Science.gov

Sample records for al au cu

  1. Phase formation in Au-Al and Cu-Al thin-film systems under ion beam bombardment

    SciTech Connect

    Chang, C.T.; Campisano, S.U.; Cannavo, S.; Rimini, E.

    1984-05-01

    Au-Al and Cu-Al thin film bilayers were bombarded at 80 K with Kr/sup +/ ions of 60--240 keV energy. The Au/sub 2/Al+AuAl/sub 2/ and Al/sub 4/Cu/sub 9/ phases formed during bombardment and they were investigated by backscattering and x-ray diffraction techniques. In all the cases the growth kinetics is linear with the parameter (fluence x interfacial deposited energy density)/sup 1//sup ///sup 2/ suggesting a correlation with a diffusion-like process. Comparison with calculations of diffusion enhanced within the collision cascade gives good agreement with the experimental results.

  2. Bulk Properties of Ni3Al(gamma') With Cu and Au Additions

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1995-01-01

    The BFS method for alloys is applied to the study of 200 alloys obtained from adding Cu and Au impurities to a Ni3Al matrix. We analyze the trends in the bulk properties of these alloys (heat of formation, lattice parameter, and bulk modulus) and detect specific alloy compositions for which these quantities have particular values. A detailed analysis of the atomic interactions that lead to the preferred ordering patterns is presented.

  3. Comparison of laser ablation and sputter desorption of clusters from Au7Cu5Al4

    NASA Astrophysics Data System (ADS)

    King, B. V.; Moore, J. F.; Cui, Y.; Veryovkin, I. V.; Tripa, C. E.

    2014-12-01

    Ionized and neutral clusters were desorbed from spangold, a polycrystalline ternary alloy with composition Au7Cu5Al4, using both a femtosecond laser beam and an energetic ion beam and the resulting time of flight mass spectra compared. Neutral clusters containing up to 7 atoms were ejected by the 15 keV Ar+ beam whereas only smaller positively and negatively charged clusters were observed from the laser ablated spangold surface. Laser ionization mass spectrometry (LIMS) positive ion spectra were dominated by Al containing cluster ions whereas Au containing ions dominated the negative LIMS spectrum. An odd-even variation in LIMS cluster yield was observed, consistent with previous results and due to fragmentation of photoionized clusters. The laser sputtered neutral mass spectrometry (laser SNMS) spectrum showed that larger desorbed clusters were gold rich. The cluster signals also followed a power law dependence with cluster size with the exponent value of 6-7.6 for sputtered mixed clusters being greater than that found from sputtering of pure elements, similar to the result found previously in the Cu-Au system.

  4. Clathrates with Me = Mg, Pd, Ni, Au, Ag, Cu, Zn, Al, Sn

    NASA Astrophysics Data System (ADS)

    Wunderlich, Wilfried; Amano, Mao; Matsumura, Yoshihito

    2014-06-01

    Clathrate materials of AlSi, CuSi or NiSi type consisting of abundant elements have a realistic chance of becoming useful thermoelectrics in the near future, because the rattling effect due to their crystal cage structure provides a large figure of merit ZT even in experiments measured under large temperature gradients. In the search for better thermoelectrics, new element combinations in the clathrate type I structure with cubic space group Pm3n were calculated using VASP ab initio software. Predictions of the Seebeck coefficient were made by checking the electronic band structure and density of states for a large variety of input data. For x values around 4 to 6 in the structural formula Ba8Me x Si46- x the substituents Cu, Au, and Ag are best for good thermoelectric behavior, which is discussed in this paper as a result of the low electron-phonon interaction parameter.

  5. Wetting and spontaneous infiltration: the case study of TaC/(Au, Al and Cu) compared to TiC/Cu

    NASA Astrophysics Data System (ADS)

    Aizenshtein, M.; Froumin, N.; Nafman, O.; Frage, N.

    2016-06-01

    Spontaneous infiltration of molten metals in to ceramic skeletons, in the course MMCs' production, is related to improved wetting of the ceramic by metals. TiC is considered a "metal-like" carbide and is supposed to be wetted well by metals through metallic bonding mechanism. Nevertheless, TiC/Cu exhibit an unusual behavior since spontaneous infiltration of molten Cu takes place, while TiC is partially wetted by Cu (θ=90°).In this work we studied the relation between wetting and spontaneous infiltration in the TaC/Au, Al and Cu systems. TaC is also considered a "metal-like" carbide and indeed no chemical interaction was observed at the interfaces of the studied systems.Sessile drop experiments showed almost perfect wetting in the three system but spontaneous infiltration occurred only in the first two (e.g. TaC/Au or Al). Thermodynamic calculation shows the difference between the systems which also has its' influence on the mechanical properties of the MMCs'. Further calculation clarifies the difference between TaC/Cu and TiC/Cu infiltration behavior, but is unable to explain the wetting results differences.Correlation between wetting and spontaneous infiltration in some cases is not straight forward and more studies and calculations on the atomistic level should be done in order to clarify this matter.

  6. Composition-Structure-Property Relations in Au35-68Cu49-15Al16-17 Shape Memory Thin Films

    NASA Astrophysics Data System (ADS)

    Buenconsejo, Pio John S.; Pfetzing-Micklich, Janine; Paulus, Michael; Sternemann, Christian; Ludwig, Alfred

    2016-03-01

    The phase transformation behaviour, structure and mechanical properties of Au35-68Cu49-15Al16-17 thin film shape memory alloys (SMA) have been investigated, with emphasis on the effects of Au content. The results revealed the underlying composition-structure-property relations. The thermal transformation hysteresis (Δ T) is wide (~55 K) for thin films with Au <50 at.%, while it is narrow (~15 K) for thin films with Au >50 at.%. This behaviour is correlated with the change in lattice constant of β-(Au-Cu-Al) (a β ), suggesting a structural origin on the Δ T behaviour. The mechanical properties, such as hardness and elastic modulus, varied in the range of 2-4 and 70-120 GPa, respectively. The optimum Au composition range for tuning the functional property is between 43 and 55 at.% Au, where the least amount of non-transforming phases form and Δ T can be tailored between 55 K (43 at.% Au) and 17 K (55 at.% Au). This is important for the development and practical application of Au-Cu-Al based thin film SMA.

  7. Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Mosca, Hugo O.

    2004-01-01

    Atomistic modeling of the site substitution behavior of Pd in NiTi (J. Alloys and Comp. (2004), in press) has been extended to examine the behavior of several other alloying additions, namely, Fe, Pt, Au, Al, Cu, Zr and Hf in this important shape memory alloy. It was found that all elements, to a varying degree, displayed absolute preference for available sites in the deficient sublattice. How- ever, the energetics of the different substitutional schemes, coupled with large scale simulations indicate that the general trend in all cases is for the ternary addition to want to form stronger ordered structures with Ti.

  8. Thermodynamic properties and equations of state for Ag, Al, Au, Cu and MgO using a lattice vibrational method

    NASA Astrophysics Data System (ADS)

    Jacobs, M.; Schmid-Fetzer, R.

    2012-04-01

    A prerequisite for the determination of pressure in static high pressure measurements, such as in diamond anvil cells is the availability of accurate equations of state for reference materials. These materials serve as luminescence gauges or as X-ray gauges and equations of state for these materials serve as secondary pressure scales. Recently, successful progress has been made in the development of consistency between static, dynamic shock-wave and ultrasonic measurements of equations of state (e.g. Dewaele et al. Phys. Rev. B70, 094112, 2004, Dorogokupets and Oganov, Doklady Earth Sciences, 410, 1091-1095, 2006, Holzapfel, High Pressure Research 30, 372-394, 2010) allowing testing models to arrive at consistent thermodynamic descriptions for X-ray gauges. Apart from applications of metallic elements in high-pressure work, thermodynamic properties of metallic elements are also of mandatory interest in the field of metallurgy for studying phase equilibria of alloys, kinetics of phase transformation and diffusion related problems, requiring accurate thermodynamic properties in the low pressure regime. Our aim is to develop a thermodynamic data base for metallic alloy systems containing Ag, Al, Au, Cu, Fe, Ni, Pt, from which volume properties in P-T space can be predicted when it is coupled to vibrational models. This mandates the description of metallic elements as a first step aiming not only at consistency in the pressure scales for the elements, but also at accurate representations of thermodynamic properties in the low pressure regime commonly addressed in metallurgical applications. In previous works (e.g. Jacobs and de Jong, Geochim. Cosmochim. Acta, 71, 3630-3655, 2007, Jacobs and van den Berg, Phys. Earth Planet. Inter., 186, 36-48, 2011) it was demonstrated that a lattice vibrational framework based on Kieffer's model for the vibrational density of states, is suitable to construct a thermodynamic database for Earth mantle materials. Such a database aims at

  9. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al{sub 2}O{sub 3}(0001) substrates

    SciTech Connect

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-05-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al{sub 2}O{sub 3}(0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively.

  10. Al15Ge4Ni3: A new intergrowth structure with Cu3Au- and CaF2-type building blocks

    NASA Astrophysics Data System (ADS)

    Reichmann, Thomas L.; Jandl, Isabella; Effenberger, Herta S.; Herzig, Peter; Richter, Klaus W.

    2015-05-01

    The new ternary compound Al15Ge4Ni3 (τ2 in the system Al-Ge-Ni) was synthesized in single crystalline form by a special annealing procedure from samples located in the three phase fields [L+Al+τ2] and [L+Ge+τ2]. The crystal structure of Al15Ge4Ni3 was determined by single-crystal X-ray diffraction. The compound crystallizes in a new structure type in space group I4¯3m, Pearson Symbol cI88, cubic lattice parameter a=11.405(1) Å. Phase diagram investigations indicate stoichiometric composition without considerable homogeneity range; τ2 melts peritectically at T=444 °C. The crystal structure of Al15Ge4Ni3 shows a unique combination of simple Cu3Au- and CaF2-type building blocks: a three dimensional network of CaF2-type units, formed by Ni and Al atoms, is interspaced by clusters (Al6Ge8) resembling unit cells of the Cu3Au-type. Both structural motifs are connected by Al-Ge bonds. The ground state energy of the compound was obtained by DFT calculations and the densities of states were analyzed in detail. In addition, electron density maps were calculated in four different sections through the unit cell using the full potential linearized augmented plane-wave (FLAPW) method. The bonding situation in Al15Ge4Ni3 was discussed combining results from electronic calculations with the analysis of the coordination of atoms.

  11. Study of the A(e,e'$\\pi^+$) Reaction on $^1$H, $^2$H, $^{12}$C, $^{27}$Al, $^{63}$Cu and $^{197}$Au

    SciTech Connect

    Qian, X; Clasie, B; Arrington, J; Asaturyan, R; Benmokhtar, F; Boeglin, W; Bosted, P; Bruell, A; Christy, M E; Chudakov, E; Dalton, M M; Daniel, A; Day, D; Dutta, D; El Fassi, L; Ent, R; Fenker, H C; Ferrer, J; Fomin, N; Gao, H; Garrow, K; Gaskell, D; Gray, C; Huber, G M; Jones, M K; Kalantarians, N; Keppel, C E; Kramer, K; Li, Y; Liang, Y; Lung, A F; Malace, S; Markowitz, P; Matsumura, A; Meekins, D G; Mertens, T; Miyoshi, T; Mkrtchyan, H; Monson, R; Navasardyan, T; Niculescu, G; Niculescu, I; Okayasu, Y; Opper, A K; Perdrisat, C; Punjabi, V; Rauf, A W; Rodriquez, V M; Rohe, D; Seely, J; Segbefia, E; Smith, G R; Sumihama, M; Tadevosyan, V; Tang, L; Villano, A; Vulcan, W F; Wesselmann, F R; Wood, S A; Yuan, L; Zheng, X

    2010-05-01

    Cross sections for the p($e,e'\\pi^{+}$)n process on $^1$H, $^2$H, $^{12}$C, $^{27}$Al, $^{63}$Cu and $^{197}$Au targets were measured at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) in order to extract the nuclear transparencies. Data were taken for four-momentum transfers ranging from $Q^2$=1.1 to 4.8 GeV$^2$ for a fixed center of mass energy of $W$=2.14 GeV. The ratio of $\\sigma_L$ and $\\sigma_T$ was extracted from the measured cross sections for $^1$H, $^2$H, $^{12}$C and $^{63}$Cu targets at $Q^2$ = 2.15 and 4.0 GeV$^2$ allowing for additional studies of the reaction mechanism. The experimental setup and the analysis of the data are described in detail including systematic studies needed to obtain the results. The results for the nuclear transparency and the differential cross sections as a function of the pion momentum at the different values of $Q^2$ are presented. Global features of the data are discussed and the data are compared with the results of model calculations for the p($e,e'\\pi^{+}$)n reaction from nuclear targets.

  12. Al{sub 15}Ge{sub 4}Ni{sub 3}: A new intergrowth structure with Cu{sub 3}Au- and CaF{sub 2}-type building blocks

    SciTech Connect

    Reichmann, Thomas L.; Jandl, Isabella; Effenberger, Herta S.; Herzig, Peter; Richter, Klaus W.

    2015-05-15

    The new ternary compound Al{sub 15}Ge{sub 4}Ni{sub 3} (τ{sub 2} in the system Al–Ge–Ni) was synthesized in single crystalline form by a special annealing procedure from samples located in the three phase fields [L+Al+τ{sub 2}] and [L+Ge+τ{sub 2}]. The crystal structure of Al{sub 15}Ge{sub 4}Ni{sub 3} was determined by single-crystal X-ray diffraction. The compound crystallizes in a new structure type in space group I4-bar3m, Pearson Symbol cI88, cubic lattice parameter a=11.405(1) Å. Phase diagram investigations indicate stoichiometric composition without considerable homogeneity range; τ{sub 2} melts peritectically at T=444 °C. The crystal structure of Al{sub 15}Ge{sub 4}Ni{sub 3} shows a unique combination of simple Cu{sub 3}Au- and CaF{sub 2}-type building blocks: a three dimensional network of CaF{sub 2}-type units, formed by Ni and Al atoms, is interspaced by clusters (Al{sub 6}Ge{sub 8}) resembling unit cells of the Cu{sub 3}Au-type. Both structural motifs are connected by Al–Ge bonds. The ground state energy of the compound was obtained by DFT calculations and the densities of states were analyzed in detail. In addition, electron density maps were calculated in four different sections through the unit cell using the full potential linearized augmented plane-wave (FLAPW) method. The bonding situation in Al{sub 15}Ge{sub 4}Ni{sub 3} was discussed combining results from electronic calculations with the analysis of the coordination of atoms. - Graphical abstract: The new compound Al{sub 15}Ge{sub 4}Ni{sub 3} shows a unique combination of simple Cu{sub 3}Au- and CaF{sub 2}-type building blocks. - Highlights: • The crystal structure of Al{sub 15}Ge{sub 4}Ni{sub 3} (space group I4-bar3m) was determined. • It shows a unique combination of CaF{sub 2}- and Cu{sub 3}Au-type building blocks. • Electronic (DFT) calculations were performed to gain insight to chemical bonding.

  13. Computational materials design of attractive Fermion system with large negative effective Ueff in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2: Charge-excitation induced Ueff < 0

    NASA Astrophysics Data System (ADS)

    Nakanishi, A.; Fukushima, T.; Uede, H.; Katayama-Yoshida, H.

    2015-12-01

    On the basis of general design rules for negative effective U(Ueff) systems by controlling purely-electronic and attractive Fermion mechanisms, we perform computational materials design (CMD®) for the negative Ueff system in hole-doped two-dimensional (2D) Delafossite CuAlO2, AgAlO2 and AuAlO2 by ab initio calculations with local density approximation (LDA) and self-interaction corrected-LDA (SIC-LDA). It is found that the large negative Ueff in the hole-doped attractive Fermion systems for CuAlO2 (UeffLDA = - 4.53 eV and UeffSIC-LDA = - 4.20 eV), AgAlO2 (UeffLDA = - 4.88 eV and UeffSIC-LDA = - 4.55 eV) and AuAlO2 (UeffLDA = - 4.14 eV and UeffSIC-LDA = - 3.55 eV). These values are 10 times larger than that in hole-doped three-dimensional (3D) CuFeS2 (Ueff = - 0.44 eV). For future calculations of Tc and phase diagram by quantum Monte Carlo simulations, we propose the negative Ueff Hubbard model with the anti-bonding single π-band model for CuAlO2, AgAlO2 and AuAlO2 using the mapped parameters obtained from ab initio electronic structure calculations. Based on the theory of negative Ueff Hubbard model (Noziéres and Schmitt-Rink, 1985), we discuss |Ueff| dependence of superconducting critical temperature (Tc) in the 2D Delafossite of CuAlO2, AgAlO2 and AuAlO2 and 3D Chalcopyrite of CuFeS2, which shows the interesting chemical trend, i.e., Tc increases exponentially (Tc ∝ exp [ - 1 / | Ueff | ]) in the weak coupling regime | Ueff(- 0.44 eV) | < W(∼ 2 eV) (where W is the band width of the negative Ueff Hubbard model) for the hole-doped CuFeS2, and then Tc goes through a maximum when | Ueff(- 4.88 eV , - 4.14 eV) | ∼ W(2.8 eV , 3.5 eV) for the hole-doped AgAlO2 and AuAlO2, and finally Tc decreases with increasing |Ueff| in the strong coupling regime, where | Ueff(- 4.53 eV) | > W(1.7 eV) , for the hole-doped CuAlO2.

  14. DFT study of Hg adsorption on M-substituted Pd(1 1 1) and PdM/γ-Al2O3(1 1 0) (M = Au, Ag, Cu) surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Jiancheng; Yu, Huafeng; Geng, Lu; Liu, Jianwen; Han, Lina; Chang, Liping; Feng, Gang; Ling, Lixia

    2015-11-01

    The adsorption of Hgn (n = 1-3) on the Au-, Ag-, Cu-substituted Pd(1 1 1) surfaces as well as the PdM/γ-Al2O3(1 1 0) (M = Au, Ag, Cu) surfaces has been investigated using spin-polarized density functional theory calculations. It is found that M-substituted Pd(1 1 1) surfaces show as good Hg adsorption capacity as the perfect Pd(1 1 1) at low Hg coverage, while the Hg adsorption capacity is only slightly weakened at high Hg coverage. On the basis of stepwise adsorption energies analysis, it is concluded that M-substituted Pd(1 1 1) surfaces can contribute to the binding of Hg atom on the surfaces at high Hg coverage. The electronic properties of the second metal atoms are the main factor contributes to the Hg adsorption capacity. Gas phase Pd2 shows better Hg adsorption capacity than Pd2/γ-Al2O3, while PdM/γ-Al2O3 can adsorb Hg more efficiently than bare PdM clusters. It suggests that the γ-Al2O3 support can enhance the activity of PdM for Hg adsorption and reduces the activity of Pd2. It is also found that Pd is the main active composition responsible for the interaction of mercury with the surface for PdM/γ-Al2O3 sorbent. Taking Hg adsorption capacity and economic costs into account, Cu addition is a comparatively good candidate for Hg capture.

  15. Several Microstrip-Based Conductor/Thin Film Ferroelectric Phase Shifter Designs Using (YBa2Cu3O(7 - Delta), Au)/SrTiO3/LaAlO3 Structures

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Romanofsky, R. R.; Miranda, F. A.

    1998-01-01

    We have designed, fabricated, and tested several novel microstrip-base YBa2Cu3O7-delta/SrTiO3/LaAlO3 (YBCO/STO/LAO) and Au/SrTiO3ALO3 (Au/STO/LAO) phase shifters. The first design consists of eight coupled microstrip phase shifters (CMPS) in series. This design using YBCO achieved a relative insertion phase shift (Delta f) of 484 degrees with a figure of merit of 80 degrees/dB at Vdc = 375 V, 16 GHz, and 40 K. A Delta f of 290 degrees was observed while maintaining the insertion loss below 4.5 dB. At 77 K, a Delta of 420 degrees was obtained for this phase shifter at the same bias and frequency. Both results correspond to an effective coupling length of 0.33 cm. A second compact design, consisting of an Au meander line and a CMPS section was also tested. Of the two samples tested, the best showed a figure of merit of 43 degrees/dB with Delta f = 290 degrees and 6.8 dB loss, at 40 K, 10 GHz and 400 V. Experimental and modeling results on these circuits will be discussed in the context of potential applications.

  16. Formation of Cu x Au1- x phases by cold homogenization of Au/Cu nanocrystalline thin films.

    PubMed

    Tynkova, Alona; Katona, Gabor L; Langer, Gabor A; Sidorenko, Sergey I; Voloshko, Svetlana M; Beke, Dezso L

    2014-01-01

    It is shown, by using depth profiling with a secondary neutral mass spectrometer and structure investigations by XRD and TEM, that at low temperatures, at which the bulk diffusion is frozen, a complete homogenization can take place in the Cu/Au thin film system, which leads to formation of intermetallic phases. Different compounds can be formed depending on the initial thickness ratio. The process starts with grain boundary interdiffusion, which is followed by a formation of reaction layers at the grain boundaries that leads to the motion of the newly formed interfaces perpendicular to the grain boundary plane. Finally, the homogenization finishes when all the pure components have been consumed. The process is asymmetric: It is faster in the Au layer. In Au(25nm)/Cu(50nm) samples the final state is the ordered AuCu3 phase. Decrease of the film thicknesses, as expected, results in the acceleration of the process. It is also illustrated that changing the thickness ratio either a mixture of Cu-rich AuCu and AuCu3 phases (in Au(25nm)/Cu(25nm) sample), or a mixture of disordered Cu- as well as Au-rich solid solutions (in Au(25nm)/Cu(12nm) sample) can be produced. By using a simple model the interface velocity in both the Cu and Au layers were estimated from the linear increase of the average composition and its value is about two orders of magnitude larger in Au (ca. 10(-11) m/s) than in Cu (ca. 10(-13) m/s). PMID:25247132

  17. Optical properties and electronic structures of d- and f-electron metals and alloys, Ag-In, Ni-Cu, AuGa sub 2 , PtGa sub 2 ,. beta. prime -NiAl,. beta. prime -CoAl, CeSn sub 3 , and LaSn sub 3

    SciTech Connect

    Kim, Kwang Joo.

    1990-10-17

    Optical properties and electronic structures of disordered Ag{sub 1- x}In{sub x}(x = 0.0, 0.04, 0.08, 0.12) and Ni{sub 1-x}Cu{sub x} (x = 0.0, 0.1, 0.3, 0.4) alloys and ordered AuGa{sub 2}, PtGa{sub 2}, {beta}{prime}-NiAl, {beta}{prime}-CoAl, CeSn{sub 3}, and LaSn{sub 3} have been studied. The complex dielectric functions have been determined for Ag{sub 1-x}In{sub x}, Ni{sub 1-x}Cu{sub x}, AuGa{sub 2}, and PtGa{sub 2} in the 1.2--5.5 eV region and for CeSn{sub 3} and LaSn{sub 3} in the 1.5--4.5 eV region using spectroscopic ellipsometry. Self-consistent relativistic band calculations using the linearized-augmented-plane-wave method have been performed for AuGa{sub 2}, PtGa{sub 2}, {beta}{prime}-NiAl, {beta}{prime}-CoAl, CeSn{sub 3}, and LaSn{sub 3} to interpret the experimental optical spectra.

  18. Melting curve of metals Cu, Ag and Au under pressure

    NASA Astrophysics Data System (ADS)

    Tam, Pham Dinh; Hoc, Nguyen Quang; Tinh, Bui Duc; Tan, Pham Duy

    2016-01-01

    In this paper, the dependence of the melting temperature of metals Cu, Ag and Au under pressure in the interval from 0 kbar to 40 kbar is studied by the statistical moment method (SMM). This dependence has the form of near linearity and the calculated slopes of melting curve are 3.9 for Cu, 5.7 for Ag and 6 for Au. These results are in good agreement with the experimental data.

  19. Coating of a layer of Au on Al13 : The findings of icosahedral Al@Al12Au20- and Al12Au202- fullerenes using ab initio pseudopotential calculations

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay

    2009-02-01

    We report results of ab initio pseudopotential calculations on the nanocoating of gold on an icosahedral Al13 cluster and the findings of icosahedrally symmetric endohedral Al@Al12Au20- and empty cage Al12Au202- compound fullerenes formed of metal atoms. Twelve Al atoms cap the pentagonal faces of a dodecahedral Au20 cage in which each Au atom has three Al atoms and three Au atoms as nearest neighbors. Mixing of Al13 and Au20 magic clusters leads to a large heat of formation of 0.55 eV/atom and high stability of the Al@Al12Au20 compound fullerene. The binding energies of Al12Au20 and Al@Al12Au20 are 3.017 and 3.007 eV/atom, respectively, which are much larger than 2.457 eV/atom for Au32 fullerene, leading to the possibility of their high abundance.

  20. Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures

    NASA Astrophysics Data System (ADS)

    Ozoliņš, V.; Wolverton, C.; Zunger, Alex

    1998-03-01

    The classic metallurgical systems-noble-metal alloys-that have formed the benchmark for various alloy theories are revisited. First-principles fully relaxed general-potential linearized augmented plane-wave (LAPW) total energies of a few ordered structures are used as input to a mixed-space cluster expansion calculation to study the phase stability, thermodynamic properties, and bond lengths in Cu-Au, Ag-Au, Cu-Ag, and Ni-Au alloys. (i) Our theoretical calculations correctly reproduce the tendencies of Ag-Au and Cu-Au to form compounds and Ni-Au and Cu-Ag to phase separate at T=0 K. (ii) Of all possible structures, Cu3Au (L12) and CuAu (L10) are found to be the most stable low-temperature phases of Cu1-xAux with transition temperatures of 530 K and 660 K, respectively, compared to the experimental values 663 K and ~670 K. The significant improvement over previous first-principles studies is attributed to the more accurate treatment of atomic relaxations in the present work. (iii) LAPW formation enthalpies demonstrate that L12, the commonly assumed stable phase of CuAu3, is not the ground state for Au-rich alloys, but rather that ordered (100) superlattices are stabilized. (iv) We extract the nonconfigurational (e.g., vibrational) entropies of formation and obtain large values for the size-mismatched systems: 0.48 kB/atom in Ni0.5Au0.5 (T=1100 K), 0.37 kB/atom in Cu0.141Ag0.859 (T=1052 K), and 0.16 kB/atom in Cu0.5Au0.5 (T=800 K). (v) Using 8 atom/cell special quasirandom structures we study the bond lengths in disordered Cu-Au and Ni-Au alloys and obtain good qualitative agreement with recent extended x-ray-absorption fine-structure measurements.

  1. Thermal stability of sputtered intermetallic Al-Au coatings

    SciTech Connect

    Moser, M.; Mayrhofer, P. H.; Ross, I. M.; Rainforth, W. M.

    2007-09-15

    Recently, the authors have shown that single-phase Al{sub 2}Au coatings, prepared by unbalanced magnetron sputtering, exhibit a dense columnar structure and highest hardness and indentation moduli of 8 and 144 GPa, respectively, within the Al-Au films investigated. This study focuses on the thermal stability of Al{sub 2}Au with respect to films containing more Al and Au having Al/Au at. % ratios of 4.32 and 1.85, respectively. Single-phase Al{sub 2}Au has the highest onset temperature for recovery of 475 deg. C and recrystallization of 575 deg. C. Upon annealing Au- and Al-rich films, their stresses deviate from the linear thermoelastic behavior at temperatures (T) above 200 and 450 deg. C, respectively, due to pores and metallic phases present. Metastable Au within the as-deposited Au-rich film is consumed by the growing intermetallic AlAu and AlAu{sub 2} phases at T{>=}450 deg. C, which themselves melt at {approx}625 deg. C. Due to nanometer scale segregations of Al, encapsulated by Al{sub 2}Au in Al-rich coatings, their melting point is reduced by {approx}85 deg. C to 575 deg. C. Dynamic thermal analyses up to 1100 deg. C in synthetic air reveal the single-phase Al{sub 2}Au films with a superior thermal stability and only negligible oxidation. At 750 deg. C, the mass gain is {approx}1.5 mg/cm{sup 2} after 50 h isothermal exposure. Based on the investigations, the authors can conclude that single-phase intermetallic Al{sub 2}Au films have a high potential for oxidation protection of sensitive materials.

  2. The giant Pebble Cu-Au-Mo deposit and surrounding region, southwest Alaska: introduction

    USGS Publications Warehouse

    Kelley, Karen D.; Lang, James R.; Eppinger, Robert G.

    2013-01-01

    The Pebble deposit is located about 320 km southwest of and 27 km northwest of the village of Iliamna in Alaska (Fig. 1A). It is one of the largest porphyry deposits in terms of contained Cu (Fig. 2A) and it has the largest Au endowment of any porphyry deposit in the world (Fig. 2B). The deposit comprises the Pebble West and Pebble East zones that represent two coeval hydrothermal centers within a single system (Lang et al., 2013). Together the measured and indicated resources total 5,942 million metric tons (Mt) at 0.42% Cu, 0.35 g/t Au, and 250 ppm Mo with an inferred resource of 4,835 Mt at 0.24% Cu, 0.26 g/t Au, and 215 ppm Mo. In addition, the deposit contains significant concentrations of Ag, Pd, and Re (Northern Dynasty Minerals, 2011).

  3. Experimental and Theoretical Studies on Oxidation of Cu-Au Alloy Surfaces: Effect of Bulk Au Concentration

    PubMed Central

    Okada, Michio; Tsuda, Yasutaka; Oka, Kohei; Kojima, Kazuki; Diño, Wilson Agerico; Yoshigoe, Akitaka; Kasai, Hideaki

    2016-01-01

    We report results of our experimental and theoretical studies on the oxidation of Cu-Au alloy surfaces, viz., Cu3Au(111), CuAu(111), and Au3Cu(111), using hyperthermal O2 molecular beam (HOMB). We observed strong Au segregation to the top layer of the corresponding clean (111) surfaces. This forms a protective layer that hinders further oxidation into the bulk. The higher the concentration of Au in the protective layer formed, the higher the protective efficacy. As a result, of the three Cu-Au surfaces studied, Au3Cu(111) is the most stable against dissociative adsorption of O2, even with HOMB. We also found that this protective property breaks down for oxidations occurring at temperatures above 300 K. PMID:27516137

  4. Experimental and Theoretical Studies on Oxidation of Cu-Au Alloy Surfaces: Effect of Bulk Au Concentration.

    PubMed

    Okada, Michio; Tsuda, Yasutaka; Oka, Kohei; Kojima, Kazuki; Diño, Wilson Agerico; Yoshigoe, Akitaka; Kasai, Hideaki

    2016-01-01

    We report results of our experimental and theoretical studies on the oxidation of Cu-Au alloy surfaces, viz., Cu3Au(111), CuAu(111), and Au3Cu(111), using hyperthermal O2 molecular beam (HOMB). We observed strong Au segregation to the top layer of the corresponding clean (111) surfaces. This forms a protective layer that hinders further oxidation into the bulk. The higher the concentration of Au in the protective layer formed, the higher the protective efficacy. As a result, of the three Cu-Au surfaces studied, Au3Cu(111) is the most stable against dissociative adsorption of O2, even with HOMB. We also found that this protective property breaks down for oxidations occurring at temperatures above 300 K. PMID:27516137

  5. Electric fields and chiral magnetic effect in Cu + Au collisions

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Tian; Huang, Xu-Guang

    2015-03-01

    The non-central Cu + Au collisions can create strong out-of-plane magnetic fields and in-plane electric fields. By using the HIJING model, we study the general properties of the electromagnetic fields in Cu + Au collisions at 200 GeV and their impacts on the charge-dependent two-particle correlator γq1q2 = < cos ⁡ (ϕ1 +ϕ2 - 2ψRP) > (see main text for definition) which was used for the detection of the chiral magnetic effect (CME). Compared with Au + Au collisions, we find that the in-plane electric fields in Cu + Au collisions can strongly suppress the two-particle correlator or even reverse its sign if the lifetime of the electric fields is long. Combining with the expectation that if γq1q2 is induced by elliptic-flow driven effects we would not see such strong suppression or reversion, our results suggest to use Cu + Au collisions to test CME and understand the mechanisms that underlie γq1q2.

  6. U+U and Cu+Au results from PHENIX

    NASA Astrophysics Data System (ADS)

    Iordanova, Aneta; PHENIX Collaboration

    2013-08-01

    The flexibility of RHIC to collide different nuclei provides experiments with a rich set of data to systematically test models and scaling behaviors in various collision systems. The latest RHIC run collided U+U and Cu+Au nuclei. These collisions promise an array of unique initial geometrical configurations. For example, in U+U collisions the slightly elongated nuclei overlap in a variety of different ways such that, even at zero impact parameter, distinct configurations exist. In central Cu+Au collisions the Cu nucleus is completely embedded within the Au. Such geometries present an opportunity to measure the wide range of initial energy densities of these systems. They also allow the study of some unique features arising from these configurations. In particular, the odd harmonics from the Cu+Au system offer sensitivity to v3 generated from the collision geometry as opposed to fluctuations in a symmetric system. In these proceedings the analysis status of the recently taken U+U and Cu+Au data in PHENIX is presented. The results from the global particle production and the challenges in analyzing these asymmetric systems is discussed.

  7. Interfacial Phenomena in Al/Al, Al/Cu, and Cu/Cu Joints Soldered Using an Al-Zn Alloy with Ag or Cu Additions

    NASA Astrophysics Data System (ADS)

    Pstruś, Janusz; Gancarz, Tomasz

    2014-05-01

    The studies of soldered joints were carried out in systems: Al/solder/Al, Al/solder/Cu, Cu/solder/Cu, where the solder was (Al-Zn)EUT, (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Ag and (Al-Zn)EUT with 0.5, 1.0, and 1.5 at.% of Cu addition. Brazing was performed at 500 °C for 3 min. The EDS analysis indicated that the composition of the layers starting from the Cu pad was CuZn, Cu5Zn8, and CuZn4, respectively. Wetting tests were performed at 500 °C for 3, 8, 15, and 30 min, respectively. Thickness of the layers and their kinetics of growth were measured based on the SEM micrographs. The formation of interlayers was not observed from the side of Al pads. On the contrary, dissolution of the Al substrate and migration of Al-rich particles into the bulk of the solder were observed.

  8. Au Nanowire-Striped Cu3P Platelet Photoelectrocatalysts.

    PubMed

    Dutta, Anirban; Samantara, Aneeya K; Adhikari, Samrat Das; Jena, Bikash Kumar; Pradhan, Narayan

    2016-03-17

    A stripy pattern of continuous epitaxial growth of thin Au nanowires on plasmonic Cu3P platelets is reported. The obtained Au-Cu3P heterostructures retain their wide area interfacial heterojunction, which is typically not observed in metal-semiconductor heterostructures. This is performed by phosphine-mediated in situ reduction of Au ions on specific facets of Cu3P platelets. The intriguing stripy movements of nanowires are regulated by strong surface binding ligands. Because this is a dual plasmon heterostructure with wide visible absorption window, these are further explored as a photoelectrocatalyst for efficient hole transfer and sensing of an important biomolecule, nicotinamide adenine dinucleotide (NADH). The observed anodic photocurrent was 30 times higher in the presence of NADH, and this proves that the heterostructured material is an ideal photosenser and an efficient catalyst for solar energy conversion. PMID:26938025

  9. Precipitations in a dental Ag-Pd-Cu-Au alloy.

    PubMed

    Herø, H; Jørgensen, R; Sørbrøden, E; Suoninen, E

    1982-05-01

    The structure of a dental Ag-PD-Cu-Au alloy has been studied after centrifugal casting and various heat treatments. By transmission electron microscopy, a high density of small fct particles, assumed to be PdCu, was observed, but, in addition, finely-spaced rods of approximately equal to 0.05 micrometer (500 A) diameter with an fcc structure precipitated on the [100] planes of the matrix were found. On the basis of their structure and the pertaining lattice parameter, these rods are assumed to be Cu-rich. They could also be observed by scanning electron microscopy, but not at annealing temperatures lower than 425 degrees C. PMID:6953095

  10. Superconductivity in uranium compounds with Cu3Au structure

    NASA Astrophysics Data System (ADS)

    Ott, H. R.; Hulliger, F.; Rudigier, H.; Fisk, Z.

    1985-02-01

    Superconductivity has been observed in uranium compounds with partly disordered Cu3Au-type crystal structure and interatomic U-U distances of more than 4 Å. Low-temperature specific-heat experiments reveal no anomalous enhancement of the electronic specific heat thus distinguishing the present materials from the unconventional superconductors UBe13 and UPt3.

  11. Nano features of Al/Au ultrasonic bond interface observed by high resolution transmission electron microscopy

    SciTech Connect

    Ji Hongjun; Li Mingyu Kim, Jong-Myung; Kim, Dae-Won; Wang Chunqing

    2008-10-15

    Nano-scale interfacial details of ultrasonic AlSi1 wire wedge bonding to a Au/Ni/Cu pad were investigated using high resolution transmission electron microscopy (HRTEM). The intermetallic phase Au{sub 8}Al{sub 3} formed locally due to diffusion and reaction activated by ultrasound at the Al/Au bond interface. Multilayer sub-interfaces roughly parallel to the wire/pad interface were observed among this phase, and interdiffusional features near the Au pad resembled interference patterns, alternately dark and bright bars. Solid-state diffusion theory cannot be used to explain why such a thick compound formed within milliseconds at room temperature. The major formation of metallurgical bonds was attributed to ultrasonic cyclic vibration.

  12. Study on Oxidation of Cu and Cu3Au Surfaces with Hyperthermal Oxygen Molecular Beam

    NASA Astrophysics Data System (ADS)

    Okada, Michio; Teraoka, Yuden

    Corrosion wastes more than a few percent of the world's GDP every year. The initial stage of the corrosion is one of the central topics in material science. The oxidation is one of the major corrosion processes of metals. Thus, the study of the oxidation process on metal surfaces is generally interesting in various fields of science and technology. The growth of a protective thin surface layer, which prevents further oxidation into bulk of a metal, requires the formation of a homogeneous film. One simple way for the protection of underlying metals is surface alloying, combining different substances to form multi-component surfaces. The surface alloying leads to the formation of a protective oxide layer due to the preferential oxidation of one component, possibly with surface segregation. Copper and copper alloys have wide industrial applications, and therefore are of interest for studies of oxidation mechanism, especially in the Cu2O formation. Cu forms the stable Cu2O, while Au does not form a stable oxide and is not soluble into stable Cu2O. Thus, the Cu-Au alloy system is ideal for investigating the effect of alloying on the formation of protective layer against further oxidation into bulk. Here, we introduce our recent comparative studies of the oxidation of Cu(100) and Cu3Au(100) with hyperthermal O2 molecular beam and discuss why Cu3Au(100) is protective against the oxidation.

  13. Energy and system size dependence of phi meson production in Cu+Cu and Au+Au collisions

    SciTech Connect

    STAR Coll

    2008-10-28

    We study the beam-energy and system-size dependence of {phi} meson production (using the hadronic decay mode {phi} {yields} K{sup +}K{sup -}) by comparing the new results from Cu + Cu collisions and previously reported Au + Au collisions at {radical}s{sub NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from midrapidity (|y| < 0.5) for 0.4 < p{sub T} < 5 GeV/c. At a given beam energy, the transverse momentum distributions for {phi} mesons are observed to be similar in yield and shape for Cu + Cu and Au + Au colliding systems with similar average numbers of participating nucleons. The {phi} meson yields in nucleus-nucleus collisions, normalized by the average number of participating nucleons, are found to be enhanced relative to those from p + p collisions with a different trend compared to strange baryons. The enhancement for {phi} mesons is observed to be higher at {radical}s{sub NN} = 200 GeV compared to 62.4 GeV. These observations for the produced {phi}(s{bar s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.

  14. Formation of CuxAu1− x phases by cold homogenization of Au/Cu nanocrystalline thin films

    PubMed Central

    Tynkova, Alona; Katona, Gabor L; Langer, Gabor A; Sidorenko, Sergey I; Voloshko, Svetlana M

    2014-01-01

    Summary It is shown, by using depth profiling with a secondary neutral mass spectrometer and structure investigations by XRD and TEM, that at low temperatures, at which the bulk diffusion is frozen, a complete homogenization can take place in the Cu/Au thin film system, which leads to formation of intermetallic phases. Different compounds can be formed depending on the initial thickness ratio. The process starts with grain boundary interdiffusion, which is followed by a formation of reaction layers at the grain boundaries that leads to the motion of the newly formed interfaces perpendicular to the grain boundary plane. Finally, the homogenization finishes when all the pure components have been consumed. The process is asymmetric: It is faster in the Au layer. In Au(25nm)/Cu(50nm) samples the final state is the ordered AuCu3 phase. Decrease of the film thicknesses, as expected, results in the acceleration of the process. It is also illustrated that changing the thickness ratio either a mixture of Cu-rich AuCu and AuCu3 phases (in Au(25nm)/Cu(25nm) sample), or a mixture of disordered Cu- as well as Au-rich solid solutions (in Au(25nm)/Cu(12nm) sample) can be produced. By using a simple model the interface velocity in both the Cu and Au layers were estimated from the linear increase of the average composition and its value is about two orders of magnitude larger in Au (ca. 10−11 m/s) than in Cu (ca. 10−13 m/s). PMID:25247132

  15. Results from Cu+Au collisions at 200 GeV in PHENIX Experiment

    NASA Astrophysics Data System (ADS)

    Berdnikov, Ya. A.; Ivanishchev, D. A.; Kotov, D. O.; Riabov, V. G.; Riabov, Yu. G.; Samsonov, V. M.; Safonov, A. S.

    2016-01-01

    Collisions of asymmetric nuclei (Cu+Au) differ essentially from the case of symmetric nuclei (Cu+Cu, Au+Au) collisions in the geometry of overlap region. This leads to a number of consequences, which provide more absolute and accurate information about fundamental properties of matter under extreme conditions. Nuclear modification factors for π-mesons in Cu+Au interactions at 200 GeV were measured in PHENIX Experiment at RHIC. New experimental data on measurement of flows of different order (v1, v2) for light hadrons in Cu+Au interactions at 200 GeV will be discussed in this paper.

  16. Surface segregation phenomena in extended and nanoparticle surfaces of Cu-Au alloys

    NASA Astrophysics Data System (ADS)

    Li, Jonathan; Wang, Guofeng; Zhou, Guangwen

    2016-07-01

    Using density functional theory (DFT) and Monte Carlo (MC) simulations, we studied the surface segregation phenomena of Au atoms in the extended and nanoparticle surfaces of Cu-Au alloys. Our MC simulations predicted significant Au enrichment in the outermost layer of (111) and (100) extended surfaces, and Au enrichment in the two outermost layers of (110) extended surfaces. The equilibrium Cu-Au nanoparticles were predicted to develop into an Au-enriched shell structure, where Au atoms preferably segregate to the (100) facets while Cu atoms are mainly located on the (111) facet of the nanoparticles. Our simulation predictions agree with experimental measurements.

  17. Comparative study of the alloying effect on the initial oxidation of Cu-Au(100) and Cu-Pt(100)

    SciTech Connect

    Luo, Langli; Zhou, Guangwen; Kang, Yihong; Yang, Judith C.; Su, Dong; Stach, Eric A.

    2014-03-24

    Using in situ transmission electron microscopy, we show that the oxidation of the Cu-Au(100) results in the formation of Cu{sub 2}O islands that deeply embed into the Cu-Au substrate while the oxidation of the Cu-Pt(100) leads to the formation of Cu{sub 2}O islands that highly protrude above the Cu-Pt substrate. Their difference is attributed to the different mobilities of Pt and Au in the Cu base alloys for which the sluggish mobility of Pt in Cu results in trapped Pt atoms at the oxide/alloy interface while the faster mobility of Au in Cu leads to enhanced rehomogenization of the alloy composition.

  18. Au-Ag-Cu nano-alloys: tailoring of permittivity

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-04-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective.

  19. Au-Ag-Cu nano-alloys: tailoring of permittivity

    PubMed Central

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-01-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective. PMID:27118459

  20. Au-Ag-Cu nano-alloys: tailoring of permittivity.

    PubMed

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-01-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective. PMID:27118459

  1. Doping golden clusters: MAu-19 and M2Au-18 (M = Cu and Na)

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Fa, Wei

    2012-04-01

    The structural and electronic properties of MAu-19 and M2Au-18 (M = Cu and Na) have been studied by the relativistic density-functional calculations. It is found that the most stable configurations of CuAu-19 and Cu2Au-18 are the face-centered and two-face-centered doped structures based upon the tetrahedral structure Au-20. In contrast, the ground states of Na-doped gold clusters (NaAu-19 and Na2Au-18) exhibit flat-cage configurations. The PES of these ground states are depicted that may be helpful to identify their configurations in the future experiments. The face-centered and two-face-centered doped tetrahedral structures of CuAu-19 and Cu2Au-18 have a large HOMO-LUMO gap, indicating that they are chemically stable.

  2. Scaling properties of azimuthal anisotropy in Au+Au and Cu+Cu Collisions at sqrt[s NN]=200 GeV.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bickley, A A; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Chai, J-S; Chang, B S; Charvet, J-L; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Das, K; David, G; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Eyser, K O; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S-Y; Fusayasu, T; Gadrat, S; Garishvili, I; Gastineau, F; Germain, M; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Hadj Henni, A; Haegemann, C; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Han, R; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; He, X; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Hur, M G; Ichihara, T; Imai, K; Inaba, M; Inoue, Y; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kano, H; Kanou, H; Kawagishi, T; Kawall, D; Kazantsev, A V; Kelly, S; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, E; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kroon, P J; Kubart, J; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y-S; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Lim, H; Liska, T; Litvinenko, A; Liu, M X; Li, X; Li, X H; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mao, Y; Masek, L; Masui, H; Matathias, F; McCain, M C; McCumber, M; McGaughey, P L; Miake, Y; Mikes, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, M; Morreale, A; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oka, M; Omiwade, O O; Oskarsson, A; Otterlund, I; Ouchida, M; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakata, H; Samsonov, V; Sato, H D; Sato, S; Sawada, S; Seele, J; Seidl, R; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shevel, A; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Slunecka, M; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Toia, A; Tojo, J; Tomásek, L; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Vale, C; Valle, H; van Hecke, H W; Velkovska, J; Vertesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimányi, J; Zolin, L

    2007-04-20

    Differential measurements of elliptic flow (v2) for Au+Au and Cu+Cu collisions at sqrt[sNN]=200 GeV are used to test and validate predictions from perfect fluid hydrodynamics for scaling of v2 with eccentricity, system size, and transverse kinetic energy (KE T). For KE T identical with mT-m up to approximately 1 GeV the scaling is compatible with hydrodynamic expansion of a thermalized fluid. For large values of KE T mesons and baryons scale separately. Quark number scaling reveals a universal scaling of v2 for both mesons and baryons over the full KE T range for Au+Au. For Au+Au and Cu+Cu the scaling is more pronounced in terms of KE T, rather than transverse momentum. PMID:17501413

  3. Scaling Properties of Azimuthal Anisotropy in Au+Au and Cu+Cu Collisions at {radical}(s{sub NN})=200 GeV

    SciTech Connect

    Adare, A.; Bickley, A. A.; Ellinghaus, F.; Kelly, S.; Kinney, E.; Nagle, J. L.; Seele, J.; Wysocki, M.; Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.; Aidala, C.; Bjorndal, M. T.; Chi, C. Y.; Cole, B. A.; D'Enterria, D.

    2007-04-20

    Differential measurements of elliptic flow (v{sub 2}) for Au+Au and Cu+Cu collisions at {radical}(s{sub NN})=200 GeV are used to test and validate predictions from perfect fluid hydrodynamics for scaling of v{sub 2} with eccentricity, system size, and transverse kinetic energy (KE{sub T}). For KE{sub T}{identical_to}m{sub T}-m up to {approx}1 GeV the scaling is compatible with hydrodynamic expansion of a thermalized fluid. For large values of KE{sub T} mesons and baryons scale separately. Quark number scaling reveals a universal scaling of v{sub 2} for both mesons and baryons over the full KE{sub T} range for Au+Au. For Au+Au and Cu+Cu the scaling is more pronounced in terms of KE{sub T}, rather than transverse momentum.

  4. J /ψ production at low pT in Au + Au and Cu + Cu collisions at √sNN =200 GeV with the STAR detector

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-08-01

    The J /ψ pT spectrum and nuclear modification factor (RAA) are reported for pT<5GeV /c and |y|<1 from 0% to 60% central Au +Au and Cu +Cu collisions at √sNN =200GeV at STAR. A significant suppression of pT-integrated J /ψ production is observed in central Au +Au events. The Cu +Cu data are consistent with no suppression, although the precision is limited by the available statistics. RAA in Au +Au collisions exhibits a strong suppression at low transverse momentum and gradually increases with pT. The data are compared to high-pT STAR results and previously published BNL Relativistic Heavy Ion Collider results. Comparing with model calculations, it is found that the invariant yields at low pT are significantly above hydrodynamic flow predictions but are consistent with models that include color screening and regeneration.

  5. Microstructural Evolution and Mechanical Properties in (AuSn)eut-Cu Interconnections

    NASA Astrophysics Data System (ADS)

    Dong, Hongqun; Vuorinen, Vesa; Laurila, Tomi; Paulasto-Kröckel, Mervi

    2016-06-01

    The interfacial reactions between the widely employed solder Au-20wt.%Sn and the common contact metallizations (e.g. Ni, Cu and Pt) are normally complex and not well determined. In order to identify the proper contactor for Au-20wt.%Sn solder, the present study focuses on (1) rationalizing the interfacial reaction mechanisms of Au-20wt.%Sn|Cu as well as (2) measuring the mechanical properties of individual intermetallics formed at the interface. The evolution of interfacial reaction products were rationalized by using the experimental results in combination with the calculated Au-Cu-Sn phase diagram information. It was found that the growth of the AuCu interfacial intermetallic layer was diffusion-controlled. The diffusion path of Au-20wt.%Sn|Cu at 150°C was proposed. The hardness and indentation modulus of the interfacial reaction products were measured using nanoindentation tests. The results revealed a significant influence of the Cu solubility on the mechanical properties of (Au,Cu)Sn and (Au,Cu)5Sn, i.e. their hardness and contact modulus increased with the increase in the amount of Cu. Furthermore, results obtained here for the Au-20wt.%Sn|Cu joints were compared to those from Au-20wt.%Sn|Ni in order to assess the similarities and differences between these widely used interconnection metallization systems.

  6. Glass formability and the Al-Au system

    SciTech Connect

    Egami, Takeshi; Ojha, Madhusudan; Nicholson, Donald M.; Louzguine-Luzgin, Dmitri; Chen, Na; Inoue, A.

    2012-01-01

    The aluminum-gold system exhibits various features that suggest high glass formability, such as a deep eutectic, formation of icosahedral clusters in the intermetallic compound near the eutectic minimum and a strongly negative heat of mixing. However, it is very difficult to form a glass with this system. Various issues related to glass formability are discussed using the Al-Au system as a negative test-case. In particular, the atomic level pressure was calculated from first principles for the first time for Al{sub 2}Au, AlAu{sub 2} and AlAu{sub 4} intermetallic compounds. The atomic level pressure is very high in these compounds, suggesting frustrated electronic states which destabilize both crystalline and glassy phases.

  7. Magnetic and thermodynamic properties of GdCu4Au

    NASA Astrophysics Data System (ADS)

    Bashir, Aiman K.; Tchoula Tchokonté, Moise B.; Britz, Douglas; Sondezi, B. M.; Strydom, André M.

    2015-03-01

    The results of magnetic susceptibility, χ(T), magnetization, σ(μ0H), and specific heat, CP(T), for GdCu4Au are presented. The room temperature powder X-ray diffraction studies indicate a cubic MgCu4Sn - type crystal structure with space group Fbar 43m (No.216). The low field dc χ(T) data shows an antiferromagnetic - like (AFM) anomaly associated with a Néel temperature TN = 10.8 K for GdCu4Au. In the paramagnetic region above TN, χ(T) data follows the Curies - Weiss law with an effective magnetic moment μeff = 7.444(1) μB and paramagnetic Weiss temperature θP = -15.01(2) K. The experimental value of is close to the calculated value of 7.94 μB expected for the free Gd3+-ion. The field-cooled (FC) and zero-field-cooled (ZFC) χ(T) data provide evidence for the formation of spin-glass state with a freezing temperature Tf = 15 K. σ(μ0H) measured in the ordering region (below TN) shows that GdCu4Au undergoes metamagnetic transition above 0.7 T, characterized by a slight upward curvature above this field. Measurement of σ(μ0H) in the paramagnetic regions show a linear behaviour up to 0.7 T and a downward curvature at high fields. CP(T) data shows an AFM - like phase transition at TN = 10.4 K close to the phase transition observed in χ(T) results. The 4f-electron entropy reaches the value of Rln2 close to TN at 9.02 K and reaches the value of Rln(2J + 1) at T = 180 K.

  8. Structural and dynamical properties of liquid Al-Au alloys

    NASA Astrophysics Data System (ADS)

    Peng, H. L.; Voigtmann, Th.; Kolland, G.; Kobatake, H.; Brillo, J.

    2015-11-01

    We investigate temperature- and composition-dependent structural and dynamical properties of Al-Au melts. Experiments are performed to obtain accurate density and viscosity data. The system shows a strong negative excess volume, similar to other Al-based binary alloys. We develop a molecular-dynamics (MD) model of the melt based on the embedded-atom method (EAM), gauged against the available experimental liquid-state data. A rescaling of previous EAM potentials for solid-state Au and Al improves the quantitative agreement with experimental data in the melt. In the MD simulation, the admixture of Au to Al can be interpreted as causing a local compression of the less dense Al system, driven by less soft Au-Au interactions. This local compression provides a microscopic mechanism explaining the strong negative excess volume of the melt. We further discuss the concentration dependence of self- and interdiffusion and viscosity in the MD model. Al atoms are more mobile than Au, and their increased mobility is linked to a lower viscosity of the melt.

  9. Modification of TiO2 by Bimetallic Au-Cu Nanoparticles for Wastewater Treatment

    PubMed Central

    Hai, Zibin; Kolli, Nadia EL; Uribe, Daniel Bahena; Beaunier, Patricia; José-Yacaman, Miguel; Vigneron, Jackie; Etcheberry, Arnaud; Sorgues, Sébastien; Colbeau-Justin, Christophe; Chen, Jiafu; Remita, Hynd

    2016-01-01

    Au, Cu and bimetallic Au-Cu nanoparticles were synthesized on the surface of commercial TiO2 compounds (P25) by reduction of the metal precursors with tetrakis (hydroxymethyl) phosphonium chloride (THPC) (0.5 % in weight). The alloyed structure of Au-Cu NPs was confirmed by HAADF-STEM, EDS, HRTEM and XPS techniques. The photocatalytic properties of the modified TiO2 have been studied for phenol photodegradation in aqueous suspensions under UV-visible irradiation. The modification by the metal nanoparticles induces an increase in the photocatalytic activity. The highest photocatalytic activity is obtained with Au-Cu/TiO2 (Au/Cu 1:3). Their electronic properties have been studied by time resolved microwave conductivity (TRMC) to follow the charge-carrier dynamics. TRMC measurements show that the TiO2 modification with Au, Cu and Au-Cu nanoparticles plays a role in charge-carrier separations increasing the activity under UV-light. Indeed, the metal nanoparticles act as a sink for electron, decreasing the charge carrier recombination. The TRMC measurements show also that the bimetallic Au-Cu nanoparticles are more efficient in electron scavenging than the monometallic Au and Cu ones. PMID:27274844

  10. Adaptive Crystal Structures: CuAu and NiPt

    NASA Astrophysics Data System (ADS)

    Sanati, M.; Wang, L. G.; Zunger, Alex

    2003-01-01

    We discover that Au-rich Cu1-xAux and Pt-rich Ni1-xPtx contain a composition range in which there is a quasicontinuum of stable, ordered “adaptive structures” made of (001) repeat units of simple structural motifs. This is found by searching ˜3×106 different fcc configurations whose energies are parametrized via a “cluster expansion” of first-principles-calculated total energies of just a few structures. This structural adaptivity is explained in terms of an anisotropic, long-range strain energy.

  11. Multiplicities in Au-Au and Cu-Cu collisions at sNN=62.4 and 200 GeV

    NASA Astrophysics Data System (ADS)

    Prorok, Dariusz

    2013-09-01

    Likelihood ratio tests are performed for the hypothesis that charged particle multiplicities measured in Au-Au and Cu-Cu collisions at sNN=62.4 and 200 GeV are distributed according to the negative binomial form. Results suggest that the hypothesis should be rejected in all classes of collision systems and centralities of Pioneering High-Energy Nuclear Interaction Experiment Relativistic Heavy Ion Collider measurements. However, the application of the least-squares test statistic with systematic errors included shows that for the collision system Au-Au at sNN=62.4 GeV the hypothesis could not be rejected in general.

  12. Room Temperature Radiolytic Synthesized Cu@CuAlO2-Al2O3 Nanoparticles

    PubMed Central

    Abedini, Alam; Saion, Elias; Larki, Farhad; Zakaria, Azmi; Noroozi, Monir; Soltani, Nayereh

    2012-01-01

    Colloidal Cu@CuAlO2-Al2O3 bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a 60Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO2-Al2O3 nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO2-Al2O3 nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation. PMID:23109893

  13. Enhanced electron field emission from CuO nanoplate arrays decorated with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Fei; Wu, Shumao; Zhang, Liangji; Li, Zhen

    2015-09-01

    A simple and controllable method was reported for the decoration of CuO nanoplate arrays with Au nanoparticles. It had been achieved through the reaction between Sn2+ and AuCl4 - in the presence of CuO nanoplate arrays. The structure and electron field emission properties of CuO nanoplate arrays decorated with different amounts of Au nanoparticles were investigated. The results demonstrated a remarkable enhancement of field emission performance of CuO nanoplate arrays decorated with Au nanoparticles. The effect of Au amount on the field emission performance was studied in detail, and excellent field emission properties such as a low turn-on electric field of 6.7 V/μm and a high field enhancement factor of 516 could be realized from the optimized sample. On the basis of experimental results, a possible mechanism for the formation of the CuO nanoplate arrays decorated with Au nanoparticles was speculated.

  14. Low-Lying Electronic States of CuAu.

    PubMed

    Alizadeh Sanati, Davood; Andrae, Dirk

    2016-07-28

    Coinage metal diatomic molecules are building blocks for nanostructured materials, electronic devices, and catalytically or photochemically active systems that are currently receiving lively interest in both fundamental and applied research. The theoretical study presented here elucidates the electronic structure in the ground and several low-lying excited states of the diatomic molecule CuAu that result from the combination of the atoms in their ground states nd(10)(n + 1)s(1 2)S and lowest excited d-hole states nd(9)(n + 1)s(2 2)D (n = 3 for Cu, n = 5 for Au). Full and smooth potential energy curves, obtained at the multireference configuration interaction (MRCI) level of theory, are presented for the complete set of the thus resulting 44 Λ-S terms and 86 Ω terms. Our approach is based on a scalar relativistic description using the Douglas-Kroll-Hess (DKH) Hamiltonian, with subsequent perturbative inclusion of spin-orbit (SO) coupling via the spin-orbit terms of the Breit-Pauli (BP) Hamiltonian. The Ω terms span an energy interval of about 7 eV at the ground state's equilibrium distance. Spectroscopic constants, calculated for all terms, are shown to accurately reproduce the observation for those nine terms that are experimentally known. PMID:27379475

  15. Synthesis of Cu2SnSe3-Au heteronanostructures with optoelectronic and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Wang, Wenliang; Ding, Tao; Chen, Guihuan; Zhang, Li; Yu, Yongqiang; Yang, Qing

    2015-09-01

    Cu2SnSe3-Au heteronanostructures have been successfully synthesized for the first time using a seed-mediated growth method. Such new Cu2SnSe3-Au heteronanostructures demonstrate enhanced and broadened optical absorption in the Vis-NIR region. We have also investigated the optoelectronic and photocatalytic properties of the Cu2SnSe3-Au heteronanostructures and proposed a mechanism to illustrate the improved photocurrent and photocatalytic performance as compared to bare Cu2SnSe3.Cu2SnSe3-Au heteronanostructures have been successfully synthesized for the first time using a seed-mediated growth method. Such new Cu2SnSe3-Au heteronanostructures demonstrate enhanced and broadened optical absorption in the Vis-NIR region. We have also investigated the optoelectronic and photocatalytic properties of the Cu2SnSe3-Au heteronanostructures and proposed a mechanism to illustrate the improved photocurrent and photocatalytic performance as compared to bare Cu2SnSe3. Electronic supplementary information (ESI) available: Experimental details including materials, sample preparation, characterization, size-distribution histogram, XRD, TEM, EDX, ATR-FTIR, ICP-AES, the influence of different Au loading values on the optical and optoelectronic properties of CTSe-Au heteronanostructures, estimation of the Cu2SnSe3 band edges and photocatalytic measurements. See DOI: 10.1039/c5nr04468e

  16. XANES and EXAFS study of Au-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1990-01-01

    The near-edge structure (XANES) of the Au L3 and Cu K edges of YBa2Au(0.3)Cu(2.7)O(7-delta) was studied. X ray diffraction suggests that Au goes on the Cu(1) site and XANES shows that this has little effect on the oxidation state of the remaining copper. The gold L3 edge develops a white line feature whose position lies between that of trivalent gold oxide (Au2O3) and monovalent potassium gold cyanide (KAu(CN)2) and whose intensity relative to the edge step is smaller than in the two reference compounds. The L3 EXAFS for Au in the superconductor resembles that of Au2O3. However, differences in the envelope of the Fourier filtered component for the first shell suggest that the local structure of the Au in the superconductor is not equivalent to Au2O3.

  17. Plasmonic Fano resonances in compositional heterogenous Al- Au nanorod dimers

    NASA Astrophysics Data System (ADS)

    Wu, Botao; Xue, Yingxian; Ma, Qiang; Ding, Chengjie; Rong, Youying; Liu, Yan; Chen, Lingxiao; Wu, E.; Zeng, Heping

    2016-01-01

    We have investigated theoretically the plasmon resonance coupling in compositional heterogenous Al-Au nanorod dimers organized in a close proximity by end-to-end. It has been proved that the destructive interference between the bright dipole mode from Al nanorod and the dark quadrupole mode from Au nanorod nearby results in the appearance of apparent Fano resonance in the extinction spectra. The Fano resonance response on the structural dimension modifications in the proposed nanorod dimers have been estimated and determined. The Al-Au heterogeneous nanorod dimer shows a high sensitivity to the surrounding environment with a local surface plasmon resonance figure of merit of 7.6, which enables its promising applications in plasmonic sensing and detection.

  18. Descriptive and Grade-Tonnage Models and Database for Iron Oxide Cu-Au Deposits

    USGS Publications Warehouse

    Cox, Dennis P.; Singer, Donald A.

    2007-01-01

    Iron oxide Cu-Au deposits are veins and breccia-hosted bodies of hematite and/or magnetite with disseminated Cu + Au ? Ag ? Pd ? Pt ? Ni ? U ? LREE minerals formed in sedimentary or volcano-sedimentary basins intruded by igneous rocks. Deposits are associated with broad redox boundaries and feature sodic alteration of source rocks and potassic alteration of host rocks.

  19. Photoelectron spectroscopic and computational study of (M-CO2)- anions, M = Cu, Ag, Au

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxing; Lim, Eunhak; Kim, Seong K.; Bowen, Kit H.

    2015-11-01

    In a combined photoelectron spectroscopic and computational study of (M-CO2)-, M = Au, Ag, Cu, anionic complexes, we show that (Au-CO2)- forms both the chemisorbed and physisorbed isomers, AuCO 2- and Au-(CO2), respectively; that (Ag-CO2)- forms only the physisorbed isomer, Ag-(CO2); and that (Cu-CO2)- forms only the chemisorbed isomer, CuCO 2- . The two chemisorbed complexes, AuCO 2- and CuCO 2- , are covalently bound, formate-like anions, in which their CO2 moieties are significantly reduced. These two species are examples of electron-induced CO2 activation. The two physisorbed complexes, Au-(CO2) and Ag-(CO2), are electrostatically and thus weakly bound.

  20. Systematic study of azimuthal anisotropy in Cu + Cu and Au + Au collisions at √sNN = 62.4 and 200 GeV

    SciTech Connect

    Adare, A.

    2015-09-23

    We have studied the dependence of azimuthal anisotropy v2 for inclusive and identified charged hadrons in Au+Au and Cu+Cu collisions on collision energy, species, and centrality. The values of v2 as a function of transverse momentum pT and centrality in Au+Au collisions at √sNN=200 and 62.4 GeV are the same within uncertainties. However, in Cu+Cu collisions we observe a decrease in v2 values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au+Au and Cu+Cu collisions we find that v2 depends both on eccentricity and the number of participants, Npart. We observe that v2 divided by eccentricity (ε) monotonically increases with Npart and scales as N1/3part. Thus, the Cu+Cu data at 62.4 GeV falls below the other scaled v2 data. For identified hadrons, v2 divided by the number of constituent quarks nq is independent of hadron species as a function of transverse kinetic energy KET=mT–m between 0.1T/nq<1 GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu+Cu data at 62.4 GeV, of v2/(nq∙ε∙N1/3part) vs KET/nq for all measured particles.

  1. Systematic study of azimuthal anisotropy in Cu + Cu and Au + Au collisions at √sNN = 62.4 and 200 GeV

    DOE PAGESBeta

    Adare, A.

    2015-09-23

    We have studied the dependence of azimuthal anisotropy v2 for inclusive and identified charged hadrons in Au+Au and Cu+Cu collisions on collision energy, species, and centrality. The values of v2 as a function of transverse momentum pT and centrality in Au+Au collisions at √sNN=200 and 62.4 GeV are the same within uncertainties. However, in Cu+Cu collisions we observe a decrease in v2 values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au+Au and Cu+Cu collisions we find that v2 depends both on eccentricity and themore » number of participants, Npart. We observe that v2 divided by eccentricity (ε) monotonically increases with Npart and scales as N1/3part. Thus, the Cu+Cu data at 62.4 GeV falls below the other scaled v2 data. For identified hadrons, v2 divided by the number of constituent quarks nq is independent of hadron species as a function of transverse kinetic energy KET=mT–m between 0.1T/nq<1 GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu+Cu data at 62.4 GeV, of v2/(nq∙ε∙N1/3part) vs KET/nq for all measured particles.« less

  2. Probing the ultrafast electron transfer at the CuPc/Au(111) interface

    SciTech Connect

    Chen Wei; Wang Li; Qi Dongchen; Chen Shi; Gao Xingyu; Wee, Andrew Thye Shen

    2006-05-01

    Core-hole clock spectroscopy and near-edge x-ray-absorption fine structure measurements have been used to investigate the ultrafast electron transfer dynamics at the Copper(II) phthalocyanine (CuPc)/Au(111) interface. It was found that the strong electronic coupling between the first layer of CuPc molecules and Au(111) substrate favors ultrafast electron transfer from the lowest unoccupied molecular orbital of the CuPc molecules to the conduction band of Au(111) in the time scale of {approx}6 fs. In contrast, the intermolecular electron transfer within multilayers of CuPc molecules via the weak van der Waals interaction was much slower.

  3. A Bis(Diphosphanyl N-Heterocyclic Carbene) Gold Complex: A Synthon for Luminescent Rigid AuAg2 Arrays and Au5 and Cu6 Double Arrays.

    PubMed

    Ai, Pengfei; Mauro, Matteo; De Cola, Luisa; Danopoulos, Andreas A; Braunstein, Pierre

    2016-03-01

    A mononuclear bis(NHC)/Au(I) (NHC=N-heterocyclic carbene) cationic complex with a rigid bis(phosphane)-functionalized NHC ligand (PCNHC P) was used to construct linear Au3 and Ag2 Au arrays, a Au5 cluster with two intersecting crosslike Au3 arrays, and an unprecedented Cu6 complex with two parallel Cu3 arrays. The impact of metallophilic interactions on photoluminescence was studied experimentally. PMID:26823329

  4. Structured Pd-Au/Cu-fiber catalyst for gas-phase hydrogenolysis of dimethyl oxalate to ethylene glycol.

    PubMed

    Zhang, Li; Han, Lupeng; Zhao, Guofeng; Chai, Ruijuan; Zhang, Qiaofei; Liu, Ye; Lu, Yong

    2015-07-01

    Galvanic co-deposition of 0.5 wt% Au and 0.1 wt% Pd on a microfibrous-structure using 8 μm Cu-fibers delivers a Pd-Au/Cu-fiber catalyst, which is highly active, selective and stable for the hydrogenolysis of dimethyl oxalate to ethylene glycol. Au and Pd synergistically promote the hydrogenolysis activity of Cu(+) sites, while Au also critically stabilizes Cu(+) sites to prevent deep reductive deactivation. PMID:26040855

  5. Effect of delayed aging on mechanical properties of an Al-Cu-Mg alloy

    SciTech Connect

    Ravindranathan, S.P.; Kashyap, K.T.; Kumar, S.R.; Ramachandra, C.; Chatterji, B.

    2000-02-01

    The effect of delayed aging on mechanical properties is characteristically found in Al-Mg-Si alloys. Delayed aging refers to the time elapsed between solutionizing and artificial aging. Delayed aging leads to inferior properties. This effect was investigated in an Al-Cu-Mg alloy (AU2GN) of nominal composition Al-2Cu-1.5Mg-1Fe-1Ni as a function of delay. This alloy also showed a drop in mechanical properties with delay. The results are explained on the basis of Pashley's kinetic model to qualitatively explain the evolution of a coarse precipitate structure with delay. It is found that all the results of delayed aging in the Al-Cu-Mg alloys are similar to those found in Al-Mg-Si alloys.

  6. Themal Expansion and Magnetostriction of YbAuCu4

    NASA Astrophysics Data System (ADS)

    Tkeuchi, Tetsuya; Hirose, Yusuke; Tsunoda, Ryoma; Honda, Fuminori; Settai, Rikio

    Precise thermal expansion and magnetostriction measurements were performed on the heavyfermion compound YbAuCu4 in order to examine the crossover valence transition at TV which was proposed by the nuclear magnetic resonance measurements. The temperature dependence of the thermal expansion coefficient α under magnetic fields shows a broad peak, which shifts to higher temperatures with increasing magnetic fields. The corresponding linear thermal expansion Δℓ/.ℓ parallel to the magnetic field of 7.0 T shows a marked decrease below about 10 K, indicating a contraction of sample length at low temperatures. These results are discussed in relation to the observed temperature dependence of the nuclear quadrupole frequency νQ under magnetic fields.

  7. Mechanism of Corrosion in Al-Si-Cu

    NASA Astrophysics Data System (ADS)

    Hayasaka, Nobuo; Koga, Yuri; Shimomura, Koji; Yoshida, Yukimasa; Okano, Haruo

    1991-07-01

    An Al-Cu local cell was formed between the Cu precipitation and adjacent Al in an Al-Si-Cu alloy when Cu was added in excess to the alloy. Once an Al-Cu local cell was formed, corrosion took place simply by dipping the alloy in deionized water without any contamination. Furthermore, it was found that corrosion was enhanced at the Al-Si-Cu lines in contact with the p+-n junction of Si. The reason for this is that holes are injected into Al-Si-Cu from p+-Si due to electromotive force produced by light irradiation and an external circuit connecting the alloy and n-Si formed by the adsorption of moisture on the surface. Furthermore, it was found that the irradiation of light with a wavelength between 320 to 380 nm was most effective in enhancing the corrosion reaction.

  8. Bridging gold in electron-deficient Al2Au(n)(0/-) and BAlAu(n)(0/-) (n = 1-3) clusters.

    PubMed

    Yao, Wen-Zhi; Liu, Bing-Tao; Lu, Zhang-Hui; Li, Si-Dian

    2013-06-20

    The geometrical and electronic structures of the electron-deficient dialuminum aurides Al2Aun(0/-) and hybrid boron-aluminum aurides BAlAun(0/-) (n = 1-3) are systematically investigated based on the density and wave function theories. Ab initio theoretical evidence strongly suggests that bridging gold atoms exist in the ground states of C2v Al2Au(-) ((3)B1), C2v Al2Au ((2)B1), C2v Al2Au2(-) ((2)A1), C2v Al2Au2 ((1)A1), Cs Al2Au3(-) ((1)A'), and D3h Al2Au3 ((2)A1), which prove to possess an Al-Au-Al τ bond. For BAlAun(0/-) (n = 1-3) mixed clusters, bridging B-Au-Al units only exist in Cs BAlAu3(-) ((1)A') and Cs BAlAu3 ((2)A'), whereas Cs BAlAu(-) ((3)A''), Cs BAlAu ((2)A''), Cs BAlAu2(-) ((2)A'), and Cs BAlAu2 ((1)A') do not possess a bridging gold, as demonstrated by the fact that B-Al and B-Au exhibit significantly stronger electronic interaction than Al-Au in the same clusters. Orbital analyses indicate that Au 6s contributes approximately 98%-99% to the Au-based orbital in these Al-Au-Al/B-Au-Al interactions, whereas Au 5d contributes 1%-2%. The adiabatic and vertical detachment energies of Al2Aun(-) (n = 1-3) are calculated to facilitate future experimental characterizations. The results obtained in this work establish an interesting τ bonding model (Al-Au-Al/B-Au-Al) for electron-deficient systems in which Au 6s plays a major factor. PMID:23718624

  9. Au-Cu2O core-shell nanowire photovoltaics

    NASA Astrophysics Data System (ADS)

    Oener, S. Z.; Mann, S. A.; Sciacca, B.; Sfiligoj, C.; Hoang, J.; Garnett, E. C.

    2015-01-01

    Semiconductor nanowires are among the most promising candidates for next generation photovoltaics. This is due to their outstanding optical and electrical properties which provide large optical cross sections while simultaneously decoupling the photon absorption and charge carrier extraction length scales. These effects relax the requirements for both the minority carrier diffusion length and the amount of semiconductor needed. Metal-semiconductor core-shell nanowires have previously been predicted to show even better optical absorption than solid semiconductor nanowires and offer the additional advantage of a local metal core contact. Here, we fabricate and analyze such a geometry using a single Au-Cu2O core-shell nanowire photovoltaic cell as a model system. Spatially resolved photocurrent maps reveal that although the minority carrier diffusion length in the Cu2O shell is less than 1 μm, the radial contact geometry with the incorporated metal electrode still allows for photogenerated carrier collection along an entire nanowire. Current-voltage measurements yield an open-circuit voltage of 600 mV under laser illumination and a dark diode turn-on voltage of 1 V. This study suggests the metal-semiconductor core-shell nanowire concept could be extended to low-cost, large-scale photovoltaic devices, utilizing for example, metal nanowire electrode grids coated with epitaxially grown semiconductor shells.

  10. The role of plasmons and interband transitions in the color of AuAl2, AuIn2, and AuGa2

    NASA Astrophysics Data System (ADS)

    Keast, V. J.; Birt, K.; Koch, C. T.; Supansomboon, S.; Cortie, M. B.

    2011-09-01

    First principles calculations of the optical properties of the intermetallic compounds AuAl2, AuIn2, and AuGa2 have been performed. Analysis of the dielectric functions showed that AuAl2 is unique because a bulk plasmon is seen in the optical region and contributes to the purple color of this material. An experimental electron energy-loss spectrum showed excellent agreement with the theoretical prediction and confirmed the presence of the bulk plasmon.

  11. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression.

    PubMed

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-08-13

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s(-1) (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g(-1) for the CuAlZn alloy and 5.0 J g(-1) for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. PMID:27402936

  12. Phase correlations in the CuAlSe2-CuAlTe2 system

    NASA Astrophysics Data System (ADS)

    Korzun, B. V.; Fadzeyeva, A. A.; Bente, K.; Schmitz, W.; Kommichau, G.

    2005-07-01

    Alloys in the CuAlSe2-CuAlTe2 system were synthesized in BN-crucibles in silica tubes under vacuum to obtain the corresponding phase equilibria. X-ray powder diffraction and thermal analytic data of the T-x phase diagram revealed a complete solid solutions series in the subsolidus region. Within the CuAlSe2xTe2(1-x) system the refined lattice parameters a and c approximately obey the Vegard rule and also the cell volume and the heat of fusion confirm linear correlations with the composition of the mixed crystals. The anion position parameter calculated after S. C. Abrahams & J. L. Bernstein (uAB) and J. E Jaffe & A. Zunger (uJZ) is greater than 0.25 and reveals a linear dependence on composition. The liquidus part of the CuAlSe2xTe2(1-x) system with x < 0.35 exhibits vertical section behaviour with a ternary peritectic followed up by a ternary monotectic whereas the region with x > 0.35 shows quasibinary equilibria.

  13. Au@Cu(II)-MOF: Highly Efficient Bifunctional Heterogeneous Catalyst for Successive Oxidation-Condensation Reactions.

    PubMed

    Wang, Jing-Si; Jin, Fa-Zheng; Ma, Hui-Chao; Li, Xiao-Bo; Liu, Ming-Yang; Kan, Jing-Lan; Chen, Gong-Jun; Dong, Yu-Bin

    2016-07-01

    A new composite Au@Cu(II)-MOF catalyst has been synthesized via solution impregnation and full characterized by HRTEM, SEM-EDS, XRD, gas adsorption-desorption, XPS, and ICP analysis. It has been shown here that the Cu(II)-framework can be a useful platform to stabilize and support gold nanoparticles (Au NPs). The obtained Au@Cu(II)-MOF exhibits a bifunctional catalytic behavior and is able to promote selective aerobic benzyl alcohol oxidation-Knoevenagel condensation in a stepwise way. PMID:27322613

  14. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals

    NASA Astrophysics Data System (ADS)

    Amani, H.; Soltanieh, M.

    2016-05-01

    Diffusion couples of aluminum and copper were fabricated by explosive welding process. The interface evolution caused by annealing at different temperatures and time durations was investigated by means of optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, and x-ray diffraction. Annealing in the temperature range of 573 K to 773 K (300 °C to 500 °C) up to 408 hours showed that four types of intermetallic layers have been formed at the interface, namely Al2Cu, AlCu, Al3Cu4, and Al4Cu9. Moreover, it was observed that iron trace in aluminum caused the formation of Fe-bearing intermetallics in Al, which is near the interface of the Al-Cu intermetallic layers. Finally, the activation energies for the growth of Al2Cu, AlCu + Al3Cu4, Al4Cu9, and the total intermetallic layer were calculated to be about 83.3, 112.8, 121.6, and 109.4 kJ/mol, respectively. Considering common welding methods (i.e., explosive welding, cold rolling, and friction welding), although there is a great difference in welding mechanism, it is found that the total activation energy is approximately the same.

  15. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals

    NASA Astrophysics Data System (ADS)

    Amani, H.; Soltanieh, M.

    2016-08-01

    Diffusion couples of aluminum and copper were fabricated by explosive welding process. The interface evolution caused by annealing at different temperatures and time durations was investigated by means of optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, and x-ray diffraction. Annealing in the temperature range of 573 K to 773 K (300 °C to 500 °C) up to 408 hours showed that four types of intermetallic layers have been formed at the interface, namely Al2Cu, AlCu, Al3Cu4, and Al4Cu9. Moreover, it was observed that iron trace in aluminum caused the formation of Fe-bearing intermetallics in Al, which is near the interface of the Al-Cu intermetallic layers. Finally, the activation energies for the growth of Al2Cu, AlCu + Al3Cu4, Al4Cu9, and the total intermetallic layer were calculated to be about 83.3, 112.8, 121.6, and 109.4 kJ/mol, respectively. Considering common welding methods ( i.e., explosive welding, cold rolling, and friction welding), although there is a great difference in welding mechanism, it is found that the total activation energy is approximately the same.

  16. Large extrinsic spin Hall effect in Au-Cu alloys by extensive atomic disorder scattering

    NASA Astrophysics Data System (ADS)

    Zou, L. K.; Wang, S. H.; Zhang, Y.; Sun, J. R.; Cai, J. W.; Kang, S. S.

    2016-01-01

    Spin Hall angle, which denotes the conversion efficiency between spin and charge current, is a key parameter in the pure spin current phenomenon. The search for materials with large spin Hall angle is indeed important for scientific interest and potential application in spintronics. Here the large enhanced spin Hall effect (SHE) of Au-Cu alloy is reported by investigating the spin Seebeck effect, spin Hall anomalous Hall effect, and spin Hall magnetoresistance of the Y3F e5O12 (YIG)/A uxC u1 -x hybrid structure over the full composition. At the near equiatomic Au-Cu composition with maximum atomic disorder scattering, the spin Hall angle of the Au-Cu alloy increases by two to three times together with a moderate spin diffusion length in comparison with Au. The longitudinal spin Seebeck voltage and the spin Hall magnetoresistance ratio also increase by two to three times. More importantly, no evidence of anomalous Hall effect is observed in all YIG/Au-Cu samples, in contrast to the cases of other giant SHE materials Pt(Pd), Ta, and W. This behavior makes Au-Cu free from any suspicion of the magnetic proximity effect involved in the hybrid structure, and thus the Au-Cu alloy can be an ideal material for pure spin current study.

  17. Effect of Au nanorods on potential barrier modulation in morphologically controlled Au@Cu2O core-shell nanoreactors for gas sensor applications.

    PubMed

    Majhi, Sanjit Manohar; Rai, Prabhakar; Raj, Sudarsan; Chon, Bum-Soo; Park, Kyung-Kuen; Yu, Yeon-Tae

    2014-05-28

    In this work, Au@Cu2O core-shell nanoparticles (NPs) were synthesized by simple solution route and applied for CO sensing applications. Au@Cu2O core-shell NPs were formed by the deposition of 30-60 nm Cu2O shell layer on Au nanorods (NRs) having 10-15 nm width and 40-60 nm length. The morphology of Au@Cu2O core-shell NPs was tuned from brick to spherical shape by tuning the pH of the solution. In the absence of Au NRs, cubelike Cu2O NPs having ∼200 nm diameters were formed. The sensor having Au@Cu2O core-shell layer exhibited higher CO sensitivity compared to bare Cu2O NPs layer. Tuning of morphology of Au@Cu2O core-shell NPs from brick to spherical shape significantly lowered the air resistance. Transition from p- to n-type response was observed for all devices below 150 °C. It was demonstrated that performance of sensor depends not only on the electronic sensitization of Au NRs but also on the morphology of the Au@Cu2O core-shell NPs. PMID:24779525

  18. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liang, Shuhua; Yang, Qing; Wang, Xianhui

    2016-11-01

    Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl2 + HCl solution. Compared to Cu40Al60 and Cu45Al55 alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu17Al83 alloy as the starting alloy. The growth direction of the FDC is <110>, and all angles between the trunks and branches are 60°. Nanoscale Cu2O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu17Al83 alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl2 intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  19. Size Control and Growth Process Study of Au@Cu2O Particles.

    PubMed

    Wang, Yuyuan; Zheng, Min; Liu, Shengnan; Wang, Zuoshan

    2016-12-01

    Au@Cu2O cuboctahedron with gold triangular nanoplate core and Cu2O shell was synthesized by a chemical method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) tests demonstrated that the as-synthesis samples were consisted of gold triangular nanoplate core and Cu2O shell, and both of them were in good crystallization. The effective size control of the particles could be realized by controlling the amount of Au cores added in the synthetic process and Au@Cu2O particles with different shell thickness could be synthesized. The decrease of Cu2O shell thickness had a great difference in the optical performance, including blue shift of the resonant peaks and enhanced absorption intensity. The growth process from rough sheet structure to cuboctahedron was also explored. The results of photocatalytic degradation experiment showed that Au@Cu2O particles showed much better photocatalytic performance than that of pure Cu2O. The improved photocatalytic property of the Au@Cu2O particles was attributed to the comprehensive effect of the enhanced visible-light absorption and high separation rate of electron-hole pairs. PMID:27613067

  20. Constraints on Variable Ag:Au:Cu Ore-Metal Ratios in Felsic Arc-Magmas

    NASA Astrophysics Data System (ADS)

    Piccoli, P.; Englander, L.; Candela, P.

    2004-12-01

    Silver:gold:copper ratios are variable in porphyry-type ore systems. In an attempt to better understand why, we have employed experimental techniques to determine how silver and copper, and gold from previous experiments, are sequestered in felsic magmas. To this end, we are performing sealed silica tube experiments on the equilibria among pyrrhotite-magnetite-silver alloy at 800C and at vapor pressure. Run times for the preliminary experiments were 144 hours; runs had magnetite/pyrrhotite ratio of 4. The source of silver in the runs was AgCl. Analysis of reconnaissance experiments demonstrates the stability of magnetite, pyrrhotite and a silver sulfide solid solution under the conditions of the experiments. Equilibrium concentrations of ore metals in the run products are ~3000 ppm Ag and 3500 ppm Cu in the pyrrhotite. However, the concentrations in magnetite are significantly different: 100 ppm Ag and ~20 ppm Cu. Like copper and gold (Jugo et al., 1999; Lithos), silver is concentrated in pyrrhotite relative to magnetite. The equilibrium Ag-sulfide composition in the run products is Ag53Fe8Cu3S36, with a mole fraction of Ag2S of 0.74. The log fS2 is approximated as ~ -4. The mole fraction of Ag in an ideal metal solid solution in equilibrium with an ideal model Ag2S solid solution, and a log fS2 of -4, is ~0.4. By analogy with Au, the substitution of Ag into pyrrhotite may occur as an AgFeS2 component. The substitutional mechanism for Ag in magnetite is not clear: silver may substitute as AgFe(3+)(Fe(2+))-2, but may also be present in defects in the magnetite structure. The partition coefficient (D(po/mt)) for approximately 30 for Ag. The partition coefficient for Au is higher (~120) based on the data of Simon et al. (2003; Am. Min,) and Jugo et al. (1999; Lithos). These data can be combined with data on the solubility of Ag in silicate melts to calculate mineral-melt partition coefficients. These data suggest that the role of pyrrhotite crystallization in felsic

  1. Modification of light absorption in thin CuInS2 films by sprayed Au nanoparticles.

    PubMed

    Katerski, Atanas; Kärber, Erki; Acik, Ilona Oja; Dolgov, Leonid; Mere, Arvo; Sildos, Ilmo; Mikli, Valdek; Krunks, Malle

    2014-12-01

    The chemical spray pyrolysis method was used to deposit CuInS2 (CIS) thin films and Au nanoparticles (NPs) in two configurations: glass/Au-NP layer covered with CuInS2 film (Au-NP/CIS) and glass/CuInS2 films covered with Au-NP layer (CIS/Au-NP). According to X-ray diffraction (XRD), the spray of 2 mM HAuCl4 aqueous solution with a volume of 2.5 to 15 ml onto a glass substrate at 340°C results in metallic Au nanoparticles with a similar mean crystallite size in the range of 30 - 38 nm. The mean crystallite sizes remain in the range of 15 - 20 nm when grown onto a CIS film. The prepared films show plasmonic light absorption with increasing intensity in the spectral range of 500- 800 nm when increasing the volume of HAuCl4 solution sprayed. When compared to bare CIS on glass, the absorptance was increased ca. 4.5 times in the case of glass/Au-NP/CIS and ca. 3 times in the case of glass/CIS/Au-NP configuration. The glass/Au-NP/CIS configuration had an advantage since Au-NP could be embedded without chemically damaging the CIS. PMID:26088996

  2. Initial-state geometry and fluctuations in Au + Au, Cu + Au, and U + U collisions at energies available at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2014-06-01

    We study within the IP-Glasma and two-component MC-Glauber models the effects of initial-state geometry and fluctuations on multiplicities and eccentricities for several collision species at the Relativistic Heavy Ion Collider (RHIC). These include copper-gold (Cu + Au), gold-gold (Au + Au), and uranium-uranium (U + U) collisions. The multiplicity densities per participant pair are very similar in all systems studied. Ellipticities vary strongly between collision systems, most significantly for central collisions, while fluctuation driven odd moments vary little between systems. Event-by-event distributions of eccentricities in mid-central collisions are wider in Cu + Au relative to Au + Au and U + U systems. An anticorrelation between multiplicity and eccentricity is observed in ultracentral U + U collisions which is weaker in the IP-Glasma model than the two-component MC-Glauber model. In ultracentral Au + Au collisions the two models predict opposite signs for the slope of this correlation. Measurements of elliptic flow as a function of multiplicity in such central events can therefore be used to discriminate between models with qualitatively different particle production mechanisms.

  3. Intermetallic compound formation at Cu-Al wire bond interface

    SciTech Connect

    Bae, In-Tae; Young Jung, Dae; Chen, William T.; Du Yong

    2012-12-15

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 Degree-Sign C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable {theta} Prime -CuAl{sub 2} IMC phase (tetragonal, space group: I4m2, a = 0.404 nm, c= 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable {theta} Prime -CuAl{sub 2} phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and {theta} Prime -CuAl{sub 2}, which can minimize lattice mismatch for {theta} Prime -CuAl{sub 2} to grow on Cu.

  4. Pion interferometry in Au+Au and Cu+Cu collisions at {radical}(s{sub NN})=62.4 and 200 GeV

    SciTech Connect

    Abelev, B. I.; Barannikova, O.; Betts, R. R.; Garcia-Solis, E. J.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.; Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.; Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.

    2009-08-15

    We present a systematic analysis of two-pion interferometry in Au+Au collisions at {radical}(s{sub NN})=62.4 GeV and Cu+Cu collisions at {radical}(s{sub NN})=62.4 and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The multiplicity and transverse momentum dependences of the extracted correlation lengths (radii) are studied. The scaling with charged particle multiplicity of the apparent system volume at final interaction is studied for the RHIC energy domain. The multiplicity scaling of the measured correlation radii is found to be independent of colliding system and collision energy.

  5. Pion Interferometry in Au+Au and Cu+Cu Collisions at sqrt sNN = 62.4 and 200 GeV

    SciTech Connect

    STAR Collaboration; Abelev, B.I.

    2009-08-24

    We present a systematic analysis of two-pion interferometry in Au+Au collisions at {radical}sNN = 62.4 GeV and Cu+Cu collisions at {radical}sNN = 62.4 and 200 GeV using the STAR detector at RHIC. The multiplicity and transverse momentum dependences of the extracted correlation lengths (radii) are studied. The scaling with charged particle multiplicity of the apparent system volume at final interaction is studied for the RHIC energy domain. The multiplicity scaling of the measured correlation radii is found to be independent of colliding system and collision energy.

  6. Synthesis and Characterization of Au@Cu Core-Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Khanal, Subarna; Velazquez-Salazar, Jesus; Yacaman, Miguel Jose

    2011-10-01

    The synthesis of bimetallic nanoparticles has become so important in present times due to its diverse applications of nanotechnology. Particularly most of the bimetallic nanoparticles are focused to use in catalysis, plasmonic, magnetic, sensors, and many other applications. In Au/Cu case, the bulk Au and Cu are soluble at all compositions. But the structure of Au/Cu nanoparticles depends on the preparation methods. The structure might be the core shell, alloys or other morphology. Au- Cu core-shell nanocrystals were prepared using a two-step polyol reduction method. First, Au core seeds were prepared by reducing HAuCl4. 4H2O in ethylene glycol (EG) using oil-bath heating in the presence of polyvinylpyrrolidone (PVP) as a polymer surfactant. Then Cu shells were overgrown on Au core seeds by reducing Cu2(OAc)4 in EG with PVP again using oil-bath heating. The morphology is studied by STEM HITACHI S-5500.The resultant crystal structures were characterized using TEM, high-resolution (HR)-TEM and the STEM were using for the study of micro analysis.

  7. Cu-Au Alloys Using Monte Carlo Simulations and the BFS Method for Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Good, Brian; Ferrante, John

    1996-01-01

    Semi empirical methods have shown considerable promise in aiding in the calculation of many properties of materials. Materials used in engineering applications have defects that occur for various reasons including processing. In this work we present the first application of the BFS method for alloys to describe some aspects of microstructure due to processing for the Cu-Au system (Cu-Au, CuAu3, and Cu3Au). We use finite temperature Monte Carlo calculations, in order to show the influence of 'heat treatment' in the low-temperature phase of the alloy. Although relatively simple, it has enough features that could be used as a first test of the reliability of the technique. The main questions to be answered in this work relate to the existence of low temperature ordered structures for specific concentrations, for example, the ability to distinguish between rather similar phases for equiatomic alloys (CuAu I and CuAu II, the latter characterized by an antiphase boundary separating two identical phases).

  8. Cross-sectional TEM studies of DIGM in irradiated Au-Cu bilayers

    SciTech Connect

    Gao, Y.; Alexander, D.E.; Rehn, L.E.

    1992-11-01

    Cross-sectional transmission electron microscopy was used to study diffusion-induced gain boundary migration (DIGM) in irradiated and annealed Au/Cu bilayers. Using this technique, in combination with small probe x-ray energy dispersive spectroscopy, DIGM alloyed zones in Au were identified in an irradiated sample.

  9. Centrality, Rapidity And Transverse-Momentum Dependence of Cold Nuclear Matter Effects on J/Psi Production in D Au, Cu Cu And Au Au Collisions at S(NN)**(1/2)

    SciTech Connect

    Ferreiro, E.G.; Fleuret, F.; Lansberg, J.P.; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay

    2011-11-11

    We have carried out a wide study of Cold Nuclear Matter (CNM) effects on J/{Psi} = production in dAu, CuCu and AuAu collisions at {radical}s{sub NN} = 200 GeV. We have studied the effects of three different gluon-shadowing parameterizations, using the usual simplified kinematics for which the momentum of the gluon recoiling against the J/{Psi} is neglected as well as an exact kinematics for a 2 {yields} 2 process, namely g + g {yields} J/{psi} + g as expected from LO pQCD. We have shown that the rapidity distribution of the nuclear modification factor R{sub dAu}, and particularly its anti-shadowing peak, is systematically shifted toward larger rapidities in the 2 {yields} 2 kinematics, irrespective of which shadowing parameterization is used. In turn, we have noted differences in the effective final-state nuclear absorption needed to fit the PHENIX dAu data. Taking advantage of our implementation of a 2 {yields} 2 kinematics, we have also computed the transverse momentum dependence of the nuclear modification factor, which cannot be predicted with the usual simplified kinematics. All the corresponding observables have been computed for CuCu and AuAu collisions and compared to the PHENIX and STAR data. Finally, we have extracted the effective nuclear absorption from the recent measurements of RCP in dAu collisions by the PHENIX collaboration.

  10. High performance Au-Cu alloy for enhanced visible-light water splitting driven by coinage metals.

    PubMed

    Liu, Mingyang; Zhou, Wei; Wang, Ting; Wang, Defa; Liu, Lequan; Ye, Jinhua

    2016-03-17

    A Au-Cu alloy strategy is, for the first time, demonstrated to be effective in enhancing visible-light photocatalytic H2 evolution via promoting metal interband transitions. Au3Cu/SrTiO3, in which oxidation of Cu was successfully restrained, showed the highest visible-light H2 evolution activity. PMID:26952932

  11. Au plasmonics in a WS{sub 2}-Au-CuInS{sub 2} photocatalyst for significantly enhanced hydrogen generation

    SciTech Connect

    Cheng, Zhongzhou; Wang, Zhenxing E-mail: hej@nanoctr.cn; Shifa, Tofik Ahmed; Wang, Fengmei; Zhan, Xueying; Xu, Kai; He, Jun E-mail: hej@nanoctr.cn; Liu, Quanlin

    2015-11-30

    Promoting the activities of photocatalysts is still the critical challenge in H{sub 2} generation area. Here, a Au plasmon enhanced photocatalyst of WS{sub 2}-Au-CuInS{sub 2} is developed by inserting Au nanoparticles between WS{sub 2} nanotubes and CuInS{sub 2} (CIS) nanoparticles. Due to the localized surface plasmonic resonance properties from Au nanoparticles, WS{sub 2}-Au-CIS shows the best performance as compared to Au-CIS, CIS, WS{sub 2}-CIS, CIS-Au, WS{sub 2}-Au, and WS{sub 2}-CIS-Au. The surface plasmonic resonance effects dramatically intensify the absorption of visible light and help to inject hot electrons into the semiconductors. Our findings open up an efficient method to optimize the type-II structures for photocatalytic water splitting.

  12. Probing the electronic and vibrational structure of Au2Al2(-) and Au2Al2 using photoelectron spectroscopy and high resolution photoelectron imaging.

    PubMed

    Lopez, Gary V; Czekner, Joseph; Jian, Tian; Li, Wei-Li; Yang, Zheng; Wang, Lai-Sheng

    2014-12-14

    The electronic and vibrational structures of Au2Al2(-) and Au2Al2 have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au2Al2. Vibrationally resolved PE spectra are obtained using high-resolution photoelectron imaging for the ground state detachment transition of Au2Al2(-) at various photon energies (670.55-843.03 nm). An accurate electron affinity of 1.4438(8) eV is obtained for the Au2Al2 neutral cluster, as well as two vibrational frequencies at 57 ± 8 and 305 ± 13 cm(-1). Hot bands transitions yield two vibrational frequencies for Au2Al2(-) at 57 ± 10 and 144 ± 12 cm(-1). The obtained vibrational and electronic structure information is compared with density functional calculations, unequivocally confirming that both Au2Al2(-) and Au2Al2 possess C2v tetrahedral structures. PMID:25494751

  13. Probing the electronic and vibrational structure of Au2Al2- and Au2Al2 using photoelectron spectroscopy and high resolution photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Lopez, Gary V.; Czekner, Joseph; Jian, Tian; Li, Wei-Li; Yang, Zheng; Wang, Lai-Sheng

    2014-12-01

    The electronic and vibrational structures of Au2Al2- and Au2Al2 have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au2Al2. Vibrationally resolved PE spectra are obtained using high-resolution photoelectron imaging for the ground state detachment transition of Au2Al2- at various photon energies (670.55-843.03 nm). An accurate electron affinity of 1.4438(8) eV is obtained for the Au2Al2 neutral cluster, as well as two vibrational frequencies at 57 ± 8 and 305 ± 13 cm-1. Hot bands transitions yield two vibrational frequencies for Au2Al2- at 57 ± 10 and 144 ± 12 cm-1. The obtained vibrational and electronic structure information is compared with density functional calculations, unequivocally confirming that both Au2Al2- and Au2Al2 possess C2v tetrahedral structures.

  14. Electrophoretic deposition of fluorescent Cu and Au sheets for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Jiale; Wu, Zhennan; Li, Tingting; Zhou, Ding; Zhang, Kai; Sheng, Yu; Cui, Jianli; Zhang, Hao; Yang, Bai

    2015-12-01

    Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets.Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to

  15. Catalytic Gas-Phase Glycerol Processing over SiO2-, Cu-, Ni- and Fe- Supported Au Nanoparticles

    PubMed Central

    Kapkowski, Maciej; Siudyga, Tomasz; Sitko, Rafal; Lelątko, Józef; Szade, Jacek; Balin, Katarzyna; Klimontko, Joanna; Bartczak, Piotr; Polanski, Jaroslaw

    2015-01-01

    In this study, we investigated different metal pairings of Au nanoparticles (NPs) as potential catalysts for glycerol dehydration for the first time. All of the systems preferred the formation of hydroxyacetone (HYNE). Although the bimetallics that were tested, i.e., Au NPs supported on Ni, Fe and Cu appeared to be more active than the Au/SiO2 system, only Cu supported Au NPs gave high conversion (ca. 63%) and selectivity (ca. 70%) to HYNE. PMID:26580400

  16. Epitaxial niobium (011) surfaces as a template for Cu(3)Au

    NASA Astrophysics Data System (ADS)

    Appleton, Randal Scott

    2001-10-01

    The symmetry breaking between ABC and ACB stacking twins in the growth of Cu3Au (111) thin films on Nb (011) is investigated. Nb films, similar to the buffer layers upon which Cu3Au is grown, are studied with low energy electron microscopy for the first time. Microscopy of the Nb surface reveals the organization of an oxygen-induced Nb surface which reconstructs into a stripe phase at and just below T0 = 1230 +/- 30°C. Above this temperature the reconstruction lifts. At temperatures more than 100K below T0 the surface is dominated by a single reconstruction variant. This symmetry breaking is attributed to shear from anisotropic thermal contraction of the Al2O3 substrate. The response of stripes to in-plane shear is also observed within strain fields caused by dislocations in the Nb film. These behaviors lead to a model of stripe behavior based on a competition between surface and bulk elastic energy. Additionally, LEEM studies show steps on the Nb surface which coalesce into bcc {110} nanofacets. The nanofacets intersect the (011) plane at 90° and 60° angles and completely accommodate sample miscut at low temperature. At high temperature the steps are of single height and occur in all orientations. A phase diagram is proposed for the surface facets as a function of temperature and miscut azimuth. Cu3Au films are grown under a number of conditions, which isolates step nucleation as the key to the stacking bias. The stacking ratio has a sinusoidal dependance on miscut azimuth. The ratio depends on miscut magnitude first linearly but with a rapid increase for miscuts; near 1°. This behavior fits well with a model of selective step nucleation for adatoms within diffusion distance of surface steps. Variations in average adatom chemistry and size have little effect, leaving the best explanation for stacking selection as an adatom affinity for step nucleation due to increased coordination number and reduced energy at step sites.

  17. Nucleation and Growth of Cu-Al Intermetallics in Al-Modified Sn-Cu and Sn-Ag-Cu Lead-Free Solder Alloys

    NASA Astrophysics Data System (ADS)

    Reeve, Kathlene N.; Anderson, Iver E.; Handwerker, Carol A.

    2015-03-01

    Lead-free solder alloys Sn-Cu (SC) and Sn-Ag-Cu (SAC) are widely used by the microelectronics industry, but enhanced control of the microstructure is needed to improve solder performance. For such control, nucleation and stability of Cu-Al intermetallic compound (IMC) solidification catalysts were investigated by variation of the Cu (0.7-3.0 wt.%) and Al (0.0-0.4 wt.%) content of SC + Al and SAC + Al alloys, and of SAC + Al ball-grid array (BGA) solder joints. All of the Al-modified alloys produced Cu-Al IMC particles with different morphologies and phases (occasionally non-equilibrium phases). A trend of increasing Cu-Al IMC volume fraction with increasing Al content was established. Because of solidification of non-equilibrium phases in wire alloy structures, differential scanning calorimetry (DSC) experiments revealed delayed, non-equilibrium melting at high temperatures related to quenched-in Cu-Al phases; a final liquidus of 960-1200°C was recorded. During cooling from 1200°C, the DSC samples had the solidification behavior expected from thermodynamic equilibrium calculations. Solidification of the ternary alloys commenced with formation of ternary β and Cu-Al δ phases at 450-550°C; this was followed by β-Sn, and, finally, Cu6Sn5 and Cu-Al γ1. Because of the presence of the retained, high-temperature phases in the alloys, particle size and volume fraction of the room temperature Cu-Al IMC phases were observed to increase when the alloy casting temperature was reduced from 1200°C to 800°C, even though both temperatures are above the calculated liquidus temperature of the alloys. Preliminary electron backscatter diffraction results seemed to show Sn grain refinement in the SAC + Al BGA alloy.

  18. Mercury embrittlement of Cu-Al alloys under cyclic loading

    NASA Technical Reports Server (NTRS)

    Regan, T. M.; Stoloff, N. S.

    1977-01-01

    The effect of mercury on the room temperature, high cycle fatigue properties of three alloys: Cu-5.5 pct Al, Cu-7.3 pct Al, and Cu-6.3 pct Al-2.5 pct Fe has been determined. Severe embrittlement under cyclic loading in mercury is associated with rapid crack propagation in the presence of the liquid metal. A pronounced grain size effect is noted under mercury, while fatigue properties in air are insensitive to grain size. The fatigue results are discussed in relation to theories of adsorption-induced liquid metal embrittlement.

  19. Effect of Au Content on Thermal Stability and Mechanical Properties of Au-Cu-Ag-Si Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Guo, H.; Zhang, W.; Chen, M. W.; Saotome, Y.; Fukuhara, M.; Inoue, A.

    2011-06-01

    The thermal stability, glass-forming ability (GFA), and mechanical and electrical properties of Au-based Au x Si17Cu75.5- x Ag7.5 ( x = 40 to 75.5 at. pct) metallic glasses were investigated. The glass transition temperature ( T g ) and crystallization temperature ( T x ) decreased with increasing Au content. The ultralow T g values below 373 K (100 °C) were obtained for alloys with x = 55 to 75.5. The alloys with x = 45 to 70 exhibited a high stabilization of supercooled liquid and a high GFA, and the supercooled liquid region and critical sample diameter for glass formation were in the range of 31 K to 50 K and 2 to 5 mm, respectively. The compressive fracture strength ( σ c,f ), Young's modulus ( E), and Vicker's hardness ( H v ) of the bulk metallic glasses (BMGs) decreased with increasing Au content. A linear correlation between Au concentration and the characteristic temperature, i.e., T g and T x , and mechanical properties, i.e., σ c,f , E, and H v , as well as electrical resistivity can be found in the BMGs, which will be helpful for the composition design of the desirable Au-based BMGs with tunable physical properties.

  20. YBa2Cu3O(7-x)/Au/Nb device structures

    NASA Technical Reports Server (NTRS)

    Hunt, B. D.; Foote, M. C.; Bajuk, L.; Vasquez, R. P.

    1991-01-01

    Fabrication and testing of planar and edge geometry YBaCuO/Au/Nb superconductor/normal-metal/superconductor (SNS) device structures is described. Weak-link devices of this type serve as sensitive probes of the electrical quality of the YBaCuO/Au interface. The devices are fabricated using laser-ablated, in situ, c-axis-oriented YBaCuO thin films, with both annealed and unannealed YBaCuO/Au interfaces. The planar SNS structures are formed by sequential, in situ deposition of YBaCuO, Au, and Nb, followed by etching, planarization, and wiring electrode definition to produce junctions ranging from 5 to 20 micron on a side. Resulting RnA products are 1-10 x 10 to the -8th ohm-sq cm with critical current densities up to 5 kA/sq cm. For the edge geometry devices, the YBaCuO film edges are patterned using Ar ion milling, followed by a low energy ion cleaning step and in situ deposition of Au and Nb. Devices with areas in the 10 to the -7th to 10 to the -8th sq cm range have been fabricated with RnA products lower than 10 to the -8th ohm-sq cm and critical current densities up to 3kA/sq cm. Both types of devices show ac Josephson steps under microwave irradiation. The best results have been obtained with annealed YBaCuO/Au interfaces.

  1. Positron lifetime studies of decomposition in 2024 (Al-Cu-Mg) and 7010 (Al-Zn-Cu-Mg) alloys

    SciTech Connect

    Dlubek, G. |; Lademann, P.; Krause, H.; Krause, S.; Unger, R.

    1998-09-04

    In the current paper, the decomposition behavior of the engineering alloys 2024 (Al-Cu-Mg) and 7010 (Al-Zn-Cu-Mg) is studied using positron lifetime measurements. Positrons probe open volume defects such as vacancies and dislocations. However, they may also be used to investigate coherent zones and incoherent precipitates. In order to understand the rather complicated precipitation sequences and the response of positrons to different type of precipitates occurring in 2024 and 7010 alloys, binary and ternary laboratory alloys were also investigated under the same experimental conditions as the engineering alloys. The interpretations of the results are based on experiences of the group from extensive positron studies of laboratory alloys such as Al-Zn, Al-Zn-Mg, Al-Cu, and further Al alloys (see also the review (4)). Their collected results are shown as lifetimes and curve-shape parameters S of the electron-positron momentum distribution curves characteristic for different precipitates in Al alloys.

  2. Wetting and Interfacial Chemistry of SnZnCu Alloys with Cu and Al Substrates

    NASA Astrophysics Data System (ADS)

    Fima, Przemysław; Pstruś, Janusz; Gancarz, Tomasz

    2014-05-01

    Wetting of Cu and Al pads by Sn-Zn eutectic-based alloys with 0.5, 1, and 1.5 wt.% of Cu was studied at 250 °C, in the presence of ALU33® flux, with wetting times of 15, 30, 60, and 180 s, respectively. With increasing wetting time the wetting angle decreases only slightly and the angles on Cu pads are higher than those on Al pads. Selected, solidified solder-pad couples were cross-sectioned and subjected to SEM-EDS study of the interfacial microstructure. The results revealed that the microstructure of the SnZnCu/Cu interface is much different from SnZnCu/Al interface. In the first case continuous interlayers are observed while in the latter case there is no interlayer but the alloy dissolves the substrate along grain boundaries.

  3. Synthesis and characterization of Cu2O/Au and its application in catalytic reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Guo, X. H.; Ma, J. Q.; Ge, H. G.

    2015-08-01

    Monodispersed Cu2O spherical colloids with diameter of about 300 nm were prepared by a facile additive-assisted complex-precursor solution method. Core-shell structure Cu2O/Au composites, constructed by spherical Cu2O core and Au nanoparticles shell, were obtained via galvanic replacement method. The morphology, microstructure and optical properties of the Cu2O/Au composites were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectra and ultraviolet-visible absorption. The results showed that Au NPs with an average size of 12 nm were uniformly distributed on the surface of the Cu2O spheres with size about 300 nm. Cu2O/Au composites exhibit high catalytic activity toward 4-NP reduction at room temperature.

  4. Template-directed FeCo nanoshells on AuCu

    SciTech Connect

    Gong, Maogang; Kirkeminde, Alec; Skomski, Ralph; Cui, Jun; Ren, Shenqiang

    2014-07-01

    A synthetic route is reported to achieve a precise control of FeCo shell growth on AuCu cores, leading to AuCu/FeCo core-shell nanoparticles, which could potentially open up the metastable tetragonal FeCo growth. Due to nonmagnetic AuCu core, the FeCo shell exhibits a transition from single domain to magnetic vortex state, which is determined by the particle radius and the thickness of the spheroidal shell. In our system, the transition occurs when the outer radius of the shell reaches about 8.9 nm. Furthermore, our FeCo shells exhibit excellent passivation against oxidation, due to an annealing-induced thin graphite shell. This work shows the uniqueness and versatility of the colloidal core-shell nanotechnology to manipulate nanostructures with desirable functionality.

  5. Interfacial Reaction during Friction Stir Welding of Al and Cu

    NASA Astrophysics Data System (ADS)

    Genevois, C.; Girard, M.; Huneau, B.; Sauvage, X.; Racineux, G.

    2011-08-01

    Commercially pure copper was joined to a 1050 aluminum alloy by friction stir welding. A specific configuration where the tool pin was fully located in the aluminum plate was chosen. In such a situation, there is no mechanical mixing between the two materials, but frictional heating gives rise to a significant thermally activated interdiffusion at the copper/aluminum interface. This gives rise to the formation of defect-free joints where the bonding is achieved by a very thin intermetallic layer at the Cu/Al interface. Nanoscaled grains within this bonding layer were characterized using transmission electron microscopy (TEM). Two phases were identified, namely, Al2Cu and Al4Cu9 phases. The nucleation and growth of these two phases are discussed and compared to the standard reactive interdiffusion reactions between Cu and Al.

  6. Evidence for an equilibrium epitaxial complexion at the Au-MgAl2O4 interface

    NASA Astrophysics Data System (ADS)

    Majdi, Tahereh; Zhu, Guo-zhen; Carvalho, Jessica; Jarvis, Victoria; Meinander, Kristoffer; Britten, James F.; Botton, Gianluigi; Preston, John S.

    2015-12-01

    Evidence for the existence of an equilibrium epitaxial complexion at the Au-MgAl2O4 interface has been observed. The growth of crystalline MgAl2O4 nanostructures, from a previously stable substrate in the presence of an Au overlayer and heat, is associated with this complexion. Prior to the nanostructures' self-assembly, Au nanoparticles crystalize, then reorient to align with the MgAl2O4 substrate. The presented results contradict earlier conclusions based solely on SEM studies of the final assembled nanostructures. Those results suggested that the MgAl2O4 grown pedestal and associated Au nanoparticle atop were both gold.

  7. YBa2Cu3O(7-delta)/Au/Nb sandwich geometry SNS weak links on c-axis oriented YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Foote, M. C.; Hunt, B. D.; Bajuk, L. J.

    1991-01-01

    Sandwich geometry superconductor/normal metal/superconductor structures have been fabricated on LaAlO3 and cubic zirconia with laser-ablated, c-axis-oriented YBa2Cu3O(7-delta) base electrodes, 100-600 A of Au, and Nb counter electrodes, all formed in situ without breaking vacuum. Junctions range in size from 5 to 50 micron on a side. Four probe I-V measurements at 4.2 K show RnA products as low as 6 x 10 to the -9th sq cm and critical current densities up to 5.2 kA/sq cm. AC Josephson steps were observed with the application of 10-GHz radiation. The temperature dependence of Jc and the observation of the AC Josephson effect suggest that true supercurrents are present and that they do indeed represent the characteristics of the YBa2Cu3O(7-delta)/Au/Nb structure. The best results were obtained when the devices were annealed at about 450 C in O2 for 30 min after Au deposition.

  8. Observation and explanation of light-emission spectra from statistically rough Cu, Ag, and Au tunnel junctions

    NASA Astrophysics Data System (ADS)

    Dawson, P.; Walmsley, D. G.; Quinn, H. A.; Ferguson, A. J. L.

    1984-09-01

    A detailed description of the experimentally observed light output from statistically rough Al-Al2O3-M (M=Ag,Au,Cu) tunnel junctions is presented. These data include a comprehensive description of the polarization and angular distribution of the light emitted from Al-Al2O3-Au junctions as well as spectra from reverse-biased Al-Al2O3-Ag junctions. It is argued, principally on the grounds of an examination of surface-plasmon-polariton (SPP) damping, that the bulk of the output from statistically rough tunnel junctions is due to the fast-SPP mode. The idea of fast-SPP mediation is found, in many respects, to be much more consistent with currently available experimental results than that of slow- (or junction) SPP mediation. Extant theoretical models hold slow-SPP mediation to be the dominant means of visible-regime emission. The view of the emission mechanism presented in this paper suggests that the statistically rough tunnel junction could emit light more efficiently (if the scale of the surface roughness were altered) and that it has potential as a spectroscopic tool.

  9. Cu-Mo-Au Partitioning and Ore Mineral Solubility: Constraints on the Role of Temperature, Pressure, and Volatile Fugacities

    NASA Astrophysics Data System (ADS)

    Tattitch, Brian; Blundy, Jon

    2014-05-01

    a result of the changes to available ligands in an H2S dominated fluid compared to an SO2 dominated fluid. The effect of oxidation may be stronger for Cu relative to Au as the Cu/Au ratio in the vapour drops from ~100:1 down to ~30:1 at higher fO2. At 740 oC, near the solidus for the Cardones, the solubility of Mo in the silicate melt is much lower, indicating that temperature and/or melt properties will exert a strong control on Mo availability during volatile exsolution. Supercritical experiments (200 MPa) have recently been completed to evaluate ore-mineral solubility, and the influence of T and fO2, for fluids of median salinity compared to vapours and brines at 100MPa. Evaluating changes to ore metal ratios (Cu/Mo, Cu/Au, Mo/Re etc.) will allow us to evaluate complex ore metal behaviour during the progression of magmatic volatiles from deep one-phase systems, through fluid unmixing, continued exsolution down to the solidus, and finally sub-solidus transport and deposition. References: [1] Candela and Holland (1984) GCA, 48, 373-380 [2] Simon et al. (2006) GCA, 70, 5583-5600 [3] Zajacz et al. (2011) GCA, 75, 2811-2827

  10. Noble metals (Ag, Au) nanoparticles addition effects on superconducting properties of CuTl-1223 phase

    NASA Astrophysics Data System (ADS)

    Jabbar, Abdul; Mumtaz, Muhammad; Nadeem, Kashif

    2015-03-01

    Low anisotropic (Cu0.5Tl0.5) Ba2Ca2Cu3O10 - δ (CuTl-1223) high temperature superconducting phase was synthesized by solid-state reaction, silver (Ag) nanoparticles were prepared by sol-gel method and gold (Au) nanoparticles were extracted from colloidal solution. We added Ag and Au nanoparticles in CuTl-1223 matrix separately with same concentration during the final sintering process to get (M)x/CuTl-1223; M = Ag nanoparticles or Au nanoparticles (x = 0 and 1.0 wt.%) nano-superconductor composites. We investigated and compared the effects of these noble metals nanoparticles addition on structural, morphological and superconducting transport properties of CuTl-1223 phase. The crystal structure of the host CuTl-1223 superconducting phase was not affected significantly after the addition of these nanoparticles. The enhancement of superconducting properties was observed after the addition of both Ag and Au nanoparticles, which is most probably due to improved inter-grains weak-links and reduction of defects such as oxygen deficiencies, etc. The reduction of normal state room temperature resistivity is the finger prints of the reduction of barriers and facilitation to the carriers transport across the inter-crystallite sites due to improved inter-grains weak-links. The greater improvement of superconducting properties in Ag nanoparticles added samples is attributed to the higher conductivity of silver as compared to gold, which also suits for practical applications due to lower cost and easy synthesis of Ag nanoparticles as compared to Au nanoparticles.

  11. Composition effects on the early-stage oxidation kinetics of (001) Cu-Au alloys

    NASA Astrophysics Data System (ADS)

    Zhou, G.-W.; Eastman, J. A.; Birtcher, R. C.; Baldo, P. M.; Pearson, J. E.; Thompson, L. J.; Wang, L.; Yang, J. C.

    2007-02-01

    An in situ environmental transmission electron microscopy study of the nucleation and growth of oxide islands during the early-stage oxidation of (001) Cu1-xAux alloys (x⩽38at.%) was undertaken in order to investigate the effects of alloying on oxide island nucleation behavior and growth kinetics. The kinetic data reveal that Au enhances the nucleation density of oxide islands and suppresses their growth rate. Our results provide insight into reasons for the decreased passivation properties of Cu when alloyed with Au.

  12. Streaked speckle in Cu{sub 3}Au coherent x-ray diffraction

    SciTech Connect

    Pitney, J. A.; Robinson, I. K.; Vartaniants, I. A.; Appleton, R.; Flynn, C. P.

    2000-11-15

    Coherent x-ray diffraction from the binary alloy Cu{sub 3}Au has speckled superstructure Bragg reflections due to its antiphase domain structure. For nonspecular superstructure reflections, it is possible to vary the diffraction geometry through a range of incidence and exit angles. Under grazing-exit conditions on a prepared Cu{sub 3}Au(111) thin-film sample, the superstructure speckles are found to become highly elongated and rotated on the detector. A detailed geometrical explanation of this behavior is developed to explain the effect.

  13. Nanoscale electrical characteristics of metal (Au, Pd)-graphene-metal (Cu) contacts

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Meli, G.; Grimaldi, M. G.

    2016-01-01

    Free-standing graphene presents exceptional physical properties (as a high carrier mobility) making it the ideal candidate for the next generation nanoelectronics. However, when graphene layers are inserted in real electronics devices, metal contacting is required. The metal-graphene interaction significantly affects the graphene electrical properties, drastically changing its behavior with respect to the free-standing configuration. So, this work presents an experimental study on the nanoscale electric characteristics of metal/graphene/metal contacts. In particular, starting from single-layer graphene grown on Cu foil we deposited on the graphene surface two different metal films (Au or Pd) and the Au/graphene/Cu and Pd/graphene/Cu current-voltage characteristics are acquired, on the nanometric scale, by the conductive atomic force microscopy. Both systems presented a current voltage rectifying behavior. However, the Au/graphene/Cu system conducts significantly at negative applied bias (graphene behaves as a p-type semiconductor in a meta/semiconductor contact), while in the Pd/graphene/Cu at positive applied bias (graphene behaves as a n-type semiconductor in a metal/semiconductor contact). This difference is discussed on the basis of the band energy diagram at the metal/graphene interface and the modification of the graphene Fermi level due to the Au/graphene or Pd/graphene interaction.

  14. Diffusion-induced grain boundary migration during ion beam mixing of Au/Cu bilayers

    SciTech Connect

    Alexander, D.E.; Baldo, P.M.; Rehn, L.E.

    1992-09-01

    Experiments were performed to evaluate the effect of 1.5 MeV Kr irradiation on diffusion-induced grain boundary migration (DIGM) in Au/Cu bilayers in the temperature range of 300{le}T{le}050K. The experimental results were consistent with DIGM occurring in bilayers both during irradiation and during annealing treatments. Rutherford backscattering spectrometry showed a nearly uniform distribution of Cu present through the entire thickness of appropriately prepared polycrystalline Au films irradiated or annealed at temperatures {ge}400K. No parallel effect was seen in similarly treated single-crystal films. In each polycrystalline sample studied, irradiation resulted in greater amounts of Cu present uniformly in the Au compared to annealing-only. The magnitudes of measured Cu compositions were substantially greater than that expected solely from grain boundary diffusion. A simple analysis of the process indicated that ion irradiation affects DIGM by increasing the composition of Cu present in alloyed zones and/or by increasing the grain boundary velocity in the Au.

  15. Electrical Transport Properties of Liquid Al-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Thakore, B. Y.; Khambholja, S. G.; Suthar, P. H.; Jani, A. R.

    2010-06-01

    Electrical transport properties viz. electrical resistivity, thermoelectric power and thermal conductivity of liquid Al-Cu alloys as a function of Cu concentration have been studied in the present paper. Ashcroft empty core model potential has been used to incorporate the ion-electron interaction. To incorporate the exchange and correlation effects, five different forms of local field correction functions viz. Hartree, Taylor, Ichimaru et al., Farid et al. and Sarkar et al. have been used. The transport properties of binary system have been studied using Faber-Ziman formulation combined with Ashcroft-Langreth (AL) partial structure factor. The computed values of electrical resistivity are compared with experimental data and for low Cu concentration, good agreement has been observed. Further, thermoelectric power and thermal conductivity have also been predicted.

  16. Enhancing the Reactivity of Al/CuO Nanolaminates by Cu Incorporation at the Interfaces.

    PubMed

    Marín, Lorena; Nanayakkara, Charith E; Veyan, Jean-Francois; Warot-Fonrose, Bénédicte; Joulie, Sébastien; Estève, Alain; Tenailleau, Christophe; Chabal, Yves J; Rossi, Carole

    2015-06-10

    In situ deposition of a thin (∼5 nm) layer of copper between Al and CuO layers is shown to increase the overall nanolaminate material reactivity. A combination of transmission electron microscopy imaging, in situ infrared spectroscopy, low energy ion scattering measurements, and first-principles calculations reveals that copper spontaneously diffuses into aluminum layers (substantially less in CuO layers). The formation of an interfacial Al:Cu alloy with melting temperature lower than pure Al metal is responsible for the enhanced reactivity, opening a route to controlling the stochiometry of the aluminum layer and increasing the reactivity of the nanoenergetic multilayer systems in general. PMID:25988997

  17. Au enrichment and vertical relaxation of the Cu3Au (111 ) surface studied by normal-incidence x-ray standing waves

    NASA Astrophysics Data System (ADS)

    Bauer, O.; Schmitz, C. H.; Ikonomov, J.; Willenbockel, M.; Soubatch, S.; Tautz, F. S.; Sokolowski, M.

    2016-06-01

    We have investigated the Cu3Au (111 ) surface, prepared under ultrahigh vacuum conditions by sputtering and annealing, by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy, and normal incidence x-ray standing waves (NIXSW). We find the surface to be depleted with Cu and enriched with Au at the same time, yielding a nominal Cu:Au ratio of 0.61:0.39 in the topmost layer. The STM images reveal that the first layer is nearly closely filled with atoms and contains a small amount of vacancies with an area concentration of about 5 % . Together with the Au enrichment, these cause local short-range disorder of the Au p (2 ×2 ) reconstruction. From this data, the average stoichiometry of the p (2 ×2 ) surface unit cell is estimated at C u2.22A u1.44□0.20 (instead of C u3.00A u1.00□0.00 of the ideal surface; □ denotes an atomic vacancy site). From NIXSW we find a significant outward relaxation of both the Cu and Au atoms of the topmost layer by 0.28 Å and 0.33 Å, which corresponds to 13 % and 15 % of the (111) bulk layer spacing of C u3Au . We suggest that this originates from a widening of the first/second layer spacing, by 6.8 % and 8.8 % for the Cu and Au atoms, respectively, plus an additional rigid increase in the second/third layer spacing by 6.2 % . We explain this by steric repulsions between Au atoms of the topmost layer, replacing smaller Cu atoms, and Au atoms in the second layer in combination with disorder. Finally, a lateral reconstruction, similar to that on the Au(111) surface, but with a much larger periodicity of 290 Å, is identified from LEED.

  18. Adhesion enhancement of ion beam mixed Cu/Al/polyimide

    NASA Astrophysics Data System (ADS)

    Chang, G. S.; Jung, S. M.; Lee, Y. S.; Choi, I. S.; Whang, C. N.; Woo, J. J.; Lee, Y. P.

    1997-01-01

    Cu (400 Å)/polyimide was mixed with 80 keV Ar+ and N2+ from 1.0×1015 to 2.0×1016 ions/cm2. The same processes were repeated for the Cu (400 Å)/Al (50 Å)/polyimide system which has Al as a buffer layer. The quantitative adhesion strength was measured by a standard scratch test. X-ray photoelectron spectroscopy was employed to investigate the change in the chemical bonds of the ion beam mixed polyimide substrate and the intermediate effects for the adhesion enhancement in Cu/Al/polyimide. Two distinct tendencies are observed in the adhesion strength: Cu/Al/polyimide is more adhesive than Cu/polyimide after ion beam mixing, and N2+ ions are more effective in the adhesion enhancement than Ar+. The formation of an interlayer compound of CuAl2O4 accounts for the former, while the latter is understood by the fact that N2+ ions produce more pyridinelike moiety, amide group and tertiary amine moiety which are known as adhesion promoters.

  19. First principles investigation of the diffusion of interstitial Cu, Ag and Au in ZnTe

    NASA Astrophysics Data System (ADS)

    Chen, Li An; Zhu, Xing Feng; Chen, Ling Fu

    2015-07-01

    The diffusion is of great significance in many applications when the impurities are employed to tune the semiconductor's electrical or optical properties. It is necessary to understand how dopant defects diffuse in semiconductors. Using first-principles calculations, we consider interstitial diffusion mechanisms and calculate the migration barrier energies of interstitial Cu, Ag and Au atoms in II-VI compounds ZnTe. We find that the relative size of dopant and bulk atoms is an important factor which affects the diffusion behavior. The high symmetry Tc site, which is tetrahedrally coordinated by four cation atoms, is the global minimum energy location for Ag and Au interstitials. The size of Cu adatom is small, so Cu is more stable when it locates at the Ta site which is tetrahedrally coordinated by four anion atoms. But the global minimum energy location for Cu interstitials is M site which is of smaller space than Ta. Cu adatoms show an asymmetric curve of energy diffusion barrier with two energetically distinct extremum in the pathway. Ag diffuses along nearly straight line paths along [111] or equivalent directions. Diffusion for Cu or Au deviates from the straight line paths along <111> avoiding high symmetric sites.

  20. Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose

    NASA Astrophysics Data System (ADS)

    Tee, Si Yin; Ye, Enyi; Pan, Pei Hua; Lee, Coryl Jing Jun; Hui, Hui Kim; Zhang, Shuang-Yuan; Koh, Leng Duei; Dong, Zhili; Han, Ming-Yong

    2015-06-01

    Herein, we report a facile two-step approach to produce gold-incorporated copper (Cu/Au) nanostructures through controlled disproportionation of the Cu+-oleylamine complex at 220 °C to form copper nanowires and the subsequent reaction with Au3+ at different temperatures of 140, 220 and 300 °C. In comparison with copper nanowires, these bimetallic Cu/Au nanostructures exhibit their synergistic effect to greatly enhance glucose oxidation. Among them, the shape-controlled Cu/Au nanotubes prepared at 140 °C show the highest electrocatalytic activity for non-enzymatic glucose sensing in alkaline solution. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to the initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose.Herein, we report a facile two-step approach to produce gold-incorporated copper (Cu/Au) nanostructures through controlled disproportionation of the Cu+-oleylamine complex at 220 °C to form copper nanowires and the subsequent reaction with Au3+ at different temperatures of 140, 220 and 300 °C. In comparison with copper nanowires, these bimetallic Cu/Au nanostructures exhibit their synergistic effect to greatly enhance glucose oxidation. Among them, the shape-controlled Cu/Au nanotubes prepared at 140 °C show the highest electrocatalytic activity for non-enzymatic glucose sensing in alkaline solution. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other

  1. Synthesis of porous Cu from Al-Cu-Co decagonal quasicrystalline alloys

    NASA Astrophysics Data System (ADS)

    Kalai Vani, V.; Kwon, O. J.; Hong, S. M.; Fleury, E.

    2011-07-01

    The formation of a porous Cu structure from cast Al-Cu-Co decagonal quasicrystalline alloys has been studied using a selective corrosion technique. Two alkaline solutions were selected based on the electrochemical properties of the constituent elements. Selective corrosion of Al and Co was achieved by chemical immersion of the cast Al-Cu-Co alloy in both 5 M NaOH and 0.5 M Na2CO3 solutions; values for BET surface-to-weight ratio of up to 30 m2/g could be reached. Microstructural analyses indicated that the architecture of the resulting porous structures was composed of a needle-type phase, remaining from the decagonal phase, in addition to Cu and Cu-Co phases.

  2. Electron correlation and relativistic effects in the coinage metal compounds. II. Heteronuclear dimers: CuAg, CuAu, and AgAu

    NASA Astrophysics Data System (ADS)

    Kellö, Vladimir; Sadlej, Andrzej J.

    1995-08-01

    Electric properties of heteronuclear dimers of the coinage metals are calculated at the level of the CCSD(T) approximation applied to 38 electrons of the valence and next-to-valence atomic shells. The relativistic effects are accounted for by using the scalar approximation to the Pauli hamiltonian. Both the pure relativistic and mixed relativistic-correlation contributions to energies and electric properties are computed. All calculations have been carried out by using the recently developed first-order polarized basis sets of the coinage metal atoms. In the non-relativistic approximation all studied dimers show only a moderate degree of polarity; the non-relativistic CuAg turns out to be the most polar dimer with the Cu(-)Ag(+) polarity. The relativistic effects considerably reduce the negative value of the CuAg dipole moment, change the sign of the CuAu dipole moment, and make the AgAu molecule the most polar species in the series. Simultaneously, the parallel component of the dipole polarizability shows only a small relativistic contraction. The calculated quasirelativistic interaction potentials have a correct behavior in the vicinity of their minima and give the Re and ωe values in complete agreement with experiment. Much less satisfactory are the dissociation energy data which seem to suffer from the single reference configuration approximation.

  3. Corrosion Behavior of Al-Al3Ni and Al-Al2Cu Functionally Graded Materials Fabricated by a Centrifugal Method

    NASA Astrophysics Data System (ADS)

    Noda, Kazuhiko; Miyahara, Keita; Watanabe, Yoshimi

    2008-02-01

    Intermetallic compounds, such as Al3Ni and Al2Cu, are effective for enhancing the mechanical properties of an alloy. Al-Al3Ni and Al-Al2Cu functionally graded materials (FGMs) might be attractive materials for advanced materials. Al-Al3Ni and Al-Al2Cu FGMs were fabricated by a centrifugal method; the centrifugal method is an extremely effective method for fabricating FGMs. Al-Al3Ni and Al-Al2Cu FGMs that had a graded distribution of intermetallic compounds could be produced by this in-situ centrifugal method. Particle size, particle shape and the distribution of intermetallic compounds were controlled by varying the content of the alloy element (Ni, Cu) in the master alloy, the cooling rate in casting and the gravity number. The casting mechanism is explained in terms of the microstructures of the Al-Al3Ni and Al-Al2Cu FGMs fabricated by this method. The corrosion behavior of the FGMs was investigated by electrochemical analysis. Polarization curves of the FGMs in a borate solution were measured by a potentiodynamic method. The presence of Al2Cu exerted a larger effect on the corrosion behavior of the FGMs than Al3Ni. Analysis of the polarization curve parameters was effective for evaluating the corrosion resistance of the FGMs.

  4. Effect of gold composition on the orientations of oxide nuclei during the early stage oxidation of Cu-Au alloys

    SciTech Connect

    Luo Langli; Zhou Guangwen; Kang Yihong; Yang, Judith C.

    2012-04-15

    In situ environmental transmission electron microscopy is employed to study the effect of Au composition in Cu-Au alloys on the orientations of oxide islands during the initial-stage oxidation of Cu-Au(100) alloys. An orientation transition from nucleating epitaxial Cu{sub 2}O islands to randomly oriented oxide islands is observed upon increasing the oxygen gas pressure. By increasing the Au composition in the Cu-Au alloys, both the oxide nucleation time and saturation density of oxide islands increase, but the critical oxygen pressure leading to nucleating randomly oriented Cu{sub 2}O islands decreases. It is shown by a kinetic model that such a dependence of the critical oxygen pressure on the alloy composition is related to its effect on two competing processes, the oxide-alloy structure match and the effective collision of oxygen atoms, in determining the overall nucleation rate of oxide islands during the oxidation.

  5. Temperature dependence diode parameters studies of Al/CuPc/n-Si/Al structure

    NASA Astrophysics Data System (ADS)

    Kumar, Ratnesh; Kaur, Ramneek; Sharma, Mamta; Kaur, Maninder; Tripathi, S. K.

    2015-08-01

    This paper presents the fabrication of Al/CuPc/n-Si/Al metal-organic-semiconductor diode. The copper phthalocyanine as organic layer is deposited on Si substrate by thermal evaporation technique. The temperature dependent current-voltage measurements are performed on Al/CuPc/n-Si structure. The important diode parameters i.e. the barrier height and ideality factor have been calculated. The temperature dependence of barrier height and ideality factor has been studied.

  6. Au nanocrystal-directed growth of Au-Cu(2)O core-shell heterostructures with precise morphological control.

    PubMed

    Kuo, Chun-Hong; Hua, Tzu-En; Huang, Michael H

    2009-12-16

    Formation of metal-semiconductor core-shell heterostructures with precise morphological control of both components remains challenging. Heterojunctions, rather than core-shell structures, were typically produced for metal-semiconductor composites. Furthermore, growth of semiconductor shells with systematic shape evolution using the same metal particle cores can also present a significant challenge. Here, we have synthesized Au-Cu(2)O core-shell heterostructures using gold nanoplates, nanorods, octahedra, and highly faceted nanoparticles as the structure-directing cores for the overgrowth of Cu(2)O shells by a facile aqueous solution approach. The gold nanoparticle cores guide the growth of Cu(2)O shells with morphological and orientation control. Systematic shape evolution of the shells can be easily achieved by simply adjusting the volume of reductant added. For example, truncated cubic to octahedral Cu(2)O shells were produced from octahedral gold nanocrystal cores. Unusual truncated stellated icosahedral and star column structures have also been synthesized. The heterostructures were found to be formed via an unusual hollow-shell-refilled growth mechanism not reported before. The approach has potential toward the preparation of other complex Cu(2)O structures with well-defined facets. PMID:19919066

  7. Formation Mechanism of CuAlO2 Prepared by Rapid Thermal Annealing of Al2O3/Cu2O/Sapphire Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Shih, C. H.; Tseng, B. H.

    Single-phase CuAlO2 films were successfully prepared by thin-film reaction of an Al2O3/Cu2O/sapphire sandwich structure. We found that the processing parameters, such as heating rate, holding temperature and annealing ambient, were all crucial to form CuAlO2 without second phases. Thermal annealing in pure oxygen ambient with a lower temperature ramp rate might result in the formation of CuAl2O4 in addition to CuAlO2, since part of Cu2O was oxidized to form CuO and caused the change in reaction path, i.e. CuO + Al2O3 → CuAl2O4. Typical annealing conditions successful to prepare single-phase CuAlO2 would be to heat the sample with a temperature rampt rate higher than 7.3 °C/sec and hold the temperature at 1100 °C in air ambient. The formation mechanism of CuAlO2 has also been studied by interrupting the reaction after a short period of annealing. TEM observations showed that the top Al2O3 layer with amorphous structure reacted immediately with Cu2O to form CuAlO2 in the early stage and then the remaining Cu2O reacted with the sapphire substrate.

  8. Cu2O and Au/Cu2O particles: surface properties and applications in glucose sensing.

    PubMed

    Won, Yu-Ho; Stanciu, Lia A

    2012-01-01

    In this work we investigated the surface and facet-dependent catalytic properties of metal oxide particles as well as noble metal/metal oxide heterogeneous structures, with cuprous oxide (Cu(2)O) and Au/Cu(2)O being selected as model systems. As an example of application, we explored the potential of these materials in developing electrocatalytic devices. Cu(2)O particles were synthesized in various shapes, then used for testing their morphology-dependent electrochemical properties applied to the detection of glucose. While we did not attempt to obtain the best detection limit reported to date, the octahedral and hexapod Cu(2)O particles showed reasonable detection limits of 0.51 and 0.60 mM, respectively, which are physiologically relevant concentrations. However, detection limit seems to be less affected by particle shapes than sensitivity. Heterogeneous systems where Au NPs were deposited on the surface of Cu(2)O particles were also tested with similar results in terms of the effect of surface orientation. PMID:23201983

  9. Cu2O and Au/Cu2O Particles: Surface Properties and Applications in Glucose Sensing

    PubMed Central

    Won, Yu-Ho; Stanciu, Lia A.

    2012-01-01

    In this work we investigated the surface and facet-dependent catalytic properties of metal oxide particles as well as noble metal/metal oxide heterogeneous structures, with cuprous oxide (Cu2O) and Au/Cu2O being selected as model systems. As an example of application, we explored the potential of these materials in developing electrocatalytic devices. Cu2O particles were synthesized in various shapes, then used for testing their morphology-dependent electrochemical properties applied to the detection of glucose. While we did not attempt to obtain the best detection limit reported to date, the octahedral and hexapod Cu2O particles showed reasonable detection limits of 0.51 and 0.60 mM, respectively, which are physiologically relevant concentrations. However, detection limit seems to be less affected by particle shapes than sensitivity. Heterogeneous systems where Au NPs were deposited on the surface of Cu2O particles were also tested with similar results in terms of the effect of surface orientation. PMID:23201983

  10. Interdiffusion in. beta. phase Cu--Al alloys

    SciTech Connect

    Romig, A.D. Jr.

    1983-06-01

    The diffusion behavior of ..beta.. phase Cu--Al has been studied at 800, 850, and 950 /sup 0/C using the experimental approach and analysis scheme of Kirkendall and Darken. Diffusion couples were made using the window frame technique and concentration profiles were determined by electron probe microanalysis. The chemical diffusion coefficient, D was found to be D = 0.65 exp(-42200/RT) cm/sup 2//s. The diffusivity was observed to be independent of composition over the range 11--13 wt. % Al. The self-diffusion coefficients D/sub Cu/ and D/sub Al/ were determined to be D/sub Al/ = 0.13 exp(-38900/RT) cm/sup 2//s and D/sub Cu/ = 2.2 exp(-43400/RT) cm/sup 2//s. All activation energies are in calories/mole.

  11. A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO₂ reduction.

    PubMed

    Lysgaard, Steen; Mýrdal, Jón S G; Hansen, Heine A; Vegge, Tejs

    2015-11-14

    Using a DFT-based genetic algorithm (GA) approach, we have determined the most stable structure and stoichiometry of a 309-atom icosahedral AuCu nanoalloy, for potential use as an electrocatalyst for CO2 reduction. The identified core-shell nano-particle consists of a copper core interspersed with gold atoms having only copper neighbors and a gold surface with a few copper atoms in the terraces. We also present an adsorbate-dependent correction scheme, which enables an accurate determination of adsorption energies using a computationally fast, localized LCAO-basis set. These show that it is possible to use the LCAO mode to obtain a realistic estimate of the molecular chemisorption energy for systems where the computation in normal grid mode is not computationally feasible. These corrections are employed when calculating adsorption energies on the Cu, Au and most stable mixed particles. This shows that the mixed Cu135@Au174 core-shell nanoalloy has a similar adsorption energy, for the most favorable site, as a pure gold nano-particle. Cu, however, has the effect of stabilizing the icosahedral structure because Au particles are easily distorted when adding adsorbates. PMID:25924775

  12. Plasmon Modes Induced by Anisotropic Gap Opening in Au@Cu2 O Nanorods.

    PubMed

    Zhang, Shouren; Jiang, Ruibin; Guo, Yanzhen; Yang, Baocheng; Chen, Xiao-Lan; Wang, Jianfang; Zhao, Yufen

    2016-08-01

    Integration of semiconductors with noble metals to form heteronanostructures can give rise to many interesting plasmonic and electronic properties. A number of such heteronanostructures have been demonstrated comprising noble metals and n-type semiconductors, such as TiO2 , ZnO, SnO2 , Fe3 O4 , and CuO. In contrast, reports on heteronanostructures made of noble metals and p-type semiconductors are scarce. Cu2 O is an unintentional p-type semiconductor with unique properties. Here, the uniform coating of Cu2 O on two types of Au nanorods and systematic studies of the plasmonic properties of the resultant core-shell heteronanostructures are reported. One type of Au nanorods is prepared by seed-mediated growth, and the other is obtained by oxidation of the as-prepared Au nanorods. The (Au nanorod)@Cu2 O nanostructures produced from the as-prepared nanorods exhibit two transverse plasmon peaks, whereas those derived from the oxidized nanorods display only one transverse plasmon peak. Through electrodynamic simulations the additional transverse plasmon peak is found to originate from a discontinuous gap formed at the side of the as-prepared nanorods. The existence of the gap is verified and its formation mechanism is unraveled with additional experiments. The results will be useful for designing metal-semiconductor heteronanostructures with desired plasmonic properties and therefore also for exploring plasmon-enhanced applications in photocatalysis, solar-energy harvesting, and biotechnologies. PMID:27374920

  13. Preparation of BaTiO3/Cu2O and BaTiO3/Cu2O/Au Complexes: Their Photocatalytic and Antipathogenic Effect.

    PubMed

    Cho, Sung-Woo; Nam, Dae-Hyun; Kim, Lee-Han; Jung, Dongwoon

    2016-05-01

    BaTiO3/Cu2O and BaTiO3/Cu2O/Au complexes were prepared from CuCl2, HAuCl4 solution, and BaTiO3 by the solution method. BaTiO3 particles were dispersed in a CuCl2 solution, and the BaTiO3/CuO complex was produced through crystallization of CuO onto the BaTiO3 surface by hydrolysis of CuCl2 in the first stage. After the reaction, CuO was reduced to Cu2O by treatment with glucose, thereby yielding the BaTiO3/Cu2O complex. The BaTiO3/Cu2O/Au complex was prepared by treating the BaTiO3/Cu2O particles with HAuCl4. Under visible light, the obtained BaTiO3/Cu2O0/Au complex showed higher photocatalytic activity than the Degussa P-25sample. In addition, the BaTiO3/Cu2O complex showed excellent antipathogenic effect. PMID:27483887

  14. Porphyry Cu-Au and associated polymetallic Fe-Cu-Au deposits in the Beiya Area, western Yunnan Province, south China

    USGS Publications Warehouse

    Xu, X.-W.; Cai, X.-P.; Xiao, Q.-B.; Peters, S.G.

    2007-01-01

    The Alkaline porphyries in the Beiya area are located east of the Jinshajiang suture, as part of a Cenozoic alkali-rich porphyry belt in western Yunnan. The main rock types include quartz-albite porphyry, quartz-K-feldspar porphyry and biotite-K-feldspar porphyry. These porphyries are characterised by high alkalinity [(K2O + Na2O)% > 10%], high silica (SiO2% > 65%), high Sr (> 400??ppm) and 87Sr/86Sr (> 0.706)] ratio and were intruded at 65.5??Ma, between 25.5 to 32.5??Ma, and about 3.8??Ma, respectively. There are five main types of mineral deposits in the Beiya area: (1) porphyry Cu-Au deposits, (2) magmatic Fe-Au deposits, (3) sedimentary polymetallic deposits, (4) polymetallic skarn deposits, and (5) palaeoplacers associated with karsts. The porphyry Cu-Au and polymetallic skarn deposits are associated with quartz-albite porphyry bodies. The Fe-Au and polymetallic sedimentary deposits are part of an ore-forming system that produced considerable Au in the Beiya area, and are characterised by low concentrations of La, Ti, and Co, and high concentrations of Y, Yb, and Sc. The Cenozoic porphyries in western Yunnan display increased alkalinity away from the Triassic Jinshajiang suture. Distribution of both the porphyries and sedimentary deposits in the Beiya area are interpreted to be related to partial melting in a disjointed region between upper mantle lithosphere of the Yangtze Plate and Gondwana continent, and lie within a shear zone between buried Palaeo-Tethyan oceanic lithosphere and upper mantle lithosphere, caused by the subduction and collision of India and Asia. ?? 2006 Elsevier B.V. All rights reserved.

  15. Comparative Study of CuO Species on CuO/Al2O3, CuO/CeO2-Al2O3 and CuO/La2O-Al2O3 Catalysts for CO Oxidation

    NASA Astrophysics Data System (ADS)

    Jin, Ling-yun; He, Mai; Lu, Ji-qing; Luo, Meng-fei; Fang, Ping; Xie, Yun-long

    2007-10-01

    CuO/Al2O3, CuO/CeO2-Al2O3, and CuO/La2O3-Al2O3 (denoted as Cu/Al, Cu/CeAl, and Cu/LaAl) catalysts were prepared by an impregnation method. CuO species and CuO/Al2O3 thermal solid-solid interaction were characterized by in situ XRD, Raman spectroscopy and H2-TPR techniques. For the Cu/Al catalyst, a CuAl2O4 phase exists between the CuO and Al2O3 layer and the CuO phase exists on the surface in both highly dispersed and bulk forms. For the Cu/CeAl catalyst, there is highly dispersed and bulk CuO on the surface, but most of the CuO has transferred into the internal layer of CeO2 as bulk CuO and CuAl2O4. For the Cu/LaAl catalyst, only bulk CuO is present on the surface of the catalyst and no CuAl2O4 is formed. The catalytic activity order for CO oxidation is Cu/CeAl>Cu/Al>Cu/LaAl. The highly dispersed CuO on the catalyst surface may be the active phase for CO oxidation. The results show that the addition of CeO2 not only promotes both the transference of CuO and the formation of CuAl2O4 but also favors the CO oxidation due to the association of highly dispersed CuO with CeO2, while La2O3 hinders the transference of CuO and the formation of CuAl2O4.

  16. Localized surface plasmon resonances after selective oxidization of AuCu solid solution nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Sousanis, A.; Grammatikopoulos, S.; Delimitis, A.; Dracopoulos, V.; Poulopoulos, P.

    2015-07-01

    AuxCu100-x, 4 ≤ x ≤ 12 at.%, solid solution nanocrystalline films with thickness between 1.5 and 100 nm were grown on Si(100) and Corning glass substrates at room temperature by radio frequency magnetron sputtering. After post annealing at 430 °C in a furnace with air, phase separation occurred between CuO and Au. The Au nanoparticles showed intense localized surface plasmon resonances with an amplitude increasing with Au concentration. We show the evolution of these resonances with the annealing time and correlate the structure to optical properties. The controllable tuning of position and intensity of plasmon resonances render this system a good candidate for applications.

  17. Supercoducting property of Zr-Cu-Al-Ni-Nb alloys

    NASA Astrophysics Data System (ADS)

    Okai, D.; Motoyama, G.; Kimura, H.; Inoue, A.

    The superconducting property of Zr55Cu(30-X)Al10Ni5NbX alloys prepared by arc melting and liquid quenching methods was investigated by magnetic susceptibility measurements. The crystalline alloys with X = 0∼25 at.% prepared by arc melting method exhibited superconductivity with maximum Tc,on of 10.1 K. The alloys (X = 10∼23 at.%) with crystalline particles embedded in an amorphous structure, which were fabricated by melt spinning method, showed superconductivity with Tc,on of less than 4.0 K. The superconducting property of the Zr-Cu-Al-Ni-Nb alloys was attributed to superconducting phases of Zr2Cu, Zr2Ni, Zr65Al10Nb25 and Zr-Nb contained in the Zr-Cu-Al-Ni-Nb alloys. The melt-spun Zr55Cu(30-X)Al10Ni5NbX (X = 10∼20 at.%) alloys exhibited glass transition at 718∼743 K and were found to be superconducting metallic glasses.

  18. Significant enhancement in photocatalytic reduction of water to hydrogen by Au/Cu2 ZnSnS4 nanostructure.

    PubMed

    Ha, Enna; Lee, Lawrence Yoon Suk; Wang, Jingchuan; Li, Fenghua; Wong, Kwok-Yin; Tsang, Shik Chi Edman

    2014-06-01

    Enhanced photocatalytic activities by Au core Novel Au/Cu2 ZnSnS4 core/shell nanoparticles (NPs) are synthesized for the first time via wet chemistry approach. The insertion of Au core into CZTS NPs dramatically enhances light absorption due to surface plasmon resonance effect, especially in the Vis-NIR region. Au/CZTS core/shell NPs show much higher photocatalytic activities for hydrogen evolution compared with other CZTS nanostructures. PMID:24644004

  19. Surface diffusion coefficient of Au atoms on single layer graphene grown on Cu

    SciTech Connect

    Ruffino, F. Cacciato, G.; Grimaldi, M. G.

    2014-02-28

    A 5 nm thick Au film was deposited on single layer graphene sheets grown on Cu. By thermal processes, the dewetting phenomenon of the Au film on the graphene was induced so to form Au nanoparticles. The mean radius, surface-to-surface distance, and surface density evolution of the nanoparticles on the graphene sheets as a function of the annealing temperature were quantified by scanning electron microscopy analyses. These quantitative data were analyzed within the classical mean-field nucleation theory so to obtain the temperature-dependent Au atoms surface diffusion coefficient on graphene: D{sub S}(T)=[(8.2±0.6)×10{sup −8}]exp[−(0.31±0.02(eV)/(at) )/kT] cm{sup 2}/s.

  20. Controlling Bulk Cu6Sn5 Nucleation in Sn0.7Cu/Cu Joints with Al Micro-alloying

    NASA Astrophysics Data System (ADS)

    Xian, J. W.; Belyakov, S. A.; Gourlay, C. M.

    2016-01-01

    We show that dilute Al additions can control the size of primary Cu6Sn5 rods in Sn-0.7Cu/Cu ball grid array joints. In Sn-0.7Cu-0.05Al/Cu joints, the number of primary Cu6Sn5 per mm2 is ˜7 times higher and the mean three-dimensional length of rods is ˜4 times smaller than in Al-free Sn-0.7Cu/Cu joints, while the area fraction of primary Cu6Sn5 is similar. It is shown that epitaxial nucleation of primary Cu6Sn5 occurs on δ-Cu33Al17 or γ 1-Cu9Al4 particles, which are stable in the Sn-0.7Cu-0.05Al melt during holding at 250°C. The observed facet relationships agree well with previously determined orientation relationships between δ-Cu33Al17 and Cu6Sn5 in hypereutectic Sn-Cu-Al alloys and result in a good lattice match with <˜2.5% lattice mismatch on two different interfacial planes.

  1. Photocatalytic reduction of triclosan on Au-Cu2O nanowire arrays as plasmonic photocatalysts under visible light irradiation.

    PubMed

    Niu, Junfeng; Dai, Yunrong; Yin, Lifeng; Shang, Jianying; Crittenden, John C

    2015-07-14

    Triclosan (TCS) is a potential threat to the environment and human health. Photocatalysis can be used to degrade TCS, but the photocatalytic efficiency is usually limited by the photoabsorptivity and photostability of the photocatalyst. In addition, some toxic by-products might also be generated during photocatalytic processes. In this study, we prepared Au-coated Cu2O nanowire arrays (Au-Cu2O NWAs) by beam sputtering Au onto Cu2O nanowires grown from a Cu foil. We found that photocatalytic degradation of TCS under visible light (420 nm < λ < 780 nm) irradiation and Au-Cu2O NWAs had several advantages. Au-Cu2O NWAs had good photoabsorptivity, high photostability (negligible activity loss after 16 runs), excellent photocatalytic activity (47.6 times faster than that of Cu2O), and low yield of dichlorodibenzo-dioxins/dichlorohydroxydibenzofurans. The degradation intermediates were identified as chlorophenoxyphenol, phenoxyphenol, chlorophenol, catechol, phenol, benzoquinone, and lower volatile acids. We developed the degradation pathway of TCS which follows electron reduction and then oxidation by reactive oxygen species. The mechanism was developed and strengthened using the radical trapping and other measurements. The unusual mechanism and photostability of Au-Cu2O NWAs were attributed to the Au/Cu2O/Cu "sandwich"-like structure. This structure yields a sustained and steady internal electric field, raises the conduction band of Cu2O, reinforces the reductive activity of the photo-generated electrons, and eliminates the photo-generated holes that are responsible for the photo-etching of Cu2O. PMID:26076905

  2. Comparison of fission neutron and pulsed spallation neutron sources for radiation effects experiments on Cu/sub 3/Au

    SciTech Connect

    Kirk, M.A.

    1983-10-01

    Through our recent experimental work on the neutron irradiation effects in Cu/sub 3/Au, we will compare fission and pulsed spallation neutron sources. Neutron characteristics of irradiation facilities at the Intense Pulsed Neutron Source (IPNS) and the CP-5 reactor (now closed down), are briefly described. Defect cascade size distributions from irradiations of Cu/sub 3/Au at both neutron sources illustrated by transmission electron micrographs of disordered zones. Radiation-enhanced diffusion experiments in Cu/sub 3/Au are discussed along with the effect of pulsed neutron irradiations.

  3. Highly Facet-Dependent Photocatalytic Properties of Cu2 O Crystals Established through the Formation of Au-Decorated Cu2 O Heterostructures.

    PubMed

    Yuan, Guo-Zhi; Hsia, Chi-Fu; Lin, Zhen-Wen; Chiang, Chieh; Chiang, Yun-Wei; Huang, Michael H

    2016-08-22

    This work confirms the presence of a large facet-dependent photocatalytic activity of Cu2 O crystals through sparse deposition of gold particles on Cu2 O cubes, octahedra, and rhombic dodecahedra. Au-decorated Cu2 O rhombic dodecahedra and octahedra showed greatly enhanced photodegradation rates of methyl orange resulting from a better separation of the photogenerated electrons and holes, with the rhombic dodecahedra giving the best efficiency. Au-Cu2 O core-shell rhombic dodecahedra also displayed a better photocatalytic activity than pristine rhombic dodecahedra. However, Au-deposited Cu2 O cubes, pristine cubes, and Au-deposited small nanocubes bound by entirely {100} facets are all photocatalytically inactive. X-ray photoelectron spectra (XPS) showed identical copper peak positions for these Au-decorated crystals. Remarkably, electron paramagnetic resonance (EPR) measurements indicated a higher production of hydroxyl radicals for the photoirradiated Cu2 O rhombic dodecahedra than for the octahedra, but no radicals were produced from photoirradiated Cu2 O cubes. The Cu2 O {100} face may present a high energy barrier through its large band edge bending and/or electrostatic repulsion, preventing charge carriers from reaching to this surface. The conventional photocatalysis model fails in this case. The facet-dependent photocatalytic differences should be observable in other semiconductor systems whenever a photoinduced charge-transfer process occurs across an interface. PMID:27470656

  4. Fine structure of track-plated Au-Cu alloy

    SciTech Connect

    Johnson, K.A.; Staudhammer, K.P.

    1982-01-01

    The burnishing process, i.e., mechanical rubbing of the deposit during electrodeposition, produces continuous nucleation of new grains during deposition which effectively prevents large columnar grains and macroporosity. In addition, track plating produces a uniform subgrain and substructure. By the use of STEM and TEM we were able to define a number of structural features of this material. Evident from the micrographs is the non-uniform polishing of the layers resulting from the chemical variation in the plating process. Microstructural features of the Au rich regions are shown. The unit size of this structure is about 22 nm. The fine-grained structure does not have well defined boundaries but does contain a slight amount of preferred alignment. Each equivalent unit has periodic fine structure measurable to approx. 2 nm.

  5. Initial oxidation kinetics and energetics of Cu 0.5Au 0.5 (0 0 1) film investigated by in situ ultrahigh vacuum transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Zhou, Guang-Wen; Eastman, Jeffrey A.; Yang, Judith C.

    2006-06-01

    The initial oxidation behavior of Cu 0.5Au 0.5 (0 0 1) thin film was investigated by in situ ultrahigh vacuum transmission electron microscopy to model nano-oxidation of alloys with one active component and one noble component. The formation of irregular-shaped octahedron Cu 2O islands with cube-on-cube crystallographic orientation to the substrate film was observed at all temperature studied. The energetics of Cu 2O nucleation for Cu and Cu 0.5Au 0.5 oxidation was compared. Cu 0.5Au 0.5 oxidation has lower nucleation activation energy due to the reduced mismatch strain between Cu 2O and Cu 0.5Au 0.5 films. On the other hand, the reaction kinetics for Cu 0.5Au 0.5 alloy oxidation is slower due to the higher diffusion activation energy of Cu.

  6. Crystal structure and thermodynamic properties of NdCu4Au compound

    NASA Astrophysics Data System (ADS)

    Tchoula Tchokonté, Moise Bertin; Bashir, Aiman Kamal; Strydom, A. M.

    2016-03-01

    We report the synthesis of the antiferromagnet cubic-type structure NdCu4Au derived by substituting Au for Cu in the parent binary NdCu5 compound. The room temperature X-ray diffraction analysis indicates a cubic MgCu4Sn-type structure with space group F 4 bar 3 m (No. 216) for the NdCu4Au compound. The thermodynamic properties of NdCu4Au have been probed by magnetic susceptibility, χ(T), magnetization, M(μ0 H), and specific heat, Cp(T), measured down to 1.8 K. The low temperature χ(T) data shows probably an antiferromagnetic (AFM)-like anomaly associated with a Néel temperature TN=3.9 K. In the paramagnetic region, χ(T) data follows the modified Curie-Weiss law with an effective magnetic moment μeff = 3.547(5) μB and Weiss temperature θp = - 10.19(8) K. The value for μeff is close to the value of 3.62 μB expected for the Nd3+-ion. No evidence of metamagnetic transition was observed from the isothermal M(μ0 H) results. Cp(T) data confirm the AFM phase transition at TN=3.5 K close to the value of 3.9 K observed in χ(T). The 4f-electron specific heat shows a Schottky-type anomaly around 20 K associated with crystalline-electric-field (CEF), with energy splitting Δ1=62(5) K and Δ2=109(9) K of the Nd3+ (J=9/2) multiplet, that are associated with the first and second excited state of Nd3+-ion. From the results of the 4f-electron magnetic entropy, it is speculated that the CEF ground state of Nd3+ (J=9/2) ions is the Γ6 doublet for NdCu4Au.

  7. Composition and Structure Control of Cu-Al-O Films Prepared by Reactive Sputtering and Annealing

    NASA Astrophysics Data System (ADS)

    Tsuboi, Nozomu; Itoh, Yuji; Ogata, Junya; Kobayashi, Satoshi; Shimizu, Hidehiko; Kato, Keizo; Kaneko, Futao

    2007-01-01

    Cu-Al-O films were prepared on quartz glass substrates at 500-700 °C by sputtering the Cu and Al targets alternately on atomic-layer scale under an Ar-diluted O2 (5-20%) gas atmosphere, and then annealed at 1050 °C under a nitrogen atmosphere. The [Cu]/[Al] ratio was controlled by changing the Cu and Al deposition periods. The composition of as-deposited films corresponded to the slightly oxygen-rich region of the CuO-CuAl2O4-Al2O3 system. Films as-deposited at 500 °C had an amorphous structure, while films as-deposited at 700 °C had CuAl2O4 and CuO phases. After thermal annealing in a nitrogen atmosphere, the composition of the films approached that of the Cu2O-CuAlO2-Al2O3 system line, causing a noticeable appearance of the CuAlO2 phase along with the disappearance of the CuAl2O4 and CuO phases. Cu- and Al-rich annealed films had in addition a Cu2O phase and an amorphous Al2O3 phase, respectively. All annealed films exhibited p-type conductivity. The annealed films with [Cu]/[Al]≈ 1 had an absorption edge corresponding to the energy gap of CuAlO2. These results indicate that the change in the Cu ion from divalent to monovalent through nitrogen annealing results in the preparation of transparent conductive films dominated by CuAlO2.

  8. The structure of a commercial dental Ag-Pd-Cu-Au casting alloy.

    PubMed

    Niemi, L; Herø, H

    1984-02-01

    The structure of a commercial dental Ag-Pd-Cu-Au casting alloy has been studied by microprobe and X-ray diffraction analyses after various heat treatments. The composition of phases in equilibrium was established. After being annealed at 400 degrees C, 500 degrees C, and 600 degrees C for seven wk, the alloy consisted of three phases: a Cu- and Pd-rich fee phase (alpha 1) with alpha = 0.372nm, a Ag-rich matrix (alpha 2) with alpha = 0.399nm, and an ordered CsCl-type bcc PdCu phase with alpha = 0.296nm. The PdCu phase was not observed above 600 degrees C, and the proportion of the alpha 1 phase decreased sharply above 700 degrees C. After being annealed at 900 degrees C, the alloy matrix was partly decomposed at the Cu-enriched grain boundaries. The decomposed areas grew into the grain interior during subsequent precipitation hardening. No segregation of Au was detected after casting, and the element was evenly distributed throughout the alloy structure after all heat treatments. PMID:6582096

  9. Tarnish resistance evaluation of experimental Pd-free Ag-Au-Pt-Cu dental alloys.

    PubMed

    Takuma, Yasuko; Shiraishi, Takanobu; Fujita, Takeshi; Hisatsune, Kunihiro

    2010-05-01

    This study evaluated the tarnish resistance of eight experimental Pd-free Ag-Au-Pt-Cu dental alloys in a 0.1% Na(2)S aqueous solution at 37 degrees C. Color measurements of the plate samples were made using a computerized spectrophotometer before and after immersion in the test solution for up to 72 hours. Tarnish discoloration was evaluated using the color difference vector, DeltaE*, in the CIELAB color space. Microstructural observation of each sample through an optical microscope revealed the matrix phase as the major constituent and second-phase small grains in the matrix phase. Selective tarnish discoloration occurred in the matrix, and fractional area of the matrix to the whole surface area was influenced by the sum of Au and Ag concentrations. The DeltaE* value significantly decreased with increasing Au/(Au+Ag) atomic ratio. In conclusion, the Au/(Au+Ag) ratio in an alloy and the fractional area of the matrix were found to be primary and auxiliary factors affecting the tarnish resistance of the experimental alloys. PMID:20495286

  10. K*0 production in Cu + Cu and Au + Au collisions at sNN=62.4 GeV and 200 GeV

    NASA Astrophysics Data System (ADS)

    Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anderson, B. D.; Anson, C. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barnby, L. S.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bridgeman, A.; Bruna, E.; Bueltmann, S.; Bunzarov, I.; Burton, T. P.; Cai, X. Z.; Caines, H.; Calderon de La Barca Sanchez, M.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, P.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Davila Leyva, A.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Derevschikov, A. A.; Derradi de Souza, R.; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Dutta Mazumdar, M. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Evdokimov, O.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Gupta, A.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Harris, J. W.; Hays-Wehle, J. P.; Heinz, M.; Heppelmann, S.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Huang, B.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Jacobs, P.; Jacobs, W. W.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Koroleva, L.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Krueger, K.; Krus, M.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lapointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lee, J. H.; Leight, W.; Levine, M. J.; Li, C.; Li, L.; Li, N.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Lukashov, E. V.; Luo, X.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; Matulenko, Yu. A.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitrovski, M. K.; Mohanty, B.; Mondal, M. M.; Morozov, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldag, E. W.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Pile, P.; Planinic, M.; Ploskon, M. A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Powell, C. B.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sangaline, E.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schuster, T. R.; Seele, J.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Staszak, D.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; van Buren, G.; van Leeuwen, M.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xie, W.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, I.-K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, J. B.; Zhang, S.; Zhang, W. M.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, J.; Zhong, C.; Zhou, J.; Zhou, W.; Zhu, X.; Zhu, Y. H.; Zoulkarneev, R.; Zoulkarneeva, Y.

    2011-09-01

    We report on K*0 production at midrapidity in Au + Au and Cu + Cu collisions at sNN=62.4 and 200 GeV collected by the Solenoid Tracker at the Relativistic Heavy Ion Collider detector. The K*0 is reconstructed via the hadronic decays K*0→K+π- and K*0¯→K-π+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c up to 5 GeV/c. The center-of-mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, , are presented. The measured N(K*0)/N(K) and N(φ)/N(K*0) ratios favor the dominance of rescattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0

  11. Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from {radical}(s{sub NN})=22.5 to 200 GeV

    SciTech Connect

    Adare, A.; Bickley, A. A.; Ellinghaus, F.; Kinney, E.; Seele, J.; Wysocki, M.; Adler, S. S.; Aronson, S. H.; Azmoun, B.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Harvey, M.; Johnson, B. M.; Kistenev, E.; Kroon, P. J.; Lynch, D.; Makdisi, Y. I.; Mioduszewski, S.

    2008-10-15

    A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at {radical}(s{sub NN})=62.4 and 200 GeV, and Cu+Cu collisions at {radical}(s{sub NN})=22.5,62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for nondynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. A comparison of the data with a model where hadrons are independently emitted from a number of hadron clusters suggests that the mean number of hadrons per cluster is small in heavy ion collisions.

  12. Ab initio molecular dynamics simulations of short-range order in Zr50Cu45Al5 and Cu50Zr45Al5 metallic glasses.

    PubMed

    Huang, Yuxiang; Huang, Li; Wang, C Z; Kramer, M J; Ho, K M

    2016-03-01

    Comparative analysis between Zr-rich Zr50Cu45Al5 and Cu-rich Cu50Zr45Al5 metallic glasses (MGs) is extensively performed to locate the key structural motifs accounting for their difference of glass forming ability. Here we adopt ab initio molecular dynamics simulations to investigate the local atomic structures of Zr50Cu45Al5 and Cu50Zr45Al5 MGs. A high content of icosahedral-related (full and distorted) orders was found in both samples, while in the Zr-rich MG full icosahedrons [Formula: see text] is dominant, and in the Cu-rich one the distorted icosahedral orders, especially [Formula: see text] and [Formula: see text], are prominent. And the [Formula: see text] polyhedra in Cu50Zr45Al5 MG mainly originate from Al-centered clusters, while the [Formula: see text] in Zr50Cu45Al5 derives from both Cu-centered clusters and Al-centered clusters. These difference may be ascribed to the atomic size difference and chemical property between Cu and Zr atoms. The relatively large size of Zr and large negative heat of mixing between Zr and Al atoms, enhancing the packing density and stability of metallic glass system, may be responsible for the higher glass forming ability of Zr50Cu45Al5. PMID:26828778

  13. Ab initio molecular dynamics simulations of short-range order in Zr50Cu45Al5 and Cu50Zr45Al5 metallic glasses

    NASA Astrophysics Data System (ADS)

    Huang, Yuxiang; Huang, Li; Wang, C. Z.; Kramer, M. J.; Ho, K. M.

    2016-03-01

    Comparative analysis between Zr-rich Zr50Cu45Al5 and Cu-rich Cu50Zr45Al5 metallic glasses (MGs) is extensively performed to locate the key structural motifs accounting for their difference of glass forming ability. Here we adopt ab initio molecular dynamics simulations to investigate the local atomic structures of Zr50Cu45Al5 and Cu50Zr45Al5 MGs. A high content of icosahedral-related (full and distorted) orders was found in both samples, while in the Zr-rich MG full icosahedrons < 0,0,12,0> is dominant, and in the Cu-rich one the distorted icosahedral orders, especially < 0,2,8,2> and < 0,2,8,1> , are prominent. And the < 0,2,8,2> polyhedra in Cu50Zr45Al5 MG mainly originate from Al-centered clusters, while the < 0,0,12,0> in Zr50Cu45Al5 derives from both Cu-centered clusters and Al-centered clusters. These difference may be ascribed to the atomic size difference and chemical property between Cu and Zr atoms. The relatively large size of Zr and large negative heat of mixing between Zr and Al atoms, enhancing the packing density and stability of metallic glass system, may be responsible for the higher glass forming ability of Zr50Cu45Al5.

  14. Ab initio molecular dynamics simulations of short-range order in Zr50Cu45Al5 and Cu50Zr45Al5 metallic glasses

    DOE PAGESBeta

    Huang, Yuxiang; Huang, Li; Wang, C. Z.; Kramer, M. J.; Ho, K. M.

    2016-02-01

    Comparative analysis between Zr-rich Zr50Cu45Al5 and Cu-rich Cu50Zr45Al5 metallic glasses (MGs) is extensively performed to locate the key structural motifs accounting for their difference of glass forming ability. Here we adopt ab initio molecular dynamics simulations to investigate the local atomic structures of Zr50Cu45Al5 and Cu50Zr45Al5 MGs. A high content of icosahedral-related (full and distorted) orders was found in both samples, while in the Zr-rich MG full icosahedrons < 0,0,12,0 > is dominant, and in the Cu-rich one the distorted icosahedral orders, especially < 0,2,8,2 > and < 0,2,8,1 >, are prominent. And the < 0,2,8,2 > polyhedra in Cu50Zr45Al5more » MG mainly originate from Al-centered clusters, while the < 0,0,12,0 > in Zr50Cu45Al5 derives from both Cu-centered clusters and Al-centered clusters. These difference may be ascribed to the atomic size difference and chemical property between Cu and Zr atoms. Lastly, the relatively large size of Zr and large negative heat of mixing between Zr and Al atoms, enhancing the packing density and stability of metallic glass system, may be responsible for the higher glass forming ability of Zr50Cu45Al5.« less

  15. Ab initio molecular dynamics simulations of short-range order in Zr50Cu45Al5 and Cu50Zr45Al5 metallic glasses

    DOE PAGESBeta

    Huang, Yuxiang; Huang, Li; Wang, C. Z.; Kramer, M. J.; Ho, K. M.

    2016-02-01

    In this study, comparative analysis between Zr-rich Zr50Cu45Al5 and Cu-rich Cu50Zr45Al5 metallic glasses (MGs) is extensively performed to locate the key structural motifs accounting for their difference of glass forming ability. Here we adopt ab initio molecular dynamics simulations to investigate the local atomic structures of Zr50Cu45Al5 and Cu50Zr45Al5 MGs. A high content of icosahedral-related (full and distorted) orders was found in both samples, while in the Zr-rich MG full icosahedrons <0,0,12,0> is dominant, and in the Cu-rich one the distorted icosahedral orders, especially <0,2,8,2> and <0,2,8,1>, are prominent. And the <0,2,8,2> polyhedra in Cu50Zr45Al5 MG mainly originate from Al-centeredmore » clusters, while the <0,0,12,0> in Zr50Cu45Al5 derives from both Cu-centered clusters and Al-centered clusters. These difference may be ascribed to the atomic size difference and chemical property between Cu and Zr atoms. The relatively large size of Zr and large negative heat of mixing between Zr and Al atoms, enhancing the packing density and stability of metallic glass system, may be responsible for the higher glass forming ability of Zr50Cu45Al5.« less

  16. Photoluminescence of Au - formed in 12CaO · 7Al 2O 3 single crystal by Au +-implantation

    NASA Astrophysics Data System (ADS)

    Miyakawa, M.; Kamioka, H.; Hirano, M.; Kamiya, T.; Hosono, H.

    2006-09-01

    Au + ion implantation with fluences from 1 × 10 14 to 3 × 10 16 cm -2 into 12CaO · 7Al 2O 3 (C12A7) single crystals was carried out at a sample temperature of 600 °C. The implanted sample with the fluence of 1 × 10 15 cm -2 exhibited photoluminescence (PL) bands peaking at ˜3.1 and ˜2.3 eV at ⩽150 K when excited by He-Cd laser (325 nm). This was the first observation of PL from C12A7. These two PL bands are possibly due to intra-ionic transitions of an Au - ion having the electronic configuration of 6 s2, judged from their similarities to those reported on Au - ions in alkali halides. However, when the concentration of the implanted Au ions exceeded the theoretical maximum value of anions encaged in C12A7 (˜2.3 × 10 21 cm -3), surface plasmon absorption appeared in the optical absorption spectrum, suggesting Au colloids were formed at such high fluences. These observations indicate that negative gold ions are formed in the cages of C12A7 by the Au + implantation if an appropriate fluence is chosen.

  17. Reduced Cu concentration in CuAl-LPE-grown thin Si layers

    SciTech Connect

    Wang, T.H.; Ciszek, T.F.; Asher, S.; Reedy, R.

    1995-08-01

    Cu-Al has been found to be a good solvent system to grow macroscopically smooth Si layers with thicknesses in tens of microns on cast MG-Si substrates by liquid phase epitaxy (LPE) at temperatures near 900{degrees}C. This solvent system utilizes Al to ensure good wetting between the solution and substrate by removing silicon native oxides, and employs Cu to control Al doping into the layers. Isotropic growth is achieved because of a high concentration of solute silicon in the solution and the resulting microscopically rough interface. The incorporation of Cu in the Si layers, however, was a concern since Cu is a major solution component and is generally regarded as a bad impurity for silicon devices due to its fast diffusivity and deep energy levels in the band gap. A study by Davis shows that Cu will nonetheless not degrade solar cell performance until above a level of 10{sup 17} cm{sup -3}. This threshold is expected to be even higher for thin layer silicon solar cells owing to the less stringent requirement on minority carrier diffusion length. But to ensure long term stability of solar cells, lower Cu concentrations in the thin layers are still preferred.

  18. Nonpolar resistive switching in Cu/SiC/Au non-volatile resistive memory devices

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Jiang, L.; Huang, R.; de Groot, C. H.

    2014-03-01

    Amorphous silicon carbide (a-SiC) based resistive memory (RM) Cu/a-SiC/Au devices were fabricated and their resistive switching characteristics investigated. All four possible modes of nonpolar resistive switching were achieved with ON/OFF ratio in the range 106-108. Detailed current-voltage I-V characteristics analysis suggests that the conduction mechanism in low resistance state is due to the formation of metallic filaments. Schottky emission is proven to be the dominant conduction mechanism in high resistance state which results from the Schottky contacts between the metal electrodes and SiC. ON/OFF ratios exceeding 107 over 10 years were also predicted from state retention characterizations. These results suggest promising application potentials for Cu/a-SiC/Au RMs.

  19. Magnetization dynamics of mixed Co-Au chains on Cu(110) substrate: Combined ab initio and kinetic Monte Carlo study

    NASA Astrophysics Data System (ADS)

    M. Tsysar, K.; V. Kolesnikov, S.; M. Saletsky, A.

    2015-09-01

    We present an investigation of the one-dimensional ferromagnetism in Au-Co nanowires deposited on the Cu(110) surface. By using the density functional theory, the influence of the nonmagnetic copper substrate Cu(110) on the magnetic properties of the bimetallic Au-Co nanowires is studied. The results show the emergence of magnetic anisotropy in the supported Au-Co nanowires. The magnetic anisotropy energy has the same order of magnitude as the exchange interaction energy between Co atoms in the wire. Our electronic structure calculation reveals the emergence of new hybridized bands between Au and Co atoms and surface Cu atoms. The Curie temperature of the Au-Co wires is calculated by means of kinetic Monte Carlo simulation. The strong size effect of the Curie temperature is demonstrated. Project supported by the Russian Foundation of Basic Researches.

  20. Detection of H2O2 at the nanomolar level by electrode modified with ultrathin AuCu nanowires.

    PubMed

    Wang, Ning; Han, Yu; Xu, Ying; Gao, Caizhen; Cao, Xia

    2015-01-01

    Bimetallic AuCu nanowires (AuCuNWs) are synthesized via a facile water solution method at room temperature. Enhanced electrocatalytic activity is observed toward the oxidation of H2O2, which makes the AuCu nanowire, along with its unique catalytic properties, intriguing bifunctional mechanism, and surface atomic construction, a promising platform for the amplification of interfacing signal. A highly sensitive H2O2 biosensor is thus developed on the base of the as-prepared AuCuNW catalyst. A very low real determination limit (2.0 nM) was reached, and a linear range as wide as 5 orders of magnitude was demonstrated. In addition, a trace amount of H2O2, which was released from Raw 264.7 cells, was selectively detected, hinting at the possible applications for real-time quantitative detection of H2O2 in a biological environment. PMID:25418032

  1. Sandwich-Geometry YBa(2)Cu(3)O(7-delta)/Au/Nb SNS Devices

    NASA Technical Reports Server (NTRS)

    Foote, Marc C.; Hunt, Brian D.

    1993-01-01

    Superconductor/normal-conductor/superconductor (SNS) devices in which electronically active layers consist of high-temperature superconductor YBa(2)Cu(3)O(7-delta), normal conductor Au, and conventional superconductor Nb, fabricated in sandwich geometry. Devices and processes by which fabricated are part of continuing effort to develop SNS microbridges for use in superconducting quantum interference devices (SQUIDS's) or as mixers or local oscillators operating at frequencies of hundreds of gigahertz. Results show promise for manufacture of practical devices.

  2. Crystalline monolayer surface of liquid Au-Cu-Si-Ag-Pd: Metallic glass former

    SciTech Connect

    Mechler, S; Yahel, E; Pershan, P S; Meron, M; Lin, B

    2012-02-06

    It is demonstrated by means of x-ray synchrotron reflectivity and diffraction that the surface of the liquid phase of the bulk metallic glass forming alloy Au49Cu26.9Si16.3Ag5.5Pd2.3 consists of a two-dimensional crystalline monolayer phase for temperatures of up to about 50 K above the eutectic temperature. The present alloy as well as glass forming Au82Si18 and Au-Si-Ge alloys containing small amounts of Ge are the only metallic liquids to exhibit surface freezing well above the melting temperature. This suggests that the phenomena of surface freezing in metallic liquids and glass forming ability are related and probably governed by similar physical properties.

  3. Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study

    SciTech Connect

    Xiong, L H; Lou, H B; Wang, X D; Debela, T T; Cao, Q P; Zhang, D X; Wang, S Y; Wang, C Z; Jiang, J Z

    2014-04-01

    The local atomic structure evolution in Al2Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt-Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al2Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of < 0,4,4,0 >, < 0,3, 6,0 > and < 0,4,4,2 > with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF2-type Al2Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al2Au alloy. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Effects of the Formation of Al x Cu y Gradient Interfaces on Mechanical Property of Steel/Al Laminated Sheets by Introducing Cu Binding-Sheets

    NASA Astrophysics Data System (ADS)

    Wei, Aili; Liu, Xinghai; Shi, Quanxin; Liang, Wei

    2015-07-01

    Steel/Cu/Al laminated sheets were fabricated by two-pass hot rolling to improve the mechanical properties of steel/Al sheets. The bonding properties and deformability of the steel/Cu/Al sheets were studied. Steel/Al and steel/Cu/Al samples were rolled at 350°C for 15 min with the first-pass reduction of 40%, and then heated at 600°C for 5 min with different reductions. It was found that the steel/Cu/Al samples rolled by the second-pass reduction of 85% could endure the maximum 90° bend cycle times of 45, exhibiting excellent fatigue resistance as well as deformability. The steel/Al samples could only reach the maximum 90° bend cycle times of 20. Furthermore, the scanning electron microscope, energy-dispersive spectrometer, and electron backscattered diffraction results showed that the preferred growth orientations of Cu, Al4Cu9, and Al2Cu on the steel/Cu/Al laminated sheets are {-1, 1, 2} <1, -1, 1>, {1, 0, 0} <0, 1, 0> and {-1, 1, 2} <1, -1, 1> {1, 1, 0} <0, 0, 1>. The orientation relationships between Cu and Al2Cu are {1, 1, 0}(fcc)//{1, 1, 0}(bct) and {1, 1, 1}(fcc)//{1, 1, 1}(bct). The improved bonding property and excellent fatigue resistance as well as deformability were mainly ascribed to the tight combination and consistent deformability across steel, Al, and the transition layers (Cu, Al4Cu9, and Al2Cu).

  5. Intermetallic Formation at Interface of Al/Cu Clad Fabricated by Hydrostatic Extrusion and Its Properties.

    PubMed

    Lee, Jongbeom; Jeong, Haguk

    2015-11-01

    Al/Cu clad composed of Al core and Cu sheath has been produced by hydrostatic extrusion at 523 K, at an extrusion rate of 27. The prepared specimen was post-annealed at temperatures of 673 K and 773 K for various time durations, and the effect of annealing conditions have been analyzed. The hardness at the interface between Al and Cu matrix of the Al/Cu bimetal clad increases because of annealing. Results indicate that the hardness is more sensitive to annealing temperature than the annealing time. Three kinds of intermetallic compounds (IMC), namely, CuAl, Cu3Al2, and CuAl2, are formed at the Al-Cu interface, upon annealing at 673 K. On the other hand, four kinds of IMCs, namely, Cu4Al3, CuAl, Cu3Al2, CuAl2, are formed at the annealing temperature of 773 K. The growth of each IMC follows the parabolic law as a function of annealing times at certain annealing temperature. The growth rate of each IMC is limited to its interdiffusion rate constant. The IMC Cu4Al3 appears upon annealing at 773 K, and not during annealing at 673 K, because of the higher value of activation energy associated with its formation, when compared to other IMCs. PMID:26726557

  6. Prediction of AU, AL, and AE indices using solar wind parameters

    NASA Astrophysics Data System (ADS)

    Luo, B.; Li, X.; Temerin, M. A.; Liu, S.

    2013-12-01

    An empirical model that predicts the AU index, a measure of the Earth's east electrojet, derived from magnetometers in the Northern hemisphere, is introduced. In addition, we have improved the previous AL model (Li et al., 2007) and have combined it with the AU model to produce an AE model. All models are based on upstream solar wind and interplanetary magnetic field parameters that have been propagated to the magnetopause by a simple ballistic propagation scheme for the years 1995 to 2001. The AU model predicts the 10-min averaged AU index for the seven years 1995-2001 with a prediction efficiency (PE) of 0.716, a linear correlation coefficient (LC) between the AU index and the model of 0.846, and a root mean square (RMS) error of 39.3 nT. We have updated the AL model introduced in Li et al. [2007] using the same prediction functions used to predict AU but with different parameters. The new AL model predicts the seven year AL index with a PE of 0.715, an LC of 0.846, and an RMS error of 81.6 nT. Using AE = AU-AL, the AE index is predicted with a PE of 0.788, an LC of 0.888, and an RMS error of 95.7 nT. The better PE and LC of the AE model over AU and AL models is because AU and AL are better correlated then their prediction errors. It is also found that: (1) The F10.7 index modulates the growth of auroral electrojet indices; (2) AU and AL behave differently during geomagnetic storm main phases. AU can drop to a low level while the magnitude of AL does not drop as much; (3) the longer-averaged auroral electrojets indices can be predicted very well but shorter timescale variations are much less predictable; (4) auroral electrojet activity is strongly dependent on the upstream solar wind velocity and the interplanetary magnetic field but is only weakly dependent on the solar wind density.

  7. New Stable Crystal Structures for Cu-Au and Ni-Pt Alloy Systems

    NASA Astrophysics Data System (ADS)

    Sanati, Mahdi; Wang, L. G.; Zunger, A.

    2003-10-01

    Cu-Au and Ni-Pt are among the best studied fcc alloy systems, exhibiting the famous L10 (AB) and L12 (A_3B) phases. We were wondering if a complete configurational search of the T=0 LDA total energies would reveal any unexpected phases. Total-energy calculations of ˜ 30 arbitrarily chosen structures were used to construct a generalized (momentum-space) Ising Hamiltonian containing ˜ 20 pair-interactions, ˜ 5-10 many-body terms, as well as the long-range strain term. This Hamiltonian was tested carefully as to its ability to predict the LDA energies of other structures. We searched the energies of all fcc configurations with 20 or less atoms per primitive cell ( ˜ 2,700,000 structures), found known L1_0, L12 as well as new, unsuspected structures. The new ground state structures are NiPt_7, Cu_2Au, and Cu_2Au_3. We also found a composition range in which there is quasicontinuum of stable, ordered structures made of (001) repeat units of simple structural motifs. This structural adaptivity is explained in terms of anisotropic, long-range strain energy.

  8. Substrate-controlled linking of molecular building blocks: Au(111) vs. Cu(111)

    NASA Astrophysics Data System (ADS)

    Koch, Matthias; Gille, Marie; Viertel, Andreas; Hecht, Stefan; Grill, Leonhard

    2014-09-01

    The coupling of dibromohexabenzocoronene (Br2-HBC) as a precursor molecule is investigated by scanning tunneling microscopy (STM) on two noble metal surfaces: Au(111) and Cu(111). It is found that the on-surface polymerization of molecular building blocks equipped with halogen atoms is strongly influenced by the choice of the substrate. While on Au(111) a heating step of up to 520 K is required to activate the molecules and form polymers, on Cu(111) the catalytic reactivity causes activation already below room temperature. Due to the different substrates, the intramolecular bonds in the polymers between the HBC units differ: The HBC molecules are covalently coupled on Au(111) while on Cu(111) a copper adatom mediates the bonding. This effect is proven by the comparison with gas phase calculations and by lateral manipulation with the STM tip. The choice of the substrate thus does not only define the activation temperature but also lead to different bonding strengths between the molecular building blocks.

  9. Relationships involving process, microstructure, and properties of weldments of Al-Cu and Al-Cu-Li alloys

    SciTech Connect

    Martukanitz, R.P.; Howell, P.R.

    1996-12-31

    The evolution of microstructure within the heat affected zone for Al-Cu and Al-Cu-Li alloys is qualitatively described in terms of diffusion controlled modifications that result in the minimization of chemical free energy. Coarsening of strengthening precipitate is anticipated at relatively low peak temperatures; whereas, dissolution is expected to dominate the microstructural modifications within the heat affected zone for these alloys. Transmission electron microscopy of alloy 2195-T8 was performed to validate the analysis. Dissolution of {theta}{prime} (Al{sub 2}Cu) was seen to occur within the heat affected zone at temperatures below 220 C. The primary strengthening phase, T{sub 1} (Al{sub 2}CuLi), exhibited partial dissolution at peak temperatures of 320 C. Peak temperatures up to 500 C resulted in partial dissolution of T{sub 1} during heating and growth upon cooling. Positions near the fusion zone interface resulted in complete dissolution of strengthening precipitate and re-precipitation of copper-rich zones upon cooling. The effect of microstructural modifications within the heat affected zone on mechanical properties is discussed in terms of strengthening mechanisms.

  10. Ferromagnetism studies of Cu-doped and (Cu, Al) co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Wu, S. Z.; Yang, H. L.; Xu, X. G.; Miao, J.; Jiang, Y.

    2011-01-01

    We have studied the room temperature ferromagnetism (FM) in Cu-doped and (Cu, Al) co-doped ZnO thin films which were grown on quartz substrates by chemical method based on a sol-gel process combining with spin-coating technology. X-ray diffraction (XRD) patterns demonstrate that both the Cu-doped and (Cu, Al) co-doped ZnO films have the hexagonal wurtzite structure with c-axis orientation. Alternating Gradient Magnetometer (AGM) measurements confirm that all the doped ZnO samples are ferromagnetic at room temperature. When the doped Cu content is 1 %, the Cu-doped ZnO film has the strongest FM. The FM significantly decreases in the (Cu, Al) co-doped ZnO films. The doping of Al ions suppresses the FM induced by the doped Cu ions.

  11. Neutral pion production in \\sqrt{s_{NN}}=200 GeV Cu+Au collisions at PHENIX

    NASA Astrophysics Data System (ADS)

    Campbell, Sarah; PHENIX Collaboration

    2015-05-01

    Cu+Au collisions at RHIC generate asymmetric initial geometries and densities in both azimuth and rapidity. High pT π0s produced in \\sqrt{sNN} = 200 GeV Cu+Au collisions provide new environments to study parton energy loss in the Quark Gluon Plasma, including very central events where the Cu nucleus is enveloped by the Au nucleus. By measuring π0 yields in ϕ relative to the event plane, we can probe different core-corona regions in these very central events and study the path length dependence of energy loss in various lopsided initial geometries. PHENIX has observed the suppression of π0s as a function of the azimuthal angle with respect to the event plane in \\sqrt{sNN} = 200 GeV Au+Au collisions and found it consistent with a larger than quadratic path length dependence suggesting a non-perturbative energy loss model applies. The unique collision geometries available in Cu+Au provide new settings to explore and possibly confirm this path length dependence. The status of the Cu+Au π0 analysis is presented.

  12. Catalytic degradation of dye molecules and in situ SERS monitoring by peroxidase-like Au/CuS composite

    NASA Astrophysics Data System (ADS)

    Cai, Qian; Lu, Shunkai; Liao, Fan; Li, Yanqing; Ma, Shuzhen; Shao, Mingwang

    2014-06-01

    In this paper, Au/CuS composites were fabricated by a two-step method based on a facile solvothermal approach combined with the in situ reduction. It was demonstrated that the Au/CuS composite not only exhibited excellent peroxidase-like catalytic activity in the oxidation of the typical peroxidases (o-phenylenediamine and diaminobenzidine), but also showed promising SERS performance with remarkable sensitivity and high reproducibility. Based on these properties, the bi-functional Au/CuS composite was employed both as a catalyst for degrading a pollutant (Rhodamine 6G) and a SERS substrate for real-time monitoring of the degradation process quantitatively.In this paper, Au/CuS composites were fabricated by a two-step method based on a facile solvothermal approach combined with the in situ reduction. It was demonstrated that the Au/CuS composite not only exhibited excellent peroxidase-like catalytic activity in the oxidation of the typical peroxidases (o-phenylenediamine and diaminobenzidine), but also showed promising SERS performance with remarkable sensitivity and high reproducibility. Based on these properties, the bi-functional Au/CuS composite was employed both as a catalyst for degrading a pollutant (Rhodamine 6G) and a SERS substrate for real-time monitoring of the degradation process quantitatively. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01751j

  13. Cu-Au alloy nanostructures coated with aptamers: a simple, stable and highly effective platform for in vivo cancer theranostics

    NASA Astrophysics Data System (ADS)

    Ye, Xiaosheng; Shi, Hui; He, Xiaoxiao; Yu, Yanru; He, Dinggeng; Tang, Jinlu; Lei, Yanli; Wang, Kemin

    2016-01-01

    As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity and lower cost was introduced to generate a novel Cu-Au alloy nanostructure produced by a simple, gentle and one-pot synthetic method. Having the good qualities of both Cu and Au, the irregularly-shaped Cu-Au alloy nanostructures showed several advantages over traditional Au nanorods, including a broad and intense near-infrared (NIR) absorption band from 400 to 1100 nm, an excellent heating performance under laser irradiation at different wavelengths and even a notable photostability against melting. Then, via a simple conjugation of fluorophore-labeled aptamers on the Cu-Au alloy nanostructures, active targeting and signal output were simultaneously introduced, thus constructing a theranostic platform based on fluorophore-labeled, aptamer-coated Cu-Au alloy nanostructures. By using human leukemia CCRF-CEM cancer and Cy5-labeled aptamer Sgc8c (Cy5-Sgc8c) as the model, a selective fluorescence imaging and NIR photothermal therapy was successfully realized for both in vitro cancer cells and in vivo tumor tissues. It was revealed that Cy5-Sgc8c-coated Cu-Au alloy nanostructures were not only capable of robust target recognition and stable signal output for molecular imaging in complex biological systems, but also killed target cancer cells in mice with only five minutes of 980 nm irradiation. The platform was found to be simple, stable, biocompatible and highly effective, and shows great potential as a versatile tool for cancer theranostics.As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity

  14. Descriptive and geoenvironmental model for Co-Cu-Au deposits in metasedimentary rocks: Chapter G in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Slack, John F.; Johnson, Craig A.; Causey, J. Douglas; Lund, Karen; Schulz, Klaus J.; Gray, John E.; Eppinger, Robert G.

    2013-01-01

    Additional geologically and compositionally similar deposits are known, but have average Co grades less than 0.1 percent. Most of these deposits contain cobalt-rich pyrite and lack appreciable amounts of distinct Co sulfide and (or) sulfarsenide minerals. Such deposits are not discussed in detail in the following sections, but these deposits may be revelant to the descriptive and genetic models presented below. Examples include the Scadding Au-Co-Cu deposit in Ontario, Canada; the Vähäjoki Co-Cu-Au deposit in Finland; the Tuolugou Co-Au deposit in Qinghai Province, China; the Lala Co-Cu-UREE deposit in Sichuan Province, China; the Guelb Moghrein Cu-Au-Co deposit in Mauritania; and the Great Australia Co-Cu, Greenmount Cu-Au-Co, and Monakoff Cu-Au-Co-UAg deposits in Queensland, Australia. Detailed information on these deposits is presented in appendix 2.

  15. Crystal nucleation in amorphous (Au/100-y/Cu/y/)77Si9Ge14 alloys

    NASA Technical Reports Server (NTRS)

    Thompson, C. V.; Greer, A. L.; Spaepen, F.

    1983-01-01

    Because, unlike most metallic glasses, melt-spun alloys of the series (Au/100-y/Cu/y/)77Si9Ge14 exhibit well separated glass transition and kinetic crystallization temperatures, crystallization can be studied in the fully relaxed amorphous phase. An isothermal calorimetric analysis of the devitrification kinetics of the amorphous alloy indicates sporadic nucleation and a constant growth rate. It is found for the cases of alloys with y values lower than 25 that the classical theory of homogeneous nucleation is consistent with observations, including transient effects. An analysis of the crystallization kinetics shows that slow crystal growth rates play an important role in glass formation in these alloys. Although the reduced glass transition temperature increases with Cu content, glass formation is more difficult at high Cu contents, perhaps because of a difference in nucleus composition.

  16. Cu-Au alloy nanostructures coated with aptamers: a simple, stable and highly effective platform for in vivo cancer theranostics.

    PubMed

    Ye, Xiaosheng; Shi, Hui; He, Xiaoxiao; Yu, Yanru; He, Dinggeng; Tang, Jinlu; Lei, Yanli; Wang, Kemin

    2016-01-28

    As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity and lower cost was introduced to generate a novel Cu-Au alloy nanostructure produced by a simple, gentle and one-pot synthetic method. Having the good qualities of both Cu and Au, the irregularly-shaped Cu-Au alloy nanostructures showed several advantages over traditional Au nanorods, including a broad and intense near-infrared (NIR) absorption band from 400 to 1100 nm, an excellent heating performance under laser irradiation at different wavelengths and even a notable photostability against melting. Then, via a simple conjugation of fluorophore-labeled aptamers on the Cu-Au alloy nanostructures, active targeting and signal output were simultaneously introduced, thus constructing a theranostic platform based on fluorophore-labeled, aptamer-coated Cu-Au alloy nanostructures. By using human leukemia CCRF-CEM cancer and Cy5-labeled aptamer Sgc8c (Cy5-Sgc8c) as the model, a selective fluorescence imaging and NIR photothermal therapy was successfully realized for both in vitro cancer cells and in vivo tumor tissues. It was revealed that Cy5-Sgc8c-coated Cu-Au alloy nanostructures were not only capable of robust target recognition and stable signal output for molecular imaging in complex biological systems, but also killed target cancer cells in mice with only five minutes of 980 nm irradiation. The platform was found to be simple, stable, biocompatible and highly effective, and shows great potential as a versatile tool for cancer theranostics. PMID:26743815

  17. Preparation, characterization and dye adsorption of Au nanoparticles/ZnAl layered double oxides nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Yu Xin; Hao, Xiao Dong; Kuang, Min; Zhao, Han; Wen, Zhong Quan

    2013-10-01

    In this work, Au/ZnAl-layer double oxides (LDO) nanocomposties were prepared through a facile calcination process of AuCl4- intercalated ZnAl-layered double hydroxides (LDHs) nanocomposites. The morphology and crystal structure of these nanocomposites were characterized by Scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and N2 sorption analysis. By tailoring the process parameter, such as calcination temperature, heating time and the component composition, the adsorption properties of methyl orange (MO) on the Au/ZnAl-LDO nanocomposites were investigated in this work. In a typical adsorption process, it was found that 0.985 mg of MO (0.01 g L-1, 100 mL, 1 mg of MO in total) can be removed in 60 min by utilizing only 2.5 mg of Au/ZnAl-LDO (Au content, 1%) as adsorbents. Our adsorption data obtained from the Langmuir model also gave good values of the determination coefficient, and the saturated adsorption capacity of Au/ZnAl-LDO nanocomposites for MO was found to be 627.51 mg/g under ambient condition (e.g., room temperature, 1 atm). In principle, these hybrid nanostructures with higher adsorption abilities could be very promising adsorbents for wastewater treatment.

  18. Hydrogen isotope trapping in Al-Cu binary alloys

    DOE PAGESBeta

    Chao, Paul; Karnesky, Richard A.

    2016-01-01

    In this study, the trapping mechanisms for hydrogen isotopes in Al–X Cu (0.0 at. % < X < 3.5 at. %) alloys were investigated using thermal desorption spectroscopy (TDS), electrical conductivity, and differential scanning calorimetry. Constant heating rate TDS was used to determine microstructural trap energies and occupancies. In addition to the trapping states in pure Al reported in the literature (interstitial lattice sites, dislocations, and vacancies), a trap site due to Al–Cu intermetallic precipitates is observed. The binding energy of this precipitate trap is (18 ± 3) kJ•mol–1 (0.19 ± 0.03 eV). Typical occupancy of this trap is high;more » for Al–2.6 at. % Cu (a Cu composition comparable to that in AA2219) charged at 200 °C with 130 MPa D2 for 68 days, there is ca. there is 3.15×10–7 mol D bound to the precipitate trap per mol of Al, accounting for a third of the D in the charged sample.« less

  19. Hydrogen isotope trapping in Al-Cu binary alloys

    SciTech Connect

    Chao, Paul; Karnesky, Richard A.

    2016-01-01

    In this study, the trapping mechanisms for hydrogen isotopes in Al–X Cu (0.0 at. % < X < 3.5 at. %) alloys were investigated using thermal desorption spectroscopy (TDS), electrical conductivity, and differential scanning calorimetry. Constant heating rate TDS was used to determine microstructural trap energies and occupancies. In addition to the trapping states in pure Al reported in the literature (interstitial lattice sites, dislocations, and vacancies), a trap site due to Al–Cu intermetallic precipitates is observed. The binding energy of this precipitate trap is (18 ± 3) kJ•mol–1 (0.19 ± 0.03 eV). Typical occupancy of this trap is high; for Al–2.6 at. % Cu (a Cu composition comparable to that in AA2219) charged at 200 °C with 130 MPa D2 for 68 days, there is ca. there is 3.15×10–7 mol D bound to the precipitate trap per mol of Al, accounting for a third of the D in the charged sample.

  20. Dendrite coherency of Al-Si-Cu alloys

    NASA Astrophysics Data System (ADS)

    Veldman, Natalia L. M.; Dahle, Arne K.; Stjohn, David H.; Arnberg, Lars

    2001-01-01

    The dendrite coherency point of Al-Si-Cu alloys was determined by thermal analysis and rheological measurement methods by performing parallel measurements at two cooling rates for aluminum alloys across a wide range of silicon and copper contents. Contrary to previous findings, the two methods yield significantly different values for the fraction solid at the dendrite coherency point. This disparity is greatest for alloys of low solute concentration. The results from this study also contradict previously reported trends in the effect of cooling rate on the dendritic coherency point. Consideration of the results shows that thermal analysis is not a valid technique for the measurement of coherency. Analysis of the results from rheological testing indicates that silicon concentration has a dominant effect on grain size and dendritic morphology, independent of cooling rate and copper content, and thus is the factor that determines the fraction solid at dendrite coherency for Al-Si-Cu alloys.

  1. The Zeno Line for Al, Cu, and U.

    PubMed

    Apfelbaum, E M; Vorob'ev, V S

    2016-06-01

    We show that the property of linearity for a line of unit compressibility factor (Zeno line) can be confirmed for metals (Al, Cu, and U) in liquid phase. The embedded atom potentials (EAM) have been used to describe the interaction between the particles. The numerical simulations within Monte Carlo (MC) technique with the EAM potential have resulted in the straight Zeno-line for considered metals and have allowed us to define the Zeno line parameters. The similarity relations between the critical and the Zeno line parameters, which were observed previously for nonmetallic substances, have appeared to be valid for Al and Cu as well. For uranium there is a contradiction between the calculated and experimental data, indicating the limitation for these similarities. PMID:27158747

  2. Investigation of new type Cu-Hf-Al bulk glassy alloys

    NASA Astrophysics Data System (ADS)

    Nagy, E.; Rontó, V.; Sólyom, J.; Roósz, A.

    2009-01-01

    In the last years new type Cu-Hf-Al ternary alloys were developed with high glass forming ability and ductility. The addition of Al to Cu-Hf alloys results in improvements in glass formation, thermal stability and mechanical properties of these alloys. We have investigated new Cu-based bulk amorphous alloys in Cu-Hf-Al ternary system. The alloys with Cu49Hf42Al9, Cu46Hf45Al9, Cu50Hf42.5Al7.5 and Cu50Hf45Al5 compositions were prepared by arc melting. The samples were made by centrifugal casting and were investigated by X-ray diffraction method. Thermodynamic properties were examined by differential scanning calorimetry and the structure of the crystallising phases by scanning electron microscopy. The determination of liquidus temperatures of alloys were measured by differential thermal analysis.

  3. Indium Helps Strengthen Al/Cu/Li Alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  4. Viscous and acoustic properties of AlCu melts

    NASA Astrophysics Data System (ADS)

    Khusnutdinoff, R. M.; Mokshin, A. V.; Menshikova, S. G.; Beltyukov, A. L.; Ladyanov, V. I.

    2016-05-01

    The atomic dynamics of the binary Al100- x Cu x system is simulated at a temperature T = 973 K, a pressure p = 1.0 bar, and various copper concentrations x. These conditions (temperature, pressure) make it possible to cover the equilibrium liquid Al100- x Cu x phase at copper concentrations 0 ≤ x ≤ 40% and the supercooled melt in the concentration range 40% ≤ x ≤ 100%. The calculated spectral densities of the time correlation functions of the longitudinal {tilde C_L}( k, ω) and transverse {tilde C_T}( k, ω) currents in the Al100- x Cu x melt at a temperature T = 973 K reveal propagating collective excitations of longitudinal and transverse polarizations in a wide wavenumber range. It is shown that the maximum sound velocity in the v L ( x) concentration dependence takes place for the equilibrium melt at an atomic copper concentration x = 10 ± 5%, whereas the supercooled Al100- x Cu x melt saturated with copper atoms ( x ≥ 40%) is characterized by the minimum sound velocity. In the case of the supercooled melt, the concentration dependence of the kinematic viscosity ν( x) is found to be interpolated by a linear dependence, and a deviation from the linear dependence is observed in the case of equilibrium melt at x < 40%. An insignificant shoulder in the ν( x) dependence is observed at low copper concentrations ( x < 20%), and it is supported by the experimental data. This shoulder is caused by the specific features in the concentration dependence of the density ρ( x).

  5. Phonons, nature of bonding, and their relation to anomalous thermal expansion behavior of M2O (M = Au, Ag, Cu)

    NASA Astrophysics Data System (ADS)

    Gupta, M. K.; Mittal, R.; Chaplot, S. L.; Rols, S.

    2014-03-01

    We report a comparative study of the dynamics of Cu2O, Ag2O, and Au2O (i.e., M2O with M = Au, Ag, and Cu) using first principle calculations based on the density functional theory. Here, for the first time, we show that the nature of chemical bonding and open space in the unit cell are directly related to the magnitude of thermal expansion coefficient. A good match between the calculated phonon density of states and that derived from inelastic neutron scattering measurements is obtained for Cu2O and Ag2O. The calculated thermal expansions of Ag2O and Cu2O are negative, in agreement with available experimental data, while it is found to be positive for Au2O. We identify the low energy phonon modes responsible for this anomalous thermal expansion. We further calculate the charge density in the three compounds and find that the magnitude of the ionic character of the Ag2O, Cu2O, and Au2O crystals is in decreasing order, with an Au-O bond of covalent nature strongly rigidifying the Au4O tetrahedral units. The nature of the chemical bonding is also found to be an important ingredient to understand the large shift of the phonon frequencies of these solids with pressure and temperature. In particular, the quartic component of the anharmonic term in the crystal potential is able to account for the temperature dependence of the phonon modes.

  6. A Facile One-Pot Synthesis of Au/Cu2O Nanocomposites for Nonenzymatic Detection of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Tian, Liangliang; Chen, Yuan; Liu, Bitao; Zhang, Jin

    2015-06-01

    Au/Cu2O nanocomposites were successfully synthesized by a facile one-pot redox reaction without additional reducing agent under room temperature. The morphologies and structures of the as-prepared products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The electrocatalytic performance of Au/Cu2O nanocomposites towards hydrogen peroxide was evaluated by cyclic voltammetry (CV) and chronoamperometry (CA). The prepared Au/Cu2O nanocomposite electrode showed a wide linear range from 25 to 11.2 mM ( R = 0.9989) with a low detection limit of 1.05 μM ( S/ N = 3) and high sensitivity of 292.89 mA mM-1 cm-2. The enhanced performance for H2O2 detection can be attributed to the introduction of Au and the synergistic effect between Au and Cu2O. It is demonstrated that the Au/Cu2O nanocomposites material could be a promising candidate for H2O2 detection.

  7. Petrogenesis and metallogenic setting of the Habo porphyry Cu-(Mo-Au) deposit, Yunnan, China

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangping; Mo, Xuanxue; White, Noel C.; Zhang, Bo; Sun, Mingxiang; Wang, Shuxian; Zhao, Sili; Yang, Yong

    2013-04-01

    Although most porphyry-type deposits are associated with subduction-related magmas within magmatic arc settings, recent research has identified a number of porphyry-type deposits that formed in post-subduction tectonic settings. The newly discovered Habo porphyry Cu-(Mo-Au) deposit in Yunnan, China, formed in a post-subduction tectonic setting and is located in the southwest of the Cenozoic Ailao Shan-Red River continental collision zone. The deposit is associated with the Habo South granite pluton, which consists of three mineralization-related quartz monzonite porphyries and a post-mineralization diorite porphyry. Zircons from the Habo South granite and quartz monzonite porphyries were analyzed by in situ U-Pb LA-ICP-MS, yielding a similiar age of 36 Ma, with molybdenite Re-Os isotope dating indicating that the Habo porphyry deposit formed at 35.5 Ma. Both magmatism and the associated mineralization at Habo are coeval with porphyry copper deposits in the Yulong metallogenic belt of Eastern Tibet. The Habo South granite and porphyries have SiO2 concentrations of 67.28-73.44 wt.%, MgO concentrations of <1.5 wt.%, Al2O3 concentrations around 15 wt.%, Al2O3/(CaO + Na2O + K2O) (A/CNK) ratios of >1.1, K2O + Na2O concentrations generally between 7 and 9 wt.%, and K2O/Na2O ratios of >1.4, showing indicative of high-K magmas. The Habo South granite and quartz monzonite porphyries are enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE), and depleted in heavy rare earth elements (HREE) and high field strength elements (HFSE), with high Sr and low Y concentrations. They have initial 87Sr/86Sr values of 0.7071-0.7083, with ɛNd(t) values from -5.3 to -3.7. These features are indicative of lower-crust derived adakitic magmas, and are similar to those of mineralized porphyries in the Yulong copper belt in Eastern Tibet. This mineralogical, geochemical, and isotope evidence strongly suggests that the magmas that formed both porphyries and the

  8. Designing Tunable White-Light Emission from an Aurophilic Cu(I) /Au(I) Coordination Polymer with Thioether Ligands.

    PubMed

    Ovens, Jeffrey S; Christensen, Peter R; Leznoff, Daniel B

    2016-06-01

    White-light emitters have attracted considerable attention due to their importance in current and future technologies. By incorporating molecular fragments that independently emit in the blue, green/yellow, and red visible regions, specifically Cu-NC, Au⋅⋅⋅Au interactions, and Cu-SR2 , respectively, into a single material, new white-light-emitting systems have been targeted. With this goal, three new Cu(I) /thioether-based coordination polymers containing bridging [Au(CN)2 ](-) units have been synthesized and structurally characterized, and their photoluminescence properties (at room and low temperatures) have been delineated. Using this approach, white-light emission (tunable from slightly yellow to slightly blue, depending on λex ) is generated from Cu(Me2 S)[Au(CN)2 ], a feature uncommon in such simple coordination compounds. PMID:27138305

  9. Iodide-Responsive Cu-Au Nanoparticle-Based Colorimetric Platform for Ultrasensitive Detection of Target Cancer Cells.

    PubMed

    Ye, Xiaosheng; Shi, Hui; He, Xiaoxiao; Wang, Kemin; He, Dinggeng; Yan, Lv'an; Xu, Fengzhou; Lei, Yanli; Tang, Jinlu; Yu, Yanru

    2015-07-21

    Colorimetric analysis is promising in developing facile, fast, and point-of-care cancer diagnosis techniques, but the existing colorimetric cancer cell assays remain problematic because of dissatisfactory sensitivity as well as complex probe design or synthesis. To solve the problem, we here present a novel colorimetric analytical strategy based on iodide-responsive Cu-Au nanoparticles (Cu-Au NPs) combined with the iodide-catalyzed H2O2-TMB (3,3,5,5-tetramethylbenzidine) reaction system. In this strategy, bimetallic Cu-Au NPs prepared with an irregular shape and a diameter of ∼15 nm could chemically absorb iodide, thus indirectly inducing colorimetric signal variation of the H2O2-TMB system. By further utilizing its property of easy biomolecule modification, a versatile colorimetric platform was constructed for detection of any target that could cause the change of Cu-Au NPs concentration via molecular recognition. As proof of concept, an analysis of human leukemia CCRF-CEM cells was performed using aptamer Sgc8c-modified Cu-Au NPs as the colorimetric probe. Results showed that Sgc8c-modified Cu-Au NPs successfully achieved a simple, label-free, cost-effective, visualized, selective, and ultrasensitive detection of cancer cells with a linear range from 50 to 500 cells/mL and a detection limit of 5 cells in 100 μL of binding buffer. Moreover, feasibility was demonstrated for cancer cell analysis in diluted serum samples. The iodide-responsive Cu-Au NP-based colorimetric strategy might not only afford a new design pattern for developing cancer cell assays but also greatly extend the application of the iodide-catalyzed colorimetric system. PMID:26100583

  10. Hydrothermal ethanol conversion on Ag, Cu, Au/TiO2

    NASA Astrophysics Data System (ADS)

    Mai, Do Tkhyui; Mikhalenko, I. I.; Pylinina, A. I.

    2014-10-01

    The effect UV irradiation and silver, copper, and gold ions (M z+) supported on titania (anatase) have on the activity of M/TiO2 samples in ethanol conversion at 150-400°C is examined. After UV irradiation, the yields of acetaldehyde and ethylene increase for TiO2 and Ag/TiO2 samples, while the activity of Cu2+/TiO2 decreases. The activation energy of ethanol dehydration declines in the order TiO2 > Au3+ > Cu2+ > Ag+ and correlates linearly with a reduction in the radius of M z+ in crystal. The number of acidic sites on a M/TiO2 surface titrated via pyridine adsorption grows upon the introduction of M. Unlike Cu2+/TiO2, these sites are not activated after the irradiation of TiO2, Ag+/TiO2, and Au3+/TiO2. According to IR spectral data on adsorbed pyridine, all samples contain Lewis and Brönsted acidic sites.

  11. Nuclear matter effects on J/ψ production in asymmetric Cu + Au collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV

    SciTech Connect

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Bing, X.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C. -H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Datta, A.; Daugherity, M. S.; David, G.; DeBlasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Do, J. H.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E. -J.; Kim, H. -J.; Kim, M.; Kim, Y. -J.; Kim, Y. K.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Oskarsson, A.; Ozaki, H.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J. -C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T. -A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takahara, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.

    2014-12-18

    We report on J/ψ production from asymmetric Cu+Au heavy-ion collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/ψ yields in Cu+Au collisions in the Au-going direction is found to be comparable to that in Au+Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/ψ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression in the larger Au nucleus. Thus, the relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.

  12. Charged-particle multiplicity and pseudorapidity distributions measured with the PHOBOS detector in Au+Au, Cu+Cu, d+Au, and p+p collisions at ultrarelativistic energies

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kotuła, J.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2011-02-01

    Pseudorapidity distributions of charged particles emitted in Au+Au, Cu+Cu, d+Au, and p+p collisions over a wide energy range have been measured using the PHOBOS detector at the BNL Relativistic Heavy-Ion Collider (RHIC). The centrality dependence of both the charged particle distributions and the multiplicity at midrapidity were measured. Pseudorapidity distributions of charged particles emitted with |η|<5.4, which account for between 95% and 99% of the total charged-particle emission associated with collision participants, are presented for different collision centralities. Both the midrapidity density dNch/dη and the total charged-particle multiplicity Nch are found to factorize into a product of independent functions of collision energy, sNN, and centrality given in terms of the number of nucleons participating in the collision, Npart. The total charged particle multiplicity, observed in these experiments and those at lower energies, assumes a linear dependence of (lnsNN)2 over the full range of collision energy of sNN=2.7-200 GeV.

  13. Near-side azimuthal and pseudorapidity correlations using neutral strange baryons and mesons in d +Au , Cu + Cu, and Au + Au collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Barnby, L. S.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bombara, M.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Gaillard, L.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, C.; Li, Y.; Li, W.; Li, X.; Li, X.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, L.; Ma, R.; Ma, G. L.; Ma, Y. G.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nattrass, C.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, H.; Wang, Y.; Wang, G.; Wang, Y.; Wang, J. S.; Wang, F.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, J.; Xu, H.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, S.; Yang, Y.; Yang, Y.; Yang, C.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, S.; Zhang, J. B.; Zhang, J.; Zhang, J.; Zhang, Z.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-07-01

    We present measurements of the near side of triggered di-hadron correlations using neutral strange baryons (Λ ,Λ ¯) and mesons (KS0) at intermediate transverse momentum (3 < pT <6 GeV /c ) to look for possible flavor and baryon-meson dependence. This study is performed in d +Au , Cu+Cu, and Au+Au collisions at √{sN N}=200 GeV measured by the STAR experiment at RHIC. The near-side di-hadron correlation contains two structures, a peak which is narrow in azimuth and pseudorapidity consistent with correlations from jet fragmentation, and a correlation in azimuth which is broad in pseudorapidity. The particle composition of the jet-like correlation is determined using identified associated particles. The dependence of the conditional yield of the jet-like correlation on the trigger particle momentum, associated particle momentum, and centrality for correlations with unidentified trigger particles are presented. The neutral strange particle composition in jet-like correlations with unidentified charged particle triggers is not well described by PYTHIA. However, the yield of unidentified particles in jet-like correlations with neutral strange particle triggers is described reasonably well by the same model.

  14. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles.

    PubMed

    Guo, Shaojun; Zhang, Xu; Zhu, Wenlei; He, Kai; Su, Dong; Mendoza-Garcia, Adriana; Ho, Sally Fae; Lu, Gang; Sun, Shouheng

    2014-10-22

    Controlling the electronic structure and surface strain of a nanoparticle catalyst has become an important strategy to tune and to optimize its catalytic efficiency for a chemical reaction. Using density functional theory (DFT) calculations, we predicted that core/shell M/CuPd (M = Ag, Au) NPs with a 0.8 or 1.2 nm CuPd2 shell have similar but optimal surface strain and composition and may surpass Pt in catalyzing oxygen reduction reactions. We synthesized monodisperse M/CuPd NPs by the coreduction of palladium acetylacetonate and copper acetylacetonate in the presence of Ag (or Au) nanoparticles with controlled shell thicknesses of 0.4, 0.75, and 1.1 nm and CuPd compositions and evaluated their catalysis for the oxygen reduction reaction in 0.1 M KOH solution. As predicted, our Ag/Cu37Pd63 and Au/Cu40Pd60 catalysts with 0.75 and 1.1 nm shells were more efficient catalysts than the commercial Pt catalyst (Fuel Cells Store), with their mass activity reaching 0.20 A/mg of noble metal at -0.1 V vs Ag/AgCl (4 M KCl); this was over 3 times higher than that (0.06 A/mg Pt) from the commercial Pt. These Ag(Au)/CuPd nanoparticles are promising non-Pt catalysts for oxygen reduction reactions. PMID:25279704

  15. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming.

    PubMed

    Xi, Hongjuan; Hou, Xiaoning; Liu, Yajie; Qing, Shaojun; Gao, Zhixian

    2014-10-27

    Cu-Al spinel oxide, which contains a small portion of the CuO phase, has been successfully used in methanol steam reforming (MSR) without prereduction. The omission of prereduction not only avoids the copper sintering prior to the catalytic reaction, but also slows down the copper-sintering rate in MSR. During this process, the CuO phase can initiate MSR at a lower temperature, and CuAl2O4 releases active copper gradually. The catalyst CA2.5-900, calcined at 900 °C with n(Al)/n(Cu) = 2.5, has a higher CuAl2O4 content, higher BET surface area, and smaller CuAl2O4 crystal size. Its activity first increases and then decreases during MSR. Furthermore, both fresh and regenerated CA2.5-900 showed better catalytic performance than the commercial Cu-Zn-Al catalyst. PMID:25213737

  16. Structural and optical properties of the naked and passivated Al5Au5 bimetallic nanoclusters

    NASA Astrophysics Data System (ADS)

    Grande-Aztatzi, Rafael; Formoso, Elena; Mercero, Jose M.; Matxain, Jon M.; Grabowski, Slawomir J.; Ugalde, Jesus M.

    2016-03-01

    The structural and optical properties of both the naked and passivated bimetallic Al5Au5 nanoclusters have been analyzed based on data obtained from ab initio density functional theory and quantum molecular dynamics simulations. It has been found that the Al5Au5 nanocluster possesses a hollow shaped minimum energy structure with segregated Al and Au layered domains, the former representing the electrophilic domain and the latter the nucleophilic domain. In particular, it has been shown that alkali metal cations attach in the nucleophilic domain and hop from one Au site to the next one in the picoseconds time scale, while anions are bound tightly to the Al atoms of the electrophilic domain. Simulating annealing studies are very suggestive of the proneness of the nanocluster towards coalescence into large cluster units, when the cluster is left unprotected by appropriate ligands. Further passivation studies with NaF salt suggest, nonetheless, the possibility of the isolation of the Al5Au5 cluster in molten salts or ionic liquids.

  17. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application.

    PubMed

    Slaughter, Gymama; Stevens, Brian

    2015-01-01

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 mW/ cm² in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm², respectively. PMID:26580661

  18. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application

    PubMed Central

    Slaughter, Gymama; Stevens, Brian

    2015-01-01

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 μW/ cm2 in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm2, respectively. PMID:26580661

  19. Turning gold into "diamond": a family of hexagonal diamond-type Au-frameworks interconnected by triangular clusters in the Sr-Al-Au system.

    PubMed

    Palasyuk, Andriy; Grin, Yuri; Miller, Gordon J

    2014-02-26

    A new homologous series of intermetallic compounds containing three-dimensional (3-d) tetrahedral frameworks of gold atoms, akin to hexagonal diamond, have been discovered in four related Sr-Au-Al systems: (I) hexagonal SrAl3-xAu4+x (0.06(1) ≤ x ≤ 0.46(1), P62m, Z = 3, a = 8.633(1)-8.664(1) Å, c = 7.083(2)-7.107(1) Å); (II) orthorhombic SrAl2-yAu5+y (y ≤ 0.05(1); Pnma, Z = 4, a = 8.942(1) Å, b = 7.2320(4) Å, c = 9.918(1) Å); (III) Sr2Al2-zAu7+z (z = 0.32(2); C2/c, Z = 4, a = 14.956(4) Å, b = 8.564(2) Å, c = 8.682(1) Å, β = 123.86(1)°); and (IV) rhombohedral Sr2Al3-wAu6+w (w ≈ 0.18(1); R3c, Z = 6, a = 8.448(1) Å, c = 21.735(4) Å). These remarkable compounds were obtained by fusion of the pure elements and were characterized by X-ray diffraction and electronic structure calculations. Phase I shows a narrow phase width and adopts the Ba3Ag14.6Al6.4-type structure; phase IV is isostructural with Ba2Au6Zn3, whereas phases II and III represent new structure types. This novel series can be formulated as Srx[M3]1-xAu2, in which [M3] (= [Al3] or [Al2Au]) triangles replace some Sr atoms in the hexagonal prismatic-like cavities of the Au network. The [M3] triangles are either isolated or interconnected into zigzag chains or nets. According to tight-binding electronic structure calculations, the greatest overlap populations belong to the Al-Au bonds, whereas Au-Au interactions have a substantial nonbonding region surrounding the calculated Fermi levels. QTAIM analysis of the electron density reveals charge transfer from Sr to the Al-Au framework in all four systems. A study of chemical bonding by means of the electron-localizability indicator indicates two- and three-center interactions within the anionic Al-Au framework. PMID:24483344

  20. Iron and chlorine as guides to stratiform Cu-Co-Au deposits, Idaho Cobalt Belt, USA

    USGS Publications Warehouse

    Nash, J.T.; Connor, J.J.

    1993-01-01

    The Cu-Co-Au deposits of the Idaho Cobalt Belt are in lithostratigraphic zones of the Middle Proterozoic Yellowjacket Formation characterized by distinctive chemical and mineralogical compositions including high concentrations of Fe (15- > 30 wt. percent Fe2O3), Cl (0.1-1.10 wt. percent), and magnetite or biotite (> 50 vol. percent). The Cu-Co-Au deposits of the Blackbird mine are stratabound in Fe-silicate facies rocks that are rich in biotite, Fe, and Cl, but stratigraphically equivalent rocks farther than 10 km from ore deposits have similar compositions. A lower lithostratigraphic zone containing magnetite and small Cu-Co-Au deposits extends for more than 40 km. The Fe-rich strata are probably exhalative units related to mafic volcanism and submarine hot springs, but the origin of the high Cl concentrations is less clear. Former chlorine-rich pore fluids are suggested by the presence of supersaline fluid inclusions, by Cl-rich biotite and scapolite (as much as 1.87 percent Cl in Fe-rich biotite), and by high Cl concentrations in rock samples. Chlorine is enriched in specific strata and in zones characterized by soft-sediment deformation, thus probably was introduced during sedimentation or diagenesis. Unlike some metasedimentary rocks containing scapolite and high Cl, the Yellowjacket Formation lacks evidence for evaporitic strata that could have been a source of Cl. More likely, the Cl reflects a submarine brine that carried Fe, K, and base metals. Strata containing anomalous Fe-K-Cl are considered to be a guide to sub-basins favorable for the occurrence of stratiform base-metal deposits. ?? 1993 Springer-Verlag.

  1. Iron and chlorine as guides to stratiform Cu-Co-Au deposits, Idaho Cobalt Belt, USA

    NASA Astrophysics Data System (ADS)

    Nash, J. T.; Connor, J. J.

    1993-04-01

    The Cu-Co-Au deposits of the Idaho Cobalt Belt are in lithostratigraphic zones of the Middle Proterozoic Yellowjacket Formation characterized by distinctive chemical and mineralogical compositions including high concentrations of Fe (15- > 30 wt. percent Fe2O3), Cl (0.1 1.10 wt. percent), and magnetite or biotite (> 50 vol. percent). The Cu-Co-Au deposits of the Blackbird mine are stratabound in Fe-silicate facies rocks that are rich in biotite, Fe, and Cl, but stratigraphically equivalent rocks farther than 10 km from ore deposits have similar compositions. A lower lithostratigraphic zone containing magnetite and small Cu-Co-Au deposits extends for more than 40 km. The Fe-rich strata are probably exhalative units related to mafic volcanism and submarine hot springs, but the origin of the high Cl concentrations is less clear. Former chlorine-rich pore fluids are suggested by the presence of supersaline fluid inclusions, by Cl-rich biotite and scapolite (as much as 1.87 percent Cl in Fe-rich biotite), and by high Cl concentrations in rock samples. Chlorine is enriched in specific strata and in zones characterized by soft-sediment deformation, thus probably was introduced during sedimentation or diagenesis. Unlike some metasedimentary rocks containing scapolite and high Cl, the Yellowjacket Formation lacks evidence for evaporitic strata that could have been a source of Cl. More likely, the Cl reflects a submarine brine that carried Fe, K, and base metals. Strata containing anomalous Fe-K-Cl are considered to be a guide to sub-basins favorable for the occurrence of stratiform base-metal deposits.

  2. Tensile Creep Properties of the 50Au-50Cu Braze Alloy

    SciTech Connect

    Stephens, J.J.

    1999-05-28

    The 50Au-50CU (wt.%) alloy is a solid-solution strengthened braze alloy used extensively in conventional, hermetic metal/ceramic brazing applications where low vapor pressure is a requirement. Typical metal/ceramic base materials would be KovarTM alloy and metallized and Ni-plated 94% alumina ceramic. The elevated temperature mechanical properties are important for permitting FEA evaluation of residual stresses in metal/ceramic brazes given specific geometries and braze cooldown profiles. For material with an atomic composition of 76.084 at.% CL 23.916 Au (i.e., on the Cu-rich side of Cu3Au) that was annealed for 2 hr. at 750°C and water quenched a Garofalo sinh equation was found to adequately characterize the minimum strain rate data over the temperature mnge 450-850°C. At lower temperatures (250 arid 350°C), a conventional power law equation was found to characterize the data. For samples held long periods of time at 375°C (96 hrs.) and slowly cooled to room temperature, a slight strengthening reaction was observed: with the stress necessary to reach the same strain rate increasing by about 15% above the baseline annealed and quenched data. X-ray diffiction indicates that the 96 hr at 375°C + slow cool condition does indeed order. The microhardness of the ordered samples indicates a value of 94.5 VHN, compared to 93.7 VHN for the baseline annealed and quenched (disordered FCC) samples. From a brazing perspective, the relative sluggishness of this ordering reaction does not appear to pose a problem for braze joints cooled at reasonable rates following brazing.

  3. Optical properties of random alloys: application to CuAu and NiPt

    NASA Astrophysics Data System (ADS)

    Krishna Saha, Kamal; Mookerjee, Abhijit

    2005-07-01

    In an earlier paper we presented a formulation for the calculation of the configuration-averaged optical conductivity in random alloys. Our formulation is based on the augmented-space theorem introduced by one of us (Mookerjee 1973 J. Phys. C: Solid State Phys. 6 1340). In this communication we shall combine the augmented space methodology with the tight-binding linear muffin-tin orbital technique (TB-LMTO) to study the optical conductivities of two alloys, CuAu and NiPt.

  4. Dirac and Weyl Semimetal in XYBi (X = Ba, Eu; Y = Cu, Ag and Au).

    PubMed

    Du, Yongping; Wan, Bo; Wang, Di; Sheng, Li; Duan, Chun-Gang; Wan, Xiangang

    2015-01-01

    Weyl and Dirac semimetals recently stimulate intense research activities due to their novel properties. Combining first-principles calculations and effective model analysis, we predict that nonmagnetic compounds BaYBi (Y = Au, Ag and Cu) are Dirac semimetals. As for the magnetic compound EuYBi, although the time reversal symmetry is broken, their long-range magnetic ordering cannot split the Dirac point into pairs of Weyl points. However, we propose that partially substitute Eu ions by Ba ions will realize the Weyl semimetal. PMID:26399742

  5. Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs

    DOE PAGESBeta

    Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; Zhu, Weidi; Kim, Byung-Jae; Le, Lingcong; Ren, Fan; Lind, Aaron G.; Dahl, James; Jones, Kevin S.; et al

    2015-04-27

    We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and aftermore » BOE exposure.« less

  6. Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs

    SciTech Connect

    Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; Zhu, Weidi; Kim, Byung-Jae; Le, Lingcong; Ren, Fan; Lind, Aaron G.; Dahl, James; Jones, Kevin S.; Pearton, Stephen J.; Kravchenko, Ivan I.; Zhang, Ming-Lan

    2015-04-27

    We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and after BOE exposure.

  7. Underpotential deposition of Cu on Au(111): Implications of the HB model

    NASA Astrophysics Data System (ADS)

    Blum, L.; Huckaby, Dale A.

    1994-05-01

    In recent papers a model for the underpotential deposition of Cu on Au(111) in the presence of bisulfate ions was proposed. In this model it was assumed that the bisulfate ions formed a square root of 3 times square root of 3 template. This template leaves a honeycomb lattice of free sites for the adsorption of copper. The clear implication is that the first peak has 2/3 of a monolayer of Cu. The second peak corresponds to the replacement of the bisulfate by copper in the adlayer. We showed also that the broad foot of the first peak is due to a second order hard hexagon like transition, which is seen experimentally by Itaya and Kolb. The interpretation, based on the STM and LEED observations, that the first peak corresponds to only 1/3 of a monolayer, is consistent with our model if it is the bisulfate ion that is actually seen in those experiments.

  8. Biosorption of Au (III) and Cu (II) from aqueous solution by a non-living Cetraria islandica (L.) Ach.

    PubMed

    Ekinci Dogan, Canan; Turhan, Kadir; Akcin, Göksel; Aslan, Ali

    2006-01-01

    Biosorption of Au(III) and Cu(II) from dilute aqueous solutions was investigated by biomass of the non-living Cetraria islandica (L.) Ach. The removal and recovery of gold and copper were studied by applying batch technique. The experimental parameters such as the pH of the solution, contact time, the amount of Cetraria islandica (L.) Ach. (dried lichen), the concentration of metals on retention and eluents kind and amount have been investigated. Au(III) and Cu(II) were adsorbed on the dried lichen at pH 3 and pH 8, respectively. Quantitative retention (> or = 90%) was obtained within 60 minutes for metals. Maximum capacity of 1.0 g of dried lichen for biosorption of Au(III) and Cu(II) were found as 7.4 mg of Au(III) and 19.2 mg of Cu(II). It was seen that the adsorption equilibrium data conformed well to the Langmuir model and Freundlich equation for Au(III) and only Freundlich equation for Cu(II). The method proposed in this study was applied to spiked mineral water analysis and metals adsorbed on the lichens were quantitatively (> or = 90%) recovered from mineral water samples by using 0.5 mol L(-1) HCl. PMID:16836256

  9. Electron configuration and charge state of electrically active Cu, Ag and Au ions in ZnSe

    NASA Astrophysics Data System (ADS)

    Nedeoglo, N. D.; Sirkeli, V. P.; Nedeoglo, D. D.; Laiho, R.; Lähderanta, E.

    2006-08-01

    The Hall effect, electrical conductivity and electron mobility are investigated at temperatures between 55 and 500 K in n-ZnSe crystals doped with Cu, Ag or Au. The presence of a small amount of Cu atoms leads to an inversion of the sign of the Hall coefficient at temperatures above 300 K. Anomalous temperature dependence of the electron mobility is observed in the samples with low Cu concentration (<0.3 at.% in the melt). Different characters of the temperature dependences of kinetic coefficients are found for n-ZnSe doped with Ag and Au. These curves are typical for crystals having several donor levels at different energetic depths. Immediately after doping, silver behaves like a usual compensating acceptor impurity while gold shows amphoteric properties. We propose a model that explains the anomalies of the temperature dependences of the kinetic coefficients in Cu-doped crystals and the lack of the anomalies in Ag-doped and Au-doped crystals. In accordance with this model and our experimental data, copper in n-ZnSe has two charge states, CuZn+ (d10) and CuZn2+ (d9), and two acceptor levels near the valence band. Silver and gold exist in single-charged states AgZn+ and AuZn+ with d10 electron configuration forming single energy levels near the valence band. Au atoms form mainly interstitial Aui donors at low doping concentrations and substitutional AuZn and AuZn-based acceptors at high doping concentrations. Time stimulation of the amphoteric properties of Ag is discussed.

  10. Solidification behavior and structure of Al-Cu alloy welds

    SciTech Connect

    Brooks, J.A.; Li, M.; Yang, N.C.Y.

    1997-09-01

    The microsegregation behavior of electron beam (EB) and gas tungsten arc (GTA) welds of Al-Cu alloys covering a range from 0.19 to 7.74 wt% Cu were characterized for dendrite core concentrations and fraction eutectic solidification. Although a single weld speed of 12.7 mm/sec was used, some differences were observed in the segregation behavior of the two weld types. The microsegregation behavior was also modeled using a finite differences technique considering dendrite tip and eutectic undercooling and solid state diffusion. Fairly good agreement was observed between measured and calculated segregation behavior although differences between the two weld types could not be completely accounted for. The concept of dendrite tip undercooling was used to explain the formation of a single through thickness centerline grain in the higher alloy content GTA welds.

  11. The influence of Cu /Al ratio on properties of chemical-vapor-deposition-grown p-type Cu-Al-O transparent semiconducting films

    NASA Astrophysics Data System (ADS)

    Cai, Jianling; Gong, Hao

    2005-08-01

    Transparent p-type copper aluminum oxide (Cu-Al-O) semiconducting thin films, with Cu /Al atomic ratios ranging from 1.0 to 4.3, were deposited by plasma-enhanced metal-organic chemical-vapor deposition. The films were grown on z-cut single-crystal quartz substrates, at a substrate temperature of 450°C. Crystalline CuAlO2 was found dominant in the films, including small amounts of CuAl2O4, Al2O3, and amorphous Cu2O. The effect of varying Cu /Al ratio on the structural, electrical, and optical properties of the films were studied by x-ray diffraction, energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, and Seebeck technique, and discussed. We were able to optimize the Cu /Al ratio for the p-type conductivity and transmittance in copper aluminum oxide thin films, and the best conductive film, with a room-temperature conductivity of 0.289Scm-1 and a transparency of 80%, was found to have a Cu /Al ratio of 1.4±0.3. In addition, the mechanism of the p-type conduction of copper aluminum oxide was discussed.

  12. CO sub 2 induced inhibition of the localized corrosion of aluminum, Al-0. 5% Cu, and Al-2% Cu in dilute HF solution

    SciTech Connect

    Scully, J.R. . Dept. of Materials Science); Peebles, D.E. )

    1991-01-01

    This study presents work on corrosion of aluminum, Al-.5% Cu, and Al-2% Cu. Electrochemical tests were performed in dilute HF solutions both with and without CO{sub 2} sparging. It is suggested that CO{sub 2} or its reaction products interact with the passive film so that exposure of Cu in the oxide-solution interface is minimized. CO{sub 2} is investigated as a corrosion inhibitor. 4 refs. (JDL)

  13. EuAu3Al2: Crystal and Electronic Structures and Spectroscopic, Magnetic, and Magnetocaloric Properties.

    PubMed

    Schmiegel, Jan-Patrick; Block, Theresa; Gerke, Birgit; Fickenscher, Thomas; Touzani, Rachid St; Fokwa, Boniface P T; Janka, Oliver

    2016-09-01

    The intermetallic compound EuAu3Al2 has been prepared by reaction of the elements in tantalum ampules. The structure was refined from single-crystal data, indicating that the title compound crystallizes in the orthorhombic crystal system (a = 1310.36(4), b = 547.87(1), c = 681.26(2) pm) with space group Pnma (wR2 = 0.0266, 1038 F(2) values, 35 parameters) and is isostructural to SrAu3Al2 (LT-SrZn5 type). Full ordering of the gold and aluminum atoms was observed. Theoretical calculations confirm that the title compound can be described as a polar intermetallic phase containing a polyanionic [Au3Al2](δ-) network featuring interconnected strands of edge-sharing [AlAu4] tetrahedra. Magnetic measurements and (151)Eu Mössbauer spectroscopic investigations confirmed the divalent character of the europium atoms. Ferromagnetic ordering below TC = 16.5(1) K was observed. Heat capacity measurements showed a λ-type anomaly at T = 15.7(1) K, in line with the ordering temperature from the susceptibility measurements. The magnetocaloric properties of EuAu3Al2 were determined, and a magnetic entropy of ΔSM = -4.8 J kg(-1) K(-1) for a field change of 0 to 50 kOe was determined. Band structure calculations found that the f-bands of Eu present at the Fermi level of non-spin-polarized calculations are responsible for the ferromagnetic ordering in this phase, whereas COHP chemical bonding coupled with Bader charge analysis confirmed the description of the structure as covalently bonded polyanionic [Au3Al2](δ-) network interacting ionically with Eu(δ+). PMID:27532875

  14. Nuclear matter effects on J /ψ production in asymmetric Cu + Au collisions at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Bing, X.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Do, J. H.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, H.-J.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Oskarsson, A.; Ozaki, H.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takahara, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Yokkaichi, S.; Yoon, I.; You, Z.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Phenix Collaboration

    2014-12-01

    We report on J /ψ production from asymmetric Cu + Au heavy-ion collisions at √{sNN}=200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J /ψ yields in Cu + Au collisions in the Au-going direction is found to be comparable to that in Au + Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J /ψ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression in the larger Au nucleus.

  15. Photothermal effects from Au-Cu2O core-shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability.

    PubMed

    Wang, Hsiang-Ju; Yang, Kung-Hsun; Hsu, Shih-Chen; Huang, Michael H

    2016-01-14

    Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ∼1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths. PMID:26660504

  16. Photocatalytic property and structural stability of CuAl-based layered double hydroxides

    SciTech Connect

    Lv, Ming; Liu, Haiqiang

    2015-07-15

    Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) were successfully synthesized by coprecipitation. Powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and UV–Vis diffuse reflectance spectrum (UV–vis) were used to confirm the formation of as-synthesized solids with good crystal structure. The photocatalytic activity of those LDH materials for CO{sub 2} reduction under visible light was investigated. The experimental results show that CuNiAl-LDHs with narrowest band gap and largest surface areas behave highest efficiency for methanol generation under visible light compared with CuMgAl-LDHs and CuZnAl-LDHs. The CuNiAL-LDH showed high yield for methanol production i.e. 0.210 mmol/g h, which was high efficient. In addition, the influence of the different M{sup 2+} on the structures and stability of the CuMAl-LDHs was also investigated by analyzing the geometric parameters, electronic arrangement, charge populations, hydrogen-bonding, and binding energies by density functional theory (DFT) analysis. The theoretical calculation results show that the chemical stability of LDH materials followed the order of CuMgAl-LDHs>CuZnAl-LDHs>CuNiAl-LDHs, which is just opposite with the photocatalytic activity and band gaps of three materials. - Graphical abstract: The host–guest calculation models and XRD patterns of CuMAl-LDHs: CuMgAl-LDHs (a), CuZnAl-LDHs (b) and CuNiAl-LDHs (c). - Highlights: • Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) has been synthesized. • CuMgNi shows narrower band gap and more excellent textural properties than other LDHs. • The band gap: CuMgAl based on result from UV–vis analysis. • CuMgAl shows the highest stability and lowest photocatalytic activity, while CuNiAl just opposite.

  17. Dynamical calculations for RHEED from a partially-ordered Cu 3Au(111) surface

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Lordi, S.; Flynn, C. P.; Eades, J. A.

    1994-01-01

    A multislice formalism of Cowley and Moodie [Acta Cryst. 10 (1957) 609] with a recently developed edge patching method has been applied to the RHEED analyses on the order-disorder transition of the Cu 3Au(111) surfaces. The results give the RI- S relation as RI = 0.4 S2.224 ( RI — ratio of reflection intensities, S — long-range orde By combining the RI- T relation experimentally observable by RHEED with the simulated RI- S relation, the needed S- T relation for the transition can be resolved in a straightforward way. The results confirm what was suggested by the experiments [Mater. Res. Soc. Symp. Proc. 237 (1993) 517]: the intensities of the RHEED superstructure reflections from ordering of the Cu and Au is more than 90% sensitive to the outer monolayer alone, thus making RHEED valuable for studies of surface order. The results of the analyses on the attenuation of elastically scattered electrons inside crystal in RHEED are useful to RHEED-related surface analytical techniques: AES, REEL, EDS and RHEED-TRAXS. The investigation on the errors resulting from potential sampling has shown that choosing proper sampling rates in all three dimensions is important to the multislice simulation of RHEED.

  18. Composition-selective fabrication of ordered intermetallic Au-Cu nanowires and their application to nano-size electrochemical glucose detection.

    PubMed

    Kim, Si-In; Eom, Gayoung; Kang, Mijeong; Kang, Taejoon; Lee, Hyoban; Hwang, Ahreum; Yang, Haesik; Kim, Bongsoo

    2015-06-19

    Bimetallic nanostructures can provide distinct and improved physicochemical properties by the coupling effect of the two metal components, making them promising materials for a variety of applications. Herein, we report composition-selective fabrication of ordered intermetallic Au-Cu nanowires (NWs) by two-step chemical vapor transport method and their application to nano-electrocatalytic glucose detection. Ordered intermetallic Au3Cu and AuCu3 NWs are topotaxially fabricated by supplying Cu-containing chemicals to pre-synthesized single-crystalline Au NW arrays. The composition of fabricated Au-Cu NWs can be selected by changing the concentration of Cu-containing species. Interestingly, Au3Cu NW electrodes show unique electrocatalytic activity for glucose oxidation, allowing us to detect glucose without interference from ascorbic acid. Such interference-free detection of glucose is attributed to the synergistic effect, induced by incorporation of Cu in Au. We anticipate that Au3Cu NWs could show possibility as efficient nano-size electrochemical glucose sensors and the present fabrication method can be employed to fabricate valuable ordered intermetallic nanostructures. PMID:26016531

  19. Composition-selective fabrication of ordered intermetallic Au-Cu nanowires and their application to nano-size electrochemical glucose detection

    NASA Astrophysics Data System (ADS)

    Kim, Si-In; Eom, Gayoung; Kang, Mijeong; Kang, Taejoon; Lee, Hyoban; Hwang, Ahreum; Yang, Haesik; Kim, Bongsoo

    2015-06-01

    Bimetallic nanostructures can provide distinct and improved physicochemical properties by the coupling effect of the two metal components, making them promising materials for a variety of applications. Herein, we report composition-selective fabrication of ordered intermetallic Au-Cu nanowires (NWs) by two-step chemical vapor transport method and their application to nano-electrocatalytic glucose detection. Ordered intermetallic Au3Cu and AuCu3 NWs are topotaxially fabricated by supplying Cu-containing chemicals to pre-synthesized single-crystalline Au NW arrays. The composition of fabricated Au-Cu NWs can be selected by changing the concentration of Cu-containing species. Interestingly, Au3Cu NW electrodes show unique electrocatalytic activity for glucose oxidation, allowing us to detect glucose without interference from ascorbic acid. Such interference-free detection of glucose is attributed to the synergistic effect, induced by incorporation of Cu in Au. We anticipate that Au3Cu NWs could show possibility as efficient nano-size electrochemical glucose sensors and the present fabrication method can be employed to fabricate valuable ordered intermetallic nanostructures.

  20. Au@Cu2O stellated polytope with core-shelled nanostructure for high-performance adsorption and visible-light-driven photodegradation of cationic and anionic dyes.

    PubMed

    Wu, Xueqing; Cai, Jiabai; Li, Shunxing; Zheng, Fengying; Lai, Zhanghua; Zhu, Licong; Chen, Tanju

    2016-05-01

    Au nanoparticles were covered by Cu2O nanoparticles shell and then Au@Cu2O stellated polytope was synthesized by a facile aqueous solution approach. The samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction patterns, X-ray photoelectron spectroscopy, Brunner-Emmet-Teller measurements, and Ultraviolet-visible spectroscopy analysis. With good aqueous dispersibility, surface positive charge, and high chemisorption capacity, Au@Cu2O could be used for anionic dyes removal. Compared with Degussa P25-TiO2, the adsorption of anionic dyes (acid violet 43 or methyl blue, 5.0 mg L(-1)) onto Au@Cu2O was increased by 90.12% and 50.8%, respectively. The photodegradation activity of methyl orange and methyl violet were in the declining order: Au@Cu2O>Cu2O-Au nanocomposites>Cu2O>P25-TiO2. The synergistic effect of coupling Au core with Cu2O shell on the dyes photodegradation was observed. The photoexcited electrons from Cu2O conduction band could be captured by Au nanoparticles, resulting in an improved electron-hole separation. Moreover, a Schottky barrier was assumed to form at the Cu2O-Au interface and Au NPs as electron sink could reduce the recombination of photoinduced electrons and holes, facilitating the photocatalytic interface reaction. The geometry of core-shell and stellated polytope is effective in the design of Cu2O-Au nanocomposites for adsorption and photocatalysis. PMID:26874979

  1. Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures.

    PubMed

    Milekhin, Alexander G; Yeryukov, Nikolay A; Sveshnikova, Larisa L; Duda, Tatyana A; Rodyakina, Ekaterina E; Gridchin, Victor A; Sheremet, Evgeniya S; Zahn, Dietrich R T

    2015-01-01

    We present the results of a Raman study of optical phonons in CuS nanocrystals (NCs) with a low areal density fabricated through the Langmuir-Blodgett technology on nanopatterned Au nanocluster arrays using a combination of surface- and interference-enhanced Raman scattering (SERS and IERS, respectively). Micro-Raman spectra of one monolayer of CuS NCs deposited on a bare Si substrate reveal only features corresponding to crystalline Si. However, a new relatively strong peak occurs in the Raman spectrum of CuS NCs on Au nanocluster arrays at 474 cm(-1). This feature is related to the optical phonon mode in CuS NCs and manifests the SERS effect. For CuS NCs deposited on a SiO2 layer this phonon mode is also observed due to the IERS effect. Its intensity changes periodically with increasing SiO2 layer thickness for different laser excitation lines and is enhanced by a factor of about 30. CuS NCs formed on Au nanocluster arrays fabricated on IERS substrates combine the advantages of SERS and IERS and demonstrate stronger SERS enhancement allowing for the observation of Raman signals from CuS NCs with an ultra-low areal density. PMID:25977845

  2. Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures

    PubMed Central

    Yeryukov, Nikolay A; Sveshnikova, Larisa L; Duda, Tatyana A; Rodyakina, Ekaterina E; Gridchin, Victor A; Sheremet, Evgeniya S; Zahn, Dietrich R T

    2015-01-01

    Summary We present the results of a Raman study of optical phonons in CuS nanocrystals (NCs) with a low areal density fabricated through the Langmuir–Blodgett technology on nanopatterned Au nanocluster arrays using a combination of surface- and interference-enhanced Raman scattering (SERS and IERS, respectively). Micro-Raman spectra of one monolayer of CuS NCs deposited on a bare Si substrate reveal only features corresponding to crystalline Si. However, a new relatively strong peak occurs in the Raman spectrum of CuS NCs on Au nanocluster arrays at 474 cm−1. This feature is related to the optical phonon mode in CuS NCs and manifests the SERS effect. For CuS NCs deposited on a SiO2 layer this phonon mode is also observed due to the IERS effect. Its intensity changes periodically with increasing SiO2 layer thickness for different laser excitation lines and is enhanced by a factor of about 30. CuS NCs formed on Au nanocluster arrays fabricated on IERS substrates combine the advantages of SERS and IERS and demonstrate stronger SERS enhancement allowing for the observation of Raman signals from CuS NCs with an ultra-low areal density. PMID:25977845

  3. Corrosion behavior of Cu and the Cu-Zn-Al shape memory alloy in simulated uterine fluid.

    PubMed

    Chen, Bangyi; Liang, Chenghao; Fu, Daojun; Ren, Deming

    2005-09-01

    Chemical immersion tests, electrochemical methods and atomic absorption spectrometry were employed to investigate the corrosion behavior of Cu and the Cu-Zn-Al shape memory alloy (SMA) in simulated uterine fluid. The effect of pH on corrosion rate and corrosion potential was also investigated. The results indicated that in the static state in simulated uterine fluid, dealuminumification of the Cu-Zn-Al alloy occurred with Cl- combining with aluminum ions to form hydroxyl aluminum chloride. The hydroxyl aluminum chloride hydrolyzed readily and facilitated further dealuminumification corrosion. The corrosion process of Cu and Cu-Zn-Al SMA in simulated uterine fluid was controlled by cathodic reduction of oxygen. Because the tendency for surface ionization is greater for aluminum than for zinc, a compact protective aluminum layer was formed, which inhibited the cathodic reduction of oxygen. Hence, the corrosion rate of Cu-Zn-Al SMA was smaller than that of Cu in simulated uterine fluid. With increasing pH, the corrosion rate of Cu and Cu-Zn-Al SMA in simulated uterine fluid decreased and the open-circuit potential moved in a positive direction. PMID:16102560

  4. /Al-4Cu Composite Material Produced by Squeeze Casting Method

    NASA Astrophysics Data System (ADS)

    Ficici, Ferit

    2014-05-01

    The wear behavior of a weight fraction of particles with up to 30 wt.% in situ AlB2 flakes reinforced in Al-4Cu matrix alloy composites and fabricated by a squeeze casting method was investigated in a pin-on-disk abrasion test instrument against different SiC abrasives at room conditions. Wear tests were performed under the load of 10 N against SiC abrasive papers of 80, 100, and 120 mesh grits. The effects of sliding speed, AlB2 flake content, and abrasive grit sizes on the abrasive wear properties of the matrix alloy and composites have been evaluated. The main wear mechanisms were identified using an optical microscope. The results showed that in situ AlB2 flake reinforcement improved the abrasion resistance against all the abrasives used, and the abrasive wear resistance decreased with an increase in the sliding speed and the abrasive grit size. The wear resistances of the composites were considerably bigger than those of the matrix alloy and increased with increases in in situ AlB2 flake contents.

  5. Al-Si-Cu/TiN multilayer interconnection and Al-Ge reflow sputtering technologies for quarter-micron devices

    NASA Astrophysics Data System (ADS)

    Kikkawa, Takamaro; Kikuta, Kuniko

    1993-05-01

    Issues of interconnection technologies for quarter-micron devices are the reliability of metal lines with quarter-micron feature sizes and the formation of contact-hole-plugs with high aspect ratios. This paper describes a TiN/Al-Si-Cu/TiN/Al-Si-Cu/TiN/Ti multilayer conductor structure as a quarter-micron interconnection technology and aluminum-germanium (Al-Ge) reflow sputtering as a contact-hole filling technology. The TiN/Al-Si-Cu/TiN/Al-Si-Cu/TiN/Ti multilayer conductor structure could suppress stress-induced voiding and improve the electromigration mean-time to failure. These improvements are attributed to the fact that the grain boundaries for the Al-Si-Cu film and the interfaces between the Al-Si-Cu and the TiN films are strengthened by the rigid intermetallic compound, TiAl3. The Al-Ge alloy reflow sputtering is a candidate for contact- and via-hole filling technologies in terms of reducing fabrication costs. The Al-Ge reflow sputtering achieved low temperature contact hole filling at 300 degree(s)C. Contact holes with a diameter of 0.25 micrometers and aspect ratio of 4 could be filled. This is attributed to the low eutectic temperature for Al-Ge (424 degree(s)C) and the effect of thin polysilicon underlayer on the enhancement of Al-Ge reflow.

  6. Viscosities of aluminum-rich Al-Cu liquid alloys

    NASA Astrophysics Data System (ADS)

    Ganesan, S.; Speiser, R.; Poirier, D. R.

    1987-06-01

    Viscosity data for Al-Cu liquid alloys in the ranges of 0≤ C L≤33.1 wt pct Cu and 1173≤ T ≤973 K are reviewed. It was found that Andrade's equation can be used to represent the variation of viscosity with temperature for a given composition, but that each of the two parameters in Andrade's equation shows no systematic variation with composition of the liquid-alloys. Consequently, arithmetic averages of the parameters were used and assumed to apply to all compositions in the range 0≤ C L ≤33.1 wt pct Cu. Such a procedure implies that the viscosity happens to vary with composition solely because the specific volume varies with composition. In order to establish the predictability of extrapolating such simple behavior, a more complex model was considered. The latter model was recently presented by Kucharski and relates viscosity to the structure and thermodynamics of liquid alloys. Viscosities obtained by interpolating Andrade's equation and Kucharski's model compare closely; furthermore, values obtained by extrapolations to lower temperatures also compare favorably. Finally the simpler model was used to calculate the viscosity of the interdendritic liquid during solidification.

  7. Thermal, solution and reductive decomposition of Cu-Al layered double hydroxides into oxide products

    SciTech Connect

    Britto, Sylvia; Vishnu Kamath, P.

    2009-05-15

    Cu-Al layered double hydroxides (LDHs) with [Cu]/[Al] ratio 2 adopt a structure with monoclinic symmetry while that with the ratio 0.25 adopt a structure with orthorhombic symmetry. The poor thermodynamic stability of the Cu-Al LDHs is due in part to the low enthalpies of formation of Cu(OH){sub 2} and CuCO{sub 3} and in part to the higher solubility of the LDH. Consequently, the Cu-Al LDH can be decomposed thermally (150 deg. C), hydrothermally (150 deg. C) and reductively (ascorbic acid, ambient temperature) to yield a variety of oxide products. Thermal decomposition at low (400 deg. C) temperature yields an X-ray amorphous residue, which reconstructs back to the LDH on soaking in water or standing in the ambient. Solution decomposition under hydrothermal conditions yields tenorite at 150 deg. C itself. Reductive decomposition yields a composite of Cu{sub 2}O and Al(OH){sub 3}, which on alkali-leaching of the latter, leads to the formation of fine particles of Cu{sub 2}O (<1 {mu}m). - Graphical abstract: SEM image of (a) the Cu{sub 2}O-Al(OH){sub 3} composite obtained on reductive decomposition of CuAl{sub 4}-LDH and (b) Cu{sub 2}O obtained on leaching of Al(OH){sub 3} from (a).

  8. Crystal Growth, Structure, and Physical Properties of LnCu[subscript 2](Al,Si)[subscript 5] (Ln = La and Ce)

    SciTech Connect

    Phelan, W. Adam; Kangas, Michael J.; Drake, Brenton L.; Zhao, Liang L.; Wang, Jiakui K.; DiTusa, J.F.; Morosan, Emilia; Chan, Julia Y.

    2012-03-15

    LnCu{sub 2}(Al,Si){sub 5} (Ln = La and Ce) were synthesized and characterized. These compounds adopt the SrAu{sub 2}Ga{sub 5} structure type and crystallize in the tetragonal space group P4/mmm with unit cell dimensions of a {approx} 4.2 {angstrom} and c {approx} 7.9 {angstrom}. Herein, we report the structure as obtained from single crystal X-ray diffraction. Additionally, we report the magnetic susceptibility, magnetization, resistivity, and specific heat capacity data obtained for polycrystalline samples of LnCu{sub 2}(Al,Si){sub 5} (Ln = La and Ce).

  9. Conductance and spin-filter effects of oxygen-incorporated Au, Cu, and Fe single-atom chains

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaolong; Xie, Yi-Qun; Ye, Xiang; Ke, San-Huang

    2015-01-01

    We studied the spin-polarized electron transport in oxygen-incorporated Au, Cu, and Fe single-atom chains (SACs) by first-principles calculations. We first investigated the mechanism responsible for the low conductance (<1G0) of the Au and Cu SACs in an oxygen environment reported in recent experiments. We found that for the Au SACs, the low conductance plateau around 0.6G0 can be attributed to a distorted chain doped with a single oxygen atom, while the 0.1G0 conductance comes from a linear chain incorporated with an oxygen molecule and is caused by an antibonding state formed by oxygen's occupied frontier orbital with dz orbitals of adjacent Au atoms. For the Cu SACs, the conductance about 0.3G0 is ascribed to a special configuration that contains Cu and O atoms in an alternating sequence. This exhibits an even-odd conductance oscillation with an amplitude of ˜0.1G0. In contrast, for the alternating Fe-O SACs, conductance overall decreases with an increase in O atoms and it approaches nearly zero for the chain with more than four O atoms. While the Cu-O SACs behave as perfect spin filters for one spin channel due to the half metallic nature, the Fe-O SACs can serve as perfect spin filters for two spin channels depending on the polarity of the applied gate voltage.

  10. Activity of calcined Ag,Cu,Au/TiO2 catalysts in the dehydrogenation/dehydration of ethanol

    NASA Astrophysics Data System (ADS)

    Mai, Do Tkhyui; Pylinina, A. I.; Mikhailenko, I. I.

    2015-07-01

    The catalytic activity of the anatase TiO2 and M z+/TiO2 with supported ions M z+ = Ag+, Cu2+, Au3+ in vapor phase conversions of ethanol is investigated at temperatures of 100-400°C. It is shown that the yields of acetaldehyde and ethylene decline for the most active catalyst Cu2+/TiO2 but increase for TiO2 and Ag/TiO2. The drop in the activation energy of the dehydrogenation reaction over calcined samples is linearly correlated with the one in the reduction potential of M z+ to Cu+, Au+, Ag0 and the ionic radius of M z+ in the crystal. The energies of activation for ethylene formation change in the series TiO2 > Au3+ > Cu2+ >Ag+ and TiO2 ≈ Cu2+ ≈ Ag+ > Au3+ for the calcined samples. The rate of pyridine adsorption, considered as an indicator of the activity of acid sites, is a linear function of ion charge + z = 1, 2, 3, and slows by two-thirds after calcination.

  11. Probing the electronic and vibrational structure of Au{sub 2}Al{sub 2}{sup −} and Au{sub 2}Al{sub 2} using photoelectron spectroscopy and high resolution photoelectron imaging

    SciTech Connect

    Lopez, Gary V.; Czekner, Joseph; Jian, Tian; Li, Wei-Li; Yang, Zheng; Wang, Lai-Sheng

    2014-12-14

    The electronic and vibrational structures of Au{sub 2}Al{sub 2}{sup −} and Au{sub 2}Al{sub 2} have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au{sub 2}Al{sub 2}. Vibrationally resolved PE spectra are obtained using high-resolution photoelectron imaging for the ground state detachment transition of Au{sub 2}Al{sub 2}{sup −} at various photon energies (670.55−843.03 nm). An accurate electron affinity of 1.4438(8) eV is obtained for the Au{sub 2}Al{sub 2} neutral cluster, as well as two vibrational frequencies at 57 ± 8 and 305 ± 13 cm{sup −1}. Hot bands transitions yield two vibrational frequencies for Au{sub 2}Al{sub 2}{sup −} at 57 ± 10 and 144 ± 12 cm{sup −1}. The obtained vibrational and electronic structure information is compared with density functional calculations, unequivocally confirming that both Au{sub 2}Al{sub 2}{sup −} and Au{sub 2}Al{sub 2} possess C{sub 2v} tetrahedral structures.

  12. Cu-Al-Ni-SMA-Based High-Damping Composites

    NASA Astrophysics Data System (ADS)

    López, Gabriel A.; Barrado, Mariano; San Juan, Jose; Nó, María Luisa

    2009-08-01

    Recently, absorption of vibration energy by mechanical damping has attracted much attention in several fields such as vibration reduction in aircraft and automotive industries, nanoscale vibration isolations in high-precision electronics, building protection in civil engineering, etc. Typically, the most used high-damping materials are based on polymers due to their viscoelastic behavior. However, polymeric materials usually show a low elastic modulus and are not stable at relatively low temperatures (≈323 K). Therefore, alternative materials for damping applications are needed. In particular, shape memory alloys (SMAs), which intrinsically present high-damping capacity thanks to the dissipative hysteretic movement of interfaces under external stresses, are very good candidates for high-damping applications. A completely new approach was applied to produce high-damping composites with relatively high stiffness. Cu-Al-Ni shape memory alloy powders were embedded with metallic matrices of pure In, a In-10wt.%Sn alloy and In-Sn eutectic alloy. The production methodology is described. The composite microstructures and damping properties were characterized. A good particle distribution of the Cu-Al-Ni particles in the matrices was observed. The composites exhibit very high damping capacities in relatively wide temperature ranges. The methodology introduced provides versatility to control the temperature of maximum damping by adjusting the shape memory alloy composition.

  13. ⁶⁴Cu-Doped PdCu@Au Tripods: A Multifunctional Nanomaterial for Positron Emission Tomography and Image-Guided Photothermal Cancer Treatment.

    PubMed

    Pang, Bo; Zhao, Yongfeng; Luehmann, Hannah; Yang, Xuan; Detering, Lisa; You, Meng; Zhang, Chao; Zhang, Lei; Li, Zhi-Yuan; Ren, Qiushi; Liu, Yongjian; Xia, Younan

    2016-03-22

    This article reports a facile synthesis of radiolabeled PdCu@Au core-shell tripods for use in positron emission tomography (PET) and image-guided photothermal cancer treatment by directly incorporating radioactive (64)Cu atoms into the crystal lattice. The tripod had a unique morphology determined by the PdCu tripod that served as a template for the coating of Au shell, in addition to well-controlled specific activity and physical dimensions. The Au shell provided the nanostructure with strong absorption in the near-infrared region and effectively prevented the Cu and (64)Cu atoms in the core from oxidization and dissolution. When conjugated with D-Ala1-peptide T-amide (DAPTA), the core-shell tripods showed great enhancement in targeting the C-C chemokine receptor 5 (CCR5), a newly identified theranostic target up-regulated in triple negative breast cancer (TNBC). Specifically, the CCR5-targeted tripods with an arm length of about 45 nm showed 2- and 6-fold increase in tumor-to-blood and tumor-to-muscle uptake ratios, respectively, relative to their nontargeted counterpart in an orthotopic mouse 4T1 TNBC model at 24 h postinjection. The targeting specificity was further validated via a competitive receptor blocking study. We also demonstrated the use of these targeted, radioactive tripods for effective photothermal treatment in the 4T1 tumor model as guided by PET imaging. The efficacy of treatment was confirmed by the significant reduction in tumor metabolic activity revealed through the use of (18)F-fluorodeoxyglucose PET/CT imaging. Taken together, we believe that the (64)Cu-doped PdCu@Au tripods could serve as a multifunctional platform for both PET imaging and image-guided photothermal cancer therapy. PMID:26824412

  14. Luminescent copper(I) halide adducts of [Au(im(CH2py)2)2]PF6 exhibiting short Au(I)···Cu(I) separations and unusual semibridging NHC ligands.

    PubMed

    Strasser, Christoph E; Catalano, Vincent J

    2011-11-01

    The picolyl-substituted NHC complex [Au(im(CH(2)py)(2))(2)]PF(6) (1) reacts with two equivalents of copper(I) halides, affording compounds [Au(im(CH(2)py)(2))(2)(CuX)(2)]PF(6) (X = Cl, 2; Br, 3; I, 4). Each complex contains a nearly linearly coordinated [Au(NHC)(2)](+) center where the two picolyl groups on each im(CH(2)py)(2) ligand chelate a single copper atom. The Cu(I) center resides in a distorted tetrahedral environment and is coordinated to two pyridyl groups, a halide ion, and a gold metalloligand. The Au(I)-Cu(I) separations measure 2.7030(5), 2.6688(9), and 2.6786(10) Å for 2-4, respectively. Additionally, each Cu(I) center is further coordinated by a semibridging NHC ligand with short Cu-C separations of ~2.3 Å. In solution, these complexes dissociate the Cu(I) ion. In the solid state, 2-4 are photoluminescent with respective emission maxima of 512, 502, and 507 nm. The reaction of [Au(im(CH(2)py)(2))(2)]PF(6) with four equivalents of CuBr afforded the coordination polymer {[AuCu(2)Br(2)(im(CH(2)py)(2))(2)]Br·3CH(3)CN}(n) (5). This polymeric complex contains [Au(NHC)(2)](+) units interconnected by Cu(2)Br(2) dimers. In 5, the Au-Cu separations are long at 4.23 and 4.79 Å, while the Cu-Cu distance is considerably shorter at 2.9248(14) Å. In the solid state, 5 is photoluminescent with a broad band appearing at 533 nm. PMID:21977976

  15. Al-Cu-Li and Al-Mg-Li alloys: Phase composition, texture, and anisotropy of mechanical properties (Review)

    NASA Astrophysics Data System (ADS)

    Betsofen, S. Ya.; Antipov, V. V.; Knyazev, M. I.

    2016-04-01

    The results of studying the phase transformations, the texture formation, and the anisotropy of the mechanical properties in Al-Cu-Li and Al-Mg-Li alloys are generalized. A technique and equations are developed to calculate the amounts of the S1 (Al2MgLi), T1 (Al2CuLi), and δ' (Al3Li) phases. The fraction of the δ' phase in Al-Cu-Li alloys is shown to be significantly higher than in Al-Mg-Li alloys. Therefore, the role of the T1 phase in the hardening of Al-Cu-Li alloys is thought to be overestimated, especially in alloys with more than 1.5% Li. A new model is proposed to describe the hardening of Al-Cu-Li alloys upon aging, and the results obtained with this model agree well with the experimental data. A texture, which is analogous to that in aluminum alloys, is shown to form in sheets semiproducts made of Al-Cu-Li and Al-Mg-Li alloys. The more pronounced anisotropy of the properties of lithium-containing aluminum alloys is caused by a significant fraction of the ordered coherent δ' phase, the deformation mechanism in which differs radically from that in the solid solution.

  16. Measurement of electrons from heavy-flavor decays from p + p, d + Au , and Cu + Cu collisions in the PHENIX experiment

    NASA Astrophysics Data System (ADS)

    Lim, Sanghoon

    2014-11-01

    Charm and bottom quarks are formed predominantly by gluon fusion in the initial hard scatterings at RHIC, making them good probes of the full medium evolution. Previous measurements at RHIC have shown large suppression and azimuthal anisotropy of open heavy-flavor hadrons in Au + Au collisions at √{sNN} = 200 GeV. Explaining the simultaneously large suppression and flow of heavy quarks has been challenging. To further understand the heavy-flavor transport in the hot and dense medium, it is imperative to also measure cold nuclear matter effects which affect the initial distribution of heavy quarks as well as the system size dependence of the final state suppression. In this talk, new measurements by the PHENIX Collaboration of electrons from heavy-flavor decays in p + p, d + Au , and Cu + Cu collisions at √{sNN} = 200 GeV are presented. In particular, a surprising enhancement of intermediate transverse momentum heavy-flavor decay leptons in d + Au at mid and backward rapidity are also seen in mid-central Cu + Cu collisions. This enhancement is much larger than the expectation from anti-shadowing of the parton distributions and is theoretically unexplained.

  17. Developing an aqueous approach for synthesizing Au and M@Au (M = Pd, CuPt) hybrid nanostars with plasmonic properties.

    PubMed

    Du, Jingshan; Yu, Junjie; Xiong, Yalin; Lin, Zhuoqing; Zhang, Hui; Yang, Deren

    2015-01-14

    Anisotropic Au nanoparticles show unique localized surface plasmon resonance (LSPR) properties, which make them attractive in optical, sensing, and biomedical applications. In this contribution, we report a general and facile strategy towards aqueous synthesis of Au and M@Au (M = Pd, CuPt) hybrid nanostars by reducing HAuCl4 with ethanolamine in the presence of cetyltrimethylammonium bromide (CTAB). According to electron microscopic observations and spectral monitoring, we found that the layered epitaxial growth mode (i.e., the Frank-van der Merwe mechanism) contributes to the enlargement of the core, while the random attachment of Au nanoclusters onto the cores accounts for the formation of the branches. Both of them are indispensable to the formation of the nanostars. The LSPR properties of the Au nanoparticles have been well investigated with morphology control via the precursor amount and growth temperature. The Au nanostars showed improved surface-enhanced Raman spectroscopy (SERS) performance for rhodamine 6G due to their sharp edges and tips, which were therefore confirmed as good SERS substrates to detect trace amounts of molecules. PMID:25420730

  18. Growth of periodic nano-layers of nano-crystals of Au, Ag, Cu by ion beam

    NASA Technical Reports Server (NTRS)

    Smith, Cydale C.; Zheng, B.; Muntele, C. I.; Muntele, I. C.; Ila, D.

    2005-01-01

    Multilayered thin films of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/, were grown by deposition. We have previously shown that MeV ion Bombardment of multi-nano-layers of SiO2/AU+ SiO2/ produces Au nanocrystals in the AU+ SiO2 layers. An increased number of nano-layers followed by MeV ion bombardment produces a wide optical absorption band, of which its FWHM depends on the number of nano-layers of SiO2/AU+ SiO2/. We have successfully repeated this process for nano-layers of SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/. In this work we used 5 MeV Si as the post deposition bombardment ion and monitored the location as well as the optical absorption's FWHM for each layered structure using Optical Absorption Photospectrometry. The concentration and location of the metal nano-crystals were measured by Rutherford Backscattering Spectrometry. We will report on the results obtained for nano-layered structures produced by post deposition bombardment of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/ layered systems as well as the results obtained from a system containing a periodic combination of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/.

  19. Measurement of K0S and K*0 in p+p, d+Au, and Cu+Cu collisions at sqrt SNN = 200 GeV

    DOE PAGESBeta

    Adare, A.; Aidala, C.

    2014-11-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider has performed a systematic study of K0S and K*0 meson production at midrapidity in p+p, d+Au, and Cu+Cu collisions at sqrt SNN = 200 GeV. The K0S and K*0 mesons are reconstructed via their K0S and π0(→γγ)π0 (→γγ) and K*0 → K ± π± decay modes, respectively. The measured transverse-momentum spectra are used to determine the nuclear modification factor of K0S and K*0 mesons in d+Au and Cu+Cu collisions at different centralities. In the d+Au collisions, the nuclear modification factor of K0S and K*0 mesons is almost constant as a functionmore » of transverse momentum and is consistent with unity showing that cold-nuclear-matter effects do not play a significant role in the measured kinematic range. In Cu+Cu collisions, within the uncertainties no nuclear modification is registered in peripheral collisions. In central collisions, both mesons show suppression relative to the expectations from the p+p yield scaled by the number of binary nucleon-nucleon collisions in the Cu+Cu system. In the pT range 2–5 GeV/c, the strange mesons ( K0S, K*0) similarly to the Φ meson with hidden strangeness, show an intermediate suppression between the more suppressed light quark mesons (π0) and the nonsuppressed baryons (p, p-bar). At higher transverse momentum, pT > 5 GeV/c, production of all particles is similarly suppressed by a factor of ≈2. (auth)« less

  20. Effects of water absorption of dielectric underlayers on Al-Si-Cu film properties and electromigration performance in Al-Si-Cu/Ti/TiN/Ti interconnects

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomoyuki; Hashimoto, Shoji; Ohwaki, Takeshi; Mitsushima, Yasuichi; Taga, Yasunori

    1998-01-01

    The effects of underlying dielectric (phosphosilicate glass and borophosphosilicate glass) films to a humid air ambient on Al-Si-Cu film properties and electromigration (EM) performance in Al-Si-Cu/Ti/TiN/Ti layered films have been investigated as a function of the boron content and exposure time of the dielectric films. The Al(111) orientation in the layered films was found to improve drastically with increasing boron content and exposure time. The full width at half maximum value of an Al(111) x-ray rocking curve reached less than 1°. It was also found that the Al-Si-Cu surface becomes smoother and grain sizes increase as the Al(111) orientation improves. The improved Al(111) orientation was attributed to the improved Ti(002) orientation of the bottom Ti films. Further, it was demonstrate that interconnects fabricated from the improved layered film have excellent EM performance.

  1. Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu-Au alloy as catalyst

    NASA Astrophysics Data System (ADS)

    Jia, Falong; Yu, Xinxing; Zhang, Lizhi

    2014-04-01

    Electrochemical reduction of CO2 in an aqueous 0.5 M KHCO3 solution is studied by use of novel nanostructured Cu-Au alloys, which are prepared through electrochemical deposition with a nanoporous Cu film (NCF) as template. Linear voltammetry results show that the as-synthesized Cu-Au alloys exhibit obvious catalysis towards electrochemical reduction of CO2. Further analysis of products reveals that faradic efficiencies of alcohols (methanol and ethanol) are greatly dependent on the nanostructures and compositions of Cu-Au alloys. It is expected that this work could provide new insight into the development of powerful electrocatalysts for reduction of CO2 to alcohols.

  2. Characteristics of Cu stabilized Nb3Al strands with low Cu ratio

    SciTech Connect

    Kikuchi, A.; Yamada, R.; Barzi, E.; Kobayashi, M.; Lamm, M.; Nakagawa, K.; Sasaki, K.; Takeuchi, T.; Turrioni, D.; Zlobin, A.V.; /NIMC, Tsukuba /Fermilab /Hitachi, Tsuchiura Works /KEK, Tsukuba

    2008-12-01

    Characteristics of recently developed F4-Nb{sub 3}Al strand with low Cu ratio are described. The overall J{sub c} of the Nb{sub 3}Al strand could be easily increased by decreasing of the Cu ratio. Although the quench of a pulse-like voltage generation is usually observed in superconducting unstable conductor, the F4 strand with a low Cu ratio of 0.61 exhibited an ordinary critical transition of gradual voltage generation. The F4 strand does not have magnetic instabilities at 4.2 K because of the tantalum interfilament matrix. The overall J{sub c} of the F4 strand achieved was 80-85% of the RRP strand. In the large mechanical stress above 100 MPa, the overall J{sub c} of the F4 strand might be comparable to that of high J{sub c} RRP-Nb{sub 3}Sn strands. The Rutherford cable with a high packing factor of 86.5% has been fabricated using F4 strands. The small racetrack magnet, SR07, was also fabricated by a 14 m F4 cable. The quench current, I{sub q}, of SR07 were obtained 22.4 kA at 4.5 K and 25.2 kA at 2.2 K. The tantalum matrix Nb{sub 3}Al strands are promising for the application of super-cooled high-field magnets as well as 4.2 K operation magnets.

  3. The germanides ScTGe (T = Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, Au) - Structure and 45Sc solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Heying, Birgit; Haverkamp, Sandra; Rodewald, Ute Ch; Eckert, Hellmut; Peter, Sebastian C.; Pöttgen, Rainer

    2015-01-01

    The germanides ScTGe (T = Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, Au) were obtained in X-ray pure form by arc-melting of the elements. The structures of the members with T = Co, Ni, Cu, Rh, Pd, Ag, Ir, and Pt were refined on the basis of single crystal X-ray diffractometer data. The germanides with T = Cu, Ru, Pd, Ag crystallize with the hexagonal ZrNiAl type structure, space group P 6 bar 2m and those with T = Co, Ni, Rh, Ir, Pt adopt the orthorhombic TiNiSi type. ScAuGe is isotypic with NdPtSb. All germanides exhibit single scandium sites. A simple systematization of the structure type according to the valence electron concentration is not possible. The 45Sc solid state NMR parameters (Knight shifts and nuclear electric quadrupole coupling constants) of those members crystallizing in the TiNiSi structure show systematic trends as a function of valence electron concentration number. Furthermore, within each T-group the Knight shift decreases with increasing atomic number; this correlation also includes previously published results on the isotypic silicide family. The 45Sc quadrupolar interaction tensor components are generally well-reproduced by quantum mechanical electric field gradient calculations using the WIEN2k code.

  4. Influence of Al/CuO reactive multilayer films additives on exploding foil initiator

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang; Shen, Ruiqi; Ye, Yinghua; Zhu, Peng; Hu, Yan; Wu, Lizhi

    2011-11-01

    An investigation on the influence of Al/CuO reactive multilayer films (RMFs) additives on exploding foil initiator was performed in this paper. Cu film and Cu/Al/CuO RMFs were produced by using standard microsystem technology and RF magnetron sputtering technology, respectively. Scanning electron microscopy characterization revealed the distinct layer structure of the as-deposited Al/CuO RMFs. Differential scanning calorimetry was employed to ascertain the amount of heat released in the thermite reaction between Al films and CuO films, which was found to be 2024 J/g. Electrical explosion tests showed that 600 V was the most matching voltage for our set of apparatus. The explosion process of two types of films was observed by high speed camera and revealed that compared with Cu film, an extra distinct combustion phenomenon was detected with large numbers of product particles fiercely ejected to a distance of about six millimeters for Cu/Al/CuO RMFs. By using the atomic emission spectroscopy double line technique, the reaction temperature was determined to be about 6000-7000 K and 8000-9000 K for Cu film and Cu/Al/CuO RMFs, respectively. The piezoelectricity of polyvinylidene fluoride film was employed to measure the average velocity of the slapper accelerated by the explosion of the films. The average velocities of the slappers were calculated to be 381 m/s and 326 m/s for Cu film and Cu/Al/CuO RMFs, respectively, and some probable reasons were discussed with a few suggestions put forward for further work.

  5. Photoelectric phenomena in the Cu (Al, In)/p-CuIn{sub 3}Se{sub 5} Schottky barriers

    SciTech Connect

    Bodnar', I. V. Rud, V. Yu. Rud', Yu. V.

    2007-01-15

    Structures are formed on the p-CuIn{sub 3}Se{sub 5} crystals and photoelectric phenomena in the Cu/p-CuIn{sub 3}Se{sub 5}, Al/p-CuIn{sub 3}Se{sub 5}, and In/p-CuIn{sub 3}Se{sub 5} Schottky barriers are studied. The spectra of quantum efficiency for photoconversion in new structures were obtained for the first time. The characteristics of the interband transitions are discussed, and the CuIn{sub 3}Se{sub 5} band gap is determined. It is concluded that CuIn{sub 3}Se{sub 5} crystals can be used in the fabrication of high-efficiency broadband photoconverters of optical radiation.

  6. First-principles study of Al-Cu energetics and consequences on athermal formation of Cu-rich compounds

    NASA Astrophysics Data System (ADS)

    Besson, R.; Kwon, J.; Thuinet, L.; Avettand-Fènoël, M.-N.; Legris, A.

    2014-12-01

    In spite of its practical interest, the Al-Cu system remains largely unexplored, especially on its Cu-rich side. In order to improve the knowledge of this system, we perform a thorough ab initio study of fcc-based Al-Cu energetics, using the recently proposed M2BCE reciprocal-space cluster expansion approach. We demonstrate the existence of two clearly distinct composition domains, revealing complex ground-state properties. Below 50% Cu, the GP 2 -A l3Cu compound appears as highly favored, in agreement with the well-documented transformation sequence in Al-based alloys. Conversely, the domain between 50% and 80% Cu displays a much shallower landscape, characterized by the existence of a wealth of compounds undergoing fcc →bcc structural instabilities. While such "Bain paths" have been identified for a long time in iron-based alloys, our work gives evidence for their existence in the Al-Cu system. As a striking application, these instabilities provide plausible athermal mechanisms for the formation of Cu-rich phases, in particular for the unexpected emergence of γ1-A l4C u9 , a Hume-Rothery compound observed in various nonequilibrium conditions.

  7. Copper(I)-assisted red-shifted phosphorescence in Au(I)···Cu(I) heteropolynuclear complexes.

    PubMed

    Catalano, Vincent J; López-de-Luzuriaga, José M; Monge, Miguel; Olmos, M Elena; Pascual, David

    2014-11-21

    Reactions between [Au(C6Cl2F3)(tht)] and P,N-donor bridging ligands of the type PPh2py and (PPh2)2phen lead to the homonuclear gold complexes [Au(C6Cl2F3)(PPh2py)] (1) and [Au2(C6Cl2F3)2{(PPh2)2phen}] (2). Subsequent addition of [Cu(CH3CN)4](BF4) leads to the formation of the corresponding gold-copper heterometallic complexes [Au2Cu(C6Cl2F3)2(PPh2py)2](BF4) (3) and [Au2Cu(C6Cl2F3)2{(PPh2)2phen)}(CH3CN)](BF4) (4). The four complexes have been structurally characterized and are luminescent. The gold precursors show emissions arising from metal-perturbed intraligand transitions. The heterometallic complexes show a red shift of the emissions that is proposed to arise from an admixture of IL (intraligand) and MLCT (metal-to-ligand-charge-transfer) transitions. DFT and TD-DFT calculations agree well with these results. PMID:25251359

  8. Sulfuration resistance of five experimental Ag-Pd-Au-Cu alloys with low Pd content of 10 or 12%.

    PubMed

    Saitoh, Setsuo; Araki, Yoshima; Taira, Masayuki

    2006-06-01

    Commercial Ag-based alloy (46Ag-20Pd-12Au-20Cu alloy) is widely used in Japan as a casting alloy. As opposed to the commercial composition, we prepared five experimental Ag-based alloys with reduced Pd content of 10 or 12%, increased Au content of 20 to 30%, and reduced Cu content of 12 to 20%. We then evaluated their sulfuration resistance by analyzing cast specimen surfaces dipped in 0.1% Na2S solution with SEM/EPMA, TF-XRD, and XPS. It became evident that all alloys were susceptible to sulfuration in the segregated Ag-rich Pd-poor phases. The degree and speed of sulfuration, however, differed among the six alloys examined. In particular, one experimental alloy (46Ag-10Pd-30Au-12Cu) possessed a sulfuration resistance equal or superior to that of commercial Ag-based alloy, while the other four experimental alloys were inferior in sulfuration resistance. Based on the results of this study, we concluded that our newly developed 46Ag-10Pd-30Au-12Cu alloy could be employed as a new sulfuration-resistant Ag-based casting alloy--which is especially useful if the price of Pd is skyrocketing again. PMID:16916236

  9. A colorimetric assay for measuring iodide using Au@Ag core-shell nanoparticles coupled with Cu(2+).

    PubMed

    Zeng, Jingbin; Cao, Yingying; Lu, Chun-Hua; Wang, Xu-Dong; Wang, Qianru; Wen, Cong-Ying; Qu, Jian-Bo; Yuan, Cunguang; Yan, Zi-Feng; Chen, Xi

    2015-09-01

    Au@Ag core-shell nanoparticles (NPs) were synthesized and coupled with copper ion (Cu(2+)) for the colorimetric sensing of iodide ion (I(-)). This assay relies on the fact that the absorption spectra and the color of metallic core-shell NPs are sensitive to their chemical ingredient and dimensional core-to-shell ratio. When I(-) was added to the Au@Ag core-shell NPs-Cu(2+) system/solution, Cu(2+) can oxidize I(-) into iodine (I2), which can further oxidize silver shells to form silver iodide (AgI). The generated Au@AgI core-shell NPs led to color changes from yellow to purple, which was utilized for the colorimetric sensing of I(-). The assay only took 10 min with a lowest detectable concentration of 0.5 μM, and it exhibited excellent selectivity for I(-) over other common anions tested. Furthermore, Au@Ag core-shell NPs-Cu(2+) was embedded into agarose gels as inexpensive and portable "test strips", which were successfully used for the semi-quantitation of I(-) in dried kelps. PMID:26388386

  10. Direct Observations of Rapid Diffusion of Cu in Au Thin Films Using In-Situ X-Ray Diffraction

    SciTech Connect

    Elmer, J. W.; Palmer, T. A.; Specht, Eliot D

    2006-01-01

    In situ x-ray diffraction was performed while annealing thin film Au/Cu binary diffusion couples to directly observe diffusion at elevated temperatures. The temperature dependence of the interdiffusion coefficient was determined from isothermal measurements at 700, 800, and 900 C, where Cu and Au form a disordered continuous face centered cubic solid solution. Large differences in the lattice parameters of Au and Cu allowed the initial diffraction peaks to be easily identified, and later tracked as they merged into one diffraction peak with increased diffusion time. Initial diffusion kinetics were studied by measuring the time required for the Cu to diffuse through the Au thin film of known thickness. The activation energy for interdiffusion was measured to be 65.4 kJ/mole during this initial stage, which is approximately 0.4x that for bulk diffusion and 0.8x that for grain boundary diffusion. The low activation energy is attributed to the high density of columnar grain boundaries combined with other defects in the sputter deposited thin film coatings. As interdiffusion continues, the two layers homogenize with an activation energy of 111 kJ/mole during the latter stages of diffusion. This higher activation energy falls between the reported values for grain boundary and bulk diffusion, and may be related to grain growth occurring at these temperatures which accounts for the decreasing importance of grain boundaries on diffusion.

  11. Solidification of Au-Cu-Si alloys investigated by a combinatorial approach

    SciTech Connect

    Ding Shiyan; Schroers, Jan; Gregoire, John; Vlassak, Joost J.

    2012-06-01

    Composition libraries of Au-Cu-Si films comprising 800 composition patches were fabricated through co-sputtering deposition from elemental targets. The gold composition varies between 47% (compositions are in atomic percentage) and 81%, copper between 8% and 40%, and silicon between 6% and 36% within the library. We designed and used a high-throughput optical characterization method to detect melting and solidification based on changes in the film's contrast; further microscopy characterization reveals the microstructure. This approach reveals the composition dependence of the nucleation temperature and primary phase, which allows us to draw conclusions about glass forming ability and to identify bulk metallic glass forming compositions. Our solidification results suggest that the best glass forming composition coincides with the composition at which a transition from one primary phase to another occurs. We show that in general this transition is not at the eutectic composition but at the lowest nucleation temperature.

  12. Theoretical study of AuCu nanoalloys adsorbed on MgO(001)

    NASA Astrophysics Data System (ADS)

    Cerbelaud, M.; Barcaro, G.; Fortunelli, A.; Ferrando, R.

    2012-06-01

    The structures of AuCu clusters adsorbed on the (001) face of MgO are searched for by a two-step methodology. In a first step, the relevant structural motifs are singled out by global optimization searches within an atomistic model. In a second step, the lowest energy structures of each motif are relaxed by density-functional calculations. Three different sizes (30, 40 and 50 atoms) are considered. For each size, three compositions are analyzed. For size 30, a competition between fcc pyramids and a new motif (the daisy structure) is found. For 40 and 50 atoms, icosahedral fragments prevail. The results are discussed in connection with experimental data related to clusters of larger sizes.

  13. An orientation soil survey at the Pebble Cu-Au-Mo porphyry deposit, Alaska

    USGS Publications Warehouse

    Smith, Steven M.; Eppinger, Robert G.; Fey, David L.; Kelley, Karen D., (Edited By); Giles, S.A.

    2009-01-01

    Soil samples were collected in 2007 and 2008 along three traverses across the giant Pebble Cu-Au-Mo porphyry deposit. Within each soil pit, four subsamples were collected following recommended protocols for each of ten commonly-used and proprietary leach/digestion techniques. The significance of geochemical patterns generated by these techniques was classified by visual inspection of plots showing individual element concentration by each analytical method along the 2007 traverse. A simple matrix by element versus method, populated with a value based on the significance classification, provides a method for ranking the utility of methods and elements at this deposit. The interpretation of a complex multi-element dataset derived from multiple analytical techniques is challenging. An example of vanadium results from a single leach technique is used to illustrate the several possible interpretations of the data.

  14. The origin of Cu/Au ratios in porphyry-type ore deposits.

    PubMed

    Halter, Werner E; Pettke, Thomas; Heinrich, Christoph A

    2002-06-01

    Microanalysis of major and trace elements in sulfide and silicate melt inclusions by laser-ablation inductively coupled plasma mass spectrometry indicates a direct link between a magmatic sulfide liquid and the composition of porphyry-type ore deposits. Copper (Cu), gold (Au), and iron (Fe) are first concentrated in a sulfide melt during magmatic evolution and then released to an ore-forming hydrothermal fluid exsolved late in the history of a magma chamber. The composition of sulfide liquids depends on the initial composition and source of the magma, but it also changes during the evolution of the magma in the crust. Magmatic sulfide melts may exert the dominant direct control on the economic metal ratios of porphyry-type ore deposits. PMID:12052953

  15. X-Ray Videomicroscopy Studies of Eutectic Al-Si Solidification in Al-Si-Cu

    NASA Astrophysics Data System (ADS)

    Mathiesen, R. H.; Arnberg, L.; Li, Y.; Meier, V.; Schaffer, P. L.; Snigireva, I.; Snigirev, A.; Dahle, A. K.

    2011-01-01

    Al-Si eutectic growth has been studied in-situ for the first time using X-ray video microscopy during directional solidification (DS) in unmodified and Sr-modified Al-Si-Cu alloys. In the unmodified alloys, Si is found to grow predominantly with needle-like tip morphologies, leading a highly irregular progressing eutectic interface with subsequent nucleation and growth of Al from the Si surfaces. In the Sr-modified alloys, the eutectic reaction is strongly suppressed, occurring with low nucleation frequency at undercoolings in the range 10 K to 18 K. In order to transport Cu rejected at the eutectic front back into the melt, the modified eutectic colonies attain meso-scale interface perturbations that eventually evolve into equiaxed composite-structure cells. The eutectic front also attains short-range microscale interface perturbations consistent with the characteristics of a fibrous Si growth. Evidence was found in support of Si nucleation occurring on potent particles suspended in the melt. Yet, both with Sr-modified and unmodified alloys, Si precipitation alone was not sufficient to facilitate the eutectic reaction, which apparently required additional undercooling for Al to form at the Si-particle interfaces.

  16. Cretaceous Cu-Au, pyrite, and Fe-oxide-apatite deposits in the Ningwu basin, Lower Yangtze Area, Eastern China

    NASA Astrophysics Data System (ADS)

    Yu, Jin-Jie; Lu, Bang-Cheng; Wang, Tie-Zhu; Che, Lin-Rui

    2015-05-01

    The Cretaceous Ningwu volcanic basin of the Middle and Lower Yangtze River Valley metallogenic belt of eastern China hosts numerous Fe-oxide-apatite, Cu-Au, and pyrite deposits. The mineralization in the Ningwu basin is associated with subvolcanic rocks, consisting of gabbro-diorite porphyry and/or pyroxene diorite. However, the mineralization is associated with subvolcanic and volcanic rock suite belonging to the Niangniangshan Formation in the Tongjing Cu-Au deposit, including nosean-bearing aegirine-augite syenites, quartz syenites, and quartz monzonites. The zoning displayed by the alteration and mineralization comprises: (1) an upper light-colored zone of argillic, carbonate, and pyrite alteration and silicification that is locally associated with pyrite and gold mineralization, (2) a central dark-colored zone of diopside, fluorapatite-magnetite, phlogopite, and garnet alteration associated with fluorapatite-magnetite mineralization, and (3) a lowermost light-colored zone of extensive albite alteration. The Cu-Au and pyrite orebodies are peripheral to the Fe-oxide-apatite deposits in this area and overlie the iron orebodies, including the Meishan Cu-Au deposit in the northern Ningwu basin and the pyrite deposits in the central Ningwu basin. The δ34S values of sulfides from the Fe-oxide-apatite, Cu-Au, and pyrite deposits in the Ningwu basin show large variation, with a mixed sulfur source, including magmatic sulfur and/or a mixture of sulfur derived from a magmatic component, country rock, and thermochemical reduction of sulfate at 200-300 °C. The ore-forming fluids associated with iron mineralization were derived mainly from magmatic fluids, and the late-stage ore-forming fluids related to Cu-Au and pyrite mineralization may have formed by the introduction of cooler meteoric water to the system. The Fe-oxide-apatite, Cu-Au, and pyrite deposits of the Ningwu basin formed in an extensional environment and are associated with a large-scale magmatic

  17. Fracture toughness of an Al-Li-Cu-In alloy

    SciTech Connect

    Wagner, J.A.; Gangloff, R.P. Virginia, University, Charlottesville )

    1992-06-01

    The crack initiation and growth fracture toughness of select AL-Li-Cu alloy variants are characterized and elucidated. Conventionally processed plates form large DC cast ingots are investigated to eliminate the variation in microstructure associated with laboratory scale and SPF-processed material. Fracture resistance is characterized using the J-integral method to establish crack initiation and growth behavior at 25 and -185 C. It is shown that state-of-the-art 2090-T81 has superior toughness compared to 2090 + In-T6 at both test temperatures, with the low toughness of 2090 + In-T6 associated with intersubgranular fracture attributed to a high density of subboundary precipitates. 21 refs.

  18. Fracture toughness of an Al-Li-Cu-In alloy

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Gangloff, Richard P.

    1992-01-01

    The crack initiation and growth fracture toughness of select AL-Li-Cu alloy variants are characterized and elucidated. Conventionally processed plates form large DC cast ingots are investigated to eliminate the variation in microstructure associated with laboratory scale and SPF-processed material. Fracture resistance is characterized using the J-integral method to establish crack initiation and growth behavior at 25 and -185 C. It is shown that state-of-the-art 2090-T81 has superior toughness compared to 2090 + In-T6 at both test temperatures, with the low toughness of 2090 + In-T6 associated with intersubgranular fracture attributed to a high density of subboundary precipitates.

  19. Concentric nano rings observed on Al-Cu-Fe microspheres

    NASA Astrophysics Data System (ADS)

    Li, Chunfei; Wang, Limin; Hampikian, Helen; Bair, Matthew; Baker, Andrew; Hua, Mingjian; Wang, Qiongshu; Li, Dingqiang

    2016-05-01

    It is well known that when particle size is reduced, surface effect becomes important. As a result, micro/nanoparticles tend to have well defined geometric shapes to reduce total surface energy, as opposed to the irregular shapes observed in most bulk materials. The surface of such micro/nanostructures are smooth. Any deviation from a smooth surface implies an increased surface energy which is not energetically favorable. Here, we report an observation of spherical particles in an alloy of Al65Cu20Fe15 nominal composition prepared by arc melting. Such spherical particles stand out from those reported so far due to the decoration of concentric nanorings on the surface. Three models for the formation of these concentric ring patterns are suggested. The most prominent ones assume that the rings are frozen features of liquid motion which could open the door to investigate the kinetics of liquid motion on the micro/nanometer scale.

  20. Photoluminescence Studies in CuAlS2 Crystals

    NASA Astrophysics Data System (ADS)

    Shirakata, Sho; Aksenov, Igor; Sato, Katsuaki; Isomura, Shigehiro

    1992-08-01

    Photoluminescence (PL) measurements have been carried out at low temperature (77 and 10 K) on CuAlS2 crystals grown by the chemical vapor transport method. Seven sharp PL lines have been observed near the band edge. Based on the photoreflectance measurements, the PL line at 3.550 eV has been assigned to a free exciton emission. The lines at 3.540, 3.532, 3.500 and 3.475 eV are tentatively assigned to the bound excitons, and they are discussed in terms of the crystal composition and the annealing conditions. This study also refers to the PL lines and peaks at about 2.9 eV.

  1. Synthesis and photocatalytic properties of multi-morphological AuCu3-ZnO hybrid nanocrystals

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Chen, Yuanzhi; Peng, Jian; Xie, Qingshui; Peng, Dong-Liang

    2015-10-01

    Noble metal-semiconductor hybrid nanocrystals represent an important class of materials for many potential applications, especially for photocatalysis. The utilization of transition metals to form alloys with noble metals can not only reduce the preparation costs, but may also offer tunable optical and catalytic properties for a broader range of applications. In this study, we report on the solution synthesis of AuCu3-ZnO hybrid nanocrystals with three interesting morphologies, including urchin-like, flower-like and multipod-like nanocrystals. In the synthetic strategy, Au-Cu bimetallic alloy seeds formed in situ are used to induce the heteroepitaxial growth of ZnO nanocrystals on the surface of bimetallic alloy cores; thus different types of morphologies can be achieved by controlling the reaction conditions. Through high-resolution transmission electron microscopy observations, well-defined interfaces between ZnO and AuCu3 are observed, which indicate that ZnO has a (0001) orientation and prefers to grow on AuCu3 {111} facets. The as-prepared hybrid nanocrystals demonstrate morphology- and composition-dependent surface plasmon resonance (SPR) absorption bands. In addition, much higher photocatalytic efficiency than pure ZnO nanocrystals is observed for the hybrid nanocrystals in the degradation of methylene blue. In particular, the multipod-like AuCu3-ZnO hybrid nanocrystals show the highest catalytic performance, as well as more than three times higher photocurrent density than the pure ZnO sample. The reported synthetic strategy provides a facile route to the effective combination of a plasmonic alloy with semiconductor components at the nanoscale in a controlled manner.

  2. Mechanical properties of Al-Cu alloy-SiC composites

    SciTech Connect

    Anggara, B. S.; Handoko, E.; Soegijono, B.

    2014-09-25

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  3. Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr 3 , AlCu 3 , and AlCu 2 Zr: First-principles study

    NASA Astrophysics Data System (ADS)

    Parvin, R.; Parvin, F.; Ali, M. S.; Islam, A. K. M. A.

    2016-08-01

    The electronic properties (Fermi surface, band structure, and density of states (DOS)) of Al-based alloys AlM 3 (M = Zr and Cu) and AlCu2Zr are investigated using the first-principles pseudopotential plane wave method within the generalized gradient approximation (GGA). The structural parameters and elastic constants are evaluated and compared with other available data. Also, the pressure dependences of mechanical properties of the compounds are studied. The temperature dependence of adiabatic bulk modulus, Debye temperature, specific heat, thermal expansion coefficient, entropy, and internal energy are all obtained for the first time through quasi-harmonic Debye model with phononic effects for T = 0 K–100 K. The parameters of optical properties (dielectric functions, refractive index, extinction coefficient, absorption spectrum, conductivity, energy-loss spectrum, and reflectivity) of the compounds are calculated and discussed for the first time. The reflectivities of the materials are quite high in the IR–visible–UV region up to ∼ 15 eV, showing that they promise to be good coating materials to avoid solar heating. Some of the properties are also compared with those of the Al-based Ni3Al compound.

  4. Au-Cu{sub 2}O core-shell nanowire photovoltaics

    SciTech Connect

    Oener, S. Z.; Mann, S. A.; Sciacca, B.; Sfiligoj, C.; Hoang, J.; Garnett, E. C.

    2015-01-12

    Semiconductor nanowires are among the most promising candidates for next generation photovoltaics. This is due to their outstanding optical and electrical properties which provide large optical cross sections while simultaneously decoupling the photon absorption and charge carrier extraction length scales. These effects relax the requirements for both the minority carrier diffusion length and the amount of semiconductor needed. Metal-semiconductor core-shell nanowires have previously been predicted to show even better optical absorption than solid semiconductor nanowires and offer the additional advantage of a local metal core contact. Here, we fabricate and analyze such a geometry using a single Au-Cu{sub 2}O core-shell nanowire photovoltaic cell as a model system. Spatially resolved photocurrent maps reveal that although the minority carrier diffusion length in the Cu{sub 2}O shell is less than 1 μm, the radial contact geometry with the incorporated metal electrode still allows for photogenerated carrier collection along an entire nanowire. Current-voltage measurements yield an open-circuit voltage of 600 mV under laser illumination and a dark diode turn-on voltage of 1 V. This study suggests the metal-semiconductor core-shell nanowire concept could be extended to low-cost, large-scale photovoltaic devices, utilizing for example, metal nanowire electrode grids coated with epitaxially grown semiconductor shells.

  5. Undercooling and solidification behavior of melts of the quasicrystal-forming alloys Al-Cu-Fe and Al-Cu-Co

    SciTech Connect

    Holland-Moritz, D.; Schroers, J.; Herlach, D.M.; Grushko, B.; Urban, K.

    1998-03-02

    Al-Cu-Fe, Al-Fe and Al-Cu-Co melts of different compositions were undercooled by containerless processing in an electromagnetic levitation facility. The phase selection during solidification from the undercooled melt was determined by direct measurements of the temperature changes during recalescence. Complimentarily, the phase selection and microstructure development was studied by scanning- and transmission electron microscopy (SEM, TEM) and X-ray diffraction (XRD) on the as-solidified samples with the undercooling and the alloy composition as experimental parameters. For comparison, rapidly quenched samples of the same alloys were produced by splat-cooling and investigated by TEM and XRD. The undercooling results were analyzed within the framework of classical nucleation theory. The activation threshold for the nucleation was found to be small for the icosahedral quasicrystalline phase in Al-Cu-Fe, medium for the decagonal D-phase in Al-Cu-Co and crystalline phases with polytetrahedral symmetry elements (Al{sub 13}Fe{sub 4} and Al{sub 5}Fe{sub 2}), but large for the cubic phase of Al{sub 50}(CuCo){sub 50} with non-polytetrahedral crystalline symmetry. These results are explained assuming of an icosahedral short-range order that prevails in the undercooled melt and gives rise to an interfacial energy decreasing with increasing degree of polytetrahedral order in the solid nucleus.

  6. Photocatalytic property and structural stability of CuAl-based layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Lv, Ming; Liu, Haiqiang

    2015-07-01

    Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) were successfully synthesized by coprecipitation. Powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and UV-Vis diffuse reflectance spectrum (UV-vis) were used to confirm the formation of as-synthesized solids with good crystal structure. The photocatalytic activity of those LDH materials for CO2 reduction under visible light was investigated. The experimental results show that CuNiAl-LDHs with narrowest band gap and largest surface areas behave highest efficiency for methanol generation under visible light compared with CuMgAl-LDHs and CuZnAl-LDHs. The CuNiAL-LDH showed high yield for methanol production i.e. 0.210 mmol/g h, which was high efficient. In addition, the influence of the different M2+ on the structures and stability of the CuMAl-LDHs was also investigated by analyzing the geometric parameters, electronic arrangement, charge populations, hydrogen-bonding, and binding energies by density functional theory (DFT) analysis. The theoretical calculation results show that the chemical stability of LDH materials followed the order of CuMgAl-LDHs>CuZnAl-LDHs>CuNiAl-LDHs, which is just opposite with the photocatalytic activity and band gaps of three materials.

  7. Interconnection between microstructure and microhardness of directionally solidified binary Al-6wt.%Cu and multicomponent Al-6wt.%Cu-8wt.%Si alloys.

    PubMed

    Vasconcelos, Angela J; Kikuchi, Rafael H; Barros, André S; Costa, Thiago A; Dias, Marcelino; Moreira, Antonio L; Silva, Adrina P; Rocha, Otávio L

    2016-05-31

    An experimental study has been carried out to evaluate the microstructural and microhardness evolution on the directionally solidified binary Al-Cu and multicomponent Al-Cu-Si alloys and the influence of Si alloying. For this purpose specimens of Al-6wt.%Cu and Al-6wt.%Cu-8wt.%Si alloys were prepared and directionally solidified under transient conditions of heat extraction. A water-cooled horizontal directional solidification device was applied. A comprehensive characterization is performed including experimental dendrite tip growth rates (VL) and cooling rates (TR) by measuring Vickers microhardness (HV), optical microscopy and scanning electron microscopy with microanalysis performed by energy dispersive spectrometry (SEM-EDS). The results show, for both studied alloys, the increasing of TR and VL reduced the primary dendrite arm spacing (l1) increasing the microhardness. Furthermore, the incorporation of Si in Al-6wt.%Cu alloy to form the Al-6wt.%Cu-8wt.%Si alloy influenced significantly the microstructure and consequently the microhardness but did not affect the primary dendritic growth law. An analysis on the formation of the columnar to equiaxed transition (CET) is also performed and the results show that the occurrence of CET is not sharp, i.e., the CET in both cases occurs in a zone rather than in a parallel plane to the chill wall, where both columnar and equiaxed grains are be able to exist. PMID:27254454

  8. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Yue, Sheng; Fautrelle, Yves; Lee, Peter D.; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-04-01

    Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase’s total volume and decrease of each column’s transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope.

  9. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy.

    PubMed

    Wang, Jiang; Yue, Sheng; Fautrelle, Yves; Lee, Peter D; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-01-01

    Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase's total volume and decrease of each column's transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope. PMID:27091383

  10. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy

    PubMed Central

    Wang, Jiang; Yue, Sheng; Fautrelle, Yves; Lee, Peter D.; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2016-01-01

    Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase’s total volume and decrease of each column’s transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope. PMID:27091383

  11. Exploring the first steps in core-shell electrocatalyst preparation: in situ characterization of the underpotential deposition of Cu on supported Au nanoparticles.

    PubMed

    Price, Stephen W T; Speed, Jonathon D; Kannan, Prabalini; Russell, Andrea E

    2011-12-01

    The underpotential deposition (upd) of a Cu shell on a non-Pt nanoparticle core followed by galvanic displacement of the Cu template shell to form core-shell electrocatalyst materials is one means by which the Pt-based mass activity targets required for commercialization of PEM fuel cells may be reached. In situ EXAFS measurements were conducted at both the Au L(3) and the Cu K absorption edges during deposition of Cu onto a carbon-supported Au electrocatalyst to study the initial stages of formation of such a core-shell electrocatalyst. The Au L(3) EXAFS data obtained in 0.5 mol dm(-3) H(2)SO(4) show that the shape of the Au core is potential dependent, from a flattened to a round spherical shape as the Cu upd potential is approached. Following the addition of 2 mmol dm(-3) Cu, the structure was also measured as a function of the applied potential. At +0.2 V vs Hg/Hg(2)SO(4), the Cu(2+) species was found to be a hydrated octahedron. As the potential was made more negative, single-crystal studies predict an ordered bilayer of sulfate anions and partially discharged Cu ions, followed by a complete/uniform layer of Cu atoms. In contrast, the model obtained by fitting the Au L(3) and Cu K EXAFS data corresponds first to partially discharged Cu ions deposited at the defect sites in the outer shell of the Au nanoparticles at -0.42 V, followed by the growth of clusters of Cu atoms at -0.51 V. The absence of a uniform/complete Cu shell, even at the most negative potentials investigated, has implications for the structure, and the activity and/or stability, of the core-shell catalyst that would be subsequently formed following galvanic displacement of the Cu shell. PMID:22032178

  12. Bimetallic Pt-Au Nanocatalysts on ZnO/Al2O3/Monolith for Air Pollution Control.

    PubMed

    Kim, Ki-Joong; Ahn, Ho-Geun

    2015-08-01

    The catalytic activity of a monolithic catalyst with nanosized Pt and Au particles on ZnO/Al2O3 (Pt-Au/ZnO/Al2O3/M) prepared by a wash-coat method was examined, specifically for toluene oxidation. Scanning electron microscopy image showed clearly the formation of a ZnO/Al2O3 layer on the monolith. Nanosized Pt-Au particles on ZnO/Al2O3/M with different sizes could be found in the Pt-Au/ZnO/Al2O3/M catalyst. The conversion of toluene decreased with increasing toluene concentration and was also largely affected by the feed flow rate. The Pt-Au/ZnO/Al2O3/M catalysts prepared in this work have almost the same activity (molecules of toluene per second) compared with a powder Pt-Au/ZnO/Al2O3 catalyst with the same loadings of Pt and Au components; thus this catalyst could be used in controlling air pollution with very low concentrations and high flow rate. PMID:26369207

  13. Atomic structure and electronic properties of the two-dimensional (Au ,Al )/Si (111 )2 ×2 compound

    NASA Astrophysics Data System (ADS)

    Gruznev, D. V.; Bondarenko, L. V.; Matetskiy, A. V.; Tupchaya, A. Y.; Chukurov, E. N.; Hsing, C. R.; Wei, C. M.; Eremeev, S. V.; Zotov, A. V.; Saranin, A. A.

    2015-12-01

    A combination of scanning tunneling microscopy, angle-resolved photoelectron spectroscopy, ab initio random structure searching, and density functional theory electronic structure calculations was applied to elucidate the atomic arrangement and electron band structure of the (Au ,Al )/Si (111 )2 ×2 two-dimensional compound formed upon Al deposition onto the mixed 5 ×2 /√{3 }×√{3 } Au/Si(111) surface. It was found that the most stable 2 ×2 -(Au, Al) compound incorporates four Au atoms, three Al atoms, and two Si atoms per 2 ×2 unit cell. Its atomic arrangement can be visualized as an array of meandering Au atomic chains with two-thirds of the Al atoms incorporated into the chains and one-third of the Al atoms interconnecting the chains. The compound is metallic and its electronic properties can be controlled by appropriate Al dosing since energetic location of the bands varies by ˜0.5 eV during increasing of Al contents. The 2 ×2 -(Au, Al) structure appears to be lacking the C3 v symmetry typical for the hexagonal lattices. The consequence of the peculiar atomic structure of the two-dimensional alloy is spin splitting of the metallic states, which should lead to anisotropy of the current-induced in-plane spin polarization.

  14. Friction Stir Welding of Al-Cu Bilayer Sheet by Tapered Threaded Pin: Microstructure, Material Flow, and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Beygi, R.; Kazeminezhad, M.; Kokabi, A. H.; Loureiro, A.

    2015-06-01

    The fracture behavior and intermetallic formation are investigated after friction stir welding of Al-Cu bilayer sheets performed by tapered threaded pin. To do so, temperature, axial load, and torque measurements during welding, and also SEM and XRD analyses and tensile tests on the welds are carried out. These observations show that during welding from Cu side, higher axial load and temperature lead to formation of different kinds of Al-Cu intermetallics such as Al2Cu, AlCu, and Al4Cu9. Also, existence of Al(Cu)-Al2Cu eutectic structures, demonstrates liquation during welding. The presence of these intermetallics leads to highly brittle fracture and low strength of the joints. In samples welded from Al side, lower axial load and temperature are developed during welding and no intermetallic compound is observed which results in higher strength and ductility of the joints in comparison with those welded from Cu side.

  15. Infiltration of Saffil alumina fiber with AlCu and AlSi alloys

    SciTech Connect

    Garbellini, O.; Morando, C.; Biloni, H.; Palacio, H. . Inst. de Fisica de Materiales)

    1999-06-18

    Currently there is a considerable scientific and technological interest in the composite materials, which a strong ceramic reinforcement is incorporated into a metal matrix (MMC) to tailor its properties for specific applications. Among the various techniques for fabricating MMC, the liquid metal infiltration process by means of a pressurized gas is an attractive fabrication route for near net shaped metal matrix composite and has been successfully used to fabricate Al, Mg and more recently, Ni and Ni aluminide matrix composites, which can be reinforced by SiC or Al[sub 2]O[sub 3] particles, whiskers, or short fibers. This paper describes the experimental technique used and presents an experimental investigation of the effects of the process parameters employed, such as the preform and melt temperatures, the volume fraction of fibers in the preform and the applied pressure upon the infiltration length of a chopped preform during a unidirectional infiltration aided by gas pressure casting. The experiments of the present work were conducted to provide kinetic data with a view to optimizing the selection of the process initial conditions for infiltration which have an effect on the infiltration length of the molten matrix alloy into a preform and it is a first step in investigating the correlation between the infiltration length (fluidity) of AlCuSi matrix alloys and the microstructure of the composites fabricated by pressure casting. For this purpose, this paper focuses on AlCu and AlSi matrix alloys reinforced by short-fibers [delta]-alumina SAFFIL. The experiments reported here were performed with the fibers initially at a temperature significantly below the metal melting point. This is the case of practical interest for the fabrication of many fiber-reinforced metal components.

  16. The Low-Lying States of AlCu and AlAg

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1994-01-01

    The singlet and triplet states of AlCu and AlAg below about 32 000/cm are studied using the internally contracted multireference configuration-interaction method. A more elaborate study of the X(sup 1)Sum(sup +) ground state of AlCu is undertaken using extended Gaussian basis sets, including the effect of inner-shell correlation and including a perturbational estimate of relativistic effects. Our best estimate of the spectroscopic constants (r(sub 0), DeltaG(sub 1/2), and D(sub 0)) for the X(sup 1)Sum(sup+) state with the experimental values in parentheses are: 4.416(4.420) a(sub 0), 295 (294) /cm, and 2.318 (2.315) eV. The calculations definitively assign the upper state in the observed transition at 14 892/cm to the lowest (sup 1)Prod state. The calculated spectroscopic constants and radiative lifetime for the (sup 1)Prod state are in good agreement with experiment. The calculations support the tentative assignments of Behm et al. for three band systems observed in the visible region between 25 000 and 28 000 / cm. However, the computed spectroscopic constants are in very poor agreement with those deduced from an analysis of the spectra. Analogous theoretical results for AlAg suggest that the (2)(sup 3)Prod, (3)(sup 3)Prod, and (3)(sup 1)Sum(sup +) states account for the bands observed, but not assigned, by Duncan and co-workers.

  17. Optical behavior and structural property of CuAlS₂ and AgAlS₂ wide-bandgap chalcopyrites.

    PubMed

    Ho, Ching-Hwa; Pan, Chia-Chi

    2014-08-01

    Single crystals of CuAlS₂ and AgAlS₂ were grown by chemical vapor transport method using ICl₃ as the transport. The as-grown CuAlS₂ crystals reveal transparent and light-green color. Most of them possess a well-defined (112) surface. The AgAlS₂ crystals essentially show transparent and white color in vacuum. As the AgAlS₂ was put into the atmosphere, the crystal surface gradually darkened and became brownish because of the surface reaction with humidity or hydrogen gas. After a long-term chemical reaction process, the AgAlS₂ will transform into a AgAlO₂ oxide with yellow color. From x-ray diffraction measurements, both CuAlS₂ and AgAlS₂ as-grown crystals show single-phase and isostructural to a chalcopyrite structure. The (112) face is more preferable for the formation of the chalcopyrite crystals. The energies of interband transitions of the CuAlS₂ and AgAlS₂ were determined accurately by thermoreflectance measurements in a wide energy range of 2-6 eV. The valence-band electronic structures of CuAlS₂ and AgAlS₂ have been detailed and characterized using polarized-thermoreflectance measurements in the temperature range between 30 and 300 K. The band-edge transitions belonging to the E(∥) and E(⊥) polarizations have been, respectively, identified. The band edge of AgAlS₂ is near 3.2 eV while that of AgAlS₂ is about 3.5 eV. On the basis of the experimental analyses, optical and sensing behaviors of the chalcopyrite crystals have been realized. PMID:25090358

  18. Cu(2)ZnSnS(4)-Pt and Cu(2)ZnSnS(4)-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation.

    PubMed

    Yu, Xuelian; Shavel, Alexey; An, Xiaoqiang; Luo, Zhishan; Ibáñez, Maria; Cabot, Andreu

    2014-07-01

    Cu2ZnSnS4, based on abundant and environmental friendly elements and with a direct band gap of 1.5 eV, is a main candidate material for solar energy conversion through both photovoltaics and photocatalysis. We detail here the synthesis of quasi-spherical Cu2ZnSnS4 nanoparticles with unprecedented narrow size distributions. We further detail their use as seeds to produce CZTS-Au and CZTS-Pt heterostructured nanoparticles. Such heterostructured nanoparticles are shown to have excellent photocatalytic properties toward degradation of Rhodamine B and hydrogen generation by water splitting. PMID:24946131

  19. Application of Al-Nb alloy film to metal capping layer on Cu

    NASA Astrophysics Data System (ADS)

    Takeyama, Mayumi B.; Noya, Atsushi

    2016-02-01

    An Al-Nb alloy film with the Al72Nb28 composition is applied as a candidate metal capping layer on Cu interconnects. In the Al72Nb28/Cu/SiO2/Si model system, the preferential oxidation of Al forming a thin surface Al2O3 layer occurs owing to oxidation in air for 1 h at temperatures up to ˜300 °C, resulting in the protection of the layers underneath from further oxidation, although a slight Cu intermixing into Al-Nb occurs. With increasing oxidation temperature up to 500 °C, the surface Al2O3 layer still grows by the preferential oxidation of Al and rejects Cu atoms from the surface oxidized layer. Although Nb atoms are left behind in the surface oxidized layer, they are in a metallic state owing to the high solubility of oxygen before forming an oxide. The extremely low solubility of Nb in Cu also protects Cu without excess intermixing. A good passivation characteristic of the Al72Nb28 alloy film on Cu is demonstrated.

  20. Conductance and spin-filter effects of oxygen-incorporated Au, Cu, and Fe single-atom chains

    SciTech Connect

    Zheng, Xiaolong; Xie, Yi-Qun Ye, Xiang; Ke, San-Huang

    2015-01-28

    We studied the spin-polarized electron transport in oxygen-incorporated Au, Cu, and Fe single-atom chains (SACs) by first-principles calculations. We first investigated the mechanism responsible for the low conductance (<1G{sub 0}) of the Au and Cu SACs in an oxygen environment reported in recent experiments. We found that for the Au SACs, the low conductance plateau around 0.6G{sub 0} can be attributed to a distorted chain doped with a single oxygen atom, while the 0.1G{sub 0} conductance comes from a linear chain incorporated with an oxygen molecule and is caused by an antibonding state formed by oxygen's occupied frontier orbital with d{sub z} orbitals of adjacent Au atoms. For the Cu SACs, the conductance about 0.3G{sub 0} is ascribed to a special configuration that contains Cu and O atoms in an alternating sequence. This exhibits an even-odd conductance oscillation with an amplitude of ∼0.1G{sub 0}. In contrast, for the alternating Fe-O SACs, conductance overall decreases with an increase in O atoms and it approaches nearly zero for the chain with more than four O atoms. While the Cu-O SACs behave as perfect spin filters for one spin channel due to the half metallic nature, the Fe-O SACs can serve as perfect spin filters for two spin channels depending on the polarity of the applied gate voltage.

  1. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  2. Fe-U-PGE-Au-Ag-Cu Deposits of the Udokan-Chiney Region (East Siberia, Russia)

    NASA Astrophysics Data System (ADS)

    Gongalskiy, B.; Krivolutskaya, N.; Murashov, K.; Nistratov, S.; Gryazev, S.

    2012-04-01

    Introduction. Cupriferous sandstones-shales and magmatic copper-nickel deposits mark out the western and southern boundaries of the Siberian Craton accordingly. Of special interest are the Paleoproterozoic deposits of the Udokan-Chiney mining district (Gongalskiy, Krivolutskaya, 2008). Copper reserves and resources of this region are estimated at more than 50 Mt. Half of them is concentrated at the unique Udokan Deposit and the second half is distributed among sedimentary (Unkur, Pravoingamakitskoye, Sakinskoye, Krasnoye, Burpala) and magmatic deposits of the Chiney (Rudnoye, Verkhnechineyskoye, Kontaktovoye), Luktur and Maylav massifs. Results. It was established that the ores are characterized by similarity in chemical composition (main, major and rare elements that are Ag, Au, PGE) and mineral assemblages with varying proportions. It is important to emphasize that Fe role in mineralization was previously ignored. Meanwhile the Udokan deposit contains 10 Mt of magnetite metacrystals so as chalcocite ores may contain up to 50% magnetite too. It has been recently found that the Chiney titanomagnetite ores comprise commercially significant uranium and rare-earth metal concentrations (Makaryev et al., 2011). Thus the Udokan-Chiney region comprises Cu, Fe, Ti, V, U, REE, Ag, Au, PGE. These deposits differ from similar objects, the Olympic Dam in particular, by a much smaller content of fluid-bearing minerals. Copper mineralization at the Udokan is represented by chalcocite-bornite ores. They occur as ore beds conformable with sedimentary structures or as cross-cutting veins. The central zones of the former are often brecciated. They are rimmed by fine magnetite, bornite, and chalcocite dissemination. Bornite-chalcopyrite and chalcopyrite-pyrite veins are known at the lower levels of the Udokan ore bed. Such ore compositions are predominant in other ore deposits in sedimentary rocks (Pravoingamakitskoye, Unkur) and have a hydrothermal origin. Silver grades are up to

  3. Copper-based alloys, crystallographic and crystallochemical parameters of alloys in binary systems Cu-Me (Me=Co, Rh, Ir, Cu, Ag, Au, Ni, Pd, Pt)

    NASA Astrophysics Data System (ADS)

    Porobova, Svetlana; Markova, Tat'jana; Klopotov, Vladimir; Klopotov, Anatoliy; Loskutov, Oleg; Vlasov, Viktor

    2016-01-01

    The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen's law.

  4. Geochemistry and fluid characteristics of the Dalli porphyry Cu-Au deposit, Central Iran

    NASA Astrophysics Data System (ADS)

    Zarasvandi, Alireza; Rezaei, Mohsen; Raith, Johann; Lentz, David; Azimzadeh, Amir-Mortaza; Pourkaseb, Hooshang

    2015-11-01

    The Miocene Dalli porphyry Cu-Au deposit in the central part of Urumieh-Dokhtar magmatic arc is the first reported Au-rich porphyry Cu deposit in the Zagros orogenic belt. The Cu-Au mineralization is mainly hosted in diorite and quartz diorite intrusions, presenting as numerous veinlets in the altered wall rocks, with potassic, phyllic, and propylitic alteration developed. Based on the mineral assemblages and crosscutting relations of veinlets, hydrothermal mineralization-alteration occurred in at least three stages, characterized by veinlets of (1) Qtz + Kfs + Mag ± Ccp, (2) Qtz + Py + Ccp ± Bn ± Cv ± Cc and, (3) Qtz + Chl + Bt. The ore-bearing intrusions exhibit typical geochemical characteristics of subduction zone magmas, including LREE fractionated pattern, strong enrichment in LILE (Cs, Rb, Ba, Pb, and U), and depletion of HFSE, with marked negative Ti and Nb anomalies. The adakite-like ore-hosting porphyry intrusions are characterized by a systematic gradual decreasing and increasing of Y and Eu/Eu∗ with increasing SiO2 content, respectively. Moreover, they exhibit a significant increasing trend of Sr/Y with decreasing of Y, which indicates progressive hornblende fractionation and suppression of plagioclase fractionation during the evolution toward high water content of parental magma. A relatively flat HREE pattern with low Dyn/Ybn and Nb/Ta values may represent that amphibole played a more important role than garnet in the generation of the adakitic melts in the thickened lower crust. Based on the phase assemblages confirmed by detailed laser Raman spectroscopy analyses and proportion of solid, liquid, and gaseous components, five types of fluid inclusions were recognized, which are categorized as; (1) liquid-rich two phase (liquidH2O + vaporH2O) (IIA), (2) vapor-rich two phase (vaporH2O/CO2 + liquidH2O) (IIB), (3) high saline simple fluids (IIIA; liquidH2O + vaporH2O + Hl), (4) high saline opaque mineral-bearing fluids (IIIB; liquidH2O + vaporH2O

  5. Photothermal effects from Au-Cu2O core-shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Ju; Yang, Kung-Hsun; Hsu, Shih-Chen; Huang, Michael H.

    2015-12-01

    Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ~1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths.Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars

  6. Global transverse energy distributions in Si+Al, Au at 14.6 A GeV/ c and Au+Au at 11.6 A GeV/ c

    NASA Astrophysics Data System (ADS)

    Ahle, L.; Akiba, Y.; Beavis, D.; Britt, H. C.; Budick, B.; Chasman, C.; Chen, Z.; Chi, C. Y.; Chu, Y. Y.; Cianciolo, V.; Cole, B. A.; Costales, J. B.; Crawford, H. J.; Cumming, J. B.; Debbe, R.; Engelage, J.; Fung, S. Y.; Gonin, M.; Gushue, S.; Hamagaki, H.; Hansen, O.; Hayano, R. S.; Hayashi, S.; Homma, S.; Kaneko, H.; Kang, J.; Kaufman, S.; Kehoe, W. L.; Kurita, K.; LeVine, M. J.; Miake, Y.; Morrison, D. P.; Moskowitz, B.; Nagamiya, S.; Namboodiri, M. N.; Nayak, T. K.; Olness, J.; Remsberg, L. P.; Rothschild, P.; Sangster, T. C.; Seto, R.; Shigaki, K.; Soltz, R.; Steadman, S. G.; Stephans, G. S. F.; Sung, T.; Tannenbaum, M. J.; Thomas, J.; Tonse, S.; Ueno, S.; van Dijk, J. H.; Videbaek, F.; Vossnack, O.; Wang, F. Q.; Wang, Y.; Wegner, H. E.; Woodruff, D. S.; Wu, Y. D.; Yagi, K.; Yang, X.; Zachary, D.; Zajc, W. A.; E-802 Collaboration

    1994-07-01

    Measurements of the global transverse energy distributions dσ/ dET and dET/ dη using the new AGS beam of 197Au at 11.6 A GeV/ c on a Au target, as well as a beam of 28Si at 14.6 A GeV/ c on Al and Au targets, are presented for a leadglass detector with acceptance 1.3 ≤ η ≤ 2.4 and 0 ≤ φ < 2 π. The dσ/ dET spectra are observed to have different shapes for the different systems and simple energy rescaling does not account for the projectile dependence. The Au+Au dσ/ dET spectrum is satisfactorily constructed from the upper edge of Si+Au by the geometric Wounded Projectile Nucleon Model after applying a correction for the beam energy.

  7. System size and energy dependence of jet-induced hadron pair correlation shapes in Cu+Cu and Au+Au collisions at square root sNN=200 and 62.4 GeV.

    PubMed

    Adare, A; Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bickley, A A; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Campbell, S; Chai, J-S; Chand, P; Chang, B S; Chang, W C; Charvet, J-L; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Cussonneau, J P; Dahms, T; Das, K; David, G; Deák, F; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Dion, A; Donadelli, M; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dutta, D; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Eyser, K O; Fields, D E; Finck, C; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Forestier, B; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S-Y; Fusayasu, T; Gadrat, S; Garishvili, I; Gastineau, F; Germain, M; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Hadj Henni, A; Haegemann, C; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Han, R; Hansen, A G; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; He, X; Hidas, P; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holmes, M; Holzmann, W; Homma, K; Hong, B; Hoover, A; Horaguchi, T; Hornback, D; Hur, M G; Ichihara, T; Ikonnikov, V V; Imai, K; Inaba, M; Inoue, Y; Inuzuka, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kanou, H; Katou, K; Kawabata, T; Kawagishi, T; Kawall, D; Kazantsev, A V; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, E; Kim, G-B; Kim, H J; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Kohara, R; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kroon, P J; Kubart, J; Kuberg, C H; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y-S; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Lim, H; Liska, T; Litvinenko, A; Liu, M X; Li, X; Li, X H; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mao, Y; Martinez, G; Masek, L; Masui, H; Matathias, F; Matsumoto, T; McCain, M C; McCumber, M; McGaughey, P L; Miake, Y; Mikes, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, M; Mohanty, A K; Morreale, A; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oka, M; Omiwade, O O; Oskarsson, A; Otterlund, I; Ouchida, M; Oyama, K; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Penev, V; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pierson, A; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qualls, J M; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakata, H; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Seele, J; Seidl, R; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shevel, A; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Slunecka, M; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Toia, A; Tojo, J; Tomásek, L; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Uam, T J; Vale, C; Valle, H; vanHecke, H W; Velkovska, J; Velkovsky, M; Vertesi, R; Veszprémi, V; Vinogradov, A A; Virius, M; Volkov, M A; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Wohn, F K; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimányi, J; Zolin, L; Zong, X

    2007-06-01

    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from dijets in Cu+Cu and Au+Au collisions at square root sNN=62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from Delta phi=pi in central and semicentral collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models. PMID:17677902

  8. System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at {radical}(s{sub NN})=200 and 62.4 GeV

    SciTech Connect

    Adare, A.; Bickley, A. A.; Ellinghaus, F.; Kinney, E.; Seele, J.; Wysocki, M.; Adler, S. S.; Aronson, S. H.; Azmoun, B.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Harvey, M.; Johnson, B. M.; Kistenev, E.; Kroon, P. J.; Lynch, D.; Makdisi, Y. I.; Mioduszewski, S.

    2007-06-08

    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from dijets in Cu+Cu and Au+Au collisions at {radical}(s{sub NN})=62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from {delta}{phi}={pi} in central and semicentral collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.

  9. Exchange interaction between magnetic impurities on surfaces of Cu(x)Pd(1-x) and Cu(x)Au(1-x) random substitutional alloys.

    PubMed

    Ujfalussy, B; Simon, E

    2014-07-01

    We present fully relativistic first principles calculations of the exchange interactions between magnetic impurities deposited on the (1 1 1) surfaces of CuxPd1-x and CuxAu1-x random substitutional alloys, described using the coherent potential approximation. We show that as with pure surfaces of Cu and Au, where Shockley-type surface states mediate an RKKY-type interaction, a surface state and its dispersion can be obtained from studying the Bloch spectral function. In the second part of the paper we show how the details of the interaction are determined by the properties and dispersion of the surface states of the host material. We find an extra exponential decay in the range of the interactions compared to the 1/R(2) decay on surfaces of pure metals. The similar topology of the Fermi surface of Cu and Au allows us to scale the spin-orbit coupling and to study the Bychkov-Rashba splitting. Alternatively, the entirely different topology of the Cu and Pd Fermi surfaces allows us to study changes in the surface-state dispersion of the RKKY interaction between surface impurities. PMID:24934437

  10. Agglomeration, sputtering, and carbon monoxide adsorption behavior for Au/Al(2)O(3) prepared by Au(n)(+) deposition on Al(2)O(3)/NiAl(110).

    PubMed

    Lee, Sungsik; Fan, Chaoyang; Wu, Tianpin; Anderson, Scott L

    2005-06-01

    Size-selected gold clusters, Au(n)(+) (n = 1, 3, 4), were deposited on an ordered Al(2)O(3) film grown on NiAl(110), and changes in morphology and electronic properties with deposition/annealing temperature and cluster size were investigated by X-ray photoelectron spectroscopy (XPS) and ion-scattering spectroscopy (ISS). Extensive agglomeration was observed by ISS for annealing temperatures above 300 K, accompanied by large shifts in the Au XPS binding energy. Agglomeration is more extensive in room-temperature deposition, compared to samples prepared by low-temperature deposition, then annealed to room temperature. Agglomeration is also observed to be dependent on deposited cluster size. CO adsorption was studied by ISS and temperature-programmed desorption, and we looked for CO oxidation under conditions where substantial activity is seen for Au(n)/TiO(2). No activity was observed for Au(n)/Al(2)O(3). The differences between the two systems are interpreted in terms of the nature of the metal-support interactions. PMID:16852385

  11. A novel electrochemical DNA biosensor construction based on layered CuS-graphene composite and Au nanoparticles.

    PubMed

    Xu, Chun-Xuan; Zhai, Qiu-Ge; Liu, Yu-Jie; Huang, Ke-Jing; Lu, Lu; Li, Ke-Xin

    2014-11-01

    A novel CuS-graphene (CuS-Gr) composite was synthesized to achieve excellent electrochemical properties for application as a DNA electrochemical biosensor. CuS-Gr composite was prepared by a hydrothermal method, in which two-dimensional graphene served as a two-dimensional conductive skeleton to support CuS nanoparticles. A sensitive electrochemical DNA biosensor was fabricated by immobilizing single-stranded DNA (ss-DNA) labeled at the 5' end using 6-mercapto-1-hexane (HS-ssDNA) on the surface of Au nanoparticles (AuNPs) to form ssDNA-S-AuNPs/CuS-Gr, and hybridization sensing was done in phosphate buffer. Cyclic voltammetry and electrochemical impedance spectroscopy were performed for the characterization of the modified electrodes. Differential pulse voltammetry was applied to monitor the DNA hybridization using an [Fe(CN)6](3-/4-) solution as a probe. Under optimum conditions, the biosensor developed exhibited a good linear relationship between the current and the logarithm of the target DNA concentration ranging from 0.001 to 1 nM, with a low detection limit of 0.1 pM (3σ/S). The biosensor exhibited high selectivity to differentiate one-base-mismatched DNA and three-base-mismatched DNA. The results indicated that the sensing platform based on CuS-Gr provides a stable and conductive interface for electrochemical detection of DNA hybridization, and could easily be extended to the detection of other nucleic acids. PMID:24894519

  12. SDAS, Si and Cu Content, and the Size of Intermetallics in Al-Si-Cu-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Sivarupan, Tharmalingam; Taylor, John Andrew; Cáceres, Carlos Horacio

    2015-05-01

    Plates of Al-(a)Si-(b)Cu-Mg-(c)Fe alloys with varying content of (mass pct) Si ( a = 3, 4.5, 7.5, 9, 10, or 11), Cu ( b = 0, 1, or 4), and Fe ( c = 0.2, 0.5 or 0.8) were cast in sand molds with a heavy chill at one end to ensure quasi-directional solidification over a wide range of Secondary Dendrite Arm Spacing (SDAS). Statistical analysis on the size of the β-Al5FeSi, α-Al8Fe2Si, or Al2Cu intermetallics on Backscattered Electron images showed that a high Si content reduced the size of the β platelets in alloys with up to 0.5 Fe content regardless of the SDAS, whereas at small SDAS the refining effect extended up to 0.8 Fe, and involved α-phase intermetallics which replaced the beta platelets at those concentrations. At low Si contents, a high Cu level appeared to have similar refining effects as increased Si, through the formation of α-phase particles in the post-eutectic stage which agglomerated with the Al2Cu intermetallics. A high content of Si appears to make the overall refining process less critical in terms of SDAS/cooling rate.

  13. Thermal- and electromigration-induced stresses in passivated Al- and AlSiCu-interconnects

    SciTech Connect

    Beckers, D.; Schroeder, H.; Schilling, W.; Eppler, I.

    1997-05-01

    Mechanical stresses in microelectronic devices are of special interest because of degradation effects in microelectronic circuits such as stress induced voiding or electromigration. Al and al-alloys are commonly used as interconnect materials in integrated electronic devices. Stress induced voiding and degradation of metal lines by electromigration are closely related to the stresses in the lines. The authors have studied the strain and stress evolution during thermal cycling, isothermal relaxation and due to electromigration in passivated Al and AlSi(1%)Cu(0.5%) lines by X-Ray diffraction with variation of experimental parameters such as the aspect ratio and the electrical current density. Furthermore the extent of voiding and plastic shear deformation has been determined from the experimental metal strains with the help of finite element calculations. Main results are: (1) During thermal cycling the voiding is less than 2 {center_dot} 10{sup {minus}3}. The extent of plastic shear deformation increases with increasing line width and with decreasing flowstress. (2) During isothermal relaxation void growth occurs but no significant change in the plastic shear deformation. (3) An electric current in the lines causes no measurable additional change of the volume averaged stresses up to line failure.

  14. High resolution electrochemical STM : new structural results for underpotentially deposited Cu on Au(111) in acid sulfate solution.

    SciTech Connect

    Sieradzki, Karl; Vasiljevic, Natasa; Viyannalage, L.K.T.; Dimitrov, Nikolay

    2007-09-01

    Adsorption of sulfate assists Cu monolayer underpotential deposition (upd) on Au(111) in a unique way, rendering two distinct structural stages: (i) formation of a low-density Cu phase at coverage of 2/3 ML known as the ({radical}3 x {radical}3) R30{sup o} or honeycomb phase; (ii) formation of a complete monolayer, i.e., Cu-(1 x 1) phase pseudomorphic with respect to underlying Au(111) substrate. In this paper we present new structural in situ scanning tunneling microscopy (STM) results for this system. We show and discuss the STM imaging of the copper honeycomb superstructure probed underneath the co-adsorbed ({radical}3 x {radical}3)R30{sup o} sulfate adlayer in the low-density phase. High resolution imaging during the phase transition from the low to high density copper phase unambiguously shows the existence of an ordered sulfate structure p(2 x 2) on the pseudomorphic Cu-(1 x 1) layer. The new structure is seen during the co-existence of two copper phases as well as upon completion of the Cu-(1 x 1) monolayer. While supported by earlier chronocoulometric measurements in the same system, the new structural results raise questions that need to be addressed in a future work.

  15. Multiple diffraction in an icosahedral Al-Cu-Fe quasicrystal

    NASA Astrophysics Data System (ADS)

    Fan, C. Z.; Weber, Th.; Deloudi, S.; Steurer, W.

    2011-07-01

    In order to reveal its influence on quasicrystal structure analysis, multiple diffraction (MD) effects in an icosahedral Al-Cu-Fe quasicrystal have been investigated in-house on an Oxford Diffraction four-circle diffractometer equipped with an Onyx™ CCD area detector and MoKα radiation. For that purpose, an automated approach for Renninger scans (ψ-scans) has been developed. Two weak reflections were chosen as the main reflections (called P) in the present measurements. As is well known for periodic crystals, it is also observed for this quasicrystal that the intensity of the main reflection may significantly increase if the simultaneous (H) and the coupling (P-H) reflections are both strong, while there is no obvious MD effect if one of them is weak. The occurrence of MD events during ψ-scans has been studied based on an ideal structure model and the kinematical MD theory. The reliability of the approach is revealed by the good agreement between simulation and experiment. It shows that the multiple diffraction effect is quite significant.

  16. Thermal imaging of Al-CuO thermites

    NASA Astrophysics Data System (ADS)

    Densmore, John; Sullivan, Kyle; Kuntz, Joshua; Gash, Alex

    2013-06-01

    We have performed spatial in-situ temperature measurements of aluminum-copper oxide thermite reactions using high-speed color pyrometry. Electrophoretic deposition was used to create thermite microstructures. Tests were performed with micron- and nano-sized particles at different stoichiometries. The color pyrometry was performed using a high-speed color camera. The color filter array on the image sensor collects light within three spectral bands. Assuming a gray-body emission spectrum a multi-wavelength ratio analysis allows a temperature to be calculated. An advantage of using a two-dimensional image sensor is that it allows heterogeneous flames to be measured with high spatial resolution. Light from the initial combustion of the Al-CuO can be differentiated from the light created by the late time oxidization with atmosphere. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Quantification of Microsegregation in Cast Al-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Ganesan, M.; Thuinet, L.; Dye, D.; Lee, P. D.

    2007-08-01

    The random sampling approach offers an elegant yet accurate way of validating microsegregation models. However, both instrumental errors and interference from secondary phases complicate the treatment of randomly sampled microprobe data. This study demonstrates that the normal procedure of sorting the data for each element independently can lead to inaccurate estimation of segregation profiles within multicomponent, multiphase, aluminum alloys. A recently proposed alloy-independent approach is shown to more reliably isolate these interferences, allowing more accurate validation of microsegregation models. Application of this approach to examine solidification segregation of a 319-type alloy demonstrated that, for these slowly cooled castings, neither Sr or TiB2 additions significantly affected coring of Cu within the primary α-Al dendrites. Comparison against predictions of CALPHAD-type Gulliver-Scheil models was less satisfactory. Consideration of back-diffusion and morphology effects through a one-dimensional (1-D) numerical model do not improve the agreement. Possible reasons for the lack of agreement are hypothesized.

  18. Research of Mechanical Property Gradient Distribution of Al-Cu Alloy in Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Sun, Zhi; Sui, Yanwei; Liu, Aihui; Li, Bangsheng; Guo, Jingjie

    Al-Cu alloy castings are obtained using centrifugal casting. The regularity of mechanical property gradient distribution of Al-Cu alloy castings with the same centrifugal radius at different positions is investigated. The result shows that the tensile strength, yield strength, elongation and microscope hardness exhibit the following gradient distribution characteristic — high on both sides and low on the center. The trend of mechanical property gradient distribution of Al-Cu alloy increases with the increase in the rotation speed. Moreover, the mechanical properties of casting centerline two sides have asymmetry. The reason is that the grain size of casting centerline two sides and Al2Cu phase and Cu content change correspondingly.

  19. Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of 64Cu-Au alloy nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhao, Yongfeng; Sultan, Deborah; Detering, Lisa; Luehmann, Hannah; Liu, Yongjian

    2014-10-01

    Gold nanoparticles have been widely used for oncological applications including diagnosis and therapy. However, the non-specific mononuclear phagocyte system accumulation and potential long-term toxicity have significantly limited clinical translation. One strategy to overcome these shortcomings is to reduce the size of gold nanoparticles to allow renal clearance. Herein, we report the preparation of 64Cu alloyed gold nanoclusters (64CuAuNCs) for in vivo evaluation of pharmacokinetics, systemic clearance, and positron emission tomography (PET) imaging in a mouse prostate cancer model. The facile synthesis in acqueous solution allowed precisely controlled 64Cu incorporation for high radiolabeling specific activity and stability for sensitive and accurate detection. Through surface pegylation with 350 Da polyethylene glycol (PEG), the 64CuAuNCs-PEG350 afforded optimal biodistribution and significant renal and hepatobiliary excretion. PET imaging showed low non-specific tumor uptake, indicating its potential for active targeting of clinically relevant biomarkers in tumor and metastatic organs.Gold nanoparticles have been widely used for oncological applications including diagnosis and therapy. However, the non-specific mononuclear phagocyte system accumulation and potential long-term toxicity have significantly limited clinical translation. One strategy to overcome these shortcomings is to reduce the size of gold nanoparticles to allow renal clearance. Herein, we report the preparation of 64Cu alloyed gold nanoclusters (64CuAuNCs) for in vivo evaluation of pharmacokinetics, systemic clearance, and positron emission tomography (PET) imaging in a mouse prostate cancer model. The facile synthesis in acqueous solution allowed precisely controlled 64Cu incorporation for high radiolabeling specific activity and stability for sensitive and accurate detection. Through surface pegylation with 350 Da polyethylene glycol (PEG), the 64CuAuNCs-PEG350 afforded optimal

  20. Degradation mechanisms studies in CdS/CdTe solar cells with ZnTe:Cu/Au back contact

    SciTech Connect

    Morgan, D.; Tang, J.; Kaydanov, V.; Ohno, T.R.; Trefny, J.U.

    1999-03-01

    CdS/CdTe/ZnTe:Cu/Au solar cells were fabricated and tested under stressed conditions including enhanced temperature, forward and reverse bias, open circuit, dark and light. Discussion of results was focused mostly on the development of the back contact Schottky diode (increase in series resistance). Changes in the cell parameters were detected based on the analysis of the dynamic resistance of a cell (dV/dJ) at forward biases. A possible role of electromigration of the Cu dopant was discussed. {copyright} {ital 1999 American Institute of Physics.}

  1. Au-iClick mirrors the mechanism of copper catalyzed azide–alkyne cycloaddition (CuAAC)

    SciTech Connect

    Powers, Andrew R.; Ghiviriga, Ion; Abboud, Khalil A.; Veige, Adam S.

    2015-07-20

    This report outlines the investigation of the iClick mechanism between gold(I)-azides and gold(I)-acetylides to yield digold triazolates. Isolation of digold triazolate complexes offer compelling support for the role of two copper(I) ions in CuAAC. In addition, a kinetic investigation reveals the reaction is first order in both Au(I)-N3 and Au(I)-C≡C-R equivalent to C-R, thus second order overall. A Hammett plot with a ρ = 1.02(5) signifies electron-withdrawing groups accelerate the cycloaddition by facilitating the coordination of the second gold ion in a π-complex. Rate inhibition by the addition of free triphenylphosphine to the reaction indicates that ligand dissociation is a prerequisite for the reaction. The mechanistic conclusions mirror those proposed for the CuAAC reaction.

  2. Au-iClick mirrors the mechanism of copper catalyzed azide–alkyne cycloaddition (CuAAC)

    DOE PAGESBeta

    Powers, Andrew R.; Ghiviriga, Ion; Abboud, Khalil A.; Veige, Adam S.

    2015-07-20

    This report outlines the investigation of the iClick mechanism between gold(I)-azides and gold(I)-acetylides to yield digold triazolates. Isolation of digold triazolate complexes offer compelling support for the role of two copper(I) ions in CuAAC. In addition, a kinetic investigation reveals the reaction is first order in both Au(I)-N3 and Au(I)-C≡C-R equivalent to C-R, thus second order overall. A Hammett plot with a ρ = 1.02(5) signifies electron-withdrawing groups accelerate the cycloaddition by facilitating the coordination of the second gold ion in a π-complex. Rate inhibition by the addition of free triphenylphosphine to the reaction indicates that ligand dissociation is amore » prerequisite for the reaction. The mechanistic conclusions mirror those proposed for the CuAAC reaction.« less

  3. One-pot synthesis of hollow Au3Cu1 spherical-like and biomineral botallackite Cu2(OH)3Cl flowerlike architectures exhibiting antimicrobial activity.

    PubMed

    Hsiao, Min-Tien; Chen, Shin-Fu; Shieh, Dar-Bin; Yeh, Chen-Sheng

    2006-01-12

    A new form of Au3Cu1 hollow nanostructure was prepared by the reaction of Cu nanoparticles with HAuCl4. Following a course of aging, the biomineral botallackite Cu2(OH)3Cl nanoflowers were developed with the aid of Au3Cu1 hollow nanostructures at room temperature. It was proposed that the hollow nanospheres could serve as active centers for heterogeneous nucleation and mediated a mineralization process. Scanning electron microscopy and high-resolution transmission electron microscopy indicated that the nanoflowers are three-dimensional in appearance with a range of 500 nm-- to 1 microm in size and made of several nanopetals with about 25 nm in thickness. In addition, we found that the shape separation could be achieved by using cationic cetyltrimethylammonium bromide to filter the different morphology spherical- and flowerlike structures due to the negative charge of hollow nanospheres. Both hollow nanospheres and nanoflowers presented antimicrobial activity toward Streptococcus aureus with MIC50 at 39.6 and 127.2 microg/mL, respectively. PMID:16471522

  4. RF reactive sputter deposition and characterization of transparent CuAlO2 thin films

    NASA Astrophysics Data System (ADS)

    Lu, Y. M.; He, Y. B.; Yang, B.; Polity, A.; Volbers, N.; Neumann, C.; Hasselkamp, D.; Meyer, B. K.

    2006-09-01

    CuAlO2 thin films have been prepared on quartz glass and sapphire substrates by radio-frequency (RF) reactive sputtering using a CuAlO2 ceramic target. The deposition process was optimized by varying the sputter parameters, such as the substrate temperature and the oxygen flow. In addition a post-growth annealing has been carried out. X-ray diffraction (XRD) revealed that the as-sputtered films are amorphous, and crystallize in the delafossite-type CuAlO2 or in a phase mixture of CuAlO2 and CuAl2O4 after annealing in air at 1100°C. The surface morphology of the films was characterized by scanning electron microscopy (SEM). The as-grown films are nearly stoichiometric in terms of Cu to Al ratio and have good depth homogeneity as examined by Rutherford backscattering spectroscopy (RBS) and secondary ion mass spectroscopy (SIMS), respectively. The optical bandgap of the films was estimated by wavelength-dependent transmission measurements at room temperature, which revealed a direct bandgap of 3.38 and 3.80 eV for the as-sputtered and post-growth annealed CuAlO2 films, respectively.

  5. Structural and Superconducting Properties of (Al2O3) y /CuTl-1223 Composites

    NASA Astrophysics Data System (ADS)

    Jabbar, Abdul; Qasim, Irfan; Waqee-ur-Rehman, M.; Zaman, Munawar; Nadeem, K.; Mumtaz, M.

    2015-01-01

    The effects of nano-Alumina (Al2O3) particles inclusion on the structural and superconducting transport properties of (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ (CuTl-1223) matrix were explored in detail. Different concentrations (i.e. y = 0-1.5 wt.%) of Al2O3 nanoparticles were added to a CuTl-1223 matrix to obtain the desired (Al2O3) y /CuTl-1223 nano-superconducting composites. No significant change was observed in the crystal structure and stoichiometry of the host CuTl-1223 superconducting phase after the addition of Al2O3 nanoparticles. This indicates the occupancy of these nanoparticles at the inter-granular spaces. The superconductivity was suppressed with increasing Al2O3 nanoparticles contents in the CuTl-1223 matrix. The suppression of superconducting properties is most probably due to a pair-breaking mechanism caused by the reflection/scattering of carriers across the insulating nano-Al2O3 particles present at the grain boundaries. The non-monotonic variation of the superconducting properties may be due to inhomogeneous distribution of Al2O3 nanoparticles at the grain boundaries.

  6. An investigation of the growth of Au and Cu on the van der waals surfaces of MoTe 2 and WTe 2

    NASA Astrophysics Data System (ADS)

    Bortz, M. L.; Ohuchi, F. S.; Parkinson, B. A.

    1989-12-01

    We have used XPS, LEED, STM, and SEM to investigate the growth of Au and Cu on the van der Waals surfaces of MoTe 2 and WTe 2. XPS shows that while Au deposited onto these surfaces results in an abrupt, nonreactive interface, Cu deposited onto these surfaces exhibits an interfacial reaction accompanied by Te outdiffusion. LEED and STM show that on either surface Au forms a (111) oriented overlayer while Cu forms an amorphous overlayer, but at low coverages Au exhibits different nucleation behavior on MoTe 2 versus WTe 2. On the planar MoTe 2 surface Au displays isotropic nucleation behavior while on the buckled WTe 2 surface the nuclei are elongated parallel to the surface troughs. The different nucleation behavior results in different film morphologies at higer coverages, as seen by SEM. This is the first study investigating the diferent nucleation behavior caused by structural differences between chemically similar van der Waals surfaces.

  7. Structural characteristics of chalcopyrite from a Cu(Au) ore deposit in the Carajás Mineral Province, Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro, Andreza Aparecida; Lima, Diana Quintão; Duarte, Hélio Anderson; Murad, Enver; Pereira, Márcio César; de Freitas Suita, Marcos Tadeu; Ardisson, José Domingos; Fabris, José Domingos

    2011-11-01

    Mössbauer spectra and X-ray diffraction data show a chalcopyrite from the Cristalino Cu(Au) deposit in the Carajás Mineral Province in northern Brazil to consist of a single, tetragonal phase. This is in stark contrast to a previously described chalcopyrite from the Camaquã copper mine in southern Brazil, obviously reflecting differences in mineral (and thus ore deposit) genesis.

  8. Dihydrogen bond interactions as a result of H2 cleavage at Cu, Ag and Au centres.

    PubMed

    Grabowski, Sławomir J; Ruipérez, Fernando

    2016-05-14

    A quantum chemical study of H2 activation at fluorides of coinage metals, MF (M = Cu, Ag and Au), and its splitting was performed. The following reaction path was analyzed: FMH2→ FHHM → HMFH, where both the molecular complexes and the corresponding transition states have been characterized at the CCSD(T)/aug-cc-pVQZ//MP2/aug-cc-pVQZ level of theory. Further single-point CASSCF/CASPT2 calculations, including spin-orbit coupling effects, were also performed to analyze the role of non-dynamic correlation. The scalar relativistic effects are included via aug-cc-pVQZ-PP basis sets used for the metals. The dihydrogen-bonded copper (FHHCu) and silver (FHHAg) complexes are observed as a result of H2 cleavage, while the corresponding FHHAu gold complex is not found but the HAuHF arrangement is observed, instead. The energetic and geometrical parameters of the complexes have been analyzed and both the Quantum Theory of Atoms in Molecules approach and the Natural Bond Orbitals method were additionally applied to analyze the intermolecular interactions. PMID:27101741

  9. Electronic structure and conductivity of nanocomposite metal (Au,Ag,Cu,Mo)-containing amorphous carbon films

    SciTech Connect

    Endrino, Jose L.; Horwat, David; Gago, Raul; Andersson, Joakim; Liu, Y.S.; Guo, Jinghua; Anders, Andre

    2008-05-14

    In this work, we study the influence of the incorporation of different metals (Me = Au, Ag, Cu, Mo) on the electronic structure of amorphous carbon (a-C:Me) films. The films were produced at room temperature using a novel pulsed dual-cathode arc deposition technique. Compositional analysis was performed with secondary neutral mass spectroscopy whereas X-ray diffraction was used to identify the formation of metal nanoclusters in the carbon matrix. The metal content incorporated in the nanocomposite films induces a drastic increase in the conductivity, in parallel with a decrease in the band gap corrected from Urbach energy. The electronic structure as a function of the Me content has been monitored by x-ray absorption near edge structure (XANES) at the C K-edge. XANES showed that the C host matrix has a dominant graphitic character and that it is not affected significantly by the incorporation of metal impurities, except for the case of Mo, where the modifications in the lineshape spectra indicated the formation of a carbide phase. Subtle modifications of the spectral lineshape are discussed in terms of nanocomposite formation.

  10. High REE and Y concentrations in Co-Cu-Au ores of the Blackbird district, Idaho

    USGS Publications Warehouse

    Slack, J.F.

    2006-01-01

    Analysis of 11 samples of strata-bound Co-Cu-Au ore from the Blackbird district in Idaho shows previously unknown high concentrations of rare earth elements (REE) and Y, averaging 0.53 wt percent ???REE + Y oxides. Scanning electron microscopy indicates REE and Y residence in monazite, xenotime, and allanite that form complex intergrowths with cobaltite, suggesting coeval Co and REE + Y mineralization during the Mesoproterozoic. Occurrence of high REE and Y concentrations in the Blackbird ores, together with previously documented saline-rich fluid inclusions and Cl-rich biotite, suggest that these are not volcanogenic massive sulfide or sedimentary exhalative deposits but instead are iron oxide-copper-gold (IOCG) deposits. Other strata-bound Co deposits of Proterozoic age in the North American Cordillera and elsewhere in the world may have potential for REE and Y resources. IOCG deposits with abundant light REE should also be evaluated for possible unrecognized heavy REE and Y mineralization. ?? 2006 by Economic Geology.

  11. Microstructural dependence of annealing temperature in magnetron-sputtered Al-Si-Cu films

    NASA Astrophysics Data System (ADS)

    Liang, Ming-Kaan; Ling, Yong-Chien

    1993-09-01

    The effect of sputtering temperature, sputtering bias, and annealing temperature upon the sheet resistance, WO3 formation at the Al-Si-Cu/Ti-W interface, and diffraction intensity of the Al2Cu precipitates of magnetron-sputtered Al-Si-Cu films were investigated. Statistical methods and microcharacterization techniques were applied to study these effects. Statistical analysis verifies the effect of annealing temperature on the measured sheet resistance. Annealing temperature alone is the dominant factor upon the WO3 formation at the Al-Si-Cu/Ti-W interface and the Al2Cu (211) plane diffraction intensity. Annealed samples are of higher sheet resistance. Increase in sheet resistance is ascribed to the formation of interfacial WO3. Reduced electromigration is related to the formation of Al2Cu precipitates. Secondary ion mass spectrometry (SIMS) analysis of the as-deposited sample depicts the presence of an excess amount of oxygen atoms at the surface and the Al-Si-Cu/Ti-W and Ti-W/Ti interfaces. Rutherford backscattering spectrometry and SIMS analyses reveal the outdiffusion of W from the Ti-W layer toward the Al-Si-Cu layer, the presence of Si nodules at the Al-Si-Cu/Ti-W interface, and the formation of Ti silicides at the Ti/Si interface. These phenomena are confirmed by transmission electron microscopy, energy dispersive x-ray analysis, and scanning electron microscopy analyses. It is concluded that interfacial oxygen, which reacts with W to form WO3 upon annealing, warrants further reduction to yield films of better sheet resistance.

  12. Ab initio study of MXe{sub n}{sup +} (M=Cu, Ag, and Au; n=1,2)

    SciTech Connect

    Li Xinying; Cao Xue

    2008-02-15

    The equilibrium geometries, vibrational frequencies, dissociation energies, and populations of the title species were studied at Hartree-Fock (HF), second-order Moeller-Plesset (MP2), and coupled-cluster singles-doubles (triples) [CCSD(T)] levels. The electron correlation effects and relativistic effects on the geometry and stability were investigated at the CCSD(T) level. Both effects stabilize title species. The populations analyses show that M-Xe bonding is dominated by electrostatic interactions and the best theoretical estimate of the dissociation energies are 1.104 and 2.260 eV for AuXe{sup +} and AuXe{sub 2}{sup +}, respectively. The Cu and Ag are weakly bonded to Xe compared to Au.

  13. Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering.

    PubMed

    Hu, Zhaosheng; Liu, Zhe; Li, Lin; Quan, Baogang; Li, Yunlong; Li, Junjie; Gu, Changzhi

    2014-10-15

    Fabricating perfect plasmonic nanostructures has been a major challenge in surface enhanced Raman scattering (SERS) research. Here, a double-layer stacked Au/Al2O3@Au nanosphere structures is designed on the silicon wafer to bring high density, high intensity "hot spots" effect. A simply reproducible high-throughput approach is shown to fabricate feasibly this plasmonic nanostructures by rapid thermal annealing (RTA) and atomic layer deposition process (ALD). The double-layer stacked Au nanospheres construct a three-dimensional plasmonic nanostructure with tunable nanospacing and high-density nanojunctions between adjacent Au nanospheres by ultrathin Al2O3 isolation layer, producing highly strong plasmonic coupling so that the electromagnetic near-field is greatly enhanced to obtain a highly uniform increase of SERS with an enhancement factor (EF) of over 10(7). Both heterogeneous nanosphere group (Au/Al2O@Ag) and pyramid-shaped arrays structure substrate can help to increase the SERS signals further, with a EF of nearly 10(9). These wafer-scale, high density homo/hetero-metal-nanosphere arrays with tunable nanojunction between adjacent shell-isolated nanospheres have significant implications for ultrasensitive Raman detection, molecular electronics, and nanophotonics. PMID:24995658

  14. Evaluation of the microstructure of Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 4

    NASA Technical Reports Server (NTRS)

    Pickens, Joseph R.; Kumar, K. S.; Brown, S. A.; Gayle, Frank W.

    1991-01-01

    Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy designed to have ultrahigh strength and to serve in aerospace applications. The alloy displays significantly higher strength than competitive alloys in both naturally aged and artificially aged tempers. The strengthening phases in such tempers have been identified to, in part, explain the mechanical properties attained. In general, the alloy is strengthened by delta prime Al3Li and Guinier-Preston (GP) zones in the naturally aged tempers. In artificially aged tempers in slightly underaged conditions, strengthening is provided by several phases including GP zones, theta prime Al2Cu, S prime Al2CuMg, T(sub 1) Al2CuLi, and possibly a new phase. In the peak strength artificially aged tempers, T(sub 1) is the predominant strengthening phase.

  15. Participant and spectator scaling of spectator fragments in Au + Au and Cu + Cu collisions at √{sN N}=19.6 and 22.4 GeV

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Richardson, E.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wyngaardt, S.; Wysłouch, B.; Phobos Collaboration

    2016-08-01

    Spectator fragments resulting from relativistic heavy ion collisions, consisting of single protons and neutrons along with groups of stable nuclear fragments up to nitrogen (Z =7 ), are measured in PHOBOS. These fragments are observed in Au+Au (√{sNN}=19.6 GeV ) and Cu+Cu (22.4 GeV) collisions at high pseudorapidity (η ). The dominant multiply-charged fragment is the tightly bound helium (α ), with lithium, beryllium, and boron all clearly seen as a function of collision centrality and pseudorapidity. We observe that in Cu+Cu collisions, it becomes much more favorable for the α fragments to be released than lithium. The yields of fragments approximately scale with the number of spectator nucleons, independent of the colliding ion. The shapes of the pseudorapidity distributions of fragments indicate that the average deflection of the fragments away from the beam direction increases for more central collisions. A detailed comparison of the shapes for α and lithium fragments indicates that the centrality dependence of the deflections favors a scaling with the number of participants in the collision.

  16. CdS Nanowires with Large Aspect Ratio and Their Composite with CuS and Au Nanoparticles.

    PubMed

    Yang, Fanghong; Jiang, Zhixiang; Miao, Yanping; Yang, Ping

    2016-06-01

    We prepared CdS nanowires with small diameter (2.9 nm) and a large aspect ratio (more than 60) via a seed growth method. Wurtzite CdS seeds were firstly obtained via an organic synthesis at 310 degrees C. CdS nanowires with a single-crystal wurtzite structure and grown along the [0001] (c-axis) were further created through controlling the growth process. The injection of precursors plays an important role for getting a large respect ratio. The average size of the seeds is 2.9 nm. The growth along c-axis occurred during the preparation of the nanowires. The diameter of 2.9 nm remained unchanged within short reaction time. The heterostructures of the nanowires were fabricated by depositing CuS and Au nanoparticles (NPs). CuS monomers firstly deposited on the top of the nanowire and then to form a CuS shell on the top. In contrast, Au NPs deposited firstly on the top part of the nanowire. With increasing time or the amount of precursors, small Au NPs on side part of the nanowire was observed. The possible deposition kinetics was discussed. Because of homogeneous and uniform morphology, the heterostructures may be utilizable for applications. PMID:27427739

  17. The effect of Zn, Ag and Au substitution for Cu in Finemet on the crystallization and magnetic properties

    NASA Astrophysics Data System (ADS)

    Chau, N.; Hoa, N. Q.; The, N. D.; Vu, L. V.

    2006-08-01

    Soft magnetic ribbons of Finemet compound with Zn, Ag and Au substituted for Cu: Fe 73.5Si 13.5B 9Nb 3Cu 1-xM x (M=Zn, Ag, Au; x=0.5, 1.0) have been fabricated by rapid quenching technique with wheel speeds of 10, 25 and 30 m/s, respectively. The crystallization evolution of samples examined by DSC measurements showed that the high cooling rates make the ribbons in amorphous state whereas the samples with M=Zn; x=0.5, 1.0 showed to be partly crystallized when they fabricated by the wheel speed of 10 m/s. In the case of Zn ( x=0.5, 1.0) and Ag ( x=1.0) substitution there is a sharp peak in the DSC curve corresponding to crystallization of α-Fe(Si) phase. However, the role of Au is similar to that of Cu. Hysteresis loops of as-cast samples exhibited square form which relates to the pinning centers in domain wall displacement. After appropriate annealing, the ultrasoft magnetic properties of studied ribbons are obtained.

  18. Lattice Changes in Shape Memory CuZnAl Alloys on Aging at Room Temperature

    NASA Astrophysics Data System (ADS)

    Çakmak, Seyfettýn; Artunç, Ekrem; Kayali, Nejdet; Adigüzel, Osman

    2001-09-01

    The aging behavior of CuZnAl martensites (Cu-21.62 wt.% Zn-5.68 wt.% Al and Cu-24.98 wt.% Zn-4.43 wt.% Al) at about 297 K was studied by analyzing diffraction line profiles obtained by X-ray diffractometry. For the alloys, the change of the lattice parameters and the tetragonality associated with the aging time at room temperature were investigated. The habit planes versus the aging time at room temperature were calculated using the De Vos-Aernoundt-Delaey model, based on the crystallographic theory of Wechsler-Lieberman-Read(WLR), and from the DO3→ 18R martensite transformation theory.

  19. Microstructural variations in Cu/Nb and Al/Nb nanometallic multilayers

    SciTech Connect

    Polyakov, M. N.; Hodge, A. M.; Courtois-Manara, E.; Wang, D.; Kuebel, C.; Chakravadhanula, K.

    2013-06-17

    Miscible (Al/Nb) and immiscible (Cu/Nb) nanometallic multilayer systems were characterized by means of transmission electron microscopy techniques, primarily by automated crystallographic orientation mapping, which allows for the resolution of crystal structures and orientations at the nanoscale. By using this technique, distinctive Nb orientations in relation to the crystallographic state of the Al and Cu layer structures can be observed. Specifically, the Al and Cu layers were found to consist of amorphous, semi-amorphous, and crystalline regions, which affect the overall multilayer microstructure.

  20. The formation of heterointerface defects in Au/Cu films on Si substrates under direct current in a vacuum ultraviolet environment.

    PubMed

    Yan, Kai; Yao, Wenqing; Yang, Liping; Cao, Jiangli; Zhao, Yuanyuan; Zhao, Lixia; Zhu, Yongfa

    2016-02-01

    Au/Cu metallic films were deposited on p-Si(100) substrates with and without an Au upper layer by magnetron sputtering. The defect formation and nanoscale interfacial evolution at the Au/Cu and Cu/Si interfaces were studied by using Auger electron spectroscopy (AES) and high resolution transmission electron microscopy (HRTEM). The results showed that an increase in defects at the heterointerfaces and in the surface layer was induced by the effect of a direct current (DC) in a vacuum ultraviolet (UV) environment, which could provide more channels for the removal of atoms. The directed migration of atomic clusters in the films was caused by the effect of the DC, which also aggravated the defects' expansion and led to the formation of Au-Cu intermetallic compounds (IMCs). In addition, the voids formed at the interface between the Au/Cu films and the Si substrates were found to be mainly related to the generation of the material Au2Cu3. PMID:26778294

  1. Nuclear matter effects on J/ψ production in asymmetric Cu + Au collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV

    DOE PAGESBeta

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; et al

    2014-12-18

    We report on J/ψ production from asymmetric Cu+Au heavy-ion collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/ψ yields in Cu+Au collisions in the Au-going direction is found to be comparable to that in Au+Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/ψ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression inmore » the larger Au nucleus. Thus, the relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.« less

  2. The role of copper species on Cu/γ-Al2O3 catalysts for NH3-SCO reaction

    NASA Astrophysics Data System (ADS)

    Liang, Chunxia; Li, Xinyong; Qu, Zhenping; Tade, Moses; Liu, Shaomin

    2012-02-01

    UV-vis spectra, XRD, H2-TPR, TEM and ESR were used to characterize a series of Cu/γ-Al2O3 catalysts, which were prepared by incipient wetness impregnation using copper nitrate, copper acetate or copper sulfate as precursors, to study the role of Cu species on Cu/γ-Al2O3 catalysts for NH3-SCO reaction. It was found that the mixture of CuO phase and CuAl2O4 phase formed on various Cu/γ-Al2O3 catalysts, and the Cu species and dispersion had significant influence on the Cu/γ-Al2O3 activity. Highly dispersed CuO phase on the support would be related with its high activity for the NH3-SCO reaction.

  3. Origin of Quantum Criticality in Yb-Al-Au Approximant Crystal and Quasicrystal

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinji; Miyake, Kazumasa

    2016-06-01

    To get insight into the mechanism of emergence of unconventional quantum criticality observed in quasicrystal Yb15Al34Au51, the approximant crystal Yb14Al35Au51 is analyzed theoretically. By constructing a minimal model for the approximant crystal, the heavy quasiparticle band is shown to emerge near the Fermi level because of strong correlation of 4f electrons at Yb. We find that charge-transfer mode between 4f electron at Yb on the 3rd shell and 3p electron at Al on the 4th shell in Tsai-type cluster is considerably enhanced with almost flat momentum dependence. The mode-coupling theory shows that magnetic as well as valence susceptibility exhibits χ ˜ T-0.5 for zero-field limit and is expressed as a single scaling function of the ratio of temperature to magnetic field T/B over four decades even in the approximant crystal when some condition is satisfied by varying parameters, e.g., by applying pressure. The key origin is clarified to be due to strong locality of the critical Yb-valence fluctuation and small Brillouin zone reflecting the large unit cell, giving rise to the extremely-small characteristic energy scale. This also gives a natural explanation for the quantum criticality in the quasicrystal corresponding to the infinite limit of the unit-cell size.

  4. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.

    PubMed

    Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu

    2015-04-01

    There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters. PMID:25649390

  5. After-Corrosion Suppression Using Low-Temperature Al-Si-Cu Etching

    NASA Astrophysics Data System (ADS)

    Aoki, Hidemitsu; Ikawa, Eiji; Kikkawa, Takamaro; Teraoka, Yuden; Nishiyama, Iwao

    1991-07-01

    The authors investigated the low-temperature etching effect on Al-Si-Cu after-corrosion. The after-corrosion extent was evaluated from the corrosion point density generated on the rinsed Al-Si-Cu stripes after dry etching. As the etching temperature was reduced, after-corrosion was suppressed. In order to study the low-temperature etching effect, the authors analyzed the Cl compounds remaining on the Al-Si-Cu film by thermal desorption spectroscopy (TDS). TDS revealed that the Cl concentration remaining on the Al-Si-Cu film etched at -60°C after rinsing in water was smaller than that remaining on the film etched at 30°C. Consequently, suppression of after-corrosion by low temperature etching could be attributed to the smaller number of Al-Cu bonds remaining in the Al-Si-Cu etch surface after removal of the AlClx layer by rinsing with water. This fact is due to the reduction of chemical reaction and diffusion rate by lowering the substrate temperature.

  6. Effect of Silicon on the Thixoformability of Al-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Benati, Davi Munhoz; Zoqui, Eugênio José

    2014-09-01

    The thixoformability of new Al-Si-Cu alloys was evaluated and characterized by their microstructural and rheological behavior. Alloys Al1Si2.6Cu, Al2Si2.6Cu, Al4Si2.6Cu, and Al7Si2.6Cu were produced with the addition of Al5Ti1B grain refiner alloy. The materials were heat treated under two controlled conditions: holding times of 0, 30, 90, and 210 s and solid fraction of 45 and 60%. The evaluation of the microstructure and semisolid behavior was characterized by globule size, shape factor (SF), minimum stress to flow, maximum stress, and apparent viscosity. The heat treatment times promoted the globularization of solid phase particles to achieve better apparent viscosity results for the alloys treated for 210 s. Both 45 and 60% solid fraction showed no significant differences in terms of SF, but the alloys containing lower solid fraction showed better performance for apparent viscosity. Better working ranges for these new Al-Si-Cu alloys were determined reaching average strain of 0.5 MPa and apparent viscosity of 105 Pa s.

  7. Nucleation Effects in Thermally Managed Graphite Fiber-Reinforced Al-Cu and Al-Si Composites

    NASA Astrophysics Data System (ADS)

    Seong, H. G.; Lopez, H. F.; Gajdardziska-Josifovska, M.; Rohatgi, P. K.

    2007-11-01

    The influence of heat extraction through fiber reinforcements on the resultant solidification morphologies was investigated in cast Al-Cu and Al-Si alloy composites reinforced with graphite fibers (GRFs). For this purpose, the GRFs were externally cooled by exposing their ends to ambient air during pressure infiltration. It was found that in the Al-Cu system, heat extraction through the fiber ends promoted the development of single α-Al envelopes around the GRFs. In particular, radial growth of the α envelopes occurred with a planar solid/liquid solidification front as a result of heat extraction. Apparently, the high thermal conductivity of GRFs causes significant heat extraction to enable the development of a positive temperature gradient at the GRF/melt interface. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAD) unveiled the occurrence of (002) α-Al//(0002)GR orientation relationship at α-Al/GRF interfaces. Preferential nucleation of primary Si along the graphite surfaces of the GRF-reinforced Al-Si alloy composite was also promoted by external fiber heat extraction. However, in this case, numerous nucleation events along the fiber interfaces were common, as well as nucleation at active substrates within the constrained melt. Finally, differential thermal analysis (DTA) indicated that the onset temperatures for nucleation shift toward higher values (by 7 °C for the Al-Cu composite and 2 °C for the Al-Si composite) when compared with their corresponding matrix alloys.

  8. Tellurides, selenides and Bi-mineral assemblages from the Río Narcea Gold Belt, Asturias, Spain: genetic implications in Cu-Au and Au skarns

    NASA Astrophysics Data System (ADS)

    Cepedal, A.; Fuertes-Fuente, M.; Martín-Izard, A.; González-Nistal, S.; Rodríguez-Pevida, L.

    2006-07-01

    Gold ores in skarns from the Río Narcea Gold Belt are associated with Bi-Te(-Se)-bearing minerals. These mineral assemblages have been used to compare two different skarns from this belt, a Cu-Au skarn (calcic and magnesian) from the El Valle deposit, and a Au-reduced calcic skarn from the Ortosa deposit. In the former, gold mineralization occurs associated with Cu-(Fe)-sulfides (chalcopyrite, bornite, chalcocite-digenite), commonly in the presence of magnetite. Gold occurs mainly as native gold and electrum. Au-tellurides (petzite, sylvanite, calaverite) are locally present; other tellurides are hessite, clausthalite and coloradoite. The Bi-bearing minerals related to gold are Bi-sulfosalts (wittichenite, emplectite, aikinite, bismuthinite), native bismuth, and Bi-tellurides and selenides (tetradymite, kawazulite, tsumoite). The speciation of Bi-tellurides with Bi/Te(Se + S) ≤ 1, the presence of magnetite and the abundance of precious metal tellurides and clausthalite indicate fO2 conditions within the magnetite stability field that locally overlap the magnetite-hematite buffer. In Ortosa deposit, gold essentially occurs as native gold and maldonite and is commonly related to pyrrhotite and to the replacement of löllingite by arsenopyrite, indicating lower fO2 conditions for gold mineralization than those for El Valle deposit. This fact is confirmed by the speciation of Bi-tellurides and selenides (hedleyite, joséite-B, joséite-A, ikunolite-laitakarite) with Bi/Te(+ Se + S) ≥ 1.

  9. Chemical solution approaches to YBa2Cu3O7_delta-Au nanocomposite superconducting thin films.

    PubMed

    Martínez-Julián, F; Ricart, S; Pomar, A; Col, M; Abellán, P; Sandiumenge, F; Casanove, M J; Obradors, X; Puig, T; Pastoriza-Santos, I; Liz-Marzán, L M

    2011-04-01

    We explore the feasibility of preparing YBa2CU3O7-Au (YBCO-Au) nanocomposite thin films by chemical solution deposition (CSD). Two approaches were used: (i) A standard in-situ methodology where Au metallorganic salts are added into the precursor solution of YBCO trifluoroacetate (TFA) salts and (ii) a novel approach where stable colloidal solutions of preformed gold nanoparticles (5-15 nm) were homogeneously mixed with TFA-YBCO solutions. A detailed analysis of the microstructure of the films showed that in both cases, there is a strong tendency of gold nanoparticles to migrate to the film surface. However the kinetics of this migration evidences important differences and in the case of preformed nanoparticles their size remains unchanged (a few nanometers) whereas for the in-situ nanocomposites gold ripening leads to large particles (hundreds of nanometers). The grown YBCO-Au films showed good superconducting characteristics (J(c) 2 MA/cm2 at 77 K) but the absence of Au inclusions inside the YBCO matrix explains the fact that no enhancement of vortex pinning was observed. PMID:21776693

  10. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  11. Composition-driven spin glass to ferromagnetic transition in the quasicrystal approximant Au-Al-Gd

    NASA Astrophysics Data System (ADS)

    Ishikawa, A.; Hiroto, T.; Tokiwa, K.; Fujii, T.; Tamura, R.

    2016-01-01

    We investigated the composition dependence of the magnetic susceptibility of the quasicrystal approximant Au-Al-Gd. A composition-driven ferromagnetic transition is observed in a quasicrystal approximant, which is attributed to the Ruderman-Kittel-Kasuya-Yosida (RKKY) oscillation via a variation in the Fermi wave vector. The ferromagnetic transition is most simply understood as a result of the close matching of the nearest and second-nearest spin distances with the maximum positions of the RKKY potential. The present work provides an idea that allows us to tailor the magnetic order via the electron concentration in quasicrystal approximants as well as in quasicrystals.

  12. Effect of current reversal on the failure mechanism of Al-Cu-Si narrow interconnects

    NASA Astrophysics Data System (ADS)

    Kim, Choong-Un; Kang, S. H.; Morris, J. W.

    1996-02-01

    The work reported here concerns the effect of a brief exposure to a reversed current on the electromigration failure of narrow Al-Cu thin-film conducting lines. While the precise mechanism by which Cu retards electromigration in AlCu alloys is not fully understood, the consistent observation that electromigration failure is preceded by the sweeping of Cu from the failure site can be used to improve electromigration resistance by stabilizing the distribution of Cu. One way of doing this is to expose the Al-Cu line to a reverse current for some period of time. The present work shows that this method is particularly effective in thin lines with “quasi-bamboo” microstructures. It has the effect of building a reservoir of Cu at the upstream ends of the polygranular segments that are the preferred failure sites, and significantly increases both the mean time to failure, and the time to first failure of a distribution of lines. It can be inferred from these results that Al-Cu lines that conduct alternating current should be exceptionally resistant to electromigration failure.

  13. Thermoelectric properties of Ni-doped CuAlO 2

    NASA Astrophysics Data System (ADS)

    Wongcharoen, Ngamnit; Gaewdang, Thitinai

    2009-07-01

    The polycrystalline Ni-doped CuAlO2 were obtained by solid state reaction method. The mixture of high purity grade of CuO, Al2O3 and Ni(NO3)2.6H2O powders was ground and then pressed by using uniaxial pressure. The obtained pellet was sintered in air at 1423 K for 24 h. XRD patterns showed the crystal structure of the as-sintered CuAl1-xNixO2 (0≤x≤0.10) belonging to rhombohedral, space group. No evidence of second phase was observed when Ni doping up to x=0.01. At Ni content x≥0.01 CuAl1-xNixO2 solid solution phase along with the CuO and CuAl2O4 phases were observed. From SEM micrographs, the grain size decreased from 6 to 2 μm when the amount of Ni in CuAl1-xNixO2 samples increased. Hall mobility and hole concentration of the as-sintered samples were obtained from Hall effect measurements at room temperature. The activation energy values deduced from the electrical resistivity measurements as a function of temperature were reported. The variation of Seebeck coefficient and power factor as a function of temperature was also investigated. From the experimental results, the substitution of Ni2+ ion in Cu+ site of CuAl1-xNixO2 material may be drawn.

  14. CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous materials via direct synthetic route

    NASA Astrophysics Data System (ADS)

    Huo, Chengli; Ouyang, Jing; Yang, Huaming

    2014-01-01

    Highly ordered aluminum-containing mesoporous silica (Al-MCM-41) was prepared using attapulgite clay mineral as a Si and Al source. Mesoporous complexes embedded with CuO nanoparticles were subsequently prepared using various copper sources and different copper loadings in a direct synthetic route. The resulting CuO/Al-MCM-41 composite possessed p6mm hexagonally symmetry, well-developed mesoporosity, and relatively high BET surface area. In comparison to pure silica, these mesoporous materials embedded with CuO nanoparticles exhibited smaller pore diameter, thicker pore wall, and enhanced thermal stability. Long-range order in the aforementioned samples was observed for copper weight percentages as high as 30%. Furthermore, a significant blue shift of the absorption edge for the samples was observed when compared with that of bulk CuO. H2-TPR measurements showed that the direct-synthesized CuO/Al-MCM-41 exhibited remarkable redox properties compared to the post-synthesized samples, and most of the CuO nanoparticles were encapsulated within the mesoporous structures. The possible interaction between CuO and Al-MCM-41 was also investigated.

  15. CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous materials via direct synthetic route

    PubMed Central

    Huo, Chengli; Ouyang, Jing; Yang, Huaming

    2014-01-01

    Highly ordered aluminum-containing mesoporous silica (Al-MCM-41) was prepared using attapulgite clay mineral as a Si and Al source. Mesoporous complexes embedded with CuO nanoparticles were subsequently prepared using various copper sources and different copper loadings in a direct synthetic route. The resulting CuO/Al-MCM-41 composite possessed p6mm hexagonally symmetry, well-developed mesoporosity, and relatively high BET surface area. In comparison to pure silica, these mesoporous materials embedded with CuO nanoparticles exhibited smaller pore diameter, thicker pore wall, and enhanced thermal stability. Long-range order in the aforementioned samples was observed for copper weight percentages as high as 30%. Furthermore, a significant blue shift of the absorption edge for the samples was observed when compared with that of bulk CuO. H2-TPR measurements showed that the direct-synthesized CuO/Al-MCM-41 exhibited remarkable redox properties compared to the post-synthesized samples, and most of the CuO nanoparticles were encapsulated within the mesoporous structures. The possible interaction between CuO and Al-MCM-41 was also investigated. PMID:24419589

  16. Cu-doped AlN: A possible spinaligner at room-temperature grown by molecular beam epitaxy?

    SciTech Connect

    Ganz, P. R.; Schaadt, D. M.

    2011-12-23

    Cu-doped AlN was prepared by plasma assisted molecular beam epitaxy on C-plane sapphire substrates. The growth conditions were investigated for different Cu to Al flux ratios from 1.0% to 4.0%. The formation of Cu-Al alloys on the surface was observed for all doping level. In contrast to Cu-doped GaN, all samples showed diamagnetic behavior determined by SQUID measurements.

  17. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    SciTech Connect

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-15

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.

  18. Spark plasma sintering of a nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy

    NASA Astrophysics Data System (ADS)

    Zúñiga, Alejandro; Ajdelsztajn, Leonardo; Lavernia, Enrique J.

    2006-04-01

    The microstructure and aging behavior of a nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy was studied. The nanocrystalline powders were produced by milling at liquid nitrogen temperature and then consolidated using spark plasma sintering (SPS). The microstructure after SPS consisted of a bimodal aluminum grain structure (coarse-grained and fine-grained regions), along with Al9FeNi and Al2CuMg particles dispersed throughout. The microstructure observed in the as-consolidated sample is rationalized on the basis of high current densities that are generated during sintering. Solution treatment and aging of the SPS Al-Cu-Mg-Fe-Ni-Sc sample resulted in softening instead of hardening. This observation can be explained by the reduced amount of Cu, Mg, and Si in solid solution available to form S' Al2CuMg due to the precipitation of Al7FeCu2 and Si-rich particles, and by the fact that rodlike S' Al2CuMg particles could only precipitate out in the coarse-grained regions, greatly decreasing their influence on the hardness. This lack of precipitation in the fine-grained region is argued to represent a new physical observation and is rationalized on the basis of physical and thermodynamic effects. The nanocrystalline SPS Al-Cu-Mg-Fe-Ni-Sc sample was also extremely thermally stable, retaining a fine-grained structure even after solution treatment at 530°C for 5 h. The observed thermal stability is rationalized on the basis of solute drag and Zener pinning caused by the impurities introduced during the cryomilling process.

  19. Interatomic force interaction in an i-AlCuFe quasicrystal

    SciTech Connect

    Parshin, P. P.; Zemlyanov, M. G. Brand, R. A.

    2007-11-15

    Partial spectra of thermal vibrations of Al, Cu, and Fe atoms in an icosahedral quasicrystal have been obtained by the isotopic-contrast method in inelastic neutron scattering. Joint analysis of these results and the published data on the atomic and electronic structures of the icosahedral i-AlCuFe quasicrystal has been performed. A physical model of the quasicrystal structure is proposed that is in agreement with the existing experimental data and qualitatively describes the peculiarities of interatomic interaction.

  20. Thermal and structural characterization of Cu-Al-Mn-X (Ti, Ni) shape memory alloys

    NASA Astrophysics Data System (ADS)

    Canbay, C. Aksu; Genc, Z. Karagoz; Sekerci, M.

    2014-05-01

    In this study, the Cu-Al-Mn-X (X = Ni, Ti) shape memory alloys at the range of 10-12 at.% of aluminum and 4-5 at.% manganese were produced by arc melting. We have investigated the effects of the alloying elements on the transformation temperatures, and the structural and the magnetic properties of the quaternary Cu-Al-Mn-X (X = Ni, Ti) shape memory alloys. The evolution of the transformation temperatures was studied by differential scanning calorimetry with different heating and cooling rates. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the aluminum and manganese content, and it was observed that the nickel addition into the Cu-Al-Mn system decreased the transformation temperature although Ti addition caused an increase in the transformation temperatures. The effect of the nickel and the titanium on the thermodynamic parameters such as enthalpy and entropy values was investigated. The structural changes of the samples were studied by X-ray diffraction measurements and by optical microscope observations at room temperature. It is evaluated that the element Ni has been completely soluble in the matrix, and the main phase of the Cu-Al-Mn-Ni sample is martensite, and due to the low solubility of the Ti, the Cu-Al-Mn-Ti sample has precipitates, and a martensite phase at room temperature. The magnetic properties of the Cu-Al-Mn, Cu-Al-Mn-Ni and Cu-Al-Mn-Ti samples were investigated, and the effect of the nickel and the titanium on the magnetic properties was studied.

  1. Growth process of Cu2Al6B4O17 whiskers

    NASA Astrophysics Data System (ADS)

    Zhu, Chengcai; Nai, Xueying; Zhu, Donghai; Guo, Fengqin; Zhang, Yongxing; Li, Wu

    2013-01-01

    The reactions occurred and growth process in the preparation of copper aluminum borate (Cu2Al6B4O17) whiskers based on flux method (Al2(SO4)3/CuSO4/H3BO3 as raw materials, K2SO4 as flux) were investigated. The thermogravimetric and differential scanning calorimetry analysis (TG-DSC), inductively coupled plasma atomic emission spectrum analysis (ICP-AES) and X-ray diffraction analysis (XRD) results of reactants mixture quenched at various temperatures and phase diagrams of K2SO4-Al2(SO4)3 system and B2O3-Al2O3 system showed that the reaction process proceeds through three steps: the formation and decomposition of two different kinds of potassium aluminum sulfate (K3Al(SO4)3 and KAl(SO4)2); the formation of aluminum borate (Al4B2O9) and decomposition of copper sulfate (CuSO4) and boric acid (H3BO3); growth and formation of copper aluminum borate (Cu2Al6B4O17) whiskers. The scanning electron microscopy (SEM) analysis results indicated that morphology in growth of Cu2Al6B4O17 whiskers develops through three stages: nanoparticles, fan-shaped whiskers and agminate-needlelike whiskers.

  2. The vibrational and configurational entropy of disordering in Cu3Au

    PubMed Central

    Benisek, Artur; Dachs, Edgar

    2015-01-01

    The thermodynamics of disordering in Cu3Au have been investigated by measuring the heat capacity of samples with different degrees of long- and short-range order between T = 5 and 720 K using relaxation and differential scanning calorimetry. The heat capacities of L12-ordered and fcc-disordered samples show similar behaviour at low temperatures (<300 K). They deviate positively from the linear combination of the end-member heat capacities between ∼30 and 160 K. However, small differences between the two samples exist, as the disordered sample has a larger heat capacity producing a vibrational entropy of disordering of ∼0.05 R. At temperatures higher than 300 K, the heat capacity of the ordered sample shows a prominent lambda-type anomaly at 675 K due to the diffusive L12–fcc phase transition. When starting these measurements with disordered samples, ordering effects are observed between 400 and 620 K, and the disordering reaction is observed at 660 K. Evaluation of the data gives an enthalpy and entropy of disordering at 683 K of 2.0 kJ mol−1 and 0.39 R, respectively. However, these values increase with increasing temperature, thereby reducing the short-range order. Because the vibrational and configurational disordering effects become active at different temperature regimes, i.e., the vibrational effects at low temperatures (T ≪ 300 K) and the sum of both effects at higher temperatures (T > 300 K), they have been successfully separated. PMID:26019405

  3. Adjustable coordination of a hybrid phosphine-phosphine oxide ligand in luminescent Cu, Ag and Au complexes.

    PubMed

    Dau, Thuy Minh; Asamoah, Benjamin Darko; Belyaev, Andrey; Chakkaradhari, Gomathy; Hirva, Pipsa; Jänis, Janne; Grachova, Elena V; Tunik, Sergey P; Koshevoy, Igor O

    2016-09-28

    A potentially tridentate hemilabile ligand, PPh2-C6H4-PPh(O)-C6H4-PPh2 (P(3)O), has been used for the construction of a family of bimetallic complexes [MM'(P(3)O)2](2+) (M = M' = Cu (1), Ag (2), Au (3); M = Au, M' = Cu (4)) and their mononuclear halide congeners M(P(3)O)Hal (M = Cu (5-7), Ag (8-10)). Compounds 1-10 have been characterized in the solid state by single-crystal X-ray diffraction analysis to reveal a variable coordination mode of the phosphine-oxide group of the P(3)O ligand depending on the preferable number of coordination vacancies on the metal center. According to the theoretical studies, the interaction of the hard donor P[double bond, length as m-dash]O moiety with d(10) ions becomes less effective in the order Cu > Ag > Au. 1-10 exhibit room temperature luminescence in the solid state, and the intensity and energy of emission are mostly determined by the nature of metal atoms. The photophysical characteristics of the monometallic species were compared with those of the related compounds M(P(3))Hal (11-16) with the non-oxidized ligand P(3). It was found that in the case of the copper complexes 5-7 the P(3)O hybrid ligand introduces effective non-radiative pathways of the excited state relaxation leading to poor emission, while for the silver luminophores the P[double bond, length as m-dash]O group leads mainly to the modulation of luminescence wavelength. PMID:27530362

  4. Dissolution of Precipitates During Solution Treatment of Al-Mg-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xukai; Guo, Mingxing; Zhang, Jishan; Zhuang, Linzhong

    2016-02-01

    A model combining classical diffusion-controlled dissolution equation for a single spherical particle and Johnson-Mehl-Avrami-like equation is used to deal with dissolution process for different kinds of precipitations (Si, Mg2Si, Q(Al1.9Mg4.1Si3.3Cu)) in Al-Mg-Si-Cu alloys. The results reveal that the dissolution time of precipitates increases with increasing their sizes and solute concentrations in the alloy matrix; for the same size and concentration, their dissolution times follow Si > Q(Al1.9Mg4.1Si3.3Cu) > Mg2Si. Two precipitates (Mg2Si and Al1.9Mg4.1Si3.3Cu) with a size of about 700 nm were obtained in a cold rolled Al-Mg-Si-Cu-Zn alloy, and the complete dissolution time is about 15 seconds, which is basically the same as the calculated time by the developed model. The theoretical prediction of dissolution time can be greatly used to design solution treatment and thermomechanical processing parameters of Al-Mg-Si-Cu alloys.

  5. First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon.

    PubMed

    Bercx, Marnik; Sarmadian, Nasrin; Saniz, Rolando; Partoens, Bart; Lamoen, Dirk

    2016-07-27

    Chalcopyrite semiconductors are of considerable interest for application as absorber layers in thin-film photovoltaic cells. When growing films of these compounds, however, they are often found to contain CuAu-like domains, a metastable phase of chalcopyrite. It has been reported that for CuInS2, the presence of the CuAu-like phase improves the short circuit current of the chalcopyrite-based photovoltaic cell. We investigate the thermodynamic stability of both phases for a selected list of I-III-VI2 materials using a first-principles density functional theory approach. For the CuIn-VI2 compounds, the difference in formation energy between the chalcopyrite and CuAu-like phase is found to be close to 2 meV per atom, indicating a high likelihood of the presence of CuAu-like domains. Next, we calculate the spectroscopic limited maximum efficiency (SLME) of the CuAu-like phase and compare the results with those of the corresponding chalcopyrite phase. We identify several candidates with a high efficiency, such as CuAu-like CuInS2, for which we obtain an SLME of 29% at a thickness of 500 nm. We observe that the SLME can have values above the Shockley-Queisser (SQ) limit, and show that this can occur because the SQ limit assumes the absorptivity to be a step function, thus overestimating the radiative recombination in the detailed balance approach. This means that it is possible to find higher theoretical efficiencies within this framework simply by calculating the J-V characteristic with an absorption spectrum. Finally, we expand our SLME analysis to indirect band gap absorbers by studying silicon, and find that the SLME quickly overestimates the reverse saturation current of indirect band gap materials, drastically lowering their calculated efficiency. PMID:27405243

  6. Thermal expansion of a Au-Al-Yb intermediate valence quasicrystal

    NASA Astrophysics Data System (ADS)

    Watanuki, T.; Kashimoto, S.; Ishimasa, T.; Machida, A.; Yamamoto, S.; Tanaka, Y.; Mizumaki, M.; Kawamura, N.; Watanabe, S.

    2015-06-01

    The thermal expansion of a Au-Al-Yb intermediate-valence quasicrystal has been studied. X-ray diffraction measurements showed zero thermal expansion below 50 K. By comparison with an isostructural Au-Al-Tm quasicrystal, the contribution of the Yb valence variation was extracted, and it was shown that its negative thermal expansion component compensated for the positive thermal expansion of the original lattice. On cooling, the Yb contribution grew steeply below approximately 155 K down to the lowest experimental temperature of 5 K, due to enlargement of the Yb atomic radius, which was caused by the valence shift toward the divalent state. Additionally, a larger Yb contribution to the thermal expansion was demonstrated in a crystalline approximant to this quasicrystal. The magnitude of this contribution was approximately 1.4 times larger than in the case of the quasicrystal itself, resulting in a slight negative thermal expansion below 50 K. A heterogeneous valence model for the quasicrystal that we proposed previously accounts for this magnitude difference.

  7. Wetting of TiC by Al-Cu alloys and interfacial characterization.

    PubMed

    Contreras, A

    2007-07-01

    The wetting behavior and the interfacial reactions that occurred between molten Al-Cu alloys (1, 4, 8, 20, 33, and 100 wt% Cu) and solid TiC substrates were studied by the sessile drop technique in the temperature range of 800-1130 degrees C. The effect of wetting behavior on the interfacial reaction layer was studied. All the Al-Cu alloys react with TiC at the interface forming an extensive reaction layer. The interface thickness varied with the samples, and depends on the temperature, chemical composition of the alloy and the time of the test. Wetting increases with increasing concentration of copper in the Al-Cu alloy at 800 and 900 degrees C. In contrast, at higher temperature such as 1000 degrees C wetting decreases with increasing copper content. The spreading kinetics and the work of adhesion were evaluated. The high values of activation energies indicated that spreading is not a simple viscosity controlled phenomenon but is a chemical reaction process. The spreading of the aluminum drop is observed to occur according to the formation of Al4C3, CuAl2O4, CuAl2, TiCux mainly, leading to a decreases in the contact angle. As the contact angle decreases the work of adhesion increases with increasing temperature. Al-Cu/TiC assemblies showed cohesive fracture corresponding to a strong interface. However, using pure Cu the adhesion work is poor, and the percentage of cohesion work is also too low (27-34%). PMID:17359993

  8. New insights into the mixing of gold and copper in a nanoparticle from a structural study of Au-Cu nanoalloys synthesized via a wet chemistry method and pulsed laser deposition.

    PubMed

    Prunier, Hélène; Nelayah, Jaysen; Ricolleau, Christian; Wang, Guillaume; Nowak, Sophie; Lamic-Humblot, Anne-Félicie; Alloyeau, Damien

    2015-11-14

    Gold-copper nanoparticles (Au-Cu NPs) were elaborated by both chemical (polyol reduction method) and physical (laser deposition) routes. The size, composition and crystal structure of these bimetallic nanoalloys were then characterized by aberration corrected transmission electron microscopy (TEM). Using a one-pot polyol method, Au-Cu nanocubes (NCs) with nominal compositions Au3Cu and AuCu3 were synthesized. The size and composition of the NCs were tuned by varying the amount and the ratio of Au(iii) and Cu(ii) ions used as metallic precursors in the reaction. While the particle shape and size were well-controlled, single particle X-ray spectroscopy showed that, irrespective of the targeted compositions, the Cu content in all NCs was about 11-12 at%, i.e. in both samples, the real composition was different from the nominal one. This was ascribed to an incomplete alloying of the two constituent metals of the alloy in the cubes due to different reduction kinetics of the two metallic precursors. To shed light on the alloying of gold and copper at the nanoscale, Au-Cu NPs with targeted compositions Au3Cu and AuCu3 were deposited on amorphous carbon by laser ablation of two monometallic sources, and their structural properties were studied by TEM. These studies show that Au-Cu nanoalloys were synthesized in both samples and that the complete mixing of Au and Cu atoms achieved with this synthesis technique led to the production of Au-Cu NPs with well-controlled compositions. These results constitute a first but major step towards a complete understanding of the details of kinetics and thermodynamics determining the mixing of gold and copper atoms at the nanoscale. Such an understanding is essential for producing Au-Cu bimetallic nanoalloys with well-defined structural properties via wet chemical synthesis. PMID:25987257

  9. Quantification of microsegregation during rapid solidification of Al-Cu powders

    NASA Astrophysics Data System (ADS)

    Prasad, Arvind; Nenein, Hani; Conlon, Kelly

    2006-05-01

    A new technique is introduced to quantify microsegregation during rapid solidification. The quantification involves calculation of the average solute solubility in the primary phase during solidification of an Al-Cu binary alloy. The calculation is based on using volume percent eutectic and weight percent of second phase (in the eutectic), which were obtained experimentally. Neutron diffraction experiments and stereology calculation on scanning electron microscope images were done on impulse atomized Al-Cu alloys of three compositions (nominal), 5 wt pct Cu, 10 wt pct Cu, and 17 wt pct Cu, atomized under N2 and He gas. Neutron diffraction experiments yielded weight percent CuAl2 data and stereology yielded volume percent eutectic data. These two data were first used to determine the weight percent eutectic. Using the weight percent eutectic and weight percent CuAl2 in mass and volume balance equations, the average solute solubility in the primary phase could be calculated. The experimental results of the amount of eutectic, tomography results from previous work, and results from the calculations suggest that the atomized droplets are in metastable state during the nucleation undercooling of the primary phase, and the effect of metastability propagates through to the eutectic formation stage. The metastable effect is more pronounced in alloys with higher solute composition.

  10. Fluid Inclusion characteristics of syn-late orogenic Co-Ni-Cu-Au deposits in the Siegerland District of the Rhenish Massif, Germany

    NASA Astrophysics Data System (ADS)

    Wohlgemuth, Christoph; Hellmann, André; Meyer, Franz Michael

    2013-04-01

    The Siegerland District is located in the fold-and-thrust-belt of the Rhenish Massif and hosts various syn- late orogenic vein-hosted hydrothermal mineralization types. Peak-metamorphism and deformation occurred at 312-316 ± 10 Ma (Ahrendt et al., 1978) at pT-conditions of 280 - 320 °C and 0.7 - 1.4 kbar (Hein, 1993). The district is known for synorogenic siderite-quartz mineralization formed during peak-metamorphic conditions. At least 4 syn-late orogenic mineralization types are distinguished: Co-Ni-Cu-Au, Pb-Zn-Cu, Sb-Au and hematite-digenite-bornite mineralization (Hellmann et al., 2012b). Co-Ni-Cu-Au mineralization of the Siegerland District belongs to the recently defined class of metasediment hosted synorogenic Co-Cu-Au deposits (i.e. Slack et al, 2010). Ore minerals are Fe-Co-Ni sulpharsenides, bearing invisible gold, chalcopyrite, and minor As-bearing pyrite. The gangue is quartz. The alteration mineralogy comprises chlorite, illite-muscovite and quartz. The epigenetic quartz veins are closely related to the formation of reverse faults (Hellmann et al., 2011a). Microthermometric studies of fluid inclusions concerning the relationship between mineralization and microstructures have not been done so far for this deposit-class and this will be addressed here. Fluid inclusions are investigated in hydrothermally formed vein-quartz, selected from Co-Ni-Cu-Au mineralization bearing veins showing only minor overprints by later mineralization types. Two quartz generations are distinguished: subhedral quartz-I showing growth zonation and fine grained, recrystallized- and newly formed quartz-II grains forming irregular masses and fracture fillings in quartz-I. Co-Ni-Fe sulpharsenides and chalcopyrite are closely intergrown with quartz-II, implying their contemperaneous formation. However, fluid inclusions in quartz-II are often small, therefore fluid inclusions in quartz-I have been mostly investigated. In total, 180 inclusions from 4 different deposits have been

  11. An analytical electron microscopic investigation of precipitation in an Al-Cu-Zn-Mg-Ag alloy.

    PubMed

    Hasan, F; Lorimer, G W

    1993-03-01

    The distribution, morphology, chemistry, and crystallography of the precipitates formed during aging of an Al-Cu-Zn-Mg-Ag alloy have been studied using analytical transmission electron microscopy. The first precipitates to appear during aging at 150 degrees C were thin hexagonal-shaped plate-like precipitates which formed on the (111)Al planes. These precipitates had a face-centred orthorhombic crystal structure and their composition was essentially CuAl2 although they contained a trace of silver. At peak hardness the microstructure consisted of the plate-like precipitates on (111)Al planes and theta' precipitates on (100)Al planes. Overaging resulted in the precipitation of equilibrium theta, CuAl2, which exhibited a lath morphology and an orientation-relationship with the matrix (210)Al magnitude of (110)gamma; (001)Al misoriented from (001)gamma by approximately 6 degrees. Prolonged overaging at 250 degrees C resulted in the formation of cuboid-shaped Al5(Cu,Zn)6Mg2 precipitates which had a cubic crystal structure and a cube:cube orientation-relationship with the matrix. PMID:8513176

  12. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  13. Coercivity enhancement in Mn-Al-Cu flakes produced by surfactant-assisted milling

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Hsu, Jen-Hwa; Vinod, V. T. P.; Černík, Miroslav; Kamat, S. V.

    2015-11-01

    We herein report the achievement of exceptionally high coercivity (Hc) values: 9.92 and 5.86 kOe at 5 and 300 K, respectively, for Mn55Al43Cu2 flakes produced by surfactant-assisted milling process without employing any heat-treatment. The use of surfactants such as oleic acid and oleylamine during milling yielded high-aspect ratio flakes for the Mn-Al-Cu alloy. Structural studies confirmed the presence of τ- and β-phases as the major constituents in the Mn-Al-Cu flakes. The observed Hc enhancement is due to the increase in anisotropy field and structural defects, which is hypothesized to originate from the domain-wall pinning as a consequence of precipitation of fine Cu-particles present at the grain boundaries.

  14. Hollow Au-Cu2O Core-Shell Nanoparticles with Geometry-Dependent Optical Properties as Efficient Plasmonic Photocatalysts under Visible Light.

    PubMed

    Lu, Biao; Liu, Aiping; Wu, Huaping; Shen, Qiuping; Zhao, Tingyu; Wang, Jianshan

    2016-03-29

    Hollow Au-Cu2O core-shell nanoparticles were synthesized by using hollow gold nanoparticles (HGNs) as the plasmon-tailorable cores to direct epitaxial growth of Cu2O nanoshells. The effective geometry control of hollow Au-Cu2O core-shell nanoparticles was achieved through adjusting the HGN core sizes, Cu2O shell thicknesses, and morphologies related to structure-directing agents. The morphology-dependent plasmonic band red-shifts across the visible and near-infrared spectral regions were observed from experimental extinction spectra and theoretical simulation based on the finite-difference time-domain method. Moreover, the hollow Au-Cu2O core-shell nanoparticles with synergistic optical properties exhibited higher photocatalytic performance in the photodegradation of methyl orange when compared to pristine Cu2O and solid Au-Cu2O core-shell nanoparticles under visible-light irradiation due to the efficient photoinduced charge separation, which could mainly be attributed to the Schottky barrier and plasmon-induced resonant energy transfer. Such optical tunability achieved through the hollow cores and structure-directed shells is of benefit to the performance optimization of metal-semiconductor nanoparticles for photonic, electronic, and photocatalytic applications. PMID:26954100

  15. Microwave Dielectric Resonance and Negative Permittivity Behavior in Al2O3-CuO-Cu Nanocomposites

    NASA Astrophysics Data System (ADS)

    Calame, Jeffrey; Battat, Jacob

    2006-03-01

    The frequency-dependent microwave (0.1-18 GHz) complex permittivity of nanocomposites based on the Al2O3/CuO/Cu system is investigated. The composites are formed by solution infusion of copper precursors into a porous Al2O3 matrix, followed by thermal decomposition to copper oxides and localized formation of CuAl2O4 spinels, and finally partial reduction by H2 firing. The final material has a complicated microstructure and exhibits strong amplitude, relatively narrowband dielectric resonance in the microwave regime at intermediate concentrations (˜15-18% by volume) of Cu. The resonances are superficially similar in structure to plasmon and Reststrahlen resonances typically seen in conductors at far-infrared to optical frequencies, but occurring at much lower frequencies in the composites. This is in contrast to the usual broadband induced-polarization dielectric relaxations observed in standard composites. Large concentrations of copper cause negative permittivity behavior below 6 GHz. Permittivity data, SEM micrographs, and possible explanations will be presented.

  16. Dextrin-mediated synthesis of Ag NPs for colorimetric assays of Cu(2+) ion and Au NPs for catalytic activity.

    PubMed

    Bankura, Kalipada; Rana, Dipak; Mollick, Md Masud Rahaman; Pattanayak, Sutanuka; Bhowmick, Biplab; Saha, Nayan Ranjan; Roy, Indranil; Midya, Tarapada; Barman, Gadadhar; Chattopadhyay, Dipankar

    2015-09-01

    A facile one-pot approach for rapid synthesis of silver and gold nanoparticles (Ag NPs and Au NPs) with narrow size distribution and good stability was described by reducing silver nitrate and chloroauric acid with polysaccharide dextrin. Here, dextrin was used as both a reducing and stabilizing agent for synthesis of NPs. The as-synthesized Ag NPs and Au NPs were characterized by UV-visible absorption spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD). The Ag NPs and Au NPs exhibited an absorption maxima at 404 and 547 nm respectively. TEM images showed NPs in the range of 8-28 nm. The crystallinity of the NPs was measured by XRD analysis. Furthermore, the as-prepared Ag NPs revealed colorimetric sensor property for detection of Cu(2+) ions based on changes in absorbance resulting from metal ion-induced aggregation of NPs or direct deposition of metal ions onto NPs. The as-prepared Au NPs exhibited a notable catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4. PMID:26143120

  17. RE(AuAl2)nAl2(AuxSi1-x)2: a new homologous series of quaternary intermetallics grown from aluminum flux.

    PubMed

    Latturner, Susan E; Kanatzidis, Mercouri G

    2008-03-17

    The combination of early rare earth metals (La- to Gd and Yb), gold, and silicon in molten aluminum results in the formation of intermetallic compounds with four related structures, forming a new homologous series: RE[AuAl2]nAl2(AuxSi(1-x))2, with x approximately 0.5 for most of the compound and n = 0, 1, 2, and 3. Because of the highly reducing nature of the Al flux, rare earth oxides instead of metals can also be used in these reactions. These compounds grow as large plate-like crystals and have tetragonal structure types that can be viewed as intergrowths of the BaAl4 structure and antifluorite-type AuAl2 layers. REAuAl2Si materials form with the BaAl4 structure type in space group I4/mmm (cell parameters for the La analogue are a = 4.322(2) A, c = 10.750(4) A, and Z = 2). REAu2Al4Si forms in a new ordered superstructure of the KCu4S3 structure type, with space group P4/nmm and cell parameters of the La analogue of a = 6.0973(6) A, c = 8.206(1) A, and Z = 2. REAu3Al6Si forms in a new I4/mmm symmetry structure type with cell parameters of a = 4.2733(7) A, c = 22.582(5) A, and Z = 2 for RE = Eu. The end member of the series, REAu4Al8Si, forms in space group P4/mmm with cell parameters for the Yb analogue of a = 4.2294(4) A, c = 14.422(2) A, and Z = 1. New intergrowth structures containing two different kinds of AuAl2 layers were also observed. The magnetic behavior of all these compounds is derived from the RE ions. Comparison of the susceptibility data for the europium compounds indicates a switch from 3-D magnetic interactions to 2-D interactions as the size of the AuAl2 layer increases. The Yb ions in YbAu(2.91)Al(6)Si(1.09) and YbAu(3.86)Al(8)Si(1.14) are divalent at high temperatures. PMID:18198865

  18. Formation of nanostructured porous Cu-Au surfaces: the influence of cationic sites on (electro)-catalysis

    NASA Astrophysics Data System (ADS)

    Najdovski, Ilija; Selvakannan, Pr.; Bhargava, Suresh K.; O'Mullane, Anthony P.

    2012-09-01

    The fabrication of nanostructured bimetallic materials through electrochemical routes offers the ability to control the composition and shape of the final material that can then be effectively applied as (electro)-catalysts. In this work a clean and transitory hydrogen bubble templating method is employed to generate porous Cu-Au materials with a highly anisotropic nanostructured interior. Significantly, the co-electrodeposition of copper and gold promotes the formation of a mixed bimetallic oxide surface which does not occur at the individually electrodeposited materials. Interestingly, the surface is dominated by Au(i) oxide species incorporated within a Cu2O matrix which is extremely effective for the industrially important (electro)-catalytic reduction of 4-nitrophenol. It is proposed that an aurophilic type of interaction takes place between both oxidized gold and copper species which stabilizes the surface against further oxidation and facilitates the binding of 4-nitrophenol to the surface and increases the rate of reaction. An added benefit is that very low gold loadings are required typically less than 2 wt% for a significant enhancement in performance to be observed. Therefore the ability to create a partially oxidized Cu-Au surface through a facile electrochemical route that uses a clean template consisting of only hydrogen bubbles should be of benefit for many more important reactions.The fabrication of nanostructured bimetallic materials through electrochemical routes offers the ability to control the composition and shape of the final material that can then be effectively applied as (electro)-catalysts. In this work a clean and transitory hydrogen bubble templating method is employed to generate porous Cu-Au materials with a highly anisotropic nanostructured interior. Significantly, the co-electrodeposition of copper and gold promotes the formation of a mixed bimetallic oxide surface which does not occur at the individually electrodeposited materials

  19. Surface segregation at the binary alloy CuAu (100) studied by low-energy ion scattering

    NASA Astrophysics Data System (ADS)

    Beikler, Robert; Taglauer, Edmund

    2016-01-01

    We present results from an experimental study of segregation at the CuAu (100) surface. It is shown that Au enrichment in the top surface layer persists up to temperatures far beyond the bulk order-disorder transition temperature. From the gradual desegregation at higher temperatures a segregation energy of - 0.30 eV was determined. Our results are in quantitative agreement with calculations by Tersoff predicting oscillatory concentration depth profiles with decreasing amplitudes at higher temperatures. For the layer selective surface analysis we used low-energy He+ and Na+ scattering. Data interpretation and quantification were supported by numerical simulations with the MARLOWE code to which we had added the special features of trajectory resolved analysis and anisotropic thermal vibrations of surface atoms.

  20. Characterization of CuAlO2 Thin Films Prepared on Sapphire Substrates by Reactive Sputtering and Annealing

    NASA Astrophysics Data System (ADS)

    Tsuboi, Nozomu; Moriya, Tomohiro; Kobayashi, Satoshi; Shimizu, Hidehiko; Kato, Keizo; Kaneko, Futao

    2008-01-01

    As-deposited films were prepared on sapphire substrates at 500-680 °C by alternately sputtering Cu and Al targets in Ar-diluted O2 gas atmosphere. The composition of the as-deposited films corresponded to that of the slightly oxygen-rich region of the CuO-CuAl2O4-Al2O3 system. The films as-deposited at 500 °C had an amorphous structure, while the films as-deposited at 680 °C had CuAl2O4 phase but no CuAlO2 phase. Annealing at 1050 °C in nitrogen flow caused a reduction in the molar fraction of oxygen, i.e., the composition of the annealed films with [Cu]/[Al] ≈1 corresponded to CuAlO2. The annealed films were predominated by the CuAlO2 phase. The preferential orientation of the films toward the c-axis normal to the substrate surface is due to the small lattice mismatch between the rhombohedral [010] of delafossite-type CuAlO2 and the hexagonal [1100] of the sapphire substrate. The annealed films had an absorption edge corresponding to the energy gap of CuAlO2 and exhibited p-type conductivity.

  1. A new type of Cu-Al-Ta shape memory alloy with high martensitic transformation temperature

    NASA Astrophysics Data System (ADS)

    Wang, C. P.; Su, Y.; Y Yang, S.; Shi, Z.; Liu, X. J.

    2014-02-01

    In this study, a new type of Cu-Al-Ta (Cu86Al12Ta2 wt%) shape memory alloy with high martensitic transformation temperature is explored. The microstructure, reversible martensitic transformation and shape memory properties are investigated by means of optical microscopy, back-scattered electron, electron probe microanalysis, x-ray diffraction, differential scanning calorimetry and tensile tests. It is proposed that Cu86Al12Ta2 alloy consists of a mixture of primarily {\\beta }_{1}^{\\prime} martensite and a little {\\gamma }_{1}^{\\prime} martensite and some different precipitates. The tiny thin-striped Ta2(Al,Cu)3 precipitate is predominant in the as-quenched condition, whereas the particle-shaped Cu(Al, Ta) precipitate is dominant after hot-rolling. Additionally, the dendritic-shaped γ1(Cu9Al4) phase begins to appear after hot-rolling, but it disappears when the sample is re-quenched. All studied samples have reversible martensitic transformation temperatures higher than 450 ° C. The results show that two-step martensitic transformation behavior is observed for Cu86Al12Ta2 alloy in all three different conditions due to the transformations between ({\\beta }_{1}^{\\prime}+{\\gamma }_{1}^{\\prime}) martensites and the austenite parent phase. The results further show that the recovery ratios are almost 100% when the pre-strains are ≤2.5%, then they gradually decrease with further increase of the pre-strains. The shape memory effects clearly increase as a result of increase of the pre-strains, up to a maximum value of 3.2%.

  2. Microstructural Observations in a Cast Al-Si-Cu/TiC Composite

    NASA Astrophysics Data System (ADS)

    Karantzalis, A. E.; Lekatou, A.; Georgatis, E.; Poulas, V.; Mavros, H.

    2010-06-01

    A 3-5 vol.% TiC particulate Al-Si-Cu composite was prepared by diluting Al/20 vol.% TiC composite in an Al-7Si-4Cu alloy matrix. TiC particle distribution consists of isolated and clustered particles which are both located at the primary-α grain boundaries and at the areas of the last solidified liquid. Particle pushing by the solidification front is responsible for the final particle location. The solidified microstructure consists of primary and intermetallic phases formed by a sequence of possible eutectic reactions. No evidence of TiC particle degradation was observed.

  3. Junction parameters and characterization of Au/n-Ge15In5Se80/p-Si/Al heterojunction

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, M. H.; El-Shazly, E. A. A.; Zedan, I. T.

    2016-08-01

    The analysis of the electrical properties of Au/n-Ge15In5Se80/p-Si/Al heterojunction is examined. I- V characteristics show diode-like behavior. The series resistance is found to decrease with increasing the temperature in three different methods of calculations. The thermionic emission mechanism is found to be the operating mechanism at relatively low forward voltages ( V < 0.25). While, at relatively high forward voltage, the space charge limited conduction is the operating mechanism. The rectification ratio, ideality factor, barrier height, total trap concentration and built-in voltage are determined. The capacitance-voltage ( C- V) characteristics of Au/n-Ge15In5Se80/p-Si/Al heterojunction are also investigated. The I- V curve of the Au/n-Ge15In5Se80/p-Si/Al heterojunction in the dark and after illumination is clarified.

  4. Brazeability of a 3003 Aluminum alloy with Al-Si-Cu-based filler metals

    NASA Astrophysics Data System (ADS)

    Tsao, L. C.; Weng, W. P.; Cheng, M. D.; Tsao, C. W.; Chuang, T. H.

    2002-08-01

    Al-Si-Cu-based filler metals have been used successfully for brazing 6061 aluminum alloy as reported in the authors’ previous studies. For application in heat exchangers during manufacturing, the brazeability of 3003 aluminum alloy with these filler metals is herein further evaluated. Experimental results show that even at such a low temperature as 550 °C, the 3003 alloys can be brazed with the Al-Si-Cu fillers and display bonding strengths that are higher than 77 MPa as well. An optimized 3003 joint is attained in the brazements with the innovative Al-7Si-20Cu-2Sn-1Mg filler metal at 575 °C for 30 min, which reveals a bonding strength capping the 3003 Al matrix.

  5. Dirac and Weyl Semimetal in XYBi (X = Ba, Eu; Y = Cu, Ag and Au)

    PubMed Central

    Du, Yongping; Wan, Bo; Wang, Di; Sheng, Li; Duan, Chun-Gang; Wan, Xiangang

    2015-01-01

    Weyl and Dirac semimetals recently stimulate intense research activities due to their novel properties. Combining first-principles calculations and effective model analysis, we predict that nonmagnetic compounds BaYBi (Y = Au, Ag and Cu) are Dirac semimetals. As for the magnetic compound EuYBi, although the time reversal symmetry is broken, their long-range magnetic ordering cannot split the Dirac point into pairs of Weyl points. However, we propose that partially substitute Eu ions by Ba ions will realize the Weyl semimetal. PMID:26399742

  6. Assessment of Post-eutectic Reactions in Multicomponent Al-Si Foundry Alloys Containing Cu, Mg, and Fe

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2015-07-01

    Post-eutectic reactions occurring in Al-Si hypoeutectic alloys containing different proportions of Cu, Mg, and Fe were thoroughly investigated in the current study. As-cast microstructures were initially studied by optical and electron microscopy to investigate the microconstituents of each alloy. Differential scanning calorimetry (DSC) was then used to examine the phase transformations occurring during the heating and cooling processes. Thermodynamic calculations were carried out to assess the phase formation under equilibrium and in nonequilibrium conditions. The Q-Al5Cu2Mg8Si6 phase was predicted to precipitate from the liquid phase, either at the same temperature or earlier than the θ-Al2Cu phase depending on the Cu content of the alloy. The AlCuFe-intermetallic, which was hardly observed in the as-cast microstructure, significantly increased after the solution heat treatment in the alloys containing high Cu and Fe contents following a solid-state transformation of the β-Al5FeSi phase. After the solution heat treatment, the AlCuFe-intermetallics were mostly identified with the stoichiometry of the Al7Cu2Fe phase. Thermodynamic calculations and microstructure analysis helped in determining the DSC peak corresponding to the melting temperature of the N-Al7Cu2Fe phase. The effect of Cu content on the formation temperature of π-Al8Mg3FeSi6 is also discussed.

  7. Elementary surface chemistry during CuO/Al nanolaminate-thermite synthesis: copper and oxygen deposition on aluminum (111) surfaces.

    PubMed

    Lanthony, Cloé; Guiltat, Mathilde; Ducéré, Jean Marie; Verdier, Agnes; Hémeryck, Anne; Djafari-Rouhani, Mehdi; Rossi, Carole; Chabal, Yves J; Estève, Alain

    2014-09-10

    The surface chemistry associated with the synthesis of energetic nanolaminates controls the formation of the critical interfacial layers that dominate the performances of nanothermites. For instance, the interaction of Al with CuO films or CuO with Al films needs to be understood to optimize Al/CuO nanolaminates. To that end, the chemical mechanisms occurring during early stages of molecular CuO adsorption onto crystalline Al(111) surfaces are investigated using density functional theory (DFT) calculations, leading to the systematic determination of their reaction enthalpies and associated activation energies. We show that CuO undergoes dissociative chemisorption on Al(111) surfaces, whereby the Cu and O atoms tend to separate from each other. Both Cu and O atoms form islands with different properties. Copper islanding fosters Cu insertion (via surface site exchange mechanism) into the subsurface, while oxygen islands remain stable at the surface. Above a critical local oxygen coverage, aluminum atoms are extracted from the Al surface, leading to oxygen-aluminum intermixing and the formation of aluminum oxide (γ-alumina). For Cu and O co-deposition, copper promotes oxygen-aluminum interaction by oxygen segregation and separates the resulting oxide from the Al substrate by insertion into Al and stabilization below the oxide front, preventing full mixing of Al, Cu, and O species. PMID:25089744

  8. Investigation of Au9+ swift heavy ion irradiation on CdS/CuInSe2 thin films

    NASA Astrophysics Data System (ADS)

    Joshi, Rajesh A.; Taur, Vidya S.; Singh, Fouran; Sharma, Ramphal

    2013-10-01

    In the present manuscript we report about the preparation of CdS/CuInSe2 heterojunction thin films by chemical ion exchange method and investigation of 120 MeV Au9+ swift heavy ions (SHI) irradiation effect on its physicochemical as well as optoelectronic properties. These pristine (as grown) samples are irradiated with 120 MeV Au9+ SHI of 5×1011 and 5×1012 ions/cm2 fluencies and later on characterized for structural, compositional, morphological, optical and I-V characteristics. X-ray diffraction (XRD) pattern obtained from pristine and irradiated films shows considerable modifications in peak intensity as well as rising of some new peaks, corresponding to In2Se3, Cu3Se2 and CuIn2Se3 materials. Transmission electron microscope (TEM) images show decrease in grain size upon increase in irradiation ion fluencies, which is also supported from the observation of random and uneven distribution of nano-grains as confirmed through scanning electron microscope (SEM) images. Presence of Cd, Cu, In, S and Se in energy dispersive X-ray spectrum analysis (EDAX) confirms the expected and observed elemental composition in thin films, the absorbance peaks are related to band to band transitions and spin orbit splitting while energy band gap is observed to increase from 1.36 for pristine to 1.53 eV for SHI irradiated thin films and I-V characteristics under illumination to 100 mW/cm2 light source shows enhancement in conversion efficiency from 0.26 to 1.59% upon irradiation.

  9. Synthesis, Structure, and Physical Properties of Ln(Cu,Al,Ga)13-x (Ln = La-Pr, and Eu) and Eu(Cu,Al)13-x

    SciTech Connect

    Phelan, W Adam; Kangas, Michael J; McCandless, Gregory T; Drake, Brenton L; Haldolaarachchige, Neel; Zhao, Liang L; Wang, Jiakui K; Wang, Xiaoping P; Young, David P; Morosan, Emilia; Hoffmann, Christina; Chan, Julia Y

    2012-09-10

    Ln(Cu,Al,Ga)13–x (Ln = La–Pr, and Eu; x ~ 0.2) were synthesized by a combined Al/Ga flux. Single crystal X-ray and neutron diffraction experiments revealed that these compounds crystallize in the NaZn13 structure-type (space group Fm3⁻c) with lattice parameters of a ~ 12 Å, V ~ 1600 Å, and Z ~ 8. Our final neutron models led us to conclude that Cu is occupationally disordered on the 8b Wyckoff site while Cu, Al, and Ga are substitutionally disordered on the 96i Wyckoff site of this well-known structure-type. The magnetic susceptibility data show that Ce(Cu,Al,Ga)13–x and Pr(Cu,Al,Ga)13–x exhibit paramagnetic behavior down to the lowest temperatures measured while Eu(Cu,Al,Ga)13–x displays ferromagnetic behavior below 6 K. Eu(Cu,Al)13–x was prepared via arc-melting and orders ferromagnetically below 8 K. The magnetocaloric properties of Eu(Cu,Al,Ga)13–x and Eu(Cu,Al)13–x were measured and compared. Additionally, an enhanced value of the Sommerfeld coefficient (γ = 356 mJ/mol-K2) was determined for Pr(Cu,Al,Ga)13–x. Herein, we present the synthesis, structural refinement details, and physical properties of Ln(Cu,Al,Ga)13–x (Ln = La–Pr, and Eu) and Eu(Cu,Al)13–x.

  10. K*{sup 0} production in Cu + Cu and Au + Au collisions at {radical}(s{sub NN})=62.4 GeV and 200 GeV

    SciTech Connect

    Aggarwal, M. M.; Bhati, A. K.; Pruthi, N. K.; Ahammed, Z.; Dong, X.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Masui, H.; Matis, H. S.; Odyniec, G.; Olson, D.; Ploskon, M. A.; Poskanzer, A. M.; Powell, C. B.; Ritter, H. G.; Rose, A.

    2011-09-15

    We report on K*{sup 0} production at midrapidity in Au + Au and Cu + Cu collisions at {radical}(s{sub NN})=62.4 and 200 GeV collected by the Solenoid Tracker at the Relativistic Heavy Ion Collider detector. The K*{sup 0} is reconstructed via the hadronic decays K*{sup 0}{yields}K{sup +}{pi}{sup -} and K*{sup 0}{yields}K{sup -}{pi}{sup +}. Transverse momentum, p{sub T}, spectra are measured over a range of p{sub T} extending from 0.2 GeV/c up to 5 GeV/c. The center-of-mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, , are presented. The measured N(K*{sup 0})/N(K) and N({phi})/N(K*{sup 0}) ratios favor the dominance of rescattering of decay daughters of K*{sup 0} over the hadronic regeneration for the K*{sup 0} production. In the intermediate p{sub T} region (2.0

  11. Adhesion strength and nucleation thermodynamics of four metals (Al, Cu, Ti, Zr) on AlN substrates

    NASA Astrophysics Data System (ADS)

    Tao, Yuan; Ke, Genshui; Xie, Yan; Chen, Yigang; Shi, Siqi; Guo, Haibo

    2015-12-01

    Devices based on AlN generally require adherent and strong interfaces between AlN and other materials, whereas most metals are known to be nonwetting to AlN and form relatively weak interfaces with AlN. In this study, we selected four representative metals (Al, Cu, Ti, and Zr) to study the adhesion strength of the AlN/metal interfaces. Mathematical models were constructed between the adhesion strength and enthalpy of formation of Al-metal solid solutions, the surface energies of the metals, and the lattice mismatch between the metals and AlN, based on thermodynamic parameters calculated using density functional theory. It appears that the adhesion strength is mainly determined by the lattice mismatch, and is in no linear correlation with either the Al-metal solution's formation enthalpies or the metals' surface energies. We also investigated the nucleation thermodynamics of the four metals on AlN substrates. It was found that Ti forms the strongest interface with AlN, and has the largest driving force for nucleation on AlN substrates among the four metals.

  12. CuAl{sub 2} revisited: Composition, crystal structure, chemical bonding, compressibility and Raman spectroscopy

    SciTech Connect

    Grin, Yuri . E-mail: grin@cpfs.mpg.de; Wagner, Frank R.; Armbruester, Marc; Kohout, Miroslav; Leithe-Jasper, Andreas; Schwarz, Ulrich; Wedig, Ulrich; Georg von Schnering, Hans

    2006-06-15

    The structure of CuAl{sub 2} is usually described as a framework of base condensed tetragonal antiprisms [CuAl{sub 8/4}]. The appropriate symmetry governed periodic nodal surface (PNS) divides the space of the structure into two labyrinths. All atoms are located in one labyrinth, whereas the second labyrinth seems to be 'empty'. The bonding of the CuAl{sub 2} structure was analyzed by the electron localization function (ELF), crystal orbital Hamiltonian population (COHP) analysis and Raman spectroscopy. From the ELF representation it is seen, that the 'empty' labyrinth is in fact the place of important covalent interactions. ELF, COHP in combination with high-pressure X-ray diffraction and Raman spectroscopy show that the CuAl{sub 2} structure is described best as a network built of interpenetrating graphite-like nets of three-bonded aluminum atoms with the copper atoms inside the tetragonal-antiprismatic cavities. - Graphical abstract: Atomic interactions in the crystal structure of the intermetallic compound CuAl{sub 2}: Three-bonded aluminum atoms form interpenetrating graphite-like nets. The copper atoms are located in the channels of aluminum network by means of three-center bonds. The bonding model is in agreement with the result of polarized Raman spectroscopy and high-pressure X-ray powder diffraction.

  13. CONSTITUTIVE BEHAVIOR OF AS-QUENCHED Al-Cu-Mn ALLOY

    NASA Astrophysics Data System (ADS)

    Yang, Xia-Wei; Zhu, Jing-Chuan; Nong, Zhi-Sheng; Ye, Mao; Lai, Zhong-Hong; Liu, Yong

    2013-07-01

    The hot flow stress of as-quenched Al-Cu-Mn alloy was modeled using the constitutive equations. The as-quenched Al-Cu-Mn alloy were treated with isothermal hot compression tests in the temperature range of 350-500°C, the strain rate range of 0.001-1 s-1. The hyperbolic sine equation was found to be appropriate for flow stress modeling and prediction. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched Al-Cu-Mn alloy was determined to be 251.314 kJ/mol. Parameters of constitutive equation of as-quenched Al-Cu-Mn alloy were calculated at different small strains (≤ 0.01). The calculated flow stresses from the constitutive equation are in good agreement with the experimental results. Therefore, this constitutive equation can be used as an accurate temperature-stress model to solve the problems of quench distortion of Al-Cu-Mn alloy parts.

  14. Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane

    NASA Astrophysics Data System (ADS)

    Taton, G.; Lagrange, D.; Conedera, V.; Renaud, L.; Rossi, C.

    2013-10-01

    We have developed a new nanothermite based polymeric electro-thermal initiator for non-contact ignition of a propellant. A reactive Al/CuO multilayer nanothermite resides on a 100 µm thick SU-8/PET (polyethyleneterephtalate) membrane to insulate the reactive layer from the silicon bulk substrate. When current is supplied to the initiator, the chemical reaction Al+CuO occurs and sparkles are spread to a distance of several millimeters. A micro-manufacturing process for fabricating the initiator is presented and the electrical behaviors of the ignition elements are also investigated. The characteristics of the initiator made on a 100 µm thick SU-8/PET membrane were compared to two bulk electro-thermal initiators: one on a silicon and one on a Pyrex substrate. The PET devices give 100% of Al/CuO ignition success for an electrical current >250 mA. Glass based reactive initiators give 100% of Al/CuO ignition success for an electrical current >500 mA. Reactive initiators directly on silicon cannot initiate even with a 4 A current. At low currents (<1 A), the initiation time is two orders of magnitude longer for Pyrex initiator compared to those obtained for PET initiator technology. We also observed that, the Al/CuO thermite film on PET membrane reacts within 1 ms (sparkles duration) whereas it reacts within 4 ms on Pyrex. The thermite reaction is 40 times greater in intensity using the PET substrate in comparison to Pyrex.

  15. Effect of sample size on intermetallic Al2Cu microstructure and orientation evolution during directional solidification

    NASA Astrophysics Data System (ADS)

    Gao, Ka; Li, Shuangming; Xu, Lei; Fu, Hengzhi

    2014-05-01

    Al-40% Cu hypereutectic alloy samples were successfully directionally solidified at a growth rate of 10 μm/s in different sizes (4 mm, 1.8 mm, and 0.45 mm thickness in transverse section). Using the serial sectioning technique, the three-dimensional (3D) microstructures of the primary intermetallic Al2Cu phase of the alloy can be observed with various growth patterns, L-shape, E-shape, and regular rectangular shape with respect to growth orientations of the (110) and (310) plane. The L-shape and regular rectangular shape of Al2Cu phase are bounded by {110} facets. When the sample size was reduced from 4 mm to 0.45 mm, the solidified microstructures changed from multi-layer dendrites to single-layer dendrite along the growth direction, and then the orientation texture was at the plane (310). The growth mechanism for the regular faceted intermetallic Al2Cu at different sample sizes was interpreted by the oriented attachment mechanism (OA). The experimental results showed that the directionally solidified Al-40% Cu alloy sample in a much smaller size can achieve a well-aligned morphology with a specific growth texture.

  16. Steering Fluorescence Emission with Metal-Dielectric-Metal Structures of Au, Ag and Al

    PubMed Central

    Dutta Choudhury, Sharmistha; Badugu, Ramachandram; Ray, Krishanu; Lakowicz, Joseph R.

    2014-01-01

    Directional control over fluorescence emission is important for improving the sensitivity of fluorescence based techniques. In recent years, plasmonic and photonic structures have shown great promise in shaping the spectral and spatial distribution of fluorescence, which otherwise is typically isotropic in nature and independent of the observation direction. In this work we have explored the potential of metal-dielectric-metal (MDM) structures composed of Au, Ag or Al in steering the fluorescence emission from various probes emitting in the NIR, Visible or UV/blue region. We show that depending on the optical properties of the metal and the thickness of the dielectric layer, the emission from randomly oriented fluorophores embedded within the MDM substrate is transformed into beaming emission normal to the substrate. Agreement of the observed angular emission patterns with reflectivity calculations reveals that the directional emission is due to the coupling of the fluorescence with the electromagnetic modes supported by the MDM structure. PMID:25126154

  17. High resolution electron microscopy study of a high Cu variant of Weldalite (tm) 049 and a high strength Al-Cu-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Herring, R. A.; Gayle, Frank W.; Pickens, Joseph R.

    1991-01-01

    Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy that is strengthened in artificially aged tempers primarily by very thin plate-like precipitates lying on the set of (111) matrix planes. This precipitate might be expected to be the T(sub 1) phase, Al2CuLi, which has been observed in Al-Cu-Li alloys. However, in several ways this precipitate is similar to the omega phase which also appears as the set of (111) planes plates and is found in Al-Cu-Ag-Mg alloys. The study was undertaken to identify the set of (111) planes precipitate or precipitates in Weldalite (trademark) 049 in the T8 (stretched and artificially aged) temper, and to determine whether T(sub 1), omega, or some other phase is primarily responsible for the high strength (i.e., 700 MPa tensile strength) in this Al-Cu-Li-Ag-Mg alloy.

  18. Fabrication and characterization of copper oxide (CuO)–gold (Au)–titania (TiO{sub 2}) and copper oxide (CuO)–gold (Au)–indium tin oxide (ITO) nanowire heterostructures

    SciTech Connect

    Chopra, Nitin; Shi, Wenwu; Lattner, Andrew

    2014-10-15

    Nanoscale heterostructures composed of standing copper oxide nanowires decorated with Au nanoparticles and shells of titania and indium tin oxide were fabricated. The fabrication process involved surfactant-free and wet-chemical nucleation of gold nanoparticles on copper oxide nanowires followed by a line-of-sight sputtering of titania or indium tin oxide. The heterostructures were characterized using high resolution electron microscopy, diffraction, and energy dispersive spectroscopy. The interfaces, morphologies, crystallinity, phases, and chemical compositions were analyzed. The process of direct nucleation of gold nanoparticles on copper oxide nanoparticles resulted in low energy interface with aligned lattice for both the components. Coatings of polycrystalline titania or amorphous indium tin oxide were deposited on standing copper oxide nanowire–gold nanoparticle heterostructures. Self-shadowing effect due to standing nanowire heterostructures was observed for line-of-sight sputter deposition of titania or indium tin oxide coatings. Finally, the heterostructures were studied using Raman spectroscopy and ultraviolet–visible spectroscopy, including band gap energy analysis. Tailing in the band gap energy at longer wavelengths (or lower energies) was observed for the nanowire heterostructures. - Highlights: • Heterostructures comprised of CuO nanowires coated with Au nanoparticles. • Au nanoparticles exhibited nearly flat and low energy interface with nanowire. • Heterostructures were further sputter-coated with oxide shell of TiO{sub 2} or ITO. • The process resulted in coating of polycrystalline TiO{sub 2} and amorphous ITO shell.

  19. Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au-Cu-Ag deposit, Chile

    NASA Astrophysics Data System (ADS)

    Tanner, Dominique; Henley, Richard W.; Mavrogenes, John A.; Holden, Peter

    2016-04-01

    We present a comparative study between early, massive pyrite preceding (Cu-Ag) sulfosalt mineralization in high-temperature feeder zones (`early pyrite') and late pyrite that formed during silicic alteration associated with Au deposition (`late pyrite') at the El Indio high-sulfidation Au-Ag-Cu deposit, Chile. We use coupled in situ sulfur isotope and trace element analyses to chronologically assess geochemical variations across growth zones in these pyrite crystals. Early pyrite that formed in high-temperature feeder zones shows intricate oscillatory zonation of Cu, with individual laminae containing up to 1.15 wt% Cu and trace Co, As, Bi, Ni, Zn, Se, Ag, Sb, Te, Au, Pb and Bi. Late pyrite formed after (Cu-Ag) sulfosalt mineralization. It contains up to 1.14 wt% As with trace Cu, Zn, Pb, V, Mn, Co, Ni, Ge, Se, Ag, Sb, Te, Pb and Bi, as well as colloform Cu-rich growth bands containing vugs toward the outer edges of some crystals. Plotting the trace element data in chronological order (i.e., from core to rim) revealed that Co and Ni were the only elements to consistently co-vary across growth zones. Other trace elements were coupled in specific growth zones, but did not consistently co-vary across any individual crystal. The δ34S of early pyrite crystals in high-temperature feeder zones range from -3.19 to 1.88 ‰ (±0.5 ‰), consistent with sublimation directly from a high-temperature magmatic vapor phase. Late pyrite crystals are distinctly more enriched in δ34S than early pyrite (δ34S = 0.05-4.77 ‰, ±0.5 ‰), as a consequence of deposition from a liquid phase at lower temperatures. It is unclear whether the late pyrite was deposited from a small volume of liquid condensate, or a larger volume of hydrothermal fluid. Both types of pyrite exhibit intracrystalline δ34S variation, with a range of up to 3.31 ‰ recorded in an early pyrite crystal and up to 4.48 ‰ in a late pyrite crystal. Variations in δ34Spyrite at El Indio did not correspond with

  20. Microstructure and microhardness evolution of melt-spun Al-Si-Cu alloy

    NASA Astrophysics Data System (ADS)

    Ahmed, Emad M.; Ebrahim, M. R.

    2014-04-01

    Al-11 wt.% Si-11 wt.% Cu (11.29 at.% Si-5.1 at.% Cu) melt was rapidly solidified into ribbons and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and microhardness technique. The Rietveld X-ray diffraction analysis was applied successfully to analyze the microstructure and phase precipitations. The high cooling rate obtained in rapid solidification has a significant influence on the microstructure and microhardness of this alloy. On the basis of the Al peaks shift measured in the XRD scans, a solid solubility extension value of 3.95 at.% Si and 3.54 at.% Cu in α-Al were determined. No XRD peaks of the Si phase have been detected. XRD peaks of the intermetallic Al2Cu phase have been observed clearly with estimated content of 12.6 wt.%. During prolonged annealing process at 350°C/25 h, XRD peaks of the Si phase clearly appeared with estimated content of 8.6 wt.% and, moreover, the Al2Cu phase content increased to 16 wt.%. The estimated crystallite size and micro-strain % of α-Al are 30 nm and 0.056, respectively. The melt-spun wheel side ribbon represents ultra-fine microstructure with particles size less than 1μm and exhibits enhancement of hardness to 241 HV. Hardness has further increased to 291 HV during heat treatment (150°C/12 h). Rapid solidification exhibited a great influence on microstructure and microhardness of the Al-Si-Cu alloy.

  1. Cu-based catalyst resulting from a Cu,Zn,Al hydrotalcite-like compound: a microstructural, thermoanalytical, and in situ XAS study.

    PubMed

    Kühl, Stefanie; Tarasov, Andrey; Zander, Stefan; Kasatkin, Igor; Behrens, Malte

    2014-03-24

    A Cu-based methanol synthesis catalyst was obtained from a phase pure Cu,Zn,Al hydrotalcite-like precursor, which was prepared by co-precipitation. This sample was intrinsically more active than a conventionally prepared Cu/ZnO/Al2O3 catalyst. Upon thermal decomposition in air, the [(Cu0.5Zn0.17Al0.33)(OH)2(CO3)0.17]⋅mH2O precursor is transferred into a carbonate-modified, amorphous mixed oxide. The calcined catalyst can be described as well-dispersed "CuO" within ZnAl2 O4 still containing stabilizing carbonate with a strong interaction of Cu(2+) ions with the Zn-Al matrix. The reduction of this material was carefully analyzed by complementary temperature-programmed reduction (TPR) and near-edge X-ray absorption fine structure (NEXAFS) measurements. The results fully describe the reduction mechanism with a kinetic model that can be used to predict the oxidation state of Cu at given reduction conditions. The reaction proceeds in two steps through a kinetically stabilized Cu(I) intermediate. With reduction, a nanostructured catalyst evolves with metallic Cu particles dispersed in a ZnAl2 O4 spinel-like matrix. Due to the strong interaction of Cu and the oxide matrix, the small Cu particles (7 nm) of this catalyst are partially embedded leading to lower absolute activity in comparison with a catalyst comprised of less-embedded particles. Interestingly, the exposed Cu surface area exhibits a superior intrinsic activity, which is related to a positive effect of the interface contact of Cu and its surroundings. PMID:24615857

  2. Phase composition and structure of aluminum Al-Cu-Si-Sn-Pb alloys

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Stolyarova, O. O.; Murav'eva, T. I.; Zagorskii, D. L.

    2016-06-01

    The structure and phase composition of cast and heat treated Al-Cu-Si-Sn-Pb alloys containing 6 wt % Sn, 2 wt % Pb, 0-4 wt % Cu, 0-10 wt % Si have been studied using calculations and experimental methods. Polythermal and isothermal sections are reported, which indicate the existence of two liquid phases. It was found that the low-melting phase is inhomogeneous and consists of individual leadand tin-based particles.

  3. In situ heating transmission electron microscopy observation of nanoeutectic lamellar structure in Sn-Ag-Cu alloy on Au under-bump metallization.

    PubMed

    Seo, Jong-Hyun; Yoon, Sang-Won; Kim, Kyou-Hyun; Chang, Hye-Jung; Lee, Kon-Bae; Seong, Tae-Yeon; Fleury, Eric; Ahn, Jae-Pyoung

    2013-08-01

    We investigated the microstructural evolution of Sn(96.4)Ag(2.8)Cu(0.8) solder through in situ heating transmission electron microscopy observations. As-soldered bump consisted of seven layers, containing the nanoeutectic lamella structure of AuSn and Au₅Sn phases, and the polygonal grains of AuSn₂ and AuSn₄, on Au-plated Cu bond pads. Here, we found that there are two nanoeutectic lamellar layers with lamella spacing of 40 and 250 nm. By in situ heating above 140°C, the nanoeutectic lamella of AuSn and Au₅Sn was decomposed with structural degradation by sphering and coarsening processes of the lamellar interface. At the third layer neighboring to the lamella layer, on the other hand, Au₅Sn particles with a zig-zag shape in AuSn matrix became spherical and were finally dissipated in order to minimize the interface energy between two phases. In the other layers except both lamella layers, polycrystal grains of AuSn₂ and AuSn₄ grew by normal grain growth during in situ heating. The high interface energy of nanoeutectic lamella and polygonal nanograins, which are formed by rapid solidification, acted as a principal driving force on the microstructural change during the in situ heating. PMID:23920173

  4. Surface tension of liquid Al-Cu and wetting at the Cu/Sapphire solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Schmitz, J.; Brillo, J.; Egry, I.

    2014-02-01

    For the study of the interaction of a liquid alloy with differently oriented single crystalline sapphire surfaces precise surface tension data of the liquid are fundamental. We measured the surface tension of liquid Al-Cu contactlessly on electromagnetically levitated samples using the oscillating drop technique. Data were obtained for samples covering the entire range of composition and in a broad temperature range. The surface tensions can be described as linear functions of temperature with negative slopes. Moreover, they decrease monotonically with an increase of aluminium concentration. The observed behaviour with respect to both temperature and concentration is in agreement with a thermodynamic model calculation using the regular solution approximation. Surface tensions were used to calculate interfacial energies from the contact angles of liquid Cu droplets, deposited on the C(0001), A(11-20), R(1-102) surfaces of an α-Al2O3 substrate. The contact angles were measured by means of the sessile drop method at 1380 K. In the Cu/α-Al2O3 system, no anisotropy is evident neither for the contact angles nor for the interfacial energies of different surfaces. The work of adhesion of this system is isotropic, too.

  5. Synthesis of alloy AuCu nanoparticles with the L1₀ structure in an ionic liquid using sputter deposition.

    PubMed

    Suzuki, Shushi; Tomita, Yousuke; Kuwabata, Susumu; Torimoto, Tsukasa

    2015-03-01

    Sputter deposition onto ionic liquids (ILs) was applied to synthesize AuCu bimetallic alloy nanoparticles (NPs) dispersed in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4). A mixed target of Au and Cu materials was used for simultaneous sputter deposition onto the IL under an Ar pressure of 10 Pa. Two types of heating procedures within the range of 323-573 K were examined for control of the structures of NPs, particularly addressing the phase transition of the alloy NPs from the face centered cubic (fcc) structure to the L1₀ structure. One was heating after the sputter deposition in N2 at atmospheric pressure for 1 h. Another was a combination of heating during the sputter deposition and subsequent heating under an Ar pressure from 0.5 to 0.8 Pa for 1 h. Although both cases exhibited lowering of the phase transition temperatures compared with the temperature for the bulk, the latter procedure at 423 K only provided the NPs (approx. 5 nm) consisting of the L1₀ structure in the dispersed manner. A mechanism for forming the L1₀ structure was proposed for explaining the difference between results obtained using the two procedures. PMID:25623552

  6. Gamma Spectra Resulting From the Annihilation of Positrons with Electrons in Single, Selected Core Levels of Cu, Ag and Au

    SciTech Connect

    Kim, S; Eshed, A; Goktepeli, S; Sterne, P A; Koymen, A R; Chen, W C; Weiss, A H

    2005-07-25

    The {gamma}-ray energy spectra due to positron annihilation with the 3p core-level of Cu, the 4p core-level of Ag, and 5p core level of Au were obtained separately from the total annihilation spectrum by measuring the energies of {gamma}-rays time coincident with Auger electrons emitted as a result of filling the core-hole left by annihilation. The results of these measurements are compared to the total annihilation spectra and with LDA based theoretical calculations. A comparison of area normalized momentum distributions with the individual cores extracted from the Doppler measurements shows good qualitative agreement, however, in all three spectra, the calculated values of the momentum density appears to fall below the measured values as the momentum increases. The discrepancies between theory and experiment are well outside the statistical uncertainties of the experiment and become more pronounced with increasing Z going down the column from Cu to Ag to Au. The comparison with the experimental results clearly indicates that the calculations are not predicting the correct ratio of high momentum to low momentum spectral weight and suggest the need to improve the treatment of many body electron-positron correlation effects in annihilation as they pertain to core levels.

  7. Magnetic States in Ensemble of Ferromagnetic Nanoparticles in Cu-Mn-Al Alloy.

    PubMed

    Konoplyuk, S M; Kozlova, L E; Kokorin, V V; Perekos, A O; Kolomiets, O V

    2016-12-01

    Two Cu-Mn-Al samples of different compositions were studied: one exhibiting martensitic transformation, another without structural transition. X-ray diffraction and magnetic measurements demonstrate that different magnetic behaviors of alloys originate from different concentrations and sizes of ferromagnetic nanoparticles, which appear after solid solution decomposition.Estimation of magnetic moments of ferromagnetic nanoparticles from magnetization curves was performed using Langevin function and compared to those obtained from X-ray examination. Granular systems are known to show giant magnetoresistance. Therefore, magnetoresistance of Cu-Mn-Al melt-spun ribbons after different aging times was measured. The study has shown that increase in the concentration of Mn atoms and time of aging in Cu-Mn-Al alloy leads to an increase in the amount of precipitated phase appearing as ferromagnetic nanoparticles. PMID:26762264

  8. Local crystallography and stress voiding in Al-Si-Cu versus copper interconnects

    NASA Astrophysics Data System (ADS)

    Keller, R. R.; Kalnas, C. E.; Phelps, J. M.

    1999-07-01

    We compare the local crystallographic orientations associated with stress voids in Al-1Si-0.5Cu (wt %) with those in pure copper interconnects. Orientations were sorted by whether grains were immediately adjacent to voids. Grains adjacent to voids in Al-Si-Cu showed a <111> fiber texture that was slightly stronger than those in intact regions. This is in contrast to copper, which showed weaker local <111> texture around voids. We postulate the difference to be due to the relative effectiveness of the diffusion paths available in the lines. For Al-Si-Cu, the presence of defects associated with precipitates may allow more rapid diffusion than grain boundaries. Voiding in copper, which is free from such defects, depends more on grain boundary structure.

  9. Geochemical element mobility during the hydrothermal alteration in the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Abdelnasser, Amr; Kiran Yildirim, Demet; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Tepeoba porphyry Cu-Mo-Au deposit represents one of the important copper source and mineral deposits in the Anatolian tectonic belt at Balikesir province, NW Turkey. It considered as a vein-type deposit locally associated with intense hydrothermal alteration within the brecciation, quartz stockwork veining, and brittle fracture zones in the main host rock that represented by hornfels, as well as generally related to the shallow intermediate to silicic intrusive Eybek pluton. Based on the field and geologic relationships and types of ore mineral assemblages and the accompanied alteration types, there are two mineralization zones; hypogene (primary) and oxidation/supergene zones are observed associated with three alteration zones; potassic, phyllic, and propylitic zones related to this porphyry deposit. The phyllic and propylitic alterations locally surrounded the potassic alteration. The ore minerals related to the hypogene zone represented by mostly chalcopyrite, Molybdenite, and pyrite with subordinate amount of marcasite, enargite, and gold. On the other hand they include mainly cuprite with chalcopyrite, pyrite and gold as well as hematite and goethite at the oxidation/supergene zone. This study deals with the quantitative calculations of the mass/volume changes (gains and losses) of the major and trace elements during the different episodes of alteration in this porphyry deposit. These mass balance data reveal that the potassic alteration zone that the main Cu- and Mo-enriched zone, has enrichment of K, Si, Fe, and Mg, and depletion of Na referring to replacement of plagioclase and amphibole by K-feldspar, sericite and biotite. While the propylitic alteration that is the main Mo- and Au-enriched zone is accompanied with K and Na depletion with enrichment of Si, Fe, Mg, and Ca forming chlorite, epidote, carbonate and pyrite. On the other hand the phyllic alteration that occurred in the outer part around the potassic alteration, characterized by less amount

  10. Joule-Heating-Induced Damage in Cu-Al Wedge Bonds Under Current Stressing

    NASA Astrophysics Data System (ADS)

    Yang, Tsung-Han; Lin, Yu-Min; Ouyang, Fan-Yi

    2014-01-01

    Copper wires are increasingly used to replace gold wires in wire-bonding technology owing to their better electrical properties and lower cost. However, not many studies have been conducted on electromigration-induced failure of Cu wedge bonds on Al metallization. In this study, we investigated the failure mechanism of Cu-Al wedge bonds under high current stressing from 4 × 104 A/cm2 to 1 × 105 A/cm2 at ambient temperature of 175°C. The resistance evolution of samples during current stressing and the microstructure of the joint interface between the Cu wire and Al-Si bond pad were examined. The results showed that abnormal crack formation accompanying significant intermetallic compound growth was observed at the second joint of the samples, regardless of the direction of electric current for both current densities of 4 × 104 A/cm2 and 8 × 104 A/cm2. We propose that this abnormal crack formation at the second joint is mainly due to the higher temperature induced by the greater Joule heating at the second joint for the same current stressing, because of its smaller bonded area compared with the first joint. The corresponding fluxes induced by the electric current and chemical potential difference between Cu and Al were calculated and compared to explain the failure mechanism. For current density of 1 × 105 A/cm2, the Cu wire melted within 0.5 h owing to serious Joule heating.

  11. Predicting XAFS scattering path cumulants and XAFS spectra for metals (Cu, Ni, Fe, Ti, Au) using molecular dynamics simulations.

    PubMed

    Karolewski, M A; Cavell, R G; Gordon, R A; Glover, C J; Cheah, M; Ridgway, M C

    2013-07-01

    The ability of molecular dynamics (MD) simulations to support the analysis of X-ray absorption fine-structure (XAFS) data for metals is evaluated. The low-order cumulants (ΔR, σ(2), C3) for XAFS scattering paths are calculated for the metals Cu, Ni, Fe, Ti and Au at 300 K using 28 interatomic potentials of the embedded-atom method type. The MD cumulant predictions were evaluated within a cumulant expansion XAFS fitting model, using global (path-independent) scaling factors. Direct simulations of the corresponding XAFS spectra, χ(R), are also performed using MD configurational data in combination with the FEFF ab initio code. The cumulant scaling parameters compensate for differences between the real and effective scattering path distributions, and for any errors that might exist in the MD predictions and in the experimental data. The fitted value of ΔR is susceptible to experimental errors and inadvertent lattice thermal expansion in the simulation crystallites. The unadjusted predictions of σ(2) vary in accuracy, but do not show a consistent bias for any metal except Au, for which all potentials overestimate σ(2). The unadjusted C3 predictions produced by different potentials display only order-of-magnitude consistency. The accuracy of direct simulations of χ(R) for a given metal varies among the different potentials. For each of the metals Cu, Ni, Fe and Ti, one or more of the tested potentials was found to provide a reasonable simulation of χ(R). However, none of the potentials tested for Au was sufficiently accurate for this purpose. PMID:23765297

  12. Effect of a low axial magnetic field on the primary Al 2 Cu phase growth in a directionally solidified Al-Cu hypereutectic alloy

    NASA Astrophysics Data System (ADS)

    Shen, Yu; Ren, Zhongming; Li, Xi; Ren, Weili; Xi, Yan

    2011-12-01

    Effect of a low axial magnetic field on the growth behavior of the primary Al 2Cu phase in the Al-40 wt% Cu hypereutectic alloy during directional solidification at a low growth speed has been investigated experimentally. The results show that the application of a low magnetic field (≤1 T) causes the primary Al 2Cu phase to become deformed and irregular opposed to the well developed strip-like primary phase in the absence of the field. The deformation of the primary phase is maximum when a 0.5 T magnetic field is applied. Moreover, it has been found that the magnetic field promotes a transition of the primary phase morphology from faceted growth to irregular cellular structure and makes the primary phase spacing decrease with the increase of the magnetic field intensity. From the macroscopic scale, the magnetic field causes the occurrence of a considerable radial macrosegregation. These experimental results may be attributed to the effects of thermoelectric magnetic force (TEMF) in the solid and thermoelectromagnetic convection (TEMC) in the liquid. Further, the model of these effects is presented and evaluated numerically. The results indicate that the numerical magnitude of the TEMF during directional solidification under a 0.5 T low axial magnetic field can be of the order of 10 3 N/m 3. The force causes TEMC at different scales to modify the distribution of solute at the interface and should be responsible for the deformation, fracture and deflection of the primary phase.

  13. Charge effect in S enhanced CO adsorption: A theoretical study of CO on Au, Ag, Cu, and Pd (111) surfaces coadsorbed with S, O, Cl, and Na

    NASA Astrophysics Data System (ADS)

    Gan, Li-Yong; Zhao, Yu-Jun

    2010-09-01

    The extraordinary sulfur enhanced CO adsorption on Au surface creates curiosity to many scientists in the field, and is expected to have potential applications in catalyst design. In this work, we have investigated the interactions of the coadsorption of CO and various adatoms X (X=Na, S, O, and Cl) on Au and Pd(111) surfaces and made further comparison with CO adsorption on charged Au and Pd surfaces by a first-principles study. We find out that the enhancement of CO adsorption by S on Au originates from S-induced positive polarization of Au surface. The d band of metal atoms in the positively polarized Au surface shifts up toward the Fermi level (EF) without remarkable changes of its shape and occupation. In contrast, in the negatively polarized Au(111) surface, achieved by electropositive adatom such as Na adsorption or artificially adding additional electrons to the substrate, d bands shift down relative to EF, and thus CO adsorption is weakened. Further study of CO coadsorption with X on two other noble metal (Ag and Cu) surfaces manifests that Ag shows the same behavior as Au does, while the situation of Cu is just between that on Au and Pd. It suggests that the extraordinary S-induced enhancement of CO adsorption on Au/Ag, different from other transition metals (TMs), ultimately results from the inertness of d bands buried below EF. The S-induced charge can introduce a significant d band shift on Au/Ag with respect to EF due to their narrow density of states at EF and thus strengthens CO adsorption subsequently.

  14. Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu-Au system, South Gobi, Mongolia

    USGS Publications Warehouse

    Khashgerel, B.-E.; Rye, R.O.; Hedenquist, J.W.; Kavalieris, I.

    2006-01-01

    The Oyu Tolgoi porphyry Cu-Au system in the South Gobi desert, Mongolia, comprises five deposits that extend over 6 km in a north-northeast-oriented zone. They occur in a middle to late Paleozoic are terrane and are related to Late Devonian quartz monzodiorite intrusions. The Hugo Dummett deposits are the northernmost and deepest, with up to 1,000 m of premineral sedimentary and volcanic cover rock remaining. They are the largest deposits discovered to date and characterized by high-grade copper (>2.5% Cu) and gold (0.5-2 g/t) mineralization associated with intense quartz veining and several phases of quartz monzodiorite intruded into basaltic volcanic host rocks. Sulfide minerals in these deposits are zoned outward from a bornite-dominated core to chalcopyrite, upward to pyrite ?? enargite and covellite at shallower depth. The latter high-sulfidation-state sulfides are hosted by advanced argillic alteration mineral associations. This alteration is restricted mainly to dacitic ash-flow tuff that overlies the basaltic volcanic rock and includes ubiquitous quartz and pyrophyllite, kaolinite, plus late dickite veins, as well as K alunite, Al phosphate-sulfate minerals, zunyite, diaspore, topaz, corundum, and andalusite. A reconnaissance oxygen-hydrogen and sulfur isotope study was undertaken to investigate the origin of several characteristic alteration minerals in the Oyu Tolgoi system, with particular emphasis on the Hugo Dummett deposits. Based on the isotopic composition of O, H, and S (??18O(SO4) = 8.8-20.1???, ??D = -73 to -43???, ??34S = 9.8-17.9???), the alunite formed from condensation of magmatic vapor that ascended to the upper parts of the porphyry hydrothermal system, without involvement of significant amounts of meteoric water. The isotopic data indicate that pyrophyllite (??18O = 6.5-10.9???, ??D = -90 to -106???) formed from a magmatic fluid with a component of meteoric water. Muscovite associated with quartz monzodiorite intrusions occurs in the core

  15. ϕ meson production in the forward/backward rapidity region in Cu + Au collisions at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Al-Ta'Ani, H.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Harper, C.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Isinhue, A.; Issah, M.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; John, D.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kofarago, M.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Král, A.; Krizek, F.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Maruyama, T.; Masui, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moskowitz, M.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Oka, M.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosendahl, S. S. E.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Savastio, M.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Sodre, T.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Themann, H.; Thomas, D.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Utsunomiya, K.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoo, J. S.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration

    2016-02-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider has measured ϕ meson production and its nuclear modification in asymmetric Cu +Au heavy-ion collisions at √{sNN}=200 GeV at both forward Cu-going direction (1.2 Au-going direction (-2.2 Cu-going direction compared to the Au-going direction. Additionally, the nuclear-modification factor in Cu +Au collisions averaged over all centrality is measured to be similar to the previous PHENIX result in d +Au collisions for these rapidities.

  16. Microstructure and anodic polarization behavior of experimental Ag-18Cu-15Pd-12Au alloy in aqueous sulfide solution.

    PubMed

    Endo, Kazuhiko; Ohno, Hiroki; Asakura, Shukuji

    2003-05-01

    The anodic corrosion behavior of an experimental Ag-15Pd-18Cu-12Au alloy in 0.1% Na(2)S solution in relation to its microstructure was investigated using potentiodynamic and potentiostatic polarization techniques with analyses of corrosion products by X-ray diffractometry, Auger electron spectroscopy, and X-ray photoelectron spectroscopy. The role of Pd in improvement of the corrosion resistance was also investigated. In the potential/current density curve, three distinct current peaks, at -520 mV (peak I), -425 mV (peak II) and -175 mV (peak III), were observed. The Ag-rich alpha(2) matrix with coarse Cu and Pd-rich lamellae was the most corrosion-susceptible region, and this region was preferentially corroded at peak I with the formation of granular deposits of Ag(2)S. A small amount of Ag-Cu mixed sulfide deposited on the Cu and Pd-rich coarse particles and dissolution of Ag as AgO(-) might have occurred in parallel with Ag(2)S formation at peak II. Enrichment of Pd on the alloy surface occurred at peak III due to preferential dissolution of Ag and Cu. A high level of corrosion resistance was attained with the formation of a thin Pd-rich sulfide film, which enhanced the passivity of the alloy in an alkaline sulfide solution. It was found that passivity is an important phenomenon not only for base metal alloys but also for noble metal alloys to maintain high levels of resistance to corrosion and tarnishing in sulfide environments. PMID:15348446

  17. Thermodynamics calculation of reactions between phosphorus and main elements in Al-Si-Cu alloys

    NASA Astrophysics Data System (ADS)

    Li, Wangxing; Zhang, Ying; Yi, Danqing; Kong, Fanxiao; Chen, Xingyu

    2011-05-01

    The Gibbs free energy was calculated between phosphorus and the main elements in Al-Si-Cu alloys sampled as A390 to study the reaction process and give theoretical directions for the adding of phosphorus in industry. The results show that the elements such as aluminum, silicon, and copper have the capabilities to react with phosphorus according to the preference of Al, Cu, Si. As temperature increases, the reactions between phosphorus and the elements become more difficult. If aluminum is in existence, the phosphides of other elements will transform to aluminum phosphide.

  18. Effects of Pulse Electromagnetic Field on Corrosion Resistance of Al-5 % Cu Alloy

    NASA Astrophysics Data System (ADS)

    Wang, B.; Tang, L. D.; Qi, J. G.; Wang, J. Z.

    2013-03-01

    It was investigated that corrosion resistance of Al-5 % Cu alloy was influenced by pulse electromagnetic field (PEMF). The morphologies were observed by scanning election microscopy (SEM). The corrosion behaviors were investigated by potentiodynamic polarization tests and immersion tests. The results indicated that corrosion resistance of samples could be increased by using pulse electromagnetic field, moreover, the optimum parameter of pulse electromagnetic field in this experiment was showed as follows: 500 V, 3 Hz, 30 s. Decreasing the quantity of eutectic in grain boundaries and refining the grains were main causations for increasing corrosion resistance of Al-5 % Cu alloy with pulse electromagnetic field.

  19. Wavelengths, transition probabilities, and oscillator strengths for M-shell transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions

    SciTech Connect

    Xu, Min; Jiang, Gang; Deng, Banglin; Bian, Guojie

    2014-11-15

    Wavelengths, transition probabilities, and oscillator strengths have been calculated for M-shell electric dipole transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions. The fully relativistic multiconfiguration Dirac–Fock method, taking quantum electrodynamical effects and the Breit correction into account, was used in the calculations. Calculated energy levels of M-shell excited states for Cu-, Zn-, Ga-, Ge-, and Se-like Au ions from the method were compared with available theoretical and experimental results, and good agreement with them was achieved.

  20. Compositional Change of the Au-Cu2Te Contact for Thin-Film CdS/CdTe Solar Cells

    NASA Astrophysics Data System (ADS)

    Uda, Hiroshi; Ikegami, Seiji; Sonomura, Hajimu

    1990-03-01

    The stability of thin-film CdS/CdTe solar cells with evaporated Au-Cu2Te contacts to the CdTe film has been investigated. A decrease in conversion efficiency due to an increase in series resistance was observed in the solar cells stored in air at room temperature for 120 days. The increase in series resistance is caused by an increase in contact resistance resulting from the compositional change in the Au-Cu2Te contact to the CdTe film.

  1. The large Bystrinskoe Cu-Au-Fe deposit (Eastern Trans-Baikal Region): Russia's first example of a skarn-porphyry ore-forming system related to adakite

    NASA Astrophysics Data System (ADS)

    Kovalenker, V. A.; Abramov, S. S.; Kiseleva, G. D.; Krylova, T. L.; Yazykova, Yu. I.; Bortnikov, N. S.

    2016-06-01

    The Bystrinskoe skarn-porphyry Cu-Au-Fe deposit (Eastern Trans-Baikal Region) is confined to skarn zones, which were formed along the contact of granitoids referred to the Shakhtama intrusive complex (J2-3), with terrigenous-carbonate sedimentary rocks. Commercial (Cu-Au-Fe ± W, Mo) mineralization was formed due to the regional postcollision development involving the intrusion of porphyritic granitoids, the derivatives of oxidized adakite highly magnesian magmas enriched in water, sulfur, and metals, which could develop under melting of garnet-bearing amphibolite in the mafic lower crustal arc.

  2. Photoluminescence of Cu:ZnS, Ag:ZnS, and Au:ZnS nanoparticles applied in Bio-LED

    NASA Astrophysics Data System (ADS)

    Lin, Kuan Bo; Su, Yen Hsun

    2013-12-01

    In this work, transition elements, including Cu2+, Ag+, and Au3+, were used to dope in zinc sulfide (ZnS) by chemical solution synthesis to prepare Cu:ZnS, Ag:ZnS, and Au:ZnS nanoparticles, respectively. Transition elements doping ZnS nanoparticles form the electronic energy level between the conduction band and valance band, which will result in the green light emission. There is a zinc sulfide emission shift from blue (~3.01 eV) to green light (~2.15 eV). We also found that Au:ZnS nanoparticles will emit a green light (~2.3 eV) and a blue light (~2.92 eV) at the same time because the mechanism of blue light emission was not broken after Au element had been doped. Furthermore, we used sodium chlorophyllin copper salt to simulate chlorophyll in biological light emission devices (Bio-LED). We combined copper chlorophyll with Cu:ZnS, Ag:ZnS, and Au:ZnS nanoparticles by a self-assembly method. Then, we measured its photoluminescence spectroscopy and X-ray photoelectron spectroscopy to study its emission spectrum and bonding mode. We found that Au:ZnS nanoparticles are able to emit green and blue light to excite the red light emission of copper chlorophyll, which is a potential application of Bio-LED.

  3. Integrated logic gate for fluorescence turn-on detection of histidine and cysteine based on Ag/Au bimetallic nanoclusters-Cu²⁺ ensemble.

    PubMed

    Sun, Jian; Yang, Fan; Zhao, Dan; Chen, Chuanxia; Yang, Xiurong

    2015-04-01

    By means of employing 11-mercaptoundecanoic acid (11-MUA) as a reducing agent and protecting ligand, we present straightforward one-pot preparation of fluorescent Ag/Au bimetallic nanoclusters (namely AgAuNCs@11-MUA) from AgNO3 and HAuCl4 in alkaline aqueous solution at room temperature. It is found that the fluorescence of AgAuNCs@11-MUA has been selectively quenched by Cu(2+) ions, and the nonfluorescence off-state of the as-prepared AgAuNCs@11-MUA-Cu(2+) ensemble can be effectively switched on upon the addition of histidine and cysteine. By incorporating Ni(2+) ions and N-ethylmaleimide, this phenomenon is further exploited as an integrated logic gate and a specific fluorescence turn-on assay for selectively and sensitively sensing histidine and cysteine has been designed and established based on the original noncovalent AgAuNCs@11-MUA-Cu(2+) ensemble. Under the optimal conditions, histidine and cysteine can be detected in the concentration ranges of 0.25-9 and 0.25-7 μM; besides, the detection limits are found to be 87 and 111 nM (S/N = 3), respectively. Furthermore, we demonstrate that the proposed AgAuNCs@11-MUA-based fluorescent assay can be successfully utilized for biological fluids sample analysis. PMID:25761537

  4. Effect of thermally stable Cu- and Mg-rich aluminides on the high temperature strength of an AlSi12CuMgNi alloy

    SciTech Connect

    Asghar, Z.

    2014-02-15

    The internal architecture of an AlSi12CuMgNi piston alloy, revealed by synchrotron tomography, consists of three dimensional interconnected hybrid networks of Cu-rich aluminides, Mg-rich aluminides and eutectic/primary Si embedded in an α-Al matrix. The strength at room temperature and at 300°C is studied as a function of solution treatment time at 490°C and compared with results previously reported for an AlSi12Ni alloy. The addition of 1 wt% Cu and 1 wt% Mg to AlSi12CuMgNi increases the room temperature strength by precipitation hardening while the strength at 300°C is similar for both alloys in as-cast condition. The strength of AlSi12CuMgNi decreases with solution treatment time and stabilizes at 4 h solution treatment. The effect of solution treatment time on the strength of the AlSi12CuMgNi alloy is less pronounced than for the AlSi12Ni alloy both at room temperature and at 300°C. - Highlights: • The 3D microstructure of AlSi12CuMgNi is revealed by synchrotron tomography. • An imaging analysis procedure to segment phases with similar contrasts is presented. • 1 wt% Cu and Mg results in the formation of 3D networks of rigid phases. • AlSi12CuMgNi is stronger than AlSi12Ni owing to the stability of the 3D networks.

  5. Characterization of Al-Cu-Mg-Ag Alloy RX226-T8 Plate

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.; Domack, Marcia S.

    2003-01-01

    Aluminum-copper-magnesium-silver (Al-Cu-Mg-Ag) alloys that were developed for thermal stability also offer attractive ambient temperature strength-toughness combinations, and therefore, can be considered for a broad range of airframe structural applications. The current study evaluated Al-Cu-Mg-Ag alloy RX226-T8 in plate gages and compared performance with sheet gage alloys of similar composition. Uniaxial tensile properties, plane strain initiation fracture toughness, and plane stress tearing resistance of RX226-T8 were examined at ambient temperature as a function of orientation and thickness location in the plate. Properties were measured near the surface and at the mid-plane of the plate. Tensile strengths were essentially isotropic, with variations in yield and ultimate tensile strengths of less than 2% as a function of orientation and through-thickness location. However, ductility varied by more than 15% with orientation. Fracture toughness was generally higher at the mid-plane and greater for the L-T orientation, although the differences were small near the surface of the plate. Metallurgical analysis indicated that the microstructure was primarily recrystallized with weak texture and was uniform through the plate with the exception of a fine-grained layer near the surface of the plate. Scanning electron microscope analysis revealed Al-Cu-Mg second phase particles which varied in composition and were primarily located on grain boundaries parallel to the rolling direction. Fractography of toughness specimens for both plate locations and orientations revealed that fracture occurred predominantly by transgranular microvoid coalescence. Introduction High-strength, low-density Al-Cu-Mg-Ag alloys were initially developed to replace conventional 2000 (Al-Cu-Mg) and 7000 (Al-Zn-Cu-Mg) series aluminum alloys for aircraft structural applications [1]. During the High Speed Civil Transport (HSCT) program, improvements in thermal stability were demonstrated for candidate

  6. The determination of interfacial structure and phase transitions in Al/Cu and Al/Ni interfaces by means of surface extended x-ray absorption fine structure

    SciTech Connect

    Barrera, E.V. . Dept. of Mechanical Engineering and Materials Science); Heald, S.M. )

    1991-01-01

    Surface extended x-ray absorption fine structure (SEXAFS) was used to investigate the interfacial conditions of Al/Cu and Al/Ni shallow buried interfaces. Previous studies using glancing angle extended x-ray absorption fine structure, x-ray reflectivity, photoemission, and SEXAFS produced conflicting results as to whether or not the interfaces between Al and Cu and Al and Ni were reacted upon room temperature deposition. In this study polycrystalline bilayers of Al/Cu and Al/Ni and trilayers of Al/Cu/Al and Al/Ni/Al were deposited on tantalum foil at room temperature in ultra high vacuum and analyzed to evaluate the reactivity of these systems on a nanometer scale. It become overwhelming apparent that the interfacial phase reactions were a function of the vacuum conditions. Samples deposited with the optimum vacuum conditions showed reaction products upon deposition at room temperature which were characterized by comparisons to standards and by least squares fitting the be CuAl{sub 2} and NiAl{sub 3} respectively. The results of this study that the reacted zone thicknesses were readily dependent on the deposition parameters. For both Al on Cu and Al on Ni as well as the metal on Al conditions 10{Angstrom} reaction zones were observed. These reaction zones were smaller than that observed for bilayers of Al on Cu (30{Angstrom}) and Al on Ni (60{Angstrom}) where deposition rates were much higher and samples were much thicker. The reaction species are evident by SEXAFS, where the previous photoemission studies only indicated that changes had occurred. Improved vacuum conditions as compared to the earlier experiments is primarily the reason reactions on deposition were seen in this study as compared to the earlier SEXAFS studies.

  7. The determination of interfacial structure and phase transitions in Al/Cu and Al/Ni interfaces by means of surface extended x-ray absorption fine structure

    SciTech Connect

    Barrera, E.V.; Heald, S.M.

    1991-12-31

    Surface extended x-ray absorption fine structure (SEXAFS) was used to investigate the interfacial conditions of Al/Cu and Al/Ni shallow buried interfaces. Previous studies using glancing angle extended x-ray absorption fine structure, x-ray reflectivity, photoemission, and SEXAFS produced conflicting results as to whether or not the interfaces between Al and Cu and Al and Ni were reacted upon room temperature deposition. In this study polycrystalline bilayers of Al/Cu and Al/Ni and trilayers of Al/Cu/Al and Al/Ni/Al were deposited on tantalum foil at room temperature in ultra high vacuum and analyzed to evaluate the reactivity of these systems on a nanometer scale. It become overwhelming apparent that the interfacial phase reactions were a function of the vacuum conditions. Samples deposited with the optimum vacuum conditions showed reaction products upon deposition at room temperature which were characterized by comparisons to standards and by least squares fitting the be CuAl{sub 2} and NiAl{sub 3} respectively. The results of this study that the reacted zone thicknesses were readily dependent on the deposition parameters. For both Al on Cu and Al on Ni as well as the metal on Al conditions 10{Angstrom} reaction zones were observed. These reaction zones were smaller than that observed for bilayers of Al on Cu (30{Angstrom}) and Al on Ni (60{Angstrom}) where deposition rates were much higher and samples were much thicker. The reaction species are evident by SEXAFS, where the previous photoemission studies only indicated that changes had occurred. Improved vacuum conditions as compared to the earlier experiments is primarily the reason reactions on deposition were seen in this study as compared to the earlier SEXAFS studies.

  8. Composition and source of salinity of ore-bearing fluids in Cu-Au systems of the Carajás Mineral Province, Brazil

    USGS Publications Warehouse

    Xavier, Roberto; Rusk, Brian; Emsbo, Poul; Monteiro, Lena

    2009-01-01

    The composition and Cl/Br – NaCl ratios of highly saline aqueous inclusions from large tonnage (> 100 t) IOCG deposits (Sossego, Alvo 118, and Igarapé Bahia) and a Paleoproterozoic intrusion-related Cu-Au-(Mo-W-Bi-Sn) deposit (Breves; < 50 Mt)) in the Carajás Mineral Province have been analysed by LA-ICP-MS and ion chromatography. In both Cu-Au systems, brine inclusions are Ca-dominated (5 to 10 times more than in porphyry Cu-Au fluids), and contain percent level concentrations of Na and K. IOCG inclusion fluids, however, contain higher Sr, Ba, Pb, and Zn concentrations, but significantly less Bi, than the intrusion-related Breves inclusion fluids. Cu is consistently below detection limits in brine inclusions from the IOCG and intrusion-related systems and Fe was not detected in the latter. Cl/Br and Na/Cl ratios of the IOCG inclusion fluids range from entirely evaporative brines (bittern fluids; e.g. Igarapé Bahia and Alvo 118) to values that indicate mixing with magma-derived brines. Cl/Br and Na/Cl ratios of the Breves inclusion fluids strongly suggest the involvement of magmatic brines, but that possibly also incorporated bittern fluids. Collectively, these data demonstrate that residual evaporative and magmatic brines were important components of the fluid regime involved in the formation of Cu-Au systems in the Carajás Mineral Province.

  9. A bi-overlayer type plasmonic photocatalyst consisting of mesoporous Au/TiO2 and CuO/SnO2 films separately coated on FTO.

    PubMed

    Naya, Shin-ichi; Kume, Takahiro; Okumura, Nozomi; Tada, Hiroaki

    2015-07-21

    The principal purpose of this study is to present a new design for preparing highly active immobilized gold nanoparticle-based plasmonic photocatalysts. Gold nanoparticles were loaded on rutile TiO2 particles with a mean size of 80 nm (Au/TiO2) by the deposition precipitation method. The surface of SnO2 particles with a mean size of 100 nm was modified by copper(ii) oxide clusters (CuO/SnO2) with the loading amount (Γ/Cu ions nm(-2)) precisely controlled by the chemisorption-calcination cycle technique. Two mesoporous overlayers of Au/TiO2 and CuO/SnO2 were coated side by side on glass substrates with a fluorine-doped tin oxide film (FTO) using the doctor blade method (Au/mp-TiO2|FTO|CuO/mp-SnO2). As test reactions for assessing the visible-light activity, we carried out gas-phase decomposition of acetaldehyde and liquid-phase oxidation of alcohol. In each reaction, this bi-overlayer type catalyst shows a high level of visible-light activity much exceeding those of Au/TiO2 particles and a Au/mp-TiO2|FTO mono-overlayer type catalyst [J. Phys. Chem. C, 2014, 118, 26887]. To confirm the origin of the striking visible-light activity, we studied the electrocatalytic activity of CuO/mp-SnO2|FTO electrodes for the oxygen reduction reaction (ORR). Both the visible-light activity of Au/mp-TiO2|FTO|CuO/mp-SnO2 and the electrocatalytic activity of CuO/mp-SnO2|FTO for ORR strongly depend on the Γ value. A good positive correlation has been found between the visible-light activities and the electrocatalytic activity for ORR. The striking activity of the present bi-overlayer type catalyst can be attributed to the efficient and long-range charge separation by the vectorial electron transport (Au(oxidation sites) → TiO2→ FTO, SnO2→ CuO(reduction sites)) and the excellent electrocatalytic activity of the CuO clusters. PMID:26094620

  10. Influence of Al2O3 sol concentration on the microstructure and mechanical properties of Cu-Al2O3 composite coatings

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojin; Yang, Zhendi; Tang, Ying; Gao, Wei

    2015-03-01

    Copper (Cu) is widely used as electrical conducting and contacting material. However, Cu is soft and does not have good mechanical properties. In order to improve the hardness and wear resistance of Cu, sol-enhanced Cu-Al2O3 nanocomposite coatings were electroplated by adding a transparent Al oxide (Al2O3) sol into the traditional electroplating Cu solution. It was found that the microstructure and mechanical properties of the nanocomposite coatings were largely influenced by the Al2O3 sol concentration. The results show that the Al2O3 nanoparticle reinforced the composite coatings, resulting in significantly improved hardness and wear resistance in comparison with the pure Cu coatings. The coating prepared at the sol concentration of 3.93 mol/L had the best microhardness and wear resistance. The microhardness has been improved by 20% from 145.5 HV (Vickers hardness number) of pure Cu coating to 173.3 HV of Cu-Al2O3 composite coatings. The wear resistance was also improved by 84%, with the wear volume loss dropped from 3.2 × 10-3 mm3 of Cu coating to 0.52 × 10-3 mm3 of composite coatings. Adding excessive sol to the electrolyte deteriorated the properties.

  11. Measurement of electron capture from e+-e- pair production by 0.956 GeV/u U92+ on Au, Ag, Cu, and Mylar targets

    NASA Astrophysics Data System (ADS)

    Belkacem, A.; Gould, Harvey; Feinberg, B.; Bossingham, R.; Meyerhof, W. E.

    1993-12-01

    We describe the first experimental observation of electron capture from electron-positron pair production in relativistic heavy ion collisions. We have used a novel new spectrometer to make the measurement of the cross section for a 0.956 GeV/u U92+ beam produced at the BEVALAC facility at LBL on Au, Ag, Cu, and Mylar targets. We also measured the energy and angular distribution of the positrons for the Au target. The total cross section for a Au target is measured to be 2.19 (0.25) barns for capture from pair production and 3.30 (0.65) barns for pair production without capture.

  12. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-08-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  13. The fabricability and corrosion resistance of several Al-Cu-Li aerospace alloys

    SciTech Connect

    Walsh, D.W.; Danford, M.; Sanders, J.

    1996-12-31

    Al-Li-Cu alloys are attractive to the aerospace industry. The high specific strength and stiffness of these alloys will improve lift efficiency, fuel economy, performance and increase payload capabilities. The objectives of this study were to measure the fabricability of Al 2195 (Al-4Cu-1Li) and to assess the effect of welding on corrosion behavior. Al 2219 samples were used in parallel tests to provide a baseline for the data generated. In this study samples were exposed to 3.5% NaCl and mild corrosive water solutions in both the as received and as welded conditions. Fabricability was assessed using Gleeble testing, Varestraint testing and differential scanning calorimetry (DSC). Results indicate that Alloy 2195 is much more susceptible to hot cracking than Al 2219, and that cracking sensitivity is a strong function of chemical composition within specification ranges for Al 2195. Furthermore, for base metal samples, corrosion in mild corrosive water was more severe than corrosion in salt water. In addition, welding increases the corrosion rate in Al 2195 and 2219, and causes severe localization in Al 2195. Furthermore, autogenously welded Al 2195 samples were more susceptible to attack than heterogeneously welded Al 2195 samples and autogenously welded Al2219 samples were less susceptible to corrosion than autogenously welded Al 2195 samples. Heterogeneously welded samples in both materials had high corrosion rates, but only the Al 2195 material was subject to localization of attack. The partially melted zones of Al 2195 samples were subject to severe, focused attack. In all cases, interdendritic constituents in welded areas and intergranular constituents in base material were cathodic to the Al rich matrix materials. Fabricability and corrosion resistance were correlated to material microstructure using optical microscopy, scanning electron microscopy, electron probe microanalysis, polarization resistance and environmental scanning electron microscopy.

  14. Embedded-atom-method effective-pair-interaction study of the structural and thermodynamic properties of Cu-Ni, Cu-Ag, and Au-Ni solid solutions

    SciTech Connect

    Asta, M.; Foiles, S.M.

    1996-02-01

    The structural and thermodynamic properties of Cu-Ni, Cu-Ag, and Au-Ni solid solutions have been studied using a computational approach which combines an embedded-atom-method (EAM) description of alloy energetics with a second-order-expansion (SOE) treatment of compositional and displacive disorder. It is discussed in detail how the SOE approach allows the EAM expression for the energy of a substitutional alloy to be cast in the form of a generalized lattice-gas Hamiltonian containing effective pair interactions with arbitrary range. Furthermore, we show how the SOE-EAM method can be combined with either mean-field or Monte Carlo statistical mechanics techniques in order to calculate short-range-order (SRO) parameters, average nearest-neighbor bond lengths, and alloy thermodynamic properties which include contributions from static displacive relaxations and dynamic atomic vibrations. We demonstrate that the contributions to alloy heats of mixing arising from displacive relaxations can be sizeable, and that the neglect of these terms can lead to large overestimations of calculated phase-transition temperatures. The effects of vibrational free-energy contributions on the results of composition-temperature phase diagram calculations are estimated to be relatively small for the phase-separating alloy systems considered in this study. It is shown that within the SOE approach displacive effects can act only to displace the peak in the Fourier-transformed SRO parameter away from Brillouin-zone-boundary special points and towards the origin. Consistent with this result, we show that the unusual SRO observed in diffuse scattering experiments for Au-Ni solid solutions can be understood as arising from a competition between chemical and displacive driving forces which favor ordering and clustering, respectively. {copyright} {ital 1996 The American Physical Society.}

  15. Composition dependence of superconductivity in YBa2(Cu(3-x)Al(x))Oy

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1991-01-01

    Eleven different compositions in the system YBa2(Cu(3-x)Al(x))O(y) (x = 0 to 0.3) have been synthesized and characterized by electrical resistivity measurements, powder x-ray diffraction, and scanning electron microscopy. The superconducting transition temperature T sub c (onset) was almost unaffected by the presence of alumina due to its limited solubility in YBa2Cu3O(7-x). However, T sub c(R = 0) gradually decreased, and the resistive tails became longer with increasing Al2O3 concentration. This was probably due to formation of BaAl2O4 and other impurity phases from chemical decomposition of the superconducting phase by reaction with Al2O3.

  16. Composition dependence of superconductivity in YBa2(Cu(3-x)Al(x))O(y)

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.

    1993-01-01

    Eleven different compositions in the system YBa2(Cu(3-x)Al(x))O(y) (x = 0 to 0.3) have been synthesized and characterized by electrical resistivity measurements, powder X-ray diffraction, and scanning electron microscopy. The superconducting transition temperature T sub c (onset) was almost unaffected by the presence of alumina due to its limited solubility in YBa2Cu3O(7-x). However, T sub c(R = 0) gradually decreased, and the resistive tails became longer with increasing Al2O3 concentration. This was probably due to formation of BaAl2O4 and other impurity phases from chemical decomposition of the superconducting phase by reaction with Al2O3.

  17. Microstructural evolution in Al-Zn-Mg-Cu-Sc-Zr alloys during short-time homogenization

    NASA Astrophysics Data System (ADS)

    Liu, Tao; He, Chun-nian; Li, Gen; Meng, Xin; Shi, Chun-sheng; Zhao, Nai-qin

    2015-05-01

    Microstructural evolution in a new kind of aluminum (Al) alloy with the chemical composition of Al-8.82Zn-2.08Mg-0.80Cu-0.31Sc-0.3Zr was investigated. It is found that the secondary phase MgZn2 is completely dissolved into the matrix during a short homogenization treatment (470°C, 1 h), while the primary phase Al3(Sc,Zr) remains stable. This is due to Sc and Zr additions into the Al alloy, high Zn/Mg mass ratio, and low Cu content. The experimental findings fit well with the results calculated by the homogenization diffusion kinetics equation. The alloy shows an excellent mechanical performance after the short homogenization process followed by hot-extrusion and T6 treatment. Consequently, a good combination of low energy consumption and favorable mechanical properties is obtained.

  18. Zero-point entropy of the spinel spin glasses CuGa2O4 and CuAl2O4

    NASA Astrophysics Data System (ADS)

    Fenner, L. A.; Wills, A. S.; Bramwell, S. T.; Dahlberg, M.; Schiffer, P.

    2009-01-01

    The zero-point entropy of a spin glass is a difficult property to experimentally determine and interpret. Spin glass theory provides various predictions, including unphysical ones, for the value of the zero-point entropy, however experimental results have been lacking. We have investigated the magnetic properties and zero-point entropy of two spinel Cu2+ based spin glasses, CuGa2O4 and CuAl2O4. Dc- and ac-susceptibility and specific heat measurements show many characteristic spin glass features for both materials. The spin glass freezing temperature is determined to be Tf = 2.89 ± 0.05 K for CuGa2O4 and Tf = 2.30 ± 0.05 K for CuAl2O4. By integrating the specific heat data we have found that CuGa2O4 and CuAl2O4 have zero-point entropies of S0 = 4.96 JK-1mol-1 and S0 = 4.76 JK-1mol-1 respectively. These values are closest to the prediction for a Sherrington-Kirkpatrick XY spin glass, however they are notably higher than all of the theoretical predictions. This indicates that CuGa2O4 and CuAl2O4 have a greater degeneracy in their ground states than any of the spin glass models.

  19. Plane wave density functional molecular dynamics study of exothermic reactions of Al/CuO thermites

    NASA Astrophysics Data System (ADS)

    Oloriegbe, Suleiman; Sewell, Thomas; Chen, Zhen; Jiang, Shan; Gan, Yong

    2014-03-01

    Exothermic reactions between nanosize aluminum (Al) and copper oxide (CuO) structures are of current interest because of their high reaction enthalpy and energy density which exceed those of traditional monomolecular energetic compounds such as TNT, RDX, and HMX. In this work, molecular dynamics simulations with forces obtained from plane wave density functional theory are used to investigate the atomic-scale and electronic processes that occur during the fast thermite reactions between Al and CuO nanostructures under adiabatic conditions. Aluminum surfaces in contact with O-exposed and Cu-exposed CuO surfaces are studied. Starting from initial temperature T = 800 K, we have observed: faster chemical reaction at the oxygen-rich interface during the initial 0.5 ps, linear temperature rise, and fast oxygen diffusion into the Al region with the rate 1.87 X 10-3 cm2/s. The density-derived electrostatic and chemical method is used to evaluate the net atomic charges and charge transfer during the important redox processes. High charge density around the oxygen-exposed interface may be responsible for the faster initial reactions at that interface. The overall reaction rate, determined using the time evolution of Cu-O charge orbital overlap population, is approximately first order.

  20. Tunable thermodynamic stability of Au-CuPt core-shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations.

    PubMed

    Huang, Rao; Shao, Gui-Fang; Wen, Yu-Hua; Sun, Shi-Gang

    2014-11-01

    A microscopic understanding of the thermal stability of metallic core-shell nanoparticles is of importance for their synthesis and ultimately application in catalysis. In this article, molecular dynamics simulations have been employed to investigate the thermodynamic evolution of Au-CuPt core-shell trimetallic nanoparticles with various Cu/Pt ratios during heating processes. Our results show that the thermodynamic stability of these nanoparticles is remarkably enhanced upon rising Pt compositions in the CuPt shell. The melting of all the nanoparticles initiates at surface and gradually spreads into the core. Due to the lattice mismatch among Au, Cu and Pt, stacking faults have been observed in the shell and their numbers are associated with the Cu/Pt ratios. With the increasing temperature, they have reduced continuously for the Cu-dominated shell while more stacking faults have been produced for the Pt-dominated shell because of the significantly different thermal expansion coefficients of the three metals. Beyond the overall melting, all nanoparticles transform into a trimetallic mixing alloy coated by an Au-dominated surface. This work provides a fundamental perspective on the thermodynamic behaviors of trimetallic, even multimetallic, nanoparticles at the atomistic level, indicating that controlling the alloy composition is an effective strategy to realize tunable thermal stability of metallic nanocatalysts. PMID:25234428

  1. The influence of growth speed, orientation and environment on fracture of aligned Al-CuAl2

    NASA Technical Reports Server (NTRS)

    Skiff, P. K.; Stoloff, N. S.

    1977-01-01

    There has been considerable interest in the mechanical properties of aligned eutectics as functions of microstructure, orientation between reinforcement and stress axis, and temperature of testing. However, little is known about the behavior of these alloys in aggressive environments, such as liquid metals, with the exception of a recent paper on embrittlement of several eutectic alloys in gallium and gallium-indium alloys. This paper is concerned with the effects of a liquid Ga-16%In solution on tensile behavior of an aligned Al-CuAl2 eutectic.

  2. Phonons, nature of bonding, and their relation to anomalous thermal expansion behavior of M{sub 2}O (M = Au, Ag, Cu)

    SciTech Connect

    Gupta, M. K.; Mittal, R.; Chaplot, S. L.; Rols, S.

    2014-03-07

    We report a comparative study of the dynamics of Cu{sub 2}O, Ag{sub 2}O, and Au{sub 2}O (i.e., M{sub 2}O with M = Au, Ag, and Cu) using first principle calculations based on the density functional theory. Here, for the first time, we show that the nature of chemical bonding and open space in the unit cell are directly related to the magnitude of thermal expansion coefficient. A good match between the calculated phonon density of states and that derived from inelastic neutron scattering measurements is obtained for Cu{sub 2}O and Ag{sub 2}O. The calculated thermal expansions of Ag{sub 2}O and Cu{sub 2}O are negative, in agreement with available experimental data, while it is found to be positive for Au{sub 2}O. We identify the low energy phonon modes responsible for this anomalous thermal expansion. We further calculate the charge density in the three compounds and find that the magnitude of the ionic character of the Ag{sub 2}O, Cu{sub 2}O, and Au{sub 2}O crystals is in decreasing order, with an Au-O bond of covalent nature strongly rigidifying the Au{sub 4}O tetrahedral units. The nature of the chemical bonding is also found to be an important ingredient to understand the large shift of the phonon frequencies of these solids with pressure and temperature. In particular, the quartic component of the anharmonic term in the crystal potential is able to account for the temperature dependence of the phonon modes.

  3. Intergranular fracture in an Al-Li-Cu-Mg-Zr alloy

    SciTech Connect

    Wert, J.A.; Lumsden, J.B.

    1985-02-01

    The intergranular fracture characteristics of the Al-Li-Cu-Mg-Zr alloy is studied for underaged (170 C/4 hr) and overaged (230 C/4 hr) conditions. In addition, extensive intergranular fracture parallel to the tensile axis (delamination) in longitudinal tensile specimens is found together with equal concentration of K on all intergranular fracture surfaces independent of aging treatment. K is believed to promote intergranular fracture in Al-Li alloys similarly to a Na presence. 7 references.

  4. Plasticity-improved Zr-Cu-Al bulk metallic glass matrix composites containing martensite phase

    NASA Astrophysics Data System (ADS)

    Sun, Y. F.; Wei, B. C.; Wang, Y. R.; Li, W. H.; Cheung, T. L.; Shek, C. H.

    2005-08-01

    Zr48.5Cu46.5Al5 bulk metallic glass matrix composites with diameters of 3 and 4mm were produced through water-cooled copper mold casting. Micrometer-sized bcc based B2 structured CuZr phase containing martensite plate, together with some densely distributed nanocrystalline Zr2Cu and plate-like Cu10Zr7 compound, was found embedded in a glassy matrix. The microstructure formation strongly depends on the composition and cooling rate. Room temperature compression tests reveal significant strain hardening and plastic strains of 7.7% and 6.4% before failure are obtained for the 3-mm- and 4-mm-diam samples, respectively. The formation of the martensite phase is proposed to contribute to the strain hardening and plastic deformation of the materials.

  5. Microstructural Characterization and Mechanical Performance of Wafer-Level SLID Bonded Au-Sn and Cu-Sn Seal Rings for MEMS Encapsulation

    NASA Astrophysics Data System (ADS)

    Rautiainen, Antti; Xu, Hongbo; Österlund, Elmeri; Li, Jue; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2015-11-01

    Special applications, such as microelectromechanical systems (MEMS), often require hermetic sealing in order to achieve a desired operation. Solid-liquid interdiffusion (SLID) bonding is an attractive method for encapsulating MEMS devices at the wafer-level, providing, e.g., high re-melt temperatures and tolerance for topographical variations. Several different SLID bond solutions have been investigated; however, there are only a limited number of published reliability studies available. In this paper, wafer-level Au-Sn and Cu-Sn SLID seal rings were mechanically characterized with shear and tensile tests. The evolution of bond microstructures and consequent effects on mechanical reliability were evaluated with a mixed flow gas test, a high temperature storage test and a thermal shock (TS) test. Virgin samples showed high mechanical strength. The Au-Sn system, with a thin Ni layer between the TiW adhesion layer and the bond, demonstrated a shear strength of 170 MPa. Cu-Sn, with a Cu-Cu3Sn-Cu structure, exhibited a shear strength of 275 MPa. Statistically significant decreases in strength were identified after reliability tests. The shear strength of the Au-Sn bond with an (AuSn + Au5Sn)eut structure decreased 40% in a corrosive environment. After 3000 TS cycles, the tensile strength of the Cu-Sn bond reduced by 45%. Fracture surface analysis revealed through-bond failures that were not observed previously. In cross-sectional analysis, vertical cracks were observed, which may contribute to the decrease in tensile strength.

  6. Au on MgAl2O4 spinels: The effect of support surface properties in glycerol oxidation

    SciTech Connect

    Villa, Alberto; Gaiassi, Aureliano; Rossetti, Ilenia; Bianchi, Claudia; van Benthem, Klaus; Veith, Gabriel M; Prati, Laura

    2010-01-01

    Here we investigated the properties of Au nanoparticles, prepared via three different techniques and supported on three different MgAl2O4 spinels. The surface composition and area of the spinel plays an important role in determining the selectivity of the catalyst in the selective oxidation of glycerol. it was found that aluminum rich surfaces enhance the C-C bond cleavage reaction for large gold particles which is opposite of what is normally observed for large clusters which typically show no C-C cleavage. We also report that similarly sized AuNPs on the different MgAl2O4 spinels with the same surface Al/Mg ratio, show a similar selectivity; however activity depends on surface area.

  7. A DFT study on CO oxidation catalyzed by subnanometer AlCu n ( n = 1-3) clusters

    NASA Astrophysics Data System (ADS)

    Dong, Xiaona; Guo, Ling; Wen, Caixia; Ren, Ningning; Niu, Shuangshu

    2014-07-01

    Through the first-principle density-functional theory (DFT) calculations, we have made an exhaustive study of the mechanism of CO oxidation catalyzed by AlCu n ( n = 1-3) clusters on gas phase. It is shown that mixing two different metals (Al and Cu) can have beneficial effects on the catalytic activity than monometallic Cu n + 1 ( n = 1-3) cluster toward the reaction of CO oxidation and the alloyed AlCu3 cluster is proposed as the best effective nanocatalysts.

  8. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    NASA Astrophysics Data System (ADS)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  9. X-ray imaging and controlled solidification of Al-Cu alloys toward microstructures by design

    DOE PAGESBeta

    Clarke, Amy J.; Tourret, Damien; Imhoff, Seth D.; Gibbs, Paul J.; Fezzaa, Kamel; Cooley, Jason C.; Lee, Wah -Keat; Deriy, Alex; Patterson, Brian M.; Papin, Pallas A.; et al

    2015-01-30

    X-ray imaging, which permits the microscopic visualization of metal alloy solidification dynamics, can be coupled with controlled solidification to create microstructures by design. This x-ray image shows a process-derived composite microstructure being made from a eutectic Al-17.1 at.%Cu alloy by successive solidification and remelting steps.

  10. Effects of Li content on precipitation in Al-Cu-(Li)-Mg-Ag-Zr alloys

    SciTech Connect

    Huang, B.P.; Zheng, Z.Q.

    1998-01-06

    Although much attention has been paid to Al-Cu-Li-Mg-Ag-Zr alloys, there are sparse reports about the influence of Li on precipitation in these alloys. The aim of the present study is to determine the effects of Li on modifying precipitation in a baseline aluminum alloy 2195 and the accompanying variants with 0--1.6 wt.% Li.

  11. A basin-hopping Monte Carlo investigation of the structural and energetic properties of 55- and 561-atom bimetallic nanoclusters: the examples of the ZrCu, ZrAl, and CuAl systems

    NASA Astrophysics Data System (ADS)

    De Souza, Douglas G.; Cezar, Henrique M.; Rondina, Gustavo G.; de Oliveira, Marcelo F.; Da Silva, Juarez L. F.

    2016-05-01

    We report a basin-hopping Monte Carlo investigation within the embedded-atom method of the structural and energetic properties of bimetallic ZrCu, ZrAl, and CuAl nanoclusters with 55 and 561 atoms. We found that unary Zr55, Zr561, Cu55, Cu561, Al55, and Al561 systems adopt the well known compact icosahedron (ICO) structure. The excess energy is negative for all systems and compositions, which indicates an energetic preference for the mixing of both chemical species. The ICO structure is preserved if a few atoms of the host system are replaced by different species, however, the composition limit in which the ICO structure is preserved depends on both the host and new chemical species. Using several structural analyses, three classes of structures, namely ideal ICO, nearly ICO, and distorted ICO structures, were identified. As the amounts of both chemical species change towards a more balanced composition, configurations far from the ICO structure arise and the dominant structures are nearly spherical, which indicates a strong minimization of the surface energy by decreasing the number of atoms with lower coordination on the surface. The average bond lengths follow Vegard’s law almost exactly for ZrCu and ZrAl, however, this is not the case for CuAl. Furthermore, the radial distribution allowed us to identify the presence of an onion-like behavior in the surface of the 561-atom CuAl nanocluster with the Al atoms located in the outermost surface shell, which can be explained by the lower surface energies of the Al surfaces compared with the Cu surfaces. In ZrCu and ZrAl the radial distribution indicates a nearly homogeneous distribution for the chemical species, however, with a slightly higher concentration of Al atoms on the ZrAl surface, which can also be explained by the lower surface energy.

  12. A basin-hopping Monte Carlo investigation of the structural and energetic properties of 55- and 561-atom bimetallic nanoclusters: the examples of the ZrCu, ZrAl, and CuAl systems.

    PubMed

    De Souza, Douglas G; Cezar, Henrique M; Rondina, Gustavo G; de Oliveira, Marcelo F; Da Silva, Juarez L F

    2016-05-01

    We report a basin-hopping Monte Carlo investigation within the embedded-atom method of the structural and energetic properties of bimetallic ZrCu, ZrAl, and CuAl nanoclusters with 55 and 561 atoms. We found that unary Zr55, Zr561, Cu55, Cu561, Al55, and Al561 systems adopt the well known compact icosahedron (ICO) structure. The excess energy is negative for all systems and compositions, which indicates an energetic preference for the mixing of both chemical species. The ICO structure is preserved if a few atoms of the host system are replaced by different species, however, the composition limit in which the ICO structure is preserved depends on both the host and new chemical species. Using several structural analyses, three classes of structures, namely ideal ICO, nearly ICO, and distorted ICO structures, were identified. As the amounts of both chemical species change towards a more balanced composition, configurations far from the ICO structure arise and the dominant structures are nearly spherical, which indicates a strong minimization of the surface energy by decreasing the number of atoms with lower coordination on the surface. The average bond lengths follow Vegard's law almost exactly for ZrCu and ZrAl, however, this is not the case for CuAl. Furthermore, the radial distribution allowed us to identify the presence of an onion-like behavior in the surface of the 561-atom CuAl nanocluster with the Al atoms located in the outermost surface shell, which can be explained by the lower surface energies of the Al surfaces compared with the Cu surfaces. In ZrCu and ZrAl the radial distribution indicates a nearly homogeneous distribution for the chemical species, however, with a slightly higher concentration of Al atoms on the ZrAl surface, which can also be explained by the lower surface energy. PMID:27045947

  13. Solidification Paths and Phase Components at High Temperatures of High-Zn Al-Zn-Mg-Cu Alloys with Different Mg and Cu Contents

    NASA Astrophysics Data System (ADS)

    Shu, W. X.; Hou, L. G.; Liu, J. C.; Zhang, C.; Zhang, F.; Liu, J. T.; Zhuang, L. Z.; Zhang, J. S.

    2015-11-01

    Studies were carried out systematically on a series of Al-8.5 wt pct Zn- xMg- yCu alloys ( x is about 1.5, 2.0, and 2.5 wt pct, and y is about 1.5, 2.0, 2.5, and 2.9 wt pct). The effects of alloying elements Mg and Cu on the microstructures of as-cast and homogenized alloys were investigated using the computational/experimental approach. It shows that Mg(Zn,Al,Cu)2 ( σ) phase can exist in all the as-cast alloys without any observable Mg32(Al,Zn)49/Al2Mg3Zn3 ( T) or Al2CuMg ( S) phase, whereas Al2Cu ( θ) phase is prone to exist in the alloys with low Mg and high Cu contents. Thermodynamic calculation shows that the real solidification paths of the designed alloys fall in between the Scheil and the equilibrium conditions, and close to the former. After the long-time homogenization [733 K (460 °C)/168 hours] and the two-step homogenization [733 K (460 °C)/24 hours + 748 K (475 °C)/24 hours], the phase components of the designed alloys are generally consistent with the calculated phase diagrams. At 733 K (460 °C), the phase components in the thermodynamic equilibrium state are greatly influenced by Mg content, and the alloys with low Mg content are more likely to be in single-Al phase field even if the alloys contain high Cu content. At 748 K (475 °C), the dissolution of the second phases is more effective, and the phase components in the thermodynamic equilibrium state are dominated primarily by (Mg + Cu) content, except the alloys with (Mg + Cu) ≳ 4.35 wt pct, all designed alloys are in single-Al phase field.

  14. A comparative study on shock compression of nanocrystalline Al and Cu: Shock profiles and microscopic views of plasticity

    SciTech Connect

    Ma, Wen; Hou, Yong; Zhu, Wenjun

    2013-10-28

    Shock compressions of nanocrystalline (nc) metals Al and Cu with the same grain size and texture are studied by using molecular dynamics simulations. Results have revealed that the shock front of both Al and Cu can be divided into three stages: elastic, grain-boundary-mediated, and dislocation-mediated plastic deformation. The transition planes among these three stages are proven to be non-planar by two-dimensional shock response analysis, including local stress, shear, temperature, and atom configuration. The difference between shocked Al and Cu is that the rise rate of the elastic stage of Cu is slightly higher than that of Al, and that the shock-front width of Al is wider than Cu at the same loading conditions. For the plastic stage, the dislocation density of shocked Al is lower than Cu, and the contribution of grain-boundary-mediated plasticity to shock front and strain for nc Al is more pronounced than for nc Cu. These results are explained through intrinsic material properties and atomistic analysis of the plastic process. In the case of the shocked Al sample, partial dislocations, perfect dislocations, and twins are observed, but few evidence of perfect dislocations and twins are observed in the shocked Cu.

  15. Influence of temperature on Al/p-CuInAlSe2 thin-film Schottky diodes

    NASA Astrophysics Data System (ADS)

    Parihar, Usha; Ray, Jaymin; Panchal, C. J.; Padha, Naresh

    2016-06-01

    Al/p-CuInAlSe2 Schottky diodes were fabricated using the optimized thin layers of CuInAlSe2 semiconductor. These diodes were used to study their temperature-dependent current-voltage (I-V) and capacitance-voltage (C-V) analysis over a wide range of 233-353 K. Based on these measurements, diode parameters such as ideality factor ( η), barrier height (ϕbo) and series resistance ( R s) were determined from the downward curvature of I-V characteristics using Cheung and Cheung method. The extracted parameters were found to be strongly temperature dependent; ϕbo increases, while η and R s decrease with increasing temperature. This behavior of ϕbo and η with change in temperature has been explained on the basis of barrier inhomogeneities over the MS interface by assuming a Gaussian distribution (GD) of the ϕbo at the interface. GD of barrier height (BH) was confirmed from apparent BH (ϕap) versus q/2 kT plot, and the values of the mean BH and standard deviation (σs) obtained from this plot at zero bias were found to be 1.02 and 0.14 eV, respectively. Also, a modified ln ( {J_{{s}} /T2 } ) - q2 σ_{{s}}2 /2k2 T2 versus q/ kT plot for Al/p-CuInAlSe2 Schottky diodes according to the GD gives ϕbo and Richardson constant ( A ** ) as 1.01 eV and 26 Acm-2 K-2, respectively. The Richardson constant value of 26 Acm-2 K-2 is very close to the theoretical value of 30 Acm-2 K-2. The discrepancy between BHs obtained from I-V and C-V measurements has also been interpreted.

  16. Vapor-liquid-solid growth route to AlN nanowires on Au-coated Si substrate by direct nitridation of Al powder

    NASA Astrophysics Data System (ADS)

    Yu, Leshu; Lv, Yingying; Zhang, Xiaolan; Zhang, Yiyue; Zou, Ruyi; Zhang, Fan

    2011-11-01

    In the past several decades vapor-liquid-solid (VLS) growth mechanism has been used for constructing one dimensional (1D) AlN nanostructures though the clear observation of metallic catalyst particles on top of individual 1D nanostructure is rare. Using Au thin film on Si substrate as metallic catalyst, fine AlN nanowires were grown through the nitridation of Al powder in this study. The systematic characterizations including scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) have confirmed the existence of metallic catalyst particles on the top of each AlN nanowire. Therefore the AlN nanowires growth is indeed accomplished via VLS process. The VLS-generated conditions including thickness of Au film and reaction temperature were also explored for the growth of AlN nanowires. Incidentally some other AlN nanostructures such as faceted cross-sectional nanorods, nanobelt and nanocomb were also obtained via vapor-solid growth mechanism on the Si substrate.

  17. Development of Cu alloy anode and separator coated with Al-Ni intermetallic compound

    SciTech Connect

    Toyokura, K.; Hoshino, K.; Yamamoto, M.

    1996-12-31

    Anode made of Cu alloy and separator coated with Al-Ni intermetallic compound have been developed for VCFC. Anode of Ni alloy is usually used. However, the alternative of cost lower than Ni alloy anode should be needed, because Ni is expensive. Cu is attractive as an anode material for VCFC because it is inexpensive and electrochemically noble. However, the creep resistance of Cu is not sufficient, compared with Ni alloy. In this study, strengthening due to oxide-dispersed microstructure has been developed in Cu-Ni-Al alloy with the two-step sintering process. A wet-seal technique has been widely applied for gas-sealing and supporting of electrolyte in MCFC. Since the wet-seal area is exposed to a severe corrosive environment, corrosion resistance of material for wet sealing is related with the cell performance. Al-Ni plating with post-heat treating for stainless steel has been investigated. Stainless steel substrate was plated with Al after being coated with Ni, then heat-treated at 750 {degrees}C for 1 hour in Ar gas atmosphere. Due to the treatment, Al-Ni intermetallic compound ( mainly Al3Ni2 ) layer is formed on stainless steel surface. The long-term immersion test was carried out till 14,500 hours in 62 mol% Li{sub 2}CO{sub 3}-38 mol% K{sub 2}CO{sub 3} at 650 {degrees}C under air-30%CO{sub 2} atmosphere, for the purpose of evaluating the corrosion resistance and thermal stability of Al-Ni intermetallic compound layer in actual generating with VCFC.

  18. Radiation effects in multilayer ohmic contacts Au-Ti-Al-Ti-n-GaN

    SciTech Connect

    Belyaev, A. E.; Boltovets, N. S.; Ivanov, V. N.; Kapitanchuk, L. M.; Konakova, R. V. Kudryk, Ya. Ya.; Lytvyn, O. S.; Milenin, V. V.; Sheremet, V. N.; Sveshnikov, Yu. N.

    2009-07-15

    Radiation effects in the Au-Ti-Al-Ti-n-GaN multilayer metallization subjected to irradiation with {sup 60}Co {gamma}-ray photons in the dose range 4 x 10{sup 6}-2 x 10{sup 7} Gy are considered, and the effect of radiation on the initial contact structures and the structures subjected to a rapid thermal annealing (RTA) at high-temperature in the nitrogen atmosphere is studied. Irradiation does not significantly affect the properties of structures that were not subjected to the heat treatment. An RTA at 700 deg. C brings about a deterioration of the contact-layer morphology. The morphological and structural transformations in the contact metallization due to the RTA are enhanced by irradiation with {gamma}-ray photons. The combined radiation-thermal treatment is conducive to the mass transfer between contacting layers. In addition, after {gamma}-ray irradiation with the dose of 2 x 10{sup 7} Gy, the oxygen-impurity atoms appear over the entire contact's structure and are observed in a large amount in the near-contact GaN region.

  19. Interaction of SO2 with Cu/TiC(001) and Au/TiC(001): Towards a New Family of DeSOx Catalysts

    SciTech Connect

    Rodriguez, J.A.; Feria, L.; Jirsak, T.; Illas, F.

    2011-04-25

    Experiments carried out under well-controlled conditions and density functional theory (DFT)-based calculations evidence that Cu and Au nanoparticles supported on a TiC(0 0 1) surface are quite active for the dissociation of the SO{sub 2} molecule. The Cu/TiC(0 0 1) and Au/TiC(0 0 1) systems cleave both S-O bonds of SO{sub 2} at a temperature of 150 K, displaying a reactivity much larger than that of TiC(0 0 1) or extended surfaces of bulk copper and gold. The origin of the high activity of the Cu/TiC(0 0 1) and Au/TiC(0 0 1) systems lies on the interaction between the C atoms of the substrate and the metal atoms of the supported particle, which results in a large polarization of its electron density. Experiments and theory consistently indicate that the Cu/TiC system is more active toward SO{sub 2} dissociation than the Au/TiC system. This type of systems may provide alternative and efficient DeSO{sub x} catalysts.

  20. Integration of Kinetic Control and Lattice Mismatch To Synthesize Pd@AuCu Core-Shell Planar Tetrapods with Size-Dependent Optical Properties.

    PubMed

    Meng, Min; Fang, Zhicheng; Zhang, Chao; Su, Hongyang; He, Rong; Zhang, Renpeng; Li, Hongliang; Li, Zhi-Yuan; Wu, Xiaojun; Ma, Chao; Zeng, Jie

    2016-05-11

    Planar nanocrystals with multiple branches exhibit unique localized surface plasmon resonance properties and great promise in optical applications. Here, we report an aqueous synthesis of Pd@AuCu core-shell planar tetrapods through preferential overgrowth on Pd cubic seeds. The large lattice mismatch between the Pd core and the AuCu shell is the key to induce the formation of branches under sluggish reduction kinetics. Meanwhile, the capping effect of cetyltrimethylammonium chloride on the {100} facets of Pd cubes with an aspect ratio of 1.2 can determine the growth direction of AuCu branches to form a planar structure. Through simply varying the amounts of Pd cubic seeds, the sizes of products can be well-controlled in the range from 33 to 70 nm. With the manipulation of sizes, the peak position of in-plane dipole resonance can be adjusted from visible to near-infrared region. Due to the presence of tips and edges in the branches, planar tetrapods exhibited excellent surface-enhanced Raman scattering performance with an enhancement factor up to 9.0 × 10(3) for 70 nm Pd@AuCu planar tetrapods. PMID:27074129

  1. Ullmann coupling reaction of aryl chlorides on Au(111) using dosed Cu as a catalyst and the programmed growth of 2D covalent organic frameworks.

    PubMed

    Shi, Ke Ji; Zhang, Xin; Shu, Chen Hui; Li, Deng Yuan; Wu, Xin Yan; Liu, Pei Nian

    2016-07-01

    The efficiency of Ullmann reaction of aryl chlorides on an Au(111) surface has been substantially increased by using dosed Cu as a catalyst. The different reactivity of aryl bromides and aryl chlorides has been exploited to design a programmed, on-surface synthesis to form 2D covalent organic frameworks. PMID:27334002

  2. Ni, Cu, Au, and platinum-group element contents of sulphides associated with intraplate magmatism: A synthesis

    USGS Publications Warehouse

    Barnes, S.-J.; Zientek, M.L.; Severson, M.J.

    1997-01-01

    The tectonic setting of intraplate magmas, typically a plume intersecting a rift, is ideal for the development of Ni - Cu - platinum-group element-bearing sulphides. The plume transports metal-rich magmas close to the mantle - crust boundary. The interaction of the rift and plume permits rapid transport of the magma into the crust, thus ensuring that no sulphides are lost from the magma en route to the crust. The rift may contain sediments which could provide the sulphur necessary to bring about sulphide saturation in the magmas. The plume provides large volumes of mafic magma; thus any sulphides that form can collect metals from a large volume of magma and consequently the sulphides will be metal rich. The large volume of magma provides sufficient heat to release large quantities of S from the crust, thus providing sufficient S to form a large sulphide deposit. The composition of the sulphides varies on a number of scales: (i) there is a variation between geographic areas, in which sulphides from the Noril'sk - Talnakh area are the richest in metals and those from the Muskox intrusion are poorest in metals; (ii) there is a variation between textural types of sulphides, in which disseminated sulphides are generally richer in metals than the associated massive and matrix sulphides; and (iii) the massive and matrix sulphides show a much wider range of compositions than the disseminated sulphides, and on the basis of their Ni/Cu ratio the massive and matrix sulphides can be divided into Cu rich and Fe rich. The Cu-rich sulphides are also enriched in Pt, Pd, and Au; in contrast, the Fe-rich sulphides are enriched in Fe, Os, Ir, Ru, and Rh. Nickel concentrations are similar in both. Differences in the composition between the sulphides from different areas may be attributed to a combination of differences in composition of the silicate magma from which the sulphides segregated and differences in the ratio of silicate to sulphide liquid (R factors). The higher metal

  3. USGS exploration geochemistry studies at the Pebble porphyry Cu-Au-Mo deposit, Alaska-pdf of presentation

    USGS Publications Warehouse

    Eppinger, Robert G.; Kelley, Karen D.; Fey, David L.; Giles, Stuart A.; Minsley, Burke J.; Smith, Steven M.

    2010-01-01

    From 2007 through 2010, scientists in the U.S. Geological Survey (USGS) have been conducting exploration-oriented geochemical and geophysical studies in the region surrounding the giant Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska. The Cretaceous Pebble deposit is concealed under tundra, glacial till, and Tertiary cover rocks, and is undisturbed except for numerous exploration drill holes. These USGS studies are part of a nation-wide research project on evaluating and detecting concealed mineral resources. This report focuses on exploration geochemistry and comprises illustrations and associated notes that were presented as a case study in a workshop on this topic. The workshop, organized by L.G. Closs and R. Glanzman, is called 'Geochemistry in Mineral Exploration and Development,' presented by the Society of Economic Geologists at a technical conference entitled 'The Challenge of Finding New Mineral Resources: Global Metallogeny, Integrative Exploration and New Discoveries,' held at Keystone, Colorado, October 2-5, 2010.

  4. The role of magnetism in the formation of the two-phase miscibility gap in β Cu-Al-Mn

    NASA Astrophysics Data System (ADS)

    Lanzini, Fernando; Alés, Alejandro

    2015-12-01

    A theoretical study of the ground state properties of alloys with compositions along the pseudobinary line Cu3Al-Cu2AlMn is presented. Cohesive energies, lattice parameters and magnetic moments of the two limiting compounds and three intermediate compositions are calculated by means of density functional theory. In order to evaluate the role of magnetism, both the spin-polarized (SP) and the non spin-polarized (NSP) cases have been considered. It is shown that magnetism plays a central role on the stabilization of the L21 crystal structure in Cu2AlMn, and in the formation of the miscibility gap in Cu3Al-Cu2AlMn. The considerable lattice mismatch between the end compounds can be attributed also to magnetic effects.

  5. Devonian and carboniferous arcs of the oyu tolgoi porphyry Cu-Au district, South Gobi region, Mongolia

    USGS Publications Warehouse

    Wainwright, A.J.; Tosdal, R.M.; Forster, C.N.; Kirwin, D.J.; Lewis, P.D.; Wooden, J.L.

    2011-01-01

    The Central Asian orogenic belt consists of microcontinental blocks and mobile belts positioned between the Siberian craton and the Tarim and North China cratons. Extending across Asia for 5000 km, the belt consists of terranes that decrease in age southward away from the Siberian craton. A time-stratigraphic-structural sequence for the rocks is critical to defining the tectonic evolution of the belt. In the Oyu Tolgoi area of the South Gobi Desert (Mongolia), Devonian and Carboniferous rocks record the construction of multiple arcs, formation of a giant porphyry Cu-Au system, exhumation, and polyphase deformation. The oldest rocks are basaltic volcanic and subvolcanic rocks of the Devonian Alagbayan Group intruded by Late Devonian quartz monzodiorite stocks and dikes, which host giant porphyry Cu-Au deposits. The rocks were exhumed, overlain by pyroclastic rocks, and then tectonically buried by marine mafic supracrustal rocks prior to the youngest Devonian granodiorite intrusions. The postmineral Carboniferous Gurvankharaat Group unconformably overlying the deformed terrane consists of effusive, pyroclastic, subvolcanic and volcaniclastic rocks, as well as sedimentary units. The supracrustal rocks underwent polyphase shortening after 330 Ma and prior to 290 Ma. Variations in stratigraphic sequences suggest that the region is underlain by a submarine arc that became emergent during the Upper Devonian and remained subaerial to shallow subaqueous through much of the Carboniferous. Xenocrystic zircons in igneous rocks suggest that the offshore arcs were sufficiently close to ancient crust to have interacted with detritus shed into marine basins, most likely from the Siberian craton and fringing early Paleozoic terranes. ?? 2011 Geological Society of America.

  6. Structural stability of the icosahedral AlCuFe quasicrystal under high-pressure and high-temperature

    NASA Astrophysics Data System (ADS)

    Takagi, S.; Kyono, A.; Nakamoto, Y.; Hirao, N.

    2015-12-01

    We report high-pressure and high-temperature in-situ X-ray diffraction study of icosahedral (i)-AlCuFe quasicrystal "icosahedrite" which is the first known naturally occurring quasicrystal mineral discovered in the Khatyrka meteorite. The i-AlCuFe quasicrystal was synthesized in laboratory from a powder mixture with an atomic ratio of Al : Cu : Fe = 65 : 20 : 15. The high-temperature and high-pressure X-ray diffraction experiments were performed using the laser-heated diamond anvil cell system installed at BL10XU, SPring-8, Japan. The i-AlCuFe showed a characteristic X-ray diffraction pattern of quasicrystal. With only compression, the diffraction patterns of the i-AlCuFe were continued until 75 GPa. At a pressure of 87 GPa two small new peaks occurred and then kept up to the maximum pressure of 104 GPa in the study. The results indicate that the pressure-induced structural phase transition of the i-AlCuFe occurs above 87 GPa, and the structure of the i-AlCuFe remains unchanged at least up to 75 GPa. Under simultaneously high pressure and high temperature, on the other hand, the i-AlCuFe was readily transformed to crystalline phase. It can be characterized by an irreversible transformation process. The structure of the i-AlCuFe is therefore more affected by thermal metamorphism than by pressure metamorphism. The present high-pressure and high-temperature experiments clearly revealed the thermal and pressure stability of the i-AlCuFe quasicrystal which may help to explain the formation of the naturally occurring quasicrystal in the solar system.

  7. Understanding the Composition and Reactivity of Au/Cu Electrocatalyst Nanoparticles in Solution Using Highly Accurate Reactive Potentials

    NASA Astrophysics Data System (ADS)

    Artrith, Nongnuch; Kolpak, Alexie

    2014-03-01

    The shape, size, and composition of catalyst nanoparticles can have a significant influence on their catalytic activity. Understanding such structure-reactivity relationships is crucial for the optimization of industrial catalysts and the design of novel catalysts with enhanced properties. In this work, we investigate the equilibrium shape and surface structure/composition of Au/Cu nanoparticles in solution, which have recently been shown to be stable and efficient catalysts for CO2 reduction. Using a combination of density functional theory calculations and large-scale Monte-Carlo and molecular dynamics simulations with reactive atomistic potentials, we determine how the nanoparticle shape, surface structure, and surface stoichiometry (i.e., fraction of Au at the surface relative to overall composition), evolve as a function of varying catalytic conditions. We discuss the effects of these changes on the surface electronic structure and binding energies of CO2, H2, and CH3OH. Our results emphasize the important relationships between catalytic environment (e.g., solvent effects), catalyst structure, and catalytic activity. We thank the Schlumberger Foundation Faculty for the Future for financial support. Computing time at XSEDE and NERSC clusters are gratefully acknowledged.

  8. Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro

    NASA Astrophysics Data System (ADS)

    Petrantoni, M.; Rossi, C.; Salvagnac, L.; Conédéra, V.; Estève, A.; Tenailleau, C.; Alphonse, P.; Chabal, Y. J.

    2010-10-01

    Multilayered Al/CuO thermite was deposited by a dc reactive magnetron sputtering method. Pure Al and Cu targets were used in argon-oxygen gas mixture plasma and with an oxygen partial pressure of 0.13 Pa. The process was designed to produce low stress (<50 MPa) multilayered nanoenergetic material, each layer being in the range of tens nanometer to one micron. The reaction temperature and heat of reaction were measured using differential scanning calorimetry and thermal analysis to compare nanostructured layered materials to microstructured materials. For the nanostructured multilayers, all the energy is released before the Al melting point. In the case of the microstructured samples at least 2/3 of the energy is released at higher temperatures, between 1036 and 1356 K.

  9. Scanning Tunneling Microscopy Studies of Surface Structures of Icosahedral Al-Cu-Fe Quasicrystals

    SciTech Connect

    Tanhong Cai

    2002-12-31

    Three papers are included in this dissertation. The first paper: ''Structural aspects of the fivefold quasicrystalline Al-Cu-Fe surface from STM and dynamical LEED studies'', is in press with ''Surface Science''. The second paper: ''An STM study of the atomic structure of the icosahedral Al-Cu-Fe fivefold surface'' is submitted to ''Physical Review B, Rapid Communication''. The third paper: ''Pseudomorphic starfish: arrangement of extrinsic metal atoms on a quasicrystalline substrate'' is submitted to ''Nature''. Following the third paper are general conclusions and appendices that document the published paper ''Structural aspects of the three-fold surface of icosahedral Al-Pd-Mn'' (appearing in volume 461, issue 1-3 of ''Surface Science'' on page L521-L527, 2000), the design as well as the specifications of the aluminum evaporator used in the aluminum deposition study in this dissertation, an extended discussion of the aluminum deposition on the quasicrystalline surface, and the STM database.

  10. Consistency in Al/CuPc/ n-Si Heterojunction Diode Parameters Extracted Using Different Techniques

    NASA Astrophysics Data System (ADS)

    Ullah, Irfan; Shah, Mutabar; Khan, Majid; Wahab, Fazal

    2016-02-01

    This paper reports fabrication and characterization of an Al/CuPc/ n-Si heterojunction diode. The heterojunction was fabricated by depositing the active organic semiconducting material copper phthalocyanine (CuPc) on the n-Si substrate using the thermal vacuum evaporation technique. Electrical characterization of the fabricated heterojunction was carried out at ambient conditions. Various diode parameters, such as the ideality factor ( n), barrier height (Φ_{{b}}), and series resistance ( R s), were extracted from the current-voltage ( I- V) characteristic curve. These parameters are consistent with techniques used by Cheung, Norde and Hernandez et al. Furthermore these parameters are consistent with capacitance-voltage (C-V) characterization method. The conduction mechanism at the interface of CuPc and n-Si was also investigated. The surface morphology of the CuPc film was studied using atomic force microscopy and scanning electron microscopy. The optical bandgap of the CuPc film was calculated from the absorption spectrum using Tauc's law.

  11. Effect of Surplus Phase on the Microstructure and Mechanical Properties in Al-Cu-Mg-Ag Alloys with High Cu/Mg Ratio

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofeng; Zhao, Yuguang; Wang, Xudong; Zhang, Ming; Ning, Yuheng

    2015-11-01

    In order to examine the effect of surplus phase on the microstructure and mechanical properties, different compositions with high Cu/Mg ratio of the T6-temper extruded Al-Cu-Mg-Ag alloys were studied in this investigation. The results show that the Al-5.6Cu-0.56Mg-0.4Ag alloy obtains superior mechanical properties at room temperature, while the yield strength of Al-6.3Cu-0.48Mg-0.4Ag alloy is 378 MPa at 200 °C, which is 200 MPa higher than that of Al-5.6Cu-0.56Mg-0.4Ag alloy. Although the excessive Cu content causes the slight strength loss and elongation decrease in the Al-6.3Cu-0.48Mg-0.4Ag alloy at room temperature, the surplus phases and recrystallized microstructure will play an effective role in strengthening the alloy at elevated temperature.

  12. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.

    PubMed

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2014-09-24

    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution. PMID:25185834

  13. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis

    NASA Astrophysics Data System (ADS)

    Bhogra, Meha; Ramamurty, U.; Waghmare, Umesh V.

    2014-09-01

    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 \\bar{1} 0] and [1 \\bar{2} 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF_{[1\\,\\bar{2}\\,1]}) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 \\bar{2} 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

  14. Au nanoparticles embedded at the interface of Al/4H-SiC Schottky contacts for current density enhancement

    NASA Astrophysics Data System (ADS)

    Gorji, Mohammad Saleh; Cheong, Kuan Yew

    2015-01-01

    Nanostructured contacts, comprised of nanoparticles (NPs) embedded at the interface of contact/semiconductor, offer a viable solution in modification of Schottky barrier height (SBH) in Schottky contacts. The successful performance of devices with such nanostructured contacts requires a feasible selection of NPs/contact material based on theoretical calculations and a cost effective and reproducible route for NPs deposition. Acidification of commercially available colloidal Au NPs solution by HF has been selected here as a simple bench-top technique for deposition of Au NPs on n- and p-type 4H-SiC substrates. Theoretical calculations based on the model of inhomogeneity in SBH (ISBH) were used to make a more appropriate selection of NPs type (Au) and size (5 and 10 nm, diameter) with respect to contact metal (Al). Al/Au NPs/SiC Schottky barrier diodes were then fabricated, and their electrical characteristics exhibited current density enhancement due to the SBH lowering. The source of SBH lowering was determined to be the local electric field enhancement due to NPs effect, which was further investigated using the models of ISBH and tunneling enhancement at triple interface.

  15. A micro-chip initiator with controlled combustion reactivity realized by integrating Al/CuO nanothermite composites on a microhotplate platform

    NASA Astrophysics Data System (ADS)

    Ahn, Ji Young; Kim, Sang Beom; Kim, Ji Hoon; Jang, Nam Su; Kim, Dae Hyun; Lee, Hyung Woo; Kim, Jong Man; Kim, Soo Hyung

    2016-01-01

    The interfacial contact area between the fuel and oxidizer components plays an important role in determining the combustion reactivity of nanothermite composites. In addition, the development of compact and reliable ignition methods can extend the applicability of nanothermite composites to various thermal engineering fields. In this study we report the development of a micro-chip initiator with controlled combustion reactivity using concepts usually applied to microelectromechanical systems (MEMS) and simple nanofabrication processes. The nanothermite composites fabricated in this study consisted of aluminum nanoparticles (Al NPs) as the fuel and copper oxide nanoparticles (CuO NPs) as the oxidizer accumulated on a silicon oxide substrate with a serpentine-shaped gold (Au) electrode. The micro-chip initiator rapidly ignited and exploded when minimal current was supplied. The effects of stacking structures of Al and CuO-based multilayers on the combustion properties were systematically investigated in terms of the pressurization rate, peak explosion time, and heat flow. Pressurization rates of 0.004-0.025 MPa μs-1 and heat flows of 2.0-3.8 kJ g-1 with a commonly fast response time of less than 20 ms could be achieved by simply changing the interfacial structures of the Al and CuO multilayers. The controllability of combustion reactivity of micro-chip initiator can be made for general nanothermite composites composed of Al and various metal oxides (e.g. Fe2O3, CuO, KMnO4, etc). The micro-chip initiator fabricated in this study was reliable, compact, and proved to be a versatile platform, exhibiting controlled combustion reactivity and fast response time, which could be used for various civilian and military thermal engineering applications, such as in initiators and propulsion, welding, and ordinance systems.

  16. Study of the effects of MeV Ag, Cu, Au, and Sn implantation on the optical properties of LiNbO3

    NASA Technical Reports Server (NTRS)

    Williams, E. K.; Ila, D.; Sarkisov, S.; Curley, M.; Poker, D. B.; Hensley, D. K.; Borel, C.

    1998-01-01

    The authors present the results of characterization of linear absorption and nonlinear refractive index of Au, Ag, Cu and Sn ion implantation into LiNbO3. Ag was implanted at 1.5 MeV to fluences of 2 to 17 x 17(exp 16)/sq cm at room temperature. Au and Cu were implanted to fluences of 5 to 20 x 10(exp 16)/sq cm at an energy of 2.0 MeV. Sn was implanted to a fluence of 1.6 x 10(exp 17)/sq cm at 160 kV. Optical absorption spectrometry indicated an absorption peak for the Au implanted samples after heat treatment at 1,000 C at approx. 620 nm. The Ag implanted samples absorption peaks shifted from approx. 450 nm before heat treatment to 550 nm after 500 C for 1h. Heat treatment at 800 C returned the Ag implanted crystals to a clear state. Cu nanocluster absorption peaks disappears at 500 C. No Sn clusters were observed by optical absorption or XRD. The size of the Ag and Au clusters as a function of heat treatment were determined from the absorption peaks. The Ag clusters did not change appreciably in size with heat treatment. The Au clusters increased from 3 to 9 nm diameter upon heat treatment at 1000 C. TEM analysis performed on a Au implanted crystal indicated the formation of Au nanocrystals with facets normal to the c-axis. Measurements of the nonlinear refractive indices were carried out using the Z-scan method with a tunable dye laser pumped by a frequency doubled mode-locked Nd:YAG laser. The dye laser had a 4.5 ps pulse duration time and 76 MHz pulse repetition rate (575 nm).

  17. First-principles generalized gradient approximation + U study of cubic CuAl2O4

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Liu, Zheng-Tang

    2011-08-01

    We have investigated the electronic, magnetic, mechanical, and optical properties in cubic CuAl2O4 by a first-principles ultrasoft pseudopotential of the plane-wave within the density-functional theory (DFT) plus the generalized gradient approximation (GGA) + U (Hubbard parameter) formalism. We find the polarized hole dz2 character induced the dz2 magnetic orbital ordering and the p-d hybridization results in the covalent bonding between Cu and O. The origins of electrons transitions in dielectric function are consistent with electronic structure aroused by crystal-field and Janhn-Teller effect.

  18. Superelasticity of Cu-Ni-Al shape-memory fibers prepared by melt extraction technique

    NASA Astrophysics Data System (ADS)

    Li, Dong-yue; Zhang, Shu-ling; Liao, Wei-bing; Geng, Gui-hong; Zhang, Yong

    2016-08-01

    In the paper, a melt extraction method was used to fabricate Cu-4Ni-14Al (wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via scanning electron microscopy (SEM) and a dynamic mechanical analyzer (DMA), respectively. Appropriate heat treatment further improves the plasticity of Cu-based alloys. The serration behavior observed during the loading process is due to the multiple martensite phase transformation.

  19. 3D inversion of SPECTREM and ZTEM airborne electromagnetic data from the Pebble Cu-Au-Mo porphyry deposit, Alaska

    NASA Astrophysics Data System (ADS)

    Pare, Pascal; Gribenko, Alexander V.; Cox, Leif H.; Čuma, Martin; Wilson, Glenn A.; Zhdanov, Michael S.; Legault, Jean; Smit, Jaco; Polome, Louis

    2012-04-01

    Geological, geochemical, and geophysical surveys have been conducted in the area of the Pebble Cu-Au-Mo porphyry deposit in south-west Alaska since 1985. This case study compares three-dimensional (3D) inversion results from Anglo American's proprietary SPECTREM 2000 fixed-wing time-domain airborne electromagnetic (AEM) and Geotech's ZTEM airborne audio-frequency magnetics (AFMAG) systems flown over the Pebble deposit. Within the commonality of their physics, 3D inversions of both SPECTREM and ZTEM recover conductivity models consistent with each other and the known geology. Both 3D inversions recover conductors coincident with alteration associated with both Pebble East and Pebble West. The high grade CuEqn 0.6% ore shell is not consistently following the high conductive trend, suggesting that the SPECTREM and ZTEM responses correspond in part to the sulphide distribution, but not directly with the ore mineralization. As in any exploration project, interpretation of both surveys has yielded an improved understanding of the geology, alteration and mineralization of the Pebble system and this will serve well for on-going exploration activities. There are distinct practical advantages to the use of both SPECTREM and ZTEM, so we draw no recommendation for either system. We can conclude however, that 3D inversion of both AEM and ZTEM surveys is now a practical consideration and that it has added value to exploration at Pebble.

  20. Study on the Microstructure and Wettability of an Al-Cu-Si Braze Containing Small Amounts of Rare Earth Erbium

    NASA Astrophysics Data System (ADS)

    Shi, Yaowu; Yu, Yang; Li, Yapeng; Xia, Zhidong; Lei, Yongping; Li, Xiaoyan; Guo, Fu

    2009-04-01

    The effect of adding small amounts of rare earth Er on the microstructure of an Al-Cu-Si braze alloy has been investigated. Several Al-20Cu-7Si braze alloys containing various contents of Er were prepared, and their melting temperature, microstructure, hardness, and wettability in contact with 3003 aluminum alloy substrates were determined. The results indicate that the constituents of the microstructure of Al-20Cu-7Si-Er braze alloys are similar to those in the Al-20Cu-7Si alloy, and comprise of solid solutions of aluminum, silicon, and the intermetallic compound CuAl2. When the Er content increases, the size of the Al phase decreases, and the needle-like Si phase is thickened, and transformed to a blocky shape. Moreover, small amounts of Er can improve the wettability and hardness of the Al-20Cu-7Si braze alloy; however, the melting temperature of the Al-20Cu-7Si alloy does not change.

  1. Hydrogen Balmer α line behavior in Laser-Induced Breakdown Spectroscopy depth scans of Au, Cu, Mn, Pb targets in air

    NASA Astrophysics Data System (ADS)

    Senesi, G. S.; Benedetti, P. A.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.

    2010-07-01

    The behavior of hydrogen spectral emission of the plasmas obtained by Laser-Induced Breakdown Spectroscopy (LIBS) measurement of four metal targets (Au, Cu, Mn, Pb) in air was investigated. The plasma was produced by a pulsed Nd:YAG laser emitting in the fundamental wavelength. A systematic study of the spatial-integrated plasma emission obtained by an in-depth scanning of the target was performed for each metal, both in single pulse and collinear double-pulse configurations. Further, a spatial-resolved analysis of the emission of plasma produced on the Al target by a single laser pulse was performed, in order to describe the spatial distribution of emitters deriving from the target and air elements. The line intensities of the main plasma components (target metal, nitrogen, oxygen and hydrogen) were measured in both experimental conditions. Results show that the hydrogen line intensity varies greatly as a function of the metal considered, and exhibits a marked decrease after the first laser shots. However, differently from emission lines due to surface impurities, the hydrogen line intensity reaches a constant level deep inside the target. The spatial-resolved measurements indicate that hydrogen atoms in the plasma mainly derive from the target surface and, only at a minor extent, from the dissociation of molecular hydrogen present in the surrounding air. These findings show that the calculation of plasma electron number density through the measurement of the Stark broadening of hydrogen Balmer α line is possible also in depth scanning measurements.

  2. Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x=15, 20) high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Fazakas, É.; Zadorozhnyy, V.; Louzguine-Luzgin, D. V.

    2015-12-01

    In this work, we investigated the microstructure and mechanical properties of Al25Ti25Ni25Cu25 Al22.5Ti22.5Ni20Cu20Fe15 and Al20Ti20Ni20Cu20Fe20 high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al25Ti25Ni25Cu25, Al22.5Ti22.5Ni20Cu20Fe15 and Al20Ti20Ni20Cu20Fe20 alloys are relatively hard and ductile. Being heat treated at 973 K the Al22.5Ti22.5Ni20Cu20Fe15 alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  3. Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu sbnd Au deposit

    NASA Astrophysics Data System (ADS)

    Mancano, D. P.; Campbell, A. R.

    1995-10-01

    The spatial relation between porphyry and high-sulfidation epithermal deposits is particularly well revealed in the Mankayan mineral district of northern Luzon, Philippines, where the Lepanto high-sulfidation Cu sbnd Au deposit lies over and adjacent to the Far Southeast (FSE) porphyry Cu sbnd Au deposit. Consequently, a study was undertaken to characterize the fluids responsible for epithermal mineralization in this environment. The ore stage at Lepanto consists of enargite-luzonite (Cu 3AsS 4), pyrite, tennantite-tetrahedrite, and chalcopyrite. Infrared petrography of the enargite reveals variable transparency, with growth banding and twinning visible in euhedral specimens. Two phase (liquid > vapor) fluid inclusions occur as primary and secondary types ranging from <1 to 80 micrometers in length, with tabular, cylindrical, or oval shapes. Homogenization temperatures ( Th) of fluid inclusions in enargite were measured from within the lateral (3.0 km) and vertical (0.5 km) extent of the enargite mineralization. These values show a cooling trend toward the northwest, away from the area over the porphyry deposit, with average Th ranging from 285°C (proximal) to 166°C (distal). Ice melting temperatures ( Tm) were measured using a cycling technique, as ice was usually not visible in frozen inclusions. Apparent salinities range from 4.5 to 0.2 eq. wt% NaCl, with samples from the margins of the deposit showing a general decrease in apparent salinity with lower Th. Secondary fluid inclusions in quartz phenocrysts tend to have a higher average Th and lower apparent salinities compared to enargite-hosted inclusion fluids from the same locations. Several samples of pyrite are also transparent to IR radiation, and show internal features such as growth banding, and in one instance a two phase (liquid > vapor) fluid inclusion. This inclusion yielded a salinity of 1.2 eq. wt% NaCl. There is a large discrepancy in Th and apparent salinities between the enargite mineralization

  4. Sulfur Tolerant Pd/Cu and Pd/Au Alloy Membranes for H2 Separation with High Pressure CO2 for Sequestration

    SciTech Connect

    Yi Hua Ma; Natalie Pomerantz; Chao-Huang Chen

    2008-09-30

    The effect of H{sub 2}S poisoning on Pd, Pd/Cu, and Pd/Au alloy composite membranes prepared by the electroless deposition method on porous Inconel supports was investigated to provide a fundamental understanding of the durability and preparation of sulfur tolerant membranes. X-ray photoelectron spectroscopy (XPS) studies showed that the exposure of pure Pd to 50 ppm H{sub 2}S/H{sub 2} mixtures caused bulk sulfide formation at lower temperatures and surface sulfide formation at higher temperatures. Lower temperatures, longer exposure times, and higher H{sub 2}S concentrations resulted in a higher degree of sulfidation. In a Pd membrane, the bulk sulfide formation caused a drastic irrecoverable H{sub 2} permeance decline and an irreparable loss in selectivity. Pd/Cu and Pd/Au alloy membranes exhibited permeance declines due to surface sulfide formation upon exposure to 50 ppm H{sub 2}S/H{sub 2} gas mixtures. However in contrast to the pure Pd membrane, the permeances of the Pd/Cu and Pd/Au alloy membranes were mostly recovered in pure H{sub 2} and the selectivity of the Pd alloy layers remained essentially intact throughout the characterization in H{sub 2}, He and H{sub 2}S/H{sub 2} mixtures which lasted several thousand hours. The amount of irreversible sulfur poisoning decreased with increasing temperature due to the exothermicity of H{sub 2}S adsorption. Longer exposure times increased the amount of irreversible poisoning of the Pd/Cu membrane but not the Pd/Au membrane. Pd/Au coupon studies of the galvanic displacement method showed that higher Au{sup 3+} concentrations, lower pH values, higher bath temperatures and stirring the bath at a rate of 200 rpm yielded faster displacement rates, more uniform depositions, and a higher Au content within the layers. While 400 C was found to be sufficient to form a Pd/Au alloy on the surface, high temperature X-ray diffraction (HTXRD) studies showed that even after annealing between 500-600 C, the Pd/Cu alloys could have

  5. The microstructure of submicrometer wide planar-reactive ion etched versus trench-damascene AlCu lines

    NASA Astrophysics Data System (ADS)

    Rodbell, K. P.; Gignac, L. M.; Hurd, J. L.; Filippi, R.; Wang, Yun-Yu; Clevenger, L. A.; Iggulden, R. C.; Schnabel, R. F.; Weber, S.

    2000-11-01

    The microstructure was measured for AlCu lines, formed using either a traditional planar metal subtractive etch process or a newly developed hot AlCu-trench-damascene process. It was found that 0.35 μm wide damascene AlCu lines formed a large grained bamboo microstructure with little or no Al (111) texture. The local crystallographic texture was measured in a scanning electron microscope using electron backscatter pattern analysis often referred to as backscatter Kikuchi diffraction. Damascene structures consisted of AlCu films deposited at greater than 400 °C onto Ti or Ti/TiN into preformed amorphous SiO2 trenches, 0.3-5.0 μm wide by 0.4 μm deep, followed by aluminum chemical mechanical polishing to remove the metal overburden. Standard planar metal control samples consisted of blanket Al or AlCu films deposited onto either an amorphous SiO2 substrate or onto SiO2/Ti/TiN substrates, followed by subtractive etching to define 0.45-10 μm wide lines as well as large (e.g., 10×10 μm2) pads. The planar metal samples exhibited either little change or a slight strengthening of their (111) fiber texture with decreasing line width; this was in sharp contrast to the damascene films in which a marked weakening in the (111) fiber texture with decreasing line width was found. In addition a trimodal (111) texture distribution developed in trenches where TiAl3 intermetallic formed. The role of intermetallic formation (TiAl3), elevated (>400 °C) AlCu deposition temperature, large bamboo grain size, local AlCu crystallographic texture and differences in sidewall coverage between subtractive etched and trench-damascene processed AlCu on film microstructure are examined.

  6. Nanoscale analysis on interfacial reactions in Al-Si-Cu alloys and Ti underlayer films

    NASA Astrophysics Data System (ADS)

    Yang, Jun-Mo; Lee, Sukjae; Park, Ju-Chul; Lee, Deok-Won; Lee, Tae-Kwon; Choi, Jin-Tae; Lee, Soun-Young; Kawasaki, Masahiro; Oikawa, Tetsuo

    2003-01-01

    Solid-phase reactions at the interface between sputtered Al-Si-Cu alloys and Ti films were investigated at the atomic scale by high-resolution transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS) coupled with a field-emission (scanning) transmission electron microscope. The analysis results showed that the interface is composed of an amorphous-like Ti-Si layer, an intermediate-crystalline layer, and a Si-dissolved TiAl3 layer containing dissolved Si TiAl3 with a crystallographic relationship with the Al film. The nanometer-scaled interlayers effectively play a role as a barrier suppressing the interdiffusion reaction of Al and Ti during annealing treatment. Further, the quantitative composition of the interlayers was revealed by the analysis of the intensity profiles obtained from EDS elemental maps.

  7. Local Structures of Mechanically Alloyed Al70Cu20Fe10 Nanocomposites Studied by XRD and XAFS

    SciTech Connect

    Yin Shilong; Qian Liying; He Bo; Zou Shaobo; Wei Shiqiang; Bian Qing

    2007-02-02

    Ternary Al70Cu20Fe10 alloy nano-composites prepared by mechanical alloying are characterized by X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). The results indicate that after milled for 10 hours, the coordination environment around Cu atoms is changed largely and becomes disordered, but the local structure of Fe atoms still remains as that of {alpha}-Fe. This indicates the forming of inter-metallic compound Al2Cu with body center cubic structure. Even if the milling time is extended to 40 hours, only small amount of {alpha}-Fe can be alloyed to produce Al-Fe-Cu alloy. However, the annealing treatment at 700 deg. C can drive the {alpha}-Fe to incorporate into the Al2Cu compound to form an icosahedral alloy phase.

  8. Effects of plasma treatment on the Ohmic characteristics of Ti/Al/Ti/Au contacts to n-AlGaN

    SciTech Connect

    Cao, X. A.; Piao, H.; LeBoeuf, S. F.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2006-08-21

    The effects of surface treatment using Cl{sub 2}/BCl{sub 3} and Ar inductive coupled plasmas on the Ohmic characteristics of Ti/Al/Ti/Au contacts to n-type Al{sub x}Ga{sub 1-x}N (x=0-0.5) were investigated. Plasma treatment significantly increased the surface conductivity of GaN and Al{sub 0.1}Ga{sub 0.9}N, leading to improved Ohmic behaviors of the contacts. However, it reduced the surface doping level in Al{sub x}Ga{sub 1-x}N (x{>=}0.3) and degraded the contact properties. Following a 900-1000 deg. C anneal, the Ti/Al/Ti/Au contacts to Al{sub x}Ga{sub 1-x}N (x=0-0.3) became truly Ohmic, with specific contact resistances of (3-7)x10{sup -5} {omega} cm{sup 2}, whereas the contact to Al{sub 0.5}Ga{sub 0.5}N remained rectifying even without the plasma treatment. X-ray photoelectron spectroscopy measurements confirmed that the Fermi level moved toward the conduction band in GaN after the plasma treatment, but it was pinned by plasma-induced deep-level states in Al{sub 0.5}Ga{sub 0.5}N. This study emphasizes the need to mitigate plasma damage introduced during the mesa etch step for AlGaN-based deep-UV emitters and detectors.

  9. The Effect of Premixed Al-Cu Powder on the Stir Zone in Friction Stir Welding of AA3003-H18

    NASA Astrophysics Data System (ADS)

    Abnar, B.; Kazeminezhad, M.; Kokabi, A. H.

    2015-02-01

    In this research, 3-mm-thick AA3003-H18 non-heat-treatable aluminum alloy plates were joined by friction stir welding (FSW). It was performed by adding pure Cu and premixed Cu-Al powders at various rotational speeds of 800, 1000, and 1200 rpm and constant traveling speeds of 100 mm/min. At first, the powder was filled into the gap (0.2 or 0.4 mm) between two aluminum alloy plates, and then the FSW process was performed in two passes. The microstructure, mechanical properties, and formation of intermetallic compounds were investigated in both cases of using pure Cu and premixed Al-Cu powders. The results of using pure Cu and premixed Al-Cu powders were compared in the stir zone at various rotational speeds. The copper particle distribution and formation of Al-Cu intermetallic compounds (Al2Cu and AlCu) in the stir zone were desirable using premixed Al-Cu powder into the gap. The hardness values were significantly increased by formation of Al-Cu intermetallic compounds in the stir zone and it was uniform throughout the stir zone when premixed Al-Cu powder was used. Also, longitudinal tensile strength from the stir zone was higher when premixed Al-Cu powder was used instead of pure Cu powder.

  10. TPR investigations on the reducibility of Cu supported on Al 2O 3, zeolite Y and SAPO-5

    NASA Astrophysics Data System (ADS)

    Hoang, Dang Lanh; Dang, Thi Thuy Hanh; Engeldinger, Jana; Schneider, Matthias; Radnik, Jörg; Richter, Manfred; Martin, Andreas

    2011-08-01

    Reducibility of Cu supported on Al 2O 3, zeolite Y and silicoaluminophosphate SAPO-5 has been investigated in dependence on the Cu content using a method combining conventional temperature programmed reduction (TPR) by hydrogen with reoxidation in N 2O followed by a second the so-called surface-TPR (s-TPR). The method enables discrimination and a quantitative estimation of the Cu oxidation states +2, +1 and 0. The quantitative results show that the initial oxidation state of Cu after calcination in air at 400 °C, independent on the nature of the support, is predominantly +2. Cu 2+ supported on Al 2O 3 is quantitatively reduced by hydrogen to metallic Cu 0. Comparing the TPR of the samples calcined in air and that of samples additionally pre-treated in argon reveals that in zeolite Y and SAPO-5 Cu 2+ cations are stabilized as weakly and strongly forms. In both systems, strongly stabilized Cu 2+ ions are not auto-reduced by pre-treatment in argon at 650 °C, but are reduced in hydrogen to form Cu +. The weakly stabilized Cu 2+ ions, in contrast, may be auto-reduced by pre-treatment in argon at 650 °C forming Cu + but are reduced in hydrogen to metallic Cu 0.

  11. Transition metals doped CuAlSe2 for promising intermediate band materials

    NASA Astrophysics Data System (ADS)

    Wang, Tingting; Li, Xiaoguang; Li, Wenjie; Huang, Li; Ma, Cencen; Cheng, Ya; Cui, Jun; Luo, Hailin; Zhong, Guohua; Yang, Chunlei

    2016-04-01

    Introducing an isolated intermediate band (IB) into a wide band gap semiconductor can potentially improve the optical absorption of the material beyond the Shockley–Queisser limitation for solar cells. Here, we present a systematic study of the thermodynamic stability, electronic structures and optical properties of transition metals (M = Ti, V and Fe) doped CuAlSe2 for potential IB thin film solar cells, by adopting the first-principles calculation based on the hybrid functional method. We found from chemical potential analysis that for all dopants considered, the stable doped phase only exists when the Al atom is substituted. More importantly, with this substitution, the IB feature is determined by 3d electronic nature of M 3+ ion, and the electronic configuration of 3d1 can drive a optimum IB that possesses half-filled character and suitable subbandgap from valence band or conduction band. We further show that Ti-doped CuAlSe2 is the more promising candidate for IB materials since the resulted IB in it is half filled and extra absorption peaks occurs in the optical spectrum accompanied with a largely enhanced light absorption intensity. The result offers a understanding for IB induced by transition metals into CuAlSe2 and is significant to fabricate the related IB materials.

  12. 3D Epitaxy of Graphene nanostructures in the Matrix of Ag, Al and Cu

    NASA Astrophysics Data System (ADS)

    Salamanca-Riba, Lourdes; Isaacs, Romaine; Wuttig, Manfred; Lemieux, Melburne; Hu, Liangbing; Iftekhar, Jaim; Rashkeev, Sergey; Kukla, Maija; Rabin, Oded; Mansour, Azzam

    2015-03-01

    Graphene nanostructures in the form ribbons were embedded in the lattice of metals such as Ag, Cu, and Al in concentrations up to 36.4 at.%, 21.8 at% and 10.5 at.%, respectively. These materials are called covetics. Raman scattering from Ag and Al covetics indicate variations in the intensity of peaks at ~ 1,300 cm-1 and 1,600 cm-1 with position on the sample. These peaks are associated with the D (defects) and G (graphite E2g mode) peaks of graphitic carbon with sp2 bonding and reveal various degrees of imperfections in the graphene layers. First principles calculations of the dynamic matrix of Ag and Al covetics show bonding between C and the metal. EELS mapping of the C-K edge and high resolution lattice images show that the graphene-like regions form ribbons with epitaxial orientation with the metal lattice of Ag and Al. The temperature dependences of the resistivites of Ag and Cu covetics are similar to those of the pure metals with only slight increase in resistivity. Films of Cu covetic deposited by e-beam evaporation and PLD show higher transmittance and resistance to oxidation than pure metal films of the same thickness indicating that copper covetic films can be used for transparent electrodes. Funded by DARPA/ARL Grant No. W911NF-13-1-0058, and ONR Award No N000141410042.

  13. Environmental Fatigue-Crack Surface Crystallography for Al-Zn-Cu-Mg-Mn/Zr

    NASA Astrophysics Data System (ADS)

    Ro, Yunjo; Agnew, Sean R.; Gangloff, Richard P.

    2008-06-01

    The scanning electron microscope (SEM)-based electron backscattered diffraction (EBSD)/stereology technique quantitatively establishes distributions of the crystallographic characteristics of environmental-fatigue crack features for slightly overaged Al-Zn-Cu-Mg-X (X = Zr or Mn) alloys stressed in the low-growth-rate regime. Results for these homogeneous slip alloys conform to a substantial companion study of planar slip-prone Al-Cu-Mg/Li. Transgranular-crack characteristics are similar for the Mn and Zr variants, independent of grain size and recrystallization. Two morphologies of facetlike features exhibit a wide range of crystallographic orientations, change character at grain boundaries indicating an important role of grain orientation, and form in highly tensile-stressed spatial orientations about a crack tip. Similar characteristics for Al-Zn and Al-Cu suggest a common damage mechanism, speculatively attributed to hydrogen-environment embrittlement by decohesion. Slip-deformation band cracking resulting in facets near {111}, stimulated by H-enhanced localized plasticity, is not a viable mechanism for environmental fatigue. Repetitively stepped facets with surface curvature may involve H-enhanced cleavage along {100} or {110} planes subsequently distorted by plasticity. Broad-flat facets speculatively result from tensile stress-based cracking through dislocation cell structure, evolved by cyclic plasticity and containing trapped H.

  14. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    PubMed

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces. PMID:15744719

  15. Electroactive complex in thermally treated Ge-Si <Cu, Al> crystals

    SciTech Connect

    Azhdarov, G. Kh.; Zeynalov, Z. M.; Zakhrabekova, Z. M.; Kyazimova, A. I.

    2010-05-15

    It is shown by Hall measurements that quenching complexly doped Ge{sub 1-x}Si{sub x}<Cu, Al> (0 {<=} x {<=} 0.20) crystals from 1050-1080 K leads to the formation of additional electroactive acceptor centers in them. The activation energy of these centers increases linearly with an increase in the silicon content in the crystal and is described by the relation E{sub k}{sup x} = (52 + 320x) meV. Annealing these crystals at 550-570 K removes the additional acceptor levels. It is established that the most likely model for the additional electroactive centers is a pair composed of substituent copper and aluminum atoms (Cu{sub s}Al{sub s}) or interstitial copper and substituent aluminum atoms (Cu{sub i}Al{sub s}). It is shown that the generation of additional deep acceptor levels must be taken into account when using the method of precise doping of Ge{sub 1-x}Si{sub x}<Al> crystals with copper.

  16. The Microstructure-Processing-Property Relationships in an Al Matrix Composite System Reinforced by Al-Cu-Fe Alloy Particles

    SciTech Connect

    Fei Tang

    2004-12-19

    Metal matrix composites (MMC), especially Al matrix composites, received a lot of attention during many years of research because of their promise for the development of automotive and aerospace materials with improved properties and performance, such as lighter weight and better structural properties, improved thermal conductivity and wear resistance. In order to make the MMC materials more viable in various applications, current research efforts on the MMCs should continue to focus on two important aspects, including improving the properties of MMCs and finding more economical techniques to produce MMCs. Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. Microstructures and tensile properties of AYAl-Cu-Fe composites were characterized. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of

  17. Magmatic and structural controls on porphyry-style Cu-Au-Mo mineralization at Kemess South, Toodoggone District of British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Duuring, Paul; Rowins, Stephen M.; McKinley, Bradley S. M.; Dickinson, Jenni M.; Diakow, Larry J.; Kim, Young-Seog; Creaser, Robert A.

    2009-05-01

    Kemess South is the only Cu-Au-Mo mine in the Toodoggone district and a major Cu and Au producer in British Columbia. Porphyry-style Cu-Au-Mo mineralization is mainly hosted by the tabular, SW-plunging, 199.6 ± 0.6-Ma Maple Leaf granodiorite, which intrudes tightly folded, SW-dipping, Permian Asitka Group siltstone and limestone and homogeneous Triassic Takla Group basalt. Southwest-dipping 194.0 ± 0.4-Ma Toodoggone Formation conglomerate, volcaniclastic, and epiclastic rocks overlie the granodiorite and Asitka Group rocks. Minor Cu-Au-Mo mineralization is hosted by the immediate Takla Group basalt country rock, whereas low-tonnage high-grade Cu zones occur beneath a 30-m-thick leached capping in supergene-altered granodiorite and in exotic positions in overlying Toodoggone Formation conglomerate. Granodiorite has an intrusive contact with mineralized and altered Takla Group basalt but displays a sheared contact with unmineralized and less altered Asitka Group siltstone. The North Block fault is a deposit-scale, E-striking, steeply S-dipping normal fault that juxtaposes the granodiorite/basalt ore body against unmineralized Asitka Group rocks. Younger NW- and NE-striking normal-dextral faults cut all rock types, orebodies, and the North Block fault with displacements of up to 100 m and result in the graben-and-horst-style block faulting of the stratigraphy and ore body. Both basalt and granodiorite host comparable vein sequence and alteration histories, with minor variations in hydrothermal mineral assemblages caused by differing protolith chemistry. Early potassic alteration (and associated early-stage Cu ± Au ± Mo mineralization) is partly replaced by phyllic and intermediate argillic alteration associated with main-stage Cu-Au-Mo mineralization. Two main-stage veins have Re-Os molybdenite ages of 201.3 ± 1.2 and 201.1 ± 1.2 Ma. These mineralization ages overlap the 199.6 ± 0.6-Ma U-Pb zircon crystallization age for the Maple Leaf granodiorite. Late

  18. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  19. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  20. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 +/- 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  1. New apparatus for DTA at 2000 bar: thermodynamic studies on Au, Ag, Al and HTSC oxides

    NASA Astrophysics Data System (ADS)

    Garnier, V.; Giannini, E.; Hugi, S.; Seeber, B.; Flükiger, R.

    2004-03-01

    A new differential thermal analysis (DTA) device was designed and installed in a hot isostatic pressure (HIP) furnace in order to perform high-pressure thermodynamic investigations up to 2 kbar and 1200 °C. Thermal analysis can be carried out in inert or oxidizing atmosphere up to p(O2) = 400 bar. The calibration of the DTA apparatus under pressure was successfully performed using the melting temperature (Tm) of pure metals (Au, Ag and Al) as standard calibration references. The thermal properties of these metals have been studied under pressure. The values of DgrV (volume variation between liquid and solid at Tm), rgrsm (density of the solid at Tm) and agrm (linear thermal expansion coefficient at Tm) have been extracted. A very good agreement was found with the existing literature and new data were added. This HIP-DTA apparatus is very useful for studying the thermodynamics of those systems where one or more volatile elements are present, such as high TC superconducting oxides. DTA measurements have been performed on Bi,Pb(2223) tapes up to 2 kbar under reduced oxygen partial pressure (p(O2) = 0.07 bar). The reaction leading to the formation of the 2223 phase was found to occur at higher temperatures when applying pressure: the reaction DTA peak shifted by 49 °C at 2 kbar compared to the reaction at 1 bar. This temperature shift is due to the higher stability of the Pb-rich precursor phases under pressure, as the high isostatic pressure prevents Pb from evaporating.

  2. Comparison between the polar cap index, PC and the auroral electrojet indices AE, AL, and AU

    SciTech Connect

    Vennerstrom, S.; Friis-Christensen, E. ); Troshichev, O.A.; Andresen, V.G. )

    1991-01-01

    The newly introduced index PC for magnetic activity in the polar cap has been examined to establish to which extent it can serve as an indicator of auroral electrojet activity. PC is derived from a single nearpole station, as a 15-min average index. The authors have derived it for two stations, one in the northern hemisphere (Thule) and one in the southern hemisphere (Vostok). The simplicity of the PC index enables us to make a large data base for statistical investigations. They have thus used 7 years of PC values for the two stations to analyze the relationship between PC and the auroral zone indices AE, AU, and AL statistically. They find a very high correlation between PC and AE during winter and equinox, the linear correlation coefficient being {approximately} 0.8-0.9 for Thule and {approximately} 0.7-0.8 for Vostok. During summer the correlation is less because the PC index is then disturbed by polar cap currents controlled by the northward and east-west components of the interplanetary magnetic field. They therefore stress the importance of having PC available from both the northern and southern hemisphere. From event studies they find that PC is sensitive both to DP 2 type electrojet activity and to substorm intensifications of the westward electrojet in the midnight or postmidnight sector but less sensitive to substorm intensifications of the westward electrojet in the midnight or post midnight sector. They conclude that PC can serve as a fast available indicator of DP 2 and DP 1 activity in the polar regions, excluding intrusions of the westward electrojet in the premidnight sector.

  3. Microstructure characterization in upward directional solidification of Al-Cu and Mg-Al alloys under transient conditions

    NASA Astrophysics Data System (ADS)

    Amoorezaei, Morteza; Gurevich, Sebastian; Provatas, Nikolas

    Predicting and controlling the microstructure of cast alloys has been a driving force behind various studies on solidification of materials. Dendritic spacing and morphology established during casting often sets the final microstructure during manufacturing of alloys. This is par-ticularly true in emerging technologies such as twin belt casting, where a reduced amount of thermomechanical processing reduced the possibility of modifying microstructure from that de-termined at the time of solidification. Mg-based alloys are gaining importance due to the high demand for weight reduction in the transportation industry which accordingly reduces the gas consumption. While the solidified microstructure and its effect on the material properties have been the subject of intensive studies, little is known about the fundamental mechanisms that determine the microstructure and its evolution under directional growth conditions. We study the relationship between the microstructure and cooling conditions in unsteady state upward directional solidification of Al-Cu and Mg-Al alloys. The four-fold symmetry of Al-Cu alloys allows studying the dynamical spacing selection between dendrites, as the growth conditions vary dynamically, whereas, Mg-Al system with a six-fold symmetry introduces a competition between neighbouring, misoriented grains and remarkably influences the resulting microstruc-ture. We also present new phase field simulations wherein we dynamically vary the cooling conditions. Analysis of the phase field simulations is used to shed some light on the morpho-logical development of dendrite arms during solidification under transient conditions. We find that the final microstructure under transient conditions is strongly dependent on the history of the growth conditions changes as well as the initial morphology of the system, consistent with the results previously obtained by Warren and Langer and Losert et. al. Our phase field results are validated qualitatively by the

  4. The influence of orientations and external electric field on charge carrier mobilities in CuPc and F16CuPc films on highly ordered pyrolytic graphite and octane-1-thiol terminated Au(111) substrates.

    PubMed

    Chen, Shuang; Ma, Jing

    2010-10-14

    The lying-down and standing-up CuPc and F(16)CuPc films on HOPG (highly ordered pyrolytic graphite) and C8-SAM/Au(111) (octane-1-thiol terminated Au(111)) substrates are investigated by using a hybrid strategy combing the molecular dynamic (MD) simulations with density functional theory (DFT) calculations, in order to understand the influence of packing orientation on charge carrier mobilities. On the basis of the periodic slab model and consistent-valence force field, MD simulations show the populations of various packing configurations and radial distribution of intermolecular distance in the films at room temperature. It is also demonstrated that the external electric field (parallel or perpendicular to the substrate) perturbs the intermolecular distances in CuPc and F(16)CuPc films, especially for the slipped edge-to-face stackings. DFT calculations are then used to evaluate two key charge-transfer parameters, reorganization energy and transfer integral. An electrostatics embedding model is employed to approximately consider the external electrostatics contributions to reorganization energy. The thermal-averaged mobility is consequently estimated by taking account of both electronic structures of charge-hopping pairs and dynamic fluctuations in film morphologies under various experimental conditions. It is found that CuPc has smaller reorganization energy and larger hole (electron) mobilities than F(16)CuPc. Under the external electric field of 10(4)-10(7) V cm(-1), both hole and electron mobilities of CuPc and F(16)CuPc films would decrease to 1-3 orders of magnitude. CuPc (F(16)CuPc) films show substantial orientation dependence of mobilities on the ratio of standing-up versus lying-down orientations falling in the range of 10-1000. PMID:20714578

  5. Laser cladding of quasi-crystal-forming Al-Cu-Fe-Bi on an Al-Si alloy substrate

    NASA Astrophysics Data System (ADS)

    Biswas, Krishanu; Chattopadhyay, Kamanio; Galun, Rolf; Mordike, Barry L.

    2005-07-01

    We report here the results of an investigation aimed at producing coatings containing phases closely related to the quasi-crystalline phase with dispersions of soft Bi particles using an Al-Cu-Fe-Bi elemental powder mixture on Al-10.5 at. pct Si substrates. A two-step process of cladding followed by remelting is used to fine-tune the alloying, phase distribution, and microstructure. A powder mix of Al64Cu22.3Fe11.7Bi2 has been used to form the clads. The basic reason for choosing Bi lies in the fact that it is immiscible with each of the constituent elements. Therefore, it is expected that Bi will solidify in the form of dispersoids during the rapid solidification. A detailed microstructural analysis has been carried out by using the backscattered imaging mode in a scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructural features are described in terms of layers of different phases. Contrary to our expectation, the quasi-crystalline phase could not form on the Al-Si substrate. The bottom of the clad and remelted layers shows the regrowth of aluminum. The formation of phases such as blocky hexagonal Al-Fe-Si and a ternary eutectic (Al + CuAl2 + Si) have been found in this layer. The middle layer shows the formation of long plate-shaped Al13Fe4 along with hexagonal Al-Fe-Si phase growing at the periphery of the former. The formation of metastable Al-Al6Fe eutectic has also been found in this layer. The top layer, in the case of the as-clad track, shows the presence of plate-shaped Al13Fe4 along with a 1/1 cubic rational approximant of a quasi-crystal. The top layer of the remelted track shows the presence of a significant amount of a 1/1 cubic rational approximant. In addition, the as-clad and remelted microstructures show a fine-scale dispersion of Bi particles of different sizes formed during monotectic solidification. The remelting is found to have a strong effect on the size and distribution of Bi particles. The dry

  6. Microstructural evolution of Al-8.59Zn-2.00Mg-2.44Cu during homogenization

    NASA Astrophysics Data System (ADS)

    Shu, Wen-xiang; Liu, Jun-cheng; Hou, Long-gang; Cui, Hua; Liu, Jun-tao; Zhang, Ji-shan

    2014-12-01

    The microstructural evolution and phase transformations of a high-alloyed Al-Zn-Mg-Cu alloy (Al-8.59Zn-2.00Mg-2.44Cu, wt%) during homogenization were investigated. The results show that the as-cast microstructure mainly contains dendritic α(Al), non-equilibrium eutectics (α(Al) + Mg(Zn,Al,Cu)2), and the θ (Al2Cu) phase. Neither the T (Al2Mg3Zn3) phase nor the S (Al2CuMg) phase was found in the as-cast alloy. The calculated phase components according to the Scheil model are in agreement with experimental results. During homogenization at 460°C, all of the θ phase and most of the Mg(Zn,Al,Cu)2 phase were dissolved, whereas a portion of the Mg(Zn,Al,Cu)2 phase was transformed into the S phase. The type and amount of residual phases remaining after homogenization at 460°C for 168 h and by a two-step homogenization process conducted at 460°C for 24 h and 475°C for 24 h (460°C/24 h + 475°C/24 h) are in good accord with the calculated phase diagrams. It is concluded that the Al-8.59Zn-2.00Mg-2.44Cu alloy can be homogenized adequately under the 460°C/24 h + 475°C/24 h treatment.

  7. Effect of Interfacial Microstructure Evolution on Mechanical Properties and Fracture Behavior of Friction Stir-Welded Al-Cu Joints

    NASA Astrophysics Data System (ADS)

    Xue, P.; Xiao, B. L.; Ma, Z. Y.

    2015-07-01

    The interfacial microstructure evolution of Al-Cu joints during friction stir welding and post-welding annealing and its influence on the tensile strength and the fracture behavior were investigated in detail. An obvious interface including three sub-layers of α-Al, Al2Cu, and Al4Cu9 intermetallic compound (IMC) layers is generated in the as-FSW joint. With the development of annealing process, the α-Al layer disappeared and a new IMC layer of AlCu formed between initial two IMC layers of Al2Cu and Al4Cu9. The growth rate of IMC layers was diffusion controlled before the formation of Kirkendall voids, with activation energy of 117 kJ/mol. When the total thickness of IMC layers was less than the critical value of 2.5 μm, the FSW joints fractured at the heat-affected zone of Al side with a high ultimate tensile strength (UTS) of ~100 MPa. When the thickness of IMC layers exceeded 2.5 μm, the joints fractured at the interface. For relatively thin IMC layer, the joints exhibited a slightly decreased UTS of ~90 MPa and an inter-granular fracture mode with crack propagating mainly between the Al2Cu and AlCu IMC layers. However, when the IMC layer was very thick, crack propagated in the whole IMC layers and the fracture exhibited trans-granular mode with a greatly decreased UTS of 50-60 MPa.

  8. Effect of ZrO2 Nanoparticles on the Microstructure of Al-Si-Cu Filler for Low-Temperature Al Brazing Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Roh, Myung-Hwan; Jung, Do-Hyun; Jung, Jae-Pil

    2016-01-01

    In this study, the effect of ZrO2 nanoparticles on Al-12Si-20Cu alloy has been studied as a filler metal for aluminum brazing. The microstructural and thermal characterizations are performed using X-ray diffraction (XRD), scanning electron microscope (SEM), and differential thermal analysis (DTA). The intermetallic compound (IMC) phases are identified by the energy-dispersive spectroscopy analysis coupled with the SEM. The filler spreading test is performed according to JIS-Z-3197 standard. XRD and SEM analyses confirm the presence of Si particles, the CuAl2 ( θ) intermetallic, and the eutectic structures of Al-Si, Al-Cu, and Al-Si-Cu in the Al matrix in the monolithic and composite samples. It is observed that when the ZrO2 is added in the alloy, the CuAl2 IMCs and Si particles are found to be dispersed uniformly in the Al matrix up to 0.05 wt pct ZrO2. DTA results show that the liquidus temperature of Al-12Si-20Cu filler metal is dropped from ~806.78 K to 804.6 K (533.78 °C to 531.6 °C) with a lowering of 2 K (2 °C) in liquidus temperature, when the amount of ZrO2 is increased up to 0.05 wt pct. It is also shown that the presence of ZrO2 nanoparticles in the filler metal has no deleterious effect on wettability up to 0.05 wt pct of ZrO2. The ultimate tensile strength and elongation percentage are also found to improve with the addition of ZrO2 nanoparticles in the Al-12Si-20Cu alloy.