Science.gov

Sample records for al au bi

  1. Isolation of 1,2,4,3-Triazaborol-3-yl-metal (Li, Mg, Al, Au, Zn, Sb, Bi) Derivatives and Reactivity toward CO and Isonitriles.

    PubMed

    Lu, Wei; Hu, Haitao; Li, Yongxin; Ganguly, Rakesh; Kinjo, Rei

    2016-05-25

    3,4-dihydro-2H-1,2,4,3-triazaborol-3-yl-lithium 3 was synthesized and fully characterized. The (11)B NMR spectrum, X-ray diffraction analysis, and computational studies revealed the ionic nature of the B-Li bond, and indeed 3 displays nucleophilic property which allowed preparation of a series of 1,2,4,3-triazaborol-3-yl-metal complexes (Al; 5, Au; 6, Zn; 7, Mg; 8, Sb; 9, and Bi; 10). 3 reacted with CO (1 atm) and various isonitriles under ambient condition, and mechanistic study suggests that the reactions with CO and aryl isonitriles proceed via an insertion of CO and isonitrile carbon into the B-Li bond followed by isomerization to yield transient carbene species, one of which was confirmed by trapping with S8. With PhNC, compounds 5 and 7·(thf) underwent exchange of THF molecule coordinating to the metal center with isonitrile, whereas insertion of isonitrile carbon occurred at the B-Bi bond in 10 which afforded stable bismuth (boryl)iminomethane 20. PMID:27135617

  2. Photocatalytic Au-Bi2S3 heteronanostructures.

    PubMed

    Manna, Goutam; Bose, Riya; Pradhan, Narayan

    2014-06-23

    Au-Bi2S3 heteronanostructure photocatalysts were designed in which the coupling of a metal plasmon and a semiconductor exciton aids the absorption of solar light, enhances charge separation, and results in improved catalytic activity. Furthermore, these nanostructures show a unique pattern of structural combination, with Au nanoparticles positioned at the center of Bi2S3 nanorods. The chemistry of formation of these nanostructures, their epitaxy at the junction, and their photoconductance were studied, as well as their photoresponse properties. PMID:24844409

  3. Coating of a layer of Au on Al13 : The findings of icosahedral Al@Al12Au20- and Al12Au202- fullerenes using ab initio pseudopotential calculations

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay

    2009-02-01

    We report results of ab initio pseudopotential calculations on the nanocoating of gold on an icosahedral Al13 cluster and the findings of icosahedrally symmetric endohedral Al@Al12Au20- and empty cage Al12Au202- compound fullerenes formed of metal atoms. Twelve Al atoms cap the pentagonal faces of a dodecahedral Au20 cage in which each Au atom has three Al atoms and three Au atoms as nearest neighbors. Mixing of Al13 and Au20 magic clusters leads to a large heat of formation of 0.55 eV/atom and high stability of the Al@Al12Au20 compound fullerene. The binding energies of Al12Au20 and Al@Al12Au20 are 3.017 and 3.007 eV/atom, respectively, which are much larger than 2.457 eV/atom for Au32 fullerene, leading to the possibility of their high abundance.

  4. Controlled deposition of Au on (BiO)2CO3 microspheres: the size and content of Au nanoparticles matter.

    PubMed

    Li, Qiuyan; Hao, Xiaodong; Guo, Xiaolong; Dong, Fan; Zhang, Yuxin

    2015-05-21

    Novel 3D Au/(BiO)2CO3 (Au/BOC) heterostructures with size-controlled Au nanoparticles (NPs) (2-10 nm) were first synthesized and used in photocatalytic removal of ppb-level NO for air cleaning. The photocatalytic performance of Au/BOC heterostructures was enhanced by fine-tuning the content of Au and the size of Au NPs. A new photocatalysis mechanism of surface scattering and reflecting (SSR) coupled with surface plasmon resonance (SPR) was proposed to understand the enhanced photocatalytic activity. PMID:25906416

  5. In situ investigation of spinodal decomposition in hypermonotectic Al Bi and Al Bi Zn alloys

    NASA Astrophysics Data System (ADS)

    Schaffer, P. L.; Mathiesen, R. H.; Arnberg, L.; Di Sabatino, M.; Snigirev, A.

    2008-05-01

    Spinodal decomposition of hypermonotectic Al-6 wt.%Bi, Al-8 wt.%Bi and Al-6 wt.%Bi-8 wt.%Zn alloys has been investigated using synchrotron radiography. In the case of the 6 and 8 wt.%Bi binary alloys undercoolings of 70 and 110 K, respectively, were required to initiate the L→L1+L2 reaction, which appeared to occur very close to the monotectic reaction temperature. The nucleated L2 droplets were set in collective size-dependent motion by forces coupled to external fields (gravity and imposed temperature gradient) as well as forces arising due to internal fluctuations of the system. With experimental conditions similar to those realized during strip casting of the same materials, it was found that the size-dependant droplet velocity field combined with Stokes drag at the L1-L2 interfaces as well as attractive and repulsive diffusion-coupling between adjacent L2 droplets, yield complex meso- to microscale hydrodynamics. The hydrodynamics are the dominating mechanisms for L2 droplet coagulation, and are accordingly decisive for the final size distribution and geometrical dispersion of the soft Bi-rich component in the cast material. A different decomposition mode was observed in the Al-6 wt.%Bi-8 wt.%Zn ternary alloy, with the L2 droplets undergoing an immiscible-miscible-immiscible transition. In contrast to what was found for the binaries, L2 domains formed at relatively small undercoolings, and very little droplet motion was observed, as all L2 domains nucleated and remained on the crucible walls until they encroached on the monotectic front. At small distances from the monotectic front a Zn-rich solute boundary layer preceding the α-Al, caused the L2 domains to dissolve as Bi-Zn-Al regains complete miscibility upon reaching a critical Zn-concentration. In the shallow mush region behind the monotectic reaction, a high Zn solid solubility and a relatively fast diffusion of Zn in α-Al combine to cause a rapid diminishing Zn concentration in the mush liquid

  6. Investigation of Terahertz Emission from BiVO4/Au Thin Film Interface

    NASA Astrophysics Data System (ADS)

    Kumar, Nishant; Abdi, Fatwa F.; Trzesniewski, Bartek; Smith, Wilson A.; Planken, Paul C. M.; Adam, Aurèle J. L.

    2015-11-01

    We demonstrate emission of terahertz pulses from a BiVO4/Au thin film interface, illuminated with femtosecond laser pulses. Based on the experimental observations, we propose that the most likely cause of the THz emission is the Photo-Dember effect caused by the standing wave intensity distribution formed at the BiVO4/Au interfaces.

  7. Thermal stability of sputtered intermetallic Al-Au coatings

    SciTech Connect

    Moser, M.; Mayrhofer, P. H.; Ross, I. M.; Rainforth, W. M.

    2007-09-15

    Recently, the authors have shown that single-phase Al{sub 2}Au coatings, prepared by unbalanced magnetron sputtering, exhibit a dense columnar structure and highest hardness and indentation moduli of 8 and 144 GPa, respectively, within the Al-Au films investigated. This study focuses on the thermal stability of Al{sub 2}Au with respect to films containing more Al and Au having Al/Au at. % ratios of 4.32 and 1.85, respectively. Single-phase Al{sub 2}Au has the highest onset temperature for recovery of 475 deg. C and recrystallization of 575 deg. C. Upon annealing Au- and Al-rich films, their stresses deviate from the linear thermoelastic behavior at temperatures (T) above 200 and 450 deg. C, respectively, due to pores and metallic phases present. Metastable Au within the as-deposited Au-rich film is consumed by the growing intermetallic AlAu and AlAu{sub 2} phases at T{>=}450 deg. C, which themselves melt at {approx}625 deg. C. Due to nanometer scale segregations of Al, encapsulated by Al{sub 2}Au in Al-rich coatings, their melting point is reduced by {approx}85 deg. C to 575 deg. C. Dynamic thermal analyses up to 1100 deg. C in synthetic air reveal the single-phase Al{sub 2}Au films with a superior thermal stability and only negligible oxidation. At 750 deg. C, the mass gain is {approx}1.5 mg/cm{sup 2} after 50 h isothermal exposure. Based on the investigations, the authors can conclude that single-phase intermetallic Al{sub 2}Au films have a high potential for oxidation protection of sensitive materials.

  8. Range and thermal-behavior studies of Au and Bi implanted into photoresist films

    NASA Astrophysics Data System (ADS)

    Behar, M.; Grande, P. L.; Amaral, L.; Kaschny, J. R.; Zawislak, F. C.; Guimares, R. B.; Biersack, J. P.; Fink, D.

    1990-04-01

    The Rutherford backscattering technique has been used to determine range parameters of Au and Bi ions implanted into AZ1350 photoresist films at energies from 20 to 300 keV. The experimental results are 20 to 25% higher than the theoretical predictions by Ziegler, Biersack, and Littmark. Good agreement is achieved only when inelastic effects are included in the nuclear stopping-power regime. In addition, we find that shallow implantation of Bi ions increases the temperature at which the photoresist starts to decompose. This feature is not observed when Au is implanted under the same conditions. Finally, we have studied the thermal behavior of implanted Bi and Au ions. While Bi diffuses regularly, Au does not follow an Arrhenius kind of behavior. In addition, it is shown that the implantation process modifies, via the nonannealed damage, the characteristics of the Bi diffusion behavior.

  9. Photoelectrochemical sensing of 4-chlorophenol based on Au/BiOCl nanocomposites.

    PubMed

    Yan, Pengcheng; Xu, Li; Xia, Jiexiang; Huang, Yan; Qiu, Jingxia; Xu, Qian; Zhang, Qi; Li, Huaming

    2016-08-15

    The Au/BiOCl composites have been prepared by a facile one-pot ethylene glycol (EG) assisted solvothermal reaction in the presence of ionic liquid 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl). During the synthesis procedure, the [C16mim]Cl has been used as Cl source, solvent of this system, and dispersing agent to effectively disperse Au on the surface of BiOCl. The as-prepared samples have been systematically characterized by multiple instruments to investigate the structure, morphology, and photoelectrochemical properties. According to the photoelectrochemical data, the Au/BiOCl composites exhibit better photoelectrochemical performance toward the detection of 4-chlorophenol than that of the pure BiOCl. The photocurrent response of Au/BiOCl modified electrode is high and stable under light irradiation. The proposed Au/BiOCl modified electrode shows a wide linear response ranging from 0.16 to 20mgL(-1) with detection limit of 0.05mgL(-1). It indicates a dramatically promising application of bismuth oxyhalides in photoelectrochemical detection. It will be expected that the present study may be lightly extended to the monitor of other organic pollutants by photoelectrochemical detection of the Au/BiOCl composites. PMID:27260461

  10. Research on an AlSiNx bi-material thermal-mechanical uncooled infrared FPA pixel

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Zhang, Da-cheng

    2011-08-01

    AlSiNx bi-material thermal strain structure is used in uncooled optic readout infrared focal plane array (UOR IR FPA) pixel based on Micro-Electro-Mechanical Systems (MEMS) technology. In this paper, the problems that the AlSiNxstructure prevents FPA pixel scaling down and fill factor improving, and the Au reflection layer of the pixel leads to larger readout light energy loss are analyzed. The feasibility of AlSiNx instead of AlSiNx in the UOR IR FPA fabrication is researched in detail. The theoretical analyzing and simulation results demonstrate that, with optimized thicknesses and their matching designing of SiNx and Al, the thermal-mechanical response of AlSiNx bi-material structure is improved to 1.8 times and the intensity of optic readout signal is improved to about 2 times compared with AuSiNAlSiNx one.

  11. Glass formability and the Al-Au system

    SciTech Connect

    Egami, Takeshi; Ojha, Madhusudan; Nicholson, Donald M.; Louzguine-Luzgin, Dmitri; Chen, Na; Inoue, A.

    2012-01-01

    The aluminum-gold system exhibits various features that suggest high glass formability, such as a deep eutectic, formation of icosahedral clusters in the intermetallic compound near the eutectic minimum and a strongly negative heat of mixing. However, it is very difficult to form a glass with this system. Various issues related to glass formability are discussed using the Al-Au system as a negative test-case. In particular, the atomic level pressure was calculated from first principles for the first time for Al{sub 2}Au, AlAu{sub 2} and AlAu{sub 4} intermetallic compounds. The atomic level pressure is very high in these compounds, suggesting frustrated electronic states which destabilize both crystalline and glassy phases.

  12. Structural and dynamical properties of liquid Al-Au alloys

    NASA Astrophysics Data System (ADS)

    Peng, H. L.; Voigtmann, Th.; Kolland, G.; Kobatake, H.; Brillo, J.

    2015-11-01

    We investigate temperature- and composition-dependent structural and dynamical properties of Al-Au melts. Experiments are performed to obtain accurate density and viscosity data. The system shows a strong negative excess volume, similar to other Al-based binary alloys. We develop a molecular-dynamics (MD) model of the melt based on the embedded-atom method (EAM), gauged against the available experimental liquid-state data. A rescaling of previous EAM potentials for solid-state Au and Al improves the quantitative agreement with experimental data in the melt. In the MD simulation, the admixture of Au to Al can be interpreted as causing a local compression of the less dense Al system, driven by less soft Au-Au interactions. This local compression provides a microscopic mechanism explaining the strong negative excess volume of the melt. We further discuss the concentration dependence of self- and interdiffusion and viscosity in the MD model. Al atoms are more mobile than Au, and their increased mobility is linked to a lower viscosity of the melt.

  13. Plasmonic Fano resonances in compositional heterogenous Al- Au nanorod dimers

    NASA Astrophysics Data System (ADS)

    Wu, Botao; Xue, Yingxian; Ma, Qiang; Ding, Chengjie; Rong, Youying; Liu, Yan; Chen, Lingxiao; Wu, E.; Zeng, Heping

    2016-01-01

    We have investigated theoretically the plasmon resonance coupling in compositional heterogenous Al-Au nanorod dimers organized in a close proximity by end-to-end. It has been proved that the destructive interference between the bright dipole mode from Al nanorod and the dark quadrupole mode from Au nanorod nearby results in the appearance of apparent Fano resonance in the extinction spectra. The Fano resonance response on the structural dimension modifications in the proposed nanorod dimers have been estimated and determined. The Al-Au heterogeneous nanorod dimer shows a high sensitivity to the surrounding environment with a local surface plasmon resonance figure of merit of 7.6, which enables its promising applications in plasmonic sensing and detection.

  14. Magnetic properties of nearly stoichiometric CeAuBi{sub 2} heavy fermion compound

    SciTech Connect

    Adriano, C.; Jesus, C. B. R.; Pagliuso, P. G.; Rosa, P. F. S.; Grant, T.; Fisk, Z.; Garcia, D. J.

    2015-05-07

    Motivated by the interesting magnetic anisotropy found in the heavy fermion family CeTX{sub 2} (T = transition metal and X = pnictogen), here, we study the novel parent compound CeAu{sub 1−x}Bi{sub 2−y} by combining magnetization, pressure dependent electrical resistivity, and heat-capacity measurements. The magnetic properties of our nearly stoichiometric single crystal sample of CeAu{sub 1−x}Bi{sub 2−y} (x = 0.92 and y = 1.6) revealed an antiferromagnetic ordering at T{sub N} = 12 K with an easy axis along the c-direction. The field dependent magnetization data at low temperatures reveal the existence of a spin-flop transition when the field is applied along the c-axis (H{sub c} ∼ 7.5 T and T = 5 K). The heat capacity and pressure dependent resistivity data suggest that CeAu{sub 0.92}Bi{sub 1.6} exhibits a weak heavy fermion behavior with strongly localized Ce{sup 3+} 4f electrons. Furthermore, the systematic analysis using a mean field model including anisotropic nearest-neighbors interactions and the tetragonal crystalline electric field (CEF) Hamiltonian allows us to extract a CEF scheme and two different values for the anisotropic J{sub RKKY} exchange parameters between the Ce{sup 3+} ions in this compound. Thus, we discuss a scenario, considering both the anisotropic magnetic interactions and the tetragonal CEF effects, in the CeAu{sub 1−x}Bi{sub 2−y} compounds, and we compare our results with the isostructural compound CeCuBi{sub 2}.

  15. Bridging gold in electron-deficient Al2Au(n)(0/-) and BAlAu(n)(0/-) (n = 1-3) clusters.

    PubMed

    Yao, Wen-Zhi; Liu, Bing-Tao; Lu, Zhang-Hui; Li, Si-Dian

    2013-06-20

    The geometrical and electronic structures of the electron-deficient dialuminum aurides Al2Aun(0/-) and hybrid boron-aluminum aurides BAlAun(0/-) (n = 1-3) are systematically investigated based on the density and wave function theories. Ab initio theoretical evidence strongly suggests that bridging gold atoms exist in the ground states of C2v Al2Au(-) ((3)B1), C2v Al2Au ((2)B1), C2v Al2Au2(-) ((2)A1), C2v Al2Au2 ((1)A1), Cs Al2Au3(-) ((1)A'), and D3h Al2Au3 ((2)A1), which prove to possess an Al-Au-Al τ bond. For BAlAun(0/-) (n = 1-3) mixed clusters, bridging B-Au-Al units only exist in Cs BAlAu3(-) ((1)A') and Cs BAlAu3 ((2)A'), whereas Cs BAlAu(-) ((3)A''), Cs BAlAu ((2)A''), Cs BAlAu2(-) ((2)A'), and Cs BAlAu2 ((1)A') do not possess a bridging gold, as demonstrated by the fact that B-Al and B-Au exhibit significantly stronger electronic interaction than Al-Au in the same clusters. Orbital analyses indicate that Au 6s contributes approximately 98%-99% to the Au-based orbital in these Al-Au-Al/B-Au-Al interactions, whereas Au 5d contributes 1%-2%. The adiabatic and vertical detachment energies of Al2Aun(-) (n = 1-3) are calculated to facilitate future experimental characterizations. The results obtained in this work establish an interesting τ bonding model (Al-Au-Al/B-Au-Al) for electron-deficient systems in which Au 6s plays a major factor. PMID:23718624

  16. The role of plasmons and interband transitions in the color of AuAl2, AuIn2, and AuGa2

    NASA Astrophysics Data System (ADS)

    Keast, V. J.; Birt, K.; Koch, C. T.; Supansomboon, S.; Cortie, M. B.

    2011-09-01

    First principles calculations of the optical properties of the intermetallic compounds AuAl2, AuIn2, and AuGa2 have been performed. Analysis of the dielectric functions showed that AuAl2 is unique because a bulk plasmon is seen in the optical region and contributes to the purple color of this material. An experimental electron energy-loss spectrum showed excellent agreement with the theoretical prediction and confirmed the presence of the bulk plasmon.

  17. Tunable photoelectrochemical performance of Au/BiFeO3 heterostructure.

    PubMed

    Huang, Yen-Lin; Chang, Wei Sea; Van, Chien Nguyen; Liu, Heng-Jui; Tsai, Kai-An; Chen, Jhih-Wei; Kuo, Ho-Hung; Tzeng, Wen-Yen; Chen, Yi-Chun; Wu, Chung-Lin; Luo, Chih-Wei; Hsu, Yung-Jung; Chu, Ying-Hao

    2016-08-25

    Ferroelectric photoelectrodes, other than conventional semiconductors, are alternative photo-absorbers in the process of water splitting. However, the capture of photons and efficient transfer of photo-excited carriers remain as two critical issues in ferroelectric photoelectrodes. In this work, we overcome the aforementioned issues by decorating the ferroelectric BiFeO3 (BFO) surface with Au nanocrystals, and thus improving the photoelectrochemical (PEC) performance of BFO film. We demonstrate that the internal field induced by the spontaneous polarization of BFO can (1) tune the efficiency of the photo-excited carriers' separation and charge transfer characteristics in bare BFO photoelectrodes, and (2) modulate an extra optical absorption within the visible light region, created by the surface plasmon resonance excitation of Au nanocrystals to capture more photons in the Au/BFO heterostructure. This study provides key insights for understanding the tunable features of PEC performance, composed of the heterostructure of noble metals and ferroelectric materials. PMID:27533610

  18. Structural, photophysical and photocatalytic properties of novel Bi2AlVO7.

    PubMed

    Luan, Jingfei; Zhao, Wei; Feng, Jingwei; Cai, Hongling; Zheng, Zheng; Pan, Bingcai; Wu, Xiaoshan; Zou, Zhigang; Li, Yongmei

    2009-05-30

    Bi(2)AlVO(7) was prepared by solid-state reaction technique for the first time and the structural and photocatalytic properties of Bi(2)AlVO(7) and Bi(2)InTaO(7) were investigated. The results showed that Bi(2)AlVO(7) crystallized in the tetragonal crystal system with space group I4/mmm. In addition, the band gaps of Bi(2)AlVO(7) and Bi(2)InTaO(7) were estimated to be about 2.06 and 2.81 eV. The photocatalytic degradation of aqueous methylene blue (MB) dye with Bi(2)AlVO(7) or Bi(2)InTaO(7) as catalyst was investigated under visible light irradiation. Bi(2)AlVO(7) showed higher photocatalytic activity compared with Bi(2)InTaO(7) for photocatalytic degradation of MB under visible light irradiation. Complete removal of aqueous MB dye was realized after visible light irradiation for 160 min with Bi(2)AlVO(7) as the photocatalyst. The reduction of the total organic carbon (TOC) and the formation of inorganic products, SO(4)(2-) and NO(3)(-) revealed the continuous mineralization of aqueous MB dye during the photocatalytic process. The possible photocatalytic degradation pathway of aqueous MB dye was revealed under visible light irradiation. PMID:18842341

  19. Probing the electronic and vibrational structure of Au2Al2(-) and Au2Al2 using photoelectron spectroscopy and high resolution photoelectron imaging.

    PubMed

    Lopez, Gary V; Czekner, Joseph; Jian, Tian; Li, Wei-Li; Yang, Zheng; Wang, Lai-Sheng

    2014-12-14

    The electronic and vibrational structures of Au2Al2(-) and Au2Al2 have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au2Al2. Vibrationally resolved PE spectra are obtained using high-resolution photoelectron imaging for the ground state detachment transition of Au2Al2(-) at various photon energies (670.55-843.03 nm). An accurate electron affinity of 1.4438(8) eV is obtained for the Au2Al2 neutral cluster, as well as two vibrational frequencies at 57 ± 8 and 305 ± 13 cm(-1). Hot bands transitions yield two vibrational frequencies for Au2Al2(-) at 57 ± 10 and 144 ± 12 cm(-1). The obtained vibrational and electronic structure information is compared with density functional calculations, unequivocally confirming that both Au2Al2(-) and Au2Al2 possess C2v tetrahedral structures. PMID:25494751

  20. Probing the electronic and vibrational structure of Au2Al2- and Au2Al2 using photoelectron spectroscopy and high resolution photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Lopez, Gary V.; Czekner, Joseph; Jian, Tian; Li, Wei-Li; Yang, Zheng; Wang, Lai-Sheng

    2014-12-01

    The electronic and vibrational structures of Au2Al2- and Au2Al2 have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au2Al2. Vibrationally resolved PE spectra are obtained using high-resolution photoelectron imaging for the ground state detachment transition of Au2Al2- at various photon energies (670.55-843.03 nm). An accurate electron affinity of 1.4438(8) eV is obtained for the Au2Al2 neutral cluster, as well as two vibrational frequencies at 57 ± 8 and 305 ± 13 cm-1. Hot bands transitions yield two vibrational frequencies for Au2Al2- at 57 ± 10 and 144 ± 12 cm-1. The obtained vibrational and electronic structure information is compared with density functional calculations, unequivocally confirming that both Au2Al2- and Au2Al2 possess C2v tetrahedral structures.

  1. Characteristics of liquid-liquid immiscibility in Al-Bi-Cu, Al-Bi-Si, and Al-Bi-Sn monotectic alloys: Differential scanning calorimetry, interfacial tension, and density difference measurements

    NASA Astrophysics Data System (ADS)

    Kaban, Ivan G.; Hoyer, Walter

    2008-03-01

    Phase separation in ternary monotectic alloys (Al0.345Bi0.655)90X10 ( X=Cu,Si,Sn ; wt %) has been investigated. Experimental work included differential scanning calorimetry and measurements of the liquid-liquid (l-l) interfacial tension and difference in densities of coexisting phases. It is established that the interfacial tension between Al-rich and Bi-rich liquid phases increases when either Cu or Si is added and it decreases when Sn is added to the Al34.5Bi65.5 binary. This is related to the size of miscibility gap and is explained by increasing composition gradient across the (l-l) interface upon addition of either Cu or Si and its decreasing upon addition of Sn to the Al-Bi binary. The drop of interfacial tension in liquid (Al0.345Bi0.655)90Sn10 against Al34.5Bi65.5 is also caused by adsorption of Sn at the interface. Temperature dependences of the interfacial tension and density difference in the alloys studied follow a power law in reduced temperature (TC-T) at approach of the critical point with exponents close to the values predicted by the renormalization group theory of critical behavior.

  2. Tellurides, selenides and Bi-mineral assemblages from the Río Narcea Gold Belt, Asturias, Spain: genetic implications in Cu-Au and Au skarns

    NASA Astrophysics Data System (ADS)

    Cepedal, A.; Fuertes-Fuente, M.; Martín-Izard, A.; González-Nistal, S.; Rodríguez-Pevida, L.

    2006-07-01

    Gold ores in skarns from the Río Narcea Gold Belt are associated with Bi-Te(-Se)-bearing minerals. These mineral assemblages have been used to compare two different skarns from this belt, a Cu-Au skarn (calcic and magnesian) from the El Valle deposit, and a Au-reduced calcic skarn from the Ortosa deposit. In the former, gold mineralization occurs associated with Cu-(Fe)-sulfides (chalcopyrite, bornite, chalcocite-digenite), commonly in the presence of magnetite. Gold occurs mainly as native gold and electrum. Au-tellurides (petzite, sylvanite, calaverite) are locally present; other tellurides are hessite, clausthalite and coloradoite. The Bi-bearing minerals related to gold are Bi-sulfosalts (wittichenite, emplectite, aikinite, bismuthinite), native bismuth, and Bi-tellurides and selenides (tetradymite, kawazulite, tsumoite). The speciation of Bi-tellurides with Bi/Te(Se + S) ≤ 1, the presence of magnetite and the abundance of precious metal tellurides and clausthalite indicate fO2 conditions within the magnetite stability field that locally overlap the magnetite-hematite buffer. In Ortosa deposit, gold essentially occurs as native gold and maldonite and is commonly related to pyrrhotite and to the replacement of löllingite by arsenopyrite, indicating lower fO2 conditions for gold mineralization than those for El Valle deposit. This fact is confirmed by the speciation of Bi-tellurides and selenides (hedleyite, joséite-B, joséite-A, ikunolite-laitakarite) with Bi/Te(+ Se + S) ≥ 1.

  3. Evidence for an equilibrium epitaxial complexion at the Au-MgAl2O4 interface

    NASA Astrophysics Data System (ADS)

    Majdi, Tahereh; Zhu, Guo-zhen; Carvalho, Jessica; Jarvis, Victoria; Meinander, Kristoffer; Britten, James F.; Botton, Gianluigi; Preston, John S.

    2015-12-01

    Evidence for the existence of an equilibrium epitaxial complexion at the Au-MgAl2O4 interface has been observed. The growth of crystalline MgAl2O4 nanostructures, from a previously stable substrate in the presence of an Au overlayer and heat, is associated with this complexion. Prior to the nanostructures' self-assembly, Au nanoparticles crystalize, then reorient to align with the MgAl2O4 substrate. The presented results contradict earlier conclusions based solely on SEM studies of the final assembled nanostructures. Those results suggested that the MgAl2O4 grown pedestal and associated Au nanoparticle atop were both gold.

  4. Potential-step chronocoulometric investigation of the surface coverages of coadsorbed Bi and hydroxide on Au(111) electrodes

    SciTech Connect

    Niece, B.K.; Gewirth, A.A.

    1996-10-02

    Bi underpotentially deposited on Au(111) has been studied using potential-step chronocoulometry to determine the actual surface coverage of Bi. In the potential region where this system exhibits catalytic activity for the electroreduction of peroxide to water, the observed coverage is 0.25 monolayer (ML), which agrees well with the coverage of the reported (2 x 2) Bi overlayer observed by scanning probe microscopy in this region. At more cathodic potentials, the coverage increases to 0.67 ML. This coverage agrees with the expected based on the (p x {radical}3) structure proposed from scanning tunneling microscopy, atomic force microscopy, and SXS measurements in this region. The electrosorption valency calculated based on these coverages is 3, indicating that the Bi is fully discharged on the surface. Potential-step chronocoulometry has been used at various pH values to determine the surface coverage of hydroxide anion in the presence of underpotentially deposited (upd) Bi. The coverage is negligible in the absence of upd Bi and at potentials where the Bi adlayer condenses. It rises to a peak of 0.17 ML in the region where the coverage is 0.25 ML, indicating that OH{sup -} is coadsorbed with the Bi. 30 refs., 10 figs.

  5. Au/BiOCl heterojunction within mesoporous silica shell as stable plasmonic photocatalyst for efficient organic pollutants decomposition under visible light.

    PubMed

    Yan, Xiaoqing; Zhu, Xiaohui; Li, Renhong; Chen, Wenxing

    2016-02-13

    A new mesoporous silica protected plasmonic photocatalyst, Au/BiOCl@mSiO2, was prepared by a modified AcHE method and a subsequent UV light induced photodeposition process. The surfactant-free heterojunction allows the electrons spontaneously flow from Au to nearby BiOCl surface, leading to the accumulation of positive charges on Au surface, and negative charges on Bi species under visible light. Au/BiOCl@mSiO2 exhibits high visible light photocatalytic efficiency in complete oxidation of aqueous formaldehyde and Rhodamin B. We showed that a positive relationship exists between the LSPR effect and rate enhancements, and leads to a hypothesis that the metallic Au LSPR enhances the photocatalytic rates on nearby semiconductors by transferring energetic electrons to BiOCl and increasing the steady-state concentration of active OH species by a multi-electron reduction of molecular oxygen. The OH species is the main oxidant in photocatalytic transformations, whose intensity is greatly enhanced in the dye-involving systems due to the synergetic effect between LSPR and dye sensitization processes. In addition, the mesoporous SiO2 shell not only inhibits the over growth of BiOCl nanocrystals within the silica frameworks, but also protects the dissolution of chloride or Au species into aqueous solution, which ultimately makes the Au/BiOCl@mSiO2 catalysts rather stable during photocatalysis. PMID:26513558

  6. Gold enrichment and the Bi-Au association in pyrrhotite-rich massive sulfide deposits, Escanaba trough, Southern Gorda Ridge

    USGS Publications Warehouse

    Tormanen, T.O.; Koski, R.A.

    2005-01-01

    High gold contents (to 10.1 ppm, avg 1.4 ppm, n = 34) occur in pyrrhotite-rich massive sulfide samples from the sediment-covered floor of the Escanaba trough, the slow-spreading, southernmost segment of Gorda Ridge. These concentrations reflect the presence of primary gold, formed during high-temperature hydrothermal activity in mounds and chimneys, and secondary gold deposited during sea-floor weathering of massive sulfide. Primary gold occurs as fine-grained (2 ??m) secondary gold grains have a porous, flaky morphology and occur in samples in which pyrrhotite is oxidized and replaced by Fe oxyhydroxides, Fe sulfate, and sulfur. Mounds and chimneys dominated by pyrrhotite and containing lesser amounts of isocubanite, chalcopyrite, and Fe-rich sphalerite were formed by high-temperature (estimated range 325??-275??C), reduced, low-sulfur vent fluids. The mineral and fluid compositions during this main stage of hydrothermal venting reflect subsurface interaction between circulating hydrothermal fluids and turbiditic sediment containing as much as 1.1 percent organic carbon. As the deposition of pyrrhotite, Cu-Fe sulfides, and sphalerite waned, a volumetrically minor suite of sulfarsenide, arsenide, Bi, and Au minerals was deposited from highly reduced, late main-stage fluids diffusing through mounds and chimneys. The low solubility of Au as a bisulfide complex and the absence of fluid mixing during this stage of hydrothermal activity apparently inhibited the precipitation of gold directly from solution. Instead, gold precipitation is thought to be linked to elevated concentrations of Bi in the late main-stage fluids. The textural relationships of Au and Bi minerals in pyrrhotite-rich samples, low melting point of native bismuth (271.4??C), and recent experimental results on Au and Bi in hydrothermal fluids contribute to the hypothesis that gold was effectively scavenged from the Escanaba trough vent fluids by coexisting droplets of liquid bismuth. Additional phase

  7. Time-resolved spectroscopy of Bi3+ centers in Y4Al2O9

    NASA Astrophysics Data System (ADS)

    Babin, V.; Lipińska, L.; Mihokova, E.; Nikl, M.; Shalapska, T.; Suchocki, A.; Zazubovich, S.; Zhydachevskii, Ya

    2015-08-01

    Steady-state and time-resolved emission and excitation spectra as well as luminescence decay kinetics are studied at 4.2-400 K under excitation in the 3-6 eV energy range for Bi3+ ions substituting for Y3+ ions in four inequivalent crystal lattice sites of Y4Al2O9:Bi ceramics. Luminescence characteristics of Bi3+ centers of all the four types are identified and are shown to arise from the radiative decay of the triplet relaxed excited state (RES) of Bi3+ ions. The parameters of the triplet RES, namely, probabilities of the radiative and nonradiative transitions from the metastable and emitting levels as well as the energy distance between these levels, are determined. The influence of the nearest surroundings of Bi3+ ions on the luminescence characteristics and the parameters of the triplet RES of Bi3+ centers is discussed.

  8. Spin-conserving and reversing photoemission from the surface states of Bi2Se3 and Au (111)

    NASA Astrophysics Data System (ADS)

    Ryoo, Ji Hoon; Park, Cheol-Hwan

    2016-02-01

    We present a theory based on first-principles calculations explaining (i) why the tunability of spin polarizations of photoelectrons from Bi2Se3 (111) depends on the band index and Bloch wave vector of the surface state and (ii) why such tunability is absent in the case of isosymmetric Au (111). The results provide not only an explanation for the recent, puzzling experimental observations but also a guide toward making highly-tunable spin-polarized electron sources from topological insulators.

  9. Phase formation in Au-Al and Cu-Al thin-film systems under ion beam bombardment

    SciTech Connect

    Chang, C.T.; Campisano, S.U.; Cannavo, S.; Rimini, E.

    1984-05-01

    Au-Al and Cu-Al thin film bilayers were bombarded at 80 K with Kr/sup +/ ions of 60--240 keV energy. The Au/sub 2/Al+AuAl/sub 2/ and Al/sub 4/Cu/sub 9/ phases formed during bombardment and they were investigated by backscattering and x-ray diffraction techniques. In all the cases the growth kinetics is linear with the parameter (fluence x interfacial deposited energy density)/sup 1//sup ///sup 2/ suggesting a correlation with a diffusion-like process. Comparison with calculations of diffusion enhanced within the collision cascade gives good agreement with the experimental results.

  10. Photoluminescence of Au - formed in 12CaO · 7Al 2O 3 single crystal by Au +-implantation

    NASA Astrophysics Data System (ADS)

    Miyakawa, M.; Kamioka, H.; Hirano, M.; Kamiya, T.; Hosono, H.

    2006-09-01

    Au + ion implantation with fluences from 1 × 10 14 to 3 × 10 16 cm -2 into 12CaO · 7Al 2O 3 (C12A7) single crystals was carried out at a sample temperature of 600 °C. The implanted sample with the fluence of 1 × 10 15 cm -2 exhibited photoluminescence (PL) bands peaking at ˜3.1 and ˜2.3 eV at ⩽150 K when excited by He-Cd laser (325 nm). This was the first observation of PL from C12A7. These two PL bands are possibly due to intra-ionic transitions of an Au - ion having the electronic configuration of 6 s2, judged from their similarities to those reported on Au - ions in alkali halides. However, when the concentration of the implanted Au ions exceeded the theoretical maximum value of anions encaged in C12A7 (˜2.3 × 10 21 cm -3), surface plasmon absorption appeared in the optical absorption spectrum, suggesting Au colloids were formed at such high fluences. These observations indicate that negative gold ions are formed in the cages of C12A7 by the Au + implantation if an appropriate fluence is chosen.

  11. Corrosion behavior of Al-surface-treated steels in liquid Pb?Bi in a pot

    NASA Astrophysics Data System (ADS)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2004-12-01

    Corrosion tests were performed in oxygen-saturated liquid Pb-Bi at 450 °C and 550 °C in a pot for 3000 h for Al-surface-treated steels containing various levels of Cr contents. The Al surface treatments were achieved using a gas diffusion method and a melt dipping method. Al2O3, FeAl2 and AlCr2 produced by the gas diffusion method exhibited corrosion resistance to liquid Pb-Bi, while the surface layer produced by the melt dipping method suffered a severe corrosion attack. Fe4Al13 and Fe2Al5 produced by the melt dipping method disappeared during the corrosion test at 550 °C and only FeAl remained.

  12. A label-free electrochemiluminescence immunosensor based on KNbO3-Au nanoparticles@Bi2S3 for the detection of prostate specific antigen.

    PubMed

    Li, Jianxiu; Ma, Hongmin; Wu, Dan; Li, Xiaojian; Zhao, Yongbei; Zhang, Yong; Du, Bin; Wei, Qin

    2015-12-15

    A high sensitive label-free electrochemiluminescence (ECL) immunosensor was fabricated for the detection of prostate specific antigen (PSA) based on potassium niobate-Au nanoparticles@bismuth sulfide (KNbO3-Au NPs@Bi2S3) modified glassy carbon electrode (GCE). The prepared Bi2S3 nanosheets exhibited strong and stable cathodic ECL activity. The synthesized KNbO3-Au NPs was firstly used to fabricate ECL modified electrodes and Bi2S3 nanosheets worked as luminophores for the first time in ECL sensors. Au NPs were used to combine with Bi2S3 and anti-PSA via the Au-S covalent bond and Au-NH2 covalent bond without the usage of crosslinking agents respectively, further enhancing the sensitivity and stability of immunosensor. Under the optimum experimental conditions, the ECL signal of KNbO3-Au NPs@Bi2S3 linearly decreased with the increase of PSA concentration in the range of 0.005-5 ng/mL with a detection limit of 3 pg/mL. The preparated label-free ECL immunosensor exhibited high sensitivity and selectivity, good repeatability and long-term stability. The applicability of the proposed ECL immunosensor was also evaluated by detecting PSA in real samples. PMID:26120817

  13. Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study

    SciTech Connect

    Xiong, L H; Lou, H B; Wang, X D; Debela, T T; Cao, Q P; Zhang, D X; Wang, S Y; Wang, C Z; Jiang, J Z

    2014-04-01

    The local atomic structure evolution in Al2Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt-Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al2Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of < 0,4,4,0 >, < 0,3, 6,0 > and < 0,4,4,2 > with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF2-type Al2Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al2Au alloy. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Prediction of AU, AL, and AE indices using solar wind parameters

    NASA Astrophysics Data System (ADS)

    Luo, B.; Li, X.; Temerin, M. A.; Liu, S.

    2013-12-01

    An empirical model that predicts the AU index, a measure of the Earth's east electrojet, derived from magnetometers in the Northern hemisphere, is introduced. In addition, we have improved the previous AL model (Li et al., 2007) and have combined it with the AU model to produce an AE model. All models are based on upstream solar wind and interplanetary magnetic field parameters that have been propagated to the magnetopause by a simple ballistic propagation scheme for the years 1995 to 2001. The AU model predicts the 10-min averaged AU index for the seven years 1995-2001 with a prediction efficiency (PE) of 0.716, a linear correlation coefficient (LC) between the AU index and the model of 0.846, and a root mean square (RMS) error of 39.3 nT. We have updated the AL model introduced in Li et al. [2007] using the same prediction functions used to predict AU but with different parameters. The new AL model predicts the seven year AL index with a PE of 0.715, an LC of 0.846, and an RMS error of 81.6 nT. Using AE = AU-AL, the AE index is predicted with a PE of 0.788, an LC of 0.888, and an RMS error of 95.7 nT. The better PE and LC of the AE model over AU and AL models is because AU and AL are better correlated then their prediction errors. It is also found that: (1) The F10.7 index modulates the growth of auroral electrojet indices; (2) AU and AL behave differently during geomagnetic storm main phases. AU can drop to a low level while the magnitude of AL does not drop as much; (3) the longer-averaged auroral electrojets indices can be predicted very well but shorter timescale variations are much less predictable; (4) auroral electrojet activity is strongly dependent on the upstream solar wind velocity and the interplanetary magnetic field but is only weakly dependent on the solar wind density.

  15. Hydrothermal Synthesis Au-Bi2Te3 Nanocomposite Thermoelectric Film with a Hierarchical Sub-Micron Antireflection Quasi-Periodic Structure

    PubMed Central

    Tian, Junlong; Zhang, Wang; Zhang, Yuan; Xue, Ruiyang; Wang, Yuhua; Zhang, Zhijian; Zhang, Di

    2015-01-01

    In this work, Au-Bi2Te3 nanocomposite thermoelectric film with a hierarchical sub-micron antireflection quasi-periodic structure was synthesized via a low-temperature chemical route using Troides helena (Linnaeus) forewing (T_FW) as the biomimetic template. This method combines chemosynthesis with biomimetic techniques, without the requirement of expensive equipment and energy intensive processes. The microstructure and the morphology of the Au-Bi2Te3 nanocomposite thermoelectric film was analyzed by X-ray diffraction (XRD), field-emission scanning-electron microscopy (FESEM), and transmission electron microscopy (TEM). Coupled the plasmon resonances of the Au nanoparticles with the hierarchical sub-micron antireflection quasi-periodic structure, the Au-Bi2Te3 nanocomposite thermoelectric film possesses an effective infrared absorption and infrared photothermal conversion performance. Based on the finite difference time domain method and the Joule effect, the heat generation and the heat source density distribution of the Au-Bi2Te3 nanocomposite thermoelectric film were studied. The heterogeneity of heat source density distribution of the Au-Bi2Te3 nanocomposite thermoelectric film opens up a novel promising technique for generating thermoelectric power under illumination. PMID:26047340

  16. Hydrothermal Synthesis Au-Bi2Te3 Nanocomposite Thermoelectric Film with a Hierarchical Sub-Micron Antireflection Quasi-Periodic Structure.

    PubMed

    Tian, Junlong; Zhang, Wang; Zhang, Yuan; Xue, Ruiyang; Wang, Yuhua; Zhang, Zhijian; Zhang, Di

    2015-01-01

    In this work, Au-Bi(2)Te(3) nanocomposite thermoelectric film with a hierarchical sub-micron antireflection quasi-periodic structure was synthesized via a low-temperature chemical route using Troides helena (Linnaeus) forewing (T_FW) as the biomimetic template. This method combines chemosynthesis with biomimetic techniques, without the requirement of expensive equipment and energy intensive processes. The microstructure and the morphology of the Au-Bi(2)Te(3) nanocomposite thermoelectric film was analyzed by X-ray diffraction (XRD), field-emission scanning-electron microscopy (FESEM), and transmission electron microscopy (TEM). Coupled the plasmon resonances of the Au nanoparticles with the hierarchical sub-micron antireflection quasi-periodic structure, the Au-Bi(2)Te(3) nanocomposite thermoelectric film possesses an effective infrared absorption and infrared photothermal conversion performance. Based on the finite difference time domain method and the Joule effect, the heat generation and the heat source density distribution of the Au-Bi(2)Te(3) nanocomposite thermoelectric film were studied. The heterogeneity of heat source density distribution of the Au-Bi(2)Te(3) nanocomposite thermoelectric film opens up a novel promising technique for generating thermoelectric power under illumination. PMID:26047340

  17. Nano features of Al/Au ultrasonic bond interface observed by high resolution transmission electron microscopy

    SciTech Connect

    Ji Hongjun; Li Mingyu Kim, Jong-Myung; Kim, Dae-Won; Wang Chunqing

    2008-10-15

    Nano-scale interfacial details of ultrasonic AlSi1 wire wedge bonding to a Au/Ni/Cu pad were investigated using high resolution transmission electron microscopy (HRTEM). The intermetallic phase Au{sub 8}Al{sub 3} formed locally due to diffusion and reaction activated by ultrasound at the Al/Au bond interface. Multilayer sub-interfaces roughly parallel to the wire/pad interface were observed among this phase, and interdiffusional features near the Au pad resembled interference patterns, alternately dark and bright bars. Solid-state diffusion theory cannot be used to explain why such a thick compound formed within milliseconds at room temperature. The major formation of metallurgical bonds was attributed to ultrasonic cyclic vibration.

  18. Laser cladding of quasi-crystal-forming Al-Cu-Fe-Bi on an Al-Si alloy substrate

    NASA Astrophysics Data System (ADS)

    Biswas, Krishanu; Chattopadhyay, Kamanio; Galun, Rolf; Mordike, Barry L.

    2005-07-01

    We report here the results of an investigation aimed at producing coatings containing phases closely related to the quasi-crystalline phase with dispersions of soft Bi particles using an Al-Cu-Fe-Bi elemental powder mixture on Al-10.5 at. pct Si substrates. A two-step process of cladding followed by remelting is used to fine-tune the alloying, phase distribution, and microstructure. A powder mix of Al64Cu22.3Fe11.7Bi2 has been used to form the clads. The basic reason for choosing Bi lies in the fact that it is immiscible with each of the constituent elements. Therefore, it is expected that Bi will solidify in the form of dispersoids during the rapid solidification. A detailed microstructural analysis has been carried out by using the backscattered imaging mode in a scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructural features are described in terms of layers of different phases. Contrary to our expectation, the quasi-crystalline phase could not form on the Al-Si substrate. The bottom of the clad and remelted layers shows the regrowth of aluminum. The formation of phases such as blocky hexagonal Al-Fe-Si and a ternary eutectic (Al + CuAl2 + Si) have been found in this layer. The middle layer shows the formation of long plate-shaped Al13Fe4 along with hexagonal Al-Fe-Si phase growing at the periphery of the former. The formation of metastable Al-Al6Fe eutectic has also been found in this layer. The top layer, in the case of the as-clad track, shows the presence of plate-shaped Al13Fe4 along with a 1/1 cubic rational approximant of a quasi-crystal. The top layer of the remelted track shows the presence of a significant amount of a 1/1 cubic rational approximant. In addition, the as-clad and remelted microstructures show a fine-scale dispersion of Bi particles of different sizes formed during monotectic solidification. The remelting is found to have a strong effect on the size and distribution of Bi particles. The dry

  19. Preparation, characterization and dye adsorption of Au nanoparticles/ZnAl layered double oxides nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Yu Xin; Hao, Xiao Dong; Kuang, Min; Zhao, Han; Wen, Zhong Quan

    2013-10-01

    In this work, Au/ZnAl-layer double oxides (LDO) nanocomposties were prepared through a facile calcination process of AuCl4- intercalated ZnAl-layered double hydroxides (LDHs) nanocomposites. The morphology and crystal structure of these nanocomposites were characterized by Scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and N2 sorption analysis. By tailoring the process parameter, such as calcination temperature, heating time and the component composition, the adsorption properties of methyl orange (MO) on the Au/ZnAl-LDO nanocomposites were investigated in this work. In a typical adsorption process, it was found that 0.985 mg of MO (0.01 g L-1, 100 mL, 1 mg of MO in total) can be removed in 60 min by utilizing only 2.5 mg of Au/ZnAl-LDO (Au content, 1%) as adsorbents. Our adsorption data obtained from the Langmuir model also gave good values of the determination coefficient, and the saturated adsorption capacity of Au/ZnAl-LDO nanocomposites for MO was found to be 627.51 mg/g under ambient condition (e.g., room temperature, 1 atm). In principle, these hybrid nanostructures with higher adsorption abilities could be very promising adsorbents for wastewater treatment.

  20. New apparatus for DTA at 2000 bar: thermodynamic studies on Au, Ag, Al and HTSC oxides

    NASA Astrophysics Data System (ADS)

    Garnier, V.; Giannini, E.; Hugi, S.; Seeber, B.; Flükiger, R.

    2004-03-01

    A new differential thermal analysis (DTA) device was designed and installed in a hot isostatic pressure (HIP) furnace in order to perform high-pressure thermodynamic investigations up to 2 kbar and 1200 °C. Thermal analysis can be carried out in inert or oxidizing atmosphere up to p(O2) = 400 bar. The calibration of the DTA apparatus under pressure was successfully performed using the melting temperature (Tm) of pure metals (Au, Ag and Al) as standard calibration references. The thermal properties of these metals have been studied under pressure. The values of DgrV (volume variation between liquid and solid at Tm), rgrsm (density of the solid at Tm) and agrm (linear thermal expansion coefficient at Tm) have been extracted. A very good agreement was found with the existing literature and new data were added. This HIP-DTA apparatus is very useful for studying the thermodynamics of those systems where one or more volatile elements are present, such as high TC superconducting oxides. DTA measurements have been performed on Bi,Pb(2223) tapes up to 2 kbar under reduced oxygen partial pressure (p(O2) = 0.07 bar). The reaction leading to the formation of the 2223 phase was found to occur at higher temperatures when applying pressure: the reaction DTA peak shifted by 49 °C at 2 kbar compared to the reaction at 1 bar. This temperature shift is due to the higher stability of the Pb-rich precursor phases under pressure, as the high isostatic pressure prevents Pb from evaporating.

  1. Structural and optical properties of the naked and passivated Al5Au5 bimetallic nanoclusters

    NASA Astrophysics Data System (ADS)

    Grande-Aztatzi, Rafael; Formoso, Elena; Mercero, Jose M.; Matxain, Jon M.; Grabowski, Slawomir J.; Ugalde, Jesus M.

    2016-03-01

    The structural and optical properties of both the naked and passivated bimetallic Al5Au5 nanoclusters have been analyzed based on data obtained from ab initio density functional theory and quantum molecular dynamics simulations. It has been found that the Al5Au5 nanocluster possesses a hollow shaped minimum energy structure with segregated Al and Au layered domains, the former representing the electrophilic domain and the latter the nucleophilic domain. In particular, it has been shown that alkali metal cations attach in the nucleophilic domain and hop from one Au site to the next one in the picoseconds time scale, while anions are bound tightly to the Al atoms of the electrophilic domain. Simulating annealing studies are very suggestive of the proneness of the nanocluster towards coalescence into large cluster units, when the cluster is left unprotected by appropriate ligands. Further passivation studies with NaF salt suggest, nonetheless, the possibility of the isolation of the Al5Au5 cluster in molten salts or ionic liquids.

  2. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application.

    PubMed

    Slaughter, Gymama; Stevens, Brian

    2015-01-01

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 mW/ cm² in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm², respectively. PMID:26580661

  3. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application

    PubMed Central

    Slaughter, Gymama; Stevens, Brian

    2015-01-01

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 μW/ cm2 in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm2, respectively. PMID:26580661

  4. Turning gold into "diamond": a family of hexagonal diamond-type Au-frameworks interconnected by triangular clusters in the Sr-Al-Au system.

    PubMed

    Palasyuk, Andriy; Grin, Yuri; Miller, Gordon J

    2014-02-26

    A new homologous series of intermetallic compounds containing three-dimensional (3-d) tetrahedral frameworks of gold atoms, akin to hexagonal diamond, have been discovered in four related Sr-Au-Al systems: (I) hexagonal SrAl3-xAu4+x (0.06(1) ≤ x ≤ 0.46(1), P62m, Z = 3, a = 8.633(1)-8.664(1) Å, c = 7.083(2)-7.107(1) Å); (II) orthorhombic SrAl2-yAu5+y (y ≤ 0.05(1); Pnma, Z = 4, a = 8.942(1) Å, b = 7.2320(4) Å, c = 9.918(1) Å); (III) Sr2Al2-zAu7+z (z = 0.32(2); C2/c, Z = 4, a = 14.956(4) Å, b = 8.564(2) Å, c = 8.682(1) Å, β = 123.86(1)°); and (IV) rhombohedral Sr2Al3-wAu6+w (w ≈ 0.18(1); R3c, Z = 6, a = 8.448(1) Å, c = 21.735(4) Å). These remarkable compounds were obtained by fusion of the pure elements and were characterized by X-ray diffraction and electronic structure calculations. Phase I shows a narrow phase width and adopts the Ba3Ag14.6Al6.4-type structure; phase IV is isostructural with Ba2Au6Zn3, whereas phases II and III represent new structure types. This novel series can be formulated as Srx[M3]1-xAu2, in which [M3] (= [Al3] or [Al2Au]) triangles replace some Sr atoms in the hexagonal prismatic-like cavities of the Au network. The [M3] triangles are either isolated or interconnected into zigzag chains or nets. According to tight-binding electronic structure calculations, the greatest overlap populations belong to the Al-Au bonds, whereas Au-Au interactions have a substantial nonbonding region surrounding the calculated Fermi levels. QTAIM analysis of the electron density reveals charge transfer from Sr to the Al-Au framework in all four systems. A study of chemical bonding by means of the electron-localizability indicator indicates two- and three-center interactions within the anionic Al-Au framework. PMID:24483344

  5. Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs

    DOE PAGESBeta

    Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; Zhu, Weidi; Kim, Byung-Jae; Le, Lingcong; Ren, Fan; Lind, Aaron G.; Dahl, James; Jones, Kevin S.; et al

    2015-04-27

    We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and aftermore » BOE exposure.« less

  6. Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs

    SciTech Connect

    Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; Zhu, Weidi; Kim, Byung-Jae; Le, Lingcong; Ren, Fan; Lind, Aaron G.; Dahl, James; Jones, Kevin S.; Pearton, Stephen J.; Kravchenko, Ivan I.; Zhang, Ming-Lan

    2015-04-27

    We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and after BOE exposure.

  7. Deformation of diffusion-bonded bi-PST and directionally solidified crystals of TiAl

    SciTech Connect

    Kishida, K.; Johnson, D.R.; Masuda, Y.; Inui, H.; Yamaguchi, M.; Shimada, Y.

    1997-12-31

    With a data base now available on the microstructural characteristics and the deformation, fracture and macroscopic flow behavior of polysynthetically twinned (PST) crystals of {gamma}/{alpha}{sub 2} TiAl-base alloys, an approach to achieve a good combination of strength, ductility and toughness in {gamma}/{alpha}{sub 2} TiAl-base alloys was proposed using directional solidification (DS) techniques to produce a columnar grain material with the lamellar orientation aligned parallel to the growth direction. Such alignment of the lamellar microstructure was recently accomplished in {gamma}/{alpha}{sub 2} TiAl-base alloys of near equiatomic compositions using an appropriately oriented seed crystal from the Ti-Al-Si system. At the same time, bi-PST crystals, each containing a planar boundary parallel to the loading axis were prepared by directional solidification and diffusion bonding of two PST crystals. Such bi-PST crystals were deformed in tension at room temperature and their deformation behavior was examined in terms of the compatibility requirements imposed at the grain boundary and the interaction of the two component PST crystals. In this paper, (i) the current status of the DS processing efforts, (ii) some result of microscopic characterization of grain boundaries in diffusion bonded bi-PST crystals and (iii) results of deformation experiments of bi-PST crystals prepared by DS processing and diffusion bonding, will be reported.

  8. Ag/Au bi-metallic film based color surface plasmon resonance biosensor with enhanced sensitivity, color contrast and great linearity.

    PubMed

    Li, Chung-Tien; Lo, Kun-Chi; Chang, Hsin-Yun; Wu, Hsieh-Ting; Ho, Jennifer H; Yen, Ta-Jen

    2012-01-01

    In wavelength surface plasmon resonance (SPR) biosensor, the manipulation of SPR dispersion relation by Ag/Au bi-metallic film was first time implemented. Due to the enhanced resonant wavelength shift and the sharper SPR slope of using Ag/Au bi-metallic film, the illuminated color of reflection shows one order of magnitude greater contrast than conventional SPR biosensors. Such an Ag/Au bi-metallic film based color SPR biosensor (CSPRB) allows the detail bio-interactions, for example 100 nM streptavidin, to be distinguished by directly observing the color change of reflection through naked eyes rather than the analysis of spectrometer. In addition to the enhanced sensitivity and color contrast, this CSPRB also possesses a great linear detection range up to 0.0254 RIU, which leading to the application of point-of-care tests. PMID:22560104

  9. EuAu3Al2: Crystal and Electronic Structures and Spectroscopic, Magnetic, and Magnetocaloric Properties.

    PubMed

    Schmiegel, Jan-Patrick; Block, Theresa; Gerke, Birgit; Fickenscher, Thomas; Touzani, Rachid St; Fokwa, Boniface P T; Janka, Oliver

    2016-09-01

    The intermetallic compound EuAu3Al2 has been prepared by reaction of the elements in tantalum ampules. The structure was refined from single-crystal data, indicating that the title compound crystallizes in the orthorhombic crystal system (a = 1310.36(4), b = 547.87(1), c = 681.26(2) pm) with space group Pnma (wR2 = 0.0266, 1038 F(2) values, 35 parameters) and is isostructural to SrAu3Al2 (LT-SrZn5 type). Full ordering of the gold and aluminum atoms was observed. Theoretical calculations confirm that the title compound can be described as a polar intermetallic phase containing a polyanionic [Au3Al2](δ-) network featuring interconnected strands of edge-sharing [AlAu4] tetrahedra. Magnetic measurements and (151)Eu Mössbauer spectroscopic investigations confirmed the divalent character of the europium atoms. Ferromagnetic ordering below TC = 16.5(1) K was observed. Heat capacity measurements showed a λ-type anomaly at T = 15.7(1) K, in line with the ordering temperature from the susceptibility measurements. The magnetocaloric properties of EuAu3Al2 were determined, and a magnetic entropy of ΔSM = -4.8 J kg(-1) K(-1) for a field change of 0 to 50 kOe was determined. Band structure calculations found that the f-bands of Eu present at the Fermi level of non-spin-polarized calculations are responsible for the ferromagnetic ordering in this phase, whereas COHP chemical bonding coupled with Bader charge analysis confirmed the description of the structure as covalently bonded polyanionic [Au3Al2](δ-) network interacting ionically with Eu(δ+). PMID:27532875

  10. Real-Time Observation on Evolution of Droplets Morphology Affected by Electric Current Pulse in Al-Bi Immiscible Alloy

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Wang, Tongmin; Cao, Fei; Fu, Hongwang; Fu, Yanan; Xie, Honglan; Xiao, Tiqiao

    2013-05-01

    The evolution of Bi-rich droplets morphology in a solidifying Al-Bi immiscible alloy was directly observed using a synchrotron microradiography technique. The electric current pulse (ECP) was applied to control the solidification process of Al-Bi immiscible alloy. It was found that the electromagnetic pinch force and Marangoni force induced by ECP and temperature gradient, respectively, can significantly affect the distribution of Bi-rich droplets. The electromagnetic pinch force drove the droplets from the center to side; meanwhile, the Marangoni force lifted the droplets from the bottom to the top. As a result, the droplets finally distributed with a manner of "inverted triangle."

  11. Probing the electronic and vibrational structure of Au{sub 2}Al{sub 2}{sup −} and Au{sub 2}Al{sub 2} using photoelectron spectroscopy and high resolution photoelectron imaging

    SciTech Connect

    Lopez, Gary V.; Czekner, Joseph; Jian, Tian; Li, Wei-Li; Yang, Zheng; Wang, Lai-Sheng

    2014-12-14

    The electronic and vibrational structures of Au{sub 2}Al{sub 2}{sup −} and Au{sub 2}Al{sub 2} have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au{sub 2}Al{sub 2}. Vibrationally resolved PE spectra are obtained using high-resolution photoelectron imaging for the ground state detachment transition of Au{sub 2}Al{sub 2}{sup −} at various photon energies (670.55−843.03 nm). An accurate electron affinity of 1.4438(8) eV is obtained for the Au{sub 2}Al{sub 2} neutral cluster, as well as two vibrational frequencies at 57 ± 8 and 305 ± 13 cm{sup −1}. Hot bands transitions yield two vibrational frequencies for Au{sub 2}Al{sub 2}{sup −} at 57 ± 10 and 144 ± 12 cm{sup −1}. The obtained vibrational and electronic structure information is compared with density functional calculations, unequivocally confirming that both Au{sub 2}Al{sub 2}{sup −} and Au{sub 2}Al{sub 2} possess C{sub 2v} tetrahedral structures.

  12. Bi-SERS sensing and enhancement by Au-Ag bimetallic non-alloyed nanoparticles on amorphous and crystalline silicon substrate.

    PubMed

    Tan, Chee Leong; Lee, Soo Kyung; Lee, Yong Tak

    2015-03-01

    We have demonstrated Au-Ag bimetallic non-alloy nanoparticles (BNNPs) on thin a-Si film and c-Si substrate for high SERS enhancement, low cost, high sensitivity and reproducible SERS substrate with bi-SERS sensing properties where two different SERS peak for Au NPs and Ag NPs are observed on single SERS substrate. The isolated Au-Ag bimetallic NPs, with uniform size and spacing distribution, are suitable for uniform high density hotspot SERS enhancement. The SERS enhancement factor of Au-Ag BNNPs is 2.9 times higher compared to Ag NPs on similar substrates due to the increase of the localized surface plasmon resonance effect. However there is a decrement of SERS peak intensity at specific wavenumbers when the surrounding refractive index increases due to out-phase hybridization of Au NPs. The distinct changes of the two different SERS peaks on single Au-Ag BNNPs SERS substrate due to Au and Ag NPs independently show possible application for bi-molecular sensing. PMID:25836846

  13. Instability of photoinduced optical absorption of Bi12SiO20: Al crystals

    NASA Astrophysics Data System (ADS)

    Panchenko, T. V.; Dyachenko, A. A.; Khmelenko, O. V.

    2015-04-01

    The results of the experimental investigation of the instability of the establishment and relaxation of a photochromic effect in aluminum-doped Bi12SiO20 crystals have been presented. The oscillating and nonmonotonic kinetic dependences of the photoinduced optical absorption have been observed. The absorption oscillations are associated with the competition of the formation and destruction of [AlSiO4]0 photochromic centers.

  14. Relaxor behavior of (Ba,Bi)(Ti,Al)O3 ferroelectric ceramic

    NASA Astrophysics Data System (ADS)

    Cui, Lei; Hou, Yu-Dong; Wang, Sai; Wang, Chao; Zhu, Man-Kang

    2010-03-01

    Perovskite type (Ba0.9Bi0.1)(Ti0.9Al0.1)O3 (BBTA) ceramics have been prepared through solid state reaction route. The room temperature x-ray diffraction study suggests that BBTA ceramics have single phase tetragonal symmetry with space group P4mm. In contrast to the sharp dielectric transition of pure BaTiO3, a broad dielectric anomaly coupled with the shift in dielectric maxima toward a higher temperature with increasing frequency has been observed in BBTA. The quantitative characterization based on empirical parameters (ΔTm, γ, ΔTrelax, and ΔTdiffuse(1 kHz)) confirms its relaxor nature. The dielectric relaxation which follows the Vogel-Fulcher relationship with Eα=0.011 eV, Tf=356 K, and f0=1.38×1010 Hz, further supports spin-glass-like characteristics. In this system, the relaxor behavior can be attributed to the dynamic response of the polar clusters induced by the combined substitutions of Bi3+ and Al3+ on the Ba2+ and Ti4+ site. Moreover, the curie temperature of BBTA shows the decreasing trend compared to that of pure BaTiO3, which doesn't follow the normal Vegard's law, confirming that no BiAlO3 sublattice formed in BBTA. All these features indicate that BBTA is a promising candidate for lead-free relaxors.

  15. Fabrication of vertical GaN/InGaN heterostructure nanowires using Ni-Au bi-metal catalysts

    PubMed Central

    2013-01-01

    We have fabricated the vertically aligned coaxial or longitudinal heterostructure GaN/InGaN nanowires. The GaN nanowires are first vertically grown by vapor–liquid-solid mechanism using Au/Ni bi-metal catalysts. The GaN nanowires are single crystal grown in the [0001] direction, with a length and diameter of 1 to 10 μm and 100 nm, respectively. The vertical GaN/InGaN coaxial heterostructure nanowires (COHN) are then fabricated by the subsequent deposition of 2 nm of InxGa1-xN shell on the surface of GaN nanowires. The vertical GaN/InGaN longitudinal heterostructure nanowires (LOHN) are also fabricated by subsequent growth of an InGaN layer on the vertically aligned GaN nanowires using the catalyst. The photoluminescence from the COHN and LOHN indicates that the optical properties of GaN nanowires can be tuned by the formation of a coaxial or longitudinal InGaN layer. Our study demonstrates that the bi-metal catalysts are useful for growing vertical as well as heterostructure GaN nanowires. These vertically aligned GaN/InGaN heterostructure nanowires may be useful for the development of high-performance optoelectronic devices. PMID:23803283

  16. Bimetallic Pt-Au Nanocatalysts on ZnO/Al2O3/Monolith for Air Pollution Control.

    PubMed

    Kim, Ki-Joong; Ahn, Ho-Geun

    2015-08-01

    The catalytic activity of a monolithic catalyst with nanosized Pt and Au particles on ZnO/Al2O3 (Pt-Au/ZnO/Al2O3/M) prepared by a wash-coat method was examined, specifically for toluene oxidation. Scanning electron microscopy image showed clearly the formation of a ZnO/Al2O3 layer on the monolith. Nanosized Pt-Au particles on ZnO/Al2O3/M with different sizes could be found in the Pt-Au/ZnO/Al2O3/M catalyst. The conversion of toluene decreased with increasing toluene concentration and was also largely affected by the feed flow rate. The Pt-Au/ZnO/Al2O3/M catalysts prepared in this work have almost the same activity (molecules of toluene per second) compared with a powder Pt-Au/ZnO/Al2O3 catalyst with the same loadings of Pt and Au components; thus this catalyst could be used in controlling air pollution with very low concentrations and high flow rate. PMID:26369207

  17. Atomic structure and electronic properties of the two-dimensional (Au ,Al )/Si (111 )2 ×2 compound

    NASA Astrophysics Data System (ADS)

    Gruznev, D. V.; Bondarenko, L. V.; Matetskiy, A. V.; Tupchaya, A. Y.; Chukurov, E. N.; Hsing, C. R.; Wei, C. M.; Eremeev, S. V.; Zotov, A. V.; Saranin, A. A.

    2015-12-01

    A combination of scanning tunneling microscopy, angle-resolved photoelectron spectroscopy, ab initio random structure searching, and density functional theory electronic structure calculations was applied to elucidate the atomic arrangement and electron band structure of the (Au ,Al )/Si (111 )2 ×2 two-dimensional compound formed upon Al deposition onto the mixed 5 ×2 /√{3 }×√{3 } Au/Si(111) surface. It was found that the most stable 2 ×2 -(Au, Al) compound incorporates four Au atoms, three Al atoms, and two Si atoms per 2 ×2 unit cell. Its atomic arrangement can be visualized as an array of meandering Au atomic chains with two-thirds of the Al atoms incorporated into the chains and one-third of the Al atoms interconnecting the chains. The compound is metallic and its electronic properties can be controlled by appropriate Al dosing since energetic location of the bands varies by ˜0.5 eV during increasing of Al contents. The 2 ×2 -(Au, Al) structure appears to be lacking the C3 v symmetry typical for the hexagonal lattices. The consequence of the peculiar atomic structure of the two-dimensional alloy is spin splitting of the metallic states, which should lead to anisotropy of the current-induced in-plane spin polarization.

  18. Bulk Properties of Ni3Al(gamma') With Cu and Au Additions

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1995-01-01

    The BFS method for alloys is applied to the study of 200 alloys obtained from adding Cu and Au impurities to a Ni3Al matrix. We analyze the trends in the bulk properties of these alloys (heat of formation, lattice parameter, and bulk modulus) and detect specific alloy compositions for which these quantities have particular values. A detailed analysis of the atomic interactions that lead to the preferred ordering patterns is presented.

  19. Two-dimensional mineral [Pb2BiS3][AuTe2]: high-mobility charge carriers in single-atom-thick layers.

    PubMed

    Fang, Lei; Im, Jino; Stoumpos, Constantinos C; Shi, Fengyuan; Dravid, Vinayak; Leroux, Maxime; Freeman, Arthur J; Kwok, Wai-Kwong; Chung, Duck Young; Kanatzidis, Mercouri

    2015-02-18

    Two-dimensional (2D) electronic systems are of wide interest due to their richness in chemical and physical phenomena and potential for technological applications. Here we report that [Pb2BiS3][AuTe2], known as the naturally occurring mineral buckhornite, hosts 2D carriers in single-atom-thick layers. The structure is composed of stacking layers of weakly coupled [Pb2BiS3] and [AuTe2] sheets. The insulating [Pb2BiS3] sheet inhibits interlayer charge hopping and confines the carriers in the basal plane of the single-atom-thick [AuTe2] layer. Magneto-transport measurements on synthesized samples and theoretical calculations show that [Pb2BiS3][AuTe2] is a multiband semimetal with a compensated density of electrons and holes, which exhibits a high hole carrier mobility of ∼1360 cm(2)/(V s). This material possesses an extremely large anisotropy, Γ = ρ(c)/ρ(ab) ≈ 10(4), comparable to those of the benchmark 2D materials graphite and Bi2Sr2CaCu2O(6+δ). The electronic structure features linear band dispersion at the Fermi level and ultrahigh Fermi velocities of 10(6) m/s, which are virtually identical to those of graphene. The weak interlayer coupling gives rise to the highly cleavable property of the single crystal specimens. Our results provide a novel candidate for a monolayer platform to investigate emerging electronic properties. PMID:25612093

  20. Global transverse energy distributions in Si+Al, Au at 14.6 A GeV/ c and Au+Au at 11.6 A GeV/ c

    NASA Astrophysics Data System (ADS)

    Ahle, L.; Akiba, Y.; Beavis, D.; Britt, H. C.; Budick, B.; Chasman, C.; Chen, Z.; Chi, C. Y.; Chu, Y. Y.; Cianciolo, V.; Cole, B. A.; Costales, J. B.; Crawford, H. J.; Cumming, J. B.; Debbe, R.; Engelage, J.; Fung, S. Y.; Gonin, M.; Gushue, S.; Hamagaki, H.; Hansen, O.; Hayano, R. S.; Hayashi, S.; Homma, S.; Kaneko, H.; Kang, J.; Kaufman, S.; Kehoe, W. L.; Kurita, K.; LeVine, M. J.; Miake, Y.; Morrison, D. P.; Moskowitz, B.; Nagamiya, S.; Namboodiri, M. N.; Nayak, T. K.; Olness, J.; Remsberg, L. P.; Rothschild, P.; Sangster, T. C.; Seto, R.; Shigaki, K.; Soltz, R.; Steadman, S. G.; Stephans, G. S. F.; Sung, T.; Tannenbaum, M. J.; Thomas, J.; Tonse, S.; Ueno, S.; van Dijk, J. H.; Videbaek, F.; Vossnack, O.; Wang, F. Q.; Wang, Y.; Wegner, H. E.; Woodruff, D. S.; Wu, Y. D.; Yagi, K.; Yang, X.; Zachary, D.; Zajc, W. A.; E-802 Collaboration

    1994-07-01

    Measurements of the global transverse energy distributions dσ/ dET and dET/ dη using the new AGS beam of 197Au at 11.6 A GeV/ c on a Au target, as well as a beam of 28Si at 14.6 A GeV/ c on Al and Au targets, are presented for a leadglass detector with acceptance 1.3 ≤ η ≤ 2.4 and 0 ≤ φ < 2 π. The dσ/ dET spectra are observed to have different shapes for the different systems and simple energy rescaling does not account for the projectile dependence. The Au+Au dσ/ dET spectrum is satisfactorily constructed from the upper edge of Si+Au by the geometric Wounded Projectile Nucleon Model after applying a correction for the beam energy.

  1. GdAlO3:Eu3+:Bi3+ nanophosphor: Synthesis and enhancement of red emission for WLEDs

    NASA Astrophysics Data System (ADS)

    Shilpa, C. J.; Jayaram, Akila Kadgathur; Dhananjaya, N.; Nagabhushana, H.; Prashantha, S. C.; Sunitha, D. V.; Sharma, S. C.; Shivakumara, C.; Nagabhushana, B. M.

    2014-12-01

    GdAlO3, GdAlO3:Eu3+ and GdAlO3:Eu3+:Bi3+ nanophosphors were synthesised by solution combustion technique. Pure orthorhombic phase was obtained from powder X-ray diffraction (PXRD) studies. Scanning electron microscopy (SEM) micrographs showed the porous, agglomerated and irregular shaped particles. The particle size obtained by transmission electron microscopy (TEM) measurement was in good agreement with the values obtained by Debye Scherrer's and W-H plots. The selected area electron diffraction (SAED) pattern show single crystalline nature of the sample. Photoluminescence (PL) measurements were carried out for GdAlO3:Eu3+ and GdAlO3:Eu3+:Bi3+ phosphors excited at a wavelength of 274 nm. The characteristic emission peaks of Eu3+ ions were recorded at 590, 614, 655 and 695 nm corresponding to 5D0 → 7FJ (J = 1, 2, 3, 4) transitions respectively. However, with addition of Bi3+ ions in GdAlO3:Eu3+, PL intensity drastically enhanced. Orange red color was tuned to deep red color with the addition of Bi3+ ions in GdAlO3:Eu3+ phosphor. Therefore, the phosphor was highly useful as red component in WLEDs. A single well resoled glow peak at 225 °C was recorded in GdAlO3 and GdAlO3:Eu3+. Further, with addition of Bi3+ ions, an additional peak at 300 °C was recorded. TL glow curves of different UV-exposed GdAlO3:Eu3+:Bi3+ show two TL peaks at 207 and 300 °C respectively. The 207 °C peak show simple glow peak structure and its intensity increases linearly up to 25 min and after that it decrease.

  2. Agglomeration, sputtering, and carbon monoxide adsorption behavior for Au/Al(2)O(3) prepared by Au(n)(+) deposition on Al(2)O(3)/NiAl(110).

    PubMed

    Lee, Sungsik; Fan, Chaoyang; Wu, Tianpin; Anderson, Scott L

    2005-06-01

    Size-selected gold clusters, Au(n)(+) (n = 1, 3, 4), were deposited on an ordered Al(2)O(3) film grown on NiAl(110), and changes in morphology and electronic properties with deposition/annealing temperature and cluster size were investigated by X-ray photoelectron spectroscopy (XPS) and ion-scattering spectroscopy (ISS). Extensive agglomeration was observed by ISS for annealing temperatures above 300 K, accompanied by large shifts in the Au XPS binding energy. Agglomeration is more extensive in room-temperature deposition, compared to samples prepared by low-temperature deposition, then annealed to room temperature. Agglomeration is also observed to be dependent on deposited cluster size. CO adsorption was studied by ISS and temperature-programmed desorption, and we looked for CO oxidation under conditions where substantial activity is seen for Au(n)/TiO(2). No activity was observed for Au(n)/Al(2)O(3). The differences between the two systems are interpreted in terms of the nature of the metal-support interactions. PMID:16852385

  3. The first principle study of electronic and optical properties in rhombohedral BiAlO3

    NASA Astrophysics Data System (ADS)

    Tse, Geoffrey; Yu, Dapeng

    2016-01-01

    We studied the crystal structure of perovskite BiAlO3 using ab initio density functional theory (DFT) calculations. Using the atomic positions given by the previous literature, we were able to create a lattice structure using visualization software Material Studio. Such sophisticated structure is found in rhombohedral perovskite system with space group with R3c (#161) and lattice parameter of a = b = c = 5.338Å, bond angle of α = β = γ = 60∘, while treating the exchange-correlation potential with the local density approximations (LDA) method. The calculations were performed to investigate the electronic, optical, elastic and phonon properties.

  4. Electronic structure and photocatalytic water splitting of lanthanum-doped Bi{sub 2}AlNbO{sub 7}

    SciTech Connect

    Li Yingxuan; Chen Gang Zhang Hongjie; Li Zhonghua

    2009-04-02

    Bi{sub 2-x}La{sub x}AlNbO{sub 7} (0 {<=} x {<=} 0.5) photocatalysts were synthesized by the solid-state reaction method and characterized by powder X-ray diffraction (XRD), infrared (IR) spectra and ultraviolet-visible (UV-vis) spectrophotometer. The band gaps of the photocatalysts were estimated from absorption edge of diffuse reflectance spectra, which were increased by the doping of lanthanum. It was found from the electronic band structure study that orbitals of La 5d, Bi 6p and Nb 4d formed a conduction band at a more positive level than Bi 6p and Nb 4d orbitals, which results in increasing the band gap. Photocatalytic activity for water splitting of Bi{sub 1.8}La{sub 0.2}AlNbO{sub 7} was about 2 times higher than that of nondoped Bi{sub 2}AlNbO{sub 7}. The increased photocatalytic activity of La-doped Bi{sub 2}AlNbO{sub 7} was discussed in relation to the band structure and the strong absorption of OH groups at the surface of the catalyst.

  5. Comparison of laser ablation and sputter desorption of clusters from Au7Cu5Al4

    NASA Astrophysics Data System (ADS)

    King, B. V.; Moore, J. F.; Cui, Y.; Veryovkin, I. V.; Tripa, C. E.

    2014-12-01

    Ionized and neutral clusters were desorbed from spangold, a polycrystalline ternary alloy with composition Au7Cu5Al4, using both a femtosecond laser beam and an energetic ion beam and the resulting time of flight mass spectra compared. Neutral clusters containing up to 7 atoms were ejected by the 15 keV Ar+ beam whereas only smaller positively and negatively charged clusters were observed from the laser ablated spangold surface. Laser ionization mass spectrometry (LIMS) positive ion spectra were dominated by Al containing cluster ions whereas Au containing ions dominated the negative LIMS spectrum. An odd-even variation in LIMS cluster yield was observed, consistent with previous results and due to fragmentation of photoionized clusters. The laser sputtered neutral mass spectrometry (laser SNMS) spectrum showed that larger desorbed clusters were gold rich. The cluster signals also followed a power law dependence with cluster size with the exponent value of 6-7.6 for sputtered mixed clusters being greater than that found from sputtering of pure elements, similar to the result found previously in the Cu-Au system.

  6. The effects of Bi4Ti3O12 interfacial ferroelectric layer on the dielectric properties of Au/n-Si structures

    NASA Astrophysics Data System (ADS)

    Gökçen, Muharrem; Yıldırım, Mert

    2015-06-01

    Au/n-Si metal-semiconductor (MS) and Au/Bi4Ti3O12/n-Si metal-ferroelectric-semiconductor (MFS) structures were fabricated and admittance measurements were held between 5 kHz and 1 MHz at room temperature so that dielectric properties of these structures could be investigated. The ferroelectric interfacial layer Bi4Ti3O12 decreased the polarization voltage by providing permanent dipoles at metal/semiconductor interface. Depending on different mechanisms, dispersion behavior was observed in dielectric constant, dielectric loss and loss tangent versus bias voltage plots of both MS and MFS structures. The real and imaginary parts of complex modulus of MFS structure take smaller values than those of MS structure, because permanent dipoles in ferroelectric layer cause a large spontaneous polarization mechanism. While the dispersion in AC conductivity versus frequency plots of MS structure was observed at high frequencies, for MFS structure it was observed at lower frequencies.

  7. Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering.

    PubMed

    Hu, Zhaosheng; Liu, Zhe; Li, Lin; Quan, Baogang; Li, Yunlong; Li, Junjie; Gu, Changzhi

    2014-10-15

    Fabricating perfect plasmonic nanostructures has been a major challenge in surface enhanced Raman scattering (SERS) research. Here, a double-layer stacked Au/Al2O3@Au nanosphere structures is designed on the silicon wafer to bring high density, high intensity "hot spots" effect. A simply reproducible high-throughput approach is shown to fabricate feasibly this plasmonic nanostructures by rapid thermal annealing (RTA) and atomic layer deposition process (ALD). The double-layer stacked Au nanospheres construct a three-dimensional plasmonic nanostructure with tunable nanospacing and high-density nanojunctions between adjacent Au nanospheres by ultrathin Al2O3 isolation layer, producing highly strong plasmonic coupling so that the electromagnetic near-field is greatly enhanced to obtain a highly uniform increase of SERS with an enhancement factor (EF) of over 10(7). Both heterogeneous nanosphere group (Au/Al2O@Ag) and pyramid-shaped arrays structure substrate can help to increase the SERS signals further, with a EF of nearly 10(9). These wafer-scale, high density homo/hetero-metal-nanosphere arrays with tunable nanojunction between adjacent shell-isolated nanospheres have significant implications for ultrasensitive Raman detection, molecular electronics, and nanophotonics. PMID:24995658

  8. Au, Bi, Co and Nb cross-section measured by quasimonoenergetic neutrons from p + 7Li reaction in the energy range of 18-36 MeV

    NASA Astrophysics Data System (ADS)

    Majerle, M.; Bém, P.; Novák, J.; Šimečková, E.; Štefánik, M.

    2016-09-01

    Au, Bi, Co and Nb samples were irradiated several times with quasi-monoenergetic neutrons from p + 7Li reaction in the energy range of 18-36 MeV. The activities of the samples were measured with the HPGe detector and the reaction rates were calculated. The cross-sections were extracted using the SAND-II method with the reference cross-sections from the EAF-2010 database. The uncertainties of the final results are discussed.

  9. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    PubMed Central

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-01-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures. PMID:26548369

  10. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-11-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures.

  11. Two-dimensional Mineral [Pb2BiS3 ][AuTe2 ]: High mobility Charge Carriers in Single-atom-thick Layers

    NASA Astrophysics Data System (ADS)

    Fang, Lei; Im, J.; Stoumpos, C.; Shi, F.; Dravid, V.; Leroux, M.; Freeman, A.; Kwok, W.-K.,; Chung, D.-Y.; Kanatzidis, M.

    2015-03-01

    We report that [Pb2BiS3][AuTe2], known as a naturally occurring mineral buckhornite, hosts 2D carriers in single-atom-thick layers. The structure is composed of stacking layers of weakly coupled [Pb2BiS3] and [AuTe2] sheets. The insulating [Pb2BiS3] sheet inhibits interlayer charge hopping and confines the carriers in the basal plane of the single-atom-thick [AuTe2] layer. Magneto-transport measurements and theoretical calculations show a property of multiband semimetal with compensated density of electrons and holes, which exhibit high hole carrier mobility of 1360 cm2/Vs. This material possesses an extremely large anisotropy 104, comparable to benchmark materials graphite. The electronic structure features linear band dispersion at the Fermi level and ultrahigh Fermi velocities of 106 m/s which are virtually identical to that of graphene. The weak interlayer coupling gives rise to the highly cleavable property of single crystal specimens, indicating a prospect for monolayer system. This research was supported by the DoE, BES, under Contract No. DE-AC02-06CH11357, and NUANCE Center at the Northwestern Univeristy.

  12. Liquid-liquid phase equilibrium and core-shell structure formation in immiscible Al-Bi-Sn alloys

    NASA Astrophysics Data System (ADS)

    Li, Mingyang; Jia, Peng; Sun, Xiaofei; Geng, Haoran; Zuo, Min; Zhao, Degang

    2016-04-01

    In this paper, the liquid-phase separation of ternary immiscible Al45Bi19.8Sn35.2 and Al60Bi14.4Sn25.6 melts was studied with resistivity and thermal analysis methods at different temperature. The resistivity-temperature curves appear abrupt and anomalously change with rising temperature, corresponding to the anomalous and low peak of melting process in DSC curves, indicative of the occurrence of the liquid-phase separation. The anomalous behavior of the resistivity temperature dependence is attributable to concentration-concentration fluctuations. The effect of composition and melt temperature on the liquid-phase separation and core-shell structure formation in immiscible Al-Bi-Sn alloys was studied. The liquid-phase separation and formation of the core-shell structure in immiscible Al-Bi-Sn alloys are readily acquired when the alloy compositions fall into liquid miscibility gap. What's more, the cross-sectional structure changes from irregular, dispersed to core-type shapes under the actions of Marangoni motion with increasing melt temperature. This study provides some clues for the preparation of core-shell microspheres of immiscible Al-Bi-Sn alloys via liquid-phase separation.

  13. Mechanical, electrical, and thermal properties of the directionally solidified Bi-Zn-Al ternary eutectic alloy

    NASA Astrophysics Data System (ADS)

    Şahin, M.; Çadırlı, E.

    2014-10-01

    A Bi-2.0Zn-0.2Al (wt%) ternary eutectic alloy was prepared using a vacuum melting furnace and a casting furnace. The samples were directionally solidified upwards at a constant growth rate ( V = 18.4 μm/s) under different temperature gradients ( G = 1.15-3.44 K/mm) and at a constant temperature gradient ( G = 2.66 K/mm) under different growth rates ( V = 8.3-500 μm/s) in a Bridgman-type directional solidification furnace. The dependence of microstructure parameter ( λ) on the solidification parameters ( G and V) and that of the microhardness (Hv) on the microstructure and solidification parameters were investigated. The resistivity ( ρ) measurements of the studied alloy were performed using the standard four-point-probe method, and the temperature coefficient of resistivity ( α) was calculated from the ρ- T curve. The enthalpy (Δ H) and the specific heat ( C p ) values were determined by differential scanning calorimetry analysis. In addition, the thermal conductivities of samples, obtained using the Wiedemann-Franz and Smith-Palmer equations, were compared with the experimental results. The results revealed that, the thermal conductivity values obtained using the Wiedemann-Franz and Smith-Palmer equations for the Bi-2.0Zn-0.2Al (wt%) alloy are in the range of 5.2-6.5 W/Km and 15.2-16.4 W/Km, respectively.

  14. The behavior of nanothermite reaction based on Bi2O3/Al

    NASA Astrophysics Data System (ADS)

    Wang, L.; Luss, D.; Martirosyan, K. S.

    2011-10-01

    We studied the impact of aluminum particle size and the thickness of surrounding alumina layer on the dynamic pressure discharge of nanothermite reactions in the Bi2O3/Al system. A pressure discharge from 9 to 13 MPa was generated using as-synthesized Bi2O3 nano-particles produced by combustion synthesis and Al nanoparticles with size from 3 μm to 100 nm. The maximum reaction temperature was measured to be ˜2700 °C. The estimated activation energy of the reaction was 45 kJ/mol. A very large (several orders of magnitude) difference existed between the rate of the pressure pulse release by nanothermite reactions and by thermite reactions with large aluminum particles. The maximum observed pressurization rate was 3200 GPa/s. The time needed to reach the peak pressure was 0.01 ms and 100 ms for aluminum particles with diameter of 100 nm and 70 microns, respectively. The discharge pressure was a monotonic decreasing function of the thickness of the surrounding alumina layer.

  15. Origin of Quantum Criticality in Yb-Al-Au Approximant Crystal and Quasicrystal

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinji; Miyake, Kazumasa

    2016-06-01

    To get insight into the mechanism of emergence of unconventional quantum criticality observed in quasicrystal Yb15Al34Au51, the approximant crystal Yb14Al35Au51 is analyzed theoretically. By constructing a minimal model for the approximant crystal, the heavy quasiparticle band is shown to emerge near the Fermi level because of strong correlation of 4f electrons at Yb. We find that charge-transfer mode between 4f electron at Yb on the 3rd shell and 3p electron at Al on the 4th shell in Tsai-type cluster is considerably enhanced with almost flat momentum dependence. The mode-coupling theory shows that magnetic as well as valence susceptibility exhibits χ ˜ T-0.5 for zero-field limit and is expressed as a single scaling function of the ratio of temperature to magnetic field T/B over four decades even in the approximant crystal when some condition is satisfied by varying parameters, e.g., by applying pressure. The key origin is clarified to be due to strong locality of the critical Yb-valence fluctuation and small Brillouin zone reflecting the large unit cell, giving rise to the extremely-small characteristic energy scale. This also gives a natural explanation for the quantum criticality in the quasicrystal corresponding to the infinite limit of the unit-cell size.

  16. Composition-driven spin glass to ferromagnetic transition in the quasicrystal approximant Au-Al-Gd

    NASA Astrophysics Data System (ADS)

    Ishikawa, A.; Hiroto, T.; Tokiwa, K.; Fujii, T.; Tamura, R.

    2016-01-01

    We investigated the composition dependence of the magnetic susceptibility of the quasicrystal approximant Au-Al-Gd. A composition-driven ferromagnetic transition is observed in a quasicrystal approximant, which is attributed to the Ruderman-Kittel-Kasuya-Yosida (RKKY) oscillation via a variation in the Fermi wave vector. The ferromagnetic transition is most simply understood as a result of the close matching of the nearest and second-nearest spin distances with the maximum positions of the RKKY potential. The present work provides an idea that allows us to tailor the magnetic order via the electron concentration in quasicrystal approximants as well as in quasicrystals.

  17. Crystal and electronic structure of BiTeI, AuTeI, and PdTeI compounds: A dispersion-corrected density-functional study

    NASA Astrophysics Data System (ADS)

    Güler-Kılıç, Sümeyra; Kılıç, ćetin

    2015-06-01

    Semilocal and dispersion-corrected density-functional calculations have been performed to study the crystal structure, equation of state, and electronic structure of metal tellurohalides with chemical formula MeTeI where Me=Bi, Au, or Pd. A comparative investigation of the results of these calculations is conducted which reveals the role of van der Waals attraction. It is shown that the prediction of crystal structure of metal tellurohalides is systematically improved thanks to the inclusion of van der Waals dispersion. It is found for BiTeI and AuTeI that the energy versus volume curve is anomalously flat in the vicinity of equilibrium volume and the calculated equation of state has an excessively steep slope in the low-pressure region; these are also fixed in the dispersion-corrected calculations. Analysis based on the computation of the volume and axial compressibilities shows that predicting the anisotropy of BiTeI via the semilocal calculations yields an unrealistic result, whereas the results of dispersion-corrected calculations agree with the experimental compressibility data. Our calculations render that BiTeI (AuTeI) is a narrow band gap semiconductor with Rashba-type spin splitting at the band edges (with an indirect band gap) while PdTeI is a metal with relatively low density of states at the Fermi level. The band gaps of BiTeI and AuTeI obtained via semilocal (dispersion-corrected) calculations are found to be greater (smaller) than the respective experimental values, which is against (in line with) the expected trend. Similarly, the Rashba parameters of BiTeI are bracketed by the respective values obtained via semilocal and dispersion-corrected calculations, e.g., a larger value for the Rashba parameter αR is obtained in association with the reduction of the band gap caused by modification of the crystal structure owing to van der Waals attraction. Excellent agreement with the experimental Rashba parameters is obtained via interpolation of the

  18. Phase equilibria investigations and thermodynamic modeling of the system Bi2O3-Al2O3

    NASA Astrophysics Data System (ADS)

    Oudich, F.; David, N.; Mathieu, S.; Vilasi, M.

    2015-02-01

    The system Bi2O3-Al2O3 has been experimentally investigated above 600 °C by DTA, XRD and EPMA under air and low oxygen pressure. Only two compounds were found to exist in equilibrium, which are Bi2Al4O9(1Bi2O3:2Al2O3) and Bi25AlO39(25:1). The latter exhibits a sillenite structure and does not contain pentavalent bismuth. A peritectoid decomposition of (25:1) and a peritectic melting of (1:2) occur at 775 °C and 1075 °C respectively, while an eutectic transformation was observed at 815 °C for 97 mol% Bi2O3. On the basis of the results obtained within the present work as well as experimental data provided from literature, a thermodynamic modeling where the liquid phase is described by the two-sublattice ionic liquid model was performed according to the Calphad approach. The resulting thermodynamic optimization yielded good agreement with experimental results in the investigated region.

  19. Thermal expansion of a Au-Al-Yb intermediate valence quasicrystal

    NASA Astrophysics Data System (ADS)

    Watanuki, T.; Kashimoto, S.; Ishimasa, T.; Machida, A.; Yamamoto, S.; Tanaka, Y.; Mizumaki, M.; Kawamura, N.; Watanabe, S.

    2015-06-01

    The thermal expansion of a Au-Al-Yb intermediate-valence quasicrystal has been studied. X-ray diffraction measurements showed zero thermal expansion below 50 K. By comparison with an isostructural Au-Al-Tm quasicrystal, the contribution of the Yb valence variation was extracted, and it was shown that its negative thermal expansion component compensated for the positive thermal expansion of the original lattice. On cooling, the Yb contribution grew steeply below approximately 155 K down to the lowest experimental temperature of 5 K, due to enlargement of the Yb atomic radius, which was caused by the valence shift toward the divalent state. Additionally, a larger Yb contribution to the thermal expansion was demonstrated in a crystalline approximant to this quasicrystal. The magnitude of this contribution was approximately 1.4 times larger than in the case of the quasicrystal itself, resulting in a slight negative thermal expansion below 50 K. A heterogeneous valence model for the quasicrystal that we proposed previously accounts for this magnitude difference.

  20. Interaction of overlayers of Al and Rb with single-crystalline surfaces of Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Wells, B. O.; Shen, Z.-X.; Dessau, D. S.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.

    1990-03-01

    Photoemission results from Al and Rb interfaces with single crystals of Bi2Sr2CaCu2O8 high-temperature superconductors are reported. The Al and Rb adsorbates are found to react quite differently with the Bi2Sr2CaCu2O8 substrate. While adatoms of Rb significantly affect only the Bi and O atoms in the top atomic layer, the Al adsorbate profoundly disrupts the bonding character of the whole Bi2Sr2CaCu2O8 material. For Al, the Bi and Cu states are strongly reduced, and the Sr and O states show evidence of oxidized components. In addition, Al causes a strong out-diffusion of oxygen from the bulk. The differences in the reactivity of Al and Rb are discussed in terms of the different mobility of the two atoms.

  1. Improved optical storage properties of NaAlSiO4: Tb3+ induced by Bi3+

    NASA Astrophysics Data System (ADS)

    Zhou, Junhe; Yu, Xue; Wang, Ting; Zhou, Dacheng; Qiu, Jianbei

    2016-07-01

    NaAlSiO4: Tb3+, Bi3+ phosphor was synthesized with green long persistent luminescence (LPL) and photo-stimulated luminescence (PSL) observed. The influence of metal ion Bi3+ on the optical storage properties of NaAlSiO4: Tb3+ was investigated in detail. The emitter Tb3+ introduced two kinds of traps located at 350 K (TA) and 440 K (TB) in the thermoluminescence (TL) glow curve. Bi3+ as a codopant ion introduced a new trap peaking at 390 K (TC), which contributed to the improved LPL properties. Besides, owing to the existence of deep and stable trap TB, green PSL can still be observed after 72 h since the excitation was stopped. Accordingly, the mechanism of LPL and PSL process was discussed briefly.

  2. RE(AuAl2)nAl2(AuxSi1-x)2: a new homologous series of quaternary intermetallics grown from aluminum flux.

    PubMed

    Latturner, Susan E; Kanatzidis, Mercouri G

    2008-03-17

    The combination of early rare earth metals (La- to Gd and Yb), gold, and silicon in molten aluminum results in the formation of intermetallic compounds with four related structures, forming a new homologous series: RE[AuAl2]nAl2(AuxSi(1-x))2, with x approximately 0.5 for most of the compound and n = 0, 1, 2, and 3. Because of the highly reducing nature of the Al flux, rare earth oxides instead of metals can also be used in these reactions. These compounds grow as large plate-like crystals and have tetragonal structure types that can be viewed as intergrowths of the BaAl4 structure and antifluorite-type AuAl2 layers. REAuAl2Si materials form with the BaAl4 structure type in space group I4/mmm (cell parameters for the La analogue are a = 4.322(2) A, c = 10.750(4) A, and Z = 2). REAu2Al4Si forms in a new ordered superstructure of the KCu4S3 structure type, with space group P4/nmm and cell parameters of the La analogue of a = 6.0973(6) A, c = 8.206(1) A, and Z = 2. REAu3Al6Si forms in a new I4/mmm symmetry structure type with cell parameters of a = 4.2733(7) A, c = 22.582(5) A, and Z = 2 for RE = Eu. The end member of the series, REAu4Al8Si, forms in space group P4/mmm with cell parameters for the Yb analogue of a = 4.2294(4) A, c = 14.422(2) A, and Z = 1. New intergrowth structures containing two different kinds of AuAl2 layers were also observed. The magnetic behavior of all these compounds is derived from the RE ions. Comparison of the susceptibility data for the europium compounds indicates a switch from 3-D magnetic interactions to 2-D interactions as the size of the AuAl2 layer increases. The Yb ions in YbAu(2.91)Al(6)Si(1.09) and YbAu(3.86)Al(8)Si(1.14) are divalent at high temperatures. PMID:18198865

  3. Junction parameters and characterization of Au/n-Ge15In5Se80/p-Si/Al heterojunction

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, M. H.; El-Shazly, E. A. A.; Zedan, I. T.

    2016-08-01

    The analysis of the electrical properties of Au/n-Ge15In5Se80/p-Si/Al heterojunction is examined. I- V characteristics show diode-like behavior. The series resistance is found to decrease with increasing the temperature in three different methods of calculations. The thermionic emission mechanism is found to be the operating mechanism at relatively low forward voltages ( V < 0.25). While, at relatively high forward voltage, the space charge limited conduction is the operating mechanism. The rectification ratio, ideality factor, barrier height, total trap concentration and built-in voltage are determined. The capacitance-voltage ( C- V) characteristics of Au/n-Ge15In5Se80/p-Si/Al heterojunction are also investigated. The I- V curve of the Au/n-Ge15In5Se80/p-Si/Al heterojunction in the dark and after illumination is clarified.

  4. Clathrates with Me = Mg, Pd, Ni, Au, Ag, Cu, Zn, Al, Sn

    NASA Astrophysics Data System (ADS)

    Wunderlich, Wilfried; Amano, Mao; Matsumura, Yoshihito

    2014-06-01

    Clathrate materials of AlSi, CuSi or NiSi type consisting of abundant elements have a realistic chance of becoming useful thermoelectrics in the near future, because the rattling effect due to their crystal cage structure provides a large figure of merit ZT even in experiments measured under large temperature gradients. In the search for better thermoelectrics, new element combinations in the clathrate type I structure with cubic space group Pm3n were calculated using VASP ab initio software. Predictions of the Seebeck coefficient were made by checking the electronic band structure and density of states for a large variety of input data. For x values around 4 to 6 in the structural formula Ba8Me x Si46- x the substituents Cu, Au, and Ag are best for good thermoelectric behavior, which is discussed in this paper as a result of the low electron-phonon interaction parameter.

  5. Steering Fluorescence Emission with Metal-Dielectric-Metal Structures of Au, Ag and Al

    PubMed Central

    Dutta Choudhury, Sharmistha; Badugu, Ramachandram; Ray, Krishanu; Lakowicz, Joseph R.

    2014-01-01

    Directional control over fluorescence emission is important for improving the sensitivity of fluorescence based techniques. In recent years, plasmonic and photonic structures have shown great promise in shaping the spectral and spatial distribution of fluorescence, which otherwise is typically isotropic in nature and independent of the observation direction. In this work we have explored the potential of metal-dielectric-metal (MDM) structures composed of Au, Ag or Al in steering the fluorescence emission from various probes emitting in the NIR, Visible or UV/blue region. We show that depending on the optical properties of the metal and the thickness of the dielectric layer, the emission from randomly oriented fluorophores embedded within the MDM substrate is transformed into beaming emission normal to the substrate. Agreement of the observed angular emission patterns with reflectivity calculations reveals that the directional emission is due to the coupling of the fluorescence with the electromagnetic modes supported by the MDM structure. PMID:25126154

  6. A bi-overlayer type plasmonic photocatalyst consisting of mesoporous Au/TiO2 and CuO/SnO2 films separately coated on FTO.

    PubMed

    Naya, Shin-ichi; Kume, Takahiro; Okumura, Nozomi; Tada, Hiroaki

    2015-07-21

    The principal purpose of this study is to present a new design for preparing highly active immobilized gold nanoparticle-based plasmonic photocatalysts. Gold nanoparticles were loaded on rutile TiO2 particles with a mean size of 80 nm (Au/TiO2) by the deposition precipitation method. The surface of SnO2 particles with a mean size of 100 nm was modified by copper(ii) oxide clusters (CuO/SnO2) with the loading amount (Γ/Cu ions nm(-2)) precisely controlled by the chemisorption-calcination cycle technique. Two mesoporous overlayers of Au/TiO2 and CuO/SnO2 were coated side by side on glass substrates with a fluorine-doped tin oxide film (FTO) using the doctor blade method (Au/mp-TiO2|FTO|CuO/mp-SnO2). As test reactions for assessing the visible-light activity, we carried out gas-phase decomposition of acetaldehyde and liquid-phase oxidation of alcohol. In each reaction, this bi-overlayer type catalyst shows a high level of visible-light activity much exceeding those of Au/TiO2 particles and a Au/mp-TiO2|FTO mono-overlayer type catalyst [J. Phys. Chem. C, 2014, 118, 26887]. To confirm the origin of the striking visible-light activity, we studied the electrocatalytic activity of CuO/mp-SnO2|FTO electrodes for the oxygen reduction reaction (ORR). Both the visible-light activity of Au/mp-TiO2|FTO|CuO/mp-SnO2 and the electrocatalytic activity of CuO/mp-SnO2|FTO for ORR strongly depend on the Γ value. A good positive correlation has been found between the visible-light activities and the electrocatalytic activity for ORR. The striking activity of the present bi-overlayer type catalyst can be attributed to the efficient and long-range charge separation by the vectorial electron transport (Au(oxidation sites) → TiO2→ FTO, SnO2→ CuO(reduction sites)) and the excellent electrocatalytic activity of the CuO clusters. PMID:26094620

  7. Real-time X-ray transmission microscopy for fundamental studies solidification: Al-Al2Au eutectic

    NASA Astrophysics Data System (ADS)

    Curreri, Peter A.; Kaukler, William F.; Sen, Subhayu

    1998-01-01

    High resolution real-time X-ray Transmission Microscopy, XTM, has been applied to obtain information fundamental to solidification of optically opaque metallic systems. We have previously reported the measurement of the solute profile in the liquid, phase growth, and detailed solid-liquid interfacial morphology of aluminum based alloys with exposure times less than 2 seconds. Recent advances in XTM furnace design have provided an increase in real-time magnification (during solidification) for the XTM from 40X to 160X. The increased magnification has enabled for the first time the XTM imaging of real-time growth of fibers and particles with diameters of 5 μm. We have previously applied this system to study the kinetics of formation and morphological evolution of secondary fibers and particles in Al-Bi monotectic alloys. In this paper we present the preliminary results of the first real-time observations of fiber morphology evolution in optically opaque bulk metal sample of Aluminum-Gold eutectic alloy. These studies show that the XTM can be applied to study the fundamentals of eutectic and monotectic solidification. We are currently attempting to apply this technology in the fundamentals of solidification in microgravity.

  8. Real-time X-ray transmission microscopy for fundamental studies solidification: Al-Al{sub 2}Au eutectic

    SciTech Connect

    Curreri, Peter A.; Kaukler, William F.; Sen, Subhayu

    1998-01-15

    High resolution real-time X-ray Transmission Microscopy, XTM, has been applied to obtain information fundamental to solidification of optically opaque metallic systems. We have previously reported the measurement of the solute profile in the liquid, phase growth, and detailed solid-liquid interfacial morphology of aluminum based alloys with exposure times less than 2 seconds. Recent advances in XTM furnace design have provided an increase in real-time magnification (during solidification) for the XTM from 40X to 160X. The increased magnification has enabled for the first time the XTM imaging of real-time growth of fibers and particles with diameters of 5 {mu}m. We have previously applied this system to study the kinetics of formation and morphological evolution of secondary fibers and particles in Al-Bi monotectic alloys. In this paper we present the preliminary results of the first real-time observations of fiber morphology evolution in optically opaque bulk metal sample of Aluminum-Gold eutectic alloy. These studies show that the XTM can be applied to study the fundamentals of eutectic and monotectic solidification. We are currently attempting to apply this technology in the fundamentals of solidification in microgravity.

  9. Synthesis in ionic liquids : [Bi{sub 2}Te{sub 2}Br](AlCl{sub 4}), a direct gap semiconductor with a cationic framework.

    SciTech Connect

    Biswas, K.; Zhang, Q.; Chung, I.; Song, J.-H.; Androulaksi, J.; Freeman, A. J.; Kanatzidis, M. G.; Materials Science Division; Northwestern Univ.

    2010-01-01

    The Lewis acidic ionic liquid EMIMBr-AlCl{sub 3} (EMIM = 1-ethyl-3-methylimidazolium) allows a novel synthetic route to the semiconducting layered metal chalcogenides halide [Bi{sub 2}Te{sub 2}Br](AlCl{sub 4}) and its Sb analogue. [Bi{sub 2}Te{sub 2}Br](AlCl{sub 4}) is a direct band gap, strongly anisotropic semiconductor and consists of cationic infinite layers of [Bi{sub 2}Te{sub 2}Br]{sup +} and [AlCl{sub 4}]{sup -} anions inserted between the layers.

  10. First-Principles Investigations of the Structure, Electronic, and Optical Properties of Mullite-Type Orthorhombic Bi2M4O9 (M = Al(3+), Ga(3+)).

    PubMed

    Zahedi, Ehsan; Xiao, Bing; Shayestefar, Mohadese

    2016-05-16

    The structure, electronic band structure, density of state, projected wave function, and optical properties of mullite-type orthorhombic Bi2M4O9 (M = Al(3+), Ga(3+)) crystals have been studied by applying density functional theory based on the Vanderbilt ultrasoft pseudopotential in the frame of the generalized gradient approximation as an exchange-correlation function. Satisfactory agreement between experimental and theoretical results indicates that the used method and conditions are suitable. M-O bonds in tetrahedral MO4 environments are stronger and more covalent with respect to octahedral MO6; also Bi-O bonds in both studied structures are almost ionic in nature. The photocatalytic activity of Bi2Al4O9 and Bi2Ga4O9 is enhanced due to unequal values of Mulliken charges on the O atoms in MO4, MO6, and BiO6E groups. Bi2Al4O9 and Bi2Ga4O9 are direct and indirect band gap semiconductors with band gaps of 2.71 and 2.86 eV, respectively. Higher photocatalytic activity of Bi2Al4O9 is inferable from the lower effective masses of photogenerated carriers around the conduction band minimum and valence band maximum, in comparison with Bi2Ga4O9. The presence of M and O orbitals in the valence and conduction bands reveals that symmetry breaking in the MO4 and MO6 units has an important role in separating charges and increasing photocatalytic activity. Photocatalytic activities of Bi2Al4O9 and Bi2Ga4O9 for decomposition of organic pollutants and generation of hydrogen from water splitting are confirmed from band edge potentials. PMID:27139249

  11. Au on MgAl2O4 spinels: The effect of support surface properties in glycerol oxidation

    SciTech Connect

    Villa, Alberto; Gaiassi, Aureliano; Rossetti, Ilenia; Bianchi, Claudia; van Benthem, Klaus; Veith, Gabriel M; Prati, Laura

    2010-01-01

    Here we investigated the properties of Au nanoparticles, prepared via three different techniques and supported on three different MgAl2O4 spinels. The surface composition and area of the spinel plays an important role in determining the selectivity of the catalyst in the selective oxidation of glycerol. it was found that aluminum rich surfaces enhance the C-C bond cleavage reaction for large gold particles which is opposite of what is normally observed for large clusters which typically show no C-C cleavage. We also report that similarly sized AuNPs on the different MgAl2O4 spinels with the same surface Al/Mg ratio, show a similar selectivity; however activity depends on surface area.

  12. Vapor-liquid-solid growth route to AlN nanowires on Au-coated Si substrate by direct nitridation of Al powder

    NASA Astrophysics Data System (ADS)

    Yu, Leshu; Lv, Yingying; Zhang, Xiaolan; Zhang, Yiyue; Zou, Ruyi; Zhang, Fan

    2011-11-01

    In the past several decades vapor-liquid-solid (VLS) growth mechanism has been used for constructing one dimensional (1D) AlN nanostructures though the clear observation of metallic catalyst particles on top of individual 1D nanostructure is rare. Using Au thin film on Si substrate as metallic catalyst, fine AlN nanowires were grown through the nitridation of Al powder in this study. The systematic characterizations including scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) have confirmed the existence of metallic catalyst particles on the top of each AlN nanowire. Therefore the AlN nanowires growth is indeed accomplished via VLS process. The VLS-generated conditions including thickness of Au film and reaction temperature were also explored for the growth of AlN nanowires. Incidentally some other AlN nanostructures such as faceted cross-sectional nanorods, nanobelt and nanocomb were also obtained via vapor-solid growth mechanism on the Si substrate.

  13. Radiation effects in multilayer ohmic contacts Au-Ti-Al-Ti-n-GaN

    SciTech Connect

    Belyaev, A. E.; Boltovets, N. S.; Ivanov, V. N.; Kapitanchuk, L. M.; Konakova, R. V. Kudryk, Ya. Ya.; Lytvyn, O. S.; Milenin, V. V.; Sheremet, V. N.; Sveshnikov, Yu. N.

    2009-07-15

    Radiation effects in the Au-Ti-Al-Ti-n-GaN multilayer metallization subjected to irradiation with {sup 60}Co {gamma}-ray photons in the dose range 4 x 10{sup 6}-2 x 10{sup 7} Gy are considered, and the effect of radiation on the initial contact structures and the structures subjected to a rapid thermal annealing (RTA) at high-temperature in the nitrogen atmosphere is studied. Irradiation does not significantly affect the properties of structures that were not subjected to the heat treatment. An RTA at 700 deg. C brings about a deterioration of the contact-layer morphology. The morphological and structural transformations in the contact metallization due to the RTA are enhanced by irradiation with {gamma}-ray photons. The combined radiation-thermal treatment is conducive to the mass transfer between contacting layers. In addition, after {gamma}-ray irradiation with the dose of 2 x 10{sup 7} Gy, the oxygen-impurity atoms appear over the entire contact's structure and are observed in a large amount in the near-contact GaN region.

  14. Composition-Structure-Property Relations in Au35-68Cu49-15Al16-17 Shape Memory Thin Films

    NASA Astrophysics Data System (ADS)

    Buenconsejo, Pio John S.; Pfetzing-Micklich, Janine; Paulus, Michael; Sternemann, Christian; Ludwig, Alfred

    2016-03-01

    The phase transformation behaviour, structure and mechanical properties of Au35-68Cu49-15Al16-17 thin film shape memory alloys (SMA) have been investigated, with emphasis on the effects of Au content. The results revealed the underlying composition-structure-property relations. The thermal transformation hysteresis (Δ T) is wide (~55 K) for thin films with Au <50 at.%, while it is narrow (~15 K) for thin films with Au >50 at.%. This behaviour is correlated with the change in lattice constant of β-(Au-Cu-Al) (a β ), suggesting a structural origin on the Δ T behaviour. The mechanical properties, such as hardness and elastic modulus, varied in the range of 2-4 and 70-120 GPa, respectively. The optimum Au composition range for tuning the functional property is between 43 and 55 at.% Au, where the least amount of non-transforming phases form and Δ T can be tailored between 55 K (43 at.% Au) and 17 K (55 at.% Au). This is important for the development and practical application of Au-Cu-Al based thin film SMA.

  15. Au nanoparticles embedded at the interface of Al/4H-SiC Schottky contacts for current density enhancement

    NASA Astrophysics Data System (ADS)

    Gorji, Mohammad Saleh; Cheong, Kuan Yew

    2015-01-01

    Nanostructured contacts, comprised of nanoparticles (NPs) embedded at the interface of contact/semiconductor, offer a viable solution in modification of Schottky barrier height (SBH) in Schottky contacts. The successful performance of devices with such nanostructured contacts requires a feasible selection of NPs/contact material based on theoretical calculations and a cost effective and reproducible route for NPs deposition. Acidification of commercially available colloidal Au NPs solution by HF has been selected here as a simple bench-top technique for deposition of Au NPs on n- and p-type 4H-SiC substrates. Theoretical calculations based on the model of inhomogeneity in SBH (ISBH) were used to make a more appropriate selection of NPs type (Au) and size (5 and 10 nm, diameter) with respect to contact metal (Al). Al/Au NPs/SiC Schottky barrier diodes were then fabricated, and their electrical characteristics exhibited current density enhancement due to the SBH lowering. The source of SBH lowering was determined to be the local electric field enhancement due to NPs effect, which was further investigated using the models of ISBH and tunneling enhancement at triple interface.

  16. Bi-directional streaming of halo electrons in interplanetary plasma clouds observed between 0.3 and 1 AU

    NASA Technical Reports Server (NTRS)

    Ivory, K.; Schwenn, R.

    1995-01-01

    The solar wind data obtained from the two Helios solar probes in the years 1974 to 1986 were systematically searched for the occurrence of bi-directional electron events. Most often these events are found in conjunction with shock associated magnetic clouds. The implications of these observations for the topology of interplanetary plasma clouds are discussed.

  17. Dependence of BiFeO3 thickness on exchange bias in BiFeO3/ Co2FeAl multiferroic structures

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhang, D. L.; Wang, Y. H.; Miao, J.; Xu, X. G.; Jiang, Y.

    2011-01-01

    We have grown BiFeO3 (BFO) thin films with different thickness on Si/SiO2/Ti/Pt(111) substrates by pulsed laser deposition. Half-metallic Co2FeAl (CFA) films with a thickness of 5 nm were then grown on the BFO films by magnetron sputtering. Through the magnetic hysteresis loops of the BFO/CFA heterostructure, we observe a direct correlation between the thickness of the BFO film and exchange bias (EB) field. The EB field exhibits fluctuation behavior with a cyclical BFO thickness of 60 nm, which is close to the spiral modulation wavelength (62 nm) of BFO. It indicates the influence of spiral modulation on the EB in the BFO/CFA multiferroic structure.

  18. A Kinetic Monte Carlo model for material aging: Simulations of second phase formation at Au/Bi{sub 2}Te{sub 3} junction in oxygen environments

    SciTech Connect

    Zhou, X. W.; Yang, N. Y. C.

    2014-03-14

    Electronic properties of semiconductor devices are sensitive to defects such as second phase precipitates, grain sizes, and voids. These defects can evolve over time especially under oxidation environments and it is therefore important to understand the resulting aging behavior in order for the reliable applications of devices. In this paper, we propose a kinetic Monte Carlo framework capable of simultaneous simulation of the evolution of second phases, precipitates, grain sizes, and voids in complicated systems involving many species including oxygen. This kinetic Monte Carlo model calculates the energy barriers of various events based directly on the experimental data. As a first step of our model implementation, we incorporate the second phase formation module in the parallel kinetic Monte Carlo codes SPPARKS. Selected aging simulations are performed to examine the formation of second phase precipitates at the eletroplated Au/Bi{sub 2}Te{sub 3} interface under oxygen and oxygen-free environments, and the results are compared with the corresponding experiments.

  19. Projectile charge state dependence of M-shell ionization of Au, Pb, Bi, and U by 1. 42-MeV/amu fluorine ions

    SciTech Connect

    Mehta, R.; Duggan, J.L.; McDaniel, F.D.; Andrews, M.C.; Wheeler, R.M.; Chaturvedi, R.P.; Miller, P.D.; Lapicki, G.

    1980-01-01

    The present study was undertaken to determine the direct ionization and electron capture contributions to vacancy production in the M-shells of /sub 79/Au, /sub 82/Pb, /sub 83/Bi and /sub 92/U for incident /sup 19//sub 9/F ions. M-shell x-ray production cross sections have been measured for 1.42-MeV/amu /sup 19//sub 9/Fq/sup +/ ions for q = 4,5,6,8,9. Enhancements in the target x-ray production cross sections were observed for projectiles with one and two K-shell vacancies over those without K-shell vacancies. Direct ionization and electron capture contributions to the vacancy production were extracted from the data and compared to the plane wave Born approximation and to the Oppenheimer-Brinkman-Kramers calculations of Nikolaev, respectively.

  20. Magnetic Phase Formation in Self-Assembled Epitaxial BiFeO3-MgO and BiFeO3-MgAl2O4 Nanocomposite Films Grown by Combinatorial Pulsed Laser Deposition.

    PubMed

    Kim, Dong Hun; Sun, XueYin; Kim, Tae Cheol; Eun, Yun Jae; Lee, Taeho; Jeong, Sung Gyun; Ross, Caroline A

    2016-02-01

    Self-assembled epitaxial BiFeO3-MgO and BiFeO3-MgAl2O4 nanocomposite thin films were grown on SrTiO3 substrates by pulsed laser deposition. A two-phase columnar structure was observed for BiFeO3-MgO codeposition within a small window of growth parameters, in which the pillars consisted of a magnetic spinel phase (Mg,Fe)3O4 within a BiFeO3 matrix, similar to the growth of BiFeO3-MgFe2O4 nanocomposites reported elsewhere. Further, growth of a nanocomposite with BiFeO3-(CoFe2O4/MgO/MgFe2O4), in which the minority phase was grown from three different targets, gave spinel pillars with a uniform (Mg,Fe,Co)3O4 composition due to interdiffusion during growth, with a bifurcated shape from the merger of neighboring pillars. BiFeO3-MgAl2O4 did not form a well-defined vertical nanocomposite in spite of having lower lattice mismatch, but instead formed a two-phase film with in which the spinel phase contained Fe. These results illustrate the redistribution of Fe between the oxide phases during oxide codeposition to form a ferrimagnetic phase from antiferromagnetic or nonmagnetic targets. PMID:26750565

  1. Effects of plasma treatment on the Ohmic characteristics of Ti/Al/Ti/Au contacts to n-AlGaN

    SciTech Connect

    Cao, X. A.; Piao, H.; LeBoeuf, S. F.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2006-08-21

    The effects of surface treatment using Cl{sub 2}/BCl{sub 3} and Ar inductive coupled plasmas on the Ohmic characteristics of Ti/Al/Ti/Au contacts to n-type Al{sub x}Ga{sub 1-x}N (x=0-0.5) were investigated. Plasma treatment significantly increased the surface conductivity of GaN and Al{sub 0.1}Ga{sub 0.9}N, leading to improved Ohmic behaviors of the contacts. However, it reduced the surface doping level in Al{sub x}Ga{sub 1-x}N (x{>=}0.3) and degraded the contact properties. Following a 900-1000 deg. C anneal, the Ti/Al/Ti/Au contacts to Al{sub x}Ga{sub 1-x}N (x=0-0.3) became truly Ohmic, with specific contact resistances of (3-7)x10{sup -5} {omega} cm{sup 2}, whereas the contact to Al{sub 0.5}Ga{sub 0.5}N remained rectifying even without the plasma treatment. X-ray photoelectron spectroscopy measurements confirmed that the Fermi level moved toward the conduction band in GaN after the plasma treatment, but it was pinned by plasma-induced deep-level states in Al{sub 0.5}Ga{sub 0.5}N. This study emphasizes the need to mitigate plasma damage introduced during the mesa etch step for AlGaN-based deep-UV emitters and detectors.

  2. Comparison between the polar cap index, PC and the auroral electrojet indices AE, AL, and AU

    SciTech Connect

    Vennerstrom, S.; Friis-Christensen, E. ); Troshichev, O.A.; Andresen, V.G. )

    1991-01-01

    The newly introduced index PC for magnetic activity in the polar cap has been examined to establish to which extent it can serve as an indicator of auroral electrojet activity. PC is derived from a single nearpole station, as a 15-min average index. The authors have derived it for two stations, one in the northern hemisphere (Thule) and one in the southern hemisphere (Vostok). The simplicity of the PC index enables us to make a large data base for statistical investigations. They have thus used 7 years of PC values for the two stations to analyze the relationship between PC and the auroral zone indices AE, AU, and AL statistically. They find a very high correlation between PC and AE during winter and equinox, the linear correlation coefficient being {approximately} 0.8-0.9 for Thule and {approximately} 0.7-0.8 for Vostok. During summer the correlation is less because the PC index is then disturbed by polar cap currents controlled by the northward and east-west components of the interplanetary magnetic field. They therefore stress the importance of having PC available from both the northern and southern hemisphere. From event studies they find that PC is sensitive both to DP 2 type electrojet activity and to substorm intensifications of the westward electrojet in the midnight or postmidnight sector but less sensitive to substorm intensifications of the westward electrojet in the midnight or post midnight sector. They conclude that PC can serve as a fast available indicator of DP 2 and DP 1 activity in the polar regions, excluding intrusions of the westward electrojet in the premidnight sector.

  3. Nanoindentation Mechanical Properties of a Bi-phase Cu29Zr32Ti15Al5Ni19 Alloy

    NASA Astrophysics Data System (ADS)

    Pi, JinHong; Wang, ZhangZhong; He, XianCong; Bai, YunQiang

    2016-01-01

    Mechanical properties of cylindrical bi-phasic high-entropy alloy Cu29Zr32Ti15Al5Ni19 (3 mm in diameter) were characterized by nanoindentation test in each phase. The results show that the constituent FCC phase is of low nanohardness (2.35 GPa) and modulus (60.9 GPa), while another constituent phase in the alloy, the HCP phase, shows much higher nanohardness (6.5 GPa) and modulus (115.3 GPa). Creep occurs in both phases during the indentation.

  4. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility.

    PubMed

    Zhou, F Y; Qiu, K J; Li, H F; Huang, T; Wang, B L; Li, L; Zheng, Y F

    2013-12-01

    In this study, the microstructures, mechanical properties, corrosion behaviors, in vitro cytocompatibility and magnetic susceptibility of Zr-1X alloys with various alloying elements, including Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi, were systematically investigated to explore their potential use in biomedical applications. The experimental results indicated that annealed Zr-1X alloys consisted entirely or primarily of α phase. The alloying elements significantly increased the strength and hardness of pure Zr and had a relatively slight influence on elastic modulus. Ru was the most effective enhancing element and Zr-1Ru alloy had the largest elongation. The results of electrochemical corrosion indicated that adding various elements to Zr improved its corrosion resistance, as indicated by the reduced corrosion current density. The extracts of the studied Zr-1X alloys produced no significant deleterious effects on osteoblast-like cells (MG 63), indicating good in vitro cytocompatibility. All except for Zr-1Ag alloy showed decreased magnetic susceptibility compared to pure Zr, and Zr-1Ru alloy had the lowest magnetic susceptibility value, being comparable to that of α' phase Zr-Mo alloy and Zr-Nb alloy and far lower than that of Co-Cr alloy and Ti-6Al-4V alloy. Among the experimental Zr-1X alloys, Zr-1Ru alloy possessing high strength coupled with good ductility, good in vitro cytocompatibility and low magnetic susceptibility may be a good candidate alloy for medical devices within a magnetic resonance imaging environment. PMID:23928334

  5. Influence of Au nanoparticles on the photoluminescent and electrical properties of Bi{sub 3.6}Eu{sub 0.4}Ti{sub 3}O{sub 12} ferroelectric thin films

    SciTech Connect

    Su, Li; Qin, Ni E-mail: stsbdh@mail.sysu.edu.cn; Xie, Wei; Fu, Jianhui; Bao, Dinghua E-mail: stsbdh@mail.sysu.edu.cn

    2014-07-21

    Au-doped Bi{sub 3.6}Eu{sub 0.4}Ti{sub 3}O{sub 12} (BET) thin films were prepared on fused silica and Pt/Ti/SiO{sub 2}/Si substrates by a chemical solution deposition method. The existence of Au nanoparticles (NPs) has been confirmed by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscope analysis. Enhanced photoluminescence (PL) of Eu{sup 3+} ions was obtained in a wide range of Au doping level. Role of the Au NPs in the PL enhancement was investigated by means of optical absorption, excitation, and emission spectra, as well as decay lifetime measurements. The results indicated that the intra-4f transition of Eu{sup 3+} ions can be intensively activated by the coupling of the charge transfer band of BET with the {sup 5}D{sub 0} state of Eu{sup 3+} ions. The influence of Au NPs on the PL properties of Eu{sup 3+} ions in the present thin films was attributed to the band bending at Au/BET interface and the localized surface plasma resonance absorption of Au NPs in the visible light region. The dielectric and ferroelectric properties of Au-doped BET thin films were investigated as well.

  6. Effect of annealing temperature on the structural reorganization of Eu3+ optical centers in Al2O3-Eu2O3-BiOF gel films

    NASA Astrophysics Data System (ADS)

    Malashkevich, G. E.; Kornienko, A. A.; Dunina, E. B.; Prusova, I. V.; Shevchenko, G. P.; Bokshits, Yu. V.

    2007-06-01

    The dependence of the structural reorganization of Eu3+ optical centers in Al2O3-Eu2O3-BiOF films on the annealing temperature has been investigated. It is shown by the methods of crystal field theory and computer simulation that the increase in the annealing temperature from 700 to 1100 °C leads to removal of bismuth from Eu-O-Bi complex centers with the C 3V symmetry in the Al2O3 structure and the change in symmetry from D 3 to O h for a large fraction of EuAlO3 centers.

  7. Top-emission Si-based phosphor organic light emitting diode with Au doped ultrathin n-Si film anode and bottom Al mirror

    SciTech Connect

    Li, Y. Z.; Xu, W. J.; Ran, G. Z.; Qin, G. G.

    2009-07-20

    We report a highly efficient top-emission Si-based phosphor organic light emitting diode (PhOLED) with an ultrathin polycrystalline n-Si:Au film anode and a bottom Al mirror. This anode is formed by magnetron sputtering followed by Ni induced crystallization and then Au diffusion. By optimizing the thickness of the n-Si:Au film anode, the Au diffusion temperature, and the other parameters of the PhOLED, the highest current and power efficiencies of the n-Si:Au film anode PhOLED reached 85{+-}9 cd/A and 80{+-}8 lm/W, respectively, corresponding to an external quantum efficiency of 21{+-}2% and a power conversion efficiency of 15{+-}2%, respectively, which are about 60% and 110% higher than those of the indium tin oxide anode counterpart and 70% and 50% higher than those of the bulk n{sup +}-Si:Au anode counterpart, respectively.

  8. Exchange bias effect in Bi{sub 2}Fe{sub 3}AlO{sub 9} ceramics

    SciTech Connect

    Huang, S.; Shi, L. R.; Sun, H. G.; Zhu, C. M.; Tian, Z. M.; Yuan, S. L.

    2014-11-10

    The exchange bias (EB) effect is observed in Bi{sub 2}Fe{sub 3}AlO{sub 9} polycrystalline ceramics. The EB field (H{sub EB}), vertical magnetization shift, and coercive field show a strong dependence on the cooling fields. When a larger applied field is used to measure the hysteresis loop, the EB effect is suppressed. The induced spin-glass-like phase via Al{sup 3+} doping is responsible for the EB effect below the spin-glass temperature (T{sub SG}) of ∼25 K. Moreover, the H{sub EB} varies nonmonotonically with temperature above T{sub SG}, which is interpreted using a random field model with the exchange coupling between ferromagnetic clusters and an antiferromagnetic phase.

  9. Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Mosca, Hugo O.

    2004-01-01

    Atomistic modeling of the site substitution behavior of Pd in NiTi (J. Alloys and Comp. (2004), in press) has been extended to examine the behavior of several other alloying additions, namely, Fe, Pt, Au, Al, Cu, Zr and Hf in this important shape memory alloy. It was found that all elements, to a varying degree, displayed absolute preference for available sites in the deficient sublattice. How- ever, the energetics of the different substitutional schemes, coupled with large scale simulations indicate that the general trend in all cases is for the ternary addition to want to form stronger ordered structures with Ti.

  10. Bose-Einstein correlations in Si + Al and Si + Au collisions at 14.6A GeV/c

    NASA Technical Reports Server (NTRS)

    Abbott, T.; Akiba, Y.; Beavis, D.; Bloomer, M. A.; Bond, P. D.; Chasman, C.; Chen, Z.; Chu, Y. Y.; Cole, B. A.; Costales, J. B.

    1992-01-01

    The E802 Spectrometer at the Brookhaven Alternating Gradient Synchrotron has been used to measure the correlation in relative momentum between like-sign pions emitted in central Si + Al and Si + Au collisions at 14.6A GeV/c. Data are presented in terms of the correlation function for both identified pi(-) and pi(+) pairs near the nucleon-nucleon center-of-mass rapidity. All parametrizations of the correlation function are consistent with a spherically symmetric source of rms radius 3.5 +/- 0.4 fm and lifetime fm/c.

  11. Current-induced spin polarization in transition metals and Bi/Ag bilayers observed by spin-polarized positron beam

    NASA Astrophysics Data System (ADS)

    Zhang, Hongjun; Yamamoto, Shunya; Fukaya, Yuki; Maekawa, Masaki; Li, Hui; Kawasuso, Atsuo; Seki, Takeshi; Saitoh, Eiji; Takanashi, Koki; JAEA Team; Tohoku Team

    2015-03-01

    Current-induced spin polarization (CISP) on the outermost surfaces of Au, Cu, Pt, Pd, Ta, and W films were studied by spin-polarized positron beam (SPPB). The Au and Cu surfaces showed no significant CISP. In contrast, the Pt, Pd, Ta, and W films exhibited large CISP (3 ~ 15% per charge current of 105 A/cm2) and the CISP of Ta and W were opposite to those of Pt and Pd. The sign of the CISP obeys the same rule in spin Hall effect suggesting that the spin-orbit coupling is mainly responsible for the CISP. The outermost spin poalrization of Bi/Ag/Al2O3andAg/Bi/Al2O3 (charge currents directly connected to Ag layers) were probed by SPPB. The opposite outermost spin polarization of Bi/Ag/Al2O3andAg/Bi/Al2O3 clarified the charge-to-spin conversion in Bi/Ag bilayers. Nevertheless, the magnitudes of the outermost spin polarization of Bi(0.3 ~5)/Ag(25)/Al2O3 (numbers in parentheses denote thickness in nm) and Ag(25 ~500)/Bi(8)/Al2O3 decrease exponentially with increasing Bi thickness and Ag thickness, respectively. This provides probably the first direct evidence for spin diffusion mechanism. Financial support from JSPS Kakenhi Grant 24310072.

  12. HRTEM and STEM-HAADF characterisation of Au-TiO2 and Au-Al2O3 catalysts for a better understanding of the parameters influencing their properties in CO oxidation.

    PubMed

    Delannoy, Laurent; Chantry, Ruth L; Casale, Sandra; Li, Z Y; Borensztein, Yves; Louis, Catherine

    2013-03-14

    Gold catalysts supported on titania (Au-TiO(2)) and alumina (Au-Al(2)O(3)) were prepared by deposition-precipitation with urea and then activated before characterisation and reaction in CO oxidation, either by calcination in air at 500 °C or reduction under H(2) at 300 °C. Gold nanoparticles with average size in the range 2-4 nm were obtained, with calcination leading to larger gold nanoparticles than reduction. For Au-TiO(2), high activity was observed in CO oxidation at room temperature, independent of the activation treatment. This high activity could not be correlated to the presence of sub-nanometer gold clusters as reported in the literature, since they could not be detected by atomic-resolution high-angle annular dark-field scanning-transmission electron microscopy (HAADF-STEM). In the case of Au-Al(2)O(3), the performance in CO oxidation was found to strongly depend on the water content in the reaction gas feed and on the activation conditions, with calcination resulting in a poorly active catalyst whereas reduction gave activity of the same order as Au-TiO(2). A comparative study of Au-TiO(2) and Au-Al(2)O(3) by electron microscopy did not reveal distinct differences in the shapes of the Au nanoparticles, which are mostly flattened through interaction with the substrate in both samples, with side profile shapes varying from rounded hemispherical to well faceted truncated cubo-octahedra. More faceting is found for the samples calcined at 500 °C than reduced at 300 °C. Various possible parameters affecting the catalytic properties of gold in CO oxidation are discussed in the context of the relevant literature. PMID:23361459

  13. Ultra-sensitive film sensor based on Al2O3-Au nanoparticles supported on PDDA-functionalized graphene for the determination of acetaminophen.

    PubMed

    Li, Jianbo; Sun, Weiyan; Wang, Xiaojiao; Duan, Huimin; Wang, Yanhui; Sun, Yuanling; Ding, Chaofan; Luo, Chuannan

    2016-08-01

    An electrochemical sensor of acetaminophen based on poly(diallyldimethylammonium chloride) (PDDA)-functionalized reduced graphene-loaded Al2O3-Au nanoparticles coated onto glassy carbon electrode (Al2O3-Au/PDDA/reduced graphene oxide (rGO)/glass carbon electrode (GCE)) were prepared by layer self-assembly technique. The as-prepared electrode-modified materials were characterized by scanning electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. The electrocatalytic performances of Al2O3-Au/PDDA/rGO-modified glassy carbon electrode toward the acetaminophen were investigated by cyclic voltammetry and differential pulse voltammetry. The modified electrodes of graphene oxide (GO)/GCE, PDDA/rGO/GCE, and Al2O3-Au/PDDA/rGO/GCE were constructed for comparison and learning the catalytic mechanism. The research showed Al2O3-Au/PDDA/rGO/GCE having good electrochemical performance, attributing to the synergetic effect that comes from the special nanocomposite structure and physicochemical properties of Al2O3-Au nanoparticles and graphene. A low detection limit of 6 nM (S/N = 3) and a wide linear detection range from 0.02 to 200 μM (R (2) = 0.9970) was obtained. The preparation of sensor was successfully applied for the detection of acetaminophen in commercial pharmaceutical pills. Graphical abstract Schematic diagram of synthesis of Al2O3-Au/PDDA/rGO/GCE. PMID:27255103

  14. Near-infrared luminescence and color tunable chromophores based on Cr(3+)-doped mullite-type Bi2(Ga,Al)4O9 solid solutions.

    PubMed

    Liu, Chengyin; Xia, Zhiguo; Chen, Mingyue; Molokeev, Maxim S; Liu, Quanlin

    2015-02-16

    Cr(3+)-activated mullite-type Bi2Ga(4-x)Al(x)O9 (x = 0, 1, 2, 3, and 4) solid solutions were prepared by the solid state reaction, and their spectroscopic properties were investigated in conjunction with the structural evolution. Under excitation at 610 nm, Bi2[Ga(4-y)Al(y)]3.97O9:0.03Cr(3+) (y = 0, 1, 2, 3, and 4) phosphors exhibited broad-band near-infrared (NIR) emission peaking at ∼710 nm in the range 650-850 nm, and the optimum Cr(3+) concentrations and concentration quenching mechanism were determined. Except for the interesting NIR emission, the body color changed from white (at x = 0) to green (at x = 0.08) for Bi2Ga(4-x)O9:xCr(3+), and from light yellow (at x = 0) to deep brown (at x = 0.08) for Bi2Al(4-x)O9:xCr(3+), respectively. Moreover, as a result of variable Al/Ga ratio, the observed body color for Bi2[Ga(4-y)Al(y)]3.97O9:0.03Cr(3+) (y = 0, 1, 2, 3, and 4) varied from deep brown to green. The relationship between the observed colors and their diffuse reflectance spectra were also studied for the understanding of the different absorption bands. The results indicated that Cr(3+)-doped Bi2Ga(4-x)Al(x)O9 solid solutions appeared as the bifunctional materials with NIR phosphors and color-tunable pigments. PMID:25622046

  15. Magnetization Dynamics Through Magnetoimpedance Effect in Isotropic Co2FeAl/Au/Co2FeAl Full-Heusler Alloy Trilayer Films

    NASA Astrophysics Data System (ADS)

    Assolin Corrêa, Marcio; Montardo Escobar, Vivian; Trigueiro-Neto, Osvaldo; Bohn, Felipe; Daiane Sossmeier, Kelly; Gomes Bezerra, Claudionor; Chesman, Carlos; Pearson, John; Hoffmann, Axel

    2013-09-01

    We investigate the magnetization dynamics in low damping parameter α systems by measuring the magnetoimpedance effect over a wide range of frequencies, from 0.1 to 3.0 GHz, in Co2FeAl/Au/Co2FeAl full-Heusler alloy trilayer films grown by magnetron sputtering on glass and MgO substrates. We show that the film produced on the glass substrate presents high magnetoimpedance performance, while that grown on the MgO substrate has low magnetoimpedance performance. Since both films are polycrystalline and have isotropic in-plane magnetic properties, we interpret the magnetoimpedance results in terms of the low damping parameter α and strain effects in the films. Thus, we verified that our films present good magnetoimpedance performance and showed that high performance can be achieved even in films with isotropic in-plane magnetic properties, since they present low damping parameter α.

  16. Correlation between microstructure and temperature dependent electrical behavior of annealed Ti/Al/Ni/Au Ohmic contacts to AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Iucolano, Ferdinando; Greco, Giuseppe; Roccaforte, Fabrizio

    2013-11-01

    This letter reports on the temperature behavior of the structural and electrical properties of Ti/Al/Ni/Au contacts to AlGaN/GaN heterostructures. While Ohmic contacts formed at 750 °C showed a decreasing temperature behavior of the specific contact resistance ρC, which was explained by a thermionic field emission mechanism, an increasing trend is observed in the contacts formed at 850 °C. In this case, ρC exhibits a "metal-like" behavior, i.e., describable by a T1.8 dependence. The microstructural analysis of the interfacial region allowed to explain the results with the formation of metallic intrusions contacting directly the two dimensional electron gas.

  17. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2012-11-01

    The partitioning of 15 major to trace metals between monosulfide solid solution (MSS), sulfide liquid (SL) and mafic silicate melt (SM) was determined in piston-cylinder experiments performed at 1175-1300 °C, 1.5-3.0 GPa and oxygen fugacities ranging from 3.1 log units below to 1.0 log units above the quartz-fayalite-magnetite fO2 buffer, which conditions are representative of partial melting in the upper mantle in different tectonic settings. The silicate melt was produced by partial melting of a natural, amphibole-rich mantle source rock, resulting in hydrous (˜5 wt% H2O) basanitic melts similar to low-degree partial melts of metasomatized mantle, whereas the major element composition of the starting sulfide (˜52 wt% Fe; 39 wt% S; 7 wt% Ni; 2 wt% Cu) was similar to the average composition of sulfides in this environment. SL/SM partition coefficients are high (≥100) for Au, Ni, Cu, Ag, Bi, intermediate (1-100) for Co, Pb, Sn, Sb (±As, Mo), and low (≤1) for the remaining elements. MSS/SM partition coefficients are generally lower than SL/SM partition coefficients and are high (≥100) for Ni, Cu, Au, intermediate (1-100) for Co, Ag (±Bi, Mo), and low (≤1) for the remaining elements. Most sulfide-silicate melt partition coefficients vary as a function of fO2, with Mo, Bi, As (±W) varying by a factor >10 over the investigated fO2 range, Sb, Ag, Sn (±V) varying by a factor of 3-10, and Pb, Cu, Ni, Co, Au, Zn, Mn varying by a factor of 3-10. The partitioning data were used to model the behavior of Cu, Au, Ag, and Bi during partial melting of upper mantle and during fractional crystallization of primitive MORB and arc magmas. Sulfide phase relationships and comparison of the modeling results with reported Cu, Au, Ag, and Bi concentrations from MORB and arc magmas suggest that: (i) MSS is the dominant sulfide in the source region of arc magmas, and thus that Au/Cu ratios in the silicate melt and residual sulfides may decrease with increasing degree of

  18. AlO x /LiF composite protection layer for Cr-doped (Bi,Sb)2Te3 quantum anomalous Hall films

    NASA Astrophysics Data System (ADS)

    Ou, Yunbo; Feng, Yang; Feng, Xiao; Hao, Zhenqi; Zhang, Liguo; Liu, Chang; Wang, Yayu; He, Ke; Ma, Xucun; Xue, Qikun

    2016-08-01

    We have realized robust quantum anomalous Hall samples by protecting Cr-doped (Bi,Sb)2Te3 topological insulator films with a combination of LiF and AlO x capping layers. The AlO x /LiF composite capping layer well keeps the quantum anomalous Hall states of Cr-doped (Bi,Sb)2Te3 films and effectively prevent them from degradation induced by ambient conditions. The progress is a key step towards the realization of the quantum phenomena in heterostructures and devices based on quantum anomalous Hall system. Project supported by the National Natural Science Foundation of China (Grant No. 11325421).

  19. Au-Free GaN High-Electron-Mobility Transistor with Ti/Al/W Ohmic and WN X Schottky Metal Structures for High-Power Applications

    NASA Astrophysics Data System (ADS)

    Hsieh, Ting-En; Lin, Yueh-Chin; Chu, Chung-Ming; Chuang, Yu-Lin; Huang, Yu-Xiang; Shi, Wang-Cheng; Dee, Chang-Fu; Majlis, Burhanuddin Yeop; Lee, Wei-I.; Chang, Edward Yi

    2016-04-01

    In this study, an Au-free AlGaN/GaN high-electron-mobility transistor (HEMT) with Ti/Al/W ohmic and WNx Schottky metal structures is fabricated and characterized. The device exhibits smooth surface morphology after metallization and shows excellent direct-current (DC) characteristics. The device also demonstrates better performance than the conventional HEMTs under high voltage stress. Furthermore, the Au-free AlGaN/GaN HEMT shows stable device performance after annealing at 400°C. Thus, the Ti/Al/W ohmic and WN X Schottky metals can be applied in the manufacturing of GaN HEMT to replace the Au based contacts to reduce the manufacturing costs of the GaN HEMT devices with comparable device performance.

  20. Au-Free GaN High-Electron-Mobility Transistor with Ti/Al/W Ohmic and WN X Schottky Metal Structures for High-Power Applications

    NASA Astrophysics Data System (ADS)

    Hsieh, Ting-En; Lin, Yueh-Chin; Chu, Chung-Ming; Chuang, Yu-Lin; Huang, Yu-Xiang; Shi, Wang-Cheng; Dee, Chang-Fu; Majlis, Burhanuddin Yeop; Lee, Wei-I.; Chang, Edward Yi

    2016-07-01

    In this study, an Au-free AlGaN/GaN high-electron-mobility transistor (HEMT) with Ti/Al/W ohmic and WN x Schottky metal structures is fabricated and characterized. The device exhibits smooth surface morphology after metallization and shows excellent direct-current (DC) characteristics. The device also demonstrates better performance than the conventional HEMTs under high voltage stress. Furthermore, the Au-free AlGaN/GaN HEMT shows stable device performance after annealing at 400°C. Thus, the Ti/Al/W ohmic and WN X Schottky metals can be applied in the manufacturing of GaN HEMT to replace the Au based contacts to reduce the manufacturing costs of the GaN HEMT devices with comparable device performance.

  1. L{sub 3}-subshell alignment of Au and Bi in collisions with 12-55-MeV carbon ions

    SciTech Connect

    Kumar, Ajay; Choudhury, R. K.; Agnihotri, A. N.; Chatterjee, S.; Misra, D.; Tribedi, L. C.; Kasthurirangan, S.; Sarkadi, L.

    2010-06-15

    Angular distribution of the L x-ray intensities in Au and Bi induced by 12-55-MeV carbon ions has been measured. The L{sub {alpha}}, L{sub {beta}}, and L{sub {gamma}} x-ray intensities were found to be isotropic within experimental uncertainty. The alignment parameter A{sub 20} of the L{sub 3} (2p{sub 3/2}) subshell was deduced from the measured anisotropy parameter {beta} value of the well-resolved L{sub l} line, obtained from the angular distribution of the I{sub Ll}/I{sub L{alpha}}, I{sub Ll}/I{sub L{beta}}, and I{sub Ll}/I{sub L{gamma}} x-ray intensity ratios. The measured A{sub 20} values have been compared with those obtained using theoretical models that involve the plane-wave Born approximation; projectile's energy loss and its Coulomb deflection from the straight-line trajectory, perturbed-stationary-state, and relativistic effects (ECPSSR); and ECPSSR with the intrashell effect.

  2. Preparation of Bi2Sr2CaCu2Oy films on alumina substrates with a CuAl2O4 buffer layer

    NASA Astrophysics Data System (ADS)

    Lee, Kiejin; Song, Insang; Park, Gwangseo

    1993-07-01

    High-Tc Bi2Sr2CaCu2Oy films have been prepared using the surface diffusion process, with the screen printing of Bi2O3, SrCO3, and CaCO3 (Bi:Sr:Ca=2:2:2) mixed powders on Cu-deposited alumina substrates. Through the heating at temperatures above 400 °C, CuAl2O4 buffer layers were formed via an interaction between the Cu layer and alumina. The Bi2Sr2CaCu2Oy films, heat treated at 860 °C for 30 min in air, have a zero resistance at 72 K. The x-ray diffraction, scanning electron microscope, and energy dispersive x-ray analysis studies show that the Bi2Sr2Ca1Cu2Oy films are strongly c-axis oriented along the direction normal to the alumina substrate, and the CuAl2O4 buffer layer acted as a barrier to suppress the interdiffusion of Al ions into the superconducting films.

  3. Effects of rapid thermal annealing on the electrical properties of the AlGaN/AlN/GaN heterostructure field-effect transistors with Ti/Al/Ni/Au gate electrodes

    SciTech Connect

    Zhao, Jingtao; Lin, Zhaojun Luan, Chongbiao; Zhou, Yang; Yang, Ming; Lv, Yuanjie; Feng, Zhihong

    2014-08-25

    In this study, we investigated the electrical properties of the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with Ti/Al/Ni/Au gate electrodes using the measured capacitance-voltage, current-voltage characteristics, and micro-Raman spectroscopy. We found that the uneven distribution of the strain caused by the Schottky metals was a major factor that generates the polarization Coulomb field scattering in AlGaN/AlN/GaN HFETs, and after appropriate rapid thermal annealing (RTA) processes, the polarization Coulomb field scattering was greatly weakened and the two-dimensional electron gas electron mobility was improved. We also found that the Schottky barrier height and the DC characteristics of the devices became better after appropriate RTA. Of course, the electrical performances mentioned above became deteriorated after excessive annealing.

  4. InAlN high electron mobility transistor Ti/Al/Ni/Au Ohmic contact optimisation assisted by in-situ high temperature transmission electron microscopy

    SciTech Connect

    Smith, M. D.; Parbrook, P. J.; O'Mahony, D.; Conroy, M.; Schmidt, M.

    2015-09-14

    This paper correlates the micro-structural and electrical characteristics associated with annealing of metallic multi-layers typically used in the formation of Ohmic contacts to InAlN high electron mobility transistors. The multi-layers comprised Ti/Al/Ni/Au and were annealed via rapid thermal processing at temperatures up to 925 °C with electrical current-voltage analysis establishing the onset of Ohmic (linear IV) behaviour at 750–800 °C. In-situ temperature dependent transmission electron microscopy established that metallic diffusion and inter-mixing were initiated near a temperature of 500 °C. Around 800 °C, inter-diffusion of the metal and semiconductor (nitride) was observed, correlating with the onset of Ohmic electrical behaviour. The sheet resistance associated with the InAlN/AlN/GaN interface is highly sensitive to the anneal temperature, with the range depending on the Ti layer thickness. The relationship between contact resistivity and measurement temperature follow that predicted by thermionic field emission for contacts annealed below 850 °C, but deviated above this due to excessive metal-semiconductor inter-diffusion.

  5. The electric transport properties of Al-doped ZnO/BiFeO3/ITO glass heterostructure

    NASA Astrophysics Data System (ADS)

    Fan, Fei; Chen, Changle; Luo, Bingcheng; Jin, Kexin

    2011-04-01

    BiFeO3 (BFO) and 4 wt. % Al-doped ZnO (ZAO) layers were grown on indium tin oxide (ITO) glass substrate using a pulsed laser deposition (PLD) method. I-V curves of the ZAO/BFO/ITO glass structure were investigated over the temperature range from 60 to 240 K. Analysis of the leakage current demonstrates that Poole-Frenkel emission is the dominant mechanism in our sample. The relations between resistance and temperature at positive and negative bias voltages are different, and the difference arises from the ferroelectric switching in BFO and the interfacial depletion layer between the semiconducting and the ferroelectric layers. Magnetoresistance (MR) effect is observed and the negative MR is related to the electron spin-dependent scattering and the interface resistance of the heterostructure.

  6. Cation-Poor Complex Metallic Alloys in Ba(Eu)-Au-Al(Ga) Systems: Identifying the Keys that Control Structural Arrangements and Atom Distributions at the Atomic Level.

    PubMed

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; Pecharsky, Vitalij; Miller, Gordon J; Mudring, Anja-Verena

    2015-11-01

    Four complex intermetallic compounds BaAu(6±x)Ga(6±y) (x = 1, y = 0.9) (I), BaAu(6±x)Al(6±y) (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104-112, Fm3̅c), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution ("coloring scheme"). Chemical bonding analyses for two different "EuAu6Tr6" models reveal maximization of the number of heteroatomic Au-Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the "EuAu6Tr6" models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. The effective moments of 8.3 μB/f.u., determined from Curie-Weiss fits, point to divalent oxidation states for europium in both III and IV. PMID:26479308

  7. In situ synchrotron study of liquid phase separation process in Al-10 wt.% Bi immiscible alloys by radiography and small angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Lu, W. Q.; Zhang, S. G.; Li, J. G.

    2016-03-01

    Liquid phase separation process of immiscible alloys has been repeatedly tuned to create special structure for developing materials with unique properties. However, the fundamental understanding of the liquid phase separation process is still under debate due to the characteristics of immiscible alloys in opacity and high temperature environment of alloy melt. Here, the liquid phase separation process in solidifying Al-Bi immiscible alloys was investigated by synchrotron radiography and small angle X-ray scattering. We provide the first direct evidence of surface segregation prior to liquid decomposition and present that the time dependence on the number of Bi droplets follows Logistic curve. The liquid decomposition results from a nucleation and growth process rather than spinodal decomposition mechanism because of the positive deviation from Porod's law. We also found that the nanometer-sized Bi-rich droplets in Al matrix melt present mass fractal characteristics.

  8. Friction-Stir Welding - Heavy Inclusions in Bi-metallic welds of Al 2219/2195

    NASA Technical Reports Server (NTRS)

    Rietz, Ward W., Jr.

    2008-01-01

    Heavy Inclusions (HI) were detected for the first time by radiographic examination in aluminum alloy 2219forging/2195plate (advancing/retreating side) Friction Sir Welds (FSW) for the Space Shuttle External Tank (ET) Program. Radiographic HI indications appear as either small (approx.0.005"-0.025") individual particles or clusters of small particles. Initial work was performed to verify that the HI was not foreign material or caused by FSW pin tool debris. That and subsequent elemental analysis determined that the HI were large agglomerations of Al2Cu (theta phase), which is the strengthening precipitate in Al2219. A literature search on that subject determined that the agglomeration of phase has also been found in Al2219 bead on plate FSW [Ref. 1]. Since this was detected in ET space flight hardware, an investigative study of the effect of agglomerated theta phase particles in FSW Al2219f/2195p was performed. Numerous panels of various lengths were welded per ET weld procedures and radiographically inspected to determine if any HI was detected. Areas that had HI were sampled for room temperature and cyclic cryogenic (-423F) tensile testing and determined no significant adverse affect on mechanical properties when compared to test specimens without HI and historical data. Fracture surface examination using the Scanning Electron Microscope (SEM) revealed smaller phase agglomerations undetectable by radiographic inspection dispersed throughout the Al2219f/2195p FSW. This indicates that phase agglomeration is inherent to the Al2219f/2195p FSW process and only rarely creates agglomerations large enough to be detected by radiography. HI has not been observed in FSW of plate to plate material for either Al2219 or AL2195.

  9. Wide quantum critical region of valence fluctuations: Origin of robust quantum criticality in quasicrystal Yb15Al34Au51 under pressure

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinji; Miyake, Kazumasa

    2015-03-01

    The mechanism of the emergence of robust quantum criticality in the heavy- electron quasicrystal YR15Al34Au51 is analyzed theoretically. By constructing a minimal model for the quasicrystal and its crystalline approximant, which contain concentric shell structures with Yb and Al-Au clusters, we show that a set of quantum critical points of the first-order valence transition of Yb appears as spots in the ground-state phase diagram. Their critical regions overlap each other, giving rise to a wide quantum critical region. This well explains the robust criticality observed in YR15Al34Au51 under pressure, and predicts the emergence of the common criticality in the crystalline approximant under pressure. The wider critical region in the quasicrystal than that in the crystalline approximant in the T-P phase diagram and the field-induced valence-crossover "region" in the T-H phase diagram are predicted to appear.

  10. Fluid sources and metallogenesis in the Blackbird Co-Cu-Au-Bi-Y-REE district, Idaho, U.S.A.: Insights from major-element and boron isotopic compositions of tourmaline

    USGS Publications Warehouse

    Trumbull, R.B.; Slack, J.F.; Krienitz, M.-S.; Belkin, H.E.; Wiedenbeck, M.

    2011-01-01

    Tourmaline is a widespread mineral in the Mesoproterozoic Blackbird Co-Cu-Au-Bi-Y-REE district, Idaho, where it occurs in both mineralized zones and wallrocks. We report here major-element and B-isotope compositions of tourmaline from stratabound sulfide deposits and their metasedimentary wallrocks, from mineralized and barren pipes of tourmaline breccia, from late barren quartz veins, and from Mesoproterozoic granite. The tourmalines are aluminous, intermediate in the schorl-dravite series, with Fe/(Fe + Mg) values of 0.30 to 0.85, and 10 to 50% X-site vacancies. Compositional zoning is prominent only in tourmaline from breccias and quartz veins; crystal rims are enriched in Mg, Ca and Ti, and depleted in Fe and Al relative to cores. The chemical composition of tourmaline does not correlate with the presence or absence of mineralization. The ??11B values fall into two groups. Isotopically light tourmaline (-21.7 to-7.6%o) occurs in unmineralized samples from wallrocks, late quartz veins and Mesoproterozoic granite, whereas heavy tourmaline (-6.9 to +3.2%o) is spatially associated with mineralization (stratabound and breccia-hosted), and is also found in barren breccia. At an inferred temperature of 300??C, boron in the hydrothermal fluid associated with mineralization had ??11B values of-3 to +7%o. The high end of this range indicates a marine source of the boron. A likely scenario involves leaching of boron principally from marine carbonate beds or B-bearing evaporites in Mesoproterozoic strata of the region. The ??11B values of the isotopically light tourmaline in the sulfide deposits are attributed to recrystallization during Cretaceous metamorphism, superimposed on a light boron component derived from footwall siliciclastic sediments (e.g., marine clays) during Mesoproterozoic mineralization, and possibly a minor component of light boron from a magmatic-hydrothermal fluid. The metal association of Bi-Be-Y-REE in the Blackbird ores suggests some magmatic input

  11. Phase characteristics of 0.92Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.08BiAlO{sub 3} ceramics

    SciTech Connect

    Peng, Wei; Mao, Chaoliang; Liu, Zhen; Dong, Xianlin; Cao, Fei; Wang, Genshui

    2015-03-02

    The phase characteristics of 0.92Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.08BiAlO{sub 3} lead-free ceramics were investigated systematically. The loss tangent of poled sample shows a broad peak when heating to about 80 °C, i.e., depolarization temperature T{sub d}. The polarization-electric field hysteresis loops at different temperature exhibit the feature of ferroelectric (FE)- antiferroelectric (AFE) phase transition and the co-existence of FE and AFE phase. The pyroelectric coefficients curve confirms its diffusion behaviors. The initial hysteresis loop and switching current curves under T{sub d} indicate the co-existence of FE and AFE phase. The domain morphology of transmission electron microscopy supports the co-existence of FE and AFE phase. Our work not only exhibit that the FE and AFE phase characteristics of 0.92Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.08BiAlO{sub 3} ceramics but also they may be helpful for further investigation on lead-free ceramics.

  12. Pt-Au/Al[sub 2]O[sub 3] catalysts: Preparation, characterization, and dehydrogenation activity

    SciTech Connect

    Rouabah, D.; Fraissard, J. )

    1993-11-01

    The physicochemical characteristics of Pt-Au catalysts, such as the dispersion, chemisorption, and thermodesorption of hydrogen, have been studied in terms of gold content. The catalysts were prepared by coimpregnation of a [gamma]-alumina by a mixture of hexachloroplatinic and tetrachloroauric acids, calcination in oxygen and slow reduction in H[sub 2]-He from 25 to 400[degrees]C. The most outstanding result is the very large increase in the dispersion with the gold concentration. For example, with the alloy containing 80% gold more than 70% of the detectable particles are below 10 [angstrom]. In the same way, the activity per site and the selectivity in the dehydrogenation of methylcyclohexane to toluene increase with the gold concentration. 26 refs., 10 figs., 2 tabs.

  13. Electrical characteristics of TMAH-surface treated Ni/Au/Al2O3/GaN MIS Schottky structures

    NASA Astrophysics Data System (ADS)

    Reddy, M. Siva Pratap; Lee, Jung-Hee; Jang, Ja-Soon

    2014-03-01

    The electrical characteristics and reverse leakage mechanisms of tetramethylammonium hydroxide (TMAH) surface-treated Ni/Au/Al2O3/GaN metal-insulator-semiconductor (MIS) diodes were investigated by using the current-voltage ( I-V) and capacitance-voltage ( C-V) characteristics. The MIS diode was formed on n-GaN after etching the AlGaN in the AlGaN/GaN heterostructures. The TMAH-treated MIS diode showed better Schottky characteristics with a lower ideality factor, higher barrier height and lower reverse leakage current compared to the TMAH-free MIS diode. In addition, the TMAH-free MIS diodes exhibited a transition from Poole-Frenkel emission at low voltages to Schottky emission at high voltages, whereas the TMAH-treated MIS diodes showed Schottky emission over the entire voltage range. Reasonable mechanisms for the improved device-performance characteristics in the TMAH-treated MIS diode are discussed in terms of the decreased interface state density or traps associated with an oxide material and the reduced tunneling probability.

  14. Current transport mechanisms in lattice-matched Pt/Au-InAlN/GaN Schottky diodes

    SciTech Connect

    Ren, Jian; Yan, Dawei Yang, Guofeng; Wang, Fuxue; Xiao, Shaoqing; Gu, Xiaofeng

    2015-04-21

    Lattice-matched Pt/Au-In{sub 0.17}Al{sub 0.83}N/GaN hetreojunction Schottky diodes with circular planar structure have been fabricated and investigated by temperature dependent electrical measurements. The forward and reverse current transport mechanisms are analyzed by fitting the experimental current-voltage characteristics of the devices with various models. The results show that (1) the forward-low-bias current is mainly due to the multiple trap-assisted tunneling, while the forward-high-bias current is governed by the thermionic emission mechanism with a significant series resistance effect; (2) the reverse leakage current under low electric fields (<6 MV/cm) is mainly carried by the Frenkel-Poole emission electrons, while at higher fields the Fowler-Nordheim tunneling mechanism dominates due to the formation of a triangular barrier.

  15. Fermi surface study of ScAu{sub 2}(Al, In) and ScPd{sub 2}(Sn, Pb) compounds

    SciTech Connect

    Reddy, P. V. Sreenivasa; Kanchana, V.; Vaitheeswaran, G.

    2015-06-24

    A detailed study on the electronic structure and Fermi surface (FS) of superconducting Heusler compounds ScAu{sub 2}(Al, In) and ScPd{sub 2}(Sn, Pb) has been carried out using first principles electronic structure calculations. The spin orbit coupling is found to play a major role in understanding the band structure and FS. Analysis of the data shows the importance of spin orbit coupling effect in the above compounds. The bands which cross Fermi level (EF) are found to be dominated by the Sc d{sub t2g}-states. The calculated total density of states are in good agreement with the experimentally reported value for ScPd{sub 2}Sn. Under compression we find a change in the Fermi surface topology of ScPd{sub 2}Sn at V/V{sub 0} = 0.95 (pressure of≈15 GPa), which is explained using the band structure calculations.

  16. Negative binomials and multiplicity distributions in 250 GeV/c K + and π+ interactions on Al and Au nuclei

    NASA Astrophysics Data System (ADS)

    Ajinenko, I. V.; Belokopytov, Yu. A.; Bialkowska, H.; Boettcher, H.; Botterweck, F.; Charlet, M.; Chliapnikov, P. V.; Crijns, F.; de Roeck, A.; de Wolf, D. A.; Dziunikowska, K.; Endler, A. M. F.; Eskreys, A.; Garutchava, Z. C.; Golubkov, Y. A.; Gulkanyan, G. R.; van Hal, P.; Hakobyan, R. Sh.; Haupt, T.; Kittel, W.; Kisielewska, D.; Levchenko, B. B.; Machowski, B.; Meijers, F.; Michałowska, A. B.; Nikolaenko, V. I.; Olkiewicz, K.; Pöllänen, R.; Ronjin, V. M.; Rybin, A. M.; Saarikko, H. M. T.; Scholten, L.; Smirnova, L. N.; Tchikilev, O. G.; Uvarov, V. A.; Verbeure, F.; Wischnewski, R.

    1990-12-01

    The negative binomial distribution (NBD) is fitted to all charged and to negative particle multiplicity distributions in restricted rapidity intervals, both in the forward and backward c.m. hemispheres of positive meson interactions on Al and Au nuclei. For negative particle multiplicity distributions, the NBD parameters are also determined as a function of n g, the number of grey tracks, corresponding to varying number of intranuclear collisions. The data are interpreted in terms of the clan picture of Giovannini and Van Hove and compared to the MCMHA and Fritiof models. Both models reproduce quite well the global multiplicity distributions, but not when sub-samples are considered with fixed number of grey tracks. Regularities are better visible on the parton than on the particle level.

  17. Pressure-Driven Quantum Criticality and T/H Scaling in the Icosahedral Au-Al-Yb Approximant

    NASA Astrophysics Data System (ADS)

    Matsukawa, Shuya; Deguchi, Kazuhiko; Imura, Keiichiro; Ishimasa, Tsutomu; Sato, Noriaki K.

    2016-06-01

    We report on ac magnetic susceptibility measurements under pressure of the Au-Al-Yb alloy, a crystalline approximant to the icosahedral quasicrystal that shows unconventional quantum criticality. In describing the susceptibility as χ(T)-1 - χ(0)-1 ∝ Tγ, we find that χ(0)-1 decreases with increasing pressure and vanishes to zero at the critical pressure P{c} ≃ 2 GPa, with γ ( ≃ 0.5) unchanged. We suggest that this quantum criticality emerges owing to critical valence fluctuations. Above Pc, the approximant undergoes a magnetic transition at T ≃ 100 mK. These results are contrasted with the fact that, in the quasicrystal, the quantum criticality is robust against the application of pressure. The applicability of the so-called T/H scaling to the approximant is also discussed.

  18. Distribution of Be, Al, Se and Bi in the surface waters of the western North Atlantic and Caribbean

    NASA Astrophysics Data System (ADS)

    Measures, C. I.; Grant, B.; Khadem, M.; Lee, D. S.; Edmond, J. M.

    1984-11-01

    The mixed layer distributions of several trace elements have been determined along a detailed transect from Rhode Island to the Panama Canal. When taken together with a new and existing profile data from the North Atlantic and North Pacific, some general inferences emerge as to the processes controlling their concentrations in the surface waters. The large enrichments in Be observed in the upper waters of the North Atlantic relative to the North Pacific appear to be sustained mainly by fluvial inputs. Those of Se are derived from atmospheric transport. Aluminium and Bi also appear to have an aeolian source in the Sargasso Sea. However, in the tropical eastern Pacific, the Al input may be fluvial On this cruise, Be, Al and the Se species were analyzed on board ship within a few hours of collection. The demonstration that this is feasible opens up the prospect of the application of large-scale chemical hydrography to the study of the processes controlling the distribution and water column variability of trace elements in the oceans.

  19. Pronounced matrix effect in YbMo{sub 2}Al{sub 4}-type Ca(Au{sub x}Zn{sub 2−x})Au{sub 4} (x=0.09–0.89)

    SciTech Connect

    Mishra, Trinath; Lin, Qisheng; Corbett, John D.

    2014-10-15

    Electron-poor polar intermetallics Ca(Au{sub x}Zn{sub 2−x})Au{sub 4} have been synthesized through fusion of stoichiometric metals in sealed tantalum tubes at 800 °C and annealing at 400 °C for one week. Single crystal X-ray diffraction analyses reveal that this phase belongs to the YbMo{sub 2}Al{sub 4}-type structure (I4/mmm, Pearson symbol tI14), a≈6.943–7.017 Å, c≈5.278–5.286 Å, Z=2, with homogeneous composition range of x=0.09(1)–0.89(1). The structure exhibits a three-dimensional framework of (Au{sub 8}){sub 1/2} featuring square and octagonal channels extending in c, in which Ca and the infinite linear chains of [(Au,Zn){sub 2}]{sub 1/2} are located, respectively. Mulliken population analyses demonstrate that Zn prefers to form the linear chains in the whole homogeneous composition range, consistent with experimental observations. Crystal orbital Hamilton population (COHP) analyses reveal that the channel-to-chain Au–Zn contact has strong bonding interactions regardless of its large interatomic distance (∼2.85 Å), a signature of pronounced matrix effect. The last mentioned effect in YbMo{sub 2}Al{sub 4}-type structures is expected in case the linear chains are defined by small size atoms. - Graphical abstract: Pronounced matrix effect incurred by Au–Au bonding within the gold substructure in Ca(Au{sub x}Zn{sub 2−x})Au{sub 4} results in an elongation of the channel-to-chain Au–Zn interatomic distance without weakening bonding interactions. - Highlights: • The complete solid solution of Ca(Au{sub x}Zn{sub 2−x})Au{sub 4} was accomplished. • Site preference was explained by “coloring” analyses. • Abnormally large Au–Zn distance but with strong bonding was observed. • Pronounced matrix effect incurred by Au–Au bonding in gold substructure was found.

  20. Bi2Sr2CaCu2O8 + x round wires with Ag/Al oxide dispersion strengthened sheaths: microstructure-properties relationships, enhanced mechanical behavior and reduced Cu depletion

    NASA Astrophysics Data System (ADS)

    Kajbafvala, Amir; Nachtrab, William; Wong, Terence; Schwartz, Justin

    2014-09-01

    Ag/Al alloys with various Al content (0.50 wt%, 0.75 wt%, 1.00 wt%, and 1.25 wt%) are made by powder metallurgy and used as the outer sheath material for Bi2Sr2CaCu2O8 + x (Bi2212)/Ag/AgAl multifilamentary round wires (RW). Bi2212/Ag/AgAl RW microstructural, mechanical and electrical properties are studied in various conditions, including as-drawn, after internal oxidation, and after partial melt processing (PMP). The results are compared with the behavior of a Bi2212/Ag/Ag0.20Mg wire of the same geometry. The grains in as-drawn Ag/Al alloys are found to be ˜25% smaller than those in the corresponding Ag/0.20 wt%Mg, but after PMP, the Ag/Al and Ag/0.20 wt%Mg grain sizes are comparable. Tensile tests show that Bi2212/Ag/AgAl green wires have yield strength (YS) of ˜115 MPa, nearly 65% higher than that of Bi2212/Ag/Ag0.20Mg. After PMP, the Bi2212/Ag/AgAl YS is about 35% greater than that of Bi2212/Ag/Ag0.20Mg. Furthermore, Bi2212/Ag/AgAl wires exhibit higher ultimate tensile strength and modulus and twice the elongation-to-failure. Atomic resolution high-angle annular dark-field scanning transmission electron microscopy, high resolution transmission electron microscopy and energy dispersive spectroscopy demonstrate the formation of nanosize MgO and Al2O3 precipitates via internal oxidation. Large spherical MgO precipitates are observed on the Ag grain boundaries of Ag/0.20 wt%Mg alloy, whereas the Al2O3 precipitates are distributed homogenously in the dispersion-strengthened (DS) Ag/Al alloy. Furthermore, it is found that less Cu diffused from the Bi2212 filaments in the Bi2212/Ag/Ag0.75Al wire during PMP than from the filaments in the Bi2212/Ag/Ag0.20Mg wire. These results show that DS Ag/Al alloy is a strong candidate for improved Bi2212 wire.

  1. Temperature-Dependent Electrical Properties and Carrier Transport Mechanisms of TMAH-Treated Ni/Au/Al2O3/GaN MIS Diode

    NASA Astrophysics Data System (ADS)

    Reddy, M. Siva Pratap; Puneetha, Peddathimula; Reddy, V. Rajagopal; Lee, Jung-Hee; Jeong, Seong-Hoon; Park, Chinho

    2016-08-01

    The temperature-dependent electrical properties and carrier transport mechanisms of tetramethylammonium hydroxide (TMAH)-treated Ni/Au/Al2O3/GaN metal-insulator-semiconductor (MIS) diodes have been investigated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The experimental results reveal that the barrier height (I-V) increases whereas the ideality factor decreases with increasing temperature. The TMAH-treated Ni/Au/Al2O3/GaN MIS diode showed nonideal behaviors which indicate the presence of a nonuniform distribution of interface states (N SS) and effect of series resistance (R S). The obtained R S and N SS were found to decrease with increasing temperature. Furthermore, it was found that different transport mechanisms dominated in the TMAH-treated Ni/Au/Al2O3/GaN MIS diode. At 150 K to 250 K, Poole-Frenkel emission (PFE) was found to be responsible for the reverse leakage, while Schottky emission (SE) was the dominant mechanism at high electric fields in the temperature range from 300 K to 400 K. Feasible energy band diagrams and possible carrier transport mechanisms for the TMAH-treated Ni/Au/Al2O3/GaN MIS diode are discussed based on PFE and SE.

  2. Mechanism of Ti/Al/Ti/W Au-free ohmic contacts to AlGaN/GaN heterostructures via pre-ohmic recess etching and low temperature annealing

    SciTech Connect

    Zhang, Jinhan; Zhou, Qi; Chen, Wanjun; Zhang, Bo; Huang, Sen Bao, Qilong; Wang, Xinhua; Wei, Ke; Zheng, Yingkui; Li, Yankui; Zhao, Chao; Liu, Xinyu

    2015-12-28

    The physical mechanism of low-thermal-budget Au-free ohmic contacts to AlGaN/GaN heterostructures is systematically investigated with current-voltage, high-resolution transmission electron microscopy, and temperature-dependent contact resistivity characterizations. With a low annealing temperature of 600 °C, pre-ohmic recess etching of the AlGaN barrier down to several nanometers is demonstrated to be an effective method to reduce the contact resistance between Ti/Al/Ti/W ohmic metals and AlGaN/GaN heterostructures. However, further over recess of the AlGaN barrier leads to only sidewall contact to 2D electron gas channel and thus degraded contact performance. It is verified by temperature-dependent contact resistivity measurements that field emission (tunneling) dominates the current transport mechanism in Au-free ohmic contacts with AlGaN barrier partially and over recessed, while both field emission and thermionic emission contribute to traditional Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures that annealed at high temperature (850 °C)

  3. Mechanism of Ti/Al/Ti/W Au-free ohmic contacts to AlGaN/GaN heterostructures via pre-ohmic recess etching and low temperature annealing

    NASA Astrophysics Data System (ADS)

    Zhang, Jinhan; Huang, Sen; Bao, Qilong; Wang, Xinhua; Wei, Ke; Zheng, Yingkui; Li, Yankui; Zhao, Chao; Liu, Xinyu; Zhou, Qi; Chen, Wanjun; Zhang, Bo

    2015-12-01

    The physical mechanism of low-thermal-budget Au-free ohmic contacts to AlGaN/GaN heterostructures is systematically investigated with current-voltage, high-resolution transmission electron microscopy, and temperature-dependent contact resistivity characterizations. With a low annealing temperature of 600 °C, pre-ohmic recess etching of the AlGaN barrier down to several nanometers is demonstrated to be an effective method to reduce the contact resistance between Ti/Al/Ti/W ohmic metals and AlGaN/GaN heterostructures. However, further over recess of the AlGaN barrier leads to only sidewall contact to 2D electron gas channel and thus degraded contact performance. It is verified by temperature-dependent contact resistivity measurements that field emission (tunneling) dominates the current transport mechanism in Au-free ohmic contacts with AlGaN barrier partially and over recessed, while both field emission and thermionic emission contribute to traditional Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures that annealed at high temperature (850 °C).

  4. Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode

    SciTech Connect

    Hu, J. Groeseneken, G.; Stoffels, S.; Lenci, S.; Venegas, R.; Decoutere, S.; Bakeroot, B.

    2015-02-23

    This paper presents a combined technique of high voltage off-state stress and current transient measurements to investigate the trapping/de-trapping characteristics of Au-free AlGaN/GaN Schottky barrier diodes. The device features a symmetric three-terminal structure with a central anode contact surrounded by two separate cathodes. Under the diode off-state stress conditions, the two separate cathodes were electrically shorted. The de-trapping dynamics was studied by monitoring the recovery of the two-dimensional electron gas (2DEG) current at different temperatures by applying 0.5 V at cathode 2 while grounding cathode 1. During the recovery, the anode contact acts as a sensor of changes in diode leakage current. This leakage variation was found to be mainly due to the barrier height variation. With this method, the energy level and capture cross section of different traps in the AlGaN/GaN Schottky barrier diode can be extracted. Furthermore, the physical location of different trapping phenomena is indicated by studying the variation of the diode leakage current during the recovery. We have identified two distinct trapping mechanisms: (i) electron trapping at the AlGaN surface in the vicinity of the Schottky contact which results in the leakage reduction (barrier height ϕ{sub B} increase) together with R{sub ON} degradation; (ii) the electron trapping in the GaN channel layer which partially depletes the 2DEG. The physical origin of the two different traps is discussed in the text.

  5. Economic cost of home-telemonitoring care for BiPAP-assisted ALS individuals.

    PubMed

    Lopes de Almeida, J Pedro; Pinto, Anabela; Pinto, Susana; Ohana, Benjamim; de Carvalho, Mamede

    2012-10-01

    Our objective was to measure direct (hospital and NHS) and indirect (patient/caregiver) costs of following up in-home compliance to non-invasive ventilation via wireless modem. We constructed a prospective controlled trial of 40 consecutive ALS home-ventilated patients, randomly assigned according to their residence area to G1 (nearby hospital, office-based follow-up) and G2 (outside hospital area, telemetry device-based follow-up). Total NHS direct cost encompassed costs related to outpatients' visits (office and emergency room) and hospitalizations. Hospital direct costs included transportation to/from hospital, office visit per hour cost and equipment maintenance. Non-medical costs considered days of wages lost due to absenteeism. G1 included 20 patients aged 60 ± 10 years and G2 included 19 patients aged 62 ± 13 years. Results showed that no differences were found regarding clinical/demographic characteristics at admission. NHS costs showed a 55% reduction in average total costs with a statistically significant decrease of 81% in annual costs per patient in G2. Hospital costs were found to be significantly higher in G2 with regard to total costs (64% average increase) but not annual costs (7%). No statistical difference was found with regard to expenses from absenteeism. In conclusion, at the cost of an initial financial constraint to the hospital per year (non-significant), telemonitoring is cost-effective, representing major cost savings to the NHS in the order of 700 euros/patient/year. PMID:22873565

  6. Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2015-08-01

    In order to assess the role of sulfide in controlling the ore metal budgets and fractionation during magmatic genesis and differentiation, the partition coefficients (D) of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide liquid (SL), monosulfide solid solution (MSS), and basaltic to rhyolitic melts (SM) were determined at 900-1200 °C, 0.5-1.5 GPa, and oxygen fugacity (fO2) ranging from ∼FMQ-2 to FMQ+3, in a piston-cylinder apparatus. The DSL/SM values range from 0.4 to 2 for V, 0.5 to 3 for Mn, 80 to 580 for Co, 2300 to 18,000 for Ni, 800 to 4600 for Cu, 1 to 11 for Zn, 20 to 180 for As, 4 to 230 for Mo, 450 to 1600 for Ag, 5 to 24 for Sn, 10 to 80 for Sb, 0.03 to 0.16 for W, 2000 to 29,000 for Au, 24 to 170 for Pb, and 830 to 11,000 for Bi; whereas the DMSS/SM values range from 0.04 to 10 for V, 0.5 to 10 for Mn, 70 to 2500 for Co, 650 to 18,000 for Ni, 280 to 42,000 for Cu, 0.1 to 80 for Zn, 0.2 to 30 for As, 1 to 820 for Mo, 20 to 500 for Ag, 0.2 to 220 for Sn, 0.1 to 40 for Sb, 0.01 to 24 for W, 10 to 2000 for Au, 0.03 to 6 for Pb, and 1 to 350 for Bi. Both DMSS/SM and DSL/SM values generally increase with decreasing temperature or decreasing FeOtot content in silicate melt, except for Mo, DMSS/SM and DSL/SM of which show a clear decrease with decreasing temperature. At given temperature and FeOtot content, high oxygen fugacity appears to lead to a significant decrease in DMSS/SM of Au, Bi, Mo, and potentially As. The partitioning data obtained experimentally in this study and previous studies were fitted to an empirical equation that expresses the DMSS/SM and/or DSL/SM of a given element as a function of temperature, oxygen fugacity, and FeOtot content of the silicate melt: log (DSL/SMorDMSS/SM = d + a · 10, 000 / T + b · (ΔFMQ) + c · log (FeOmelt) in which T is temperature in K, FeOmelt denotes wt% FeOtot in silicate melt, and ΔFMQ denotes log fO2 relative to the fayalite-magnetite-quartz (FMQ) oxygen buffer. The

  7. Superconductivity up to 114 K in the Bi-Al-Ca-Sr-Cu-O compound system without rare-earth elements

    NASA Technical Reports Server (NTRS)

    Chu, C. W.; Bechtold, J.; Gao, L.; Hor, P. H.; Huang, Z. J.

    1988-01-01

    Stable superconductivity up to 114 K has been reproducibly detected in Bi-Al-Ca-Sr-Cu-O multiphase systems without any rare-earth elements. Pressure has only a slight positive effect on T(c). These observations provide an extra material base for the study of the mechanism of high-temperature superconductivity and also the prospect of reduced material cost for future applications of superconductivity.

  8. Conduction phenomenon of Al3+ modified lead free (Na0.5Bi0.5)0.92Ba0.08TiO3 electroceramics

    NASA Astrophysics Data System (ADS)

    Borkar, Hitesh; Kumar, Ashok

    2016-05-01

    Choice of proper dopants at A or B-site of ABO3 perovskite structure can modify the morphotropic phase boundary (MPB), and hence functional properties of polar systems. The chemical nature of donor or acceptor will significantly influence the fundamental properties. Lead-free ferroelectrics have vast potential to replace the lead-based ceramics. The (Na0.5Bi0.5)1-xBaxTiO3 (NBT-BT) (at x=0.08) near MPB with small substitution of trivalent cations (Al3+) has been synthesized by solid state reaction route. The aim to choose the trivalent cations (Al3+) was its relatively smaller radii than that of Bi3+ cations to develop the antipolar phases in the ferroelectric ceramic. Structural, morphological and elemental compositional analyses were studied by X-ray diffraction (XRD), Secondary electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDAX), respectively. Ferroelectric studies were carried out on various compositions of (Na0.46Bi0.46-xAlxBa0.08)TiO3 (NBAT-BT) (x=0, 0.05, 0.07, 0.10) electroceramics. It was observed that with increase in concentration of Al the ferroelectricity state changes from soft to hard. Temperature dependent dielectric spectroscopy shows broad dielectric dispersion. The Al doping diminishes the relaxor behavior of NBT-BT ceramics. Impedance spectroscopy shows that electrical resistivity and relaxation frequency decreases with increase in Al-concentration. Modulus spectra indicate that Al significantly change the bulk capacitance of NBT-BT.

  9. L{alpha}, L{beta}, and L{gamma} x-ray production cross sections of Hf, Ta, W, Re, Os, Au, Pb, and Bi by electron impact: Comparison of distorted-wave calculations with experiment

    SciTech Connect

    Fernandez-Varea, Jose M.; Segui, Silvina; Dingfelder, Michael

    2011-02-15

    We study the emission of L{alpha}, L{beta}, and L{gamma} characteristic x rays by the impact of electrons on Hf, Ta, W, Re, Os, Au, Pb, and Bi atoms. To this end, ionization cross sections of the L{sub 1}, L{sub 2}, and L{sub 3} subshells of these atoms are calculated within the distorted-wave Born approximation. The considered energy interval spans from the ionization threshold up to 50 keV. Atomic relaxation parameters (i.e., Coster-Kronig and radiative transition probabilities, fluorescence yields, and emission rates) taken from the literature are then used to evaluate x-ray production cross sections. The theoretical predictions are compared with published experimental information. Good agreement is found for Ta, W, Os, Au, Pb, and Bi. In the case of Hf and Re, the measured cross sections are lower than the theoretical estimates by around 30%. The observed discrepancies might be attributed to the methods employed to correct the raw experimental data for the excess of detected characteristic x rays caused by the finite thickness of the sample's active layer and the presence of the thick substrate.

  10. Absolute photofission cross section of sup 197 Au, @Pb, sup 209 Bi, sup 232 Th, sup 238 U, and sup 235 U nuclei by 69-MeV monochromatic and polarized photons

    SciTech Connect

    Martins, J.B.; Moreira, E.L.; Tavares, O.A.P.; Vieira, J.L. Centro Brasileiro de Pesquisas Fisicas-CBPF, Rua Dr. Xavier Sigaud 150, 22290 Rio de Janeiro-RJ, ); Casano, L.; D'Angelo, A.; Schaerf, C. Istituto Nazionale di Fisica Nucleare-INFN, Sezione di Roma 2, Roma, ); Terranova, M.L. Istituto Nazionale di Fisica Nucleare-INFN, Sezione di Roma 2, Roma, Italy); Babusci, D. ); Girolami, B. Istituto Nazionale di Fisica Nuclea

    1991-07-01

    Absolute cross-section measurements for the photofission reactions of {sup 197}Au, {sup nat}Pb, {sup 209}Bi, {sup 232}Th, {sup 238}U, and {sup 235}U nuclei have been performed at an incident photon energy of 69 MeV using monochromatic and polarized photon beams and dielectric fission-track detectors. Nuclear fissility values have been obtained and results are in agreement with those from other laboratories, although in some cases discrepancies are observed between one other. For nuclei in the region of the actinides the fissility result is {approx gt}0.4, while for Au, Pb, and Bi nuclei it only is {similar to}10{sup {minus}3}--10{sup {minus}2}. Results have been interpreted in terms of the primary Levinger's quasideuteron nuclear photoabsorption followed by a mechanism of evaporation-fission competition for the excited nuclei. Shell effects have been taken into account, and they are clearly manifested when fissility is evaluated. The influence of photon polarization on photofission of {sup 238}U also has been investigated, and results have shown isotropy in the fragment azimuthal distribution.

  11. Thermodynamic properties and equations of state for Ag, Al, Au, Cu and MgO using a lattice vibrational method

    NASA Astrophysics Data System (ADS)

    Jacobs, M.; Schmid-Fetzer, R.

    2012-04-01

    A prerequisite for the determination of pressure in static high pressure measurements, such as in diamond anvil cells is the availability of accurate equations of state for reference materials. These materials serve as luminescence gauges or as X-ray gauges and equations of state for these materials serve as secondary pressure scales. Recently, successful progress has been made in the development of consistency between static, dynamic shock-wave and ultrasonic measurements of equations of state (e.g. Dewaele et al. Phys. Rev. B70, 094112, 2004, Dorogokupets and Oganov, Doklady Earth Sciences, 410, 1091-1095, 2006, Holzapfel, High Pressure Research 30, 372-394, 2010) allowing testing models to arrive at consistent thermodynamic descriptions for X-ray gauges. Apart from applications of metallic elements in high-pressure work, thermodynamic properties of metallic elements are also of mandatory interest in the field of metallurgy for studying phase equilibria of alloys, kinetics of phase transformation and diffusion related problems, requiring accurate thermodynamic properties in the low pressure regime. Our aim is to develop a thermodynamic data base for metallic alloy systems containing Ag, Al, Au, Cu, Fe, Ni, Pt, from which volume properties in P-T space can be predicted when it is coupled to vibrational models. This mandates the description of metallic elements as a first step aiming not only at consistency in the pressure scales for the elements, but also at accurate representations of thermodynamic properties in the low pressure regime commonly addressed in metallurgical applications. In previous works (e.g. Jacobs and de Jong, Geochim. Cosmochim. Acta, 71, 3630-3655, 2007, Jacobs and van den Berg, Phys. Earth Planet. Inter., 186, 36-48, 2011) it was demonstrated that a lattice vibrational framework based on Kieffer's model for the vibrational density of states, is suitable to construct a thermodynamic database for Earth mantle materials. Such a database aims at

  12. Chromium substitution in mullite type bismuth aluminate: Bi2CrxAl4-xO9 with 0≤x≤2.0

    NASA Astrophysics Data System (ADS)

    Debnath, Tapas; Ullah, Ahamed; Rüscher, Claus H.; Hussain, Altaf

    2014-12-01

    Nominal compositions Bi2CrxAl4-xO9 with 0.0≤x≤2.0 (Δx=0.2) were prepared using appropriate amounts of nitrates dissolved in glycerine and heated at 800 °C for 24 h as we previously used for the preparation of solid solution series Bi2Mx/M‧4-xO9 (M/M‧=Fe/Al, Ga/Al and Fe/Ga). The samples were characterized using XRD, FTIR and optical microscopic techniques. Analyses of XRD data show mullite type single phase can be prepared up to x=1.2. The lattice parameters (a, b and c) increases with increasing Cr content. Further increase in x (i.e., x≥1.4) show the presence of some additional phases indicating a limiting value for Cr doping is in the range of 1.2≤x<1.4. The effect of Cr incorporation could also be observed in the infrared absorption spectra via systematic hard mode shifts of certain lattice modes, e.g. the Bi-O related vibration changes from 96 cm-1 to 93 cm-1 with increasing x up to 1.2 and certain intensity changes together with shift in peak positions. Interestingly, the absence of any splitting and shift of the high energy IR absorption peak at 821 cm-1 as assigned to the characteristic tetrahedral type dimer, Al2O7, indicate that the Cr thus partially substitutes only the octahedrally coordinated Al. This is confirmed by Rietveld structure refinements, too.

  13. Mechanochemical-thermal preparation and structural studies of mullite-type Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} solid solutions

    SciTech Connect

    Da Silva, K.L.; Sepelak, V.; Duevel, A.; Paesano, A.; Hahn, H.; Litterst, F.J.; Heitjans, P.; Becker, K.D.

    2011-05-15

    A series of Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} solid solutions (0{<=}x{<=}1), prepared by mechanochemical processing of Bi{sub 2}O{sub 3}/Ga{sub 2}O{sub 3}/Al{sub 2}O{sub 3} mixtures and subsequent annealing, was investigated by XRD, EDX, and {sup 27}Al MAS NMR. The structure of the Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} solid solutions is found to be orthorhombic, space group Pbam (No. 55). The lattice parameters of the Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} series increase linearly with increasing gallium content. Rietveld refinement of the XRD data as well as the analysis of the {sup 27}Al MAS NMR spectra show a preference of gallium cations for the tetrahedral sites in Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9}. As a consequence, this leads to a far from random distribution of Al and Ga cations across the whole series of solid solutions. -- Graphical Abstract: Mullite-type Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} mixed crystals (0{<=}x{<=}1) prepared by a combined mechanochemical-thermal route possess a non-random distribution of Ga{sup 3+} and Al{sup 3+} cations over the sites of tetrahedral (T) and octahedral [O] coordination, characterized by the preference of Ga{sup 3+} (Al{sup 3+}) for tetrahedral (octahedral) sites. Display Omitted Highlights: {yields} Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} (0{<=}x{<=}1) were synthesized via mechanochemical-thermal route. {yields} The lattice parameters of Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} increase linearly with gallium content. {yields} Quantitative information on the cation distribution in Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} is derived. {yields} Ga{sup 3+} and Al{sup 3+} show the preference for tetrahedral and octahedral sites, respectively.

  14. The light-matter interaction of a single semiconducting AlGaN nanowire and noble metal Au nanoparticles in the sub-diffraction limit.

    PubMed

    Sivadasan, A K; Madapu, Kishore K; Dhara, Sandip

    2016-08-24

    Near field scanning optical microscopy (NSOM) is not only a tool for imaging of sub-diffraction limited objects but also a prominent characteristic tool for understanding the intrinsic properties of nanostructures. In order to understand light-matter interactions in the near field regime using a NSOM technique with an excitation of 532 nm (2.33 eV), we selected an isolated single semiconducting AlGaN nanowire (NW) of diameter ∼120 nm grown via a vapor liquid solid (VLS) mechanism along with a metallic Au nanoparticle (NP) catalyst. The role of electronic transitions from different native defect related energy states of AlGaN is discussed in understanding the NSOM images for the semiconducting NW. The effect of strong surface plasmon resonance absorption of an excitation laser on the NSOM images for Au NPs, involved in the VLS growth mechanism of NWs, is also observed. PMID:27511614

  15. Synthesis, thermal and electrical properties of Al-doped Bi4V1.8Cu0.2O10.7

    NASA Astrophysics Data System (ADS)

    Essalim, R.; Ammar, A.; Tanouti, B.; Mauvy, F.

    2016-08-01

    Partial substitution of copper with aluminum in Bi4V1.8Cu0.2O10.7 has led to the Bi4V1.8Cu0.2-xAlxO10.7+x/2 solid solution. X-ray diffraction and thermal analysis have shown that the compounds with x=0.05 and x=0.10 are tetragonal with γ‧ form of Bi4V2O11, while the compound with x=0.15 is of β polymorph. The effect of Al3+ doping on electrical conductivity has been studied using Electrochemical Impedance Spectroscopy. The electrical conductivity of doped samples along with the amount of Al3+ has been studied by electrochemical impedance spectroscopy in the temperature range 250-700 °C. The slope changes observed in the Arrhenius plots agree with the microstructural transitions occurring in these compounds. The highest ionic conductivity values are obtained for the sample with x=0.05.

  16. Effect of different chemical treatments of surface on the height of Al-p-SiGe and Au-n-SiGe barriers

    SciTech Connect

    Atabaev, I. G. Matchanov, N. A.; Hajiev, M. U. Pak, V.; Saliev, T. M.

    2010-05-15

    The effect of different chemical treatments on the properties of Au-n-SiGe and Al-p-SiGe Schottky barriers has been investigated. Etching under different conditions was used to prepare surfaces with different densities of surface states (D{sub ss}). It is shown that the barrier height in the structures under study correlates with the D{sub ss} value and germanium content in the Si{sub 1-x}Ge{sub x} alloy.

  17. Atomic structure and bonding of the interfacial bilayer between Au nanoparticles and epitaxially regrown MgAl{sub 2}O{sub 4} substrates

    SciTech Connect

    Zhu, Guo-zhen; Majdi, Tahereh; Preston, John S.; Shao, Yang; Bugnet, Matthieu; Botton, Gianluigi A.

    2014-12-08

    A unique metal/oxide interfacial bilayer formed between Au nanoparticles and MgAl{sub 2}O{sub 4} substrates following thermal treatment is reported. Associated with the formation of the bilayer was the onset of an abnormal epitaxial growth of the substrate under the nanoparticle. According to the redistribution of atoms and the changes of their electronic structure probed across the interface by a transmission electron microscopy, we suggest two possible atomic models of the interfacial bilayer.

  18. Atomic structure and bonding of the interfacial bilayer between Au nanoparticles and epitaxially regrown MgAl2O4 substrates

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-zhen; Majdi, Tahereh; Shao, Yang; Bugnet, Matthieu; Preston, John S.; Botton, Gianluigi A.

    2014-12-01

    A unique metal/oxide interfacial bilayer formed between Au nanoparticles and MgAl2O4 substrates following thermal treatment is reported. Associated with the formation of the bilayer was the onset of an abnormal epitaxial growth of the substrate under the nanoparticle. According to the redistribution of atoms and the changes of their electronic structure probed across the interface by a transmission electron microscopy, we suggest two possible atomic models of the interfacial bilayer.

  19. Effects of Interface Layers and Domain Walls on the Ferroelectric-Resistive Switching Behavior of Au/BiFeO3/La0.6Sr0.4MnO3 Heterostructures.

    PubMed

    Feng, Lei; Yang, Shengwei; Lin, Yue; Zhang, Dalong; Huang, Weichuan; Zhao, Wenbo; Yin, Yuewei; Dong, Sining; Li, Xiaoguang

    2015-12-01

    The electric field effects on the electric and magnetic properties in multiferroic heterostructures are important for not only understanding the mechanisms of certain novel physical phenomena occurring at heterointerfaces but also offering a route for promising spintronic applications. Using the Au/BiFeO3/La0.6Sr0.4MnO3 (Au/BFO/LSMO) multiferroic heterostructure as a model system, we investigated the ferroelectric-resistive switching (RS) behaviors of the heterostructure. Via the manipulation of the BFO ferroelectric polarizations, the nonvolatile tristate of RS is observed, which is closely related to the Au/BFO and BFO/LSMO interface layers and the highly conducting BFO domain walls (DWs). More interestingly, according to the magnetic field dependence of the RS behavior, the negative magnetoresistance effect of the third resistance state, corresponding to the abnormal current peak in current-pulse voltage hysteresis near the electric coercive field, is also observed at room temperature, which mainly arises from the possible oxygen vacancy accumulation and Fe ion valence variation in the DWs. PMID:26554671

  20. Interface annealing characterization of Ti/Al/Au ohmic contacts to p-type 4H-SiC

    NASA Astrophysics Data System (ADS)

    Chao, Han; Yuming, Zhang; Qingwen, Song; Xiaoyan, Tang; Hui, Guo; Yimen, Zhang; Fei, Yang; Yingxi, Niu

    2015-12-01

    Ti/Al/Au ohmic contacts to p-type 4H-SiC in terms of a different annealing time and Ti composition are reported. At 1050 °C, proper increase in annealing time plays a critical role in the Schottky to ohmic contact conversion. With the optimized annealing time, the contact with a high Ti content yields a lower specific contact resistivity (ρc) of 6.4 × 10-5 Ω·cm2 compared with the low-Ti contact. The annealed surface morphology and phase resultants were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. For the better ohmic contact, element distribution and chemical states were qualitatively identified by X-ray photoelectron spectroscopy (XPS) depth analysis. In particular, the presence of C and a Si-related phase was discussed and associated with the change in the surface status of the as-grown epilayer of 4H-SiC during annealing. The results reveal that the out-diffused C and Si atoms, with an approximate atomic ratio of 1 : 1 in the contact layer, can combine to form an amorphous Si-C state. The polycrystalline graphite instead of an unreacted C cluster in the whole alloyed structure and an extra nanosize graphite flake on the outermost surface of the annealed contact were confirmed by Raman spectroscopy. Project supported by the Key Specific Projects of Ministry of Education of China (No. 625010101), the Specific Project of the Core Devices (No. 2013ZX01001001-004), and the Science Project of State Grid (No. SGRI-WD-71-14-004).

  1. Al15Ge4Ni3: A new intergrowth structure with Cu3Au- and CaF2-type building blocks

    NASA Astrophysics Data System (ADS)

    Reichmann, Thomas L.; Jandl, Isabella; Effenberger, Herta S.; Herzig, Peter; Richter, Klaus W.

    2015-05-01

    The new ternary compound Al15Ge4Ni3 (τ2 in the system Al-Ge-Ni) was synthesized in single crystalline form by a special annealing procedure from samples located in the three phase fields [L+Al+τ2] and [L+Ge+τ2]. The crystal structure of Al15Ge4Ni3 was determined by single-crystal X-ray diffraction. The compound crystallizes in a new structure type in space group I4¯3m, Pearson Symbol cI88, cubic lattice parameter a=11.405(1) Å. Phase diagram investigations indicate stoichiometric composition without considerable homogeneity range; τ2 melts peritectically at T=444 °C. The crystal structure of Al15Ge4Ni3 shows a unique combination of simple Cu3Au- and CaF2-type building blocks: a three dimensional network of CaF2-type units, formed by Ni and Al atoms, is interspaced by clusters (Al6Ge8) resembling unit cells of the Cu3Au-type. Both structural motifs are connected by Al-Ge bonds. The ground state energy of the compound was obtained by DFT calculations and the densities of states were analyzed in detail. In addition, electron density maps were calculated in four different sections through the unit cell using the full potential linearized augmented plane-wave (FLAPW) method. The bonding situation in Al15Ge4Ni3 was discussed combining results from electronic calculations with the analysis of the coordination of atoms.

  2. Comparative study of gamma ray shielding and some properties of PbO-SiO2-Al2O3 and Bi2O3-SiO2-Al2O3 glass systems

    NASA Astrophysics Data System (ADS)

    Singh, K. J.; Kaur, Sandeep; Kaundal, R. S.

    2014-03-01

    Gamma-ray shielding properties have been estimated in terms of mass attenuation coefficient, half value layer and mean free path values, whereas, structural studies have been performed in terms of density, optical band gap, glass transition temperature and longitudinal ultrasonic velocity parameters. X-ray diffraction, UV-visible, DSC and ultrasonic techniques have been used to explore the structural properties of PbO-SiO2-Al2O3 and Bi2O3-SiO2-Al2O3 glass systems.

  3. Enhancement of photoinduced electrical properties of Al-doped ZnO/BiFeO3 layered thin films prepared by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Katayama, Takeshi; Sakamoto, Wataru; Yuitoo, Isamu; Takeuchi, Teruaki; Hayashi, Koichiro; Yogo, Toshinobu

    2015-10-01

    Polycrystalline BiFeO3 and Al-doped ZnO/BiFeO3 bilayered thin films were prepared on Pt/TiOx/SiO2/Si substrates by chemical solution deposition. Their photoinduced electrical properties under blue light irradiation were characterized. The rapid on/off response of the photocurrent to light in unpoled BiFeO3 (BFO) and Al-doped ZnO/BiFeO3 (AZO/BFO) thin films was demonstrated. The AZO/BFO layered film exhibited an approximately triple-digit larger photocurrent in comparison with a BFO single-layer film. This is attributable to the photoexcited carrier generation effect at the interface between AZO (n-type) and BFO (p-type) films. Furthermore, in the AZO/BFO layered structure, the direction of the internal bias electric field caused by the space charge distribution in the unpoled BFO film is the same as that of the built-in electric field by forming a p-n junction of AZO and BFO layers. Photovoltaic properties were also improved by fabricating such a layered film. On the other hand, when the placement of BFO to AZO was reversed, the photoelectric current decreased to approximately one-tenth of that of the BFO single-layer film. In the BFO/AZO film, the internal electric field at the p-n junction between BFO and AZO is considered to have an orientation opposite to the self-bias field formed in the BFO film.

  4. Plasma versus thermal annealing for the Au-catalyst growth of ZnO nanocones and nanowires on Al-doped ZnO buffer layers

    NASA Astrophysics Data System (ADS)

    Güell, Frank; Martínez-Alanis, Paulina R.; Roso, Sergio; Salas-Pérez, Carlos I.; García-Sánchez, Mario F.; Santana, Guillermo; Marel Monroy, B.

    2016-06-01

    We successfully synthesized ZnO nanocones and nanowires over polycrystalline Al-doped ZnO (AZO) buffer layers on fused silica substrates by a vapor-transport process using Au-catalyst thin films. Different Au film thicknesses were thermal or plasma annealed in order to analyze their influence on the ZnO nanostructure growth morphology. Striking differences have been observed. Thermal annealing generates a distribution of Au nanoclusters and plasma annealing induces a fragmentation of the Au thin films. While ZnO nanowires are found in the thermal-annealed samples, ZnO nanocones and nanowires have been obtained on the plasma-annealed samples. Enhancement of the preferred c-axis (0001) growth orientation was demonstrated by x-ray diffraction when the ZnO nanocones and nanowires have been grown over the AZO buffer layer. The transmittance spectra of the ZnO nanocones and nanowires show a gradual increase from 375 to 900 nm, and photoluminescence characterization pointed out high concentration of defects leading to observation of a broad emission band in the visible range from 420 to 800 nm. The maximum emission intensity peak position of the broad visible band is related to the thickness of the Au-catalyst for the thermal-annealed samples and to the plasma power for the plasma-annealed samples. Finally, we proposed a model for the plasma versus thermal annealing of the Au-catalyst for the growth of the ZnO nanocones and nanowires. These results are promising for renewable energy applications, in particular for its potential application in solar cells.

  5. Structural, Thermal and Electrical Study of Multiferroic BiFeO3 Ceramic with Al3+ and Ba2+ Co-substitution

    NASA Astrophysics Data System (ADS)

    Wang, GeMing; Kothari, Deepti; Reddy, V. Raghavendra; Gupta, Ajay

    BiFe1-xAlxO3(x=0.05, 0.1) and BixBa1-xFe0.95Al0.05O3 (x=0.05, 0.07) ceramics were synthesized and their crystal structure, thermal and ferroelectric properties were investigated. X-ray diffraction and Raman data of the ceramics showed all the samples were rhombohedral with small crystal structure distortion. DSC results revealed the evolution of Neel Temperature (TN) by Al and Ba co-doping. The substitution of Al3+ at Fe site changes the TN significantly. Doping effects in terms of crystal structure, electrical property variation are discussed in this paper.

  6. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    NASA Astrophysics Data System (ADS)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2016-09-01

    The propagation of Rayleigh-Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh-Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  7. Multi-state resistive switching memory with secure information storage in Au/BiFe0.95Mn0.05O3/La5/8Ca3/8MnO3 heterostructure

    NASA Astrophysics Data System (ADS)

    Yao, Y. P.; Liu, Y. K.; Dong, S. N.; Yin, Y. W.; Yang, S. W.; Li, X. G.

    2012-05-01

    The ferroelectric polarization dependent bipolar and conductive filament related unipolar resistive switching behaviors are investigated systematically in Au/BiFe0.95Mn0.05O3/La5/8Ca3/8MnO3 heterostructure. The results show that after conductive filaments are formed, the ferroelectric state previously polarized will keep almost unchanged. By combining the two resistive switching mechanisms together under appropriate programming conditions, a tri-state-like resistive switching behavior is realized, finding effective routes in designing high-density storage. According to these distinctive characteristics, a prototype memory device with secure information storage is properly designed as an example of promising applications.

  8. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al{sub 2}O{sub 3}(0001) substrates

    SciTech Connect

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-05-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al{sub 2}O{sub 3}(0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively.

  9. Dielectric, ferroelectric, and piezoelectric properties of the lead-free (1-x)(Na0.5Bi0.5)TiO3-xBiAlO3 solid solution

    NASA Astrophysics Data System (ADS)

    Yu, Huichun; Ye, Zuo-Guang

    2008-09-01

    Lead-free piezoelectric ceramics derived from the solid solution of (1-x)(Na0.5Bi0.5)TiO3-xBiAlO3 (NBT-BA) (x =0-0.10) have been synthesized by solid state reactions. A pure perovskite phase was formed for x ≤0.08. The temperature dependence of dielectric constant indicates an increased broadness of the dielectric peak as the amount of BA increases. The large dielectric loss of NBT ceramics at low frequency and high temperature has been significantly reduced by the substitution of BA. The high coercive field is decreased and ferroelectric hysteresis loops were displayed at room temperature. The NBT-BA ceramics exhibit improved ferroelectric and piezoelectric properties compared to pure NBT ceramics, with Pr=52 μC/cm2, Ec=44 kV/cm, d33=130 pC/N, and kp=0.23 for 0.92NBT-0.08BA.

  10. Effect of Al{sup 3+} substitution on the structural, magnetic, and electric properties in multiferroic Bi{sub 2}Fe{sub 4}O{sub 9} ceramics

    SciTech Connect

    Huang, S.; Shi, L.R.; Tian, Z.M.; Yuan, S.L.; Zhu, C.M.; Gong, G.S.; Qiu, Y.

    2015-07-15

    Structural, magnetic, and electric properties have been investigated in polycrystalline Bi{sub 2}(Fe{sub 1−x}Al{sub x}){sub 4}O{sub 9} (0≤x≤0.25) ceramics synthesized by a modified Pechini method. Structural analysis reveals that Al{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9} crystallizes in orthorhombic structure with Pbnm space group. Surface morphology of the end products is examined by scanning electron microscopy and the grain size has a tendency to decrease with increase in Al{sup 3+} doping level. Compared with pure Bi{sub 2}Fe{sub 4}O{sub 9}, room temperature coexistent multiferroic-like behavior is observed in Al{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9}. By analyzing magnetic properties, the Néel temperature monotonously shifts to low temperatures from ~260 K (x=0) to ~35 K (x=0.25). Moreover, the spin dynamic measured by the shift in ac magnetic susceptibility as a function of frequency provides a possibility of spin-glass-like behavior, which is further confirmed by fitting the critical slowing down power law and memory effect. - Graphical abstract: Compared with pure Bi{sub 2}Fe{sub 4}O{sub 9}, room temperature weak ferromagnetic property and enhanced ferroelectric-like behavior can be achieved simultaneously with proper Al{sup 3+} doping. - Highlights: • Bi{sub 2}(Fe{sub 1−x}Al{sub x}){sub 4}O{sub 9} (0≤x≤0.25) ceramics are fabricated via a Pechini method. • Weak ferromagnetic and ferroelectric behaviors can be achieved simultaneously. • Spin-glass-like behavior is detected with proper Al{sup 3+} doping. • The memory and aging effects are observed with proper Al{sup 3+} doping.

  11. Ferroelectric Properties of Ba2Bi4Ti5O18 Doped with Pb2+, Al3+, Ga3+, In3+, Ta5+ Aurivillius Phases

    NASA Astrophysics Data System (ADS)

    Rosyidah, A.; Onggo, D.; Khairurrijal, Ismunandar

    2008-03-01

    In recent years, bismuth layer structured ferroelectrics (BLSFs) have been given much attention because some materials, such as Ba2Bi4Ti5O18, are excellent candidate materials for nonvolatile ferroelectric random access memory (FRAM) applications. BLSFs are also better candidates because of their higher Curie points. Recently, we have carried out computer simulation in atomic scale in order to predict the energies associated with the accommodation of aliovalent and isovalent dopants (Pb2+, Al3+, Ga3+, In3+, Ta5+) in the Aurivillius structure of Ba2Bi4Ti5O18. In this work, the predicted stable phases were synthesized using solid state reactions and their products then were characterized using powder X-ray diffraction method. The cell parameters were determined using Rietveld refinement in orthorhombic system with space group of B2cb. The cell parameters for Ba2Bi4Ti5O18 doped with Pb2+, Al3+, Ga3+, In3+, Ta5+ were a = 5.5006(6) b = 5.4990(5) c = 50.5440(7) Å; a = 5.5012(4) b = 5.4986(8) c = 50.5449(7) Å; a = 5.5006(3) b = 5.4999(3) c = 50.5437(9) Å; a = 5.5007(4) b = 5.4989(7) c = 50.5446(6) Å; and a = 5.5000(5) b = 5.4995(8) c = 50.5436(6) Å. Results from the ferroelectric properties measurement for Ba2Bi4Ti5O18 doped with Pb2+, Al3+, Ga3+, In3+, Ta5+ were Pr = 16.7 μC/cm2, Ec = 35.1 kV/cm; Pr = 15.9 μC/cm2, Ec = 33.8 kV/cm; Pr = 15.6 μC/cm2, Ec = 34.2 kV/cm; Pr = 15.3 μC/cm2, Ec = 34.0 kV/cm; Pr = 16.9 μC/cm2, Ec = 35.6 kV/cm.

  12. Operation of ohmic Ti/Al/Pt/Au multilayer contacts to GaN at 600 °C in air

    SciTech Connect

    Hou, Minmin; Senesky, Debbie G.

    2014-08-25

    The high-temperature characteristics (at 600 °C) of Ti/Al/Pt/Au multilayer contacts to gallium nitride (GaN) in air are reported. Microfabricated circular-transfer-line-method test structures were subject to 10 h of thermal storage at 600 °C. Intermittent electrical characterization during thermal storage showed minimal variation in the contact resistance after 2 h and that the specific contact resistivity remained on the order of 10{sup −5} Ω-cm{sup 2}. In addition, the thermally stored multilayer contacts to GaN showed ohmic I-V characteristics when electrically probed at 600 °C. The microstructural analysis with atomic force microscopy showed minimal changes in surface roughness after thermal storage. Observations of the thermochemical reactions after thermal storage using Auger electron spectroscopy chemical depth profiling showed diffusion of Pt and minimal additional Al oxidation. The results support the use of Ti/Al/Pt/Au multilayer metallization for GaN-based sensors and electronic devices that will operate within a high-temperature and oxidizing ambient.

  13. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3

    NASA Astrophysics Data System (ADS)

    Liu, Yuting; Xu, Zhen; Yin, Min; Fan, Haowen; Cheng, Weijie; Lu, Linfeng; Song, Ye; Ma, Jing; Zhu, Xufei

    2015-09-01

    The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposition. The Au nanoparticles (NPs) and Al2O3 shell by atom layer deposition were further introduced to modify the photoelectrodes. Different constructions were made with different deposition orders of Au and Al2O3 on Fe2O3 films. The Fe2O3-Au-Al2O3 construction shows the best PEC performance with 1.78 times enhancement by localized surface plasmon resonance (LSPR) of NPs in conjunction with surface passivation of Al2O3 shells. Numerical simulation was carried out to investigate the promotion mechanisms. The high PEC performance for Fe2O3-Au-Al2O3 construction electrode could be attributed to the Al2O3 intensified LSPR, effective surface passivation by Al2O3 coating, and the efficient charge transfer due to the Fe2O3-Au Schottky junctions.

  14. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3.

    PubMed

    Liu, Yuting; Xu, Zhen; Yin, Min; Fan, Haowen; Cheng, Weijie; Lu, Linfeng; Song, Ye; Ma, Jing; Zhu, Xufei

    2015-12-01

    The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposition. The Au nanoparticles (NPs) and Al2O3 shell by atom layer deposition were further introduced to modify the photoelectrodes. Different constructions were made with different deposition orders of Au and Al2O3 on Fe2O3 films. The Fe2O3-Au-Al2O3 construction shows the best PEC performance with 1.78 times enhancement by localized surface plasmon resonance (LSPR) of NPs in conjunction with surface passivation of Al2O3 shells. Numerical simulation was carried out to investigate the promotion mechanisms. The high PEC performance for Fe2O3-Au-Al2O3 construction electrode could be attributed to the Al2O3 intensified LSPR, effective surface passivation by Al2O3 coating, and the efficient charge transfer due to the Fe2O3-Au Schottky junctions. PMID:26415539

  15. Structure and magnetic properties of the REAuBi{sub 2} (RE=La–Nd, Sm) phases

    SciTech Connect

    Seibel, Elizabeth M. Xie, Weiwei; Gibson, Quinn D.; Cava, R.J.

    2015-10-15

    We present the crystal structures and basic magnetic properties of the REAuBi{sub 2} (RE=La–Nd, Sm) compounds. This isostructural family crystallizes in the tetragonal P4/nmm (no. 129) HfCuSi{sub 2}-type, as determined by single crystal X-ray diffraction. Three distinct substructures are present: an RE layer, a tetrahedral AuBi layer, and a Bi square net layer. Electronic structure calculations indicate that these compounds display bands which cross the Fermi level, derived from both the Bi square net and the covalent AuBi layer. The small size of LaAuBi{sub 2} crystals precluded detailed physical property measurements, whereas large single crystals could be grown for all other phases investigated here. Single crystal measurements of CeAuBi{sub 2}, PrAuBi{sub 2}, and NdAuBi{sub 2} show overall antiferromagnetic ordering and decreasing magnetic anisotropy with decreasing rare earth size. SmAuBi{sub 2} also shows signatures of magnetic ordering. - Graphical abstract: The crystal structures and basic electronic and magnetic properties of the five REAuBi{sub 2} (RE=La–Nd, Sm) phases are presented. These tetragonal structures have alternating layers of AuBi{sub 4} tetrahedra and a Bi square net balanced by RE cations. Measurements performed on single crystals show strong magnetic anisotropy for CeAuBi{sub 2} and PrAuBi{sub 2} and weak anisotropy for NdAuBi{sub 2}. SmAuBi{sub 2} is weakly magnetic. - Highlights: • We present the structures and basic properties of single crystals of the new, tetragonal REAuBi{sub 2} (RE=La–Nd, Sm) phases. • CeAuBi{sub 2}, PrAuBi{sub 2}, NdAuBi{sub 2}, and SmAuBi{sub 2} order magnetically. • CeAuBi{sub 2} and PrAuBi{sub 2} display magnetic anisotropy. • CeAuBi{sub 2} appears analogous to CeAuSb{sub 2} and may be worthy of further study as a potential system for quantum criticality.

  16. Enhancement in the excitonic spontaneous emission rates for Si nanocrystal multi-layers covered with thin films of Au, Ag, and Al.

    PubMed

    Estrin, Y; Rich, D H; Rozenfeld, N; Arad-Vosk, N; Ron, A; Sa'ar, A

    2015-10-30

    The enhancement in the spontaneous emission rate (SER) for Ag, Au, and Al films on multilayer Si nanocrystals (SiNCs) was probed with time-resolved cathodoluminescence (CL). The SiNCs were grown on Si(100) using plasma enhanced chemical vapor deposition. Electron-hole pairs were generated in the metal-covered SiNCs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures that are opaque to laser or light excitation. Spatially, spectrally, and temporally resolved CL was used to measure the excitonic lifetime of the SiNCs in metal-covered and bare regions of the same samples. The observed enhancement in the SER for the metal-covered SiNCs, relative to the SER for the bare sample, is attributed to a coupling of the SiNC excitons with surface plasmon polaritons (SPPs) of the thin metal films. A maximum SER enhancement of ∼2.0, 1.4 and 1.2 was observed for the Ag, Au, and Al films, respectively, at a temperature of 55 K. The three chosen plasmonic metals of Ag, Au, and Al facilitate an interesting comparison of the exciton-SPP coupling for metal films that exhibit varying differences between the surface plasmon energy, ω(sp), and the SiNC excitonic emission energy. A modeling of the temperature dependence of the Purcell enhancement factor, Fp, was performed and included the temperature dependence of the dielectric properties of the metals. PMID:26436289

  17. Mechanism of carrier injection in (Ni/Au)/p-Al{sub x}Ga{sub 1-x}N:Mg(0{<=}x<0.1) Ohmic contacts

    SciTech Connect

    Nikishin, S.; Chary, I.; Borisov, B.; Kuryatkov, V.; Kudryavtsev, Yu.; Asomoza, R.; Karpov, S. Yu.; Holtz, M.

    2009-10-19

    We report the mechanism of current injection in (Ni/Au)/p-Al{sub x}Ga{sub 1-x}N:Mg(0{<=}x<0.1) Ohmic contacts based on the temperature dependence of hole concentrations (p) and specific contact resistance ({rho}{sub c}). The injection mechanism is found to be thermionic emission in all cases. A model is developed to describe the temperature dependences of p and {rho}{sub c} for Mg concentrations from 10{sup 19} to 10{sup 20} cm{sup -3}. The model takes into account splitting in the valence band structure, hole activation energy, and Schottky barrier height. For GaN (AlGaN) these are found to be 132-140 (135-150) meV and 66-88 (84-93) meV, respectively.

  18. Photoresponse and photocapacitor properties of Au/AZO/p-Si/Al diode with AZO film prepared by pulsed laser deposition (PLD) method

    NASA Astrophysics Data System (ADS)

    Alyamani, A.; Tataroğlu, A.; El Mir, L.; Al-Ghamdi, Ahmed A.; Dahman, H.; Farooq, W. A.; Yakuphanoğlu, F.

    2016-04-01

    The electrical and photoresponse properties of Au/nanostructure AZO/p-Si/Al diode were investigated. Al-doped ZnO (AZO) thin films were deposited via pulsed laser deposition method on silicon substrate. Structural properties of the films were performed by using transmission electron microscopy and X-ray powder diffraction (XRD). The XRD patterns showed that the AZO films are polycrystalline with hexagonal wurtzite structure preferentially oriented in (002) direction. Electrical and photoresponse properties of the diode were analyzed under in a wide range of frequencies and illumination intensities. It is observed that the reverse current of the diode increases with increasing illumination intensity. This result confirms that the diode exhibits both photoconducting and photovoltaic behavior. Also, the transient photocurrent, photocapacitance and photoconductance measured as a function of time highly depend on transient illumination. In addition, the frequency dependence of capacitance and conductance is attributed to the presence of interface states.

  19. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Thermal annealing behaviour of Al/Ni/Au multilayer on n-GaN Schottky contacts

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Wang, Tao; Shen, Bo; Huang, Sen; Lin, Fang; Ma, Nan; Xu, Fu-Jun; Wang, Peng; Yao, Jian-Quan

    2009-04-01

    Recently GaN-based high electron mobility transistors (HEMTs) have revealed the superior properties of a high breakdown field and high electron saturation velocity. Reduction of the gate leakage current is one of the key issues to be solved for their further improvement. This paper reports that an Al layer as thin as 3 nm was inserted between the conventional Ni/Au Schottky contact and n-GaN epilayers, and the Schottky behaviour of Al/Ni/Au contact was investigated under various annealing conditions by current-voltage (I-V) measurements. A non-linear fitting method was used to extract the contact parameters from the I-V characteristic curves. Experimental results indicate that reduction of the gate leakage current by as much as four orders of magnitude was successfully recorded by thermal annealing. And high quality Schottky contact with a barrier height of 0.875 eV and the lowest reverse-bias leakage current, respectively, can be obtained under 12 min annealing at 450 °C in N2 ambience.

  20. Wetting and spontaneous infiltration: the case study of TaC/(Au, Al and Cu) compared to TiC/Cu

    NASA Astrophysics Data System (ADS)

    Aizenshtein, M.; Froumin, N.; Nafman, O.; Frage, N.

    2016-06-01

    Spontaneous infiltration of molten metals in to ceramic skeletons, in the course MMCs' production, is related to improved wetting of the ceramic by metals. TiC is considered a "metal-like" carbide and is supposed to be wetted well by metals through metallic bonding mechanism. Nevertheless, TiC/Cu exhibit an unusual behavior since spontaneous infiltration of molten Cu takes place, while TiC is partially wetted by Cu (θ=90°).In this work we studied the relation between wetting and spontaneous infiltration in the TaC/Au, Al and Cu systems. TaC is also considered a "metal-like" carbide and indeed no chemical interaction was observed at the interfaces of the studied systems.Sessile drop experiments showed almost perfect wetting in the three system but spontaneous infiltration occurred only in the first two (e.g. TaC/Au or Al). Thermodynamic calculation shows the difference between the systems which also has its' influence on the mechanical properties of the MMCs'. Further calculation clarifies the difference between TaC/Cu and TiC/Cu infiltration behavior, but is unable to explain the wetting results differences.Correlation between wetting and spontaneous infiltration in some cases is not straight forward and more studies and calculations on the atomistic level should be done in order to clarify this matter.

  1. Effects of Post Annealing on I-V-T Characteristics of (Ni/Au)/Al0.09Ga0.91N Schottky Barrier Diodes

    NASA Astrophysics Data System (ADS)

    Akkaya, Abdullah; Ayyıldız, Enise

    2016-04-01

    Post annealing is a simple, effective and suitable method for improving the diode parameters, especially when the used chemically stable substrates like Si, III-N and ternary alloys. In our work, we were applied this method to (Ni/Au)/Al0.09Ga0.91N Schottky Barrier Diodes (SBDs) and investigated by temperature-dependent current-voltage (I-V-T) characteristics at optimum conditions. Optimum annealing temperature was 600°C, which it’s determined with respect to have a highest barrier height value. The temperature-dependent electrical characteristics of the annealed at 600°C (Ni/Au)/Al0.09Ga0.91N SBDs were investigated in the wide temperature range of 95-315K. The diode parameters such as ideality factor (n) and Schottky barrier height (Фb0) were obtained to be strongly temperature dependent. The observed variation in Фb0 and n can be attributed to the spatial barrier inhomogeneities in Schottky barrier height by assuming a triple Gaussian distribution (TGD) of barrier heights (BHs) at 95-145K, 145-230K and 230-315K. The modified Richardson plots and T0 analysis was performed to provide an experimental Richardson constants and bias coefficients of the mean barrier height. Furthermore, the chemical composition of the contacts was examined by the XPS depth profile analysis.

  2. Electron-poor SrAu xIn 4-x (0.5⩽ x⩽1.2) and SrAu xSn 4-x (1.3⩽ x⩽2.2) phases with the BaAl 4-type structure

    NASA Astrophysics Data System (ADS)

    Tkachuk, Andriy V.; Mar, Arthur

    2007-08-01

    Solid solutions SrAu xIn 4-x (0.5⩽ x⩽1.2) and SrAu xSn 4-x (1.3⩽ x⩽2.2) have been prepared at 700 °C and their structures characterized by powder and single-crystal X-ray diffraction. They adopt the tetragonal BaAl 4-type structure (space group I4/ mmm, Z=2; SrAu 1.1(1)In 2.9(1), a=4.5841(2) Å, c=12.3725(5) Å; SrAu 1.4(1)Sn 2.6(1), a=4.6447(7) Å, c=11.403(2) Å), with Au atoms preferentially substituting into the apical over basal sites within the anionic network. The phase width inherent in these solid solutions implies that the BaAl 4-type structure can be stabilized over a range of valence electron counts (vec), 13.0-11.6 for SrAu xIn 4-x and 14.1-11.4 for SrAu xSn 4-x. They represent new examples of electron-poor BaAl 4-type compounds, which generally have a vec of 14. Band structure calculations confirm that substitution of Au, with its smaller size and fewer number of valence electrons, for In or Sn atoms enables the BaAl 4-type structure to be stabilized in the parent binaries SrIn 4 and SrSn 4, which adopt different structure types.

  3. UV sensing using film bulk acoustic resonators based on Au/n-ZnO/piezoelectric-ZnO/Al structure

    PubMed Central

    Bian, Xiaolei; Jin, Hao; Wang, Xiaozhi; Dong, Shurong; Chen, Guohao; Luo, J. K.; Deen, M. Jamal; Qi, Bensheng

    2015-01-01

    A new type of ultraviolet (UV) light sensor based on film bulk acoustic wave resonator (FBAR) is proposed. The new sensor uses gold and a thin n-type ZnO layer deposited on the top of piezoelectric layer of FBAR to form a Schottky barrier. The Schottky barrier's capacitance can be changed with UV light, resulting in an enhanced shift in the entire FBAR's resonant frequency. The fabricated UV sensor has a 50 nm thick n-ZnO semiconductor layer with a carrier concentration of ~ 1017 cm−3. A large frequency downshift is observed when UV light irradiates the FBAR. With 365 nm UV light of intensity 1.7 mW/cm2, the FBAR with n-ZnO/Au Schottky diode has 250 kHz frequency downshift, much larger than the 60 kHz frequency downshift in a conventional FBAR without the n-ZnO layer. The shift in the new FBAR's resonant frequency is due to the junction formed between Au and n-ZnO semiconductor and its properties changes with UV light. The experimental results are in agreement with the theoretical analysis using an equivalent circuit model of the new FBAR structure. PMID:25773146

  4. Na-Au intermetallic compounds formed under high pressure at room temperature

    NASA Astrophysics Data System (ADS)

    Takemura, K.; Fujihisa, H.

    2011-07-01

    High-pressure powder x-ray diffraction experiments have revealed that sodium and gold react at room temperature and form Na-Au intermetallic compounds under high pressure. We have identified four intermetallic phases up to 60 GPa. The first phase (phase I) is the known Na2Au with the tetragonal CuAl2-type structure. It changed to the second phase (phase II) at ˜0.8 GPa, which has the composition Na3Au with the trigonal Cu3As-type or hexagonal Cu3P-type structure. Phase II further transformed to phase III at 3.6 GPa. Phase III has the same composition, Na3Au, with the cubic BiF3-type structure. Finally, phase III changed to phase IV at ˜54 GPa. Phase IV gives broad diffraction peaks, indicating large structural disorder.

  5. Analysis of Schottky Contact Formation in Coplanar Au/ZnO/Al Nanogap Radio Frequency Diodes Processed from Solution at Low Temperature.

    PubMed

    Semple, James; Rossbauer, Stephan; Anthopoulos, Thomas D

    2016-09-01

    Much work has been carried out in recent years in fabricating and studying the Schottky contact formed between various metals and the n-type wide bandgap semiconductor zinc oxide (ZnO). In spite of significant progress, reliable formation of such technologically interesting contacts remains a challenge. Here, we report on solution-processed ZnO Schottky diodes based on a coplanar Al/ZnO/Au nanogap architecture and study the nature of the rectifying contact formed at the ZnO/Au interface. Resultant diodes exhibit excellent operating characteristics, including low-operating voltages (±2.5 V) and exceptionally high current rectification ratios of >10(6) that can be independently tuned via scaling of the nanogap's width. The barrier height for electron injection responsible for the rectifying behavior is studied using current-voltage-temperature and capacitance-voltage measurements (C-V) yielding values in the range of 0.54-0.89 eV. C-V measurements also show that electron traps present at the Au/ZnO interface appear to become less significant at higher frequencies, hence making the diodes particularly attractive for high-frequency applications. Finally, an alternative method for calculating the Richardson constant is presented yielding a value of 38.9 A cm(-2) K(-2), which is close to the theoretically predicted value of 32 A cm(-2) K(-2). The implications of the obtained results for the use of these coplanar Schottky diodes in radio frequency applications is discussed. PMID:27530144

  6. There is no convincing evidence that working memory training is effective: A reply to Au et al. (2014) and Karbach and Verhaeghen (2014).

    PubMed

    Melby-Lervåg, Monica; Hulme, Charles

    2016-02-01

    The possible cognitive benefits of working memory training programs have been the subject of intense interest and controversy. Recently two meta-analyses have claimed that working memory training can be effective in enhancing cognitive skills in adulthood (Au et al. Behavioural Brain Research 228:(1) 107-115, 2014) and stemming cognitive decline in old age (Karbach & Verhaeghen Psychological Science 25:2027-2037, 2014). The current article critically evaluates these claims. We argue that these meta-analyses produce misleading results because of (1) biases in the studies included, (2) a failure to take account of baseline differences when calculating effect sizes, and (3) a failure to emphasize the difference between studies with treated versus untreated control groups. We present new meta-analyses and conclude that there is no convincing evidence that working memory training produces general cognitive benefits. PMID:26082279

  7. Analyses of temperature-dependent interface states, series resistances, and AC electrical conductivities of Al/p—Si and Al/Bi4Ti3O12/p—Si structures by using the admittance spectroscopy method

    NASA Astrophysics Data System (ADS)

    Mert, Yıldırım; Perihan, Durmuş; Şemsettin, Altındal

    2013-10-01

    In this study, Al/p—Si and Al/Bi4Ti3O12/p—Si structures are fabricated and their interface states (Nss), the values of series resistance (Rs), and AC electrical conductivity (σac) are obtained each as a function of temperature using admittance spectroscopy method which includes capacitance—voltage (C—V) and conductance—voltage (G—V) measurements. In addition, the effect of interfacial Bi4Ti3O12 (BTO) layer on the performance of the structure is investigated. The voltage-dependent profiles of Nss and Rs are obtained from the high-low frequency capacitance method and the Nicollian method, respectively. Experimental results show that Nss and Rs, as strong functions of temperature and applied bias voltage, each exhibit a peak, whose position shifts towards the reverse bias region, in the depletion region. Such a peak behavior is attributed to the particular distribution of Nss and the reordering and restructuring of Nss under the effect of temperature. The values of activation energy (Ea), obtained from the slope of the Arrhenius plot, of both structures are obtained to be bias voltage-independent, and the Ea of the metal-ferroelectric-semiconductor (MFS) structure is found to be half that of the metal—semiconductor (MS) structure. Furthermore, other main electrical parameters, such as carrier concentration of acceptor atoms (NA), built-in potential (Vbi), Fermi energy (EF), image force barrier lowering (Δ Φb), and barrier height (Φb), are extracted using reverse bias C-2—V characteristics as a function of temperature.

  8. Origin of REE mineralization in the Bastnäs-type Fe-REE-(Cu-Mo-Bi-Au) deposits, Bergslagen, Sweden

    NASA Astrophysics Data System (ADS)

    Holtstam, Dan; Andersson, Ulf B.; Broman, Curt; Mansfeld, Joakim

    2014-09-01

    The Bastnäs-type deposits, with mineral assemblages of Fe oxides, Ca-Mg silicates, rare earth element (REE) silicates, REE fluorocarbonates, and Cu-Fe-Mo-Bi sulfides, are associated with marble horizons in a strongly Na, K, and/or Mg altered, metavolcanic succession, over a distance of at least 80 km in a SW-NE trending zone in western Bergslagen. Two subtypes occur: (1) enriched (relative to the other type) in light REE (LREE) and Fe, exemplified by the Bastnäs and Rödbergsgruvan deposits, and (2) enriched in heavy REE (HREE), Y, Mg, Ca, and F, represented by deposits in the Norberg district. Bastnäsite hosts primary fluid H2O-CO2 inclusions with salinities of 6-29 eq. wt% CaCl2 and with total homogenization temperatures (Th tot) of ca. 300-400 °C. Subtype 2 has late-stage fluorite with fluid inclusions that show 1-16 eq. wt% NaCl and Th tot of ca. 90-150 °C. Molybdenite Re-Os ages obtained from three deposits are 1,904 ± 6, 1,863 ± 4, and 1,842 ± 4 Ma. Nd isotopic data from five different REE minerals yielded no defined isochron, but a range in ɛNd (1.88 Ga) of +0.2 to +1.6. The oxygen isotope values (δ18OSMOW) of dolomite and calcite from the associated REE-mineralized skarn and recrystallized carbonate assemblages lie in the range 6.1-8.6 ‰, overlapping with those of the host marbles. Carbon isotope values (δ13CPDB) show typical magmatic signatures of -6.7 to -4.4 ‰, while the host marbles group around ca. -2.4 ‰. The sulfur isotope (δ34SCDT) values of associated sulfides range between -10.8 and +0.2 ‰. The combined evidence suggests REE mineralization, beginning at 1.9 Ga, from mainly Svecofennian, juvenile magmatic (>400 °C) fluids carrying Si, F, Cl, S, CO2, and the REE in addition to other metals; mineralization occurred through reactions with dolomitic layers in the supracrustal units coevally with regional metasomatic alteration associated with fluid circulation through an extensive active volcano-plutonic complex.

  9. Origin of REE mineralization in the Bastnäs-type Fe-REE-(Cu-Mo-Bi-Au) deposits, Bergslagen, Sweden

    NASA Astrophysics Data System (ADS)

    Holtstam, Dan; Andersson, Ulf B.; Broman, Curt; Mansfeld, Joakim

    2014-12-01

    The Bastnäs-type deposits, with mineral assemblages of Fe oxides, Ca-Mg silicates, rare earth element (REE) silicates, REE fluorocarbonates, and Cu-Fe-Mo-Bi sulfides, are associated with marble horizons in a strongly Na, K, and/or Mg altered, metavolcanic succession, over a distance of at least 80 km in a SW-NE trending zone in western Bergslagen. Two subtypes occur: (1) enriched (relative to the other type) in light REE (LREE) and Fe, exemplified by the Bastnäs and Rödbergsgruvan deposits, and (2) enriched in heavy REE (HREE), Y, Mg, Ca, and F, represented by deposits in the Norberg district. Bastnäsite hosts primary fluid H2O-CO2 inclusions with salinities of 6-29 eq. wt% CaCl2 and with total homogenization temperatures ( Th tot) of ca. 300-400 °C. Subtype 2 has late-stage fluorite with fluid inclusions that show 1-16 eq. wt% NaCl and Th tot of ca. 90-150 °C. Molybdenite Re-Os ages obtained from three deposits are 1,904 ± 6, 1,863 ± 4, and 1,842 ± 4 Ma. Nd isotopic data from five different REE minerals yielded no defined isochron, but a range in ɛNd (1.88 Ga) of +0.2 to +1.6. The oxygen isotope values (δ18OSMOW) of dolomite and calcite from the associated REE-mineralized skarn and recrystallized carbonate assemblages lie in the range 6.1-8.6 ‰, overlapping with those of the host marbles. Carbon isotope values (δ13CPDB) show typical magmatic signatures of -6.7 to -4.4 ‰, while the host marbles group around ca. -2.4 ‰. The sulfur isotope (δ34SCDT) values of associated sulfides range between -10.8 and +0.2 ‰. The combined evidence suggests REE mineralization, beginning at 1.9 Ga, from mainly Svecofennian, juvenile magmatic (>400 °C) fluids carrying Si, F, Cl, S, CO2, and the REE in addition to other metals; mineralization occurred through reactions with dolomitic layers in the supracrustal units coevally with regional metasomatic alteration associated with fluid circulation through an extensive active volcano-plutonic complex.

  10. Chromium substitution in mullite type bismuth aluminate: Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9} with 0≤x≤2.0

    SciTech Connect

    Debnath, Tapas; Ullah, Ahamed; Rüscher, Claus H.; Hussain, Altaf

    2014-12-15

    Nominal compositions Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9} with 0.0≤x≤2.0 (Δx=0.2) were prepared using appropriate amounts of nitrates dissolved in glycerine and heated at 800 °C for 24 h as we previously used for the preparation of solid solution series Bi{sub 2}M{sub x}/M′{sub 4−x}O{sub 9} (M/M′=Fe/Al, Ga/Al and Fe/Ga). The samples were characterized using XRD, FTIR and optical microscopic techniques. Analyses of XRD data show mullite type single phase can be prepared up to x=1.2. The lattice parameters (a, b and c) increases with increasing Cr content. Further increase in x (i.e., x≥1.4) show the presence of some additional phases indicating a limiting value for Cr doping is in the range of 1.2≤x<1.4. The effect of Cr incorporation could also be observed in the infrared absorption spectra via systematic hard mode shifts of certain lattice modes, e.g. the Bi–O related vibration changes from 96 cm{sup −1} to 93 cm{sup −1} with increasing x up to 1.2 and certain intensity changes together with shift in peak positions. Interestingly, the absence of any splitting and shift of the high energy IR absorption peak at 821 cm{sup −1} as assigned to the characteristic tetrahedral type dimer, Al{sub 2}O{sub 7}, indicate that the Cr thus partially substitutes only the octahedrally coordinated Al. This is confirmed by Rietveld structure refinements, too. - Graphical abstract: Structural model of Cr doped bismuth aluminate, Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9}. - Highlights: • Chromium doped bismuth aluminate, Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9} with mullite type structure are synthesized. • The samples are characterized by XRD and FTIR techniques. • Cr can replace only certain amount of octahedrally coordinated Al in Bi{sub 2}Al{sub 4}O{sub 9} under present experimental conditions.

  11. Proton-helium correlation in 94 MeV/nucleon sup 16 O-induced reactions on Al, Ni, and Au targets

    SciTech Connect

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S. ); Riggi, F. ); Bizard, G.; Durand, D.; Laville, J.L. )

    1992-04-01

    Azimuthal distributions of helium ions have been measured in coincidence with high-energy protons in reactions induced by {sup 16}O at 94 MeV/nucleon on {sup 27}Al, {sup 58}Ni, and {sup 197}Au. Helium ions have been detected in a large area multidetector. Protons have been observed at 90{degree}. Mean multiplicities of light charged particles (H and He) are found slightly dependent on the target mass. Strong azimuthal asymmetries whose intensity is larger for the Al target and vanishes with the increasing of the target mass are observed in the He distributions. Experimental data are discussed in the framework of the participant-spectator picture of a modified fireball model, taking into account intermediate energy corrections. In this framework the behavior of the azimuthal asymmetries, as a function of the target mass, indicates a strong final-state interaction between participant and spectator fragments. Such a result is found in agreement with interaction time predictions of a microscopical calculation based on the Boltzmann-Nordheim-Vlasov equation.

  12. Au and Al Schottky barrier formation on GaAs (100) surfaces prepared by thermal desorption of a protective arsenic coating

    SciTech Connect

    Spindt, C.J.; Yamada, M.; Meissner, P.L.; Miyano, K.E.; Herrera, A.; Spicer, W.E. . Stanford Electronics Labs.); Arko, A.J. ); Woodall, J.M.; Pettit, G.D. . Thomas J. Watson Research Center)

    1991-01-01

    Photoelectron spectroscopy has been used as a tool to investigate the initial stages of Schottky barrier formation on GaAs (100) surfaces. This is a popular technique that has been used by many researchers in the past to measure the band bending (or shift) of the valence band and conduction band (a measure of the Schottky barrier shift), while the Fermi level remains fixed at the system ground (i.e., the ground of the spectrometer). Metal deposition on a semiconductor surface can alter the Schottky barrier at the surface and pin the Fermi level near the middle of the energy gap. Extremely clean and crystallographically perfect surfaces are required in this study. Toward this end, a method of protecting the GaAs surface was employed which consists of capping the GaAs surface with a layer of As. Upon introduction into the high vacuum system the As is thermally desorbed, revealing a pure GaAs surface. Our work was motivated by a previous study (Brillson et al) on similarly capped specimens, which suggested that metal overlayers do not pin the Schottky barrier in GaAs. Barrier heights varied by as much as 0.75 eV between Al and Au overlayers. This large energy range is a striking result in view of the fact that a considerable number of prior studies on both (110) and (100) surfaces have found that all metals will pin within a narrow (0.25 eV) range at midgap. We repeated the measurements of Brillson on the identically doped samples used in their study using two extreme range metals of Au and Al as overlayers. We found that the barrier height measurements on low doped n-type samples used in this work and in the previous work are affected by photovoltaic effects, even at room temperature. This was determined from taking spectra at a number of temperatures between 20 K and room temperature and looking for shifts. 16 refs., 7 figs.

  13. Texture Evaluation of a Bi-Modal Structure During Static Recrystallization of Hot-Deformed Mg-Al-Sn Alloy

    NASA Astrophysics Data System (ADS)

    Kabir, Abu Syed Humaun; Su, Jing; Yue, Stephen

    2016-02-01

    In this study, Mg-Al-Sn alloy was hot compressed at 523 K (250 °C) and annealed at 623 K (350 °C) for various times. The initial as-deformed microstructure was partially dynamic recrystallized with strain-induced precipitates on the recrystallized grain boundaries. After annealing at 623 K (350 °C), static recrystallization (SRX) of the bimodal microstructure took place where, at this temperature, no static precipitates formed. The goal of this work was to study the effect of dynamic precipitation on the texture evolution during the SRX process. Progressive texture evolution was studied during annealing by electron backscattered diffraction technique through a microstructure-tracking process. It was found that the grain-coarsening mechanism during the early stage of annealing is not totally controlled by the basal-oriented grains. Also, it was found that the dynamic precipitates may have significant influence in the early texture weakening during annealing of a bimodal structure.

  14. Thickness-dependent optical properties in compressively strained BiFeO{sub 3}/LaAlO{sub 3} films grown by pulsed laser deposition

    SciTech Connect

    Duan, Zhihua; Jiang, Kai; Wu, Jiada; Sun, Jian; Hu, Zhigao; Chu, Junhao

    2014-03-01

    Graphical abstract: - Highlights: • BFO with various thicknesses was grown on LAO substrates by pulsed laser deposition. • The structure and compressive strains were clarified via Raman scattering. • The charge transfer excitation was blue shifted with increasing compressive strain. • The compressive strain affects the distortion of Fe{sup 3+} local environment and O 2p states. - Abstract: Bismuth ferrite (BiFeO{sub 3}) films with various thicknesses were epitaxially grown on LaAlO{sub 3} substrates by pulsed laser deposition. The X-ray diffraction and Raman scattering spectra reveal that the films were highly (11{sup ¯}1) oriented with the single phase. With increasing the thickness, the compressive strain decreases and the strain ratios between the film and bulk crystal are evaluated to be 1.75, 1.57, and 1. Moreover, the compressive strain induces band gap shrinkage from 2.7 to 2.65 eV, while the charge transfer transition energy increases from 3.5 to 4.1 eV. It could be due to the shift of O 2p states and the variation of local Fe{sup 3+} crystal field.

  15. Computational materials design of attractive Fermion system with large negative effective Ueff in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2: Charge-excitation induced Ueff < 0

    NASA Astrophysics Data System (ADS)

    Nakanishi, A.; Fukushima, T.; Uede, H.; Katayama-Yoshida, H.

    2015-12-01

    On the basis of general design rules for negative effective U(Ueff) systems by controlling purely-electronic and attractive Fermion mechanisms, we perform computational materials design (CMD®) for the negative Ueff system in hole-doped two-dimensional (2D) Delafossite CuAlO2, AgAlO2 and AuAlO2 by ab initio calculations with local density approximation (LDA) and self-interaction corrected-LDA (SIC-LDA). It is found that the large negative Ueff in the hole-doped attractive Fermion systems for CuAlO2 (UeffLDA = - 4.53 eV and UeffSIC-LDA = - 4.20 eV), AgAlO2 (UeffLDA = - 4.88 eV and UeffSIC-LDA = - 4.55 eV) and AuAlO2 (UeffLDA = - 4.14 eV and UeffSIC-LDA = - 3.55 eV). These values are 10 times larger than that in hole-doped three-dimensional (3D) CuFeS2 (Ueff = - 0.44 eV). For future calculations of Tc and phase diagram by quantum Monte Carlo simulations, we propose the negative Ueff Hubbard model with the anti-bonding single π-band model for CuAlO2, AgAlO2 and AuAlO2 using the mapped parameters obtained from ab initio electronic structure calculations. Based on the theory of negative Ueff Hubbard model (Noziéres and Schmitt-Rink, 1985), we discuss |Ueff| dependence of superconducting critical temperature (Tc) in the 2D Delafossite of CuAlO2, AgAlO2 and AuAlO2 and 3D Chalcopyrite of CuFeS2, which shows the interesting chemical trend, i.e., Tc increases exponentially (Tc ∝ exp [ - 1 / | Ueff | ]) in the weak coupling regime | Ueff(- 0.44 eV) | < W(∼ 2 eV) (where W is the band width of the negative Ueff Hubbard model) for the hole-doped CuFeS2, and then Tc goes through a maximum when | Ueff(- 4.88 eV , - 4.14 eV) | ∼ W(2.8 eV , 3.5 eV) for the hole-doped AgAlO2 and AuAlO2, and finally Tc decreases with increasing |Ueff| in the strong coupling regime, where | Ueff(- 4.53 eV) | > W(1.7 eV) , for the hole-doped CuAlO2.

  16. Interfacial charge-induced polarization switching in Al2O3/Pb(Zr,Ti)O3 bi-layer

    NASA Astrophysics Data System (ADS)

    Kim, Yu Jin; Park, Min Hyuk; Jeon, Woojin; Kim, Han Joon; Moon, Taehwan; Lee, Young Hwan; Kim, Keum Do; Hyun, Seung Dam; Hwang, Cheol Seong

    2015-12-01

    Detailed polarization switching behavior of an Al2O3/Pb(Zr,Ti)O3 (AO/PZT) structure is examined by comparing the phenomenological thermodynamic model to the experimental polarization-voltage (P-V) results. Amorphous AO films with various thicknesses (2-10 nm) were deposited on the polycrystalline 150-nm-thick PZT film. The thermodynamic calculation showed that the transition from the ferroelectric-like state to the paraelectric-like state with increasing AO thickness occurs at ˜3 nm thickness. This paraelectric-like state should have exhibited a negative capacitance effect without permanent polarization switching if no other adverse effects are involved. However, experiments showed typical ferroelectric-like hysteresis loops where the coercive voltage increased with the increasing AO thickness, which could be explained by the carrier injection through the thin AO layer and trapping of the carriers at the AO/PZT interface. The fitting of the experimental P-V loops using the thermodynamic model considering the depolarization energy effect showed that trapped charge density was ˜±0.1 Cm-2 and critical electric field at the Pt electrode/AO interface, at which the carrier transport occurs, was ˜±10 MV/cm irrespective of the AO thickness. Energy band model at each electrostatic state along the P-V loop was provided to elucidate correlation between macroscopic polarization and internal charge state of the stacked films.

  17. Photoemission study of some novel materials: Rare earth/transition metal interface, Ba*0.6*K*0.4*BiO3* and AlPdM

    SciTech Connect

    Wu, X.

    1995-02-10

    Synchrotron radiation photoemission spectroscopy and low energy electron diffraction (LEED) are applied to explore several novel materials: (a) Ce epitaxial growth on W (110) surfaces. (b) Eu epitaxial growth on Ta (110) surfaces. (c) Sm epitaxial growth on Ta (110) surfaces. (d) quasicrystalline AlPdMn, and (e) superconducting Ba{sub 1-x}K{sub x}BiO{sub 3}. In the case of rare earth overlayers on transition metal surface, resonance photoemission spectroscopy is used to enhance the 4f features. The metal surface phase transition is investigated on an atomic-scale. In the case of quasicrystalline AlPdMn and superconducting Ba{sub 1-x}K{sub x}BiO{sub 3} the electronic structures are investigated by angle-resolved photoemission.

  18. Thermal expansion of mullite-type Bi{sub 2}Al{sub 4}O{sub 9}: A study by X-ray diffraction, vibrational spectroscopy and density functional theory

    SciTech Connect

    Mangir Murshed, M.; Mendive, Cecilia B.; Curti, Mariano; Šehović, Malik; Friedrich, Alexandra; Fischer, Michael; Gesing, Thorsten M.

    2015-09-15

    Polycrystalline Bi{sub 2}Al{sub 4}O{sub 9} powder samples were synthesized using the glycerine method. Single crystals were produced from the powder product in a Bi{sub 2}O{sub 3} melt. The lattice thermal expansion of the mullite-type compound was studied using X-ray diffraction, Raman spectroscopy and density functional theory (DFT). The metric parameters were modeled using Grüneisen approximation for the zero pressure equation of state, where the temperature-dependent vibrational internal energy was calculated from the Debye characteristic frequency. Both the first-order and second-order Grüneisen approximations were applied for modeling the volumetric expansion, and the second-order approach provided physically meaningful axial parameters. The phonon density of states as well as phonon dispersion guided to set the characteristic frequency for simulation. The experimental infrared and Raman phonon bands were compared with those calculate from the DFT calculations. Selective Raman modes were analyzed for the thermal anharmonic behaviors using simplified Klemens model. The respective mode Grüneisen parameters were calculated from the pressure-dependent Raman spectra. - Graphical abstract: Crystal structure of mullite-type Bi{sub 2}Al{sub 4}O{sub 9} showing the edge-sharing AlO{sub 6} octahedra running parallel to the c-axis. - Highlights: • Thermal expansion of Bi{sub 2}Al{sub 4}O{sub 9} was studied using XRD, FTIR, Raman and DFT. • Metric parameters were modeled using Grüneisen approximation. • Phonon DOS and phonon dispersion helped to set the Debye frequency. • Mode Grüneisen parameters were calculated from the pressure-dependent Raman spectra. • Anharmonicity was analyzed for some selective Raman modes.

  19. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  20. CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO2 Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al2O3

    PubMed Central

    Goto, Tomoyo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2015-01-01

    The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO2 and Pt/α-Al2O3 catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO2, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H2, while H2 combustion was activated by repeated exposure to H2 gas during the periodic gas test. Selective CO sensing of the micro-TGS against H2 was attempted using a double catalyst structure with 0.3–30 wt% Pt/α-Al2O3 as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/α-Al2O3 catalyst, by cancelling out the combustion heat from the AuPtPd/SnO2 catalyst. In addition, the AuPtPd/SnO2 and 0.3 wt% Pt/α-Al2O3 double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H2. PMID:26694397

  1. Effect of microwave treatment on current flow mechanisms in Au-TiB{sub x}-Al-Ti-n{sup +}-n-n{sup +}-GaN-Al{sub 2}O{sub 3} ohmic contacts

    SciTech Connect

    Belyaev, A. E.; Boltovets, N. S.; Vitusevich, S. A.; Ivanov, V. N.; Konakova, R. V. Kudryk, Ya. Ya.; Lebedev, A. A.; Milenin, V. V.; Sveshnikov, Yu. N.; Sheremet, V. N.

    2010-06-15

    The temperature dependences of the contact resistivity {rho}{sub c} of Au-TiB{sub x} Al-Ti-n{sup +}-n-n{sup +}-GaN-Al{sub 2}O{sub 3} ohmic contacts have been studied before and after microwave treatment followed by nine-nonth room-temperature sample storage. The temperature dependences of {rho}{sub c} of initial samples were measured twice. The first measurement showed the temperature dependence typical of ohmic contacts; the repeated measurement in the temperature region above 270 K showed a {rho}{sub c} increase caused by metallic conductivity. After microwave treatment, the metallic conductivity in the ohmic contact is not observed. This is presumably associated with local heating of metal Ga inclusions under microwave irradiation and the formation, due to high chemical activity of liquid gallium, of compounds of it with other metallization components. In this case, the temperature dependence of {rho}{sub c} is controlled by ordinary charge transport mechanisms. After nine-nonth room-temperature storage, the temperature dependence of ?c is described by the tunneling mechanism of charge transport.

  2. Influence of thermal treatment on the formation of ohmic contacts based on Ti/Al/Ni/Au metallization to n-type AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Macherzyński, W.; Paszkiewicz, B.; Vincze, A.; Paszkiewicz, R.; Tłaczała, M.; Kováč, J.

    2012-12-01

    Interfacial reactions between Ti/Al/Ni/Au metallization and GaN(cap)/AlGaN/GaN heterostructures at various annealing temperatures ranging from 715 to 865 °C were studied. Electrical current-voltage (I-V) characteristics, van der Pauw Hall mobility measurements and surface topography measurement with atomic force microscopy (AFM) were performed. The ohmic metallizations were annealed at various temperatures in a rapid thermal annealing system and the annealing time of 60 seconds was kept for all samples. To study the influence of the parameters of annealing process on the properties of the 2 dimensional electron gas (2DEG) the van der Pauw Hall mobility measurement was used. Interfacial reactions between the contact metals and heterostructures were analyzed through depth profiles of secondary ion mass spectroscopy. It was observed that transition from nonlinear to linear I-V behavior occurred after the annealing at 805 °C. For the studied samples, the most promising results were obtained for the annealing temperature of 805 °C. This temperatue ensured not only low contact resistance but also made possible to preserve the 2DEG.

  3. The III-Bi binary compounds

    NASA Astrophysics Data System (ADS)

    Keen, Benjamin

    Bismuth containing III-V alloys such as GaAsBi, GaSbBi, InSbBi and InAsBi have recently become of great interest in the development of optical devices in the infrared spectrum. Difficulties in fabricating these materials stems, in part, from the lack of experimental data on the characteristics of the III-Bi family of compounds: AlBi, GaBi, and InBi. This thesis outlines the growth conditions and characteristics of the MBE deposition of InBi. To date, InBi remains the only one of the three compounds that has been experimentally reported, and the difficulties associated with the growth of AlBi and GaBi are also described herein. InBi thin films were grown on GaAs substrates at temperatures ranging from 50 °C to 100 °C. Unlike other III-V materials, which require a group V overpressure during deposition, to achieve stoichiometric quantities of indium and bismuth an In:Bi BEP ratio of 4:3 was found to be necessary. InBi samples were studied by a variety of measurement techniques, including SEM, EDX, XRD, HAXPES, and HRTEM. Films were found to grow in a 3-D Volmer-Weber mode, forming hemispherical droplets on the substrate surface. These droplets indicated clear signs of Ostwald ripening during growth, but maintained their distribution after deposition. InBi samples are believed to be semi-metallic, confirming some of the properties predicted by density functional theory (DFT) calculations. However, analysis of the crystal structure at the substrate/droplet interface indicates the epitaxial growth of InBi is in the zinc-blende configuration, instead of the PbO configuration, in direct opposition to predictions by DFT and experimental data reported from bulk crystal studies. Attempts to grow the other III-Bi materials, GaBi and AlBi, by MBE also resulted in 3-D droplet formation, but both gallium and aluminum failed to incorporate with bismuth to form a compound. Instead, the materials formed segregated regions in the droplets, clearly visible to SEM and EDX

  4. Study of the A(e,e'$\\pi^+$) Reaction on $^1$H, $^2$H, $^{12}$C, $^{27}$Al, $^{63}$Cu and $^{197}$Au

    SciTech Connect

    Qian, X; Clasie, B; Arrington, J; Asaturyan, R; Benmokhtar, F; Boeglin, W; Bosted, P; Bruell, A; Christy, M E; Chudakov, E; Dalton, M M; Daniel, A; Day, D; Dutta, D; El Fassi, L; Ent, R; Fenker, H C; Ferrer, J; Fomin, N; Gao, H; Garrow, K; Gaskell, D; Gray, C; Huber, G M; Jones, M K; Kalantarians, N; Keppel, C E; Kramer, K; Li, Y; Liang, Y; Lung, A F; Malace, S; Markowitz, P; Matsumura, A; Meekins, D G; Mertens, T; Miyoshi, T; Mkrtchyan, H; Monson, R; Navasardyan, T; Niculescu, G; Niculescu, I; Okayasu, Y; Opper, A K; Perdrisat, C; Punjabi, V; Rauf, A W; Rodriquez, V M; Rohe, D; Seely, J; Segbefia, E; Smith, G R; Sumihama, M; Tadevosyan, V; Tang, L; Villano, A; Vulcan, W F; Wesselmann, F R; Wood, S A; Yuan, L; Zheng, X

    2010-05-01

    Cross sections for the p($e,e'\\pi^{+}$)n process on $^1$H, $^2$H, $^{12}$C, $^{27}$Al, $^{63}$Cu and $^{197}$Au targets were measured at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) in order to extract the nuclear transparencies. Data were taken for four-momentum transfers ranging from $Q^2$=1.1 to 4.8 GeV$^2$ for a fixed center of mass energy of $W$=2.14 GeV. The ratio of $\\sigma_L$ and $\\sigma_T$ was extracted from the measured cross sections for $^1$H, $^2$H, $^{12}$C and $^{63}$Cu targets at $Q^2$ = 2.15 and 4.0 GeV$^2$ allowing for additional studies of the reaction mechanism. The experimental setup and the analysis of the data are described in detail including systematic studies needed to obtain the results. The results for the nuclear transparency and the differential cross sections as a function of the pion momentum at the different values of $Q^2$ are presented. Global features of the data are discussed and the data are compared with the results of model calculations for the p($e,e'\\pi^{+}$)n reaction from nuclear targets.

  5. Structural and electronic properties of AB- and AA-stacking bilayer-graphene intercalated by Li, Na, Ca, B, Al, Si, Ge, Ag, and Au atoms

    NASA Astrophysics Data System (ADS)

    Tayran, Ceren; Aydin, Sezgin; Çakmak, Mehmet; Ellialtıoğlu, Şinasi

    2016-04-01

    The structural and electronic properties of X (=Li, Na, Ca, B, Al, Si, Ge, Ag, and Au)-intercalated AB- and AA-stacking bilayer-graphene have been investigated by using ab initio density functional theory. It is shown that Boron (Lithium)-intercalated system is energetically more stable than the others for the AB (AA) stacking bilayer-graphene systems. The structural parameters, electronic band structures, and orbital nature of actual interactions are studied for the relaxed stable geometries. It is seen that the higher the binding energy, the smaller is the distance between the layers, in these systems. The electronic band structures for these systems show that different intercalated atoms can change the properties of bilayer-graphene differently. For qualitative description of the electronic properties, the metallicities of the systems are also calculated and compared with each other. The Mulliken analysis and electron density maps clearly indicate that the interactions inside a single layer (intralayer interactions) are strong and highly covalent, while the interactions between the two layers (interlayer interactions) are much weaker.

  6. High-quality, large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xenogiannopoulou, E.; Tsipas, P.; Aretouli, K. E.; Tsoutsou, D.; Giamini, S. A.; Bazioti, C.; Dimitrakopulos, G. P.; Komninou, Ph.; Brems, S.; Huyghebaert, C.; Radu, I. P.; Dimoulas, A.

    2015-04-01

    Atomically-thin, inherently 2D semiconductors offer thickness scaling of nanoelectronic devices and excellent response to light for low-power versatile applications. Using small exfoliated flakes, advanced devices and integrated circuits have already been realized, showing great potential to impact nanoelectronics. Here, high-quality single-crystal MoSe2 is grown by molecular beam epitaxy on AlN(0001)/Si(111), showing the potential for scaling up growth to low-cost, large-area substrates for mass production. The MoSe2 layers are epitaxially aligned with the aluminum nitride (AlN) lattice, showing a uniform, smooth surface and interfaces with no reaction or intermixing, and with sufficiently high band offsets. High-quality single-layer MoSe2 is obtained, with a direct gap evidenced by angle-resolved photoemission spectroscopy and further confirmed by Raman and intense room temperature photoluminescence. The successful growth of high-quality MoSe2/Bi2Se3 multilayers on AlN shows promise for novel devices exploiting the non-trivial topological properties of Bi2Se3.Atomically-thin, inherently 2D semiconductors offer thickness scaling of nanoelectronic devices and excellent response to light for low-power versatile applications. Using small exfoliated flakes, advanced devices and integrated circuits have already been realized, showing great potential to impact nanoelectronics. Here, high-quality single-crystal MoSe2 is grown by molecular beam epitaxy on AlN(0001)/Si(111), showing the potential for scaling up growth to low-cost, large-area substrates for mass production. The MoSe2 layers are epitaxially aligned with the aluminum nitride (AlN) lattice, showing a uniform, smooth surface and interfaces with no reaction or intermixing, and with sufficiently high band offsets. High-quality single-layer MoSe2 is obtained, with a direct gap evidenced by angle-resolved photoemission spectroscopy and further confirmed by Raman and intense room temperature photoluminescence. The

  7. Development of a Au-free process using Mo-based metallization for high-power AlGaN/GaN-on-Si heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Choi, Shinhyuk; Lee, Jae-Gil; Kang, Youngjin; Cha, Ho-Young; Kim, Hyungtak; Cho, Chun-Hyung

    2014-08-01

    A Au-free ohmic contact process for fabricating AlGaN/GaN heterostructure field-effect transistors (HFETs) on Si substrates was developed by using Mo-based metallization. We investigated Si/Ti/Al/Mo metal stacks for ohmic metallization where the Ti/Al thickness ratio and the annealing temperature were varied. The optimized metal stack and annealing conditions were a Si/Ti/Al/Mo stack with 5/40/60/50 nm thicknesses and rapid thermal annealing in a N2 ambient at 900 °C for 30 sec, which resulted in a contact resistance of 1.24 Ω·mm, a sheet resistance of 410 Ω/sq and a specific contact resistivity of 3.76 × 10-5 Ω·cm2. Devices fabricated using the optimized Mo-based, Au-free ohmic contact process exhibited comparable characteristics with higher breakdown voltage to those of devices fabricated using a conventional Au-based ohmic contact process.

  8. Al{sub 15}Ge{sub 4}Ni{sub 3}: A new intergrowth structure with Cu{sub 3}Au- and CaF{sub 2}-type building blocks

    SciTech Connect

    Reichmann, Thomas L.; Jandl, Isabella; Effenberger, Herta S.; Herzig, Peter; Richter, Klaus W.

    2015-05-15

    The new ternary compound Al{sub 15}Ge{sub 4}Ni{sub 3} (τ{sub 2} in the system Al–Ge–Ni) was synthesized in single crystalline form by a special annealing procedure from samples located in the three phase fields [L+Al+τ{sub 2}] and [L+Ge+τ{sub 2}]. The crystal structure of Al{sub 15}Ge{sub 4}Ni{sub 3} was determined by single-crystal X-ray diffraction. The compound crystallizes in a new structure type in space group I4-bar3m, Pearson Symbol cI88, cubic lattice parameter a=11.405(1) Å. Phase diagram investigations indicate stoichiometric composition without considerable homogeneity range; τ{sub 2} melts peritectically at T=444 °C. The crystal structure of Al{sub 15}Ge{sub 4}Ni{sub 3} shows a unique combination of simple Cu{sub 3}Au- and CaF{sub 2}-type building blocks: a three dimensional network of CaF{sub 2}-type units, formed by Ni and Al atoms, is interspaced by clusters (Al{sub 6}Ge{sub 8}) resembling unit cells of the Cu{sub 3}Au-type. Both structural motifs are connected by Al–Ge bonds. The ground state energy of the compound was obtained by DFT calculations and the densities of states were analyzed in detail. In addition, electron density maps were calculated in four different sections through the unit cell using the full potential linearized augmented plane-wave (FLAPW) method. The bonding situation in Al{sub 15}Ge{sub 4}Ni{sub 3} was discussed combining results from electronic calculations with the analysis of the coordination of atoms. - Graphical abstract: The new compound Al{sub 15}Ge{sub 4}Ni{sub 3} shows a unique combination of simple Cu{sub 3}Au- and CaF{sub 2}-type building blocks. - Highlights: • The crystal structure of Al{sub 15}Ge{sub 4}Ni{sub 3} (space group I4-bar3m) was determined. • It shows a unique combination of CaF{sub 2}- and Cu{sub 3}Au-type building blocks. • Electronic (DFT) calculations were performed to gain insight to chemical bonding.

  9. Effects of BiAlO{sub 3}-doping on dielectric and ferroelectric properties of 0.93Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.07BaTiO{sub 3} lead-free ceramics

    SciTech Connect

    Wang, Jian; Chen, Xiao-ming Zhao, Xu-mei; Liang, Xiao-xia; Zhou, Jian-ping; Liu, Peng

    2015-07-15

    Highlights: • BiAlO{sub 3}-doped BNT-based ceramics were synthesized via a conventional solid state reaction method. • T% values are 56%, 32%, 37%, and 37% for the ceramics with x = 0, 0.01, 0.02 and 0.06, respectively. • The mean grain sizes of the ceramics with x = 0, 0.01, 0.02 and 0.06 are about 1.1, 0.9, 0.8 and 0.7 μm, respectively. • Dielectric anomalies in the ϵ{sub r}–T curves are close related to the BiAlO{sub 3} amounts. • The ceramic with x = 0.01 shows the P{sub m} of 32.5 μC/cm{sup 2}, P{sub r} of 24.1 μC/cm{sup 2}, E{sub c} of 20.0 kV/cm and d{sub 33} of 166 pC/N. - Abstract: (1 − x)(0.93Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.07BaTiO{sub 3})–xBiAlO{sub 3} (BNBT-xBA, x = 0, 0.01, 0.02, 0.06) lead-free ceramics were synthesized via a conventional solid state reaction method. Crystallite structure, microstructure, dielectric and ferroelectric properties of the BNBT–xBA ceramics were studied in detail. X-ray diffraction results show that all ceramics exhibit typical diffraction peaks of ABO{sub 3} perovskite structure. Scanning electron microscope images show that all samples have fine microstructures. Both Curie temperature and maximum dielectric constant vary with the change in the BiAlO{sub 3} amounts. The values of hysteresis loop squareness were calculated to be 1.26, 0.81, 0.51 and 0.36 for the ceramics with x = 0, 0.01, 0.02 and 0.06, respectively, indicating a decreased switching behavior of polarization. The changes in dielectric and ferroelectric properties of the ceramics are also discussed.

  10. High-quality, large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy.

    PubMed

    Xenogiannopoulou, E; Tsipas, P; Aretouli, K E; Tsoutsou, D; Giamini, S A; Bazioti, C; Dimitrakopulos, G P; Komninou, Ph; Brems, S; Huyghebaert, C; Radu, I P; Dimoulas, A

    2015-05-01

    Atomically-thin, inherently 2D semiconductors offer thickness scaling of nanoelectronic devices and excellent response to light for low-power versatile applications. Using small exfoliated flakes, advanced devices and integrated circuits have already been realized, showing great potential to impact nanoelectronics. Here, high-quality single-crystal MoSe2 is grown by molecular beam epitaxy on AlN(0001)/Si(111), showing the potential for scaling up growth to low-cost, large-area substrates for mass production. The MoSe2 layers are epitaxially aligned with the aluminum nitride (AlN) lattice, showing a uniform, smooth surface and interfaces with no reaction or intermixing, and with sufficiently high band offsets. High-quality single-layer MoSe2 is obtained, with a direct gap evidenced by angle-resolved photoemission spectroscopy and further confirmed by Raman and intense room temperature photoluminescence. The successful growth of high-quality MoSe2/Bi2Se3 multilayers on AlN shows promise for novel devices exploiting the non-trivial topological properties of Bi2Se3. PMID:25856730

  11. R3Au(6+x)Al26T (R = Ca, Sr, Eu, Yb; T = early transition metal): a large family of compounds with a stuffed BaHg11 structure type grown from aluminum flux.

    PubMed

    Latturner, Susan E; Bilc, Daniel; Mahanti, S D; Kanatzidis, Mercouri G

    2009-02-16

    A collection of new quaternary intermetallic compounds with a cubic, stuffed BaHg(11) structure type has been synthesized by the combination of a divalent rare earth or alkaline earth metal R, an early transition metal T, and gold in an excess of molten aluminum. Structural characterization of these R(3)Au(6+x)Al(26)T compounds by powder and single crystal X-ray diffraction indicates that the unit cell varies with the radii of the early transition metal T and the rare earth/alkaline earth R as expected. The element T (where T = group 4, 5, 6, and 7 element) appears to be responsible for the stabilization of up to 43 different members of the R(3)Au(6+x)Al(26)T family of compounds. Varying amounts of disorder and trends in partial occupancies of the Au stuffed site--the site that is vacant in the parent compound BaHg(11)--are also indicated by the diffraction studies of this family of compounds. Magnetic susceptibility data reveals that the transition metal atoms in these materials do not possess local magnetic moments. For the magnetic rare earth containing materials, the europium compounds undergo a ferromagnetic transition at 10 K, and the ytterbium analogues show mixed valent behavior. Band structure calculations also support a mixed valent state for Yb in these compounds. PMID:19146424

  12. Molecular Beam Epitaxy Growth of GaBi, InBi and InGaBi

    NASA Astrophysics Data System (ADS)

    Keen, B.; Makin, R.; Stampe, P. A.; Kennedy, R. J.; Piper, L. F. J.; McCombe, B.; McConville, C. F.; Durbin, S. M.

    2014-03-01

    Recent interest in bismuth alloys of III-V semiconductors for infrared and far-infrared device applications, specifically GaAsBi and InAsBi, has indicated that further study of the III-Bi family of binary compounds would be of great help in improving the quality of these material systems. While immiscibility issues have so far frustrated the growth of GaBi and AlBi, InBi is less problematic, and we have grown it by molecular beam epitaxy on (001) GaAs substrates. However, regions of varying composition exist across the substrate due to poor wetting of the surface. In an effort to improve film quality we have continued to refine the growth parameters by adjusting substrate temperature, beam flux ratio, and deposition rate. Characterization of these films has been performed by x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS). Additionally, we have explored growth of GaBi and In1-xGaxBi at low Ga mole fractions, and modeled this using molecular dynamics simulations. This work is supported by the Research Foundation of the State University of New York Collaborations Fund.

  13. Temperature dependence of exciton-surface plasmon polariton coupling in Ag, Au, and Al films on In{sub x}Ga{sub 1−x}N/GaN quantum wells studied with time-resolved cathodoluminescence

    SciTech Connect

    Estrin, Y.; Rich, D. H.; Keller, S.; DenBaars, S. P.

    2015-01-28

    The optical properties and coupling of excitons to surface plasmon polaritons (SPPs) in Ag, Au, and Al-coated In{sub x}Ga{sub 1−x}N/GaN multiple and single quantum wells (SQWs) were probed with time-resolved cathodoluminescence. Excitons were generated in the metal coated SQWs by injecting a pulsed high-energy electron beam through the thin metal films. The Purcell enhancement factor (F{sub p}) was obtained by direct measurement of changes in the temperature-dependent radiative lifetime caused by the SQW exciton-SPP coupling. Three chosen plasmonic metals of Al, Ag, and Au facilitate an interesting comparison of the exciton-SPP coupling for energy ranges in which the SP energy is greater than, approximately equal to, and less than the excitonic transition energy for the InGaN/GaN QW emitter. A modeling of the temperature dependence of the Purcell enhancement factor, F{sub p}, included the effects of ohmic losses of the metals and changes in the dielectric properties due to the temperature dependence of (i) the intraband behavior in the Drude model and (ii) the interband critical point transition energies which involve the d-bands of Au and Ag. We show that an inclusion of both intraband and interband effects is essential when calculating the ω vs k SPP dispersion relation, plasmon density of states (DOS), and the dependence of F{sub p} on frequency and temperature. Moreover, the “back bending” in the SPP dispersion relation when including ohmic losses can cause a finite DOS above ω{sub sp} and lead to a measurable F{sub p} in a limited energy range above ω{sub sp}, which can potentially be exploited in plasmonic devices utilizing Ag and Au.

  14. Optical properties and electronic structures of d- and f-electron metals and alloys, Ag-In, Ni-Cu, AuGa sub 2 , PtGa sub 2 ,. beta. prime -NiAl,. beta. prime -CoAl, CeSn sub 3 , and LaSn sub 3

    SciTech Connect

    Kim, Kwang Joo.

    1990-10-17

    Optical properties and electronic structures of disordered Ag{sub 1- x}In{sub x}(x = 0.0, 0.04, 0.08, 0.12) and Ni{sub 1-x}Cu{sub x} (x = 0.0, 0.1, 0.3, 0.4) alloys and ordered AuGa{sub 2}, PtGa{sub 2}, {beta}{prime}-NiAl, {beta}{prime}-CoAl, CeSn{sub 3}, and LaSn{sub 3} have been studied. The complex dielectric functions have been determined for Ag{sub 1-x}In{sub x}, Ni{sub 1-x}Cu{sub x}, AuGa{sub 2}, and PtGa{sub 2} in the 1.2--5.5 eV region and for CeSn{sub 3} and LaSn{sub 3} in the 1.5--4.5 eV region using spectroscopic ellipsometry. Self-consistent relativistic band calculations using the linearized-augmented-plane-wave method have been performed for AuGa{sub 2}, PtGa{sub 2}, {beta}{prime}-NiAl, {beta}{prime}-CoAl, CeSn{sub 3}, and LaSn{sub 3} to interpret the experimental optical spectra.

  15. Bi-metal coated aperture SNOM probes

    NASA Astrophysics Data System (ADS)

    Antosiewicz, Tomasz J.; Wróbel, Piotr; Szoplik, Tomasz

    2011-05-01

    Aperture probes of scanning near-field optical microscopes (SNOM) offer resolution which is limited by a sum of the aperture diameter at the tip of a tapered waveguide probe and twice the skin depth in metal used for coating. An increase of resolution requires a decrease of the aperture diameter. However, due to low energy throughput of such probes aperture diameters usually are larger than 50 nm. A groove structure at fiber core-metal coating interface for photon-to-plasmon conversion enhances the energy throughput 5-fold for Al coated probes and 30-fold for Au coated probes due to lower losses in the metal. However, gold coated probes have lower resolution, first due to light coupling from the core to plasmons at the outside of the metal coating, and second due to the skin depth being larger than for Al. Here we report on the impact of a metal bilayer of constant thickness for coating aperture SNOM probes. The purpose of the bilayer of two metals of which the outer one is aluminum and the inner is a noble metal is to assure low losses, hence larger transmission. Using body-of-revolution finite-difference time-domain simulations we analyze properties of probes without corrugations to measure the impact of using a metal bilayer and choose an optimum bi-metal configuration. Additionally we investigate how this type of metalization works in the case of grooved probes.

  16. Thermoelectric power generator module of 16x16 Bi{sub 2}Te{sub 3} and 0.6%ErAs:(InGaAs){sub 1-x}(InAlAs){sub x} segmented elements

    SciTech Connect

    Zeng Gehong; Bahk, Je-Hyeong; Bowers, John E.; Lu Hong; Gossard, Arthur C.; Singer, Suzanne L.; Majumdar, Arun; Bian, Zhixi; Zebarjadi, Mona; Shakouri, Ali

    2009-08-24

    We report the fabrication and characterization of thermoelectric power generator modules of 16x16 segmented elements consisting of 0.8 mm thick Bi{sub 2}Te{sub 3} and 50 {mu}m thick ErAs:(InGaAs){sub 1-x}(InAlAs){sub x} with 0.6% ErAs by volume. An output power up to 6.3 W was measured when the heat source temperature was at 610 K. The thermoelectric properties of (InGaAs){sub 1-x}(InAlAs){sub x} were characterized from 300 up to 830 K. The finite element modeling shows that the performance of the generator modules can further be enhanced by improving the thermoelectric properties of the element materials, and reducing the electrical and thermal parasitic losses.

  17. Preparation and enhancement of ionic conductivity in Al-added garnet-like Li6.8La3Zr1.8Bi0.2O12 lithium ionic electrolyte

    NASA Astrophysics Data System (ADS)

    Xia, Yu; Ma, Liang; Lu, Hui; Wang, Xian-Ping; Gao, Yun-Xia; Liu, Wang; Zhuang, Zong; Guo, Li-Jun; Fang, Qian-Feng

    2015-12-01

    Garnet-like Li6.8La3Zr1.8Bi0.2O12 (LLZBO) + x mol.% Al2O3 ( x = 0, 1.25, 2.50) lithium ionic electrolytes were prepared by conventional solid state reaction method under two different sintering temperatures of 1000°C and 1100°C. XPS, induced coupled plasma optical emission spectrometer (ICP-OES), XRD and AC impedance spectroscopy were applied to investigate the bismuth valance, lithium concentration, phase structure and lithium ionic conductivity, respectively. Electrical measurement demonstrated that ionic conductivity of Al-added LLZBO compounds could be obviously improved when the sample sintering temperature increased from 1000°C to 1100°C. The highest ionic conductivity 6.3×10-5 S/cm was obtained in the LLZBO-1.25%Al sample sintered at 1100°C, in consistent with the lowest activation energy 0.45 eV for the lithium ion migration. The mechanism related with good ionic conductivity in the Al-added LLZBO sample was attributed to the lattice distortion induced by the partial Al substitution at Zr sites, which is helpful to improve the migration ability of Li ions in lattice.

  18. Les minéralisations Cu_(Ni_Bi_U_Au_Ag) d'Ifri (district du Haut Seksaoua, Maroc) : apport de l'étude texturale au débat syngenèse versus épigenèseThe Cu_(Ni_Bi_U_Au_Ag) mineralization of Ifri ('Haut Seksaoua' district, Morocco): contribution of a textural study to the discussion syngenetic versus epigenetic

    NASA Astrophysics Data System (ADS)

    Barbanson, Luc; Chauvet, Alain; Gaouzi, Aziz; Badra, Lakhifi; Mechiche, Mohamed; Touray, Jean Claude; Oukarou, Saı̈d

    2003-11-01

    The Cu ore of Ifri is a chalcopyrite stockwork hosted by Cambrian formations and was until now interpreted as a syngenetic massive sulphide deposit. Textural studies highlight two generations of pyrite early (Py I) and late (Py II) with respect to the regional deformation. The chalcopyrite stockwork overprinted Py II, outlining the epigenetic nature of the Cu mineralization. Regarding the origin of Cu-depositing fluids, the presence in the stockwork paragenesis of an U, W, Sn association and preliminary Pb/Pb dating of a brannerite belonging to this association suggest a contribution of the Tichka granite. To cite this article: L. Barbanson et al., C. R. Geoscience 335 (2003).

  19. DFT study of Hg adsorption on M-substituted Pd(1 1 1) and PdM/γ-Al2O3(1 1 0) (M = Au, Ag, Cu) surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Jiancheng; Yu, Huafeng; Geng, Lu; Liu, Jianwen; Han, Lina; Chang, Liping; Feng, Gang; Ling, Lixia

    2015-11-01

    The adsorption of Hgn (n = 1-3) on the Au-, Ag-, Cu-substituted Pd(1 1 1) surfaces as well as the PdM/γ-Al2O3(1 1 0) (M = Au, Ag, Cu) surfaces has been investigated using spin-polarized density functional theory calculations. It is found that M-substituted Pd(1 1 1) surfaces show as good Hg adsorption capacity as the perfect Pd(1 1 1) at low Hg coverage, while the Hg adsorption capacity is only slightly weakened at high Hg coverage. On the basis of stepwise adsorption energies analysis, it is concluded that M-substituted Pd(1 1 1) surfaces can contribute to the binding of Hg atom on the surfaces at high Hg coverage. The electronic properties of the second metal atoms are the main factor contributes to the Hg adsorption capacity. Gas phase Pd2 shows better Hg adsorption capacity than Pd2/γ-Al2O3, while PdM/γ-Al2O3 can adsorb Hg more efficiently than bare PdM clusters. It suggests that the γ-Al2O3 support can enhance the activity of PdM for Hg adsorption and reduces the activity of Pd2. It is also found that Pd is the main active composition responsible for the interaction of mercury with the surface for PdM/γ-Al2O3 sorbent. Taking Hg adsorption capacity and economic costs into account, Cu addition is a comparatively good candidate for Hg capture.

  20. Several Microstrip-Based Conductor/Thin Film Ferroelectric Phase Shifter Designs Using (YBa2Cu3O(7 - Delta), Au)/SrTiO3/LaAlO3 Structures

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Romanofsky, R. R.; Miranda, F. A.

    1998-01-01

    We have designed, fabricated, and tested several novel microstrip-base YBa2Cu3O7-delta/SrTiO3/LaAlO3 (YBCO/STO/LAO) and Au/SrTiO3ALO3 (Au/STO/LAO) phase shifters. The first design consists of eight coupled microstrip phase shifters (CMPS) in series. This design using YBCO achieved a relative insertion phase shift (Delta f) of 484 degrees with a figure of merit of 80 degrees/dB at Vdc = 375 V, 16 GHz, and 40 K. A Delta f of 290 degrees was observed while maintaining the insertion loss below 4.5 dB. At 77 K, a Delta of 420 degrees was obtained for this phase shifter at the same bias and frequency. Both results correspond to an effective coupling length of 0.33 cm. A second compact design, consisting of an Au meander line and a CMPS section was also tested. Of the two samples tested, the best showed a figure of merit of 43 degrees/dB with Delta f = 290 degrees and 6.8 dB loss, at 40 K, 10 GHz and 400 V. Experimental and modeling results on these circuits will be discussed in the context of potential applications.

  1. Observations of exciton-surface plasmon polariton coupling and exciton-phonon coupling in InGaN/GaN quantum wells covered with Au, Ag, and Al films

    NASA Astrophysics Data System (ADS)

    Estrin, Y.; Rich, D. H.; Keller, S.; DenBaars, S. P.

    2015-07-01

    The coupling of excitons to surface plasmon polaritons (SPPs) and longitudinal optical (LO) phonons in Au-, Ag-, and Al-coated InxGa1-xN/GaN multiple and single quantum wells (SQWs) was studied with time-resolved cathodoluminescence (CL) and CL wavelength imaging techniques. Excitons were generated in the metal-coated SQWs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures which are opaque to laser/light excitation. The Purcell enhancement factor (Fp) at low temperatures was obtained by the direct measurement of changes in the carrier lifetime caused by the SQW excitonSPP coupling. The deposition of thin films of Al, Ag, and Au on an InGaN/GaN QW enabled a comparison of excitonSPP coupling for energy ranges in which the surface plasmon energy is greater than, approximately equal to, and less than the QW excitonic transition energy. We investigated the temperature dependence of the Huang-Rhys factors for exciton-to-LO phonon coupling for the metal-covered and bare samples. CL imaging and spectroscopy with variable excitation densities are used to examine the spatial correlations between CL emission intensity, carrier lifetime, QW excitonic emission energy, and the Huang-Rhys factor, all of which are strongly influenced by local fluctuations in the In composition and formation of InN-rich centers.

  2. Observations of exciton-surface plasmon polariton coupling and exciton-phonon coupling in InGaN/GaN quantum wells covered with Au, Ag, and Al films.

    PubMed

    Estrin, Y; Rich, D H; Keller, S; DenBaars, S P

    2015-07-01

    The coupling of excitons to surface plasmon polaritons (SPPs) and longitudinal optical (LO) phonons in Au-, Ag-, and Al-coated InxGa1-xN/GaN multiple and single quantum wells (SQWs) was studied with time-resolved cathodoluminescence (CL) and CL wavelength imaging techniques. Excitons were generated in the metal-coated SQWs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures which are opaque to laser/light excitation. The Purcell enhancement factor (Fp) at low temperatures was obtained by the direct measurement of changes in the carrier lifetime caused by the SQW exciton-SPP coupling. The deposition of thin films of Al, Ag, and Au on an InGaN/GaN QW enabled a comparison of exciton-SPP coupling for energy ranges in which the surface plasmon energy is greater than, approximately equal to, and less than the QW excitonic transition energy. We investigated the temperature dependence of the Huang-Rhys factors for exciton-to-LO phonon coupling for the metal-covered and bare samples. CL imaging and spectroscopy with variable excitation densities are used to examine the spatial correlations between CL emission intensity, carrier lifetime, QW excitonic emission energy, and the Huang-Rhys factor, all of which are strongly influenced by local fluctuations in the In composition and formation of InN-rich centers. PMID:26076324

  3. Thermal barrier coatings with (Al2O3-Y2O3)/(Pt or Pt-Au) composite bond coat and 8YSZ top coat on Ni-based superalloy

    NASA Astrophysics Data System (ADS)

    Yao, Junqi; He, Yedong; Wang, Deren; Peng, Hui; Guo, Hongbo; Gong, Shengkai

    2013-12-01

    Developing new bond coat has been acknowledged as an effective way to extend the service life of thermal barrier coating (TBC) during high temperature. In this study, novel thermal barrier coating system, which is composed with an (Al2O3-Y2O3)/(Pt or Pt-Au) composite bond coat and a YSZ top coat on Ni-based superalloy, has been prepared by magnetron sputtering and EB-PVD, respectively. It is demonstrated, from the cyclic oxidation tests in air at 1100 °C for 200 h, that the YSZ top coat and alloy substrate can be bonded together effectively by the (Al2O3-Y2O3)/(Pt or Pt-Au) composite coating, showing excellent resistance to oxidation, cracking and buckling. These beneficial results can be attributed to the sealing effect of such composite coating, by which the alloy substrate can be protected from oxidation and the interdiffusion between the bond coat and alloy substrate can be avoided; and the toughening effect of noble metals and composite structure of bond coat, by which the micro-cracks propagation can be inhibited and the stress in bond coat can be relaxed. This ceramic/noble metal composite coating can be a considerable structure which would has great application prospect in the TBC.

  4. Spontaneous formation of superconducting NiBi3 phase in Ni-Bi bilayer films

    NASA Astrophysics Data System (ADS)

    Siva, Vantari; Senapati, Kartik; Satpati, Biswarup; Prusty, Sudakshina; Avasthi, D. K.; Kanjilal, D.; Sahoo, Pratap K.

    2015-02-01

    We report the spontaneous formation of superconducting NiBi3 phase in thermally evaporated Ni-Bi bilayer films. High reaction-diffusion coefficient of Bi is believed to drive the formation of NiBi3 during the deposition of Bi on the Ni film. Cross sectional transmission electron microscopy and glancing incidence X-ray depth profiling confirmed the presence of NiBi3 throughout the top Bi layer. Superconducting transition at ˜3.9 K, close to the bulk value, was confirmed by transport and magnetization measurements. The bilayers were irradiated with varying fluence of 100 MeV Au ions to study the robustness of superconducting order in presence of large concentration of defects. Superconducting parameters of NiBi3, such as transition temperature and upper critical field, remained unchanged upto an ion dose of 1 × 1014 ions/cm2. The diffusive formation of NiBi3 in Ni opens the possibility of studying superconducting proximity effect at a truly clean superconductor-ferromagnet interface.

  5. Spontaneous formation of superconducting NiBi{sub 3} phase in Ni-Bi bilayer films

    SciTech Connect

    Siva, Vantari; Senapati, Kartik Prusty, Sudakshina; Sahoo, Pratap K.; Satpati, Biswarup

    2015-02-28

    We report the spontaneous formation of superconducting NiBi{sub 3} phase in thermally evaporated Ni-Bi bilayer films. High reaction-diffusion coefficient of Bi is believed to drive the formation of NiBi{sub 3} during the deposition of Bi on the Ni film. Cross sectional transmission electron microscopy and glancing incidence X-ray depth profiling confirmed the presence of NiBi{sub 3} throughout the top Bi layer. Superconducting transition at ∼3.9 K, close to the bulk value, was confirmed by transport and magnetization measurements. The bilayers were irradiated with varying fluence of 100 MeV Au ions to study the robustness of superconducting order in presence of large concentration of defects. Superconducting parameters of NiBi{sub 3}, such as transition temperature and upper critical field, remained unchanged upto an ion dose of 1 × 10{sup 14} ions/cm{sup 2}. The diffusive formation of NiBi{sub 3} in Ni opens the possibility of studying superconducting proximity effect at a truly clean superconductor-ferromagnet interface.

  6. Effect of epitaxial strain on magnetization and photo-control of spontaneous polarization in BiFeO3 films on (LaAlO3)0.3(Sr2AlTaO6)0.7(110) substrate

    NASA Astrophysics Data System (ADS)

    Rana, D. S.; Kawayama, I.; Murakami, H.; Tonouchi, M.

    2008-03-01

    Recent researches on thin films of BiFeO3 have been driven by the need to obtain better multiferroic properties by either inducing epitaxial strain or fabrication of magnetoelectric superlattices. The BFO (100) thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (100) substrate are highly strained with different physical properties than that of bulk [1]. Given the dependence of ferroelectric polarization of BFO on crystallographic directions, epitaxial thin films -- 70nm and 180nm - of BFO were deposited on LSAT (110) substrate. Structure and surface morphology of BFO/LSAT(110) films show that the films with thickness <= 80 nm possess a strong in-plane strain while thicker films (150-200nm) are partially relaxed with a bulklike structure. Though the magnetic properties of BFO/LSAT(110) films are nearly independent of structure, the spontaneous polarization and the ferroelectric properties (probed by terahertz emission) are strong characteristic of structure. These results emphasize the importance of epitaxial strain induced tailoring of the ferroelectric properties of BiFeO3 film along (110) crystallographic direction. 1. D.S. Rana et al, Phys. Rev. B 75, 060405 (2007).

  7. BiFeO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} heterostructures deposited on spark plasma sintered LaAlO{sub 3} substrates

    SciTech Connect

    Pravarthana, D.; Lacotte, M.; David, A.; Prellier, W.; Trassin, M.; Haw Chu, Jiun; Ramesh, R.; Salvador, P. A.

    2014-02-24

    Multiferroic BiFeO{sub 3} (BFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} heterostructured thin films were grown by pulsed laser deposition on polished spark plasma sintered LaAlO{sub 3} (LAO) polycrystalline substrates. Both polycrystalline LAO substrates and BFO films were locally characterized using electron backscattering diffraction, which confirmed the high-quality local epitaxial growth on each substrate grain. Piezoforce microscopy was used to image and switch the piezo-domains, and the results are consistent with the relative orientation of the ferroelectric variants with the surface normal. This high-throughput synthesis process opens the routes towards wide survey of electronic properties as a function of crystalline orientation in complex oxide thin film synthesis.

  8. Gold enrichment and Bi-mineral assemblages in ores: Examples from shield and orogenic areas

    NASA Astrophysics Data System (ADS)

    Ciobanu, C. L.; Cook, N. J.; Pring, A.

    2003-04-01

    Gold deposits in metamorphic terranes, like their counterparts in hydrothermal areas, commonly contain small quantities of Bi-tellurides/selenides (BTS) or Bi-sulpho-salts (Bi-ss). These mineral groups, although eclectic in character, have the potential to offer real and hitherto-untapped information on processes of ore formation and evolution, since BTS speciation, paragenesis and assemblages lie at the heart of ideas covering mechanisms of Au-enrichment, fluid-driven infiltration and sulphide modularity. A systematic study of the distribution of BTS in Au-enriched ores from 25 deposits in the Fennoscandian/Ukrainian Shields and in European Phanerozoic orogenic belts allows comparison of telluride speciation and association and construction of a qualitative diagram for Bi-telluride stability in fS_2-fO_2 space on the basis of Bi/Te+Se+S (R{Bi/Te}). Tsumoite (BiTe) stability separates reducing environ-ments where Bi-tellurides with R{Bi/Te}>1 are associated with native Bi and maldonite, and oxidizing environments where Bi-tellurides with R{Bi/Te}<1 are associated with Au-Ag-bearing tellurides and native Te. BTS are closely associated with Au, due to incorporation within Bi{melt} above 271^oC. Such melts are powerful "scavengers" for Au, especially at the main fS_2/fO_2 buffers. Overall compositions of Bi-Te-Se-Aumelts, as seen in resultant BTS associations, reflect the reducing/oxidizing character of source fluids. Telluride speciation has implications for discriminating overprinting events, with focus on local Au-enrichment at metamorphic peaks, during retrograde stages in skarn and secondary boiling in porphyry, irrespective of age or deposit type. Unlike tellurides, Bi-ss are not necessarily genetically related to Au-enrich-ment. Instead, speciation and compositional variation relate to primary fluid sources and may be specific to regional/orefield trends. Nevertheless, as many sulphosalts form polysomatic series, they can adjust chemical variation via

  9. Hydrogenolysis of cellulose to C4-C7 alcohols over bi-functional CuO-MO/Al2O3 (M=Ce, Mg, Mn, Ni, Zn) catalysts coupled with methanol reforming reaction.

    PubMed

    Wu, Yanhua; Gu, Fangna; Xu, Guangwen; Zhong, Ziyi; Su, Fabing

    2013-06-01

    This work demonstrates the efficient hydrogenolysis of cellulose to C4-C7 alcohols and gas products (reaction 1) by coupling it with the reforming reaction of methanol (reaction 2) over bi-functional CuO-based catalysts. In this process, the CuO-based catalysts catalyze both the reactions 1 and 2, and the in situ regenerated H2 in the reaction 2 is used for the reaction 1. A series of CuO-MO/Al2O3 (M=Ce, Mg, Mn, Ni, Zn) catalysts were prepared by the co-precipitation method. Among these catalysts, CuO-ZnO/Al2O3 exhibited the highest activity to generate a high cellulose conversion of 88% and a high C4-C7 alcohols content above 95% in the liquid products. The CuO-ZnO/Al2O3 catalyst was stable under the reaction conditions and reusable after 4 runs. This work provides a cost-effective route to convert abundant renewable cellulose to liquid fuels. PMID:23591118

  10. First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds.

    PubMed

    Keast, V J; Barnett, R L; Cortie, M B

    2014-07-30

    Pure Au is widely used in plasmonic applications even though its use is compromised by significant losses due to damping. There are some elements that are less lossy than Au (e.g. Ag or Al) but they will normally oxidize or corrode under ambient conditions. Here we examine whether alloying Au with a second element would be beneficial for plasmonic applications. In order to evaluate potential alternatives to pure Au, the density of states (DOS), dielectric function and plasmon quality factor have been calculated for alloys and compounds of Au with Al, Cd, Mg, Pd, Pt, Sn, Ti, Zn and Zr. Substitutional alloying of Au with Al, Cd, Mg and Zn was found to slightly improve the plasmonic response. Of the large number of intermetallic compounds studied, only AuAl2, Au3Cd, AuMg, AuCd and AuZn were found to be suitable for plasmonic applications. PMID:25001413

  11. First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Keast, V. J.; Barnett, R. L.; Cortie, M. B.

    2014-07-01

    Pure Au is widely used in plasmonic applications even though its use is compromised by significant losses due to damping. There are some elements that are less lossy than Au (e.g. Ag or Al) but they will normally oxidize or corrode under ambient conditions. Here we examine whether alloying Au with a second element would be beneficial for plasmonic applications. In order to evaluate potential alternatives to pure Au, the density of states (DOS), dielectric function and plasmon quality factor have been calculated for alloys and compounds of Au with Al, Cd, Mg, Pd, Pt, Sn, Ti, Zn and Zr. Substitutional alloying of Au with Al, Cd, Mg and Zn was found to slightly improve the plasmonic response. Of the large number of intermetallic compounds studied, only AuAl2, Au3Cd, AuMg, AuCd and AuZn were found to be suitable for plasmonic applications.

  12. Calcium-doping effects on photovoltaic response and structure in multiferroic BiFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Tu, C. S.; Hung, C.-M.; Xu, Z.-R.; Schmidt, V. H.; Ting, Y.; Chien, R. R.; Peng, Y.-T.; Anthoninappen, J.

    2013-09-01

    Photovoltaic (PV) effects, power-conversion efficiencies, and structures have been systematically measured in (Bi1-xCax)FeO3-δ ceramics for x = 0.05, 0.10, and 0.15. The heterostructures of indium tin oxide (ITO) film/(Bi1-xCax)FeO3-δ ceramics/Au film exhibit significant PV effects under illumination of λ = 405 nm. The maximum power-conversion efficiency in the ITO/(Bi0.90Ca0.10)FeO2.95 (BFO10C)/Au can reach 0.0072%, which is larger than 0.0025% observed in the graphene/polycrystalline BFO/Pt films [Zang et al., Appl. Phys. Lett. 99, 132904 (2011)]. A theoretical model based on optically excited current in the depletion region between ITO film and Ca-doped BFO ceramics is used to describe the I-V characteristic, open-circuit voltage, and short-circuit current density as a function of illumination intensity. This work suggests that the Ca-substitution can reduce the rhombohedral distortion and stabilize the single-phase structure.

  13. Bi-layer Al2O3/ZnO atomic layer deposition for controllable conductive coatings on polypropylene nonwoven fiber mats

    NASA Astrophysics Data System (ADS)

    Sweet, William J.; Jur, Jesse S.; Parsons, Gregory N.

    2013-05-01

    Electrically conductive zinc oxide coatings are applied to polypropylene nonwoven fiber mats by atomic layer deposition (ALD) at 50-155 °C. A low temperature (50 °C) aluminum oxide ALD base layer on the polypropylene limits diffusion of diethyl zinc into the polypropylene, resulting in ZnO layers with properties similar to those on planar silicon. Effective conductivity of 63 S/cm is achieved for ZnO on Al2O3 coated polypropylene fibers, and the fibers remain conductive for months after coating. Without the Al2O3 precoating, the effective conductivity was much smaller, consistent with precursor diffusion into the polymer and sub-surface ZnO nucleation. Mechanical robustness tests showed that conductive samples bent around a 6 mm radius maintained up to 40% of the pre-bending conductivity. Linkages between electrical conductivity and mechanical performance will help inform materials choice for flexible and porous electronics including textile-based sensors and antennas.

  14. Dielectric and ferroelectric properties of highly (100)-oriented (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 thin films grown on LaNiO 3/γ-Al 2O 3/Si substrates by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Guo, Yiping; Akai, Daisuke; Sawada, Kazauki; Ishida, Makoto

    2008-07-01

    A (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 chemical solution was prepared by using barium acetate, nitrate of sodium, nitrate of bismuth, and Ti-isopropoxide as raw materials. A white precipitation appeared during the preparation was analyzed to be Ba(NO 3) 2. We found that ethanolamine is a very effective coordinating ligand of Ba 2+. A transparent and stable (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 precursor chemical solution has been achieved by using ethanolamine as a ligand of Ba 2+. (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 films were grown on LaNiO 3/γ-Al 2O 3/Si substrates. Highly (100)-oriented (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 films were obtained in this work due to lattice match growth. The dielectric, ferroelectric and insulative characteristics against applied field were studied. The conduction current shows an Ohmic conduction behavior at lower voltages and space-charge-limited behavior at higher voltages, respectively. These results indicate that, the (Na 0.5Bi 0.5) 0.94Ba 0.06TiO 3 film is a promising lead-free ferroelectric film.

  15. Hadron Production and Freeze-Out Dynamics at square root of sNN = 3.0 GeV Au+Al and square root of sNN = 19.6 GeV Au+Au Collisions as Measured at STAR

    NASA Astrophysics Data System (ADS)

    Brovko, Samantha Gail

    The Beam Energy Scan program at RHIC was commissioned to search for the critical point and the turn-off of QGP signatures. The program has completed collisions of Au+Au at energies from 7.7 to 62.4 GeV per nucleon pair in 2010 and 2011. The addition of a full-coverage Time-of-Flight detector at STAR extended the momentum range for clean particle identification. Mid-rapidity (|y| < 0.5) hadron spectra will be used to determine the freeze-out dynamics of the system. Particle spectra for pi, K, p and p¯ as a function of mT -- m0 will be presented and these will be used to discuss in particular the source's Coulombic effect on soft pions, as well as three of the four signs of the onset of deconfinement: the "Kink," the "Horn," and the "Step." Comparisons will be made to √s NN) = 7.7 GeV, 11.5 GeV, 19.6 GeV (from 2001), 27 GeV, 39 GeV Au+Au data from STAR, and (sqrt of sNN = 17.3 GeV Pb+Pb data from the SPS heavy ion program. Collisions between gold ions in the RHIC beam with aluminum nuclei in the beam pipe allow us to analyze fixed-target interactions with the STAR detector at RHIC. These lower-energy fixed-target collisions may allow us to extend the low-energy reach of the RHIC beam energy scan and possibly improve the chance of finding the critical point of the hadronic to quark matter phase boundary. In this thesis, we will present preliminary results of spectra analyses for a fixed target collision system at √sNN)= 3.0 GeV and colliding beam system at √sNN = 19.6 GeV . Also, the viability of doing fixed-target experiments with a collider detector will be discussed. Comparisons to simulation, using UrQMD, will also be made. The analysis provides a good reference to study excitation functions of strangeness production, net baryon number, and collective flow in heavy-ion collisions.

  16. Conductance control at the LaAlO{sub 3}/SrTiO{sub 3}-interface by a multiferroic BiFeO{sub 3} ad-layer

    SciTech Connect

    Mix, Christian; Finizio, Simone; Kläui, Mathias; Jakob, Gerhard

    2014-06-30

    Multilayered BiFeO{sub 3} (BFO)/LaAlO{sub 3} (LAO) thin film samples were fabricated on SrTiO{sub 3} (STO) substrates by pulsed laser deposition. In this work, the ferroelectric polarization of a multiferroic BFO ad-layer on top of the quasi-two-dimensional electron gas (2DEG) at the LAO/STO interface is used to manipulate the conductivity of the quasi-2DEG. By microstructuring the conductive area of the LAO/STO-interface, a four-point geometry for the measurement of the resistivity was achieved. Piezo force microscopy allows for imaging and poling the spontaneous ferroelectric polarization of the multiferroic layer. The resistance changes showed a linear dependence on the area scanned and a hysteretic behavior with respect to the voltages applied in the scanning process. This is evidence for the ferroelectric polarization of the multiferroic causing the resistance changes. Coupling the antiferromagnetic BFO layer to another ferromagnetic layer could enable a magnetic field control of the conductance of the quasi-2DEG at the LAO/STO interface.

  17. Ferroelectric properties of Bi2VO5.5 thin films on LaAlO3 and SiO2/Si substrates with LaNiO3 base electrode

    NASA Astrophysics Data System (ADS)

    Satyalakshmi, K. M.; Varma, K. B. R.; Hegde, M. S.

    1995-07-01

    Ferroelectric bismuth vanadate Bi2VO5.5 (BVO) thin films have been grown on LaAlO3 (LAO) and SiO2/Si substrates with LaNiO3 (LNO) base electrodes by the pulsed laser deposition technique. The effect of substrate temperature on the ferroelectric properties of BVO thin films, has been studied by depositing the thin films at different temperatures. The BVO thin films grown on LNO/LAO were textured whereas the thin films grown on LNO/SiO2/Si were polycrystalline. The BVO thin films grown at 450 °C exhibited good ferroelectric properties indicating that LNO acts as a good electrode material. The remanent polarization Pr and coercive field Ec obtained for the BVO thin films grown at 450 °C on LNO/LAO and LNO/SiO2/Si were 2.5 μC/cm2, 37 kV/cm and 4.6μC/cm2, 93 kV/cm, respectively.

  18. Resonant Levels, Vacancies, and Doping in Bi2Te3, Bi2Te2Se, and Bi2Se3 Tetradymites

    NASA Astrophysics Data System (ADS)

    Wiendlocha, Bartlomiej

    2016-07-01

    The electronic structure of the tetradymites, Bi_2Te_3, Bi_2Te_2Se, and Bi_2Se_3, containing various dopants and vacancies, has been studied using first-principles calculations. We focus on the possibility of formation of resonant levels (RL), confirming the formation of RL by Sn in Bi_2Te_3 and predicting similar behavior of Sn in Bi_2Te_2Se and Bi_2Se_3. Vacancies, which are likely present on chalcogen atom sites in real samples of Bi_2Te_2Se and Bi_2Se_3, are also studied and their charged donor and resonant behavior discussed. Doping of vacancy-containing materials with regular acceptors, such as Ca or Mg, is shown to compensate the donor effect of vacancies, and n-p crossover, while increasing the dopant concentration, is observed. We verify that the RL on Sn is not disturbed by chalcogen vacancies in Bi_2Te_2Se or Bi_2Se_3, and for the Sn-doped materials with Se or Te vacancies, double doping, instead of heavy doping with Sn, is suggested as an effective way of obtaining the resonant level. This should help to avoid smearing of the RL, a possible reason for earlier unsuccessful experimental observation of the influence of the RL on the thermoelectric properties of Sn-doped Bi_2Te_2Se. Finally, we show that Al and Ga are possible new resonant impurities in tetradymites, hoping that this will stimulate further experimental studies.

  19. Resonant Levels, Vacancies, and Doping in Bi2Te3, Bi2Te2Se, and Bi2Se3 Tetradymites

    NASA Astrophysics Data System (ADS)

    Wiendlocha, Bartlomiej

    2016-04-01

    The electronic structure of the tetradymites, Bi_2 Te_3 , Bi_2 Te_2 Se, and Bi_2 Se_3 , containing various dopants and vacancies, has been studied using first-principles calculations. We focus on the possibility of formation of resonant levels (RL), confirming the formation of RL by Sn in Bi_2 Te_3 and predicting similar behavior of Sn in Bi_2 Te_2 Se and Bi_2 Se_3 . Vacancies, which are likely present on chalcogen atom sites in real samples of Bi_2 Te_2 Se and Bi_2 Se_3 , are also studied and their charged donor and resonant behavior discussed. Doping of vacancy-containing materials with regular acceptors, such as Ca or Mg, is shown to compensate the donor effect of vacancies, and n-p crossover, while increasing the dopant concentration, is observed. We verify that the RL on Sn is not disturbed by chalcogen vacancies in Bi_2 Te_2 Se or Bi_2 Se_3 , and for the Sn-doped materials with Se or Te vacancies, double doping, instead of heavy doping with Sn, is suggested as an effective way of obtaining the resonant level. This should help to avoid smearing of the RL, a possible reason for earlier unsuccessful experimental observation of the influence of the RL on the thermoelectric properties of Sn-doped Bi_2 Te_2 Se. Finally, we show that Al and Ga are possible new resonant impurities in tetradymites, hoping that this will stimulate further experimental studies.

  20. Photoconductive response of a single Au nanorod coupled to LaAlO{sub 3}/SrTiO{sub 3} nanowires

    SciTech Connect

    Jnawali, Giriraj; Chen, Lu; Huang, Mengchen; Lee, Hyungwoo; Ryu, Sangwoo; Podkaminer, Jacob P.; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    2015-05-25

    Terahertz (THz) spectroscopy is an important tool that provides resonant access to free carrier motion, molecular rotation, lattice vibrations, excitonic, spin, and other degrees of freedom. Current methods using THz radiation suffer from limits due to diffraction or low-sensitivity, preventing application at the scale of single nanoscale objects. Here, we present coupling between plasmonic degrees of freedom in a single gold nanorod and broadband THz emission generated from a proximal LaAlO{sub 3}/SrTiO{sub 3} nanostructure. A strong enhancement of THz emission is measured for incident radiation that is linearly polarized along the long axis of the nanorod. This demonstration paves the way for the investigation of near-field plasmonic coupling in a variety of molecular-scale systems.

  1. Interfacial charge-induced polarization switching in Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} bi-layer

    SciTech Connect

    Kim, Yu Jin; Park, Min Hyuk; Jeon, Woojin; Kim, Han Joon; Moon, Taehwan; Lee, Young Hwan; Kim, Keum Do; Hyun, Seung Dam; Hwang, Cheol Seong

    2015-12-14

    Detailed polarization switching behavior of an Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} (AO/PZT) structure is examined by comparing the phenomenological thermodynamic model to the experimental polarization–voltage (P-V) results. Amorphous AO films with various thicknesses (2–10 nm) were deposited on the polycrystalline 150-nm-thick PZT film. The thermodynamic calculation showed that the transition from the ferroelectric-like state to the paraelectric-like state with increasing AO thickness occurs at ∼3 nm thickness. This paraelectric-like state should have exhibited a negative capacitance effect without permanent polarization switching if no other adverse effects are involved. However, experiments showed typical ferroelectric-like hysteresis loops where the coercive voltage increased with the increasing AO thickness, which could be explained by the carrier injection through the thin AO layer and trapping of the carriers at the AO/PZT interface. The fitting of the experimental P-V loops using the thermodynamic model considering the depolarization energy effect showed that trapped charge density was ∼±0.1 Cm{sup −2} and critical electric field at the Pt electrode/AO interface, at which the carrier transport occurs, was ∼±10 MV/cm irrespective of the AO thickness. Energy band model at each electrostatic state along the P-V loop was provided to elucidate correlation between macroscopic polarization and internal charge state of the stacked films.

  2. Influence of the Biasing Scheme on the Performance of Au/SrTiO3/LaAlO3 Thin Film Conductor/Ferroelectric Tunable Ring Resonators

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Romanofsky, R. R.; Bohman, D. Y.; Miranda, F. A.

    1998-01-01

    The performance of gold/SrTio3 /LaAlO3 conductor/ferroelectric/dielectric side-coupled, tunable ring resonators at K-band frequencies is presented. The tunability of these rings arises from the sensitivity of the relative dielectric constant (Er) of SrTiO 3 to changes in temperature and dc electric fields (E). We observed that the change in F-, which takes place by biasing the ring up to 450 V alters the effective dielectric constant (e-eff) of the circuit resulting in a 3k resonant frequency shift of nearly 12 % at 77 K. By applying a separate dc bias between the microstrip line and the ring, one can optimize their coupling to obtain bandstop resonators with unloaded quality factors (Q(sub o)) as high as 12,000. The 31 resonance was tuned from 15.75 to 17.41 GHz while keeping Q. above 768 over this range. The relevance of these results for practical microwave components will be discussed.

  3. Breakup of the projectile in [sup 16]O-induced reactions on [sup 27]Al, [sup 58]Ni, and [sup 197]Au targets around 100 MeV/nucleon

    SciTech Connect

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S. ); Riggi, F. Dipartimento di Fisica dell'Universita di Catania, Corso Italia 57, 95129 Catania )

    1993-08-01

    The spatial correlation among the four He ions coming from the disassembly of the [sup 16]O projectile on [sup 27]Al, [sup 58]Ni, and [sup 197]Au targets has been studied at 94 MeV/nucleon. Charged particles have been detected by a multielement array of plastic scintillators covering the angular domain between 3[degree] and 150[degree]. Standard relativistic kinematics has been used to reconstruct the excitation energy of the primary projectilelike nucleus ([ital E][sub PLN][sup *]). Mean values of this quantity are found independent of the target mass and the comparison with existing similar data taken at lower bombarding energies shows a saturation of [ital E][sub PLN][sup *] around 3 MeV/nucleon. An event-by-event analysis has been performed in order to study the distributions of some global variables such as coplanarity, sphericity, and relative angle, helpful in the understanding of the topological characteristics of the process and in the evaluation of its time scale. Experimental data have also been compared with the results of Monte Carlo simulations based on different reaction mechanisms and it is possible to conclude that sequential emission of the fragments is preferred.

  4. LaMgX and CeMgX (X = Ga, In, Tl, Pd, Ag, Pt, Au) with ZrNiAl type structure - A systematic view on electronic structure and chemical bonding

    NASA Astrophysics Data System (ADS)

    Matar, Samir F.; Etourneau, Jean; Pöttgen, Rainer

    2015-05-01

    The intermetallic magnesium compounds LaMgX and CeMgX (X = Ga, In, Tl, Pd, Ag, Pt, Au) crystallize with the hexagonal ZrNiAl type structure, space group P 6 bar 2 m , with full Mg-X ordering. From density functional theory calculations carried out exemplarily on four representative compounds: LaMgX and CeMgX with X = Ga, Pd, significant differences were traced out as to the magnetism arising only for the Ce series leading to identify CeMgGa as an antiferromagnet in its ground state, in agreement with experiment. The bulk module magnitudes show the trend of harder transition metal based ternaries and the cohesive energies favor the X = Pd compounds versus X = Ga ones. Such features were clarified by examining the properties of chemical bonding which exhibit more directional bonds thanks to the Pd d states. Rationalizing the trends of charge transfers, negatively charged triel and transition element atoms are observed. The resulting chemical pictures assign these compounds as gallides and palladides.

  5. Exclusive studies of 130-270 MeV {sup 3}He- and 200-MeV proton-induced reactions on {sup 27}Al, {sup nat}Ag, and {sup 197}Au

    SciTech Connect

    Ginger, D. S.; Kwiatkowski, K.; Wang, G.; Hsi, W.-C.; Hudan, S.; Cornell, E.; Souza, R. T. de; Viola, V. E.; Korteling, R. G.

    2008-09-15

    Exclusive light-charged-particle and IMF spectra have been measured with the ISiS detector array for bombardments of {sup 27}Al, {sup nat}Ag, and {sup 197}Au nuclei with 130-270-MeV {sup 3}He and 200-MeV protons. The results are consistent with previous interpretations based on inclusive data that describe the global yield of complex fragments in terms of a time-dependent process. The emission mechanism for energetic nonequilibrium fragments observed at forward angles with momenta up to twice the beam momentum is also investigated. This poorly understood mechanism, for which the angular distributions indicate formation on a time scale comparable to the nuclear transit time, are accompanied primarily by thermal-like emissions. The data are most consistent with a schematic picture in which nonequilibrium fragments are formed in a localized region of the target nucleus at an early stage in the energy-dissipation process, where the combined effects of high energy density and Fermi motion produce the observed suprathermal spectra.

  6. Distribution of Bi Between Slags and Liquid Copper

    NASA Astrophysics Data System (ADS)

    Chen, Chunlin; Wright, Steven

    2016-06-01

    The distribution of Bi between liquid copper and calcium ferrite slag containing 24 wt pct CaO, iron silicate slag with 25 wt pct SiO2, and calcium iron silicate slags was measured at 1573 K (1300 °C) under controlled CO-CO2 atmosphere. The experimental results showed that bismuth distribution is affected by the oxygen partial pressure, and bismuth is likely to exist in slags in the 2+ oxidation state, i.e., as BiO. The distribution ratio between calcium ferrite slag and metal was found to be close to that of iron silicate slag. The Bi distribution ratio was found to decrease with increasing SiO2 and Al2O3 content in slag. Increasing temperature was found to decrease the Bi distribution ratio between slag and metal. Using the measured equilibrium data on Bi content of the metal and slag and composition dependence of the activity of Bi in liquid copper, the activity and hence activity coefficient of BiO in the slag was calculated. The close value of activity coefficient of BiO in both slags at the same oxygen partial pressure indicates that the CaO-BiO and SiO2-BiO interactions are likely to be at the same level, or the FeO x -BiO interaction is the predominant interaction for BiO in the slag. Therefore at a constant FeO x content in the slag, the CaO-BiO and SiO2-BiO interactions doesn't affect γ_{{BiO}} significantly.

  7. Bi-melt formation and gold scavenging from hydrothermal fluids: An experimental study

    NASA Astrophysics Data System (ADS)

    Tooth, Blake; Ciobanu, Cristiana L.; Green, Leonard; O'Neill, Brian; Brugger, Joël

    2011-10-01

    The role of polymetallic melts in scavenging ore components has recently been highlighted in the context of fluid-poor metamorphosed ore deposits. In contrast, the role of polymetallic melts in systems dominated by hydrothermal fluids remains poorly understood. Using a simple Au-Bi model system, we explored experimentally whether such polymetallic melts can precipitate directly from a hydrothermal fluid, and investigated the ability of these melts to scavenge Au from the solution. The experiments were conducted in custom-built flow-through reactors, designed to reproduce a hydrothermal system where melt components are dissolved at one stage along the flow path (e.g., Bi was dissolved by placing Bi-minerals along the fluid path), whereas melt precipitation was caused further along the flow path by fluid-rock interaction. Bi-rich melts were readily obtained by reaction with pyrrhotite, graphite or amorphous FeS. When Au was added to the system, Bi-Au melts with compositions consistent with the Au-Bi phase diagram were obtained. In the case of fluid reaction with pyrrhotite, epitaxial replacement of pyrrhotite by magnetite was observed, with textures consistent with an interface-coupled dissolution-reprecipitation reaction (ICDRR). In this case, the metallic melt precipitated as blebs that were localized at the replacement front or within the porous magnetite. Direct fractionation of Bi-Au melts from a hydrothermal fluid, or precipitation of a Bi-melt followed by partitioning of Au from ambient fluid, offer new pathways to the enrichment of minor ore components such as Au, without requiring fluid saturation with respect to a Au mineral. This mechanism can explain the strong geochemical affinity recognized between Au and low-melting point chalcophile elements such as Bi in many gold deposits. Examples of deposits where such a model may be applicable include orogenic gold deposits and gold skarns. Contrary to models involving migration of polymetallic melts to explain

  8. Investigation of noble metal substrates and buffer layers for BiSrCaCuO thin films

    NASA Astrophysics Data System (ADS)

    Matthiesen, M. M.; Rubin, L. M.; Williams, K. E.; Rudman, D. A.

    Noble metal buffer layers and substrates for Bi2Sr2CaCu2O8 (BSCCO) films were investigated using bulk ceramic processing and thin-film techniques. Highly oriented, superconducting BSCCO films were fabricated on polycrystalline Ag substrates and on Ag/MgO and Ag/YSZ structures. Such films could not be produced on Au or Pt substrates under any annealing conditions. In addition, superconducting BSCCO films could not be produced on Ag/Al2O3, Ag/SiO2/Si, or Ag/(Haynes 230 alloy) structures using high annealing temperatures (870 C). However, oriented although poorly connected, superconducting BSCCO films were fabricated on Ag/Al2O3 structures by using lower annealing temperatures (820 C). Once lower processing temperatures are optimized, Ag may be usable as a buffer layer for BSCCO films.

  9. Series of compositions Bi{sub 2}(M'{sub x}M{sub 1-x}){sub 4}O{sub 9} (M', M=Al, Ga, Fe; 0{<=}x{<=}1) with mullite-type crystal structure: Synthesis, characterization and {sup 18}O/{sup 16}O exchange experiment

    SciTech Connect

    Debnath, T.; Ruescher, C.H.; Fielitz, P.; Ohmann, S.; Borchardt, G.

    2010-11-15

    Series of compositions Bi{sub 2}(M'{sub x}M{sub 1-x}){sub 4}O{sub 9} with x=0.0, 0.1,..., 1.0 and M'/M=Ga/Al, Fe/Al and Fe/Ga were synthesized by dissolving appropriate amounts of corresponding metal nitrate hydrates in glycerine, followed by gelation, calcination and final heating at 800 {sup o}C for 24 h. The new compositions with M'/M=Ga/Al form solid-solution series, which are isotypes to the two other series M'/M=Fe/Al and Fe/Ga. The XRD data analysis yielded in all cases a linear dependence of the lattice parameters related on x. Rietveld structure refinements of the XRD patterns of the new compounds, Bi{sub 2}(Ga{sub x}Al{sub 1-x}){sub 4}O{sub 9} reveal a preferential occupation of Ga in tetrahedral site (4 h). The IR absorption spectra measured between 50 and 4000 cm{sup -1} of all systems show systematic shifts in peak positions related to the degree of substitution. Samples treated in {sup 18}O{sub 2} atmosphere (16 h at 800 {sup o}C, 200 mbar, 95% {sup 18}O{sub 2}) for {sup 18}O/{sup 16}O isotope exchange experiments show a well-separated IR absorption peak related to the M-{sup 18}O{sub c}-M vibration, where O{sub c} denotes the common oxygen of two tetrahedral type MO{sub 4} units. The intensity ratio of M-{sup 18}O{sub c}/M-{sup 16}O{sub c} IR absorption peaks and the average crystal sizes were used to estimate the tracer diffusion coefficients of polycrystalline Bi{sub 2}Al{sub 4}O{sub 9} (D=2x10{sup -22} m{sup 2}s{sup -1}), Bi{sub 2}Fe{sub 4}O{sub 9} (D=5x10{sup -21} m{sup 2}s{sup -1}), Bi{sub 2}(Ga/Al){sub 4}O{sub 9} (D=2x10{sup -21} m{sup 2}s{sup -1}) and Bi{sub 2}Ga{sub 4}O{sub 9} (D=2x10{sup -20} m{sup 2}s{sup -1}). - Graphical abstract: Fig. Perspective view of the mullite-type Bi{sub 2}(M'{sub x}M{sub 1-x}){sub 4}O{sub 9} unit cell (M', M=Al, Ga, Fe). Display Omitted

  10. Genesis of the Au-Bi-Cu-As, Cu-Mo ± W, and base-metal Au-Ag mineralization at the Mountain Freegold (Yukon, Canada): constraints from Ar-Ar and Re-Os geochronology and Pb and stable isotope compositions

    NASA Astrophysics Data System (ADS)

    Bineli Betsi, Thierry; Lentz, David; Chiaradia, Massimo; Kyser, Kurt; Creaser, Robert A.

    2013-12-01

    The genesis of mineralized systems across the Mountain Freegold area, in the Dawson Range Cu-Au ± Mo Belt of the Tintina Au province was constrained using Pb and stable isotope compositions and Ar-Ar and Re-Os geochronology. Pb isotope compositions of sulfides span a wide compositional range (206Pb/204Pb, 18.669-19.861; 208Pb/204Pb, 38.400-39.238) that overlaps the compositions of the spatially associated igneous rocks, thus indicating a magmatic origin for Pb and probably the other metals. Sulfur isotopic compositions of sulfide minerals are broadly similar and their δ34S (Vienna-Canyon Diablo Troilite (V-CDT)) values range from -1.4 to 3.6 ‰ consistent with the magmatic range, with the exception of stibnite from a Au-Sb-quartz vein, which has δ34S values between -8.1 and -3.1 ‰. The δ34S values of sulfates coexisting with sulfide are between 11.2 and 14.2 ‰; whereas, those from the weathering zone range from 3.7 to 4.3 ‰, indicating supergene sulfates derived from oxidation of hypogene sulfides. The δ13C (Vienna Peedee Belemnite (VPDB)) values of carbonate range from -4.9 to 1.1 ‰ and are higher than magmatic values. The δ18O (V-SMOW) values of magmatic quartz phenocrysts and magmatic least-altered rocks vary between 6.2 and 10.1 ‰ and between 5.0 and 10.1 ‰, respectively, whereas altered magmatic rocks and hydrothermal minerals (quartz and magnetite) are relatively 18O-depleted (4.2 to 7.9 ‰ and -6.3 to 1.5 ‰, respectively). Hydrogen isotope compositions of both least-altered and altered igneous rock samples are D-depleted (from -133 to -161 ‰ Vienna-Standard Mean Ocean Water (V-SMOW)), consistent with differential magma degassing and/or post-crystallization exchange between the rocks and meteoric ground water. Zircon from a chlorite-altered dike has a U-Pb crystallization age of 108.7 ± 0.4 Ma; whereas, the same sample yielded a whole-rock Ar-Ar plateau age of 76.25 ± 0.53 Ma. Likewise, molybdenite Re-Os model ages range from 75.8 to

  11. Microstructure and transport properties of epitaxial topological insulator Bi2Se3 thin films grown on MgO (100), Cr2O3 (0001), and Al2O3 (0001) templates

    NASA Astrophysics Data System (ADS)

    Lee, Y. F.; Kumar, R.; Hunte, F.; Narayan, J.; Schwartz, J.

    2015-09-01

    We report the epitaxial integration of defect-induced room temperature ferromagnetic insulators, Cr2O3 and MgO, with topological insulators Bi2Se3 on c-sapphire substrate by pulsed laser deposition. The structural, magnetic, and magnetotransport properties of ˜15 nm Bi2Se3 thin films are investigated on each template. The lattice misfits of Cr2O3/Bi2Se3 and MgO/Bi2Se3 are ˜16% and ˜39%, respectively, where the critical thickness for pseudomorphic growth is less than one monolayer. The insulating behavior is more pronounced due to the additional scattering of the surface states of the Bi2Se3 layer by interfacing with MgO and Cr2O3. The weak antilocalization effect from the surface states is clearly suppressed, accounting for the presence of magnetic bottom layers. This work demonstrates an effective way to study the emergence of a ferromagnetic phase in topological insulators by the magnetic proximity effect in Bi2Se3, a step toward unveiling their exotic properties.

  12. 100-MeV proton beam intensity measurement by Au activation analysis using 197Au(p, pn)196Au and 197Au(p, p3n)194Au reactions

    NASA Astrophysics Data System (ADS)

    Mokhtari Oranj, Leila; Jung, Nam-Suk; Oh, Joo-Hee; Lee, Hee-Seock

    2016-05-01

    The proton beam intensity of a 100-MeV proton linac at the Korea Multi-purpose Accelerator Complex (KOMAC) was measured by an Au activation analysis using 197Au(p, pn)196Au and 197Au(p, p3n)194Au reactions to determine the accuracy and precision of beam intensity measurement using Gafchromic film dosimetry method. The target, irradiated by 100-MeV protons, was arranged in a stack consisting of Au, Al foils and Pb plates. The yields of produced radio-nuclei in Au foils were obtained by gamma-ray spectroscopy. The FLUKA code was employed to calculate the energy spectrum of protons onto the front surface of Au foils located at three different depth points of the target and also to investigate the condition of incident beam on the target. A good agreement was found between the beam intensity measurements using the activation analysis method at three different depth points of the target. An excellent agreement was also observed between the beam intensity measurements using the Au activation analysis method and the dosimetry method using Gafchromic film.

  13. Size Dependent Plasmonic Effect on BiVO4 Photoanodes for Solar Water Splitting

    NASA Astrophysics Data System (ADS)

    Zhang, Liwu; Herrmann, Lars O.; Baumberg, Jeremy J.

    2015-11-01

    Plasmonic nanostructures show great promise in enhancing the solar water splitting efficiency due to their ability to confine light to extremely small volumes inside semiconductors. While size plays a critical role in the plasmonic performance of Au nanoparticles (AuNPs), its influence on plasmon-assisted water splitting is still not fully understood. This holds especially true for low band gap semiconductors, for which interband excitations occur in wavelength regions that overlap with plasmonic resonances. Here, BiVO4 films are modified with AuNPs of diameters varying from 10 to 80 nm to study the size dependence of the plasmonic effect. Plasmon resonance energy transfer (PRET) is found to be the dominant effect in enhancing the water splitting efficiency of BiVO4. “Hot electron” injection effect is weak in the case of BiVO4/AuNP. This is attributed to the interband excitation of BiVO4, which is unfavourable for the hot electrons accumulation in BiVO4 conduction band. The resonant scattering effect also contributes to the enhanced water splitting efficiency for the larger diameter AuNPs. It is also for the first time found that higher PRET effect can be achieved at larger off-normal irradiation angle.

  14. Size Dependent Plasmonic Effect on BiVO4 Photoanodes for Solar Water Splitting

    PubMed Central

    Zhang, Liwu; Herrmann, Lars O.; Baumberg, Jeremy J.

    2015-01-01

    Plasmonic nanostructures show great promise in enhancing the solar water splitting efficiency due to their ability to confine light to extremely small volumes inside semiconductors. While size plays a critical role in the plasmonic performance of Au nanoparticles (AuNPs), its influence on plasmon-assisted water splitting is still not fully understood. This holds especially true for low band gap semiconductors, for which interband excitations occur in wavelength regions that overlap with plasmonic resonances. Here, BiVO4 films are modified with AuNPs of diameters varying from 10 to 80 nm to study the size dependence of the plasmonic effect. Plasmon resonance energy transfer (PRET) is found to be the dominant effect in enhancing the water splitting efficiency of BiVO4. “Hot electron” injection effect is weak in the case of BiVO4/AuNP. This is attributed to the interband excitation of BiVO4, which is unfavourable for the hot electrons accumulation in BiVO4 conduction band. The resonant scattering effect also contributes to the enhanced water splitting efficiency for the larger diameter AuNPs. It is also for the first time found that higher PRET effect can be achieved at larger off-normal irradiation angle. PMID:26581942

  15. Photoionization of Au+, Au2+, and Au3+ ions and developments in the synthesis of the metallofullerene Au@C60

    NASA Astrophysics Data System (ADS)

    Kilcoyne, A. L. David; Muller, Alfred; Schippers, Stefan; Hellhund, Jonas; Borovik, Alexander; Mueller, Allison; Gross, Dylan; Johnson, Andrea; Macaluso, David; A. L. D. Kilcoyne Collaboration

    2015-05-01

    Absolute single photoionization of Au+, Au2+, and Au3+ ions was investigated via the merged-beams technique at AMO Beamline 10.0.1.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. The absolute single photoionization yield was measured as a function of photon energy for each species from the metastable state ionization threshold region to well above the ground state ionization potential. Additional high-resolution measurements were performed for Au+ and Au2+ ions in the region of the ground and metastable state ionization thresholds to better resolve the detailed resonant structure found therein. This structure was used, along with the reported excited state energy levels of Au+, to preliminarily identify previously unreported excitation levels in all three ions. In addition and as a component of the same program, photoionization studies of the endohedral metallofullerene Au@C60+were performed using endohedral fullerene samples synthesized on-site at Beamline 10.0.1.2 of the ALS.

  16. Strategic BI for All

    ERIC Educational Resources Information Center

    Raths, David

    2008-01-01

    Implementing a complex business intelligence (BI) system at a small school or one with limited resources can seem daunting. For small to midsize schools and community colleges, a strategic BI initiative may still be an elusive goal. This article discusses how schools with limited resources are making the dream a reality.

  17. From the Ternary Eu(Au/In)2 and EuAu4(Au/In)2 with Remarkable Au/In Distributions to a New Structure Type: The Gold-Rich Eu5Au16(Au/In)6 Structure.

    PubMed

    Steinberg, Simon; Card, Nathan; Mudring, Anja-Verena

    2015-09-01

    The ternary Eu(Au/In)2 (EuAu(0.46)In(1.54(2))) (I), EuAu4(Au/In)2 (EuAu(4+x)In(2-x) with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu5Au16(Au/In)6 (Eu5Au(17.29)In(4.71(3))) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl4Mo2-type (tI14; I4/mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed of an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squared Au8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu5Au16(Au/In)6 (Eu5Au(17.29)In(4.71(3))) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu2-"EuAu4In2". The site preferences of the disordered Au/In positions in II were investigated for different hypothetical "EuAu4(Au/In)2" models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au-In contacts. A chemical bonding analysis on two "EuAu5In" and "EuAu4In2" models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems. PMID:26270622

  18. Peculiarities of Bi 0 nanowire arrays growth within the alumina template pores by ac electrolysis

    NASA Astrophysics Data System (ADS)

    Jagminas, A.; Valsiūnas, I.; Šimkūnaitė, B.; Vaitkus, R.

    2008-09-01

    A stable aqueous solution, well-compatible with the template material, was developed with interest to synthesize densely packed arrays of pure phase Bi 0 nanowires (nws) in micrometer length using various alumina templates and a simple alternating current (ac) deposition protocol. Structural, morphological and optical features exhibited by Bi 0 nw arrays were studied ex-situ for several alumina templates with average ∅pore from 10 to 100 nm. The blue-shift effect in the absorption energy of the Bi 0 nw arrays with decrease in ∅Bi is demonstrated. Cyclic voltammograms recorded in-situ in the studied solution for polycrystalline Au, Pt, Bi and nano-Bi 0/alumina electrodes are also presented, composed and discussed.

  19. Ultra-relativistic Au+Au and d+Au collisions:

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    In this talk I will review PHOBOS data on charged particle multiplicities, obtained in Au+Au and d+Au collisions at RHIC. The general features of the Au+Au pseudorapidity distributions results will be discussed and compared to those of /line{p}p collisions. The total charged particle multiplicity, scaled by the number of participant pairs, is observed to be about 40% higher in Au+Au collisions than in /line{p}p and d+Au systems, but, surprisingly at the same level of e+e- collisions. Limiting fragmentation scaling is seen to be obeyed in Au+Au collisions.

  20. Vacuum synthesis of magnetic aluminum phthalocyanine on Au(111).

    PubMed

    Hong, I-Po; Li, Na; Zhang, Ya-Jie; Wang, Hao; Song, Huan-Jun; Bai, Mei-Lin; Zhou, Xiong; Li, Jian-Long; Gu, Gao-Chen; Zhang, Xue; Chen, Min; Gottfried, J Michael; Wang, Dong; Lü, Jing-Tao; Peng, Lian-Mao; Hou, Shi-Min; Berndt, Richard; Wu, Kai; Wang, Yong-Feng

    2016-08-16

    Air-unstable magnetic aluminum phthalocyanine (AlPc) molecules are prepared by an on-surface metalation reaction of phthalocyanine with aluminum (Al) atoms on Au(111) in ultrahigh vacuum. Experiments and density functional theory calculations show that an unpaired spin is located on the conjugated isoindole lobes of the molecule rather than at the Al position. PMID:27406881

  1. From the ternary Eu(Au/In)2 and EuAu4(Au/In)2 with remarkable Au/In distributions to a new structure type: The gold-rich Eu5Au16(Au/In)6 structure

    DOE PAGESBeta

    Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena

    2015-08-13

    The ternary Eu(Au/In)2 (EuAu0.46In1.54(2)) (I), EuAu4(Au/In)2 (EuAu4+xIn2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl4Mo2-type (tI14; I4/mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed of an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squaredmore » Au8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu2–“EuAu4In2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu4(Au/In)2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu5In” and “EuAu4In2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.« less

  2. Effect of top electrodes on photovoltaic properties of polycrystalline BiFeO3 based thin film capacitors

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Li, Mi; Liu, Yiwei; Zuo, Zhenghu; Zhuge, Fei; Zhan, Qing-Feng; Li, Run-Wei

    2011-05-01

    We investigated capacitors based on polycrystalline narrow-band-gap BiFeO3 (BFO) thin films with different top electrodes. The photovoltaic response for the capacitor with a Sn-doped In2O3 (ITO) top electrode is about 25 times higher than that with a Au top electrode, which indicates that the electrode plays a key role in determining the photovoltaic response of ferroelectric thin film capacitors, as simulated by Qin et al (2009 Appl. Phys. Lett. 95 22912). The light-to-electricity photovoltaic efficiency for the ITO/polycrystalline BFO/Pt capacitor can reach 0.125%. Furthermore, under incident light of 450 µW cm - 2 and zero bias, the corresponding photocurrent varies from 0.2 to 200 pA, that is, almost a 1000-fold photoconductivity enhancement. Our experiments suggest that polycrystalline BFO films are promising materials for application in photo-sensitive and energy-related devices.

  3. Exploratory Bi-Factor Analysis

    ERIC Educational Resources Information Center

    Jennrich, Robert I.; Bentler, Peter M.

    2011-01-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger. The bi-factor model has a general factor and a number of group factors. The purpose of this article is to introduce an exploratory form of bi-factor analysis. An advantage of using exploratory bi-factor analysis is that one need not provide a specific…

  4. Collective flow in Au + Au collisions

    SciTech Connect

    Ritter, H.G.; EOS Collaboration

    1994-05-01

    Based on a preliminary sample of Au + Au collisions in the EOS time projection chamber at the Bevalac, we study sideward flow as a function of bombarding energy between 0.25A GeV and 1.2A GeV. We focus on the increase in in-plane transverse momentum per nucleon with fragment mass. We also find event shapes to be close to spherical in the most central collisions, independent of bombarding energy and fragment mass up to {sup 4}He.

  5. Gas phase selective hydrogenation over oxide supported Ni-Au.

    PubMed

    Cárdenas-Lizana, Fernando; Keane, Mark A

    2015-11-14

    The chemoselective continuous gas phase (T = 573 K; P = 1 atm) hydrogenation of nitroarenes (p-chloronitrobenzene (p-CNB) and m-dinitrobenzene (m-DNB)) has been investigated over a series of oxide (Al2O3 and TiO2) supported Au and Ni-Au (1 : 10 mol ratio; 0.1-1 mol% Au) catalysts. Monometallic supported Au with mean particle size 3-9 nm promoted exclusive formation of p-chloroaniline (p-CAN) and m-nitroaniline (m-NAN). Selective hydrogenation rate was higher over smaller Au particles and can be attributed to increased surface hydrogen (from TPD measurements) at higher metal dispersion. (S)TEM analysis has confirmed an equivalent metal particle size for the supported bimetallics at the same Au loading where TPR indicates Ni-Au interaction and EDX surface mapping established Ni in close proximity to Au on isolated nanoparticles with a composition (Au/Ni) close to the bulk value (= 10). Increased spillover hydrogen due to the incorporation of Ni in the bimetallics resulted in elevated -NO2 group reduction rate. Full selectivity to p-CAN was maintained over all the bimetallic catalysts. Conversion of m-DNB over the lower loaded Ni-Au/Al2O3 generated m-NAN as sole product. An increase in Ni content (0.01 → 0.1 mol%) or a switch from Al2O3 to TiO2 as support resulted in full -NO2 reduction (to m-phenylenediamine). Our results demonstrate the viability of Ni-promotion of Au in the continuous production of functionalised anilines. PMID:25752655

  6. Modeling non-equilibrium phase transitions in isentropically compressed Bi

    SciTech Connect

    Kane, J; Smith, R

    2005-09-19

    We report here on modeling of non-equilibrium phase transitions in Bi samples isentropically compressed to 120 GPa by a ramped drive, which is produced using the Janus laser. In the experiments, the Bi samples are attached to windows of LiF or sapphire, and the velocity history of the sample-window interface is recorded with line VISAR. The 1D response of the targets is modeled using a multiphase Bi EOS, the Andrews-Hayes method for non-equilibrium transitions, and a Boettger-Wallace kinetics model. The pressure drive is deduced by back integration of VISAR data from shots performed with Al samples.

  7. Ion-beam-induced nanodots formation from Au/Si thin films on quartz surface

    NASA Astrophysics Data System (ADS)

    Datta, D. P.; Siva, V.; Singh, A.; Joshi, S. R.; Kanjilal, D.; Sahoo, P. K.

    2016-07-01

    We report the synthesis of Si nanodots on quartz surface using ion irradiation. When a bi-layer of ultrathin Au and Si on quartz surface is irradiated by 500 keV Xe-ion beam, the bi-layer spontaneously transforms into nanodots at a fluence of 5 × 1014 ions cm-2. The spatial density and diameter of the nanodots are reduced with increase in applied ion fluence. The nanostructures exhibit photoluminescence in the visible range at room temperature where the intensity and wavelength depends upon ion fluence. The observed evolution seems to be correlated to ion beam mixing induced silicide formation at Au-Si interface.

  8. Gold-gold bonding: the key to stabilizing the 19-electron ternary phases LnAuSb (Ln = La-Nd and Sm).

    PubMed

    Seibel, Elizabeth M; Schoop, Leslie M; Xie, Weiwei; Gibson, Quinn D; Webb, James B; Fuccillo, Michael K; Krizan, Jason W; Cava, Robert J

    2015-01-28

    We report a new family of ternary 111 hexagonal LnAuSb (Ln = La-Nd, Sm) compounds that, with a 19 valence electron count, has one extra electron compared to all other known LnAuZ compounds. LaAuSb, CeAuSb, PrAuSb, NdAuSb, and SmAuSb crystallize in the YPtAs-type structure, and have a doubled unit cell compared to other LnAuZ phases as a result of the buckling of the Au-Sb honeycomb layers to create interlayer Au-Au dimers. The dimers accommodate the one excess electron per Au and thus these new phases can be considered Ln2(3+)(Au-Au)(0)Sb2(3-). Band structure, density of states, and crystal orbital calculations confirm this picture, which results in a nearly complete band gap between full and empty electronic states and stable compounds; we can thus present a structural stability phase diagram for the LnAuZ (Z = Ge, As, Sn, Sb, Pb, Bi) family of phases. Those calculations also show that LaAuSb has a bulk Dirac cone below the Fermi level. The YPtAs-type LnAuSb family reported here is an example of the uniqueness of gold chemistry applied to a rigidly closed shell system in an unconventional way. PMID:25543990

  9. High energy, low temperature gelled bi-propellant formulation

    NASA Technical Reports Server (NTRS)

    Di Salvo, Roberto (Inventor)

    2011-01-01

    The present invention is a bi-propellant system comprising a gelled liquid propane (GLP) fuel and a gelled MON-30 (70% N.sub.2O.sub.4+30% NO) oxidizer. The bi-propellant system is particularly well-suited for outer planet missions greater than 3 AU from the sun and also functions in earth and near earth environments. Additives such as powders of boron, carbon, lithium, and/or aluminum can be added to the fuel component to improve performance or enhance hypergolicity. The gelling agent can be silicon dioxide, clay, carbon, or organic or inorganic polymers. The bi-propellant system may be, but need not be, hypergolic.

  10. Immobilization of aptamer-modified gold nanoparticles on BiOCl nanosheets: Tunable peroxidase-like activity by protein recognition.

    PubMed

    Hsu, Chia-Lun; Lien, Chia-Wen; Wang, Chia-Wei; Harroun, Scott G; Huang, Chih-Ching; Chang, Huan-Tsung

    2016-01-15

    A self-assembled nanocomposite is prepared from an aqueous mixture of aptamer-modified gold nanoparticles (Apt-Au NPs), bismuth ions and chloride ions. The Apt-Au NPs are immobilized on bismuth oxychloride (BiOCl) nanosheets in situ to form Apt-Au NPs/BiOCl nanocomposites. The as-prepared nanocomposites exhibit high peroxidase-like activity for the catalytic conversion of Amplex Red (AR) to fluorescent resorufin in the presence of H2O2. The catalytic activity of Apt-Au NPs/BiOCl nanocomposites is at least 90-fold higher than that of Apt-Au NPs or BiOCl nanosheets, revealing synergistic effects on their activity. The catalytic activity of Apt-Au NPs/BiOCl nanocomposites is suppressed by vascular endothelial growth factor-A165 (VEGF-A165) molecules that specifically interact with the aptamer units (Del-5-1 and v7t-1) on the nanocomposite surface. The AR/H2O2-Apt-Au NPs/BiOCl nanocomposites probe shows high selectivity (>1000-fold over other proteins) and sensitivity (detection limit ~0.5nM) for the detection of VEGF-A165. Furthermore, the probe is employed for the detection of VEGF isoforms and for the study of interactions between VEGF and VEGF receptors. The practicality of this simple, rapid, cost-effective probe is validated by the analysis of VEGF-A165 in cell culture media, showing its great potential for the analysis of VEGF in biological samples. PMID:26318787

  11. Formation and stability of dense arrays of Au nanoclusters on hexagonal boron nitride/Rh(111)

    NASA Astrophysics Data System (ADS)

    Patterson, Matthew C.; Habenicht, Bradley F.; Kurtz, Richard L.; Liu, Li; Xu, Ye; Sprunger, Phillip T.

    2014-05-01

    We have studied the nucleation and growth of Au clusters at submonolayer and greater coverages on the h-BN nanomesh grown on Rh(111) by means of scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), and density functional theory (DFT). STM reveals that submonolayer Au deposited at 115 K nucleates within the nanomesh pores and remains confined to the pores even after warming to room temperature. Whereas there is a propensity of monoatomic high islands at low temperature, upon annealing, bi- and multilayer Au clusters emerge. Deposition of higher coverages of Au similarly results in Au clusters primarily confined to the nanomesh pores at room temperature. XPS analysis of core-level electronic states in the deposited Au shows strong final-state effects induced by restricted particle size dominating for low Au coverage, with indications that larger Au clusters are negatively charged by interaction through the h-BN monolayer. DFT calculations suggest that the structure of the Au clusters transitions from monolayer to bilayer at a size between 30 and 37 atoms per cluster, in line with our experiment. Bader charge analysis supports the negative charge state of deposited Au.

  12. Gold Apes Hydrogen. The Structure and Bonding in the Planar B7Au2- and B7Au2 Clusters

    SciTech Connect

    Zhai, Hua JIN.; Wang, Lai S.; Zubarev, Dmitry Y.; Boldyrev, Alexander I.

    2006-02-09

    We produced the B7Au2- mixed cluster and studied its electronic structure and chemical bonding using photoelectron spectroscopy and ab initio calculations. The photoelectron spectra of B7Au2- were observed to be relatively simple with vibrational resolution, in contrast to the complicated spectra observed for pure B7-, which had contributions from three isomers (Alexandrova et al., J. Phys. Chem. A, 2004, 108, 3509). Theoretical calculations show that B7Au2- possesses an extremely stable planar structure, identical to that of B7H2-, demonstrating that Au mimics H in its bonding to boron, analogous to the Au-Si bonding. The ground state structure of B7Au2- (B7H2-) can be viewed as adding two Au (H) atoms to the terminal B atoms of a higher-lying planar isomer of B7-. The bonding and stability in the planar B7Au2- (B7H2-) clusters are elucidated on the basis of the strong covalent B-Au (H) bonding and the concepts of aromaticity/antiaromaticity in these systems.

  13. Temperature- and field-dependent critical currents in [(Bi,Pb)2Sr2Ca2Cu3Ox]0.07(La0.7Sr0.3MnO3)0.03 thick films grown on LaAlO3 substrates

    NASA Astrophysics Data System (ADS)

    Paredes, Omar; Morán, Oswaldo; Baca, Eval

    2013-01-01

    La0.7Sr0.3MnO3 (LSMO) nanoparticles were embedded in (Bi,Pb)2Sr2Ca2Cu3Ox (Bi2223) thick films, which were grown by simple melting-quenching-annealing (MQA) method on (001)-oriented LaAlO3 (LAO) substrates. The nominal composition of the composite-like hybrid system was (Bi2223)1-x(LSMO)x with x = 0.03. The constituent elements, Bi2223 and LSMO, were prepared separately by standard solid state reaction and Pechini's method, respectively. The analysis of the X-ray diffraction patterns suggested a polycrystalline growth mode of the thick films on the LAO substrates. From electric transport measurements, the superconducting onset temperature and the superconducting critical temperature (ρ = 0) ended up being 105 and 62 K, respectively. The flux pinning energy U was determined using the Anderson-Kim model. The value of U was compared with those obtained for similar samples with concentrations x = 0.01 and x = 0.05. Current-voltage characteristics were recorded at different temperatures in order to analyze the behavior of the superconducting current (Ic) of the films. A dramatic drop of Ic was observed at ˜20 K. This seems to be linked to the presence of flux creep acting as dissipation factors attributed to LSMO nanoparticles. Isothermal magnetization loops recorded at T < Tc and T > Tc showed clear diamagnetic and ferromagnetic signals, which verify the multifunctional character of the system. Based on the isothermal M(H)-loops recorded at 5, 20, and 40 K and taking Kim's model into account, the dependence of superconducting current density (Jc), and the volume pinning force (Fp) on the magnetic field were calculated. The dependence Jc(B) at 5 K showed an exponential-type behavior, which is described by an empirical equation. This empirical equation considers the maximum value of Fp, which may be scaled with the Kramer's expression for Fp. From this scaling procedure, diverse exponents, associated with different pinning mechanisms, were determined. The drastic fall

  14. High Bi content GaSbBi alloys

    NASA Astrophysics Data System (ADS)

    Rajpalke, M. K.; Linhart, W. M.; Birkett, M.; Yu, K. M.; Alaria, J.; Kopaczek, J.; Kudrawiec, R.; Jones, T. S.; Ashwin, M. J.; Veal, T. D.

    2014-07-01

    The epitaxial growth, structural, and optical properties of GaSb1-xBix alloys have been investigated. The Bi incorporation into GaSb is varied in the range 0 < x ≤ 9.6% by varying the growth rate (0.31-1.33 μm h-1) at two growth temperatures (250 and 275 °C). The Bi content is inversely proportional to the growth rate, but with higher Bi contents achieved at 250 than at 275 °C. A maximum Bi content of x = 9.6% is achieved with the Bi greater than 99% substitutional. Extrapolating the linear variation of lattice parameter with Bi content in the GaSbBi films enabled a zinc blende GaBi lattice parameter to be estimated of 6.272 Å. The band gap at 300 K of the GaSbBi epitaxial layers decreases linearly with increasing Bi content down to 410 ± 40 meV (3 μm) for x = 9.6%, corresponding to a reduction of ˜35 meV/%Bi. Photoluminescence indicates a band gap of 490 ± 5 meV at 15 K for x = 9.6%.

  15. Spin polarized current injection through HgBr{sub 2} intercalated Bi2212 intrinsic Josephson junctions.

    SciTech Connect

    Ozyuzer, L.; Kurter, C.; Ozdemir, M.; Zasadzinski, J. F.; Gray, K. E.; Hinks, D. G.

    2007-06-01

    To investigate the effect of polarized current on tunneling characteristics of intrinsic Josephson junctions (IJJs), spin-polarized and spin-degenerate current have been injected through the c-axis of HgBr{sub 2} intercalated Bi{sub 2.1}Sr{sub 1.5}Ca{sub 1.4}Cu{sub 2}O{sub 8+delta} (Bi2212) single crystals on which 10 times 10 mum{sup 2} mesas have been fabricated. These two spin conditions are achieved by depositing either Au (15 nm)/Co (80 nm)/Au (156 nm) multilayers or single Au film on HgBr{sub 2} intercalated Bi2212 with T{sub c} = 74 K followed by photolithography and Ar ion beam etching. The I-V characteristics have been measured with and without a magnetic field parallel to c-axis at 4.2 K. A fine, soft Au wire is used to make a gentle mechanical contact on the top of a particular mesa in the array. Tunneling conductance characteristics were obtained and the magnetic field dependence of sumgap voltage peaks was investigated. These peaks do not change in position with increasing magnetic field for both contact configurations. In addition, the temperature dependence of tunneling characteristics of the IJJs are obtained and existence of pseudogap feature is observed above T{sub c} for HgBr{sub 2} intercalated Bi2212.

  16. BI Project Success

    ERIC Educational Resources Information Center

    Tracey, Graham; Riha, James

    2009-01-01

    Managing business intelligence (BI) projects in higher education is a formidable responsibility that challenges even the most experienced technical project managers. Data source dependencies, uncertain data quality, changing information requirements, and urgency for actionable information are but a few examples among the multitude of challenges.…

  17. A complete strain–temperature phase diagram for BiFeO3 films on SrTiO3 and LaAlO3 (0 0 1) substrates

    SciTech Connect

    Siemons, W.; Beekman, C.; MacDougall, G. J.; Zarestky, Jerel L.; Nagler, S. E.; Christen, H. M.

    2013-12-23

    BiFeO3 has a complex phase diagram as function of both strain and temperature, undergoing a morphotropic phase transformation under large compressive strain. Epitaxial films, grown by pulsed laser deposition, are ideal for the study of the intricate phase coexistence between multiple polymporphs. Three polymorphs have been identified in the literature. They are carefully described in this paper (labelled R', T', and S'). As both ferroelectric and magnetic properties are typically strongly linked to structural distortions, the structural, ferroelectric and magnetic transition temperatures are expected to differ between the R', T' and S' polymorphs. In this paper we present a complete strain–temperature phase diagram for each of the polymorphs.

  18. A complete strain–temperature phase diagram for BiFeO3 films on SrTiO3 and LaAlO3 (0 0 1) substrates

    SciTech Connect

    Siemons, W.; Beekman, C.; MacDougall, G. J.; Zarestky, Jerel L.; Nagler, S E.; Christen, H. M.

    2013-10-29

    BiFeO3 has a complex phase diagram as function of both strain and temperature, undergoing a morphotropic phase transformation under large compressive strain. Epitaxial films, grown by pulsed laser deposition, are ideal for the study of the intricate phase coexistence between multiple polymporphs. Three polymorphs have been identified in the literature. They are carefully described in this paper (labelled R', T', and S'). As both ferroelectric and magnetic properties are typically strongly linked to structural distortions, the structural, ferroelectric and magnetic transition temperatures are expected to differ between the R', T' and S' polymorphs. In this paper we present a complete strain–temperature phase diagram for each of the polymorphs.

  19. Relativistic multireference many-body perturbation theory calculations on Au64+ - Au69+ ions

    SciTech Connect

    Vilkas, M J; Ishikawa, Y; Trabert, E

    2006-03-31

    Many-body perturbation theory (MBPT) calculations are an adequate tool for the description of the structure of highly charged multi-electron ions and for the analysis of their spectra. They demonstrate this by way of a re-investigation of n=3, {Delta}n=0 transitions in the EUV spectra of Na-, Mg-, Al-like, and Si-like ions of Au that have been obtained previously by heavy-ion accelerator based beam-foil spectroscopy. They discuss the evidence and propose several revisions on the basis of the multi-reference many-body perturbation theory calculations of Ne- through P-like ions of Au.

  20. Theoretical studies on the bonding and electron structures of a [Au3Sb6](3-) complex and its oligomers.

    PubMed

    Li, Wan-Lu; Xu, Cong-Qiao; Hu, Shu-Xian; Li, Jun

    2016-08-01

    Recently an all-metal aromatic sandwich compound of a [Sb3Au3Sb3](3-) ion has been synthesized and characterized experimentally, which indicates that there might exist a variety of stable all-metal sandwich complexes. The intralayer and interlayer chemical bonding interaction in this system plays significant roles in their stability, chemical properties and functionalities. Here we report a systematic theoretical study on the geometries, electronic structures, and chemical bonding of the [Sb3Au3Sb3](3-) ion and its congeners of [X3Au3X3](3-) (X = N, P, As, Sb, Bi, Uup) as well as [X3M3X3](3-) (M, X = Cu, As; Ag, Bi; Au, Sb; Rg, Uup) to understand the special stabilities of these species. Additional studies are also performed on the oligomers [Sb3(Au3Sb3)n](3-) (n = 1-4) to explore whether the sandwich compound can form stable extended systems. Through extensive theoretical analyses, we have shown that among the [Au3X6](3-) (X = N, P, As, Sb, Bi, Uup) species, [Sb3Au3Sb3](3-) is most stable due to superb matching of Sb3 and Au3 in both geometric size and fragment orbital energies. The significant stability of the [Au3Sb6](3-) ion is determined by the interlayer (p-d-p)σ interactions between the vertical Au 5d6s hybrid orbitals of Au3 and Sb 5pπ orbitals of the Sb3 rings. Each Sb3 ring demonstrates unique σ aromaticity, which remains when the complex is extended to oligomers. The results suggest that it is likely that there might exist other stable [ApMpAp](x-) (M = transition metals, A = main group elements, p = 3, 4, 5, …) sandwich ions and oligomers. PMID:27010416

  1. Crystal structure and electronic properties of a thiolate-protected Au24 nanocluster

    NASA Astrophysics Data System (ADS)

    Das, Anindita; Li, Tao; Li, Gao; Nobusada, Katsuyuki; Zeng, Chenjie; Rosi, Nathaniel L.; Jin, Rongchao

    2014-05-01

    Solving the total structures of gold nanoclusters is of critical importance for understanding their electronic, optical and catalytic properties. Herein, we report the X-ray structure of a charge-neutral Au24(SCH2Ph-tBu)20 nanocluster. This structure features a bi-tetrahedral Au8 kernel protected by four tetrameric staple-like motifs. Electronic structure analysis is further carried out and the optical absorption spectrum is interpreted. The Au24(SCH2Ph-tBu)20, Au23(S-c-C6H11)16 and Au25(SCH2CH2Ph)18 nanoclusters constitute the first crystallographically characterized ``trio''.Solving the total structures of gold nanoclusters is of critical importance for understanding their electronic, optical and catalytic properties. Herein, we report the X-ray structure of a charge-neutral Au24(SCH2Ph-tBu)20 nanocluster. This structure features a bi-tetrahedral Au8 kernel protected by four tetrameric staple-like motifs. Electronic structure analysis is further carried out and the optical absorption spectrum is interpreted. The Au24(SCH2Ph-tBu)20, Au23(S-c-C6H11)16 and Au25(SCH2CH2Ph)18 nanoclusters constitute the first crystallographically characterized ``trio''. Electronic supplementary information (ESI) available: Experimental and supporting Fig. S1-S3. CCDC NUMBER(1000102). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4nr01350f

  2. Atomic and electronic structures of Si(1 1 1)-(√3 x √3)R30°-Au and (6 × 6)-Au surfaces.

    PubMed

    Patterson, C H

    2015-12-01

    Si(1 1 1)-Au surfaces with around one monolayer of Au exhibit many ordered structures and structures containing disordered domain walls. Hybrid density functional theory (DFT) calculations presented here reveal the origin of these complex structures and tendency to form domain walls. The conjugate honeycomb chain trimer (CHCT) structure of the [Formula: see text]-Au phase contains Si atoms with non-bonding surface states which can bind Au atoms in pairs in interstices of the CHCT structure and make this surface metallic. Si adatoms adsorbed on the [Formula: see text]-Au surface induce a gapped surface through interaction with the non-bonding states. Adsorption of extra Au atoms in interstitial sites of the [Formula: see text]-Au surface is stabilized by interaction with the non-bonding orbitals and leads to higher coverage ordered structures including the [Formula: see text]-Au phase. Extra Au atoms bound in interstitial sites of the [Formula: see text]-Au surface result in top layer Si atoms with an SiAu4 butterfly wing configuration. The structure of a [Formula: see text]-Au phase, whose in-plane top atomic layer positions were previously determined by an electron holography technique (Grozea et al 1998 Surf. Sci. 418 32), is calculated using total energy minimization. The Patterson function for this structure is calculated and is in good agreement with data from an in-plane x-ray diffraction study (Dornisch et al 1991 Phys. Rev. B 44 11221). Filled and empty state scanning tunneling microscopy (STM) images are calculated for domain walls and the [Formula: see text]-Au structure. The [Formula: see text]-Au phase is 2D chiral and this is evident in computed and actual STM images. [Formula: see text]-Au and domain wall structures contain the SiAu4 motif with a butterfly wing shape. Chemical bonding within the Si-Au top layers of the [Formula: see text]-Au and [Formula: see text]-Au surfaces is analyzed and an explanation for the SiAu4 motif structure is given. PMID

  3. Polar and nonpolar phases of BiMO{sub 3}: A review

    SciTech Connect

    Belik, Alexei A.

    2012-11-15

    Simple Bi-based compounds, BiMO{sub 3}, are quite interesting materials. They offer large variations in crystal symmetries, polarity, and properties. Their chemical simplicity makes them ideal systems for materials fabrications, theoretical understanding, and thin-film growths. They can only be prepared at high-pressure high-temperature conditions (except for BiFeO{sub 3}) in a bulk form. Some of them can be stabilized in thin films (M=Al, Sc, Cr, Mn, and Fe). In this review, we collect and analyze the recent experimental and theoretical results on BiMO{sub 3} with M=Al, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Ga, In, and Rh. In addition, unresolved problems and desirable future experiments are emphasized especially for the highly controversial compound BiMnO{sub 3}. - Graphical abstract: Crystal symmetries in which BiMO{sub 3} compounds crystallize. Highlights: Black-Right-Pointing-Pointer BiMO{sub 3} compounds offer large variations in crystal symmetries, polarity, and properties. Black-Right-Pointing-Pointer Experimental and theoretical results on BiMO{sub 3} were reviewed. Black-Right-Pointing-Pointer Unresolved problems and desirable future experiments are emphasized. Black-Right-Pointing-Pointer Special attention is paid on the highly controversial compound BiMnO{sub 3}.

  4. Non-linear Electrical Characteristics of ZnO Modified by Trioxides Sb2O3, Bi2O3, Fe2O3, Al2O3 and La2O3

    NASA Astrophysics Data System (ADS)

    Mekap, Anita; Das, Piyush R.; Choudhary, R. N. P.

    2016-08-01

    The non-linear behavior of polycrystalline-ZnO-based voltage-dependent resistors is considered in the present study. A high-temperature solid-state reaction route was used to synthesize polycrystalline samples of ZnO modified by small amounts of the trioxides Sb2O3, Bi2O3, Fe2O3, etc. in various proportions. X-ray diffraction and scanning electron microscopy techniques were used to study the structural and microstructural characteristics of modified ZnO. Detailed studies of non-linear phenomena of the I-V characteristics, dielectric permittivity ( ɛ r), impedance ( Z), etc. of the samples have provided many interesting results. All the samples exhibited dielectric anomaly. Non-linear variation in polarization with electric field for all the samples was observed. Moreover, significant non-linearity in the I-V characteristics was observed in the breakdown region of all the samples at room temperature. The non-linear coefficient ( α) in different cases, i.e. for I- V, ɛ r- f, ɛ r- T, and ɛ r- Z, was calculated and found to be appreciable. The frequency dependence of ac conductivity suggests that the material obeys Jonscher's universal power law.

  5. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Deditius, Artur P.; Reich, Martin; Kesler, Stephen E.; Utsunomiya, Satoshi; Chryssoulis, Stephen L.; Walshe, John; Ewing, Rodney C.

    2014-09-01

    The ubiquity of Au-bearing arsenian pyrite in hydrothermal ore deposits suggests that the coupled geochemical behaviour of Au and As in this sulfide occurs under a wide range of physico-chemical conditions. Despite significant advances in the last 20 years, fundamental factors controlling Au and As ratios in pyrite from ore deposits remain poorly known. Here we explore these constraints using new and previously published EMPA, LA-ICP-MS, SIMS, and μ-PIXE analyses of As and Au in pyrite from Carlin-type Au, epithermal Au, porphyry Cu, Cu-Au, and orogenic Au deposits, volcanogenic massive sulfide (VHMS), Witwatersrand Au, iron oxide copper gold (IOCG), and coal deposits. Pyrite included in the data compilation formed under temperatures from ∼30 to ∼600 °C and in a wide variety of geological environments. The pyrite Au-As data form a wedge-shaped zone in compositional space, and the fact that most data points plot below the solid solubility limit defined by Reich et al. (2005) indicate that Au1+ is the dominant form of Au in arsenian pyrite and that Au-bearing ore fluids that deposit this sulfide are mostly undersaturated with respect to native Au. The analytical data also show that the solid solubility limit of Au in arsenian pyrite defined by an Au/As ratio of 0.02 is independent of the geochemical environment of pyrite formation and rather depends on the crystal-chemical properties of pyrite and post-depositional alteration. Compilation of Au-As concentrations and formation temperatures for pyrite indicates that Au and As solubility in pyrite is retrograde; Au and As contents decrease as a function of increasing temperature from ∼200 to ∼500 °C. Based on these results, two major Au-As trends for Au-bearing arsenian pyrite from ore deposits are defined. One trend is formed by pyrites from Carlin-type and orogenic Au deposits where compositions are largely controlled by fluid-rock interactions and/or can be highly perturbed by changes in temperature and

  6. Bi-phase transition diagrams of metallic thin multilayers

    SciTech Connect

    Li, J.C.; Liu, W.; Jiang, Q. . E-mail: jiangq@jlu.edu.cn

    2005-02-01

    Phase transitions of metallic multilayers induced by differences in interface energy are considered thermodynamically, based on a thermodynamic model for interface energy and the Goldschmidt premise for lattice contraction. Bi-phase transition diagrams of Co/Cr, Zr/Nb, Ti/Nb and Ti/Al multilayers are constructed, which are in agreement with experimental results.

  7. Processing-microstructure-property relationships of Al[sub 2]O[sub 3]-fiber-reinforced high-temperature superconducting (Bi,Pb)[sub 2]Sr[sub 2]Ca[sub 2]Cu[sub 3]O[sub y] composite

    SciTech Connect

    Wong, M.S.; Miyase, A.; Yuan, Y.S.; Wang, S.S. )

    1994-11-01

    Monolithic high-temperature superconducting (HTS) materials are recognized to have inherently weak mechanical properties, such as low strength and fracture toughness. These drawbacks usually can be improved by introducing strong continuous fibers into the brittle ceramic materials. In this study, a systematic investigation on the relationships among processing variables, microstructure, and superconducting and mechanical properties of a continuous Al[sub 2]O[sub 3]-fiber-reinforced HTS (Bi,Pb)[sub 2]Sr[sub 2]Ca[sub 2]Cu[sub 3]O[sub y] composite is presented. The Al[sub 2]O[sub 3]/BPSCCO composite is fabricated initially by a slurry method, followed by binder extraction up to 800 C in an 8% O[sub 2] atmosphere, and finally hot pressed at 800 C in an 8% O[sub 2] atmosphere, and finally hot pressed at 800 C in air. Phases present in the HTS composite are identified by XRD, and the microstructure and microchemistry studied by SEM and EPMA. Of particular interest is the fiber/matrix interface; the interfacial reaction is studied for composite specimens which have undergone long heat treatment. The HTS composite is observed to have a good combination of superconducting properties and mechanical properties.

  8. A comparative study of the Au + H2, Au+ + H2, and Au- + H2 systems: Potential energy surfaces and dynamics of reactive collisions

    NASA Astrophysics Data System (ADS)

    Dorta-Urra, Anaís; Zanchet, Alexandre; Roncero, Octavio; Aguado, Alfredo

    2015-04-01

    In order to study the Au- + H2 collision, a new global potential energy surface (PES) describing the ground electronic state of AuH 2- system is developed and compared with the PESs of the neutral [Zanchet et al., J. Chem. Phys. 132, 034301 (2010)] and cationic systems [Anaís et al., J. Chem. Phys. 135, 091102 (2011)]. We found that Au- - H2 presents a H-Au-H insertion minimum attributed to the stabilization of the LUMO 3b2 orbital, which can be considered as the preamble of the chemisorption well appearing in larger gold clusters. While the LUMO orbital is stabilized, the HOMO 6a1 is destabilized, creating a barrier at the geometry where the energy orbitals' curves are crossing. In the anion, this HOMO is doubly occupied, while in the neutral system is half-filled and completely empty in the cation, explaining the gradual disappearance of the well and the barrier as the number of electrons decreases. The cation presents a well in the entrance channel partially explained by electrostatic interactions. The three systems' reactions are highly endothermic, by 1.66, 2.79, and 3.23 eV for AuH, AuH+, and AuH- products, respectively. The reaction dynamics is studied using quasi-classical trajectory method for the three systems. The one corresponding to the anionic system is new in this work. Collision energies between 1.00 and 8.00 eV, measured for the cation, are in good agreement with the simulated cross section for the AuH+. It was also found that the total fragmentation, in three atoms, competes becoming dominant at sufficiently high energy. Here, we study the competition between the two different reaction pathways for the anionic, cationic, and neutral species, explaining the differences using a simple model based on the topology of the potential energy surfaces.

  9. Strong non-linear effects in the chiroptical properties of the ligand-exchanged Au38 and Au40 clusters

    NASA Astrophysics Data System (ADS)

    Knoppe, Stefan; Dass, Amala; Bürgi, Thomas

    2012-06-01

    Ligand exchange reactions on size-selected Au38(2-PET)24 and Au40(2-PET)24 clusters (2-PET: 2-phenylethylthiol) with mono- and bi-dentate chiral thiols were performed. The reactions were monitored with MALDI mass spectrometry and the arising chiroptical properties were compared to the number of incorporated chiral ligands. Only a small fraction of chiral ligands is needed to induce significant optical activity to the clusters. The use of bidentate 1,1'-binaphthyl-2,2'-dithiol (BINAS) leads to slow exchange, but the optical activity measured is strong. Moreover, a non-linear behaviour between optical activity and the number of chiral ligands is found in the BINAS case for both Au38 and Au40, which may indicate different exchange rates of enantiopure BINAS with the enantiomers of inherently chiral (but racemic) clusters. This is ascribed to effects arising from the bidentate nature of BINAS. In contrast, the use of monodentate camphor-10-thiol (CamSH) leads to comparably fast exchange on both clusters. The arising optical activity is weak. This is the first study where chiroptical effects are directly correlated with the composition of the ligand shell.Ligand exchange reactions on size-selected Au38(2-PET)24 and Au40(2-PET)24 clusters (2-PET: 2-phenylethylthiol) with mono- and bi-dentate chiral thiols were performed. The reactions were monitored with MALDI mass spectrometry and the arising chiroptical properties were compared to the number of incorporated chiral ligands. Only a small fraction of chiral ligands is needed to induce significant optical activity to the clusters. The use of bidentate 1,1'-binaphthyl-2,2'-dithiol (BINAS) leads to slow exchange, but the optical activity measured is strong. Moreover, a non-linear behaviour between optical activity and the number of chiral ligands is found in the BINAS case for both Au38 and Au40, which may indicate different exchange rates of enantiopure BINAS with the enantiomers of inherently chiral (but racemic) clusters

  10. Liquidus Projections of Bi-Se-Ga and Bi-Se-Te Ternary Systems

    NASA Astrophysics Data System (ADS)

    Lin, Po-han; Chen, Sinn-wen; Hwang, Jenn-dong; Chu, Hsu-shen

    2016-06-01

    This study determines the liquidus projections of both Bi-Se-Ga and Bi-Se-Te ternary systems which are constituent ternary systems of promising Bi-Se-Te-Ga thermoelectric materials. Ternary Bi-Se-Ga and Bi-Se-Te alloys are prepared. Their primary solidification phases are experimentally determined, and thermal analysis experiments are carried out. The liquidus projections are determined based on the ternary experimental results and phase diagrams of constituent binary systems. The Bi-Se-Ga system includes seven primary solidification phases, Bi, Ga, GaSe, Ga2Se3, Se, Bi2Se3, and (Bi2)n(Bi2Se3)m. In the Bi-Se-Te system, there are five primary solidification phases, Bi, (Bi2)n(Bi2Te3)m, Bi2(Se,Te)3, (Se,Te), and (Bi2)n(Bi2Se3)m. Both the (Bi2)n(Bi2Te3)m and (Bi2)n(Bi2Se3)m phases are not a single phase, but a collection of series undetermined phases. Large miscibility gaps are observed in the Bi-Se-Ga system. The temperatures of the invariant reactions, Liquid + Bi + GaSe = Ga and Liquid + Ga2Se3 = Bi + GaSe, are at 495 K (222 °C) and 533 K (260 °C), respectively.

  11. Electrochemistry of Au(II) and Au(III) pincer complexes: determination of the Au(II)-Au(II) bond energy.

    PubMed

    Dann, Thomas; Roşca, Dragoş-Adrian; Wright, Joseph A; Wildgoose, Gregory G; Bochmann, Manfred

    2013-10-01

    The bond energy of the unsupported Au-Au bond in the Au(ii) dimer [(C(∧)N(∧)C)Au]2 and the difference between Au(III)-OH and Au(III)-H bond enthalpies have been determined experimentally by electrochemical methods, with Au-OH and Au-H complexes showing unexpected differences in their reduction pathways, supported by DFT modelling. PMID:24051607

  12. From the ternary Eu(Au/In)2 and EuAu4(Au/In)2 with remarkable Au/In distributions to a new structure type: The gold-rich Eu5Au16(Au/In)6 structure

    SciTech Connect

    Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena

    2015-08-13

    The ternary Eu(Au/In)2 (EuAu0.46In1.54(2)) (I), EuAu4(Au/In)2 (EuAu4+xIn2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl4Mo2-type (tI14; I4/mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed of an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squared Au8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu5Au16(Au/In)6 (Eu5Au17.29In4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu2–“EuAu4In2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu4(Au/In)2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu5In” and “EuAu4In2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.

  13. [Improved color purity of green OLED device based on Au thin film].

    PubMed

    Zhang, Yan-Fei; Zhao, Su-Ling; Xu, Zheng

    2014-04-01

    Au was used as anode in some kind of organic electroluminescent devices. Sometimes transparent Au electrodes are required, which means that the thickness of Au electrode should be as thin as possible. Therefore, two metals together forming an electrode become a choice. In the present paper, translucent Au/Al layer was inserted to anode side, and OLED device with the structure of ITO/Al (16 nm)/Au (10 nm)/TPD (30 nm)/AlQ (30 nm)/LiF (0.5 nm)/Al was prepared. There is a spectral narrowing phenomenon on the device ITO/TPD (30 nm)/AlQ (30 nm)/LiF (0. 5 nm)/Al, and through analysis and experiment it was found that this phenomenon comes from selective permeability to light of Au thin film rather than the microcavity effect. The device maintains wide viewing angle, without the angular dependence. And the color purity of device with Au thin film is improved. PMID:25007596

  14. Magnetoresistance of Au films

    SciTech Connect

    Zhang, D. L.; Song, X. H.; Zhang, X; Zhang, Xiaoguang

    2014-01-01

    Measurement of the magnetoresistance (MR) of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler s rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms.

  15. Magnetoresistance of Au films

    DOE PAGESBeta

    Zhang, D. L.; Song, X. H.; Zhang, X.; Zhang, Xiaoguang

    2014-12-10

    Measurement of the magnetoresistance (MR) of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler s rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms.

  16. Growth of Single- and Bilayer ZnO on Au(111) and Interaction with Copper

    SciTech Connect

    Deng, Xingyi; Yao, Kun; Sun, Keju; Li, Wei-Xue; Lee, Junseok; Matranga, Christopher

    2013-05-02

    The stoichiometric single- and bi-layer ZnO(0001) have been prepared by reactive deposition of Zn on Au(111) and studied in detail with X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory calculations. Both single- and bi-layer ZnO(0001) adopt a planar, graphite-like structure similar to freestanding ZnO(0001) due to the weak van der Waals interactions dominating their adhesion with the Au(111) substrate. At higher temperature, the single-layer ZnO(0001) converts gradually to bi-layer ZnO(0001) due to the twice stronger interaction between two ZnO layers than the interfacial adhesion of ZnO with Au substrate. It is found that Cu atoms on the surface of bi-layer ZnO(0001) are mobile with a diffusion barrier of 0.31 eV, and likely to agglomerate and form nanosized particles at low coverages; while Cu atoms tend to penetrate a single layer of ZnO(0001) with a barrier of 0.10 eV, resulting in a Cu free surface.

  17. Plasmon-enhanced nanoporous BiVO4 photoanodes for efficient photoelectrochemical water oxidation.

    PubMed

    Gan, Jiayong; Rajeeva, Bharath Bangalore; Wu, Zilong; Penley, Daniel; Liang, Chaolun; Tong, Yexiang; Zheng, Yuebing

    2016-06-10

    Conversion of solar irradiation into chemical fuels such as hydrogen with the use of a photoelectrochemical (PEC) cell is an attractive strategy for green energy. The promising technique of incorporating metal nanoparticles (NPs) in the photoelectrodes is being explored to enhance the performance of the photoelectrodes. In this work, we developed Au-NPs-functionalized nanoporous BiVO4 photoanodes, and utilized the plasmonic effects of Au NPs to enhance the photoresponse. The plasmonic enhancement leads to an AM 1.5 photocurrent of 5.1 ± 0.1 mA cm(-2) at 1.23 V versus a reverse hydrogen electrode. We observed an enhancement of five times with respect to pristine BiVO4 in the photocurrent with long-term stability and high energy-conversion efficiency. The overall performance enhancement is attributed to the synergy between the nanoporous architecture of BiVO4 and the plasmonic effects of Au NPs. Our further study reveals that the commendable photoactivity arises from the different plasmonic effects and co-catalyst effects of Au NPs. PMID:27119335

  18. Plasmon-enhanced nanoporous BiVO4 photoanodes for efficient photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Gan, Jiayong; Bangalore Rajeeva, Bharath; Wu, Zilong; Penley, Daniel; Liang, Chaolun; Tong, Yexiang; Zheng, Yuebing

    2016-06-01

    Conversion of solar irradiation into chemical fuels such as hydrogen with the use of a photoelectrochemical (PEC) cell is an attractive strategy for green energy. The promising technique of incorporating metal nanoparticles (NPs) in the photoelectrodes is being explored to enhance the performance of the photoelectrodes. In this work, we developed Au-NPs-functionalized nanoporous BiVO4 photoanodes, and utilized the plasmonic effects of Au NPs to enhance the photoresponse. The plasmonic enhancement leads to an AM 1.5 photocurrent of 5.1 ± 0.1 mA cm‑2 at 1.23 V versus a reverse hydrogen electrode. We observed an enhancement of five times with respect to pristine BiVO4 in the photocurrent with long-term stability and high energy-conversion efficiency. The overall performance enhancement is attributed to the synergy between the nanoporous architecture of BiVO4 and the plasmonic effects of Au NPs. Our further study reveals that the commendable photoactivity arises from the different plasmonic effects and co-catalyst effects of Au NPs.

  19. Nano scale phase separation in Au-Ge system on ultra clean Si(100) surfaces

    NASA Astrophysics Data System (ADS)

    Rath, A.; Dash, J. K.; Juluri, R. R.; Schowalter, Marco; Mueller, Knut; Rosenauer, A.; Satyam, P. V.

    2012-05-01

    We report on the phase separation in Au-Ge system leading to the formation of lobe-lobe (bi-lobed) Au-Ge nanostructures under ultra high vacuum (UHV) conditions (≈3 × 10-10 mbar) on clean Si(100) surfaces. For this study, ≈2.0 nm thick Au samples were grown on the substrate surface by molecular beam epitaxy. Thermal annealing was carried out inside the UHV chamber at temperature ≈500 °C and following this, nearly square shaped AuxSi1-x nano structures of average length ≈48 nm were formed. A ≈2 nm Ge film was further deposited on the above surface while the substrate was kept at a temperature of ≈500 °C. Well ordered Au-Ge nanostructures where Au and Ge residing side by side (lobe-lobe structures) were formed. In our systematic studies, we show that, gold-silicide nanoalloy formation at the substrate (Si) surface is necessary for forming phase separated Au-Ge bilobed nanostructures. These results show that the Au-Ge bonding is unstable in nature. Electron microscopy (TEM, STEM-EDS, SEM) studies were carried out to determine the structure of Au-Ge nano systems. Rutherford backscattering spectrometry measurements show gold inter-diffusion into substrate while it is absent for Ge.

  20. Crystal structures and magnetic properties of CsAu4Si2 and CeAu2Si2

    SciTech Connect

    Sefat, A.; Palasyuk, A.; Bud'ko, S.; Corbett, J.; Canfield, P.

    2007-12-03

    Single crystals of CeAu{sub 4}Si{sub 2} and CeAu{sub 2}Si{sub 2} have been grown out of ternary fluxes rich in Au, and the former, also by sintering the stoichiometric composition at 750 C. The single-crystal X-ray refinement result for CeAu{sub 4}Si{sub 2} is orthorhombic, Cmmm (No. 65, Z=2), different from a tetragonal result found from an X-ray powder diffraction refinement [H. Nakashima, et al., J. Alloys Compds. 424 (2006) 7]. For CeAu{sub 2}Si{sub 2}, this is the first report of the stoichiometric crystalline phase, in the known tetragonal I4/mmm structure. The anisotropic field- and temperature-dependent magnetizations, as well as specific heat and resistivity data are compared. Although both compounds have related structural packing, they present unique magnetic features. CeAu{sub 2}Si{sub 2} is a typical antiferromagnet with T{sub N} = 8.8(1) K and CeAu{sub 4}Si{sub 2} features a ferromagnetic component below T{sub c}=3.3(1) K. Both phases have effective moments close in value to that of free Ce{sup 3+}.

  1. Melting and Solidification Behaviour of Bi-Pb Multiphase Alloy Nanoparticles Embedded in Aluminum Matrix.

    PubMed

    Khan, Patan Yousaf; Biswas, Krishanu

    2015-01-01

    The present investigation reports the result of the investigation on the phase transformation of biphasic Bi-Pb alloy nanoparticles embedded in the aluminum matrix. The samples are prepared by rapid solidification route involving melt spinning of Al-6 wt% (Bi55.9Pb44.1) alloy on a rotating copper wheel in an argon-filled evacuated chamber. The detailed transmission electron microscope (TEM) investigation shows presence of near cuboctahedral shaped biphasic nano-inclusions consisting of the (Bi) solid solution and β, the intermediate phase. β constitutes bulk of the nanoparticle with (Bi) forming the cap. Both the phases bear distinct orientation relationship with the matrix. The compositional analysis indicates substantial increase in solid solubilities of Pb in the (Bi) and Bi in the β-phases as compared to the as-cast sample. Differential scanning calorimetric (DSC) studies indicate substantial superheating (16.4 K) of the embedded nanoparticles with appearance of sharp melting peak. The solidification is observed to be diffused, taking place over a large temperature range (344.5 K to 332 K). The in situ heating stage experiments carried out in TEM indicate formation of core shell morphology during heating with β forming the shell around (Bi). The melting starts from Al/β/(Bi) triple point and then the liquid spreads along matrix-particle interface. The solidification occurs in eutectic manner. PMID:26328350

  2. Bi-stem gripping apparatus

    NASA Technical Reports Server (NTRS)

    Sanders, Fred G. (Inventor)

    1988-01-01

    This invention relates to devices which grip cylindrical structures and more particularly to a device which has three arcuate gripping members having frictional surfaces for gripping and compressing a bi-stem. The bi-stem gripping apparatus is constructed having a pair of side gripping members, and an intermediate gripping member disposed between them. Sheets of a gum stock silicone rubber with frictional gripping surfaces are bonded to the inner region of the gripping members and provide frictional engagement between the bi-stem and the apparatus. A latch secures the gripping apparatus to a bi-stem, and removable handles are attached, allowing an astronaut to pull the bi-stem from its cassette. A tethering ring on the outside of the gripping apparatus provides a convenient point to which a lanyard may be attached.

  3. Comportement inélastique de l'alliage AlMgSi1 avec prise en compte des effets liés au chargement et à la restauration dépendant du temps

    NASA Astrophysics Data System (ADS)

    Ismar, H.; Penth, M.; Ismar, H.; Penth, M.

    1998-04-01

    In addition to viscous effects, metals show recovery effects especially at elevated temperatures. These effects are opposed to the hardening of the material. Elevated temperature means a temperature T geq 0.4 T_M (T_M is the melting temperature). This limit is partially exceeded in the investigation of AlMgSi1 in a temperature range from T=25 ^circC to T=200 ^circC. The paper presented shows the considered effects and their repercussions on the inelastic behaviour of AlMgSi1. First a viscoplastic modelling based on a transition flow potential (TFP) is illustrated. This modelling is able to describe the phenomenon observed. The basis of the material modelling is the viscoplastic modelling of Chaboche [CITE]. Finally the results of the modelling are compared qualitatively and quantitatively with the experiments. Généralement, les matériaux métalliques présentent, particulièrement à hautes températures, en complément des propriétés visqueuses, des effets de restauration qui s'opposent à l'écrouissage du matériau. Par hautes températures nous entendons une température telle que T geq 0,4 T_M et où T_M est la température de fusion de l'alliage consideré. Pour l'alliage AlMgSi1 cette limite sera partiellement dépassée dans le domaine de température examiné, soit : 25 < T leq 200 ^circC. Ce document présente les incidences de la viscosité associée à la restauration statique sur le comportement inélastique de l'alliage AlMgSi1. On présente un modèle viscoplastique basé sur un potentiel d'écoulement dit de transition (PET) capable de décrire les observations expérimentales reportées. Le point de départ est le modèle viscoplastique de Chaboche [CITE]. Finalement, l'ensemble des résultats expérimentaux sont comparés qualitativement et quantitativement aux prévisions issues du modèle.

  4. Swift heavy ion induced nano-dimensional phase separation in liquid immiscible binary Mn-Bi

    NASA Astrophysics Data System (ADS)

    Srivastava, S. K.; Khan, S. A.; Sudheer Babu, P.; Avasthi, D. K.

    2014-08-01

    Pulsed laser deposited 60 nm thin film of homogeneous Mn0.82Bi0.18 composite has been irradiated by 100 MeV Au ions at fluence 1 × 1013 ions/cm2, and investigated by field emission scanning electron microscopy, X-ray diffraction, magnetic hysteresis, X-ray photoelectron spectroscopy, and nanoindentation measurements. Dispersed nanostructures of soft Bi-rich phase of about 20 nm diameter emerged in a hard Mn-rich matrix on irradiation. Such structures, as synthesized by the present novel swift heavy ion irradiation approach, are usable as self-lubricating thin films.

  5. High Energy, Low Temperature Gelled Bi-propellant Formulation Preparation Method

    NASA Technical Reports Server (NTRS)

    DiSalvo, Roberto (Inventor)

    2013-01-01

    A method for preparing a gelled liquid propane (GLP) composition comprises the introduction of liquid propane into an evacuated mixing vessel containing a gellant and mixing the liquid propane with the gellant. A bi-propellant system comprising GLP is particularly well-suited for outer planet missions greater than 3 AU from the sun and also functions in earth and near earth environments. Additives such as powders of boron, carbon, lithium, and/or aluminum can be added improve performance or enhance hypergolicity. The gelling agent can be silicon dioxide, clay, carbon, or organic or inorganic polymers. The bi-propellant system may be, but need not be, hypergolic.

  6. Structure and Reactivity Investigations on Supported Bimetallic Au-Ni Catalysts Used for Hydrocarbon Steam Reforming

    SciTech Connect

    Chin, Ya-Huei; King, David L.; Roh, Hyun-Seog; Wang, Yong; Heald, S.

    2006-12-10

    The addition of small quantities of gold to the surface of supported nickel catalysts has been described as a means to retard carbon formation during hydrocarbon steam reforming. Calculations by others have indicated that gold locates at the most catalytically active (step and edge) sites that also serve as nucleation sites for carbon formation. In this paper we describe experiments to characterize the Ni-Au interactions on bimetallic Au-Ni/MgAl2O4 catalysts at various Ni and Au loadings. The catalyst structure was investigated using EXAFS/XANES spectroscopy and adsorption-desorption measurements with H2 and N2O. Evidence for surface alloy formation is provided in the Ni K and Au LIII edge EXAFS measurements of Au-promoted 8.8%Ni/MgAl2O4, especially at Au loadings ?0.2 wt.%. At higher Au concentrations, there is evidence for a combination of alloy and segregated Au species. H2 chemisorption and N2O temperature programmed desorption (TPD) measurements showed a significant decrease in total surface sites, or surface site reactivity, on Au modified Ni/MgAl2O4 catalyst. The XANES structure is consistent with perturbation of the electronic structure of both the Ni and Au atoms as a result of alloy formation. TGA studies with steam/n-butane feed confirmed the ability of Au to retard coke deposition under low S/C reforming conditions, although carbon formation was not fully suppressed. When testing for methane steam reforming, a lower initial activity and deactivation rate resulted from Au promotion of the Ni catalyst. However, both catalysts showed a declining activity with time. The lack of a direct correlation between the surface characterization results and catalytic activity is most likely a result of decreasing effectiveness of the surface alloy with increasing temperature.

  7. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  8. Improving the field-effect performance of Bi2S3 single nanowires by an asymmetric device fabrication.

    PubMed

    Lu, Fangyuan; Li, Renxiong; Li, Yan; Huo, Nengjie; Yang, Juehan; Li, Yongtao; Li, Bo; Yang, Shengxue; Wei, Zhongming; Li, Jingbo

    2015-01-12

    High-quality Bi2 S3 nanowires are synthesized by chemical vapor deposition and their intrinsic photoresponsive and field-effect characteristics are explored in detail. Among the studied Au-Au, Ag-Ag, and Au-Ag electrode pairs, the device with stepwise band alignment of asymmetric Au-Ag electrodes has the highest mobility. Furthermore, it is shown that light can cause a sevenfold decrease of the on/off ratio. This can be explained by the photoexcited charge carriers that are more beneficial to the increase of Ioff than Ion . The photoresponsive properties of the asymmetric Au-Ag electrode devices were also explored, and the results show a photoconductive gain of seven with a rise time of 2.9 s and a decay time of 1.6 s. PMID:25294685

  9. Surface morphology and optical properties of porphyrin/Au and Au/porphyrin/Au systems

    NASA Astrophysics Data System (ADS)

    Kalachyova, Yevgeniya; Lyutakov, Oleksiy; Solovyev, Andrey; Slepička, Petr; Švorčík, Vaclav

    2013-12-01

    Porphyrin/Au and Au/porphyrin/Au systems were prepared by vacuum evaporation and vacuum sputtering onto glass substrate. The surface morphology of as-prepared systems and those subjected to annealing at 160°C was studied by optical microscopy, atomic force microscopy, and scanning electron microscopy techniques. Absorption and luminescence spectra of as-prepared and annealed samples were measured. Annealing leads to disintegration of the initially continuous gold layer and formation of gold nanoclusters. An amplification of Soret band magnitude was observed on the Au/meso-tetraphenyl porphyrin (TPP) system in comparison with mere TPP. Additional enhancement of luminescence was observed after the sample annealing. In the case of sandwich Au/porphyrin/Au structure, suppression of one of the two porphyrins' luminescence maxima and sufficient enhancement of the second one were observed.

  10. Antibacterial Au nanostructured surfaces.

    PubMed

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-02-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies. PMID:26648134

  11. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    SciTech Connect

    Not Available

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  12. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    SciTech Connect

    Not Available

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  13. Au photofission cross section by quasimonochromatic photons in the intermediate energy region

    SciTech Connect

    Lucherini, V.; Guaraldo, C.; De Sanctis, E.; Sandri, P.L.; Polli, E.; Reolon, A.R.; Iljinov, A.S.; Lo Nigro, S.; Aiello, S.; Bellini, V.; and others

    1989-03-01

    The photofission cross section of Au was determined in the energy range 100--300 MeV by means of a quasimonochromatic photon beam. The nuclear fissility P/sub f/ was calculated using the recently measured total photoabsorption cross sections. The nuclear excitation energy E/sup */, charge and mass of compound nucleus were obtained by means of an intranuclear cascade Monte Carlo calculation. The fissility values determined for Au, Bi, and U were compared with the predictions of the cascade-evaporation model and remarkably fitted by the calculation.

  14. Enhanced broadband near-infrared luminescence from Ni in Bi/Ni-doped transparent glass ceramics

    NASA Astrophysics Data System (ADS)

    Wu, Botao; Ruan, Jian; Qiu, Jianrong; Zeng, Heping

    2009-07-01

    Spectral properties of Bi/Ni-doped transparent MgO-Al2O3-Ga2O3-SiO2-TiO2 glass ceramics (GCs) containing spinel solution nanocrystals were investigated. The emission intensity of Ni in Bi/Ni-doped GCs was about 4 times stronger than that of Ni-doped GCs due to energy transfer from Bi to Ni. The Bi/Ni-doped GCs with 0.75 mol% Bi2O3 concentration exhibited a near-infrared emission with full width at half maximum of about 270 nm and a fluorescent lifetime of about 350 µs, making them very promising for applications in broadband optical amplifiers and tunable lasers.

  15. The microstructure of MnBi/Bi eutectic alloys

    NASA Technical Reports Server (NTRS)

    Ravishankar, P. S.; Wilcox, W. R.; Larson, D. J.

    1980-01-01

    Directionally solidified eutectic alloys of the system MnBi/Bi have been investigated with reference to the dependence of the fiber spacing on the growth rate and the interfacial temperature gradient. It is found that the fiber spacing varies as the inverse square root of the growth rate and does not depend on the temperature gradient in contrast to the claims that all faceted/non-faceted eutectics should show a temperature gradient influence.

  16. Sulfur poisoning of CeO[subscript 2]-Al[subscript 2]O[subscript 3]-supported mono- and bi-metallic Ni and Rh catalysts in steam reforming of liquid hydrocarbons at low and high temperatures

    SciTech Connect

    Xie, Chao; Chen, Yongsheng; Li, Yan; Wang, Xiaoxing; Song, Chunshan

    2010-12-01

    In order to develop a better understanding on sulfur poisoning of reforming catalysts in fuel processing for hydrogen production, steam reforming of liquid hydrocarbons was performed over CeO{sub 2}-Al{sub 2}O{sub 3} supported monometallic Ni and Rh and bimetallic Rh-Ni catalysts at 550 and 800 C. XANES was used to identify the sulfur species in the used catalysts and to study their impacts on the metal surface properties probed by XPS. It was found that both monometallic catalysts rapidly deactivated at 550 C, and showed poor sulfur tolerance. Although ineffective for the Ni catalyst, increasing the temperature to 800 C dramatically improved the sulfur tolerance of the Rh catalyst. XANES revealed that metal sulfide and organic sulfide are the dominant sulfur species on the used Ni catalyst, while sulfonate and sulfate predominate on the used Rh catalyst. The presence of sulfur induced severe carbon deposition on the Ni catalyst at 800 C. The superior sulfur tolerance of the Rh catalyst at 800 C may be associated with its capability in sulfur oxidation. It is likely that the formation of the oxygen-shielded sulfur structure of sulfonate and sulfate can suppress the poisoning impact of sulfur on Rh by inhibiting direct rhodium-sulfur interaction. Moreover, XPS indicated that the metal surface properties of the Rh catalysts after the reaction without and with sulfur at 800 C are similar, suggesting that sulfur poisoning on Rh was mitigated under the high-temperature condition. Although the Rh-Ni catalyst exhibited better sulfur tolerance than the monometallic catalysts at 550 C, its catalytic performance was inferior compared with the Rh catalyst in the sulfur-containing reaction at 800 C probably due to the severe carbon deposition on the bimetallic catalyst.

  17. Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Li, Lun; Dou, Liguang; Zhang, Hui

    2014-03-01

    M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity

  18. THE ENERGY DEPENDENCE OF 209Bi FRAGMENTATION IN RELATIVISTIC NUCLEAR COLLISIONS

    SciTech Connect

    Aleklett, K.; Morrissey, D.J.; Loveland, W.; McGaughey, P.L.; Seaborg, g.T.

    1980-07-01

    The results of cross-section measurements for the reactions {sup 209}Bi({sup 12}C,X)Au, E = 4.8 and 25.2 GeV and {sup 209}Bi({sup 20}Ne,X)Au, E = 8.0 GeV are reported. The observed yields of the gold isotopes show a similar dependence on mass number for each reaction, differing slightly in the position of the centroid of the distribution. As the projectile energy increases, the inferred excitation energy of the primary residues remains the same or decreases slightly. This observation is in agreement with the predictions of the intranuclear cascade model of relativistic heavy ion collisions.

  19. Bi-Force: large-scale bicluster editing and its application to gene expression data biclustering.

    PubMed

    Sun, Peng; Speicher, Nora K; Röttger, Richard; Guo, Jiong; Baumbach, Jan

    2014-05-01

    The explosion of the biological data has dramatically reformed today's biological research. The need to integrate and analyze high-dimensional biological data on a large scale is driving the development of novel bioinformatics approaches. Biclustering, also known as 'simultaneous clustering' or 'co-clustering', has been successfully utilized to discover local patterns in gene expression data and similar biomedical data types. Here, we contribute a new heuristic: 'Bi-Force'. It is based on the weighted bicluster editing model, to perform biclustering on arbitrary sets of biological entities, given any kind of pairwise similarities. We first evaluated the power of Bi-Force to solve dedicated bicluster editing problems by comparing Bi-Force with two existing algorithms in the BiCluE software package. We then followed a biclustering evaluation protocol in a recent review paper from Eren et al. (2013) (A comparative analysis of biclustering algorithms for gene expressiondata. Brief. Bioinform., 14:279-292.) and compared Bi-Force against eight existing tools: FABIA, QUBIC, Cheng and Church, Plaid, BiMax, Spectral, xMOTIFs and ISA. To this end, a suite of synthetic datasets as well as nine large gene expression datasets from Gene Expression Omnibus were analyzed. All resulting biclusters were subsequently investigated by Gene Ontology enrichment analysis to evaluate their biological relevance. The distinct theoretical foundation of Bi-Force (bicluster editing) is more powerful than strict biclustering. We thus outperformed existing tools with Bi-Force at least when following the evaluation protocols from Eren et al. Bi-Force is implemented in Java and integrated into the open source software package of BiCluE. The software as well as all used datasets are publicly available at http://biclue.mpi-inf.mpg.de. PMID:24682815

  20. In vivo retention of ingested Au NPs by Daphnia magna: no evidence for trans-epithelial alimentary uptake.

    PubMed

    Khan, Farhan R; Kennaway, Gabrielle M; Croteau, Marie-Noële; Dybowska, Agnieszka; Smith, Brian D; Nogueira, António J A; Rainbow, Philip S; Luoma, Samuel N; Valsami-Jones, Eugenia

    2014-04-01

    In vivo studies with Daphnia magna remain inconclusive as to whether engineered nanoparticles (NPs) are internalized into tissues after ingestion. Here we used a three-pronged approach to study the in vivo retention and efflux kinetics of 20 nm citrate stabilized Au NPs ingested by this key aquatic species. Daphnids were exposed to suspended particles (600 μg L(-1)) for 5 h after which they were depurated for 24 h in clean water containing algae. Light microscopy was used to follow the passage of Au NPs through the gastrointestinal tract, Au body burdens were determined by ICP-MS (inductively coupled plasma mass spectrometry), and transmission electron microscopy (TEM) was used to examine the presence and distribution of Au NPs in tissues. Results revealed that the elimination of Au NPs was bi-phasic. The fast elimination phase lasted<1h and the rate constant at which Au (of Au NPs) was eliminated was 1.12 ± 0.34 h(-1) (±SE) which accounted for ∼75% of the ingested Au. The remaining ∼25% of the ingested Au NPs was eliminated at a 100-fold slower rate. TEM analysis revealed that Au NPs in the midgut were in close proximity to the peritrophic membrane after 1 and 24h of depuration. There were no observations of Au NP uptake at the microvilli. Thus, although Au NPs were retained in the gut lumen, there was no observable internalization into the gut epithelial cells. Similar to carbon nanotubes and CuO NPs, our findings indicate that in daphnids the in vivo retention of Au NPs does not necessarily result in their internalization. PMID:24411838

  1. Spatial profile of thermoelectric effects during Peltier pulsing in Bi and Bi/MnBi eutectic

    NASA Technical Reports Server (NTRS)

    Silberstein, R. P.; Larson, D. J., Jr.

    1987-01-01

    The spatial profile of the thermal transients that occur during and following the current pulsing associated with Peltier Interface Demarcation during directional solidification is studied. Results for pure Bi are presented in detail and compared with corresponding results for the Bi/MnBi eutectic. Significant thermal transients occur throughout the sample that can be accounted for by the Peltier effect, the Thomson effect, and Joule heating. These effects are separated and their behavior is studied as a function of time, current density, and position with respect to the solid/liquid interface.

  2. Thermal conductivities of sub-micron Bi2Te3 films sputtered on anisotropic substrates

    NASA Astrophysics Data System (ADS)

    Yan, Dan; Wu, Ping; Zhang, Shiping; Pei, Yili; Yang, Fan; Wang, Li

    2016-07-01

    Approximately 450 nm thick Bi2Te3 films were deposited on flat Al2O3 substrate and nanochannel alumina (NCA) templates with different pore diameters through radio-frequency magnetron sputtering. The structure and morphology of Bi2Te3 films were investigated by x-ray diffraction and field-emission scanning electron microscopy. Moreover, the thermal conductivities of the films deposited on anisotropic substrates were evaluated by micro-Raman method combined with numerical simulation and optimization conducted by COMSOL Multiphysics. The thermal conductivities of Bi2Te3 films deposited on NCA templates with discontinuous Φ20 and Φ100 nm pores and flat Al2O3 substrate were 0.80, 0.99 and 1.54 Wm‑1 K‑1, respectively. The lower thermal conductivities of Bi2Te3 films deposited on NCA templates are attributed to much smaller grain size, bottom porous layers, and rougher surfaces through analysis.

  3. Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials.

    PubMed

    Feng, Shien-Ping; Chang, Ya-Huei; Yang, Jian; Poudel, Bed; Yu, Bo; Ren, Zhifeng; Chen, Gang

    2013-05-14

    A cost-effective and reliable Ni-Au contact on nanostructured Bi2Te3-based alloys for a solar thermoelectric generator (STEG) is reported. The use of MPS SAMs creates a strong covalent binding and more nucleation sites with even distribution for electroplating contact electrodes on nanostructured thermoelectric materials. A reliable high-performance flat-panel STEG can be obtained by using this new method. PMID:23531997

  4. Effects of aluminum substitution on photocatalytic property of BiVO{sub 4} under visible light irradiation

    SciTech Connect

    Bi, Jinhong; Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108 ; Li, Jie; Wu, Ling; Zheng, Huarong; Su, Wenyue

    2012-03-15

    Graphical abstract: Visible-light-driven Al/BiVO{sub 4} photocatalyst was prepared by a hydrothermal process. After introducing Al, the BiVO{sub 4} particles retain monoclinic scheelite structures and the ability of visible light absorption is enhanced. XPS and FTIR results reveal that the Al ions influence the local structure of the BiVO{sub 4}. The photocatalytic experiments demonstrate that the Al species incorporation can effectively enhance the photocatalytic activity of BiVO{sub 4} due to the existence of distorted VO{sub 4}{sup 3-} tetrahedron and the stronger optical absorption intensity. Highlights: Black-Right-Pointing-Pointer The visible-light-driven Al/BiVO{sub 4} photocatalysts are first prepared in our study. Black-Right-Pointing-Pointer It is found that Al is introduced into the BiVO{sub 4} lattice successfully. Black-Right-Pointing-Pointer The Al-doped BiVO{sub 4} shows a far higher photocatalytic activity than undoped BiVO{sub 4}. Black-Right-Pointing-Pointer One of the reason for the higher activity is the distorted VO{sub 4}{sup 3-} tetrahedron. Black-Right-Pointing-Pointer Another reason for the higher activity is the strong optical absorption intensity. -- Abstract: Novel visible-light-driven Al/BiVO{sub 4} photocatalysts were synthesized via a facile hydrothermal method for the first time. The samples were characterized by X-ray diffraction, N{sub 2}-sorption, UV-vis diffuse reflectance spectra, scanning electron microscopy, high-resolution transmission electron microscopy, Fourier transformed infrared spectra and X-ray photoelectron spectroscopy. The photocatalytic activity of the samples was evaluated by the decomposition of methylene blue under visible light irradiation (400 nm < {lambda} <580 nm) and was compared with that of single-phase BiVO{sub 4}. The results revealed that the introduction of Al can improve photocatalytic performance greatly and different concentration of Al resulted in different photocatalytic activity. The highest

  5. Coronagraphic imaging of the Beta Pictoris circumstellar disk - Evidence of changing disk structure within 100 AU

    NASA Astrophysics Data System (ADS)

    Golimowski, David A.; Durrance, Samuel T.; Clampin, Mark

    1993-07-01

    New R-band images of the Beta Pictoris circumstellar disk obtained with the Adaptive Optics Coronagraph expose the disk inward to 40 AU from the star. From these images, the first reliable optical photometry of the disk within 100 AU of Beta Pic is reported. Across a radius of 100 AU, the radial power-law dependence of the disk-midplane surface brightness undergoes an abrupt transition, with power-law indices changing within 100 AU from -3.5 to -2.4 in the NE extension and from -4.2 to -1.9 in the SW extension. This result confirms the previously noted asymmetry in the brightness gradient beyond 250 AU, and suggests an inverted asymmetry within 100 AU. The geometrical thickness of the disk appears nearly constant within about 115 AU and increases proportionally with radius beyond about 115 AU. These changes in brightness gradient and disk thickness are consistent with the two-component disk models of Backman et al. (1992). The observed changes in disk structure at about 100 AU may mark the boundary of rapid ice sublimation within which only refractory grains exist, but may also reflect a flattened grain distribution associated with planetary formation within 40 AU.

  6. Thermoelectric transport properties of CaMg2Bi2, EuMg2Bi2, and YbMg2Bi2

    SciTech Connect

    May, Andrew F; McGuire, Michael A; Ma, Jie; Delaire, Olivier A; Huq, Ashfia; Singh, David J; Cai, Wei; Wang, Hsin

    2012-01-01

    The thermoelectric transport properties of CaMg{sub 2}Bi{sub 2}, EuMg{sub 2}Bi{sub 2}, and YbMg{sub 2}Bi{sub 2} were characterized between 2 and 650 K. As synthesized, the polycrystalline samples are found to have lower p-type carrier concentrations than single-crystalline samples of the same empirical formula. These low carrier concentration samples possess the highest mobilities yet reported for materials with the CaAl{sub 2}Si{sub 2} structure type, with a mobility of {approx}740 cm{sup 2}/V/s observed in EuMg{sub 2}Bi{sub 2} at 50 K. Despite decreases in the Seebeck coefficient ({alpha}) and electrical resistivity ({rho}) with increasing temperature, the power factor ({alpha}{sup 2}{rho}) increases for all temperatures examined. This behavior suggests a strong asymmetry in the conduction of electrons and holes. The highest figure of merit (zT) is observed in YbMg{sub 2}Bi{sub 2}, with zT approaching 0.4 at 600 K for two samples with carrier densities of approximately 2 x 10{sup 18} cm{sup -3} and 8 x 10{sup 18} cm{sup -3} at room temperature. Refinements of neutron powder diffraction data yield similar behavior for the structures of CaMg{sub 2}Bi{sub 2} and YbMg{sub 2}Bi{sub 2}, with smooth lattice expansion and relative expansion in c being {approx}35% larger than relative expansion in a at 973 K. First-principles calculations reveal an increasing band gap as Bi is replaced by Sb and then As, and subsequent Boltzmann transport calculations predict an increase in {alpha} for a given n associated with an increased effective mass as the gap opens. The magnitude and temperature dependence of {alpha} suggests higher zT is likely to be achieved at larger carrier concentrations, roughly an order of magnitude higher than those in the current polycrystalline samples, which is also expected from the detailed calculations.

  7. One-dimensional edge state of Bi thin film grown on Si(111)

    SciTech Connect

    Kawakami, Naoya; Lin, Chun-Liang; Kawai, Maki; Takagi, Noriaki; Arafune, Ryuichi

    2015-07-20

    The geometric and electronic structures of the Bi thin film grown on Si(111) were investigated by using scanning tunneling microscopy and spectroscopy. We have found two types of edges, one of which hosts an electronic state localized one-dimensionally. We also revealed the energy dispersion of the localized edge state from the evolution of quasiparticle interference patterns as a function of energy. These spectroscopic findings well reproduce those acquired for the cleaved surface of the bulk Bi crystal [I. K. Drozdov et al., Nat. Phys. 10, 664 (2014)]. The present results indicate that the deposited Bi film provides a tractable stage for further scrutiny of the one-dimensional edge state.

  8. First enlargement within 1000 AU of a massive YSO

    NASA Astrophysics Data System (ADS)

    Sanna, A.

    2016-05-01

    We presented a comprehensive view, from scales of 0.1 pc down to 100 AU, of the gas dynamics driven by a massive young stellar object (YSO) in the star-forming region G023.01-00.41. Toward this region, we conducted both: 1) sub-arcsecond and high sensitivity Submillimeter Array (SMA) observations of different (e.g., CO, SiO, CH3CN, and CH3OH) molecular lines (Sanna et al. [2]), and 2) multi-epoch Very Long Baseline Interferometry (VLBI) observations of both H2O and CH3OH masers (Sanna et al. [3]). In particular, these VLBI observations allowed us to reconstruct, for the first time, both the 3D gas kinematics and magnetic field morphology in the vicinity (<1000 AU) of a massive YSO (Sanna et al. [1]).

  9. Growth Parameters for Thin Film InBi Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Keen, B.; Makin, R.; Stampe, P. A.; Kennedy, R. J.; Sallis, S.; Piper, L. J.; McCombe, B.; Durbin, S. M.

    2014-04-01

    The alloying of bismuth with III-V semiconductors, in particular GaAs and InAs thin films grown by molecular beam epitaxy (MBE), has attracted considerable interest due to the accompanying changes in band structure and lattice constant. Specifically, bismuth incorporation in these compounds results in both a reduction in band gap (through shifting of the valence band) and an increase in the lattice constant of the alloy. To fully understand the composition of these alloys, a better understanding of the binary endpoints is needed. At present, a limited amount of literature exists on the III-Bi family of materials, most of which is theoretical work based on density functional theory calculations. The only III-Bi material known to exist (in bulk crystal form) is InBi, but its electrical properties have not been sufficiently studied and, to date, the material has not been fabricated as a thin film. We have successfully deposited crystalline InBi on (100) GaAs substrates using MBE. Wetting of the substrate is poor, and regions of varying composition exist across the substrate. To obtain InBi, the growth temperature had to be below 100 °C. It was found that film crystallinity improved with reduced Bi flux, into an In-rich regime. Additionally, attempts were made to grow AlBi and GaBi.

  10. Fabrication and characterization of Au/p-ZnO Schottky contacts

    NASA Astrophysics Data System (ADS)

    Singh, Brijesh Kumar; Tripathi, Shweta

    2015-09-01

    This paper reports the electrical characteristics of gold contacts on p-type ZnO thin films synthesized by spin coating the sol containing zinc acetate and bismuth nitrate as main precursors. The structural, morphological and optical properties of the deposited thin film have been investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and Ellipsometry, respectively. Further, hot probe measurement has been used to ascertain the type of deposited film and it was observed that films doped with the concentration of 10 mol% Bi shows p-type nature that was found to be stable over the period of five months. Moreover, reflectance of the Bi doped ZnO with varying Bi concentrations, have also been calculated over the wavelength range of 300-800 nm. The optical band gap of Bi doped ZnO films have also been determined for different concentrations of Bi using the data taken by ellipsometer. The gold (Au) contacts have been deposited on the p-ZnO thin films using low cost thermal evaporation method. Electrical parameters such as the reverse saturation current, barrier height and ideality factor have also been determined for Au/p-ZnO thin film based Schottky contact using conventional thermionic emission model and Cheung's method. The conventional thermionic emission model yields barrier height ∼0.681 eV and ideality factor ∼2.3 however Cheung method gives barrier height ∼0.556 eV, ideality factor ∼2.186 and series resistance ∼923 Ω. The present study establishes the fact that Cheung's method can be the best and most realistic method for approximating the diode parameters including the effect of series resistance of the Au/p-ZnO Schottky diode under consideration.

  11. Prediction of Large-Gap Two-Dimensional Topological Insulators Consisting of Hydrogenated Bilayers of Group III Elements with Bi

    NASA Astrophysics Data System (ADS)

    Crisostomo, Christian P.; Yao, Liang-Zi; Huang, Zhi-Quan; Hsu, Chia-Hsiu; Chuang, Feng-Chuan; Lin, Hsin; Albao, Marvin A.; Bansil, Arun

    2015-03-01

    We use first-principles electronic structure calculations to predict a new class of two-dimensional (2D) topological insulators (TIs) in hydrogenated binary compositions of group III elements (B, Al, Ga, In, and Tl) and bismuth (Bi). We identify band inversions in unhydrogenated pristine GaBi, InBi, and TlBi bilayers, with gaps as large as 556 meV for the TlBi case, making these materials suitable for room-temperature applications. Double-sided hydrogenation in which hydrogen was added on opposite sides also exhibited band inversions in the case of GaBi, InBi, and TlBi just as in the unhydrogenated pristine ones. Furthermore, we report the gap to be 885 meV for the hydrogenated TlBi case. Hydrogenation enhace the band gap without changing the band topology. Moreover, our study also aim to demonstrate the possibility of strain engineering in that the topological phase transition in systems whose phase was nontrivial could be driven by suitable strain. Finally, the effect of placing hydrogen to topological edges was also demonstrated. Our findings suggest that the buckled honeycomb structure is a versatile platform for hosting nontrivial topological states and spin-polarized Dirac fermions with the flexibility of chemical and mechanical tunability. The robustness of III-Bi upon hydrogenation shows that these materials are possible to synthesize by growing on substrates.

  12. Partial spin polarization of a conductance in a bi-layer In0.52 Al0.48 As / In0.53 Ga0.47 As heterostructure based nanowire for the rectangular and the smooth lateral confinement potentials

    NASA Astrophysics Data System (ADS)

    Chwiej, T.

    2016-03-01

    We simulate the electron transport in a vertical bi-layer nanowire in order to study an influence of the lateral confinement's shape on a spin polarization of wire's conductance. The active part of considered quantum wire constitutes a double inverted heterojunction In0.52 Al0.48 As / In0.53 Ga0.47 As which nanostructure can be fabricated in molecular beam epitaxy process while the lateral confinement potential can be finally formed by means of cleaved overgrowth or surface oxidization methods giving the desired rectangular and smooth lateral confinement. In calculations we take into account interaction between charge carriers using DFT within local spin density approximation. We show that if the magnetic field is perpendicular to the wire axis, the pseudogaps are opened in energy dispersion relation E (k) what in conjunction with spin Zeeman shift of spin-up and spin-down subbands may enhance the spin polarization of conductance with reference to a single layer wire. For nanowire with rectangular lateral confinement potential we found that the electron density has two maximums localized at wire edges in each layers. This modificates strongly all magnetosubbands giving up to four energy minimums in lowest subband and considerably diminishes widths of pseudogaps what translates into low maximal spin polarization of conductance, not exceeding 40%. This drawback is absent in wire with smooth lateral confinement. However, in order to gain a large spin polarization simultaneous tuning of magnetic field as well as the Fermi energies in both layers of nanowire are required.

  13. Effect of B{sub 2}O{sub 3}-Bi{sub 2}O{sub 3}-SiO{sub 2}-ZnO glass on the sintering and microwave dielectric properties of 0.83ZnAl{sub 2}O{sub 4}-0.17TiO{sub 2}

    SciTech Connect

    Thomas, Sherin; Sebastian, Mailadil Thomas

    2008-04-01

    The 0.83ZnAl{sub 2}O{sub 4}-0.17TiO{sub 2} (ZAT) ceramics were synthesized by solid state ceramic route. The effect of 27B{sub 2}O{sub 3}-35Bi{sub 2}O{sub 3}-6SiO{sub 2}-32ZnO (BBSZ) glass on the microwave dielectric properties of ZAT was investigated. The crystal structure and the microstructure of the ceramic-glass composites were studied by X-ray diffraction and scanning electron microscopic techniques. The low frequency dielectric loss was measured at 1 MHz. The dielectric properties of the sintered samples were measured in the microwave frequency range by the resonance method. Addition of 0.2 wt% of BBSZ improved the dielectric properties with quality factor (Q{sub u} x f) > 120,000 GHz, temperature coefficient of resonant frequency ({tau}{sub f}) = -7.3 ppm/deg. C and dielectric constant ({epsilon}{sub r}) = 11.7. Addition of 10 wt% of BBSZ lowered the sintering temperature to about 950 deg. C with Q{sub u} x f > 10,000 GHz, {epsilon}{sub r} = 10 and {tau}{sub f} = -23 ppm/deg. C. The reactivity of 10 wt% BBSZ added ZAT with silver was also studied. The results show that ZAT doped with suitable amount of BBSZ glass is a possible material for low-temperature co-fired ceramic (LTCC) application.

  14. Catalytic degradation of dye molecules and in situ SERS monitoring by peroxidase-like Au/CuS composite

    NASA Astrophysics Data System (ADS)

    Cai, Qian; Lu, Shunkai; Liao, Fan; Li, Yanqing; Ma, Shuzhen; Shao, Mingwang

    2014-06-01

    In this paper, Au/CuS composites were fabricated by a two-step method based on a facile solvothermal approach combined with the in situ reduction. It was demonstrated that the Au/CuS composite not only exhibited excellent peroxidase-like catalytic activity in the oxidation of the typical peroxidases (o-phenylenediamine and diaminobenzidine), but also showed promising SERS performance with remarkable sensitivity and high reproducibility. Based on these properties, the bi-functional Au/CuS composite was employed both as a catalyst for degrading a pollutant (Rhodamine 6G) and a SERS substrate for real-time monitoring of the degradation process quantitatively.In this paper, Au/CuS composites were fabricated by a two-step method based on a facile solvothermal approach combined with the in situ reduction. It was demonstrated that the Au/CuS composite not only exhibited excellent peroxidase-like catalytic activity in the oxidation of the typical peroxidases (o-phenylenediamine and diaminobenzidine), but also showed promising SERS performance with remarkable sensitivity and high reproducibility. Based on these properties, the bi-functional Au/CuS composite was employed both as a catalyst for degrading a pollutant (Rhodamine 6G) and a SERS substrate for real-time monitoring of the degradation process quantitatively. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01751j

  15. Generalized bi-circular projections

    NASA Astrophysics Data System (ADS)

    Lin, Pei-Kee

    2008-04-01

    Recall that a projection P on a complex Banach space X is a generalized bi-circular projection if P+[lambda](I-P) is a (surjective) isometry for some [lambda] such that [lambda]=1 and [lambda][not equal to]1. It is easy to see that every hermitian projection is generalized bi-circular. A generalized bi-circular projection is said to be nontrivial if it is not hermitian. Botelho and Jamison showed that a projection P on C([0,1]) is a nontrivial generalized bi-circular projection if and only if P-(I-P) is a surjective isometry. In this article, we prove that if P is a projection such that P+[lambda](I-P) is a (surjective) isometry for some [lambda], then either P is hermitian or [lambda] is an nth unit root of unity. We also show that for any nth unit root [lambda] of unity, there are a complex Banach space X and a nontrivial generalized bi-circular projection P on X such that P+[lambda](I-P) is an isometry.

  16. Microstructure Of MnBi/Bi Eutectic Alloy

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Eisa, G. F.; Baskaran, B.; Richardson, Donald C.

    1988-01-01

    Collection of three reports describes studies of directional solidification of MnBi/Bi eutectic alloy. Two of the reports, "Influence of Convection on Lamellar Spacing of Eutectics" and "Influence of Convection on Eutectic Microstructure," establish theoretical foundation for remaining document. Reports seek to quantify effect of convection on concentration field of growing lamellar eutectic. Remaining report, "Study of Eutectic Formation," begins by continuing theoretical developments. New technique under development by one of the authors helps to reveal three-dimensional microstructures of alloys.

  17. Atomic and electronic structures of Si(1 1 1)-\\left(\\sqrt{\\mathbf{3}}\\times\\sqrt{\\mathbf{3}}\\right)\\text{R}\\mathbf{3}{{\\mathbf{0}}^{\\circ}} -Au and (6 × 6)-Au surfaces

    NASA Astrophysics Data System (ADS)

    Patterson, C. H.

    2015-12-01

    Si(1 1 1)-Au surfaces with around one monolayer of Au exhibit many ordered structures and structures containing disordered domain walls. Hybrid density functional theory (DFT) calculations presented here reveal the origin of these complex structures and tendency to form domain walls. The conjugate honeycomb chain trimer (CHCT) structure of the \\sqrt{3} -Au phase contains Si atoms with non-bonding surface states which can bind Au atoms in pairs in interstices of the CHCT structure and make this surface metallic. Si adatoms adsorbed on the \\sqrt{3} -Au surface induce a gapped surface through interaction with the non-bonding states. Adsorption of extra Au atoms in interstitial sites of the \\sqrt{3} -Au surface is stabilized by interaction with the non-bonding orbitals and leads to higher coverage ordered structures including the ≤ft(6× 6\\right) -Au phase. Extra Au atoms bound in interstitial sites of the \\sqrt{3} -Au surface result in top layer Si atoms with an SiAu4 butterfly wing configuration. The structure of a ≤ft(6× 6\\right) -Au phase, whose in-plane top atomic layer positions were previously determined by an electron holography technique (Grozea et al 1998 Surf. Sci. 418 32), is calculated using total energy minimization. The Patterson function for this structure is calculated and is in good agreement with data from an in-plane x-ray diffraction study (Dornisch et al 1991 Phys. Rev. B 44 11221). Filled and empty state scanning tunneling microscopy (STM) images are calculated for domain walls and the ≤ft(6× 6\\right) -Au structure. The ≤ft(6× 6\\right) -Au phase is 2D chiral and this is evident in computed and actual STM images. ≤ft(6× 6\\right) -Au and domain wall structures contain the SiAu4 motif with a butterfly wing shape. Chemical bonding within the Si-Au top layers of the \\sqrt{3} -Au and ≤ft(6× 6\\right) -Au surfaces is analyzed and an explanation for the SiAu4 motif structure is given.

  18. Identification of the au coverage and structure of the Au/Si(111)-(5 × 2) surface.

    PubMed

    Kwon, Se Gab; Kang, Myung Ho

    2014-08-22

    We identify the atomic structure of the Au/Si(111)-(5 × 2) surface by using density functional theory calculations. With seven Au atoms per unit cell, our model forms a bona fide (5 × 2) atomic structure, which is energetically favored over the leading model of Erwin et al. [Phys. Rev. B 80, 155409 (2009)], and well reproduces the Y-shaped and V-shaped (5 × 2) STM images. This surface is metallic with a prominent half filled band of surface states, mostly localized around the Au-chain area. The correct identification of the atomic and band structure of the clean surface further clarifies the adsorption structure of Si adatoms and the physical origin of the intriguing metal-to-insulator transition driven by Si adatoms. PMID:25192108

  19. Au20: A Tetrahedral Cluster

    SciTech Connect

    Li, Jun; Li, Xi; Zhai, Hua Jin; Wang, Lai S.

    2003-02-07

    Photoelectron spectroscopy revealed that a 20 atom gold cluster has an extremely large energy gap, which is even greater than that of C60, and an electron affinity comparable with that of C60. This observation suggests that the Au20 cluster must be extremely stable and chemically inert. Using relativistic density functional calculations, we found that Au20 possesses a remarkable tetrahedral structure, which is a fragment of the bulk face-centered cubic lattice of gold with a small structural relaxation. Au20 is thus a true cluster molecule, while at the same time it is exactly part of the bulk, but with very different properties. The tetrahedral Au20 may possess interesting catalytic properties and may be synthesized in bulk quantity or assembled on non-interacting surfaces.

  20. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  1. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    PubMed Central

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-01-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size. PMID:27476577

  2. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters.

    PubMed

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-01-01

    Understanding of the "structure-activity" relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au(3+) ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size. PMID:27476577

  3. Facile synthesis and optical properties of polymer-laced ZnO-Au hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, XianHong; Zhang, XiaoYan; Cheng, WenZheng; Shao, HongQin; Liu, Xiao; Li, XueMei; Liu, HongLing; Wu, JunHua

    2014-03-01

    Bi-phase dispersible ZnO-Au hybrid nanoparticles were synthesized via one-pot non-aqueous nanoemulsion using the triblock copolymer poly(ethylene glycol)- block-poly(propylene glycol)- block-poly(ethylene glycol) as the surfactant. The characterization shows that the polymer-laced ZnO-Au nanoparticles are monosized and of high crystallinity and demonstrate excellent dispersibility and optical performance in both organic and aqueous medium, revealing the effects of quantum confinement and medium. The findings show two well-behaved absorption bands locating at approximately 360 nm from ZnO and between 520 and 550 nm from the surface plasmon resonance of the nanosized Au and multiple visible fingerprint photoluminescent emissions. Consequently, the wide optical absorbance and fluorescent activity in different solvents could be promising for biosensing, photocatalysis, photodegradation, and optoelectronic devices.

  4. Herringbone and triangular patterns of dislocations in Ag, Au, and AgAu alloy films on Ru(0001).

    SciTech Connect

    Thayer, Gayle Echo; de la Figuera, Juan; Bartelt, Norman Charles; Carter, C. Barrington; Hwang, R. Q.; Thurmer, Konrad; Ling, W. L.; Hamilton, John C.; McCarty, Kevin F.

    2008-10-01

    We have studied the dislocation structures that occur in films of Ag, Au, and Ag{sub 0.5}Au{sub 0.5} alloy on a Ru(0001) substrate. Monolayer (ML) films form herringbone phases while films two or more layers thick contain triangular patterns of dislocations. We use scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) to determine how the film composition affects the structure and periodicity of these ordered structures. One layer of Ag forms two different herringbone phases depending on the exact Ag coverage and temperature. Low-energy electron microscopy (LEEM) establishes that a reversible, first-order phase transition occurs between these two phases at a certain temperature. We critically compare our 1 ML Ag structures to conflicting results from an X-ray scattering study [H. Zajonz et al., Phys. Rev. B 67 (2003) 155417]. Unlike Ag, the herringbone phases of Au and AgAu alloy are independent of the exact film coverage. For two layer films in all three systems, none of the dislocations in the triangular networks thread into the second film layer. In all three systems, the in-plane atomic spacing of the second film layer is nearly the same as in the bulk. Film composition does, however, affect the details of the two layer structures. Ag and Au films form interconnected networks of dislocations, which we refer to as 'trigons.' In 2 ML AgAu alloy, the dislocations form a different triangular network that shares features of both trigon and moire structures. Yet another well-ordered structure, with square symmetry, forms at the boundaries of translational trigon domains in 2 ML Ag films but not in Au films.

  5. BiI3 single crystal for room-temperature gamma ray detectors

    NASA Astrophysics Data System (ADS)

    Saito, T.; Iwasaki, T.; Kurosawa, S.; Yoshikawa, A.; Den, T.

    2016-01-01

    BiI3 single crystals were grown by the physical vapor transport method. The repeated sublimation of the starting material reduced impurities in the BiI3 single crystal to sub-ppm levels. The detector was fabricated by depositing Au electrodes on both surfaces of the 100-μm-thick BiI3 single crystal platelet. The resistivity of the BiI3 single crystal was increased by post-annealing in an iodine atmosphere (ρ=1.6×1011 Ω cm). Pulse height spectroscopy measurements showed clear peaks in the energy spectrum of alpha particles or gamma rays. It was estimated that the mobility-lifetime product was μeτe=3.4-8.5×10-6 cm2/V and the electron-hole pair creation energy was 5.8 eV. Our results show that BiI3 single crystals are promising candidates for detectors used in radiographic imaging or gamma ray spectroscopy.

  6. Ternary CuBiS2 nanoparticles as a sensitizer for quantum dot solar cells.

    PubMed

    Suriyawong, Nipapon; Aragaw, Belete; Shi, Jen-Bin; Lee, Ming-Way

    2016-07-01

    This work investigates the synthesis and application in solar cells of a novel solar absorber material CuBiS2. Ternary copper chalcogenide CuBiS2 nanoparticles were grown on a mesoporous TiO2 electrode by the chemical bath deposition (CBD) method. The synthesized CuBiS2 nanoparticles, size 5-10nm, have an energy gap Eg of 2.1eV. Liquid-junction quantum dot-sensitized solar cells were fabricated from the CuBiS2-sensitized electrode using a polysulfide electrolyte. Three types of counter electrodes (CEs) - Pt, Au and Cu2S - were tested. The photovoltaic performance depends on the CBD reaction time and the CE. The best cell, obtained with the Cu2S CE, exhibited the photovoltaic performance of a short-circuit current density Jsc of 6.87mA/cm(2), an open-circuit voltage Voc of 0.25V, a fill factor FF of 36% and a power conversion efficiency η of 0.62%. The present work demonstrates the feasibility of CuBiS2 as a solar energy material. PMID:27054767

  7. Azimuthal anisotropy relative to the participant plane from a multiphase transport model in central p +Au , d +Au , and 3He+Au collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Orjuela Koop, J. D.; Adare, A.; McGlinchey, D.; Nagle, J. L.

    2015-11-01

    Recent data from p +p and p +Pb collisions at the Large Hadron Collider (LHC), and d +Au and 3He+Au collisions at the Relativistic Heavy Ion Collider (RHIC) reveal patterns that—when observed in the collision of heavy nuclei—are commonly interpreted as indicators of a locally equilibrated system in collective motion. The comparison of these data sets, including the forthcoming results from p +Au and p +Al collisions at RHIC, will help to elucidate the geometric dependence of such patterns. It has recently been shown that a multiphase transport model (AMPT) can describe some of these features in LHC data with a parton-parton scattering cross section comparable to that required to describe A +A data. In this paper, we extend these studies by incorporating a full wave-function description of the 3He nucleus to calculate elliptical and triangular anisotropy moments v2 and v3 for p +Au , d +Au , and 3He+Au collisions at the RHIC top energy of 200 GeV. We find reasonable agreement with the measured v2 in d +Au and 3He+Au and v3 in 3He+Au for transverse momentum (pT)≲1 GeV /c , but underestimate these measurements for higher values of pT. We predict a pattern of coefficients (v2,v3) for p +Au , dominated by differences in the number of induced local hot spots (i.e., one, two, or three) arising from intrinsic geometry. Additionally, we examine how this substantial azimuthal anisotropy accrues during each individual evolutionary phase of the collision in the AMPT model. The possibility of a simultaneous description of RHIC- and LHC-energy data, the suite of different geometries, and high multiplicity p +p data is an exciting possibility for understanding the underlying physics in these systems.

  8. n vivo retention of ingested Au NPs by Daphnia magna: No evidence for trans-epithelial alimentary uptake

    USGS Publications Warehouse

    Khan, Farhan R.; Kennaway, Gabrielle M.; Croteau, Marie-Noële; Dybowska, Agnieszka; Smith, Brian D.; Nogueira, António J.A.; Rainbow, Philip S.; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2014-01-01

    In vivo studies with Daphnia magna remain inconclusive as to whether engineered nanoparticles (NPs) are internalized into tissues after ingestion. Here we used a three-pronged approach to study the in vivo retention and efflux kinetics of 20 nm citrate stabilized Au NPs ingested by this key aquatic species. Daphnids were exposed to suspended particles (600 μg L−1) for 5 h after which they were depurated for 24 h in clean water containing algae. Light microscopy was used to follow the passage of Au NPs through the gastrointestinal tract, Au body burdens were determined by ICP-MS (inductively coupled plasma mass spectrometry), and transmission electron microscopy (TEM) was used to examine the presence and distribution of Au NPs in tissues. Results revealed that the elimination of Au NPs was bi-phasic. The fast elimination phase lasted −1 (±SE) which accounted for ∼75% of the ingested Au. The remaining ∼25% of the ingested Au NPs was eliminated at a 100-fold slower rate. TEM analysis revealed that Au NPs in the midgut were in close proximity to the peritrophic membrane after 1 and 24 h of depuration. There were no observations of Au NP uptake at the microvilli. Thus, although Au NPs were retained in the gut lumen, there was no observable internalization into the gut epithelial cells. Similar to carbon nanotubes and CuO NPs, our findings indicate that in daphnids the in vivo retention of Au NPs does not necessarily result in their internalization.

  9. Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts

    PubMed Central

    Ma, Aijing; Xu, Jie; Zhang, Xuehua; Zhang, Bin; Wang, Dayang; Xu, Haolan

    2014-01-01

    Interfacial nanodroplets were grafted to the surfaces of self-sacrificed template particles in a galvanic reaction system to assist the construction of 3D Au porous structures. The interfacial nanodroplets were formed via direct adsorption of surfactant-free emulsions onto the particle surfaces. The interfacial nanodroplets discretely distributed at the template particle surfaces and served as soft templates to guide the formation of porous Au structures. The self-variation of footprint sizes of interfacial nanodroplets during Au growth gave rise to a hierarchical pore size distribution of the obtained Au porous particles. This strategy could be easily extended to synthesize bimetal porous particles such as Au-Pt and Au-Pd. The obtained porous Au, Au-Pt, and Au-Pd particles showed excellent catalytic activity in catalytic reduction of 4-nitrophenol. PMID:24797697

  10. Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts.

    PubMed

    Ma, Aijing; Xu, Jie; Zhang, Xuehua; Zhang, Bin; Wang, Dayang; Xu, Haolan

    2014-01-01

    Interfacial nanodroplets were grafted to the surfaces of self-sacrificed template particles in a galvanic reaction system to assist the construction of 3D Au porous structures. The interfacial nanodroplets were formed via direct adsorption of surfactant-free emulsions onto the particle surfaces. The interfacial nanodroplets discretely distributed at the template particle surfaces and served as soft templates to guide the formation of porous Au structures. The self-variation of footprint sizes of interfacial nanodroplets during Au growth gave rise to a hierarchical pore size distribution of the obtained Au porous particles. This strategy could be easily extended to synthesize bimetal porous particles such as Au-Pt and Au-Pd. The obtained porous Au, Au-Pt, and Au-Pd particles showed excellent catalytic activity in catalytic reduction of 4-nitrophenol. PMID:24797697

  11. Bi-stable optical actuator

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  12. Strain modulated optical properties in BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Liu, H. L.; Lin, M. K.; Cai, Y. R.; Tung, C. K.; Chu, Y. H.

    2013-10-01

    Spectroscopic ellipsometry was used to investigate the strain-dependent optical properties of BiFeO3 thin films. At room temperature, the compressively strained BiFeO3/LaAlO3 thin films show the largest band gap of about 3.12 eV. It redshifts to 2.75 eV for the tensile strained BiFeO3/NdScO3 thin films. With increasing temperature, observable anomalies in the band gap for all strained thin films near 640 K indicate that antiferromagnetic transition temperature is independent of strain and close to its bulk value, which are in good agreement with the first-principles calculations. These results further suggest a complex nature of charge-spin coupling in multiferroic BiFeO3 thin films.

  13. Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle

    NASA Astrophysics Data System (ADS)

    Jin, Zhiwen; Liu, Guo; Wang, Jizheng

    2013-05-01

    Uniform Au nanoparticles (NPs) are formed by thermally depositing nominal 2-nm thick Au film on a 10-nm thick polyimide film formed on a Al electrode, and then covered by a thin polymer semiconductor film, which acts as an energy barrier for electrons to be injected from the other Al electrode (on top of polymer film) into the Au NPs, which are energetically electron traps in such a resistive random access memory (RRAM) device. The Au NPs based RRAM device exhibits estimated retention time of 104 s, cycle times of more than 100, and ON-OFF ratio of 102 to 103. The carrier transport properties are also analyzed by fitting the measured I-V curves with several conduction models.

  14. Symmetry energy from elliptic flow in 197Au + 197Au

    NASA Astrophysics Data System (ADS)

    Russotto, P.; Wu, P. Z.; Zoric, M.; Chartier, M.; Leifels, Y.; Lemmon, R. C.; Li, Q.; Łukasik, J.; Pagano, A.; Pawłowski, P.; Trautmann, W.

    2011-03-01

    The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of neutron-rich systems at relativistic energies is proposed as an observable sensitive to the strength of the symmetry term in the equation of state at supra-normal densities. The results obtained from the existing FOPI/LAND data for 197Au + 197Au collisions at 400 MeV/nucleon in comparison with the UrQMD model favor a moderately soft symmetry term with a density dependence of the potential term proportional to (ρ /ρ0) γ with γ = 0.9 ± 0.4.

  15. Flow in Au+Au collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Belt Tonjes, Marguerite; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2004-08-01

    The study of flow can provide information on the initial state dynamics and the degree of equilibration attained in heavy-ion collisions. This contribution presents results for both elliptic and directed flow as determined from data recorded by the PHOBOS experiment in Au+Au runs at RHIC at \\sqrt{s_{{\\rm NN}}} = 19.6, 130 and 200 GeV. The PHOBOS detector provides a unique coverage in pseudorapidity for measuring flow at RHIC. The systematic dependence of flow on pseudorapidity, transverse momentum, centrality and energy is discussed.

  16. Structural and physical properties of BiVO{sub 3}

    SciTech Connect

    Singh, M. P. Razavi, F. S.

    2014-03-31

    We report the phase stabilization and properties of BiVO{sub 3} (BVO) thin films, grown on (001) SrTiO{sub 3} and LaAlO{sub 3}, using the pulsed laser deposition technique. Bi and V are in 3+ oxidation states as measured by using x-ray photoelectrons spectroscopy. BVO exhibits a Curie-Weiss paramagnetic behaviour and about −26 K Weiss temperature. This demonstrates the presence of a strong correlation effect due to the spin fluctuation. Additionally, these films exhibit a semiconducting behaviour owing to the thermally activated conduction process. A plausible explanation of the observed properties is presented by comparing with the closely related LaVO{sub 3} and other orthovanadates.

  17. Disassembly of hot nuclear matter formed in Au-induced reactions near the Fermi energy

    SciTech Connect

    Delis, D.N.

    1993-09-01

    Complex fragment emission has been studied in the 60 MeV/A {sup 197}Au + {sup 12}C, {sup 27}Al, {sup 51}V, {sup nat}Cu, and {sup 197}Au reactions. Velocity spectra, angular distributions and cross sections have been constructed for each target from the inclusive data. Coincidence data including 2-, 3-, 4-, and 5-fold events have also been examined. Furthermore neutron multiplicity distributions have been obtained for the above reactions by utilizing a novel neutron calorimetric approach.

  18. Horseradish peroxidase-catalyzed polymerization of L-DOPA for mono-/bi-enzyme immobilization and amperometric biosensing of H2O2 and uric acid.

    PubMed

    Dai, Mengzhen; Huang, Ting; Chao, Long; Xie, Qingji; Tan, Yueming; Chen, Chao; Meng, Wenhua

    2016-03-01

    Horseradish peroxidase (HRP)-catalyzed polymerization of L-DOPA (vs. dopamine) in the presence of H2O2 (and uricase (UOx)) was exploited to immobilize mono-/bi-enzymes for hydroquinone-mediated amperometric biosensing of H2O2 and uric acid (UA). The relevant polymeric biocomposites (PBCs) were prepared in phosphate buffer solution containing HRP and L-DOPA (or plus UOx) after adding H2O2. The mono-/bi-enzyme amperometric biosensors were prepared simply by casting some of the PBCs on Au-plated Au (Au(plate)/Au) electrodes, followed by coating with an outer-layer chitosan (CS) film for each. UV-vis spectrophotometry, scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy were used for film characterization and/or process monitoring. The HRP immobilized by enzyme catalysis well preserved its bioactivity, as confirmed by UV-vis spectrophotometry. Under optimized conditions, the monoenzyme CS/HRP-poly(L-DOPA) (PD)/Au(plate)/Au electrode potentiostated at -0.1V responded linearly to H2O2 concentration from 0.001 to 1.25mM with a sensitivity of 700μA mM(-1)cm(-2) and a limit of detection (LOD) of 0.1μM, and the bienzyme CS/UOx-HRP-PD/Au(plate)/Au electrode at -0.1V responded linearly to UA concentration from 0.001 to 0.4mM with a sensitivity of 349μA mM(-1)cm(-2) and a LOD of 0.1μM. The mono-/bi-enzyme biosensors based on biosynthesized PD performed better than many reported analogues and those based on similarly biosynthesized polydopamine. PMID:26717822

  19. Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts

    PubMed Central

    Sikosek, Tobias; Bornberg-Bauer, Erich; Chan, Hue Sun

    2012-01-01

    Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed. PMID:23028272

  20. Atomic-level structural and chemical analysis of Cr-doped Bi2Se3 thin films

    PubMed Central

    Ghasemi, A.; Kepaptsoglou, D.; Collins-McIntyre, L. J.; Ramasse, Q.; Hesjedal, T.; Lazarov, V. K.

    2016-01-01

    We present a study of the structure and chemical composition of the Cr-doped 3D topological insulator Bi2Se3. Single-crystalline thin films were grown by molecular beam epitaxy on Al2O3 (0001), and their structural and chemical properties determined on an atomic level by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A regular quintuple layer stacking of the Bi2Se3 film is found, with the exception of the first several atomic layers in the initial growth. The spectroscopy data gives direct evidence that Cr is preferentially substituting for Bi in the Bi2Se3 host. We also show that Cr has a tendency to segregate at internal grain boundaries of the Bi2Se3 film. PMID:27221782

  1. Atomic-level structural and chemical analysis of Cr-doped Bi2Se3 thin films.

    PubMed

    Ghasemi, A; Kepaptsoglou, D; Collins-McIntyre, L J; Ramasse, Q; Hesjedal, T; Lazarov, V K

    2016-01-01

    We present a study of the structure and chemical composition of the Cr-doped 3D topological insulator Bi2Se3. Single-crystalline thin films were grown by molecular beam epitaxy on Al2O3 (0001), and their structural and chemical properties determined on an atomic level by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A regular quintuple layer stacking of the Bi2Se3 film is found, with the exception of the first several atomic layers in the initial growth. The spectroscopy data gives direct evidence that Cr is preferentially substituting for Bi in the Bi2Se3 host. We also show that Cr has a tendency to segregate at internal grain boundaries of the Bi2Se3 film. PMID:27221782

  2. Atomic-level structural and chemical analysis of Cr-doped Bi2Se3 thin films

    NASA Astrophysics Data System (ADS)

    Ghasemi, A.; Kepaptsoglou, D.; Collins-McIntyre, L. J.; Ramasse, Q.; Hesjedal, T.; Lazarov, V. K.

    2016-05-01

    We present a study of the structure and chemical composition of the Cr-doped 3D topological insulator Bi2Se3. Single-crystalline thin films were grown by molecular beam epitaxy on Al2O3 (0001), and their structural and chemical properties determined on an atomic level by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A regular quintuple layer stacking of the Bi2Se3 film is found, with the exception of the first several atomic layers in the initial growth. The spectroscopy data gives direct evidence that Cr is preferentially substituting for Bi in the Bi2Se3 host. We also show that Cr has a tendency to segregate at internal grain boundaries of the Bi2Se3 film.

  3. Study on the contact resistance of various metals (Au, Ti, and Sb) on Bi–Te and Sb–Te thermoelectric films

    NASA Astrophysics Data System (ADS)

    Yong, Ho; Na, Sekwon; Gang, Jun-Gu; Shin, HaeSun; Jeon, Seong-Jae; Hyun, SeungMin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we explore various electrode materials (Au, Ti, and Sb) for use as contact materials on Bi2Te3 and Sb2Te3 thermoelectric films. Using the transmission line method (TLM), we measured the specific resistivity of the contacts, which showed that Au has the lowest contact resistivity for both the thermoelectric films (after annealing): 2.7 × 10‑10 Ω m2 for Bi2Te3 and 2.9 × 10‑11 Ω m2 for Sb2Te3. The specific contact resistivity data suggest that the dominant factor for the contact properties is interface states. After annealing, the contact resistivity does not change much for the Bi2Te3 contacts while it drops greatly for the Sb2Te3 ones. Analysis of the carrier transport mechanism across the contacts discloses that changes in the carrier concentration in the thermoelectric films after annealing are responsible for the different behaviors.

  4. Does Bi form clusters in GaAs1 - xBi x alloys?

    NASA Astrophysics Data System (ADS)

    Punkkinen, M. P. J.; Laukkanen, P.; Kuzmin, M.; Levämäki, H.; Lång, J.; Tuominen, M.; Yasir, M.; Dahl, J.; Lu, S.; Delczeg-Czirjak, E. K.; Vitos, L.; Kokko, K.

    2014-11-01

    GaAs1 - xBi x alloys attract significant interest due to their potentiality for several applications, including solar cells. Recent experiments link the crucial optical properties of these alloys to Bi clustering at certain Bi compositions. Using ab initio calculations, we show that there is no thermodynamical driving force for the formation of small GaBi clusters incorporating As substitutional sites. However, the Ga vacancies should gather Bi atoms leading to small Bi clusters, and the Ga vacancies can act as nucleation centers for phase separation. The formation energy of the GaAs1 - xBi x with respect to GaAs and GaBi shows a maximum at intermediate Bi concentrations. Thermodynamics and kinetics of the GaAs1 - xBi x film growth is discussed. High Bi solubility is obtained, if the Bi atoms on the energetically favorable atom positions in the subsurface layer are relatively frozen. The Ga vacancy concentration may be increased by the incorporation of Bi. The Bi atoms can also prevent the out diffusion of Ga vacancies.

  5. A spectrophotometric study of aqueous Au(III) halide-hydroxide complexes at 25-80 °C

    NASA Astrophysics Data System (ADS)

    Usher, Al; McPhail, D. C.; Brugger, Joël

    2009-06-01

    The mobility and transport of gold in low-temperature waters and brines is affected by the aqueous speciation of gold, which is sensitive in particular to pH, oxidation and halide concentrations. In this study, we use UV-Vis spectrophotometry to identify and measure the thermodynamic properties of Au(III) aqueous complexes with chloride, bromide and hydroxide. Au(III) forms stable square planar complexes with hydroxide and halide ligands. Based on systematic changes in the absorption spectra of solutions in three binary systems NaCl-NaBr, NaCl-NaOH and NaBr-NaOH at 25 °C, we derived log dissociation constants for the following mixed and end-member halide and hydroxide complexes: [AuCl 3Br] -, [AuCl 2Br 2] -, [AuBr 3Cl] - and [AuBr 4] -; [AuCl 3(OH)] -, [AuCl 2(OH) 2] -, [AuCl(OH) 3] - and [Au(OH) 4] -; and [AuBr 3(OH)] -, [AuBr 2(OH) 2] - and [AuBr(OH) 3] -. These are the first reported results for the mixed chloride-bromide complexes. Increasing temperature to 80 °C resulted in an increase in the stability of the mixed chloride-bromide complexes, relative to the end-member chloride and bromide complexes. For the [AuCl (4-n)(OH) n] - series of complexes ( n = 0-4), there is an excellent agreement between our spectrophotometric results and previous electrochemical results of Chateau et al. [Chateau et al. (1966)]. In other experiments, the iodide ion (I -) was found to be unstable in the presence of Au(III), oxidizing rapidly to I 2(g) and causing Au to precipitate. Predicted Au(III) speciation indicates that Au(III) chloride-bromide complexes can be important in transporting gold in brines with high bromide-chloride ratios (e.g., >0.05), under oxidizing (atmospheric), acidic (pH < 5) conditions. Native gold solubility under atmospheric oxygen conditions is predicted to increase with decreasing pH in acidic conditions, increasing pH in alkaline conditions, increasing chloride, especially at acid pH, and increasing bromide for bromide/chloride ratios greater than 0

  6. Improved ReaxFF force field parameters for Au-S-C-H systems.

    PubMed

    Bae, Gyun-Tack; Aikens, Christine M

    2013-10-10

    Evaluation and reparameterization of previously reported ReaxFF parameters (Järvi, T. T.; et al. J. Phys. Chem. A 2011, 115, 10315-10322) is carried out for Au-S-C-H systems. Changes in Au-S and Au-Au bond parameters and S-Au-S angle bending parameters yield improvements for bond bending potential energy surfaces. The new ReaxFF parameters lead to good agreement with density functional theory geometries of small clusters and gold-thiolate nanoparticles. The energies of Au38(SCH3)24 clusters are compared, and the new ReaxFF calculations are also in good agreement with PBE calculations for the isomer orderings. In addition, the relative energies of Au40(SCH3)24 nanoparticles and Au-thiolate SAMs are calculated using the updated parameters. These new ReaxFF parameters will enable the study of the geometries and reactivity of larger gold-thiolate nanoparticles. PMID:24041237

  7. Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration

    SciTech Connect

    Herz, A. E-mail: dong.wang@tu-ilmenau.de; Rossberg, D.; Hentschel, M.; Theska, F.; Wang, D. E-mail: dong.wang@tu-ilmenau.de; Schaaf, P.; Friák, M.; Holec, D.; Šob, M.; Schneeweiss, O.

    2015-08-17

    Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that (100) faceting planes of the equilibrated particles are enriched with Ni and (111) faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observed phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.

  8. Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration

    NASA Astrophysics Data System (ADS)

    Herz, A.; Friák, M.; Rossberg, D.; Hentschel, M.; Theska, F.; Wang, D.; Holec, D.; Šob, M.; Schneeweiss, O.; Schaaf, P.

    2015-08-01

    Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that {100} faceting planes of the equilibrated particles are enriched with Ni and {111} faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observed phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.

  9. Mechanical alloying of BiTe and BiSbTe thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Hasezaki, K.; Nishimura, M.; Umata, M.; Tsukuda, H.; Araoka, M.

    1994-06-01

    Two thermoelectric materials, BiTe and BiSbTe were prepared by mechanical attrition of elemental powders in a rare gas atmosphere. Nearly 20 min were required for the alloying of BiTe, while 10 h were required for BiSbTe. After attrition, the average powder diameter of the BiSbTe alloy was in 1.4 micron, and the impurity content, measured by Inductively Coupled Argon Plasma Emission Spectrophotometer, was less than 0.1 mass%. The MA powders were sintered by a hot pressing technique. Uniform elemental dispersions were measured by EPMA in BiSbTe alloys sintered at 623 K.

  10. Superconductivity in textured Bi clusters/Bi{sub 2}Te{sub 3} films

    SciTech Connect

    Le, Phuoc Huu; Tzeng, Wen-Yen; Chen, Hsueh-Ju; Luo, Chih Wei; Lin, Jiunn-Yuan; Leu, Jihperng

    2014-09-01

    We report superconductivity at an onset critical temperature below 3.1 K in topological insulator ∼200-nm-thick Bi{sub 2}Te{sub 3} thin films grown by pulsed laser deposition. Using energy-dispersive X-ray spectroscopy elemental mapping and Auger electron spectroscopy elemental depth profiling, we clearly identified bismuth (Bi) precipitation and Bi cluster signatures. Superconductivity in the Bi{sub 2}Te{sub 3} films was attributed to the proximity effect of Bi clusters precipitated on the surface of the Bi{sub 2}Te{sub 3} films.

  11. Reply to Gopalswamy et al.

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Richardson, I. G.

    2003-01-01

    The comment of Gopalswamy et al. (thereafter GMY) relates to a letter discussing coronal mass ejections (CMEs), interplanetary ejecta and geomagnetic storms. GMY contend that Cane et al. incorrectly identified ejecta (interplanetary CMEs) and hypothesize that this is because Cane et al. fail to understand how to separate ejecta from "shock sheaths" when interpreting solar wind and energetic particle data sets. They (GMY) are wrong be cause the relevant section of the paper was concerned with the propagation time to 1 AU of any potentially geoeffective structures caused by CMEs, i.e. upstream compression regions with or without shocks, or ejecta. In other words, the travel times used by Cane et al. were purposefully and deliberately distinct from ejecta travel times (except for those slow ejecta, approx. 30% of their events, which generated no upstream features), and no error in identification was involved. The confusion of GMY stems from the description did not characterize the observations sufficiently clearly.

  12. ALS - resources

    MedlinePlus

    Resources - ALS ... The following organizations are good resources for information on amyotrophic lateral sclerosis : Muscular Dystrophy Association -- mda.org/disease/amyotrophic-lateral-sclerosis National Amyotrophic Lateral Sclerosis (ALS) Registry -- ...

  13. ALS Association

    MedlinePlus

    ... ALS. Find Out How Our Mission Leading the fight to treat and cure ALS through global research ... you participate, advocate, and donate, you advance the fight to find the cure and lead us toward ...

  14. Fabrication of High Jc (Bi,Pb)2223 Thin Films by PLD and Post-annealing Process

    NASA Astrophysics Data System (ADS)

    Takahira, S.; Ichino, Y.; Yoshida, Y.

    (Bi,Pb)2Sr2Ca2Cu3Oy ((Bi,Pb)2333) has high critical temperature (Tc) compared to REBa2Cu3Oy. However, (Bi,Pb)2223 has a disadvantage that the critical current density (Jc) seriously degrades in magnetic fields. We succeeded to fabricate (Bi,Pb)2223 epitaxial thin films by pulsed laser deposition (PLD) method using Nd:YAG pulsed laser deposition and post-annealing process. In addition, we tried to improve Jc in the magnetic fields by introducing Y2O3 or Al2O3 as artificial pinning centers (APCs). As a result, we fabricated (Bi,Pb)2223 thin films that had high Jc in self field at 77 K of 0.4 MA/cm2. The main phase of the thin films introduced Y2O3 was Bi2212. On the other hand, the main phase of the thin films introduced Al2O3 was Bi2223, however, the formation of Ca2PbO4 resulted in the decline of Jc.

  15. Effects of Pb doping on structural and electronic properties of Bi2Sr2Ca2Cu3O10

    NASA Astrophysics Data System (ADS)

    Camargo-Martínez, J. A.; Baquero, R.

    2016-02-01

    Pb doping effect in the Bi2Sr2Ca2Cu3O10 compound (Bi2223) on the structural and electronic properties were investigated, using the Local Density (LDA) and Virtual Crystal (VCA) approximations within the framework of the Density Functional Theory (DFT), taking as reference the procedure implemented by Lin et al. (2006) in the Bi2212 compound. Results show that, the incorporation of Pb-dopant in Bi2223 lead a rigid displacement of the Bi/Pb-O bands toward higher energies, with a null contribution at the Fermi level, around the high symmetry point M bar in the irreducible Brillouin zone, for Pb doping concentration equal to or more than 26%, avoiding the presence of the so-called Bi-O pockets in the Fermi surface, in good agreement with angle-resolved photoemission spectroscopy (ARPES) and nuclear magnetic resonance (NMR) experiments, although a slight metallic character of the Bi-O bonds is still observed which would disagree with some experimental reports. The calculations show that the changes on the structural properties are associated to the presence or absence of the Bi-O pockets in the Fermi surface.

  16. Magnetic interactions in BiFe₀.₅Mn₀.₅O₃ films and BiFeO₃/BiMnO₃ superlattices.

    PubMed

    Xu, Qingyu; Sheng, Yan; Khalid, M; Cao, Yanqiang; Wang, Yutian; Qiu, Xiangbiao; Zhang, Wen; He, Maocheng; Wang, Shuangbao; Zhou, Shengqiang; Li, Qi; Wu, Di; Zhai, Ya; Liu, Wenqing; Wang, Peng; Xu, Y B; Du, Jun

    2015-01-01

    The clear understanding of exchange interactions between magnetic ions in substituted BiFeO3 is the prerequisite for the comprehensive studies on magnetic properties. BiFe0.5Mn0.5O3 films and BiFeO3/BiMnO3 superlattices have been fabricated by pulsed laser deposition on (001) SrTiO3 substrates. Using piezoresponse force microscopy (PFM), the ferroelectricity at room temperature has been inferred from the observation of PFM hysteresis loops and electrical writing of ferroelectric domains for both samples. Spin glass behavior has been observed in both samples by temperature dependent magnetization curves and decay of thermo-remnant magnetization with time. The magnetic ordering has been studied by X-ray magnetic circular dichroism measurements, and Fe-O-Mn interaction has been confirmed to be antiferromagnetic (AF). The observed spin glass in BiFe0.5Mn0.5O3 films has been attributed to cluster spin glass due to Mn-rich ferromagnetic (FM) clusters in AF matrix, while spin glass in BiFeO3/BiMnO3 superlattices is due to competition between AF Fe-O-Fe, AF Fe-O-Mn and FM Mn-O-Mn interactions in the well ordered square lattice with two Fe ions in BiFeO3 layer and two Mn ions in BiMnO3 layer at interfaces. PMID:25766744

  17. The New Superconductor tP-SrPd2Bi2: Structural Polymorphism and Superconductivity in Intermetallics.

    PubMed

    Xie, Weiwei; Seibel, Elizabeth M; Cava, Robert J

    2016-04-01

    We consider a system where structural polymorphism suggests the possible existence of superconductivity through the implied structural instability. SrPd2Bi2 has two polymorphs, which can be controlled by the synthesis temperature: a tetragonal form (CaBe2Ge2-type) and a monoclinic form (BaAu2Sb2-type). Although the crystallographic difference between the two forms may, at first, seem trivial, we show that tetragonal SrPd2Bi2 is superconducting at 2.0 K, whereas monoclinic SrPd2Bi2 is not. We rationalize this finding and place it in context with other 1-2-2 phases. PMID:27010099

  18. New real ternary and pseudoternary phases in the Li-Au-In system

    SciTech Connect

    Dmytriv, G.S.; Pavlyuk, V.V.; Pauly, H.; Eckert, J.; Ehrenberg, H.

    2011-05-15

    Two real ternary lithium gold indides LiAu{sub 2}In and Li{sub 280}Au{sub 22}In{sub 130} (Li{sub 0.65}Au{sub 0.05}In{sub 0.30}) were found in the Li-Au-In system. They are isostructural to the respective Ag-alloys. LiAu{sub 2}In crystallizes in the MnCu{sub 2}Al-type structure (Fm-3m, Heusler phase, a=6.4982(8) A, based on single crystal XRD-data) and Li{sub 280}Au{sub 22}In{sub 130} in the Li{sub 278}Ag{sub 40}In{sub 114}-type structure (F-43m, a=19.9970(2) A, based on powder XRD-data). The analogy of the two ternary systems Li-Au-In and Li-Ag-In is additionally reaffirmed by the wide homogeneity range of the pseudoternary solid solution with NaTl-type structure (Zintl phase),which expands not only in the direction of the quasibinary cut Li(Au{sub x}In{sub 1-x}) with 0{<=}x{<=}0.5, but also into the directions of both higher and lower Li-concentrations. -- Graphical abstract: Two real ternary compounds (1: Heusler phase, 2: n=6 variant of a cubic nxnxn W-type superstructure) together with one pseudoternary compound (3: Zintl phase with its broad homogeneity range). Display Omitted Highlights: {yields} 'Real' ternary phases were found in the Li-Au-In systems: LiAu{sub 2}In and Li{sub 280}Au{sub 22}In{sub 130}. {yields} The homogeneity range of 'pseudoternary' Li(Au{sub x}In{sub 1-x}) extends to the binary phase x=0. {yields} The three-element sets, both Li, Au, In and Li, Ag, In, are compound formers*. (*in the definition of Villars et al., J. Alloys Compd. 317-318, 2001, 26).

  19. Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril'sk sulfide ores

    NASA Astrophysics Data System (ADS)

    Spiridonov, E. M.; Kulagov, E. A.; Serova, A. A.; Kulikova, I. M.; Korotaeva, N. N.; Sereda, E. V.; Tushentsova, I. N.; Belyakov, S. N.; Zhukov, N. N.

    2015-09-01

    The undeformed ore-bearing intrusions of the Noril'sk ore field (NOF) cut through volcanic rocks of the Late Permian-Early Triassic trap association folded in brachysynclines. Due to the nonuniform load on the roof of intrusive bodies, most sulfide melts were squeezed, up to the tops of ore-bearing intrusions; readily fusible Ni-Fe-Cu sulfide melts were almost completely squeezed. In our opinion, not only one but two stages of mineralization developed at the Noril'sk deposits: (i) syntrap magmatic and (ii) epigenetic post-trap metamorphic-hydrothermal. All platinum-group minerals (PGM) and minerals of gold are metasomatic in the Noril'sk ores. They replaced sulfide solid solutions and exsolution structures. All types of PGM and Au minerals occur in the ores, varying in composition from pyrrhotite to chalcopyrite, talnakhite, mooihoekite, and rich in galena; they are localized in the inner and outer contact zones and differ only in the quantitative proportions of ore minerals. The aureoles of PGM and Au-Ag minerals are wider than the contours of sulfide bodies and coincide with halos of fluid impact on orebodies and adjacent host rocks. The pneumatolytic PGM and Au-Ag minerals are correlated in abundance with the dimensions of sulfide bodies. Their amounts are maximal in veins of late fusible ore composed of eutectic PbS ss and iss intergrowths, as well as at their contacts. The Pd and Pt contents in eutectic sulfide ores of NOF are the world's highest. In the process of noble-metal mineral formation, the fluids supply Pd, Pt, Au, As, Sb, Sn, Bi, and a part of Te, whereas Fe, Ni, Cu, Pb, Ag, Rh, a part of Te and Pd are leached from the replaced sulfide minerals. The pneumatolytic PGM of the early stage comprises Pd and Pt intermetallic compounds enriched in Au along with Pd-Pt-Fe-Ni-Cu-Sn-Pb(As) and (Pd,Pt,Au)(Sn,Sb,Bi,Te,As) solid solutions. Pneumatolytic PGM and Au minerals of the middle stage are products of solid-phase transformation and recrystallization of

  20. Metalorganic vapor phase epitaxy growth of ternary tetradymite Bi2Te3-xSex compounds

    NASA Astrophysics Data System (ADS)

    Kuznetsov, P. I.; Yakushcheva, G. G.; Luzanov, V. A.; Temiryazev, A. G.; Shchamkhalova, B. S.; Jitov, V. A.; Sizov, V. E.

    2015-01-01

    We report on a metal organic vapor epitaxy (MOVPE) of Bi2Te3-xSex films over the entire range of compositions (0 ≤ x ≤ 3) for the first time. The films were grown on Al2O3(0001) substrates at 465 °C using trimethylbismuth (Bi2Me3), diethyltellurium (Et2Te) and diisopropylselenium (iPro2Se) as metalorganic sources. To realize the 2D growth mode and to grow films with flat surfaces and high crystalline quality, a thin ZnTe buffer layer was used. As-grown films were studied using optical and AFM microscopy techniques and X-ray diffraction. It was found that under steady growth conditions the composition of Bi2Te3-xSex films strongly depends on the film thickness. But a high rate of interdiffusion of chalcogens at the growth temperature rapidly leads to a homogeneous composition of the film in the growth direction. Dependence of the intensity of X-ray reflection (0012) on the composition of Bi2Te3-xSex films x has extremes near x=1 (Bi2Te2 Se) and x=2 (Bi2Se2 Te). The AFM micrographs and profiles show large (above 2 μm) triangle-shaped atomically flat terraces with step height of a quintuple layer (0.90 nm) of the tetradymite-type compounds. The electronic properties of the grown films have been characterized via four probe magnetotransport measurements.

  1. Nanostructure, Excitations, and Thermoelectric Properties of Bi2Te3-Based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Aabdin, Z.; Peranio, N.; Eibl, O.; Töllner, W.; Nielsch, K.; Bessas, D.; Hermann, R. P.; Winkler, M.; König, J.; Böttner, H.; Pacheco, V.; Schmidt, J.; Hashibon, A.; Elsässer, C.

    2012-06-01

    The effect of dimensionality and nanostructure on thermoelectric properties in Bi2Te3-based nanomaterials is summarized. Stoichiometric, single-crystalline Bi2Te3 nanowires were prepared by potential-pulsed electrochemical deposition in a nanostructured Al2O3 matrix, yielding transport in the basal plane. Polycrystalline, textured Sb2Te3 and Bi2Te3 thin films were grown at room temperature using molecular beam epitaxy and subsequently annealed at 250°C. Sb2Te3 films revealed low charge carrier density of 2.6 × 1019 cm-3, large thermopower of 130 μV K-1, and large charge carrier mobility of 402 cm2 V-1 s-1. Bi2(Te0.91Se0.09)3 and (Bi0.26Sb0.74)2Te3 nanostructured bulk samples were prepared from as-cast materials by ball milling and subsequent spark plasma sintering, yielding grain sizes of 50 nm and thermal diffusivities reduced by 60%. Structure, chemical composition, as well as electronic and phononic excitations were investigated by x-ray and electron diffraction, nuclear resonance scattering, and analytical energy-filtered transmission electron microscopy. Ab initio calculations yielded point defect energies, excitation spectra, and band structure. Mechanisms limiting the thermoelectric figure of merit ZT for Bi2Te3 nanomaterials are discussed.

  2. Effects of stoichiometric doping in superconducting Bi-O-S compounds

    NASA Astrophysics Data System (ADS)

    Morice, Corentin; Artacho, Emilio; Dutton, Siân E.; Molnar, Daniel; Kim, Hyeong-Jin; Saxena, Siddharth S.

    2015-04-01

    Newly discovered Bi-O-S compounds remain an enigma in attempts to understand their electronic properties. A recent study of Bi4O4S3 has shown it to be a mixture of two phases, Bi2OS2 and Bi3O2S3, the latter being superconducting (Phelan et al 2013 J. Am. Chem. Soc. 135 5372-4). Using density functional theory, we explore the electronic structure of both the phases and the effect of the introduction of extra BiS2 bilayers. Our results demonstrate that the S2 layers dope the bismuth-sulphur bands and this causes metallisation. The bands at the Fermi level are of clear two-dimensional character. One band manifold is confined to the two adjacent, square-lattice bismuth-sulphur planes, a second manifold is confined to the square lattice of sulphur dimers. We show that the introduction of extra BiS2 bilayers does not influence the electronic structure. Finally, we also show that spin-orbit coupling does not have any significant effect on the states close to the Fermi level at the energy scale considered.

  3. Efficient Charge Separation between Bi and Bi2 MoO6 for Photoelectrochemical Properties.

    PubMed

    Ma, Ying; Jia, Yulong; Wang, Lina; Yang, Min; Bi, Yingpu; Qi, Yanxing

    2016-04-18

    Herein, porous Bi/Bi2 MoO6 nanoparticles have been prepared by a facile in-situ reduction approach. Moreover, the morphology and Bi content of product could be controlled by varying the reaction time. By controlled fabrication, the desired porous Bi2 MoO6 nanostructure with incorporation of Bi was obtained and exhibited high photoelectric and photocatalytic activity. In particular, the samples yield a photocurrent density of 320 μA cm(-2) , which is 3.2 times that of the pure Bi2 MoO6 nanosheet (100 μA cm(-2) ) under the same conditions. UV/Vis diffuse reflectance spectroscopy analysis confirmed the surface plasmon resonance in the as-prepared porous nanoparticles. The improved photoelectric properties could be the synergistic effect of the porous structure with large surface area and effective electron-hole separations between Bi and Bi2 MoO6 . PMID:26868192

  4. Effect of diamagnetic barium substitution on magnetic and photovoltaic properties in multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Hung, C.-M.; Tu, C. S.; Xu, Z.-R.; Chang, L.-Y.; Schmidt, V. H.; Chien, R. R.; Chang, W. C.

    2014-05-01

    Spontaneous magnetization and photovoltaic (PV) effects have been measured in (Bi1-xBax)FeO3-δ ceramics for x = 0.05, 0.10, and 0.15. The substitution of Ba2+ ion in the A site of the perovskite unit cell can effectively enhance the ferromagnetic magnetization. The heterostructure of indium tin oxide (ITO) film/(Bi1-xBax)FeO3-δ ceramic/Au film exhibits significant PV effects under illumination of λ = 405 nm. The PV responses decrease with increasing Ba concentration. The maximum power-conversion efficiency in the ITO/(Bi0.95Ba0.5)FeO2.95/Au can reach 0.006%. A theoretical model based on optically excited current in the depletion region between ITO film and (Bi1-xBax)FeO3-δ ceramics is used to describe the I-V characteristic, open-circuit voltage (Voc), and short-circuit current density (Jsc) as a function of light intensity.

  5. Effect of diamagnetic barium substitution on magnetic and photovoltaic properties in multiferroic BiFeO{sub 3}

    SciTech Connect

    Hung, C.-M.; Tu, C. S.; Xu, Z.-R.; Chang, L.-Y.; Schmidt, V. H.; Chien, R. R.; Chang, W. C.

    2014-05-07

    Spontaneous magnetization and photovoltaic (PV) effects have been measured in (Bi{sub 1-x}Ba{sub x})FeO{sub 3-δ} ceramics for x = 0.05, 0.10, and 0.15. The substitution of Ba{sup 2+} ion in the A site of the perovskite unit cell can effectively enhance the ferromagnetic magnetization. The heterostructure of indium tin oxide (ITO) film/(Bi{sub 1-x}Ba{sub x})FeO{sub 3-δ} ceramic/Au film exhibits significant PV effects under illumination of λ = 405 nm. The PV responses decrease with increasing Ba concentration. The maximum power-conversion efficiency in the ITO/(Bi{sub 0.95}Ba{sub 0.5})FeO{sub 2.95}/Au can reach 0.006%. A theoretical model based on optically excited current in the depletion region between ITO film and (Bi{sub 1-x}Ba{sub x})FeO{sub 3-δ} ceramics is used to describe the I-V characteristic, open-circuit voltage (V{sub oc}), and short-circuit current density (J{sub sc}) as a function of light intensity.

  6. Bi-material terahertz sensors using metamaterial structures.

    PubMed

    Alves, Fabio; Grbovic, Dragoslav; Kearney, Brian; Lavrik, Nickolay V; Karunasiri, Gamani

    2013-06-01

    In this paper we report on the design, fabrication and characterization of terahertz (THz) bi-material sensors with metamaterial absorbers. MEMS fabrication-friendly SiOx and Al are used to maximize the bimetallic effect and metamaterial absorption at 3.8 THz, the frequency of a quantum cascade laser illumination source. Sensors with different configurations were fabricated and the measured absorption is near 100% and responsivity is around 1.2 deg/μW, which agree well with finite element simulations. The results indicate the potential of using these detectors to fabricate focal plane arrays for real time THz imaging. PMID:23736579

  7. Au/(Ti-W) and Au/Cr metallization of chemically vapor-deposited diamond substrates for multichip module applications

    NASA Astrophysics Data System (ADS)

    Meyyappan, Ilango; Malshe, A. P.; Naseem, H. A.; Brown, W. D.

    1994-12-01

    Since diamond obtained by chemical vapor deposition (CVD) has an extremely high thermal conductivity, it holds great promise in solving thermal management problems in high performance multichip modules (MCMs). Consequently, there is a need to develop a reliable metallization system for CVD diamond. Refractory metals such as Ti, Mo, Ta and W are known to form adhering carbide layers at high temperatures. Also, transition metals such as Cr, Ni and Ni-Cr are widely used in other MCM technologies involving Si, AlN, SiC and alumina substrates. In the work reported here, adherent Au/Cr and Au/(Ti-W) metallization systems were produced at low temperatures using d.c. magnetron sputtering and electron beam evaporation techniques. Adhesion at low temperature is essential since CVD diamond could lose its thermal and electrical properties at high temperatures. Furthermore, interaction between metal layers may cause an increase in conductor trace resistivity and delamination. Adhesion was measured using a Sebastian V-A thin film stud pull tester. The deposition parameters were optimized to give maximum adhesion using a statistical design software package, echip. In the case of the sputtered metallization, pre-sputter cleaning of diamond surface improved adhesion significantly. Values above 9 klbf/sq in were obtained in the case of Au/(Ti-W) and 11.8 klbf/sq in in the case of Au/Cr. Post-deposition annealing was performed in nitrogen ambient to investigate the effect of post-metallization processing on adhesion and also to test for any possible interaction between the metals at high temperatures. Annealing temperatures were limited to 450 C since MCM substrates are seldom exposed to temperatures higher than these. Energy-dispersive spectroscopy (EDS) analysis indicated outdiffusion of W through Au at 400 deg C. No interdiffusion was observed in the case of Au/Cr as per optical microscopy and EDS analysis. Auger electron spectroscopy results indicate interaction between the

  8. Chiral exciton in the topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Kung, Hsiang-Hsi; Salehi, Maryam; Wang, Xueyun; Koirala, Nikesh; Brahlek, Matthew; Lee, Alexander; Cheong, Sang-Wook; Oh, Seongshik; Blumberg, Girsh

    Materials with novel band structures can host ``chiral excitons'', where the exciton emission preserves the helicity of the excitation photon, as recently demonstrated in transition metal dichalcogenide monolayers. Here, we report the observation of a highly polarized photoluminescence peak, which is due to chiral exciton emission in the topological insulator Bi2Se3. Surprisingly, the energy of the emission is centered at 2.26 eV, much higher than the 0.3 eV bulk band gap of Bi2Se3. The excitation profile shows maximum polarization around 2.60 eV excitation, suggesting the chiral exciton is due to interband transition between the topological surface states and a bulk band. We demonstrate that the polarization of the exciton emission is insensitive to temperature and Bi2Se3 film thickness, providing a convenient and robust platform for optoelectronic applications. Gb, HHK and AL acknowledge support from NSF Award DMR-1104884. MS, NK, MB and SO are funded by Gordon and Betty Moore Foundation's EPiQS initiative (GBMF4418) and NSF(DMR-1308142). XYW and SWC acknowledge support from NSF Award DMREF-1233349.

  9. Universality in fragment inclusive yields from Au+Au collisions

    NASA Astrophysics Data System (ADS)

    Insolia, A.; Tuvè, C.; Albergo, S.; Bieser, F.; Brady, F. P.; Caccia, Z.; Cebra, D.; Chacon, A. D.; Chance, J. L.; Choi, Y.; Costa, S.; Elliott, J. B.; Gilkes, M.; Hauger, J. A.; Hirsch, A. S.; Hjort, E. L.; Justice, M.; Keane, D.; Kintner, J.; Lisa, M.; Matis, H. S.; McMahan, M.; McParland, C.; Olson, D. L.; Partlan, M. D.; Porile, N. T.; Potenza, R.; Rai, G.; Rasmussen, J.; Ritter, H. G.; Romero, J. L.; Russo, G. V.; Scharenberg, R.; Scott, A.; Shao, Y.; Srivastava, B. K.; Symons, T. J. M.; Tincknell, M. L.; Wang, S.; Warren, P. G.; Wieman, H. H.; Wolf, K. L.

    2001-11-01

    The inclusive light fragment (Z⩽7) yield data in Au+Au reactions, measured by the EOS Collaboration at the LBNL Bevalac, are presented and discussed. For peripheral collisions the measured charge distributions develop progressively according to a power law which can be fitted by a single τ exponent independently of the bombarding energy in the range 250-1200 A MeV. In addition to this universal feature, we observe that the location of the maximum in the individual yields of different charged fragments shift towards lower multiplicity as the fragment charge increases from Z=3 to Z=7. This trend is common to all six measured beam energies. Moments of charge distributions and correlations among different moments are reported. Finally, the THe,DT thermometer has been constructed for central and peripheral collisions using the double yield ratios of He and D, T projectile fragments. The measured nuclear temperatures are in agreement with experimental findings in other fragmentation reactions.

  10. Global polarization measurement in Au+Au collisions

    SciTech Connect

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev,V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2007-08-02

    The system created in non-central relativisticnucleus-nucleus collisions possesses large orbital angular momentum. Dueto spin-orbit coupling, particles produced in such a system could becomeglobally polarized along the direction of the system angular momentum. Wepresent the results of Lambda and anti-Lambda hyperon global polarizationmeasurements in Au+Au collisions at sqrt sNN=62.4 GeV and 200 GeVperformed with the STAR detector at RHIC. The observed globalpolarization of Lambda and anti-Lambda hyperons in the STAR acceptance isconsistent with zero within the precision of the measurements. Theobtained upper limit, lbar P Lambda, anti-Lambda rbar<= 0.02, iscompared to the theoretical values discussed recently in theliterature.

  11. Nuclear Modification of Jet Fragmentation in Au+Au Collisions

    NASA Astrophysics Data System (ADS)

    Rowan, Zachary; Phenix Collaboration

    2015-10-01

    The characterization of energy in the quark gluon plasma is facilitated by measurements of modifications to the observed jet fragmentation. A favorable channel of study relies on direct photons created in the initial parton interactions of heavy ion collisions. Such a photon traverses the created medium unscathed and grants us a proxy for the transverse momentum of an away side jet. PHENIX Au+Au data recorded at √{sNN} = 200 GeV during RHIC run 14 benefit from the background rejection capability of the silicon vertex detector, enabling the extraction of a higher purity hadron signal. This advantage, combined with a larger integrated luminosity, allows previous PHENIX measurements of fragmentation functions to be extended to greater jet energies. In this talk, the status of the analysis of direct photon hadron correlations with the new data set will be discussed.

  12. Global polarization measurement in Au+Au collisions

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S.-L.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Brandin, A. V.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Callner, J.; Catu, O.; Cebra, D.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; Moura, M. M. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunin, V. B.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gos, H.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Horner, M. J.; Huang, H. Z.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kurnadi, P.; Kuznetsov, A. A.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lehocka, S.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Qattan, I. A.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Relyea, D.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shen, W. Q.; Shimanskiy, S. S.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Z.; Surrow, B.; Symons, T. J. M.; Toledo, A. Szanto De; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; Kolk, N. Van Der; Leeuwen, M. Van; Molen, A. M. Vander; Varma, R.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, X. L.; Wang, Y.; Webb, J. C.; Westfall, G. D.; , C. Whitten, Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, J.; Wu, Y.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yue, Q.; Yurevich, V. I.; Zawisza, M.; Zhan, W.; Zhang, H.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, A. N.; Zuo, J. X.

    2007-08-01

    The system created in noncentral relativistic nucleus-nucleus collisions possesses large orbital angular momentum. Because of spin-orbit coupling, particles produced in such a system could become globally polarized along the direction of the system angular momentum. We present the results of Λ and Λ¯ hyperon global polarization measurements in Au+Au collisions at sNN=62.4 and 200 GeV performed with the STAR detector at the BNL Relativistic Heavy Ion Collider (RHIC). The observed global polarization of Λ and Λ¯ hyperons in the STAR acceptance is consistent with zero within the precision of the measurements. The obtained upper limit, |PΛ,Λ¯|⩽0.02, is compared with the theoretical values discussed recently in the literature.

  13. Synthesis and characterization of Bi deficient Bi3Ni superconductor

    NASA Astrophysics Data System (ADS)

    Neha, P.; Srivastava, P.; Kanojia, M. K.; Jha, S. K.; Patnaik, S.

    2016-05-01

    We report enhanced superconducting transition temperature of Bi3Ni. The superconducting transition is observed at 5.2 K in magnetization by ZFC-FC measurements while in transport measurements, the onset is achieved at 4.44 K. The calculated Hc2(0), Hc1(0) are 2.76 T and 0.0156 T respectively. Magnetization measurements do not indicate coexisting of superconductivity with ferromagnetism as reported earlier. The increase in Tc is assigned to slight bismuth deficiency that opens an avenue for achieving still higher Tc phases of this compound.

  14. Physics of YbBiPt

    SciTech Connect

    Thompson, J.D.; Canfield, P.C.; Lacerda, A.; Hundley, M.F.; Fisk, Z. ); Ott, H.R.; Felder, E.; Chernikov, M. ); Maple, M.B.; Visani, P.; Seaman, C.L.; Lopez de la Torre, M.A. ); Aeppli, G. )

    1992-09-15

    YbBiPt has a low temperature linear specific heat coefficient of 8J/mole-Yb K{sup 2} and a small specific-heat anomaly at 0.4K. We discuss new experiments on specific-heat of diluted YbBiPt, and magnetic field dependent effects and electrical resistivity in pure YbBiPt. We argue that in this material the Kondo and crystal-field energy scales are small and of comparable magnitude, placing YbBiPt in the same class as many Uranium heavy-electron compounds.

  15. BiOBr/BiOI Photocatalyst Based on Fly Ash Cenospheres with Improved Photocatalytic Performance.

    PubMed

    Lin, Li; Huang, Manhong; Chen, Donghui

    2016-01-01

    A series of BiOBr/BiOI photocatalysts supported on fly-ash cenospheres (FACs) were successfully prepared via a facile one-pot alcoholysis method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectrometer (XPS) and UV-visible diffuse reflectance spectroscopy (DRS). The results indicate that pH value plays a critical role in BiOBr/BiOI loading. Based on the photodegradation tests under visible light irradiation (blue LED irradiation), the photocatalytic property of BiOBr/BiOI/FACs photocatalysts obtained under alkaline conditions is superior to that prepared under neutral or acidic conditions, and higher than those of BiOB/FACs and BiOI//FACs. The improved photocatalytic performance of BiOBr/BiOI/FACs can be attributed to more BiOBr/BiOI loaded on the surface of FACs and the efficient photogenerated electron-hole separation. PMID:27213318

  16. d + Au hadron correlation measurements at PHENIX

    SciTech Connect

    Anne M. Sickles

    2014-05-13

    In these proceedings, we discuss recent results from d + Au collisions in PHENIX ridge related measurements and their possible hydrodynamic origin. We present the v2 at midrapidity and measurements of the pseudorapidity dependence of the ridge, distinguishing between the d-going and Au-going directions. We investigate the possible geometrical origin by comparing v2 in d + Au to that in p + Pb, Au + Au and Pb + Pb collisions. Future plans to clarify the role of geometry in small collision systems at RHIC are discussed.

  17. Screen printed Y and Bi-based superconductors

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.; Hsi, Chi-Shiung

    1992-01-01

    High T(sub c) superconducting thick film was prepared by screen printing process. Y-based (YBa2Cu3O(7 - x)) superconducting thick films were printed on 211/Al2O3, SNT/Al2O3, and YSZ substrates. Because of poor adhesion of the superconducting thick films to 211/Al2O3 and SNT/Al2O3 substrates, relatively low T(sub c) and J(sub c) values were obtained from the films printed on these substrates. Critical temperatures of YBa2Cu3O(7 - x) thick films deposited on 211/Al2O3 and SNT/Al2O3 substrates were about 80 K. The critical current densities of these films were less than 2 A/cm(exp 2). Higher T(sub c) and J(sub c) films were printed on the YSZ substrates; T(sub c) = 86.4 K and J(sub c) = 50.4 A/cm(exp 2). Multiple lead samples were also prepared on the YSZ substrates. These showed lower T(sub c) and J(sub c) values than plain samples. The heat treatment conditions of the multiple lead samples are still under investigation. Bi-based superconductor thick films have been obtained so far. Improving the superconducting properties of the BSCCO screen printed thick films will be emphasized in future work.

  18. Stable excited Au= and Pt= negative ions: A Regge-pole prediction

    NASA Astrophysics Data System (ADS)

    Felfli, Z.; Msezane, A. Z.; Sokolovski, D.

    2010-03-01

    Electron elastic scattering from Au and Pt atoms is investigated in the energy region E < 4.0 eV in search of the possibility of forming and observing stable excited Au= and Pt= negative ions as Regge resonances. Total elastic cross sections (TCSs) and differential cross sections (DCSs) in both impact energy and scattering angle for the excited Au and Pt atoms are calculated. The investigation uses the recent Regge-pole methodology [1] wherein is embedded the vital electron-electron correlations together with a Thomas-Fermi type potential that incorporates the crucial core-polarization interaction, essential for the existence and stability of most negative ions. From the characteristic dramatically sharp resonances in the elastic total and Mulholland partial cross sections we identify excited Au= and Pt= anions and extract their binding energies (BEs). Ramsauer-Townsend minima and shape resonances are also determined. The DCSs also yield the BEs of the Au= and Pt= anions [2]. The TCSs for the excited and ground Au= and Pt= anions are contrasted as well; they provide a clue to the significant catalytic properties of their nanoparticles. [1] D. Sokolovski et al, Phys. Rev. A 76, 012705 (2007); [2] Z. Felfli et al, NIMB, At Press (2010). Supported by U.S. DOE, AFOSR and CAU CFNM, NSF-CREST Program

  19. Methanobactin-mediated synthesis of gold nanoparticles supported over Al2O3 toward an efficient catalyst for glucose oxidation.

    PubMed

    Xin, Jia-Ying; Lin, Kai; Wang, Yan; Xia, Chun-Gu

    2014-01-01

    Methanobactin (Mb) is a copper-binding peptide that appears to function as an agent for copper sequestration and uptake in methanotrophs. Mb can also bind and reduce Au(III) to Au(0). In this paper, Au/Al2O3 catalysts prepared by a novel incipient wetness-Mb-mediated bioreduction method were used for glucose oxidation. The catalysts were characterized, and the analysis revealed that very small gold nanoparticles with a particle size <4 nm were prepared by the incipient wetness-Mb-mediated bioreduction method, even at 1.0% Au loading (w/w). The influence of Au loading, calcination temperature and calcination time on the specific activity of Au/Al2O3 catalysts was systematically investigated. Experimental results showed that decomposing the Mb molecules properly by calcinations can enhance the specific activity of Au/Al2O3 catalysts, though they acted as reductant and protective agents during the catalyst preparation. Au/Al2O3 catalysts synthesized by the method exhibited optimum specific activity under operational synthesis conditions of Au loading of 1.0 wt % and calcined at 450 °C for 2 h. The catalysts were reused eight times, without a significant decrease in specific activity. To our knowledge, this is the first attempt at the preparation of Au/Al2O3 catalysts by Mb-mediated in situ synthesis of gold nanoparticles. PMID:25429424

  20. Methanobactin-Mediated Synthesis of Gold Nanoparticles Supported over Al2O3 toward an Efficient Catalyst for Glucose Oxidation

    PubMed Central

    Xin, Jia-Ying; Lin, Kai; Wang, Yan; Xia, Chun-Gu

    2014-01-01

    Methanobactin (Mb) is a copper-binding peptide that appears to function as an agent for copper sequestration and uptake in methanotrophs. Mb can also bind and reduce Au(III) to Au(0). In this paper, Au/Al2O3 catalysts prepared by a novel incipient wetness-Mb-mediated bioreduction method were used for glucose oxidation. The catalysts were characterized, and the analysis revealed that very small gold nanoparticles with a particle size <4 nm were prepared by the incipient wetness-Mb-mediated bioreduction method, even at 1.0% Au loading (w/w). The influence of Au loading, calcination temperature and calcination time on the specific activity of Au/Al2O3 catalysts was systematically investigated. Experimental results showed that decomposing the Mb molecules properly by calcinations can enhance the specific activity of Au/Al2O3 catalysts, though they acted as reductant and protective agents during the catalyst preparation. Au/Al2O3 catalysts synthesized by the method exhibited optimum specific activity under operational synthesis conditions of Au loading of 1.0 wt % and calcined at 450 °C for 2 h. The catalysts were reused eight times, without a significant decrease in specific activity. To our knowledge, this is the first attempt at the preparation of Au/Al2O3 catalysts by Mb-mediated in situ synthesis of gold nanoparticles. PMID:25429424

  1. Heavy ion irradiation of Bi-2223 silver-clad tapes for superconducting current density enhancement

    SciTech Connect

    Malozcnoff, A.P.; Carter, W.L.; Riley, G.N. Jr.; Wheeler, R. IV; Kirk, M.A.; Civale, L.; Marwick, A.D.

    1993-07-01

    Silver-clad composite tapes of Bi(Pb)SrCaCuO-2223 were irradiated with 1 GeV Au{sup 23+} ions perpendicular to the tape plane, creating columnar tracks with 10 nm diameter. Detailed transmission electron microscopy shows continuous columns, but with variations in the track thickness of +/{minus}2 nm. Magnetic hystersis measurements show substantial enhancement of superconducting current density at most temperatures and fields. Granular and nongranular models for the origin of the magnetic signals are discussed. The results indicate the potential for further performance improvement in high temperature superconducting wire technology, as well as limits in the high-field performance at 77 K.

  2. Cometary Activity Beyond 4 AU

    NASA Astrophysics Data System (ADS)

    Womack, M.

    2000-10-01

    Recent observations of the distantly active comets 29 P/Schwassmann-Wachmann 1, 2060 Chiron, and C/1995 O1 (Hale-Bopp) are consistent with models that predict that the activity beyond 4 AU is dominated by outgassing of CO and CO2 molecules trapped in an amorphous water ice surface undergoing crystallization. The nominal CO production rates in Hale-Bopp, SW 1 and Chiron over the range of r = 4 to 9 AU are consistent with Q(CO) = (2.9+/-0.5)x1030r{(-2.5 +/- 0.1)}, with sporadic outbursts superimposed. The data indicate that the gas production rates in distant comets are primarily determined by the composition, and not the size, of the nucleus. The dust production rates, however, are very different among these comets and are not well-correlated with heliocentric distance. Thus, the gas and dust mixtures may not be uniform amongst these comets, nor in an individual comet. Development and sublimation of an icy grain coma at ~ 5 AU appears to be a common feature in distantly active comets. Sublimation of such icy grains is probably the main source of emission of OH, CH3OH, HCN, and H2S in comets beyond 4 AU. Studying the energetics of these phenomena provides an excellent opportunity to learn more about the composition and physical behavior of comet nuclei, as well as other icy bodies in the outer solar system, such as moons and Kuiper Belt Objects. This work was funded by the NSF CAREER Program.

  3. Energy levels, wavelengths, and transition rates of multipole transitions (E1, E2, M1, M2) in Au{sup 67+} and Au{sup 66+} ions

    SciTech Connect

    Hamasha, Safeia

    2013-11-15

    The fully relativistic configuration interaction method of the FAC code is used to calculate atomic data for multipole transitions in Mg-like Au (Au{sup 67+}) and Al-like Au (Au{sup 66+}) ions. Generated atomic data are important in the modeling of M-shell spectra for heavy Au ions and Au plasma diagnostics. Energy levels, oscillator strengths and transition rates are calculated for electric-dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) for transitions between excited and ground states 3l−nl{sup ′}, such that n=4,5,6,7. The local central potential is derived using the Dirac–Fock–Slater method. Correlation effects to all orders are considered by the configuration interaction expansion. All relativistic effects are included in the calculations. Calculated energy levels are compared against published values that were calculated using the multi-reference many body perturbation theory, which includes higher order QED effects. Favorable agreement was observed, with less than 0.15% difference.

  4. Dewetting behavior of electron-beam-deposited Au thin films on various substrates: graphenes, quartz, and SiO2 wafers

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hwan; Kwak, Eun-Hye; Jeong, Goo-Hwan

    2015-02-01

    We demonstrate the dewetting behavior of Au thin films on the following substrates: single- and multilayer mechanically exfoliated graphene, and SiO2 and ST-cut quartz wafers. The 1-nm-thick Au thin films were prepared by electron beam deposition. The mean sizes of the Au nanoparticles from as-deposited samples were 0.4, 0.9, 1.6, and 2.3 nm and increased after a 60-min annealing at 900 °C to 5.1, 6.4, 9.4, and 10.8 nm for SiO2, ST-cut quartz, mono- and bi-layer graphene, respectively. Conversely, the areal densities of the Au nanoparticles decreased in all substrates with increasing annealing time. The different sizes, areal densities, and morphological evolutions of the Au nanoparticles due to annealing on the different substrates imply different interfacial interactions between Au and each surface. In addition, it is worth noting that single-walled carbon nanotubes (SWNTs) can be grown using the dewetted Au nanoparticles on graphene-coated quartz substrates. Finally, the present work can contribute to not merely precise formation of Au nanoparticles via dewetting phenomenon but also surface modification of graphene and SWNT growth.

  5. Anisotropic Terahertz Emission from Bi2Se3 Thin Films with Inclined Crystal Planes.

    PubMed

    Hamh, Sun Young; Park, Soon-Hee; Han, Jeongwoo; Jeon, Jeong Heum; Kahng, Se-Jong; Kim, Sung; Choi, Suk-Ho; Bansal, Namrata; Oh, Seongshik; Park, Joonbum; Kim, Jun Sung; Kim, Jae Myung; Noh, Do Young; Lee, Jong Seok

    2015-12-01

    We investigate the surface states of topological insulator (TI) Bi2Se3 thin films grown on Si nanocrystals and Al2O3 substrates by using terahertz (THz) emission spectroscopy. Compared to bulk crystalline Bi2Te2Se, film TIs exhibit distinct behaviors in the phase and amplitude of emitted THz radiation. In particular, Bi2Se3 grown on Al2O3 shows an anisotropic response with a strong modulation of the THz signal in its phase. From x-ray diffraction, we find that the crystal plane of the Bi2Se3 films is inclined with respect to the plane of the Al2O3 substrate by about 0.27°. This structural anisotropy affects the dynamics of photocarriers and hence leads to the observed anisotropic response in the THz emission. Such relevance demonstrates that THz emission spectroscopy can be a sensitive tool to investigate the fine details of the surface crystallography and electrostatics of thin film TIs. PMID:26694079

  6. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Salihov, Sergei V.; Ivanenkov, Yan A.; Krechetov, Sergei P.; Veselov, Mark S.; Sviridenkova, Natalia V.; Savchenko, Alexander G.; Klyachko, Natalya L.; Golovin, Yury I.; Chufarova, Nina V.; Beloglazkina, Elena K.; Majouga, Alexander G.

    2015-11-01

    Fe3O4@Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of "glue" material between the core and the shell.

  7. M-Au/TiO2 (M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: role of interfaces.

    PubMed

    Melvin, Ambrose A; Illath, Kavya; Das, Tanmay; Raja, Thirumalaiswamy; Bhattacharyya, Somnath; Gopinath, Chinnakonda S

    2015-08-28

    M-Au/TiO2 (M = Ag, Pd, Pt) composites were prepared through a facile one-pot photodeposition synthesis and evaluated for solar water splitting (SWS) with and without a sacrificial agent. The M-Au combination exhibits a dominant role in augmenting the H2 generation activity by forming a bi-metallic system. Degussa P25 was used as a TiO2 substrate to photodeposit Au followed by Au + M (M = Ag/Pd/Pt). The SWS activity of the M-Au/TiO2 was determined through photocatalytic H2 production in the presence of methanol as a sacrificial agent under one sun conditions with an AM1.5 filter. The highest H2 yield was observed for Pt0.5-Au1/TiO2 and was around 1.3 ± 0.07 mmol h(-1) g(-1), with an apparent quantum yield (AQY) of 6.4%. Pt0.5-Au1/TiO2 also demonstrated the same activity for 25 cycles of five hours each for 125 h. Critically, the same Pt0.5-Au1/TiO2 catalyst was active in overall SWS (OSWS) without any sacrificial agent, with an AQY = 0.8%. The amount of Au and/or Pt was varied to obtain the optimum composition and it was found that the Pt0.5-Au1/TiO2 composition exhibits the best activity. Detailed characterization by physico-chemical, spectral and microscopy measurements was carried out to obtain an in-depth understanding of the origin of the photocatalytic activity of Pt0.5-Au1/TiO2. These in-depth studies show that gold interacts predominantly with oxygen vacancies present on titania surfaces, and Pt preferentially interacts with gold for an effective electron-hole pair separation at Pt-Au interfaces and electron storage in metal particles. The Pt in Pt0.5-Au1/TiO2 is electronically and catalytically different from the Pt in Pt/TiO2 and it is predicted that the former suppresses the oxygen reduction reaction. PMID:26199221

  8. Bi- or multifunctional peptide drugs

    PubMed Central

    Schiller, Peter W.

    2009-01-01

    Strategies for the design of bi- or multifunctional drugs are reviewed. A distinction is made between bifunctional drugs interacting in a monovalent fashion with two targets and ligands containing two distinct pharmacophores binding in a bivalent mode to the two binding sites in a receptor heterodimer. Arguments are presented to indicate that some of the so-called “bivalent” ligands reported in the literature are unlikely to simultaneously interact with two binding sites. Aspects related to the development of bi- or multifunctional drugs are illustrated with examples from the field of opioid analgesics. The drug-like properties of the tetrapeptide Dmt1[DALDA] with triple action as a μ opioid agonist, norepinephrine uptake inhibitor and releaser of endogenous opioid peptides to produce potent spinal analgesia are reviewed. Rationales for the development of opioid peptides with mixed agonist/antagonist profiles as analgesics with reduced side effects are presented. Progress in the development of mixed μ opioid agonist/δ opioid antagonists with low propensity to produce tolerance and physical dependence is reviewed. Efforts to develop bifunctional peptides containing a μ opioid agonist and a cholecystokinin antagonist or an NK1 receptor antagonist as analgesics expected to produce less tolerance and dependence are also reviewed. A strategy to improve the drug-like properties of bifunctional opioid peptide analgesics is presented. PMID:19285088

  9. Inertial-range anisotropies in the solar wind from 0.3 to 1 AU: Helios 1 observations

    NASA Astrophysics Data System (ADS)

    MacBride, Benjamin T.; Smith, Charles W.; Vasquez, Bernard J.

    2010-07-01

    In this study we analyze the evolution of solar wind turbulence from 0.3 to 1 AU using a database of 387 intervals from the Helios 1 spacecraft. Our results uphold the conclusion made by Smith et al. (2006), who used data from 1 AU, that the magnetic variance anisotropy scales with both proton beta and the amplitude of fluctuations in the power spectrum all the way down to 0.3 AU. We confirm the result of Bieber et al. (1996) that ˜80% of the energy is contained in the wave vectors perpendicular to the mean magnetic field and in light of Dasso et al. (2005) we compute the fraction of energy in field-aligned wave vectors for high- and low-speed intervals separately. As Hamilton et al. found at 1 AU, we also see no clear reliance of the energy contained in parallel and perpendicular wave vectors based on wind speed at any heliocentric distance between 0.3 and 1 AU in the range of frequencies we study (5 to 20 mHz). These results combine to tell the story that the turbulent properties of the solar wind we analyze are fully consistent with the 1 AU observations and no discernable evolution can be found.

  10. Synthesis and optical property characterization of elongated AuPt and Pt@Au metal nanoframes

    NASA Astrophysics Data System (ADS)

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Hong, Soonchang; Moh, Sang Hyun; Park, Sungho

    2016-02-01

    We report a facile method to synthesize elongated nanoframes consisting of Pt and Au in solution. Pentagonal Au nanorods served as templates and successfully led to an elongated AuPt nanoframe after etching the core Au. Subsequently, the coating of Au around Pt ridges resulted in Pt@Au metal nanoframes. The resulting elongated nanostructure exhibited 5 well-defined ridges continuously connected along the long axis. During the shape evolution from pure Au nanorods to elongated Pt@Au metal nanoframes, their corresponding localized surface plasmon resonance bands were monitored. Especially, unique surface plasmon features were observed for elongated Pt@Au nanoframes where the short-axis oscillation of surface free electrons is strongly coupled but the long-axis oscillation is not coupled among the ridges.We report a facile method to synthesize elongated nanoframes consisting of Pt and Au in solution. Pentagonal Au nanorods served as templates and successfully led to an elongated AuPt nanoframe after etching the core Au. Subsequently, the coating of Au around Pt ridges resulted in Pt@Au metal nanoframes. The resulting elongated nanostructure exhibited 5 well-defined ridges continuously connected along the long axis. During the shape evolution from pure Au nanorods to elongated Pt@Au metal nanoframes, their corresponding localized surface plasmon resonance bands were monitored. Especially, unique surface plasmon features were observed for elongated Pt@Au nanoframes where the short-axis oscillation of surface free electrons is strongly coupled but the long-axis oscillation is not coupled among the ridges. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08200e

  11. Microstructure and properties of Bi-Sr-Ca-Cu-O with nanometer-scale alumina additions.

    SciTech Connect

    Goretta, K. C.

    1998-09-11

    Al{sub 2}O{sub 3} particles {approx}30 nm is size were added to Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} in a 1:4 molar ratio. For comparison, 0.3 and {approx}3 pm Al{sub 2}O{sub 3} particles were added to separate batches. All materials were partial-melt processed. The Al{sub 2}O{sub 3} reacted during melting to primarily form stable compounds of approximate composition (Sr,Ca){sub 2}AlO{sub 4}. All additions caused slight decreases in the T{sub c} and melting point of the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}. The submicrometer Al{sub 2}O{sub 3} additions induced large expansions in magnetic-hysteresis width at 6 K. Electron microscopy examinations strongly suggested that the hysteresis expansion was related to alloying of the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} matrix rather than to pinning by volume defects.

  12. Growth, contacting and ageing of superconducting Bi-2212 whiskers

    NASA Astrophysics Data System (ADS)

    Truccato, M.; Rinaudo, G.; Manfredotti, C.; Agostino, A.; Benzi, P.; Volpe, P.; Paolini, C.; Olivero, P.

    2002-09-01

    We report the growth of highly oriented microscopic whisker-like crystals in the Bi-Sr-Ca-Cu-O system by means of glassy precursors. The dependence of the growth on the stoichiometric composition and on the temperature and duration of the annealing process has been studied. Chemical impurities have been investigated from the point of view of the morphology, the elemental composition and the crystal structure, identifying the presence of CuAl2O4, Sr1.2Bi0.8O3 and Al. Electrical contacts have been fabricated by means of thermal evaporation and diffusion. Their sizes have been carefully measured, achieving contact resistivity in the range of 0.2-3.7 × 10-6 Ω cm2. A very slow degrading of the contacts and the crystals on a time scale of a few years has been detected. This is associated with a decrease in Tc, which is probably due to oxygen release from the material.

  13. Bi-directional magnetic domain wall shift register

    NASA Astrophysics Data System (ADS)

    Read, D. E.; O'Brien, L.; Zeng, H. T.; Lewis, E. R.; Petit, D.; Cowburn, R. P.

    2010-03-01

    Data storage devices based on magnetic domain walls (DWs) propagating through ferromagnetic nanowires have attracted a great deal of attention in recent years [1,2]. Here we experimentally demonstrate a shift register based on an open-ended chain of ferromagnetic NOT gates. When used in combination with a globally applied magnetic field such devices can support bi-directional data flow [3]. We have demonstrated data writing, propagation, and readout in individually addressable NiFe nanowires 90 nm wide and 10 nm thick. Up to eight data bits are electrically input to the device, stored for extended periods without power supplied to the device, and then output using either a first in first out or a last in first out mode of operation. Compared to traditional electronic transistor-based circuits, the inherent bi-directionality afforded by these DW logic gates offers a range of devices that are reversible and not limited to only one mode of operation. [1] S. S. Parkin, US Patent 6,834,005 (2004) [2] D. A. Allwod, et al., Science 309 (5741), 1688 (2005) [3] L. O'Brien, et al. accepted for publication in APL (2009)

  14. AlNiYCo Amorphous Matrix Composites Induced by Bismuth and Lead Additions

    NASA Astrophysics Data System (ADS)

    He, Jie; Jiang, Hongxiang; Zhao, Jiuzhou; Mattern, Norbert; Eckert, Jürgen

    2011-12-01

    (Al85Ni5Y8Co2)98Bi2 and (Al85Ni5Y8Co2)98(Bi50Pb50)2 alloys are rapidly solidified using the single-roller melt-spinning method. Al85Ni5Y8Co2 amorphous matrix composites containing faceted BiY particles are synthesized by the liquid-solid reaction between added bismuth and constituents of the molten Al-Ni-Y-Co glass-forming alloy. The microstructure of the rapidly quenched (Al85Ni5Y8Co2)98(Bi50Pb50)2 multiphase composites consists of Al-based amorphous matrix and crystalline Pb-rich and BiY particles. The Pb-rich particles stem from liquid-liquid and monotectic reactions induced by lead addition. The phase constitution and microstructure are investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The reaction-induced crystalline BiY and Pb-rich particles are uniformly distributed in the amorphous matrix. The microstructure formation of the rapidly quenched alloys was discussed.

  15. High strength kiloampere Bi2Sr2CaCu2Ox cables for high-field magnet applications

    NASA Astrophysics Data System (ADS)

    Shen, Tengming; Li, Pei; Jiang, Jianyi; Cooley, Lance; Tompkins, John; McRae, Dustin; Walsh, Robert

    2015-06-01

    Multifilamentary Ag-sheathed Bi2Sr2CaCu2Ox (Bi-2212) wire can carry sufficient critical current density Jc for the development of powerful superconducting magnets. However, the range of its applications is limited by the low mechanical strength of the Ag/Bi-2212 strand. A potential solution is to cable Ag/Bi-2212 wire with high-strength materials that are compatible with the Bi-2212 heat treatment in an oxygen atmosphere. Past attempts have not always been successful, because the high-strength materials reacted with Bi-2212 wires, significantly reducing their Jc. We examined the nature of reactions occurring when Ag/Bi-2212 wires are heat-treated in direct contact with several commonly used high-strength alloys and a new Fe-Cr-Al alloy. INCONEL X750 and INCONEL 600 resulted in significant Jc loss, whereas Ni80-Cr caused little or no Jc loss; however, all of them formed chromium oxide that subsequently reacted with silver, creating cracks in the silver sheath. We found that Fe-Cr-Al did not show significant reactions with Ag/Bi-2212 strands. Scanning electron microscopy (SEM) and energy dispersive x-ray (EDS) examinations revealed that the Fe-Cr-Al alloy benefits from the formation of a uniform, crack-free, continuous alumina layer on its surface that does not react with Ag and that helps minimize the Cu loss found with INCONEL X750 and INCONEL 600. We fabricated prototype 6-around-1 cables with six Bi-2212 strands twisted and transposed around an Fe-Cr-Al alloy core coated with TiO2. After standard 1 bar melt processing, the cable retained 100% of the total current-carrying capability of its strands, and, after a 10 bar overpressure processing, the cable reached a total current of 1025 A at 4.2 K and 10 T. Tensile tests showed that Fe-Cr-Al becomes brittle after being cooled to 4.2 K, whereas INCONEL X750 remains ductile and retains a modulus of 183 GPa. We proposed new cable designs that take advantage of the chemical compatibility of Fe-Cr-Al and high strength of

  16. Materials Data on YbBiAu (SG:216) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2015-03-19

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Materials Data on SrBiAu (SG:194) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2015-03-19

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  18. Materials Data on BaBiAu (SG:194) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2015-03-19

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  19. Effects of high pressures on InBi--Bi alloys

    SciTech Connect

    Degtyareva, V.F.; Ivakhnenko, S.A.; Ponyatovskii, E.G.; Rashchupkin, V.I.

    1982-05-01

    Differential thermal analysis and resistometry were used at high pressures (up to 25 kbar in the hydrostatic case and up to 60 kbar in the quasihydrostatic case) to detect a number of solid-phase transitions in bismuth-rich In--Bi alloys. An x-ray structure analysis of the alloys subjected to a thermobaric treatment and to quenching down to -190 /sup 0/C revealed the existence of several intermediate phases (..gamma.., ..gamma../sub 1/, ..gamma../sub 2/, ''..beta..-Sn,'' and X), which are superconductors with critical temperatures T/sub c/ = 5--8 /sup 0/K. The three-dimensional T--C--P diagram of the indium--bismuth systems was compared with the T--P diagram of bismuth.

  20. Adsorption-controlled growth of BiFeO3 by MBE and integration with wide band gap semiconductors.

    SciTech Connect

    Ramesh, Ramamoorthy; Uecker, Reinhard , Germany); Doolittle, W. Alan; Reiche, P. , Germany); Liu, Zi-Kui; Bernhagen, Margitta , Germany); Tian, Wei; Ihlefeld, Jon F.; Schlom, Darrell G.

    2008-08-01

    BiFeO3 thin films have been deposited on (101) DyScO3, (0001) AlGaN/GaN, and (0001) SiC single crystal substrates by reactive molecular-beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth over-pressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry. Four-circle x-ray diffraction reveals phase-pure, epitaxial films with rocking curve full width at half maximum values as narrow as 7.2 arc seconds. Epitaxial growth of (0001)-oriented BiFeO3 thin films on (0001) GaN, including AlGaN HEMT structures, and (0001) SiC has been realized utilizing intervening epitaxial (111) SrTiO3/(100) TiO2 buffer layers. The epitaxial BiFeO3 thin films have two in-plane orientations: [1120] BiFeO3 [1120] GaN (SiC) plus a twin variant related by a 180{sup o} in-plane rotation. This epitaxial integration of the ferroelectric with the highest known polarization, BiFeO3, with wide band gap semiconductors is an important step toward novel field-effect devices.

  1. Enhanced spin Hall effect by electron correlations in CuBi alloys

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Xu, Zhuo; Mori, Michiyasu; Ziman, Timothy; Maekawa, Sadamichi

    2015-05-01

    A recent experiment in CuBi alloys obtained a large spin Hall angle (SHA) of -0.24 (Niimi et al., Phys. Rev. Lett. 109, 156602 (2012)). We find that the SHA can be dramatically enhanced by Bi impurities close to the Cu surface. The mechanisms of this enhancement are two-fold. One is that the localized impurity state on surface has a decreased hybridization and combined with Coulomb correlation effect. The other comes from the low-dimensional state of conduction electrons on surface, which results in a further enhancement of skew scattering by impurities. Furthermore, we note that a discrepancy in sign of SHA between the experiment and previous theories is simply caused by different definitions of SHA. This re-establishes skew scattering as the essential mechanism underlying the spin Hall effect in CuBi alloys.

  2. Enhanced spin Hall effect by electron correlations in CuBi alloys

    SciTech Connect

    Gu, Bo Xu, Zhuo; Mori, Michiyasu; Maekawa, Sadamichi; Ziman, Timothy

    2015-05-07

    A recent experiment in CuBi alloys obtained a large spin Hall angle (SHA) of −0.24 (Niimi et al., Phys. Rev. Lett. 109, 156602 (2012)). We find that the SHA can be dramatically enhanced by Bi impurities close to the Cu surface. The mechanisms of this enhancement are two-fold. One is that the localized impurity state on surface has a decreased hybridization and combined with Coulomb correlation effect. The other comes from the low-dimensional state of conduction electrons on surface, which results in a further enhancement of skew scattering by impurities. Furthermore, we note that a discrepancy in sign of SHA between the experiment and previous theories is simply caused by different definitions of SHA. This re-establishes skew scattering as the essential mechanism underlying the spin Hall effect in CuBi alloys.

  3. Electrodeposited bismuth monolayers on Au(111) electrodes. Comparison of surface X-ray scattering, scanning tunneling microscopy, and atomic force microscopy lattice structures

    SciTech Connect

    Chen, C.H.; Kepler, K.D.; Gewirth, A.A. ); Ocko, B.M.; Wang, J. )

    1993-07-15

    Surface X-ray scattering (SXS) and scanning tunneling microscope (STM) studies have been carried out to determine the structure of electrochemically deposited Bi monolayers on a Au(111) electrode. Between 10 and 190 mV (relative to bulk deposition), a uniaxially commensurate rectangular phase is formed in which the Bi coverage decreases from 0.646 to 0.616 relative to a gold monolayer. A 25% coverage (2 [times] 2) phase is stable between 200 and 280 mV. The structures determined by SXS and STM are in agreement with those determined previously by AFM. 15 refs., 5 figs.

  4. Site Preference of Ternary Alloying Additions to AuTi

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Noebe, Ronald D.

    2006-01-01

    Atomistic modeling of the site substitution behavior of several alloying additions, namely. Na, Mg, Al, Si. Sc, V, Cr, Mn. Fe, Co, Ni, Cu, Zn, Y, Zr. Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, and Pt in B2 TiAu is reported. The 30 elements can be grouped according to their absolute preference for a specific site, regardless of concentration, or preference for available sites in the deficient sublattice. Results of large scale simulations are also presented, distinguishing between additions that remain in solution from those that precipitate a second phase.

  5. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid.

    PubMed

    Zhang, Zhonghua; Wang, Yan; Wang, Xiaoguang

    2011-04-01

    We present a facile route to fabricate novel nanoporous bimetallic Pt-Au alloy nanocomposites by dealloying a rapidly solidified Al(75)Pt(15)Au(10) precursor under free corrosion conditions. The microstructure of the precursor and the as-dealloyed sample was characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray (EDX) analysis. The Al(75)Pt(15)Au(10) precursor is composed of a single-phase Al(2)(Au,Pt) intermetallic compound, and can be fully dealloyed in a 20 wt.% NaOH or 5 wt.% HCl aqueous solution. The dealloying leads to the formation of the nanoporous Pt(60)Au(40) nanocomposites (np-Pt(60)Au(40) NCs) with an fcc structure. The morphology, size and crystal orientation of grains in the precursor can be conserved in the resultant nanoporous alloy. The np-Pt(60)Au(40) NCs consist of two zones with distinct ligament/channel sizes and compositions. The formation mechanism of these np-Pt(60)Au(40) NCs can be rationalized based upon surface diffusion of more noble elements and spinodal decomposition during dealloying. Electrochemical measurements demonstrate that the np-Pt(60)Au(40) NCs show superior catalytic activity towards the electro-oxidation of methanol and formic acid in the acid media compared to the commercial JM-Pt/C catalyst. This material can find potential applications in catalysis related areas, such as direct methanol or formic acid fuel cells. Our findings demonstrate that dealloying is an effective and simple strategy to realize the alloying of immiscible systems under mild conditions, and to fabricate novel nanostructures with superior performance. PMID:21311802

  6. Wetting and energetics of solid Au and Au-Ge/SiC interfaces

    SciTech Connect

    Wang, Z.; Wynblatt, P.

    1998-09-01

    A solid state wetting technique has been used to investigate the effects of alloying Au with Ge on the wetting and energetics of Au/SiC interfaces at 1123 K. Germanium was found to segregate to the Au/SiC interface, thereby lowering the contact angle of Au on SiC from 133 to 110, and doubling the work of adhesion of Au on SiC. Calculations based on a monolayer model predict a segregation of 0.89 monolayers of Ge at the Au/SiC interface for Au containing 2.3 at.% Ge. This agrees reasonably well with a coverage of 0.6 monolayers Ge at the Au/SiC interface obtained by direct measurements based on the crater edge profiling technique. The work also demonstrates that simple models of interfacial composition can be combined with the Gibbs adsorption isotherm to provide reliable estimates of interfacial composition at complex four-component interfaces.

  7. Gold nanowired: a linear (Au25)(n) polymer from Au25 molecular clusters.

    PubMed

    De Nardi, Marco; Antonello, Sabrina; Jiang, De-en; Pan, Fangfang; Rissanen, Kari; Ruzzi, Marco; Venzo, Alfonso; Zoleo, Alfonso; Maran, Flavio

    2014-08-26

    Au25(SR)18 has provided fundamental insights into the properties of clusters protected by monolayers of thiolated ligands (SR). Because of its ultrasmall core, 1 nm, Au25(SR)18 displays molecular behavior. We prepared a Au25 cluster capped by n-butanethiolates (SBu), obtained its structure by single-crystal X-ray crystallography, and studied its properties both experimentally and theoretically. Whereas in solution Au25(SBu)18(0) is a paramagnetic molecule, in the crystal it becomes a linear polymer of Au25 clusters connected via single Au-Au bonds and stabilized by proper orientation of clusters and interdigitation of ligands. At low temperature, [Au25(SBu)18(0)]n has a nonmagnetic ground state and can be described as a one-dimensional antiferromagnetic system. These findings provide a breakthrough into the properties and possible solid-state applications of molecular gold nanowires. PMID:25088331

  8. Pt{sub 3}Au and PtAu clusters: Electronic states and potential energy surfaces

    SciTech Connect

    Dai, D.; Balasubramanian, K.

    1994-03-15

    We carried out complete active space multiconfiguration self-consistent-field calculations followed by multireference singles+doubles configuration interaction with the Davidson correction which included up to 3.55 million configurations employing relativistic effective core potentials on Pt{sub 3}+Au and PtAu clusters. Four low-lying electronic states were identified for Pt{sub 3}+Au. The {sup 2}{ital A}{sub 2} electronic state ({ital C}{sub 3{ital v}}) was found to be the ground state of Pt{sub 3}Au. Spin--orbit effects were found to be significant. We also computed six low-lying electronic states of PtAu and four low-lying electronic states of PtAu{sup +}. The 5/2 ({sup 2}{Delta}) and 0{sup +}({sup 1}{Sigma}{sup +}) states were found to be the ground states of PtAu and PtAu{sup +}, respectively.

  9. Synthesis and Characterization of SrBi

    SciTech Connect

    Wang, Ying C.; Hoffmann, Roald; DiSalvo, Francis J.

    2001-01-01

    SrBi{sub 2}Se{sub 4} was synthesized at 945 C and its structure was determined using single-crystal X-ray diffraction data obtained at 165 K. SrBi{sub 2}Se{sub 4}is isotypic to 12-Ba Bi{sub 2}Se{sub 4} and Eu1.1 Bi{sub 2}Se{sub 4}. The compound crystallizes in P6{sub 3}/m (Z=12) with a=25.970(2) {angstrom} and c=4.2437(3) {angstrom}. Final R{sub 1}=0.0630 and w R{sub 2}=0.1246 (I > 2{sigma}(I)). The coordination environments of Bi are distorted Se octahedra. These octahedra build up a uniaxial three-dimensional network with tunnels along the z direction, which are filled by Sr{sup 2+}. There is also a second tunnel along the z direction which is partially occupied by Bi atoms. The coordination spheres of Sr are bicapped trigonal prisms of Se. Transport measurements indicate that SrBi{sub 2}Se{sub 4}is semiconducting. This work adds one high-symmetry compound to the family of complex chalcogenides, in which low-symmetry compounds are common.

  10. Interplanetary dust between 1 and 5 AU

    NASA Technical Reports Server (NTRS)

    Stanley, J. E.; Singer, S. F.; Alvarez, J. M.

    1979-01-01

    Analyses of data from the Meteoroid Detection Experiment (MDE) and the Imaging Photopolarimeter (IPP) aboard Pioneer 10 and 11 have led to contradictory conclusions. While the MDE indicates a significant particle environment in the outer solar system (out to at least 5 AU), the IPP sees no zodiacal light (therefore implying no small particles) past 3.3 AU. These two results are reconciled by noting that the spectral index p (relating particle radius and particle concentration) is not a constant in the solar system but changes from less than 2 near 1 AU to more than 2.5 at 5 AU for particles in the range of 10 microns.

  11. A facile synthesis of bimetallic AuPt nanoparticles as a new transparent counter electrode for quantum-dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Dao, Van-Duong; Choi, Youngwoo; Yong, Kijung; Larina, Liudmila L.; Shevaleevskiy, Oleg; Choi, Ho-Suk

    2015-01-01

    This study first reports the synthesis of AuPt bimetallic nanoparticles (AuPt-BNPs) on an FTO glass substrate using dry plasma reduction (DPR) and its application as an alternative transparent counter electrode (CE) for quantum-dot-sensitized solar cells (QDSCs) operated under bi-side illumination. DPR is an economically feasible and ecologically sustainable method. The formation of ultrafine crystalline AuPt-BNPs on an FTO substrate is confirmed through TEM, HRTEM with HAADF-STEM and HAADF-STEM-EDS analyses. The mechanism for controlling the size, mono-dispersity, and areal number density of nanoparticles on the substrate surface is suggested. The CE fabricated with AuPt-BNPs exhibits a high electro-catalytic activity without losing the optical transmittance of the FTO substrate. The QDSC employing the AuPt-BNP electrode reaches efficiencies of 2.4% under front-side illumination and 2.2% under back-side illumination. Bi-side illumination yields an efficiency of 3.4%, which is comparable to an efficiency of 3.7% obtained for the QDSC with the state-of-the-art CE.

  12. Tuning the electronic properties at the surface of BaBiO3 thin films

    NASA Astrophysics Data System (ADS)

    Ferreyra, C.; Guller, F.; Marchini, F.; Lüders, U.; Albornoz, C.; Leyva, A. G.; Williams, F. J.; Llois, A. M.; Vildosola, V.; Rubi, D.

    2016-06-01

    The presence of 2D electron gases at surfaces or interfaces in oxide thin films remains a hot topic in condensed matter physics. In particular, BaBiO3 appears as a very interesting system as it was theoretically proposed that its (001) surface should become metallic if a Bi-termination is achieved (Vildosola et al., PRL 110, 206805 (2013)). Here we report on the preparation by pulsed laser deposition and characterization of BaBiO3 thin films on silicon. We show that the texture of the films can be tuned by controlling the growth conditions, being possible to stabilize strongly (100)-textured films. We find significant differences on the spectroscopic and transport properties between (100)-textured and non-textured films. We rationalize these experimental results by performing first principles calculations, which indicate the existence of electron doping at the (100) surface. This stabilizes Bi ions in a 3+ state, shortens Bi-O bonds and reduces the electronic band gap, increasing the surface conductivity. Our results emphasize the importance of surface effects on the electronic properties of perovskites, and provide strategies to design novel oxide heterostructures with potential interface-related 2D electron gases.

  13. BiDil: from another vantage point.

    PubMed

    Puckrein, Gary

    2006-01-01

    In a recent Health Affairs Web Exclusive, Pamela Sankar and Jonathan Kahn argue against the Food and Drug Administration's approval of BiDil as a new drug for the treatment of heart failure in African Americans. Their paper questions the existence of disparities between African American and other heart-failure patients and the motivations of BiDil's developers and manufacturer. The disparities are confirmed and persistent, however, and BiDil's effectiveness is proven. If the authors' logic were to prevail, patients would be denied life-saving therapy. Continued investigation will likely narrow identification of patients who will benefit. PMID:16912053

  14. TOOL ASSEMBLY WITH BI-DIRECTIONAL BEARING

    DOEpatents

    Longhurst, G.E.

    1961-07-11

    A two-direction motion bearing which is incorporated in a refueling nuclear fuel element trsnsfer tool assembly is described. A plurality of bi- directional bearing assembliesare fixed equi-distantly about the circumference of the transfer tool assembly to provide the tool assembly with a bearing surface- for both axial and rotational motion. Each bi-directional bearing assembly contains a plurality of circumferentially bulged rollers mounted in a unique arrangement which will provide a bearing surface for rotational movement of the tool assembly within a bore. The bi-direc tional bearing assembly itself is capable of rational motion and thus provides for longitudinal movement of the tool assembly.

  15. Exploratory Bi-Factor Analysis: The Oblique Case

    ERIC Educational Resources Information Center

    Jennrich, Robert I.; Bentler, Peter M.

    2012-01-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford ("Psychometrika" 47:41-54, 1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler ("Psychometrika" 76:537-549, 2011) introduced an exploratory form of bi-factor…

  16. Complete and incomplete fusion and emission of preequilibrium nucleons in the interaction of [sup 12]C with [sup 197]Au below 10 MeV/nucleon

    SciTech Connect

    Vergani, P.; Gadioli, E.; Vaciago, E.; Fabrici, E.; Gadioli Erba, E.; Galmarini, M. ); Ciavola, G.; Marchetta, C. )

    1993-10-01

    The excitation functions for production of nineteen isotopes of At, Po, Bi, Pb, and Tl in the interaction of [sup 12]C with [sup 197]Au between 57 and 97 MeV incident energy have been measured with the activation technique. The analysis of these data allows one to estimate the cross sections for complete fusion of [sup 12]C and incomplete fusion of [sup 8]Be and [alpha] fragments with gold, and shows the presence of preequilibrium emissions at incident energies only slightly higher than the Coulomb barrier acting between [sup 12]C and [sup 197]Au.

  17. Bright, NIR-emitting Au23 from Au25: characterization and applications including biolabeling.

    PubMed

    Muhammed, Madathumpady Abubaker Habeeb; Verma, Pramod Kumar; Pal, Samir Kumar; Kumar, R C Arun; Paul, Soumya; Omkumar, Ramakrishnapillai Vyomakesannair; Pradeep, Thalappil

    2009-10-01

    A novel interfacial route has been developed for the synthesis of a bright-red-emitting new subnanocluster, Au(23), by the core etching of a widely explored and more stable cluster, Au(25)SG(18) (in which SG is glutathione thiolate). A slight modification of this procedure results in the formation of two other known subnanoclusters, Au(22) and Au(33). Whereas Au(22) and Au(23) are water soluble and brightly fluorescent with quantum yields of 2.5 and 1.3 %, respectively, Au(33) is organic soluble and less fluorescent, with a quantum yield of 0.1 %. Au(23) exhibits quenching of fluorescence selectively in the presence of Cu(2+) ions and it can therefore be used as a metal-ion sensor. Aqueous- to organic-phase transfer of Au(23) has been carried out with fluorescence enhancement. Solvent dependency on the fluorescence of Au(23) before and after phase transfer has been studied extensively and the quantum yield of the cluster varies with the solvent used. The temperature response of Au(23) emission has been demonstrated. The inherent fluorescence of Au(23) was used for imaging human hepatoma cells by employing the avidin-biotin interaction. PMID:19711391

  18. The Electronic Properties and L3 XANES of Au and Nano-Au

    SciTech Connect

    Yiu, Y.M.; Zhang, P.; Sham, T.K.

    2004-04-20

    The electronic properties of Au crystal and nano Au have been investigated by theory and experiment. Molecularly capped nano-Au was synthesized using the two-phase method. Au nano-particles have been characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). They retain the fcc crystal structure. Their sizes have been determined to be in a range from 5.5 nm to 1.7 nm. The L3 X-ray Absorption Near Edge Structure (XANES) of nano-Au and Au foil have been recorded using synchrotron radiation, and examined by theoretical calculation based on the first principles. Both theory and experiment show that the nano-Au particles have essentially all the Au L3 XANES features of bulk Au in the near edge region with less pronounced resonance peaks. It is also shown that nano Au exhibits lower 4f binding energy than bulk Au in good agreement with quantum confined Au systems reported previously.

  19. Metalorganic vapor phase epitaxy of ternary rhombohedral (Bi1-xSbx) 2 Se3 solid solutions

    NASA Astrophysics Data System (ADS)

    Kuznetsov, P. I.; Yakushcheva, G. G.; Shchamkhalova, B. S.; Luzanov, V. A.; Temiryazev, A. G.; Jitov, V. A.

    2016-01-01

    We studied the metalorganic vapor phase epitaxy (MOVPE) of (Bi1-xSbx) 2Se3 solid solution films with a different Sb content on (001) Al2O3 substrates with thin ZnSe buffer layer in the range of temperatures 250-480 °C. As-grown films were studied by atom force and scanning electron microscopy (AFM and SEM), Raman spectroscopy and X-ray diffractometry (XRD) techniques. To determine the elemental composition of the grown films, we used an energy dispersive spectrometer (EDS). The dependencies of the crystal structure of films on the growth temperature and Sb content (0 ≤ x ≤ 1) were explored. At different growth temperatures we obtained the following bismuth compounds: the films grown at the temperature of 370 °C or lower consist of the pure Bi phase, whereas we got the Bi4Se3 phase at 380 °C, the phase BiSe at 430 °C and Bi2Se3 at the temperature of 460 °C or above. We found out that at the temperature of 480 °C the single-phase films of (Bi1-xSbx) 2Se3 with rhombohedral and orthorhombic lattices are realized when x is less than 0.25 and greater than 0.935, respectively. For 0.25 < x < 0.935 the grown films are composites of rhombohedral and orthorhombic phases. At the temperature of 440 °C we obtained films consisting of three rhombohedral phases (Bi1-xSbx) 4Se3, (Bi1-xSbx) Se and Bi. The room temperature transport properties of rhombohedral samples were characterized using the Van der Pauw technique.

  20. Bi atoms mobility-driven circular domains at the Bi/InAs(111) interface

    NASA Astrophysics Data System (ADS)

    Richter, M. C.; Mariot, J.-M.; Gafoor, M. A.; Nicolaï, L.; Heckmann, O.; Djukic, U.; Ndiaye, W.; Vobornik, I.; Fujii, J.; Barrett, N.; Feyer, V.; Schneider, C. M.; Hricovini, K.

    2016-09-01

    Bi films deposited on InAs(111) A and B sides have been studied by photoemission electron microscopy. A series of snapshots acquired during sequential annealing of the interfaces at temperatures below and above the melting temperature of Bi allowed obtaining a comprehensive image of the topographic and chemical evolutions of the Bi films that are found to be InAs side dependent. On the A side, a morphology of circular patterns controlled by Bi atoms mobility is observed. The patterns are formed on the pristine In-terminated InAs(111) surface covered by a weakly bonded Bi bilayer. On the B side, no particular morphology is observed due to a stronger chemical interaction between Bi and As atoms as evidenced by the spatially-resolved core-level photoelectron spectra.

  1. Au-induced deep groove nanowire structure on the Ge(001) surface: DFT calculations

    NASA Astrophysics Data System (ADS)

    Tsay, Shiow-Fon

    2016-09-01

    The atomic geometry, stability, and electronic properties of self-organized Au induced nanowires on the Ge(001) surface are investigated based on the density-functional theory in GGA and the stoichiometry of Au. A giant Ge zigzag chain structure is suggested for 0.75 ML Au coverage, which displays c(8 × 2) deep groove zigzag nanowire structure simulated STM images. The top layer Ge and Au atomic disorder introduces the chevron units into the zigzag nanowire structure STM image as per the experimental observations. The zigzag Ge nanowire exhibits a semi-metallic characteristic, and the electric transport occurs in between the Ge zigzag nanowire and the subsurface. The system exhibits obvious electronic correlations among the Ge nanowire, the nano-facet Au trimers and the deeper layer Ge atoms, that play an important role in the electronic structure. At surface Brillouin zone boundaries, an anisotropic two-dimensional upward parabolic surface-state band is consistent with the ARPES spectra reported by Nakatsuji et al. [Phys. Rev. B 80, 081406(R) (2009); Phys. Rev. B 84, 115411 (2011)]; this electronic structure is different from the quasi-one-dimensional energy trough reported by Schäfer et al. [Phys. Rev. Lett. 101, 236802 (2008); Phys. Rev. B 83, 121411(R) (2011)].

  2. Au nanorod helical superstructures with designed chirality.

    PubMed

    Lan, Xiang; Lu, Xuxing; Shen, Chenqi; Ke, Yonggang; Ni, Weihai; Wang, Qiangbin

    2015-01-14

    A great challenge for nanotechnology is to controllably organize anisotropic nanomaterials into well-defined three-dimensional superstructures with customized properties. Here we successfully constructed anisotropic Au nanorod (AuNR) helical superstructures (helices) with tailored chirality in a programmable manner. By designing the 'X' pattern of the arrangement of DNA capturing strands (15nt) on both sides of a two-dimensional DNA origami template, AuNRs functionalized with the complementary DNA sequences were positioned on the origami and were assembled into AuNR helices with the origami intercalated between neighboring AuNRs. Left-handed (LH) and right-handed (RH) AuNR helices were conveniently accomplished by solely tuning the mirrored-symmetric 'X' patterns of capturing strands on the origami. The inter-rod distance was precisely defined as 14 nm and inter-rod angle as 45°, thus a full helix contains 9 AuNRs with its length up to about 220 nm. By changing the AuNR/origami molar ratio in the assembly system, the average number of AuNR in the helices was tuned from 2 to 4 and 9. Intense chiroptical activities arose from the longest AuNR helices with a maximum anisotropy factor of ∼0.02, which is highly comparable to the reported macroscopic AuNR assemblies. We expect that our strategy of origami templated assembly of anisotropic chiral superstructures would inspire the bottom-up fabrication of optically active nanostructures and shed light on a variety of applications, such as chiral fluids, chiral signal amplification, and fluorescence combined chiral spectroscopy. PMID:25516475

  3. Femtosecond spectroscopy of multiferroic BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Abreu, E.; Schneck, J. R.; Rana, D. S.; Kawayama, I.; Tonouchi, M.; Ziegler, L.; Averitt, R. D.

    2010-03-01

    BiFeO3 is a multiferroic material characterized by a room temperature antiferromagnetic and ferroelectric phase and a 2.6eV bandgap. Terahertz emission from BiFeO3 thin films following excitation above bandgap by UV femtosecond pulses has been observed [1]. The THz emission is related to ultrafast depolarization of the ferroelectric order in the film as observed from the hysteresis of the amplitude of the emitted THz signal as a function of a biasing electric field. Experiments probing the electronic and lattice dynamics with sub-picosecond resolution are an essential step towards identifying the intrinsic mechanism responsible for depolarization and THz emission in BiFeO3. In this study we investigate the carrier dynamics of epitaxial BiFeO3 thin films using degenerate pump-probe spectroscopy at 400 nm with sub-50 fs pulses. We have observed a 5 THz coherent optical phonon oscillation consistent with the A1 phonon mode as observed in Raman spectroscopy [2]. In this talk, the relation of the observed dynamics to the THz emission will be discussed. [1] D.S. Rana, et al., Advanced Materials 21, 2881 (2009). [2] S. Kamba, et al, Phys. Rev. B 75, 024403 (2007).

  4. Influence of freezing rate changes of MnBi-Bi eutectic microstructure. [effects of space processing

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Doddi, K.; Nair, M.; Larson, D. J.

    1983-01-01

    In an attempt to explain the influence of space processing on the microstructure of MnBi-Bi, eutectic mixtures were directionally solidified with a sudden change of translation rate. The MnBi fiber spacing was able to adapt to the changing freezing rate as predicted by heat transfer computations. Thus the microstructure adapts more rapidly than the freezing rate could be changed in the present experiments.

  5. Superconducting Bi2Te: Pressure-induced universality in the (Bi2)m(Bi2Te3)n series

    DOE PAGESBeta

    Stillwell, Ryan L.; Jeffries, Jason R.; Jenei, Zsolt; Weir, Samuel T.; Vohra, Yogesh K.

    2016-03-09

    Using high-pressure magnetotransport techniques we have discovered superconductivity in Bi2Te, a member of the infinitely adaptive (Bi2)m(Bi2Te3)n series, whose end members, Bi and Bi2Te3, can be tuned to display topological surface states or superconductivity. Bi2Te has a maximum Tc = 8.6 K at P = 14.5 GPa and goes through multiple high pressure phase transitions, ultimately collapsing into a bcc structure that suggests a universal behavior across the series. High-pressure magnetoresistance and Hall measurements suggest a semi-metal to metal transition near 5.4 GPa, which accompanies the hexagonal to intermediate phase transition seen via x-ray diffraction measurements. In addition, the linearitymore » of Hc2 (T) exceeds the Werthamer-Helfand-Hohenberg limit, even in the extreme spin-orbit scattering limit, yet is consistent with other strong spin-orbit materials. Furthermore, considering these results in combination with similar reports on strong spin-orbit scattering materials seen in the literature, we suggest the need for a new theory that can address the unconventional nature of their superconducting states.« less

  6. Optical and electrical properties of bi-layers organic devices

    NASA Astrophysics Data System (ADS)

    Trad, Hager; Rouis, Ahlem; Davenas, Jöel; Majdoub, Mustapha

    2014-10-01

    The influence of interfacial charges on the device characteristics of bi-layers structure LEDs with poly[5-methoxy-2-octyloxy-1,4-phenylenevinylene] (MO-PPV) as active polymer layer is investigated. The concept to improve device performance is presented using: a diacetate cellulose (DAC) and a new synthetized 5-{2-(2-chloroethoxy)ethoxy}-2-{(E)-(2-pyridyl)azo}phenol (PDEG) components. The DAC and mixed (DAC+PDEG) layers were inserted between indium tin oxide (ITO) and MO-PPV polymer. The optical properties (UV-Vis) of MO-PPV, PDEG and mixed (DAC+PDEG) in solutions were studied and compared to those on thin films. Detailed current-voltage measurements of the bi-layers devices showed improvements of the threshold voltage (Vth) of the ITO/(DAC+PDEG)/MO-PPV/Al device attributed to the enhancement of carriers injection and transport resulted from the modified electrode structures. Conduction mechanisms of structure LEDs were matched with space-charge-limited current (SCLC) one. The impedance spectra for all devices can be discussed in terms of an equivalent circuit model designed as a parallel resistor Rp and capacitor Cp network in series with resistor Rs. The ITO/(DAC+PDEG)/MO-PPV/Al device showed the lowest impedance attributed to the removal of contaminants and to changes in the work function of ITO. The frequency-dependent electrical properties of the ITO/(DAC+PDEG)/MO-PPV/Al structure is analyzed by impedance spectroscopy as function of bias. We have extracted numerical values of the equivalent circuit model parameters by fitting experimental data. Their evolution with bias voltages has shown that the SCLC mechanism is characterized by an exponential trap distribution.

  7. A simple route to Bi2Se3 and Bi2Te3 nanocrystals

    NASA Astrophysics Data System (ADS)

    Mntungwa, Nhlakanipho; Rajasekhar, Pullabhotla V. S. R.; Ramasamy, Karthik; Revaprasadu, Neerish

    2014-05-01

    Monodisperse nanocrystals of Bi2Se3 and Bi2Te3 capped with alkylamines have been synthesized via facile solution based method. The method involves reduction of selenium or tellurium using sodium borohydride, followed by thermolysis in an alkylamine at high temperature. Spherical shaped Bi2Se3 nanocrystals were obtained at 190 °C, whereas the reaction at 270 °C, yielded faceted nanocrystals. Similarly, spherical Bi2Te3 nanocrystals were obtained at all temperatures with hexadecylamine and oleylamine capping agents.

  8. Bi-induced band gap reduction in epitaxial InSbBi alloys

    SciTech Connect

    Rajpalke, M. K.; Linhart, W. M.; Birkett, M.; Alaria, J.; Veal, T. D.; Yu, K. M.; Bomphrey, J. J.; Jones, T. S.; Ashwin, M. J.; Sallis, S.; Piper, L. F. J.

    2014-11-24

    The properties of molecular beam epitaxy-grown InSb{sub 1−x}Bi{sub x} alloys are investigated. Rutherford backscattering spectrometry shows that the Bi content increases from 0.6% for growth at 350 °C to 2.4% at 200 °C. X-ray diffraction indicates Bi-induced lattice dilation and suggests a zinc-blende InBi lattice parameter of 6.626 Å. Scanning electron microscopy reveals surface InSbBi nanostructures on the InSbBi films for the lowest growth temperatures, Bi droplets at intermediate temperatures, and smooth surfaces for the highest temperature. The room temperature optical absorption edge was found to change from 172 meV (7.2 μm) for InSb to ∼88 meV (14.1 μm) for InSb{sub 0.976}Bi{sub 0.024}, a reduction of ∼35 meV/%Bi.

  9. Oxygen-assisted reduction of Au species on Au/SiO2 catalyst in room temperature CO oxidation

    SciTech Connect

    Wu, Zili; Zhou, Shenghu; Zhu, Haoguo; Dai, Sheng; Overbury, Steven {Steve} H

    2008-01-01

    An unexpected oxygen-assisted reduction of cationic Au species by CO was found on a Au/SiO2 catalyst at room temperature; CO oxidation activity increases simultaneously with the reduction of Au species, suggesting the key role of metallic Au played in CO oxidation on Au/SiO2.

  10. Gold nanoparticle immobilization on ZnO nanorods via bi-functional monolayers: A facile method to tune interface properties

    NASA Astrophysics Data System (ADS)

    Jayaraman, Sundaramurthy; Suresh Kumar, P.; Mangalaraj, D.; Dharmarajan, Rajarathnam; Ramakrishna, Seeram; P Srinivasan, M.

    2015-11-01

    We demonstrated the functionalization of one dimensional (1-D) zinc oxide nanorods (ZnO NRs) using bi-functional organic molecules to create hybrid structures with surface functionalities and tuneable organic/inorganic interface. Bi-functional molecules with carboxylic acid, thiol and silane end groups and amine termination had been employed to functionalize the NRs by forming carboxylate, thiolate and hydroxylation bonds, respectively, with ZnO. The surface textures of NRs were preserved even after functionalization. The functionalized NRs were decorated with gold nanoparticles (AuNPs) and the hybrid structures exhibited a quenched blue shift ultraviolet emission which depended on the distance between the ZnO surface and the AuNPs. The NR functionalization with bi-functional molecules and decoration of NPs, and surface morphologies were analyzed using x-ray photoelectron spectroscopy, field emission scanning electron microscopy and transmission electron spectroscopy. These hybrid structures can play a vital role in tuning the interface properties and have potential applications in future photovoltaics, chemical sensors, biomarkers, and wavelength based biosensors.

  11. Large enhancement of superconducting transition temperature of SrBi3 induced by Na substitution for Sr

    PubMed Central

    Iyo, Akira; Yanagi, Yousuke; Kinjo, Tatsuya; Nishio, Taichiro; Hase, Izumi; Yanagisawa, Takashi; Ishida, Shigeyuki; Kito, Hijiri; Takeshita, Nao; Oka, Kunihiko; Yoshida, Yoshiyuki; Eisaki, Hiroshi

    2015-01-01

    The Matthias rule, which is an empirical correlation between the superconducting transition temperature (Tc) and the average number of valence electrons per atom (n) in alloys and intermetallic compounds, has been used in the past as a guiding principle to search for new superconductors with higher Tc. The intermetallic compound SrBi3 (AuCu3 structure) exhibits a Tc of 5.6 K. An ab-initio electronic band structure calculation for SrBi3 predicted that Tc increases on decreasing the Fermi energy, i.e., on decreasing n, because of a steep increase in the density of states. In this study, we demonstrated that high-pressure (~ 3 GPa) and low-temperature ( < 350 °C) synthesis conditions enables the substitution of Na for about 40 at.% of Sr. With a consequent decrease in n, the Tc of (Sr,Na)Bi3 increases to 9.0 K. A new high-Tc peak is observed in the oscillatory dependence of Tc on n in compounds with the AuCu3 structure. We have shown that the oscillatory dependence of Tc is in good agreement with the band structure calculation. Our experiments reaffirm the importance of controlling the number of electrons in intermetallic compounds. PMID:25965162

  12. Role of internal gases and creep of Ag in controlling the critical current density of Ag-sheathed Bi2Sr2CaCu2Ox wires

    NASA Astrophysics Data System (ADS)

    Shen, T.; Ghosh, A.; Cooley, L.; Jiang, J.

    2013-06-01

    High engineering critical current density JE of > 500 A/mm2 at 20 T and 4.2 K can be regularly achieved in Ag-sheathed multifilamentary Bi2Sr2CaCu2Ox (Bi-2212) round wire when the sample length is several centimeters. However, JE(20 T) in Bi-2212 wires of several meters length, as well as longer pieces wound in coils, rarely exceeds 200 A/mm2. Moreover, long-length wires often exhibit signs of Bi-2212 leakage after melt processing that are rarely found in short, open-end samples. We studied the length dependence of JE of state-of-the-art powder-in-tube (PIT) Bi-2212 wires and gases released by them during melt processing using mass spectroscopy, confirming that JE degradation with length is due to wire swelling produced by high internal gas pressures at elevated temperatures [A. Malagoli et al. Supercond. Sci. Technol. 24, 075016 (2011) and A. Malagoli et al. Supercond. Sci. Technol. 26, 055018 (2013)]. We further modeled the gas transport in Bi-2212 wires and examined the wire expansion at critical stages of the melt processing of as-drawn PIT wires and the wires that received a degassing treatment or a cold-densification treatment before melt processing. These investigations showed that internal gas pressure in long-length wires drives creep of the Ag sheath during the heat treatment, causing wire to expand, lowering the density of Bi-2212 filaments, and therefore degrading the wire JE; the creep rupture of silver sheath naturally leads to the leakage of Bi-2212 liquid. Our work shows that proper control of such creep is the key to preventing Bi-2212 leakage and achieving high JE in long-length Bi-2212 conductors and coils.

  13. Surface superconductivity in thin cylindrical Bi nanowire.

    PubMed

    Tian, Mingliang; Wang, Jian; Ning, Wei; Mallouk, Thomas E; Chan, Moses H W

    2015-03-11

    The physical origin and the nature of superconductivity in nanostructured Bi remains puzzling. Here, we report transport measurements of individual cylindrical single-crystal Bi nanowires, 20 and 32 nm in diameter. In contrast to nonsuperconducting Bi nanoribbons with two flat surfaces, cylindrical Bi nanowires show superconductivity below 1.3 K. However, their superconducting critical magnetic fields decrease with their diameter, which is the opposite of the expected behavior for thin superconducting wires. Quasiperiodic oscillations of magnetoresistance were observed in perpendicular fields but were not seen in the parallel orientation. These results can be understood by a model of surface superconductivity with an enhanced surface-to-bulk volume in small diameter wires, where the superconductivity originates from the strained surface states of the nanowires due to the surface curvature-induced stress. PMID:25658139

  14. Influence of Bi on the magnetic and magneto-optical properties of Co/Bi/Co and Bi/Co thin-film systems

    NASA Astrophysics Data System (ADS)

    Shalygina, Elena; Svalov, Andrey; Kharlamova, Anna; Ganshina, Elena; Doronin, Dmitriy; Kurlyandskaya, Galina

    2016-07-01

    The magneto-optical and magnetic properties of Co (50 Å)/Bi/Co (50 Å) and Bi/Co (50 Å) samples are investigated. Magneto-optical investigations indicate that the shapes of transverse Kerr effect (TKE) spectra are similar for all studied samples. TKE values decrease for the Co/Bi/Co structures at t Bi > 40 Å and for the Co/Bi samples at t Bi > 5 Å as compared with TKE values of the single-layer Co thin film. The decrease in the volume ratio of the magnetic to nonmagnetic phases causes the reduction in the contribution of the magnetic phase to magneto-optical signals. Magnetic investigations show that the saturation field and coercivity of the studied samples increase with increasing t Bi. The exchange oscillatory coupling between Co layers through the Bi spacer in Co/Bi/Co samples with various periods (short and long) is observed in the t Bi range from 2 to 500 Å. These data are explained by the dependence of Fermi energy on Bi thickness and the changes in the Bi band structure with the decrease in t Bi.

  15. A comparative study of the Au + H{sub 2}, Au{sup +} + H{sub 2}, and Au{sup −} + H{sub 2} systems: Potential energy surfaces and dynamics of reactive collisions

    SciTech Connect

    Dorta-Urra, Anaís; Zanchet, Alexandre; Roncero, Octavio; Aguado, Alfredo

    2015-04-21

    In order to study the Au{sup −} + H{sub 2} collision, a new global potential energy surface (PES) describing the ground electronic state of AuH{sub 2}{sup −} system is developed and compared with the PESs of the neutral [Zanchet et al., J. Chem. Phys. 132, 034301 (2010)] and cationic systems [Anaís et al., J. Chem. Phys. 135, 091102 (2011)]. We found that Au{sup −} − H{sub 2} presents a H-Au-H insertion minimum attributed to the stabilization of the LUMO 3b{sub 2} orbital, which can be considered as the preamble of the chemisorption well appearing in larger gold clusters. While the LUMO orbital is stabilized, the HOMO 6a{sub 1} is destabilized, creating a barrier at the geometry where the energy orbitals’ curves are crossing. In the anion, this HOMO is doubly occupied, while in the neutral system is half-filled and completely empty in the cation, explaining the gradual disappearance of the well and the barrier as the number of electrons decreases. The cation presents a well in the entrance channel partially explained by electrostatic interactions. The three systems’ reactions are highly endothermic, by 1.66, 2.79, and 3.23 eV for AuH, AuH{sup +}, and AuH{sup −} products, respectively. The reaction dynamics is studied using quasi-classical trajectory method for the three systems. The one corresponding to the anionic system is new in this work. Collision energies between 1.00 and 8.00 eV, measured for the cation, are in good agreement with the simulated cross section for the AuH{sup +}. It was also found that the total fragmentation, in three atoms, competes becoming dominant at sufficiently high energy. Here, we study the competition between the two different reaction pathways for the anionic, cationic, and neutral species, explaining the differences using a simple model based on the topology of the potential energy surfaces.

  16. BiP negatively affects ricin transport.

    PubMed

    Gregers, Tone F; Skånland, Sigrid S; Wälchli, Sébastien; Bakke, Oddmund; Sandvig, Kirsten

    2013-05-01

    The AB plant toxin ricin binds both glycoproteins and glycolipids at the cell surface via its B subunit. After binding, ricin is endocytosed and then transported retrogradely through the Golgi to the endoplasmic reticulum (ER). In the ER, the A subunit is retrotranslocated to the cytosol in a chaperone-dependent process, which is not fully explored. Recently two separate siRNA screens have demonstrated that ER chaperones have implications for ricin toxicity. ER associated degradation (ERAD) involves translocation of misfolded proteins from ER to cytosol and it is conceivable that protein toxins exploit this pathway. The ER chaperone BiP is an important ER regulator and has been implicated in toxicity mediated by cholera and Shiga toxin. In this study, we have investigated the role of BiP in ricin translocation to the cytosol. We first show that overexpression of BiP inhibited ricin translocation and protected cells against the toxin. Furthermore, shRNA-mediated depletion of BiP enhanced toxin translocation resulting in increased cytotoxicity. BiP-dependent inhibition of ricin toxicity was independent of ER stress. Our findings suggest that in contrast to what was shown with the Shiga toxin, the presence of BiP does not facilitate, but rather inhibits the entry of ricin into the cytosol. PMID:23666197

  17. Dynamical Scenarios for Chromosome Bi-orientation

    PubMed Central

    Zhang, Tongli; Oliveira, Raquel A.; Schmierer, Bernhard; Novák, Béla

    2013-01-01

    Chromosome bi-orientation at the metaphase spindle is essential for precise segregation of the genetic material. The process is error-prone, and error-correction mechanisms exist to switch misaligned chromosomes to the correct, bi-oriented configuration. Here, we analyze several possible dynamical scenarios to explore how cells might achieve correct bi-orientation in an efficient and robust manner. We first illustrate that tension-mediated feedback between the sister kinetochores can give rise to a bistable switch, which allows robust distinction between a loose attachment with low tension and a strong attachment with high tension. However, this mechanism has difficulties in explaining how bi-orientation is initiated starting from unattached kinetochores. We propose four possible mechanisms to overcome this problem (exploiting molecular noise; allowing an efficient attachment of kinetochores already in the absence of tension; a trial-and-error oscillation; and a stochastic bistable switch), and assess their impact on the bi-orientation process. Based on our results and supported by experimental data, we put forward a trial-and-error oscillation and a stochastic bistable switch as two elegant mechanisms with the potential to promote bi-orientation both efficiently and robustly. PMID:23790367

  18. [(CF3)4Au2(C5H5N)2]--a new alkyl gold(II) derivative with a very short Au-Au bond.

    PubMed

    Zopes, David; Hegemann, Corinna; Tyrra, Wieland; Mathur, Sanjay

    2012-09-11

    A new gold(II) species [(CF(3))(4)Au(2)(C(5)H(5)N)(2)] with a very short unsupported Au-Au bond (250.62(9) pm) was generated by photo irradiation of a silver aurate, [Ag(Py)(2)][Au(CF(3))(2)], unambiguously characterized by (19)F and (109)Ag NMR studies. PMID:22836874

  19. Epitaxial Integration of (100) Bi4Ti3O12 with (0001) ZnO through Long-Range Lattice Matching

    NASA Astrophysics Data System (ADS)

    Luo, Sijun; Wang, Chuanbin; Zhang, Song; Tu, Rong; Liu, Shulong; Tang, Xinfeng; Shen, Qiang; Chen, Fei; Zhang, Lianmeng

    2012-08-01

    We report on an epitaxial relationship with a long-range lattice matching between the (100) plane of Bi-layered structure Bi4Ti3O12 (BiT) and the (0001) plane of wurtzite structure ZnO: BiT(100)[001] ∥ ZnO(0001)<0110>. Epitaxial (100)-oriented Ho-doped BiT thin film with the composite of Bi3.6Ho0.4Ti3O12 (BHT) was integrated with (0001)-oriented Al-doped ZnO (AZO) layer buffered c-sapphire substrate by pulsed laser deposition. X-ray diffraction and transmission electron microscopy characterizations validated the epitaxial orientation relationship, which was BHT(100)[001] ∥ AZO(0001)<0110>. The heteroepitaxy of (100) BiT with (0001) ZnO through long-range lattice matching opens the way to the study of novel BiT/ZnO-based ferroelectric wide-band-gap semiconductor heterostructure.

  20. Main Group Metal-Actinide Magnetic Coupling and Structural Response Upon U(4+) Inclusion Into Bi, Tl/Bi, or Pb/Bi Cages.

    PubMed

    Lichtenberger, Niels; Wilson, Robert J; Eulenstein, Armin R; Massa, Werner; Clérac, Rodolphe; Weigend, Florian; Dehnen, Stefanie

    2016-07-27

    The encapsulation of actinide ions in intermetalloid clusters has long been proposed but was never realized synthetically. We report the isolation and experimental, as well as quantum chemical, characterization of the uranium-centered clusters [U@Bi12](3-), [U@Tl2Bi11](3-), [U@Pb7Bi7](3-), and [U@Pb4Bi9](3-), upon reaction of (EE'Bi2)(2-) (E = Ga, Tl, E' = Bi; E = E' = Pb) and [U(C5Me4H)3] or [U(C5Me4H)3Cl] in 1,2-diaminoethane. For [U@Bi12](3-), magnetic susceptibility measurements rationalize an unprecedented antiferromagnetic coupling between a magnetic U(4+) site and a unique radical Bi12(7-) shell. PMID:27392253

  1. Topological insulator Bi2Te3 nanowire field effect devices

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis A.; Zhang, Genqiang; Wu, Yue; Chen, Yong P.

    2012-02-01

    Bismuth telluride (Bi2Te3) has been studied extensively as one of the best thermoelectric materials and recently shown to be a prototype topological insulator with nontrivial conducting surface states. We have grown Bi2Te3 nanowires by a two-step solution phase reaction and characterized their material and structural properties by XRD, TEM, XPS and EDS. We fabricate both backgated (on SiO2/Si) and top-gated (with ALD high-k gate dielectric such as Al2O3 or HfO2) field effect devices on such nanowires with diameters ˜50nm. Ambipolar field effect and a resistance modulation of up to 600% at low temperatures have been observed. The 4-terminal resistance shows insulating behavior (increasing with decreasing temperature) from 300 K to 50K, then saturates in a plateau for temperatures below 50K, consistent with the presence of metallic surface state. Aharonov--Bohm (AB) oscillations are observed in the magneto-resistance with a magnetic field parallel to the nanowire, providing further evidence of the presence of surface state conduction Finally, a prominent weak anti-localization (WAL) feature that weakens with increasing magnetic field and/or temperature is observed in the magneto-resistance with a magnetic field perpendicular to the nanowire.

  2. Thermal and photoinduced reduction of ionic Au(III) to elemental Au nanoparticles by dissolved organic matter in water: possible source of naturally occurring Au nanoparticles.

    PubMed

    Yin, Yongguang; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin

    2014-01-01

    Naturally occurring Au nanoparticles (AuNPs) have been widely observed in ore deposits, coal, soil, and environmental water. Identifying the source of these naturally occurring AuNPs could be helpful for not only the discovery of Au deposits through advanced exploration methods, but also the elucidation of the biogeochemical cycle and environmental toxicity of ionic Au and engineered AuNPs. Here, we investigated the effect of natural/simulated sunlight and heating on the reduction of ionic Au by ubiquitous dissolved organic matter (DOM) in river water. The reductive process probed by X-ray photoelectron spectroscopy revealed that phenolic, alcoholic, and aldehyde groups in DOM act as reductive sites. Long-time exposure with thermal and photoirradiation induced the further fusion and growth of AuNPs to branched Au nanostructure as precipitation. The formation processes and kinetics of AuNPs were further investigated using humic acid (HA) as the DOM model, with comprehensive characterizing methods. We have observed that HA can reduce ionic Au(III) complex (as chloride or hydroxyl complex) to elemental Au nanoparticles under sunlight or heating. In this process, nearly all of the Au(III) could be reduced to AuNPs, in which HA serves as not only the reductive agent, but also the coating agent to stabilize and disperse AuNPs. The size and stability of AuNPs were highly dependent on the concentration ratio of Au(III) to HA. These results imply that, besides biological processes, this thermal or photochemical reduction process is another possible source of naturally occurring AuNPs in natural environments, which possibly has critical impacts on the transport and transformation of Au and engineered AuNPs. PMID:24471802

  3. Influence of gravity driven convection on the directional solidification of Bi/MnBi eutectic composites

    NASA Technical Reports Server (NTRS)

    Pirich, R. G.; Larson, D. J.

    1982-01-01

    The role of gravity on Bridgman-Stockharger directional solidification of eutectic Bi/MnBi has been studied in reduced gravity aboard NASA sounding rocket SPAR flight experiments and contrasted with normal gravity investigations. The directional solidification of eutectic Bi/MnBi results in a low volume fraction, faceted/nonfaceted aligned rod eutectic whose MnBi rod size, interrod spacing, thermal and magnetic properties are sensitive functions of solidification processing conditions. The morphology of the low-gravity samples showed striking differences compared with identically processed, normal gravity samples grown in the same apparatus. The MnBi rod diameter and interrod spacing distributions were significantly smaller, approximately 50 percent, for the low gravity samples compared with identically processed one gravity samples. Accompanying the smaller MnBi rod diameters observed in the flight samples, was an increase in permanent magnet properties which reached greater than 97 percent of the theoretical maximum. Gravitationally induced thermal instabilities in one-gravity which result in irregular interface movement and associated difficulty of the faceted MnBi phase to branch are suggested to explain the morphological differences between one and low gravity solidification.

  4. Self-assembly of thiolated cyanine aggregates on Au(111) and Au nanoparticle surfaces

    NASA Astrophysics Data System (ADS)

    Menéndez, Guillermo O.; Cortés, Emiliano; Grumelli, Doris; Méndez de Leo, Lucila P.; Williams, Federico J.; Tognalli, Nicolás G.; Fainstein, Alejandro; Vela, María Elena; Jares-Erijman, Elizabeth A.; Salvarezza, Roberto C.

    2012-01-01

    Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show that CNN species adsorb on the Au surfaces by forming thiolate-Au bonds. We found that the J-aggregates are preferentially adsorbed on the Au(111) surface directly from the solution while adsorbed CNN monomers cannot organize into aggregates on the substrate surface. These results indicate that the CNN-Au interaction is not able to disorganize the large J-aggregates stabilized by π-π stacking to optimize the S-Au binding site but it is strong enough to hinder the π-π stacking when CNNs are chemisorbed as monomers. The optical properties of the J-aggregates remain active after adsorption. The possibility of covalently bonding CNN J-aggregates to Au planar surfaces and Au nanoparticles controlling the J-aggregate/Au distance opens a new path regarding their improved stability and the wide range of biological applications of both CNN and AuNP biocompatible systems.Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show

  5. Controlled Synthesis of Au@AgAu Yolk-Shell Cuboctahedra with Well-Defined Facets.

    PubMed

    Londono-Calderon, Alejandra; Bahena, Daniel; Yacaman, Miguel J

    2016-08-01

    The synthesis of Au@AgAu yolk-shell cuboctahedra nanoparticles formed by galvanic replacement in a seed-mediated method is described. Initially, single-crystal Au seeds are used for the formation of Au@Ag core-shell nanocubes, which serve as the template material for the deposition of an external Au layer. The well-controlled synthesis yields the formation of cuboctahedra nanoparticles with smooth inner and outer Au/Ag surfaces. The deposition/oxidation process is described to understand the formation of cuboctahedra and octahedra nanoparticles. The Au core maintains the initial morphology of the seed and remains static at the center of the yolk-shell because of residual Ag. Structural analysis of the shell indicates intrinsic stacking faults (SFs) near the surface. Energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) compositional analysis show an Au-Ag nonordered alloy forming the shell. The three-dimensional structure of the nanoparticles presented open facets on the [111] as observed by electron tomography SIRT reconstruction over a stack of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. The geometrical model was validated by analyzing the direction of streaks in coherent nanobeam diffraction (NBD). The catalytic activity was evaluated using a model reaction based on the reduction of 4-nitrophenol (4-NTP) by NaBH4 in the presence of Au@AgAu yolk-shell nanoparticles. PMID:27385583

  6. Influence of gravity on the microstructure of the MnBi/Bi eutectic

    NASA Technical Reports Server (NTRS)

    Rydzewski, J. H.; Wilcox, W. R.

    1991-01-01

    Directional solidification of MnBiBi eutectic in space produced MnBi fibers that were significantly finer and closer together than when solidification was carried out on earth under otherwise identical conditions. Use of a strong magnetic field during solidification on earth gave about the same results as solidification in space, indicating that convection is the cause of the difference in microstructure. However, 15 years of theoretical and experimental research have failed to reveal the mechanism for this phenomenon. It has been found that temperature gradient has no effect; the concentration field in front of the freezing interface is not altered sufficiently by buoyancy-driven convection to explain it, even if the MnBi fibers project out in front of the Bi matrix; and the Soret effect is not sufficiently large. On the other hand, vigorous forced convection caused a change in microstructure in agreement with theory.

  7. Studies of directionally solidified eutectic Bi/MnBi at low growth velocities

    NASA Technical Reports Server (NTRS)

    Pirich, R. G.

    1984-01-01

    The (lambda-squared)(V) deviation for diffusion-only rod eutectic growth, where lambda is the interrod spacing and V is the growth velocity, was studied at growth velocities less than 5 cm/h in directionally solidified eutectic Bi-Mn (Bi/MnBi). At lower growth velocities, (V less than 0.5 cm/h) morphological instability occurred which resulted in nonaligned, irregularly dispersed MnBi fibers. The (lambda-squared)(V) relation was experimentally determined over a range of growth velocities between 0.1 and 50 cm/h, thermal gradients in the liquid at the liquid-solid interface that varied from 40 to 120 C/cm and solidification orientation with respect to the direction of gravity. Naturally induced, convective instabilities are suggested as a possible growth velocity limit for cooperative growth in the Bi-Mn and related alloy systems.

  8. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    NASA Astrophysics Data System (ADS)

    Cui, J.; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J.; Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D.; Marinescu, M.; Huang, Q. Z.; Wu, H.; Vuong, N. V.; Liu, J. P.

    2014-05-01

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μB at 50 K and 300 K, respectively.

  9. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    SciTech Connect

    Cui, J. Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J.; Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D.; Marinescu, M.; Huang, Q. Z.; Wu, H.; Vuong, N. V.; Liu, J. P.

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μ{sub B} at 50 K and 300 K, respectively.

  10. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    SciTech Connect

    Cui, J.; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J.; Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D.; Marinescu, M.; Huang, Q. Z.; Wu, H.; Vuong, N. V.; Liu, J. P.

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μB at 50 K and 300 K, respectively.

  11. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    SciTech Connect

    Cui, J; Choi, JP; Li, G; Polikarpov, E; Darsell, J; Kramer, MJ; Zarkevich, NA; Wang, LL; Johnson, DD; Marinescu, M; Huang, QZ; Wu, H; Vuong, NV; Liu, JP

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 mu(B) at 50 K and 300 K, respectively. (C) 2014 AIP Publishing LLC.

  12. Development of MnBi permanent magnet: neutron diffraction of MnBi powder

    SciTech Connect

    Cui, Jun; Choi, Jung-Pyung; Li, Guosheng; Polikarpov, Evgueni; Darsell, Jens T.; Kramer, Matthew J.; Zarkevich, Nikolai; Wang, L. L.; Johnson, D. D.; Marinescu, Melania; Huang, Qingzhen; Wu, Hui; Vuong, Nguyen V.; Liu, J.Ping

    2014-03-05

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained power. The result shows that the purity of the obtained powder is about 91wt.% at 300K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μB at 50 K and 300 K respectively.

  13. Magnetic flux oscillations in partially irradiated Bi2Sr2CaCu2O8+δ crystals

    NASA Astrophysics Data System (ADS)

    Barness, D.; Sinvani, M.; Shaulov, A.; Trautmann, C.; Tamegai, T.; Yeshurun, Y.

    2009-04-01

    We report on generation of spatiotemporal oscillations of magnetic flux in a Bi2Sr2CaCu2O8+δ crystal irradiated in part with 2.2 GeV Au ions. Flux oscillations are spontaneously excited after exposing the sample to a steady magnetic field near the order-disorder vortex phase transition line. The oscillations originate at the border between the irradiated and nonirradiated parts of the sample and propagate into the nonirradiated region toward the sample edge. Previously reported flux oscillations were observed in the vicinity of undefined defects in as grown Bi2Sr2CaCu2O8+δ crystals. Observation of spontaneous oscillations in partially irradiated samples present the first attempt to generate such oscillations in a controlled manner.

  14. Al Composites

    NASA Astrophysics Data System (ADS)

    Chandanayaka, Tharaka; Azarmi, Fardad

    2014-05-01

    In the present study, cold spraying technique was used to fabricate a metal matrix composite (MMC) that consists of Ni matrix and 20 vol.% Ni3Al particles at two different particle sizes as reinforcement. This study intends to investigate the effect of reinforcement particle size on microstructural and mechanical properties of cold sprayed MMCs. Two different Ni3Al powders with nominal particle size of -45 to +5 and +45 to 100 μm were used as reinforcement in this study. Cold sprayed Ni-Ni3Al samples were subjected to the microstructural observation and characterization prior to any mechanical testing. Then, samples were tested using nano-indentation, Knoop hardness, Vickers hardness, and Resonance frequency to evaluate their mechanical properties. No significant changes were observed in microstructural characteristics due to different particle sizes. The results obtained from a variety of mechanical testings indicated that the increasing reinforcement particle size resulted in the slight reduction of mechanical properties such as elastic modulus and hardness in cold sprayed MMCs. The mechanical interlock between deposited particles defines the bonding strength in cold sprayed samples. Small size particles have a higher velocity and impact resulting in stronger interlock between deformed particles.

  15. Surface patterning of GaAs under irradiation with very heavy polyatomic Au ions

    NASA Astrophysics Data System (ADS)

    Bischoff, L.; Böttger, R.; Heinig, K.-H.; Facsko, S.; Pilz, W.

    2014-08-01

    Self-organization of surface patterns on GaAs under irradiation with heavy polyatomic Au ions has been observed. The patterns depend on the ion mass, and the substrate temperature as well as the incidence angle of the ions. At room temperature, under normal incidence the surface remains flat, whereas above 200 °C nanodroplets of Ga appear after irradiation with monatomic, biatomic as well as triatomic Au ions of kinetic energies in the range of 10-30 keV per atom. In the intermediate temperature range of 100-200 °C meander- and dot-like patterns form, which are not related to Ga excess. Under oblique ion incidence up to 45° from the surface normal, at room temperature the surface remains flat for mon- and polyatomic Au ions. For bi- and triatomic ions in the range of 60° ≤ α ≤ 70° ripple patterns have been found, which become shingle-like for α ≥ 80°, whereas the surface remains flat for monatomic ions.

  16. Au40: A large tetrahedral magic cluster

    NASA Astrophysics Data System (ADS)

    Jiang, De-En; Walter, Michael

    2011-11-01

    40 is a magic number for tetrahedral symmetry predicted in both nuclear physics and the electronic jellium model. We show that Au40 could be such a a magic cluster from density functional theory-based basin hopping for global minimization. The putative global minimum found for Au40 has a twisted pyramid structure, reminiscent of the famous tetrahedral Au20, and a sizable HOMO-LUMO gap of 0.69 eV, indicating its molecular nature. Analysis of the electronic states reveals that the gap is related to shell closings of the metallic electrons in a tetrahedrally distorted effective potential.

  17. Au40: A Large Tetrahedral Magic Cluster

    SciTech Connect

    Jiang, Deen; Walter, Michael

    2011-01-01

    40 is a magic number for tetrahedral symmetry predicted in both nuclear physics and the electronic jellium model. We show that Au{sub 40} could be such a magic cluster from density functional theory-based basin hopping for global minimization. The putative global minimum found for Au{sub 40} has a twisted pyramid structure, reminiscent of the famous tetrahedral Au{sub 20}, and a sizable HOMO-LUMO gap of 0.69 eV, indicating its molecular nature. Analysis of the electronic states reveals that the gap is related to shell closings of the metallic electrons in a tetrahedrally distorted effective potential.

  18. d + Au hadron correlation measurements from PHENIX

    NASA Astrophysics Data System (ADS)

    Sickles, Anne M.

    2015-01-01

    Recent observations of extended pseudorapidity correlations at the LHC in p+p and p+Pb collisions are of great interest. Here we present related results from d+Au collisions at PHENIX. We present the observed v2 and discuss the possible origin in the geometry of the collision region. We also present new measurements of the pseudorapidity dependence of the ridge in d+Au collision. Future plans to clarify the role of geometry in small collision systems using 3 He + Au collisions are discussed.

  19. Enhancement of Rashba interaction in GaAs/AlGaAs quantum wells due to the incorporation of bismuth

    SciTech Connect

    Simmons, R. A.; Jin, S. R.; Sweeney, S. J.; Clowes, S. K.

    2015-10-05

    This paper reports on the predicted increase in the Rashba interaction due to the incorporation of Bi in GaAs/AlGaAs heterostructures. Band structure parameters obtained from the band anti-crossing theory have been used in combination with self-consistent Schrödinger-Poisson calculations and k.p models to determine the electron spin-splitting caused by structural inversion asymmetry and increased spin-orbit interaction. A near linear seven fold increase in the strength of the Rashba interaction is predicted for a 10% concentration of Bi in a GaAsBi/AlGaAs quantum well heterostructure.

  20. Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode

    NASA Astrophysics Data System (ADS)

    Fujiki, A.; Uemura, T.; Zettsu, N.; Akai-Kasaya, M.; Saito, A.; Kuwahara, Y.

    2010-01-01

    A significant increase in electroluminescence was achieved through coupling with localized surface plasmons in a single layer of Au nanoparticles. We fabricated a thin-film organic electroluminescence diode, which consists of an indium tin oxide (ITO) anode, a Au nanoparticle array, a Cu phthalocyanine hole transport layer, a tris(8-hydroxylquinolianato) aluminum (III) electron transport layer, a LiF electron injection layer, and an Al cathode. The device structure, with size-controlled Au particles embedded on ITO, can be used to realize the optimum distance for exciton-plasmon interactions by simply adjusting the thickness of the hole transport layer. We observed a 20-fold increase in the molecular fluorescence compared with that of a conventional diode structure.

  1. The giant Pebble Cu-Au-Mo deposit and surrounding region, southwest Alaska: introduction

    USGS Publications Warehouse

    Kelley, Karen D.; Lang, James R.; Eppinger, Robert G.

    2013-01-01

    The Pebble deposit is located about 320 km southwest of and 27 km northwest of the village of Iliamna in Alaska (Fig. 1A). It is one of the largest porphyry deposits in terms of contained Cu (Fig. 2A) and it has the largest Au endowment of any porphyry deposit in the world (Fig. 2B). The deposit comprises the Pebble West and Pebble East zones that represent two coeval hydrothermal centers within a single system (Lang et al., 2013). Together the measured and indicated resources total 5,942 million metric tons (Mt) at 0.42% Cu, 0.35 g/t Au, and 250 ppm Mo with an inferred resource of 4,835 Mt at 0.24% Cu, 0.26 g/t Au, and 215 ppm Mo. In addition, the deposit contains significant concentrations of Ag, Pd, and Re (Northern Dynasty Minerals, 2011).

  2. Growth of Au on Ni(110): A Semiempirical Modeling of Surface Alloy Phases

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ibanez-Meier, Rodrigo; Ferrante, John

    1995-01-01

    Recent experiments using scanning tunneling microscopy show evidence for the formation of surface alloys of otherwise immiscible metals. Such is the case for Au deposited in Ni(110), where experiments by Pleth Nielsen el al.indicate that at low Au coverage (less than 0. 5 ML), Au atoms replace Ni atoms in the surface layer forming a surface alloy while the Ni atoms form islands on the surface. In this paper, we present results of a theoretical modeling of this phenomenon using the recently developed Bozzolo-Ferrante-Smith method for alloys. We provide results of an extensive analysis of the growth process that strongly support the conclusions drawn from the experiment: at very low coverages, there is a tendency for dimer formation on the overlayer, which later exchange positions with Ni atoms in the surface layer, thus accounting for the large number of substituted dimers. Ni island formation as well as other alternative short-range-order patterns are discussed.

  3. Growth of Au on Ni(110): a BFS Modelling of Surface Alloy Phases

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ibanez-Meier, Rodrigo; Ferrante, John

    1994-01-01

    Recent experiments using scanning tunneling microscopy show evidence for the formation of surface alloys of otherwise immiscible metals. Such is the case for Au deposited in Ni(11), where experiments by Pleth Nielsen et al. indicate that at low Au coverage (less than 0.5 ML), Au atoms replace Ni atoms in the surface layer forming a surface alloy while the Ni atoms form islands on the surface. In this work, we present results of a theoretical modeling of this phenomenon using the recently developed BFS method for alloys. We provide results of an extensive analysis of the growth process which strongly support the conclusions drawn from the experiment; at very low coverages, there is tendency for dimer formation on the overlayer, which later exchange positions with Ni atoms in the surface layer, thus accounting for the large number of substituted dimers. Ni island formations as well as other alternative short range order patterns are discussed.

  4. Doping the Golden Cage Au16- with Si, Ge, and Sn

    SciTech Connect

    Wang, Leiming; Bulusu, Satya; Huang, Wei; Pal, R.; Wang, Lai S.; Zeng, Xiao Cheng

    2007-12-12

    The discovery of catalytic effects in gold nanoparticles1 has accelerated efforts on the characterization and understanding of the structures and properties of bare gold clusters.2,3 Doped gold clusters have received increasing attention because of their potential tunable catalytic properties vs. dopant. The first highly stable doped gold cluster was a closed-shell icosahedral W@Au12, predicted using density-functional theory (DFT) by Pyykkö and Runeberg4 and confirmed using photoelectron spectroscopy (PES) by Li et al5. Subsequent PES studies showed that V-, Nb-, and Ta-doped Au12 clusters also possess the Ih symmetry.6 Mass spectra of a number of Au-alloy clusters have been observed by Lievens and co-workers.

  5. AL Amyloidosis

    PubMed Central

    2012-01-01

    Definition of the disease AL amyloidosis results from extra-cellular deposition of fibril-forming monoclonal immunoglobulin (Ig) light chains (LC) (most commonly of lambda isotype) usually secreted by a small plasma cell clone. Most patients have evidence of isolated monoclonal gammopathy or smoldering myeloma, and the occurrence of AL amyloidosis in patients with symptomatic multiple myeloma or other B-cell lymphoproliferative disorders is unusual. The key event in the development of AL amyloidosis is the change in the secondary or tertiary structure of an abnormal monoclonal LC, which results in instable conformation. This conformational change is responsible for abnormal folding of the LC, rich in β leaves, which assemble into monomers that stack together to form amyloid fibrils. Epidemiology AL amyloidosis is the most common type of systemic amyloidois in developed countries with an estimated incidence of 9 cases/million inhabitant/year. The average age of diagnosed patients is 65 years and less than 10% of patients are under 50. Clinical description The clinical presentation is protean, because of the wide number of tissues or organs that may be affected. The most common presenting symptoms are asthenia and dyspnoea, which are poorly specific and may account for delayed diagnosis. Renal manifestations are the most frequent, affecting two thirds of patients at presentation. They are characterized by heavy proteinuria, with nephrotic syndrome and impaired renal function in half of the patients. Heart involvement, which is present at diagnosis in more than 50% of patients, leading to restrictive cardiopathy, is the most serious complication and engages prognosis. Diagnostic methods The diagnosis relies on pathological examination of an involved site showing Congo red-positive amyloid deposits, with typical apple-green birefringence under polarized light, that stain positive with an anti-LC antibody by immunohistochemistry and/or immunofluorescence. Due to the

  6. Formation and phase transformation of Bi-containing QD-like clusters in annealed GaAsBi

    NASA Astrophysics Data System (ADS)

    Wu, Mingjian; Luna, Esperanza; Puustinen, Janne; Guina, Mircea; Trampert, Achim

    2014-05-01

    We report the formation and phase transformation of Bi-containing clusters in \\text{GaA}{{\\text{s}}_{1-x}} Bi_{x} epilayers upon annealing. The \\text{GaA}{{\\text{s}}_{1-x}} Bi_{x} layers were grown by molecular beam epitaxy under low (220 ^{{}^\\circ }\\text{C}) and high (315 ^{{}^\\circ }\\text{C}) temperatures and subsequently annealed using different temperatures and annealing times. Bi-containing clusters were identified only in the annealed samples that were grown at low temperature, revealing a relatively homogeneous size distribution. Depending on the annealing temperature and duration, the clusters show different sizes ranging from 5 to 20 nm, as well as different crystallographic phase, being coherently strained zincblende \\text{GaA}{{\\text{s}}_{1-x}} Bi_{x} (zb Bi-rich Ga(As, Bi)) clusters or rhombohedral pure Bi (rh-Bi) clusters. We found that: (1) the formation of the zb Bi-rich Ga(As, Bi) clusters is driven by the intrinsic tendency of the alloy to phase separately and is mediated by the native point defects present in the low temperature grown epilayers; (2) the phase transformation from zb Bi-rich Ga(As, Bi) to rh-Bi nucleates in zincblende {111} planes and grows until total consumption of Bi in the GaAs matrix. We propose a model accounting for the formation and phase transformation of Bi-containing clusters in this system. Furthermore, our study reveals the possibility to realize self-organized zb Bi-rich Ga(As, Bi) clusters that can exhibit QD-like features.

  7. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO{sub 3} thin film

    SciTech Connect

    Gupta, Surbhi; Gupta, Vinay; Tomar, Monika; James, A. R.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar

    2014-06-21

    Multiferroic Bismuth Ferrite (BiFeO{sub 3}) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO{sub 3} thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO{sub 3} and Fe{sub 2}O{sub 3} to pure BiFeO{sub 3} phase and, subsequently, to a mixture of BiFeO{sub 3} and Bi{sub 2}O{sub 3} with increase in the concentration of excess Bi from 0% to 15%. BiFeO{sub 3} thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe{sub 2}O{sub 3}). Deterioration in ferroic properties of BiFeO{sub 3} thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO{sub 3} thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm{sup 2} and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO{sub 3} thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO{sub 3} thin films exhibiting the improved multiferroic properties.

  8. Construction of flexible photoelectrochemical solar cells based on ordered nanostructural BiOI/Bi2S3 heterojunction films.

    PubMed

    Fang, Mingqing; Jia, Huimin; He, Weiwei; Lei, Yan; Zhang, Lizhi; Zheng, Zhi

    2015-05-28

    Ordered 2D nanostructural BiOI nanoflake arrays decorated with Bi2S3 nanospheres have been designed and in situ fabricated for the first time, to form BiOI/Bi2S3 bulk heterojunctions through a soft chemical route. A modified successive ionic layer adsorption and reaction (SILAR) method was developed to fabricate BiOI nanoflake arrays on flexible ITO/PET substrates at room temperature. The degree of transformation of BiOI to Bi2S3 was controlled through the adjustment of exposure time of the BiOI/ITO substrate to thioacetamide (TAA) aqueous solution. The morphologies of BiOI, BiOI/Bi2S3 heterojunctions and Bi2S3 films were examined by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) patterns, and high resolution transmission electron microscopy (HRTEM). The presence of Bi2S3 was further validated through Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Especially, photoelectrochemical measurements demonstrated that such a Bi2S3 decorated BiOI photoanode based cell exhibits significant augments of short-circuit current density (Jsc) and incident photon-to-current conversion efficiency (IPCE, 3 times higher than the pure BiOI photoanode), attributable to the stronger photo-absorption and better photogenerated charge carrier separation and transport efficiency. The surface photovoltage (SPV) measurements further confirmed the importance of BiOI/Bi2S3 heterojunctions in such PEC cells. This solution-based process directly on flexible ITO offers the promise for low-cost, large-area, roll-to-roll application of the manufacturing of the third generation thin-film photovoltaic devices. PMID:25941684

  9. Magnetism of MnBi-Based Nanomaterials

    SciTech Connect

    Kharel, P; Shah, VR; Skomski, R; Shield, JE; Sellmyer, DJ

    2013-07-01

    Nanostructured MnBi ribbons doped with impurity elements including B, C, Fe, Hf, Sm and Tb were prepared using the arc melting and melt-spinning techniques. The melt-spun ribbons were annealed in vacuum furnace at 350 degrees C to obtain the intended hexagonal structure. The external impurity doping made a significant change in the magnetic properties of the nanostructured MnBi ribbons including a decrease in saturation magnetization (M-s) and anisotropy energy (K) and an increase in coercivity H-c. However, Hf and C co-doping showed the opposite effect with a small increase in both M-s and K. Interestingly, the anisotropy energy of the boron doped sample increased by about 15% irrespective of the small decrease in magnetization. A significant increase in H-c of MnBi ribbons was found due to Hf, Tb and Sm doping. H-c as high as 13 kOe was achieved in Hf-doped sample after the sample was aligned in a magnetic field. A thermal hysteresis was observed at the structural phase transition of MnBi, which shifts by about 5 K towards higher temperatures due to impurity doping. The observed magnetic properties of the impurity doped MnBi ribbons are explained as the consequences of the disorder and the competing ferromagnetic and antiferromagnetic interactions.

  10. Ultrathin InAs nanowire growth by spontaneous Au nanoparticle spreading on indium-rich surfaces

    NASA Astrophysics Data System (ADS)

    Jung, Kyooho; Mohseni, Parsian K.; Li, Xiuling

    2014-11-01

    Ultrathin InAs nanowires (NWs) can enable true one-dimensional electronics. We report a growth phenomenon where a bimodal size distribution (~α nm and ~5 nm in diameter) of InAs NWs can be achieved from gold (Au) nanoparticles of a single size, α (α = 50-250 nm). We determine that ultrathin InAs NW growth is seeded by ultra-small Au nanoparticles shed from the large Au seeds upon indium (In) introduction into the growth system and formed prior to the supersaturation of In in Au. The Au spreading phenomenon is explained by the balancing of Gibbs free energy lowering from In-Au mixing and the surface tension increase. Ultrathin InAs NWs formed in this way exhibit a perfect wurtzite structure with no stacking faults. We have observed InAs NWs with diameters down to ~2 nm using our growth method. Passivating the ultrathin InAs NWs with an AlAs shell, subsequently oxidized in air, results in physical deformation of the InAs core, demonstrating the mechanical pliability of these ultrathin NWs.Ultrathin InAs nanowires (NWs) can enable true one-dimensional electronics. We report a growth phenomenon where a bimodal size distribution (~α nm and ~5 nm in diameter) of InAs NWs can be achieved from gold (Au) nanoparticles of a single size, α (α = 50-250 nm). We determine that ultrathin InAs NW growth is seeded by ultra-small Au nanoparticles shed from the large Au seeds upon indium (In) introduction into the growth system and formed prior to the supersaturation of In in Au. The Au spreading phenomenon is explained by the balancing of Gibbs free energy lowering from In-Au mixing and the surface tension increase. Ultrathin InAs NWs formed in this way exhibit a perfect wurtzite structure with no stacking faults. We have observed InAs NWs with diameters down to ~2 nm using our growth method. Passivating the ultrathin InAs NWs with an AlAs shell, subsequently oxidized in air, results in physical deformation of the InAs core, demonstrating the mechanical pliability of these

  11. Au, Ge and AuGe Nanoparticles Fabricated by Laser Ablation

    SciTech Connect

    Musaev, O.R.; Sutter, E.; Wrobel, J.M.; Kruger, M.B.

    2012-02-01

    A eutectic AuGe target immersed in distilled water was ablated by pulsed ultraviolet laser light. The structure of the ablated material was investigated by high-resolution transmission electron microscopy (HRTEM). The images show formation of nanowire structures of AuGe up to 100 nm in length, with widths of 5-10 nm. These nanostructures have Ge content significantly lower than the target material. Electron diffraction demonstrates that they crystallize in the {alpha}-AuGe structure. For comparison, laser ablation of pure Au and pure Ge targets was also performed under the same conditions. HRTEM shows that Ge forms spherical nanoparticles with a characteristic size of {approx}30 nm. Au forms spherical nanoparticles with diameters of {approx}10 nm. Similar to AuGe, it also forms chainlike structures with substantially lower aspect ratio.

  12. Ir-induced activation of Au towards CO adsorption: Ir films deposited on Au{111}

    NASA Astrophysics Data System (ADS)

    Zhang, Tianfu; Driver, Stephen M.; Pratt, Stephanie J.; Jenkins, Stephen J.; King, David A.

    2016-06-01

    We have investigated the interaction of CO with Ir/Au{111} bimetallic surfaces, and the influence of morphology changes as Ir moves sub-surface into the Au bulk, using reflection-absorption infrared spectroscopy (RAIRS). The presence of Ir stabilises CO on exposed regions of the Au surface at temperatures up to around 200 K: we attribute this to low-coordinated Au sites, probably associated with lifting of the clean-surface 'herringbone' reconstruction by Ir deposition. The highest density of active Au sites is obtained after annealing the bimetallic surface to 500-600 K: we attribute this to morphology changes associated with the movement of Ir into bulk Au.

  13. Charged hadron transverse momentum distributions in Au+Au collisions at S=200 GeV

    NASA Astrophysics Data System (ADS)

    Roland, Christof; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The evolution of the spectra for transverse momenta p_T from 0.25 to 5GeV/c is studied as a function of collision centrality over a range from 65 to 344 participating nucleons. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at the highest p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  14. The study on the extraction and recovery of Au from scrap of the used computer using chloride solvent

    NASA Astrophysics Data System (ADS)

    Oh, Su-ji; Choi, Eunju; Choi, Nagchoul; Park, Cheonyoung

    2013-04-01

    Recently, due to the realization of environmental problems of cyanide, it is a worldwide quest to find viable alternatives. One of the alternatives is a chloride solvent(chlorine-hypochlorite acid) with an appropriate oxidizing agent. The rate of dissolution of Au by chloride solvent is much faster than that by cyanide. Also, due to presence of chloride ions, there is no passivation of gold surfaces during chlorination. The objective of this work was to investigate the effect of Au extraction efficiency under various experimental conditions(pulp density, chlorine-hypochlorite ratio and concentration of NaCl) from scrap of the used computer by chloride solvent. In addition, the recovery experiment was conducted to examine of the precipitation efficiency of Au under various metabisulfite concentration from extracted solution. In an EDS analysis, valuable metals such as Cu, Sn, Sb, Al, Ni, Pb and Au were observed in scrap of the used computer. The result of extraction experiment showed that the highest extraction rate was obtained under 1% of pulp density with a chlorine-hypochlorite ratio of 2:1, and a concentration of NaCl at 2M. The highest Au recovery(precipitation) rate was observed the addition of sodium metabisulfite at 2M concentration. Under these conditions, chlorine-hypochlorite could effectively Au extraction from scrap of the used computer sections and the additive reagent using sodium metabisulfite could easily precipitate the Au from the chlorine-hypochlorite solution.

  15. Composition and source of salinity of ore-bearing fluids in Cu-Au systems of the Carajás Mineral Province, Brazil

    USGS Publications Warehouse

    Xavier, Roberto; Rusk, Brian; Emsbo, Poul; Monteiro, Lena

    2009-01-01

    The composition and Cl/Br – NaCl ratios of highly saline aqueous inclusions from large tonnage (> 100 t) IOCG deposits (Sossego, Alvo 118, and Igarapé Bahia) and a Paleoproterozoic intrusion-related Cu-Au-(Mo-W-Bi-Sn) deposit (Breves; < 50 Mt)) in the Carajás Mineral Province have been analysed by LA-ICP-MS and ion chromatography. In both Cu-Au systems, brine inclusions are Ca-dominated (5 to 10 times more than in porphyry Cu-Au fluids), and contain percent level concentrations of Na and K. IOCG inclusion fluids, however, contain higher Sr, Ba, Pb, and Zn concentrations, but significantly less Bi, than the intrusion-related Breves inclusion fluids. Cu is consistently below detection limits in brine inclusions from the IOCG and intrusion-related systems and Fe was not detected in the latter. Cl/Br and Na/Cl ratios of the IOCG inclusion fluids range from entirely evaporative brines (bittern fluids; e.g. Igarapé Bahia and Alvo 118) to values that indicate mixing with magma-derived brines. Cl/Br and Na/Cl ratios of the Breves inclusion fluids strongly suggest the involvement of magmatic brines, but that possibly also incorporated bittern fluids. Collectively, these data demonstrate that residual evaporative and magmatic brines were important components of the fluid regime involved in the formation of Cu-Au systems in the Carajás Mineral Province.

  16. RHIC Au beam in Run 2014

    SciTech Connect

    Zhang, S. Y.

    2014-09-15

    Au beam at the RHIC ramp in run 2014 is reviewed together with the run 2011 and run 2012. Observed bunch length and longitudinal emittance are compared with the IBS simulations. The IBS growth rate of the longitudinal emittance in run 2014 is similar to run 2011, and both are larger than run 2012. This is explained by the large transverse emittance at high intensity observed in run 2012, but not in run 2014. The big improvement of the AGS ramping in run 2014 might be related to this change. The importance of the injector intensity improvement in run 2014 is emphasized, which gives rise to the initial luminosity improvement of 50% in run 2014, compared with the previous Au-Au run 2011. In addition, a modified IBS model, which is calibrated using the RHIC Au runs from 9.8 GeV/n to 100 GeV/n, is presented and used in the study.

  17. HuDo 1 and HuBi 1: two planetary nebulae ionized by cool [WC] central stars

    NASA Astrophysics Data System (ADS)

    Peña, M.

    2005-10-01

    As part of our spectroscopic survey of planetary nebulae with [WC] nuclei (Peña et al. 2001), low- and high-resolution spectra of the planetary nebulae HuDo 1 (PNG 060.4+01.5, PM1-310) and HuBi 1 (PNG 012.2+04.9, PM1-188) were secured and analyzed. Both objects are ionized by very late [WC] central stars. We found that the objects belong to the galactic disk, with heliocentric radial velocities of -12 km s-1 (HuDo 1) and 57 km s-1 (HuBi1). Both objects are heavily extinguished showing a logarithmic reddening, c(Hβ), of 2.04 for HuDo 1 and 1.22 for HuBi 1. Our data cover a wide wavelength range; therefore we obtained several plasma line ratios to estimate physical conditions and abundances. The derived electron temperature and density for HuBi 1 are 9,400±1,500 K and 800 cm-3. This density is very low for a nebula around a [WC]-late star. HuDo 1 has Ne = 3300 cm-3. We find log(O/H)+12 = 8.43 and 8.57, and N/O = 0.2 and 0.1 for HuDo 1 and HuBi 1 respectively, typical of disk PNe. Intense nebular He I recombination lines are detected for HuBi 1, this being the only PN excited by a very late [WC] star showing such an emission. The He+ abundance derived for HuBi 1 is 0.11, which is indicating a large He enhancement in HuBi 1. >From the analysis of the stellar emission lines a [WC 10] spectral type is derived for both stars. This is consistent with a stellar temperature of about 30,000 K, although the HuBi 1 central star should be slightly hotter for providing the large amount of He0 ionizing photons required to explain the nebular He I lines. Nebular and stellar parameters of HuDo 1 and HuBi 1 can be compared with those of other [WC 10] objects, such as M 4-18, He 2-113 and CPD-5608031. >From this, we can conclude that, in spite of the fact that all the objects have the same spectral type, the central stars of HuDo 1 and HuBi 1 should be intrinsically fainter, and consequently of lower mass. This is an additional evidence showing that stars of different masses can go

  18. Absence of low-temperature dependence of the decay of {sup 7}Be and {sup 198}Au in metallic hosts

    SciTech Connect

    Kumar, V.; Hass, M.; Nir-El, Y.; Haquin, G.; Yungreiss, Z.

    2008-05-15

    The electron-capture (EC) decay rate of {sup 7}Be in metallic Cu host and the {beta}{sup -}-decay rate of {sup 198}Au in the host alloy Al-Au have been measured simultaneously at several temperatures, ranging from 0.350 K to 293 K. No difference of the half-life of {sup 198}Au between 12.5 K and 293 K is observed to a precision of 0.1%. By utilizing the special characteristics of our double-source assembly, possible geometrical effects that influence the individual rates could be eliminated. The ratio of {sup 7}Be to {sup 198}Au activity thus obtained also remains constant for this temperatures range to the experimental precision of 0.15{+-}0.16%. The resulting null temperature dependence is discussed in terms of the inadequacy of the often-used Debye-Hueckel model for such measurements.

  19. Polycrystalline BiFeO3 thin film synthesized via sol-gel assisted spin coating technique for photosensitive application

    NASA Astrophysics Data System (ADS)

    Bogle, K. A.; Narwade, R. D.; Phatangare, A. B.; Dahiwale, S. S.; Mahabole, M. P.; Khairnar, R. S.

    2016-05-01

    We are reporting photosensitivity property of BiFeO3 thin film under optical illumination. The thin film used for photosensitivity work was fabricated via sol-gel assisted spin coating technique. I-V measurements on the Cu/BiFeO3/Al structure under dark condition show a good rectifying property and show dramatic blue shit in threshold voltage under optical illumination. The microstructure, morphology and elemental analysis of the films were characterized by using XRD, UV-Vis, FTIR, SEM and EDS.

  20. Counterion-Mediated Assembly of Spherical Nucleic Acid-Au Nanoparticle Conjugates (SNA-AuNPs)

    NASA Astrophysics Data System (ADS)

    Kewalramani, Sumit; Moreau, Liane; Guerrero-García, Guillermo; Mirkin, Chad; Olvera de La Cruz, Monica; Bedzyk, Michael; Afosr Muri Team

    2015-03-01

    Controlled crystallization of colloids from solution has been a goal of material scientists for decades. Recently, nucleic acid functionalized spherical Au nanoparticles (SNA-AuNPs) have been programmed to assemble in a wide variety of crystal structures. In this approach, the assembly is driven by Watson-Crick hybridization between DNAs coating the AuNPs. Here, we show that counterions can induce ordered assembly of SNA-AuNPs in bulk solutions, even in the absence of base pairing interactions. The electrostatics-driven assembly of spherical nucleic acid-Au nanoparticle conjugates (SNA-AuNPs) is probed as a function of counterion concentration and counterion valency [ +1 (Na+) or +2 (Ca2+) ] by in situ solution X-ray scattering. Assemblies of AuNPs capped with single-stranded (ss-) or double-stranded (ds-) DNA are examined. SAXS reveals disordered (gas-like) --> face-centered-cubic (FCC) --> glass-like phase transitions with increasing solution ionic strength. These studies demonstrate how non-base-pairing interactions can be tuned to create crystalline assemblies of SNA-AuNPs. The dependence of the inter-SNA-AuNP interactions on counterion valency and stiffness of the DNA corona will be discussed.