz, dry lake beds and desert soil samples from Northern Africa, East Asia/China, and Northern America. The unified activation theory then is included within the mechanistic droplet activation parameterization of Kumar et al. (2009) (including the giant CCN correction of Barahona et al., 2010), for a comprehensive treatment of dust impacts on global CCN and cloud droplet number. The parameterization is demonstrated with the NASA Global Modeling Initiative (GMI) Chemical Transport Model using wind fields computed with the Goddard Institute for Space Studies (GISS) general circulation model. References Barahona, D. et al. (2010) Comprehensively Accounting for the Effect of Giant CCN in Cloud Activation Parameterizations, Atmos.Chem.Phys., 10, 2467-2473 Kumar, P., I.N. Sokolik, and A. Nenes (2009), Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN, Atmos.Chem.Phys., 9, 2517- 2532

  11. A Java API for working with PubChem datasets

    PubMed Central

    Southern, Mark R.; Griffin, Patrick R.

    2011-01-01

    Summary: PubChem is a public repository of chemical structures and associated biological activities. The PubChem BioAssay database contains assay descriptions, conditions and readouts and biological screening results that have been submitted by the biomedical research community. The PubChem web site and Power User Gateway (PUG) web service allow users to interact with the data and raw files are available via FTP. These resources are helpful to many but there can also be great benefit by using a software API to manipulate the data. Here, we describe a Java API with entity objects mapped to the PubChem Schema and with wrapper functions for calling the NCBI eUtilities and PubChem PUG web services. PubChem BioAssays and associated chemical compounds can then be queried and manipulated in a local relational database. Features include chemical structure searching and generation and display of curve fits from stored dose–response experiments, something that is not yet available within PubChem itself. The aim is to provide researchers with a fast, consistent, queryable local resource from which to manipulate PubChem BioAssays in a database agnostic manner. It is not intended as an end user tool but to provide a platform for further automation and tools development. Availability: http://code.google.com/p/pubchemdb Contact: southern@scripps.edu PMID:21216779

  12. New particle formation events as a source for cloud condensation nuclei in an urban environment

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Burkart, Julia; Wagner, Robert; Reischl, Georg; Steiner, Gerhard; Hitzenberger, Regina

    2014-05-01

    Nucleation and growth events have been observed in many remote, urban and rural environments. The new particles can contribute significantly to cloud condensation nuclei concentrations, after growing into the appropriate size range (Kerminen et al., 2012). Several studies have attempted to quantify this contribution (e.g. Asmi et al., 2011, Matsui et al., 2013), but only a limited number of them to date have used simultaneous measurements of CCN concentrations and particle size distributions for this purpose (e.g. Levin et al., 2012). In this study, a data set from an urban background station, consisting of 22 months of size distribution and 12 months of CCN concentration measurements (Burkart et al., 2011, Burkart et al., 2012) with 10 months of overlapping measurements is combined to explore the variability of CCN concentrations, their possible causes, and the contribution of nucleation and growth events to CCN concentrations. Consistent with observations in many other locations, nucleation and growth events occur on 30% of all days in spring and summer, on 11% of days in fall and on 4% of days in winter. This suggests a potentially large source of CCN from nucleation and growth events, particularly in the warm season. We acknowledge funding from FWF (Austrian Science Fund) P19515-N20 References: Asmi E., Kivekas, N., Kerminen, V. M., Komppula, M., Hyvarinen, A. P., Hatakka, J., Viisanen, Y., and Lihavainen, H.: Secondary new particle formation in Northern Finland Pallas site between the years 2000 and 2010, Atmos. Chem. Phys., 11, 12959-12972, doi: 10.5194/acp-11-12959-2011, 2011 Burkart J., Steiner, G., Reischl, G., and Hitzenberger, R.: Long-term study of cloud condensation nuclei (CCN) acticvation of the atmospheric aerosol in Vienna, Atmos. Environ., 45, 5751-5759, doi: 10.1016/j.atmosenv.2011.07.022, 2011. Burkart J., Hitzenberger, R., Reischl, G., Bauer, H., Leder, K., and Puxbaum, H.: Activation of "synthetic ambient" aerosols - relation to chemical

  13. Getting the Most out of PubChem for Virtual Screening

    PubMed Central

    Kim, Sunghwan

    2016-01-01

    Introduction With the emergence of the “big data” era, the biomedical research community has great interest in exploiting publicly available chemical information for drug discovery. PubChem is an example of public databases that provide a large amount of chemical information free of charge. Areas covered This article provides an overview of how PubChem’s data, tools, and services can be used for virtual screening and reviews recent publications that discuss important aspects of exploiting PubChem for drug discovery. Expert opinion PubChem offers comprehensive chemical information useful for drug discovery. It also provides multiple programmatic access routes, which are essential to build automated virtual screening pipelines that exploit PubChem data. In addition, PubChemRDF allows users to download PubChem data and load them into a local computing facility, facilitating data integration between PubChem and other resources. PubChem resources have been used in many studies for developing bioactivity and toxicity prediction models, discovering polypharmacologic (multi-target) ligands, and identifying new macromolecule targets of compounds (for drug-repurposing or off-target side effect prediction). These studies demonstrate the usefulness of PubChem as a key resource for computer-aided drug discovery and related area. PMID:27454129

  14. PubChem applications in drug discovery: a bibliometric analysis

    PubMed Central

    Cheng, Tiejun; Pan, Yongmei; Hao, Ming; Wang, Yanli; Bryant, Stephen H.

    2014-01-01

    A bibliometric analysis of PubChem applications is presented by reviewing 1132 research articles. The massive volume of chemical structure and bioactivity data in PubChem and its online services has been used globally in various fields including chemical biology, medicinal chemistry and informatics research. PubChem supports drug discovery in many aspects such as lead identification and optimization, compound–target profiling, polypharmacology studies and unknown chemical identity elucidation. PubChem has also become a valuable resource for developing secondary databases, informatics tools and web services. The growing PubChem resource with its public availability offers support and great opportunities for the interrogation of pharmacological mechanisms and the genetic basis of diseases, which are vital for drug innovation and repurposing. PMID:25168772

  15. Ambient in-situ immersion freezing measurements - findings from the ZAMBIS 2014 field campaign for three ice nucleation techniques

    NASA Astrophysics Data System (ADS)

    Kohn, Monika; Atkinson, James D.; Lohmann, Ulrike; Kanji, Zamin A.

    2015-04-01

    well as a droplet freezing method on aerosol particles either collected in a suspension or on PM10-filters to obtain atmospheric IN concentrations based on the measured ambient aerosol. Investigation of physical properties (number and size distribution) and chemical composition as well as the meteorological conditions provide supplementary information that help to understand the nature of particles and air masses that contribute to immersion freezing. Acknowledgements We thank Hannes Wydler and Hansjörg Frei from ETH Zurich for their technical support. Furthermore, the authors want thank Franz Conen from the University of Basel for sharing equipment and training in the drop freezing experiment. References [1] Chou et al. (2011), Atmos. Chem. Phys., 11, 4725-4738. [2] Nicolet et al. (2010), Atmos. Chem. Phys., 10, 313-325. [3] Conen et al. (2012), Atmos. Meas. Tech., 5, 321-327. [4] Stopelli et al. (2014), Atmos. Meas. Tech., 7, 129-134.

  16. Chemical Demilitarization Assembled Chemical Weapons Alternatives (Chem Demil-ACWA)

    DTIC Science & Technology

    2015-12-01

    Weapons Alternatives (Chem Demil-ACWA) is performing a portion of the chemical warfare materiel elimination mission. In 1996, Congress and the...Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-243 Chemical Demilitarization-Assembled Chemical Weapons Alternatives (Chem Demil-ACWA) As...Date Assigned: December 19, 2010 Program Information Program Name Chemical Demilitarization-Assembled Chemical Weapons Alternatives (Chem Demil

  17. Heterogeneous freezing of super cooled water droplets in micrometre range- freezing on a chip

    NASA Astrophysics Data System (ADS)

    Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura; Hitzenberger, Regina; Grothe, Hinrich

    2017-04-01

    ., Niedermeier, D., Pummer, B., Grothe, H., Hartmann, S., Tomsche, L., Clauss, T., Voigtlander, J., Ignatius, K., and Stratmann, F.: Immersion freezing of birch pollen washing water, Atmos Chem Phys, 13, 10989-11003, 2013. Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation, Kluwer Academic Publishers, Dordrecht, 1997. Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos Chem Phys, 12, 2541-2550, 2012. Wex, H., Augustin-Bauditz, S., Boose, Y., Budke, C., Curtius, J., Diehl, K., Dreyer, A., Frank, F., Hartmann, S., Hiranuma, N., Jantsch, E., Kanji, Z. A., Kiselev, A., Koop, T., Mohler, O., Niedermeier, D., Nillius, B., Rosch, M., Rose, D., Schmidt, C., Steinke, I., and Stratmann, F.: Intercomparing different devices for the investigation of ice nucleating particles using Snomax (R) as test substance, Atmos Chem Phys, 15, 1463-1485, 2015. Zolles, T., Burkart, J., Hausler, T., Pummer, B., Hitzenberger, R., and Grothe, H.: Identification of Ice Nucleation Active Sites on Feldspar Dust Particles, Journal of Physical Chemistry A, 119, 2692-2700, 2015.

  18. Differences in ice nucleation behavior of arable and desert soil dust in deposition nucleation regime

    NASA Astrophysics Data System (ADS)

    Ullrich, Romy; Vogel, Franziska; Möhler, Ottmar; Höhler, Kristina; Schiebel, Thea

    2017-04-01

    dust will be compared to existing AIDA experiments at higher temperatures published by Steinke et al. (2016). Finally, the ice nucleation activity of both desert dust and agricultural soil dust will be compared for the upper tropospheric temperature regime. Andreae et al. (2009), Sources and Nature of Atmospheric Aerosols, in Aerosol Pollution Impact on Precipitation - A Scientific Review, Ch.3, Springer Netherlands, 45-89 Cziczo et al. (2013), Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation, Science, 340, 1320-1324 O'Sullivan et al. (2014), Ice nucleation by fertile soil dusts: relative importance of mineral and biogenic components, Atmos. Chem. Phys., 14, 1853-1867 Steinke et al. (2016), Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina and Germany, J. Geophys. Res., 121 Tobo et al. (2014), Organic matter matters for ice nuclei of agricultural soil origin, Atmos. Chem. Phys., 14, 8521-8531 Ullrich et al. (2017), A new ice nucleation active site parametrization for desert dust and soot, J. Atmos. Sci., in press

  19. PubChem3D: conformer ensemble accuracy

    PubMed Central

    2013-01-01

    Background PubChem is a free and publicly available resource containing substance descriptions and their associated biological activity information. PubChem3D is an extension to PubChem containing computationally-derived three-dimensional (3-D) structures of small molecules. All the tools and services that are a part of PubChem3D rely upon the quality of the 3-D conformer models. Construction of the conformer models currently available in PubChem3D involves a clustering stage to sample the conformational space spanned by the molecule. While this stage allows one to downsize the conformer models to more manageable size, it may result in a loss of the ability to reproduce experimentally determined “bioactive” conformations, for example, found for PDB ligands. This study examines the extent of this accuracy loss and considers its effect on the 3-D similarity analysis of molecules. Results The conformer models consisting of up to 100,000 conformers per compound were generated for 47,123 small molecules whose structures were experimentally determined, and the conformers in each conformer model were clustered to reduce the size of the conformer model to a maximum of 500 conformers per molecule. The accuracy of the conformer models before and after clustering was evaluated using five different measures: root-mean-square distance (RMSD), shape-optimized shape-Tanimoto (STST-opt) and combo-Tanimoto (ComboTST-opt), and color-optimized color-Tanimoto (CTCT-opt) and combo-Tanimoto (ComboTCT-opt). On average, the effect of clustering decreased the conformer model accuracy, increasing the conformer ensemble’s RMSD to the bioactive conformer (by 0.18 ± 0.12 Å), and decreasing the STST-opt, ComboTST-opt, CTCT-opt, and ComboTCT-opt scores (by 0.04 ± 0.03, 0.16 ± 0.09, 0.09 ± 0.05, and 0.15 ± 0.09, respectively). Conclusion This study shows the RMSD accuracy performance of the PubChem3D conformer models is operating as designed. In addition, the effect of PubChem3D

  20. Heterogeneous reaction kinetics and mechanism of the nitration of aerosolized protein by O3 and NO2

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Sosedova, Yulia; Rouvière, Aurélie; Ammann, Markus; Pöschl, Ulrich

    2010-05-01

    detection limit (γNO2 < ~10-6). The γNO2 by BSA is of the order of 10-5, strongly depending on gas phase ozone concentration, which indicates that O3 plays an important role in NO2 uptake. The γNO2 by deliquesced NaCl is one order of magnitude smaller, which is likely to be attributed to the formation of gas phase NO3 and N2O5, as neither O3 nor NO2 is expected to rapidly react with deliquesced NaCl. This amount of uptake is considered to be maximum contribution of gas phase NO3 radicals and N2O5 to uptake of 13N-labeled species by protein particles. The possible mechanisms of high NO2 uptake by protein particles are: 1) surface reaction between adsorbed O3 and NO2 forming NO3 radicals on the surface which react with protein [5], 2) O3 first reacts with protein forming intermediates, followed by reaction with NO2. Further experiments and modelling are under way. REFERENCES [1] Franze et al., Environ. Sci. Tech., 39, 1673 (2005). [2] Sosedova et al., J. Phys. Chem A., 113, 10979 (2009). [3] Mikhailov et al., Atmos. Chem. Phys., 4, 323 (2004). [4] Mikhailov et al., Atmos. Chem. Phys., 9, 9491 (2009). [5] Shiraiwa et al., Atmos. Chem. Phys., 9, 9571 (2009)

  1. Model Intercomparison of CCN-Limited Arctic Clouds During ASCOS

    NASA Astrophysics Data System (ADS)

    Stevens, Robin; Dearden, Chris; Dimetrelos, Antonios; Eirund, Gesa; Possner, Anna; Raatikainen, Tomi; Loewe, Katharina; Hill, Adrian; Shipway, Ben; Connolly, Paul; Ekman, Annica; Hoose, Corinna; Laaksonen, Ari; de Leeuw, Gerrit; Kolmonen, Pekka; Saponaro, Giulia; Field, Paul; Carlsaw, Ken

    2017-04-01

    Future decreases in Arctic sea ice are expected to increase fluxes of aerosol and precursor gases from the open ocean surface within the Arctic. The resulting increase in cloud condensation nuclei (CCN) concentrations would be expected to result in increased cloud albedo (Struthers et al, 2011), leading to potentially large changes in radiative forcings. However, Browse et al. (2014) have shown that these increases in condensable material could also result in the growth of existing particles to sizes where they are more efficiently removed by wet deposition in drizzling stratocumulus clouds, ultimately decreasing CCN concentrations in the high Arctic. Their study was limited in that it did not simulate alterations of dynamics or cloud properties due to either changes in heat and moisture fluxes following sea­-ice loss or changing aerosol concentrations. Taken together, these results show that significant uncertainties remain in trying to quantify aerosol­-cloud processes in the Arctic system. The current representation of these processes in global climate models is most likely insufficient to realistically simulate long­-term changes. In order to better understand the microphysical processes currently governing Arctic clouds, we perform a model intercomparison of summertime high Arctic (>80N) clouds observed during the 2008 ASCOS campaign. The intercomparison includes results from three large eddy simulation models (UCLALES-SALSA, COSMO-LES, and MIMICA) and three numerical weather prediction models (COSMO-NWP, WRF, and UM-CASIM). The results of these experiments will be used as a basis for sensitivity studies on the impact of sea-ice loss on Arctic clouds through changes in aerosol and precursor emissions as well as changes in latent and sensible heat fluxes. Browse, J., et al., Atmos. Chem. Phys., 14(14), 7543-7557, doi:10.5194/acp-14-7543-2014, 2014. Struthers, H., et al., Atmos. Chem. Phys., 11(7), 3459-3477, doi:10.5194/acp-11-3459-2011, 2011.

  2. ChemOkey: A Game to Reinforce Nomenclature

    ERIC Educational Resources Information Center

    Kavak, Nusret

    2012-01-01

    Learning the symbolic language of chemistry is a difficult task that can be frustrating for students. This article introduces a game, ChemOkey, that can help students learn the names and symbols of common ions and their compounds in a fun environment. ChemOkey, a game similar to Rummikub, is played with a set of 106 plastic or wooden tiles. The…

  3. ATMOS/ATLAS 1 measurements of sulfur hexafluoride (SF6) in the lower stratosphere and upper troposphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Abrams, M. C.; Lowes, L. L.; Zander, R.; Mahieu, E.

    1993-01-01

    Vertical profiles of sulfur hexafluoride (SF6) in the lower stratosphere and upper troposphere have been retrieved from 0.01/cm resolution infrared solar occultation spectra recorded by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer during the ATLAS (Atmospheric Laboratory for Applications and Science) 1 shuttle mission of March 24 to April 2, 1992. Based on measurements of the unresolved absorption by the SF6 mu(sub 3) band Q branch at 947.9/cm, average SF6 volume mixing ratios and 1-sigma uncertainties of 3.20 +/- 0.54 parts per trillion by volume (pptv; 10(exp -12) ppv) at 200 mbar (approximately 11.8 km) declining to 2.86 +/- 0.29 pptv at 100 mbar (approximately 16.2 km) and 1.95 +/- 0.50 pptv at 30 mbar (approximately 23.9 km) have been retrieved. The profiles show no obvious dependence with latitude over the range of the measurements (eight occultations spanning 28 deg S to 54 deg S). Assuming an exponential growth model and applying a correction for the interhemispheric concentration difference, an average SF6 rate of increase of 8.7 +/- 2.2% per year, 2 sigma, between 12 and 18 km has been derived by fitting the present measurements, ATMOS measurements from the April-May 1985 Spacelab 3 mission, and balloon-borne IR measurements obtained in March 1981 and June 1988.

  4. Formation Conditions of Basalts at Gale Crater, Mars from ChemCam Analyses

    NASA Astrophysics Data System (ADS)

    Filiberto, J.; Bridges, J.; Dasgupta, R.; Edwards, P.; Schwenzer, S. P.; Wiens, R. C.

    2015-12-01

    Surface igneous rocks shed light onto the chemistry, tectonic, and thermal state of planetary interiors. For the purpose of comparative planetology, therefore, it is critical to fully utilize the compositional diversity of igneous rocks for different terrestrial planets. For Mars, igneous float rocks and conglomerate clasts at Gale Crater, as analyzed by ChemCam [1] using a new calibration [2], have a larger range in chemistry than have been analyzed at any other landing site or within the Martian meteorite collection [3, 4]. These rocks may reflect different conditions of melting within the Martian interior than any previously analyzed basalts. Here we present new formation conditions for basaltic and trachybasalt/dioritic rocks at Gale Crater from ChemCam analyses following previous procedures [5, 6]. We then compare these estimates of basalt formation with previous estimates for rocks from the Noachian (Gusev Crater, Meridiani Planum, and a clast in the NWA 7034 meteorite [5, 6]), Hesperian (surface volcanics [7]), and Amazonian (surface volcanics and shergottites [7-8]), to calculate an average mantle potential temperature for different Martian epochs and investigate how the interior of Mars has changed through time. Finally, we will compare Martian mantle potential temperatures with petrologic estimate of cooling for the Earth. Our calculated estimate for the mantle potential temperature (TP) of rocks at Gale Crater is 1450 ± 45 °C which is within error of previous estimates for Noachian aged rocks [5, 6]. The TP estimates for the Hesperian and Amazonian, based on orbital analyses of the crust [7], are lower in temperature than the estimates for the Noachian. Our results are consistent with simple convective cooling of the Martian interior. [1] Wiens R. et al. (2012) Space Sci Rev 170. 167-227. [2] Anderson R. et al. (2015) LPSC. Abstract #7031. [3] Schmidt M.E. et al. (2014) JGRP 2013JE004481. [4] Sautter V. et al. (2014) JGRP 2013JE004472. [5] Filiberto J

  5. ChemPreview: an augmented reality-based molecular interface.

    PubMed

    Zheng, Min; Waller, Mark P

    2017-05-01

    Human computer interfaces make computational science more comprehensible and impactful. Complex 3D structures such as proteins or DNA are magnified by digital representations and displayed on two-dimensional monitors. Augmented reality has recently opened another door to access the virtual three-dimensional world. Herein, we present an augmented reality application called ChemPreview with the potential to manipulate bio-molecular structures at an atomistic level. ChemPreview is available at https://github.com/wallerlab/chem-preview/releases, and is built on top of the Meta 1 platform https://www.metavision.com/. ChemPreview can be used to interact with a protein in an intuitive way using natural hand gestures, thereby making it appealing to computational chemists or structural biologists. The ability to manipulate atoms in real world could eventually provide new and more efficient ways of extracting structural knowledge, or designing new molecules in silico. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. radEq Add-On Module for CFD Solver Loci-CHEM

    NASA Technical Reports Server (NTRS)

    McCloud, Peter

    2013-01-01

    Loci-CHEM to be applied to flow velocities where surface radiation due to heating from compression and friction becomes significant. The module adds a radiation equilibrium boundary condition to the computational fluid dynamics (CFD) code to produce accurate results. The module expanded the upper limit for accurate CFD solutions of Loci-CHEM from Mach 4 to Mach 10 based on Space Shuttle Orbiter Re-Entry trajectories. Loci-CHEM already has a very promising architecture and performance, but absence of radiation equilibrium boundary condition limited the application of Loci-CHEM to below Mach 4. The immediate advantage of the add-on module is that it allows Loci-CHEM to work with supersonic flows up to Mach 10. This transformed Loci-CHEM from a rocket engine- heritage CFD code with general subsonic and low-supersonic applications, to an aeroheating code with hypersonic applications. The follow-on advantage of the module is that it is a building block for additional add-on modules that will solve for the heating generated at Mach numbers higher than 10.

  7. Engaging Organic Chemistry Students Using ChemDraw for iPad

    ERIC Educational Resources Information Center

    Morsch, Layne A.; Lewis, Michael

    2015-01-01

    Drawing structures, mechanisms, and syntheses is a vital part of success in organic chemistry courses. ChemDraw for iPad has been used to increase classroom experiences in the preparation of high quality chemical drawings. The embedded Flick-to-Share allows for simple, real-time exchange of ChemDraw documents. ChemDraw for iPad also allows…

  8. Chem-E-Car Downunder.

    ERIC Educational Resources Information Center

    Rhodes, Martin

    2002-01-01

    Presents the Chem-E-Car competition in which students build a small car powered by a chemical reaction. Focuses on a controlled chemical reaction in which the car travels a required specific distance and stops. Requires participants to prepare poster presentations. (YDS)

  9. Searching Online Chemical Data Repositories via the ChemAgora Portal.

    PubMed

    Zanzi, Antonella; Wittwehr, Clemens

    2017-12-26

    ChemAgora, a web application designed and developed in the context of the "Data Infrastructure for Chemical Safety Assessment" (diXa) project, provides search capabilities to chemical data from resources available online, enabling users to cross-reference their search results with both regulatory chemical information and public chemical databases. ChemAgora, through an on-the-fly search, informs whether a chemical is known or not in each of the external data sources and provides clikable links leading to the third-party web site pages containing the information. The original purpose of the ChemAgora application was to correlate studies stored in the diXa data warehouse with available chemical data. Since the end of the diXa project, ChemAgora has evolved into an independent portal, currently accessible directly through the ChemAgora home page, with improved search capabilities of online data sources.

  10. AEGIS Automated Targeting for the MSL ChemCam Instrument

    NASA Astrophysics Data System (ADS)

    Estlin, T.; Anderson, R. C.; Blaney, D. L.; Bornstein, B.; Burl, M. C.; Castano, R.; Gaines, D.; Judd, M.; Thompson, D. R.; Wiens, R. C.

    2013-12-01

    The Autonomous Exploration for Gathering Increased Science (AEGIS) system enables automated science data collection by a planetary rover. AEGIS has been in use on the Mars Exploration Rover (MER) mission Opportunity rover since 2010 to provide onboard targeting of the MER Panoramic Camera based on scientist-specified objectives. AEGIS is now being applied for use with the Mars Science Laboratory (MSL) mission ChemCam spectrometer. ChemCam uses a Laser Induced Breakdown Spectrometer (LIBS) to analyze the elemental composition of rocks and soil from up to seven meters away. ChemCam's tightly-focused laser beam (350-550 um) enables targeting of very fine-scale terrain features. AEGIS is being applied in two ways to help ChemCam collect valuable science data. The first application is to enable automated targeting of ChemCam during or after or in the middle of long drives. The majority of ChemCam measurements are collected by allowing the science team to select specific targets in rover images. However this requires the rover to stay in the same area while images are downlinked, analyzed for targets, and new commands uplinked. The only data that can be acquired without this communication cycle is via blind targeting, where measurements are often of soil patches vs. instead of more valuable targets such as rocks with specific properties. AEGIS is being applied to automatically analyze images onboard and select targets for ChemCam analysis. This approach allows the rover to autonomously select and sequence targeted measurements in an opportunistic fashion at different points along the rover's drive path. Rock targets can be prioritized for measurement based on various geologically relevant features, including size, shape and albedo. A second application is to enable intelligent pointing refinement of ChemCam when acquiring data of small targets, such as veins or concretions that are only a few millimeters wide. Due to backlash and other pointing challenges, it can often

  11. Recent Science from the Cape Verde Atmospheric Observatory (CVAO)

    NASA Astrophysics Data System (ADS)

    Read, Katie; Lee, James; Punjabi, Shalini; Carpenter, Lucy; Lewis, Alastair; Moller, Sarah; Mendes Neves, Luis; Fleming, Zoe; Evans, Mat; Arnold, Steve; Hopkins, James

    2013-04-01

    submitted regularly on daily, monthly and yearly timescales to the World Centre for the Greenhouse Gases (WDCGG) http://gaw.kishou.go.jp/wdcgg/ in addition to the British Atmospheric Data Centre (BADC) http://badc.nerc.ac.uk/home/index.html along with associated instrument metadata. The observatory has recently been audited by GAW for O3, CO and the greenhouse gas species. Lee et al., (2010) Atmos. Chem. Phys., 10, 1031-1055. Carpenter et al., (2010), J. Atmos. Chem., 67, 2, 87-140. Read et al., (2012), ES & T.,46, 20, 11028-11039.

  12. Engineering Analysis in the Chem-E-Car Competition

    ERIC Educational Resources Information Center

    Lewis, Randy S.; Moshfeghian, Aliakbar; Madihally, Sundararajan V.

    2006-01-01

    The AIChE Chem-E-Car competition provides students an opportunity to demonstrate their design and teamwork skills. Engineering analysis is not required at the national competition and is often not applied. This work describes an engineering analysis of a Chem-E-Car to predict the distance traveled by the car. Engineering analysis is advantageous…

  13. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications

    NASA Astrophysics Data System (ADS)

    Payré, V.; Fabre, C.; Cousin, A.; Sautter, V.; Wiens, R. C.; Forni, O.; Gasnault, O.; Mangold, N.; Meslin, P.-Y.; Lasue, J.; Ollila, A.; Rapin, W.; Maurice, S.; Nachon, M.; Le Deit, L.; Lanza, N.; Clegg, S.

    2017-03-01

    The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantifications of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. These observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.

  14. The CHEM Study Story.

    ERIC Educational Resources Information Center

    Merrill, Richard J.; Ridgway, David W.

    The history of the planning, funding, preparation of preliminary materials, teacher preparation, trial teaching, evaluation, revision and final publication of the CHEM Study materials is presented. The anecdotal account points out the difficulties encountered, the solutions found and the pitfalls avoided so that the experience gained may be useful…

  15. A dichotomy in primary marine organic aerosol-cloud-climate system

    NASA Astrophysics Data System (ADS)

    Ceburnis, D.; Ovadnevaite, J.; Martucci, G.; Bialek, J.; Monahan, C.; Rinaldi, M.; Facchini, C.; Berresheim, H.; Worsnop, D. R.; O'Dowd, C.

    2011-12-01

    dominated aerosol in sub-saturated conditions should have significant implications for direct radiative effect while effectively forming cloud condensation nuclei should have significant contribution to indirect effect. 1 O'Dowd, C. D. et al. Nature 431, 676-680, doi:10.1038/Nature02959 (2004). 2 Ceburnis, D. et al. Atmos. Chem. Phys. Discuss. 11, 2749-2772, doi:doi:10.5194/acpd-11-2749-2011 (2011). 3 Ovadnevaite, J. et al. Geophys Res Lett 38, L02807, doi:10.1029/2010gl046083 (2011). 4 O'Dowd, C., et al. Geophys Res Lett 37, doi:L19805 10.1029/2010gl044679 (2010). 5 Ovadnevaite, J. et al. Geophys Res Lett (2011). 6 Martucci, G. and O'Dowd, C. D. Atmos. Meas. Tech. Discuss., 4, 4825-4865, doi:10.5194/amtd-4-4825-2011 (2011) 7 Gantt, B. et al. Atmos. Chem. Phys. Discuss. 11, 10525-10555, doi:10.5194/acpd-11-10525-2011 (2011).

  16. The Another Assimilation System for WRF-Chem (AAS4WRF): a new mass-conserving emissions pre-processor for WRF-Chem regional modelling

    NASA Astrophysics Data System (ADS)

    Vara Vela, A. L.; Muñoz, A.; Lomas, A., Sr.; González, C. M.; Calderon, M. G.; Andrade, M. D. F.

    2017-12-01

    The Weather Research and Forecasting with Chemistry (WRF-Chem) community model have been widely used for the study of pollutants transport, formation of secondary pollutants, as well as for the assessment of air quality policies implementation. A key factor to improve the WRF-Chem air quality simulations over urban areas is the representation of anthropogenic emission sources. There are several tools that are available to assist users in creating their own emissions based on global emissions information (e.g. anthro_emiss, prep_chem_src); however, there is no single tool that will construct local emissions input datasets for any particular domain at this time. Because the official emissions pre-processor (emiss_v03) is designed to work with domains located over North America, this work presents the Another Assimilation System for WRF-Chem (AAS4WRF), a ncl based mass-conserving emissions pre-processor designed to create WRF-Chem ready emissions files from local inventories on a lat/lon projection. AAS4WRF is appropriate to scale emission rates from both surface and elevated sources, providing the users an alternative way to assimilate their emissions to WRF-Chem. Since it was successfully tested for the first time for the city of Lima, Peru in 2014 (managed by SENAMHI, the National Weather Service of the country), several studies on air quality modelling have applied this utility to convert their emissions to those required for WRF-Chem. Two case studies performed in the metropolitan areas of Sao Paulo and Manizales in Brazil and Colombia, respectively, are here presented in order to analyse the influence of using local or global emission inventories in the representation of regulated air pollutants such as O3 and PM2.5. Although AAS4WRF works with local emissions information at the moment, further work is being conducted to make it compatible with global/regional emissions data file format. The tool is freely available upon request to the corresponding author.

  17. Aerosol formation by ozonolysis of α- and β-pinene with initial concentrations below 1 ppb

    NASA Astrophysics Data System (ADS)

    Saathoff, Harald; Naumann, Karl-Heinz; Möhler, Ottmar

    2014-05-01

    trace gas evolution model calculations were done using the aerosol model COSIMA (Naumann, 2003; Saathoff et al., 2009) supplemented by an improved SOA module in combination with the master chemical mechanism (MCM 3.2). As previously reported for higher SOA concentrations the overall SOA yields from ozonolysis of α- and β-pinene increase significantly with decreasing temperature. However, compared to the yields extrapolated from experiments done with higher terpene concentrations the SOA yields at ambient like concentrations are surprisingly high. They reach values of up to 20% at 243 K for organic aerosol mass concentrations of about 0.5 µg m-3 even without additional seed aerosol. This paper discusses the temperature dependent SOA yields from the ozonolysis of α-pinene and β-pinene in comparison with data from literature. Bernard et al., (2012) J. Aerosol Sci. 43, 14-30. Boy et al., (2004) Atmos. Chem. Phys. 4, 657-678. Kesselmeier et al., (2000) Atmos. Environ. 34, 4063-4072 Naumann (2003) J. Aerosol Sci. 34 (10), 1371-1397. Saathoff et al., (2009) Atmos. Chem. Phys. 9 (5), 1551-1577.

  18. Application of distance correction to ChemCam laser-induced breakdown spectroscopy measurements

    DOE PAGES

    Mezzacappa, A.; Melikechi, N.; Cousin, A.; ...

    2016-04-04

    Laser-induced breakdown spectroscopy (LIBS) provides chemical information from atomic, ionic, and molecular emissions from which geochemical composition can be deciphered. Analysis of LIBS spectra in cases where targets are observed at different distances, as is the case for the ChemCam instrument on the Mars rover Curiosity, which performs analyses at distances between 2 and 7.4 m is not a simple task. Previously, we showed that spectral distance correction based on a proxy spectroscopic standard created from first-shot dust observations on Mars targets ameliorates the distance bias in multivariate-based elemental-composition predictions of laboratory data. In this work, we correct an expandedmore » set of neutral and ionic spectral emissions for distance bias in the ChemCam data set. By using and testing different selection criteria to generate multiple proxy standards, we find a correction that minimizes the difference in spectral intensity measured at two different distances and increases spectral reproducibility. When the quantitative performance of distance correction is assessed, there is improvement for SiO 2, Al 2O 3, CaO, FeOT, Na 2O, K 2O, that is, for most of the major rock forming elements, and for the total major-element weight percent predicted. But, for MgO the method does not provide improvements while for TiO 2, it yields inconsistent results. Additionally, we observed that many emission lines do not behave consistently with distance, evidenced from laboratory analogue measurements and ChemCam data. This limits the effectiveness of the method.« less

  19. ChemRad Sample Form Instructions

    EPA Pesticide Factsheets

    These instructons are intended to assist registered users of the EPA Region 8 Drinking Water Watch website who would like to create ChemRad Sample Forms for monitoring that is required during the current year.

  20. Field Observations of Bioaerosols: What We've Learned from Fluorescence, Genetic, and Microscopic Techniques (Invited)

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Fröhlich-Nowoisky, J.; Després, V. R.; Elbert, W.; Sinha, B.; Andreae, M. O.; Pöschl, U.

    2009-12-01

    biodiversity [3,4]. Filters collected at a semi-urban site in Germany for approximately one year determined that ~34% of the airborne fungal species were Ascomycota (sac fungi), 64% were Basidiomycota (club fungi), and that their relative proportions changed seasonally. Numerical simulations with state-of-the-art atmospheric chemistry and climate models are helping to unravel the regional and global distribution and transport of PBA [5]. The atmospheric abundance and environmental effects of PBA are particularly pronounced in tropical regions, where both the biological activity at the Earth’s surface and the physicochemical processes in the atmosphere are particularly intense and important for the Earth system and global climate. If climate change and human activities lead to changes in the abundance and properties of PBA, this might influence the hydrological cycle and provide a feedback to climate change [1]. [1] Elbert et al. (2007) Atmos. Chem. Phys., 7, 4569 - 4588. [2] Huffman et al. (2009) Atmos. Chem. Phys. Discuss., 9, 17705 - 17751. [3] Després et al. (2007) Biogeosciences, 4, 1127-1141. [4] Fröhlich-Nowoisky et al. (2009) Proc. Nat. Acad. Sci., 106, 12814 - 12819. [5] Burrows et al. (2009) Atmos. Chem. Phys. Discuss., 9, 10829 - 10881.

  1. Comment on ``The application of the thermodynamic perturbation theory to study the hydrophobic hydration'' [J. Chem. Phys. 139, 024101 (2013)

    NASA Astrophysics Data System (ADS)

    Graziano, Giuseppe

    2013-09-01

    It is shown that the behaviour of the hydration thermodynamic functions obtained in the 3D Mercedes-Benz model of water by Mohoric et al. [J. Chem. Phys. 139, 024101 (2013)] is not qualitatively correct with respect to experimental data for a solute whose diameter is 1.5-fold larger than that of a water molecule. It is also pointed out that the failure is due to the fact that the used 3D Mercedes-Benz model of water [A. Bizjak, T. Urbic, V. Vlachy, and K. A. Dill, J. Chem. Phys. 131, 194504 (2009)] does not reproduce in a quantitatively correct manner the peculiar temperature dependence of water density.

  2. Mars Rock Rocknest 3 Imaged by Curiosity ChemCam

    NASA Image and Video Library

    2012-11-26

    This view of a rock called Rocknest 3 combines two images taken by the Chemistry and Camera ChemCam instrument on the NASA Mars rover Curiosity and indicates five spots where ChemCam had hit the rock with laser pulses to check its composition.

  3. Reactive oxygen species from secondary organic aerosols decomposition in water and surrogate lung lining fluid

    NASA Astrophysics Data System (ADS)

    Tong, H.; Shen, F.; Lakey, P. S. J.; Arangio, A. M.; Socorro, J.; Brune, W. H.; Lucas, K.; Poeschl, U.; Shiraiwa, M.

    2016-12-01

    Reactive oxygen species (ROS) play a significant role in climate and adverse health effects of air pollutants (Anglada, J. M. et al., 2015; Pöschl and Shiraiwa, 2015). Secondary organic aerosols (SOA) account for a major fraction of fine particles (Jimenez et al., 2009; Huang et al., 2014). Thus, studies on ROS production ability of SOA are important for comprehensive evaluation of the impacts of air particulate matter on climate change and public health. In this study, we have investigated ROS formation by laboratory-generated SOA particles using a variety of different experimental techniques including electron paramagnetic resonance spectrometry, dithiothreitol and fluorometric hydrogen peroxide assays, and LC-MS/MS spectrometry, we found substantial amounts of ROS species such as •OH, O2•-, RO•, R• and H2O2 were generated by isoprene, β-pinene, and naphthalene SOA upon interaction with water and surrogate lung lining fluid. Antioxidants contained in surrogate lung lining fluid scavenge •OH and O2•-efficiently, but not organic radicals. LC-MS/MS analysis and kinetic modeling suggest that organic hydroperoxides, which account for a major fraction of SOA particles (Docherty et al., 2005; Ehn et al., 2014) play a critical role in ROS formation (Tong et al., 2016). We also found the cellular responses of human alveolar basal epithelial (A549) and macrophage cells (THP-1) to SOA could be explained by the ROS yields, indicating a key role of ROS on the cytotoxicity of SOA. Anglada, J. M. et al., Acc. Chem. Res. 48, 575-583, 2015. Docherty, K. S. eta al. Environ. Sci. Technol. 39, 4049-4059, 2005. Ehn, M. et al., Nature 506, 476-479, 2014. Huang, R.-J. et al., Nature 514, 218-222, 2014. Jimenez, J. L. et al., Science 326, 1525-1529, 2009. Pöschl, U., and Shiraiwa, M. Chem. Rev., 115, 4440-4475, 2015. Tong, H. et al., Atmos. Chem. Phys. 16, 1761-1771, 2016.

  4. Detecting Hydrogen Chloride (HCl) in the Polluted Marine Boundary Layer Using Cavity Ring-Down Spectroscopy (CRDS)

    NASA Astrophysics Data System (ADS)

    Furlani, T.; Dawe, K.; VandenBoer, T. C.; Young, C.

    2017-12-01

    Oxidation initiated with chlorine atoms yields more ozone than oxidation initiated with hydroxyl radicals. Reasons for this are not fully understood, but the implications for mechanisms of oxidation chemistry are significant.1,2 Chlorine atoms have not been directly measured to date in the atmosphere and its abundance is usually inferred through steady-state approximations from all known formation and loss processes. A major reservoir for chlorine in the troposphere is by proton abstraction of organic compounds to form HCl.3 HCl can also be formed heterogeneously via acid displacement reactions with ubiquitously-found sodium chloride (NaCl) on solid surfaces with nitric acid (HNO3). The majority of the available chloride in the marine boundary layer comes from the sea salt in and around marine derived sea-spray aerosols. HCl is not a perfect sink and can react with hydroxyl radicals or be photolyzed to form chlorine atoms. The balance between loss and formation processes of chlorine atoms from HCl is highly dependent on many external factors, such as the wet and dry deposition rate of HCl. Measuring HCl in the gas and aerosol phase is important to the understanding of chlorine chemistry in the polluted marine boundary layer. HCl levels in the polluted marine boundary layer are typically between 100pptv-1ppbv,3 requiring the sensitive and selective detection capabilities of cavity ring-down spectroscopy (CRDS).4 We measured HCl using a Picarro CRDS in the polluted marine boundary layer for the first time. Measurements were conducted during April and May of 2017 in St. John's, Newfoundland and Labrador. The performance of the instrument will be discussed, as well as observations of HCl in the context of local conditions. References1Osthoff, H. D. et al. Nat. Geosci 1, 324-328 (2008). 2Young, C. J. et al. Atmos. Chem. Phys. 14, 3427-3440 (2014). 3Crisp, T. a et al. J. Geophys. Res. Atmos. 6897-6915 (2014). 4Hagen, C. L. et al. Atmos. Meas. Tech. 7, 345-357 (2014).

  5. Long-term observations of aerosol and cloud condensation nuclei concentrations in Barbados

    NASA Astrophysics Data System (ADS)

    Pöhlker, Mira L.; Klimach, Thomas; Krüger, Ovid O.; Hrabe de Angelis, Isabella; Ditas, Florian; Praß, Maria; Holanda, Bruna; Su, Hang; Weber, Bettina; Pöhlker, Christopher; Farrell, David A.; Stevens, Bjorn; Prospero, Joseph M.; Andreae, Meinrat O.; Pöschl, Ulrich

    2017-04-01

    Meteorological Society, 97, 787-801. [3] Wex, H., et al., (2016), Atmos. Chem. Phys., 16, 14107-14130. [4] Pöhlker, M. L.., et al. (2016), Atmos. Chem. Phys., 16, 15709-15740.

  6. ChemCam Passive Sky Spectroscopy at Gale Crater, Mars: Interannual Variability in Dust Aerosol Particle Size, Missing Water Vapor, and the Molecular Oxygen Problem

    NASA Astrophysics Data System (ADS)

    McConnochie, T. H.; Smith, M. D.; Wolff, M. J.; Bender, S. C.; Lemmon, M. T.; Wiens, R. C.; Maurice, S.; Gasnault, O.; Lasue, J.; Meslin, P. Y.; Harri, A. M.; Genzer, M.; Kemppinen, O.; Martinez, G.; DeFlores, L. P.; Blaney, D. L.; Johnson, J. R.; Bell, J. F., III; Trainer, M. G.; Lefèvre, F.; Atreya, S. K.; Mahaffy, P. R.; Wong, M. H.; Franz, H. B.; Guzewich, S.; Villanueva, G. L.; Khayat, A. S.

    2017-12-01

    The Mars Science Laboratory's (MSL) ChemCam spectrometer measures atmospheric aerosol properties and gas abundances by operating in passive mode and observing scattered sky light at two different elevation angles. We have previously [e. g. 1, 2] presented the methodology and results of these ChemCam Passive Sky observations. Here we will focus on three of the more surprising results that we have obtained: (1) depletion of the column water vapor at Gale Crater relative to that of the surrounding region combined with a strong enhancement of the local column water vapor relative to pre-dawn in-situ measurements, (2) an interannual change in the effective particle size of dust aerosol during the aphelion season, and (3) apparent seasonal and interannual variability in molecular oxygen that differs significantly from the expected behavior of a non-condensable trace gas and differs significantly from global climate model expectations. The ChemCam passive sky water vapor measurements are quite robust but their interpretation depends on the details of measurements as well as on the types of water vapor vertical distributions that can be produced by climate models. We have a high degree of confidence in the dust particle size changes but since aerosol results in general are subject to a variety of potential systematic effects our particle size results would benefit from confirmation by other techniques [c.f. 3]. For the ChemCam passive sky molecular oxygen results we are still working to constrain the uncertainties well enough to confirm the observed surprising behavior, motivated by similarly surprising atmospheric molecular oxygen variability observed by MSL's Sample Analysis at Mars (SAM) instrument [4]. REFERENCES: [1] McConnochie, et al. (2017), Icarus (submitted). [2] McConnochie, et al. (2017), abstract # 3201, The 6th International Workshop on the Mars Atmosphere: Granada, Spain. [3] Vicente-Retortillo et al. (2017), GRL, 44. [4] Trainer et al. (2017), 2017 AGU Fall

  7. AutoClickChem: click chemistry in silico.

    PubMed

    Durrant, Jacob D; McCammon, J Andrew

    2012-01-01

    Academic researchers and many in industry often lack the financial resources available to scientists working in "big pharma." High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu.

  8. AutoClickChem: Click Chemistry in Silico

    PubMed Central

    Durrant, Jacob D.; McCammon, J. Andrew

    2012-01-01

    Academic researchers and many in industry often lack the financial resources available to scientists working in “big pharma.” High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu. PMID:22438795

  9. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payre, Valerie; Fabre, Cecile; Cousin, Agnes

    The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantificationsmore » of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. Here, these observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.« less

  10. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications

    DOE PAGES

    Payre, Valerie; Fabre, Cecile; Cousin, Agnes; ...

    2017-03-20

    The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantificationsmore » of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. Here, these observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.« less

  11. ConfChem Conference on Flipped Classroom: Spring 2014 ConfChem Virtual Poster Session

    ERIC Educational Resources Information Center

    Belford, Robert E.; Stoltzfus, Matthew; Houseknecht, Justin B.

    2015-01-01

    This communication describes the virtual poster session of the Flipped Classroom online ConfChem conference that was hosted by the ACS CHED Committee on Computers in Chemical Education (CCCE) from May 9 to June 12, 2014. During the conference's online discussions, it became evident that multiple participants who were not presenting papers had been…

  12. Precipitation scavenging of aerosol particles at a rural site in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Zikova, Nadezda; Zdimal, Vladimir

    2017-04-01

    concentrations of AA particles smaller than 80 nm are lower than they are during periods without any phenomenon recorded. Also during liquid precipitation, PNSD are lower when compared to non-event periods, suggesting an effective AA deposition. Precipitation containing frozen hydrometeors behaves differently from liquid precipitation. Concentrations of AA particles larger than 200 nm during precipitation containing solid particles do not differ from non-event cases, suggesting insignificant scavenging. The results of the observed size dependent changes in AA concentrations and PNSD could be used to assess the expected changes in atmosphere during transport and scavenging of AA not only during experimental campaigns, but during modelling as well. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 654109. Andronache at al. 2006. Atmos. Chem. Phys. 6, 4739-54. Chate at al. 2011. Atmos. Res. 99(3-4), 528-536. Collett at al. 2008. Atmos. Res. 87(3-4), 232-241. Laakso et al. 2003. Atmos. Environ. 37(25), 3605-3613. Ladino at al. 2011. J. Atmos. Sci. 68(9), 1853-1864. Seinfeld and Pandis. 2012. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley.

  13. Curiosity's ChemCam Checks 'Christmas Cove' Colors

    NASA Image and Video Library

    2017-11-01

    The Chemistry and Camera (ChemCam) instrument on NASA's Curiosity Mars rover examined a freshly brushed area on target rock "Christmas Cove" and found spectral evidence of hematite, an iron-oxide mineral. ChemCam sometimes zaps rocks with a laser, but can also be used, as in this case, in a "passive" mode. In this type of investigation, the instrument's telescope delivers to spectrometers the sunlight reflected from a small target point. The upper-left inset of this graphic is an image from ChemCam's Remote Micro-Imager with five labeled points that the instrument analyzed. The image covers an area about 2 inches (5 centimeters) wide, and the bright lines are fractures in the rock filled with calcium sulfate minerals. The five charted lines of the graphic correspond to those five points and show the spectrometer measurements of brightness at thousands of different wavelengths, from 400 nanometers (at the violet end of the visible-light spectrum) to 840 nanometers (in near-infrared). Sections of the spectrum measurements that are helpful for identifying hematite are annotated. These include a dip around 535 nanometers, the green-light portion of the spectrum at which fine-grained hematite tends to absorb more light and reflect less compared to other parts of the spectrum. That same green-absorbing characteristic of the hematite makes it appear purplish when imaged through special filters of Curiosity's Mast Camera and even in usual color images. The spectra also show maximum reflectance values near 750 nanometers, followed by a steep decrease in the spectral slope toward 840 nanometers, both of which are consistent with hematite. This ChemCam examination of Christmas Cove was part of an experiment to determine whether the rock had evidence of hematite under a tan coating of dust. The target area was brushed with Curiosity's Dust Removal Tool prior to these ChemCam passive observations on Sept. 17, 2017, during the 1,819th Martian day, or sol, of Curiosity's work on

  14. Effects of chemical surface modification on the ice nucleation ability of feldspar and illite

    NASA Astrophysics Data System (ADS)

    Augustin, Stefanie; Wex, Heike; Kanter, Sandra; Ebert, Martin; Niedermeier, Dennis; Stratmann, Frank

    2014-05-01

    ability. Acknowledgement: Part of this work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. Murray, B. J., O'Sullivan, D., Atkinson, J. D. and Webb, M. E., Chem. Soc. Rev., 41, 6519-6554, 2012. Atkinson J. D. , B. J. Murray, M. T. Woodhouse, T. F. Whale, K. J. Baustian, K. S. Carslaw, S. Dobbie, D. O'Sullivan and T. L. Malkin, Nature, 498, 355-358, 2013. Broadley S. L., B. J. Murray, R. J. Herbert, J. D. Atkinson, S. Dobbie, T. L. Malkin, E. Condlie, and L. Neve, Atmos. Chem. Phys., 12, 287-307, 2012. Hoose, C. and O. Möhler, Atmos. Chem. Phys., 12, 9817-9854, 2012.

  15. Pressure Sounding of the Middle Atmosphere from ATMOS Solar Occultation Measurements of Atmospheric CO(sub 2) Absorption Lines

    NASA Technical Reports Server (NTRS)

    Abrams, M.; Gunson, M.; Lowes, L.; Rinsland, C.; Zander, R.

    1994-01-01

    A method for retrieving the atmospheric pressure corresponding to the tangent point of an infrared spectrum recorded in the solar occultation mode is described and applied to measurements made by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer. Tangent pressure values are inferred from measurements of isolated CO(sub 2) lines with temperature-insensitive intensities. Tangent pressures are determined with a spectroscopic precision of 1-3%, corresponding to a tangent point height precision, depending on the scale height, of 70-210 meters.

  16. NARSTO EPA SS NEW YORK AIR CHEM PM MET DATA

    Atmospheric Science Data Center

    2018-04-09

    NARSTO EPA SS NEW YORK AIR CHEM PM MET DATA Project Title:  NARSTO ... Nitrogen Oxides Ozone Surface Winds Air Temperature Humidity Solar Irradiance Particulate Matter ... Data Guide Documents:  New York Air Chem Guide CPM Summary Report  (PDF) Nitrate ...

  17. Hazardous Waste Cleanup: Cycle Chem Incorporated in Elizabeth, New Jersey

    EPA Pesticide Factsheets

    Cycle Chem is located at 217 South First Street in Elizabeth, New Jersey. Cycle Chem recovers spent solvents and treats both hazardous and non-hazardous wastes in containers and tanks. The site comprises two acres in an industrial area, surrounded by

  18. Curiosity ChemCam Removes Dust

    NASA Image and Video Library

    2013-04-08

    This pair of images taken a few minutes apart show how laser firing by NASA Mars rover Curiosity removes dust from the surface of a rock. The images were taken by the remote micro-imager camera in the laser-firing Chemistry and Camera ChemCam.

  19. EarthChem: International Collaboration for Solid Earth Geochemistry in Geoinformatics

    NASA Astrophysics Data System (ADS)

    Walker, J. D.; Lehnert, K. A.; Hofmann, A. W.; Sarbas, B.; Carlson, R. W.

    2005-12-01

    The current on-line information systems for igneous rock geochemistry - PetDB, GEOROC, and NAVDAT - convincingly demonstrate the value of rigorous scientific data management of geochemical data for research and education. The next generation of hypothesis formulation and testing can be vastly facilitated by enhancing these electronic resources through integration of available datasets, expansion of data coverage in location, time, and tectonic setting, timely updates with new data, and through intuitive and efficient access and data analysis tools for the broader geosciences community. PetDB, GEOROC, and NAVDAT have therefore formed the EarthChem consortium (www.earthchem.org) as a international collaborative effort to address these needs and serve the larger earth science community by facilitating the compilation, communication, serving, and visualization of geochemical data, and their integration with other geological, geochronological, geophysical, and geodetic information to maximize their scientific application. We report on the status of and future plans for EarthChem activities. EarthChem's development plan includes: (1) expanding the functionality of the web portal to become a `one-stop shop for geochemical data' with search capability across databases, standardized and integrated data output, generally applicable tools for data quality assessment, and data analysis/visualization including plotting methods and an information-rich map interface; and (2) expanding data holdings by generating new datasets as identified and prioritized through community outreach, and facilitating data contributions from the community by offering web-based data submission capability and technical assistance for design, implementation, and population of new databases and their integration with all EarthChem data holdings. Such federated databases and datasets will retain their identity within the EarthChem system. We also plan on working with publishers to ease the assimilation

  20. New species of ice nucleating fungi in soil and air

    NASA Astrophysics Data System (ADS)

    Froehlich, Janine; Hill, Tom; Franc, Gary; Poeschl, Ulrich

    2013-04-01

    , D.G., et al. (2009) Biogeosciences, 6, 721-737 3. Pouleur, S., et al. (1992) Appl. Environ. Microbiol. 58, 2960-2964 4. Burrows, S.M., et al. (2009a) Atmos. Chem. Phys., 9, (23), 9281-9297 5. Burrows, S.M., et al. (2009b) Atmos. Chem. Phys., 9, (23), 9263-9280 6. Fröhlich-Nowoisky, J., et al. (2012) Biogeosciences, 9, 1125-1136

  1. Chem-Braze Abradable Seal Attachment to Aircraft Gas Turbine Compressor Components.

    DTIC Science & Technology

    1982-01-01

    seals to compressor blade tip-shrouds using the im- proved Chem-Braze system compared to attachment with gold-nickel braze. The Chem-Braze system has been...used successfully to bond abradable seals to titanium ’ cobalt, nickel and iron base alloys; however, attempts to use Chem-Braze to bond seals to...attaching FELTMETALO seals to steel, titanium , and nickel-based alloys, and ICB bonding procedures were investigated for attaching seals to selected

  2. ChemBank: a small-molecule screening and cheminformatics resource database.

    PubMed

    Seiler, Kathleen Petri; George, Gregory A; Happ, Mary Pat; Bodycombe, Nicole E; Carrinski, Hyman A; Norton, Stephanie; Brudz, Steve; Sullivan, John P; Muhlich, Jeremy; Serrano, Martin; Ferraiolo, Paul; Tolliday, Nicola J; Schreiber, Stuart L; Clemons, Paul A

    2008-01-01

    ChemBank (http://chembank.broad.harvard.edu/) is a public, web-based informatics environment developed through a collaboration between the Chemical Biology Program and Platform at the Broad Institute of Harvard and MIT. This knowledge environment includes freely available data derived from small molecules and small-molecule screens and resources for studying these data. ChemBank is unique among small-molecule databases in its dedication to the storage of raw screening data, its rigorous definition of screening experiments in terms of statistical hypothesis testing, and its metadata-based organization of screening experiments into projects involving collections of related assays. ChemBank stores an increasingly varied set of measurements derived from cells and other biological assay systems treated with small molecules. Analysis tools are available and are continuously being developed that allow the relationships between small molecules, cell measurements, and cell states to be studied. Currently, ChemBank stores information on hundreds of thousands of small molecules and hundreds of biomedically relevant assays that have been performed at the Broad Institute by collaborators from the worldwide research community. The goal of ChemBank is to provide life scientists unfettered access to biomedically relevant data and tools heretofore available primarily in the private sector.

  3. The Atmospheric Chemistry of Methyl Chavicol (Estragole)

    NASA Astrophysics Data System (ADS)

    Bloss, W. J.; Alam, M. S.; Rickard, A. R.; Hamilton, J. F.; Pereira, K. F.; Camredon, M.; Munoz, A.; Vazquez, M.; Alacreu, P.; Rodenas, M.; Vera, T.

    2012-12-01

    SOA formation in the ambient atmosphere. The results are compared with the (limited) previous smog chamber results, and discussed in the context of the recent field data on MC production and emissions. References Bouvier-Brown et al., Atmos. Chem. Phys. 9, 2061, 2009 Misztal et al., Atmos. Chem. Phys. 10, 4343, 2010.

  4. Comment on “Frequency-domain stimulated and spontaneous light emission signals at molecular junctions” [J. Chem. Phys. 141, 074107 (2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galperin, Michael; Ratner, Mark A.; Nitzan, Abraham

    2015-04-07

    We discuss the derivation of the optical response in molecular junctions presented by U. Harbola et al. [J. Chem. Phys. 141, 074107 (2014)], which questions some terms in the theory of Raman scattering in molecular junctions developed in our earlier publications. We show that the terms considered in our theory represent the correct contribution to calculated Raman scattering and are in fact identical to those considered by Harbola et al. We also indicate drawbacks of the presented approach in treating the quantum transport part of the problem.

  5. CHEM-Based Self-Deploying Spacecraft Radar Antennas

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold; Huang, John; Ghaffarian, Reza

    2004-01-01

    A document proposes self-deploying spacecraft radar antennas based on cold hibernated elastic memory (CHEM) structures. Described in a number of prior NASA Tech Briefs articles, the CHEM concept is one of utilizing open-cell shape-memory-polymer (SMP) foams to make lightweight structures that can be compressed for storage and can later be expanded, then rigidified for use. A CHEM-based antenna according to the proposal would comprise three layers of microstrip patches and transmission lines interspersed with two flat layers of SMP foam, which would serve as both dielectric spacers and as means of deployment. The SMP foam layers would be fabricated at full size at a temperature below the SMP glass-transition temperature (Tg). The layers would be assembled into a unitary structure, which, at temperature above Tg, would be compacted to much smaller thickness, then rolled up for storage. Next, the structure would be cooled to below Tg and kept there during launch. Upon reaching the assigned position in outer space, the structure would be heated above Tg to make it rebound to its original size and shape. The structure as thus deployed would then be rigidified by natural cooling to below Tg

  6. New Particle Formation Events During 2013 in Hada Al Sham, Saudi-Arabia

    NASA Astrophysics Data System (ADS)

    Neitola, K.; Hyvärinen, A.; Lihavainen, H.; Alghamdi, M.; Hussein, T.; Khodeir, M.; Shehata, A.; Laaksonen, A. J.; Kulmala, M. T.

    2014-12-01

    clear growth, S is clear shrinkage, G + S is both growth and shrinkage and unclear is not clear in either way.ReferencesM. Dal Maso, et al. (2005). Bor. Env. Res., 10, 323-336.M. Kulmala, et al. (2006). Atmos. Chem. Phys., 6, 787-793. M. Kulmala, et al. (2013). Science, 336, 943-946.

  7. "CHEM"opera for Chemistry Education

    ERIC Educational Resources Information Center

    Chung, Yong Hee

    2013-01-01

    "CHEM"opera is an opera blended with demonstrations of chemical reactions. It has been produced and performed twice by chemistry undergraduate students at Hallym University in South Korea. It aims to demonstrate interesting chemical reactions to chemistry students, children and the public and to facilitate their understanding of the role…

  8. Development of the EarthChem Geochronology and Thermochronology database: Collaboration of the EarthChem and EARTHTIME efforts

    NASA Astrophysics Data System (ADS)

    Walker, J. D.; Ash, J. M.; Bowring, J.; Bowring, S. A.; Deino, A. L.; Kislitsyn, R.; Koppers, A. A.

    2009-12-01

    One of the most onerous tasks in rigorous development of data reporting and databases for geochronological and thermochronological studies is to fully capture all of the metadata needed to completely document both the analytical work as well as the interpretation effort. This information is available in the data reduction programs used by researchers, but has proven difficult to harvest into either publications or databases. For this reason, the EarthChem and EARTHTIME efforts are collaborating to foster the next generation of data management and discovery for age information by integrating data reporting with data reduction. EarthChem is a community-driven effort to facilitate the discovery, access, and preservation of geochemical data of all types and to support research and enable new and better science. EARTHTIME is also a community-initiated project whose aim is to foster the next generation of high-precision geochronology and thermochoronology. In addition, collaboration with the CRONUS effort for cosmogenic radionuclides is in progress. EarthChem workers have met with groups working on the Ar-Ar, U-Pb, and (U-Th)/He systems to establish data reporting requirements as well as XML schemas to be used for transferring data from reduction programs to database. At present, we have prototype systems working for the U-Pb_Redux, ArArCalc, MassSpec, and Helios programs. In each program, the user can select to upload data and metadata to the GEOCHRON system hosted at EarthChem. There are two additional requirements for upload. The first is having a unique identifier (IGSN) obtained either manually or via web services contained within the reduction program from the SESAR system. The second is that the user selects whether the sample is to be available for discovery (public) or remain hidden (private). Search for data at the GEOCHRON portal can be done using age, method, mineral, or location parameters. Data can be downloaded in the full XML format for ingestion back

  9. Development of an integrated chemical weather prediction system for environmental applications at meso to global scales: NMMB/BSC-CHEM

    NASA Astrophysics Data System (ADS)

    Jorba, O.; Pérez, C.; Karsten, K.; Janjic, Z.; Dabdub, D.; Baldasano, J. M.

    2009-09-01

    forecasting applications in regional or global domains. An emission process allows the coupling of different emission inventories sources such as RETRO, EDGAR and GEIA for the global domain, EMEP for Europe and HERMES for Spain. The photolysis scheme is based on the Fast-J scheme, coupled with physics of each model layer (e.g., aerosols, clouds, absorbers as ozone) and it considers grid-scale clouds from the atmospheric driver. The dry deposition scheme follows the deposition velocity analogy for gases, enabling the calculation of deposition fluxes from airborne concentrations. No cloud-chemistry processes are included in the system yet (no wet deposition, scavenging and aqueous chemistry). The modeling system developments will be presented and first results of the gas-phase chemistry at global scale will be discussed. REFERENCES Janjic, Z.I., and Black, T.L., 2007. An ESMF unified model for a broad range of spatial and temporal scales, Geophysical Research Abstracts, 9, 05025. Pérez, C., Haustein, K., Janjic, Z.I., Jorba, O., Baldasano, J.M., Black, T.L., and Nickovic, S., 2008. An online dust model within the meso to global NMMB: current progress and plans. AGU Fall Meeting, San Francisco, A41K-03, 2008. Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael, G.R., 2002. The kinetic preprocessor KPP - A software environment for solving chemical kinetics. Comp. Chem. Eng., 26, 1567-1579. Sandu, A., and Sander, R., 2006. Technical note:Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1. Atmos. Chem. and Phys., 6, 187-195.

  10. Evaluation of Chem-Crete : final report.

    DOT National Transportation Integrated Search

    1982-01-01

    Two test sections, one on new construction and the other on a maintenance resurfacing project, were installed in the fall of 1980 to evaluate the proprietary product Chem-Crete. Laboratory tests and dynaflect and density measurements were performed o...

  11. New species of ice nucleating fungi in soil and air

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, Janine; Hill, Thomas C. J.; Pummer, Bernhard G.; Franc, Gray D.; Pöschl, Ulrich

    2014-05-01

    -8°C. The IN seem not be bound to cells because they can be easily washed off the mycelium. They pass through a 0.1 µm filter and can be inactivated by 60°C treatment. Ongoing investigations of various soil and air samples indicate that diverse ice nucleation active fungi from more than one phylum are not only present in air and soil but can also be abundant components of the cultivable community. A recently discovered group of IN fungi in soil was also found to possess easily suspendable IN smaller than 300 kDa. Ice nucleating fungal mycelium may ramify topsoils and release cell-free IN into it. If some of these IN survive decomposition or are adsorbed onto mineral surfaces this contribution will accumulate over time, perhaps to be transported with soil dust and influencing its ice nucleating properties. Thanks for collaboration and support to M.O. Andreae, B. Baumgartner, I. Germann-Müller, T. Godwill, L.E. Hanson, A.T. Kunert, J. Meeks, T. Pooya, S. Lelieveld, J. Odhiambo Obuya, C. Ruzene-Nespoli, and D. Sebazungu. The Max Planck Society (MPG), Ice Nuclei research UnIT (INUIT), the German Research Foundation (PO1013/5-1), and the National Science Foundation (NSF, grant 0841542) are acknowledged for financial support. 1. Fröhlich-Nowoisky, J., et al. (2009) Proc. Natl Acad. Sci., 106, 12814-12819 2. Després, V. R., et al. (2012) Tellus B, 64, 15598 3. Georgakopoulos, D.G., et al. (2009) Biogeosciences, 6, 721-737 4. Pouleur, S., et al. (1992) Appl. Environ. Microbiol. 58, 2960-2964 5. Burrows, S.M., et al. (2009a) Atmos. Chem. Phys., 9, (23), 9281-9297 6. Burrows, S.M., et al. (2009b) Atmos. Chem. Phys., 9, (23), 9263-9280 7. Fröhlich-Nowoisky, J., et al. (2012) Biogeosciences, 9, 1125-1136 8. Huffman A. J. et al. (2013) Atmos. Chem. Phys., 13, 6151-6164

  12. DPubChem: a web tool for QSAR modeling and high-throughput virtual screening.

    PubMed

    Soufan, Othman; Ba-Alawi, Wail; Magana-Mora, Arturo; Essack, Magbubah; Bajic, Vladimir B

    2018-06-14

    High-throughput screening (HTS) performs the experimental testing of a large number of chemical compounds aiming to identify those active in the considered assay. Alternatively, faster and cheaper methods of large-scale virtual screening are performed computationally through quantitative structure-activity relationship (QSAR) models. However, the vast amount of available HTS heterogeneous data and the imbalanced ratio of active to inactive compounds in an assay make this a challenging problem. Although different QSAR models have been proposed, they have certain limitations, e.g., high false positive rates, complicated user interface, and limited utilization options. Therefore, we developed DPubChem, a novel web tool for deriving QSAR models that implement the state-of-the-art machine-learning techniques to enhance the precision of the models and enable efficient analyses of experiments from PubChem BioAssay database. DPubChem also has a simple interface that provides various options to users. DPubChem predicted active compounds for 300 datasets with an average geometric mean and F 1 score of 76.68% and 76.53%, respectively. Furthermore, DPubChem builds interaction networks that highlight novel predicted links between chemical compounds and biological assays. Using such a network, DPubChem successfully suggested a novel drug for the Niemann-Pick type C disease. DPubChem is freely available at www.cbrc.kaust.edu.sa/dpubchem .

  13. Dust Detection by Curiosity ChemCam

    NASA Image and Video Library

    2013-04-08

    The ChemCam instrument on NASA Curiosity Mars rover fired its laser 50 times at its onboard graphite target showing spectral measurements from the first shot, which hit dust on the target, compared to spectral measurements of from the 50th shot.

  14. Chem/bio sensing with non-classical light and integrated photonics.

    PubMed

    Haas, J; Schwartz, M; Rengstl, U; Jetter, M; Michler, P; Mizaikoff, B

    2018-01-29

    Modern quantum technology currently experiences extensive advances in applicability in communications, cryptography, computing, metrology and lithography. Harnessing this technology platform for chem/bio sensing scenarios is an appealing opportunity enabling ultra-sensitive detection schemes. This is further facilliated by the progress in fabrication, miniaturization and integration of visible and infrared quantum photonics. Especially, the combination of efficient single-photon sources together with waveguiding/sensing structures, serving as active optical transducer, as well as advanced detector materials is promising integrated quantum photonic chem/bio sensors. Besides the intrinsic molecular selectivity and non-destructive character of visible and infrared light based sensing schemes, chem/bio sensors taking advantage of non-classical light sources promise sensitivities beyond the standard quantum limit. In the present review, recent achievements towards on-chip chem/bio quantum photonic sensing platforms based on N00N states are discussed along with appropriate recognition chemistries, facilitating the detection of relevant (bio)analytes at ultra-trace concentration levels. After evaluating recent developments in this field, a perspective for a potentially promising sensor testbed is discussed for reaching integrated quantum sensing with two fiber-coupled GaAs chips together with semiconductor quantum dots serving as single-photon sources.

  15. Distributed chemical computing using ChemStar: an open source java remote method invocation architecture applied to large scale molecular data from PubChem.

    PubMed

    Karthikeyan, M; Krishnan, S; Pandey, Anil Kumar; Bender, Andreas; Tropsha, Alexander

    2008-04-01

    We present the application of a Java remote method invocation (RMI) based open source architecture to distributed chemical computing. This architecture was previously employed for distributed data harvesting of chemical information from the Internet via the Google application programming interface (API; ChemXtreme). Due to its open source character and its flexibility, the underlying server/client framework can be quickly adopted to virtually every computational task that can be parallelized. Here, we present the server/client communication framework as well as an application to distributed computing of chemical properties on a large scale (currently the size of PubChem; about 18 million compounds), using both the Marvin toolkit as well as the open source JOELib package. As an application, for this set of compounds, the agreement of log P and TPSA between the packages was compared. Outliers were found to be mostly non-druglike compounds and differences could usually be explained by differences in the underlying algorithms. ChemStar is the first open source distributed chemical computing environment built on Java RMI, which is also easily adaptable to user demands due to its "plug-in architecture". The complete source codes as well as calculated properties along with links to PubChem resources are available on the Internet via a graphical user interface at http://moltable.ncl.res.in/chemstar/.

  16. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2015-04-01

    particles of the same composition would allow proving that LLPS indeed occurs in particles of atmospheric relevant size ranges. Up to now this prove is missing. References: 1. Bertram, et al. Atmos. Chem & Phys, 11(21), 10995-11006, 2011. 2. Krieger, et al. Chemical Society Reviews, 41(19), 6631-6662, 2012 3. Song, M. et al. Geophys Res Lett, 39(19), 2012b 4. Smith et al. Atmos Chem & Phys, 12(20), 9613- 9628, 2012. 5. You, Y. et al. Proceedings of the National Academy of Sciences, 109(33), 13188-13193, 2012.

  17. Investigation of heterogeneous ice nucleation in pollen suspensions and washing water

    NASA Astrophysics Data System (ADS)

    Dreischmeier, Katharina; Budke, Carsten; Koop, Thomas

    2014-05-01

    Biological particles such as pollen often show ice nucleation activity at temperatures higher than -20 °C. Immersion freezing experiments of pollen washing water demonstrate comparable ice nucleation behaviour as water containing the whole pollen bodies (Pummer et al., 2012). It was suggested that polysaccharide molecules leached from the grains are responsible for the ice nucleation. Here, heterogeneous ice nucleation in birch pollen suspensions and their washing water was investigated by two different experimental methods. The optical freezing array BINARY (Bielefeld Ice Nucleation ARraY) allows the direct observation of freezing of microliter-sized droplets. The IN spectra obtained from such experiments with birch pollen suspensions over a large concentration range indicate several different ice nucleation active species, two of which are present also in the washing water. The latter was probed also in differential scanning calorimeter (DSC) experiments of emulsified sub-picoliter droplets. Due to the small droplet size in the emulsion samples and at small concentration of IN in the washing water, such DSC experiments can exhibit the ice nucleation behaviour of a single nucleus. The two heterogeneous freezing signals observed in the DSC thermograms can be assigned to two different kinds of ice nuclei, confirming the observation from the BINARY measurements, and also previous studies on Swedish birch pollen washing water (Augustin et al., 2012). The authors gratefully acknowledge funding by the German Research Foundation (DFG) through the project BIOCLOUDS (KO 2944/1-1) and through the research unit INUIT (FOR 1525) under KO 2944/2-1. We particularly thank our INUIT partners for fruitful collaboration and sharing of ideas and IN samples. S. Augustin, H. Wex, D. Niedermeier, B. Pummer, H. Grothe, S. Hartmann, L. Tomsche, T. Clauss, J. Voigtländer, K. Ignatius, and F. Stratmann, Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989

  18. Health effects of particulate air pollution and airborne desert dust

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.

    2013-12-01

    Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone

  19. Long-term observations of cloud condensation nuclei in the Amazon rain forest

    NASA Astrophysics Data System (ADS)

    Pöhlker, Mira L.; Pöhlker, Christopher; Ditas, Florian; Klimach, Thomas; Hrabe de Angelis, Isabella; Brito, Joel; Carbone, Samara; Cheng, Yafang; Martin, Scot T.; Moran-Zuloaga, Daniel; Rose, Diana; Saturno, Jorge; Su, Hang; Thalman, Ryan; Walter, David; Wang, Jian; Barbosa, Henrique; Artaxo, Paulo; Andreae, Meinrat O.; Pöschl, Ulrich

    2017-04-01

    region. References: [1] Andreae, M. O., et al. (2015), Atmos. Chem. Phys., 15, 10723-10776. [2] Pöhlker, M. L.., et al. (2016), Atmos. Chem. Phys., 16, 15709-15740.

  20. Consequences of ChemR23 Heteromerization with the Chemokine Receptors CXCR4 and CCR7

    PubMed Central

    de Poorter, Cédric; Baertsoen, Kevin; Lannoy, Vincent; Parmentier, Marc; Springael, Jean-Yves

    2013-01-01

    Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed. PMID:23469143

  1. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7.

    PubMed

    de Poorter, Cédric; Baertsoen, Kevin; Lannoy, Vincent; Parmentier, Marc; Springael, Jean-Yves

    2013-01-01

    Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.

  2. Effects of Aerosol Pollution on Clouds over Megacities

    NASA Astrophysics Data System (ADS)

    Sechrist, B.; Jacobson, M. Z.

    2013-12-01

    The correlation between aerosol optical depth (AOD) and cloud properties - principally cloud fraction and cloud optical depth (COD) - is examined using satellite retrievals from the MODIS satellites over Los Angeles and Beijing. Ten Hoeve et al. (2011, Atmos. Chem. Phys, 11(7), 3021-3036) used satellite data to examine the impact of aerosols on warm clouds around Rondonia, Brazil, during the biomass burning season. They found that the COD-AOD relationship exhibits a 'boomerang' shape in which COD initially increases with increasing AOD but then decreases as AOD continues to increase beyond some critical level. This result is thought to reflect the balance between the microphysical and radiative components of a cloud's response to aerosols. The microphysical process dominates at low AOD, while the radiative process dominates at high AOD. This study is analogous to Ten Hoeve et al., but for aerosols derived primarily from fossil fuel combustion rather than biomass burning. Preliminary results will be presented.

  3. Studying organic aerosols during bonfire night in Manchester: ME-2 source apportionment

    NASA Astrophysics Data System (ADS)

    Reyes Villegas, Ernesto; Allan, James

    2016-04-01

    conditions: 5°C in 2014; 12°C in 2013. For NH4NO3, a range of 1.5-2.9 for the ratio of concentrations NO+/NO+2 (m/z ratio of 30:46) has previously been reported (Fry et al. 2009) while the ratio for organic nitrate is much higher, with values of 10-15 (Hao et al. 2014). In this study, a ratio of 9.5 was observed on bonfire night and a ratio of 3.5 was observed during episodes without bonfire/fireworks emissions. This study shows OA source apportionment on bonfire night where significant SFOA emissions are present, suggesting that high concentrations are not only attributed to bonfires/fireworks emissions but also to meteorological conditions. Organic nitrate was identified during bonfire night suggesting a nighttime chemistry with anthropogenic oxidants. This analysis may provide vital information to strengthen legislation as well as to support health studies in order to improve air quality in the UK. Canonaco, F. et al. Atmos Meas Tech. 6, 3649-3661, 2013. Fry, J. et al. Atmos. Chem. Phys. 9, 1431-1449, 2009. Hao, L. Atmos. Chem. Phys., 14, 13483-13495, 2014. Zhao, S. et al. Atmospheric Pollution Research. 5, 335-343, 2014.

  4. Seasonal Variations of Water Vapor in the Lower Stratosphere Inferred from ATMOS/ATLAS-3 Measurements of H2O and CH4

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Michelsen, H. A.; Gunson, M. R.; Abrams, M. C.; Newchurch, M. J.; Salawitch, R. J.; Chang, A. Y.; Goldman, A.; Irion, F. W.; Manney, G. L.; hide

    1996-01-01

    Stratospheric measurements of H2O and CH4 by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer on the ATLAS-3 shuttle flight in November 1994 have been examined to investigate the altitude and geographic variability of H2O and the quantity H = (H2O + 2CH4) in the tropics and at mid-latitudes (8 to 49 deg N) in the northern hemisphere. The measurements indicate an average value of 7.24 +/- 0.44 ppmv for H between altitudes of about 18 to 35 km, corresponding to an annual average water vapor mixing ratio of 3.85 +/- 0.29 ppmv entering the stratosphere. The H2O vertical distribution in the tropics exhibits a wave-like structure in the 16- to 25-km altitude range, suggestive of seasonal variations in the water vapor transported from the troposphere to the stratosphere. The hygropause appears to be nearly coincident with the tropopause at the time of observations. This is consistent with the phase of the seasonal cycle of H2O in the lower stratosphere, since the ATMOS observations were made in November when the H2O content of air injected into the stratosphere from the troposphere is decreasing from its seasonal peak in July-August.

  5. Immersion freezing in concentrated solution droplets for a variety of ice nucleating particles

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Kohn, Monika; Grawe, Sarah; Hartmann, Susan; Hellner, Lisa; Herenz, Paul; Welti, Andre; Lohmann, Ulrike; Kanji, Zamin; Stratmann, Frank

    2016-04-01

    The measurement campaign LINC (Leipzig Ice Nucleation counter Comparison) was conducted in September 2015, during which ice nucleation measurements as obtained with the following instruments were compared: - LACIS (Leipzig Aerosol Cloud Interaction Simulator, see e.g. Wex et al., 2014) - PIMCA-PINC (Portable Immersion Mode Cooling Chamber together with PINC) - PINC (Portable Ice Nucleation Chamber, Chou et al., 2011) - SPIN (SPectrometer for Ice Nuclei, Droplet Measurement Technologies) While LACIS and PIMCA-PINC measured immersion freezing, PINC and SPIN varied the super-saturation during the measurements and collected data also for relative humidities below 100% RHw. A suite of different types of ice nucleating particles were examined, where particles were generated from suspensions, subsequently dried and size selected. For the following samples, data for all four instruments are available: K-feldspar, K-feldspar treated with nitric acid, Fluka-kaolinite and birch pollen. Immersion freezing measurements by LACIS and PIMCA-PINC were in excellent agreement. Respective parameterizations from these measurement were used to model the ice nucleation behavior below water vapor saturation, assuming that the process can be described as immersion freezing in concentrated solutions. This is equivalent to simply including a concentration dependent freezing point depression in the immersion freezing parameterization, as introduced for coated kaolinite particles in Wex et al. (2014). Overall, measurements performed below water vapor saturation were reproduced by the model, and it will be discussed in detail, why deviations were observed in some cases. Acknowledgement: Part of this work was funded by the DFG Research Unit FOR 1525 INUIT, grant WE 4722/1-2. Literature: Chou, C., O. Stetzer, E. Weingartner, Z. Juranyi, Z. A. Kanji, and U. Lohmann (2011), Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps, Atmos. Chem. Phys., 11(10), 4725

  6. ChemTS: an efficient python library for de novo molecular generation.

    PubMed

    Yang, Xiufeng; Zhang, Jinzhe; Yoshizoe, Kazuki; Terayama, Kei; Tsuda, Koji

    2017-01-01

    Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS.

  7. ChemTS: an efficient python library for de novo molecular generation

    PubMed Central

    Yang, Xiufeng; Zhang, Jinzhe; Yoshizoe, Kazuki; Terayama, Kei; Tsuda, Koji

    2017-01-01

    Abstract Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS. PMID:29435094

  8. ChemTS: an efficient python library for de novo molecular generation

    NASA Astrophysics Data System (ADS)

    Yang, Xiufeng; Zhang, Jinzhe; Yoshizoe, Kazuki; Terayama, Kei; Tsuda, Koji

    2017-12-01

    Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel Python library ChemTS that explores the chemical space by combining Monte Carlo tree search and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS.

  9. Synthetic chemerin-derived peptides suppress inflammation through ChemR23

    PubMed Central

    Cash, Jenna L.; Hart, Rosie; Russ, Andreas; Dixon, John P.C.; Colledge, William H.; Doran, Joanne; Hendrick, Alan G.; Carlton, Mark B.L.; Greaves, David R.

    2008-01-01

    Chemerin is a chemotactic protein that binds to the G protein–coupled receptor, ChemR23. We demonstrate that murine chemerin possesses potent antiinflammatory properties that are absolutely dependent on proteolytic processing. A series of peptides was designed, and only those identical to specific C-terminal chemerin sequences exerted antiinflammatory effects at picomolar concentrations in vitro. One of these, chemerin15 (C15; A140-A154), inhibited macrophage (MΦ) activation to a similar extent as proteolyzed chemerin, but exhibited reduced activity as a MΦ chemoattractant. Intraperitoneal administration of C15 (0.32 ng/kg) to mice before zymosan challenge conferred significant protection against zymosan-induced peritonitis, suppressing neutrophil (63%) and monocyte (62%) recruitment with a concomitant reduction in proinflammatory mediator expression. Importantly, C15 was unable to ameliorate zymosan-induced peritonitis in ChemR23−/− mice, demonstrating that C15's antiinflammatory effects are entirely ChemR23 dependent. In addition, administration of neutralizing anti-chemerin antibody before zymosan challenge resulted in a significant exacerbation of peritoneal inflammation (up to 170%), suggesting an important endogenous antiinflammatory role for chemerin-derived species. Collectively, these results show that chemerin-derived peptides may represent a novel therapeutic strategy for the treatment of inflammatory diseases through ChemR23. PMID:18391062

  10. A History of ChemMatters Magazine

    ERIC Educational Resources Information Center

    Tinnesand, Michael J.

    2007-01-01

    ChemMatters, the chemistry magazine published since 1983, has always provided interesting topics for chemistry students. The American Chemical Society publishes the magazine and many well-known authors like Isaac Asimov, Glen Seaborg and Derek Davenport have contributed to the magazine and the magazine has succeeded in its goal of demystifying…

  11. Particle formation above natural and simulated salt lakes

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Sattler, Tobias; Krause, Torsten; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    formation above Australian salt lakes. This work was funded by German Research Foundation (DFG) under grants HE 5214/5-1 and ZE792/5-2. References: Buxmann, J., Balzer, N., Bleicher, S., Platt, U., and Zetzsch, C.: Observations of bromine explosions in smog chamber experiments above a model salt pan, Int. J. Chem. Kinet., 44, 312-326, 2012. Junkermann, W., Hacker, J., Lyons, T., and Nair, U.: Land use change suppresses precipitation, Atmos. Chem. Phys., 9, 6531-6539, 2009. Ofner, J., Balzer, N., Buxmann, J., Grothe, H., Schmitt-Kopplin, Ph., Platt, U., and Zetzsch, C.: Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms, Atmos. Chem. Phys., 12, 5787-5806, 2012.

  12. Worldwide biogenic soil NOx emission estimates from OMI NO2 observations and the GEOS-Chem model

    NASA Astrophysics Data System (ADS)

    Vinken, Geert; Boersma, Folkert; Maasakkers, Bram; Martin, Randall

    2014-05-01

    Bacteria in soils are an important source of biogenic nitrogen oxides (NOx = NO + NO2), which are important precursors for ozone (O3) formation. Furthermore NOx emissions contribute to increased nitrogen deposition and particulate matter formation. Bottom-up estimates of global soil NOx emissions range from 4 to 27 Tg N / yr, reflecting our incomplete knowledge of emission factors and processes driving these emissions. In this study we used, for the first time, OMI NO2 columns on all continents to reduce the uncertainty in soil NOx emissions. Regions and months dominated by soil NOx emissions were identified using a filtering scheme in the GEOS-Chem chemistry transport model. Consequently, we compared OMI observed NO2 observed columns to GEOS-Chem simulated columns and provide constraints for these months in 11 regions. This allows us to provide a top-down emission inventory for 2005 for soil NOx emissions from all continents. Our total global soil NOx emission inventory amounts to 10 Tg N / yr. Our estimate is 4% higher than the GEOS-Chem a priori (Hudman et al., 2012), but substantial regional differences exist (e.g. +20% for Sahel and India; and -40% for mid-USA). We furthermore observed a stronger seasonal cycle in the Sahel region, indicating directions for possible future improvements to the parameterization currently used in GEOS-Chem. We validated NO2 concentrations simulated with this new top-down inventory against surface NO2 measurements from monitoring stations in Africa, the USA and Europe. On the whole, we conclude that simulations with our new top-down inventory better agree with measurements. Our work shows that satellite retrieved NO2 columns can improve estimates of soil NOx emissions over sparsely monitored remote rural areas. We show that the range in previous estimates of soil NOx emissions is too large, and global emissions are most likely around 10 Tg N/yr, in agreement with the most recent parameterizations.

  13. ChemDoodle Web Components: HTML5 toolkit for chemical graphics, interfaces, and informatics.

    PubMed

    Burger, Melanie C

    2015-01-01

    ChemDoodle Web Components (abbreviated CWC, iChemLabs, LLC) is a light-weight (~340 KB) JavaScript/HTML5 toolkit for chemical graphics, structure editing, interfaces, and informatics based on the proprietary ChemDoodle desktop software. The library uses and WebGL technologies and other HTML5 features to provide solutions for creating chemistry-related applications for the web on desktop and mobile platforms. CWC can serve a broad range of scientific disciplines including crystallography, materials science, organic and inorganic chemistry, biochemistry and chemical biology. CWC is freely available for in-house use and is open source (GPL v3) for all other uses.Graphical abstractAdd interactive 2D and 3D chemical sketchers, graphics, and spectra to websites and apps with ChemDoodle Web Components.

  14. FastChem: An ultra-fast equilibrium chemistry

    NASA Astrophysics Data System (ADS)

    Kitzmann, Daniel; Stock, Joachim

    2018-04-01

    FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.

  15. Aerosol Characteristics in the Northern Territory of Australia During the Dry Season With an Emphasis on Biomass Burning

    DTIC Science & Technology

    2005-08-01

    properties and concentration of aerosol particles over the Amazon tropical forest during background and biomass burning ...characterize the seasonal variation (beginning to end) in the aerosol properties of the region. The main source of aerosol is biomass burning , and... Burning Emissions Part III: Intensive Optical Properties of Biomass Burning Particles , Atmos. Chem. Phys. Discuss., 4 5201-5260 45. see e. g.

  16. The PubChem chemical structure sketcher

    PubMed Central

    2009-01-01

    PubChem is an important public, Web-based information source for chemical and bioactivity information. In order to provide convenient structure search methods on compounds stored in this database, one mandatory component is a Web-based drawing tool for interactive sketching of chemical query structures. Web-enabled chemical structure sketchers are not new, being in existence for years; however, solutions available rely on complex technology like Java applets or platform-dependent plug-ins. Due to general policy and support incident rate considerations, Java-based or platform-specific sketchers cannot be deployed as a part of public NCBI Web services. Our solution: a chemical structure sketching tool based exclusively on CGI server processing, client-side JavaScript functions, and image sequence streaming. The PubChem structure editor does not require the presence of any specific runtime support libraries or browser configurations on the client. It is completely platform-independent and verified to work on all major Web browsers, including older ones without support for Web2.0 JavaScript objects. PMID:20298522

  17. Impact of the intercontinental transport of biomass burning pollutants on the Mediterranean Basin during the CHARMEX-GLAM airborne campaign

    NASA Astrophysics Data System (ADS)

    Brocchi, Vanessa; Krysztofiak, Gisèle; Catoire, Valéry; Zbinden, Régina; Guth, Jonathan; El Amraoui, Laaziz; Piguet, Bruno; Dulac, François; Hamonou, Eric; Ricaud, Philippe

    2017-04-01

    The Mediterranean Basin (MB) is at the crossroad of pollutant emissions from Western and Central Europe and of major dust sources from Sahara and Arabian deserts and thus sensitive to climate change and air quality. Several studies (Formenti et al.,J. Geophys. Res., 2002; Ancellet et al., Atmos. Chem. Phys., 2016) also show the impact on the MB of long-range transport of polluted air masses. However, most of the studies have been dedicated to biomass burning aerosols. The aim of the present study is to show trace gases impact on the MB coming from long-range transport of biomass burning. The Gradient in Longitude of Atmospheric constituents above the Mediterranean basin (GLAM) campaign in August 2014, as part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) project, aimed at studying the tropospheric chemical variability of gaseous pollutants and aerosols along a West-East transect above the MB. During the GLAM campaign, several instruments onboard the Falcon-20 aircraft (SAFIRE, INSU / Météo-France) were deployed including an infrared laser spectrometer (SPIRIT, LPC2E) able to detect weak variations in the concentration of pollutants. During two flights on 6 and 10 August, increases in CO, O3 and aerosols were measured over Sardinia at 5000 and 9000 m asl, respectively. To assess the origin of the air masses, 20-day backward trajectories with a nested-grid regional scale Lagrangian particle dispersion model (FLEXPART, Stohl et al., Atmos. Chem. Phys., 2005) were calculated. Combined with emissions coming from the Global Fire Assimilation System (GFAS) inventory (Kaiser et al., Biogeosciences, 2012), this leads to CO biomass burning contribution to aircraft measured values. Biomass burning emissions located in Siberia in the first case and in northern America in the second case were identified as the cause of this burden of pollutants in the mid and upper troposphere over the MB. By adjusting the injection height of the model and amplifying emissions

  18. Heterogeneous ice nucleation and phase transition of viscous α-pinene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Virtanen, Annele; Stratmann, Frank

    2016-04-01

    nucleation of secondary organic aerosol produced from ozonolysis of α-pinene, Atmos. Chem. Phys. Discuss., 15, 35719-35752, doi:10.5194/acpd-15-35719-2015, 2015. Järvinen, E. et al., Observation of viscosity transition in α-pinene secondary organic aerosol, Atmos. Chem. Phys. Discuss., 15, 28575-28617, doi:10.5194/acpd-15-28575-2015, 2015.

  19. The Leipzig Ice Nucleation chamber Comparison (LINC): An overview of ice nucleation measurements observed with four on-line ice nucleation devices

    NASA Astrophysics Data System (ADS)

    Kohn, Monika; Wex, Heike; Grawe, Sarah; Hartmann, Susan; Hellner, Lisa; Herenz, Paul; Welti, André; Stratmann, Frank; Lohmann, Ulrike; Kanji, Zamin A.

    2016-04-01

    detection and data treatment. A difference was observed between FF from LACIS and PIMCA-PINC compared to the ice activated fractions (AF) from PINC and SPIN. This requires further investigations. Acknowledgements Part of this work was funded by the DFG Research Unit FOR 1525 INUIT, grant WE 4722/1-2. References Chou et al. (2011), Atmos. Chem. Phys., 11, 4725-4738. Hartmann et al. (2011), Atmos. Chem. Phys., 11, 1753-1767.

  20. Land cover maps, BVOC emissions, and SOA burden in a global aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Stanelle, Tanja; Henrot, Alexandra; Bey, Isaelle

    2015-04-01

    It has been reported that different land cover representations influence the emission of biogenic volatile organic compounds (BVOC) (e.g. Guenther et al., 2006). But the land cover forcing used in model simulations is quite uncertain (e.g. Jung et al., 2006). As a consequence the simulated emission of BVOCs depends on the applied land cover map. To test the sensitivity of global and regional estimates of BVOC emissions on the applied land cover map we applied 3 different land cover maps into our global aerosol-climate model ECHAM6-HAM2.2. We found a high sensitivity for tropical regions. BVOCs are a very prominent precursor for the production of Secondary Organic Aerosols (SOA). Therefore the sensitivity of BVOC emissions on land cover maps impacts the SOA burden in the atmosphere. With our model system we are able to quantify that impact. References: Guenther et al. (2006), Estimates of global terrestrial isoprene emissions using MEGAN, Atmos. Chem. Phys., 6, 3181-3210, doi:10.5194/acp-6-3181-2006. Jung et al. (2006), Exploiting synergies of global land cover products for carbon cycle modeling, Rem. Sens. Environm., 101, 534-553, doi:10.1016/j.rse.2006.01.020.

  1. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    ScienceCinema

    Wiens, Roger

    2018-02-06

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.

  2. ATMOS Measurements of H2O + 2CH4 and Total Reactive Nitrogen in the November 1994 Antarctic Stratosphere: Dehydration and Denitrification in the Vortex

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Salawitch, R. J.; Newchurch, M. J.; Zander, R.; Abbas, M. M.; Abrams, M. C.; Manney, G. L.; Michelsen, H. A.; Chang, A. Y.; hide

    1996-01-01

    Simultaneous stratospheric volume mixing ratios (VMR's) measured inside and outside the Antarctic vortex by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument in November 1994 reveal previously unobserved features in the distributions of total reactive nitrogen (NO(y)) and total hydrogen (H2O + 2CH4). Maximum removal of NO(y) due to sedimentation of polar stratospheric clouds (PSC's) inside the vortex occurred at a potential temperature (Theta) of 500-525 K (approximately 20 km), where values were 5 times smaller than measurements outside. Maximum loss of H2O + 2CH4 due to PSC's occurred in the vortex at 425-450 K, approximately 3 km lower than the peak NO(y) loss. At that level, H2O + 2CH4 VMR's inside the vortex were approximately 70% of corresponding values outside. The Antarctic and April 1993 Arctic measurements by ATMOS show no significant differences in H2O + 2CH4 VMR's outside the vortices in the two hemispheres. Elevated NO(y) VMRs were measured inside the vortex near 700 K. Recent model calculations indicate that this feature results from downward transport of elevated NO(y) produced in the thermosphere and mesosphere.

  3. Anomalous Centrifugal Distortion in HDO and Spectroscopic Data Bases

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.

    2015-06-01

    The HDO molecule is important from the atmospheric point of view as it can be used to study the water cycle in the earth atmosphere. It is also interesting from the spectroscopic point of view as it displays an anomalous centrifugal distortion similar to that of the normal species H_2O. A model developed to treat the anomalous distortion in HDO should account for the fact that it lacks a two-fold axis of symmetry. A new treatment aimed at the calculation of the rovibrational energy of the HDO molecule and allowing for anomalous centrifugal distortion effects has been developed. It is based on an effective Hamiltonian in which the large amplitude bending ν_2 mode and the overall rotation of the molecule are treated simultaneously. Due to the lack of a two-fold axis of symmetry, this effective Hamiltonian contains terms arising from the non-diagonal component of the inertia tensor and from the Coriolis-coupling between the large amplitude bending ν_2 mode and the overall rotation of the molecule. This new treatment has been used to perform a line position analysis of a large body of infrared, microwave, and hot water vapor data involving the ground and (010) states up to J=22. For these 4413 data, a unitless standard deviation of 1.1 was achieved. A line intensity analysis was also carried out and allowed us to reproduce the strength of 1316 transitions^c with a unitless standard deviation of 1.1. In the talk, the new theoretical approach will be presented. The results of both analyses will be discussed and compared with those of a previous investigation. The new spectroscopic data base built will be compared with HITRAN 2012. Herbin et al., Atmos. Chem. Phys.~9 (2009) 9433; and Schneider and Hase, Atmos. Chem. Phys.~ 11 (2011) 11207. Coudert, Wagner, Birk, Baranov, Lafferty, and Flaud, J. Molec. Spectrosc.~251 (2008) 339. Johns, J. Opt. Soc. Am. B~2 (1985) 1340 Toth, J. Molec. Spectrosc.~162 (1993) 20 Paso and Horneman, J. Opt. Soc. Am. B~12 (1995) 1813 Toth, J

  4. n-Aldehydes (C6-C10) in snow samples collected at the high alpine research station Jungfraujoch during CLACE 5

    NASA Astrophysics Data System (ADS)

    Sieg, K.; Starokozhev, E.; Fries, E.; Sala, S.; Püttmann, W.

    2009-04-01

    -aldehyde pattern found in snow collected at Jungfraujoch. One exception is the significantly higher proportion of n-hexanal in the Jungfraujoch samples compared to vegetation emission. Additionally, indirect biogenic emissions can contribute to the atmospheric concentrations of n-aldehydes through oxidation of precursor compounds of biogenic origin. In this context, Moise and Rudich [4] and Thornberry and Abbatt [5] proposed the preferential formation of n-nonanal and n-hexanal from the cleavage by ozonolysis of double bonds in unsaturated fatty acids (namely oleic acid and linoleic acids). The predominance of n-hexanal and n-nonanal among the C6-C10 n-aldehydes in the snow samples collected at Jungfraujoch during CLACE 5 is therefore an argument for the formation of the aldehydes through oxidation of unsaturated fatty acids in the atmosphere. Anthropogenic emissions of n-aldehydes i.e. from fossil fuel burning are thought to be negligible in the air masses reaching Jungfraujoch. References: [1] P. Ciccioli, E. Brancaleoni, M. Frattoni, A. Cecinato, A. Brachetti, Atmos. Environ., Part A 27 (1993) 1891. [2] Y. Yokouchi, H. Mukai, K. Nakajima, Y. Ambe, Atmos. Environ., Part A 24 (1990) 439. [3] J. Kesselmeier, M. Staudt, J. Atmos. Chem. 33 (1999) 23. [4] T. Moise, Y. Rudich, J. Phys. Chem. 106 (2002) 6469. [5] T. Thornberry, J.P.D. Abbatt, Phys. Chem. Chem. Phys. 6 (2004) 84.

  5. Torsional Angle Driver (TorAD) System for HyperChem/Excel

    NASA Astrophysics Data System (ADS)

    Starkey, Ronald

    1999-02-01

    The torsional angle driver system for HyperChem/Excel is a package of several Excel spreadsheets and macro programs to be used with HyperChem to obtain and plot information, such as total energy, for the conformations that result from a 360° rotation about a torsional angle system in a molecule. The TorAD system also includes several HyperChem scripts to facilitate its use. TorAD was developed for use in the undergraduate organic chemistry laboratory. The results obtained with TorAD could be obtained manually with HyperChem, but it would take considerable time and would not be instructive to the students. Use of the TorAD system allows students to spend their time on the more important aspect of conformation analysisinterpretation of results. The Excel spreadsheet/macro programs in TorAD include:

    · Tor_xl_a and tor_xl obtain and plot the total energy at 5° torsional-angle intervals. The calculation method, the torsional-angle restraint, and the structure to be used at each angle can be set by the user. The advanced version, tor_xl_a, which requires HyperChem 4.5 or later, also allows torsional-angle structures to be saved for later recall as individual structures or, using a HyperChem script, in a movie format. It also provides a rapid scan of the 360° rotation where only single-point calculations, rather than geometry optimizations, are performed. The tor_xl system will perform routine tasks in a manner suitable for most instructional settings. · Tor_Comp performs molecular mechanics optimizations at 5° intervals and obtains and plots four energy parameters (total, torsional, nonbonded, and bond [bend plus stretch] energy) as a function of torsional angle. The calculation method and the restraint can be specified. · TorDipol produces a plot of the total energy and the calculated dipole moment at 5° steps of the torsional angle. The default calculation is the semi-empirical AM

  6. Calibrating the ChemCam LIBS for Carbonate Minerals on Mars

    DOE R&D Accomplishments Database

    Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.; Barefield, James E.; Lanza, Nina; Newsom, Horton E.

    2009-01-01

    The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.

  7. On the Link Between Ocean Biota Emissions, Aerosol, and Maritime Clouds: Airborne, Ground, and Satellite Measurements Off the Coast of California

    DTIC Science & Technology

    2009-10-14

    sulfate. DEA is likely produced via the reaction of the gaseous amine and acidic sulfates. Subsaturated aerosol hygroscopicity data indicate 14 that the...D., and A. Wiedensohler (1998). NaCl aerosol particle hygroscopicity dependence on mixing with organic compounds, J. Atmos. Chem., 31, 321–346...M. N., and C. K. Chan (2001). The hygroscopic properties of dicarboxylic and multifunctional acids : measurements and UNIFAC

  8. Lagrangian Mixing in an Axisymmetric Hurricane Model

    DTIC Science & Technology

    2010-07-23

    The MMR r is found by tak - ing the log of the time-series 6ρ(t)−A1, where A1 is 90% of the minimum value of6ρ(t), and the slope of the linear func...Advective mixing in a nondivergent barotropic hurricane model, Atmos. Chem. Phys., 10, 475 –497, doi:10.5194/acp-10- 475 -2010, 2010. Salman, H., Ide, K

  9. Drilled Hole and ChemCam Marks at Cumberland

    NASA Image and Video Library

    2013-06-05

    The Chemistry and Camera ChemCam instrument on NASA Mars rover Curiosity was used to check the composition of gray tailings from the hole in rock target Cumberland that the rover drilled on May 19, 2013.

  10. Curiosity ChemCam Analyzes Rocks, Soils and Dust

    NASA Image and Video Library

    2013-04-08

    This diagram shows how materials analyzed by the ChemCam instrument on NASA Curiosity Mars rover during the first 100 Martian days of the mission differed with regard to hydrogen content horizontal axis and alkali vertical axis.

  11. PubChem3D: Conformer generation

    PubMed Central

    2011-01-01

    Background PubChem, an open archive for the biological activities of small molecules, provides search and analysis tools to assist users in locating desired information. Many of these tools focus on the notion of chemical structure similarity at some level. PubChem3D enables similarity of chemical structure 3-D conformers to augment the existing similarity of 2-D chemical structure graphs. It is also desirable to relate theoretical 3-D descriptions of chemical structures to experimental biological activity. As such, it is important to be assured that the theoretical conformer models can reproduce experimentally determined bioactive conformations. In the present study, we investigate the effects of three primary conformer generation parameters (the fragment sampling rate, the energy window size, and force field variant) upon the accuracy of theoretical conformer models, and determined optimal settings for PubChem3D conformer model generation and conformer sampling. Results Using the software package OMEGA from OpenEye Scientific Software, Inc., theoretical 3-D conformer models were generated for 25,972 small-molecule ligands, whose 3-D structures were experimentally determined. Different values for primary conformer generation parameters were systematically tested to find optimal settings. Employing a greater fragment sampling rate than the default did not improve the accuracy of the theoretical conformer model ensembles. An ever increasing energy window did increase the overall average accuracy, with rapid convergence observed at 10 kcal/mol and 15 kcal/mol for model building and torsion search, respectively; however, subsequent study showed that an energy threshold of 25 kcal/mol for torsion search resulted in slightly improved results for larger and more flexible structures. Exclusion of coulomb terms from the 94s variant of the Merck molecular force field (MMFF94s) in the torsion search stage gave more accurate conformer models at lower energy windows. Overall

  12. PubChem atom environments.

    PubMed

    Hähnke, Volker D; Bolton, Evan E; Bryant, Stephen H

    2015-01-01

    Atom environments and fragments find wide-spread use in chemical information and cheminformatics. They are the basis of prediction models, an integral part in similarity searching, and employed in structure search techniques. Most of these methods were developed and evaluated on the relatively small sets of chemical structures available at the time. An analysis of fragment distributions representative of most known chemical structures was published in the 1970s using the Chemical Abstracts Service data system. More recently, advances in automated synthesis of chemicals allow millions of chemicals to be synthesized by a single organization. In addition, open chemical databases are readily available containing tens of millions of chemical structures from a multitude of data sources, including chemical vendors, patents, and the scientific literature, making it possible for scientists to readily access most known chemical structures. With this availability of information, one can now address interesting questions, such as: what chemical fragments are known today? How do these fragments compare to earlier studies? How unique are chemical fragments found in chemical structures? For our analysis, after hydrogen suppression, atoms were characterized by atomic number, formal charge, implicit hydrogen count, explicit degree (number of neighbors), valence (bond order sum), and aromaticity. Bonds were differentiated as single, double, triple or aromatic bonds. Atom environments were created in a circular manner focused on a central atom with radii from 0 (atom types) up to 3 (representative of ECFP_6 fragments). In total, combining atom types and atom environments that include up to three spheres of nearest neighbors, our investigation identified 28,462,319 unique fragments in the 46 million structures found in the PubChem Compound database as of January 2013. We could identify several factors inflating the number of environments involving transition metals, with many

  13. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Roger

    2010-09-03

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008.more » The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.« less

  14. ChemCam Rock Laser for the Mars Science Laboratory

    ScienceCinema

    LANL

    2017-12-09

    Los Alamos has a long history of space-related instr... Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components are concurrently being assembled at Los Alamos and in Toulouse, France, and will be delivered to JPL in July. The Mars Science Laboratory is scheduled to launch in 2009. Animations courtesy of JPL/NASA.

  15. Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Lowe, D.; Darbyshire, E.; Morgan, W. T.; Bela, M. M.; Pereira, G.; Trembath, J.; Kaiser, J. W.; Longo, K. M.; Freitas, S. R.; Coe, H.; McFiggans, G.

    2015-03-01

    The South American Biomass Burning Analysis (SAMBBA) field campaign took detailed in situ flight measurements of aerosol during the 2012 dry season to characterise biomass burning aerosol and improve understanding of its impacts on weather and climate. Developments have been made to the Weather Research and Forecast model with chemistry (WRF-Chem) model to improve the representation of biomass burning aerosol in the region, by coupling a sectional aerosol scheme to the plume-rise parameterisation. Brazilian Biomass Burning Emissions Model (3BEM) fire emissions are used, prepared using PREP-CHEM-SRC, and mapped to CBM-Z and MOSAIC species. Model results have been evaluated against remote sensing products, AERONET sites, and four case studies of flight measurements from the SAMBBA campaign. WRF-Chem predicted layers of elevated aerosol loadings (5-20 μg sm-3) of particulate organic matter at high altitude (6-8 km) over tropical forest regions, while flight measurements showed a sharp decrease above 2-4 km altitude. This difference was attributed to the plume-rise parameterisation overestimating injection height. The 3BEM emissions product was modified using estimates of active fire size and burned area for the 2012 fire season, which reduced the fire size. The enhancement factor for fire emissions was increased from 1.3 to 5 to retain reasonable aerosol optical depths (AODs). The smaller fire size lowered the injection height of the emissions, but WRF-Chem still showed elevated aerosol loadings between 4-5 km altitude. Over eastern cerrado (savannah-like) regions, both modelled and measured aerosol loadings decreased above approximately 4 km altitude. Compared with MODIS satellite data and AERONET sites, WRF-Chem represented AOD magnitude well (between 0.3-1.5) over western tropical forest fire regions in the first half of the campaign, but tended to over-predict them in the second half, when precipitation was more significant. Over eastern cerrado regions, WRF-Chem

  16. Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Lowe, D.; Darbyshire, E.; Morgan, W. T.; Bela, M. M.; Pereira, G.; Trembath, J.; Kaiser, J. W.; Longo, K. M.; Freitas, S. R.; Coe, H.; McFiggans, G.

    2014-09-01

    The South American Biomass Burning Analysis (SAMBBA) field campaign took detailed in-situ flight measurements of aerosol during the 2012 dry season to characterise biomass burning aerosol and improve understanding of its impacts on weather and climate. Developments have been made to the Weather research and Forecast model with chemistry (WRF-Chem) model to improve the representation of biomass burning aerosol in the region by coupling a sectional aerosol scheme to the plume rise parameterisation. Brazilian Biomass Burning Emissions Model (3BEM) fire emissions are used, prepared using PREP-CHEM-SRC, and mapped to CBM-Z and MOSAIC species. Model results have been evaluated against remote sensing products, AERONET sites, and four case studies of flight measurements from the SAMBBA campaign. WRF-Chem predicted layers of elevated aerosol loadings (5-20 μg sm-3) of particulate organic matter at high altitude (6-8 km) over tropical forest regions, while flight measurements showed a sharp decrease above 2-4 km altitude. This difference was attributed to the plume-rise parameterisation overestimating injection height. The 3BEM emissions product was modified using estimates of active fire size and burned area for the 2012 fire season, which reduced the fire size. The enhancement factor for fire emissions was increased from 1.3 to 5 to retain reasonable aerosol optical depths (AOD). The smaller fire size lowered the injection height of the emissions, but WRF-Chem still showed elevated aerosol loadings between 4-5 km altitude. Over eastern Cerrado (savannah-like) regions, both modelled and measured aerosol loadings decreased above approximately 4 km altitude. Compared with MODIS satellite data and AERONET sites, WRF-Chem represented AOD magnitude well (between 0.3-1.5) over western tropical forest fire regions in the first half of the campaign, but tended to over-predict them in the second half, when precipitation was more significant. Over eastern Cerrado regions, WRF-Chem

  17. Future fire emissions associated with projected land use change in Indonesia

    NASA Astrophysics Data System (ADS)

    Marlier, M. E.; DeFries, R. S.; Pennington, D.; Ordway, E.; Nelson, E.; Mickley, L.; Koplitz, S.

    2013-12-01

    Indonesia has experienced rapid land use change in past decades as forests and peatlands are cleared for agricultural development, including oil palm and timber plantations1. Fires are the predominant method of clearing and the subsequent emissions can have important public health impacts by contributing to regional particulate matter and ozone concentrations2. This regional haze was dramatically seen in Singapore during June 2013 due to the transport of emissions from fires in Sumatra. Our study is part of a larger project that will quantify the public health impact of various land use development scenarios for Sumatra over the coming decades. Here, we describe how we translate economic projections of land use change into future fire emissions inventories for GEOS-Chem atmospheric transport simulations. We relate past GFED3 fire emissions3 to detailed 1-km land use change data and MODIS fire radiative power observations, and apply these relationships to future estimates of land use change. The goal of this interdisciplinary project is to use modeling results to interact with policy makers and influence development strategies in ways that protect public health. 1Miettinen et al. 2011. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol.,17 (7), 2261-2270. 2Marlier et al. 2013. El Niño and health risks from landscape fire emissions in southeast Asia. Nature Clim. Change, 3, 131-136. 3van der Werf et al. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos. Chem. Physics, 10 (23), 11707-11735.

  18. Aqueous aerosol may build up large upper tropospheric ice supersaturation

    NASA Astrophysics Data System (ADS)

    Bogdan, Anatoli; Molina, Mario J.

    2010-05-01

    freeze at 194 and 186 K, respectively, the calculated clear-sky Si can exceed 80%. Although our Si values are smaller than the largest observed value of Si ≈ 100%, they are nevertheless larger than the Si ≈ 67% predicted by the WAC at 185 K. Our results can give an impetus for the study of whether multi-component aqueous aerosol, which besides inorganic components also contains organics, may produce the observed Si ≈ 100%. Krämer, M., Schiller, C., Afchine, A., Bauer, R., Gensch, I., Mangold, A.., Schlicht, S., Spelten, N., Sitnikov, N., Borrmann, S., de Reus, M., Spichtinger, P. (2009), Atmos. Chem. Phys. 9, 3505. Lawson, R. P., Pilson, B., Baker, B., Mo, Q., Jensen, E., Pfister, L., Bui, P. (2008), Atmos. Chem. Phys. 8, 1609. Koop, T., Luo, B., Tsias, A., Peter, T. (2000), Nature, 406, 611. Bogdan, A. and Moilna, M. J. (2010), J. Phys. Chem. A (Published online: 5 February). Carslaw, K. S., Wirth, M., Tsias, A., Luo, B. P., Dörnbrack, A., Leutbecher, M., Volkert, H., Renger, W., Bacmeister, J. T., Peter, T. (1998), J. Geophys. Res. 103, 5785. Clegg, S. L., Brimblecombe, P., Wexler, A. S. (1998), J. Phys. Chem. A 102, 2137.

  19. Tropospheric ozone using an emission tagging technique in the CAM-Chem and WRF-Chem models

    NASA Astrophysics Data System (ADS)

    Lupascu, A.; Coates, J.; Zhu, S.; Butler, T. M.

    2017-12-01

    Tropospheric ozone is a short-lived climate forcing pollutant. High concentration of ozone can affect human health (cardiorespiratory and increased mortality due to long-term exposure), and also it damages crops. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used as an important component of the design of emissions reduction strategies by indicating which emission sources could be targeted for effective reductions, thus reducing the burden of ozone pollution. Using a "tagging" approach within the CAM-Chem (global) and WRF-Chem (regional) models, we can quantify the contribution of individual emission of NOx and VOC precursors on air quality. Hence, when precursor emissions of NOx are tagged, we have seen that the largest contributors on ozone levels are the anthropogenic sources, while in the case of precursor emissions of VOCs, the biogenic sources and methane account for more than 50% of ozone levels. Further, we have extended the NOx tagging method in order to investigate continental source region contributions to concentrations of ozone over various receptor regions over the globe, with a zoom over Europe. In general, summertime maximum ozone in most receptor regions is largely attributable to local emissions of anthropogenic NOx and biogenic VOC. During the rest of the year, especially during springtime, ozone in most receptor regions shows stronger influences from anthropogenic emissions of NOx and VOC in remote source regions.

  20. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2016-04-01

    LLPS in accumulation-sized particles and the change in their absorption using a cavity ring down aerosol spectrometer. If LLPS alters the absorptive properties of the suggested model aerosols significantly, absorption measurements of accumulation mode particles of the same composition would allow proving that LLPS indeed occurs in particles of accumulation mode size. Up to now LLPS has not been studied for particles in this size range. References: 1. Bertram, et al. Atmos. Chem & Phys, 11(21), 10995-11006, 2011.
 2. Krieger, et al. Chemical Society Reviews, 41(19), 6631-6662, 2012 
3. Song, M. et al. Geophys Res Lett, 39(19), 2012b 4. Smith et al. Atmos Chem & Phys, 12(20), 9613- 9628, 2012.
 5. You, Y. et al. Proceedings of the National Academy of Sciences, 109(33), 13188-13193, 2012.

  1. Spark Generated by ChemCam Laser During Tests

    NASA Image and Video Library

    2010-09-21

    The ChemCam instrument for NASA Mars Science Laboratory mission uses a pulsed laser beam to vaporize a pinhead-size target, producing a flash of light from the ionized material plasma that can be analyzed to identify chemical elements in the target.

  2. Comment on "Study of dielectric relaxations of anhydrous trehalose and maltose glasses" [J. Chem. Phys. 134, 014508 (2011)].

    PubMed

    Kaminski, K; Wlodarczyk, P; Paluch, M

    2011-10-28

    Very recently Kwon et al. [H.-J. Kwon, J.-A. Seo, H. K. Kim, and Y. H. Hwang, J. Chem. Phys. 134, 014508 (2011)] published an article on the study of dielectric relaxation in trehalose and maltose glasses. They carried out broadband dielectric measurements at very wide range of temperatures covering supercooled liquid as well as glassy state of both saccharides. It is worth to mention that authors have also applied a new method for obtaining anhydrous glasses of trehalose and maltose that enables avoiding their caramelization. Four relaxation processes were identified in dielectric spectra of both saccharides. The slower one was identified as structural relaxation process the next one, not observed by the others, was assigned as Johari-Goldstein (JG) β-relaxation, while the last two secondary modes were of the same nature as found by Kaminski et al. [K. Kaminski, E. Kaminska, P. Wlodarczyk, S. Pawlus, D. Kimla, A. Kasprzycka, M. Paluch, J. Ziolo, W. Szeja, and K. L. Ngai, J. Phys. Chem. B 112, 12816 (2008)]. In this comment we show that the authors mistakenly assigned the slowest relaxation process as structural mode of disaccharides. We have proven that this relaxation process is an effect of formation of thin layer of air or water between plate of capacitor and sample. The same effect can be observed if plates of capacitor are oxidized. Thus, we concluded that their slowest mode is connected to the dc conduction process while their β JG process is primary relaxation of trehalose and maltose.

  3. ScrubChem: Cleaning of PubChem Bioassay Data to Create Diverse and Massive Bioactivity Datasets for Use in Modeling Applications (SOT)

    EPA Science Inventory

    The PubChem Bioassay database is a non-curated public repository with bioactivity data from 64 sources, including: ChEMBL, BindingDb, DrugBank, Tox21, NIH Molecular Libraries Screening Program, and various academic, government, and industrial contributors. However, this data is d...

  4. New particle formation from sulfuric acid and amines: Similarities and differences between mono-, di-, and trimethylamines

    NASA Astrophysics Data System (ADS)

    Olenius, Tinja; Halonen, Roope; Kurtén, Theo; Henschel, Henning; Kupiainen-Määttä, Oona; Ortega, Ismael K.; Vehkamäki, Hanna; Riipinen, Ilona

    2017-04-01

    efficiently form molecular clusters with sulfuric acid, and cluster formation is rather insensitive to changes in temperature and relative humidity. For MMA, on the other hand, particle formation is weaker and more sensitive to ambient conditions. Therefore, the results indicate that DMA and TMA can be approximated as a lumped species, but merging MMA together with DMA and TMA introduces inaccuracies in sulfuric acid-amine particle formation schemes. Moreover, including MMA emissions in a surrogate amine approach which assumes that the amine has the thermochemical properties of DMA or TMA is likely to result in an overprediction of particle formation rate. References Bergman et al., J. Geophys. Res. Atmos., 120, 9606-9624, 2015 Jen et al., J. Geophys. Res. Atmos., 119, 7502-7514, 2014 Kurtén et al., Atmos. Chem. Phys., 8, 4095-4103, 2008

  5. Calcium Sulfate Characterized by ChemCam/Curiosity at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Nachon, M.; Clegg, S. N.; Mangold, N.; Schroeder, S.; Kah, L. C.; Dromart, G.; Ollila, A.; Johnson, J. R.; Oehler, D. Z.; Bridges, J. C.; hide

    2014-01-01

    Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of :(1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of the targets [1;2] and (2) a Remote Micro Imager (RMI), for the imaging context of laser analysis [3]. Within the Gale crater, Curiosity traveled from Bradbury Landing through the Rocknest region and into Yellowknife Bay (YB). In the latter, abundant light-toned fracture-fill material were seen [4;5]. ChemCam analysis demonstrate that those fracture fills consist of calcium sulfates [6].

  6. ChemCam Mast Unit Being Prepared for Laser Firing

    NASA Image and Video Library

    2010-12-23

    Researchers prepare for a test of the Chemistry and Camera ChemCam instrument that will fly on NASA Mars Science Laboratory mission; researchers are preparing the instrument mast unit for a laser firing test.

  7. ChemCalc: a building block for tomorrow's chemical infrastructure.

    PubMed

    Patiny, Luc; Borel, Alain

    2013-05-24

    Web services, as an aspect of cloud computing, are becoming an important part of the general IT infrastructure, and scientific computing is no exception to this trend. We propose a simple approach to develop chemical Web services, through which servers could expose the essential data manipulation functionality that students and researchers need for chemical calculations. These services return their results as JSON (JavaScript Object Notation) objects, which facilitates their use for Web applications. The ChemCalc project http://www.chemcalc.org demonstrates this approach: we present three Web services related with mass spectrometry, namely isotopic distribution simulation, peptide fragmentation simulation, and molecular formula determination. We also developed a complete Web application based on these three Web services, taking advantage of modern HTML5 and JavaScript libraries (ChemDoodle and jQuery).

  8. Secondary organic aerosol formation from road vehicle emissions

    NASA Astrophysics Data System (ADS)

    Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.

    2014-05-01

    . Furthermore, we observed that vehicle emissions and SOA are significantly affected by temperature and RH: doubling the RH in the chamber resulted in significantly increased SOA formation. Primary emissions and secondary aerosol formation from diesel and gasoline vehicles will be compared at different temperature and RH. Also the interaction and influence of inorganics on organics will be discussed. References: [1] Robinson, A.L., et al. (2007) Science 315, 1259. [2] Weitkamp, E.A., et al. (2007) Environ. Sci. Technol. 41, 6969. [3] Bahreini, R., et al. (2012) Geophys. Res. Lett. 39, L06805. [4] Gentner, D.R. et al. (2012) PNAS 109, 18318. [5] Gordon, T.D. et al. (2013) Atmos. Chem. Phys. Discuss 13, 23173. [6] Platt, S.M., et al. (2013) Atmos. Chem. Phys. Discuss. 12, 28343.

  9. Role of clouds, aerosols, and aerosol-cloud interaction in 20th century simulations with GISS ModelE2

    NASA Astrophysics Data System (ADS)

    Nazarenko, L.; Rind, D. H.; Bauer, S.; Del Genio, A. D.

    2015-12-01

    Simulations of aerosols, clouds and their interaction contribute to the major source of uncertainty in predicting the changing Earth's energy and in estimating future climate. Anthropogenic contribution of aerosols affects the properties of clouds through aerosol indirect effects. Three different versions of NASA GISS global climate model are presented for simulation of the twentieth century climate change. All versions have fully interactive tracers of aerosols and chemistry in both the troposphere and stratosphere. All chemical species are simulated prognostically consistent with atmospheric physics in the model and the emissions of short-lived precursors [Shindell et al., 2006]. One version does not include the aerosol indirect effect on clouds. The other two versions include a parameterization of the interactive first indirect aerosol effect on clouds following Menon et al. [2010]. One of these two models has the Multiconfiguration Aerosol Tracker of Mixing state (MATRIX) that permits detailed treatment of aerosol mixing state, size, and aerosol-cloud activation. The main purpose of this study is evaluation of aerosol-clouds interactions and feedbacks, as well as cloud and aerosol radiative forcings, for the twentieth century climate under different assumptions and parameterizations for aerosol, clouds and their interactions in the climate models. The change of global surface air temperature based on linear trend ranges from +0.8°C to +1.2°C between 1850 and 2012. Water cloud optical thickness increases with increasing temperature in all versions with the largest increase in models with interactive indirect effect of aerosols on clouds, which leads to the total (shortwave and longwave) cloud radiative cooling trend at the top of the atmosphere. Menon, S., D. Koch, G. Beig, S. Sahu, J. Fasullo, and D. Orlikowski (2010), Black carbon aerosols and the third polar ice cap, Atmos. Chem. Phys., 10,4559-4571, doi:10.5194/acp-10-4559-2010. Shindell, D., G. Faluvegi

  10. Glyoxal and Methylglyoxal in Atlantic Seawater and marine Aerosol Particles

    NASA Astrophysics Data System (ADS)

    van Pinxteren, Manuela; Herrmann, Hartmut

    2014-05-01

    )). References: Sinreich et al., Ship-based detection of glyoxal over the remote tropical Pacific Ocean. Atmos. Chem. Phys. 10(23), 11359-11371 (2010). van Pinxteren and Herrmann, Glyoxal and Methylglyoxal in Atlantic Seawater and marine Aerosol Particles: Method development and first application during the Polarstern cruise ANT XXVII/4. Atmos. Chem. Phys. 13, 11791-11802 (2013).

  11. HExpoChem: a systems biology resource to explore human exposure to chemicals.

    PubMed

    Taboureau, Olivier; Jacobsen, Ulrik Plesner; Kalhauge, Christian; Edsgärd, Daniel; Rigina, Olga; Gupta, Ramneek; Audouze, Karine

    2013-05-01

    Humans are exposed to diverse hazardous chemicals daily. Although an exposure to these chemicals is suspected to have adverse effects on human health, mechanistic insights into how they interact with the human body are still limited. Therefore, acquisition of curated data and development of computational biology approaches are needed to assess the health risks of chemical exposure. Here we present HExpoChem, a tool based on environmental chemicals and their bioactivities on human proteins with the objective of aiding the qualitative exploration of human exposure to chemicals. The chemical-protein interactions have been enriched with a quality-scored human protein-protein interaction network, a protein-protein association network and a chemical-chemical interaction network, thus allowing the study of environmental chemicals through formation of protein complexes and phenotypic outcomes enrichment. HExpoChem is available at http://www.cbs.dtu.dk/services/HExpoChem-1.0/.

  12. ChemScreener: A Distributed Computing Tool for Scaffold based Virtual Screening.

    PubMed

    Karthikeyan, Muthukumarasamy; Pandit, Deepak; Vyas, Renu

    2015-01-01

    In this work we present ChemScreener, a Java-based application to perform virtual library generation combined with virtual screening in a platform-independent distributed computing environment. ChemScreener comprises a scaffold identifier, a distinct scaffold extractor, an interactive virtual library generator as well as a virtual screening module for subsequently selecting putative bioactive molecules. The virtual libraries are annotated with chemophore-, pharmacophore- and toxicophore-based information for compound prioritization. The hits selected can then be further processed using QSAR, docking and other in silico approaches which can all be interfaced within the ChemScreener framework. As a sample application, in this work scaffold selectivity, diversity, connectivity and promiscuity towards six important therapeutic classes have been studied. In order to illustrate the computational power of the application, 55 scaffolds extracted from 161 anti-psychotic compounds were enumerated to produce a virtual library comprising 118 million compounds (17 GB) and annotated with chemophore, pharmacophore and toxicophore based features in a single step which would be non-trivial to perform with many standard software tools today on libraries of this size.

  13. Application of AERONET Single Scattering Albedo and Absorption Angstrom Exponent to Classify Dominant Aerosol Types during DRAGON Campaigns

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Schafer, J.; Crawford, J. H.; Kim, J.; Sano, I.; Liew, S.; Salinas Cortijo, S. V.; Chew, B. N.; Lim, H.; Smirnov, A.; Sorokin, M.; Kenny, P.; Slutsker, I.

    2013-12-01

    representative of aerosol source regions, J. Geophys. Res., 117, D17203, doi:10.1029/2012JD018127. Gobbi, G. P., Y. J. Kaufman, I. Koren, and T. F. Eck (2007), Classification of aerosol properties derived from AERONET direct sun data, Atmos. Chem. Phys., 7, 453-458, doi:10.5194/acp-7-453-2007. Russell, P. B., R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa (2010), Absorption Ångstrom Exponent in AERONET and related data as an indicator of aerosol composition, Atmos. Chem. Phys., 10, 1155-1169, doi:10.5194/acp-10-1155-2010.

  14. Chemerin15 inhibits neutrophil-mediated vascular inflammation and myocardial ischemia-reperfusion injury through ChemR23

    PubMed Central

    Cash, Jenna L; Bena, Stefania; Headland, Sarah E; McArthur, Simon; Brancaleone, Vincenzo; Perretti, Mauro

    2013-01-01

    Neutrophil activation and adhesion must be tightly controlled to prevent complications associated with excessive inflammatory responses. The role of the anti-inflammatory peptide chemerin15 (C15) and the receptor ChemR23 in neutrophil physiology is unknown. Here, we report that ChemR23 is expressed in neutrophil granules and rapidly upregulated upon neutrophil activation. C15 inhibits integrin activation and clustering, reducing neutrophil adhesion and chemotaxis in vitro. In the inflamed microvasculature, C15 rapidly modulates neutrophil physiology inducing adherent cell detachment from the inflamed endothelium, while reducing neutrophil recruitment and heart damage in a murine myocardial infarction model. These effects are mediated through ChemR23. We identify the C15/ChemR23 pathway as a new regulator and thus therapeutic target in neutrophil-driven pathologies. PMID:23999103

  15. Handheld Chem/Biosensor Using Extreme Conformational Changes in Designed Binding Proteins to Enhance Surface Plasmon Resonance (SPR)

    DTIC Science & Technology

    2016-04-01

    AFCEC-CX-TY-TR-2016-0007 HANDHELD CHEM/ BIOSENSOR USING EXTREME CONFORMATIONAL CHANGES IN DESIGNED BINDING PROTEINS TO ENHANCE SURFACE PLASMON...Include area code) 03/24/2016 Abstract 08/14/2015--03/31/2016 Handheld chem/ biosensor using extreme conformational changes in designed binding...Baltimore, Maryland on 17-21 April 2016. We propose the development of a highly sensitive handheld chem/ biosensor device using a novel class of engineered

  16. Soil diversity and hydration as observed by ChemCam at Gale crater, Mars

    USGS Publications Warehouse

    Meslin, P.-Y.; Gasnault, O.; Forni, O.; Schroder, S.; Cousin, A.; Berger, G.; Clegg, S.M.; Lasue, J.; Maurice, S.; Sautter, V.; Le Mouélic, S.; Wiens, R.C.; Fabre, C.; Goetz, W.; Bish, D.L.; Mangold, N.; Ehlmann, B.; Lanza, N.; Harri, A.-M.; Anderson, Ryan Bradley; Rampe, E.; McConnochie, T.H.; Pinet, P.; Blaney, D.; ,; Archer, D.; Barraclough, B.; Bender, S.; Blake, D.; Blank, J.G.; Bridges, N.; Clark, B. C.; DeFlores, L.; Delapp, D.; Dromart, G.; Dyar, M.D.; Fisk, M. R.; Gondet, B.; Grotzinger, J.; Herkenhoff, K.; Johnson, J.; Lacour, J.-L.; Langevin, Y.; Leshin, L.; Lewin, E.; Madsen, M.B.; Melikechi, N.; Mezzacappa, Alissa; Mischna, M.A.; Moores, J.E.; Newsom, H.; Ollila, A.; ,; Renno, N.; Sirven, J.B.; Tokar, R.; de la Torre, M.; d'Uston, L.; Vaniman, D.; Yingst, A.

    2013-01-01

    The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.

  17. Soil diversity and hydration as observed by ChemCam at Gale crater, Mars.

    PubMed

    Meslin, P-Y; Gasnault, O; Forni, O; Schröder, S; Cousin, A; Berger, G; Clegg, S M; Lasue, J; Maurice, S; Sautter, V; Le Mouélic, S; Wiens, R C; Fabre, C; Goetz, W; Bish, D; Mangold, N; Ehlmann, B; Lanza, N; Harri, A-M; Anderson, R; Rampe, E; McConnochie, T H; Pinet, P; Blaney, D; Léveillé, R; Archer, D; Barraclough, B; Bender, S; Blake, D; Blank, J G; Bridges, N; Clark, B C; DeFlores, L; Delapp, D; Dromart, G; Dyar, M D; Fisk, M; Gondet, B; Grotzinger, J; Herkenhoff, K; Johnson, J; Lacour, J-L; Langevin, Y; Leshin, L; Lewin, E; Madsen, M B; Melikechi, N; Mezzacappa, A; Mischna, M A; Moores, J E; Newsom, H; Ollila, A; Perez, R; Renno, N; Sirven, J-B; Tokar, R; de la Torre, M; d'Uston, L; Vaniman, D; Yingst, A

    2013-09-27

    The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.

  18. OrChem - An open source chemistry search engine for Oracle(R).

    PubMed

    Rijnbeek, Mark; Steinbeck, Christoph

    2009-10-22

    Registration, indexing and searching of chemical structures in relational databases is one of the core areas of cheminformatics. However, little detail has been published on the inner workings of search engines and their development has been mostly closed-source. We decided to develop an open source chemistry extension for Oracle, the de facto database platform in the commercial world. Here we present OrChem, an extension for the Oracle 11G database that adds registration and indexing of chemical structures to support fast substructure and similarity searching. The cheminformatics functionality is provided by the Chemistry Development Kit. OrChem provides similarity searching with response times in the order of seconds for databases with millions of compounds, depending on a given similarity cut-off. For substructure searching, it can make use of multiple processor cores on today's powerful database servers to provide fast response times in equally large data sets. OrChem is free software and can be redistributed and/or modified under the terms of the GNU Lesser General Public License as published by the Free Software Foundation. All software is available via http://orchem.sourceforge.net.

  19. OrChem - An open source chemistry search engine for Oracle®

    PubMed Central

    2009-01-01

    Background Registration, indexing and searching of chemical structures in relational databases is one of the core areas of cheminformatics. However, little detail has been published on the inner workings of search engines and their development has been mostly closed-source. We decided to develop an open source chemistry extension for Oracle, the de facto database platform in the commercial world. Results Here we present OrChem, an extension for the Oracle 11G database that adds registration and indexing of chemical structures to support fast substructure and similarity searching. The cheminformatics functionality is provided by the Chemistry Development Kit. OrChem provides similarity searching with response times in the order of seconds for databases with millions of compounds, depending on a given similarity cut-off. For substructure searching, it can make use of multiple processor cores on today's powerful database servers to provide fast response times in equally large data sets. Availability OrChem is free software and can be redistributed and/or modified under the terms of the GNU Lesser General Public License as published by the Free Software Foundation. All software is available via http://orchem.sourceforge.net. PMID:20298521

  20. Synergy of SAM and ChemCam instruments (Curiosity Rover) to Search for Organic Matter at Mars

    NASA Astrophysics Data System (ADS)

    Dequaire, T.; Coll, P.; Szopa, C.; Maurice, S.; Mangold, N.

    2014-07-01

    This work proposes to determine ChemCam capabilities to detect organic molecules in the martian rocks, by coupling LIBS and passive spectroscopy using the ChemCam testbed (IRAP) in order to select at best the samples analyzed by the SAM instrument.

  1. WRF/Chem-MADRID: Incorporation of an Improved Aerosol Module into WRF/Chem and Its Initial Application to the TexAQS2000 Episode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Pan, Ying; Wang, K.

    2010-09-17

    The Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (MADRID) with three improved gas/particle mass transfer approaches (i.e., bulk equilibrium (EQUI), hybrid (HYBR), and kinetic (KINE)) has been incorporated into the Weather Research and Forecast/Chemistry Model (WRF/Chem) (referred to as WRF/Chem-MADRID) and evaluated with a 5-day episode from the 2000 Texas Air Quality Study (TexAQS2000). WRF/Chem-MADRID demonstrates an overall good skill in simulating surface/aloft meteorological parameters and chemical concentrations, tropospheric O3 residuals, and aerosol optical depths. The discrepancies can be attributed to inaccuracies in meteorological predictions (e.g., overprediction in mid-day boundary layer height), inaccurate total emissions or their hourly variationsmore » (e.g., HCHO, olefins, other inorganic aerosols), and uncertainties in initial and boundary conditions for some species (e.g., other inorganic aerosols and O3) at surface and aloft. Major differences in the results among the three gas/particle mass transfer approaches occur over coastal areas, where EQUI predicts higher PM2.5 than HYBR and KINE due to improperly redistributing condensed nitrate from chloride depletion process to fine PM mode. The net direct, semi-direct, and indirect effects of PM2.5 decreased domain wide shortwave radiation by 11.2-14.4 W m-2 (or 4.1-5.6%), decreased near-surface temperature by 0.06-0.14 °C (or 0.2-0.4%), led to 125 to 796 cm-3 cloud condensation nuclei at a supersaturation of 0.1%, produced cloud droplet numbers as high as 2064 cm-3, and reduced domain wide mean precipitation by 0.22-0.59 mm day-1.« less

  2. Ionospheric Storm Effects at Subauroral Latitudes: A Case Study

    DTIC Science & Technology

    1991-02-01

    Island: Z70 m/s) are consistent with corresponding model predictions [e.g., Testud et al., 1975: Richmond and Marsushitl, 1975]. Note that while...Atmos. Terr. Phys., 44. 161-171. 1982. in the morning sector. There it is marked by an anomalously Alcayde. D.. J. Testud . G. Vasseur. and P. Wadteufel...34-pile up" F-region trough. J. Atmos. Terr. Phys.. 33. 647-656. 1973. in the F-region. J. Atmos. Terr. Phys., 36, 70 -706. 1974. Testud . J.. P. Amayenc

  3. ChemProt-2.0: visual navigation in a disease chemical biology database

    PubMed Central

    Kim Kjærulff, Sonny; Wich, Louis; Kringelum, Jens; Jacobsen, Ulrik P.; Kouskoumvekaki, Irene; Audouze, Karine; Lund, Ole; Brunak, Søren; Oprea, Tudor I.; Taboureau, Olivier

    2013-01-01

    ChemProt-2.0 (http://www.cbs.dtu.dk/services/ChemProt-2.0) is a public available compilation of multiple chemical–protein annotation resources integrated with diseases and clinical outcomes information. The database has been updated to >1.15 million compounds with 5.32 millions bioactivity measurements for 15 290 proteins. Each protein is linked to quality-scored human protein–protein interactions data based on more than half a million interactions, for studying diseases and biological outcomes (diseases, pathways and GO terms) through protein complexes. In ChemProt-2.0, therapeutic effects as well as adverse drug reactions have been integrated allowing for suggesting proteins associated to clinical outcomes. New chemical structure fingerprints were computed based on the similarity ensemble approach. Protein sequence similarity search was also integrated to evaluate the promiscuity of proteins, which can help in the prediction of off-target effects. Finally, the database was integrated into a visual interface that enables navigation of the pharmacological space for small molecules. Filtering options were included in order to facilitate and to guide dynamic search of specific queries. PMID:23185041

  4. Development and Performance of the Modularized, High-performance Computing and Hybrid-architecture Capable GEOS-Chem Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Long, M. S.; Yantosca, R.; Nielsen, J.; Linford, J. C.; Keller, C. A.; Payer Sulprizio, M.; Jacob, D. J.

    2014-12-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been reengineered to serve as a platform for a range of computational atmospheric chemistry science foci and applications. Development included modularization for coupling to general circulation and Earth system models (ESMs) and the adoption of co-processor capable atmospheric chemistry solvers. This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of GEOS-Chem scientific code to permit seamless transition from the GEOS-Chem stand-alone serial CTM to deployment as a coupled ESM module. In this manner, the continual stream of updates contributed by the CTM user community is automatically available for broader applications, which remain state-of-science and directly referenceable to the latest version of the standard GEOS-Chem CTM. These developments are now available as part of the standard version of the GEOS-Chem CTM. The system has been implemented as an atmospheric chemistry module within the NASA GEOS-5 ESM. The coupled GEOS-5/GEOS-Chem system was tested for weak and strong scalability and performance with a tropospheric oxidant-aerosol simulation. Results confirm that the GEOS-Chem chemical operator scales efficiently for any number of processes. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemical operator means that the relative cost goes down with increasing number of processes, making fine-scale resolution simulations possible.

  5. Atmospheric ions, boreal forests and impacts on climate

    NASA Astrophysics Data System (ADS)

    Manninen, H. E.; Nieminen, T.; Franchin, A.; Järvinen, E.; Kontkanen, J.; Hirsikko, A.; Hõrrak, U.; Mirme, A.; Tammet, H.; Kerminen, V.-M.; Petäjä, T.; Kulmala, M.

    2012-04-01

    than 2 nm in diameter by charging the aerosol sample with unipolar corona chargers (Manninen et al., 2009). According to earlier studies, the atmospheric nucleation and cluster activation take place at the mobility diameter range of 1.5-2 nm. Therefore, the ion spectrometers allow direct measurements at exactly the size where atmospheric nucleation takes place. The results indicate that the ion-induced nucleation contributes ~1-30% to the NPF events in most atmospheric conditions (Manninen et al., 2010). In other words, neutral particle formation seems to dominate over ion-mediated mechanisms, at least in the boreal forest conditions. Acknowledgements. This research was supported by the Academy of Finland Center of Excellence program (project number 1118615). Hirsikko, A. et al.: Atmospheric ions and nucleation: a review of observations, Atmos. Chem. Phys., 11, 767-798, 2011. IPCC, Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 996 pp, 2007. Kulmala, M., and Kerminen, V.-M.: On the growth of atmospheric nanoparticles, Atmos. Res., 90, 132-150, 2008. Manninen, H.E. et al.: Long-term field measurements of charged and neutral clusters using Neutral cluster and Air Ion Spectrometer (NAIS). Boreal Env. Res. 14, 591-605, 2009. Manninen, H.E. et al., EUCAARI ion spectrometer measurements at 12 European sites - analysis of new particle formation events, Atmos. Chem. Phys., 10, 7907-7927, 2010. Mirme, A. et al.: A Wide-range multi-channel Air Ion Spectrometer, Boreal Environ. Res., 12, 247-264, 2007. Tammet, H.: Symmetric inclined grid mobility analyzer for the measurement of charged clusters and fine nanoparticles in atmospheric air. Aerosol Science and Technology, 45, 468 - 479, 2011.

  6. Description of Mixed-Phase Clouds in Weather Forecast and Climate Models

    DTIC Science & Technology

    2013-09-30

    energy budget and thus the melting and freezing of sea ice , both at present and into the future. RELATED PROJECTS This project is a follow-up...Arctic sea - ice in late summer, Atmos. Chem. Phys. Discuss., 13, 13191-13244, doi: 10.5194/acpd-13-13191-2013. Sotiropoulou, G., M. Tjernström, J. Sedlar...common, by far the most common cloud type over the Arctic, when thermodynamic principles suggest that ice and liquid particles cannot coexist for

  7. Uncertainties in modelling Mt. Pinatubo eruption with 2-D AER model and CCM SOCOL

    NASA Astrophysics Data System (ADS)

    Kenzelmann, P.; Weisenstein, D.; Peter, T.; Luo, B. P.; Rozanov, E.; Fueglistaler, S.; Thomason, L. W.

    2009-04-01

    measurements and from AER model calculation serve as input for the 3D chemistry climate model (CCM) SOCOL [Schraner et al., 2008]. The heating rates, calculated with SOCOL, are compared with a reference radiative transfer model LibRadtran [Mayer and Kylling, 2005]. This comparison suggests that SOCOL underestimates the net heating rate by 10-20%. In stark contrast, the temperature increase in the lower stratosphere due to absorption of longwave and near infrared radiation is overestimated by all SOCOL scenarios. This lets us conclude that SOCOL, and similarly other state-of-the-art CCMs, misrepresent processes required to model the effect of volcanic eruptions on the lower stratosphere and tropopause region. Possible reasons for model deficiencies could be too coarse vertical resolution or missing dynamical feedbacks near the tropopause and in the lower stratosphere. Another important feature is the warming of the tropical troposphere, which is present in the model simulation but was not observed with comparable amplitude in reality. The heating of the lower stratosphere in the models leads to an increase of stratospheric water vapour and influences the radiative and chemical properties of the stratosphere. Eyring, V. et al (2006), Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past, Journal of Geophysical Research-Atmospheres, 111, D22,308. Guo, S., G. J. S. Bluth, W. I. Rose, I. M. Watson, and A. J. Prata (2004), Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors, Geochemistry Geophysics Geosystems, 5. Mayer, B., and A. Kylling (2005), Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys, 5, 1855-1877. McCormick, M. P. (1992), Initial assessment of the stratospheric and climatic impact of the 1991 Mount- Pinatubo eruption - prologue, Geophysical Research Letters, 19 (2

  8. New developments on ChemCam laser transmitter and potential applications for other planetology programs

    NASA Astrophysics Data System (ADS)

    Faure, Benoît; Durand, Eric; Maurice, Sylvestre; Bruneau, Didier; Montmessin, Franck

    2017-11-01

    ChemCam is a LIBS Instrument mounted on the MSL 2011 NASA mission. The laser transmitter of this Instrument has been developed by the French society Thales Optronique (former Thales Laser) with a strong technical support from CNES. The paper will first rapidly present the performance of this laser and will then describe the postChemCam developments realized on and around this laser for new planetology programs.

  9. Outreach within the Bristol ChemLabS CETL (Centre for Excellence in Teaching and Learning)

    ERIC Educational Resources Information Center

    Shallcross, Dudley E.; Harrison, Tim G.; Obey, Tim M.; Croker, Steve J.; Norman, Nick C.

    2013-01-01

    This paper presents an overview of the Bristol ChemLabS project. In particular, it describes the development and impacts of the outreach project within Bristol ChemLabS, the UK's Centre for Excellence in Teaching and Learning (CETL) in practical chemistry, and its continuation beyond the funded project. The major elements of working with both…

  10. A CNES remote operations center for the MSL ChemCam instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Roger C; Lafaille, Vivian; Lorgny, Eric

    2010-01-01

    For the first time, a CNES remote operations center in Toulouse will be involved in the tactical operations of a Martian rover in order to operate the ChemCam science instrument in the framework of the NASA MSL (Mars Science Laboratory) mission in 2012. CNES/CESR and LANL have developed and delivered to JPL the ChemCam (Chemistry Camera) instrument located on the top of mast and in the body of the rover. This instrument incorporates a Laser-Induced Breakdown Spectrometer (LIBS) and a Remote Micro-Imager (RMI) for determining elemental compositions of rock targets or soil samples at remote distances from the rover (2-7more » m). An agreement has been achieved for operating ChemCam, alternatively, from Toulouse (FR) and Los Alamos (NM, USA), through the JPL ground data system in Pasadena (CA, USA) for a complete Martian year (2 years on Earth). After a brief overview of the MSL mission, this paper presents the instrument, the mission operational system and JPL organization requirements for the scientific investigators (PI and Co-Is). This paper emphasizes innovations applied on the ground segment components and on the operational approach to satisfy the requirements and constraints due to these shared and distributed operations over the world.« less

  11. ChemSource SourceBook, Version 2.0: Volume 1.

    ERIC Educational Resources Information Center

    Orna, Mary Virginia, Ed.; And Others

    ChemSource is designed as a strategy to help preservice and inservice high school chemistry teachers promote student learning more effectively. Its major premise is that well-designed laboratory investigations are an important avenue for cultivating student interest, engagement, and meaningful learning in chemistry. The SourceBook component of…

  12. ChemSource SourceBook, Version 2.0: Volume 2.

    ERIC Educational Resources Information Center

    Orna, Mary Virginia, Ed.; And Others

    ChemSource is designed as a strategy to help preservice and inservice high school chemistry teachers promote student learning more effectively. Its major premise is that well-designed laboratory investigations are an important avenue for cultivating student interest, engagement, and meaningful learning in chemistry. The SourceBook component of…

  13. ChemSource SourceBook, Version 2.0: Volume 3.

    ERIC Educational Resources Information Center

    Orna, Mary Virginia, Ed.; And Others

    ChemSource is designed as a strategy to help preservice and inservice high school chemistry teachers promote student learning more effectively. Its major premise is that well-designed laboratory investigations are an important avenue for cultivating student interest, engagement, and meaningful learning in chemistry. The SourceBook component of…

  14. iNuc-PhysChem: A Sequence-Based Predictor for Identifying Nucleosomes via Physicochemical Properties

    PubMed Central

    Feng, Peng-Mian; Ding, Chen; Zuo, Yong-Chun; Chou, Kuo-Chen

    2012-01-01

    Nucleosome positioning has important roles in key cellular processes. Although intensive efforts have been made in this area, the rules defining nucleosome positioning is still elusive and debated. In this study, we carried out a systematic comparison among the profiles of twelve DNA physicochemical features between the nucleosomal and linker sequences in the Saccharomyces cerevisiae genome. We found that nucleosomal sequences have some position-specific physicochemical features, which can be used for in-depth studying nucleosomes. Meanwhile, a new predictor, called iNuc-PhysChem, was developed for identification of nucleosomal sequences by incorporating these physicochemical properties into a 1788-D (dimensional) feature vector, which was further reduced to a 884-D vector via the IFS (incremental feature selection) procedure to optimize the feature set. It was observed by a cross-validation test on a benchmark dataset that the overall success rate achieved by iNuc-PhysChem was over 96% in identifying nucleosomal or linker sequences. As a web-server, iNuc-PhysChem is freely accessible to the public at http://lin.uestc.edu.cn/server/iNuc-PhysChem. For the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematics that were presented just for the integrity in developing the predictor. Meanwhile, for those who prefer to run predictions in their own computers, the predictor's code can be easily downloaded from the web-server. It is anticipated that iNuc-PhysChem may become a useful high throughput tool for both basic research and drug design. PMID:23144709

  15. Benchmarking Ligand-Based Virtual High-Throughput Screening with the PubChem Database

    PubMed Central

    Butkiewicz, Mariusz; Lowe, Edward W.; Mueller, Ralf; Mendenhall, Jeffrey L.; Teixeira, Pedro L.; Weaver, C. David; Meiler, Jens

    2013-01-01

    With the rapidly increasing availability of High-Throughput Screening (HTS) data in the public domain, such as the PubChem database, methods for ligand-based computer-aided drug discovery (LB-CADD) have the potential to accelerate and reduce the cost of probe development and drug discovery efforts in academia. We assemble nine data sets from realistic HTS campaigns representing major families of drug target proteins for benchmarking LB-CADD methods. Each data set is public domain through PubChem and carefully collated through confirmation screens validating active compounds. These data sets provide the foundation for benchmarking a new cheminformatics framework BCL::ChemInfo, which is freely available for non-commercial use. Quantitative structure activity relationship (QSAR) models are built using Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Decision Trees (DTs), and Kohonen networks (KNs). Problem-specific descriptor optimization protocols are assessed including Sequential Feature Forward Selection (SFFS) and various information content measures. Measures of predictive power and confidence are evaluated through cross-validation, and a consensus prediction scheme is tested that combines orthogonal machine learning algorithms into a single predictor. Enrichments ranging from 15 to 101 for a TPR cutoff of 25% are observed. PMID:23299552

  16. The Austrian UVB monitoring network: 12 years of observations and 25 years of reconstructed data

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Weihs, P.; Blumthaler, M.; Simic, S.; Schmalwieser, A. W.; Wagner, J. E.; Schallhart, B.; Schauberger, G.; Fitzka, M.; Holawe, F.; Laube, W.

    2009-04-01

    available for two stations from the Austrian UVB monitoring network (Hoher Sonnblick and Vienna) (Rieder et al., 2008). An overview about the UVB monitoring network as well as studies on short and long-term trends and the influence of total ozone, surface albedo and cloudiness on erythemal UV (Weihs et al., 1999; Rieder et al., 2008; Simic et al., 2008) are presented. Results from a recent field campaign (Weihs et al., 2008) showed that maintenance of ground based measurements is very important as satellites so far do not satisfactorily represent ground UV. References: Blumthaler, M., and Ambach, W.: Solar UVB-albedo of various surfaces, Photochem. Photobiol., 48, 85-88, 1988. Blumthaler, M.: Quality assurance and quality control methodologies within the Austrian UV monitoring network, Rad. Prot. Dos., 111, 359-362, 2004. Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315, 207-210, 1985. Molina, M. J., and Rowland, F. S.: Stratospheric sink for chlorofluoromethans: Chlorine atom-catalysed destruction of ozone, Nature, 249, 810-812, 1974. Rieder, H.E., Holawe, F., Simic, S., Blumthaler, M., Krzyscin, J.W., Wagner J.E., Schmalwieser A.W., and Weihs, P.: Reconstruction of erythemal UV-doses for two stations in Austria: A comparison between alpine and urban regions, Atmos. Chem. Phys., 8, 6309-6323, 2008. Simic, S., Weihs, P., Vacek, A., Kromp-Kolb, H., and Fitzka, M.: Spectral UV measurements in Austria from 1994 to 2006: investigations of short- and long-term changes, Atmos. Chem. Phys. Discuss., 8, 2403-2428, 2008. Schmalwieser, A.W., and Schauberger, G.: A monitoring network for erythemally-effective solar ultraviolet radiation in Austria: determination of the measuring sites and visualisation of the spatial distribution, Theor. Appl. Climatol., 69, 221-229, 2001. Weihs, P., Simic, S., Laube, W., Mikielewicz, W., Rengarajan, G., Mandl, G.: Albedo influences on surface UV irradiance

  17. Effects on Student Achievement in General Chemistry Following Participation in an Online Preparatory Course. ChemPrep, a Voluntary, Self-Paced, Online Introduction to Chemistry

    NASA Astrophysics Data System (ADS)

    Botch, Beatrice; Day, Roberta; Vining, William; Stewart, Barbara; Rath, Kenneth; Peterfreund, Alan; Hart, David

    2007-03-01

    ChemPrep was developed to be a stand-alone preparatory short-course to help students succeed in general chemistry. It is Web-based and delivered using the OWL system. Students reported that the ChemPrep materials (short information pages, parameterized questions with detailed feedback, tutorials, and answers to questions through the OWL message system) permitted them to work independently without the need for textbook or lecture. On average, students who completed ChemPrep had higher grades in the subsequent GenChem, Nursing, and Honors chemistry courses, with a greater percentage achieving a grade of C- or higher. Participation in ChemPrep was voluntary, and more women than men responded. Students in the Honors course enrolled in ChemPrep in higher percentages than students in GenChem and Nursing. SAT and departmental math placement exam scores were used as proxy measures of prior achievement and ability. Based on these, Honors chemistry ChemPrep users were on par with their peers but performed better in the course than non-users. In GenChem and Nursing chemistry courses, ChemPrep helped students of high prior achievement and ability perform better than their achievement scores would predict. Weaker or less motivated students did not respond to the voluntary offerings of ChemPrep in the same numbers as stronger or more motivated students, and we are seeking alternate ways to reach this population.

  18. Using Combustion Tracers to Estimate Surface Black Carbon Distributions in WRF-Chem

    NASA Astrophysics Data System (ADS)

    Raman, A.; Arellano, A. F.

    2015-12-01

    Black Carbon (BC) emissions significantly affect the global and regional climate, air quality, and human health. However, BC observations are currently limited in space and time; leading to considerable uncertainties in the estimates of BC distribution from regional and global models. Here, we investigate the usefulness of carbon monoxide (CO) in quantifying BC across continental United States (CONUS). We use high resolution EPA AQS observations of CO and IMPROVE BC to estimate BC/CO ratios. We model the BC and CO distribution using the community Weather Research and Forecasting model with Chemistry (WRF-Chem). We configured WRF-Chem using MOZART chemistry, NEI 2005, MEGAN, and FINNv1.5 for anthropogenic, biogenic and fire emissions, respectively. In this work, we address the following three key questions: 1) What are the discrepancies in the estimates of BC and CO distributions across CONUS during summer and winter periods?, 2) How do BC/CO ratios change for different spatial and temporal regimes?, 3) Can we get better estimates of BC from WRF-Chem if we use BC/CO ratios along with optimizing CO concentrations? We compare ratios derived from the model and observations and develop characteristic ratios for several geographical and temporal regimes. We use an independent set of measurements of BC and CO to evaluate these ratios. Finally, we use a Bayesian synthesis inversion to optimize CO from WRF-Chem using regionally tagged CO tracers. We multiply the characteristic ratios we derived with the optimized CO to obtain BC distributions. Our initial results suggest that the maximum ratios of BC versus CO occur in the western US during the summer (average: 4 ng/m3/ppbv) and in the southeast during the winter (average: 5 ng/m3/ppbv). However, we find that these relationships vary in space and time and are highly dependent on fuel usage and meteorology. We find that optimizing CO using EPA-AQS provides improvements in BC but only over areas where BC/CO ratios are close

  19. Using Q-Chem on the Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    initio quantum chemistry package with special strengths in excited state methods, non-adiabatic coupling , solvation models, explicitly correlated wavefunction methods, and cutting-edge DFT. Running Q-Chem on

  20. Viewing Spark Generated by ChemCam Laser for Mars Rover

    NASA Image and Video Library

    2010-09-21

    The ChemCam instrument for NASA Mars Science Laboratory mission uses a pulsed laser beam to vaporize a pinhead-size target, producing a flash of light from the ionized material plasma that can be analyzed to identify chemical elements in the target.

  1. 77 FR 47427 - Accreditation and Approval of Chem Gas International LLC, as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... Chem Gas International LLC, as a Commercial Gauger and Laboratory AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION: Notice of accreditation and approval of Chem Gas... Gas International LLC, as commercial gauger and laboratory became effective on October 19, 2011. The...

  2. ChemNet: A Transferable and Generalizable Deep Neural Network for Small-Molecule Property Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goh, Garrett B.; Siegel, Charles M.; Vishnu, Abhinav

    With access to large datasets, deep neural networks through representation learning have been able to identify patterns from raw data, achieving human-level accuracy in image and speech recognition tasks. However, in chemistry, availability of large standardized and labelled datasets is scarce, and with a multitude of chemical properties of interest, chemical data is inherently small and fragmented. In this work, we explore transfer learning techniques in conjunction with the existing Chemception CNN model, to create a transferable and generalizable deep neural network for small-molecule property prediction. Our latest model, ChemNet learns in a semi-supervised manner from inexpensive labels computed frommore » the ChEMBL database. When fine-tuned to the Tox21, HIV and FreeSolv dataset, which are 3 separate chemical tasks that ChemNet was not originally trained on, we demonstrate that ChemNet exceeds the performance of existing Chemception models, contemporary MLP models that trains on molecular fingerprints, and it matches the performance of the ConvGraph algorithm, the current state-of-the-art. Furthermore, as ChemNet has been pre-trained on a large diverse chemical database, it can be used as a universal “plug-and-play” deep neural network, which accelerates the deployment of deep neural networks for the prediction of novel small-molecule chemical properties.« less

  3. Sensitivity of WRF-chem predictions to dust source function specification in West Asia

    NASA Astrophysics Data System (ADS)

    Nabavi, Seyed Omid; Haimberger, Leopold; Samimi, Cyrus

    2017-02-01

    Dust storms tend to form in sparsely populated areas covered by only few observations. Dust source maps, known as source functions, are used in dust models to allocate a certain potential of dust release to each place. Recent research showed that the well known Ginoux source function (GSF), currently used in Weather Research and Forecasting Model coupled with Chemistry (WRF-chem), exhibits large errors over some regions in West Asia, particularly near the IRAQ/Syrian border. This study aims to improve the specification of this critical part of dust forecasts. A new source function based on multi-year analysis of satellite observations, called West Asia source function (WASF), is therefore proposed to raise the quality of WRF-chem predictions in the region. WASF has been implemented in three dust schemes of WRF-chem. Remotely sensed and ground-based observations have been used to verify the horizontal and vertical extent and location of simulated dust clouds. Results indicate that WRF-chem performance is significantly improved in many areas after the implementation of WASF. The modified runs (long term simulations over the summers 2008-2012, using nudging) have yielded an average increase of Spearman correlation between observed and forecast aerosol optical thickness by 12-16 percent points compared to control runs with standard source functions. They even outperform MACC and DREAM dust simulations over many dust source regions. However, the quality of the forecasts decreased with distance from sources, probably due to deficiencies in the transport and deposition characteristics of the forecast model in these areas.

  4. Revisiting the radiative vertical velocity paradigm in the TTL

    NASA Astrophysics Data System (ADS)

    Bolot, Maximilien; Moyer, Elisabeth

    2015-04-01

    We demonstrate that uplift rates in the TTL (tropical tropopause layer) may be commonly overestimated. The mass balance of any tracer in the TTL depends on the vertical speed of large-scale uplift and the rate of convective detrainment from overshoots. Generally, uplift velocity is retrieved from the conservation of energy, assuming that the only significant factor is radiative heating.1,2 The detrainment rate is then computed from the convergence of the uplift flux, with the assumption that detrainment dominates over entrainment in the TTL. We show that this commonly calculated 'radiative vertical velocity' and the associated rate of detrainment are necessarily flawed for either of two mutually exclusive reasons. If radiative heating is the sole diabatic term in the energy budget, then significant convective entrainment must occur at TTL levels. If detrainment dominates over entrainment, then the heat budget must include the cooling rate from the export of sensible heat deficit in overshooting convection. We illustrate the calculations using tropical values of radiative heating rates and large-scale divergence fluxes from ERA-Interim reanalysis. For undilute convection, the export of heat deficit in detrained overshoots would substantially offset radiative heating, lowering the resulting assumed vertical velocity at 16 km by a factor of three. The computed detrainment rate at this altitude also increases significantly, by a factor of five. Because these changes would alter interpretation of tracer profiles, it is important to include all terms in the heat budget in tracer studies. Conversely, tracer transport properties can be used to help constrain the impact of convection on the TTL heat budget.3 [1] Folkins, I. et al., J. Geophys. Res., 111, D23304, (2006). [2] Read, W. G. et al., Atmos. Chem. Phys., 8, 6051-6067, (2008). [3] Kuang, Z. and Bretherton, C. S., J. Atmos. Sci., 61, 2919-2927, (2004)

  5. Curiosity ChemCam Finds High-Silica Mars Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frydenvang, Jens

    A team of scientists, including one from Los Alamos National Laboratory, has found much higher concentrations of silica at some sites the Curiosity rover has investigated in the past seven months than anywhere else it has visited since landing on Mars 40 months ago. The first discovery was as Curiosity approached the area “Marias Pass,” where a lower geological unit contacts an overlying one. ChemCam, the rover’s laser-firing instrument for checking rock composition from a distance, detected bountiful silica in some targets the rover passed along the way to the contact zone. The ChemCam instrument was developed at Los Alamosmore » in partnership with the French IRAP laboratory in Toulouse and the French Space Agency. “The high silica was a surprise,” said Jens Frydenvang of Los Alamos National Laboratory and the University of Copenhagen, also a Curiosity science team member. “While we’re still working with multiple hypotheses on how the silica got so enriched, these hypotheses all require considerable water activity, and on Earth high silica deposits are often associated with environments that provide excellent support for microbial life. Because of this, the science team agreed to make a rare backtrack to investigate it more.”« less

  6. WRF-Chem Model Simulations of Arizona Dust Storms

    NASA Astrophysics Data System (ADS)

    Mohebbi, A.; Chang, H. I.; Hondula, D.

    2017-12-01

    The online Weather Research and Forecasting model with coupled chemistry module (WRF-Chem) is applied to simulate the transport, deposition and emission of the dust aerosols in an intense dust outbreak event that took place on July 5th, 2011 over Arizona. Goddard Chemistry Aerosol Radiation and Transport (GOCART), Air Force Weather Agency (AFWA), and University of Cologne (UoC) parameterization schemes for dust emission were evaluated. The model was found to simulate well the synoptic meteorological conditions also widely documented in previous studies. The chemistry module performance in reproducing the atmospheric desert dust load was evaluated using the horizontal field of the Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectro (MODIS) radiometer Terra/Aqua and Aerosol Robotic Network (AERONET) satellites employing standard Dark Target (DT) and Deep Blue (DB) algorithms. To assess the temporal variability of the dust storm, Particulate Matter mass concentration data (PM10 and PM2.5) from Arizona Department of Environmental Quality (AZDEQ) ground-based air quality stations were used. The promising performance of WRF-Chem indicate that the model is capable of simulating the right timing and loading of a dust event in the planetary-boundary-layer (PBL) which can be used to forecast approaching severe dust events and to communicate an effective early warning.

  7. EarthChem and SESAR: Data Resources and Interoperability for EarthScope Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Walker, D.; Block, K.; Vinay, S.; Ash, J.

    2008-12-01

    Data management within the EarthScope Cyberinfrastructure needs to pursue two goals in order to advance and maximize the broad scientific application and impact of the large volumes of observational data acquired by EarthScope facilities: (a) to provide access to all data acquired by EarthScope facilities, and to promote their use by broad audiences, and (b) to facilitate discovery of, access to, and integration of multi-disciplinary data sets that complement EarthScope data in support of EarthScope science. EarthChem and SESAR, the System for Earth Sample Registration, are two projects within the Geoinformatics for Geochemistry program that offer resources for EarthScope CI. EarthChem operates a data portal that currently provides access to >13 million analytical values for >600,000 samples, more than half of which are from North America, including data from the USGS and all data from the NAVDAT database, a web-accessible repository for age, chemical and isotopic data from Mesozoic and younger igneous rocks in western North America. The new EarthChem GEOCHRON database will house data collected in association with GeoEarthScope, storing and serving geochronological data submitted by participating facilities. The EarthChem Deep Lithosphere Dataset is a compilation of petrological data for mantle xenoliths, initiated in collaboration with GeoFrame to complement geophysical endeavors within EarthScope science. The EarthChem Geochemical Resource Library provides a home for geochemical and petrological data products and data sets. Parts of the digital data in EarthScope CI refer to physical samples such as drill cores, igneous rocks, or water and gas samples, collected, for example, by SAFOD or by EarthScope science projects and acquired through lab-based analysis. Management of sample-based data requires the use of global unique identifiers for samples, so that distributed data for individual samples generated in different labs and published in different papers can be

  8. On the origin of regional spring time ozone episodes in the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Kalabokas, Pavlos; Hjorth, Jens; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Siour, Guillaume; Cuesta, Juan; Beekmann, Matthias

    2017-04-01

    . References Doche, C., Dufour, G., Foret, G., Eremenko, M., Cuesta, J., Beekmann, M., and Kalabokas, P., 2014. Summertime tropospheric-ozone variability over the Mediterranean basin observed with IASI, Atmos. Chem. Phys., 14, 10589-10600. Kalabokas P. D., Thouret V., Cammas J.-P., Volz-Τhomas A., Boulanger D., Repapis C.C., 2015. The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case), Tellus B, 67, 27853, http://dx.doi.org/10.3402/tellusb.v67.27853. Kalabokas P., J. Hjorth, G. Foret, G. Dufour, M. Eremenko, G. Siour, J. Cuesta, M. Beekmann, 2016. An investigation on the origin of regional spring time ozone episodes in the Western Mediterranean and Central Europe. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-615.

  9. Externally mixed aerosol : simulation of ice nucleation in a parcel model

    NASA Astrophysics Data System (ADS)

    Anquetil-Deck, Candy; Hoose, Corinna; Conolly, Paul

    2014-05-01

    The effect of different aerosol (mineral dust, bacteria and soot) acting as immersion ice nuclei is investigated using ACPIM (AerosolCloud Precipitation Interaction Model) [1]. ACPIM is a powerful tool which can be used in two different ways. This box model can be, either, driven by experimental data (experiments carried out at the AIDA cloud chamber facility) or used as an air parcel in order to examine different ice nucleation parameterizations under specific conditions. This adiabatic air parcel model was employed for the simulation of a convective cloud. The study consists here in the investigation of how two externally mixed aerosols interact with one another. The initial study concentrates on mineral dust aerosol and biological aerosol without any background in order to fully understand the interaction between the different types of aerosol. Immersion freezing is described for the mineral dust aerosol by Niemand et al. 's parameterization [2], which was derived from laboratory studies in AIDA and is an extension of surface site density approach suggested by Connolly et al. [1]. Regarding bioaerosol, we introduce Hummel et al. 's parameterization [3] : f(in) = f(max)(1 - exp(- Ap *n(s)(T))) With an empirically fitted ice nucleation active site density n s based on AIDA measurements of Pseudomonas syringae bacteria [4]. This initial study is conducted for different proportion of each aerosol (the total number of aerosol being constant throughout all the simulation runs) at different vertical velocities. We then extented this study with different backgrounds (urban, marine, rural) in order to get a full picture. We found that there is not only a CCN competition but an IN competition as well. References : [1] Connolly, P. J., Möhler O., Field P. R., Saathoff H., Burgess, R., Choularton, T. and Gallagher, M., Atmos. Chem. Phys 9, 2805-2824 (2009). [2] Niemand, M., Möhler, O., Vogel B., Vogel, H., Hoose, C., Connolly, P., Klein, H., Bingemer, H., De

  10. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

    USGS Publications Warehouse

    Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; Bernardin, J.; Berthé, M.; Bridges, N.; Blaney, D.; Bouyé, M.; Caïs, P.; Clark, B.; Clegg, S.; Cousin, A.; Cremers, D.; Cros, A.; DeFlores, L.; Derycke, C.; Dingler, B.; Dromart, G.; Dubois, B.; Dupieux, M.; Durand, E.; d'Uston, L.; Fabre, C.; Faure, B.; Gaboriaud, A.; Gharsa, T.; Herkenhoff, K.; Kan, E.; Kirkland, L.; Kouach, D.; Lacour, J.-L.; Langevin, Y.; Lasue, J.; Le Mouélic, S.; Lescure, M.; Lewin, E.; Limonadi, D.; Manhès, G.; Mauchien, P.; McKay, C.; Meslin, P.-Y.; Michel, Y.; Miller, E.; Newsom, Horton E.; Orttner, G.; Paillet, A.; Parès, L.; Parot, Y.; Pérez, R.; Pinet, P.; Poitrasson, F.; Quertier, B.; Sallé, B.; Sotin, Christophe; Sautter, V.; Séran, H.; Simmonds, J.J.; Sirven, J.-B.; Stiglich, R.; Striebig, N.; Thocaven, J.-J.; Toplis, M.J.; Vaniman, D.

    2012-01-01

    ChemCam is a remote sensing instrument suite on board the "Curiosity" rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (˜90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

  11. Characterization of potential EC flux underestimation of "sticky" trace gas species

    NASA Astrophysics Data System (ADS)

    Neftel, Albrecht; Hensen, Arjan; Ibrom, Andreas; Ammann, Christof; Voglmeier, Karl; Brümmer, Christian

    2017-04-01

    Eddy covariance (EC) flux measurements of "sticky" trace gas species are affected of damping of high frequency variations of the gas concentration. Several approaches have been developed to correct for this effect (see e.g. Ibrom et al., 2007, Ammann et al., 2006). These approaches have in common that the spectral properties of the scalar are compared with the sonic temperature deduced from the Sonic anemometer data that is only marginally damped. A main difference between the two method is that one uses power spectra, while the other is based on co-spectra of the gas concentration with the vertical wind speed. NH3 fluxes used in the analysis stem from two field experiments: a) Posieux intercomparison October 2015: NH3 emissions of a grazed pasture measured with Eddy Covariance using an Aerodyne quantum cascade laser and with a horizontal gradient measurement using MiniDOAS systems (Sintermann et al., 2016) in conjunction with a dispersion model. b) Dronten experiment June 2016 in the Netherlands: NH3 emissions from two manured circles within 40m diameters have been determined with four different approaches (Eddy Covariance, Integrated Horizontal Flux approach, horizontal gradients and plume measurements). Despite correction with standard methods, turbulent NH3 flux measurements with the eddy covariance method seem still be underestimated when, e.g., compared to flux estimated using gradient methods. We discuss possible correction algorithms and how such underestimations can be recognized in the usual case, where no alternative flux estimation methods are available. References: Ammann, C., Brunner, A., Spirig, C., and Neftel, A. 2006: Technical note: Water vapour concentration and flux measurements with PTR-MS, Atmos. Chem. Phys., 6, 4643-4651 Ibrom, A., Dellwik, E., Jensen, N.O., Flyvbjerg, H. and Pilegaard, K., 2007. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agricultural and Forest Meteorology

  12. Managing the computational chemistry big data problem: the ioChem-BD platform.

    PubMed

    Álvarez-Moreno, M; de Graaf, C; López, N; Maseras, F; Poblet, J M; Bo, C

    2015-01-26

    We present the ioChem-BD platform ( www.iochem-bd.org ) as a multiheaded tool aimed to manage large volumes of quantum chemistry results from a diverse group of already common simulation packages. The platform has an extensible structure. The key modules managing the main tasks are to (i) upload of output files from common computational chemistry packages, (ii) extract meaningful data from the results, and (iii) generate output summaries in user-friendly formats. A heavy use of the Chemical Mark-up Language (CML) is made in the intermediate files used by ioChem-BD. From them and using XSL techniques, we manipulate and transform such chemical data sets to fulfill researchers' needs in the form of HTML5 reports, supporting information, and other research media.

  13. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem.

    PubMed

    Phadungsukanan, Weerapong; Kraft, Markus; Townsend, Joe A; Murray-Rust, Peter

    2012-08-07

    : This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  14. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem

    PubMed Central

    2012-01-01

    This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications. PMID:22870956

  15. ConfChem Conference on Select 2016 BCCE Presentations: Radical Awakenings--A New Teaching Paradigm Using Social Media

    ERIC Educational Resources Information Center

    Sorensen-Unruh, Clarissa

    2017-01-01

    This Communication summarizes one of the invited papers to the Select 2016 BCCE Presentations ACS CHED Committee on Computers in Chemical Education online ConfChem held from October 30 to November 22, 2016. The ConfChem paper (included within Supporting Information) focuses on the results of one instructor's incorporation of social media into her…

  16. A Library of ATMO Forward Model Transmission Spectra for Hot Jupiter Exoplanets

    NASA Technical Reports Server (NTRS)

    Goyal, Jayesh M.; Mayne, Nathan; Sing, David K.; Drummond, Benjamin; Tremblin, Pascal; Amundsen, David S.; Evans, Thomas; Carter, Aarynn L.; Spake, Jessica; Baraffe, Isabelle; hide

    2017-01-01

    We present a grid of forward model transmission spectra, adopting an isothermal temperature-pressure profile, alongside corresponding equilibrium chemical abundances for 117 observationally significant hot exoplanets (equilibrium temperatures of 547-2710 K). This model grid has been developed using a 1D radiative-convective-chemical equilibrium model termed ATMO, with up-to-date high-temperature opacities. We present an interpretation of observations of 10 exoplanets, including best-fitting parameters and X(exp 2) maps. In agreement with previous works, we find a continuum from clear to hazy/cloudy atmospheres for this sample of hot Jupiters. The data for all the 10 planets are consistent with subsolar to solar C/O ratio, 0.005 to 10 times solar metallicity and water rather than methane-dominated infrared spectra. We then explore the range of simulated atmospheric spectra for different exoplanets, based on characteristics such as temperature, metallicity, C/O ratio, haziness and cloudiness. We find a transition value for the metallicity between 10 and 50 times solar, which leads to substantial changes in the transmission spectra. We also find a transition value of C/O ratio, from water to carbon species dominated infrared spectra, as found by previous works, revealing a temperature dependence of this transition point ranging from approximately 0.56 to approximately 1-1.3 for equilibrium temperatures from approximately 900 to approximately 2600 K. We highlight the potential of the spectral features of HCN and C2H2 to constrain the metallicities and C/O ratios of planets, using James Webb Space Telescope (JWST) observations. Finally, our entire grid (approximately 460 000 simulations) is publicly available and can be used directly with the JWST simulator PandExo for planning observations.

  17. A library of ATMO forward model transmission spectra for hot Jupiter exoplanets

    NASA Astrophysics Data System (ADS)

    Goyal, Jayesh M.; Mayne, Nathan; Sing, David K.; Drummond, Benjamin; Tremblin, Pascal; Amundsen, David S.; Evans, Thomas; Carter, Aarynn L.; Spake, Jessica; Baraffe, Isabelle; Nikolov, Nikolay; Manners, James; Chabrier, Gilles; Hebrard, Eric

    2018-03-01

    We present a grid of forward model transmission spectra, adopting an isothermal temperature-pressure profile, alongside corresponding equilibrium chemical abundances for 117 observationally significant hot exoplanets (equilibrium temperatures of 547-2710 K). This model grid has been developed using a 1D radiative-convective-chemical equilibrium model termed ATMO, with up-to-date high-temperature opacities. We present an interpretation of observations of 10 exoplanets, including best-fitting parameters and χ2 maps. In agreement with previous works, we find a continuum from clear to hazy/cloudy atmospheres for this sample of hot Jupiters. The data for all the 10 planets are consistent with subsolar to solar C/O ratio, 0.005 to 10 times solar metallicity and water rather than methane-dominated infrared spectra. We then explore the range of simulated atmospheric spectra for different exoplanets, based on characteristics such as temperature, metallicity, C/O ratio, haziness and cloudiness. We find a transition value for the metallicity between 10 and 50 times solar, which leads to substantial changes in the transmission spectra. We also find a transition value of C/O ratio, from water to carbon species dominated infrared spectra, as found by previous works, revealing a temperature dependence of this transition point ranging from ˜0.56 to ˜1-1.3 for equilibrium temperatures from ˜900 to ˜2600 K. We highlight the potential of the spectral features of HCN and C2H2 to constrain the metallicities and C/O ratios of planets, using James Webb Space Telescope (JWST) observations. Finally, our entire grid (˜460 000 simulations) is publicly available and can be used directly with the JWST simulator PandExo for planning observations.

  18. WebChem Viewer: a tool for the easy dissemination of chemical and structural data sets

    PubMed Central

    2014-01-01

    Background Sharing sets of chemical data (e.g., chemical properties, docking scores, etc.) among collaborators with diverse skill sets is a common task in computer-aided drug design and medicinal chemistry. The ability to associate this data with images of the relevant molecular structures greatly facilitates scientific communication. There is a need for a simple, free, open-source program that can automatically export aggregated reports of entire chemical data sets to files viewable on any computer, regardless of the operating system and without requiring the installation of additional software. Results We here present a program called WebChem Viewer that automatically generates these types of highly portable reports. Furthermore, in designing WebChem Viewer we have also created a useful online web application for remotely generating molecular structures from SMILES strings. We encourage the direct use of this online application as well as its incorporation into other software packages. Conclusions With these features, WebChem Viewer enables interdisciplinary collaborations that require the sharing and visualization of small molecule structures and associated sets of heterogeneous chemical data. The program is released under the FreeBSD license and can be downloaded from http://nbcr.ucsd.edu/WebChemViewer. The associated web application (called “Smiley2png 1.0”) can be accessed through freely available web services provided by the National Biomedical Computation Resource at http://nbcr.ucsd.edu. PMID:24886360

  19. Tropospheric Emission Spectrometer (TES) for the Earth Observing System (EOS) CHEM Satellite

    NASA Technical Reports Server (NTRS)

    Beer, R.; Glavich, T.; Rider, D.

    2000-01-01

    The Tropospheric Emission Spectrometer (TES) is an imaging infrared Fourier transform spectrometer scheduled to be launched into polar sun-synchronous orbit on the Earth Observing System (EOS) CHEM satellite in December 2002.

  20. Interactive Gaussian Graphical Models for Discovering Depth Trends in ChemCam Data

    NASA Astrophysics Data System (ADS)

    Oyen, D. A.; Komurlu, C.; Lanza, N. L.

    2018-04-01

    Interactive Gaussian graphical models discover surface compositional features on rocks in ChemCam targets. Our approach visualizes shot-to-shot relationships among LIBS observations, and identifies the wavelengths involved in the trend.

  1. Curiosity ChemCam Finds High-Silica Mars Rocks

    ScienceCinema

    Frydenvang, Jens

    2018-01-16

    A team of scientists, including one from Los Alamos National Laboratory, has found much higher concentrations of silica at some sites the Curiosity rover has investigated in the past seven months than anywhere else it has visited since landing on Mars 40 months ago. The first discovery was as Curiosity approached the area “Marias Pass,” where a lower geological unit contacts an overlying one. ChemCam, the rover’s laser-firing instrument for checking rock composition from a distance, detected bountiful silica in some targets the rover passed along the way to the contact zone. The ChemCam instrument was developed at Los Alamos in partnership with the French IRAP laboratory in Toulouse and the French Space Agency. “The high silica was a surprise,” said Jens Frydenvang of Los Alamos National Laboratory and the University of Copenhagen, also a Curiosity science team member. “While we’re still working with multiple hypotheses on how the silica got so enriched, these hypotheses all require considerable water activity, and on Earth high silica deposits are often associated with environments that provide excellent support for microbial life. Because of this, the science team agreed to make a rare backtrack to investigate it more.”

  2. Progress in Global Multicompartmental Modelling of DDT

    NASA Astrophysics Data System (ADS)

    Stemmler, I.; Lammel, G.

    2009-04-01

    input parameters. Furthermore, better resolution of some processes could improve model performance. References: Marsland S.J., Haak H., Jungclaus J.H., Latif M., Röske F. (2003): The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling 5, 91-127 Maier-Reimer E. , Kriest I., Segschneider J., Wetzel P. : The HAMburg Ocean Carbon Cycle Model HAMOCC 5.1 - Technical Description Release 1.1 (2005),Reports on Earth System Science 14 Stier P. , Feichter J. (2005), Kinne S., Kloster S., Vignati E., Wilson J.Ganzeveld L., Tegen I., Werner M., Blakanski Y., Schulz M., Boucher O., Minikin A., Petzold A.: The aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys 5, 1125-1156 Semeena V.S., Feichter J., Lammel G. (2006): Impact of the regional climate and substance properties on the fate and atmospheric long-range transport of persistent organic pollutants - examples of DDT and γ-HCH. Atmos. Chem. Phys. 6, 1231-1248

  3. Comparison of ice nuclei from fruit juices and their properties

    NASA Astrophysics Data System (ADS)

    Fiala, Bianca; Felgitsch, Laura; Grothe, Hinrich

    2017-04-01

    ., Gochis, D.J., Harris, E., Müller-Germann, I., Ruzene, C., Schmer, B., Sinha, B., Day, D.A., Andreae, M.O., Jimenez, J.L., Gallagher, M., Kreidenweis, S.M., Bertram, A.K., and Pöschl, U.: High concentrations of biological aerosol particles and ice nuclei during and after rain, Atmos. Chem. Phys., 13, 1651-1664, 2013. Pratt, K.A., DeMott, P.J., French, J.R., Wang, Z., Westphal, D.L., Heymsfield, A.J., Twohy, C.H., Prenni, A.J., and Prather, K.A.: In situ detection of biological particles in cloud ice-crystals, Nat. Geosci., 2, 298-401, 2009. Pummer, B.G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos. Chem. Phys., 12, 2541-2550, 2012.

  4. Atmos/Atlas 3 Infrared Profile Measurements of Trace Gases in The November 1994 Tropical and Subtropical Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Wang, P.-H.; Arduini, R. F.; Baum, B. A.; Minnis, P.; Minnis, P.; Goldman, A.; Abrams, M. C.; Zander, R.; hide

    1998-01-01

    Vertical mixing ratio profiles of four relatively long-lives gases, HCN, C2H2, CO, and C2H6, have been retrieved from 0.01/cm resolution infrared solar occultation spectra recorded between latitudes of 5.3degN and 31.4degN. The observations were obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer during the Atmospheric Laboratory for Applications and Science (ATLAS) 3 shuttle flight, 3-12 November 1994. Elevated mixing ratios below the tropopause were measured for these gases during several of the occultations. The positive correlations obtained between the simultaneously measured mixing ratios suggest that the enhancements are likely the result of surface emissions, most likely biomass burning and/or urban industrial activities, followed by common injection via deep convective transport of the gases to the upper troposphere. The elevated levels of HCN may account for at least part of the "missing NO," in the upper troposphere. Comparisons of the observations with values measured during a recent aircraft campaign are presented.

  5. Incorporation of a Chemical Equilibrium Equation of State into LOCI-Chem

    NASA Technical Reports Server (NTRS)

    Cox, Carey F.

    2005-01-01

    Renewed interest in development of advanced high-speed transport, reentry vehicles and propulsion systems has led to a resurgence of research into high speed aerodynamics. As this flow regime is typically dominated by hot reacting gaseous flow, efficient models for the characteristic chemical activity are necessary for accurate and cost effective analysis and design of aerodynamic vehicles that transit this regime. The LOCI-Chem code recently developed by Ed Luke at Mississippi State University for NASA/MSFC and used by NASA/MSFC and SSC represents an important step in providing an accurate, efficient computational tool for the simulation of reacting flows through the use of finite-rate kinetics [3]. Finite rate chemistry however, requires the solution of an additional N-1 species mass conservation equations with source terms involving reaction kinetics that are not fully understood. In the equilibrium limit, where the reaction rates approach infinity, these equations become very stiff. Through the use of the assumption of local chemical equilibrium the set of governing equations is reduced back to the usual gas dynamic equations, and thus requires less computation, while still allowing for the inclusion of reacting flow phenomenology. The incorporation of a chemical equilibrium equation of state module into the LOCI-Chem code was the primary objective of the current research. The major goals of the project were: (1) the development of a chemical equilibrium composition solver, and (2) the incorporation of chemical equilibrium solver into LOCI-Chem. Due to time and resource constraints, code optimization was not considered unless it was important to the proper functioning of the code.

  6. Comment on 'The diatomic dication CuZn{sup 2+} in the gas phase' [J. Chem. Phys. 135, 034306 (2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiser, Jiri; Diez, Reinaldo Pis; Franzreb, Klaus

    2013-02-21

    In this Comment, the density functional theory (DFT) calculations carried out by Diez et al. [J. Chem. Phys. 135, 034306 (2011)] are revised within the framework of the coupled-cluster single double triple method. These more sophisticated calculations allow us to show that the {sup 2}{Sigma}{sup +} electronic ground state of CuZn{sup 2+}, characterized as the metastable ground state by DFT calculations, is a repulsive state instead. The {sup 2}{Delta} and {sup 2}{Pi} metastable states of CuZn{sup 2+}, on the other hand, should be responsible for the formation mechanism of the dication through the near-resonant electron transfer CuZn{sup +}+ Ar{sup +}{yields}more » CuZn{sup 2+}+ Ar reaction.« less

  7. Regional modelling of polycyclic aromatic hydrocarbons: WRF-Chem-PAH model development and East Asia case studies

    NASA Astrophysics Data System (ADS)

    Mu, Qing; Lammel, Gerhard; Gencarelli, Christian N.; Hedgecock, Ian M.; Chen, Ying; Přibylová, Petra; Teich, Monique; Zhang, Yuxuan; Zheng, Guangjie; van Pinxteren, Dominik; Zhang, Qiang; Herrmann, Hartmut; Shiraiwa, Manabu; Spichtinger, Peter; Su, Hang; Pöschl, Ulrich; Cheng, Yafang

    2017-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are hazardous pollutants, with increasing emissions in pace with economic development in East Asia, but their distribution and fate in the atmosphere are not yet well understood. We extended the regional atmospheric chemistry model WRF-Chem (Weather Research Forecast model with Chemistry module) to comprehensively study the atmospheric distribution and the fate of low-concentration, slowly degrading semivolatile compounds. The WRF-Chem-PAH model reflects the state-of-the-art understanding of current PAHs studies with several new or updated features. It was applied for PAHs covering a wide range of volatility and hydrophobicity, i.e. phenanthrene, chrysene and benzo[a]pyrene, in East Asia. Temporally highly resolved PAH concentrations and particulate mass fractions were evaluated against observations. The WRF-Chem-PAH model is able to reasonably well simulate the concentration levels and particulate mass fractions of PAHs near the sources and at a remote outflow region of East Asia, in high spatial and temporal resolutions. Sensitivity study shows that the heterogeneous reaction with ozone and the homogeneous reaction with the nitrate radical significantly influence the fate and distributions of PAHs. The methods to implement new species and to correct the transport problems can be applied to other newly implemented species in WRF-Chem.

  8. Diagenetic Features Analyzed by ChemCam/Curiosity at Pahrump Hills, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Nachon, M.; Mangold, N.; Cousin, A.; Forni, O.; Anderson, R. B.; Blank, J. G.; Calef, F.; Clegg, S.; Fabre, C.; Fisk, M.; hide

    2015-01-01

    Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of : (1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of targets and (2) a Remote Micro Imager (RMI), which provides imaging context for the LIBS. The LIBS/ChemCam performs analysis typically of spot sizes 350-550 micrometers in diameter, up to 7 meters from the rover. Within Gale crater, Curiosity traveled from Bradbury Landing toward the base of Mount Sharp, reaching Pahrump Hills outcrop circa sol 750. This region, as seen from orbit, represents the first exposures of lower Mount Sharp. In this abstract we focus on two types of features present within the Pahrump Hills outcrop: concretion features and light-toned veins.

  9. ChemCam Compositional Results from the Shaler Outcrop in Gale Crater, Mars (Invited)

    NASA Astrophysics Data System (ADS)

    Anderson, R. B.; Leveille, R. J.; Vaniman, D.; Williams, J.; Clegg, S. M.; Le Mouelic, S.; Wiens, R. C.; Edgar, L. A.; Newsom, H. E.; Clark, B. C.; Ollila, A.; Lewis, K. W.; Gupta, S.; Team, M.

    2013-12-01

    The Curiosity rover first visited the outcrop known as 'Shaler' on Sol 121 of the mission. The ~1 m thick outcrop is the 'type section' for the Shaler member, which forms the uppermost part of the Yellowknife Bay formation. The Shaler outcrop exhibits multiple well-exposed cross-bedded facies with typical grain sizes of 1-2 mm, most consistent with fluvial deposition. Initial results from the two Sol 121 observations of Shaler by the ChemCam instrument showed similar composition, with a mix of mafic silicates and feldspar grains. A strong correlation between iron and titanium indicates the possible presence of titanomagnetite or ilmenite. CaO shows an anticorrelation with the total of the measured major elements, suggesting that it may be related to a non-silicate phase such as a salt. The rover returned to the outcrop on Sols 309-324. Because of the rugged nature of the outcrop, much of the exposed rock was not reachable by the rover's robotic arm. However, the ChemCam instrument can collect elemental compositional information out to a range of ~7 m using laser-induced breakdown spectroscopy (LIBS), and can acquire high-resolution images at even greater range. ChemCam analyzed 29 locations using LIBS to determine chemical composition, and four additional locations were imaged with the Remote Micro Imager. The targets analyzed included both fine- and coarse-grained facies, as well as a distinct upper unit which appears darker and less red than other Shaler units in Mastcam images, and lacks the striking alternating resistant and recessive cross-bedding observed in lower Shaler. This upper unit occurs at an elevation similar to the rocks at 'Rocknest', and similar-looking rocks appear across the cratered surface to the south and east of Shaler. Several blocks apparently derived from this upper unit were analyzed by ChemCam to test the hypothesis that the unit is related to rocks observed at Rocknest. Work is ongoing to interpret the results of the ChemCam campaign

  10. Implementing marine organic aerosols into the GEOS-Chem model

    DOE PAGES

    Gantt, B.; Johnson, M. S.; Crippa, M.; ...

    2015-03-17

    Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Modelmore » predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  11. Implementing Marine Organic Aerosols Into the GEOS-Chem Model

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.

    2015-01-01

    Marine-sourced organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large under-prediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.

  12. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have beenmore » implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated

  13. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS

    NASA Astrophysics Data System (ADS)

    Sessions, W. R.; Fuelberg, H. E.; Kahn, R. A.; Winker, D. M.

    2010-11-01

    The Weather Research and Forecasting Model (WRF) is considered a "next generation" mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem) allows transport simulations of chemical and aerosol species such as those observed during NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia. One of the most important aspects of simulating wildfire plume transport is the height at which emissions are injected. WRF-Chem contains an integrated one-dimensional plume rise model to determine the appropriate injection layer. The plume rise model accounts for thermal buoyancy associated with fires and the local atmospheric stability. This study compares results from the plume model against those of two more traditional injection methods: Injecting within the planetary boundary layer, and in a layer 3-5 km above ground level. Fire locations are satellite derived from the GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA) and the MODIS thermal hotspot detection. Two methods for preprocessing these fire data are compared: The prep_chem_sources method included with WRF-Chem, and the Naval Research Laboratory's Fire Locating and Monitoring of Burning Emissions (FLAMBE). Results from the simulations are compared with satellite-derived products from the AIRS, MISR and CALIOP sensors. Results show that the FLAMBE pre-processor produces more realistic injection heights than does prep_chem_sources. The plume rise model using FLAMBE provides the best agreement with satellite-observed injection heights. Conversely, when the planetary boundary layer or the 3-5 km AGL layer were filled with emissions, the resulting injection heights exhibit less agreement with observed plume heights. Results indicate that differences in injection heights produce different transport pathways. These

  14. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS

    NASA Astrophysics Data System (ADS)

    Sessions, W. R.; Fuelberg, H. E.; Kahn, R. A.; Winker, D. M.

    2011-06-01

    The Weather Research and Forecasting Model (WRF) is considered a "next generation" mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem) allows transport simulations of chemical and aerosol species such as those observed during NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia. One of the most important aspects of simulating wildfire plume transport is the height at which emissions are injected. WRF-Chem contains an integrated one-dimensional plume rise model to determine the appropriate injection layer. The plume rise model accounts for thermal buoyancy associated with fires and local atmospheric stability. This paper describes a case study of a 10 day period during the Spring phase of ARCTAS. It compares results from the plume model against those of two more traditional injection methods: Injecting within the planetary boundary layer, and in a layer 3-5 km above ground level. Fire locations are satellite derived from the GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA) and the MODIS thermal hotspot detection. Two methods for preprocessing these fire data are compared: The prep_chem_sources method included with WRF-Chem, and the Naval Research Laboratory's Fire Locating and Monitoring of Burning Emissions (FLAMBE). Results from the simulations are compared with satellite-derived products from the AIRS, MISR and CALIOP sensors. When FLAMBE provides input to the 1-D plume rise model, the resulting injection heights exhibit the best agreement with satellite-observed injection heights. The FLAMBE-derived heights are more realistic than those utilizing prep_chem_sources. Conversely, when the planetary boundary layer or the 3-5 km a.g.l. layer were filled with emissions, the resulting injection heights exhibit less agreement with observed plume heights

  15. Impact of Aerosol Processing on Orographic Clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    . [6]. Our investigation regarding the influence of aerosol processing will focus on the regional scale using a cloud-system resolving model with a much higher resolution. Emphasis will be placed on orographic mixed-phase precipitation. Different two-dimensional simulations of idealized orographic clouds will be conducted to estimate the effect of aerosol processing on orographic cloud formation and precipitation. Here, cloud lifetime, location and extent as well as the cloud type will be of particular interest. In a supplementary study, the new parameterization will be compared to observations of total and interstitial aerosol concentrations and size distribution at the remote high alpine research station Jungfraujoch in Switzerland. In addition, our simulations will be compared to recent simulations of aerosol processing in warm, mixed-phase and cold clouds, which have been carried out at the location of Jungfraujoch station [5]. References: [1] Pruppacher & Jaenicke (1995), The processing of water vapor and aerosols by atmospheric clouds, a global estimate, Atmos. Res., 38, 283295. [2] Seifert & Beheng (2006), A two-moment microphysics parameterization for mixed-phase clouds. Part 1: Model description, Meteorol. Atmos. Phys., 92, 4566. [3] Vignati et al. (2004), An efficient size-resolved aerosol microphysics module for large-scale transport models, J. Geophys. Res., 109, D22202 [4] Muhlbauer & Lohmann (2008), Sensitivity studies of the role of aerosols in warm-phase orographic precipitation in different flow regimes, J. Atmos. Sci., 65, 25222542. [5] Hoose et al. (2008), Aerosol processing in mixed-phase clouds in ECHAM5HAM: Model description and comparison to observations, J. Geophys. Res., 113, D071210. [6] Hoose et al. (2008), Global simulations of aerosol processing in clouds, Atmos. Chem. Phys., 8, 69396963.

  16. Modelling ice microphysics of mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Ahola, J.; Raatikainen, T.; Tonttila, J.; Romakkaniemi, S.; Kokkola, H.; Korhonen, H.

    2017-12-01

    The low-level Arctic mixed-phase clouds have a significant role for the Arctic climate due to their ability to absorb and reflect radiation. Since the climate change is amplified in polar areas, it is vital to apprehend the mixed-phase cloud processes. From a modelling point of view, this requires a high spatiotemporal resolution to capture turbulence and the relevant microphysical processes, which has shown to be difficult.In order to solve this problem about modelling mixed-phase clouds, a new ice microphysics description has been developed. The recently published large-eddy simulation cloud model UCLALES-SALSA offers a good base for a feasible solution (Tonttila et al., Geosci. Mod. Dev., 10:169-188, 2017). The model includes aerosol-cloud interactions described with a sectional SALSA module (Kokkola et al., Atmos. Chem. Phys., 8, 2469-2483, 2008), which represents a good compromise between detail and computational expense.Newly, the SALSA module has been upgraded to include also ice microphysics. The dynamical part of the model is based on well-known UCLA-LES model (Stevens et al., J. Atmos. Sci., 56, 3963-3984, 1999) which can be used to study cloud dynamics on a fine grid.The microphysical description of ice is sectional and the included processes consist of formation, growth and removal of ice and snow particles. Ice cloud particles are formed by parameterized homo- or heterogeneous nucleation. The growth mechanisms of ice particles and snow include coagulation and condensation of water vapor. Autoconversion from cloud ice particles to snow is parameterized. The removal of ice particles and snow happens by sedimentation and melting.The implementation of ice microphysics is tested by initializing the cloud simulation with atmospheric observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC). The results are compared to the model results shown in the paper of Ovchinnikov et al. (J. Adv. Model. Earth Syst., 6, 223-248, 2014) and they show a good

  17. Importance of reactive halogens in the tropical marine atmosphere using WRF-chem

    NASA Astrophysics Data System (ADS)

    Badia, Alba; Reeves, Claire E.; Baker, Alex; Volkamer, Rainer; Apel, Eric; Saiz-Lopez, Alfonso; von Glasow, Roland

    2017-04-01

    Halogen species (chlorine, bromine and iodine) are known to play an important role in the chemistry and oxidizing capacity of the troposphere, particularly in the marine boundary layer (MBL). Reactive halogens participate in catalytic reaction cycles that efficiently destroy O3, change the HOX and NOX partitioning, affect the oxidation of volatile organic compounds (VOCs) and mercury, reduce the lifetime of methane, and take part in new particle formation. Numerical models predicted that reactive halogen compounds account for 30% of O3 destruction in the MBL and 5-20% globally. Up to 34% of O3 loss in the tropical East Pacific is due to I and Br combined. Recent studies have highlighted the key role that heterogeneous chemistry plays in explaining observations of BrO and IO abundances in the tropical troposphere. The main objective of this study is to investigate the atmospheric chemistry in the tropical East Pacific with a focus on reactive halogens using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and field data from the TORERO campaign. Our reaction mechanism in WRF-Chem is based on the MOZART mechanism and has been extended to include bromine, chlorine and iodine chemistry. Heterogeneous recycling reactions involving sea-salt aerosol and other particles have been included into the model, along with oceanic emissions of important OVOCs and halocarbons. Sea surface emissions of inorganic iodine are calculated using the parameterisation of Carpenter et al., 2013. Focusing on TORERO observations from the ships and a selected number of flights we present the tropospheric impacts of halogens (BrO, IO) in the tropospheric chemistry of relevant species (O3, OH and OVOCS). Sensitivity runs are made in order to study the impact of heterogeneous chemistry in the iodine and bromine species partitioning. A comparison between the online calculation of Very Short Lived Halocarbons (VSLH) oceanic emissions with prescribed oceanic emissions is

  18. Si3 AlP: A New Promising Material for Solar Cell Absorber

    NASA Astrophysics Data System (ADS)

    Yang, Jihui; Zhai, Yingteng; Liu, Hengrui; Xiang, Hongjun; Gong, Xingao; Wei, Suhuai

    2014-03-01

    First-principles calculations are performed to study the structural and optoelectronic properties of the newly synthesized nonisovalent and lattice-matched (Si2)0.6(AlP)0.4 alloy [T. Watkins et al., J. Am. Chem. Soc. 2011, 133, 16212.] The most stable structure of Si3AlP is a superlattice along the <111>direction with separated AlP and Si layers, which has a similar optical absorption spectrum to silicon. The ordered C1c1-Si3AlP is found to be the most stable one among all the structures with -AlPSi3- motifs, in agreement with the experimental suggestions. We predict that C1c1-Si3AlP has good optical properties, i.e., it has a larger fundamental band gap and a smaller direct band gap than Si, thus it has much higher absorption in the visible light region, making it a promising candidate for improving the performance of the existing Si-based solar cells.

  19. Ultrafine particles from power plants: Evaluation of WRF-Chem simulations with airborne measurements

    NASA Astrophysics Data System (ADS)

    Forkel, Renate; Junkermann, Wolfgang

    2017-04-01

    Ultrafine particles (UFP, particles with a diameter < 100 nm) are an acknowledged risk to human health and have a potential effect on climate as their presence affects the number concentration of cloud condensation nuclei. Despite of the possibly hazardous effects no regulations exist for this size class of ambient air pollution particles. While ground based continuous measurements of UFP are performed in Germany at several sites (e.g. the German Ultrafine Aerosol Network GUAN, Birmili et al. 2016, doi:10.5194/essd-8-355-2016) information about the vertical distribution of UFP within the atmospheric boundary layer is only scarce. This gap has been closed during the last years by regional-scale airborne surveys for UFP concentrations and size distributions over Germany (Junkermann et al., 2016, doi: 10.3402/tellusb.v68.29250) and Australia (Junkermann and Hacker, 2015, doi: 10.3402/tellusb.v67.25308). Power stations and refineries have been identified as a major source of UFP in Germany with observed particle concentrations > 50000 particles cm-3 downwind of these elevated point sources. Nested WRF-Chem simulations with 2 km grid width for the innermost domain are performed with UFP emission source strengths derived from the measurements in order to study the advection and vertical exchange of UFP from power plants near the Czech and Polish border and their impact on planetary boundary layer particle patterns. The simulations are evaluated against the airborne observations and the downward mixing of the UFP from the elevated sources is studied.

  20. Interactions between volatile organic compounds and reactive halogen in the tropical marine atmosphere using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Badia, Alba; Reeves, Claire E.; Baker, Alex; Volkamer, Rainer; von Glasow, Roland

    2016-04-01

    Halogen species (chlorine, bromine and iodine) are known to play an important role in the chemistry and oxidizing capacity of the troposphere, particularly in the marine boundary layer (MBL). Reactive halogens cause ozone (O3) destruction, change the HOx and NOX partitioning, affect the oxidation of volatile organic compounds (VOCs) and mercury, reduce the lifetime of methane, and take part in new particle formation. Numerical models predicted that reactive halogen compounds account for 30% of O3 destruction in the MBL and 5-20% globally. There are indications that the chemistry of reactive halogens and oxygenated VOCs (OVOCs) in the tropics are inter-related. Moreover, the presence of aldehydes, such as glyoxal (CHOCHO), has a potential impact on radical cycling and secondary organic aerosol (SOA) formation in the MBL and free troposphere (FT). Model calculations suggest aldehydes to be an important sink for bromine atoms and hence competition for their reaction with O3 forming BrO and so illustrating a link between the cycles of halogens and OVOCs in the marine atmosphere. The main objective of this contribution is to investigate the atmospheric chemistry in the tropical East Pacific with a focus on reactive halogens and OVOCs and their links using the latest version of the Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem) and field data from the TORERO campaign. WRF-Chem is a highly flexible community model for atmospheric research where aerosol-radiation-cloud feedback processes are taken into account. Our current reaction mechanism in WRF-Chem is based on the MOZART mechanism and has been extended to include bromine, chlorine and iodine chemistry. The MOZART mechanism includes detailed gas-phase chemistry of CHOCHO formation as well as state-of-the-science pathways to form SOA. Oceanic emissions of aldehydes, including CHOCHO, and of organic halogens based on measurements from the TORERO campaign have been added into the model. Sea

  1. Hurricane genesis: on the breaking African easterly waves and critical layers

    NASA Astrophysics Data System (ADS)

    Asaadi, Ali; Brunet, Gilbert; Yau, Peter

    2015-04-01

    characterized by weak PV gradients, and the thermodynamical mechanisms such as convectively generated PV anomalies in the cat's eye formation in tropical cyclogenesis. These findings are consistent with the analytical theory of free and forced disturbances to an easterly parabolic jet (Brunet and Warn, 1990; Brunet and Haynes, 1995; Choboter et al., 2000). 1) Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 5587-5646. 2) Brunet, G., and T. Warn, 1990: Rossby Wave Critical Layers on a Jet. J. Atmos. Sci., 47, 1173-1178. 3) Brunet, and P. H. Haynes, 1995: The Nonlinear Evolution of Disturbances to a Parabolic Jet. J. Atmos. Sci., 52, 464-477. 4) Choboter, P. F., G. Brunet, and S. A. Maslowe, 2000: Forced Disturbances in a Zero Absolute Vorticity Gradient Environment. J. Atmos. Sci., 57, 1406-1419.

  2. Development of a Grid-Independent Geos-Chem Chemical Transport Model (v9-02) as an Atmospheric Chemistry Module for Earth System Models

    NASA Technical Reports Server (NTRS)

    Long, M. S.; Yantosca, R.; Nielsen, J. E; Keller, C. A.; Da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2015-01-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOSChem scientific code, permitting the exact same GEOSChem code to be used as an ESM module or as a standalone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS- 5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.

  3. Effect of MERRA-2 initial and boundary conditions on WRF-Chem aerosol simulations over the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Ukhov, Alexander; Stenchikov, Georgiy

    2017-04-01

    In this study, we test the sensitivity of the horizontal and vertical distributions of aerosols to the initial and boundary conditions (IC&BC) of the aerosol/chemistry. We use the WRF-Chem model configured over the Arabian Peninsula to study both dust and anthropogenic aerosols. Currently, in the WRF-Chem the aerosol/chemistry IC&BC are constructed using either default aerosol/chemistry profiles with no inflow of aerosols and chemicals through the lateral boundaries or using the aerosol/chemistry fields from MOZART, the model for ozone and related chemical tracers from the NCAR. Here, we construct aerosol/chemistry IC&BC using MERRA-2 output. MERRA-2 is a recently developed reanalysis that assimilates ground-based and satellite observations to provide the improved distributions of aerosols and chemical species. We ran WRF-Chem simulations for July-August 2015 using GOCART/AFWA dust emission and GOCART aerosol schemes. We used the EDGAR HTAP V4 dataset to calculate SO2 emissions. Comparison of three runs initiated using the same ERA-Interim reanalysis fields but different aerosol/chemistry IC&BC (default WRF-Chem, MOZART, and MERRA-2) with AERONET, Micropulse Lidar, Balloon, and satellite observations shows that the MERRA-2 IC&BC are superior.

  4. Introduction to the Spring 2014 ConfChem on the Flipped Classroom

    ERIC Educational Resources Information Center

    Luker, Chris; Muzyka, Jennifer; Belford, Robert

    2015-01-01

    Students' active engagement is one of the most critical challenges to any successful learning environment. The blending of active engagement along with rich, meaningful content is necessary for chemical educators to re-examine the purpose of the chemistry classroom. The Spring 2014 ConfChem conference, Flipped Classroom, was held from May 9 to…

  5. Stratospheric ozone - Impact of human activity

    NASA Technical Reports Server (NTRS)

    Mcelroy, Michael B.; Salawitch, Ross J.

    1989-01-01

    The current knowledge of the chemistry of the stratosphere is reviewed, with particular consideration given to the measurements from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment and from the Airborne Antarctic Ozone Experiment. Analysis of the ATMOS data at 30 deg N suggests that the current understanding of the contemporary-stratosphere chemistry at mid-latitudes is relatively complete, except for possible problems with the diurnal variations of N2O5 at low altitudes, and with ClNO3 at higher altitudes. Except for some difficulties with these two compounds, the data from ATMOS agree well with the gas phase models for nitrogen and chlorine species at 30 deg N in spring. It is emphasized that, in addition to the HOCl mechanism proposed by Solomon et al. (1986), the ClO-BrO scheme proposed by McElroy et al. (1986), and the ClO dimer mechanism introduced by Molina and Molina (1987), other processes exist that are responsible for ozone removal.

  6. Water Accommodation on Bare and Coated Ice

    NASA Astrophysics Data System (ADS)

    Kong, Xiangrui

    2015-04-01

    The Nordic Centre of Excellence CRAICC. Reference: X.R. Kong, P. Papagiannakopoulos, E.S. Thomson, J.B.C. Pettersson, Water Accommodation and Desorption Kinetics on Ice, J. Phys. Chem. A, 118 (2014) 3973-3979. E.S. Thomson, X. Kong, N. Markovic, P. Papagiannakopoulos, J.B.C. Pettersson, Collision dynamics and uptake of water on alcohol-covered ice, Atmos. Chem. Phys. 13 (2013) 2223-2233. P. Papagiannakopoulos, X.R. Kong, E.S. Thomson, J.B.C. Pettersson, Water Interactions with Acetic Acid Layers on Ice and Graphite, J. Phys. Chem. B, (2014) doi: 10.1021/jp503552w.

  7. ChemBrowser: a flexible framework for mining chemical documents.

    PubMed

    Wu, Xian; Zhang, Li; Chen, Ying; Rhodes, James; Griffin, Thomas D; Boyer, Stephen K; Alba, Alfredo; Cai, Keke

    2010-01-01

    The ability to extract chemical and biological entities and relations from text documents automatically has great value to biochemical research and development activities. The growing maturity of text mining and artificial intelligence technologies shows promise in enabling such automatic chemical entity extraction capabilities (called "Chemical Annotation" in this paper). Many techniques have been reported in the literature, ranging from dictionary and rule-based techniques to machine learning approaches. In practice, we found that no single technique works well in all cases. A combinatorial approach that allows one to quickly compose different annotation techniques together for a given situation is most effective. In this paper, we describe the key challenges we face in real-world chemical annotation scenarios. We then present a solution called ChemBrowser which has a flexible framework for chemical annotation. ChemBrowser includes a suite of customizable processing units that might be utilized in a chemical annotator, a high-level language that describes the composition of various processing units that would form a chemical annotator, and an execution engine that translates the composition language to an actual annotator that can generate annotation results for a given set of documents. We demonstrate the impact of this approach by tailoring an annotator for extracting chemical names from patent documents and show how this annotator can be easily modified with simple configuration alone.

  8. Chemo-stratigraphy in the Murray Formation Using ChemCam

    NASA Astrophysics Data System (ADS)

    Blaney, D. L.; Anderson, R. B.; Bridges, N.; Bridges, J.; Calef, F. J., III; Clegg, S. M.; Le Deit, L.; Fisk, M. R.; Forni, O.; Gasnault, O.; Kah, L. C.; Kronyak, R. E.; Lanza, N.; Lasue, J.; Mangold, N.; Maurice, S.; Milliken, R.; Ming, D. W.; Nachon, M.; Newsom, H. E.; Rapin, W.; Stack, K.; Sumner, D. Y.; Wiens, R. C.

    2015-12-01

    Curiosity has completed a detailed chemo-stratigraphy analysis at the Pahrump exposure of the Murray formation. In total >570 chemical measurements and supporting remote micro images to classify texturally were collected. Chemical trends with both stratigraphic position and with texture were evaluated. From these data emerges a complex aqueous history where sediments have interacted with fluids with variable chemistry in distinct episodes. The ChemCam data collected at the nearby "Garden City" (GC) vein complex provides constraints on the chemical evolution of the Pahrump. GC is thought be stratigraphically above the Pahrump outcrop. Fluids producing the veins likely also migrated through the Pahrump sediments. Multiple episodes of fluids are evident at GC, forming distinct Ca sulfate, F-rich, enhanced MgO, and FeO-rich veins. These different fluid chemistries could be the result of distinct fluids migrating through the section from a distance with a pre-established chemical signature, fluids locally evolved from water rock interactions, or both. Texturally rocks have been classified into two distinct categories: fine grained or as cross-bedded sandstones. The sandstones have significantly lower SiO2, Al2O3, and K2O and higher FeO, and CaO. Fine grained rocks have further been sub-classified as resistant and recessive with other textural features such as laminations and pits noted.The strongest chemical trend in the fine-grained sandstones shows enhancements in MgO and FeO in erosion-resistant materials compared to fine grained recessive units, suggesting that increased abundance of Mg- and/or iron-rich cements may provide additional strength. The MgO and FeO variations with texture are independent of stratigraphic locations (e.g resistant material at both the bottom and top of the outcrop both are enhanced in MgO and FeO). The presence of the GC MgO and FeO rich veins provides additional evidence for fluids rich in these elements were present in the outcrop. Other

  9. PubChem BioAssay: A Decade's Development toward Open High-Throughput Screening Data Sharing.

    PubMed

    Wang, Yanli; Cheng, Tiejun; Bryant, Stephen H

    2017-07-01

    High-throughput screening (HTS) is now routinely conducted for drug discovery by both pharmaceutical companies and screening centers at academic institutions and universities. Rapid advance in assay development, robot automation, and computer technology has led to the generation of terabytes of data in screening laboratories. Despite the technology development toward HTS productivity, fewer efforts were devoted to HTS data integration and sharing. As a result, the huge amount of HTS data was rarely made available to the public. To fill this gap, the PubChem BioAssay database ( https://www.ncbi.nlm.nih.gov/pcassay/ ) was set up in 2004 to provide open access to the screening results tested on chemicals and RNAi reagents. With more than 10 years' development and contributions from the community, PubChem has now become the largest public repository for chemical structures and biological data, which provides an information platform to worldwide researchers supporting drug development, medicinal chemistry study, and chemical biology research. This work presents a review of the HTS data content in the PubChem BioAssay database and the progress of data deposition to stimulate knowledge discovery and data sharing. It also provides a description of the database's data standard and basic utilities facilitating information access and use for new users.

  10. Study on the ice nucleation activity of fungal spores (Ascomycota and Basidiomycota)

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Grothe, H.

    2012-04-01

    Biogenic ice nucleation (IN) in the atmosphere is a topic of growing interest, as, according to IPCC, the impact of IN on global climate is crucial to perform reliable climate model calculations. About 20 years ago IN activity of a few lichen and Fusarium species [1,2] was reported, while all other investigated fungi were IN-negative. However, as the fungal kingdom is vast, many abundant species, especially the Basidiomycota (most mushrooms), were not tested before. Furthermore, the focus of the past studies was on the IN activity of the mycelium as a cryoprotective mechanism, and not on the airborne spores. We carried out oil immersion measurements [3] with spores from 17 different fungal species of ecological, economical or sanitary importance. Most of these species have not been investigated before, like exponents of Aspergillus, Trichoderma and Agaricales (most mushrooms). Apart from F. avenaceum, spores of all measured species showed moderate or no IN activity, supporting the hypothesis that significant IN activity is a rather exclusive property of only a few species within the fungal kingdom. [1] Kieft TL and Ruscetti T: J. Bacteriol. 172, 3519-3523, 1990. [2] Pouleur S et al.: Appl. Environ. Microbiol., 58, 2960-2964, 1992. [3] Marcolli C et al.: Atmos. Chem. Phys. 7, 5081-5091, 2007.

  11. ChemCam results from the Shaler Outcrop in Gale Crater, Mars

    USGS Publications Warehouse

    Anderson, Ryan Bradley; Edgar, L.; Bridges, J.C.; Williams, A.; Williams, J.; Ollila, A.; Forni, O.; Mangold, N.; Lanza, N.; Sautter, V.; Gupta, S.; Blaney, D.; Clark, B.; Clegg, G.; Dromart, G.; Gasnault, O.; Lasue, J.; Le Mouélic, S.; Léveillé, Richard; Lewin, E.; Lewis, K.; Maurice, S.; Nachon, Marion; Newsom, H.; Vaniman, D.; Wiens, R.C.

    2014-01-01

    The "Shaler" outcrop in Gale crater is approximately 0.7 m thick and >20 m long, and exhibits multiple well-exposed platy and cross-stratified facies [1] interpreted to be primarily fluvial sandstone deposits. The outcrop is a part of the upper Glenelg member in the Yellowknife Bay (YKB) stratigraphic section [2]. Curiosity first encountered the "Shaler" outcrop on sol 121 of the mission, and returned to the outcrop on sols 309- 324. The rugged nature of the outcrop and short time available for analysis limited opportunities for contact science, but ChemCam’s ability to remotely collect compositional and textural observations resulted in a large data set from Shaler. ChemCam conducted analyses of 29 non-soil targets at Shaler, 26 of which used laser-induced breakdown spectroscopy (LIBS) for a total of 9,180 spectra. Three observations used only the remote micro-imager (RMI). Each of the 26 LIBS targets were analyzed at between 5 and 25 points, providing a measure of the target homogeneity and in some cases transecting fine strata. 

  12. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    NASA Astrophysics Data System (ADS)

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.; Bender, Steve; Lemmon, Mark; Wiens, Roger C.; Maurice, Sylvestre; Gasnault, Olivier; Lasue, Jeremie; Meslin, Pierre-Yves; Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku; Martínez, Germán M.; DeFlores, Lauren; Blaney, Diana; Johnson, Jeffrey R.; Bell, James F.

    2018-06-01

    We derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 Ls = 291° (March 30, 2013) to Mars Year 33 Ls= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model, using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO2 absorptions and the known CO2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large scale circulations and thus

  13. A statistical downscaling approach for roadside NO2 concentrations: Application to a WRF-Chem study for Berlin

    NASA Astrophysics Data System (ADS)

    Kuik, Friderike; Lauer, Axel; von Schneidemesser, Erika; Butler, Tim

    2017-04-01

    Many European cities continue to struggle with meeting the European air quality limits for NO2. In Berlin, Germany, most of the exceedances in NO2 recorded at monitoring sites near busy roads can be largely attributed to emissions from traffic. In order to assess the impact of changes in traffic emissions on air quality at policy relevant scales, we combine the regional atmosphere-chemistry transport model WRF-Chem at a resolution of 1kmx1km with a statistical downscaling approach. Here, we build on the recently published study evaluating the performance of a WRF-Chem setup in representing observed urban background NO2 concentrations from Kuik et al. (2016) and extend this setup by developing and testing an approach to statistically downscale simulated urban background NO2 concentrations to street level. The approach uses a multilinear regression model to relate roadside NO2 concentrations observed with the municipal monitoring network with observed NO2 concentrations at urban background sites and observed traffic counts. For this, the urban background NO2 concentrations are decomposed into a long term, a synoptic and a diurnal component using the Kolmogorov-Zurbenko filtering method. We estimate the coefficients of the regression model for five different roadside stations in Berlin representing different street types. In a next step we combine the coefficients with simulated urban background concentrations and observed traffic counts, in order to estimate roadside NO2 concentrations based on the results obtained with WRF-Chem at the five selected stations. In a third step, we extrapolate the NO2 concentrations to all major roads in Berlin. The latter is based on available data for Berlin of daily mean traffic counts, diurnal and weekly cycles of traffic as well as simulated urban background NO2 concentrations. We evaluate the NO2 concentrations estimated with this method at street level for Berlin with additional observational data from stationary measurements and

  14. Chemical composition of atmospheric aerosols resolved via positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Äijälä, Mikko; Junninen, Heikki; Heikkinen, Liine; Petäjä, Tuukka; Kulmala, Markku; Worsnop, Douglas; Ehn, Mikael

    2017-04-01

    secondary aerosols via atmospheric physicochemical processes (e.g. condensation and evaporation of gases) and on the other hand the potential non-linear summation (Spracklen et al., 2011 2011) of anthropogenic and biogenic aerosol emissions. From the perspective of statistical analysis there is no definite reason why inorganics could not be included, as long as their uncertainties are estimated correctly and their influence is properly weighted in the factor model. For result validation, external, additional information available from most measurement sites, such as correlations with trace gas concentrations or size distribution derived, mode-specific mass loadings can be used instead of AMS inorganics. In recent analyses, nitrate compounds have already been added to PMF analyses and shown to interact with organic semi-volatile compounds (Hao et al., 2014). In this study we tested including all the default AMS chemical species, i.e. organics, sulfates, nitrates, ammonia and chlorides, in a PMF analysis, and present potential interpretations of the results with regard to aerosol sources and the chemical processes shaping the aerosol types. In addition to resolving organic-dominated aerosol classes, the results shed light on inorganic salt formation and may imply formation of organics salts. Canagaratna, M. et al. (2007). Mass Spectrom Rev., 26:185-222. Hao, L. et al. (2014). Atmos. Chem. Phys., 14, 13483-13495. Paatero, P. (1999). J Comput Graph Stat, 8: 854-888. Spracklen, D. et al (2011) Atmos. Chem. Phys., 11, 12109-12136.

  15. Evaluation of a regional assimilation system coupled with the WRF-chem model

    NASA Astrophysics Data System (ADS)

    Liu, Yan-an; Gao, Wei; Huang, Hung-lung; Strabala, Kathleen; Liu, Chaoshun; Shi, Runhe

    2013-09-01

    Air quality has become a social issue that is causing great concern to humankind across the globe, but particularly in developing countries. Even though the Weather Research and Forecasting with Chemistry (WRF-Chem) model has been applied in many regions, the resolution for inputting meteorology field analysis still impacts the accuracy of forecast. This article describes the application of the CIMSS Regional Assimilation System (CRAS) in East China, and its capability to assimilate the direct broadcast (DB) satellite data for obtaining more detailed meteorological information, including cloud top pressure (CTP) and total precipitation water (TPW) from MODIS. Performance evaluation of CRAS is based on qualitative and quantitative analyses. Compared with data collected from ERA-Interim, Radiosonde, and the Tropical Rainfall Measuring Mission (TRMM) precipitation measurements using bias and Root Mean Square Error (RMSE), CRAS has a systematic error due to the impact of topography and other factors; however, the forecast accuracy of all elements in the model center area is higher at various levels. The bias computed with Radiosonde reveals that the temperature and geopotential height of CRAS are better than ERA-Interim at first guess. Moreover, the location of the 24 h accumulated precipitation forecast are highly consistent with the TRMM retrieval precipitation, which means that the performance of CRAS is excellent. In summation, the newly built Vtable can realize the function of inputting the meteorology field from CRAS output into WRF, which couples the CRAS with WRF-Chem. Therefore, this study not only provides for forecast accuracy of CRAS, but also increases the capability of running the WRF-Chem model at higher resolutions in the future.

  16. Microphysical Properties of Single Secondary Organic Aerosol (SOA) Particles

    NASA Astrophysics Data System (ADS)

    Rovelli, Grazia; Song, Young-Chul; Pereira, Kelly; Hamilton, Jacqueline; Topping, David; Reid, Jonathan

    2017-04-01

    water or SVOCs evaporative loss was measured as a function of water activity by fitting the collected light scattering patterns with a generated Mie-Theory library of phase functions.[3] Long trapping experiments (up to >20000 s) allow the observation of slow SVOCs evaporation kinetics at different T and RH conditions. Water condensation/evaporation kinetics experiments onto/from trapped SOA droplets following fast RH step changes (<0.5 s) were also performed in order to evaluate possible kinetics limitations to water diffusion in the condensed phase resulting from the formation of a viscous matrix. [1] Fuzzi et al., Atmos. Chem. Phys. 15, 8217-8299 (2015). [2] Rovelli et al., J. Phys. Chem. A 120, 4376-4388 (2016). [3] Cotterell et al., Phys. Chem. Chem. Phys. 17, 15843-15856 (2015).

  17. PubChem3D: Shape compatibility filtering using molecular shape quadrupoles

    PubMed Central

    2011-01-01

    Background PubChem provides a 3-D neighboring relationship, which involves finding the maximal shape overlap between two static compound 3-D conformations, a computationally intensive step. It is highly desirable to avoid this overlap computation, especially if it can be determined with certainty that a conformer pair cannot meet the criteria to be a 3-D neighbor. As such, PubChem employs a series of pre-filters, based on the concept of volume, to remove approximately 65% of all conformer neighbor pairs prior to shape overlap optimization. Given that molecular volume, a somewhat vague concept, is rather effective, it leads one to wonder: can the existing PubChem 3-D neighboring relationship, which consists of billions of shape similar conformer pairs from tens of millions of unique small molecules, be used to identify additional shape descriptor relationships? Or, put more specifically, can one place an upper bound on shape similarity using other "fuzzy" shape-like concepts like length, width, and height? Results Using a basis set of 4.18 billion 3-D neighbor pairs identified from single conformer per compound neighboring of 17.1 million molecules, shape descriptors were computed for all conformers. These steric shape descriptors included several forms of molecular volume and shape quadrupoles, which essentially embody the length, width, and height of a conformer. For a given 3-D neighbor conformer pair, the volume and each quadrupole component (Qx, Qy, and Qz) were binned and their frequency of occurrence was examined. Per molecular volume type, this effectively produced three different maps, one per quadrupole component (Qx, Qy, and Qz), of allowed values for the similarity metric, shape Tanimoto (ST) ≥ 0.8. The efficiency of these relationships (in terms of true positive, true negative, false positive and false negative) as a function of ST threshold was determined in a test run of 13.2 billion conformer pairs not previously considered by the 3-D neighbor set

  18. Modelling the urban air quality in Hamburg with the new city-scale chemistry transport model CityChem

    NASA Astrophysics Data System (ADS)

    Karl, Matthias; Ramacher, Martin; Aulinger, Armin; Matthias, Volker; Quante, Markus

    2017-04-01

    Air quality modelling plays an important role by providing guidelines for efficient air pollution abatement measures. Currently, most urban dispersion models treat air pollutants as passive tracer substances or use highly simplified chemistry when simulating air pollutant concentrations on the city-scale. The newly developed urban chemistry-transport model CityChem has the capability of modelling the photochemical transformation of multiple pollutants along with atmospheric diffusion to produce pollutant concentration fields for the entire city on a horizontal resolution of 100 m or even finer and a vertical resolution of 24 layers up to 4000 m height. CityChem is based on the Eulerian urban dispersion model EPISODE of the Norwegian Institute for Air Research (NILU). CityChem treats the complex photochemistry in cities using detailed EMEP chemistry on an Eulerian 3-D grid, while using simple photo-stationary equilibrium on a much higher resolution grid (receptor grid), i.e. close to industrial point sources and traffic sources. The CityChem model takes into account that long-range transport contributes to urban pollutant concentrations. This is done by using 3-D boundary concentrations for the city domain derived from chemistry-transport simulations with the regional air quality model CMAQ. For the study of the air quality in Hamburg, CityChem was set-up with a main grid of 30×30 grid cells of 1×1 km2 each and a receptor grid of 300×300 grid cells of 100×100 m2. The CityChem model was driven with meteorological data generated by the prognostic meteorology component of the Australian chemistry-transport model TAPM. Bottom-up inventories of emissions from traffic, industry, households were based on data of the municipality of Hamburg. Shipping emissions for the port of Hamburg were taken from the Clean North Sea Shipping project. Episodes with elevated ozone (O3) were of specific interest for this study, as these are associated with exceedances of the World

  19. In-situ single particle composition analysis of free tropospheric ice nuclei and ice residues in mixed-phase clouds during INUIT-JFJ 2013

    NASA Astrophysics Data System (ADS)

    Schmidt, Susan; Schneider, Johannes; Thomas, Klimach; Stephan, Mertes; Ludwig, Schenk; Udo, Kästner; Frank, Stratmann; Joachim, Curtius; Piotr, Kupiszewski; Ernest, Weingartner; Emanuel, Hammer; Paul, Vochezer; Martin, Schnaiter; Stephan, Borrmann

    2014-05-01

    measurement time. The main part of the chemical compounds of these IPR were also organic material mixed with metals or with mineral compounds. We also found a smaller part of particles which consisted of pure mineral components (about 48 %). Lead was also found in the IPR measured behind Ice-CVI (~14 %) as well as in the background aerosol (~0.04 %). Black carbon particles were only found in the background aerosol. Because of the topography of the JFJ, air masses can reach the station only from the northwestern or southeastern direction (Hammer et al., 2013). Back trajectory calculations show that during our measurements the air masses were dominated mainly by long-distance transport from North America over Great Britain and France. This may explain the lower abundance of mineral dust in the ice residues compared to the previous studies. Brands, M., Kamphus, M., Böttger, T., Schneider, J., Drewnick, F., Roth, A., Curtius, J., Voigt, C., Borbon, A., Beekmann, M., Bourdon, A., Perrin, T. and Borrmann, S. (2011) Aerosol Sci. Technol., 45, 46-64. Cozic, J., Mertes, S., Verheggen, B., Cziczo, D. J., Gallavardin, S. J., Walter, S., Baltensperger, U. and Weingartner, E. (2008) J. Geophys. Res.-Atmos., 113, D15209. Cziczo, D. J., Stetzer. O., Worringen, A., Ebert, M., Weinbruch, S., Kamphus, M., Gallavardin, S. J., Curtius, J., Borrmann, S., Froyd, K. D., Mertes, S., Möhler, O., Lohmann, U. (2009) Nature Geoscience, 2, 333-336 Hammer, E., Bukowiecki, N., Gysel, M., Jurányi, Z., Hoyle, C. R., Vogt, R., Baltensperger, U. and Weingartner, E. (2013) Atmos. Chem. Phys. Discuss., 13, 20419-20462 Kamphus, M., Ettner-Mahl, M., Klimach, T., Drewnick, F, Keller, L., Cziczo, D. J., Mertes, S., Borrmann, S. and Curtius1, J. (2010) Atmos. Chem. Phys., 10, 8077-8095. Kupiszewski, P., Weingartner, E., Färber, R., Gysel, M., Hammer, E., Fuchs, C., Baltensperger, U., Vochezer, P., Schnaiter, M., Linke, C., Toprak, E., Mertes, S., Schneider, J., Schmidt, S. (2013) European Aerosol Conference

  20. Guide for Teaching Chemistry-Physics Combined 1-2, 3-4 (PSSC - CHEMS).

    ERIC Educational Resources Information Center

    Millstone, H. George

    This guide is written for a combined physics-chemistry course taught over a two-year period. The subject matter contains the major ideas in Chemical Education Materials Study (CHEMS) Chemistry and Physical Science Study Committee (PSSC) Physics. The guide includes discussion of text references, laboratory experiments, films, testing and evaluation…

  1. Corrigendum to Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust published in Atmos. Chem. Phys., 14, 81–101, 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.

    2014-05-01

    In the paper “Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust” by J. Fan et al., wrong versions of Fig. 8 and Fig. 12 were published. Please find the correct figures below.

  2. Thermodynamic Modeling of Organic-Inorganic Aerosols with the Group-Contribution Model AIOMFAC

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, T.

    2009-04-01

    -liquid equilibria. References Fredenslund, A., Jones, R. L., and Prausnitz, J. M.: Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures, AIChE J., 21, 1086-1099, 1975. Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R., and Simoneit, B. R. T.: Quantification of Urban Organic Aerosols at a Molecular Level: Identification, Abundance and Seasonal Variation, Atmos. Environ., 27, 1309-1330, 1993. Zhang, Q. et al.: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13 801, 2007. Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, Atmos. Chem. Phys., 8, 4559-4593, 2008.

  3. NMR parameters in column 13 metal fluoride compounds (AlF₃, GaF₃, InF₃ and TlF) from first principle calculations.

    PubMed

    Sadoc, Aymeric; Biswal, Mamata; Body, Monique; Legein, Christophe; Boucher, Florent; Massiot, Dominique; Fayon, Franck

    2014-01-01

    The relationship between the experimental (19)F isotropic chemical shift and the (19)F isotropic shielding calculated using the gauge including projector augmented-wave (GIPAW) method with PBE functional is investigated in the case of GaF3, InF3, TlF and several AlF3 polymorphs. It is shown that the linear correlation between experimental and DFT-PBE calculated values previously established on alkali, alkaline earth and rare earth of column 3 basic fluorides (Sadoc et al., Phys. Chem. Chem. Phys. 13 (2011) 18539-18550) remains valid in the case of column 13 metal fluorides, indicating that it allows predicting (19)F solid state NMR spectra of a broad range of crystalline fluorides with a relatively good accuracy. For the isostructural α-AlF3, GaF3 and InF3 phases, PBE-DFT geometry optimization leads to noticeably overbended M-F-M bond angles and underestimated (27)Al, (71)Ga and (115)In calculated quadrupolar coupling constants. For the studied compounds, whose structures are built of corner shared MF6 octahedra, it is shown that the electric field gradient (EFG) tensor at the cationic sites is not related to distortions of the octahedral units, in contrast to what previously observed for isolated AlF6 octahedra in fluoroaluminates. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. ATMOS/ATLAS-3 Measurements of Stratospheric Chlorine and Reactive Nitrogen Partitioning Inside and Outside the November 1994 Antarctic Vortex

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Salawitch, R. J.; Michelsen, H. A.; Zander, R.; Newchurch, M. J.; Abbas, M. M.; Abrams, M. C.; Manney, G. L.; Chang, A. Y.; hide

    1996-01-01

    Partitioning between HCl and ClONO2 and among the main components of the reactive nitrogen family (NO, NO2, HNO3, ClONO2, N2O5, and HO2NO2) has been studied inside and outside the Antarctic stratospheric vortex based on ATMOS profiles measured at sunrise during the 3-12 November 1994 ATLAS-3 Shuttle mission. Elevated mixing ratios of HCl in the lower stratosphere with a peak of approximately 2.9 ppbv (10(exp -9) parts per volume) were measured inside the vortex near 500 K potential temperature (approximately 19 km). Maximum ClONO2 mixing ratios of approximately 1.2, approximately 1.4, and approximately 0.9 ppbv near 700 K (approximately 25 km) were measured inside, at the edge, and outside the vortex, respectively. Model calculations reproduce the higher levels of HCl and NO(x) (NO + NO2) inside the lower stratospheric vortex both driven by photochemical processes initiated by low O3. The high HCl at low O3 results from chemical production of HC1 via the reaction of enhanced Cl with CH4, limited production of ClONO2, and the descent of inorganic chlorine from higher altitudes.

  5. Ice Nuclei from Birch Trees

    NASA Astrophysics Data System (ADS)

    Felgitsch, Laura; Seifried, Teresa; Winkler, Philipp; Schmale, David, III; Grothe, Hinrich

    2017-04-01

    .H., Robinson, N.H., Frohlich-Nowoisky, J., Tobo, Y., Després, V.R., Garcia, E., Gochis, D.J., Harris, E., Müller-Germann, I., Ruzene, C., Schmer, B., Sinha, B., Day, D.A., Andreae, M.O., Jimenez, J.L., Gallagher, M., Kreidenweis, S.M., Bertram, A.K., and Pöschl, U.: High concentrations of biological aerosol particles and ice nuclei during and after rain, Atmos. Chem. Phys., 13, 1651-1664, 2013. Pummer, B.G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos. Chem. Phys., 12, 2541-2550, 2012.

  6. Process evaluation of sea salt aerosol concentrations at remote marine locations

    NASA Astrophysics Data System (ADS)

    Struthers, H.; Ekman, A. M.; Nilsson, E. D.

    2011-12-01

    are analysed to quantify the key sensitivities of the processes connecting the physical drivers of sea salt aerosol to the mass tendency. The analysis employs a semi-empirical model based on the time-tendency of the aerosol mass. This approach of focusing on the time-tendency of the sea salt aerosol concentration provides a framework for the process evaluation of sea salt aerosol concentrations in global models. The same analysis methodology can be applied to output from global models. A process of comparing the sensitivity parameters derived from observations and models will reveal model inadequacies and thus guide model improvements. Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann G. W., Rae, J. G. L, Woodward, S., Kulmala, M. (2010). Atmos. Chem. Phys., 10, 1701-1737 IPCC (2007). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S., D. Monahan, E. C., Spiel, D. E., Davidson, K. L. (1986) Oceanic Whitecaps ed. Monahan E. C. & MacNiochaill, D. Reidel, Norwell, Mass. Texor, C., et al. (2006) Atmos. Chem. Phys., 6, 1777-1813.

  7. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    DOE PAGES

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.; ...

    2017-11-03

    In this work, we derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 L s = 291° (March 30, 2013) to Mars Year 33 L s= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model,more » using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO 2 absorptions and the known CO 2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large

  8. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.

    In this work, we derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 L s = 291° (March 30, 2013) to Mars Year 33 L s= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model,more » using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO 2 absorptions and the known CO 2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large

  9. Impact of Stratospheric Ozone Distribution on Features of Tropospheric Circulation

    NASA Astrophysics Data System (ADS)

    Barodka, Siarhei; Krasouski, Aliaksandr; Mitskevich, Yaroslav; Shalamyansky, Arkady

    2016-04-01

    -troposphere interactions. [1] Shalamyansky A.M., Proceedings of Voeikov MGO, St. Petersburg, V. 568, pp. 173-194, 2013 [2] R.D. Hudson et al, J. Atmos. Sci., V. 60, pp. 1669-1677, 2003 [3] R.D. Hudson et al, Atmos. Chem. Phys., V. 6, pp. 5183-5191, 2006

  10. Stratospheric Ozone Distribution and Tropospheric General Circulation: Interconnections in the UTLS Region

    NASA Astrophysics Data System (ADS)

    Barodka, S.; Krasovsky, A.; Shalamyansky, A.

    2014-12-01

    mechanism is particularly important for the formation of blocking events. [1] A.M. Shalamyansky - Proceedings of Voeikov Main Geophysical Observatory, V. 568, pp. 173-194, 2013 (in Russian) [2] R.D. Hudson et al - J. Atmos. Sci., V. 60, pp. 1669-1677, 2003. [3] R.D. Hudson et al - Atmos. Chem. Phys., V. 6, pp. 5183-5191, 2006.

  11. Calibration of the MSL/ChemCam/LIBS Remote Sensing Composition Instrument

    NASA Technical Reports Server (NTRS)

    Wiens, R. C.; Maurice S.; Bender, S.; Barraclough, B. L.; Cousin, A.; Forni, O.; Ollila, A.; Newsom, H.; Vaniman, D.; Clegg, S.; hide

    2011-01-01

    The ChemCam instrument suite on board the 2011 Mars Science Laboratory (MSL) Rover, Curiosity, will provide remote-sensing composition information for rock and soil samples within seven meters of the rover using a laser-induced breakdown spectroscopy (LIBS) system, and will provide context imaging with a resolution of 0.10 mradians using the remote micro-imager (RMI) camera. The high resolution is needed to image the small analysis footprint of the LIBS system, at 0.2-0.6 mm diameter. This fine scale analytical capability will enable remote probing of stratigraphic layers or other small features the size of "blueberries" or smaller. ChemCam is intended for rapid survey analyses within 7 m of the rover, with each measurement taking less than 6 minutes. Repeated laser pulses remove dust coatings and provide depth profiles through weathering layers, allowing detailed investigation of rock varnish features as well as analysis of the underlying pristine rock composition. The LIBS technique uses brief laser pulses greater than 10 MW/square mm to ablate and electrically excite material from the sample of interest. The plasma emits photons with wavelengths characteristic of the elements present in the material, permitting detection and quantification of nearly all elements, including the light elements H, Li, Be, B, C, N, O. ChemCam LIBS projects 14 mJ of 1067 nm photons on target and covers a spectral range of 240-850 nm with resolutions between 0.15 and 0.60 nm FWHM. The Nd:KGW laser is passively cooled and is tuned to provide maximum power output from -10 to 0 C, though it can operate at 20% degraded energy output at room temperature. Preliminary calibrations were carried out on the flight model (FM) in 2008. However, the detectors were replaced in 2009, and final calibrations occurred in April-June, 2010. This presentation describes the LIBS calibration and characterization procedures and results, and details plans for final analyses during rover system thermal testing

  12. Modeling of the chemical composition of fine particulate matter: Development and performance assessment of EASYWRF-Chem

    NASA Astrophysics Data System (ADS)

    Mendez, M.; Lebègue, P.; Visez, N.; Fèvre-Nollet, V.; Crenn, V.; Riffault, V.; Petitprez, D.

    2016-03-01

    The European emission Adaptation SYstem for the WRF-Chem model (EASYWRF-Chem) has been developed to generate chemical information supporting the WRF-Chem requirements from any emission inventory based on the CORINAIR methodology. Using RADM2 and RACM2 mechanisms, "emission species" are converted into "model species" thanks to the SAPRC methodology for gas phase pollutant and the PM10 and PM2.5 fractions. Furthermore, by adapting US EPA PM2.5 profiles, the processing of aerosol chemical speciation profiles separates the unspeciated PM2.5 emission into five chemical families: sulfates, nitrates, elemental carbon, organic aerosol and unspeciated aerosol. The evaluation of the model has been performed by separately comparing model outcomes with (i) meteorological measurements; (ii) NO2, O3, PM10 and PM2.5 mass concentrations from the regional air quality monitoring network; (iii) hourly-resolved data from four field campaign measurements, in winter and in summer, on two sites in the French northern region. In the latter, a High Resolution - Time of Flight - Aerosol Mass Spectrometer (HR-ToF-AMS) provided non-refractory PM1 concentrations of sulfate, nitrate and ammonium ions as well as organic matter (OM), while an aethalometer provided black carbon (BC) concentrations in the PM2.5 fraction. Meteorological data (temperature, wind, relative humidity) are well simulated for all the time series data except for specific events as wind direction changes or rainfall. For particulate matter, results are presented by considering firstly the total mass concentration of PM2.5 and PM10. EASYWRF-Chem simulations overestimated the PM10 mass concentrations by + 22% and + 4% for summer and winter periods respectively, whereas for the finer PM2.5 fraction, mass concentrations were overestimated by + 20% in summer and underestimated by - 13% in winter. Simulated sulfate concentrations were underestimated and nitrate concentrations were overestimated but hourly variations were well

  13. Nanoplatforms for Detection, Remediation and Protection Against Chem-Bio Warfare

    NASA Astrophysics Data System (ADS)

    Denkbaş, E. B.; Bayram, C.; Kavaz, D.; Çirak, T.; Demirbilek, M.

    Chemical and biological substances have been used as warfare agents by terrorists by varying degree of sophistication. It is critical that these agents be detected in real-time with high level of sensitively, specificity, and accuracy. Many different types of techniques and systems have been developed to detect these agents. But there are some limitations in these conventional techniques and systems. Limitations include the collection, handling and sampling procedures, detection limits, sample transfer, expensive equipment, personnel training, and detection materials. Due to the unique properties such as quantum effect, very high surface/volume ratio, enhanced surface reactivity, conductivity, electrical and magnetic properties of the nanomaterials offer great opportunity to develop very fast, sensitive, accurate and cost effective detection techniques and systems to detect chemical and biological (chem.-bio) warfare agents. Furthermore, surface modification of the materials is very easy and effective way to get functional or smart surfaces to be used as nano-biosensor platform. In that respect many different types of nanomaterials have been developed and used for the detection, remediation and protection, such as gold and silver nanoparticles, quantum dots, Nano chips and arrays, fluorescent polymeric and magnetic nanoparticles, fiber optic and cantilever based nanobiosensors, nanofibrillar nanostructures etc. This study summarizes preparation and characterization of nanotechnology based approaches for the detection of and remediation and protection against chem.-bio warfare agents.

  14. The ChemViz Project: Using a Supercomputer To Illustrate Abstract Concepts in Chemistry.

    ERIC Educational Resources Information Center

    Beckwith, E. Kenneth; Nelson, Christopher

    1998-01-01

    Describes the Chemistry Visualization (ChemViz) Project, a Web venture maintained by the University of Illinois National Center for Supercomputing Applications (NCSA) that enables high school students to use computational chemistry as a technique for understanding abstract concepts. Discusses the evolution of computational chemistry and provides a…

  15. Decadal application of WRF/Chem for regional air quality and climate modeling over the U.S. under the representative concentration pathways scenarios. Part 1: Model evaluation and impact of downscaling

    NASA Astrophysics Data System (ADS)

    Yahya, Khairunnisa; Wang, Kai; Campbell, Patrick; Chen, Ying; Glotfelty, Timothy; He, Jian; Pirhalla, Michael; Zhang, Yang

    2017-03-01

    An advanced online-coupled meteorology-chemistry model, i.e., the Weather Research and Forecasting Model with Chemistry (WRF/Chem), is applied for current (2001-2010) and future (2046-2055) decades under the representative concentration pathways (RCP) 4.5 and 8.5 scenarios to examine changes in future climate, air quality, and their interactions. In this Part I paper, a comprehensive model evaluation is carried out for current decade to assess the performance of WRF/Chem and WRF under both scenarios and the benefits of downscaling the North Carolina State University's (NCSU) version of the Community Earth System Model (CESM_NCSU) using WRF/Chem. The evaluation of WRF/Chem shows an overall good performance for most meteorological and chemical variables on a decadal scale. Temperature at 2-m is overpredicted by WRF (by ∼0.2-0.3 °C) but underpredicted by WRF/Chem (by ∼0.3-0.4 °C), due to higher radiation from WRF. Both WRF and WRF/Chem show large overpredictions for precipitation, indicating limitations in their microphysics or convective parameterizations. WRF/Chem with prognostic chemical concentrations, however, performs much better than WRF with prescribed chemical concentrations for radiation variables, illustrating the benefit of predicting gases and aerosols and representing their feedbacks into meteorology in WRF/Chem. WRF/Chem performs much better than CESM_NCSU for most surface meteorological variables and O3 hourly mixing ratios. In addition, WRF/Chem better captures observed temporal and spatial variations than CESM_NCSU. CESM_NCSU performance for radiation variables is comparable to or better than WRF/Chem performance because of the model tuning in CESM_NCSU that is routinely made in global models.

  16. Comparison of biomass burning inventories processed by GEOS-Chem and ACCESS2.0 with total column and satellite data in Australia.

    NASA Astrophysics Data System (ADS)

    Desservettaz, M.; Fisher, J. A.; Jones, N. B.; Bukosa, B.; Greenslade, J.; Luhar, A.; Woodhouse, M.; Griffith, D. W. T.; Velazco, V. A.

    2016-12-01

    Australia contributes approximately 6% of global biomass burning CO2 emissions, mostly from savanna type fires. This estimate comes from biomass burning inventories that use emission factors derived from field campaigns performed outside Australia. The relevance of these emission factors to the Australian environment has not previously been evaluated and therefore needs to be tested. Here we compare predictions from the chemical transport model GEOS-Chem and the global chemistry-climate model ACCESS-UKCA run using different biomass burning inventories to total column measurements of CO, C2H6 and HCHO, in order to identify the most representative inventory for Australian fire emissions. The measurements come from the Network for Detection of Atmospheric Composition Change (NDACC) and Total Carbon Column Observing Network (TCCON) solar remote sensing Fourier transform spectrometers and satellite measurements from IASI and OMI over Australia. We evaluate three inventories: the Global Fire Emission Database version 4 - GFED4 (Giglio et al. 2013), the Fire Inventory from NCAR - FINN (Wiedinmyer et al. 2011), the Quick Fire Emission Database - QFED from NASA and the MACCity emission inventory (from the MACC/CityZEN EU projects; Angiola et al. 2010). From this evaluation we aim to give recommendations for the most appropriate inventory to use for different Australian environments. We also plan to examine any significant concentration variations arising from the differences between the two model setups.

  17. Computation of Phase Equilibria, State Diagrams and Gas/Particle Partitioning of Mixed Organic-Inorganic Aerosols

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Peter, T.

    2009-04-01

    2: Consideration of phase separation effects by an XUNIFAC model, Atmos. Environ., 40, 6422-6436, 2006. Erdakos, G. B. and Pankow, J. F.: Gas/particle partitioning of neutral and ionizing compounds to single- and multi-phase aerosol particles. 2. Phase separation in liquid particulate matter containing both polar and low-polarity organic compounds, Atmos. Environ., 38, 1005-1013, 2004. Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, Atmos. Chem. Phys., 8, 4559-4593, 2008.

  18. Numerical simulation of convective generated gravity waves in the stratosphere and MLT regions.

    NASA Astrophysics Data System (ADS)

    Heale, C. J.; Snively, J. B.

    2017-12-01

    Convection is an important source of gravity wave generation, especially in the summer tropics and midlatitudes, and coherent wave fields above convection are now routinely measured in the stratosphere and mesosphere [e.g. Hoffmann et al., JGR, 118, 2013; Gong et al., JGR, 120, 2015; Perwitasari et al., GRL, 42, 22, 2016]. Numerical studies have been performed to investigate the generation mechanisms, source spectra, and their effects on the middle and upper atmosphere [e.g. Fovell et al., AMS, 49,16, 1992; Alexander and Holton, Atmos. Chem. Phys., 4 2004; Vincent et al., JGR, 1118, 2013], however there is still considerable work needed to fully describe these parameters. GCMs currently lack the resolution to explicitly simulate convection generation and rely on simplified parameterizations while full cloud resolving models are computationally expensive and often only extend into the stratosphere. More recent studies have improved the realism of these simulations by using radar derived precipitation rates to drive latent heating in models that simulate convection [Grimsdell et al., AMS, 67, 2010; Stephan and Alexander., J. Adv. Model. Earth. Syst, 7, 2015], however they too only consider wave propagation in the troposphere and stratosphere. We use a 2D nonlinear, fully compressible model [Snively and Pasko., JGR, 113, 2008] to excite convectively generated waves, based on NEXRAD radar data, using the Stephan and Alexander [2015] algorithms. We study the propagation, and spectral evolution of the generated waves up into the MLT region. Ambient atmosphere parameters are derived from observations and MERRA-2 reanalysis data, and stratospheric (AIRS) and mesospheric (Lidar, OH airglow) observations enable comparisons with simulation results.

  19. Acute toxicity and hazard assessment of Rodeo®, X-77 Spreader®, and Chem-Trol® to aquatic invertebrates

    USGS Publications Warehouse

    Henry, C. J.; Higgins, K. F.; Buhl, K.J.

    1994-01-01

    The herbicide Rodeo® provides waterfowl managers with an effective chemical tool for creating open water habitats in wetlands if its use does not adversely affect native invertebrate communities. The survival of caged Chironomus spp. (midge), Hyalella azteca (amphipod),Stagnicola elodes (pond snail), and Nephelopsis obscura (leech) was assessed in prairie pothole wetlands treated by air with a tank mixture of Rodeo®, the surfactant X-77 Spreader®, and the drift retardant Chem-Trol® at a rate recommended for controlling cattails. Laboratory studies were then conducted to determine the acute toxicities of Rodeo®, X-77 Spreader®, and Chem-Trol®, individually and in simulated tank mixtures, to the same invertebrates and to Daphnia magna in reconstituted water representative of these wetlands. There was no difference in the survival of caged invertebrates between treated and reference wetlands after 21 days. Based on nominal concentrations of the formulations, X-77 Spreader® (LC50s=2.0–14.1 mg/L) was about 83–136 times more toxic than Rodeo® (LC50s=218–1216 mg/L) to aquatic invertebrates. Chem-Trol® killed ≤10% of the animals at 10,000 mg/L and ≤50% of the animals at 28,000 mg/L. Daphnia magna were more sensitive than the other species to X-77 Spreader®, Rodeo®, and the simulated Rodeo® tank mixture (RTM). The joint toxic action of the RTM was additive for amphipods and midges, greater than additive for leeches, and was less than additive for daphnids. X-77 Spreader® was the major toxic component in the RTM. Binary mixtures of X-77 Spreader®, Rodeo®, and Chem-Trol® at tank mixture and equitoxic ratios also showed additive toxicity to amphipods. The use of Rodeo® (applied as a tank mixture with X-77 Spreader® and Chem-Trol®) as a management tool in wetlands does not pose an acute hazard to native aquatic invertebrates because the concentrations of Rodeo®, X-77 Spreader®, and Chem-Trol® found to be acutely toxic to these invertebrates were

  20. Meteorological air quality forecasting using the WRF-Chem model during the LMOS2017 field campaign

    NASA Astrophysics Data System (ADS)

    Stanier, C. O.; Abdioskouei, M.; Carmichael, G. R.; Christiansen, M.; Sobhani, N.

    2017-12-01

    The Lake Michigan Ozone Study (LMOS 2017) occurred during May and June 2017 to address the high ozone episodes in coastal communities surrounding Lake Michigan. Aircraft, ship, mobile lab, and ground-based stations were used in this campaign to build an extensive dataset regarding ozone, its precursors, and particulate matter. The University of Iowa produced high-resolution (4x4 km2 horizontal resolution and 53 vertical levels) forecast products using the WRF-Chem modeling system in support of experimental planning during LMOS 2017. The base forecast system used WRF-Chem 3.6.1 and updated National Emission Inventory (NEI-2011v2). In the updated NEI-2011v2, we reduced the NOx emissions by 28% based on EPA's estimated NOx trends from 2011 to 2017. We ran another daily forecast (perturbed forecast) with 50% reduced NOx emission to capture the sensitivity of ozone to NOx emission and account for the impact of weekend emissions on ozone values. Preliminary in-field evaluation of model performance for clouds, on-shore flows, and surface and aircraft sampled ozone and NOx concentrations found that the model successfully captured much of the observed synoptic variability of onshore flows. The model captured the variability of O3 well, but underpredicted peak ozone during high O3 episodes. In post-campaign WRF-Chem simulations, we investigated the sensitivity of the model to the hydrocarbon emission.

  1. Characterization of the ice nucleation activity of an airborne Penicillium species

    NASA Astrophysics Data System (ADS)

    Yordanova, Petya; Hill, Thomas C. J.; Pummer, Bernhard G.; Franc, Gary D.; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Microorganisms are ubiquitous both on and above the Earth. Several bacterial and fungal spe-cies are the focus of atmospheric studies due to their ability to trigger ice formation at high subzero temperatures. Thus, they have potential to modify cloud albedo, lifetime and precipita-tion, and ultimately the hydrological cycle. Several fungal strains have already been identified as possessing ice nucleation (IN) activity, and recent studies have shown that IN active fungi are present in the cultivable community of air and soil samples [1, 2]. However, the abundance, diversity, and sources of fungal ice nuclei in the atmosphere are still poorly characterized. In this study, fungal colonies obtained from air samples were screened for IN activity in the droplet-freezing assay described in Fröhlich-Nowoisky et al., 2015 [2]. Out of 128 tested iso-lates, two were found to catalyze ice formation at temperatures up to -4°C. By DNA analysis, both isolates were classified as Penicillium spp. The freezing activity of both was further char-acterized after different filtration, heat, and enzymatic treatments in the temperature range from -4°C to -15°C. Preliminary results show that a proteinaceous compound is responsible for the IN activity. Furthermore, ongoing experiments indicate that the activity is associated only with the hyphae. [1] Huffman, et al. (2013): Atmos. Chem. Phys., 13, 6151-6164. [2] Fröhlich-Nowoisky et al. (2015): Biogeosciences, 12: 1057-1071.

  2. ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey R.; Bell, J. F.; Bender, S.; Blaney, D.; Cloutis, E.; DeFlores, L.; Ehlmann, B.; Gasnault, O.; Gondet, B.; Kinch, K.; Lemmon, M.; Le Mouélic, S.; Maurice, S.; Rice, M.; Wiens, R. C.

    2015-03-01

    The spectrometers on the Mars Science Laboratory (MSL) ChemCam instrument were used in passive mode to record visible/near-infrared (400-840 nm) radiance from the martian surface. Using the onboard ChemCam calibration targets' housing as a reflectance standard, we developed methods to collect, calibrate, and reduce radiance observations to relative reflectance. Such measurements accurately reproduce the known reflectance spectra of other calibration targets on the rover, and represent the highest spatial resolution (0.65 mrad) and spectral sampling (<1 nm) visible/near-infrared reflectance spectra from a landed platform on Mars. Relative reflectance spectra of surface rocks and soils match those from orbital observations and multispectral data from the MSL Mastcam camera. Preliminary analyses of the band depths, spectral slopes, and reflectance ratios of the more than 2000 spectra taken during the first year of MSL operations demonstrate at least six spectral classes of materials distinguished by variations in ferrous and ferric components. Initial comparisons of ChemCam spectra to laboratory spectra of minerals and Mars analog materials demonstrate similarities with palagonitic soils and indications of orthopyroxene in some dark rocks. Magnesium-rich "raised ridges" tend to exhibit distinct near-infrared slopes. The ferric absorption downturn typically found for martian materials at <600 nm is greatly subdued in brushed rocks and drill tailings, consistent with their more ferrous nature. Calcium-sulfate veins exhibit the highest relative reflectances observed, but are still relatively red owing to the effects of residual dust. Such dust is overall less prominent on rocks sampled within the "blast zone" immediately surrounding the landing site. These samples were likely affected by the landing thrusters, which partially removed the ubiquitous dust coatings. Increased dust coatings on the calibration targets during the first year of the mission were documented by

  3. ChemCam for Mars Science Laboratory rover, undergoing pre-flight testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-10-20

    Los Alamos National Laboratory and partners developed a laser instrument, ChemCam, that will ride on the elevated mast of the Mars Science Laboratory rover Curiosity. The system allows Curiosity to "zap" rocks from a distance, reading their chemical composition through spectroscopic analysis. In this video, laboratory shaker-table testing of the instrument ensures that all of its components are solidly attached and resistant to damage from the rigors of launch, travel and landing.

  4. ChemCam for Mars Science Laboratory rover, undergoing pre-flight testing

    ScienceCinema

    None

    2018-06-06

    Los Alamos National Laboratory and partners developed a laser instrument, ChemCam, that will ride on the elevated mast of the Mars Science Laboratory rover Curiosity. The system allows Curiosity to "zap" rocks from a distance, reading their chemical composition through spectroscopic analysis. In this video, laboratory shaker-table testing of the instrument ensures that all of its components are solidly attached and resistant to damage from the rigors of launch, travel and landing.

  5. Impact of improved soil climatology and intialization on WRF-chem dust simulations over West Asia

    NASA Astrophysics Data System (ADS)

    Omid Nabavi, Seyed; Haimberger, Leopold; Samimi, Cyrus

    2016-04-01

    Meteorological forecast models such as WRF-chem are designed to forecast not only standard atmospheric parameters but also aerosol, particularly mineral dust concentrations. It has therefore become an important tool for the prediction of dust storms in West Asia where dust storms have the considerable impact on living conditions. However, verification of forecasts against satellite data indicates only moderate skill in prediction of such events. Earlier studies have already indicated that the erosion factor, land use classification, soil moisture, and temperature initializations play a critical role in the accuracy of WRF-chem dust simulations. In the standard setting the erosion factor and land use classification are based on topographic variations and post-processed images of the advanced very high-resolution radiometer (AVHRR) during the period April 1992-March 1993. Furthermore, WRF-chem is normally initialized by the soil moisture and temperature of Final Analysis (FNL) model on 1.0x1.0 degree grids. In this study, we have changed boundary initial conditions so that they better represent current changing environmental conditions. To do so, land use (only bare soil class) and the erosion factor were both modified using information from MODIS deep blue AOD (Aerosol Optical Depth). In this method, bare soils are where the relative frequency of dust occurrence (deep blue AOD > 0.5) is more than one-third of a given month. Subsequently, the erosion factor, limited within the bare soil class, is determined by the monthly frequency of dust occurrence ranging from 0.3 to 1. It is worth to mention, that 50 percent of calculated erosion factor is afterward assigned to sand class while silt and clay classes each gain 25 percent of it. Soil moisture and temperature from the Global Land Data Assimilation System (GLDAS) were utilized to provide these initializations in higher resolution of 0.25 degree than in the standard setting. Modified and control simulations were

  6. NutriChem: a systems chemical biology resource to explore the medicinal value of plant-based foods.

    PubMed

    Jensen, Kasper; Panagiotou, Gianni; Kouskoumvekaki, Irene

    2015-01-01

    There is rising evidence of an inverse association between chronic diseases and diets characterized by rich fruit and vegetable consumption. Dietary components may act directly or indirectly on the human genome and modulate multiple processes involved in disease risk and disease progression. However, there is currently no exhaustive resource on the health benefits associated to specific dietary interventions, or a resource covering the broad molecular content of food. Here we present the first release of NutriChem, available at http://cbs.dtu.dk/services/NutriChem-1.0, a database generated by text mining of 21 million MEDLINE abstracts for information that links plant-based foods with their small molecule components and human disease phenotypes. NutriChem contains text-mined data for 18478 pairs of 1772 plant-based foods and 7898 phytochemicals, and 6242 pairs of 1066 plant-based foods and 751 diseases. In addition, it includes predicted associations for 548 phytochemicals and 252 diseases. To the best of our knowledge this database is the only resource linking the chemical space of plant-based foods with human disease phenotypes and provides a foundation for understanding mechanistically the consequences of eating behaviors on health. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Air quality modeling for the urban Jackson, Mississippi Region using a high resolution WRF/Chem model.

    PubMed

    Yerramilli, Anjaneyulu; Dodla, Venkata B; Desamsetti, Srinivas; Challa, Srinivas V; Young, John H; Patrick, Chuck; Baham, Julius M; Hughes, Robert L; Yerramilli, Sudha; Tuluri, Francis; Hardy, Mark G; Swanier, Shelton J

    2011-06-01

    In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi) region using an online WRF/Chem (Weather Research and Forecasting-Chemistry) model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators.

  8. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saide, Pablo; Spak, S. N.; Carmichael, Gregory

    2012-03-30

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign averaged longitudinal gradients, and highlight differences in model simulations with (W) and without wet (NW) deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptualmore » model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, including the reliability required for policy analysis and geo-engineering applications.« less

  9. A novel Tikhonov-based approach for harmonized high-accuracy retrieval of methane columns and profiles from NDACC FTIR network measurements. Application to global validation of ENVISAT/SCIAMACHY biases

    NASA Astrophysics Data System (ADS)

    Sussmann, R.; Forster, F.; Borsdorff, T.; Buchwitz, M.; Duchatelet, P.; Frankenberg, C.; Hase, F.; Jones, N.; Petersen, K.; Taylor, J.

    2009-04-01

    retrieved from satellite - Part 2: Methane, Atmos. Chem. Phys. Discuss., 8, 8273-8326, 2008. Sussmann, R. Stremme, W., Buchwitz, M., and de Beek, R.: Validation of ENVISAT/SCIAMACHY columnar methane by solar FTIR spectrometry at the Ground-Truthing Station Zugspitze, Atmos. Chem. Phys., 5, 2419-2429, 2005. Sussmann, R. and Borsdorff, T.: Technical note: Interference errors in infrared remote sounding of the atmosphere, Atmos. Chem. Phys., 7, 3537-3557, 2007.

  10. EOS CHEM: A Mission to Study Ozone and Climate

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark

    1998-01-01

    The Earth's stratosphere contains the ozone layer, which shields us from the Sun@ harmful ultraviolet (UV) radiation. Ozone is destroyed through chemical reactions involving natural and man-made nitrogen, hydrogen, bromine, and chlorine compounds. The release of chlorofluoro-carbons CFCs) has caused a dramatic decrease in the protective stratospheric ozone layer during the last two decades. Detection of stratospheric ozone depletion led to regulation and phase-out of CFC production worldwide. As a result, man-made chlorine levels in the atmosphere are slowly beginning to decrease. CHEM will be able to determine whether the stratospheric ozone layer is now recovering, as predicted by scientific models.

  11. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, L. K.; Shrivastava, M.; Easter, R. C.

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convectivemore » cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it

  12. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    DOE PAGES

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; ...

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convectivemore » cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it

  13. Inclusion of biomass burning in WRF-Chem: Impact of wildfires on weather forecasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grell, G. A.; Freitas, Saulo; Stuefer, Martin

    2011-06-06

    A plume rise algorithm for wildfires was included in WRF-Chem, and applied to look at the impact of intense wildfires during the 2004 Alaska wildfire season on weather forecasts using model resolutions of 10km and 2km. Biomass burning emissions were estimated using a biomass burning emissions model. In addition, a 1-D, time-dependent cloud model was used online in WRF-Chem to estimate injection heights as well as the final emission rates. It was shown that with the inclusion of the intense wildfires of the 2004 fire season in the model simulations, the interaction of the aerosols with the atmospheric radiation ledmore » to significant modifications of vertical profiles of temperature and moisture in cloud-free areas. On the other hand, when clouds were present, the high concentrations of fine aerosol (PM2.5) and the resulting large numbers of Cloud Condensation Nuclei (CCN) had a strong impact on clouds and microphysics, with decreased precipitation coverage and precipitation amounts during the first 12 hours of the integration, but significantly stronger storms during the afternoon hours.« less

  14. iNR-PhysChem: A Sequence-Based Predictor for Identifying Nuclear Receptors and Their Subfamilies via Physical-Chemical Property Matrix

    PubMed Central

    Xiao, Xuan; Wang, Pu; Chou, Kuo-Chen

    2012-01-01

    Nuclear receptors (NRs) form a family of ligand-activated transcription factors that regulate a wide variety of biological processes, such as homeostasis, reproduction, development, and metabolism. Human genome contains 48 genes encoding NRs. These receptors have become one of the most important targets for therapeutic drug development. According to their different action mechanisms or functions, NRs have been classified into seven subfamilies. With the avalanche of protein sequences generated in the postgenomic age, we are facing the following challenging problems. Given an uncharacterized protein sequence, how can we identify whether it is a nuclear receptor? If it is, what subfamily it belongs to? To address these problems, we developed a predictor called iNR-PhysChem in which the protein samples were expressed by a novel mode of pseudo amino acid composition (PseAAC) whose components were derived from a physical-chemical matrix via a series of auto-covariance and cross-covariance transformations. It was observed that the overall success rate achieved by iNR-PhysChem was over 98% in identifying NRs or non-NRs, and over 92% in identifying NRs among the following seven subfamilies: NR1thyroid hormone like, NR2HNF4-like, NR3estrogen like, NR4nerve growth factor IB-like, NR5fushi tarazu-F1 like, NR6germ cell nuclear factor like, and NR0knirps like. These rates were derived by the jackknife tests on a stringent benchmark dataset in which none of protein sequences included has pairwise sequence identity to any other in a same subset. As a user-friendly web-server, iNR-PhysChem is freely accessible to the public at either http://www.jci-bioinfo.cn/iNR-PhysChem or http://icpr.jci.edu.cn/bioinfo/iNR-PhysChem. Also a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematics involved in developing the predictor. It is anticipated that iNR-PhysChem may become a useful high throughput tool

  15. How much does sea spray aerosol organic matter impact clouds and radiation? Sensitivity studies in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Burrows, S. M.; Liu, X.; Elliott, S.; Easter, R. C.; Singh, B.; Rasch, P. J.

    2015-12-01

    Submicron marine aerosol particles are frequently observed to contain substantial fractions of organic material, hypothesized to enter the atmosphere as part of the primary sea spray aerosol formed through bubble bursting. This organic matter in sea spray aerosol may affect cloud condensation nuclei and ice nuclei concentrations in the atmosphere, particularly in remote marine regions. Members of our team have developed a new, mechanistic representation of the enrichment of sea spray aerosol with organic matter, the OCEANFILMS parameterization (Burrows et al., 2014). This new representation uses fields from an ocean biogeochemistry model to predict properties of the emitted aerosol. We have recently implemented the OCEANFILMS representation of sea spray aerosol composition into the Community Atmosphere Model (CAM), and performed sensitivity experiments and comparisons with alternate formulations. Early results from these sensitivity simulations will be shown, including impacts on aerosols, clouds, and radiation. References: Burrows, S. M., Ogunro, O., Frossard, A. A., Russell, L. M., Rasch, P. J., and Elliott, S. M.: A physically based framework for modeling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria, Atmos. Chem. Phys., 14, 13601-13629, doi:10.5194/acp-14-13601-2014, 2014.

  16. Vapor pressures of a homologous series of polyethylene glycols as a reference data set for validating vapor pressure measurement techniques.

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich; Marcolli, Claudia; Siegrist, Franziska

    2015-04-01

    The production of secondary organic aerosol (SOA) by gas-to-particle partitioning is generally represented by an equilibrium partitioning model. A key physical parameter which governs gas-particle partitioning is the pure component vapor pressure, which is difficult to measure for low- and semivolatile compounds. For typical atmospheric compounds like e.g. citric acid or tartaric acid, vapor pressures have been reported in the literature which differ by up to six orders of magnitude [Huisman et al., 2013]. Here, we report vapor pressures of a homologous series of polyethylene glycols (triethylene glycol to octaethylene glycol) determined by measuring the evaporation rate of single, levitated aerosol particles in an electrodynamic balance. We propose to use those as a reference data set for validating different vapor pressure measurement techniques. With each addition of a (O-CH2-CH2)-group the vapor pressure is lowered by about one order of magnitude which makes it easy to detect the lower limit of vapor pressures accessible with a particular technique down to a pressure of 10-8 Pa at room temperature. Reference: Huisman, A. J., Krieger, U. K., Zuend, A., Marcolli, C., and Peter, T., Atmos. Chem. Phys., 13, 6647-6662, 2013.

  17. ConfChem Conference on Flipped Classroom: Using a Blog to Flip a Classroom

    ERIC Educational Resources Information Center

    Haile, January D.

    2015-01-01

    This communication summarizes one of the invited papers to the Flipped Classroom ACS Division of Chemical Education Committee on Computers in Chemical Education online ConfChem held from May 18 to June 24, 2014. Just in Time Teaching is a technique in which students read the material before class and respond to a few questions. In a first-year…

  18. Wave-Mean Flow Interaction in the Storm-Time Thermosphere Using a Two-Dimensional Model

    DTIC Science & Technology

    1990-01-01

    Hunsucker, 1982; Richmond, 1978, 1979a; Rees et. al., 1984; Roble et. al., 1978; Testud , 1970). 3) A global meridional circulation driven by the...theory of oscillatory waves. Trans. Cambridge Phil. Snc., 8, 441-455. Testud , J., 1970: Gra.ity waves generated during magnetic substorms. J. Atmos. Terr

  19. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    NASA Astrophysics Data System (ADS)

    Pyle, David M.

    2012-09-01

    1994 A 2-dimensional modeling study of the volcanic eruption of Mount Pinatubo J. Geophys. Res. 99 18861-9 Bennett A J, Odams P, Edwards D and Arason P 2010 Monitoring of lightning from the April-May 2010 Eykafjallajökull volcanic eruption using a very low frequency lightning location network Environ. Res. Lett. 5 044013 Bourassa A E, Robock A, Randel W J, Deshler T, Rieger L A, Lloyd N D, Llewellyn E J and Degenstein D A 2012 Large volcanic aerosol load in the stratosphere linked to Asian monsoon transport Science 337 78-81 Clarisse L, Hurtmans D, Clerbaux C, Hadji-Lazaro J, Ngadi Y and Coheur P F 2012 Retrieval of sulphur dioxide from the infrared atmospheric sounding interferometer (IASI) Atmos. Meas. Technol. 5 581-94 Deshler T 2008 A review of global stratospheric aerosol: measurements, importance, life cycle and local stratospheric aerosol Atmos. Res. 90 223-32 Deshler T et al 2006 Trends in the nonvolcanic component of stratospheric aerosol over the period 1971-2004 J. Geophys. Res. 111 D01201 English J M, Toon O B and Mills M J 2012 Microphysical simulations of sulphur burdens from stratospheric sulphur geoengineering Atmos. Chem. Phys. 12 4775-93 Flentje H et al 2010 The Eyjafjallajökull eruption in April 2010—detection of volcanic plume using in situ measurements, ozone sondes and lidar-ceilometer profiles Atmos. Chem. Phys. 10 10085-92 Hamilton K 2012 Sereno Bishop, Rollo Russell, Bishop's Ring and the discovery of the 'Krakatoa easterlies' Atmos. Ocean 50 169-75 Harrison R G, Nicoll K A, Ulanowski Z and Mather T A 2010 Self-charging of the Eyjafjallajökull volcanic ash plume Environ. Res. Lett. 5 024004 Hoffman D J and Rosen J M 1983 Sulfuric acid droplet formation and growth in the stratosphere after the 1982 eruption of El Chichon Science 222 325-7 Krotkov N, Yang K and Carn S 2011 A-Train observations of Nabro (Eritrea) eruption on June 13-16, 2011 (http://aura.gsfc.nasa.gov/science/feature-20120305b.html, retrieved 23 July 2012) Krotkov N A

  20. Air Quality Modeling for the Urban Jackson, Mississippi Region Using a High Resolution WRF/Chem Model

    PubMed Central

    Yerramilli, Anjaneyulu; Dodla, Venkata B.; Desamsetti, Srinivas; Challa, Srinivas V.; Young, John H.; Patrick, Chuck; Baham, Julius M.; Hughes, Robert L.; Yerramilli, Sudha; Tuluri, Francis; Hardy, Mark G.; Swanier, Shelton J.

    2011-01-01

    In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi) region using an online WRF/Chem (Weather Research and Forecasting–Chemistry) model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators. PMID:21776240

  1. HIV Structural Database using Chem BLAST for all classes of AIDS inhibitors

    National Institute of Standards and Technology Data Gateway

    SRD 155 HIV Structural Database using Chem BLAST for all classes of AIDS inhibitors (Web, free access)   The HIV structural database (HIVSDB) is a comprehensive collection of the structures of HIV protease, both of unliganded enzyme and of its inhibitor complexes. It contains abstracts and crystallographic data such as inhibitor and protein coordinates for 248 data sets, of which only 141 are from the Protein Data Bank (PDB).

  2. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saide P. E.; Springston S.; Spak, S. N.

    2012-03-29

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and three aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign-averaged longitudinal gradients, and highlight differences in model simulations with (W) and without (NW) wet deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptualmore » model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, especially in the activation parameterization, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions, and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, and may do so with the reliability required for policy analysis.« less

  3. ChemCam at Gale Crater: Highlights and Discoveries from Three Years of Chemical Measurements on Mars

    NASA Astrophysics Data System (ADS)

    Blaney, Diana L.; Wiens, Roger; Maurice, Sylvestre; Gasnault, Olivier; Anderson, Ryan; Bridges, John; Bridges, Nathan; Clegg, Samuel; Clark, Benton; Ehlmann, Bethany; Dyar, Melinda D.; Fisk, Martin; Francis, Raymond; Fabre, Cecile; Forni, Olivier; Frydenvang, Jens; Johnson, Jeffery; Lanza, Nina; Leveille, Richard; Lasue, Jeremie; Le Deit, Laetitia; Mangold, Nicholas; Melikechi, Noureddine; Nachon, Marion; Newsom, Horton; Payre, Valerie; Rapin, William; Sautter, Violane; Vaniman, David; Grotzinger, John; Vasavad, Ashwin; Crisp, Joy

    2015-11-01

    ChemCam has undertaken a detailed chemical investigation of the rocks and soils at Gale crater over the last three years with over six thousand separate geochemical measurements. Recent recalibration of the ChemCam data using a new library of >350 geochemical standards has enabled increased elemental accuracies over a wider compositional range. The increased accuracy combined with ChemCam’s small spot size allows for the chemistry of mineral end members including feldspars, high silica, oxide rich grains to be identified. ChemCam has observed both sedimentary and igneous compositions. Igneous compositions are generally present in conglomerates and in float rocks. Compositions show a wide range of igneous chemistry ranging from basaltic to feldspar rich assemblages.Sedimentary rocks have a wide range of compositions reflecting both differences in chemical source regions and in depositional and diagenetic histories. The “Sheepbed” mudstones cluster around Martian average crustal compositions. The “Kimberley” outcrop showed enhanced potassium reaching concentrations up to ~6 wt% K2O. More recent observations in the Murray Formation at the base of Mt. Sharp reveal mudstones that are lower in magnesium and higher in silica and aluminum than the more basaltic mudstones previously investigated. Extremely high silica (75-85 wt%) deposits have also been identified. The high silica observations were associated with increased TiO2, While the Murray mudstones are generally low in magnesium, local enhancements in magnesium have also been noted associated with resistant facies in the outcrop. Chemical trends also indicate that iron oxide phases may also be present as cements. Sandstone facies with a mafic composition are also present. Veins in the unit also show a wide range of compositions indicating fluid chemistries rich in calcium sulfate, fluorine, magnesium and iron were present. Vein chemistry could be the result of distinct fluids migrating through from a

  4. Calibration of the Fluorine, Chlorine and Hydrogen Content of Apatites With the ChemCam LIBS Instrument

    NASA Technical Reports Server (NTRS)

    Meslin, P.-Y.; Cicutto, L.; Forni, O.; Drouet, C.; Rapin, W.; Nachon, M.; Cousin, A.; Blank, J. G.; McCubbin, F. M.; Gasnault, O.; hide

    2016-01-01

    Determining the composition of apatites is important to understand the behavior of volatiles during planetary differentiation. Apatite is an ubiquitous magmatic mineral in the SNC meteorites. It is a significant reservoir of halogens in these meteorites and has been used to estimate the halogen budget of Mars. Apatites have been identified in sandstones and pebbles at Gale crater by ChemCam, a Laser-Induced Breakdown Spectroscometer (LIBS) instrument onboard the Curiosity rover. Their presence was inferred from correlations between calcium, fluorine (using the CaF molecular band centered near 603 nm, whose detection limit is much lower that atomic or ionic lines and, in some cases, phosphorus (whose detection limit is much larger). An initial quantification of fluorine, based on fluorite (CaF2)/basalt mixtures and obtained at the LANL laboratory, indicated that the excess of F/Ca (compared to the stoichiometry of pure fluorapatites) found on Mars in some cases could be explained by the presence of fluorite. Chlorine was not detected in these targets, at least above a detection limit of 0.6 wt% estimated from. Fluorapatite was later also detected by X-ray diffraction (with CheMin) at a level of approx.1wt% in the Windjana drill sample (Kimberley area), and several points analyzed by ChemCam in this area also revealed a correlation between Ca and F. The in situ detection of F-rich, Cl-poor apatites contrasts with the Cl-rich, F-poor compositions of apatites found in basaltic shergottites and in gabbroic clasts from the martian meteorite NWA 7034, which were also found to be more Cl-rich than apatites from basalts on Earth, the Moon, or Vesta. The in situ observations could call into question one of the few possible explanations brought forward to explain the SNC results, namely that Mars may be highly depleted in fluorine. The purpose of the present study is to refine the calibration of the F, Cl, OH and P signals measured by the ChemCam LIBS instrument, initiated

  5. The Chem-E-Car as a Vehicle for Service Learning through K-12 Outreach

    ERIC Educational Resources Information Center

    Chirdon, William

    2017-01-01

    This article presents the results of combining the American Institute of Chemical Engineers' (AIChE) Chem-E-Car competition activities with engineering outreach to K-12 students in a service-learning course. Survey results are presented to show how the program develops technical skills as well as leadership, teamwork, and communication skills in…

  6. The Impact of Chemical Mechanism Design on Simulated Surface Ozone in CAM-Chem

    NASA Astrophysics Data System (ADS)

    Schwantes, R.; Emmons, L. K.; Orlando, J. J.; Tyndall, G. S.

    2017-12-01

    Many regions in the United States have poor air quality because of high levels of ozone. Global and regional chemical transport models are important tools for recommending regulatory policy directions to efficiently reduce ozone. Ozone is intrinsically hard to simulate in global and regional models because the amount of ozone present is controlled by large non-linear sources and sinks. Recent field campaigns have concluded that monoterpene chemistry is particularly important for the NOx budget and thereby O3 formation. However, many regional and global models have none or heavily reduced monoterpene chemical schemes. In this study, the chemical mechanism for isoprene and monoterpene oxidation will be significantly improved and updated in CAM-Chem (Community Atmosphere Model with chemistry), which is a component of the Community Earth System Model (CESM). In particular, the updates will focus on accurately portraying organic nitrate formation and fate. The impact of various uncertainties (e.g., nitrate yields, later generation chemistry, loss of organic nitrates to aerosols via hydrolysis, etc.) on ozone formation will be tested. This study will both improve the chemistry in CAM-Chem and reveal lingering uncertainties that have the largest impact on ozone formation.

  7. Effects on Student Achievement in General Chemistry following Participation in an Online Preparatory Course: ChemPrep, a Voluntary, Self-Paced, Online Introduction to Chemistry

    ERIC Educational Resources Information Center

    Botch, Beatrice; Day, Roberta; Vining, William; Stewart, Barbara; Rath, Kenneth; Peterfreund, Alan; Hart, David

    2007-01-01

    ChemPrep was developed to be a stand-alone preparatory short-course to help students succeed in general chemistry. It is Web-based and delivered using the OWL system. Students reported that the ChemPrep materials (short information pages, parameterized questions with detailed feedback, tutorials, and answers to questions through the OWL message…

  8. Measurements of CH4, N2O, CO, H2O and O3 in the middle atmosphere by the ATMOS experiment on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Gunson, M. R.; Farmer, C. B.; Norton, R. H.; Zander, R.; Rinsland, C. P.; Shaw, J. H.; Gao, Bo-Cai

    1989-01-01

    The volume mixing ratios of five minor gases (CH4, N2O, CO, H2O, and O3) were retrieved through the middle atmosphere from the analysis of 0.01/cm resolution infrared solar occultation spectra recorded near 28 N and 48 S latitudes with the ATMOS (Atmospheric Trace Molecule Spectroscopy) instrument, flown on board Spacelab 3. The results, which constitute the first simultaneous observations of continuous profiles through the middle atmosphere for these gases, are in general agreement with reported measurements from ground, balloon and satellite-based instruments for the same seasons. In detail, the vertical profiles of these gases show the effects of the upper and middle atmospheric transport patterns dominant during the season of these observations. The profiles inferred at different longitudes around 28 N suggest a near-uniform zonal distribution of these gases. Although based on fewer observations, the sunrise occultation measurements point to a larger variability in the vertical distribution of these gases at 48 S.

  9. Highly-controlled, reproducible measurements of aerosol emissions from African biomass combustion

    NASA Astrophysics Data System (ADS)

    Haslett, Sophie; Thomas, J. Chris; Morgan, William; Hadden, Rory; Liu, Dantong; Allan, James; Williams, Paul; Sekou, Keïta; Liousse, Catherine; Coe, Hugh

    2017-04-01

    useful for organic aerosol emissions. The two different phases producing organic aerosol, pyrolysis and smouldering, were observed to have different mass spectra. In previous ambient experiments, two organic factors with very comparable signatures to these have been identified using positive matrix factorisation (Young et al., 2015). As such, it is postulated that these ambient organic factors are likely associated with the two combustion phases identified here. References: Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D. and Wennberg, P. O., Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys., 11, 4039-4072 (2011) Young, D. E., Allan, J. D., Williams, P. I., Green, D. C., Harrison, R. M., Yin, J., Flynn, M. J., Gallagher, M. W., Coe, H., Investigating a two-component model of solid fuel organic aerosol in London: processes, PM1 contribution, and seasonality. Atmos. Chem. Phys, 15, 2429-2443 (2015)

  10. A large OH sink in summertime surface air of the northern Indo-Gangetic plain revealed through in-situ total OH Reactivity measurements

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Garg, S.; Chandra, P.; Sinha, V.

    2013-12-01

    photochemical oxidation reactions remain unmeasured. Likely compounds that could help explain the missing OH reactivity but were not covered by the measurement suite during the study period will be discussed in the presentation. Employing the ratio of the measured OH reactivity due to VOCs and due to NOx respectively [2], the peak ozone production at the site currently appears to be limited by the availability of NOx. References 1. V. Sinha et al., The Comparative Reactivity Method - a new tool to measure total OH Reactivity in ambient air. Atmos. Chem. Phys, 2008: p. 2213-2227. 2. V. Sinha,et al., Constraints on instantaneous ozone production rates and regimes during DOMINO derived using in-situ OH reactivity measurements, Atmos. Chem. Phys., 12, 7269-7283, doi:10.5194/acp-12-7269-2012, 2012. Acknowledgements: We acknowledge financial support from MHRD, India, and IISER Mohali-MPI-DST partner group and thank Chinmoy Sarkar.

  11. ChemTechLinks: Alliances for Chemical Technician Education

    NASA Astrophysics Data System (ADS)

    Nameroff, Tamara

    2003-09-01

    ChemTechLinks (CTL) is a project of the American Chemical Society (ACS) Educational and International Activities Division and funded by the National Science Foundation to support and advance chemistry-based technician education. The project aims to help improve technician education programs, foster academic-industry alliances, provide professional development opportunities for faculty, and increase student recruitment into chemical technology. The CTL Web site serves as an information clearinghouse and link to other ACS resources and programs, including a Web-based, Voluntary Industry Standards (VIS) database, the Chemistry Technician Program Approval Service, the College Chemistry Consultants Service, summer workshops for high school teachers and two-year college faculty that emphasize a technology-oriented curriculum, scholarships for two-year college faculty to attend ACS Short Courses, a self-study instructional guide for faculty to use in preparing for classroom instruction, and information and free recruitment materials about career opportunities in chemistry technology.

  12. Sub-seasonal temperature variability in the tropical upper troposphere and lower stratosphere observed with GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Scherllin-Pirscher, Barbara; Randel, William J.; Kim, Joowan

    2017-04-01

    We investigate sub-seasonal temperature variability in the tropical upper troposphere and lower stratosphere (UTLS) region using daily gridded fields of GPS radio occultation measurements. The unprecedented vertical resolution (from about 100 m in the troposphere to about 1.5 km in the stratosphere) and high accuracy and precision (0.7 K to 1 K between 8 km and 25 km) make these data ideal for characterizing temperature oscillations with short vertical wavelengths. Long-term behavior of sub-seasonal temperature variability is investigated using the entire RO record from January 2002 to December 2014 (13 years of data). Transient sub-seasonal waves including eastward-propagating Kelvin waves (isolated with space-time spectral analysis) dominate large-scale zonal temperature variability in the tropical tropopause region and in the lower stratosphere. Above 20 km, Kelvin waves are strongly modulated by the quasi-biennial oscillation (QBO). Enhanced wave activity can be found during the westerly shear phase of the QBO. In the tropical tropopause region, however, sub-seasonal waves are highly transient in time. Several peaks of Kelvin-wave activity coincide with short-term fluctuations in tropospheric deep convection, but other episodes are not evidently related. Also, there are no obvious relationships with zonal winds or stability fields near the tropical tropopause. Further investigations of convective forcing and atmospheric background conditions along the waves' trajectories are needed to better understand sub-seasonal temperature variability near the tropopause. For more details, see Scherllin-Pirscher, B., Randel, W. J., and Kim, J.: Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements, Atmos. Chem. Phys., 17, 793-806, doi:10.5194/acp-17-793-2017, 2017. http://www.atmos-chem-phys.net/17/793/2017/acp-17-793-2017.html

  13. Comparison between modelling and experimental measurements of Criegee intermediates from the ozonolysis of biogenic and anthropogenic VOCs

    NASA Astrophysics Data System (ADS)

    Giorio, Chiara; Campbell, Steven; Bruschi, Maurizio; Archibald, Alexander; Kalberer, Markus

    2017-04-01

    bonds have been detected. For all the tested VOCs, experimental measurements were compared with MCM modelling results and discrepancies discussed in terms of stability of the CI-DMPO adducts derived from DFT calculations. R. Criegee, Angew. Chemie Int. Ed. English, 1975, 14, 745-752. C. Giorio, et al., J. Am. Chem. Soc., submitted. S. M. Saunders, et al., Atmos. Chem. Phys., 2003, 3, 161-180. L. Vereecken, Science, 2013 340 (6129), 154-155.

  14. Analysis of Glyoxal and Methylglyoxal in atmospheric particulate matter - Qualification and Quantification using a derivatisation method for HPLC-ESI-MS

    NASA Astrophysics Data System (ADS)

    Kampf, Christopher; Hoffmann, Thorsten

    2010-05-01

    enhancements of the sampling procedure are discussed. References 1. Kalberer, M., et al. (2004). Science, 303(5664), 1659-1662 2. Fu, T.-M., et al. (2008). Journal of Geophysical Research, 113, D15303 3. Iinuma, Y., et al. (2004). Atmospheric Environment, 38(5), 761-773 4. Galloway, M. M., et al. (2009), Atmos. Chem. Phys., 9, 3331-3345 5. Nozière, B., et al. (2009), J. Phys. Chem. A, 113, 231-237

  15. First principles study of hydrogen bond symmetrization in δ-AlOOH

    NASA Astrophysics Data System (ADS)

    Pillai, Sharad Babu; Jha, Prafulla K.; Padmalal, Akash; Maurya, D. M.; Chamyal, L. S.

    2018-03-01

    The high pressure behaviour of the hydrous mineral δ-AlOOH has been investigated by many experimental and theoretical studies, but the discrepancy in predicting the value of hydrogen symmetrization pressure was not resolved. Here, we investigated the high pressure behaviour of δ-AlOOH using first principles calculations and found that with proper optimization using pressure routine control, local density approximation (LDA) predicts the hydrogen symmetrization pressure as 15 GPa which is in good agreement with the experimentally predicted value which resolves the existing discrepancy and hence proving the validity of LDA in predicting the hydrogen symmetrization pressure. We further studied the compressibility behaviour of δ-AlOOH at low pressures and confirmed the P21nm to Pnnm transition of δ-AlOOH shown by the experimental work [Kuribayashi et al., Phys. Chem. Miner. 41, 303-312 (2014)]. We have also analysed the dependence of elastic constants, elastic moduli, sound velocities, and Raman spectrum of δ-AlOOH with pressure and found that a subtle change in the position of the hydrogen atom at hydrogen symmetrization pressure results into drastic changes in elastic and vibrational properties. Further, this study has been used to discuss the seismic anomalies observed in the upper mantle beneath the Deccan Volcanic Province in India and the Java subduction zone in the eastern flank of the Indian Ocean.

  16. Chemistry Provision for Primary Pupils: The Experiences of 10 Years of Bristol ChemLabs Outreach

    ERIC Educational Resources Information Center

    Harrison, Timothy G.; Shallcross, Dudley E.

    2016-01-01

    Bristol ChemLabS, the UK's Centre for Excellence in Teaching and Learning in practical chemistry, delivers numerous outreach activity days per year for thousands of primary school pupils annually. These mainly comprise demonstration assemblies and hands on workshops for pupils in the main. The activities support the UK's Key Stage 2 science…

  17. ChemVoyage: A Web-Based, Simulated Learning Environment with Scaffolding and Linking Visualization to Conceptualization

    ERIC Educational Resources Information Center

    McRae, Christopher; Karuso, Peter; Liu, Fei

    2012-01-01

    The Web is now a standard tool for information access and dissemination in higher education. The prospect of Web-based, simulated learning platforms and technologies, however, remains underexplored. We have developed a Web-based tutorial program (ChemVoyage) for a third-year organic chemistry class on the topic of pericyclic reactions to…

  18. Design and Analysis of a Preconcentrator for the ChemLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WONG,CHUNGNIN C.; FLEMMING,JEB H.; MANGINELL,RONALD P.

    2000-07-17

    Preconcentration is a critical analytical procedure when designing a microsystem for trace chemical detection, because it can purify a sample mixture and boost the small analyte concentration to a much higher level allowing a better analysis. This paper describes the development of a micro-fabricated planar preconcentrator for the {mu}ChemLab{trademark} at Sandia. To guide the design, an analytical model to predict the analyte transport, adsorption and resorption process in the preconcentrator has been developed. Experiments have also been conducted to analyze the adsorption and resorption process and to validate the model. This combined effort of modeling, simulation, and testing has ledmore » us to build a reliable, efficient preconcentrator with good performance.« less

  19. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database

    USGS Publications Warehouse

    Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; Forni, Olivier; Frydenvang, Jens; Lasue, Jeremie; Cousin, Agnes; Payre, Valerie; Boucher, Tommy; Dyar, M. Darby; McLennan, Scott M.; Morris, Richard V.; Graff, Trevor G.; Mertzman, Stanley A; Ehlmann, Bethany L.; Belgacem, Ines; Newsom, Horton E.; Clark, Ben C.; Melikechi, Noureddine; Mezzacappa, Alissa; McInroy, Rhonda E.; Martinez, Ronald; Gasda, Patrick J.; Gasnault, Olivier; Maurice, Sylvestre

    2017-01-01

    The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with a calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was significantly over-estimated by the previous model, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. The uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.

  20. Contact freezing induced by biological (Snomax) and mineral dust (K-feldspar) particles

    NASA Astrophysics Data System (ADS)

    Hoffmann, N.; Schäfer, M.; Duft, D.; Kiselev, A. A.; Leisner, T.

    2013-12-01

    The contact freezing of supercooled cloud droplets is one of the potentially important and the least investigated heterogeneous mechanism of ice formation in tropospheric clouds [1]. On the time scales of cloud lifetime the freezing of supercooled water droplets via contact mechanism may occur at higher temperature compared to the same IN immersed in the droplet. In our experiment we study single water droplets freely levitated in an Electrodynamic Balance [2]. We have shown previously that the rate of freezing at given temperature is governed only by the rate of droplet -particle collision and by the properties of the contact ice nuclei [2, 3]. Recently, we have extended our experiments to feldspar, being the most abundant component of the atmospheric mineral dust particles, and Snomax, as a proxy for atmospheric biological Ice Nuclei (IN). In this contribution we show that both IN exhibits the same temperature, size and material dependency observed previously in immersion mode [4, 5]. Based on these results, we limit the number of mechanisms that could be responsible for the enhancement of contact nucleation of ice in supercooled water. [1] - Ladino, L. A., Stetzer, O., and Lohmann, U.: Contact freezing: a review, Atmos. Chem. Phys. Discuss., 13, 7811-7869, doi:10.5194/acpd-13-7811-2013, 2013. [2] - Hoffmann, N., Kiselev, A., Rzesanke, D., Duft, D., and Leisner, T.: Experimental quantification of contact freezing in an electrodynamic balance, Atmos. Meas. Tech. Discuss., 6, 3407-3437, doi:10.5194/amtd-6-3407-2013, 2013. [3] - Hoffmann, N., Duft, D., Kiselev, A., and Leisner, T.: Contact freezing efficiency of mineral dust aerosols studied in an electrodynamic balance: quantitative size and temperature dependence for illite particles, Faraday Discuss., doi: 10.1039/C3FD00033H, 2013. [4] - Atkinson, James D., Murray, Benjamin J., Woodhouse, Matthew T., Whale, Thomas F., Baustian, Kelly J., Carslaw, Kenneth S., Dobbie, Steven, O'Sullivan, Daniel, and Malkin, Tamsin

  1. Comment on ``Oxidation of alloys containing aluminum and diffusion in Al2O3'' [J. Appl. Phys. 95, 3217 (2004)

    NASA Astrophysics Data System (ADS)

    Åkermark, Torbjörn

    2005-06-01

    The introduction of AlO as the diffusing species can be seen as an attempt to bridge the gap between the two scientific communities: those working on the oxidation of metals and those working on the oxidation of silicon. The attempt is, however, not successful and would have been more successful if the Wagner theory [O. Wagner, Z. Phys. Chem. Abt. B 21, 25 (1993)] would have been used to evaluate the mechanisms. There is also a lack of agreement with the two-stage oxidation experiment, oxidation first in O16 and then in O18. The experimental O18 profile in the oxides formed cannot be explained by the diffusion of AlO, so it is unlikely that AlO is the diffusing species during oxidation.

  2. Vertical Ozone Concentration Profiles in the Middle East: WRF-Chem Predictions vs. Balloon Measurements

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Ayoub, M.; Ackermann, L.; Gladich, I.; Hoehn, R.

    2017-12-01

    The greater Middle Eastern area is made up by more than 20 countries with over 400 million inhabitants. Due to extensive land conversion, intense industrialization and rapid urban population growth in recent years, the region's air quality is changing. High ozone levels affected by free tropospheric subsidence, long range transport and local production in large metropolitan areas of the region are of major concern. In this study we analyze data from i) continuously (24/7) operated ground monitoring stations, and ii) an ozonesonde station, operated in Doha by the Qatar Environment and Energy Research Institute coupled with simulations using a three-dimensional regional air quality model (WRF-Chem). Ozonesondes were launched at 1300 LT (1000 UTC) weekly during a summertime month (August 2015) representative of extremely hot and humid atmospheric conditions and a wintertime period (January/February 2016) of cool and dry conditions in the area. This is the first application of WRF-Chem in the Middle East focusing on vertical ozone concentrations on the lower troposphere (0 - 6 km) combined with high frequency vertical measurement (balloon) data. A triple nested model configuration has been selected with high spatial resolution over the domain of interest (2 × 2 km2). We examine different meteorological regimes and test the sensitivity of model predictions to planetary boundary layer parameterizations. Comparison of model predictions against observations show high correlation coefficients and encouragingly low biases in all meteorological variables. During wintertime, ozone is overall well predicted (Fractional Bias = -0.1) while the summertime comparison is more challenging. We suggest that the YSU scheme is more representative of the region and should be the scheme of choice in future WRF-Chem applications in the Middle East. Furthermore, we highlight the importance of revising the available anthropogenic emission inventory to account rapidly-changing urban

  3. Application of WRF/Chem over East Asia: Part I. Model evaluation and intercomparison with MM5/CMAQ

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Zhang, Xin; Wang, Litao; Zhang, Qiang; Duan, Fengkui; He, Kebin

    2016-01-01

    In this work, the application of the online-coupled Weather Research and Forecasting model with chemistry (WRF/Chem) version 3.3.1 is evaluated over East Asia for January, April, July, and October 2005 and compared with results from a previous application of an offline model system, i.e., the Mesoscale Model and Community Multiple Air Quality modeling system (MM5/CMAQ). The evaluation of WRF/Chem is performed using multiple observational datasets from satellites and surface networks in mainland China, Hong Kong, Taiwan, and Japan. WRF/Chem simulates well specific humidity (Q2) and downward longwave and shortwave radiation (GLW and GSW) with normalized mean biases (NMBs) within 24%, but shows moderate to large biases for temperature at 2-m (T2) (NMBs of -9.8% to 75.6%) and precipitation (NMBs of 11.4-92.7%) for some months, and wind speed at 10-m (WS10) (NMBs of 66.5-101%), for all months, indicating some limitations in the YSU planetary boundary layer scheme, the Purdue Lin cloud microphysics, and the Grell-Devenyi ensemble scheme. WRF/Chem can simulate the column abundances of gases reasonably well with NMBs within 30% for most months but moderately to significantly underpredicts the surface concentrations of major species at all sites in nearly all months with NMBs of -72% to -53.8% for CO, -99.4% to -61.7% for NOx, -84.2% to -44.5% for SO2, -63.9% to -25.2% for PM2.5, and -68.9% to 33.3% for PM10, and aerosol optical depth in all months except for October with NMBs of -38.7% to -16.2%. The model significantly overpredicts surface concentrations of O3 at most sites in nearly all months with NMBs of up to 160.3% and NO3- at the Tsinghua site in all months. Possible reasons for large underpredictions include underestimations in the anthropogenic emissions of CO, SO2, and primary aerosol, inappropriate vertical distributions of emissions of SO2 and NO2, uncertainties in upper boundary conditions (e.g., for O3 and CO), missing or inaccurate model representations (e

  4. Air-snow exchange of nitrogen oxides and ozone at a polluted mid-latitude site

    NASA Astrophysics Data System (ADS)

    Murphy, Jennifer G.; Hong, Angela C.; Quinn, Patricia K.; Bates, Tim

    2017-04-01

    Vertical gradients of O3, NO, NO2 and NOywere measured within and above the snowpack between January 17 to February 14, 2014 as part of the Uintah Basin Winter Ozone Study. During the first half of the campaign, the snowpack was relatively aged and contained high levels of inorganic ions and dissolved and particulate organics. A snowfall on Jan 31 added 5 cm of fresh snow with lower solute concentrations to the top of the snowpack. Vertical gradients (ΔC = C(25cm) - C(125cm)) in the measured gas phase species were used to investigate the role of the snowpack as a source or sink. Small positive gradients were seen for NO, peaking in the middle of the day, which much larger negative gradients were seen for O3 and NOy. Comparing the fresh to the aged snowpacks, there was a noticeable decrease in the gradient for O3, but not for NOy over the fresh snow, implying a chemical control of O3 deposition to the snow. The ratio of the gradient of NOx to the gradient of NOy was used to determine a snowpack NOy recycling ratio (emission/deposition) of approximately 4 %, consistent with independent estimates of low nitrate photolysis rates inferred from nitrogen isotopes by Zatko et al., (2016). Reference Zatko et al., The magnitude of the snow-sourced reactive nitrogen flux to the boundary layer in the Uintah Basin, Utah, USA, Atmos. Chem. Phys., 16, 13837-13851, 2016.

  5. Assessing the CAM5 Physics Suite in the WRF-Chem Model: Implementation, Resolution Sensitivity, and a First Evaluation for a Regional Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Po-Lun; Rasch, Philip J.; Fast, Jerome D.

    A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been established in which both global and regional simulations use the same emissions and surface fluxes. The WRF-Chem model with the CAM5 physics suite is run at multiple horizontal resolutions over a domain encompassing the northern Pacific Ocean, northeast Asia, and northwest North America for April 2008 whenmore » the ARCTAS, ARCPAC, and ISDAC field campaigns took place. These simulations are evaluated against field campaign measurements, satellite retrievals, and ground-based observations, and are compared with simulations that use a set of common WRF-Chem Parameterizations. This manuscript describes the implementation of the CAM5 physics suite in WRF-Chem provides an overview of the modeling framework and an initial evaluation of the simulated meteorology, clouds, and aerosols, and quantifies the resolution dependence of the cloud and aerosol parameterizations. We demonstrate that some of the CAM5 biases, such as high estimates of cloud susceptibility to aerosols and the underestimation of aerosol concentrations in the Arctic, can be reduced simply by increasing horizontal resolution. We also show that the CAM5 physics suite performs similarly to a set of parameterizations commonly used in WRF-Chem, but produces higher ice and liquid water condensate amounts and near-surface black carbon concentration. Further evaluations that use other mesoscale model parameterizations and perform other case studies are needed to infer whether one parameterization consistently produces results more consistent with observations.« less

  6. Diversity of Rock Compositions at Gale Crater Observed by ChemCam and APXS on Curiosity, and Comparison to Meteorite and Orbital Observations

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Maurice, S.; Grotzinger, J. P.; Gellert, R.; Mangold, N.; Sautter, V.; Ollila, A.; Dyar, M. D.; Le Mouelic, S.; Ehlmann, B. L.; Clegg, S. M.; Lanza, N.; Cousin, A.; Forni, O.; Gasnault, O.; Lasue, J.; Blaney, D. L.; Newsom, H. E.; Herkenhoff, K. E.; Anderson, R. B.; D'Uston, L.; Bridges, N. T.; Fabre, C.; Meslin, P.; Johnson, J.; Vaniman, D.; Bridges, J.; Dromart, G.; Schmidt, M. E.; Team, M.

    2013-12-01

    Gale crater was selected as the Curiosity landing site because of the apparent sedimentary spectral signatures seen from orbit. Sedimentary materials on Mars have to this point showed very little expression of major element mobility, so compositions of precursor igneous minerals play a strong role in the compositions of sediments. In addition, pebbles and float rocks on Bradbury Rise (sols 0-50, > 324) appear to be mostly igneous in origin, and are assumed to have been carried down from the crater rim. Overall in the first year on Mars ChemCam obtained >75,000 LIBS spectra on > 2,000 observation points, supported by > 1,000 RMI images, and APXS obtained a significant number of observations. These show surprisingly variable compositions. The mean ChemCam compositions for Bradbury Rise dust-free rocks and pebbles (62 locations) give SiO2 = 56%, FeOT = 16% and show high alkalis consistent with Jake Matijevic (sol ~47) APXS Na2O ~6.6 wt%. ChemCam observations on the conglomerate Link (sol 27) gave Rb > 150 ppm and Sr > 1500 ppm. These compositions imply the presence of abundant alkali feldspars in the material infilling the lower parts of Gale crater. They are generally consistent with the more feldspar-rich SNC meteorites but show a radical departure from larger scale orbital observations, e.g., GRS, raising the question of how widespread these compositions are outside of Gale crater. Sedimentary materials at Yellowknife Bay encompassing the Sheepbed (sols 125-300) and Shaler (sols 121, 311-324) units, potentially including Point Lake (sols 301-310) and Rocknest (sols 57-97), appear to have incorporated varying amounts of igneous source materials. Seven rocks investigated at Rocknest show significant additions of Fe, with mean FeOT = 25% (154 locations), suggesting that FeO was a cementing agent. ChemCam observations at Shaler show varying amounts of alkali feldspar (i.e., related to Bradbury Rise), Fe-rich material (Rocknest-like), and potassium-rich material

  7. FastChem: A computer program for efficient complex chemical equilibrium calculations in the neutral/ionized gas phase with applications to stellar and planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Stock, Joachim W.; Kitzmann, Daniel; Patzer, A. Beate C.; Sedlmayr, Erwin

    2018-06-01

    For the calculation of complex neutral/ionized gas phase chemical equilibria, we present a semi-analytical versatile and efficient computer program, called FastChem. The applied method is based on the solution of a system of coupled nonlinear (and linear) algebraic equations, namely the law of mass action and the element conservation equations including charge balance, in many variables. Specifically, the system of equations is decomposed into a set of coupled nonlinear equations in one variable each, which are solved analytically whenever feasible to reduce computation time. Notably, the electron density is determined by using the method of Nelder and Mead at low temperatures. The program is written in object-oriented C++ which makes it easy to couple the code with other programs, although a stand-alone version is provided. FastChem can be used in parallel or sequentially and is available under the GNU General Public License version 3 at https://github.com/exoclime/FastChem together with several sample applications. The code has been successfully validated against previous studies and its convergence behavior has been tested even for extreme physical parameter ranges down to 100 K and up to 1000 bar. FastChem converges stable and robust in even most demanding chemical situations, which posed sometimes extreme challenges for previous algorithms.

  8. New Developments in the SCIAMACHY Level 2 Ground Processor Towards Version 7

    NASA Astrophysics Data System (ADS)

    Meringer, Markus; Noël, Stefan; Lichtenberg, Günter; Lerot, Christophe; Theys, Nicolas; Fehr, Thorsten; Dehn, Angelika; Liebing, Patricia; Gretschany, Sergei

    2016-07-01

    sensitivity w.r.t. thin clouds. 3. A new, future-proof file format for the level 2 product based on NetCDF. The data format will be aligned and harmonized with other missions, particularly GOME and Sentinels. The final concept for the new format is still under discussion within the SCIAMACHY Quality Working Group. References: K.-U. Eichmann et al.: Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results, Atmos. Meas. Tech. Discuss., 8, 8295-8352, 2015. P. Liebing: New Limb Cloud Detection Algorithm Theoretical Basis Document, 2016. N. Theys et al.: Global observations of tropospheric BrO columns using GOME-2 satellite data, Atmos. Chem. Phys., 11, 1791-1811, 2011.

  9. Submicron aerosol organic functional groups, ions, and water content at the Centreville SEARCH site (Alabama), during SOAS campaign

    NASA Astrophysics Data System (ADS)

    Ruggeri, G.; Ergin, G.; Modini, R. L.; Takahama, S.

    2013-12-01

    aerosol during the Pittsburgh Air Quality Study. Journal of Geophysical Research: Atmospheres 110, n/a-n/a. [4]- Takahama, S., Johnson, A., Russell, L.M., 2013. Quantification of Carboxylic and Carbonyl Functional Groups in Organic Aerosol Infrared Absorbance Spectra. Aerosol Science and Technology 47, 310-325. [5]- Pankow, J.F., Asher, W.E., 2008. SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds. Atmos. Chem. Phys. 8, 2773-2796. [6]- Clegg, S.L., Brimblecombe, P., Wexler, A.S., 1998. Thermodynamic Model of the System H+-NH4+-SO42--NO3--H2O at Tropospheric Temperatures. J. Phys. Chem. A 102, 2137-2154. [7]- Zuend, A., Marcolli, C., Booth, A.M., Lienhard, D.M., Soonsin, V., Krieger, U.K., Topping, D.O., McFiggans, G., Peter, T., Seinfeld, J.H., 2011. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmos. Chem. Phys. 11, 9155-9206.

  10. The "Virtual ChemLab" Project: A Realistic and Sophisticated Simulation of Organic Synthesis and Organic Qualitative Analysis

    ERIC Educational Resources Information Center

    Woodfield, Brian F.; Andrus, Merritt B.; Waddoups, Gregory L.; Moore, Melissa S.; Swan, Richard; Allen, Rob; Bodily, Greg; Andersen, Tricia; Miller, Jordan; Simmons, Bryon; Stanger, Richard

    2005-01-01

    A set of sophisticated and realistic laboratory simulations is created for use in freshman- and sophomore-level chemistry classes and laboratories called 'Virtual ChemLab'. A detailed assessment of student responses is provided and the simulation's pedagogical utility is described using the organic simulation.

  11. Consoer et al PFOS dataset

    EPA Pesticide Factsheets

    This ScienceHub entry was developed for the published paper: Consoer et al., 2016, Toxicokinetics of perfluorooctane sulfonate in rainow trout (Oncorhynchus mykiss), Environ. Toxicol. Chem. 35:717-727. Individual rainbow trout were exposed to PFOS by bolus injection (elimination studies) or by adding PFOS to incoming water (branchial uptake studies). The trout were fitted with indwelling catheters and urinary cannulae to permit periodic collection of blood and urine. Additional sampling was conducted to evaluate PFOS uptake from and elimination to respired water. Data obtained from each fish was evaluated using a clearance-volume pharmacokinetic model. Modeled kinetic parameters were then averaged to develop summary statistics which were used as a basis for interpreting modeled results and making comparisons to a previous study of rainbow trout exposed to perfluorooctanoate (PFOA; Consoer et al., 2014, Aquat. Toxicol. 156:65-73). The results of this study, combined with that of the previous PFOA study, suggest that PFOA is a substrate for renal transporters in fish while glomerular filtration alone may be sufficient to explain the observed renal elimination of PFOS. These findings demonstrate that models developed to predict the bioaccumulation of perfluoroalkyl acids by fish must account for differences in renal clearance of individual compounds.This dataset is associated with the following publication:Consoer, D., A. Hoffman , P. Fitzsimmons , P. Kosia

  12. The ChemCam Remote Micro-Imager at Gale crater: Review of the first year of operations on Mars

    NASA Astrophysics Data System (ADS)

    Le Mouélic, S.; Gasnault, O.; Herkenhoff, K. E.; Bridges, N. T.; Langevin, Y.; Mangold, N.; Maurice, S.; Wiens, R. C.; Pinet, P.; Newsom, H. E.; Deen, R. G.; Bell, J. F.; Johnson, J. R.; Rapin, W.; Barraclough, B.; Blaney, D. L.; Deflores, L.; Maki, J.; Malin, M. C.; Pérez, R.; Saccoccio, M.

    2015-03-01

    The Mars Science Laboratory rover, "Curiosity" landed near the base of a 5 km-high mound of layered material in Gale crater. Mounted on the rover mast, the ChemCam instrument is designed to remotely determine the composition of soils and rocks located a few meters from the rover, using a Laser-Induced Breakdown Spectrometer (LIBS) coupled to a Remote Micro-Imager (RMI). We provide an overview of the diverse imaging investigations that were carried out by ChemCam's RMI during the first year of operation on Mars. 1182 individual panchromatic RMI images were acquired from Sol 10 to Sol 360 to document the ChemCam LIBS measurements and to characterize soils, rocks and rover hardware. We show several types of derived imaging products, including mosaics of images taken before and after laser shots, difference images to enhance the most subtle laser pits, merges with color Mastcam-100 images, micro-topography using the Z-stack technique, and time lapse movies. The very high spatial resolution of RMI is able to resolve rock textures at sub-mm scales, which provides clues regarding the origin (igneous versus sedimentary) of rocks, and to reveal information about their diagenetic and weathering evolution. In addition to its scientific value over the range accessible by LIBS (1-7 m), we also show that RMI can also serve as a powerful long distance reconnaissance tool to characterize the landscape at distances up to several kilometers from the rover.

  13. Analysis of the WRF-Chem simulations contributing to the AQMEII-Phase II exercise with respect to aerosol impact on precipitation

    NASA Astrophysics Data System (ADS)

    Werhahn, Johannes; Balzarini, Allessandra; Baró, Roccio; Curci, Gabriele; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Jiménez-Guerrero, Pedro; Langer, Matthias; Lorenz, Christof; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Tuccella, Paolo; Žabkar, Rahela

    2014-05-01

    Simulated feedback effects between aerosol concentrations and meteorological variables and on pollutant distributions are expected to depend on model configuration and the meteorological situation. In order to quantity these effects the second phase of the AQMEII (Air Quality Model Evaluation International Initiative; http://aqmeii.jrc.ec.europa.eu/) model inter-comparison exercise focused on online coupled meteorology-chemistry models. Among others, seven of the participating groups contributed simulations with WRF-Chem (Grell et al., 2005) for Europe. According to the common simulation strategy for AQMEII phase 2, the entire year 2010 was simulated as a sequence of 2-day time slices. For better comparability, the seven groups using WRF-Chem applied the same grid spacing of 23 km and shared common processing of initial and boundary conditions as well as anthropogenic and fire emissions. The simulations differ by the chosen chemistry option, aerosol module, cloud microphysics, and by the degree of aerosol-meteorology feedback that was considered. Results from this small ensemble are analyzed with respect to the effect of the different degrees of aerosol-meteorology feedback, i.e. no aerosol feedback, direct aerosol effect, and direct plus indirect aerosol effect, on large scale precipitation. Simulated precipitation fields were compared against daily precipitation observations as given by E-OBS 25 km resolution gridded dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). As expected, a first analysis confirms that the average impact of aerosol feedback is only very small on the considered spatial and temporal scale, i.e. due to the fact that initial meteorological conditions were taken every 3rd day from a one day non-feedback spin-up run. However, the analysis of the correlations between simulation and observations for the first and the second day indicates for some

  14. Wind Profiling in a Cloudy Convective Atmospheric Boundary Layer Over Land

    DTIC Science & Technology

    1992-12-01

    Albrecht Professor of Meteorology Thesis Advisor / 2 / / 9 /z George S. Young Associate Professor of Meteorology Dennis W. Thomson Professor of...Schubert et al., 1979; Brost et al., 1982; Albrecht et al., 1985). The eastern Pacific, off the California coast, for example, is an area of persistent...Publications, Inc., 435 pp. Brost , R. A., D. H. Lenschow and J.C. Wyngaard, 1982: Marine stratocumulus layers. Part I: Mean conditions. J Atmos. Sci., 39

  15. Addition of NH{sub 3} to Al{sub 3}O{sub 3}{sup -}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrwas, Richard B.; Jarrold, Caroline Chick; Das, Ujjal

    2006-05-28

    Recent computational studies on the addition of ammonia (NH{sub 3}) to the Al{sub 3}O{sub 3}{sup -} cluster anion [A. Guevara-Garcia, A. Martinez, and J. V. Ortiz, J. Chem. Phys. 122, 214309 (2005)] have motivated experimental and additional computational studies, reported here. Al{sub 3}O{sub 3}{sup -} is observed to react with a single NH{sub 3} molecule to form the Al{sub 3}O{sub 3}NH{sub 3}{sup -} ion in mass spectrometric studies. This is in contrast to similarly performed studies with water, in which the Al{sub 3}O{sub 5}H{sub 4}{sup -} product was highly favored. However, the anion PE spectrum of the ammoniated species ismore » very similar to that of Al{sub 3}O{sub 4}H{sub 2}{sup -}. The adiabatic electron affinity of Al{sub 3}O{sub 3}NH{sub 3} is determined to be 2.35(5) eV. Based on comparison between the spectra and calculated electron affinities, it appears that NH{sub 3} adds dissociatively to Al{sub 3}O{sub 3}{sup -}, suggesting that the time for the Al{sub 3}O{sub 3}{sup -}{center_dot}NH{sub 3} complex to either overcome or tunnel through the barrier to proton transfer (which is higher for NH{sub 3} than for water) is short relative to the time for collisional cooling in the experiment.« less

  16. Operational forecast products and applications based on WRF/Chem

    NASA Astrophysics Data System (ADS)

    Hirtl, Marcus; Flandorfer, Claudia; Langer, Matthias; Mantovani, Simone; Olefs, Marc; Schellander-Gorgas, Theresa

    2015-04-01

    The responsibilities of the national weather service of Austria (ZAMG) include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The ZAMG conducts daily Air-Quality forecasts using the on-line coupled model WRF/Chem. The mother domain expands over Europe, North Africa and parts of Russia. The nested domain includes the alpine region and has a horizontal resolution of 4 km. Local emissions (Austria) are used in combination with European inventories (TNO and EMEP) for the simulations. The modeling system is presented and the results from the evaluation of the assimilation of pollutants using the 3D-VAR software GSI is shown. Currently observational data (PM10 and O3) from the Austrian Air-Quality network and from European stations (EEA) are assimilated into the model on an operational basis. In addition PM maps are produced using Aerosol Optical Thickness (AOT) observations from MODIS in combination with model data using machine learning techniques. The modeling system is operationally evaluated with different data sets. The emphasis of the application is on the forecast of pollutants which are compared to the hourly values (PM10, O3 and NO2) of the Austrian Air-Quality network. As the meteorological conditions are important for transport and chemical processes, some parameters like wind and precipitation are automatically evaluated (SAL diagrams, maps, …) with other models (e.g. ECMWF, AROME, …) and ground stations via web interface. The prediction of the AOT is also important for operators of solar power plants. In the past Numerical Weather Prediction (NWP) models were used to predict the AOT based on cloud forecasts at the ZAMG. These models do not consider the spatial and temporal variation of the aerosol distribution in the atmosphere with a consequent impact on the accuracy of forecasts especially during clear-sky days

  17. Chemistry Outreach Project to High Schools Using a Mobile Chemistry Laboratory, ChemKits, and Teacher Workshops

    ERIC Educational Resources Information Center

    Long, Gary L.; Bailey, Carol A.; Bunn, Barbara B.; Slebodnick, Carla; Johnson, Michael R.; Derozier, Shad

    2012-01-01

    The Chemistry Outreach Program (ChOP) of Virginia Tech was a university-based outreach program that addressed the needs of high school chemistry classes in underfunded rural and inner-city school districts. The primary features of ChOP were a mobile chemistry laboratory (MCL), a shipping-based outreach program (ChemKits), and teacher workshops.…

  18. WRF and WRF-Chem v3.5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Mues, Andrea; Lauer, Axel; Lupascu, Aurelia; Rupakheti, Maheswar; Kuik, Friderike; Lawrence, Mark G.

    2018-06-01

    An evaluation of the meteorology simulated using the Weather Research and Forecast (WRF) model for the region of south Asia and Nepal with a focus on the Kathmandu Valley is presented. A particular focus of the model evaluation is placed on meteorological parameters that are highly relevant to air quality such as wind speed and direction, boundary layer height and precipitation. The same model setup is then used for simulations with WRF including chemistry and aerosols (WRF-Chem). A WRF-Chem simulation has been performed using the state-of-the-art emission database, EDGAR HTAP v2.2, which is the Emission Database for Global Atmospheric Research of the Joint Research Centre (JRC) of the European Commission, in cooperation with the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) organized by the United Nations Economic Commission for Europe, along with a sensitivity simulation using observation-based black carbon emission fluxes for the Kathmandu Valley. The WRF-Chem simulations are analyzed in comparison to black carbon measurements in the valley and to each other. The evaluation of the WRF simulation with a horizontal resolution of 3×3 km2 shows that the model is often able to capture important meteorological parameters inside the Kathmandu Valley and the results for most meteorological parameters are well within the range of biases found in other WRF studies especially in mountain areas. But the evaluation results also clearly highlight the difficulties of capturing meteorological parameters in such complex terrain and reproducing subgrid-scale processes with a horizontal resolution of 3×3 km2. The measured black carbon concentrations are typically systematically and strongly underestimated by WRF-Chem. A sensitivity study with improved emissions in the Kathmandu Valley shows significantly reduced biases but also underlines several limitations of such corrections. Further improvements of the model and of the emission data are needed before being

  19. Simulation of comprehensive chemistry and atmospheric methane lifetime in the LGM with EMAC

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey; Steil, Benedikt

    2017-04-01

    sensitivity of zonal OH to changes in various component of the ES, e.g. in stratospheric O3 input and dynamics. Finally, we discuss the potential set of parameters required for efficient λ and/or OH parameterisation implementation in models dealing with (transient) climate simulations. References 1. Fischer, H., et al.: Changing boreal methane sources and constant biomass burning during the last termination, Nature, 452, 864-867, doi: 10.1038/nature06825, 2008. 2. Kaplan, J. O., Folberth, G.,and Hauglustaine, D. A.: Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations, Global Biogeochemical Cycles, 20, n/a-n/a, doi: 10.1029/2005GB002590, 2006. 3. Murray, L. T., et al.: Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum, Atmos. Chem. Phys., 14, 3589-3622, doi: 10.5194/acp-14-3589-2014, 2014. 4. Valdes, P. J., Beerling, D. J.,and Johnson, C. E.: The ice age methane budget, Geophysical Research Letters, 32, n/a-n/a, doi: 10.1029/2004GL021004, 2005. 5. Jöckel, P., et al.: Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci. Model Dev., 3, 717-752, doi: 10.5194/gmd-3-717-2010, 2010. 6. Lelieveld, J., et al.: Global tropospheric hydroxyl distribution, budget and reactivity, Atmos. Chem. Phys., 16, 12477-12493, doi: 10.5194/acp-16-12477-2016, 2016.

  20. Sulfur isotopic analysis of carbonyl sulfide and its application for biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Hattori, Shohei; Kamezaki, Kazuki; Ogawa, Takahiro; Toyoda, Sakae; Katayama, Yoko; Yoshida, Naohiro

    2016-04-01

    reaction does not contribute to the MIF signatures observed in sulfate aerosol samples and/or Archaean rock records. At the presentation, we report the comparison of 34ɛ values determined using some strains and the atmospheric implications for the OCS degradation in the present atmosphere are discussed. Hattori, S., Danielache, S. O., Johnson, M. S., Schmidt, J. A., Kjaergaard, H. G., Toyoda, S., Ueno, Y., Yoshida, N. Ultraviolet absorption cross sections of carbonyl sulfide isotopologues OC32S, OC33S, OC34S and O13CS: isotopic fractionation in photolysis and atmospheric implications, Atmos. Chem. Phys., 11, 10293-10303, 2011. Schmidt, J. A., Johnson, M. S., Jung, Y., Danielache, S. O., Hattori, S., Yoshida, N., Predictions of the sulfur and carbon kinetic isotope effects in the OH + OCS reaction, Chem. Phys. Lett., 531, 64-69, 2012. Hattori, S., Schmidt J. A., Mahler D., Danielache, S. O., Johnson M. S., Yoshida N. Isotope Effect in the Carbonyl Sulfide Reaction with O(3P), J. Phys. Chem. A, 116, 3521-3526, 2012. Hattori, S., Toyoda, A., Toyoda, S., Ishino S., Ueno, Y., Yoshida, N.: Determination of the Sulfur Isotope Ratio in Carbonyl Sulfide using Gas Chromatography/Isotope Ratio Mass Spectrometry on Fragment Ions 32S+, 33S+, and 34S+, Anal. Chem., 87, 477-484, 2015. Kato, H., Saito, M., Nagahata, Y., Katayama, Y.: Degradation of ambient carbonyl sulfide by Mycobacterium spp. in soil. Microbiol., 154(1), 249-255, 2008.

  1. Regional Modeling of Dust Mass Balance and Radiative Forcing over East Asia using WRF-Chem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Siyu; Zhao, Chun; Qian, Yun

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to investigate the seasonal and annual variations of mineral dust over East Asia during 2007-2011, with a focus on the dust mass balance and radiative forcing. A variety of measurements from in-stu and satellite observations have been used to evaluate simulation results. Generally, WRF-Chem reproduces not only the column variability but also the vertical profile and size distribution of mineral dust over and near the dust source regions of East Asia. We investigate the dust lifecycle and the factors that control the seasonal and spatial variations of dust massmore » balance and radiative forcing over the seven sub-regions of East Asia, i.e. source regions, the Tibetan Plateau, Northern China, Southern China, the ocean outflow region, and Korea-Japan regions. Results show that, over the source regions, transport and dry deposition are the two dominant sinks. Transport contributes to ~30% of the dust sink over the source regions. Dust results in a surface cooling of up to -14 and -10 W m-2, atmospheric warming of up to 20 and 15 W m-2, and TOA cooling of -5 and -8 W m-2 over the two major dust source regions of East Asia, respectively. Over the Tibetan Plateau, transport is the dominant source with a peak in summer. Over identified outflow regions, maximum dust mass loading in spring is contributed by the transport. Dry and wet depositions are the comparably dominant sinks, but wet deposition is larger than dry deposition over the Korea-Japan region, particularly in spring (70% versus 30%). The WRF-Chem simulations can generally capture the measured features of dust aerosols and its radaitve properties and dust mass balance over East Asia, which provides confidence for use in further investigation of dust impact on climate over East Asia.« less

  2. Spectroscopic Observations of Comet C/2013 A1 (Siding Spring) from Mars using ChemCam, OMEGA and SPICAM.

    NASA Astrophysics Data System (ADS)

    Lasue, J.; Gondet, B.; Bertaux, J. L.; Barraclough, B. L.; Beck, P.; Bender, S.; Bibring, J. P.; Bridges, N. T.; Chaufray, J. Y.; Gasnault, O.; Herkenhoff, K. E.; Langevin, Y.; Le Mouelic, S.; Lemmon, M. T.; Lewin, E.; McConnochie, T. H.; Martín-Torres, J.; Maurice, S.; Meslin, P. Y.; Ming, D. W.; Montmessin, F.; Owen, T. C.; Rapin, W.; Rocard, F.; Wiens, R. C.; Zorzano, M. P.

    2014-12-01

    Comet Siding Spring will graze Mars on Oct. 19th 2014. Its closest approach from the centre of the planet will be 135,000 km, and its predicted visual magnitude as low as -5.3 (JPL Horizons web site). The observing conditions will be ideal to attempt spectroscopic measurements of the inner coma from the UV to the IR at an unprecedented spectral resolution from the instruments located on and around Mars. ChemCam is a Laser-Induced Breakdown Spectroscopy instrument operating on-board the Mars Science Laboratory rover to analyse the chemical composition of rocks and can be used for passive spectroscopy. ChemCam is equipped with high resolution spectrometers covering the optical range (240-850 nm) with a pixel resolution of 0.05nm up to 470nm and 0.2nm in the near-IR range. The ChemCam passive spectroscopy field of view is 0.65 mrad wide and covers several 100km projected on the coma. Based on predicted magnitude and inner coma intensity variations, we expect to retrieve spectral signatures around the nucleus. Simultaneously the 7 instruments on board Mars Express will take measurements in nadir and limb modes. We will merge the results obtained with ChemCam with those of the 2 imaging spectrometers SPICAM (110-310 nm resolution of 0.6nm and 1-1.7 μm resolution of 1.5 nm) and OMEGA (457-910 nm resolution of 1.5 nm and 2.5-5.1 μm resolution of 15 nm) to obtain the composition and spatial variation of emitting molecules in the different parts of the coma. The instruments will also monitor the atmosphere before and after the encounter to detect any change. We will report on the preparations for the observations and the spectroscopy results, with emphasis on the detection of complex organic molecules and the spatial distribution of H2O and OH in the inner coma. A decision will be made on the adequacy of risk reduction activities for the spacecraft, and planned science operations may need to be cancelled by ESOC.This work is supported by NASA, ESA and CNES.

  3. Evaluation of the Chem 1 analyzer.

    PubMed

    Biosca, C; Antoja, F; Sierra, C; Aluma, A; Farre, J; Alsina, M J; Galimany, R

    1991-01-01

    The selective multitest Technicon Chem 1 analyser was evaluated according to the guidelines of the 'Comisión de Instrumentación de la Sociedad Española de Química Clínica', and the protocols of the 'European Committee for Clinical Laboratory Standards' and 'Commission de validation de techniques' of the 'Société Française de Biologie Clinique'. The evaluation was performed in three steps: evaluation in routine conditions, assessment of the interferences and study of practicability. Under routine working conditions, eighteen constituents were studied. Within-run imprecision ranged from 0.6% (CV) for gamma-GT to 4.7% (CV) for AST. Between-run imprecision ranged from 1.6% (CV) for ion sodium to 5.5% (CV) for creatinine. Specimen related carry-over was not within the samples; specimen independent carry-over was found in some of the constituents studied. The relative inaccuracy is good for all the constituents assayed. Haemoglobin (290 mumol.l1) showed a positive interference with urate at three concentration levels (low, medium and high). Bilirubin (up to 300 mumol.l-1) caused a negative interference with creatinine at three concentration levels. Turbidity (trigliceride up to 4 mumol.l-1) stated a positive interference with creatinine at three concentration levels and with AST at two concentration levels (low and medium). Turbidity also caused a negative interference with urate at three concentration levels and with urea at two concentration levels (low and medium).

  4. Biological particles capable of triggering ice nucleation in the atmosphere

    NASA Astrophysics Data System (ADS)

    Felgitsch, Laura; Bichler, Magdalena; Vogel, André; Häusler, Thomas; Grothe, Hinrich

    2016-04-01

    ., Grothe, H.; Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen; Atmos. Chem. Phys., 12, 2541 - 2550, 2012. Huffman J.A., Prenni A.J., DeMott P.J., Pöhlker C., Mason R.H., Robinson N.H., Frohlich-Nowoisky J., Tobo Y., Després V.R., Garcia E., Gochis D.J., Harris E., Müller-Germann I., Ruzene C., Schmer B., Sinha B., Day D.A., Andreae M.O., Jimenez J.L., Gallagher M., Kreidenweis S.M., Bertram A.K., Pöschl U., High Concentrations of Biological Aerosol Particles and Ice Nuclei During and After Rain; Atmos. Chem. Phys. Vol. 13; pp 6151-6164, 2013.

  5. AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6

    DOE PAGES

    Collins, William J.; Lamarque, Jean -François; Schulz, Michael; ...

    2017-02-09

    The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions. 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How might future policies (on climate, air quality and land use) affect the abundances of NTCFs and theirmore » climate impacts? 3.How do uncertainties in historical NTCF emissions affect radiative forcing estimates? 4. How important are climate feedbacks to natural NTCF emissions, atmospheric composition, and radiative effects? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and/or chemistry to be quantified. As a result, specific diagnostics are requested as part of the CMIP6 data request to highlight the chemical composition of the atmosphere, to evaluate the performance of the models, and to understand differences in behaviour between them.« less

  6. Statistical Downscaling of WRF-Chem Model: An Air Quality Analysis over Bogota, Colombia

    NASA Astrophysics Data System (ADS)

    Kumar, Anikender; Rojas, Nestor

    2015-04-01

    Statistical downscaling is a technique that is used to extract high-resolution information from regional scale variables produced by coarse resolution models such as Chemical Transport Models (CTMs). The fully coupled WRF-Chem (Weather Research and Forecasting with Chemistry) model is used to simulate air quality over Bogota. Bogota is a tropical Andean megacity located over a high-altitude plateau in the middle of very complex terrain. The WRF-Chem model was adopted for simulating the hourly ozone concentrations. The computational domains were chosen of 120x120x32, 121x121x32 and 121x121x32 grid points with horizontal resolutions of 27, 9 and 3 km respectively. The model was initialized with real boundary conditions using NCAR-NCEP's Final Analysis (FNL) and a 1ox1o (~111 km x 111 km) resolution. Boundary conditions were updated every 6 hours using reanalysis data. The emission rates were obtained from global inventories, namely the REanalysis of the TROpospheric (RETRO) chemical composition and the Emission Database for Global Atmospheric Research (EDGAR). Multiple linear regression and artificial neural network techniques are used to downscale the model output at each monitoring stations. The results confirm that the statistically downscaled outputs reduce simulated errors by up to 25%. This study provides a general overview of statistical downscaling of chemical transport models and can constitute a reference for future air quality modeling exercises over Bogota and other Colombian cities.

  7. AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, William J.; Lamarque, Jean -François; Schulz, Michael

    The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions. 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How might future policies (on climate, air quality and land use) affect the abundances of NTCFs and theirmore » climate impacts? 3.How do uncertainties in historical NTCF emissions affect radiative forcing estimates? 4. How important are climate feedbacks to natural NTCF emissions, atmospheric composition, and radiative effects? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and/or chemistry to be quantified. As a result, specific diagnostics are requested as part of the CMIP6 data request to highlight the chemical composition of the atmosphere, to evaluate the performance of the models, and to understand differences in behaviour between them.« less

  8. Organo-Nitrogen Reactions on Jupiter

    NASA Astrophysics Data System (ADS)

    Lamothe, V. L.; Moses, J. I.

    2000-10-01

    Because the altitude regions for CH4 and NH3 photodissociation are physically separated from each other in the Jovian atmosphere, the possibility of forming organo-nitrogen compounds on Jupiter has been an uncertain problem [1,2,3,4,5]. Carbon- and nitrogen-bearing species do not interact significantly in laboratory experiments involving ultraviolet irradiation of CH4-NH3-H2 mixtures [6,7]. However, HCN and a variety of complex organo-nitrogen molecules are produced when methane in the above experiments is replaced by unsaturated hydrocarbons such as C2H2 or CH3C2H [8,9]. To determine the formation efficiency of organo-nitrogen compounds on Jupiter, we have added the reaction schemes proposed by [3,8,9] to a photochemical model of the Jovian troposphere and stratosphere. We find that HCN does not form in observable quantities unless a large tropospheric source of C2H2 exists (e.g., via lightning-induced chemistry, see [10]). Organo-nitrogen reactions are unlikely to be important on Jupiter --- chromophores are most likely due to inorganic compounds. References: [1] Strobel, D. F. (1973), J. Atmos. Sci. 30, 1205; [2] Kaye, J. A., and D. F. Strobel (1983a), Icarus\\ 55, 399; [3] Kaye, J. A., and D. F. Strobel (1983b), Icarus\\ 54, 417; [4] Tokunaga, A. T. et al./ (1981), Icarus\\ 48, 283; [5] Bézard, B. et al./ (1995), Icarus\\ 118, 384; [6] Raulin, F. et al. (1979), Icarus\\ 38, 358; [7] Ferris, J. P., and J. Y. Morimoto (1981), Icarus\\ 48, 118; [8] Ferris, J. P., and Y. Ishikawa (1988), J. Am. Chem. Soc. 110, 4306; [9] Ferris, J. et\\ al. (1992), Icarus\\ 95, 54; [10] Bétremieux, Y., and R. V. Yelle (1999), BAAS\\ 31, 1180.

  9. Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qing; Gustafson, William I.; Fast, Jerome D.

    2011-12-02

    In the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model, we have coupled the Morrison double-moment microphysics scheme with interactive aerosols so that full two-way aerosol-cloud interactions are included in simulations. We have used this new WRF-Chem functionality in a study focused on assessing predictions of aerosols, marine stratocumulus clouds, and their interactions over the Southeast Pacific using measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals. This study also serves as a detailed analysis of our WRF-Chem simulations contributed to the VOCALS model Assessment (VOCA) project. The WRF-Chem 31-day (October 15-November 16,more » 2008) simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations assumed by the default in Morrison microphysics scheme with no interactive aerosols. The well-predicted aerosol properties such as number, mass composition, and optical depth lead to significant improvements in many features of the predicted stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness, and cloud macrostructure such as cloud depth and cloud base height. These improvements in addition to the aerosol direct and semi-direct effects, in turn, feed back to the prediction of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengths temperature and humidity gradients within capping inversion layer and lowers the MBL depth by 150 m from that of the MET simulation. Mean top-of-the-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated

  10. High resolution infrared spectroscopy from space: A preliminary report on the results of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Farmer, Crofton B.; Raper, Odell F.

    1987-01-01

    The ATMOS (Atmospheric Trace Molecule Spectroscopy) experiment has the broad purpose of investigating the physical structure, chemistry, and dynamics of the upper atmosphere through the study of the distributions of the neutral minor and trace constituents and their seasonal and long-term variations. The technique used is high-resolution infrared absorption spectroscopy using the Sun as the radiation source, observing the changes in the transmission of the atmosphere as the line-of-sight from the Sun to the spacecraft penetrates the atmosphere close to the Earth's limb at sunrise and sunset. During these periods, interferograms are generated at the rate of one each second which yield, when transformed, high resolution spectra covering the 2.2 to 16 micron region of the infrared. Twenty such occultations were recorded during the Spacelab 3 flight, which have produced concentration profiles for a large number of minor and trace upper atmospheric species in both the Northern and Southern Hemispheres. Several of these species have not previously been observed in spectroscopic data. The data reduction and analysis procedures used following the flight are discussed; a number of examples of the spectra obtained are shown, and a bar graph of the species detected thus far in the analysis is given which shows the altitude ranges for which concentration profiles were retrieved.

  11. The Impact of Residential Combustion Emissions on Air Quality and Human Health in China

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Wiedinmyer, C.; Baumgartner, J.; Brauer, M.; Cohen, A.; Carter, E.; Frostad, J.; Forouzanfar, M.; Xiao, Q.; Liu, Y.; Yang, X.; Hongjiang, N.; Kun, N.

    2015-12-01

    Solid fuel cookstoves are used heavily in rural China for both residential cooking and heating purposes. Their use contributes significantly to regional emissions of several key pollutants, including carbon monoxide, volatile organic compounds, oxides of nitrogen, and aerosol particles. The residential sector was responsible for approximately 36%, 46% and 81% of China's total primary PM2.5, BC and OC emissions respectively in 2005 (Lei et al., 2011). These emissions have serious consequences for household air pollution, ambient air quality, tropospheric ozone formation, and the resulting population health and climate impacts. This paper presents initial findings from the modeling component of a multi-disciplinary energy intervention study currently being conducted in Sichuan, China. The purpose of this effort is to quantify the impact of residential cooking and heating emissions on regional air quality and human health. Simulations with varying levels of residential emissions have been carried out for the whole of 2014 using the Weather Research and Forecasting model with Chemistry (WRF-Chem), a fully-coupled, "online" regional chemical transport model. Model output is evaluated against surface air quality measurements across China and compared with seasonal (winter and summer) ambient air pollution measurements conducted at the Sichuan study site in 2014. The model output is applied to available exposure—response relationships between PM2.5 and cardiopulmonary health outcomes. The sensitivity in different regions across China to the different cookstove emission scenarios and seasonality of impacts are presented. By estimating the mortality and disease burden risk attributable to residential emissions we demonstrate the potential benefits from large-scale energy interventions. Lei Y, Zhang Q, He KB, Streets DG. 2011. Primary anthropogenic aerosol emission trends for China, 1990-2005. Atmos. Chem. Phys. 11:931-954.

  12. Impact of resolution on aerosol radiative feedbacks with in online-coupled chemistry/climate simulations (WRF-Chem) for EURO-CORDEX compliant domains

    NASA Astrophysics Data System (ADS)

    López-Romero, Jose Maria; Baró, Rocío; Palacios-Peña, Laura; Jerez, Sonia; Jiménez-Guerrero, Pedro; Montávez, Juan Pedro

    2016-04-01

    Several studies have shown that a high spatial resolution in atmospheric model runs improves the simulation of some meteorological variables, such as precipitation, particularly extreme events and in regions with complex orography [1]. However, increasing model spatial resolution makes the computational time rise exponentially. Hence, very high resolution experiments on large domains can hamper the execution of climatic runs. This problem shoots up when using online-coupled chemistry climate models, making a careful evaluation of improvements versus costs mandatory. Under this umbrella, the objective of this work is to investigate the sensitivity of aerosol radiative feedbacks from online-coupled chemistry regional model simulations to the spatial resolution. For that, the WRF-Chem [2] model is used for a case study to simulate the episode occurring between July 25th and August 15th of 2010. It is characterized by a high loading of atmospheric aerosol particles coming mainly from wildfires over large European regions (Russia, Iberian Peninsula). Three spatial resolutions are used defined for Euro-Cordex compliant domains [3]: 0.44°, 0.22° and 0.11°. Anthropogenic emissions come from TNO databases [4]. The analysis focuses on air quality variables (mainly PM10, PM2.5), meteorological variables (temperature, radiation) and other aerosol optical properties (aerosol optical depth). The CPU time ratio for the different domains is 1 (0.44°), 4(0.22°) and 28(0.11°) (normalized times). Comparison among simulations and observations are analyzed. Preliminary results show the difficulty to justify the much larger computational cost of high-resolution experiments when comparing with observations from a meteorological point of view, despite the finer spatio-temporal detail of the obtained pollutant fields. [1] Prein, A. F. (2014, December). Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high benefits?. In AGU Fall Meeting Abstracts (Vol

  13. Superfund Record of Decision (EPA Region 5): Enviro-Chem (Northside Sanitary Landfill), Zionsville, IN. (First remedial action), (Amendment), June 1991. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Enviro-chem site is a former waste recovery/reclamation/brokerage facility in Boone County, Indiana. Adjacent to the site is another Superfund site, the Northside Sanitary Landfill (NSL) which, prior to the Record of Decision (ROD) amendment, was to be remediated in a combined remedy for both sites. Land use in the area is agricultural and residential to the north and west. In May 1982, the State ordered Enviro-Chem to close and environmentally secure the site because it failed to reduce hazardous waste inventories. Subsequently, two emergency removal actions were conducted to remove the major sources of contamination. The ROD amends themore » 1987 ROD and provides a comprehensive site remedy for the Enviro-Chem site addressing source control instead of ground water remediation. The primary contaminants of concern affecting the soil are VOCs including PCE, TCE, toluene; and other organics including phenols. The amended remedial action for the site includes treating contaminated soil onsite using soil vapor extraction with a granulated activated carbon system to control the extracted vapor and implementing a contingent remedy for a subsurface ground water collection and treatment system.« less

  14. Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Xu, Xiaoguang; Henze, Daven K.; Zeng, Jing; Ji, Qiang; Tsay, Si-Chee; Huang, Jianping

    2012-04-01

    Predicting the influences of dust on atmospheric composition, climate, and human health requires accurate knowledge of dust emissions, but large uncertainties persist in quantifying mineral sources. This study presents a new method for combined use of satellite-measured radiances and inverse modeling to spatially constrain the amount and location of dust emissions. The technique is illustrated with a case study in May 2008; the dust emissions in Taklimakan and Gobi deserts are spatially optimized using the GEOS-Chem chemical transport model and its adjoint constrained by aerosol optical depth (AOD) that are derived over the downwind dark-surface region in China from MODIS (Moderate Resolution Imaging Spectroradiometer) reflectance with the aerosol single scattering properties consistent with GEOS-chem. The adjoint inverse modeling yields an overall 51% decrease in prior dust emissions estimated by GEOS-Chem over the Taklimakan-Gobi area, with more significant reductions south of the Gobi Desert. The model simulation with optimized dust emissions shows much better agreement with independent observations from MISR (Multi-angle Imaging SpectroRadiometer) AOD and MODIS Deep Blue AOD over the dust source region and surface PM10 concentrations. The technique of this study can be applied to global multi-sensor remote sensing data for constraining dust emissions at various temporal and spatial scales, and hence improving the quantification of dust effects on climate, air quality, and human health.

  15. Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Pfrang, Christian; Pöschl, Ulrich

    2010-05-01

    earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical life-times of multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (~10-10 cm2 s-1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models. References [1] Pöschl et al., Atmos. Chem. and Phys., 7, 5989-6023 (2007). [2] Shiraiwa et al., Atmos. Chem. Phys. Discuss., 10, 281-326 (2010).

  16. Coupled Retrieval of Aerosol Properties and Surface Reflection Using the Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI)

    NASA Astrophysics Data System (ADS)

    Xu, F.; van Harten, G.; Kalashnikova, O. V.; Diner, D. J.; Seidel, F. C.; Garay, M. J.; Dubovik, O.

    2016-12-01

    The Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI) [1] has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI acquires radiance and polarization data at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (* denotes polarimetric bands). The imaged area covers about 10 km by 10 km and is observed from 9 view angles between ±67° off of nadir. We have developed an efficient and flexible code that uses the information content of AirMSPI data for a coupled retrieval of aerosol properties and surface reflection. The retrieval was built based on the multi-pixel optimization concept [2], with the use of a hybrid radiative transfer model [3] that combines the Markov Chain [4] and adding/doubling methods [5]. The convergence and robustness of our algorithm is ensured by applying constraints on (a) the spectral variation of the Bidirectional Polarization Distribution Function (BPDF) and angular shape of the Bidirectional Reflectance Distribution Function (BRDF); (b) the spectral variation of aerosol optical properties; and (c) the spatial variation of aerosol parameters across neighboring image pixels. Our retrieval approach has been tested using over 20 AirMSPI datasets having low to moderately high aerosol loadings ( 0.02550-nm< 0.45) and acquired during several field campaigns. Results are compared with AERONET aerosol reference data. We also explore the benefits of AirMSPI's ultraviolet and polarimetric bands as well as the use of multiple view angles. References[1]. D. J. Diner, et al. Atmos. Meas. Tech. 6, 1717 (2013). [2]. O. Dubovik et al. Atmos. Meas. Tech. 4, 975 (2011). [3]. F. Xu et al. Atmos. Meas. Tech. 9, 2877 (2016). [4]. F. Xu et al. Opt. Lett. 36, 2083 (2011). [5]. J. E. Hansen and L.D. Travis. Space Sci. Rev. 16, 527 (1974).

  17. Intercomparison of in situ and remote sensing aerosol measurements in the lowermost stratosphere during varying volcanic influence

    NASA Astrophysics Data System (ADS)

    Sandvik, Oscar S.; Martinsson, Bengt G.; Friberg, Johan; Hermann, Markus; van Velthoven, Peter J. F.; Zahn, Andreas

    2017-04-01

    dynamical tropopause at 1.5 PVU was used (Gettelman et al. 2011). The increase of the AOD per meter with height above the tropopause reflected that the concentration of volcanic aerosols was denser at higher altitudes. After volcanic eruptions the agreement between the two measurement platforms is good except during spring, where substantial differences between the two measurement platforms were observed. These differences could have been caused by a presence of soil dust above the tropopause. For the period of small volcanic influence CALIPSO systematically reported higher AOD per meter values than IAGOS-CARIBIC, thus indicating that aerosol components other than particulate sulfur were contributing to the CALIPSO measurements. Brenninkmeijer C.A.M. et al. (2007). Atmos. Chem. Phys., 7, 4953-4976, doi:10.5194/acp-7-4953-2007 Nguyen H.N. et al. (2006). Aerosol Sci. Technol., 40, 649-655, doi:10.1080/02786820600767807 Martinsson et al. (2014). Atmos. Meas. Tech., 7, 2581-2596, doi:10.5194/amt-7-2581-2014 Jäger and Deshler (2002). Geophys. Res. Lett., 29, 1929, doi:10.1029/2002GL015609 Vernier et al. (2009). J. Geophys. Res., 114, D00H10, doi:10.1029/2009JD011946 Gettelman et al. (2011). Rev. Geophys., 49, RG3003, doi:10.1029/2011RG000355

  18. Local geological dust in the area of Rome (Italy): linking mineral composition, size distribution and optical properties to radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Pietrodangelo, Adriana; Salzano, Roberto; Bassani, Cristiana; Pareti, Salvatore; Perrino, Cinzia

    2015-04-01

    ; Vermote et al., 1997) was employed, which computes aerosol optical properties (single-scattering albedo, asymmetry parameter, extinction coefficient, scattering coefficient, phase function) by the Mie Theory, and simulates the downward flux at BOA (FdBOA) by solving the radiative transfer equation. Conditions of dryness and of spherical particle shape were applied to all parts of this work. The size distribution fitting to the log-normal function appears unimodal, both for the volcanics and travertine domains, the first showing coarser mode than the latter. Volume distributions of quartz, feldspar, kaolinite and calcite fall in the coarse fraction, showing maximum around 5µm (aerodynamic diameter); differences in the curve height suggest particle density variety among mineral species. The single-scattering albedo highlights the weak absorption of travertine, with respect to volcanics, along the visible and Near-InfraRed (NIR) spectral domain. The asymmetry parameter indicates that the volcanics dust appears composed by particles with highly forward scattering, mainly in the Near-InfraRed (NIR) spectral domain, while the travertine shows more isotropic particles. Finally, both volcanics and travertine dusts leave the direct component of FdBOA unchanged, while the diffuse component depends strongly on the mineral composition. Hansell, R.A., et al. (2011), Atmos. Chem. Phys. Cosentino, D., et al. (2009), Quaternary Research Pietrodangelo, A., et al. (2013), Atmos. Env. Kotchenova, S.Y., et al. (2008), Appl. Optics Vermote, E.F., et al. (1997), IEEE Trans. Geosci. Remote Sens.

  19. Application of ChemDraw NMR Tool: Correlation of Program-Generated 13C Chemical Shifts and pKa Values of para-Substituted Benzoic Acids

    NASA Astrophysics Data System (ADS)

    Wang, Hongyi

    2005-09-01

    An application of ChemDraw NMR Tool was demonstrated by correlation of program-generated 13 C NMR chemical shifts and p K a values of para-substituted benzoic acids. Experimental 13 C NMR chemical shifts were analyzed in the same way for comparison. The project can be used as an assignment at the end of the first-year organic chemistry course to review topics or explore new techniques: Hammett equation, acid base equilibrium theory, electronic nature of functional groups, inductive and resonance effects, structure reactivity relationship, NMR spectroscopy, literature search, database search, and ChemDraw software.

  20. Simulating the impacts of chronic ozone exposure on plant conductance and photosynthesis, and on the regional hydroclimate using WRF/Chem

    NASA Astrophysics Data System (ADS)

    Li, Jialun; Mahalov, Alex; Hyde, Peter

    2016-11-01

    The Noah-Multiparameterization land surface model in the Weather Research and Forecasting (WRF) with Chemistry (WRF/Chem) is modified to include the effects of chronic ozone exposure (COE) on plant conductance and photosynthesis (PCP) found from field experiments. Based on the modified WRF/Chem, the effects of COE on regional hydroclimate have been investigated over the continental United States. Our results indicate that the model with/without modification in its current configuration can reproduce the rainfall and temperature patterns of the observations and reanalysis data, although it underestimates rainfall in the central Great Plains and overestimates it in the eastern coast states. The experimental tests on the effects of COE include setting different thresholds of ambient ozone concentrations ([O3]) and using different linear regressions to quantify PCP against the COE. Compared with the WRF/Chem control run (i.e., without considering the effects of COE), the modified model at different experiment setups improves the simulated estimates of rainfall and temperatures in Texas and regions to the immediate north. The simulations in June, July and August of 2007-2012 show that surface [O3] decrease latent heat fluxes (LH) by 10-27 W m-2, increase surface air temperatures (T 2) by 0.6 °C-2.0 °C, decrease rainfall by 0.9-1.4 mm d-1, and decrease runoff by 0.1-0.17 mm d-1 in Texas and surrounding areas, all of which highly depends on the precise experiment setup, especially the [O3] threshold. The mechanism producing these results is that COE decreases the LH and increases sensible heat fluxes, which in turn increases the Bowen ratios and air temperatures. This lowering of the LH also results in the decrease of convective potential and finally decreases convective rainfall. Employing this modified WRF/Chem model in any high [O3] region can improve the understanding of the interactions of vegetation, meteorology, chemistry/emissions, and crop productivity.

  1. Twelve-month, 12 km resolution North American WRF-Chem v3.4 air quality simulation: performance evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    We present results from and evaluate the performance of a 12-month, 12 km horizontal resolution year 2005 air pollution simulation for the contiguous United States using the WRF-Chem (Weather Research and Forecasting with Chemistry) meteorology and chemical transport model (CTM). We employ the 2005 US National Emissions Inventory, the Regional Atmospheric Chemistry Mechanism (RACM), and the Modal Aerosol Dynamics Model for Europe (MADE) with a volatility basis set (VBS) secondary aerosol module. Overall, model performance is comparable to contemporary modeling efforts used for regulatory and health-effects analysis, with an annual average daytime ozone (O 3) mean fractional bias (MFB) ofmore » 12% and an annual average fine particulate matter (PM 2.5) MFB of −1%. WRF-Chem, as configured here, tends to overpredict total PM 2.5 at some high concentration locations and generally overpredicts average 24 h O 3 concentrations. Performance is better at predicting daytime-average and daily peak O 3 concentrations, which are more relevant for regulatory and health effects analyses relative to annual average values. Predictive performance for PM 2.5 subspecies is mixed: the model overpredicts particulate sulfate (MFB = 36%), underpredicts particulate nitrate (MFB = −110%) and organic carbon (MFB = −29%), and relatively accurately predicts particulate ammonium (MFB = 3%) and elemental carbon (MFB = 3%), so that the accuracy in total PM 2.5 predictions is to some extent a function of offsetting over- and underpredictions of PM 2.5 subspecies. Model predictive performance for PM 2.5 and its subspecies is in general worse in winter and in the western US than in other seasons and regions, suggesting spatial and temporal opportunities for future WRF-Chem model development and evaluation.« less

  2. Twelve-month, 12 km resolution North American WRF-Chem v3.4 air quality simulation: performance evaluation

    DOE PAGES

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-04-07

    We present results from and evaluate the performance of a 12-month, 12 km horizontal resolution year 2005 air pollution simulation for the contiguous United States using the WRF-Chem (Weather Research and Forecasting with Chemistry) meteorology and chemical transport model (CTM). We employ the 2005 US National Emissions Inventory, the Regional Atmospheric Chemistry Mechanism (RACM), and the Modal Aerosol Dynamics Model for Europe (MADE) with a volatility basis set (VBS) secondary aerosol module. Overall, model performance is comparable to contemporary modeling efforts used for regulatory and health-effects analysis, with an annual average daytime ozone (O 3) mean fractional bias (MFB) ofmore » 12% and an annual average fine particulate matter (PM 2.5) MFB of −1%. WRF-Chem, as configured here, tends to overpredict total PM 2.5 at some high concentration locations and generally overpredicts average 24 h O 3 concentrations. Performance is better at predicting daytime-average and daily peak O 3 concentrations, which are more relevant for regulatory and health effects analyses relative to annual average values. Predictive performance for PM 2.5 subspecies is mixed: the model overpredicts particulate sulfate (MFB = 36%), underpredicts particulate nitrate (MFB = −110%) and organic carbon (MFB = −29%), and relatively accurately predicts particulate ammonium (MFB = 3%) and elemental carbon (MFB = 3%), so that the accuracy in total PM 2.5 predictions is to some extent a function of offsetting over- and underpredictions of PM 2.5 subspecies. Model predictive performance for PM 2.5 and its subspecies is in general worse in winter and in the western US than in other seasons and regions, suggesting spatial and temporal opportunities for future WRF-Chem model development and evaluation.« less

  3. ChemEd Bridges: Building Bridges between Two-Year College Chemistry Faculty and the National Chemical Education Community

    ERIC Educational Resources Information Center

    Ungar, Harry; Brown, David R.

    2010-01-01

    ChemEd Bridges is an NSF-funded project that provides career and professional development opportunities for chemistry faculty members who teach at two-year colleges (2YCs). We broaden the interests and the horizons of these faculty members by building bridges between them and the broader community of chemical educators. In particular, we have…

  4. Comment on ``On the Crooks fluctuation theorem and the Jarzynski equality'' [J. Chem. Phys. 129, 091101 (2008)

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2009-06-01

    It has recently been argued that a self-consistency condition involving the Jarzynski equality (JE) and the Crooks fluctuation theorem (CFT) is violated for a simple Brownian process [L. Y. Chen, J. Chem. Phys.129, 091101 (2008)]. This note adopts the definitions in the original formulation of the JE and CFT and demonstrates the contrary.

  5. MicroChemLab, A Novel Approach for Handheld Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Lewis, Patrick

    2003-03-01

    In 1996, Sandia National Laboratories began development of a chemical sensing platform based on microfabricated components. The goal of the project was to develop a handheld system for the detection of chemical warfare (CW) agent vapors in air. The components developed for this project are analogous to devices used in analytical laboratories. The benefit of microfabrication is that the resulting components are small and require little power to operate. The key elements of MicroChemLab are a sample collector - preconcentrator, a GC column and a surface acoustic wave (SAW) array detector. The preconcentrator is a thermally isolated silicon nitride membrane with a resistive heater patterned on one side and a sorptive sol gel film deposited on the other. Since the membrane has a very small mass, the resistive heater can ballistically elevate the temperature of the sorptive film to 200° C in approximately 10 ms. The sol gel film collects target compounds efficiently, but rejects volatile industrial solvents like alcohols, ketones, etc. The GC column is a one-meter high aspect ratio spiral channel etched in silicon with an anodically bonded pyrex lid completing the channel. A heater patterned on the silicon allows the column to be temperature ramped. Analytes injected from the preconcentrator are separated in this stage. The SAW array detector contains 3 delay lines used for sensing and 1 reference delay line. Each delay line is driven by an application specific integrated circuit (ASIC) at 500 MHz. Instead of counting frequency, additional ASICs incorporate a phase comparator that delivers a DC signal proportional to the amount of phase change. The three sensing elements of the detector provide a pattern that is indicative of the class of compound detected i.e. nerve agents or blister agents. Combined, these components provide a selective and sensitive handheld solution for the detection of chemical warfare agents. We will present lab data showing the performance of

  6. Exploring Natural Products from the Biodiversity of Pakistan for Computational Drug Discovery Studies: Collection, Optimization, Design and Development of A Chemical Database (ChemDP).

    PubMed

    Mirza, Shaher Bano; Bokhari, Habib; Fatmi, Muhammad Qaiser

    2015-01-01

    Pakistan possesses a rich and vast source of natural products (NPs). Some of these secondary metabolites have been identified as potent therapeutic agents. However, the medicinal usage of most of these compounds has not yet been fully explored. The discoveries for new scaffolds of NPs as inhibitors of certain enzymes or receptors using advanced computational drug discovery approaches are also limited due to the unavailability of accurate 3D structures of NPs. An organized database incorporating all relevant information, therefore, can facilitate to explore the medicinal importance of the metabolites from Pakistani Biodiversity. The Chemical Database of Pakistan (ChemDP; release 01) is a fully-referenced, evolving, web-based, virtual database which has been designed and developed to introduce natural products (NPs) and their derivatives from the biodiversity of Pakistan to Global scientific communities. The prime aim is to provide quality structures of compounds with relevant information for computer-aided drug discovery studies. For this purpose, over 1000 NPs have been identified from more than 400 published articles, for which 2D and 3D molecular structures have been generated with a special focus on their stereochemistry, where applicable. The PM7 semiempirical quantum chemistry method has been used to energy optimize the 3D structure of NPs. The 2D and 3D structures can be downloaded as .sdf, .mol, .sybyl, .mol2, and .pdb files - readable formats by many chemoinformatics/bioinformatics software packages. Each entry in ChemDP contains over 100 data fields representing various molecular, biological, physico-chemical and pharmacological properties, which have been properly documented in the database for end users. These pieces of information have been either manually extracted from the literatures or computationally calculated using various computational tools. Cross referencing to a major data repository i.e. ChemSpider has been made available for overlapping

  7. A new optical ice particle counter at LACIS

    NASA Astrophysics Data System (ADS)

    Bieligk, Henner; Voelker, Georg Sebastian; Clauss, Tina; Grundmann, Marius; Stratmann, Frank

    2014-05-01

    Snomax® and several dusts (e.g. illite, kaolinite, ATD) as ice nuclei which all show different behaviors in ice formation. Furthermore, a detailed comparison of both instruments TOPS-Ice and the new setup is planned. This project is part of the Leipzig Graduate School on Clouds, Aerosols and Radiation and is partly supported by the German Research Foundation (DFG project WE 4722/1-1) within the DFG Research Unit FOR 1525 INUIT. Clauss, T., Kiselev, A., Hartmann, S., Augustin, S., Pfeifer, S., Niedermeier, D., Wex, H., and Stratmann, F, 2013, Application of linear polarized light for the discrimination of frozen and liquid droplets in ice nucleation experiments, Atmos. Meas. Tech., 6, 1041-1052. Hartmann, S., Niedermeier, D., Voigtländer, J., Clauss, T., Shaw, R. A., Kiselev, A., and Stratmann, F., 2011, Homogeneous and heterogeneous ice nucleation at LACIS: operating principle and theoretical studies, Atmos. Chem. Phys., 11, 1753-1767. Stratmann, F., Kiselev, A., Wurzler, S., Wendisch, M., Heintzenberg, J., Charlson, R. J., Diehl, K., Wex, H., and Schmidt, S., 2004, Laboratory Studies and Numerical Simulations of Cloud Droplet Formation under Realistic Supersaturation Conditions, J. Atmos. Oceanic. Technol., 21, 876-887.

  8. ChemEngine: harvesting 3D chemical structures of supplementary data from PDF files.

    PubMed

    Karthikeyan, Muthukumarasamy; Vyas, Renu

    2016-01-01

    Digital access to chemical journals resulted in a vast array of molecular information that is now available in the supplementary material files in PDF format. However, extracting this molecular information, generally from a PDF document format is a daunting task. Here we present an approach to harvest 3D molecular data from the supporting information of scientific research articles that are normally available from publisher's resources. In order to demonstrate the feasibility of extracting truly computable molecules from PDF file formats in a fast and efficient manner, we have developed a Java based application, namely ChemEngine. This program recognizes textual patterns from the supplementary data and generates standard molecular structure data (bond matrix, atomic coordinates) that can be subjected to a multitude of computational processes automatically. The methodology has been demonstrated via several case studies on different formats of coordinates data stored in supplementary information files, wherein ChemEngine selectively harvested the atomic coordinates and interpreted them as molecules with high accuracy. The reusability of extracted molecular coordinate data was demonstrated by computing Single Point Energies that were in close agreement with the original computed data provided with the articles. It is envisaged that the methodology will enable large scale conversion of molecular information from supplementary files available in the PDF format into a collection of ready- to- compute molecular data to create an automated workflow for advanced computational processes. Software along with source codes and instructions available at https://sourceforge.net/projects/chemengine/files/?source=navbar.Graphical abstract.

  9. Lightning NOx emissions over the USA constrained by TES ozone observations and the GEOS-Chem model

    NASA Astrophysics Data System (ADS)

    Jourdain, L.; Kulawik, S. S.; Worden, H. M.; Pickering, K. E.; Worden, J.; Thompson, A. M.

    2010-01-01

    Improved estimates of NOx from lightning sources are required to understand tropospheric NOx and ozone distributions, the oxidising capacity of the troposphere and corresponding feedbacks between chemistry and climate change. In this paper, we report new satellite ozone observations from the Tropospheric Emission Spectrometer (TES) instrument that can be used to test and constrain the parameterization of the lightning source of NOx in global models. Using the National Lightning Detection (NLDN) and the Long Range Lightning Detection Network (LRLDN) data as well as the HYPSLIT transport and dispersion model, we show that TES provides direct observations of ozone enhanced layers downwind of convective events over the USA in July 2006. We find that the GEOS-Chem global chemistry-transport model with a parameterization based on cloud top height, scaled regionally and monthly to OTD/LIS (Optical Transient Detector/Lightning Imaging Sensor) climatology, captures the ozone enhancements seen by TES. We show that the model's ability to reproduce the location of the enhancements is due to the fact that this model reproduces the pattern of the convective events occurrence on a daily basis during the summer of 2006 over the USA, even though it does not well represent the relative distribution of lightning intensities. However, this model with a value of 6 Tg N/yr for the lightning source (i.e.: with a mean production of 260 moles NO/Flash over the USA in summer) underestimates the intensities of the ozone enhancements seen by TES. By imposing a production of 520 moles NO/Flash for lightning occurring in midlatitudes, which better agrees with the values proposed by the most recent studies, we decrease the bias between TES and GEOS-Chem ozone over the USA in July 2006 by 40%. However, our conclusion on the strength of the lightning source of NOx is limited by the fact that the contribution from the stratosphere is underestimated in the GEOS-Chem simulations.

  10. Exploration of Mars with the ChemCam LIBS Instrument and the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Newsom, Horton E.

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity rover landed on Mars in August 2012, and has been exploring the planet ever since. Dr. Horton E. Newsom will discuss the MSL's design and main goal, which is to characterize past environments that may have been conducive to the evolution and sustainability of life. He will also discuss Curiosity's science payload, and remote sensing, analytical capabilities, and direct discoveries of the Chemistry & Camera (ChemCam) instrument, which is the first Laser Induced Breakdown Spectrometer (LIBS) to operate on another planetary surface and determine the chemistry of the rocks and soils.

  11. Comparison of the Active Bagnold Dune Field with Other Aeolian Deposits Observed at Gale using ChemCam Data.

    NASA Astrophysics Data System (ADS)

    Cousin, A.; Dehouck, E.; Meslin, P. Y.; Williams, A. J.; Stein, N.; Gasnault, O.; Bridges, N.; Ehlmann, B. L.; Schröder, S.; Payre, V.; Rapin, W.; Pinet, P. C.; Sautter, V.; Lanza, N.; Lasue, J.; Maurice, S.; Wiens, R. C.

    2017-12-01

    The Curiosity rover at Gale crater, Mars, had the opportunity to investigate an active dune field called Bagnold Dunes for the first time on another planet. The objectives of this campaign were threefold: Understand the present-day aeolian processes on Mars by investigating the grain size of the particles and their dynamics; Understand the past aeolian processes by looking at the morphology and texture of the dunes; and Investigate the source of the dunes material by measuring their chemistry and mineralogy. The ChemCam instrument acquired a large data volume during this campaign: 18 targets on barchan dunes, 15 targets on a linear dune and then 3 targets on a mega-ripple. In this study, we compare the Bagnold Dunes data to those acquired on soil patches (Aeolis Palus soils) along the traverse corresponding to 60 targets. We have observed that the major oxide composition of the dunes is similar to that of Aeolis Palus soils, with the exception of the FeO and MnO contents that are slightly more elevated in the dunes. Moreover, the material from the dunes and more particularly the coarser particles ( 200 microns) are depleted in volatiles (mostly H) compared to the Aeolis Palus soils. The grain size analyses show that the dunes are depleted in fine-grained particles (<100 microns) compared to Aeolis Palus soils. The leading hypothesis to explain this depletion in volatiles and fine-grained particles is that the dunes, being active, have undergone physical sorting and therefore have lost their finest particles that seem to be the carrier of the volatiles (amorphous component and dust). Moreover, the dunes seem to be enriched in mafic minerals compared to the Aeolis Palus soils, as also shown by the CheMin and APXS instruments. However, thanks to the small footprint of ChemCam, we have shown that the coarsest particles were even more enriched in mafic minerals than the finer ones, in agreement with multispectral ChemCam passive and Mastcam observations. Therefore, the

  12. Accuracy Quantification of the Loci-CHEM Code for Chamber Wall Heat Transfer in a GO2/GH2 Single Element Model Problem

    NASA Technical Reports Server (NTRS)

    West, Jeff; Westra, Doug; Lin, Jeff; Tucker, Kevin

    2006-01-01

    All solutions with Loci-CHEM achieved demonstrated steady state and mesh convergence. Preconditioning had no effect on solution accuracy and typically yields a 3-5times solution speed-up. The SST turbulence model has superior performance, relative to the data in the head end region, for the rise rate and peak heat flux. It was slightly worse than the others in the downstream region where all over-predicted the data by 30-100%.There was systematic mesh refinement in the unstructured volume and structured boundary layer areas produced only minor solution differences. Mesh convergence was achieved. Overall, Loci-CHEM satisfactorily predicts heat flux rise rate and peak heat flux and significantly over predicts the downstream heat flux.

  13. Evaluating the Effectiveness of the Open-Access ChemWiki Resource as a Replacement for Traditional General Chemistry Textbooks

    ERIC Educational Resources Information Center

    Allen, Gregory; Guzman-Alvarez, Alberto; Smith, Amy; Gamage, Alan; Molinaro, Marco; Larsen, Delmar S.

    2015-01-01

    Open educational resources (OERs) provide a potential alternative to costly textbooks and can allow content to be edited and adapted to a variety of classroom environments. At the University of California, Davis, the OER "ChemWiki" project, as part of the greater STEMWiki Hyperlibrary, was developed to supplant traditional post-secondary…

  14. Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature.

    PubMed

    Tsonis, Anastasios A; Deyle, Ethan R; May, Robert M; Sugihara, George; Swanson, Kyle; Verbeten, Joshua D; Wang, Geli

    2015-03-17

    As early as 1959, it was hypothesized that an indirect link between solar activity and climate could be mediated by mechanisms controlling the flux of galactic cosmic rays (CR) [Ney ER (1959) Nature 183:451-452]. Although the connection between CR and climate remains controversial, a significant body of laboratory evidence has emerged at the European Organization for Nuclear Research [Duplissy J, et al. (2010) Atmos Chem Phys 10:1635-1647; Kirkby J, et al. (2011) Nature 476(7361):429-433] and elsewhere [Svensmark H, Pedersen JOP, Marsh ND, Enghoff MB, Uggerhøj UI (2007) Proc R Soc A 463:385-396; Enghoff MB, Pedersen JOP, Uggerhoj UI, Paling SM, Svensmark H (2011) Geophys Res Lett 38:L09805], demonstrating the theoretical mechanism of this link. In this article, we present an analysis based on convergent cross mapping, which uses observational time series data to directly examine the causal link between CR and year-to-year changes in global temperature. Despite a gross correlation, we find no measurable evidence of a causal effect linking CR to the overall 20th-century warming trend. However, on short interannual timescales, we find a significant, although modest, causal effect between CR and short-term, year-to-year variability in global temperature that is consistent with the presence of nonlinearities internal to the system. Thus, although CR do not contribute measurably to the 20th-century global warming trend, they do appear as a nontraditional forcing in the climate system on short interannual timescales.

  15. Letter to the Editor: On the definition and measurement of human scent: Comments on Curran et al.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preti, George; Willse, Alan R.; Labows, John N.

    A recent article by Curran et al (J. Chem. Ecol. vol. 31 (7); 1607-1619, 2005) describes the collection and chemical analysis of ''human scent''. Contrary to the authors? claims, a great deal is known about the chemical constituents of human scent, and its measurement. Here we clarify what is known about human scent, and highlight several shortcomings concerning the authors analysis related to (1) the definition of human scent, (2) chemical analysis of human scent, and (3) conclusions about individual differences. More than 15 years of research has presented both organoleptic and analytical evidence that a mixture of C6-C11 normal,more » branched, hydroxy-and unsaturated acids present in axillary sweat constitute the characteristic axillary odor. (Zeng et al., 1991; 1992; 1996; 1996a; Natsch et al., 2003). In addition to this mixture of major odor constituents are trace amounts of thio-alcohols (Natsch et al., 2004; Troccaz et al., 2004; Hasegawa et al., 2004) with high odor impact (low olfactory threshold). The details of the chemical identification, exact structures and synthesis (of non-commercially available compounds) as well as biogenesis of many of these compounds have been described in the above cited manuscripts.« less

  16. Viral vectors for gene modification of plants as chem/bio sensors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manginell, Monica; Harper, Jason C.; Arango, Dulce C.

    2006-11-01

    Chemical or biological sensors that are specific, sensitive, and robust allowing intelligence gathering for verification of nuclear non-proliferation treaty compliance and detouring production of weapons of mass destruction are sorely needed. Although much progress has been made in the area of biosensors, improvements in sensor lifetime, robustness, and device packaging are required before these devices become widely used. Current chemical and biological detection and identification techniques require less-than-covert sample collection followed by transport to a laboratory for analysis. In addition to being expensive and time consuming, results can often be inconclusive due to compromised sample integrity during collection and transport.more » We report here a demonstration of a plant based sensor technology which utilizes mature and seedling plants as chemical sensors. One can envision genetically modifying native plants at a site of interest that can report the presence of specific toxins or chemicals. In this one year project we used a developed inducible expression system to show the feasibility of plant sensors. The vector was designed as a safe, non-infectious vector which could be used to invade, replicate, and introduce foreign genes into mature host plants that then allow the plant to sense chem/bio agents. The genes introduced through the vector included a reporter gene that encodes for green fluorescent protein (GFP) and a gene that encodes for a mammalian receptor that recognizes a chemical agent. Specifically, GFP was induced by the presence of 17-{beta}-Estradiol (estrogen). Detection of fluorescence indicated the presence of the target chemical agent. Since the sensor is a plant, costly device packaging development or manufacturing of the sensor were not required. Additionally, the biological recognition and reporting elements are maintained in a living, natural environment and therefore do not suffer from lifetime disadvantages typical of most

  17. Impact of Gas-Phase Mechanisms on Weather Research Forecasting Model with Chemistry (WRF/Chem) Predictions: Mechanism Implementation and Comparative Evaluation

    EPA Science Inventory

    Gas-phase mechanisms provide important oxidant and gaseous precursors for secondary aerosol formation. Different gas-phase mechanisms may lead to different predictions of gases, aerosols, and aerosol direct and indirect effects. In this study, WRF/Chem-MADRID simulations are cond...

  18. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam Onboard Curiosity

    USGS Publications Warehouse

    Le Deit, Laetitia; Mangold, Nicolas; Forni, Olivier; Cousin, Agnes; Lasue, Jeremie; Schröder, Susanne; Wiens, Roger C.; Sumner, Dawn Y.; Fabre, Cecile; Stack, Katherine M.; Anderson, Ryan; Blaney, Diana L.; Clegg, Samuel M.; Dromart, Gilles; Fisk, Martin; Gasnault, Olivier; Grotzinger, John P.; Gupta, Sanjeev; Lanza, Nina; Le Mouélic, Stephane; Maurice, Sylvestre; McLennan, Scott M.; Meslin, Pierre-Yves; Nachon, Marion; Newsom, Horton E.; Payre, Valerie; Rapin, William; Rice, Melissa; Sautter, Violaine; Treiman, Alan H.

    2016-01-01

    The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. From ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.

  19. ChemHTPS - A virtual high-throughput screening program suite for the chemical and materials sciences

    NASA Astrophysics Data System (ADS)

    Afzal, Mohammad Atif Faiz; Evangelista, William; Hachmann, Johannes

    The discovery of new compounds, materials, and chemical reactions with exceptional properties is the key for the grand challenges in innovation, energy and sustainability. This process can be dramatically accelerated by means of the virtual high-throughput screening (HTPS) of large-scale candidate libraries. The resulting data can further be used to study the underlying structure-property relationships and thus facilitate rational design capability. This approach has been extensively used for many years in the drug discovery community. However, the lack of openly available virtual HTPS tools is limiting the use of these techniques in various other applications such as photovoltaics, optoelectronics, and catalysis. Thus, we developed ChemHTPS, a general-purpose, comprehensive and user-friendly suite, that will allow users to efficiently perform large in silico modeling studies and high-throughput analyses in these applications. ChemHTPS also includes a massively parallel molecular library generator which offers a multitude of options to customize and restrict the scope of the enumerated chemical space and thus tailor it for the demands of specific applications. To streamline the non-combinatorial exploration of chemical space, we incorporate genetic algorithms into the framework. In addition to implementing smarter algorithms, we also focus on the ease of use, workflow, and code integration to make this technology more accessible to the community.

  20. ChemEd X Data: Exposing Students to Open Scientific Data for Higher-Order Thinking and Self-Regulated Learning

    ERIC Educational Resources Information Center

    Eklund, Brandon; Prat-Resina, Xavier

    2014-01-01

    ChemEd X Data is an open web tool that collects and curates physical and chemical data of hundreds of substances. This tool allows students to navigate, select, and graphically represent data such as boiling and melting points, enthalpies of combustion, and heat capacities for hundreds of molecules. By doing so, students can independently identify…

  1. An Observational Study of a Prefrontal Convective Rainband Using Tamex Single-and Dual-Doppler Data

    DTIC Science & Technology

    1991-01-01

    integration from the surface. Other Doppler studies, e.g., Chong and Testud (1983), Lin et al. 37 (1986), etc, also showed similiar results. 4.3 Variational...Atmos. Sci., 39, 258- 279. Chong, M., and J. Testud , 1983: Three-Dimensional Wind Field Analysis from Dual-Doppler Radar Data. Part III: The Boundary

  2. Modeling Ocean Ecosystems: The PARADIGM Program

    DTIC Science & Technology

    2006-03-01

    of biological reality: the wonderful com- 2. Nitrogen-fixing bacteria and archaea our concept of a species (e.g., Venter et plexity of ocean...ecosystems will never be ( diazotrophs ), which convert atmo- al., 2004; Doney et al., 2004; DeLong and fully described with numerical models of spheric...applying ocean inventory of nitrogen nutrients. numerical models, we are confronted Specifying "Functional Groups" Some diazotrophs fix both CO 2 and with

  3. In Situ Detection of Boron by ChemCam on Mars

    NASA Technical Reports Server (NTRS)

    Gasda, Patrick J.; Haldeman, Ethan B.; Wiens, Roger C.; Rapin, William; Bristow, Thomas F.; Bridges, John C.; Schwenzer, Susanne P.; Clark, Benton; Herkenhoff, Kenneth; Frydenvang, Jens; hide

    2017-01-01

    We report the first in situ detection of boron on Mars. Boron has been detected in Gale crater at levels less than 0.05 wt Percent B by the NASA Curiosity rover ChemCam instrument in calcium-sulfate-filled fractures, which formed in a late-stage groundwater circulating mainly in phyllosilicate-rich bedrock interpreted as lacustrine in origin. We consider two main groundwater-driven hypotheses to explain the presence of boron in the veins: leaching of borates out of bedrock or the redistribution of borate by dissolution of borate-bearing evaporite deposits. Our results suggest that an evaporation mechanism is most likely, implying that Gale groundwaters were mildly alkaline. On Earth, boron may be a necessary component for the origin of life; on Mars, its presence suggests that subsurface groundwater conditions could have supported prebiotic chemical reactions if organics were also present and provides additional support for the past habitability of Gale crater.

  4. In Situ Detection of Boron by ChemCam on Mars

    DOE PAGES

    Gasda, Patrick J.; Haldeman, Ethan Brian; Wiens, Roger Craig; ...

    2017-09-05

    Here, we report the first in situ detection of boron on Mars. Boron has been detected in Gale crater at levels <0.05 wt % B by the NASA Curiosity rover ChemCam instrument in calcium-sulfate-filled fractures, which formed in a late-stage groundwater circulating mainly in phyllosilicate-rich bedrock interpreted as lacustrine in origin. We also consider two main groundwater-driven hypotheses to explain the presence of boron in the veins: leaching of borates out of bedrock or the redistribution of borate by dissolution of borate-bearing evaporite deposits. Our results suggest that an evaporation mechanism is most likely, implying that Gale groundwaters were mildlymore » alkaline. On Earth, boron may be a necessary component for the origin of life; on Mars, its presence suggests that subsurface groundwater conditions could have supported prebiotic chemical reactions if organics were also present and provides additional support for the past habitability of Gale crater.« less

  5. In Situ Detection of Boron by ChemCam on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasda, Patrick J.; Haldeman, Ethan Brian; Wiens, Roger Craig

    Here, we report the first in situ detection of boron on Mars. Boron has been detected in Gale crater at levels <0.05 wt % B by the NASA Curiosity rover ChemCam instrument in calcium-sulfate-filled fractures, which formed in a late-stage groundwater circulating mainly in phyllosilicate-rich bedrock interpreted as lacustrine in origin. We also consider two main groundwater-driven hypotheses to explain the presence of boron in the veins: leaching of borates out of bedrock or the redistribution of borate by dissolution of borate-bearing evaporite deposits. Our results suggest that an evaporation mechanism is most likely, implying that Gale groundwaters were mildlymore » alkaline. On Earth, boron may be a necessary component for the origin of life; on Mars, its presence suggests that subsurface groundwater conditions could have supported prebiotic chemical reactions if organics were also present and provides additional support for the past habitability of Gale crater.« less

  6. In situ detection of boron by ChemCam on Mars

    NASA Astrophysics Data System (ADS)

    Gasda, Patrick J.; Haldeman, Ethan B.; Wiens, Roger C.; Rapin, William; Bristow, Thomas F.; Bridges, John C.; Schwenzer, Susanne P.; Clark, Benton; Herkenhoff, Kenneth; Frydenvang, Jens; Lanza, Nina L.; Maurice, Sylvestre; Clegg, Samuel; Delapp, Dorothea M.; Sanford, Veronica L.; Bodine, Madeleine R.; McInroy, Rhonda

    2017-09-01

    We report the first in situ detection of boron on Mars. Boron has been detected in Gale crater at levels <0.05 wt % B by the NASA Curiosity rover ChemCam instrument in calcium-sulfate-filled fractures, which formed in a late-stage groundwater circulating mainly in phyllosilicate-rich bedrock interpreted as lacustrine in origin. We consider two main groundwater-driven hypotheses to explain the presence of boron in the veins: leaching of borates out of bedrock or the redistribution of borate by dissolution of borate-bearing evaporite deposits. Our results suggest that an evaporation mechanism is most likely, implying that Gale groundwaters were mildly alkaline. On Earth, boron may be a necessary component for the origin of life; on Mars, its presence suggests that subsurface groundwater conditions could have supported prebiotic chemical reactions if organics were also present and provides additional support for the past habitability of Gale crater.

  7. Search for organic matter at Mars with combined measurements of the SAM and ChemCam instruments onboard the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Dequaire, T.; Meslin, P. Y.; Rapin, W.; Jaber, M.; Maurice, S.; Gasnault, O.; Forni, O.; Coll, P.; Szopa, C.

    2015-10-01

    Since 2012, he Curiosity rover on Mars seeks clues of habitability in Gale crater. One of these clues is the presence of organic matter. For the moment,only a few traces of organic matter was recently found with the SAM experiment. We propose here to evaluate the capabilities for the ChemCam experiment to detect organic molecules from its elemental analysis of the Mars regolith or rocks. The first results obtained in laboratory with the ChemCam spare model and different samples show that it is possible to detect organic signatures with LIBS,focusing on atomic carbon, hydrogen and nitrogen peaks,and on a C-N molecular peak when the samples areenriched in organic molecules(100-10 wt%). We currently work with Mars representative samples to determine the instrument detection limitfor organics, in order to determine if it can be used to guide Curiosity towards interesting outcrops.

  8. Comment on “On the Crooks fluctuation theorem and the Jarzynski equality” [J. Chem. Phys. 129, 091101 (2008)

    PubMed Central

    Adib, Artur B.

    2009-01-01

    It has recently been argued that a self-consistency condition involving the Jarzynski equality (JE) and the Crooks fluctuation theorem (CFT) is violated for a simple Brownian process [L. Y. Chen, J. Chem. Phys.129, 091101 (2008)]. This note adopts the definitions in the original formulation of the JE and CFT and demonstrates the contrary. PMID:19566186

  9. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    PubMed Central

    Chen, Daquan; Sun, Kaoxiang; Mu, Hongjie; Tang, Mingtan; Liang, Rongcai; Wang, Aiping; Zhou, Shasha; Sun, Haijun; Zhao, Feng; Yao, Jianwen; Liu, Wanhui

    2012-01-01

    Background In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Methods The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Results A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. Conclusion This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery. PMID:22679372

  10. New Developments in the SCIAMACHY L2 Ground Processor

    NASA Astrophysics Data System (ADS)

    Gretschany, Sergei; Lichtenberg, Günter; Meringer, Markus; Theys, Nicolas; Lerot, Christophe; Liebing, Patricia; Noel, Stefan; Dehn, Angelika; Fehr, Thorsten

    2016-04-01

    , future-proof file format for the level 2 product based on NetCDF. Although the final concept for the new format is still under discussion within the SCIAMACHY Quality Working Group, main features of the new format have already been clarified. The data format should be aligned and harmonized with other missions (esp. Sentinels and GOME-1). Splitting of the L2 products into profile and column products is also considered. Additionally, reading routines for the new formats will be developed and provided. References: K.-U. Eichmann et al., Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results, Atmos. Meas. Tech. Discuss., 8, 8295-8352, 2015. P. Liebing, New Limb Cloud Detection Algorithm Theoretical Basis Document, 2015. N. Theys et al., Global observations of tropospheric BrO columns using GOME-2 satellite data, Atmos. Chem. Phys., 11, 1791-1811, 2011.

  11. First OH reactivity measurements in Harvard Forest

    NASA Astrophysics Data System (ADS)

    Herdlinger-Blatt, I. S.; Martin, S. T.; Hansel, A.; McKinney, K. A.

    2013-12-01

    , Rapid Commun. Mass Spectrom., 12, 871-875, (1998). W. Lindinger, A. Hansel, and A. Jordan: Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chemical Society Reviews , 27, 1998. S. Lou, F. Holland, F. Rohrer, K. Lu, B. Bohn, T. Brauers, C. C. Chang, H. Fuchs, R. Häseler, K. Kita, Y. Kondo, X. Li, M. Shao, L. Zeng, A. Wahner, Y. Zhang, W. Wang, and A. Hofzumahaus, Atmospheric OH reactivities in the Pearl River Delta - China in summer 2006: measurement and model results, Atmos. Chem. Phys., 10, 11243-11260, (2010). V. Sinha, J. Williams, J.N. Crowley, and J. Lelieveld., The Comparaptive Reactivity Methode - a new tool to measure total OH Reactivity in ambient air, Atmos. Env., 38, 2511-2522, (2008).

  12. Rotational Analysis of FTIR Spectra from Cigarette Smoke: An Application of Chem Spec II Software in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Ford, Alan R.; Burns, William A.; Reeve, Scott W.

    2004-01-01

    A version of the classic gas phase infrared experiment was developed for students at Arkansas State University based on the shortcomings of the rotationally resolved infrared experiment. Chem Spec II is a noncommercial Windows-based software package developed to aid in the potentially complicated problem of assigning quantum numbers to observed…

  13. High temporal resolution measurements of the isotopic composition of CH4 at the Lutjewad station, The Netherlands

    NASA Astrophysics Data System (ADS)

    Röckmann, Thomas; van der Veen, Carina; Chen, Huilin; Scheeren, Bert

    2017-04-01

    Isotope measurements can help constraining the atmospheric budget of the greenhouse gas methane (CH4) because different sources emit CH4 with slightly different isotopic composition. In the past, high precision isotope measurements have primarily been carried out by isotope ratio mass spectrometry on flask samples that are usually collected at relatively low temporal resolution. We have recently developed a fully automated gas chromatography - isotope ratio mass spectrometry system (GC-IRMS) for autonomous and unattended CH4 isotope measurements (δD and δ13C) in the field. The first deployment at the Cabauw Experimental Site for Atmospheric Research (CESAR) indicated that CH4 emissions from fossil fuel sources are overestimated in this region [1]. To further exploit the potential of this approach, the in situ system has been installed in November 2016 at the Lutjewad atmospheric monitoring and sampling site in the North of the Netherlands. This site is expected to sample also emissions from the large Groningen gas fields. The isotope measurements are expected to allow distinguishing these emissions from the agricultural emissions, which are also strong in this region. We will present the results from these ongoing measurements of δD and δ13C in CH4.. 1. Röckmann, T., et al., In situ observations of the isotopic composition of methane at the Cabauw tall tower site, Atmos. Chem. Phys., 2016. 16: 10469-10487.

  14. Closure on the single scattering albedo in the WRF-Chem framework using data from the MILAGRO campaign

    NASA Astrophysics Data System (ADS)

    Barnard, J. C.; Fast, J. D.; Paredes-Miranda, G.; Arnott, W. P.

    2009-02-01

    Data from the MILAGRO field campaign, which took place in the Mexico City Metropolitan Area (MCMA) during March 2006, is used to perform a closure experiment between aerosol chemical properties and aerosol optical properties. Measured aerosol chemical properties, obtained from the MILAGRO T1 site, are fed to two different "chemical to optical properties" modules. One module uses a sectional approach and is identical to that used in the WRF-Chem model, while the other is based on a modal approach. This modal code is employed as an independent check on the WRF-Chem module. Both modules compute aerosol optical properties and, in particular, the single-scattering albedo, ϖ0, as a function of time. The single-scattering albedos are compared to independent measurements obtained from a photoacoustic spectrometer (PAS). Because chemical measurements of the aerosol coarse mode were not available, and the inlet of the PAS could not ingest aerosols larger than about 2 to 3 μm, we focus here on the fine-mode ϖ0. At 870 nm, the wavelength of the PAS measurements, the agreement between the computed (modal and WRF-Chem) and observed fine-mode ϖ0, averaged over the course of the campaign, is reasonably good. The observed ϖ0 value is 0.77, while for both modules, the calculated value was 0.75 resulting in a difference of 0.02 between observations and both computational approaches. This difference is less than the uncertainty of the observed ϖ0 values (6%, or 0.05), and therefore "closure" is achieved, at least for mean values. After adjusting some properties of black carbon absorption and mass concentration within plausible uncertainty limits, the two modules simulate well the diurnal variation of ϖ0, and the absorption coefficient, Babs, but are less successful in calculating the variation of the scattering coefficient, Bscat. This difficulty is probably caused by the presence of larger particles during the day when windblown dust is ubiquitous; this dust

  15. Reconstructing the atmospheric concentration and emissions of CF4, C2F6 and C3F8 prior to direct atmospheric measurements, using air from polar firn and ice

    NASA Astrophysics Data System (ADS)

    Trudinger, Cathy; Etheridge, David; Sturges, William; Vollmer, Martin; Miller, Benjamin; Worton, David; Rigby, Matt; Krummel, Paul; Martinerie, Patricia; Witrant, Emmanuel; Rayner, Peter; Battle, Mark; Blunier, Thomas; Fraser, Paul; Laube, Johannes; Mani, Frances; Mühle, Jens; O'Doherty, Simon; Schwander, Jakob; Steele, Paul

    2015-04-01

    Perfluorocarbons are very potent and long-lived greenhouse gases in the atmosphere, released predominantly during aluminium production, electronic chip manufacture and refrigeration. Mühle et al. (2010) presented records of the concentration and inferred emissions of CF4 (PFC-14), C2F6 (PFC-116) and C3F8 (PFC-218) from the 1970s up to 2008, using measurements from the Cape Grim Air Archive and a suite of tanks with old Northern Hemisphere air, and the AGAGE in situ network. Mühle et al. (2010) also estimated pre-industrial concentrations of these compounds from a small number of polar firn and ice core samples. Here we present measurements of air from polar firn at four sites (DSSW20K, EDML, NEEM and South Pole) and from air bubbles trapped in ice at two sites (DE08 and DE08-2), along with recent atmospheric measurements to give a continuous record of concentration from preindustrial levels up to the present. We estimate global emissions (with uncertainties) consistent with the concentration records. The uncertainty analysis takes into account uncertainties in characterisation of the age of air in firn and ice by the use of two different (independently-calibrated) firn models (the CSIRO and LGGE-GIPSA firn models). References Mühle, J., A.L. Ganesan, B.R. Miller, P.K. Salameh, C.M. Harth, B.R. Greally, M. Rigby, L.W. Porter, L. P. Steele, C.M. Trudinger, P.B. Krummel, S. O'Doherty, P.J. Fraser, P.G. Simmonds, R.G. Prinn, and R.F. Weiss, Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane, Atmos. Chem. Phys., 10, 5145-5164, doi:10.5194/acp-10-5145-2010, 2010.

  16. Further evaluation of wetland emission estimates from the JULES land surface model using SCIAMACHY and GOSAT atmospheric column methane measurements

    NASA Astrophysics Data System (ADS)

    Hayman, Garry; Comyn-Platt, Edward; McNorton, Joey; Chipperfield, Martyn; Gedney, Nicola

    2016-04-01

    The atmospheric concentration of methane began rising again in 2007 after a period of near-zero growth [1,2], with the largest increases observed over polar northern latitudes and the Southern Hemisphere in 2007 and in the tropics since then. The observed inter-annual variability in atmospheric methane concentrations and the associated changes in growth rates have variously been attributed to changes in different methane sources and sinks [2,3]. Wetlands are generally accepted as being the largest, but least well quantified, single natural source of CH4, with global emission estimates ranging from 142-284 Tg yr-1 [3]. The modelling of wetlands and their associated emissions of CH4 has become the subject of much current interest [4]. We have previously used the HadGEM2 chemistry-climate model to evaluate the wetland emission estimates derived using the UK community land surface model (JULES, the Joint UK Land Earth Simulator) against atmospheric observations of methane, including SCIAMACHY total methane columns [5] up to 2007. We have undertaken a series of new HadGEM2 runs using new JULES emission estimates extended in time to the end of 2012, thereby allowing comparison with both SCIAMACHY and GOSAT atmospheric column methane measurements. We will describe the results of these runs and the implications for methane wetland emissions. References [1] Rigby, M., et al.: Renewed growth of atmospheric methane. Geophys. Res. Lett., 35, L22805, 2008; [2] Nisbet, E.G., et al.: Methane on the Rise-Again, Science 343, 493, 2014; [3] Kirschke, S., et al.,: Three decades of global methane sources and sinks, Nature Geosciences, 6, 813-823, 2013; [4] Melton, J. R., et al.: Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 10, 753-788, 2013; [5] Hayman, G.D., et al.: Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data, Atmos. Chem

  17. ChemTrove: enabling a generic ELN to support chemistry through the use of transferable plug-ins and online data sources.

    PubMed

    Day, Aileen E; Coles, Simon J; Bird, Colin L; Frey, Jeremy G; Whitby, Richard J; Tkachenko, Valery E; Williams, Antony J

    2015-03-23

    In designing an Electronic Lab Notebook (ELN), there is a balance to be struck between keeping it as general and multidisciplinary as possible for simplicity of use and maintenance and introducing more domain-specific functionality to increase its appeal to target research areas. Here, we describe the results of a collaboration between the Royal Society of Chemistry (RSC) and the University of Southampton, guided by the aims of the Dial-a-Molecule Grand Challenge, intended to achieve the best of both worlds and augment a discipline-agnostic ELN, LabTrove, with chemistry-specific functionality and using data provided by the ChemSpider platform. This has been done using plug-in technology to ensure maximum transferability with minimal effort of the chemistry functionality to other ELNs and equally other subject-specific functionality to LabTrove. The resulting product, ChemTrove, has undergone a usability trial by selected academics, and the resulting feedback will guide the future development of the underlying ELN technology.

  18. Aerosol Radiative Forcing over North India during Pre-Monsoon Season using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Misra, A.; Kumar, K.; Michael, M.; Tripathi, S. N.

    2013-12-01

    Study of aerosols is important for a fair understanding of the Earth climate system. This requires knowledge of the physical, chemical, optical, and morphological properties of aerosols. Aerosol radiative forcing provides information on the effect of aerosols on the Earth radiation budget. Radiative forcing estimates using model data provide an opportunity to examine the contribution of individual aerosol species to overall radiative forcing. We have used Weather Research and Forecast with Online Chemistry (WRF-Chem) derived aerosol concentration data to compute aerosol radiative forcing over north India during pre-monsoon season of 2008, 2009, and 2010. WRF-Chem derived mass concentrations are converted to number concentrations using standard procedure. Optical Properties of Aerosol and Cloud (OPAC) software package is used to compute extinction and scattering coefficients, and asymmetry parameter. Computations are performed at different altitudes and the obtained values are integrated to get the column optical properties. Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model is used to calculate the radiative forcing at surface and top-of-atmosphere. Higher values of aerosol radiative forcing are observed over desert region in western Indian state of Rajasthan, and Punjab of Pakistan. Contribution of individual aerosol species to atmospheric radiative forcing is also assessed. Dust radiative forcing is high over western India. Radiative forcing due to BC and water-soluble (WASO) aerosols are higher over north-west Indian states of Punjab and Haryana, and the Indo-Gangetic Basin. A pool of high WASO optical depth and radiative forcing is observed over the Indo-Bangladesh border. The findings of aerosol optical depth and radiative forcing are consistent with the geography and prevailing aerosol climatology of various regions. Heating rate profiles due to total aerosols and only due to BC have been evaluated at selected stations in north India. They show

  19. Impacts of New Particle Formation on Midwestern Climate and Air Quality as Determined by the NPF-explicit WRF-Chem

    NASA Astrophysics Data System (ADS)

    Dong, C.; Stanier, C. O.; Bullard, R.; Singh, A.

    2016-12-01

    A one month simulation has been performed using the New particle formation (NPF)-explicit WRF-Chem (Matsui et al, Journal of Geophysical Research, 116(D19208), 2011). The simulation was run for a domain of the continental United States, with analysis focused on the Midwestern and eastern portions of the U.S. Analysis focused on quantification and explanation of planetary boundary layer (PBL) NPF in the model on variables beyond condensation nuclei (CN), cloud condensation nuclei (CCN), and cloud droplet size distributions. The model was evaluated against meteorology, chemical species and aerosol physical property observations. Comparison shows the model performance was comparable to that of other studies. Nucleation enhanced the concentration of condensation nuclei (CN). Cloud condensation nuclei (CCN) concentrations were enhanced and suppressed at high and low supersaturations, respectively. For air pollutants, the most pronounced influence of PBL nucleation was PM2.5 reduction, which was mainly caused by SO4 decreases (62.7%). For shortwave radiation, changes due to indirect effects of NPF were larger than direct effects. Shortwave radiation and cloud droplet concentration typically changed in the same way. Similar change patterns were found for T2 and PBL height. PBL nucleation led to a net increase of precipitation during the simulation period. Sensitivity tests showed that the combination of PBL NPF together with aqueous chemistry was the predominant cause of SO4 reduction.

  20. Rapid Analysis of Energetic and Geo-Materials Using Laser Induced Breakdown Spectroscopy

    DTIC Science & Technology

    2013-04-01

    et al ., Anal Bioanal Chem ( 2006 ) 385, 316. 5. Mohamed, W. T. Y., Prog Phys (2007) 2, 42. 6. Elhassan, A., et al ., Spectrochim Acta B (2008) 63...Anal (2005) 5, 21. 20. Anzano, J. M., et al ., Anal Chim Acta ( 2006 ) 575, 230. 21. Rusak, D. A., et al ., TrAC Trend Anal Chem (1998) 17, 453. 22. Martin...Spectrosc Reviews (2004) 39, 27. 25. Winefordner, J. D., et al ., J Anal Atom Spectrom (2004) 19, 1061. 26. Cremers , D. A., and Radziemski, L. J.,

  1. Simulations of the Holuhraun eruption 2014 with WRF-Chem and evaluation with satellite and ground based SO2 measurements

    NASA Astrophysics Data System (ADS)

    Hirtl, Marcus; Arnold-Arias, Delia; Flandorfer, Claudia; Maurer, Christian; Mantovani, Simone; Natali, Stefano

    2016-04-01

    Volcanic eruptions, with gas or/and particle emissions, directly influence our environment, with special significance when they either occur near inhabited regions or are transported towards them. In addition to the well-known affectation of air traffic, with large economic impacts, the ground touching plumes can lead directly to an influence of soil, water and even to a decrease of air quality. The eruption of Holuhraun in August 2014 in central Iceland is the country's largest lava and gas eruption since the Lakagígar eruption in 1783. Nevertheless, very little volcanic ash was produced. The main atmospheric threat from this event was the SO2 pollution that frequently violated the Icelandic National Air Quality Standards in many population centers. However, the SO2 affectation was not limited to Iceland but extended to mainland Europe. The on-line coupled model WRF-Chem is used to simulate the dispersion of SO2 for this event that affected the central European regions. The volcanic emissions are considered in addition to the anthropogenic and biogenic ground sources at European scale. A modified version of WRF-Chem version 4.1 is used in order to use time depending injection heights and mass fluxes which were obtained from in situ observations. WRF-Chem uses complex gas- (RADM2) and aerosol- (MADE-SORGAM) chemistry and is operated on a European domain (12 km resolution), and a nested grid covering the Alpine region (4 km resolution). The study is showing the evaluation of the model simulations with satellite and ground based measurement data of SO2. The analysis is conducted on a data management platform, which is currently developed in the frame of the ESA-funded project TAMP "Technology and Atmospheric Mission Platform": it provides comprehensive functionalities to visualize and numerically compare data from different sources (model, satellite and ground-measurements).

  2. ChemCam results from the Shaler outcrop in Gale crater, Mars

    USGS Publications Warehouse

    Anderson, Ryan B.; Bridges, J.C.; Williams, A.; Edgar, L.; Ollila, A.; Williams, J.; Nachon, Marion; Mangold, N.; Fisk, M.; Schieber, J.; Gupta, S.; Dromart, G.; Wiens, R.; Le Mouélic, Stéphane; Forni, O.; Lanza, N.; Mezzacappa, Alissa; Sautter, V.; Blaney, D.; Clark, B.; Clegg, S.; Gasnault, O.; Lasue, J.; Léveillé, Richard; Lewin, E.; Lewis, K.W.; Maurice, S.; Newsom, H.; Schwenzer, S.P.; Vaniman, D.

    2015-01-01

    The ChemCam campaign at the fluvial sedimentary outcrop “Shaler” resulted in observations of 28 non-soil targets, 26 of which included active laser induced breakdown spectroscopy (LIBS), and all of which included Remote Micro-Imager (RMI) images. The Shaler outcrop can be divided into seven facies based on grain size, texture, color, resistance to erosion, and sedimentary structures. The ChemCam observations cover Facies 3 through 7. For all targets, the majority of the grains were below the limit of the RMI resolution, but many targets had a portion of resolvable grains coarser than ∼0.5 mm. The Shaler facies show significant scatter in LIBS spectra and compositions from point to point, but several key compositional trends are apparent, most notably in the average K2O content of the observed facies. Facies 3 is lower in K2O than the other facies and is similar in composition to the “snake,” a clastic dike that occurs lower in the Yellowknife Bay stratigraphic section. Facies 7 is enriched in K2O relative to the other facies and shows some compositional and textural similarities to float rocks near Yellowknife Bay. The remaining facies (4, 5, and 6) are similar in composition to the Sheepbed and Gillespie Lake members, although the Shaler facies have slightly elevated K2O and FeOT. Several analysis points within Shaler suggest the presence of feldspars, though these points have excess FeOT which suggests the presence of Fe oxide cement or inclusions. The majority of LIBS analyses have compositions which indicate that they are mixtures of pyroxene and feldspar. The Shaler feldspathic compositions are more alkaline than typical feldspars from shergottites, suggesting an alkaline basaltic source region, particularly for the K2O-enriched Facies 7. Apart from possible iron-oxide cement, there is little evidence for chemical alteration at Shaler, although calcium-sulfate veins comparable to those observed lower in the stratigraphic section are present. The

  3. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.

    PubMed

    Hu, L H; Huo, R; Yang, D

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  4. WRF-Chem Simulations of Lightning-NOx Production and Transport in Oklahoma and Colorado Thunderstorms Observed During DC3

    NASA Technical Reports Server (NTRS)

    Cummings, Kristin A.; Pickering, Kenneth E.; Barth, M.; Bela, M.; Li, Y.; Allen, D.; Bruning, E.; MacGorman, D.; Rutledge, S.; Basarab, B.; hide

    2016-01-01

    The focus of this analysis is on lightning-generated nitrogen oxides (LNOx) and their distribution for two thunderstorms observed during the Deep Convective Clouds and Chemistry (DC3) field campaign in May-June 2012. The Weather Research and Forecasting Chemistry (WRF-Chem) model is used to perform cloud-resolved simulations for the May 29-30 Oklahoma severe convection, which contained one supercell, and the June 6-7 Colorado squall line. Aircraft and ground-based observations (e.g., trace gases, lightning and radar) collected during DC3 are used in comparisons against the model-simulated lightning flashes generated by the flash rate parameterization schemes (FRPSs) incorporated into the model, as well as the model-simulated LNOx predicted in the anvil outflow. Newly generated FRPSs based on DC3 radar observations and Lightning Mapping Array data are implemented in the model, along with previously developed schemes from the literature. The results of these analyses will also be compared between storms to investigate which FRPSs were most appropriate for the two types of convection and to examine the variation in the LNOx production. The simulated LNOx results from WRF-Chem will also be compared against other previously studied mid-latitude thunderstorms.

  5. Comparison of Mixed Layer Heights from Airborne High Spectral Resolution Lidar, Ground-based Measurements, and the WRP-Chem Model during CalNex and CARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarino, Amy Jo; Obland, Michael; Fast, Jerome D.

    2014-06-05

    The California Research at the Nexus of Air Quality and Climate Change (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaigns during May and June 2010 provided a data set appropriate for studying characteristics of the planetary boundary layer (PBL). The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed to California onboard the NASA LaRC B-200 aircraft to aid incharacterizing aerosol properties during these two field campaigns. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 31 flights, many in coordination with othermore » research aircraft and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as the depth and variability of the daytime mixed layer (ML), which is a subset within the PBL. This work illustrates the temporal and spatial variability of the ML in the vicinity of Los Angeles and Sacramento, CA. ML heights derived from HSRL measurements are compared to PBL heights derived from radiosonde profiles, ML heights measured from ceilometers, and simulated PBL heights from the Weather Research and Forecasting Chemistry (WRF-Chem) community model. Comparisons between the HSRL ML heights and the radiosonde profiles in Sacramento result in a correlation coefficient value (R) of 0.93 (root7 mean-square (RMS) difference of 157 m and bias difference (HSRL radiosonde) of 5 m). HSRL ML heights compare well with those from the ceilometer in the LA Basin with an R of 0.89 (RMS difference of 108 m and bias difference (HSRL Ceilometer) of -9.7 m) for distances of up to 30 km between the B-200 flight track and the ceilometer site. Simulated PBL heights from WRF-Chem were compared with those obtained from all flights for each campaign, producing an R of 0.58 (RMS difference of 604 m and a bias difference (WRF-Chem HSRL) of -157 m) for Cal

  6. Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during CalNex and CARES

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Obland, M. D.; Fast, J. D.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Berg, L. K.; Lefer, B.; Haman, C.; Hair, J. W.; Rogers, R. R.; Butler, C.; Cook, A. L.; Harper, D. B.

    2013-05-01

    The California Research at the Nexus of Air Quality and Climate Change (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaigns during May and June 2010 provided a data set appropriate for studying characteristics of the planetary boundary layer (PBL). The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed to California onboard the NASA LaRC B-200 aircraft to aid in characterizing aerosol properties during these two field campaigns. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 31 flights, many in coordination with other research aircraft and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as the depth and variability of the daytime mixed layer (ML), which is a subset within the PBL. This work illustrates the temporal and spatial variability of the ML in the vicinity of Los Angeles and Sacramento, CA. ML heights derived from HSRL measurements are compared to PBL heights derived from radiosonde profiles, ML heights measured from ceilometers, and simulated PBL heights from the Weather Research and Forecasting Chemistry (WRF-Chem) community model. Comparisons between the HSRL ML heights and the radiosonde profiles in Sacramento result in a correlation coefficient value (R) of 0.93 (root-mean-square (RMS) difference of 157 m and bias difference (HSRL - radiosonde) of 57 m). HSRL ML heights compare well with those from the ceilometer in the LA Basin with an R of 0.89 (RMS difference of 108 m and bias difference (HSRL - Ceilometer) of -9.7 m) for distances of up to 30 km between the B-200 flight track and the ceilometer site. Simulated PBL heights from WRF-Chem were compared with those obtained from all flights for each campaign, producing an R of 0.58 (RMS difference of 604 m and a bias difference (WRF-Chem - HSRL) of -157 m) for Cal

  7. Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars

    USGS Publications Warehouse

    Nachon, Marion; Mangold, Nicolas; Forni, Olivier; Kah, Linda C.; Cousin, Agnes; Wiens, Roger C.; Anderson, Ryan; Blaney, Diana L.; Blank, Jen G.; Calef, Fred J.; Clegg, Samuel M.; Fabre, Cecile; Fisk, Martin R.; Gasnault, Olivier; Grotzinger, John P.; Kronyak, Rachel; Lanza, Nina L.; Lasue, Jeremie; Le Deit, Laetitia; Le Mouelic, Stephane; Maurice, Sylvestre; Meslin, Pierre-Yves; Oehler, D. Z.; Payre, Valerie; Rapin, William; Schroder, Susanne; Stack, Katherine M.; Sumner, Dawn

    2017-01-01

    The Curiosity rover's campaign at Pahrump Hills provides the first analyses of lower Mount Sharp strata. Here we report ChemCam elemental composition of a diverse assemblage of post-depositional features embedded in, or cross-cutting, the host rock. ChemCam results demonstrate their compositional diversity, especially compared to the surrounding host rock: (i) Dendritic aggregates and relief enhanced features, characterized by a magnesium enhancement and sulfur detection, and interpreted as Mg-sulfates; (ii) A localized observation that displays iron enrichment associated with sulfur, interpreted as Fe-sulfate; (iii) Dark raised ridges with varying Mg- and Ca-enriched compositions compared to host rock; (iv) Several dark-toned veins with calcium enhancement associated with fluorine detection, interpreted as fluorite veins. (v) Light-toned veins with enhanced calcium associated with sulfur detection, and interpreted as Ca-sulfates. The diversity of the Pahrump Hills diagenetic assemblage suggests a complex post-depositional history for fine-grained sediments for which the origin has been interpreted as fluvial and lacustrine. Assessment of the spatial and relative temporal distribution of these features shows that the Mg-sulfate features are predominant in the lower part of the section, suggesting local modification of the sediments by early diagenetic fluids. In contrast, light-toned Ca-sulfate veins occur in the whole section and cross-cut all other features. A relatively late stage shift in geochemical conditions could explain this observation. The Pahrump Hills diagenetic features have no equivalent compared to targets analyzed in other locations at Gale crater. Only the light-toned Ca-sulfate veins are present elsewhere, along Curiosity's path, suggesting they formed through a common late-stage process that occurred at over a broad area.

  8. Feasibility of Integration of Selected Aspects of (CBA) Chemistry, (CHEMS) Chemistry and (PSSC) Physics into a Two Year Physical Science Sequence.

    ERIC Educational Resources Information Center

    Fiasca, Michael Aldo

    Compared, for selected outcomes, were integrated chemistry-physics courses with chemistry and physics courses taught separately. Three classes studying integrated Physical Science Study Committee (PSSC)-Chemical Bond Approach (CBA), and three classes studying integrated Physical Science Study Committee-Chemical Education Materials Study (CHEMS)…

  9. Identifying "known unknowns": A comparison between ChemSpider and the US EPA's CompTox Dashboard (ACS Spring National meeting) 1 of 7

    EPA Science Inventory

    Non-targeted analysis (NTA) workflows in high-resolution mass spectrometry require mechanisms for compound identification. One strategy for tentative identification is the use of online chemical databases such as ChemSpider. Databases like this use molecular formulae and monois...

  10. Note: Derivation of two-photon circular dichroism—Addendum to “Two-photon circular dichroism” [J. Chem. Phys. 62, 1006 (1975)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friese, Daniel H., E-mail: daniel.h.friese@uit.no

    2015-09-07

    This addendum shows the detailed derivation of the fundamental equations for two-photon circular dichroism which are given in a very condensed form in the original publication [I. Tinoco, J. Chem. Phys. 62, 1006 (1975)]. In addition, some minor errors are corrected and some of the derivations in the original publication are commented.

  11. Errors and improvements in the use of archived meteorological data for chemical transport modeling: an analysis using GEOS-Chem v11-01 driven by GEOS-5 meteorology

    NASA Astrophysics Data System (ADS)

    Yu, Karen; Keller, Christoph A.; Jacob, Daniel J.; Molod, Andrea M.; Eastham, Sebastian D.; Long, Michael S.

    2018-01-01

    Global simulations of atmospheric chemistry are commonly conducted with off-line chemical transport models (CTMs) driven by archived meteorological data from general circulation models (GCMs). The off-line approach has the advantages of simplicity and expediency, but it incurs errors due to temporal averaging in the meteorological archive and the inability to reproduce the GCM transport algorithms exactly. The CTM simulation is also often conducted at coarser grid resolution than the parent GCM. Here we investigate this cascade of CTM errors by using 222Rn-210Pb-7Be chemical tracer simulations off-line in the GEOS-Chem CTM at rectilinear 0.25° × 0.3125° (≈ 25 km) and 2° × 2.5° (≈ 200 km) resolutions and online in the parent GEOS-5 GCM at cubed-sphere c360 (≈ 25 km) and c48 (≈ 200 km) horizontal resolutions. The c360 GEOS-5 GCM meteorological archive, updated every 3 h and remapped to 0.25° × 0.3125°, is the standard operational product generated by the NASA Global Modeling and Assimilation Office (GMAO) and used as input by GEOS-Chem. We find that the GEOS-Chem 222Rn simulation at native 0.25° × 0.3125° resolution is affected by vertical transport errors of up to 20 % relative to the GEOS-5 c360 online simulation, in part due to loss of transient organized vertical motions in the GCM (resolved convection) that are temporally averaged out in the 3 h meteorological archive. There is also significant error caused by operational remapping of the meteorological archive from a cubed-sphere to a rectilinear grid. Decreasing the GEOS-Chem resolution from 0.25° × 0.3125° to 2° × 2.5° induces further weakening of vertical transport as transient vertical motions are averaged out spatially and temporally. The resulting 222Rn concentrations simulated by the coarse-resolution GEOS-Chem are overestimated by up to 40 % in surface air relative to the online c360 simulations and underestimated by up to 40 % in the upper

  12. Fukushima-derived radionuclides in the ocean and biota off Japan

    PubMed Central

    Buesseler, Ken O.; Jayne, Steven R.; Fisher, Nicholas S.; Rypina, Irina I.; Baumann, Hannes; Baumann, Zofia; Breier, Crystaline F.; Douglass, Elizabeth M.; George, Jennifer; Macdonald, Alison M.; Miyamoto, Hiroomi; Nishikawa, Jun; Pike, Steven M.; Yoshida, Sashiko

    2012-01-01

    The Tōhoku earthquake and tsunami of March 11, 2011, resulted in unprecedented radioactivity releases from the Fukushima Dai-ichi nuclear power plants to the Northwest Pacific Ocean. Results are presented here from an international study of radionuclide contaminants in surface and subsurface waters, as well as in zooplankton and fish, off Japan in June 2011. A major finding is detection of Fukushima-derived 134Cs and 137Cs throughout waters 30–600 km offshore, with the highest activities associated with near-shore eddies and the Kuroshio Current acting as a southern boundary for transport. Fukushima-derived Cs isotopes were also detected in zooplankton and mesopelagic fish, and unique to this study we also find 110mAg in zooplankton. Vertical profiles are used to calculate a total inventory of ∼2 PBq 137Cs in an ocean area of 150,000 km2. Our results can only be understood in the context of our drifter data and an oceanographic model that shows rapid advection of contaminants further out in the Pacific. Importantly, our data are consistent with higher estimates of the magnitude of Fukushima fallout and direct releases [Stohl et al. (2011) Atmos Chem Phys Discuss 11:28319–28394; Bailly du Bois et al. (2011) J Environ Radioact, 10.1016/j.jenvrad.2011.11.015]. We address risks to public health and marine biota by showing that though Cs isotopes are elevated 10–1,000× over prior levels in waters off Japan, radiation risks due to these radionuclides are below those generally considered harmful to marine animals and human consumers, and even below those from naturally occurring radionuclides. PMID:22474387

  13. Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic

    NASA Astrophysics Data System (ADS)

    Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Shrivastava, Manish; Thomas, Jennie L.

    2017-10-01

    In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain-Fritsch + Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.

  14. Correction: Assembly and relaxation behaviours of phosphatidylethanolamine monolayers investigated by polarization and frequency resolved SFG-VS.

    PubMed

    Wei, Feng; Xiong, Wei; Li, Wenhui; Lu, Wangting; Allen, Heather C; Zheng, Wanquan

    2016-06-14

    Correction for 'Assembly and relaxation behaviours of phosphatidylethanolamine monolayers investigated by polarization and frequency resolved SFG-VS' by Feng Wei et al., Phys. Chem. Chem. Phys., 2015, 17, 25114-25122.

  15. Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars

    DOE PAGES

    Cousin, Agnes; Sautter, Violaine; Payré, Valérie; ...

    2017-02-09

    Several recent studies have revealed that Mars is not a simple basalt-covered planet, but has a more complex geological history. In Gale crater on Mars, the Curiosity rover discovered 59 igneous rocks. This article focuses on their textures (acquired from the cameras such as MAHLI and MastCam) and their geochemical compositions that have been obtained using the ChemCam instrument. Light-toned crystals have been observed in most of the rocks. They correspond to feldspars ranging from andesines/oligoclases to anorthoclases and sanidines in the leucocratic vesiculated rocks. Darker crystals observed in all igneous rocks (except the leucocratic vesiculated ones) were analyzed bymore » LIBS and mainly identified as Fe-rich pigeonites and Fe-augites. Iron oxides have been observed in all groups whereas F-bearing minerals have been detected only in few of them. From their textural analysis and their whole-rock compositions, all these 59 igneous rocks have been classified in five different groups; from primitive rocks i.e. dark aphanitic basalts/basanites, trachybasalts, tephrites and fine/coarse-grained gabbros/norites to more evolved materials i.e. porphyritic trachyandesites, leucocratic trachytes and quartz-diorites. The basalts and gabbros are found all along the traverse of the rover, whereas the felsic rocks are located before the Kimberley formation, i.e. close to the Peace Vallis alluvial fan deposits. This suggests that these alkali rocks have been transported by fluvial activity and could come from the Northern rim of the crater, and may correspond to deeper strata buried under basaltic regolith (Sautter et al., 2015). Some of the basaltic igneous rocks are surprisingly enriched in iron, presenting low Mg# similar to the nakhlite parental melt that cannot be produced by direct melting of the Dreibus and Wanke (1986) martian primitive mantle. The basaltic rocks at Gale are thus different from Gusev basalts. They could originate from different mantle reservoirs

  16. Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousin, Agnes; Sautter, Violaine; Payré, Valérie

    Several recent studies have revealed that Mars is not a simple basalt-covered planet, but has a more complex geological history. In Gale crater on Mars, the Curiosity rover discovered 59 igneous rocks. This article focuses on their textures (acquired from the cameras such as MAHLI and MastCam) and their geochemical compositions that have been obtained using the ChemCam instrument. Light-toned crystals have been observed in most of the rocks. They correspond to feldspars ranging from andesines/oligoclases to anorthoclases and sanidines in the leucocratic vesiculated rocks. Darker crystals observed in all igneous rocks (except the leucocratic vesiculated ones) were analyzed bymore » LIBS and mainly identified as Fe-rich pigeonites and Fe-augites. Iron oxides have been observed in all groups whereas F-bearing minerals have been detected only in few of them. From their textural analysis and their whole-rock compositions, all these 59 igneous rocks have been classified in five different groups; from primitive rocks i.e. dark aphanitic basalts/basanites, trachybasalts, tephrites and fine/coarse-grained gabbros/norites to more evolved materials i.e. porphyritic trachyandesites, leucocratic trachytes and quartz-diorites. The basalts and gabbros are found all along the traverse of the rover, whereas the felsic rocks are located before the Kimberley formation, i.e. close to the Peace Vallis alluvial fan deposits. This suggests that these alkali rocks have been transported by fluvial activity and could come from the Northern rim of the crater, and may correspond to deeper strata buried under basaltic regolith (Sautter et al., 2015). Some of the basaltic igneous rocks are surprisingly enriched in iron, presenting low Mg# similar to the nakhlite parental melt that cannot be produced by direct melting of the Dreibus and Wanke (1986) martian primitive mantle. The basaltic rocks at Gale are thus different from Gusev basalts. They could originate from different mantle reservoirs

  17. Simulaid: a simulation facilitator and analysis program.

    PubMed

    Mezei, Mihaly

    2010-11-15

    Simulaid performs a large number of simulation-related tasks: interconversion and modification of structure and trajectory files, optimization of orientation, and a large variety of analysis functions. The program can handle structures in PDB (Berman et al., Nucleic Acids Res 2000, 28, 235), Charmm (Brooks et al., J Comput Chem 4, 187) CRD, Amber (Case et al.), Macromodel (Mohamadi et al., J Comput Chem 1990, 11, 440), Gromos/Gromacs (Hess et al.), InsightII (InsightII. Accelrys Inc.: San Diego, 2005), Grasp (Nicholls et al., Proteins: Struct Funct Genet 1991, 11, 281) .crg, Tripos (Tripos International, S. H. R., St. Louis, MO) .mol2 (input only), and in the MMC (Mezei, M.; MMC: Monte Carlo program for molecular assemblies. Available at: http://inka.mssm.edu/~mezei/mmc) formats; and trajectories in the formats of Charmm, Amber, Macromodel, and MMC. Analysis features include (but are not limited to): (1) simple distance calculations and hydrogen-bond analysis, (2) calculation of 2-D RMSD maps (produced both as text file with the data and as a color-coded matrix) and cross RMSD maps between trajectories, (3) clustering based on RMSD maps, (4) analysis of torsion angles, Ramachandran (Ramachandran and Sasiskharan, Adv Protein Chem 1968, 23, 283) angles, proline kink (Visiers et al., Protein Eng 2000, 13, 603) angles, pseudorotational (Altona and Sundaralingam, J Am Chem Soc 1972, 94, 8205; Cremer and Pople, J Am Chem Soc 1975, 97, 1354) angles, and (5) analysis based on circular variance (Mezei, J Mol Graphics Model 2003, 21, 463). Torsion angle evolutions are presented in dial plots (Ravishanker et al., J Biomol Struct Dyn 1989, 6, 669). Several of these features are unique to Simulaid. 2010 Wiley Periodicals, Inc.

  18. Validating the WRF-Chem model for wind energy applications using High Resolution Doppler Lidar data from a Utah 2012 field campaign

    NASA Astrophysics Data System (ADS)

    Mitchell, M. J.; Pichugina, Y. L.; Banta, R. M.

    2015-12-01

    Models are important tools for assessing potential of wind energy sites, but the accuracy of these projections has not been properly validated. In this study, High Resolution Doppler Lidar (HRDL) data obtained with high temporal and spatial resolution at heights of modern turbine rotors were compared to output from the WRF-chem model in order to help improve the performance of the model in producing accurate wind forecasts for the industry. HRDL data were collected from January 23-March 1, 2012 during the Uintah Basin Winter Ozone Study (UBWOS) field campaign. A model validation method was based on the qualitative comparison of the wind field images, time-series analysis and statistical analysis of the observed and modeled wind speed and direction, both for case studies and for the whole experiment. To compare the WRF-chem model output to the HRDL observations, the model heights and forecast times were interpolated to match the observed times and heights. Then, time-height cross-sections of the HRDL and WRF-Chem wind speed and directions were plotted to select case studies. Cross-sections of the differences between the observed and forecasted wind speed and directions were also plotted to visually analyze the model performance in different wind flow conditions. A statistical analysis includes the calculation of vertical profiles and time series of bias, correlation coefficient, root mean squared error, and coefficient of determination between two datasets. The results from this analysis reveals where and when the model typically struggles in forecasting winds at heights of modern turbine rotors so that in the future the model can be improved for the industry.

  19. Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars

    DOE PAGES

    Nachon, M.; Mangold, N.; Forni, O.; ...

    2017-09-01

    The Curiosity rover's campaign at Pahrump Hills provides the first analyses of lower Mount Sharp strata. We report ChemCam elemental composition of a diverse assemblage of post-depositional features embedded in, or cross-cutting, the host rock. ChemCam results demonstrate their compositional diversity, especially compared to the surrounding host rock: (i) Dendritic aggregates and relief enhanced features, characterized by a magnesium enhancement and sulfur detection, and interpreted as Mg-sulfates; (ii) A localized observation that displays iron enrichment associated with sulfur, interpreted as Fe-sulfate; (iii) Dark raised ridges with varying Mg- and Ca-enriched compositions compared to host rock; (iv) Several dark-toned veins withmore » calcium enhancement associated with fluorine detection, interpreted as fluorite veins. (v) Light-toned veins with enhanced calcium associated with sulfur detection, and interpreted as Ca-sulfates. The diversity of the Pahrump Hills diagenetic assemblage suggests a complex post-depositional history for fine-grained sediments for which the origin has been interpreted as fluvial and lacustrine. Assessment of the spatial and relative temporal distribution of these features shows that the Mg-sulfate features are predominant in the lower part of the section, suggesting local modification of the sediments by early diagenetic fluids. Conversely, light-toned Ca-sulfate veins occur in the whole section and cross-cut all other features. A relatively late stage shift in geochemical conditions could explain this observation. The Pahrump Hills diagenetic features have no equivalent compared to targets analyzed in other locations at Gale crater. Only the light-toned Ca-sulfate veins are present elsewhere, along Curiosity's path, suggesting they formed through a common late-stage process that occurred at over a broad area.« less

  20. Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nachon, M.; Mangold, N.; Forni, O.

    The Curiosity rover's campaign at Pahrump Hills provides the first analyses of lower Mount Sharp strata. We report ChemCam elemental composition of a diverse assemblage of post-depositional features embedded in, or cross-cutting, the host rock. ChemCam results demonstrate their compositional diversity, especially compared to the surrounding host rock: (i) Dendritic aggregates and relief enhanced features, characterized by a magnesium enhancement and sulfur detection, and interpreted as Mg-sulfates; (ii) A localized observation that displays iron enrichment associated with sulfur, interpreted as Fe-sulfate; (iii) Dark raised ridges with varying Mg- and Ca-enriched compositions compared to host rock; (iv) Several dark-toned veins withmore » calcium enhancement associated with fluorine detection, interpreted as fluorite veins. (v) Light-toned veins with enhanced calcium associated with sulfur detection, and interpreted as Ca-sulfates. The diversity of the Pahrump Hills diagenetic assemblage suggests a complex post-depositional history for fine-grained sediments for which the origin has been interpreted as fluvial and lacustrine. Assessment of the spatial and relative temporal distribution of these features shows that the Mg-sulfate features are predominant in the lower part of the section, suggesting local modification of the sediments by early diagenetic fluids. Conversely, light-toned Ca-sulfate veins occur in the whole section and cross-cut all other features. A relatively late stage shift in geochemical conditions could explain this observation. The Pahrump Hills diagenetic features have no equivalent compared to targets analyzed in other locations at Gale crater. Only the light-toned Ca-sulfate veins are present elsewhere, along Curiosity's path, suggesting they formed through a common late-stage process that occurred at over a broad area.« less

  1. Gaseous Chemistry and Aerosol Mechanism Developments for Version 3.5.1 of the Online Regional Model, WRF-Chem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer-Nicholls, Scott; Lowe, Douglas; Utembe, Steve

    We have made a number of developments in the regional coupled model WRF-Chem, with the aim of making the model more suitable for prediction of atmospheric composition and of interactions between air quality and weather. We have worked on the European domain, with a particular focus on making the model suitable for the study of night time chemistry and oxidation by the nitrate radical in the UK atmosphere. A reduced form of the Common Reactive Intermediates gas-phase chemical mechanism (CRIv2-R5) has been implemented to enable more explicit simulation of VOC degradation. N2O5 heterogeneous chemistry has been added to the existingmore » sectional MOSAIC aerosol module, and coupled to both the CRIv2-R5 and existing CBM-Z gas phase scheme. Modifications have also been made to the sea-spray aerosol emission representation, allowing the inclusion of primary organic material in sea-spray aerosol. Driven by appropriate emissions, wind fields and chemical boundary conditions, implementation of the different developments is illustrated in order to demonstrate the impact that these changes have in the North-West European domain. These developments are now part of the freely available WRF-Chem distribution.« less

  2. The influence of organic-containing soil dust on ice nucleation and cloud properties

    NASA Astrophysics Data System (ADS)

    Hummel, Matthias; Grini, Alf; Berntsen, Terje K.; Ekman, Annica

    2017-04-01

    distributes only to a small extent towards subtropical regions, but does not expand further poleward than desert dust INP. Due to the current setup, with simulations nudged to ERA-Interim meteorology, only small changes in the cloud variables are possible. However, the experiment still shows clear influences of soil dust INP on the cloud ice phase. Due to an increased number of ice particles in regions with T<-15˚ C, the formation of precipitation particles is larger. Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M - Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687-720, 10.5194/gmd-6-687-2013, 2013. Cziczo, D. J., Froyd, K. D., Hoose, C., Jensen, E. J., Diao, M., Zondlo, M. A., Smith, J. B., Twohy, C. H., and Murphy, D. M.: Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation, Science, 340, 1320-1324, 10.1126/science.1234145, 2013. DeMott, P. J., Prenni, A. J., McMeeking, G. R., Sullivan, R. C., Petters, M. D., Tobo, Y., Niemand, M., Möhler, O., Snider, J. R., Wang, Z., and Kreidenweis, S. M.: Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles, Atmos. Chem. Phys., 15, 393-409, 10.5194/acp-15-393-2015, 2015. Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products, Reviews of Geophysics, 50, RG3005, 10.1029/2012RG000388, 2012. Hoose, C., and Möhler, O.: Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments, Atmos. Chem. Phys., 12, 9817-9854, 10.5194/acp-12-9817-2012, 2012. Steinke, I., Funk, R., Busse, J., Iturri, A., Kirchen, S., Leue, M., Möhler, O., Schwartz, T., Schnaiter, M., Sierau, B

  3. Stratospheric Observations of CH3D and HDO from ATMOS Infrared Solar Spectra: Enrichments of Deuterium in Methane and Implications for HD

    NASA Technical Reports Server (NTRS)

    Irion, F. W.; Moyer, E. J.; Gunson, M. R.; Rinsland, C. P.; Yung, Y. L.; Michelsen, H. A.; Salawitch, R. J.; Chang, A. Y.; Newchurch, M. J.; Abbas, M. M.; hide

    1996-01-01

    Stratospheric mixing ratios of CH3D from 100 mb to 17mb (approximately equals 15 to 28 km)and HDO from 100 mb to 10 mb (approximately equals 15 to 32 km) have been inferred from high resolution solar occultation infrared spectra from the Atmospheric Trace MOlecule Spectroscopy (ATMOS) Fourier-transform interferometer. The spectra, taken on board the Space Shuttle during the Spacelab 3 and ATLAS-1, -2, and -3 missions, extend in latitude from 70 deg S to 65 deg N. We find CH3D entering the stratosphere at an average mixing ratio of (9.9 +/- 0.8) x 10(exp -10) with a D/H ratio in methane (7.1 +/- 7.4)% less than that in Standard Mean Ocean Water (SMOW) (1 sigma combined precision and systematic error). In the mid to lower stratosphere, the average lifetime of CH3D is found to be (1.19 +/- 0.02) times that of CH4, resulting in an increasing D/H ratio in methane as air 'ages' and the methane mixing ratio decreases. We find an average of (1.0 +/- 0.1) molecules of stratospheric HDO are produced for each CH3D destroyed (1 sigma combined precision and systematic error), indicating that the rate of HDO production is approximately equal to the rate of CH3D destruction. Assuming negligible amounts of deuterium in species other than HDO, CH3D and HD, this limits the possible change in the stratospheric HD mixing ratio below about 10 mb to be +/- 0.1 molecules HD created per molecule CH3D destroyed.

  4. Climate and weather across scales: singularities and stochastic Levy-Clifford algebra

    NASA Astrophysics Data System (ADS)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2016-04-01

    There have been several attempts to understand and simulate the fluctuations of weather and climate across scales. Beyond mono/uni-scaling approaches (e.g. using spectral analysis), this was done with the help of multifractal techniques that aim to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations of these equations (Royer et al., 2008, Lovejoy and Schertzer, 2013). However, these techniques were limited to deal with scalar fields, instead of dealing directly with a system of complex interactions and non trivial symmetries. The latter is unfortunately indispensable to answer to the challenging question of being able to assess the climatology of (exo-) planets based on first principles (Pierrehumbert, 2013) or to fully address the question of the relevance of quasi-geostrophic turbulence and to define an effective, fractal dimension of the atmospheric motions (Schertzer et al., 2012). In this talk, we present a plausible candidate based on the combination of Lévy stable processes and Clifford algebra. Together they combine stochastic and structural properties that are strongly universal. They therefore define with the help of a few physically meaningful parameters a wide class of stochastic symmetries, as well as high dimensional vector- or manifold-valued fields respecting these symmetries (Schertzer and Tchiguirinskaia, 2015). Lovejoy, S. & Schertzer, D., 2013. The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge U.K. Cambridge Univeristy Press. Pierrehumbert, R.T., 2013. Strange news from other stars. Nature Geoscience, 6(2), pp.81-83. Royer, J.F. et al., 2008. Multifractal analysis of the evolution of simulated precipitation over France in a climate scenario. C.R. Geoscience, 340(431-440). Schertzer, D. et al., 2012. Quasi-geostrophic turbulence and generalized scale invariance, a theoretical reply. Atmos. Chem. Phys., 12, pp.327-336. Schertzer, D

  5. Comment on “On the quantum theory of molecules” [J. Chem. Phys. 137, 22A544 (2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutcliffe, Brian T., E-mail: bsutclif@ulb.ac.be; Woolley, R. Guy

    2014-01-21

    In our previous paper [B. T. Sutcliffe and R. G. Woolley, J. Chem. Phys. 137, 22A544 (2012)] we argued that the Born-Oppenheimer approximation could not be based on an exact transformation of the molecular Schrödinger equation. In this Comment we suggest that the fundamental reason for the approximate nature of the Born-Oppenheimer model is the lack of a complete set of functions for the electronic space, and the need to describe the continuous spectrum using spectral projection.

  6. Correction: Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles.

    PubMed

    Sharma, Vikash; Chotia, Chanderbhan; Tarachand; Ganesan, Vedachalaiyer; Okram, Gunadhor S

    2017-07-21

    Correction for 'Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles' by Vikash Sharma et al., Phys. Chem. Chem. Phys., 2017, 19, 14096-14106.

  7. ChemCam Exploration of the rocks and soils of Gale Crater from “Rocknest” to “Yellow Knife Bay”

    NASA Astrophysics Data System (ADS)

    Blaney, Diana L.; Clegg, S. M.; Anderson, R.; Wiens, R.; Maurice, S.; Gasnault, O.; Barraclough, B.; Berger, G.; Bridges, J. C.; Bridges, N.; Clark, B.; Dyar, M. D.; Edgar, L.; Ehlmann, B.; Goetz, W.; Kah, L.; King, P.; Lanza, N.; Madsen, M.; LeMouelic, S.; Mangold, N.; Meslin, P. Y.; Newsom, H.; Ollila, A.; Rowland, S.; Schmidt, M.; Schröder, S.; Tokar, R.; MSL Science Team

    2013-10-01

    At the Rocknest location in Gale Crater, ChemCam collected measurements of the rocks surrounding the sandsheet. These rocks are potential in place outcrop related to the larger Yellowknife Bay exposure. ChemCam utilizes Laser Induced Breakdown Spectroscopy to provide elemental composition at distances up to 7 m from the rover. Analysis spot size ranges from 350 μm to 550 μm depending on range. A given analysis spot is fired upon repeatedly by the laser (generally from 30-50 laser shots) and the emission spectra from each laser shots is recorded. Elemental compositions are derived from the spectra vial a Partial Least Squares analysis model based a spectral library of ~70 certified standards collected on the flight instrument before launch. To date more than 60,000 spectra have been obtained on close to 2,000 observation points covering several hundred rock and soil samples. At Rocknest, even though each rock had a variety of textures, the chemistry of each rock varied in a similar manner. The rocks showed no evidence for widespread coatings or rinds. However, there was evidence for calcium sulfate (based on a linear relationship between CaO and SO4), and excess iron oxides (based on increased FeO not associated with SiO2 in specific rock targets). The detection of sulfates, ferric iron oxides and the overall chemistry of the rocks suggest that nearby felsic and olivine-rich material were cemented together by iron oxide cement. Results from the Rocknest area will be compared to other ChemCam results from other rocks at Yellowknife Bay and their geochemical/geological relationship will be presented. Implications for habitability of these deposits will also be discussed. Acknowledgement: This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. Funding from the Canadian Space Agency for King and Schmidt.

  8. ConfChem Conference on Flipped Classroom: Reclaiming Face Time--How an Organic Chemistry Flipped Classroom Provided Access to Increased Guided Engagement

    ERIC Educational Resources Information Center

    Trogden, Bridget G.

    2015-01-01

    Students' active engagement is one of the most critical challenges to any successful learning environment. The blending of active engagement along with rich, meaningful content is necessary for chemical educators to re-examine the purpose of the chemistry classroom. The Spring 2014 ConfChem conference, Flipped Classroom, was held from May 9 to…

  9. Correction: Spectroscopic characteristics of the OSIRIS near-backscattering crystal analyser spectrometer on the ISIS pulsed neutron source.

    PubMed

    Telling, Mark T F; Campbell, Stuart I; Engberg, Dennis; Martín Y Marero, David; Andersen, Ken H

    2016-03-21

    Correction for 'Spectroscopic characteristics of the OSIRIS near-backscattering crystal analyser spectrometer on the ISIS pulsed neutron source' by Mark T. F. Telling et al., Phys. Chem. Chem. Phys., 2005, 7, 1255-1261.

  10. Dust modeling over East Asia during the summer of 2010 using the WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Huang, J.; Chen, S.

    2017-12-01

    An intense summer dust storm over East Asia during June 24-27, 2010, was systematically analyzed using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and a variety of in situ measurements and satellite retrievals. The results showed that the WRF-Chem model captured the spatial and temporal distributions of meteorological factors and dust aerosols over East Asia. This summer dust storm was initiated by the approach of a transverse trough in the northwestern Xinjiang. Because of the passage of the cutoff-low, a large amount of cold air was transported southward and further enhanced in the narrow valleys of the Altai and Tianshan Mountains, which resulted in higher wind speeds and huge dust emissions over the Taklimakan Desert (TD). Dust emission fluxes over the TD were as high as 54 μg m-2 s-1 on June 25th. The dust aerosols from the TD then swept across Inner Mongolia, Ningxia and Mongolia, and some were also transported eastward to Beijing, Tianjin, the Hebei region, and even South Korea and Japan. The simulations further showed that summer dust over East Asia exerts an important influence on the radiation budget in the Earth-atmosphere system. Dust heat the atmosphere at a maximum heating rate of 0.14 k day-1, effectively changing the vertical stability of the atmosphere and affecting climate change at regional and even global scales. The dust event-averaged direct radiative forcing induced by dust particles over the TD at all-sky was -6.0, -16.8 and 10.8 W m-2 at the top of the atmosphere, the surface, and in the atmosphere, respectively.

  11. Correction: The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes.

    PubMed

    Villanueva-Cab, J; Anta, J A; Oskam, G

    2016-05-28

    Correction for 'The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes' by J. Villanueva-Cab et al., Phys. Chem. Chem. Phys., 2016, 18, 2303-2308.

  12. Laser Spectroscopic Study on Oxygen Isotope Effects in Ozone Surface Decomposition

    NASA Astrophysics Data System (ADS)

    Minissale, Marco; Boursier, Corinne; Elandaloussi, Hadj; Te, Yao; Jeseck, Pascal; Rouille, Christian; Zanon-Willette, Thomas; Janssen, Christof

    2016-04-01

    ). [2] Mauersberger, K. Geophys. Res. Lett. 8, 935-937 (1981). [3] Thiemens, M. H. and Heidenreich, J. E. Science 219, 1073 - 1075 (1983). [4] Janssen, C., Guenther, J., Mauersberger, K. and Krankowsky, D. Phys. Chem. Chem. Phys. 3, 4718-4721 (2001). [5] Gao, Y. Q. and Marcus, R. A. Science 293, 259-263 (2001). [6] Brenninkmeijer, C. A. M. et al. Chem. Rev. 103, 5125 - 5162 (2003). [7] Thiemens, M. H. and Shaheen, in Treatise on Geochemistry, Holland H. and Turekian K. eds., 151 - 177 (2014). [8] Marcus, R. A. J. Chem. Phys. 121, 8201 - 8211 (2004). [9] Früchtl, M., Janssen, C. and Röckmann, T. J. Geophys. Res. Atmos. 120, 4398 - 4416 (2015). [10] Früchtl, M., Janssen, C., Taraborrelli, D., Gromov, S. and Röckmann, T. Geophys. Res. Lett. (2015). [11] Janssen, C. and Tuzson, B. J. Phys. Chem. A 114, 9709-9719 (2010). [12] Chakraborty, S. and Bhattacharya, S. K. Chem. Phys. Lett. 369, 662-667 (2003).

  13. Synoptic meteorological conditions associated with high spring and summer ozone levels at a rural site in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kalabokas, Pavlos; Repapis, Christos; Mihalopoulos, Nikos; Zerefos, Christos

    2017-04-01

    the transition regions between high and low pressure synoptic meteorological systems. References Kalabokas, P. D., Mihalopoulos, N., Ellul, R., Kleanthous, S., and Repapis, C. C., 2008. An investigation of the meteorological and photochemical factors influencing the background rural and marine surface ozone levels in the Central and Eastern Mediterranean, Atmos. Environ., 42, 7894-7906. Kalabokas P. D., Thouret V., Cammas J.-P., Volz-Τhomas A., Boulanger D., Repapis C.C., 2015. The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case), Tellus B, 67, 27853, http://dx.doi.org/10.3402/tellusb.v67.27853. Kalabokas P., J. Hjorth, G. Foret, G. Dufour, M. Eremenko, G. Siour, J. Cuesta, M. Beekmann, 2016. An investigation on the origin of regional spring time ozone episodes in the Western Mediterranean and Central Europe. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-615.

  14. Correction: Conceptual design of tetraazaporphyrin- and subtetraazaporphyrin-based functional nanocarbon materials: electronic structures, topologies, optical properties, and methane storage capacities.

    PubMed

    Belosludov, Rodion V; Rhoda, Hannah M; Zhdanov, Ravil K; Belosludov, Vladimir R; Kawazoe, Yoshiyuki; Nemykin, Victor N

    2017-08-02

    Correction for 'Conceptual design of tetraazaporphyrin- and subtetraazaporphyrin-based functional nanocarbon materials: electronic structures, topologies, optical properties, and methane storage capacities' by Rodion V. Belosludov et al., Phys. Chem. Chem. Phys., 2016, 18, 13503-13518.

  15. DayCent-Chem Simulations of Ecological and Biogeochemical Processes of Eight Mountain Ecosystems in the United States

    USGS Publications Warehouse

    Hartman, Melannie D.; Baron, Jill S.; Clow, David W.; Creed, Irena F.; Driscoll, Charles T.; Ewing, Holly A.; Haines, Bruce D.; Knoepp, Jennifer; Lajtha, Kate; Ojima, Dennis S.; Parton, William J.; Renfro, Jim; Robinson, R. Bruce; Van Miegroet, Helga; Weathers, Kathleen C.; Williams, Mark W.

    2009-01-01

    Atmospheric deposition of nitrogen (N) and sulfur (S) cause complex responses in ecosystems, from fertilization to forest ecosystem decline, freshwater eutrophication to acidification, loss of soil base cations, and alterations of disturbance regimes. DayCent-Chem, an ecosystem simulation model that combines ecosystem nutrient cycling and plant dynamics with aqueous geochemical equilibrium calculations, was developed to address ecosystem responses to combined atmospheric N and S deposition. It is unique among geochemically-based models in its dynamic biological cycling of N and its daily timestep for investigating ecosystem and surface water chemical response to episodic events. The model was applied to eight mountainous watersheds in the United States. The sites represent a gradient of N deposition across locales, from relatively pristine to N-saturated, and a variety of ecosystem types and climates. Overall, the model performed best in predicting stream chemistry for snowmelt-dominated sites. It was more difficult to predict daily stream chemistry for watersheds with deep soils, high amounts of atmospheric deposition, and a large degree of spatial heterogeneity. DayCent-Chem did well in representing plant and soil carbon and nitrogen pools and fluxes. Modeled stream nitrate (NO3-) and ammonium (NH4+) concentrations compared well with measurements at all sites, with few exceptions. Simulated daily stream sulfate (SO42-) concentrations compared well to measured values for sites where SO42- deposition has been low and where SO42- adsorption/desorption reactions did not seem to be important. The concentrations of base cations and silica in streams are highly dependent on the geochemistry and weathering rates of minerals in each catchment, yet these were rarely, if ever, known. Thus, DayCent-Chem could not accurately predict weathering products for some catchments. Additionally, few data were available for exchangeable soil cations or the magnitude of base cation

  16. The HD(CP)2 Observational Prototype Experiment HOPE - Overview and Examples

    NASA Astrophysics Data System (ADS)

    Macke, Andreas

    2017-04-01

    The "HD(CP)2 Observational Prototype Experiment" (HOPE) was executed as a major 2-month field experiment in Jülich, Germany, performed in April and May 2013, followed by a smaller campaign in Melpitz, Germany in September 2013. HOPE has been designed to provide information on land-surface-atmospheric boundary layer exchange, aerosol, cloud and precipitation pattern for process studies and model evaluation with a focuses on the onset of clouds and precipitation in the convective atmospheric boundary layer. HOPE-Jülich instrumentation included a radio sounding station, 4 Doppler lidars, 4 Raman lidars,1 water vapour differential absorption lidar, 3 cloud radars, 5 microwave radiometers, 3 rain radars, 6 sky imagers, 99 pyranometers, and 4 Sun photometers operated in synergy at different supersites. The HOPE-Melpitz campaign combined ground-based remote sensing of aerosols and clouds with helicopter- and ballon-based in-situ observations in the atmospheric column and at the surface. HOPE provided an unprecedented collection of atmospheric dynamical, thermodynamical, and micro- and macrophysical properties of aerosols, clouds and precipitation with high spatial and temporal resolution within a cube of approximately 10 x 10 x 10 km3. HOPE data will significantly contribute to our understanding of boundary layer dynamics and the formation of clouds and precipitation. The datasets are made available through the Standardized Atmospheric Measurement Data SAMD archive at https://icdc.cen.uni-hamburg.de/index.php?id=samd. The presentation is based on an overview paper in ACP where results published in an ACP HOPE special issue are summarized, see http://www.atmos-chem-phys.net/special_issue366.html. Citation: Macke, A., Seifert, P., Baars, H., Beekmans, C., Behrendt, A., Bohn, B., Bühl, J., Crewell, S., Damian, T., Deneke, H., Düsing, S., Foth, A., Di Girolamo, P., Hammann, E., Heinze, R., Hirsikko, A., Kalisch, J., Kalthoff, N., Kinne, S., Kohler, M., Löhnert, U

  17. Comment on "Simulation of Surface Ozone Pollution in the Central Gulf Coast Region Using WRF/Chem Model: Sensitivity to PBL and Land Surface Physics"

    EPA Science Inventory

    A recently published meteorology and air quality modeling study has several serious deficiencies deserving comment. The study uses the weather research and forecasting/chemistry (WRF/Chem) model to compare and evaluate boundary layer and land surface modeling options. The most se...

  18. Charge-displacement analysis for excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronca, Enrico, E-mail: enrico@thch.unipg.it; Tarantelli, Francesco, E-mail: francesco.tarantelli@unipg.it; Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123 Perugia

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations.more » The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.« less

  19. Assessments of Potential Rock Coatings at Rocknest, Gale Crater with ChemCam

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.; Anderson, R.; Berger, G.; Bridges, J.; Bridges, N.; Clark, B.; Clegg, S.; Ehlman, B.; Goetz, W.; King, P.; hide

    2013-01-01

    Many locations on Mars have low color contrast between the rocks and soils due to the rocks being "dusty"--basically having a surface that is spectrally similar to Martian soil. In general this has been interpreted as soil and/or dust clinging to the rock though either mechanical or electrostic processes. However, given the apparent mobility of thin films of water forming cemented soils on Mars and at Gale Crater, the possibility exists that some of these "dusty" surfaces may actually be coatings formed by thin films of water locally mobilizing soil/air fall material at the rock interface. This type of coating was observed by Spirit during an investigation of the rock Mazatzal which showed enhanced salts above "normal soil" and an enhancement of nano phase iron oxide that was 10 micronmeters thick. We decided to use ChemCam to investigate the possibility of similar rock coatings forming at the Rocknest site at Gale Crater.

  20. AMPTE/CCE CHEM observations of the energetic ion population at geosynchronous altitudes

    NASA Technical Reports Server (NTRS)

    Daglis, Ioannis A.; Sarris, Emmanuel T.; Wilken, Berend

    1993-01-01

    The paper presents results of a statistical study of average characteristics of the energetic ion population at geosynchronous altitudes, using energetic-ion (1-300 keV/e) measurements from the CHEM spectrometer aboard the AMPTE Charge Composition Explorer between January 1985 and June 1987. Data were sorted into four MLT groups and two extreme geomagnetic activity levels ('very quiet' for AE less than 30 nT and 'very active' for AE greater than 700 nT). A clear quiet-time dayside feature found in the measurements was a dip in H(+) and He(2+) spectra, at 6.6 keV/e in the prenoon sector and at 3.5 keV/e in the postnoon sector. During active times, the ion fluxes increased (except for He(+)), and the O(+) contribution to the total energy density increased dramatically. The pitch angle distributions were normal during quiet times and isotropic or field-aligned during active times.

  1. Offline identification and characterization of biogenic primary emissions

    NASA Astrophysics Data System (ADS)

    Bozzetti, Carlo; El-Haddad, Imad; Dällenbach, Kaspar Rudolf; Sciare, Jean; Kasper-Giebl, Anne; Hueglin, Christoph; Canonaco, Francesco; Flasch, Mira; Wolf, Robert; Krepelova, Adela; Gates Slowik, Jay; Baltensperger, Urs; Prévôt, André Stéphan Henry

    2014-05-01

    summer in the coarse fraction, contributing up to 4 µg m-3. The spectral pattern of the associated factor, suggests that a great part of these particles consists of carbohydrates. AMS results are then combined with other data, including sugars and carbohydrates measured by Ion Chromatography coupled to Pulsed Amperometric Detector (IC-PAD) in order to assess the sources of primary biogenic particles. This work is supported by the Federal Office for the Environment in Switzerland and the Swiss National Science foundation. Canonaco, F. et al., (2013) Atmos. Meas. Tech., 6,3649-3661. Dällenbach, K.R. et al., (2014) Atmos. Meas. Tech. Discuss., in prep. Jimenez, J.L. et al., (2009) Science, 326. Paatero, P. (1999) J. Comp. Graph. Stat., 8, 854-888. Vali G. et al., (1976) J. Atmos. Sci., 33, 1565-1570.

  2. Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic

    DOE PAGES

    Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; ...

    2017-01-01

    In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain–Fritsch +more » Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.« less

  3. Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.

    In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain–Fritsch +more » Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.« less

  4. A thorough analysis of a severe dust storm in the Arabian Peninsula using WRF-CHEM, satellite imagery, and ground observations

    NASA Astrophysics Data System (ADS)

    Karagulian, F.; Ghebreyesus, D. T.; Weston, M.; Krishnan, V.; Temimi, M.; Al Hammadi, F.; Al Abdooli, A.

    2017-12-01

    A strong dust event occurred over the Arabian Peninsula from 1 to 3 April 2015. The event impacted the United Arab Emirates (UAE) on 2 April 2015 in the form of a dust storm. The origin and synopsis of the event is investigated in this study together with its impact on Air Quality in the UAE. The Weather Research Forecasting model coupled with chemistry (WRF-Chem) was run for the dates of the dust event. Outputs of the model were assessed against ground measurements of Particulate Matter (PM10) from monitoring stations in the United Arab Emirates (UAE), meteorological data, and the Aerosol Optical Depth from the new 1 km Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm for MODIS Terra and Aqua at 0.55 mm. Data from the geo-stationary satellite MSG SEVIRI was used to track the extent and the trajectory of the dust event across the Arabian Peninsula. This was supported by HYSPLIT back trajectory analysis simulated on hourly basis. The modeled results favorably agreed with ground observations of meteorological parameters at several monitoring stations in the UAE. On 2 and 3 April 2015, measurements and WRF-Chem simulations over the UAE showed northwest wind blowing within the range of 11-14 m s-1. Average surface temperature decreased from 33 to 26 ºC and the average radiance dropped by 50% during the peak time of the dust event with consequent reduction of the observed visibility down to 200 m in some UAE's cities. At local level, comparisons between modeled and estimated PM10 concentrations from monitoring stations and satellite data were somewhat biased by the saturated values recorded during the peak time of the dust event on 2 April 2015 with modeled lower limit average PM10 concentrations of 432 mg/m3 that were 25% lower than the ones from monitoring stations. On regional scale, the WRF-Chem model was able to estimate an upper limit values of PM10 concentrations during the dust event.

  5. Characterization of LIBS emission lines for the identification of chlorides, carbonates, and sulfates in salt/basalt mixtures for the application to MSL ChemCam data: LIBS OF CL, C, S IN SALT-BASALT MIXTURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D. E.; Ehlmann, B. L.; Forni, O.

    Ancient environmental conditions on Mars can be probed through the identification of minerals on its surface, including water-deposited salts and cements dispersed in the pore space of sedimentary rocks. Laser-induced breakdown spectroscopy (LIBS) analyses by the Martian rover Curiosity's ChemCam instrument can indicate salts, and ChemCam surveys aid in identifying and selecting sites for further, detailed in situ analyses. Here, we performed laboratory LIBS experiments under simulated Mars conditions with a ChemCam-like instrument on a series of mixtures containing increasing concentrations of salt in a basaltic background to investigate the potential for identifying and quantifying chloride, carbonate, and sulfate saltsmore » found only in small amounts, dispersed in bulk rock with ChemCam, rather than concentrated in veins. The data then indicate that the presence of emission lines from the basalt matrix limited the number of Cl, C, and S emission lines found to be useful for quantitative analysis; nevertheless, several lines with intensities sensitive to salt concentration were identified. Detection limits for the elements based on individual emission lines ranged from ~20 wt % carbonate (2 wt % C), ~5–30 wt % sulfate (1–8 wt % S), and ~5–10 wt % chloride (3–6 wt % Cl) depending on the basaltic matrix and/or salt cation. Absolute quantification of Cl, C, and S in the samples via univariate analysis depends on the cation-anion pairing in the salt but appears relatively independent of matrices tested, following normalization. Our results are promising for tracking relative changes in the salt content of bulk rock on the Martian surface with ChemCam.« less

  6. Characterization of LIBS emission lines for the identification of chlorides, carbonates, and sulfates in salt/basalt mixtures for the application to MSL ChemCam data: LIBS OF CL, C, S IN SALT-BASALT MIXTURES

    DOE PAGES

    Anderson, D. E.; Ehlmann, B. L.; Forni, O.; ...

    2017-04-24

    Ancient environmental conditions on Mars can be probed through the identification of minerals on its surface, including water-deposited salts and cements dispersed in the pore space of sedimentary rocks. Laser-induced breakdown spectroscopy (LIBS) analyses by the Martian rover Curiosity's ChemCam instrument can indicate salts, and ChemCam surveys aid in identifying and selecting sites for further, detailed in situ analyses. Here, we performed laboratory LIBS experiments under simulated Mars conditions with a ChemCam-like instrument on a series of mixtures containing increasing concentrations of salt in a basaltic background to investigate the potential for identifying and quantifying chloride, carbonate, and sulfate saltsmore » found only in small amounts, dispersed in bulk rock with ChemCam, rather than concentrated in veins. The data then indicate that the presence of emission lines from the basalt matrix limited the number of Cl, C, and S emission lines found to be useful for quantitative analysis; nevertheless, several lines with intensities sensitive to salt concentration were identified. Detection limits for the elements based on individual emission lines ranged from ~20 wt % carbonate (2 wt % C), ~5–30 wt % sulfate (1–8 wt % S), and ~5–10 wt % chloride (3–6 wt % Cl) depending on the basaltic matrix and/or salt cation. Absolute quantification of Cl, C, and S in the samples via univariate analysis depends on the cation-anion pairing in the salt but appears relatively independent of matrices tested, following normalization. Our results are promising for tracking relative changes in the salt content of bulk rock on the Martian surface with ChemCam.« less

  7. Dust modeling over East Asia during the summer of 2010 using the WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Chen, Siyu; Yuan, Tiangang; Zhang, Xiaorui; Zhang, Guolong; Feng, Taichen; Zhao, Dan; Zang, Zhou; Liao, Shujie; Ma, Xiaojun; Jiang, Nanxuan; Zhang, Jie; Yang, Fan; Lu, Hui

    2018-07-01

    An intense summer dust storm over East Asia during June 24-27, 2010, was systematically analyzed based on the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and a variety of in situ measurements and satellite retrievals. The results showed that the WRF-Chem model captures the spatial and temporal distributions of meteorological factors and dust aerosol in summer over East Asia well. This summer dust storm is initiated by the approach of a transverse trough in the northwestern Xinjiang. Because of the passage of the cutoff-low, a large amount of cold air is transported southward and further enhanced by the narrow valleys of the Altai and Tianshan Mountains, which results in higher wind speeds and huge dust emissions over the Taklimakan Desert (TD). Dust emission fluxes over the TD areas are high as 54 μg m-2 s-1 on June 25. The dust aerosol from the TD then sweeps across Inner Mongolia, Ningxia and Mongolia, and some are also transported eastward to Beijing, Tianjin, Hebei, and even South Korea and Japan. The simulations further show that summer dust over East Asia exerts an important influence on the radiation budget in the Earth-atmosphere system. Dust heats the atmosphere at a maximum heating rate of 0.14 K day-1, effectively changing the vertical stability of the atmosphere and affecting climate change at regional and even global scales. The average direct radiative forcing induced by dust particles over the TD at all-sky is -6.0, -16.8 and 10.8 W m-2 at the top of the atmosphere, the surface, and in the atmosphere, respectively. The discussion about radiative forcing induced by summer dust provides confidence for future investigation of summer dust impact on cloud properties and precipitation efficiency in the eastern China.

  8. Comment on "Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3" by Y. Wang et al., Phys. Chem. Chem. Phys., 2014, 16, 1424-1429.

    PubMed

    Even, J; Pedesseau, L; Katan, C

    2014-05-14

    Yun Wang et al. used density functional theory (DFT) to investigate the orthorhombic phase of CH3NH3PbI3, which has recently shown outstanding properties for photovoltaic applications. Whereas their analysis of ground state properties may represent a valuable contribution to understanding this class of materials, effects of spin-orbit coupling (SOC) cannot be overlooked as was shown in earlier studies. Moreover, their discussion on optical properties may be misleading for non-DFT-experts, and the nice agreement between experimental and calculated band gap is fortuitous, stemming from error cancellations between SOC and many-body effects. Lastly, Bader charges suggest potential problems during crystal structure optimization.

  9. Modeling Salinity Exchanges Between the Equatorial Indian Ocean and the Bay of Bengal

    DTIC Science & Technology

    2016-06-01

    Technology, has produced a model salinity climatology using daily atmosphere and surface flux climatology as forcing. Here, we present the results...surface, the model was forced by the daily climatology of atmo- spheric variables obtained from vari- ous sources. We used daily QuikSCAT and...2012). Precipitation data were obtained from the Global Precipitation Climatology Project (GPCP). Using the bulk flux algorithm by Fairall et al

  10. Zonally Asymmetric Ozone and the Morphology of the Planetary Waveguide

    DTIC Science & Technology

    2011-07-15

    sections for the 271 troposphere , J. Atmos. Sci., 37, 2600-2616. 272 Eyring, V., et al. (2007), Multimodel projections of stratospheric ozone ...GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, JULY 15, 2011 Zonally asymmetric ozone and the morphology of the 1 planetary waveguide...that zonally asymmetric 6 ozone (ZAO) profoundly changes the morphology of the Northern Hemisphere planetary 7 waveguide (PWG). ZAO causes the PWG to

  11. ConfChem Conference on Select 2016 BCCE Presentations: Changing Roles for Changing Times--Social Media and the Evolution of the Supplemental Instructor

    ERIC Educational Resources Information Center

    Alden, Emily

    2017-01-01

    This Communication summarizes one of the invited papers to the Select 2016 BCCE Presentations ACS CHED Committee on Computers in Chemical Education online ConfChem held from October 30 to November 22, 2016. The supplemental instruction (SI) model has come a long way from being a peer-assisted study sessions geared toward improving student…

  12. The AtChem On-line model and Electronic Laboratory Notebook (ELN): A free community modelling tool with provenance capture

    NASA Astrophysics Data System (ADS)

    Young, J. C.; Boronska, K.; Martin, C. J.; Rickard, A. R.; Vázquez Moreno, M.; Pilling, M. J.; Haji, M. H.; Dew, P. M.; Lau, L. M.; Jimack, P. K.

    2010-12-01

    AtChem On-line1 is a simple to use zero-dimensional box modelling toolkit, developed for use by laboratory, field and chamber scientists. Any set of chemical reactions can be simulated, in particular the whole Master Chemical Mechanism (MCM2) or any subset of it. Parameters and initial data can be provided through a self-explanatory web form and the resulting model is compiled and run on a dedicated server. The core part of the toolkit, providing a robust solver for thousands of chemical reactions, is written in Fortran and uses SUNDIALS3 CVODE libraries. Chemical systems can be constrained at multiple, user-determined timescales; this enabled studies of radical chemistry at one minute timescales. AtChem On-line is free to use and requires no installation - a web browser, text editor and any compressing software is all the user needs. CPU and storage are provided by the server (input and output data are saved indefinitely). An off-line version is also being developed, which will provide batch processing, an advanced graphical user interface and post-processing tools, for example, Rate of Production Analysis (ROPA) and chainlength analysis. The source code is freely available for advanced users wishing to adapt and run the program locally. Data management, dissemination and archiving are essential in all areas of science. In order to do this in an efficient and transparent way, there is a critical need to capture high quality metadata/provenance for modelling activities. An Electronic Laboratory Notebook (ELN) has been developed in parallel with AtChem Online as part of the EC EUROCHAMP24 project. In order to use controlled chamber experiments to evaluate the MCM, we need to be able to archive, track and search information on all associated chamber model runs, so that they can be used in subsequent mechanism development. Therefore it would be extremely useful if experiment and model metadata/provenance could be easily and automatically stored electronically

  13. Air pollution modeling over very complex terrain: An evaluation of WRF-Chem over Switzerland for two 1-year periods

    NASA Astrophysics Data System (ADS)

    Ritter, Mathias; Müller, Mathias D.; Tsai, Ming-Yi; Parlow, Eberhard

    2013-10-01

    The fully coupled chemistry module (WRF-Chem) within the Weather Research and Forecasting (WRF) model has been implemented over a Swiss domain for the years 2002 and 1991. The very complex terrain requires a high horizontal resolution (2 × 2 km2), which is achieved by nesting the Swiss domain into a coarser European one. The temporal and spatial distribution of O3, NO2 and PM10 as well as temperature and solar radiation are evaluated against ground-based measurements. The model performs well for the meteorological parameters with Pearson correlation coefficients of 0.92 for temperature and 0.88-0.89 for solar radiation. Temperature has root mean square errors (RMSE) of 3.30 K and 3.51 K for 2002 and 1991 and solar radiation has RMSEs of 122.92 and 116.35 for 2002 and 1991, respectively. For the modeled air pollutants, a multi-linear regression post-processing was used to eliminate systematic bias. Seasonal variations of post-processed air pollutants are represented correctly. However, short-term peaks of several days are not captured by the model. Averaged daily maximum and daily values of O3 achieved Pearson correlation coefficients of 0.69-0.77 whereas averaged NO2 and PM10 had the highest correlations for yearly average values (0.68-0.78). The spatial distribution reveals the importance of PM10 advection from the Po valley to southern Switzerland (Ticino). The absolute errors are ranging from - 10 to 15 μg/m3 for ozone, - 9 to 3 μg/m3 for NO2 and - 4 to 3 μg/m3 for PM10. However, larger errors occur along heavily trafficked roads, in street canyons or on mountains. We also compare yearly modeled results against a dedicated Swiss dispersion model for NO2 and PM10. The dedicated dispersion model has a slightly better statistical performance, but WRF-Chem is capable of computing the temporal evolution of three-dimensional data for a variety of air pollutants and meteorological parameters. Overall, WRF-Chem with the application of post-processing algorithms can

  14. Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide-Plasmon Polaritons.

    PubMed

    Zeng, Peng; Cadusch, Jasper; Chakraborty, Debadi; Smith, Trevor A; Roberts, Ann; Sader, John E; Davis, Timothy J; Gómez, Daniel E

    2016-04-13

    Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light-matter states where material properties such as the work function [ Hutchison et al. Adv. Mater. 2013 , 25 , 2481 - 2485 ], chemical reactivity [ Hutchison et al. Angew. Chem., Int. Ed. 2012 , 51 , 1592 - 1596 ], ultrafast energy relaxation [ Salomon et al. Angew. Chem., Int. Ed. 2009 , 48 , 8748 - 8751 ; Gomez et al. J. Phys. Chem. B 2013 , 117 , 4340 - 4346 ], and electrical conductivity [ Orgiu et al. Nat. Mater. 2015 , 14 , 1123 - 1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light-matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations.

  15. A comment on "The interaction of X2 (X = F, Cl, and Br) with active sites of graphite" [Xu et al., Chem. Phys. Lett., 418, 413 (2006)

    NASA Astrophysics Data System (ADS)

    Lechner, Christoph; Baranek, Philippe; Vach, Holger

    2018-04-01

    In their article, Xu et al. (2006) present the adsorption energies for the chemisorption of the three halogens F2 , Cl2 , and Br2 on the active sites of graphite. The three investigated systems are the three most stable surfaces, (0 0 1), (1 0 0), and (1 1 0); the latter two are also called zigzag and armchair surface, respectively. Due to some inconsistencies in their article, we re-evaluated the results of Xu et al. in order to investigate the impact on the adsorption energies of the halogens. For the (0 0 1) surface, our results agree with Xu et al. However, for the other two surfaces we find major differences. Contrary to Xu et al., we find that the halogens adsorb the strongest on the zigzag surface. The second strongest adsorption is found on the armchair surface for the symmetric configurations, the third strongest for the asymmetric configurations. Several reasons are given which explain this discrepancy. The most striking source of error in the work of Xu et al. is due to the fact that they did not choose the correct spin multiplicities for the model systems which means that they performed the calculations in excited states. This leads to errors between 50 and 600% for the zigzag surface and 3-42% for the armchair surface.

  16. Environmental Monitoring using Measurements from Cellular Network Infrastructure

    NASA Astrophysics Data System (ADS)

    David, N.; Gao, O. H.

    2015-12-01

    Accurate measurements of atmospheric parameters at ground level are fundamentally essential for hazard warning, meteorological forecasting and for various applications in agriculture, hydrology, transportation and more. The accuracy of existing instruments, however, is often limited as a result of technical and practical constraints. Existing technologies such as satellite systems cover large areas but may experience lack of precision at near surface level. On the other hand, ground based in-situ sensors often suffer from low spatial representativity. In addition, these conventional monitoring instruments are costly to implement and maintain. At frequencies of tens of GHz, various atmospheric hydrometeors affect microwave beams, causing perturbations to radio signals. Consequently, commercial wireless links that constitute the infrastructure for data transport between cellular base stations can be considered as a built in environmental monitoring facility (Messer et al., Science, 2006). These microwave links are widely deployed worldwide at surface level altitudes and can provide measurements of various atmospheric phenomena. The implementation costs are minimal since the infrastructure is already situated in the field. This technique has been shown to be applicable for 2D rainfall monitoring (e.g. Overeem et al., PNAS, 2013; Liberman et al., AMT, 2014) and potentially for water vapor observations (David et al., ACP, 2009; Chwala et al., Atmos. Res., 2013). Moreover, it has been recently shown that the technology has strong potential for detection of fog and estimation of its intensity (David et al., JGR-Atmos., 2013; David et al., BAMS, 2014). The research conducted to this point forms the basis for the initiation of a research project in this newly emerging field at the School of Civil and Environmental Engineering of Cornell University. The presentation will provide insights into key capabilities of the novel approach. The potential to monitor various

  17. Oxidation stability of ice nuclei from plants

    NASA Astrophysics Data System (ADS)

    Felgitsch, Laura; Häusler, Thomas; Grothe, Hinrich

    2017-04-01

    Heterogeneous ice nucleation is an important process in cloud formation and therefore has direct influence on the radiation budget of the Earth. Biological ice nuclei (IN) are highly abundant in nature. Many plants have been found to produce IN. These IN are of special interest, since several have been found to be in a nano-particular/macromolecular size range (Pummer et al. 2015, Felgitsch et al. 2016). Particles of such a small size should show a high lifespan in the atmosphere. Further the substances can easily be attached to mineral dusts. Very little is known about the atmospheric fate of plant derived ice nuclei (IN) in case they become airborne. While they inherit the possibility to influence ice cloud formation, this property depends highly on the expected lifespan of the substance and of its ice nucleation activity in the atmosphere. For our experiment we exposed plant IN derived from black currant (berry juice) and birch (pollen washing water) to high concentrations of highly oxidative substances typically present in the atmosphere. The exposure lasted several hours and allowed us to monitor the changes in ice nucleation activity. Our results suggest a high stability towards oxidation leading to a high atmospheric life span of the ice nucleation activity if airborne. Pummer, B.G., Budke, C., Augustin-Bauditz, S., Niedermeier, D., Felgitsch, L., Kampf, C.J., Huber, R.G., Liedl, K.R., Loerting, T., Moschen, T., Schauperl, M., Tollinger, M., Morris, C.E., Wex, H., Grothe, H., Pöschl, U., Koop, T., and Fröhlich-Nowoisky, J.: Ice nucleation by water-soluble macromolecules, Atmos. Chem. Phys., 15, 4077-4091, 2015. Felgitsch , L., Bichler, M., Häusler, T., Hitzenberger, R., and Grothe, H.: Heterogeneous freezing of water triggered by berry juices from perenneal plants, submitted, 2016.

  18. Marine biogeochemical influence on primary sea spray aerosol composition in the Southern Ocean: predictions from a mechanistic model

    NASA Astrophysics Data System (ADS)

    McCoy, D.; Burrows, S. M.; Elliott, S.; Frossard, A. A.; Russell, L. M.; Liu, X.; Ogunro, O. O.; Easter, R. C.; Rasch, P. J.

    2014-12-01

    Remote marine clouds, such as those over the Southern Ocean, are particularly sensitive to variations in the concentration and chemical composition of aerosols that serve as cloud condensation nuclei (CCN). Observational evidence indicates that the organic content of fine marine aerosol is greatly increased during the biologically active season near strong phytoplankton blooms in certain locations, while being nearly constant in other locations. We have recently developed a novel modeling framework that mechanistically links the organic fraction of submicron sea spray to ocean biogeochemistry (Burrows et al., in discussion, ACPD, 2014; Elliott et al., ERL, 2014). Because of its combination of large phytoplankton blooms and high wind speeds, the Southern Ocean is an ideal location for testing our understanding of the processes driving the enrichment of organics in sea spray aerosol. Comparison of the simulated OM fraction with satellite observations shows that OM fraction is a statistically significant predictor of cloud droplet number concentration over the Southern Ocean. This presentation will focus on predictions from our modeling framework for the Southern Ocean, specifically, the predicted geographic gradients and seasonal cycles in the aerosol organic matter and its functional group composition. The timing and location of a Southern Ocean field campaign will determine its utility in observing the effects of highly localized and seasonal phytoplankton blooms on aerosol composition and clouds. Reference cited: Burrows, S. M., Ogunro, O., Frossard, A. A., Russell, L. M., Rasch, P. J., and Elliott, S.: A physically-based framework for modelling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria, Atmos. Chem. Phys. Discuss., 14, 5375-5443, doi:10.5194/acpd-14-5375-2014, 2014. Elliott, S., Burrows, S. M., Deal, C., Liu, X., Long, M., Ogunro, O., Russell, L. M., and Wingenter O.. "Prospects for simulating macromolecular surfactant

  19. Symmetries and stochastic symmetry breaking in multifractal geophysics: analysis and simulation with the help of the Lévy-Clifford algebra of cascade generators..

    NASA Astrophysics Data System (ADS)

    Schertzer, D. J. M.; Tchiguirinskaia, I.

    2016-12-01

    Multifractal fields, whose definition is rather independent of their domain dimension, have opened a new approach of geophysics enabling to explore its spatial extension that is of prime importance as underlined by the expression "spatial chaos". However multifractals have been until recently restricted to be scalar valued, i.e. to one-dimensional codomains. This has prevented to deal with the key question of complex component interactions and their non trivial symmetries. We first emphasize that the Lie algebra of stochastic generators of cascade processes enables us to generalize multifractals to arbitrarily large codomains, e.g. flows of vector fields on large dimensional manifolds. In particular, we have recently investigated the neat example of stable Levy generators on Clifford algebra that have a number of seductive properties, e.g. universal statistical and robust algebra properties, both defining the basic symmetries of the corresponding fields (Schertzer and Tchiguirinskaia, 2015). These properties provide a convenient multifractal framework to study both the symmetries of the fields and how they stochastically break the symmetries of the underlying equations due to boundary conditions, large scale rotations and forcings. These developments should help us to answer to challenging questions such as the climatology of (exo-) planets based on first principles (Pierrehumbert, 2013), to fully address the question of the limitations of quasi- geostrophic turbulence (Schertzer et al., 2012) and to explore the peculiar phenomenology of turbulent dynamics of the atmosphere or oceans that is neither two- or three-dimensional. Pierrehumbert, R.T., 2013. Strange news from other stars. Nature Geoscience, 6(2), pp.8183. Schertzer, D. et al., 2012. Quasi-geostrophic turbulence and generalized scale invariance, a theoretical reply. Atmos. Chem. Phys., 12, pp.327336. Schertzer, D. & Tchiguirinskaia, I., 2015. Multifractal vector fields and stochastic Clifford algebra

  20. Addressing Common Cloud-Radiation Errors from 4-hour to 4-week Model Prediction

    NASA Astrophysics Data System (ADS)

    Benjamin, S.; Sun, S.; Grell, G. A.; Green, B.; Olson, J.; Kenyon, J.; James, E.; Smirnova, T. G.; Brown, J. M.

    2017-12-01

    Cloud-radiation representation in models for subgrid-scale clouds is a known gap from subseasonal-to-seasonal models down to storm-scale models applied for forecast duration of only a few hours. NOAA/ESRL has been applying common physical parameterizations for scale-aware deep/shallow convection and boundary-layer mixing over this wide range of time and spatial scales, with some progress to be reported in this presentation. The Grell-Freitas scheme (2014, Atmos. Chem. Phys.) and MYNN boundary-layer EDMF scheme (Olson / Benjamin et al. 2016 Mon. Wea. Rev.) have been applied and tested extensively for the NOAA hourly updated 3-km High-Resolution Rapid Refresh (HRRR) and 13-km Rapid Refresh (RAP) model/assimilation systems over the United States and North America, with targeting toward improvement to boundary-layer evolution and cloud-radiation representation in all seasons. This representation is critical for both warm-season severe convective storm forecasting and for winter-storm prediction of snow and mixed precipitation. At the same time the Grell-Freitas scheme has been applied also as an option for subseasonal forecasting toward improved US week 3-4 prediction with the FIM-HYCOM coupled model (Green et al 2017, MWR). Cloud/radiation evaluation using CERES satellite-based estimates have been applied to both 12-h RAP (13km) and also during Weeks 1-4 from 32-day FIM-HYCOM (60km) forecasts. Initial results reveal that improved cloud representation is needed for both resolutions and now is guiding further refinement for cloud representation including with the Grell-Freitas scheme and with the updated MYNN-EDMF scheme (both now also in global testing as well as with the 3km HRRR and 13km RAP models).