Science.gov

Sample records for al ba fe

  1. Incorporation of Ba in Al and Fe pollucite

    NASA Astrophysics Data System (ADS)

    Vance, Eric R.; Gregg, Daniel J.; Griffiths, Grant J.; Gaugliardo, Paul R.; Grant, Charmaine

    2016-09-01

    Ba, the transmutation product of radioactive Cs, can be incorporated at levels of up to ∼0.07 formula units in Cs(1-2x)BaxAlSi2O6 aluminium pollucite formed by sol-gel methods and sintering at 1400 °C, with more Ba forming BaAl2Si2O8 phases. The effect of Ba substitution in pollucite-structured CsFeSi2O6 was also studied and no evidence of Ba substitution in the pollucite structure via cation vacancies or Fe2+ formation was obtained. The Ba entered a Fe-silicate glass structure. Charge compensation was also attempted with a Cs+ + Fe3+ ↔ Ba2+ + Ni2+ scheme but again the Ba formed a glass and NiO was evident. PCT leaching data showed CsFeSi2O6 to be very leach resistant.

  2. Co2FeAl based magnetic tunnel junctions with BaO and MgO/BaO barriers

    NASA Astrophysics Data System (ADS)

    Rogge, J.; Hetaba, W.; Schmalhorst, J.; Bouchikhaoui, H.; Stender, P.; Baither, D.; Schmitz, G.; Hütten, A.

    2015-07-01

    We succeed to integrate BaO as a tunneling barrier into Co2FeAl based magnetic tunnel junctions (MTJs). By means of Auger electron spectroscopy it could be proven that the applied annealing temperatures during BaO deposition and afterwards do not cause any diffusion of Ba neither into the lower Heusler compound lead nor into the upper Fe counter electrode. Nevertheless, a negative tunnel magnetoresistance (TMR) ratio of -10% is found for Co2FeAl (24 nm) / BaO (5 nm) / Fe (7 nm) MTJs, which can be attributed to the preparation procedure and can be explained by the formation of Co- and Fe-oxides at the interfaces between the Heusler and the crystalline BaO barrier by comparing with theory. Although an amorphous structure of the BaO barrier seems to be confirmed by high-resolution transmission electron microscopy (TEM), it cannot entirely be ruled out that this is an artifact of TEM sample preparation due to the sensitivity of BaO to moisture. By replacing the BaO tunneling barrier with an MgO/BaO double layer barrier, the electric stability could effectively be increased by a factor of five. The resulting TMR effect is found to be about +20% at room temperature, although a fully antiparallel state has not been realized.

  3. Co{sub 2}FeAl based magnetic tunnel junctions with BaO and MgO/BaO barriers

    SciTech Connect

    Rogge, J.; Schmalhorst, J.; Hütten, A.; Hetaba, W.

    2015-07-15

    We succeed to integrate BaO as a tunneling barrier into Co{sub 2}FeAl based magnetic tunnel junctions (MTJs). By means of Auger electron spectroscopy it could be proven that the applied annealing temperatures during BaO deposition and afterwards do not cause any diffusion of Ba neither into the lower Heusler compound lead nor into the upper Fe counter electrode. Nevertheless, a negative tunnel magnetoresistance (TMR) ratio of -10% is found for Co{sub 2}FeAl (24 nm) / BaO (5 nm) / Fe (7 nm) MTJs, which can be attributed to the preparation procedure and can be explained by the formation of Co- and Fe-oxides at the interfaces between the Heusler and the crystalline BaO barrier by comparing with theory. Although an amorphous structure of the BaO barrier seems to be confirmed by high-resolution transmission electron microscopy (TEM), it cannot entirely be ruled out that this is an artifact of TEM sample preparation due to the sensitivity of BaO to moisture. By replacing the BaO tunneling barrier with an MgO/BaO double layer barrier, the electric stability could effectively be increased by a factor of five. The resulting TMR effect is found to be about +20% at room temperature, although a fully antiparallel state has not been realized.

  4. First principles study of magnetoelectric coupling in Co2FeAl/BaTiO3 tunnel junctions.

    PubMed

    Yu, Li; Gao, Guoying; Zhu, Lin; Deng, Lei; Yang, Zhizong; Yao, Kailun

    2015-06-14

    Critical thickness for ferroelectricity and the magnetoelectric effect of Co2FeAl/BaTiO3 multiferroic tunnel junctions (MFTJs) are investigated using first-principles calculations. The ferroelectric polarization of the barriers can be maintained upto a critical thickness of 1.7 nm for both the Co2/TiO2 and FeAl/TiO2 interfaces. The magnetoelectric effect is derived from the difference in the magnetic moments on interfacial atoms, which is sensitive to the reversal of electric polarization. The magnetoelectric coupling is found to be dependent on the interfacial electronic hybridizations. Compared with the Co2/TiO2 interface, more net magnetization change is achieved at the FeAl/TiO2 interface. In addition, the in-plane strain effect shows that in-plane compressive strain can lead to the enhancement of ferroelectric polarization stability and intensity of magnetoelectric coupling. These findings suggest that Co2FeAl/BaTiO3 MFTJs could be utilized in the area of electrically controlled magnetism, especially the MFTJ with loaded in-plane compressive strain with the FeAl/TiO2 interface. PMID:25987345

  5. Mössbauer spectroscopy study of Al distribution in BaAl{sub x}Fe{sub 12−x}O{sub 19} thin films

    SciTech Connect

    Przybylski, M. Żukrowski, J.; Harward, I.; Celiński, Z.

    2015-05-07

    Barium hexagonal ferrite (BaM) films grown on Si are a good candidate material for new-generations of on-wafer microwave devices operating at frequencies above 40 GHz. Doping BaM with Al increases the value of anisotropy field even more, and in combination with a large value of remanence, would allow one to create a self-biasing material/structure that would eliminate the need for permanent bias magnets in millimeter wave devices. To examine the occupation of Fe sublattices by Al ions, we carried out Conversion Electron Mössbauer Spectroscopy (CEMS) measurements at room temperature and zero magnetic field (after magnetizing the samples in a strong magnetic field). The spectra can be reasonably fitted with three components (sub-spectra) corresponding to different Fe sublattices. There are significant changes in the spectra with the addition of Al: The magnetic hyperfine field decreases for all three components, and their relative contributions also change remarkably. These observations are in agreement with the fact that the Al substitutes Fe, thus lowering the component contributions and the value of the hyperfine field. In addition, our previous XRD analysis indicates increasing grain misalignment with Al content, further supporting the CEMS data.

  6. Structural, Thermal and Electrical Study of Multiferroic BiFeO3 Ceramic with Al3+ and Ba2+ Co-substitution

    NASA Astrophysics Data System (ADS)

    Wang, GeMing; Kothari, Deepti; Reddy, V. Raghavendra; Gupta, Ajay

    BiFe1-xAlxO3(x=0.05, 0.1) and BixBa1-xFe0.95Al0.05O3 (x=0.05, 0.07) ceramics were synthesized and their crystal structure, thermal and ferroelectric properties were investigated. X-ray diffraction and Raman data of the ceramics showed all the samples were rhombohedral with small crystal structure distortion. DSC results revealed the evolution of Neel Temperature (TN) by Al and Ba co-doping. The substitution of Al3+ at Fe site changes the TN significantly. Doping effects in terms of crystal structure, electrical property variation are discussed in this paper.

  7. Al doped Ba hexaferrite (BaAlxFe12-xO19) thin films on Pt using metallo-organic decomposition

    NASA Astrophysics Data System (ADS)

    Harward, I.; Nie, Yan; Gardner, A.; Reisman, L.; Celinski, Z.

    2012-04-01

    We grew a series of aluminum-substituted M-type barium hexaferrite (BaAlxFe12-xO19) thin films on a Pt (111) template and Si wafer using metallo-organic decomposition technique. We varied the composition from x = 0 to x = 2 with 0.25 step increments. X-ray diffraction patterns confirm highly textured c-axis polycrystalline films while atomic force microscope measurements allow us to estimate the lateral grain sizes which range from 0.2-1 micron depending on Al content. The microwave properties of these films were studied using a broadband ferromagnetic resonance spectrometer from 35 to 70 GHz. The measured out of plane effective anisotropy field increases in a nearly linear fashion with increasing Al concentration, between 12.8 kOe for x = 0 and 25 kOe for x = 2. The measured ferromagnetic resonance linewidths were relatively low, on the order of 150-300 Oe for compositions below x = 1, increasing significantly up to 800 Oe for x = 2. The easy axis magnetic hysteresis loops exhibit high squareness.

  8. Vibrational spectroscopic characterization of the phosphate mineral kulanite Ba(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Xi, Yunfei; Granja, Amanda; Scholz, Ricardo

    2013-11-01

    The mineral kulanite BaFe2Al2(PO4)3(OH)3, a barium iron aluminum phosphate, has been studied by using a combination of electron microscopy and vibrational spectroscopy. Scanning electron microscopy with EDX shows the mineral is homogenous with no other phases present. The Raman spectrum is dominated by an intense band at 1022 cm-1 assigned to the PO43-ν1 symmetric stretching mode. Low intensity Raman bands at 1076, 1110, 1146, 1182 cm-1 are attributed to the PO43-ν3 antisymmetric stretching vibrations. The infrared spectrum shows a complex spectral profile with overlapping bands. Multiple phosphate bending vibrations supports the concept of a reduction in symmetry of the phosphate anion. Raman spectrum at 3211, 3513 and 3533 cm-1 are assigned to the stretching vibrations of the OH units. Vibrational spectroscopy enables aspects on the molecular structure of kulanite to be assessed.

  9. Features of crystal and magnetic structures of solid solutions BaFe12-xDxO19 (D=Al3+, In3+; x=0.1) in a wide temperature range

    NASA Astrophysics Data System (ADS)

    Turchenko, Vitalii; Trukhanov, Alexey; Trukhanov, Sergey; Bobrikov, Ivan; Balagurov, Anatoly M.

    2016-04-01

    The study of barium ferrites partially substituted by diamagnetic Al and In ions has been performed by the neutron diffraction method with high resolution. Both samples BaFe11.9 D 0.1O19 ( D=Al and In) preserve a magnetoplumbit structure in a broad temperature range from 4.2K to 730K. The Invar effect was found in the low-temperature region in both samples. This unusual behavior of the unit cell was explained by changes of the regime of mutual rotations and tilts of the oxygen octahedra. The magnetic structure described by the Gorter model is saved up to the ferrimagnetic and paramagnetic phase transition temperature, 705K and 695K, for the Al- and In-substituted ions, respectively. The substitution of iron by aluminum or indium ions decreases the total magnetic moment of the investigated composition from 20 μB (BaFe12O19) to 19 and 16.7 μB, respectively. A higher coercitivity was found Hc˜ 0.1 T, for the In-substituted compositions, differently from Hc˜ 0.007 T of the Al-doped ones because of the frustration of the magnetic structure. The decrease of ambient temperature increases microstresses in crystallites because of the increasing influence of the magnetic subsystem.

  10. Investigation of the crystal and magnetic structures of BaFe{sub 12-x}Al{sub x}O{sub 19} solid solutions (x = 0.1‒1.2)

    SciTech Connect

    Turchenko, V. A.; Trukhanov, A. V.; Bobrikov, I. A.; Trukhanov, S. V.; Balagurov, A. M.

    2015-09-15

    The structure of barium ferrite BaFe{sub 12-x}Al{sub x}O{sub 19} solid solutions (x = 0.1‒1.2) with iron partially replaced with diamagnetic aluminum ions has been studied by neutron diffraction. Experimental data have been collected at room temperature on a high-resolution diffractometer, which yielded precise information about the changes in the crystal and magnetic structures and data on the behavior of the sample microstructure. Barium hexaferrite retains a magnetoplumbite structure in the entire range of aluminum concentrations under study, and its magnetic structure is described within the Gorter model, with moments orientated along the hexagonal axis. The total magnetic moment per formula unit decreases while diamagnetic aluminum ions substitute for iron ions. Microstrains in crystallites increase with an increase in the diamagnetic ion concentration, which is related to the difference in the ionic radii of iron and aluminum ions.

  11. Enhancement of microwave absorption of nanocomposite BaFe12O19/α-Fe microfibers

    NASA Astrophysics Data System (ADS)

    Yang, Xin-Chun; Liu, Rui-Jiang; Shen, Xiang-Qian; Song, Fu-Zhan; Jing, Mao-Xiang; Meng, Xian-Feng

    2013-05-01

    Nanocomposite BaFe12O19/α-Fe microfibers with diameters of about 1-5 μm are prepared by the organic gel-thermal selective reduction process. The binary phase of BaFe12O19 and α-Fe is formed after reduction of the precursor BaFe12O19/α-Fe2O3 microfibers at 350 °C for 1 h. These nanocomposite microfibers are fabricated from α-Fe (16-22 nm in diameter) and BaFe12O19 particles (36-42 nm in diameter) and basically exhibit a single-phase-like magnetization behavior, with a high saturation magnetization and coercive force arising from the exchange-coupling interactions of soft α-Fe and hard BaFe12O19. The microwave absorption characteristics in a 2-18 GHz frequency range of the nanocomposite BaFe12O19/α-Fe microfibers are mainly influenced by their mass ratio of α-Fe/BaFe12O19 and specimen thickness. It is found that the nanocomposite BaFe12O19/α-Fe microfibers with a mass ratio of 1:6 and specimen thickness of 2.5 mm show an optimal reflection loss (RL) of -29.7 dB at 13.5 GHz and the bandwidth with RL exceeding -10 dB covers the whole Ku-band (12.4-18.0 GHz). This enhancement of microwave absorption can be attributed to the heterostructure of soft, nano, conducting α-Fe particles embedded in hard, nano, semiconducting barium ferrite, which improves the dipolar polarization, interfacial polarization, exchange-coupling interaction, and anisotropic energy in the nanocomposite BaFe12O19/α-Fe microfibers.

  12. Rapidly solidified NiAl and FeAl

    NASA Technical Reports Server (NTRS)

    Gaydosh, D. J.; Crimp, M. A.

    1984-01-01

    Melt spinning was used to produce rapidly solidified ribbons of the B2 intermetallics NiAl and FeAl. Both Fe-40Al and Fe-45Al possessed some bend ductility in the as spun condition. The bend ductility of Fe-40Al, Fe-45Al, and equiatomic NiAl increased with subsequent heat treatment. Heat treatment at approximately 0.85 T (sub m) resulted in significant grain growth in equiatomic FeAl and in all the NiAl compositions. Low bend ductility in both FeAl and NiAl generally coincided with intergranular failure, while increased bend ductility was characterized by increasing amounts of transgranular cleavage fracture.

  13. Erratum to “Crystal structure and zinc location in the BaZnFe6O11 Y-type hexagonal ferrite” by Collomb et al. [J. Magn. Magn. Mater. 78(1) (1989) 77-84

    NASA Astrophysics Data System (ADS)

    Wise, Adam; Rocks, Jason; Laughlin, David; McHenry, Michael

    2012-03-01

    In the paper "Crystal structure and zinc location in the BaZnFe6O11 Y-type hexagonal ferrite" by Collomb et al. [1], the detailed list of atomic positions gives the fractional coordinate location of the Me5 atom at the 18h symmetry site as x: 0.50317, y: -0.50317, and z: 0.19073 in a hexagonal cell. We believe this to be a typographical error, and that the fractional coordinate for the z-position should be approximately z: 0.109. The Y-type hexagonal ferrite has the space group symmetry R-3m. When this symmetry is applied to the positions given in the paper, using CrystalMaker software, the center to center distance between the Me5 atoms and the O5 atoms is only 0.27 A, an unrealistic number. In the paper, the closest-approach distance between Me5 and O5 atoms is listed as 2.048 A. Since the R-3m symmetry of the system is well-documented, the issue must lie with either the oxygen or metal atom fractional coordinate.

  14. Heavy ion irradiations on synthetic hollandite-type materials: Ba1.0Cs0.3A2.3Ti5.7O16 (A=Cr, Fe, Al)

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Tumurugoti, Priyatham; Clark, Braeden; Sundaram, S. K.; Amoroso, Jake; Marra, James; Sun, Cheng; Lu, Ping; Wang, Yongqiang; Jiang, Ying.-Bing.

    2016-07-01

    The hollandite supergroup of minerals has received considerable attention as a nuclear waste form for immobilization of Cs. The radiation stability of synthetic hollandite-type compounds described generally as Ba1.0Cs0.3A2.3Ti5.7O16 (A=Cr, Fe, Al) were evaluated by heavy ion (Kr) irradiations on polycrystalline single phase materials and multiphase materials incorporating the hollandite phases. Ion irradiation damage effects on these samples were examined using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). Single phase compounds possess tetragonal structure with space group I4/m. GIXRD and TEM observations revealed that 600 keV Kr irradiation-induced amorphization on single phase hollandites compounds occurred at a fluence between 2.5×1014 Kr/cm2 and 5×1014 Kr/cm2. The critical amorphization fluence of single phase hollandite compounds obtained by in situ 1 MeV Kr ion irradiation was around 3.25×1014 Kr/cm2. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system.

  15. Effects of Ba loading and calcination temperature on BaAl2O4 formation for BaO/Al2O3 NOx Storage and Reduction Catalysts

    SciTech Connect

    Szailer, Tamas; Kwak, Ja Hun; Kim, Do Heui; Szanyi, Janos; Wang, Chong M.; Peden, Charles HF

    2006-04-30

    The effect of thermal treatment on the structure and chemical properties of Ba-oxide-based NOx storage/reduction catalysts with different Ba loadings was investigated using BET, TEM, EDS, TPD and FTIR techniques. On the basis of the present and previously reported results, we propose that moderate (< ~873 K) temperature calcinations result in a single monolayer (ML) ‘coating’ of BaO on the alumina surface. At high Ba loading in excess of that required for a full monolayer ‘coating’ (> 8 wt.% BaO), small (~5 nm) particles of ‘bulk’ BaO are present on top of the 1 ML BaO/Al2O3 surface. We did not observe any detectable morphological changes upon higher temperature thermal treatment of 2 and 8 wt% BaO/Al2O3 samples, while dramatic changes occurred for the 20 wt% sample. In this latter case, the transformations included BaAl2O4 formation at the expense of the bulk BaO phase. In particular, we conclude that the surface (ML) BaO phase is quite stable against thermal treatment, while the bulk phase provides the source of Ba for BaAl2O4 formation.

  16. Strain induced superconductivity in the parent compound BaFe2As2.

    PubMed

    Engelmann, J; Grinenko, V; Chekhonin, P; Skrotzki, W; Efremov, D V; Oswald, S; Iida, K; Hühne, R; Hänisch, J; Hoffmann, M; Kurth, F; Schultz, L; Holzapfel, B

    2013-01-01

    The discovery of superconductivity with a transition temperature, Tc, up to 65 K in single-layer FeSe (bulk Tc=8 K) films grown on SrTiO3 substrates has attracted special attention to Fe-based thin films. The high Tc is a consequence of the combined effect of electron transfer from the oxygen-vacant substrate to the FeSe thin film and lattice tensile strain. Here we demonstrate the realization of superconductivity in the parent compound BaFe2As2 (no bulk Tc) just by tensile lattice strain without charge doping. We investigate the interplay between strain and superconductivity in epitaxial BaFe2As2 thin films on Fe-buffered MgAl2O4 single crystalline substrates. The strong interfacial bonding between Fe and the FeAs sublattice increases the Fe-Fe distance due to the lattice misfit, which leads to a suppression of the antiferromagnetic spin density wave and induces superconductivity with bulk Tc≈10 K. These results highlight the role of structural changes in controlling the phase diagram of Fe-based superconductors. PMID:24309386

  17. Infrared phonon anomaly in BaFe2As2

    NASA Astrophysics Data System (ADS)

    Homes, C. C.; Akrap, A.; Tu, J. J.; Li, L. J.; Cao, G. H.; Xu, Z. A.

    2010-03-01

    The detailed in-plane optical properties of single-crystal BaFe2As2 have been determined over a wide frequency range above and below the structural and magnetic transition at TN˜138 K. Both infrared-active Eu modes are observed at 94 and 253 cm-1 (11.6 and 31.4 meV) at 295 K. Below TN the modes are expected to split, Eu->B2u+ B3u. The 94 cm-1 mode displays little temperature dependence, but may split at low temperature. In contrast, the 253 cm-1 vibration softens discontinuously at TN but does not split; for T < TN the frequency of this mode displays almost no temperature dependence, yet it nearly doubles in intensity.footnotetextA. Akrap et al., Phys. Rev. B 80, 180502(R), (2009). This anomalous behavior appears to be a consequence of orbital ordering in the Fe-As layers.footnotetextC.-C. Lee, W.-G. Yin, and W. Ku, arXiv:0905.2957.

  18. Frustration of Negative Capacitance in Al2O3/BaTiO3 Bilayer Structure

    PubMed Central

    Kim, Yu Jin; Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Jeon, Woojin; Moon, Taehwan; Do Kim, Keum; Jeong, Doo Seok; Yamada, Hiroyuki; Hwang, Cheol Seong

    2016-01-01

    Enhancement of capacitance by negative capacitance (NC) effect in a dielectric/ferroelectric (DE/FE) stacked film is gaining a greater interest. While the previous theory on NC effect was based on the Landau-Ginzburg-Devonshire theory, this work adopted a modified formalism to incorporate the depolarization effect to describe the energy of the general DE/FE system. The model predicted that the SrTiO3/BaTiO3 system will show a capacitance boost effect. It was also predicted that the 5 nm-thick Al2O3/150 nm-thick BaTiO3 system shows the capacitance boost effect with no FE-like hysteresis behavior, which was inconsistent with the experimental results; the amorphous-Al2O3/epitaxial-BaTiO3 system showed a typical FE-like hysteresis loop in the polarization – voltage test. This was due to the involvement of the trapped charges at the DE/FE interface, originating from the very high field across the thin Al2O3 layer when the BaTiO3 layer played a role as the NC layer. Therefore, the NC effect in the Al2O3/BaTiO3 system was frustrated by the involvement of reversible interface charge; the highly stored charge by the NC effect of the BaTiO3 during the charging period could not be retrieved during the discharging process because integral part of the polarization charge was retained within the system as a remanent polarization. PMID:26742878

  19. Frustration of Negative Capacitance in Al2O3/BaTiO3 Bilayer Structure.

    PubMed

    Kim, Yu Jin; Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Jeon, Woojin; Moon, Taehwan; Kim, Keum Do; Jeong, Doo Seok; Yamada, Hiroyuki; Hwang, Cheol Seong

    2016-01-01

    Enhancement of capacitance by negative capacitance (NC) effect in a dielectric/ferroelectric (DE/FE) stacked film is gaining a greater interest. While the previous theory on NC effect was based on the Landau-Ginzburg-Devonshire theory, this work adopted a modified formalism to incorporate the depolarization effect to describe the energy of the general DE/FE system. The model predicted that the SrTiO3/BaTiO3 system will show a capacitance boost effect. It was also predicted that the 5 nm-thick Al2O3/150 nm-thick BaTiO3 system shows the capacitance boost effect with no FE-like hysteresis behavior, which was inconsistent with the experimental results; the amorphous-Al2O3/epitaxial-BaTiO3 system showed a typical FE-like hysteresis loop in the polarization - voltage test. This was due to the involvement of the trapped charges at the DE/FE interface, originating from the very high field across the thin Al2O3 layer when the BaTiO3 layer played a role as the NC layer. Therefore, the NC effect in the Al2O3/BaTiO3 system was frustrated by the involvement of reversible interface charge; the highly stored charge by the NC effect of the BaTiO3 during the charging period could not be retrieved during the discharging process because integral part of the polarization charge was retained within the system as a remanent polarization. PMID:26742878

  20. Antiferromagnetic Critical Fluctuations in BaFe$_2$As$_2$

    SciTech Connect

    Wilson, Stephen D; Yamani, Z.; Rotundu, C. R.; Freelon, B.; Valdivia, P. N.; Bourret-Courchesne, E. D.; Lynn, J W; Chi, Songxue; Hong, Tao; Birgeneau, R. J.

    2010-01-01

    Magnetic correlations near the magnetostructural phase transition in the bilayer iron-pnictide parent compound, BaFe{sub 2}As{sub 2}, are measured. In close proximity to the antiferromagnetic phase transition in BaFe{sub 2}As{sub 2}, a crossover to three-dimensional critical behavior is anticipated and has been preliminarily observed. Here we report complementary measurements of two-dimensional magnetic fluctuations over a broad temperature range about T{sub N}. The potential role of two-dimensional critical fluctuations in the magnetic phase behavior of BaFe{sub 2}As{sub 2} and their evolution near the anticipated crossover to three-dimensional critical behavior and long-range order are discussed.

  1. Crystal chemical aspects of superconductivity in BaFe2As2 and related compounds

    NASA Astrophysics Data System (ADS)

    Johrendt, Dirk

    2010-03-01

    BaFe2As2 is the parent compound of the 122-type iron arsenides.^1 Superconductivity can be induced by several kinds of doping^2-4 or by pressure.^5 It is widely accepted that superconductivity in iron arsenides is unconventional and a number of experiments agree with the s±-scenario.^6 The latter relies on Fermi surface nesting which depends on both the electron count and the lattice. However, the coincidence of doping and pressure effects on the structure of BaFe2As2 supports the role of the structure.^7 Another open issue is the co-existence of superconductivity and AF magnetic ordering. Our ^57Fe-M"ossbauer experiments with underdoped Ba0.8K0.2Fe2As2 (Tc = 24 K) revealed full magnetic splitting, which indicates such a co-existence.^8 Compounds like Sr2VO3FeAs (Tc = 37-45 K) are promising candidates for higher Tc, but their crystal chemistry is not yet understood. In non-superconducting Sr2CrO3FeAs, we have detected a non-stoichiometry of the Fe-site (Fe0.93(1)Cr0.07(1)) and C-type AF ordering of the Cr^3+-layers.^9 The Cr-doping of the FeAs layer is probably detrimental to superconductivity in Sr2CrO3FeAs, but a similar non-stoichiometry may play a vital role in Sr2VO3FeAs.-^1 M. Rotter, M. Tegel, I. Schellenberg, et al., Phys. Rev. B 78, 020503 (2008).^2 M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).^3 S. Jiang, C. Wang, Z. Ren, et al., J. Phys.: Condens. Matter 21, 382203 (2009).^4 A. S. Sefat, R. Jin, M. A. McGuire, et al., Phys. Rev. Lett. 101, 117004 (2008).^5 P. L. Alireza, Y. T. C. Ko, J. Gillett, et al., J. Phys.: Condens. Matter 21, 012208 (2009).^6 I. Mazin, D. J. Singh, M. D. Johannes, et al., Phys. Rev. Lett. 101, 057003 (2008).^7 M. Rotter, M. Pangerl, M. Tegel, et al., Angew. Chem. Int. Ed. 47, 7949 (2008).^8 M. Rotter, M. Tegel, I. Schellenberg, et al., New J. Phys. 11, 025014 (2009).^9 M. Tegel, Y. Su, F. Hummel, et al., arXiv0911.0450.

  2. Synthesis, structural and magnetic characterisation of the fluorinated compound 15R-BaFeO{sub 2}F

    SciTech Connect

    Clemens, Oliver; Berry, Frank J.; Bauer, Jessica; Wright, Adrian J.; Knight, Kevin S.; Slater, Peter R.

    2013-07-15

    The compounds 15R-BaFeO{sub 2}F and 15R-BaFeO{sub 2.27}F{sub 0.5} have been synthesised by the low temperature fluorination of 15R-BaFeO{sub 3−d}F{sub 0.2} using polyvinylidenedifluoride (PVDF) as a fluorination agent. The materials have been structurally characterised by Rietveld analysis of the X-ray- and HRPD-powder neutron diffraction data. A detailed analysis of bond valence sums suggests that the oxide and fluoride ions order on the different anion sites. A reinvestigation of our recently published structure (Clemens et al., 2013) [34] of 6H-BaFeO{sub 2}F is also reported and incorporation of fluoride in h-type layers is also confirmed in this compound. The magnetic moments for 15R-BaFeO{sub 2}F and 15R-BaFeO{sub 2.25}F{sub 0.5} align in the a/b-plane with antiferromagnetic alignment of the moments between adjacent layers, and are flipped by 90° as compared to the precursor compound. 15R-BaFeO{sub 2}F exhibits very robust antiferromagnetism with a Néel temperature between 300 and 400 °C. - Graphical abstract: The crystal and magnetic structure of the perovskite phase 15R-BaFeO{sub 2}F. - Highlights: • 15R-BaFeO{sub 2}F and 15R-BaFeO{sub 2.27}F{sub 0.5}were prepared via low temperature fluorination using PVDF. • A structural investigation of the compounds BaFeO{sub 2}F is presented in detail. • This analysis suggests ordering of O{sup 2−} and F{sup −} anions between different layers. • 15R-BaFeO{sub 2}F shows antiferromagnetic ordering at 300 K with T{sub N} ∼300–400 °C. • The magnetic moments align in the a/b-plane.

  3. Calculation of NMR lineshapes for Ba-Al-Ge clathrates

    NASA Astrophysics Data System (ADS)

    Rodriguez, Sergio; Gou, Weiping; Ross, Joseph

    2008-10-01

    Clathrates consist of Si, Ge, or Sn cages in a crystalline framework, with guest atoms inside the cages. They have gained interest due to thermoelectric properties suitable for potential device application. To understand Al substitutional configurations, we calculated Al NMR line shapes for several structures with compositions Ba8Ge46-x-yAlxy for x=3,8,11,12,16,24; y=2,3; where represents a vacancy. The results were obtained by calculating Electric Field Gradients (EFG) for Al sites of type-I clathrates assuming an ordered superstructure of vacancies and framework occupation. We used ab initio methods in the Generalized Gradient Approximation as implemented by the WIEN2k program, and used the results to simulate NMR lineshapes numerically. These were compared to our previously reported NMR lineshapes. In the case of Ba8Ge31Al123 four Al sites in the superstructure include two sites with small EFG where the vacancy is far away and two sites with large EFG with a vacancy adjacent to Al. Assuming a larger Knight shift for sites next to vacancies, we obtain good agreement with NMR experimental results for reduced-Al Ba8Ge34Al12, while for the Zintl phase Ba8Ge30Al16 we obtain good agreement with no spontaneous vacancies. We infer that Al prefers locations close to vacancies rather than random occupation. This work was supported by Robert A. Welch Foundation (Grant A-1526).

  4. Nematic magnetoelastic effect contrasted between Ba (Fe1 -xCox)2As2 and FeSe

    NASA Astrophysics Data System (ADS)

    Hu, Yuwen; Ren, Xiao; Zhang, Rui; Luo, Huiqian; Kasahara, Shigeru; Watashige, Tatsuya; Shibauchi, Takasada; Dai, Pengcheng; Zhang, Yan; Matsuda, Yuji; Li, Yuan

    2016-02-01

    To elucidate the origin of nematic order in Fe-based superconductors, we report a Raman scattering study of lattice dynamics, which quantify the extent of C4-symmetry breaking, in BaFe2As2 and FeSe. FeSe possesses a nematic ordering temperature Ts and orbital-related band-energy split below Ts that are similar to those in BaFe2As2 , but unlike BaFe2As2 it has no long-range magnetic order. We find that the Eg phonon-energy split in FeSe becomes substantial only well below Ts, and its saturated value is much smaller than that in BaFe2As2 . Together with reported results for the Ba (Fe1 -xCox)2As2 family, the data suggest that magnetism exerts a major influence on the lattice.

  5. Orientation relationship of eutectoid FeAl and FeAl2

    PubMed Central

    Scherf, A.; Kauffmann, A.; Kauffmann-Weiss, S.; Scherer, T.; Li, X.; Stein, F.; Heilmaier, M.

    2016-01-01

    Fe–Al alloys in the aluminium range of 55–65 at.% exhibit a lamellar microstructure of B2-ordered FeAl and triclinic FeAl2, which is caused by a eutectoid decomposition of the high-temperature Fe5Al8 phase, the so-called ∊ phase. The orientation relationship of FeAl and FeAl2 has previously been studied by Bastin et al. [J. Cryst. Growth (1978 ▸), 43, 745] and Hirata et al. [Philos. Mag. Lett. (2008 ▸), 88, 491]. Since both results are based on different crystallographic data regarding FeAl2, the data are re-evaluated with respect to a recent re-determination of the FeAl2 phase provided by Chumak et al. [Acta Cryst. (2010 ▸), C66, i87]. It is found that both orientation relationships match subsequent to a rotation operation of 180° about a 〈112〉 crystallographic axis of FeAl or by applying the inversion symmetry of the FeAl2 crystal structure as suggested by the Chumak data set. Experimental evidence for the validity of the previously determined orientation relationships was found in as-cast fully lamellar material (random texture) as well as directionally solidified material (∼〈110〉FeAl || solidification direction) by means of orientation imaging microscopy and global texture measurements. In addition, a preferential interface between FeAl and FeAl2 was identified by means of trace analyses using cross sectioning with a focused ion beam. On the basis of these habit planes the orientation relationship between the two phases can be described by (01)FeAl || (114) and [111]FeAl || [10]. There is no evidence for twinning within FeAl lamellae or alternating orientations of FeAl lamellae. Based on the determined orientation and interface data, an atomistic model of the structure relationship of Fe5Al8, FeAl and FeAl2 in the vicinity of the eutectoid decomposition is derived. This model is analysed with respect to the strain which has to be accommodated at the interface of FeAl and FeAl2. PMID:27047304

  6. Cu/Ba/bauxite: an Inexpensive and Efficient Alternative for Pt/Ba/Al2O3 in NOx Removal

    PubMed Central

    Wang, Xiuyun; Chen, Zhilin; Luo, Yongjin; Jiang, Lilong; Wang, Ruihu

    2013-01-01

    Cu/Ba/bauxite possesses superior NOx storage and reduction (NSR) performances, high thermal stability, strong resistance against SO2 poisoning and outstanding regeneration ability in comparison with Pt/Ba/Al2O3. It can serve as a cheap and promising alternative for traditional Pt/Ba/Al2O3 in NOx removal from lean-burn engines. PMID:23536149

  7. Innovative methodology for the synthesis of Ba-M hexaferrite BaFe{sub 12}O{sub 19} nanoparticles

    SciTech Connect

    Ahmed, M.A.; Helmy, N.; El-Dek, S.I.

    2013-09-01

    Graphical abstract: Transmission electron microscope images for the BaFe12O19. - Highlights: • BaFe{sub 12}O{sub 19}nanoparticles were prepared in single-phase from organometallic precursors. • BaFe{sub 12}O{sub 19} possesses small size 65 nm, H{sub C} = 3695 Oe and M{sub s} = 58 emu/g. • This method of preparation could be extended in the synthesis of other metal oxide nanoparticles. - Abstract: In this piece of work, high quality and homogeneity, barium hexaferrite (BaM) BaFe{sub 12}O{sub 19} nanoparticles were prepared from organometallic precursors for the 1st time. This method is based on the formation of supramolecular crystal structure of Ba[Fe(H{sub 3}NCH{sub 2}CH{sub 2}NH{sub 3})]Cl{sub 7}·8H{sub 2}O. The crystal structure, morphology and magnetic properties of BaFe{sub 12}O{sub 19} at two different annealing temperatures namely 1000 °C and 1200 °C were investigated using X-ray diffraction, transmission electron microscope TEM and vibrating sample magnetometry (VSM). The results show that monophasic nanoparticles of hexaferrites were obtained. Nanoparticles of crystallite size 40–50 nm distinguished by narrow distribution and excellent homogeneity were obtained with superior magnetic properties which suggested single-domain particles of Ba-M hexaferrite.

  8. Chemical reaction between BaFe2(As,P)2 superconducting thin film and LSAT substrate

    NASA Astrophysics Data System (ADS)

    Adachi, S.; Shimode, T.; Murai, Y.; Chikumoto, N.; Tanabe, K.

    2014-07-01

    BaFe2(As0.67P0.33)2 (Ba122:P) thin films were fabricated on (LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7 (LSAT) (1 0 0) substrates by a pulsed laser deposition method using a second-harmonic Nd:YAG laser. Superconducting Ba122:P thin films with c-axis orientation and in-plane alignment were successfully obtained. Detailed structural properties on the films were investigated by X-ray diffraction. The X-ray pattern suggested the existence of some apatite-type phase. Transmission electron microscope observation revealed the formation of a reacted layer between the film and the substrate. The reacted layer had a Ba(Sr)-rich and P-rich composition. These analyses indicated the formation of an apatite material at the interface of the film and the substrate.

  9. Preparation and microwave properties of lamellar Fe/BaFeO2.5 composite particles with hydrogen-thermal reduction method

    NASA Astrophysics Data System (ADS)

    Gong, Yuanxun; Zhou, Zhongxiang; Jiang, Jiantang; Zhao, Hongjie

    2016-06-01

    Fe/BaFeO2.5 laminated composite particles were successfully prepared by hydrogen-thermal reducing BaFe12O19 particles. The average diameter of Fe/BaFeO2.5 composite particles is about 1 μm and the lamellar thickness is about 100 nm. The effective permittivity and permeability of Fe/BaFeO2.5 laminated composite particles were measured and EMA performance was evaluated. Compared with Fe particles with a similar diameter, the permeability of Fe/BaFeO2.5 composite particles is remarkably improved by the induction of insulator BaFeO2.5 phase. Due to the unique 2-dimension shape characteristic, ε‧ and μ‧ of Fe/BaFeO2.5 laminated composite particles is obviously higher than that of Fe/BaFeO2.5 composite particles without lamellar structure. EMA performance of coating containing Fe/BaFeO2.5 laminated composite particles as fillers is excellent, and a maximum reflection loss (RLmax) up to -29.94 dB was achieved in a coating of 1.36 mm. Meanwhile, the operation frequency band of coating containing Fe/BaFeO2.5 laminated composite particles as fillers covers completely X-band and Ku-band, which considerably wider than most of reported EMA coatings.

  10. Ultrafast structural dynamics of the Fe-pnictide parent compound BaFe(2)As(2).

    PubMed

    Rettig, L; Mariager, S O; Ferrer, A; Grübel, S; Johnson, J A; Rittmann, J; Wolf, T; Johnson, S L; Ingold, G; Beaud, P; Staub, U

    2015-02-13

    Using femtosecond time-resolved x-ray diffraction we investigate the structural dynamics of the coherently excited A(1g) phonon mode in the Fe-pnictide parent compound BaFe(2)As(2). The fluence dependent intensity oscillations of two specific Bragg reflections with distinctly different sensitivity to the pnictogen height in the compound allow us to quantify the coherent modifications of the Fe-As tetrahedra, indicating a transient increase of the Fe magnetic moments. By a comparison with time-resolved photoemission data, we derive the electron-phonon deformation potential for this particular mode. The value of Δμ/Δz=-(1.0-1.5)  eV/Å is comparable with theoretical predictions and demonstrates the importance of this degree of freedom for the electron-phonon coupling in the Fe pnictides. PMID:25723244

  11. Ultrafast Structural Dynamics of the Fe-Pnictide Parent Compound BaFe2As2

    NASA Astrophysics Data System (ADS)

    Rettig, L.; Mariager, S. O.; Ferrer, A.; Grübel, S.; Johnson, J. A.; Rittmann, J.; Wolf, T.; Johnson, S. L.; Ingold, G.; Beaud, P.; Staub, U.

    2015-02-01

    Using femtosecond time-resolved x-ray diffraction we investigate the structural dynamics of the coherently excited A1 g phonon mode in the Fe-pnictide parent compound BaFe2As2. The fluence dependent intensity oscillations of two specific Bragg reflections with distinctly different sensitivity to the pnictogen height in the compound allow us to quantify the coherent modifications of the Fe-As tetrahedra, indicating a transient increase of the Fe magnetic moments. By a comparison with time-resolved photoemission data, we derive the electron-phonon deformation potential for this particular mode. The value of Δ μ /Δ z =-(1.0 - 1.5 ) eV /Å is comparable with theoretical predictions and demonstrates the importance of this degree of freedom for the electron-phonon coupling in the Fe pnictides.

  12. Growth of BaFe 12O 19 thin films formed by reactive diffusion

    NASA Astrophysics Data System (ADS)

    Pankov, V.; Bartholdson, Å.; Stukalov, O.; Smolenchuk, S.; Babushkin, O.; Gremenok, V.

    2003-05-01

    Thin films of BaFe 12O 19 have been grown on (00 l) oriented α-Fe 2O 3 single crystal substrates. The initial stages of the reaction between BaFe 2O 4 thin films and hematite single crystals have been investigated using AFM and SEM. The microstructure studies showed that (00 l) oriented BaFe 12O 19 microcrystallites formed during annealing at 900-1100°C. It was concluded that the surface diffusion had a dominating role in formation of thin BaFe 12O 19 films. Crystal growth was performed by stacking of layers with the thickness 2.3 nm, correlated with the c-parameter of the BaFe 12O 19 unit cell.

  13. Modulus measurements in ordered Co-Al, Fe-Al, and Ni-Al alloys

    NASA Technical Reports Server (NTRS)

    Harmouche, M. R.; Wolfenden, A.

    1985-01-01

    The composition and/or temperature dependence of the dynamic Young's modulus for the ordered B2 Co-Al, Fe-Al, and Ni-Al aluminides has been investigated using the piezoelectric ultrasonic composite oscillator technique (PUCOT). The modulus has been measured in the composition interval 48.49 to 52.58 at. pct Co, 50.87 to 60.2 at. pct Fe, and 49.22 to 55.95 at. pct Ni for Co-Al, Fe-Al, and Ni-Al, respectively. The measured values for Co-Al are in the temperature interval 300 to 1300 K, while those for the other systems are for ambient temperature only. The data points show that Co-Al is stiffer than Fe-Al, which is stiffer than Ni-Al. The data points for Fe-Al and Ni-Al are slightly higher than those reported in the literature.

  14. Structure and physical properties of Fe6 O8/ba Fe6 O11 nanostructure

    NASA Astrophysics Data System (ADS)

    Naseri, Mahmoud; Ghasemi, Rahmat

    2016-05-01

    The thermal treatment method was employed to prepare barium hexaferrite (Fe6 O8/Ba Fe6 O11) nanostructure. This method was attempted to achieve higher homogeneity of the final product. Specimens of barium hexaferrite nanostructure were characterized by various experimental techniques including X-ray diffraction (XRD), high resolution Field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FT-IR). X-ray diffraction results showed that there was no crystallinity in the predecessor and it had still amorphous phase. The formations of crystalline phases of barium hexaferrite nanostructures started from 673 to 973 K and the final products had different crystallite sizes ranging from 29 to 48 nm. The chemical analysis of the barium hexaferrite nanostructures was performed by energy dispersion X-ray analysis (EDXA), demonstrated that the barium hexaferrite nanostructures contained the elements of Ba, Fe, and O. The effect of calcination temperature on band gap energy was studied by UV-vis absorption spectra disclosed when calcination temperature increased, the appraised band gap energy values of the BaFe12O19 nanostructures decreased. The formed nanostructures exhibited ferromagnetic behaviors which were confirmed by using a vibrating sample magnetometer (VSM). The technique of the Electron paramagnetic resonance (EPR) spectroscopy was carried out at 300 K on the calcined specimens that exhibited the variation of the line-shapes of the spectra of with calcination temperature.

  15. Hole doping in BaFe2As2: The case of Ba1-xNaxFe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Aswartham, S.; Abdel-Hafiez, M.; Bombor, D.; Kumar, M.; Wolter, A. U. B.; Hess, C.; Evtushinsky, D. V.; Zabolotnyy, V. B.; Kordyuk, A. A.; Kim, T. K.; Borisenko, S. V.; Behr, G.; Büchner, B.; Wurmehl, S.

    2012-06-01

    Single crystals of Ba1-xNaxFe2As2 with x=0, 0.25, 0.35, 0.4 were grown using a self-flux high temperature solution growth technique. The superconducting and normal state properties were studied by temperature dependent magnetic susceptibility, electrical resistivity, and specific heat, revealing that the magnetic and structural transition is rapidly suppressed upon Na substitution at the Ba site in BaFe2As2, giving rise to superconductivity. A superconducting transition as high as 34 K is reached for a Na content of x=0.4. The positive Hall coefficient confirms that the substitution of Ba by Na results in hole doping similar to the substitution of Ba by K. Angle resolved photoemission spectroscopy was performed on all Ba1-xNaxFe2As2 crystals. The Fermi surface of hole-doped Ba1-xNaxFe2As2 is to a large extent the same as the Fermi surface found for the K-doped sister compounds, suggesting a similar impact of the substitution of Ba by either K or Na on the electronic band dispersion at the Fermi level.

  16. Exchange spring magnetic behavior in BaFe12O19/Fe3O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Remya, K. P.; Prabhu, D.; Amirthapandian, S.; Viswanathan, C.; Ponpandian, N.

    2016-05-01

    We report the investigation on exchange spring coupling behavior of BaFe12O19/Fe3O4 nanocomposite synthesized by simple mixing followed by heat treatment of individual ferrites. Morphologically tuned, well crystalline hard and soft ferrites were synthesized by simple chemical method and the phase composition, crystallinity, surface morphology and magnetic properties of the as prepared ferrites as well as the nanocomposites were studied by using XRD, FESEM and VSM respectively. Exchange coupling behavior is observed in the nanocomposite samples heated at 600 °C with simultaneous enhancements of (BH)max and remanence.

  17. London penetration depth in heavily over-doped Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Murphy, Jason; Kim, H.; Tanata, M. A.; Thaler, A.; Canfield, P. C.; Welp, U.; Kwok, W. K.; Prozorov, R.

    2012-02-01

    The low-temperature variation of London penetration depth, δλ(T), has been previously studied in heavily over-doped Ba(Fe1-xNix)2As2 [1] and the authors suggested the development of line nodes. Similar conclusion was made from thermal conductivity measurements in Ba(Fe1-xCox)2As2 [2]. However, δλ(T) in this system has only been measured for x <=x=0.102 [3], which is not far enough from optimal doping. Here we report tunnel - diode resonator (TDR) measurements in heavily overdoped single crystals of Ba(Fe1-xCox)2As2 with Co content of x=0.108 (Tc=14.8 K) and x=0.127 (Tc=9 K. We found a robust power-law behavior of δλ= A T^n with n=2.5 and n=2.11 respectively. To test whether the nodes are symmetry imposed or accidental, samples were irradiated with heavy ions. The produced disorder, leads to a decrease in Tc and of the exponent n. These results effects will be discussed in a context of unconventional pairing in Fe-based superconductors. [4pt] [1] C. Martin et. al., Phys. Rev. B 81, 060505 (2010).[0pt] [2] J.-Ph. Reid et. al., Phys. Rev. B 82, 064501 (2010).[0pt] [3] R.T. Gordon et.al. Phys. Rev. B 82, 054507 (2010).

  18. The mechanical properties of FeAl

    SciTech Connect

    Baker, I.; George, E.P.

    1996-12-31

    Only in the last few years has progress been made in obtaining reproducible mechanical properties data for FeAl. Two sets of observations are the foundation of this progress. The first is that the large vacancy concentrations that exist in FeAl at high temperature are easily retained at low temperature and that these strongly affect the low-temperature mechanical properties. The second is that RT ductility is adversely affected by water vapor. Purpose of this paper is not to present a comprehensive overview of the mechanical properties of FeAl but rather to highlight our understanding of key phenomena and to show how an understanding of the factors which control the yield strength and fracture behavior has followed the discovery of the above two effects. 87 refs, 9 figs.

  19. On the crack growth resistance and strength of the B2 iron aluminides Fe-40Al, Fe-45Al, and Fe-10Ni-40Al (at. %)

    SciTech Connect

    Schneibel, J.H.; Maziasz, P.J.

    1994-09-01

    The crack growth resistance and yield strength of the B2 iron aluminides Fe-40Al, Fe-45Al, are Fe-10Ni-40Al (at. %) have been investigated at room temperature laboratory air. After fast cooling from 1273 K, Fe-45Al and Fe-10Ni-40Al are much stronger than Fe-40Al, and exhibit considerably lower crack growth resistance. The crack growth resistance decreases with decreasing crack propagation velocity. Low crack propagation velocities favor intergranular fracture, whereas high velocities can lead to significant contributions from transgranular fracture. Boron additions to Fe-40Al and Fe-10Ni-40Al improve the crack growth resistance, reduce its dependence on the crack propagation velocity, and cause the path to be predominantly transgranular. In a plot of fracture toughness versus yield strength, the properties of the iron aluminides are similar to those of typical aluminum alloys.

  20. Preparation, photoluminescent properties and luminescent dynamics of BaAlF{sub 5}:Eu{sup 2+} nanophosphors

    SciTech Connect

    Zhang, Wei; Hua, Ruinian; Liu, Tianqing; Zhao, Jun; Na, Liyan; Chen, Baojiu

    2014-12-15

    Graphical abstract: Rice-shaped BaAlF{sub 5}:Eu{sup 2+} nanophosphors were synthesized via one-pot hydrothermal process. The as-prepared BaAlF{sub 5}:Eu{sup 2+} are composed of many particles with an average diameter of 40 nm. When excited at 260 nm, the sharp line emission located at 361 nm of Eu{sup 2+} was observed. The optimum doping concentration of Eu{sup 2+} was confirmed to be 5 mol%. The strong ultraviolet emission of Eu{sup 2+} ions in BaAlF{sub 5}:Eu{sup 2+} nanoparticles suggests that these nanoparticles may have potential applications for sensing, solid-state lasers and spectrometer calibration. - Highlights: • BaAlF{sub 5}:Eu{sup 2+} nanophosphors were synthesized via a mild hydrothermal process. • The Van and Huang models were used to research the mechanism of concentration quenching. • The optimum doping concentration of Eu2+ was confirmed to be 5 mol%. - Abstract: Eu{sup 2+}-doped BaAlF{sub 5} nanophosphors were synthesized via a facile one-pot hydrothermal method. The final products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. XRD results showed that the prepared samples are single-phase. The FE-SEM and TEM images indicated that the prepared BaAlF{sub 5}:Eu{sup 2+} nanophosphors are composed of many rice-shaped particles with an average diameter of 40 nm. When excited at 260 nm, BaAlF{sub 5}:Eu{sup 2+} nanophosphors exhibit the sharp line emissions of Eu{sup 2+} at room temperature. The optimum doping concentration of Eu{sup 2+} was confirmed to be 5 mol%. The Van and Huang models were used to study the mechanism of concentration quenching and the electric dipole–dipole interaction between Eu{sup 2+} can be deduced to be a dominant for quenching fluorescence in BaAlF{sub 5}:Eu{sup 2+} nanophosphors. The strong ultraviolet emission of Eu{sup 2+} in BaAlF{sub 5}:Eu{sup 2+} nanophosphors suggests that

  1. Melting, Processing, and Properties of Disordered Fe-Al and Fe-Al-C Based Alloys

    NASA Astrophysics Data System (ADS)

    Satya Prasad, V. V.; Khaple, Shivkumar; Baligidad, R. G.

    2014-09-01

    This article presents a part of the research work conducted in our laboratory to develop lightweight steels based on Fe-Al alloys containing 7 wt.% and 9 wt.% aluminum for construction of advanced lightweight ground transportation systems, such as automotive vehicles and heavy-haul truck, and for civil engineering construction, such as bridges, tunnels, and buildings. The melting and casting of sound, porosity-free ingots of Fe-Al-based alloys was accomplished by a newly developed cost-effective technique. The technique consists of using a special flux cover and proprietary charging schedule during air induction melting. These alloys were also produced using a vacuum induction melting (VIM) process for comparison purposes. The effect of aluminum (7 wt.% and 9 wt.%) on melting, processing, and properties of disordered solid solution Fe-Al alloys has been studied in detail. Fe-7 wt.% Al alloy could be produced using air induction melting with a flux cover with the properties comparable to the alloy produced through the VIM route. This material could be further processed through hot and cold working to produce sheets and thin foils. The cold-rolled and annealed sheet exhibited excellent room-temperature ductility. The role of carbon in Fe-7 wt.% Al alloys has also been examined. The results indicate that Fe-Al and Fe-Al-C alloys containing about 7 wt.% Al are potential lightweight steels.

  2. Nematic magnetoelastic effect contrasted between Ba(Fe1-x Cox)2 As2 and FeSe

    NASA Astrophysics Data System (ADS)

    Hu, Yuwen; Ren, Xiao; Zhang, Rui; Luo, Huiqian; Kasahara, Shigeru; Watashige, Tatsuya; Shibauchi, Takasada; Dai, Pengcheng; Zhang, Yan; Matsuda, Yuji; Li, Yuan

    Whether the nematic order ubiquitously found in Fe-based superconductors is driven by the spin or the charge or orbital degree of freedom is currently under heated debate. To elucidate its microscopic origin, we report a Raman scattering study of lattice dynamics, which quantify the extent of C4-symmetry breaking, in BaFe2As2 and FeSe. FeSe possesses a nematic ordering temperature Ts and orbital-related band-energy split below Ts that are similar to those in BaFe2As2 , but unlike BaFe2As2 it has no long-range magnetic order. We find that the Eg phonon-energy split in FeSe sets in only well below Ts, and its saturated value is substantially smaller than that in BaFe2As2 . Together with reported results for the Ba(Fe1-xCox) 2As2 family, the data suggest that magnetism exerts a major influence on the lattice. Present address: Princeton University, USA.

  3. The Structural Disorder and Lattice Stability of (Ba,Sr)(Co,Fe)O3 Complex Perovskites

    SciTech Connect

    S.N.Rashkeev

    2011-05-01

    The structural disorder and lattice stability of complex perovskite (Ba,Sr)(Co,Fe)O3, a promising cathode material for solid oxide fuel cells and oxygen permeation membranes, is explored by means of first principles DFT calculations. It is predicted that Ba and Sr ions easily exchange their lattice positions (A-cation disorder) similarly to Co and Fe ions (B-cation disorder). The cation antisite defects (exchange of A- and B-type cations) have a relatively high formation energy. The BSCF is predicted to exist in an equilibrium mixture of several phases and can decompose exothermically into the Ba- and Co-rich hexagonal (Ba,Sr)CoO3 and Sr- and Fe-rich cubic (Ba,Sr)FeO3 perovskites.

  4. Antiperovskite Chalco-Halides Ba3(FeS4)Cl, Ba3(FeS4)Br, and Ba3(FeSe4)Br with Spin Super-Super Exchange

    PubMed Central

    Zhang, Xian; Liu, Kai; He, Jian-Qiao; Wu, Hui; Huang, Qing-Zhen; Lin, Jian-Hua; Lu, Zhong-Yi; Huang, Fu-Qiang

    2015-01-01

    Perovskite-related materials have received increasing attention for their broad applications in photovoltaic solar cells and information technology due to their unique electrical and magnetic properties. Here we report three new antiperovskite chalco-halides: Ba3(FeS4)Cl, Ba3(FeS4)Br, and Ba3(FeSe4)Br. All of them were found to be good solar light absorbers. Remarkably, although the shortest Fe-Fe distance exceeds 6 Å, an unexpected anti-ferromagnetic phase transition near 100 K was observed in their magnetic susceptibility measurement. The corresponding complex magnetic structures were resolved by neutron diffraction experiments as well as investigated by first-principles electronic structure calculations. The spin-spin coupling between two neighboring Fe atoms along the b axis, which is realized by the Fe-S···S-Fe super-super exchange mechanism, was found to be responsible for this magnetic phase transition. PMID:26525136

  5. Comparative study of pure and Co-doped BaFe2As2

    NASA Astrophysics Data System (ADS)

    Soullard, Jacques; Perez-Enriquez, Raul; Kaplan, Ilya G.

    2015-05-01

    We present a comparative calculation of the electronic structure of the high critical temperature superconductor Co-doped BaFe2As2 and its parent compound at the electron correlation level by the embedded cluster method; the electron correlation is calculated through the second-order Møller-Plesset perturbation theory. The superconducting doped material is represented by the Ba4CoFe4As8 cluster. The analysis of the orbital populations in this cluster reveals the formation of an antiferromagnetic order in the Fe plane with a spin-density increase on the central Co atom with respect to the spin density of the central Fe atom of the undoped case. This increase is associated with an increase of the dz2 orbital population of the central atom. However, the formation mechanism of the local magnetic moment implies also a spin transfer from the nearest-neighbor Fe atoms and from the next-nearest-neighbor As atoms to the central Co atom, and it corresponds to a J1-J2 antiferromagnetic Heisenberg model. Some particular features of dy z and dx2-y2 orbitals in the triplet and in the singlet cluster states are interpreted to correspond to a spinless fermion. This result, as well as the result relative to the formation mechanism of the magnetic moments, can be connected with a model of resonating-valence-bond (RVB) superconductors suggested recently by Poilblanc et al. [Phys. Rev. B 89, 241106 (2014), 10.1103/PhysRevB.89.241106] and based on the Anderson RVB theory.

  6. Melt Processed Single Phase Hollandite Waste Forms For Nuclear Waste Immobilization: Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16}; A = Cr, Fe, Al

    SciTech Connect

    Brinkman, Kyle; Marra, James; Amoroso, Jake; Conradson, Steven D.; Tang, Ming

    2013-09-23

    Cs is one of the more problematic fission product radionuclides to immobilize due to its high volatility at elevated temperatures, ability to form water soluble compounds, and its mobility in many host materials. The hollandite structure is a promising crystalline host for Cs immobilization and has been traditionally fabricated by solid state sintering methods. This study presents the structure and performance of Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16}; A = Cr, Fe, Al hollandite fabricated by melt processing. Melt processing is considered advantageous given that melters are currently in use for High Level Waste (HLW) vitrification in several countries. This work details the impact of Cr additions that were demonstrated to i) promote the formation of a Cs containing hollandite phase and ii) maintain the stability of the hollandite phase in reducing conditions anticipated for multiphase waste form processing.

  7. Thermal mixing of Al-Fe multilayers

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Mendoza Zélis, L.; Sánchez, F. H.; Traverse, A.

    1994-12-01

    Al-Fe multilayers have been mixed by thermal treatment and their evolution followed by conversion electron Mössbauer spectroscopy. The initial and final states have been characterized by Rutherford backscattering spectrometry. The results are compared with those previously obtained in the ion beam mixing of similar systems.

  8. Controlled Confinement of Half-metallic 2D Electron Gas in BaTiO3/Ba2FeReO6/BaTiO3 Heterostructures: A First-principles Study

    NASA Astrophysics Data System (ADS)

    Saha-Dasgupta, Tanusri; Baidya, Santu; Waghmare, Umesh; Paramekanti, Arun

    Using density functional theory calculations, we establish that the half-metallicity of bulk Ba2FeReO6 survives down i to 1 nm thickness in BaTiO3/Ba2FeReO6/BaTiO3 heterostructures grown along the (001) and (111) directions. The confinement of the two-dimensional (2D) electron gas in this quantum well structure arises from the suppressed hybridization between Re/Fe d states and unoccupied Ti d states, and it is further strengthened by polar fields for the (111) direction. This mechanism, distinct from the polar catastrophe, leads to an order of magnitude stronger confinement of the 2D electron gas than that at the LaAlO3/SrTiO3 interface. We further show low-energy bands of (111) heterostructure display nontrivial topological character. Our work opens up the possibility of realizing ultra-thin spintronic devices. Journal Ref: Phys. Rev. B 92, 161106(R) (2015) S.B. and T.S.D thank Department of Science and Technology, India for the support through Thematic Unit of Excellence. AP was supported by NSERC (Canada).

  9. Structure and magnetic properties of the cubic oxide fluoride BaFeO{sub 2}F

    SciTech Connect

    Berry, Frank J.; Coomer, Fiona C.; Hancock, Cathryn; Helgason, Orn; Moore, Elaine A.; Slater, Peter R.; Wright, Adrian J.; Thomas, Michael F.

    2011-06-15

    Fluorination of the parent oxide, BaFeO{sub 3-{delta}}, with polyvinylidine fluoride gives rise to a cubic compound with a=4.0603(4) A at 298 K. {sup 57}Fe Moessbauer spectra confirmed that all the iron is present as Fe{sup 3+}. Neutron diffraction data showed complete occupancy of the anion sites, indicating a composition BaFeO{sub 2}F, with a large displacement of the iron off-site. The magnetic ordering temperature was determined as T{sub N}=645{+-}5 K. Neutron diffraction data at 4.2 K established G-type antiferromagnetism with a magnetic moment per Fe{sup 3+} ion of 3.95 {mu}{sub B}. However, magnetisation measurements indicated the presence of a weak ferromagnetic moment that is assigned to the canting of the antiferromagnetic structure. {sup 57}Fe Moessbauer spectra in the temperature range 10-300 K were fitted with a model of fluoride ion distribution that retains charge neutrality of the perovskite unit cell. - Graphical abstract: The cubic oxide fluoride of composition BaFeO{sub 2}F has been synthesised and characterised. Highlights: > Fluorination of BaFeO{sub 3-{delta}} with polyvinylidene fluoride gives a cubic oxide fluoride of composition BaFeO{sub 2}F. > BaFeO{sub 2}F adopts a canted antiferromagnetic structure and is different from the related phase of composition SrFeO{sub 2}F. > A model of fluoride ion distribution about iron in BaFeO{sub 2}F has been explored.

  10. Materials Chemistry of BaFe2As2: A Model Platform for Unconventional Superconductivity

    SciTech Connect

    Mandrus, David; Safa-Sefat, Athena; McGuire, Michael A; Sales, Brian C

    2010-01-01

    BaFe{sub 2}As{sub 2} is the parent compound of a family of unconventional superconductors with critical temperatures approaching 40 K. BaFe{sub 2}As{sub 2} is structurally simple, available as high-quality large crystals, can be both hole and electron doped, and is amenable to first-principles electronic structure calculations. BaFe{sub 2}As{sub 2} has a rich and flexible materials chemistry that makes it an ideal model platform for the study of unconventional superconductivity. The key properties of this family of materials are briefly reviewed.

  11. Boron strengthening in FeAl

    SciTech Connect

    Baker, I.; Li, X.; Xiao, H.; Klein, O.; Nelson, C.; Carleton, R.L.; George, E.P.

    1998-11-01

    The effect of boron on the strength of B2-structured FeAl is considered as a function of composition, grain size and temperature. Boron does not affect the concentrations of antisite atoms or vacancies present, with the former increasing and the latter decreasing with increasing deviation from the stoichiometric composition. When vacancies are absent, the strength increase per at. % B per unit lattice strain, {Delta}{sigma}/({Delta}c x {epsilon}) increases with increasing aluminum concentration, but when vacancies are present (>45 at. % Al), {Delta}{sigma}/({Delta}c x {epsilon}) decreases again. Boron increases grain size strengthening in FeAl. B strengthening is roughly independent of temperature up to the yield strength peak but above the point, when diffusion-assisted deformation occurs, boron strengthening increases dramatically.

  12. AlN/Fe/AlN nanostructures for magnetooptic magnetometry

    SciTech Connect

    Lišková-Jakubisová, E. Višňovský, Š.; Široký, P.; Hrabovský, D.; Pištora, J.

    2014-05-07

    AlN/Fe/AlN/Cu nanostructures with ultrathin Fe grown by sputtering on Si substrates are evaluated as probes for magnetooptical (MO) mapping of weak currents. They are considered for a laser wavelength of λ = 410 nm (3.02 eV) and operate at oblique light incidence angles, φ{sup (0)}, to enable detection of both in-plane and out-of-plane magnetization. Their performance is evaluated in terms of MO reflected wave electric field amplitudes. The maximal MO amplitudes in AlN/Fe/AlN/Cu are achieved by a proper choice of layer thicknesses. The nanostructures were characterized by MO polar Kerr effect at φ{sup (0)} ≈ 5° and longitudinal Kerr effect spectra (φ{sup (0)} = 45°) at photon energies between 1 and 5 eV. The nominal profiles were refined using a model-based analysis of the spectra. Closed form analytical expressions are provided, which are useful in the search for maximal MO amplitudes.

  13. Phase diagram of BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Hu, Ding; Li, Shiliang; Luo, Huiqian; Dai, Pengcheng

    2015-03-01

    As a unique system of high temperature Iron-based superconductors, recent experimental results indicate that there is a quantum critical point (QCP) around the optimal level in BaFe2(As1-xPx)2 . We use neutron diffraction, high resolution X-ray scattering and NMR techniques to map out the detailed phase diagram. It is found that the long-range antiferromagnetic (AF) order survives up to the optimal doping level within the instrument resolution. Our results suggest that the evolution of the AF order upon doping in BaFe2(As1-xPx)2 is different from that in the electron-doped Ba(Fe1-xCox)2 As2 or Ba(Fe1-xNix)2 As2.

  14. Room temperature luminescence and ferromagnetism of AlN:Fe

    NASA Astrophysics Data System (ADS)

    Li, H.; Cai, G. M.; Wang, W. J.

    2016-06-01

    AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  15. Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hakim, M. A.; Basith, M. A.; Hossain, Md. Sarowar; Ahmmad, Bashir; Zubair, M. A.; Hussain, A.; Islam, Md. Fakhrul

    2016-03-01

    Improvement in magnetic and electrical properties of multiferroic BiFeO3 in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived Bi0.9Ba0.1FeO3 nanoparticles of different sizes ranging from ˜ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe2+ state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeO3 nanoparticles compared to its undoped counterpart. The saturation magnetization of Bi0.9Ba0.1FeO3 nanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ˜ 49 nm Bi0.9Ba0.1FeO3 nanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO3.

  16. Forging of FeAl intermetallic compounds

    SciTech Connect

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L.; Schneibel, J.H.

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  17. Density functional study on d-orbital characters of the Fe magnetic moment in BaFe2As2

    NASA Astrophysics Data System (ADS)

    Oh, Hyungju; Choi, Hyoung Joon

    2012-02-01

    There have been many published papers related on the orbital characters of band structures in the iron-based superconductors. However, the orbital characters of the Fe magnetic moment still remain unrevealed. By performing first-principles calculations of the electronic and magnetic properties with constraint on the real space shape of Fe magnetic moments, we study the d-orbital characters of the Fe magnetic moment in BaFe2As2. We compare obtained band structures with published angle-resolved photoemission spectroscopy (ARPES) result, and propose that the Fe magnetic moment in BaFe2As2 has in-plane dxy character. This work was supported by the NRF of Korea (Grant Nos. 2009-0081204 and 2011-0018306). Computational resources have been provided by KISTI Supercomputing Center (Project No. KSC-2011-C3-05)

  18. Preparation, characterization and magnetic properties of the BaFe12O19 @ chitosan composites

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Zunju; Xie, Yu; Zhao, Jie

    2016-07-01

    The BaFe12O19 @ chitosan composites are synthesized by the crosslinking reaction through chitosan and glutaraldehyde onto the surface of BaFe12O19. The structures of the samples were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. The shape and size were observed by scanning electron microscopy and transmission electron microscopy. These results showed that chitosan has been decorated onto the surface of BaFe12O19, and the chitosan-glutaraldehyde Schiff-base composites have also been formed within the chitosan layers. Then, the magnetic properties of the samples were tested with the vibrating sample magnetometer. The magnetic saturation (MS), residual magnetization (Mr) and coercive force (Hc) values of the BaFe12O19 @ chitosan Schiff-base composite have achieved 44.94 emu/g, 27.82 emu/g and 3580.7 Oe, respectively. Compared with single BaFe12O19, the MS, and Mr of the BaFe12O19 @ chitosan composites decreases 12.31 emu/g and 8.58 emu/g, respectively. Finally, based on the experimental results, the probable formation mechanism of this composite has been investigated.

  19. Quantum oscillations in iron-based superconductors: BaFe2As2 vs. KFe2As2

    NASA Astrophysics Data System (ADS)

    Terashima, Taichi; Kurita, Nobuyuki; Kimata, Motoi; Tomita, Megumi; Tsuchiya, Satoshi; Satsukawa, Hidetaka; Harada, Atsushi; Hazama, Kaori; Imai, Motoharu; Sato, Akira; Uji, Shinya; Kihou, Kunihiro; Lee, Chul-Ho; Kito, Hijiri; Tomioka, Yasuhide; Ito, Toshimitsu; Iyo, Akira; Eisaki, Hiroshi; Liang, Tian; Nakajima, Masamichi; Ishida, Shigeyuki; Uchida, Shin-ichi; Saito, Taku; Fukazawa, Hideto; Kohori, Yoh; Harima, Hisatomo

    2013-07-01

    We present results of Shubnikov-de Haas oscillation measurements on detwinned BaFe2As2 and de Haas-van Alphen oscillation measurements on KFe2As2. The Fermi surface of BaFe2As2 in the antiferromagnetic phase is found to consist of one hole and two electron pockets, all of which are three-dimensional and closed, and can reasonably be accounted for by LSD A band calculations. We find only moderate mass enhancements m*/mband of 2-3. In the case of KFe2As2, four quasi-two-dimensional Fermi surface cylinders epsilon, α, ζ, and β are observed in qualitative agreement with previous ARPES data. In sharp contrast to BaFe2As2, agreement between the observed and LDA-calculated Fermi surface is poor: LDA calculations seem to predict wrong crystal-field splitting of Fe 3d states. Large effective masses up to 20 me, me being the free electron mass, are found. The Sommerfeld coefficient estimated from the observed Fermi surface and effective masses is consistent with the measured value of 93 mJ/K2mol [H. Fukazawa et al., J. Phys. Soc. Jpn. 80, SA118 (2011)] and is 8-9 times larger than the band value, indicating strong electronic correlations in KFe2As2.

  20. Catalytic Methane Decomposition over Fe-Al2 O3.

    PubMed

    Zhou, Lu; Enakonda, Linga Reddy; Saih, Youssef; Loptain, Sergei; Gary, Daniel; Del-Gallo, Pascal; Basset, Jean-Marie

    2016-06-01

    The presence of a Fe-FeAl2 O4 structure over an Fe-Al2 O3 catalysts is demonstrated to be vital for the catalytic methane decomposition (CMD) activity. After H2 reduction at 750 °C, Fe-Al2 O3 prepared by means of a fusion method, containing 86.5 wt % FeAl2 O4 and 13.5 wt % Fe(0) , showed a stable CMD activity at 750 °C for as long as 10 h. PMID:27159367

  1. Study of the structural, electronic, and magnetic properties of the barium-rich iron(IV) oxides, Ba(2)FeO(4) and Ba(3)FeO(5).

    PubMed

    Delattre, James L; Stacy, Angelica M; Young, Victor G; Long, Gary J; Hermann, Raphaël; Grandjean, Fernande

    2002-06-01

    Crystals of Ba(2)FeO(4) and Ba(3)FeO(5), grown from a "self-sealing" KOH-Ba(OH)(2) flux, have been characterized by single-crystal X-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. Ba(2)FeO(4) forms nonmerohedral twinned crystals with the monoclinic space group P2(1)/n, a = 6.034(2) A, b = 7.647(2) A, c = 10.162(3) A, beta = 92.931(6) degrees, and Z = 4. Ba(3)FeO(5) crystallizes in the orthorhombic space group Pnma, with a = 10.301(1) A, b = 8.151(1) A, c = 7.611(1) A, and Z = 4. While both compounds feature discrete FeO(4)(4-) tetrahedra, the anion found in Ba(2)FeO(4) has shorter Fe-O bonds and is significantly distorted relative to the Ba(3)FeO(5) anion. An iron valence of 4+ was confirmed by magnet susceptibility measurements and by the low-temperature isomer shifts of -0.152 and -0.142 mm/s relative to alpha-iron for Ba(2)FeO(4) and Ba(3)FeO(5), respectively. PMID:12033889

  2. Microwave absorption properties of a double-layer absorber based on nanocomposite BaFe12O19/α-Fe and nanocrystalline α-Fe microfibers

    NASA Astrophysics Data System (ADS)

    Shen, Xiang-Qian; Liu, Hong-Bo; Wang, Zhou; Qian, Xin-Ye; Jing, Mao-Xiang; Yang, Xin-Chun

    2014-07-01

    The nanocomposite BaFe12O19/α-Fe and nanocrystalline α-Fe microfibers with diameters of 1-5 μm, high aspect ratios and large specific areas are prepared by the citrate gel transformation and reduction process. The nanocomposite BaFe12O19/α-Fe microfibers show some exchange—coupling interactions largely arising from the magnetization hard (BaFe12O19) and soft (α-Fe) nanoparticles. For the microwave absorptions, the double-layer structures consisting of the nanocomposite BaFe12O19/α-Fe and α-Fe microfibers each exhibit a wide band and strong absorption behavior. When the nanocomposite BaFe12O19/α-Fe microfibers are used as a matching layer of 2.3 mm in thickness and α-Fe microfibers as an absorbing layer of 1.2 mm in thickness, the optimal reflection loss (RL) achieves -47 dB at 15.6 GHz, the absorption bandwidth is about 12.7 GHz ranging from 5.3 to 18 GHz, exceeding -20 dB, which covers 72.5% C-band (4.2-8.2 GHz) and whole X-band (8.2-12.4 GHz) and Ku-band (12.4-18 GHz). The enhanced absorption properties of these double-layer absorbers are mainly ascribed to the improvement in impedance matching ability and microwave multi-reflection largely resulting from the dipolar polarization, interfacial polarization, exchange—coupling interaction, and small size effect.

  3. Investigation of structure and oxygen permeability of Ba-Ce-Co-Fe-O system

    SciTech Connect

    Li, Qiming; State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 ; Zhu, Xuefeng; Yang, Weishen

    2010-09-15

    Mixed ionic-electronic conducting perovskite oxides, BaCe{sub 0.1}Co{sub x}Fe{sub 0.9-x}O{sub 3-{delta}}, were synthesized with a combined citric acid and EDTA complexing method. The structure and oxygen permeability of BaCe{sub 0.1}Co{sub x}Fe{sub 0.9-x}O{sub 3-{delta}} series was investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and oxygen permeation operation. XRD characterization showed that pure cubic perovskite structure can be obtained only if the content of cobalt and cerium in B-site of Ba-Ce-Co-Fe-O series is no more than 40% and 15%, respectively. Lattice parameters of BaCe{sub 0.1}Co{sub x}Fe{sub 0.9-x}O{sub 3-{delta}} gradually increase with cobalt and cerium content, iodine titration experiment revealed that the doping of cerium ions with big radius can keep B-site cobalt and iron ions in low valence state. Oxygen permeation operation showed that oxygen permeation flux of all BaCe{sub 0.1}Co{sub x}Fe{sub 0.9-x}O{sub 3-{delta}} membranes gradually increases with testing time in the initial stage, and the time to reach steady state becomes longer with the increase of cobalt content. After reaching permeation steady state, BaCe{sub 0.1}Co{sub 0.4}Fe{sub 0.5}O{sub 3-{delta}} exhibits highest oxygen flux amongst BaCe{sub 0.1}Co{sub x}Fe{sub 0.9-x}O{sub 3-{delta}} series.

  4. Ferromagnetic Fe2CrAl Nanowires

    NASA Astrophysics Data System (ADS)

    Dulal, Rajendra; Dahal, Bishnu; Pegg, Ian L.; Philip, John

    Heusler alloy Fe2CrAl (FCA) nanowires were grown on silicon substrates. Nanowires have diameters in the range 50 to 200 nm and lengths up to 100 µm. They exhibit cubic L21 and A2 type structure with a space group, Pm m. Magnetic characterization reveals that they display ferromagnetic behavior and has a Curie temperature above 400 K. Magnetic behavior of FCA nanowires is different from the reported bulk behavior. Bulk FCA with L21 structure has a Curie temperature around 274 K. National Science Foundation under ECCS-0845501 and NSF-MRI, DMR-0922997.

  5. High field nuclear magnetic resonance in transition metal substituted BaFe{sub 2}As{sub 2}

    SciTech Connect

    Garitezi, T. M. Lesseux, G. G.; Rosa, P. F. S.; Adriano, C.; Pagliuso, P. G.; Urbano, R. R.; Reyes, A. P.; Kuhns, P. L.

    2014-05-07

    We report high field {sup 75}As nuclear magnetic resonance (NMR) measurements on Co and Cu substituted BaFe{sub 2}As{sub 2} single crystals displaying same structural/magnetic transition T{sub 0}≃128  K. From our anisotropy studies in the paramagnetic state, we strikingly found virtually identical quadrupolar splitting and consequently the quadrupole frequency ν{sub Q}≃2.57(1)  MHz for both compounds, despite the claim that each Cu delivers 2 extra 3d electrons in BaFe{sub 2}As{sub 2} compared to Co substitution. These results allow us to conclude that a subtle change in the crystallographic structure, particularly in the Fe–As tetrahedra, must be the most probable tuning parameter to determine T{sub 0} in this class of superconductors rather than electronic doping. Furthermore, our NMR data around T{sub 0} suggest coexistence of tetragonal/paramagnetic and orthorhombic/antiferromagnetic phases between the structural and the spin density wave magnetic phase transitions, similarly to what was reported for K-doped BaFe{sub 2}As{sub 2} [Urbano et al., Phys. Rev. Lett. 105, 107001 (2010)].

  6. Overview of the development of FeAl intermetallic alloys

    SciTech Connect

    Maziasz, P.J.; Liu, C.T.; Goodwin, G.M.

    1995-09-01

    B2-phase FeAl ordered intermetallic alloys based on an Fe-36 at.% Al composition are being developed to optimize a combination of properties that includes high-temperature strength, room-temperature ductility, and weldability. Microalloying with boron and proper processing are very important for FeAl properties optimization. These alloys also have the good to outstanding resistance to oxidation, sulfidation, and corrosion in molten salts or chlorides at elevated temperatures, characteristic of FeAl with 30--40 at.% Al. Ingot- and powder-metallurgy (IM and PM, respectively) processing both produce good properties, including strength above 400 MPa up to about 750 C. Technology development to produce FeAl components for industry testing is in progress. In parallel, weld-overlay cladding and powder coating technologies are also being developed to take immediate advantage of the high-temperature corrosion/oxidation and erosion/wear resistance of FeAl.

  7. Structural, optical and electrical properties of GdAlO3:Eu3+Ba2+

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, T.; Tamilarasi, S.; Bose, A. Chandra

    2015-06-01

    Effect of Ba2+ ions concentration on the photoluminescence of GdAlO3:Eu3+ Ba2+ phosphor is investigated. The phosphors are synthesized by citrate-based sol-gel method and the formation of orthorhombic phase GdAlO3 is confirmed by XRD analysis. Kubelka-Munk function is used to estimate the band gap and the value varies with concentration of Ba2+ is observed. Photoluminescence spectra show a strong red emission peak at 616 nm corresponding to5D0→7F2 transition and its intensity increase with the addition of Ba2+ ions. The presence of Eu3+ and Ba2+ ions in GdAlO3 strongly influences the dielectric property of GdAlO3.

  8. Syntheses, crystal structures, and electronic properties of Ba8Si2US14 and Ba8SiFeUS14

    NASA Astrophysics Data System (ADS)

    Mesbah, Adel; Prakash, Jai; Lebègue, Sébastien; Stojko, Wojciech; Ibers, James A.

    2015-10-01

    Black single crystals of the new compounds Ba8Si2US14 and Ba8SiFeUS14 have been obtained by high-temperature solid-state methods at 1223 K. These isostructural compounds crystallize in a new structure type in space group C2h3 - C2/m of the monoclinic system. The salt-like structure comprises isolated US6 octahedra and MS4 tetrahedra separated by Ba cations. The US6 octahedra form pseudo-layers that are separated by two other pseudo-layers formed by isolated MS4 tetrahedra. These compounds do not show any short S-S interactions. Ba8Si2US14 charge balances with 8 Ba2+, 2 Si4+, 1 U4+, and 14 S2-; Ba8SiFeUS14 can be charge balanced with 8 Ba2+, 1 Si4+, 1 Fe3+, 1 U5+, and 14 S2-. DFT calculations using the HSE functional indicate that the compounds are semiconductors. The calculated band gaps are 1.2 eV and 1.8 eV for Ba8Si2US14 and Ba8SiFeUS14, respectively.

  9. Effect of cation substitution at the B site on the oxygen semi-permeation flux in La0.5Ba0.5Fe0.7B0.3O3-δ dense perovskite membranes with B = Al, Co, Cu, Mg, Mn, Ni, Sn, Ti and Zn (part II)

    NASA Astrophysics Data System (ADS)

    Reichmann, M.; Geffroy, P.-M.; Fouletier, J.; Richet, N.; Del Gallo, P.; Chartier, T.

    2015-03-01

    The aim of this paper is to provide insight into the effect of cation substitution at the B site on the oxygen semi-permeation performances. Particular attention is given here to identify the impact of cation substitution at the B site on oxygen diffusion and oxygen surface-exchange kinetics in the La0.5Ba0.5Fe0.7B0.3O3-δ perovskite membrane series with B = Al, Co, Cu, Mg, Mn, Ni, Sn, Ti and Zn. This study clearly shows that the prediction of the oxygen semi-permeation performances of membrane materials from the nature of cation at the A or B sites in perovskite structure is quite complex. The cation substitution at the B-site has a low impact on the nature of rate-determining step and a significant impact on oxygen semi-permeation performances, contrary to the cation substitution at A-site. Unfortunately, it is not possible to establish a relevant trend about the effect of the nature of cation in the A or B sites in perovskite structure on oxygen diffusion and the oxygen surface-exchange kinetics.

  10. Greatly enhanced magnetic properties of electrodeposited Ni-Co-P-BaFe12O19 composites

    NASA Astrophysics Data System (ADS)

    El-Sayed, Adly H.; Hemeda, O. M.; Tawfik, A.; Hamad, Mahmoud A.

    2016-03-01

    We prepared electrodeposited Ni-Co-P-M-type BaFe12O19 (BaM) film as magnetic soft-hard composites with a large amount of entrapped BaM particles more than 40 wt% were grown over polycrystalline copper substrates. The results show that the saturation magnetization of BaM particles remarkably increases by more than 300% and Mr increases by more than 700% when they embedded into the Ni-Co-P metal. In contrast to previous reports, it is clear that values of coercivity and squareness for our work are significantly better than corresponding values obtained for electrodeposited Ni-Co-BaM composite films of previous works.

  11. Universality of the dispersive spin-resonance mode in superconducting BaFe2As2.

    PubMed

    Lee, C H; Steffens, P; Qureshi, N; Nakajima, M; Kihou, K; Iyo, A; Eisaki, H; Braden, M

    2013-10-18

    Spin fluctuations in superconducting BaFe2(As(1-x)P(x))2 (x=0.34, T(c)=29.5 K) are studied using inelastic neutron scattering. Well-defined commensurate magnetic signals are observed at (π, 0), which is consistent with the nesting vector of the Fermi surface. Antiferromagnetic (AFM) spin fluctuations in the normal state exhibit a three-dimensional character reminiscent of the AFM order in nondoped BaFe2As2. A clear spin gap is observed in the superconducting phase forming a peak whose energy is significantly dispersed along the c axis. The bandwidth of dispersion becomes larger with approaching the AFM ordered phase universally in all superconducting BaFe2As2, indicating that the dispersive feature is attributed to three-dimensional AFM correlations. The results suggest a strong relationship between the magnetism and superconductivity. PMID:24182293

  12. Preparation and thermal behavior of aerosol-derived BaFe 12O 19 nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, Hsuan-Fu; Lin, Hsin-Yi

    2004-12-01

    Pure BaFe12O19 nanoparticles, having single magnetic domain sizes, were obtained at 700 °C using a process combining the citrate precursor method and spray technique. A neutralized aqueous solution, containing Ba2+ and Fe3+ chelated by citric acid, was nebulized to undergo thermal decomposition in a flowing air with a maximum temperature of 250 °C. The dried solid precursor so obtained was calcined at different temperatures and was then chemically and physically characterized. Crystalline barium hexaferrites were formed at temperatures as low as 650 °C, but calcination temperatures higher than 680 °C were required to produce pure barium ferrite powder. Based on the obtained experimental results, the reaction mechanism for the aerosol-derived precursor to form BaFe12O19 was proposed and discussed in this study.

  13. Barium aluminides Ba{sub x}Al{sub 5}(x=3,3.5,4)

    SciTech Connect

    Jehle, Michael; Scherer, Harald; Wendorff, Marco; Roehr, Caroline

    2009-05-15

    Three aluminides of the series Ba{sub x}Al{sub 5}(x=3,3.5,4) were synthesized from stoichiometric ratios of the elements in Ta crucibles. The crystal structure of the new compound Ba{sub 7}Al{sub 10} was determined using single crystal X-ray data (space group R3-barm, a=604.23(9), c=4879.0(12)pm, Z=3, R1=0.0325). The compound exhibits Al Kagome (3.6.3.6.) nets in which half of the triangles form the basis of trigonal bipyramids Al{sub 5}. The apical Al are thus three-bonded assuming a charge of -2 ({sup 27}Al-NMR chemical shift delta=660pm), whereas the Al atoms of the basal triangle (i.e. of the Kagome net) are four-bonded and thus of formal charge -1(delta=490ppm). The total charge of the anion is thus exactly compensated by the Ba cations, i.e. the compound can be interpreted as an electron precise Zintl phase, exhibiting a distinct pseudo-band gap at the Fermi level of the calculated tDOS. According to the total formula, the structure displays a combination the stacking sequences of Ba{sub 3}Al{sub 5} and Ba{sub 4}Al{sub 5}, the structures of which have been redetermined with current methods (both hexagonal with space group P6{sub 3}/mmc; Ba{sub 3}Al{sub 5}: a=606.55(7), c=1461.8(2)pm, Z=2, R1=0.0239; Ba{sub 4}Al{sub 5}: a=609.21(7), c=1775.8(3)pm, Z=2, R1=0.0300). These three compounds with slightly different electron counts but similar polyanions allow to compare the bond lengths, the electronic structures and the overall bonding situation in dependence of positive or negative deviation of the electron count in relation to the novel formally electron precise Zintl compound Ba{sub 7}Al{sub 10}. - Al{sub 5} layers of Kagome nets in the new binary electron precise Zintl compound Ba{sub 3.5}Al{sub 5}, also found in Ba{sub 3}Al{sub 5} and Ba{sub 4}Al{sub 5}.

  14. A first principles study on newly proposed (Ca/Sr/Ba)Fe2Bi2 compounds with their parent compounds

    NASA Astrophysics Data System (ADS)

    Sundareswari, M.; Jayalakshmi, D. S.; Viswanathan, E.

    2016-02-01

    The structural, electronic, bonding and magnetic properties of newly proposed iron-based compounds viz., CaFe2Bi2, SrFe2Bi2, BaFe2Bi2 with their Fermi surface topology are reported here for the first time by means of first principles calculation. All these properties of newly proposed compounds are compared and analysed along with their respective parent compounds namely (Ca,Sr,Ba)Fe2As2.

  15. Diamagnetic vortex barrier stripes in underdoped BaFe2(As1-xPx) 2

    NASA Astrophysics Data System (ADS)

    Yagil, A.; Lamhot, Y.; Almoalem, A.; Kasahara, S.; Watashige, T.; Shibauchi, T.; Matsuda, Y.; Auslaender, O. M.

    2016-08-01

    We report magnetic force microscopy (MFM) measurements on underdoped BaFe2(As1 -xPx)2 (x =0.26 ) that show enhanced superconductivity along stripes parallel to twin boundaries. These stripes of enhanced diamagnetic response repel superconducting vortices and act as barriers for them to cross. The width of the stripes is hundreds of nanometers, on the scale of the penetration depth, well within the inherent spatial resolution of MFM and implying that the width is set by the interaction of the superconductor with the MFM's magnetic tip. Unlike similar stripes observed previously by scanning SQUID in the electron doped Ba (Fe1 -xCox)2As2 , the stripes in the isovalently doped BaFe2(As1 -xPx)2 disappear gradually when we warm the sample towards the superconducting transition temperature. Moreover, we find that the stripes move well below the reported structural transition temperature in BaFe2(As1 -xPx)2 and that they can be much denser than in the Ba (Fe1 -xCox)2As2 study. When we cool in finite magnetic field we find that some vortices appear in the middle of stripes, suggesting that the stripes may have an inner structure, which we cannot resolve. Finally, we use both vortex decoration at higher magnetic field and deliberate vortex dragging by the MFM magnetic tip to obtain bounds on the strength of the interaction between the stripes and vortices. We find that this interaction is strong enough to play a significant role in determining the critical current in underdoped BaFe2(As1 -xPx)2 .

  16. Energetic ion bombarded Fe/Al multilayers

    SciTech Connect

    Al-Busaidy, M.S.; Crapper, M.D.

    2006-05-15

    The utility of ion-assisted deposition is investigated to explore the possibility of counteracting the deficiency of back-reflected current of Ar neutrals in the case of lighter elements such as Al. A range of energetically ion bombarded Fe/Al multilayers sputtered with applied surface bias of 0, -200, or -400 V were deposited onto Si(111) substrates in an argon atmosphere of 4 mTorr using a computer controlled dc magnetron sputtering system. Grazing incidence reflectivity and rocking curve scans by synchrotron x rays of wavelength of 1.38 A were used to investigate the structures of the interfaces produced. Substantial evidence has been gathered to suggest the gradual suppression of interfacial mixing and reduction in interfacial roughness with increases of applied bias. The densification of the Al microstructure was noticeable and may be a consequence of resputtering attributable to the induced ion bombardment. The average interfacial roughnesses were calculated for the 0, -200, and -400 V samples to be 7{+-}0.5, 6{+-}0.5, and 5{+-}0.5 A respectfully demonstrating a 30% improvement in interface quality. Data from rocking curve scans point to improved long-range correlated roughness in energetically deposited samples. The computational code based on the recursive algorithm developed by Parratt [Phys. Rev. 95, 359 (1954)] was successful in the simulation of the specular reflectivity curves.

  17. Synthesis and characterization of hollow mesoporous BaFe12O19 spheres

    SciTech Connect

    Xu, X; Park, J; Hong, YK; Lane, AM

    2015-02-01

    A facile method is reported to synthesize hollow mesoporous BaFe12O19 spheres using a template-free chemical etching process. Hollow BaFe12O19 spheres were synthesized by conventional spray pyrolysis. The mesoporous structure is achieved by alkaline ethylene glycol etching at 185 degrees C, with the porosity controlled by the heating time. The hollow porous structure is confirmed by SEM, TEM, and FIB-FESEM characterization. The crystal structure and magnetic properties are not significantly affected after the chemical etching process. The formation mechanism of the porous structure is explained by grain boundary etching. (C) 2014 Elsevier Inc. All rights reserved.

  18. Calculation of the specific heat of optimally K-doped BaFe2As2

    NASA Astrophysics Data System (ADS)

    Oh, Hyungju; Coh, Sinisa; Cohen, Marvin L.

    2015-08-01

    The calculated specific heat of optimally K-doped BaFe2As2 in density functional theory is about five times smaller than that found in the experiment. We report that by adjusting the potential on the iron atom to be slightly more repulsive for electrons improves the calculated heat capacity as well as the electronic band structure of Ba0.6K0.4Fe2As2. In addition, structural and magnetic properties are moved in the direction of experimental values. Applying the same correction to the antiferromagnetic state, we find that the electron-phonon coupling is strongly enhanced.

  19. Long range order and vacancy properties in Al-rich Fe{sub 3}Al and Fe{sub 3}Al(Cr) alloys

    SciTech Connect

    Kim, S.M.; Morris, D.G.

    1998-05-01

    Neutron powder diffraction measurements have been carried out in situ from room temperature to about 100 C in Fe28Al (28 at.% Al), Fe32.5Al (32.5 at.% Al) and Fe28Al15Cr (28 at.% Al, 5 at.% Cr) alloys. X-ray diffraction and TEM studies provided supporting information. The data were analyzed to obtain information about the temperature dependence of the DO{sub 3} and B2 long range order parameters, the location of the Cr atoms and their effect on the ordering energies, and on the vacancy formation and migration properties in Fe28Al and Fe32.5Al alloys. The location of the ternary alloying addition in DO{sub 3} and B2 ordered Al-rich Fe{sub 3}Al is shown to be consistent with considerations of interatomic bond energies.

  20. Lifshitz Transition and Chemical Instabilities in Ba1 xKxFe2As2 Superconductors

    SciTech Connect

    Khan, Suffian N.; Johnson, Duane D.

    2014-01-01

    Forsolid-solutionBa1 xKxFe2As2FermisurfaceevolutionismappedviaBlochspectralfunctionscalculatedusingdensityfunctionaltheoryimplementedinKorringa-Kohn-Rostokermultiplescatteringtheorywiththecoherent-potentialapproximation.Spectralfunctionsrevealelectronicdispersion,topology,orbitalcharacter,andbroadening(electron-lifetimeeffects)duetochemicaldisorder.Dissolutionofelectroncylindersoccursnearx 0.9withanonuniform,topological(Lifshitz)transition,reducingtheinterbandinteractions;yetthedispersionmaintainsitsdxzordyzcharacter.Formationenergiesindicatealloyingatx 0.35,asobserved,andatendencyforsegregationontheK-rich(x>0.6)side,explainingthedifficultyofcontrollingsamplequalityandtheconflictingresultsbetweencharacterizedelectronicstructures.OurresultsrevealFermisurfacetransitionsinalloyedsamplesthatinfluencestonodalsuperconductivityandsuggesttheoriginfordeviationsofcommontrendsinFe-basedsuperconductors,suchasBud ko-Ni-Canfieldscaling.

  1. Inverse-photoemission spectroscopy of iron-based superconductors NdFeAsO1-δ and Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Sato, H.; Utsumi, Y.; Morimoto, O.; Nakashima, Y.; Ino, A.; Aiura, Y.; Iyo, A.; Kito, H.; Miyazawa, K.; Shirage, P. M.; Lee, C. H.; Kihou, K.; Eisaki, H.; Namatame, H.; Taniguchi, M.

    2012-12-01

    Unoccupied electronic structure of iron-based superconductors NdFeAsO0.7 (Tc=51 K), BaFe2As2 and Ba(Fe0.89Co0.11)2As2 (Tc=23 K) has been investigated by means of inverse-photoemission spectroscopy (IPES). The unoccupied Fe 3d states are observed around 1 eV above the Fermi level for all compounds. The Fe 3p-3d resonant IPES suggests that the unoccupied Fe 3d states of Ba(Fe1-xCox)2As2 have more localized character compared with those of NdFeAsO0.7. The unoccupied Nd 4f states of NdFeAsO0.7 are located around 5 and 7 eV, and the Ba 5d and Ba 4f states of Ba(Fe1-xCox)2As2 are located around 5 and 12 eV, respectively.

  2. Microstructure of the Al-La-Ni-Fe system

    SciTech Connect

    Vasil’ev, A. L.; Ivanova, A. G.; Bakhteeva, N. D.; Kolobylina, N. N.; Orekhov, A. S.; Presnyakov, M. Yu.; Todorova, E. V.

    2015-01-15

    The microstructure of alloys based on the Al-La-Ni-Fe system, which are characterized by a unique ability to form metal glasses and nanoscale composites in a wide range of compositions, has been investigated. Al{sub 85}Ni{sub 7}Fe{sub 4}La{sub 4} and Al{sub 85}Ni{sub 9}Fe{sub 2}La{sub 4} alloys have been analyzed by electron microscopy (including high-resolution scanning transmission electron microscopy), energy-dispersive X-ray microanalysis, electron diffraction (ED), and X-ray diffraction (XRD). It is found that, along with fcc Al and Al{sub 4}La (Al{sub 11}La{sub 3}) particles, these alloys contain a ternary phase Al{sub 3}Ni{sub 1−x}Fe{sub x} (sp. gr. Pnma) isostructural to the Al{sub 3}Ni phase and a quaternary phase Al{sub 8}Fe{sub 2−x}Ni{sub x}La isostructural to the Al{sub 8}Fe{sub 2}Eu phase (sp. gr. Pbam). The unit-cell parameters of the Al{sub 3}Ni{sub 1−x}Fe{sub x} and Al{sub 8}Fe{sub 2−x}Ni{sub x}La compounds, determined by ED and refined by XRD, are a = 0.664(1) nm, b = 0.734(1) nm, and c = 0.490(1) nm for Al{sub 3}Ni{sub 1−x}Fe{sub x} and a = 1.258(3) nm, b = 1.448(3) nm, and c = 0.405(8) nm for Al{sub 8}Fe{sub 2−x}Ni{sub x}La. In both cases Ni and Fe atoms are statistically arranged, and no ordering is found. Al{sub 8}Fe{sub 2−x}Ni{sub x}La particles contain inclusions in the form of Al{sub 3}Fe δ layers.

  3. Structural and antiferromagnetic properties of Ba(Fe1-x-y Cox Rhy)2 As2 compounds

    NASA Astrophysics Data System (ADS)

    Kim, Min Gyu; Heitmann, T. W.; Mulcahy, S. R.; Bourret-Courchesne, E. D.; Birgeneau, R. J.

    We present a systematic investigation of the electrical, structural, and antiferromagnetic properties for the series of Ba(Fe1-x-y CoxRhy)2 As2 compounds with fixed x = 0.027 and 0 < y <0.035. We compare our results for the Co-Rh doped Ba(Fe1-x-y CoxRhy)2 As2 compounds with Ba(Fe 1-xCox)2 As2 compounds. We demonstrate that the electrical, structural, antiferromagnetic, and superconducting properties of the Co-Rh doped compounds are similar to the properties of the Co doped compounds. We find that the overall behaviors of Ba(Fe1-x-y CoxRhy)2 As2 and Ba(Fe1-x Cox)2 As2 compounds are very similar when the total number of the extra electrons per Fe/TM (TM = transition metal) site is considered, which is consistent with the rigid band model. Despite the similarity, we find that the details of the transitions are different in between Ba(Fe1-x-y CoxRhy)2 As2 and Ba(Fe1-x Cox)2 As2 compounds. The work at the Lawrence Berkeley National Laboratory was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231.

  4. Structural and antiferromagnetic properties of Ba(Fe1 -x -yCoxRhy )2As2 compounds

    NASA Astrophysics Data System (ADS)

    Kim, M. G.; Heitmann, T. W.; Mulcahy, S. R.; Bourret-Courchesne, E. D.; Birgeneau, R. J.

    2016-03-01

    We present a systematic investigation of the electrical, structural, and antiferromagnetic properties for the series of Ba (Fe1-x-yCoxRhy) 2As2 compounds with fixed x ≈0.027 and 0 ≤y ≤0.035 . We compare our results for the Co-Rh doped Ba (Fe1-x-yCoxRhy) 2As2 compounds with the Co doped Ba (Fe1-xCox) 2As2 compounds. We demonstrate that the electrical, structural, antiferromagnetic, and superconducting properties of the Co-Rh doped compounds are similar to the properties of the Co doped compounds. We find that the overall behaviors of Ba (Fe1-x-yCoxRhy) 2As2 and Ba (Fe1-xCox) 2As2 compounds are very similar when the total number of extra electrons per Fe/TM (TM=transition metal) site is considered, which is consistent with the rigid band model. Despite the similarity, we find that the details of the transitions, for example, the temperature difference between the structural and antiferromagnetic transition temperatures and the incommensurability of the antiferromangetic peaks, are different between Ba (Fe1-x-yCoxRhy) 2As2 and Ba (Fe1-xCox) 2As2 compounds.

  5. Chemical ordering and large tunnel magnetoresistance in Co2FeAl/MgAl2O4/Co2FeAl(001) junctions

    NASA Astrophysics Data System (ADS)

    Scheike, Thomas; Sukegawa, Hiroaki; Inomata, Koichiro; Ohkubo, Tadakatsu; Hono, Kazuhiro; Mitani, Seiji

    2016-05-01

    Epitaxial magnetic tunnel junctions (MTJs) with a Co2FeAl/CoFe (0.5 nm)/MgAl2O4/Co2FeAl(001) structure were fabricated by magnetron sputtering. High-temperature in situ annealing led to a high degree of B2-order in the Co2FeAl layers and cation order of the MgAl2O4 barrier. Large tunnel magnetoresistance (TMR) of up to 342% was obtained at room temperature (616% at 4 K), in contrast to the TMR ratio ( ≲ 160%) suppressed by the band-folding effect in Fe/cation-ordered MgAl2O4/Fe MTJs. The present study reveals that the high degree of B2-order and the resulting high spin polarization in the Co2FeAl electrodes enable us to bypass the band-folding problem in spinel barriers.

  6. BaFe12O19 powder with high magnetization prepared by acetone-aided coprecipitation

    NASA Astrophysics Data System (ADS)

    Yu, Hsuan-Fu

    2013-09-01

    BaFe12O19 particles with high magnetization were produced using an acetone-aided coprecipitation process. An aqueous solution of iron and barium nitrates, in an Fe3+/Ba2+ molar ratio of 12, was added in a stirred precipitation liquid medium composed of H2O, CH3(CO)CH3 and NH4OH. After reacting metallic ions with ammonia, the precipitates were formed, centrifugally filtered, freeze dried and calcined. Effects of amount of the acetone in the precipitation liquid medium on the formation of crystalline BaFe12O19 were investigated. The presence of acetone in the precipitation liquid medium can greatly promote formation of the crystalline BaFe12O19 at temperature as low as 650 °C and can enhance magnetization of the derived particles. On the other hand, raising the calcination temperature can effectively accelerate development of crystallite morphology and magnetic characters of the barium hexaferrites. While the barium hexaferrite powder obtained without acetone additions and calcined at 1000 °C had magnetization (measured at 50 kOe; M(50 kOe)) of 63.5 emu/g, remanence magnetization (Mr) of 31.3 emu/g and coercivity (Hc) of 4.7 kOe, the single magnetic domain size BaFe12O19 powder with M(50 kOe) of 70.6 emu/g, Mr of 34.4 emu/g and Hc of 3.7 kOe was produced at 1000 °C, using a precipitation liquid medium of 64 vol% acetone.

  7. Weak ferromagnetism in the ferroelectric BiFeO3-ReFeO3-BaTiO3 solid solutions (Re=Dy,La)

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Seog; Cheon, Chae Il; Lee, Chang Hee; Jang, Pyung Woo

    2004-07-01

    The binary and ternary solid solutions, BiFeO3-BaTiO3, BiFeO3-ReFeO3-BaTiO3 (Re=Dy,Pr,La), and BiFeO3-BaFeO2.5-BaTiO3 have been explored for attaining ferromagnetic ferroelectrics in bulk ceramics and understanding the effect of rare earth orthoferrites ReFeO3 on the spontaneous magnetization. The coexistence of ferromagnetism and ferroelectricity has been observed over the composition range of 0.2⩽x⩽0.4 in the (1-x)BiFeO3-xBaTiO3 at room temperature. The introduction of DyFeO3 and LaFeO3 expands the composition range of the coexistence. The most superior ferromagnetic ferroelectrics obtained in this study are the 0.65BiFeO3-0.025DyFeO3-0.325BaTiO3 (Pr=5 μC/cm2,Mr=0.1 emu/g), 0.4875BiFeO3-0.025DyFeO3-0.4875BaTiO3 (Pr=7 μC/cm2,Mr=0.06 emu/g), and 0.475BiFeO3-0.05LaFeO3-0.475BaTiO3 (Pr=3.2 μC/cm2,Mr=0.2 emu/g). The spontaneous magnetization strongly depends on both the type and amount of the substitution components, DyFeO3, LaFeO3, PrFeO3, and BaFeO2.5 rather than the degree of G-type antiferromagnetic ordering. The origin of the spontaneous magnetization has been discussed in terms of antiferromagnetic ordering and charge carrier mediation.

  8. Influence of Ba/Fe mole ratios on magnetic properties, crystallite size and shifting of X-ray diffraction peaks of nanocrystalline BaFe12O19 powder, prepared by sol gel auto combu

    NASA Astrophysics Data System (ADS)

    Suastiyanti, Dwita; Sudarmaji, Arif; Soegijono, Bambang

    2012-06-01

    Barium hexaferrite BaFe12O19 (BFO) is of great importance as permanent magnets, particularly for magnetic recording as well as in microwave devices. Nano-crystalline BFO powders were prepared by sol gel auto combustion method in citric acid - metal nitrates system. Hence the mole ratios of Ba/Fe were variated at 1:12; 1:11.5 and 1:11. Ratio of cation to fuel was fixed at 1:1. An appropriate amount of amonia solution was added dropwise to this solution with constant stirring until the PH reached 7 in all cases. Heating at 850oC for 10 hours for each sample to get final formation of BFO nanocrystalline. The data from XRD showing the lattice parameters a,c and the unit-cell volume V, confirm that BFO with ratio 1:12 has same crystall parameters with ratio 1:11. Ratio of Ba/Fe 1:12 and 1:11 have diffraction pattern similarly at almost each 2 θ for each samples. Ratio of Ba/Fe 1: 11.5 has the finest crystallite size 22 nm. Almost diffraction pattern peaks of Ba/Fe 1:11.5 move to the left from of Ba/Fe 1:12 then return to diffraction pattern of Ba/Fe 1:12 for Ba/Fe 1:11. SEM observations show the particle size less than 100 nm and the same shape for each sample. Ratio of Ba/Fe 1: 12 gives the highest intrinsic coercive Hc = 427.3 kA/m. The highest remanent magnetization is at ratio 1:11 with Mr = 0.170 T. BFO with mole ratio 1:11.5 has the finest grain 22 nm, good magnetic properties and the highest value of best FoM 89%.

  9. Reversible topochemical exsolution of iron in BaFe(2+)2(PO4)2.

    PubMed

    David, Rénald; Kabbour, Houria; Filimonov, Dmitry; Huvé, Marielle; Pautrat, Alain; Mentré, Olivier

    2014-12-01

    BaFe(2+) 2 (PO4 )2 was recently prepared and identified as the first 2D-Ising ferromagnetic oxide with an original reentrant structural transition driven by high-spin Fe(2+) ions arranged in honeycomb layers. Both long-term air exposure and moderate temperature (T>375 °C) leads to topochemical oxidation into iron-depleted compounds with mixed Fe(2+) /Fe(3+) valence. This process is unique, as the exsolution is effective even from single crystal with preservation of the initial crystallinity, and the structure of the deficient BaFe2-x (PO4 )2 (xFe is reincorporated in the structure above 480 °C, as reproduced under the electron beam in a transmission microscope. After Fe exsolution, the insulating ferromagnetic compound turns into an antiferromagnetic semiconductor. PMID:25346021

  10. Preparation and electromagnetic properties of Polyaniline(polypyrrole)-BaFe12O19/Ni0.8Zn0.2Fe2O4 ferrite nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Ying; Wang, Qiufen; He, Qian; Chen, Lin

    2012-10-01

    The nanocomposite of hard (BaFe12O19)/soft ferrite (Ni0.8Zn0.2 Fe2O4) was prepared by the sol-gel process, and then the polyaniline(PANI)/polypyrrole(PPY)-BaFe12O19/Ni0.8Zn0.2Fe2O4 was produced by in situ polymerization method. The structures, morphology and electromagnetic properties of the samples were characterized by various instruments. XRD, TEM, and FTIR analysis indicated that BaFe12O19/Ni0.8Zn0.2Fe2O4 ferrite were homogenously enwrapped by PANI(PPY) coating. The VSM and SDY-4 measurement show that the magnetic properties of the composites decreased with the increase in PANI(PPY) amount, However, the electrical conductivity is on the contrary. The electromagnetic properties of the composites were much better than BaFe12O19/Ni0.8Zn0.2Fe2O4 in the frequency range of 2-15 GHz, which mainly depends on the dielectric loss of PANI(PPY). A minimum reflection loss of the PANI(PPY)-BaFe12O19/Ni0.8Zn0.2Fe2O4 ferrite nanocomposite is -19.7 dB(-21.5 dB) at the frequency of 7.3 GHz (10.7 GHz).

  11. Improvement of Gd123 superconductor bulks with the additions of BaFe12O19

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Peng, Liqi; Zhou, Wenli; Zhou, Xiaojuan; Jia, Lingling; Izumi, Mitsuru

    2015-07-01

    The flux pinning performance of the superconductors is important for the application of the Gd123 bulk superconductors. The study shows that to introduce the secondary phases into the Gd123 bulk matrix can enhance the flux pinning performance. In this article, by using top-seeding melt texture growth process method, single domain GdBa2Cu3O7-δ superconductor bulks doping with the different amounts of BaFe12O19 (0.0mol% to 0.8mol%) were successfully achieved. The property and micro-structure have also been investigated. The result shows that there is an obvious improvement on JC with 0.2mol% BaFe12O19 addition. The fine distribution and smaller size of Gd211 particles appear in the micro-structure which may result in the enhancement of JC. At the same time, BaFe12O19 may also form an effective pinning center to increase JC.

  12. Thermoelasticity of Al3+- and Fe3+-bearing bridgemanite

    NASA Astrophysics Data System (ADS)

    Valencia-Cardona, Juan; Shukla, Gaurav; Cococcioni, Matteo; Wentzcovitch, Renata

    2015-03-01

    We present quasi-harmonic LDA+U calculations of thermoelastic properties of Fe3+- and Al3+-bearing bridgemanite (MgSiO3), the main Earth forming phase, at relevant P,T conditions and compositions. Three charge-coupled substitutions, namely, Al3+-Al3+, Fe3+-Fe3+, and Fe3+-Al3+ have been investigated. Aggregate elastic moduli and sound velocities are successfully compared with limited experimental measurements available. The effect of the pressure induced high-spin to low-spin state change in Fe3+ in the B-site has been investigated in great detail since it has potentially dramatic effects on seismic velocities in the Earth's lower mantle. Research supported by NSF/EAR and NSF/CAREER.

  13. Metamagnetic effects in epitaxial BaFe1.8Cr0.2As2 thin films

    NASA Astrophysics Data System (ADS)

    Engelmann, J.; Müller, K. H.; Nenkov, K.; Schultz, L.; Holzapfel, B.; Haindl, S.

    2012-12-01

    Epitaxial BaFe1.8Cr0.2As2 thin films with the tetragonal c- axis perpendicular to the thin film surface were grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) single crystalline substrates using pulsed laser deposition (PLD). Resistive measurements indicate the existence of two transitions at temperatures of about 80 K and 40 K. The transition at 80 K is attributed to the structural transition from the high temperature tetragonal phase to the low temperature orthorhombic phase accompanied with the magnetic transition from a paramagnetic to an antiferromagnetic state as known for doped bulk systems. Below T ≈ 40 K the magnetization curves measured perpendicularly to the orthorhombic c- axis in fields up to 9 Tesla show two inflexion points indicating metamagnetic transitions.

  14. Synthesis, structural and magnetic characterisation of the fully fluorinated compound 6H-BaFeO{sub 2}F

    SciTech Connect

    Clemens, Oliver; Wright, Adrian J.; Berry, Frank J.; Smith, Ronald I.; Slater, Peter R.

    2013-02-15

    The compound 6H-BaFeO{sub 2}F (P6{sub 3}/mmc) was synthesised by the low temperature fluorination of 6H-BaFeO{sub 3-d} using polyvinylidenedifluoride (PVDF) as a fluorination agent. Structural characterisation by XRD and NPD suggests that the local positions of the oxygen and fluorine atoms vary with no evidence for ordering on the anion sites. This compound shows antiferromagnetic ordering at room temperature with antiparallel alignment of the magnetic moments along the c-axis. The use of PVDF also allows the possibility of tuning the fluorine content in materials of composition 6H-BaFeO{sub 3-d}F{sub y} to any value of 0BaFeO{sub 2}F. Highlights: Black-Right-Pointing-Pointer The crystal structure of the hexagonal perovskite phase 6H-BaFeO{sub 2}F. Black-Right-Pointing-Pointer H-BaFeO{sub 2}F and 6H-BaFeO{sub 3-d}F{sub y} were prepared via low temperature fluorination using PVDF. Black-Right-Pointing-Pointer A structural investigation of the compounds BaFeO{sub 2}F is presented in detail. Black-Right-Pointing-Pointer This analysis suggests differences for the local coordination of O{sup 2-} and F{sup -} anions. Black-Right-Pointing-Pointer H-BaFeO{sub 2}F shows antiferromagnetic ordering at 300 K. Black-Right-Pointing-Pointer The magnetic moments align parallel to the a-axis.

  15. Block Magnetic Excitations in the Orbitally Selective Mott Insulator BaFe2Se3

    NASA Astrophysics Data System (ADS)

    Mourigal, M.; Wu, Shan; Stone, M. B.; Neilson, J. R.; Caron, J. M.; McQueen, T. M.; Broholm, C. L.

    2015-07-01

    Iron pnictides and selenides display a variety of unusual magnetic phases originating from the interplay between electronic, orbital, and lattice degrees of freedom. Using powder inelastic neutron scattering on the two-leg ladder BaFe2Se3 , we fully characterize the static and dynamic spin correlations associated with the Fe4 block state, an exotic magnetic ground state observed in this low-dimensional magnet and in Rb0.89Fe1.58Se2 . All the magnetic excitations of the Fe4 block state predicted by an effective Heisenberg model with localized spins are observed below 300 meV and quantitatively reproduced. However, the data only account for 16 (3 )μB2 per Fe2 + , approximatively 2 /3 of the total spectral weight expected for localized S =2 moments. Our results highlight how orbital degrees of freedom in iron-based magnets can conspire to stabilize an exotic magnetic state.

  16. Structural, dielectric and magnetic studies of Ba and Nb codoped BiFeO3 multiferroics

    NASA Astrophysics Data System (ADS)

    Jangra, Sandhaya; Sanghi, Sujata; Agarwal, Ashish; Kaswan, Kavita; Rangi, Manisha; Singh, Ompal

    2016-05-01

    Polycrystalline materials with composition Bi0.8Ba0.2Fe1-xNbxO3 (x= 0.07, 0.10) were prepared via solid state reaction method. Preliminary analysis of structure was performed by XRD technique and confirmed formation of single phase crystalline materials. Rietveld refinement reveled that these materials have rhombohedral phase with R3c space group. Dielectric constant increased with temperature and Nb concentration. Ba and Nb co-doping suppress the spiral spin structure and produce net magnetization.

  17. Strength anomaly in B2 FeAl single crystals

    SciTech Connect

    Yoshimi, K.; Hanada, S.; Yoo, M.H.; Matsumoto, N.

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). The orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.

  18. Fabric cutting application of FeAl-based alloys

    SciTech Connect

    Sikka, V.K.; Blue, C.A.; Sklad, S.P.; Deevi, S.C.; Shih, H.R.

    1998-11-01

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.

  19. Oxidation behavior of FeAl+Hf,Zr,B

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Doychak, Joseph

    1988-01-01

    The oxidation behavior of Fe-40Al-1Hf, Fe-40Al-1Hf-0.4B, and Fe-40Al-0.1Zr-0.4B (at. percent) alloys was characterized after 900, 1000, and 100 C exposures. Isothermal tests revealed parabolic kinetics after a period of transitional theta-alumina scale growth. The parabolic growth rates for the subsequent alpha-alumina scales were about five times higher than those for NiAl+0.1Zr alloys. The isothermally grown scales showed a propensity toward massive scale spallation due to both extensive rumpling from growth stresses and to an inner layer of HfO2. Cyclic oxidation for 200 1-hr cycles produced little degradation at 900 or 1000 C, but caused significant spallation at 1100 C in the form of small segments of the outer scale. The major difference in the cyclic oxidation of the three FeAl alloys was increased initial spallation for FeAl+Zr,B. Although these FeAl alloys showed many similarities to NiAl alloys, they were generally less oxidation resistant. It is believed that this resulted from nonoptimal levels of dopants and larger thermal expansion mismatch stresses.

  20. New insights into the application of the valence rules in Zintl phases-Crystal and electronic structures of Ba7Ga4P9, Ba7Ga4As9, Ba7Al4Sb9, Ba6CaAl4Sb9, and Ba6CaGa4Sb9

    NASA Astrophysics Data System (ADS)

    He, Hua; Stoyko, Stanislav; Bobev, Svilen

    2016-04-01

    Crystals of three new ternary pnictides-Ba7Al4Sb9, Ba7Ga4P9, and Ba7Ga4As9 have been prepared by reactions of the respective elements in molten Al or Pb fluxes. Single-crystal X-ray diffraction studies reveal that the three phases are isotypic, crystallizing in the orthorhombic Ba7Ga4Sb9-type structure (space group Pmmn, Pearson symbol oP40, Z=2), for which only the prototype is known. The structure is based on TrPn4 tetrahedra (Tr=Al, Ga; Pn=P, As, Sb), connected in an intricate scheme into 1D-ribbons. Long interchain Pn-Pn bonds (dP-P>3.0 Å; dAs-As>3.1 Å; dSb-Sb>3.3 Å) account for the realization of 2D-layers, separated by Ba2+ cations. Applying the classic valance rules to rationalize the bonding apparently fails, and Ba7Ga4Sb9 has long been known as a metallic Zintl phase. Earlier theoretical calculations, both empirical and ab-initio, suggest that the possible metallic properties originate from filled anti-bonding Pn-Pn states, and the special roles of the "cations" in this crystal structure. To experimentally probe this hypothesis, we sought to synthesize the ordered quaternary phases Ba6CaTr4Sb9 (Tr=Al, Ga). Single-crystal X-ray diffraction work confirms Ba6.145(3)Ca0.855Al4Sb9 and Ba6.235(3)Ca0.765Ga4Sb9, with Ca atoms preferably substituting Ba on one of the three available sites. The nuances of the five crystal structures are discussed, and the chemical bonding in Ba7Ga4As9 is interrogated by tight-binding linear muffin-tin orbital calculations.

  1. Oxidation of Fe-Cr-Al and Fe-Cr-Al-Y Single Crystals

    NASA Astrophysics Data System (ADS)

    Grabke, H. J.; Siegers, M.; Tolpygo, V. K.

    1995-03-01

    Single crystal samples of the alloy Fe-20%Cr-5%Al with and without Y-doping were used to study the "reactive element" (RE) effect, which causes improved oxidation behaviour and formation of a protective Al2O3 layer on this alloy. The oxidation was followed by AES at 10-7 mbar O2 up to about 1000 °C. Most observations were peculiar for this low pO2 environment, but yttrium clearly favors the formation of Al-oxide and stabilizes it also under these conditions, probably by favoring its nucleation. The oxides formed are surface compounds of about monolayer thickness, not clearly related to bulk oxides. Furthermore, the morphologies of oxide scales were investigated by SEM, after oxidation at 1000°C for 100 h at 133 mbar O2. On Fe-Cr-Al the scale is strongly convoluted and tends to spalling, whereas the presence of Y leads to flat scales which are well adherent. This difference is explained by a change in growth mechanism. The tendency for separation of oxide and metal was highest for the samples with low energy metal surface, i.e. (100) and (110), the scale was better adherent on the (111) oriented surface and on the polycrystalline specimen, since in the latter cases the overall energy for scale/metal separation is higher. All observations, from the low and from the high pO2 experiments, are discussed in relation to the approximately ten mechanisms proposed in the literature for explanation of the RE effects.

  2. The Charpy impact behavior of Fe{sub 3}Al and Fe{sub 3}Al-20 at % Mn alloys

    SciTech Connect

    Liu, J.N.; Yan, W.; Ma, J.L.; Wu, K.H.

    1997-12-31

    A series of experiments were conducted to investigate the impact fracture behavior of Fe{sub 3}Al and Fe{sub 3}Al-20 Mn alloys. The results of this study indicated that: (i) The addition of Mn introduces an ordered L1{sub 2}-type phase in the Fe{sub 3}Al-based alloys. On the other hand, the addition of Mn decreases the order parameter of the DO{sub 3} {alpha} phase. (ii) The total-impact energy of an Fe{sub 3}Al alloy increases with the temperature at the low-temperature range (<600 C), then drops around 700 C, and finally increases again as the temperature further elevates. (iii) The trend of the variation of the impact energy of Fe{sub 3}Al-20 at % Mn alloy with temperature is the same as that of the Fe{sub 3}Al alloy. (iv) And the addition of Mn significantly improves the impact energy of the Fe{sub 3}Al-based alloy, and changes the variation of the crack-growth energy with the testing temperature when the temperature is above 700 C.

  3. On synthesis of BaFe12O19, SrFe12O19, and PbFe12O19 hexagonal ferrite ceramics with multiferroid properties

    NASA Astrophysics Data System (ADS)

    Kostishin, V. G.; Panina, L. V.; Kozhitov, L. V.; Timofeev, A. V.; Zyuzin, A. K.; Kovalev, A. N.

    2015-08-01

    We analyze the possibility of obtaining M-type hexagonal ferrites of barium, strontium, and lead with multiferroid properties with the help of ceramic technology. Using the modified ceramic technology (especially pure initial raw materials, admixture of B2O3, and sintering in the oxygen atmosphere), we obtained for the first time the BaFe12O19 and SrFe12O19 samples with intense multiferroid properties at room temperature. At the same time, the employed technology does not make it possible to obtain PbFe12O19 samples exhibiting ferroelectricity. The multiferroid characteristics of experimental samples are compared with the characteristics of classical high-temperature multiferroic BiFeO3 and with the characteristics of BaFe12O19, SrFe12O19, and PbFe12O19 ferrite ceramics obtained in accordance with polymer precursor technology. We propose a mechanism explaining multiferroid properties of the hexagonal ferrite ceramic samples and note the importance of our results for applications.

  4. Magnetic properties of mixed spinel BaTiO3-NiFe2O4 composites

    NASA Astrophysics Data System (ADS)

    Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal; Chakrabarti, Kaushik; Mitra, Amitava; De, S. K.

    2014-03-01

    Solid solution of nickel ferrite (NiFe2O4) and barium titanate (BaTiO3), (100-x)BaTiO3-(x) NiFe2O4 has been prepared by solid state reaction. Compressive strain is developed in NiFe2O4 due to mutual structural interaction across the interface of NiFe2O4 and BaTiO3 phases. Quantitative analysis of X-ray diffraction and X-ray photo electron spectrum suggest mixed spinel structure of NiFe2O4. A systematic study of composition dependence of composite indicates BaTiO3 causes a random distribution of Fe and Ni cations among octahedral and tetrahedral sites during non-equilibrium growth of NiFe2O4. The degree of inversion decreases monotonically from 0.97 to 0.75 with increase of BaTiO3 content. Temperature dependence of magnetization has been analyzed by four sublattice model to describe complex magnetic exchange interactions in mixed spinel phase. Curie temperature and saturation magnetization decrease with increase of BaTiO3 concentration. Enhancement of strain and larger occupancy of Ni2+ at tetrahedral site increase coercivity up to 200 Oe. Magnetostructual coupling induced by BaTiO3 improves coercivity in NiFe2O4. An increase in the demagnetization and homogeneity in magnetization process in NiFe2O4 is observed due to the interaction with diamagnetic BaTiO3.

  5. Magnetic interactions in cubic-, hexagonal- and trigonal-barium iron oxide fluoride, BaFeO2F

    NASA Astrophysics Data System (ADS)

    Clemens, Oliver; Marco, José F.; Thomas, Michael F.; Forder, Susan D.; Zhang, Hongbin; Cartenet, Simon; Monze, Anais; Bingham, Paul A.; Slater, Peter R.; Berry, Frank J.

    2016-09-01

    57Fe Mössbauer spectra have been recorded from the hexagonal (6H)- and trigonal (15R)- modifications of BaFeO2F and are compared with those previously recorded from the cubic form of BaFeO2F. The spectra, recorded over a temperature range from 15 to 650 K show that all of the iron in all the compounds is in the Fe3+ state. Spectra from the 6H- and 15R-modifications were successfully fitted with components that were related to the Fe(1) and Fe(2) structural sites in the 6H variant and to the Fe(1), Fe(2) and Fe(3) structural sites in the 15R form. The magnetic ordering temperatures were determined as 597  ±  3 K for 6H-BaFeO2F and 636  ±  3 K for 15R-BaFeO2F. These values are surprisingly close to the value of 645  ±  5 K determined for the cubic form. The magnetic interactions in the three forms are compared with a view to explaining this similarity of magnetic ordering temperature.

  6. Magnetic interactions in cubic-, hexagonal- and trigonal-barium iron oxide fluoride, BaFeO2F.

    PubMed

    Clemens, Oliver; Marco, José F; Thomas, Michael F; Forder, Susan D; Zhang, Hongbin; Cartenet, Simon; Monze, Anais; Bingham, Paul A; Slater, Peter R; Berry, Frank J

    2016-09-01

    (57)Fe Mössbauer spectra have been recorded from the hexagonal (6H)- and trigonal (15R)- modifications of BaFeO2F and are compared with those previously recorded from the cubic form of BaFeO2F. The spectra, recorded over a temperature range from 15 to 650 K show that all of the iron in all the compounds is in the Fe(3+) state. Spectra from the 6H- and 15R-modifications were successfully fitted with components that were related to the Fe(1) and Fe(2) structural sites in the 6H variant and to the Fe(1), Fe(2) and Fe(3) structural sites in the 15R form. The magnetic ordering temperatures were determined as 597  ±  3 K for 6H-BaFeO2F and 636  ±  3 K for 15R-BaFeO2F. These values are surprisingly close to the value of 645  ±  5 K determined for the cubic form. The magnetic interactions in the three forms are compared with a view to explaining this similarity of magnetic ordering temperature. PMID:27355806

  7. Microstructure Evolution of Atomized Al-0.61 wt pct Fe and Al-1.90 wt pct Fe Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Dahlborg, Ulf; Bao, Cui Min; Calvo-Dahlborg, Monique; Henein, Hani

    2011-06-01

    The microstructure evolution of impulse atomized powders of Al-0.61 wt pct and Al-1.90 wt pct Fe compositions have been investigated with a scanning electron microscope, transmission electron microscope, neutron diffraction, and backscattering electron diffraction (EBSD). Both hypoeutectic and hypereutectic compositions demonstrated similar macrostructure ( i.e., primary α-Al dendrites/cells with eutectic Al-Fe intermetallics decorated at the dendritic/cellular walls). Selected area electron diffraction (SAED) analysis and SAED pattern simulation identified the eutectic Al-Fe intermetallic as AlmFe ( m = 4.0-4.4). This is verified by neutron diffraction analysis. Cubic texture was observed by EBSD on the droplets with dendritic growth direction close to <111>. The possible reasons are discussed.

  8. Effect of 3d doping on the electronic structure of BaFe2As2.

    PubMed

    McLeod, J A; Buling, A; Green, R J; Boyko, T D; Skorikov, N A; Kurmaev, E Z; Neumann, M; Finkelstein, L D; Ni, N; Thaler, A; Bud'ko, S L; Canfield, P C; Moewes, A

    2012-05-30

    The electronic structure of BaFe(2)As(2) doped with Co, Ni and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the distribution of Co, Ni and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d(10) shell. These findings help shed light on why superconductivity can occur in BaFe(2)As(2) doped with Co and Ni but not Cu. PMID:22534111

  9. Aging effect in magnetotransport property of oxygen adsorbed BaFe2As2

    NASA Astrophysics Data System (ADS)

    Ghosh, Nilotpal; Raj, Santhosh

    2015-06-01

    Presence of oxygen (O2) has been found by Energy Dispersive X-ray Analysis (EDAX) on the surfaces of flux grown BaFe2As2 single crystals which were kept in air ambience for several months. Transport studies show that the O2 adsorbed crystals are more resistive and do not display any sharp slope change near 140 K which is the well known Spin Density Wave (SDW) transition temperature (TSDW) accompanying structural transition for as grown BaFe2As2. An anomalous slope change in resistivity is observed around 18 K at 0 and 5T. Magnetoresistance (MR) is noticed to increase as a function of applied field (H) quite differently than that for as grown crystals below TSDW which may be attributed to aging effect.

  10. Effect of 3d doping on the electronic structure of BaFe2As2

    SciTech Connect

    McLeod, John A.; Buling, A.; Green, R.J.; Boyko, T.D.; Skorikov, N.A.; Kurmaev, E.Z.; Neumann, M.; Finkelstein, L.D.; Ni, Ni; Thaler, Alexander; Budko, Serguei L.; Canfield, Paul; Moewes, A.

    2012-04-25

    The electronic structure of BaFe2As2 doped with Co, Ni and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the distribution of Co, Ni and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d10 shell. These findings help shed light on why superconductivity can occur in BaFe2As2 doped with Co and Ni but not Cu.

  11. Fe modified BaTiO{sub 3}: Influence of doping on ferroelectric property

    SciTech Connect

    Mishra, Ashutosh; Bisen, Supriya Jarabana, Kanaka Mahalakshmi; Mishra, Niyati

    2015-06-24

    We have investigate the ferroelectric property of Fe modified Barium Titanate (BaTiO{sub 3}) with possible tetragonal structure via solid state route was prepared. Modified sample of BaTi{sub 1−x}Fe{sub x}O{sub 3} (x=0.01, 0.02) were structural characterized by X-ray Diffraction (XRD) using a Bruker D8 Advance XRD instruments, the value of 2θ is in between 20° to 80°. Fourier transform infrared spectroscopy (FTIR) using a Bruker, vertex instruments has been performs to obtain Ti-O bonding in the modified sample; the region of wavenumber is from 4000 cm{sup −1} to 400 cm{sup −1}. P-E hysteresis loop measurements have been traced for different applied voltage- 100V, 300V and 500V.

  12. Nematic spin fluid in the tetragonal phase of BaFe{<_2}As{<_2}.

    SciTech Connect

    Harriger, L. W.; Luo, H. Q.; Liu, M. S.; Frost, C.; Hu, J. P.; Norman, M. R.; Dai, P.

    2011-08-24

    We use inelastic neutron scattering to study spin waves below and above T{sub N} in iron-arsenide BaFe{sub 2}As{sub 2}. In the low-temperature orthorhombic phase, we find highly anisotropic spin waves with a large damping along the antiferromagnetic a-axis direction. On warming the system to the paramagnetic tetragonal phase, the low-energy spin waves evolve into quasi-elastic excitations, while the anisotropic spin excitations near the zone boundary persist. These results strongly suggest the presence of a spin nematic fluid in the tetragonal phase of BaFe{sub 2}As{sub 2}, which may cause the electronic and orbital anisotropy observed in these materials.

  13. Pressure effects on the transport of Ba(Fe1-xCox)2As2

    SciTech Connect

    Arsenijevic, S.; Gaal, R; Sefat, A. S.; McGuire, Michael A; Sales, Brian C; Mandrus, David; Forro, Laszlo

    2011-01-01

    We report the temperature dependence of the resistivity and thermoelectric power (TEP) under hydrostatic pressure of the itinerant antiferromagnet BaFe{sub 2}As{sub 2} and the electron-doped superconductor Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}. We observe a hole-like contribution to the thermopower below the structural/magnetic (S-M) transition in the parent compound that is suppressed in magnitude and temperature with pressure. Pressure increases the contribution of electrons to transport in both the doped and undoped compound. In the 10% Co-doped sample we used a two-band model for thermopower to estimate the carrier concentrations and determine the effect of pressure on the band structure.

  14. Elastic anomalies in BaFe2-xNixAs2 crystals

    NASA Astrophysics Data System (ADS)

    Saint-Paul, M.; Abbassi, A.; Wang, Zhao-Sheng; Luo, Huinqian; Lu, Xingye; Ren, Cong; Wen, Hai-Hu; Hasselbach, K.

    2012-12-01

    We present ultrasonic measurements on superconducting BaFe2-xNixAs2 crystals with x = 0.07 and x = 0.15. The elastic constants C33 and C44 for the underdoped crystal (x = 0.07) show a large softening related to the structural phase transition at high temperatures. Anomalies in the sound velocity and the ultrasonic attenuation have been found at the superconducting phase transition Tc = 17 K. Ultrasonic attenuation exhibits a peak at the superconducting transition in contrast with the attenuation in conventional superconductors. In the overdoped crystal (x = 0.15) a minimum of C66 is found at a temperature just above the superconducting temperature Tc = 13 K. Superconducting energy gap values have been tentatively extracted from the longitudinal ultrasonic attenuation. Unconventional behaviour of the ultrasonic attenuation is observed in the superconducting BaFe2-xNixAs2 crystals.

  15. Nematic Crossover in BaFe(2)As(2) under Uniaxial Stress.

    PubMed

    Ren, Xiao; Duan, Lian; Hu, Yuwen; Li, Jiarui; Zhang, Rui; Luo, Huiqian; Dai, Pengcheng; Li, Yuan

    2015-11-01

    Raman scattering can detect spontaneous point-group symmetry breaking without resorting to single-domain samples. Here, we use this technique to study BaFe(2)As(2), the parent compound of the "122" Fe-based superconductors. We show that an applied compression along the Fe-Fe direction, which is commonly used to produce untwinned orthorhombic samples, changes the structural phase transition at temperature T(s) into a crossover that spans a considerable temperature range above T(s). Even in crystals that are not subject to any applied force, a distribution of substantial residual stress remains, which may explain phenomena that are seemingly indicative of symmetry breaking above T(s). Our results are consistent with an onset of spontaneous nematicity only below T(s). PMID:26588407

  16. Nematic Crossover in BaFe2As2 under Uniaxial Stress

    NASA Astrophysics Data System (ADS)

    Ren, Xiao; Duan, Lian; Hu, Yuwen; Li, Jiarui; Zhang, Rui; Luo, Huiqian; Dai, Pengcheng; Li, Yuan

    2015-11-01

    Raman scattering can detect spontaneous point-group symmetry breaking without resorting to single-domain samples. Here, we use this technique to study BaFe2As2 , the parent compound of the "122" Fe-based superconductors. We show that an applied compression along the Fe-Fe direction, which is commonly used to produce untwinned orthorhombic samples, changes the structural phase transition at temperature Ts into a crossover that spans a considerable temperature range above Ts. Even in crystals that are not subject to any applied force, a distribution of substantial residual stress remains, which may explain phenomena that are seemingly indicative of symmetry breaking above Ts. Our results are consistent with an onset of spontaneous nematicity only below Ts.

  17. Temperature-dependent anisotropic resistivity in electron, hole and isoelectron - doped BaFe2As2 superconductors

    NASA Astrophysics Data System (ADS)

    Tanatar, M. A.

    2012-02-01

    Anisotropic electrical resistivity, ρ(T), was studied in iron-arsenide superconductors, obtained by doping the parent BaFe2As2 compound on three different sites: (1) electron donor transition metal (Co,Ni,Rh,Pd) substitution of Fe [1,2]; (2) hole donor K substitution of Ba [3]; (3) isoelectron P substitution of As. For all three types of dopants a range of T-linear behavior is found at the optimal doping in both the in-plane and the inter-plane ρ(T) above Tc. At some higher temperature this range of T-linear resistivity is capped by a slope-changing anomaly, which, by comparison with NMR, magnetic susceptibility and Hall effect measurements, can be identified with the onset of carrier activation over the pseudogap [1]. The doping-evolution of anisotropic temperature dependent ρ(T) and of the pseudogap are quite different for three types of doping. A three-dimensional T-H phase diagram summarizing our results will be presented. Furthermore, potential correlation of the anisotropic normal state transport and anisotropic superconducting state heat transport will be discussed. [4pt] In collaboration with N. Ni, A. Thaler, S.L.Bud'ko, P.C. Canfield, R. Prozorov, Bing Shen, Hai-Hu Wen, K. Hashimoto, S. Kasahara, T. Terashima, T. Shibauchi and Y. Matsuda. [4pt] [1] M.A.Tanatar et al. PRB 82, 134528 (2010)[0pt] [2] M.A.Tanatar et al. PRB 84, 014519 (2011)[0pt] [3] M.A.Tanatar et al. arXiv:1106.0533

  18. Neutron scattering investigation of the magnetic order in single crystalline BaFe2As2

    SciTech Connect

    Bao, Wei; Qiu, Y; Kofu, M; Lee, S - H; Chang, S; Wu, T; Wu, G; Chen, X H

    2008-01-01

    The magnetic structure of BaFe{sub 2}As{sub 2} was determined from polycrystalline neutron diffraction measurements soon after the ThCr{sub 2}Si{sub 2}-type FeAs-based superconductors were discovered. Both the moment direction and the in-plane antiferromagnetic wavevector are along the longer a-axis of the orthorhombic unit cell. There is only one combined magnetostructural transition at {approx}140 K. However, a later single-crystal neutron diffraction work reported contradicting results. Here, we show neutron diffraction results from a single-crystal sample, grown by a self-flux method, that support the original polycrystalline work.

  19. Synthesis and characterization of hollow mesoporous BaFe{sub 12}O{sub 19} spheres

    SciTech Connect

    Xu, Xia; Park, Jihoon; Hong, Yang-Ki; Lane, Alan M.

    2015-02-15

    A facile method is reported to synthesize hollow mesoporous BaFe{sub 12}O{sub 19} spheres using a template-free chemical etching process. Hollow BaFe{sub 12}O{sub 19} spheres were synthesized by conventional spray pyrolysis. The mesoporous structure is achieved by alkaline ethylene glycol etching at 185 °C, with the porosity controlled by the heating time. The hollow porous structure is confirmed by SEM, TEM, and FIB-FESEM characterization. The crystal structure and magnetic properties are not significantly affected after the chemical etching process. The formation mechanism of the porous structure is explained by grain boundary etching. - Graphical abstract: Hollow spherical BaFe{sub 12}O{sub 19} particles are polycrystalline with both grains and grain boundaries. Grain boundaries have less ordered structure and lower stability. When the particles are exposed to high temperature alkaline ethylene glycol, the grain boundaries are etched, leaving small grooves between grains. These grooves allow ethylene glycol to diffuse inside to further etch the grains. As the grain size decreases, gaps appear on the particle surfaces, and a porous structure is finally formed. - Highlights: • Two-step synthesis method for hollow mesoporous BaFe{sub 12}O{sub 19} spheres is proposed. • Porosity of the product can be regulated by controlling the second step of chemical etching. • The crystal structure and magnetic properties are examined to be little affected during the chemical etching. • The mesoporous structure formation mechanism is explained by grain boundary etching.

  20. Observations of Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report 5-(sigma) tangent column detections of Al and Fe, and strict 3-(sigma) tangent column upper limits for Ca(+) in Mercury's exosphere obtained using the HIRES spectrometer on the Keck I telescope. These are the first direct detections of Al and Fe in Mercury's exosphere. Our Ca(-) observation is consistent with that reported by The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.

  1. Interplane resistivity of isovalent doped BaFe2(As1-xPx)2

    SciTech Connect

    Tanatar, Michael A.; Hashimoto, K.; Kasahara, S.; Shibauchi, T.; Matsuda, Y.; Prozorov, Ruslan

    2013-03-07

    Temperature-dependent interplane resistivity ρc(T) was measured for the iron-based superconductor BaFe2(As1-xPx)2 over a broad isoelectron phosphorus substitution range from x=0 to x=0.60, from nonsuperconducting parent compound to heavily overdoped superconducting composition with Tc≈10K. The features due to structural and magnetic transitions are clearly resolved in ρc(T) of the underdoped crystals. A characteristic maximum in ρc(T), found in the parent BaFe2As2 at around 200 K, moves rapidly with phosphorus substitution to high temperatures. At the optimal doping, the interplane resistivity shows T-linear temperature dependence without any crossover anomalies, similar to the previously reported in-plane resistivity. This observation is in stark contrast with dissimilar temperature dependencies found at optimal doping in electron-doped Ba(Fe1-xCox)2As2. Our finding suggests that despite similar values of the resistivity and its anisotropy, the temperature-dependent transport in the normal state is very different in electron and isoelectron-doped compounds. Similar temperature dependence of both in-plane and interplane resistivities, in which the dominant contributions are coming from different parts of the Fermi surface, suggests that scattering is the same on the whole Fermi surface. Since magnetic fluctuations are expected to be much stronger on the quasinested sheets, this observation may point to the importance of the interorbital scattering between different sheets.

  2. Microwave absorption performance enhanced by high-crystalline graphene and BaFe12O19 nanocomposites

    NASA Astrophysics Data System (ADS)

    Tang, X. T.; Wei, G. T.; Zhu, T. X.; Sheng, L. M.; An, K.; Yu, L. M.; Liu, Y.; Zhao, X. L.

    2016-05-01

    The nanocomposites, consisting of BaFe12O19 ferrite and few-layer graphene sheets (FL-GSs) in various weight ratios (1-9 wt. %), were fabricated by a mechanical mixing method. The high-crystalline FL-GSs were prepared by direct current arc discharge evaporation of pure graphite electrodes in an H2-Ar gas mixture. We measured the electromagnetic properties, including effective magnetic permeability and effective permittivity in addition to microwave absorption performance, of the FL-GSs/BaFe12O19 nanocomposites compared with the pristine BaFe12O19 nanoparticles (NPs). The nanocomposite FL-GSs/BaFe12O19 with the optimal performance (6 wt. % FL-GSs) exhibited an effective microwave absorption (<-10 dB) bandwidth of 5.8 GHz with a thickness of 2.2 mm, 53% higher than that of the pristine BaFe12O19 NPs. Meanwhile, this nanocomposite had the minimum reflection loss of -49.7 dB at 8.4 GHz with a thickness of 2.8 mm, three times greater than those without FL-GSs. These performances result from a simultaneous increase in both magnetic and dielectric losses possibly due to synergistic effects of BaFe12O19 and FL-GSs. In such nanocomposites, both magnetic loss from BaFe12O19 and dielectric loss from FL-GSs contribute to the absorbing performances. Adding FL-GSs as dielectric fillers enhances the impedance matching of the nanocomposites compared with the pristine BaFe12O19 NPs based on the magnetic loss alone. Our results indicate that the incorporation of high-crystalline nanocarbon materials into ferrite oxides can provide high microwave absorption intensity and broad effective absorption bandwidth, while maintaining high thermal stability.

  3. Spin density wave (SDW) transition in Ru doped BaFeAs{sub 2} investigated by AC steady state calorimetry

    SciTech Connect

    Vinod, K. Sharma, Shilpam; Sundar, C. S.; Bharathi, A.

    2015-06-24

    Heat capacity measurements were done on sub-micron sized BaFe{sub 2−x}Ru{sub x}As{sub 2} single crystals using thin film membrane based the AC steady state calorimetry technique. Noticeable thermal hysteresis is observed in the heat capacity of the BaFe{sub 2−x}Ru{sub x}As{sub 2} during cooling and warming cycles, indicating first order nature of the SDW transition.

  4. Alloy development and processing of FeAl: An overview

    SciTech Connect

    Maziasz, P.J.; Goodwin, G.M.; Alexander, D.J.; Viswanathan, S.

    1997-03-01

    In the last few years, considerable progress has been made in developing B2-phase FeAl alloys with improved weldability, room-temperature ductility, and high-temperature strength. Controlling the processing-induced microstructure is also important, particularly for minimizing trade-offs in various properties. FeAl alloys have outstanding resistance to high-temperature oxidation, sulfidation, and corrosion in various kinds of molten salts due to formation of protective Al{sub 2}O{sub 3} scales. Recent work shows that FeAl alloys are carburization-resistant as well. Alloys with 36 to 40 at. % Al have the best combination of corrosion resistance and mechanical properties. Minor alloying additions of Mo, Zr, and C, together with microalloying additions of B, produce the best combination of weldability and mechanical behavior. Cast FeAl alloys, with 200 to 400 {mu}m grain size and finely dispersed ZrC, have 2 to 5% tensile ductility in air at room-temperature, and a yield strength > 400 MPa up to about 700 to 750{degrees}C. Extruded ingot metallurgy (I/M) and powder metallurgy (P/M) materials with refined grain sizes ranging from 2 to 50 {mu}m, can have 10 to 15% ductility in air and be much stronger, and can even be quite tough, with Charpy impact energies ranging from 25 to 105 J at room-temperature. This paper highlights progress made in refining the alloy composition and exploring processing effects on FeAl for monolithic applications. It also includes recent progress on developing FeAl weld-overlay technology, and new results on welding of FeAl alloys. It summarizes some of the current industrial testing and interest for applications.

  5. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  6. Influence of FeCrAl Content on Microstructure and Bonding Strength of Plasma-Sprayed FeCrAl/Al2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; Luo, Fa; Zhou, Wancheng; Zhu, Dongmei

    2016-02-01

    Low-power plasma-sprayed FeCrAl/Al2O3 composite coatings with 1.5 mm thickness have been fabricated for radar absorption applications. The effects of FeCrAl content on the coating properties were studied. The FeCrAl presents in the form of a few thin lamellae and numerous particles, demonstrating relatively even distribution in all the coatings. Results show that the micro-hardness and porosity decrease with the increase in FeCrAl content. With FeCrAl content increasing from 28 to 47 wt.%, the bonding strength of the coatings with 1.5 mm thickness increases from 10.5 to 27 MPa, and the failure modes are composed of cohesive and adhesive failure, which are ascribed to the coating microstructure and the residual stress, respectively.

  7. An Assessment of the Al- Fe- N System

    NASA Astrophysics Data System (ADS)

    Hillert, Mats; Jonsson, Stefan

    1992-11-01

    The thermodynamic properties of the Al-Fe-N system are assessed, taking various types of information into account. For solid AIN, a description very similar to that given by JANAF is found to yield reasonable predictions for the solubility of A1N in face-centered cubic (fcc) Fe and in liquid Fe. An ionic two-sublattice model is applied to the liquid phase, containing two N species, N-3 and N0 The melting point of A1N is taken as 3068 K, and a required gas pressure of 9.75 bar is predicted. A sublimation point of 2690 K at 1 bar is also predicted. A plot of the liquidus surfaces in the Fe-rich end of the Al-Fe-N system is presented.

  8. Synthesis and spectral characterizations of Fe3+ doped β-BaB2O4 nano crystallite powder

    NASA Astrophysics Data System (ADS)

    Venkata Reddy, Ch.; Rama Krishna, Ch.; Raghavendra Rao, T.; Udayachandran Thampy, U. S.; Reddy, Y. P.; Rao, P. S.; Ravikumar, R. V. S. S. N.

    2012-03-01

    Fe3+ doped β-BaB2O4 nano crystallite powder is synthesized and characterized by spectroscopic techniques. From the Powder X-ray diffraction data, Fe3+ doped β-BBO material is observed to be monoclinic. Its average crystallite size is evaluated about 75 nm. The particle-like morphology has been observed from SEM images. The EPR spectrum shows two resonance signals at g = 4.23 and g = 2.07, respectively which are indicative of Fe3+ ions in tetragonally distorted octahedral site symmetry. Crystal field parameter (Dq) and Racah parameters (B and C) are evaluated. Fe3+ doped β-BaB2O4 nano crystallite powder luminescence properties have been studied. The emission of β-BaB2O4:Fe3+ sample is exhibited two main peaks at 419 and 443 nm. FT-IR spectrum shows the characteristic vibrations of host lattice.

  9. Mössbauer and SEM study of Fe Al film

    NASA Astrophysics Data System (ADS)

    Sebastian, Varkey; Sharma, Ram Kripal; Lakshmi, N.; Venugopalan, K.

    2006-04-01

    Fe Al alloy with Fe/Al ratio of 3:1 was first prepared by argon arc melting. It was subsequently coated on glass slide and cellophane tape using an electron beam gun system to have a thickness of 2,000 Å. X-ray diffraction spectrum of the coated sample indicates a definite texture for the film with a preferential growth along the Fe(110) plane. SEM micrographs of the film showed the presence of nano islands of nearly 3 × 1012/m2 surface density. Composition of different parts of the film was determined using EDAX. Room temperature Fe-57 Mössbauer spectrum of coated sample showed the presence a quadrupole doublet with a splitting of 0.46 mm/s, which is typical of Al-rich iron compounds. MOKE study shows an in-plane magnetic moment.

  10. Specific Heat vs Field in the 30 K Superconductor BaFe2(As0.7P0.3)2

    NASA Astrophysics Data System (ADS)

    Stewart, G. R.; Kim, J. S.; Hirschfeld, P. J.; Kasahara, S.; Shibauchi, T.; Terashima, T.; Matsuda, Y.

    2010-03-01

    Recently, superconductivity at 30 K has been reported [1] in P-doped BaFe2As2, with 1/3 of the As replaced by P. Magnetic penetration and thermal conductivity measurements [2] indicate a nodally gapped superconductor. We report here on measurements of the specific heat divided by temperature, C/T, as a function of field up to 15 T and down to 0.4 K in order to further investigate the nodal structure with another probe. [4pt] [1] S. Kasahara, et al., arXiv0905.4427. [0pt] [2] K. Hashimoto, et al., arXiv0907.4399.

  11. Interdependence of spin structure, anion height and electronic structure of BaFe2As2

    NASA Astrophysics Data System (ADS)

    Sen, Smritijit; Ghosh, Haranath

    2016-05-01

    Superconducting as well as other electronic properties of Fe-based superconductors are quite sensitive to the structural parameters specially, on anion height which is intimately related to zAs, the fractional z co-ordinate of As atom. Due to presence of strong magnetic fluctuation in these Fe-based superconductors, optimized structural parameters (lattice parameters a, b, c) including zAs using density functional theory (DFT) under generalized gradient approximation (GGA) does not match experimental values accurately. In this work, we show that the optimized value of zAs is strongly influenced by the spin structures in the orthorhombic phase of BaFe2As2 system. We take all possible spin structures for the orthorhombic BaFe2As2 system and then optimize zAs. Using these optimized structures we calculate electronic structures like density of states, band structures etc., for each spin configurations. From these studies we show that the electronic structure, orbital order which is responsible for structural as well as related to nematic transition, are significantly influenced by the spin structures.

  12. Structural, Electrical and Dielectrical Property Investigations of Fe-Doped BaZrO3 Nanoceramics

    NASA Astrophysics Data System (ADS)

    Khirade, Pankaj P.; Birajdar, Shankar D.; Humbe, Ashok V.; Jadhav, K. M.

    2016-06-01

    Nanocrystalline samples of BaZr1- x Fe x O3 ( x = 0.0, 0.05, 0.10, 0.20, 0.30, 0.40 and 0.50) ceramics were synthesized by the wet chemical sol-gel auto combustion method. The perovskite structured cubic phase formation of BaZr1- x Fe x O3 samples was confirmed by x-ray diffraction (XRD) data analysis. Various structural parameters such as lattice constant ( a), unit cell volume ( V), x-ray density ( ρ x), and porosity ( P) were determined using XRD data. The lattice constant ( a), x-ray density ( ρ x) and porosity ( P) decrease with an increase in Fe content x. The average particle size was calculated by using the Debye-Scherer's formula using XRD data and was 9-18 nm. The microstructural studies were investigated through scanning electron microscopy technique. Compositional stoichiometry was confirmed by energy dispersive spectrum analysis. The direct current electrical resistivity studies of the prepared samples were carried out in the temperature range of 343-1133 K using a standard two-probe method. The electrical conductivity ( σ) increases with temperature and Fe concentration. The dielectric parameters such as dielectric constant ( ɛ') and loss tangent (tan δ) were measured with frequency at room temperature in the frequency range 50 Hz to 5 MHz. The dielectric parameters show strong compositional as well as frequency dependences. The dielectric parameters were found to be higher at lower frequency.

  13. Structural, Electrical and Dielectrical Property Investigations of Fe-Doped BaZrO3 Nanoceramics

    NASA Astrophysics Data System (ADS)

    Khirade, Pankaj P.; Birajdar, Shankar D.; Humbe, Ashok V.; Jadhav, K. M.

    2016-03-01

    Nanocrystalline samples of BaZr1-x Fe x O3 (x = 0.0, 0.05, 0.10, 0.20, 0.30, 0.40 and 0.50) ceramics were synthesized by the wet chemical sol-gel auto combustion method. The perovskite structured cubic phase formation of BaZr1-x Fe x O3 samples was confirmed by x-ray diffraction (XRD) data analysis. Various structural parameters such as lattice constant (a), unit cell volume (V), x-ray density (ρ x), and porosity (P) were determined using XRD data. The lattice constant (a), x-ray density (ρ x) and porosity (P) decrease with an increase in Fe content x. The average particle size was calculated by using the Debye-Scherer's formula using XRD data and was 9-18 nm. The microstructural studies were investigated through scanning electron microscopy technique. Compositional stoichiometry was confirmed by energy dispersive spectrum analysis. The direct current electrical resistivity studies of the prepared samples were carried out in the temperature range of 343-1133 K using a standard two-probe method. The electrical conductivity (σ) increases with temperature and Fe concentration. The dielectric parameters such as dielectric constant (ɛ') and loss tangent (tan δ) were measured with frequency at room temperature in the frequency range 50 Hz to 5 MHz. The dielectric parameters show strong compositional as well as frequency dependences. The dielectric parameters were found to be higher at lower frequency.

  14. The LO-BaFL method and ALS microarray expression analysis

    PubMed Central

    2012-01-01

    Background Sporadic Amyotrophic Lateral Sclerosis (sALS) is a devastating, complex disease of unknown etiology. We studied this disease with microarray technology to capture as much biological complexity as possible. The Affymetrix-focused BaFL pipeline takes into account problems with probes that arise from physical and biological properties, so we adapted it to handle the long-oligonucleotide probes on our arrays (hence LO-BaFL). The revised method was tested against a validated array experiment and then used in a meta-analysis of peripheral white blood cells from healthy control samples in two experiments. We predicted differentially expressed (DE) genes in our sALS data, combining the results obtained using the TM4 suite of tools with those from the LO-BaFL method. Those predictions were tested using qRT-PCR assays. Results LO-BaFL filtering and DE testing accurately predicted previously validated DE genes in a published experiment on coronary artery disease (CAD). Filtering healthy control data from the sALS and CAD studies with LO-BaFL resulted in highly correlated expression levels across many genes. After bioinformatics analysis, twelve genes from the sALS DE gene list were selected for independent testing using qRT-PCR assays. High-quality RNA from six healthy Control and six sALS samples yielded the predicted differential expression for 7 genes: TARDBP, SKIV2L2, C12orf35, DYNLT1, ACTG1, B2M, and ILKAP. Four of the seven have been previously described in sALS studies, while ACTG1, B2M and ILKAP appear in the context of this disease for the first time. Supplementary material can be accessed at: http://webpages.uncc.edu/~cbaciu/LO-BaFL/supplementary_data.html. Conclusion LO-BaFL predicts DE results that are broadly similar to those of other methods. The small healthy control cohort in the sALS study is a reasonable foundation for predicting DE genes. Modifying the BaFL pipeline allowed us to remove noise and systematic errors, improving the power of this

  15. Magnetic field penetration depth of superconducting aluminum-substituted Ba8Si42Al4 clathrate

    NASA Astrophysics Data System (ADS)

    Li, Yang; Garcia, Jose; Franco, Giogiovanni

    2014-03-01

    During past years, efforts have been made to explore the superconductivity of Group IV clathrates with particular attention to the sp3 hybridized networks. In the study, we report on the superconductivity of Al-substituted type-I silicon clathrates. Pure phase samples of the general formula Ba8Si46-xAlx with different values of x were synthesized. The magnetic susceptibility measurements show that Ba8Si42Al4 is a bulk superconductor, with an onset at Tc =6 K. Al substitution results in a large decrease of the electronic density of states at the Fermi level, which explains the decreased superconducting critical temperature within the BCS framework. To further characterize the superconducting state, we carried out magnetic measurements showing Ba8Si42Al4 to be a type II superconductor. The critical magnetic fields were measured to be Hc1 = 77 Oe and Hc2 = 40 kOe. We deduce the London penetration depth 2900 Å and the coherence length 90 Å. Our estimate of the electron-phonon coupling reveals that Ba8Si42Al4 is a moderate phonon-mediated BCS superconductor. NASA PRSG IDEAS-ER Program(Granted No. NNX10AM80H).

  16. Magnetic properties of BaTiO3 and BaTi1-xMxO3 (M=Co, Fe) nanocrystals by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Yang, Lihong; Qiu, Hongmei; Pan, Liqing; Guo, Zhengang; Xu, Mei; Yin, Jinhua; Zhao, Xuedan

    2014-01-01

    BaTiO3 and BaTi1-xMxO3 (M=Co, Fe) nanocrystals were prepared by hydrothermal method. X-ray diffraction analysis indicated that all of the samples were of single-phase with tetragonal perovskite structure. The BaTiO3 prepared exhibited weak ferromagnetism rather than diamagnetism, probably due to the oxygen vacancies at the surface. Paramagnetism was observed for all BaTi1-xCoxO3 samples with 0.05≤x≤0.25. The Curie-Weiss fit revealed the paramagnetic moment per Co ion were 4.09 μB, 4.12 μB, and 4.36 μB for x=0.15, 0.20, and 0.25 respectively. Room temperature hysteresis loops of the Fe-doped BaTiO3 samples were observed at the doping level x between 0.2 and 0.5. The saturation magnetization firstly increased with increasing Fe content, but gradually decreased. The divergence was observed in the temperature dependence of the field cooling (FC) and zero-FC (ZFC) magnetization curves, indicating a spin-glass behavior arising from micromagnetic state, i.e. the mixing of ferromagnetic, and antiferromagnetic phases. The observed ferromagnetism may originate from the coupling between the secondary-nearest Fe ions and the antiferromagnetism may be due to the coupling between the nearest Fe ions. The ferromagnetic coupling competes with the antiferromagnetic coupling. Therefore, the ferromagnetic properties are predominant when the Fe doping level are at a certain range.

  17. Ultrafast structural dynamics of the orthorhombic distortion in the Fe-pnictide parent compound BaFe2As2

    PubMed Central

    Rettig, L.; Mariager, S. O.; Ferrer, A.; Grübel, S.; Johnson, J. A.; Rittmann, J.; Wolf, T.; Johnson, S. L.; Ingold, G.; Beaud, P.; Staub, U.

    2016-01-01

    Using femtosecond time-resolved hard x-ray diffraction, we investigate the structural dynamics of the orthorhombic distortion in the Fe-pnictide parent compound BaFe2As2. The orthorhombic distortion analyzed by the transient splitting of the (1 0 3) Bragg reflection is suppressed on an initial timescale of 35 ps, which is much slower than the suppression of magnetic and nematic order. This observation demonstrates a transient state with persistent structural distortion and suppressed magnetic/nematic order which are strongly linked in thermal equilibrium. We suggest a way of quantifying the coupling between structural and nematic degrees of freedom based on the dynamics of the respective order parameters. PMID:27158636

  18. Electric control of magnetism at the Fe/BaTiO3 interface

    SciTech Connect

    Radaelli, G.; Petti, D.; Plekhanov, E.; Fina, I.; Torelli, P.; Salles, B. R.; Cantoni, M.; Rinaldi, C.; Gutiérrez, D.; Panaccione, G.; Varela, M.; Picozzi, S.; Fontcuberta, J.; Bertacco, R.

    2014-03-03

    Interfacial magnetoelectric coupling (MEC) is a viable path to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO3 (BTO) system, only tiny changes of the interfacial Fe magnetic moment upon reversal of the BTO dielectric polarization have been predicted so far. Here, by using X-ray magnetic circular dichroism in combination with high resolution electron microscopy and first principles calculations, we report on an undisclosed physical mechanism for interfacial MEC in the Fe/BTO system. At the Fe/BTO interface, an ultrathin FeOx layer exists, whose magnetization can be electrically and reversibly switched on-off at room-temperature by reversing the BTO polarization. The suppression / recovery of interfacial ferromagnetism results from the asymmetric effect that ionic displacements in BTO produces on the exchange coupling constants in the adjacent FeOx layer. The observed giant magnetoelectric response holds potential for optimizing interfacial MEC in view of efficient, low-power spintronic devices.

  19. Electric control of magnetism at the Fe/BaTiO3 interface

    DOE PAGESBeta

    Radaelli, G.; Petti, D.; Plekhanov, E.; Fina, I.; Torelli, P.; Salles, B. R.; Cantoni, M.; Rinaldi, C.; Gutiérrez, D.; Panaccione, G.; et al

    2014-03-03

    Interfacial magnetoelectric coupling (MEC) is a viable path to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO3 (BTO) system, only tiny changes of the interfacial Fe magnetic moment upon reversal of the BTO dielectric polarization have been predicted so far. Here, by using X-ray magnetic circular dichroism in combination with high resolution electron microscopy and first principles calculations, we report on an undisclosed physical mechanism for interfacial MEC in the Fe/BTO system. At the Fe/BTO interface, an ultrathin FeOx layer exists, whose magnetization can be electrically and reversibly switched on-off at room-temperature by reversing themore » BTO polarization. The suppression / recovery of interfacial ferromagnetism results from the asymmetric effect that ionic displacements in BTO produces on the exchange coupling constants in the adjacent FeOx layer. The observed giant magnetoelectric response holds potential for optimizing interfacial MEC in view of efficient, low-power spintronic devices.« less

  20. Thickness dependence of structural and transport properties of Co-doped BaFe2As2 on Fe buffered MgO substrates

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Hänisch, Jens; Trommler, Sascha; Haindl, Silvia; Kurth, Fritz; Hühne, Ruben; Schultz, Ludwig; Holzapfel, Bernhard

    2011-12-01

    We have investigated the influence of the superconducting layer thickness, d, on the structural and transport properties of Co-doped BaFe2As2 films deposited on Fe buffered MgO substrates by pulsed laser deposition. The superconducting transition temperature and the texture quality of Co-doped BaFe2As2 films improve with increasing d due to a gradual relief of the tensile strain. For d >= 90 nm an additional 110 textured component of Co-doped BaFe2As2 was observed, which leads to an upward shift in the angle-dependent critical current density at H \\parallel c . These results indicate that the grain boundaries created by the 110 textured component may contribute to the c-axis pinning.

  1. Crystal and electronic structures of two new iron selenides: Ba{sub 4}Fe{sub 3}Se{sub 10} and BaFe{sub 2}Se{sub 4}

    SciTech Connect

    Berthebaud, David; Perez, Olivier; Tobola, Janusz; Pelloquin, Denis; Maignan, Antoine

    2015-10-15

    The new ternary selenides, Ba{sub 4}Fe{sub 3}Se{sub 10} and BaFe{sub 2}Se{sub 4,} were synthesized from a reaction of appropriate amounts of elements at high temperature in a silica sealed tube, and their structures were resolved using X-ray single crystal diffraction. BaFe{sub 2}Se{sub 4} crystallizes in the tetragonal space group I4/m with a=8.008(9) Å and c=5.483(3) Å as cell parameters. It is a new compound with a structure isotypical to the sulfide BaFe{sub 2}S{sub 4} which belongs to the infinitely adaptive structures series Ba{sub 1+x}Fe{sub 2}S{sub 4}. The second compound, Ba{sub 4}Fe{sub 3}Se{sub 10}, crystallizes in the monoclinic space group P2{sub 1}/n with a=8.8593(1) Å, b=8.8073(1) Å, c=12.2724(1) Å and β=109.037(6)° as cell parameters. It exhibits an original structure with a new type of iron selenide polyhedra. These data were consistent with the powder X-ray diffraction and TEM analyses. Their electronic structures point towards metallicity and electronic correlations for both selenides. - Graphical abstract: Experimental [010] oriented ED pattern and corresponding HREM image of Ba{sub 4}Fe{sub 3}Se{sub 10}. Image calculated with a focus and thickness to 15nm and 8 nm respectively is inserted. Bright contrasts are correlated to Se rows belonging to FeSe{sub 3}(Se{sub 2}){sup 2−}–FeSe{sub 6}–FeSe{sub 3}(Se{sub 2}){sup 2−} trimers. The corresponding structure projection is also shown. - Highlights: • Two new barium iron selenide compounds. • An original structure type Ba4Fe3Se10. • Electronic structure calculations.

  2. Introducing a large polar tetragonal distortion into Ba-doped BiFeO3 by low-temperature fluorination.

    PubMed

    Clemens, Oliver; Kruk, Robert; Patterson, Eric A; Loho, Christoph; Reitz, Christian; Wright, Adrian J; Knight, Kevin S; Hahn, Horst; Slater, Peter R

    2014-12-01

    This article reports on the synthesis and crystallographic and magnetic structure of barium-doped BiFeO3 compounds with approximate composition Bi(1-x)Ba(x)FeO(3-x/2), as well as those of the fluorinated compounds Bi(1-x)Ba(x)FeO(3-x)F(x) (both with x = 0.2, 0.3), prepared by low-temperature fluorination of the oxide precursors using polyvinylidenedifluoride. Whereas the oxide compounds were obtained as cubic (x = 0.2) and slightly tetragonal (x = 0.3, c/a ≈ 1.003) distorted perovskite compounds, a large tetragonal polar distortion was observed for the oxyfluoride compounds (c/a ≈ 1.08 for x = 0.2 and ∼1.05 for x = 0.3), being isostructural to tetragonal PbTiO3. Although described differently in previous reports on Ba-doped BiFeO3, the observed remanent magnetization is found to agree well with the amount of BaFe12O19 only detectable by neutron diffraction and the well-known magnetic properties of BaFe12O19. The oxyfluoride compounds show G-type antiferromagnetic ordering with magnetic moments lying in the a/b plane. PMID:25383956

  3. ARPES investigation of heavily hole-doped Fe-based superconductor (Ba,K)Fe2As2

    NASA Astrophysics Data System (ADS)

    Shi, Xun; Richard, Pierre; Zhang, Peng; van Roekeghem, Ambroise; Qian, Tian; Hu, Jiangping; Ding, Hong; Fang, Delong; Wen, Haihu; Xu, Nan; Shi, Ming; Kim, Timur; Hoesch, Moritz; Chen, Xianhui; Photoelectron Spectroscopy Research Team; Nanjing University Collaboration; Paul Scherrer Institut Collaboration; Diamond Light Source Collaboration; University of Science; Technology of China Collaboration

    A Lifshitz transition occurs in the (Ba,K)Fe2As2 family upon K doping and electron pocket are absent in the heavily doped compounds, including KFe2As2. The pairing symmetry is argued to undergoes a phase transition due to the existence of gap node(s) reported in various experiments. In this work we present angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy studies of KFe2As2. We observe a van Hove singularity (vHs) in proximity of the Fermi level (EF), which locates in the middle of the principal axes of the first Brillouin zone. The density-of-states at EF mainly comes from the vHs whereas it is non-gapped in the superconducting state. Our observation provides natural explanations for many novel behaviors in this material. In particular, it is consistent with our measurements of the gap structure in Ba0.1K0.9Fe2As2. All these results suggest that Cooper pairing is induced by a strong-coupling mechanism.

  4. Role of magnetism in superconductivity of BaFe2As2: Study of 5d Au-doped crystals

    DOE PAGESBeta

    Li, Li; Cao, Huibo; McGuire, Michael A.; Kim, J. S.; Stewart, G. R.; Sefat, Athena Safa

    2015-09-09

    We investigate properties of BaFe2As2 (122) single crystals upon gold doping, which is the transition metal with the highest atomic weight. The Au substitution into the FeAs-planes of 122 crystal structure (Au-122) is only possible up to a small amount of ~3%. We find that 5d is more effective in reducing magnetism in 122 than its counter 3d Cu, and this relates to superconductivity. We provide evidence of short-range magnetic fluctuations and local lattice inhomogeneities that may prevent strong percolative superconductivity in Ba(Fe1-xAux)2As2.

  5. Transformation of Ba-Al-Si precursors to celsian by high-temperature oxidation and annealing

    NASA Astrophysics Data System (ADS)

    Schmutzler, Hans J.; Sandhage, Kenneth H.

    1995-02-01

    Celsian (monoclinic BaO · A12O3 · 2SiO2) is being considered as a matrix material for ceramic composites used in high-temperature structural applications. The present article describes the synthesis of celsian by the oxidation and annealing of solid, malleable, metallic Ba-Al-Si precursors. The phase and microstructural evolution after various stages of oxidation at 300 °C to 1260 °C in pure oxygen at 1 atm pressure have been examined by X-ray diffraction (XRD) and electron microprobe analyses (EPMA). Barium peroxide, BaO2, formed rapidly during oxidation at 300 °C, with aluminum and silicon remaining largely as unoxidized particles in a BaO2 matrix. Between 300 °C and 500 °C, barium orthosilicate, Ba2Si04, formed by a solid-state reaction between barium peroxide and unoxidized silicon. Further exposure to temperatures between 500 °C and 1200 °C resulted in the oxidation of aluminum and of residual silicon. The oxidized silicon reacted with the barium orthosilicate matrix to yield higher silica-containing barium silicates that, in turn, reacted with alumina or mullite to form metastable hexacelsian (hexagonal BaO-A12O3 · 2SiO2). Celsian was then obtained by further exposure to peak temperatures ≤1260°C.

  6. Comparison of metals extractability from Al/Fe-based drinking water treatment residuals.

    PubMed

    Wang, Changhui; Bai, Leilei; Pei, Yuansheng; Wendling, Laura A

    2014-12-01

    Recycling of drinking water treatment residuals (WTRs) as environment amendments has attracted substantial interest due to their productive reuse concomitant with waste minimization. In the present study, the extractability of metals within six Al/Fe-hydroxide-comprised WTRs collected throughout China was investigated using fractionation, in vitro digestion and the toxicity characteristic leaching procedure (TCLP). The results suggested that the major components and structure of the WTRs investigated were similar. The WTRs were enriched in Al, Fe, Ca, and Mg, also contained varying quantities of As, Ba, Be, Cd, Co, Cr, Cu, K, Mn, Mo, Na, Ni, Pb, Sr, V, and Zn, but Ag, Hg, Sb, and Se were not detected. Most of the metals within the WTRs were largely non-extractable using the European Community Bureau of Reference (BCR) procedure, but many metals exhibited high bioaccessibility based on in vitro digestion. However, the WTRs could be classified as non-hazardous according to the TCLP assessment method used by the US Environmental Protection Agency (USEPA). Further analysis showed the communication factor, which is calculated as the ratio of total extractable metal by BCR procedure to the total metal, for most metals in the six WTRs, was similar, whereas the factor for Ba, Mn, Sr, and Zn varied substantially. Moreover, metals in the WTRs investigated had different risk assessment code. In summary, recycling of WTRs is subject to regulation based on assessment of risk due to metals prior to practical application. PMID:25023656

  7. Evolution of structure and physical properties in Al-substituted Ba-hexaferrites

    NASA Astrophysics Data System (ADS)

    Alex, Trukhanov; Larisa, Panina; Sergei, Trukhanov; Vitalii, Turchenko; Mohamed, Salem

    2016-01-01

    The investigations of the crystal and magnetic structures of the BaFe12-xAlxO19 (x = 0.1-1.2) solid solutions have been performed with powder neutron diffractometry. Magnetic properties of the BaFe12-xAlxO19 (x = 0.1-1.2) solid solutions have been measured by vibration sample magnetometry at different temperatures under different magnetic fields. The atomic coordinates and lattice parameters have been Rietveld refined. The invar effect is observed in low temperature range (from 4.2 K to 150 K). It is explained by the thermal oscillation anharmonicity of atoms. The increase of microstress with decreasing temperature is found from Rietveld refinement. The Curie temperature and the change of total magnetic moment per formula unit are found for all compositions of the BaFe12-xAlxO19 (x = 0.1-1.2) solid solutions. The magnetic structure model is proposed. The most likely reasons and the mechanism of magnetic structure formation are discussed. Project supported by the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” (Grant No. K4-2015-040). L. Panina acknowledges support under the Russian Federation State contract for organizing a scientific work.

  8. Fe modified BaTiO3: Influence of doping on ferroelectric property

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Bisen, Supriya; Jarabana, Kanaka Mahalakshmi; Mishra, Niyati

    2015-06-01

    We have investigate the ferroelectric property of Fe modified Barium Titanate (BaTiO3) with possible tetragonal structure via solid state route was prepared. Modified sample of BaTi1-xFexO3 (x=0.01, 0.02) were structural characterized by X-ray Diffraction (XRD) using a Bruker D8 Advance XRD instruments, the value of 2θ is in between 20° to 80°. Fourier transform infrared spectroscopy (FTIR) using a Bruker, vertex instruments has been performs to obtain Ti-O bonding in the modified sample; the region of wavenumber is from 4000 cm-1 to 400 cm-1. P-E hysteresis loop measurements have been traced for different applied voltage- 100V, 300V and 500V.

  9. Identical spin fluctuations in Cu- and Co-doped BaFe2As2 independent of electron doping

    NASA Astrophysics Data System (ADS)

    Grafe, H.-J.; Gräfe, U.; Dioguardi, A. P.; Curro, N. J.; Aswartham, S.; Wurmehl, S.; Büchner, B.

    2014-09-01

    We present As75 nuclear magnetic resonance measurements on single crystals of BaFe2As2, BaFe1.8Co0.2As2, and BaFe1.82Cu0.18As2. While only Co doping induces bulk superconductivity on a broad doping range, the spin fluctuations probed by the nuclear spin-lattice relaxation rate (T1T )-1 are identical for both dopings down to Tc. Below this temperature, (T1T)-1 of the Cu-doped sample continues to rise, proving that (a) there is a quantum critical point below the superconducting dome, and (b) adding electrons does not affect the spin fluctuations. Consequently, we analyze the Knight shift data in terms of a two-component scenario, with one hyperfine coupling to an itinerant degree of freedom and the other to Fe moments.

  10. Fabrication of high-performance (Ba,K)Fe2As2 superconducting wires by powder-in-tube method

    NASA Astrophysics Data System (ADS)

    Ding, Q. P.; Prombood, T.; Mohan, S.; Y. Tsuchiya; Nakajima, Y.; Tamegai, T.

    (Ba,K)Fe2As2 superconducting wires have been fabricated by ex-situ powder-in-tube method. In addition to the pure (Ba,K)Fe2As2 wires, silver powder was also used as a chemical addition to improve the performance of these superconducting wires. The transport critical current density (Jc) has reached 1.3×104 A/cm2 at 4.2 K under self field in the wire with Ag addition. The self-field Jc is the highest among all the reported Fe-based superconducting wires so far. We have also performed magneto-optical imaging to this (Ba,K)Fe2As2 superconducting wire with Ag addition, and intragranular Jc of 6.0×104 A/cm2 at 20 K is obtained, which is similar to the estimation from M-H measurement.

  11. Utilization of mechanical alloying method for flux growth of single crystalline BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Takahashi, Kosuke Z.; Okuyama, Daisuke; Sato, Taku J.

    2016-07-01

    Mechanical alloying method has been employed to prepare the Ba-Fe-As-P precursors, necessary for the Ba-(As,P) flux growth of the single crystalline BaFe2(As1-xPx)2. By alloying constituent elementals mechanically, the Ba-(As,P) precursors are successfully formed at the room temperature within one hour, significantly reducing preparation time. Using the mechanically alloyed precursors, we have grown single crystals of BaFe2(As1-xPx)2 with the sizes up to 5 mm×5 mm×0.1 mm.

  12. Neutron diffraction and the electronic properties of BaFe2Se3

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.; Khalyavin, D. D.; van der Laan, G.

    2016-01-01

    It is argued on the basis of previously published experimental data that, the magnetic space-group Cac (#9.41) is the correct description of magnetically ordered BaFe2Se3. The corresponding crystal class m1‧ allows axial and polar dipoles and forbids bulk ferromagnetism. Magneto-electric multipoles that are both time-odd and parity-odd are allowed, e.g., a magnetic charge (monopole) and an anapole (magnetic toroidal dipole). The experimental observation of magneto-electric multipoles must shed light on valence electrons involved in bonding, including charge transfer using 3d(Fe) and p-states of ligand ions. We provide the appropriate structure factors for the Bragg diffraction neutrons, together with estimates of atomic form factors. Structure factors for resonant x-ray Bragg diffraction are also considered, because the analysis of successful experiments will yield complementary information about electronic properties. Magneto-electric multipoles, over and above those that contribute to magnetic neutron diffraction, include the magnetic monopole. A time-odd, parity-even monopole created from the magnetic dipole and an electric toroidal dipole, which is a manifestation of a structural rotation, is allowed in BaFe2Se3 but it is not visible in diffraction, nor is the corresponding dipole.

  13. Effect of molybdenum 4d hole substitution in BaFe2As2

    NASA Astrophysics Data System (ADS)

    Sefat, Athena S.; Marty, Karol; Christianson, Andrew D.; Saparov, Bayrammurad; McGuire, Michael A.; Lumsden, Mark D.; Tian, Wei; Sales, Brian C.

    2012-01-01

    We investigate the thermodynamic and transport properties of molybdenum-doped BaFe2As2 (122) crystals, the first report of hole doping using a 4d element. The chemical substitution of Mo in place of Fe is possible up to ˜ 7%. For Ba(Fe1-xMox)2As2, the suppression rate of the magnetic transition temperature with x is the same as in 3d Cr-doped 122 and is independent of the unit cell changes. This illustrates that the temperature-composition phase diagram for hole-doped 122 can be simply parameterized by x, similar to the electron-doped 122 systems found in the literature. Compared to 122 with a coupled antiferromagnetic order (TN) and orthorhombic structural transition (T0) at ≈132 K, 1.3% Mo-doped 122 (x=0.013) gives TN=T0=125(1) K according to neutron diffraction results and features in specific heat, magnetic susceptibility, and electrical resistivity. The cell volume expands by ˜1% with maximum Mo doping and TN is reduced to ≈90 K. There is a T* feature that is identified for lightly Cr- or Mo-doped 122 crystals, which is x dependent. This low-temperature transition may be a trace of superconductivity.

  14. Characteristics of B2O3 and Fe added into BaFe12O19 permanent magnets prepared at different milling time and sintering temperature

    NASA Astrophysics Data System (ADS)

    Sebayang, Perdamean; Sari, Ayu Yuswita; Ginting, Delovita; Allan, Yola; Nasruddin M., N.; Sebayang, Kerista

    2016-02-01

    The objective of present work is to investigate the characteristic of BaFe12O19, B2O3-BaFe12O19 and Fe-BaFe12O19 magnets fabricated at different milling time and sintering temperature. The characteristic of perrmanen magnet BaFe12O19 with different content of B2O3 and Fe which was fabricated at different milling time and sintering temperature were investigated. The powder mixtures were prepared by dry and wet milling at various milling time. The powder were mixtured and prepared by dry and wet milling at various milling time. The mixture powder was then compacted by anisotropic with compressive pressure of 50 N/cm2. The green bodies were sinter at 1050, 1100, 1150 and 1200°C and hold for 1 h, separately. The density, magnetic flux density and B-H curve were measured by Archimedes principle, Gauss meter and Permagraph, respectively. The microstructure and phase composition characterization were performed by SEM and XRD. The results of this study are presented in this paper. It shows that addition of Fe (in wet milling) and B2O3 (in dry milling) respectively give a potential benefit to reduce the sintering temperature and improve the magnetic flux density of barium hexaferrite.

  15. Thermoelectric power of Ba(Fe1-x Co x )2As2 (0 ≤ x ≤ 0.05) and Ba(Fe1-x Rh x )2As2 (0 ≤ x ≤ 0.171)

    NASA Astrophysics Data System (ADS)

    Hodovanets, Halyna; Thaler, Alex; Mun, Eundeok; Ni, Ni; Bud'ko, Sergey L.; Canfield, Paul C.

    2013-02-01

    Temperature-dependent, in-plane, thermoelectric power data are presented for single crystals of Ba(Fe1-x Co x )2As2 (0 ≤ x ≤ 0.05) and Ba(Fe1-x Rh x )2As2 (0 ≤ x ≤ 0.171). Given that previous thermoelectric power and angle resolved photoemission spectroscopy studies of Ba(Fe1-x Co x )2As2 delineated a rather large Co-concentration range for Lifshitz transitions to occur, and the underdoped side of the phase diagram is poorly explored, new measurements of thermoelectric power on tightly spaced concentrations of Co, 0 ≤ x ≤ 0.05, were carried out. The data suggest evidence of a Lifshitz transition, but instead of a discontinuous jump in thermoelectric power in the range 0 ≤ x ≤ 0.05, a more gradual evolution in the S(T) plots as x is increased was observed. The thermoelectric power data of Ba(Fe1-x Rh x )2As2 show very similar behavior to that of Co substituted BaFe2As2. The previously outlined T-x phase diagrams for both systems are further confirmed by these thermoelectric power data.

  16. Host Atom Diffusion in Ternary Fe-Cr-Al Alloys

    NASA Astrophysics Data System (ADS)

    Rohrberg, Diana; Spitzer, Karl-Heinz; Dörrer, Lars; Kulińska, Anna J.; Borchardt, Günter; Fraczkiewicz, Anna; Markus, Torsten; Jacobs, Michael H. G.; Schmid-Fetzer, Rainer

    2014-01-01

    In the Fe-rich corner of the Fe-Cr-Al ternary phase diagram, both interdiffusion experiments [1048 K to 1573 K (775 °C to 1300 °C)] and 58Fe tracer diffusion experiments [873 K to 1123 K (600 °C to 850 °C)] were performed along the Fe50Cr50-Fe50Al50 section. For the evaluation of the interdiffusion data, a theoretical model was used which directly yields the individual self-diffusion coefficients of the three constituents and the shift of the original interface of the diffusion couple through inverse modeling. The driving chemical potential gradients were derived using a phenomenological Gibbs energy function which was based on thoroughly assessed thermodynamic data. From the comparison of the individual self-diffusivities of Fe as obtained from interdiffusion profiles and independent 58Fe tracer diffusivities, the influence of the B2-A2 order-disorder transition becomes obvious, resulting in a slightly higher activation enthalpy for the bcc-B2 phase and a significantly lower activation entropy for this phase.

  17. The corrosion behavior of Fe-Mn-Al weld metals

    NASA Astrophysics Data System (ADS)

    Aidun, Daryush K.

    2001-02-01

    The corrosion resistance of a newly developed iron-base, Fe-Mn-Al austenitic, and duplex weld metal has been examined in the NACE solution consisting of 5 wt.% NaCl, 0.5 wt.% acetic acid, and the balance distilled water. The electrochemical techniques such as potentiodynamic polarization, Tafel plots, linear polarization, cyclic polarization, and open-circuit potential versus time were employed. The Fe-Mn-Al weld metals did not passivate and exhibited high corrosion rates. Fe-Cr-Ni (310 and 316) weld and base metals were also examined in the NACE solution at room temperature. The 310 and 316 base metals were more resistant to corrosion than the as-welded 310 and 316 weld metals. Postweld heat treatment (PWHT) improved the corrosion performance of the Fe-Mn-Al weld metals. The corrosion resistance of Fe-Mn-Al weld metals after PWHT was still inferior to that of the 310 and 316 weld and base metals.

  18. Relaxor behavior of (Ba,Bi)(Ti,Al)O3 ferroelectric ceramic

    NASA Astrophysics Data System (ADS)

    Cui, Lei; Hou, Yu-Dong; Wang, Sai; Wang, Chao; Zhu, Man-Kang

    2010-03-01

    Perovskite type (Ba0.9Bi0.1)(Ti0.9Al0.1)O3 (BBTA) ceramics have been prepared through solid state reaction route. The room temperature x-ray diffraction study suggests that BBTA ceramics have single phase tetragonal symmetry with space group P4mm. In contrast to the sharp dielectric transition of pure BaTiO3, a broad dielectric anomaly coupled with the shift in dielectric maxima toward a higher temperature with increasing frequency has been observed in BBTA. The quantitative characterization based on empirical parameters (ΔTm, γ, ΔTrelax, and ΔTdiffuse(1 kHz)) confirms its relaxor nature. The dielectric relaxation which follows the Vogel-Fulcher relationship with Eα=0.011 eV, Tf=356 K, and f0=1.38×1010 Hz, further supports spin-glass-like characteristics. In this system, the relaxor behavior can be attributed to the dynamic response of the polar clusters induced by the combined substitutions of Bi3+ and Al3+ on the Ba2+ and Ti4+ site. Moreover, the curie temperature of BBTA shows the decreasing trend compared to that of pure BaTiO3, which doesn't follow the normal Vegard's law, confirming that no BiAlO3 sublattice formed in BBTA. All these features indicate that BBTA is a promising candidate for lead-free relaxors.

  19. An efficient synthesis of nanocrystalline BaFe12O19 materials by modified co-precipitation method

    NASA Astrophysics Data System (ADS)

    Habeeba, M.; Balamurugan, S.; Resmi, S. P.

    2016-05-01

    In this report, the nanocrystalline BaFe12O19 materials obtained by modified co-precipitation method using Na2CO3 and NaOH as precipitating agent are presented. In the modified co-precipitation process, instead of washing the co-precipitated product in mother liquor with de-ionized water, it was dried in a heating mantle, which has major influence as self flux in the single phase formation of BaFe12O19 phase. The co-precipitated product was annealed at 1000°C for 2 h under ambient pressure to obtain the required BaFe12O19 phase. The results based on XRD, average crystalline size, FT-IR, HR-SEM and EDX are reported. The annealed BaFe12O19 materials showed nanocrystalline single hexagonal phase with average crystalline size of ~ 102 nm. The annealed BaFe12O19 materials show particle sizes in the range of 280 ~ 326 nm and the thickness of ~ 57 nm in the high resolution micro-images.

  20. Comparison of Fe-AlPILC and Fe-ZSM-5 catalysts used for degradation of methomyl

    NASA Astrophysics Data System (ADS)

    Lázár, Károly; Tomašević, Andjelka; Bošković, Goran; Kiss, Ernő

    2009-07-01

    Catalytic performances of Fe-AlPILC (14 wt.% Fe) and Fe-ZSM-5 (5 wt.% Fe) catalysts are compared in the wet oxidative degradation of methomyl. Fe-ZSM-5 exhibits outstanding whereas Fe-AlPILC shows only mediocre activity. Positions of iron are analysed in the two catalysts by Mössbauer spectroscopy. Iron is in highly dispersed state in Fe-AlPILC whereas in the other case a hematite/ZSM-5 composite is formed. The catalytic activity is attributed to iron located and stabilized in ionic dispersion.

  1. Common Building Motifs in Ba2Fe3(PO4)4·2H2O, BaFe3(PO4)3, and Na3Fe3(PO4)4: Labile Fe(2+)/Fe(3+) Ordering and Charge-Dependent Magnetism.

    PubMed

    David, Rénald; Pautrat, Alain; Kabbour, Houria; Mentré, Olivier

    2016-05-01

    Two new mixed-valence Fe(2/3+) barium phosphates have been synthesized in hydrothermal conditions and characterized: Ba2Fe(2.66+)3(PO4)4·2H2O (compound 1, ratio Fe(3+)/Fe(2+) = 2:1, orthorhombic space group Pbca, a = 6.71240(10) Å, b = 10.6077(2) Å, c = 20.9975(5) Å, R1 = 3.39%) and BaFe(2.33+)3(PO4)3 (compound 2, ratio Fe(3+)/Fe(2+) = 1:2, orthorhombic, space group Imma with a = 10.5236(3) Å, b = 13.4454(4) Å, c = 6.6411(2) Å, R1 = 1.63%). 1 has a two-dimensional crystal structure built of [Fe(2.5+)2Fe(3+)1(PO4)4](4-) layers with charge segregation on two individual Fe crystal sites, in contrast to the single valence on these two sites found in similar layers of Na3Fe(3+)3(PO4)4. The crystal structure of 2 is formed of the same layers but condensed into a 3D [Fe(2+)2Fe(3+)1(PO4)3](2-) framework. The complete Fe(2+) vs Fe(3+) charge ordering on the two available sites differs from what was found in the two previous cases and denotes a remarkable charge adaptability of the common elementary units. Compared to the antiferromagnetic Na3Fe(3+)3(PO4)4 the partial iron reduction into Fe(2+) is responsible for strong ferromagnetic components along the c-easy axis for both 1 and 2. Additionally 1 shows multiple magnetization steps in the perpendicular direction, giving raise to atypical anisotropic magnetism into a complex magnetic phase diagram. PMID:27097360

  2. Ab Initio Structure Solution of BaFeO 2.8- δ, a New Polytype in the System BaFeO y (2.5≤ y≤3.0) Prepared from the Oxidative Thermal Decomposition of BaFe[(CN) 5NO]·3H 2O

    NASA Astrophysics Data System (ADS)

    Gómez, María. Inés; Lucotti, Gabriela; de Morán, Juana A.; Aymonino, Pedro J.; Pagola, Silvina; Stephens, Peter; Carbonio, Raúl E.

    2001-08-01

    BaFeO2.8-δ with a crystal structure different from any of those previously reported in the system BaFeOy (2.5≤y≤3.0) was prepared by a low-temperature method of synthesis, based on the oxidative thermal decomposition of BaFe[(CN)5NO]·3H2O. The structure was solved ab initio by high-resolution synchrotron X-ray powder diffraction and refined by Rietveld analysis (RP=7.78, Rwp=11.3, Rexp=3.76, RBragg=6.67, χ2=9.03). The compound crystallizes in the hexagonal crystal system, space group P63/mmc, Z=10, unit cell parameters a=5.77944(1), c=24.60871(6) Å. The structure consists of 10H close packed (hchch)2 stacking of BaOn layers (eight BaO3 layers and two oxygen-deficient BaO2 layers). Additional oxygen deficiencies are randomly distributed on the h BaO3 layers. Six iron ions occupy octahedral sites sharing faces between them along the c axis and four occupy tetrahedral sites (2 T+ and 2 T-) sharing faces with the octahedra and sharing corners between them.

  3. Ferromagnetism and ferroelectricity in Fe doped BaTiO3

    NASA Astrophysics Data System (ADS)

    Deka, Bipul; Ravi, S.; Perumal, A.; Pamu, D.

    2014-09-01

    We report the investigation of crystal structure, magnetic and dielectric properties of BaTi1-xFexO3 samples for x=0.0-0.3. The parent compound is found to crystallize in tetragonal structure while Fe doped samples are found to crystallize in the mixture of tetragonal and hexagonal phases but they are free from any impurity phase. Room temperature ferromagnetism with the transition temperature (Tc) of 462 K was observed for x=0.3 sample. Fe doped samples exhibit ferroelectric transition with transition temperature (TcF) in the range of 390 K for x=0.0-312 K for x=0.2. The dielectric constant, ε‧ is found to decrease with the increase in doping concentrations.

  4. FeAl-TiC and FeAl-WC composites - melt infiltration processing, microstructure and mechanical properties

    SciTech Connect

    Subramanian, R.; Schneibel, J.H.

    1997-04-01

    TiC-based and WC-based cermets were processed with iron aluminide, an intermetallic, as a binder by pressureless melt infiltration to near full density (> 97 % theoretical density). Phase equilibria calculations in the quaternary Fe-Al-Ti-C and Fe-Al-W-C systems at 145{degrees}C were performed to determine the solubility of the carbide phases in liquid iron aluminide. This was done by using Thermocalc{trademark} and the results show that molten Fe-40 at.% Al in equilibrium with Ti{sub 0.512}C{sub 0.488} and graphite, dissolves 4.9 at% carbon and 64 atomic ppm titanium. In the Fe-Al-W-C system, liquid Fe-40 at.% Al in equilibrium with graphite dissolves about 5 at.% carbon and 1 at.% tungsten. Due to the low values for the solubility of the carbide phases in liquid iron aluminide, liquid phase sintering of mixed powders does not yield a dense, homogeneous microstructure for carbide volume fractions greater than 0.70. Melt infiltration of molten FeAl into TiC and WC preforms serves as a successful approach to process cermets with carbide contents ranging from 70 to 90 vol. %, to greater than 97% of theoretical density. Also, the microstructures of cermets prepared by melt infiltration were very homogeneous. Typical properties such as hardness, bend strength and fracture toughness are reported. SEM observations of fracture surfaces suggest the improved fracture toughness to result from the ductility of the intermetallic phase. Preliminary experiments for the evaluation of the oxidation resistance of iron aluminide bonded cermets indicate that they are more resistant than WC-Co cermets.

  5. Lateral electric-field control of giant magnetoresistance in Co/Cu/Fe/BaTiO{sub 3} multiferroic heterostructure

    SciTech Connect

    Savitha Pillai, S.; Kojima, H.; Itoh, M.; Taniyama, T.

    2015-08-17

    We report lateral electric-field-driven sizable changes in the magnetoresistance of Co/Cu/Fe tri-layered wires on BaTiO{sub 3} single crystal. While the observed change is marginal in the tetragonal phase of BaTiO{sub 3}, it reaches over 40% in the orthorhombic and rhombohedral phases with an electric field of 66 kV/cm. We attribute it to possible electric-field-induced variations of the spin-dependent electronic structures, i.e., spin polarization, of the Fe via interfacial strain transfer from BaTiO{sub 3}. The contrasting results for the different phases of BaTiO{sub 3} are discussed, associated with the distinct aspects of the ferroelectric polarization switching processes in each phase.

  6. Strain induced structural, electronic, and magnetic properties of SrFeO2 and BaFeO2

    NASA Astrophysics Data System (ADS)

    Luo, Weidong; Zhang, Xiaole

    The structural, electronic and magnetic properties of SrFeO2 and BaFeO2 under tensile strains are studied using first-principles density-functional theory calculations. Strain-induced Jahn-Teller-like behaviors involving the cooperative displacements of oxygen atoms are predicted in both compounds. Lattice dynamical properties are also investigated and the strain-induced imaginary phonon modes are consistent with the Jahn-Teller-like distortion. The usual Jahn-Teller instability of degenerate energy levels does not contribute to the interesting phenomena. Besides the structural and electronic properties, a transition of magnetic orderings from G-type anti-ferromagnetic phase to C-type anti-ferromagnetic phase is predicted in both compounds, which originates from the combined effects of the lattice-orbital coupling and the spin-orbital coupling due to exchange interaction between orthogonal Fe 3 d orbitals.We acknowledge funding support from the National Natural Science Foundation of China.

  7. Light-Emitting Characteristics of Organic Light-Emitting Diodes with Ba/Al Cathode and Effect of Ba Thickness by Measuring their Built-in Potential

    NASA Astrophysics Data System (ADS)

    Lim, Jong Tae; Yeom, Geun Young

    2009-12-01

    The electronic nature of metal-organic semiconductor contacts is a fundamental issue in the field of organic semiconductor device physics, because these contacts control the charge injection. The built-in potential in organic light-emitting diodes (OLEDs) with a Ba/Al cathode was investigated by using the modulated photocurrent technique. To measure the built-in potential, a device with a glass/tin-doped indium oxide (ITO)/tris(8-quinolinolato)aluminum (III) (Alq3, 150 nm)/Ba (x nm, x=3, 2, 1, and 0)/Al (150 nm) structure was fabricated and encapsulated in a nitrogen atmosphere. The device with Ba/Al cathode showed a higher built-in potential, compared with the Al-only device, which reduced the barrier height for electron injection from the Ba/Al cathode to Alq3. For the device with a Ba thickness of 3 nm, the barrier height for electron injection showed a low value of 0.1 eV. On the basis of the built-in potential data, the device with the ITO/4,4',4''-tris(2-naphthylphenyl-1-phenylamino)triphenylamine (2-TNATA, 30 nm)/4,4'-bis(N-(1-napthyl)-N-phenyl-amino)-biphenyl (NPB, 18 nm)/Alq3 (62 nm)/Ba (3 nm)/Al (100 nm) structure showed the best characteristics with the highest luminance of 54,000 cd/m2 and the highest efficiency of 2.7 lm/W, as compared to the other devices with Ba thicknesses of less than 3 nm.

  8. Phase evolution in sonochemically synthesized Fe(3+) doped BaTiO3 nanocrystallites: structural, magnetic and ferroelectric characterisation.

    PubMed

    Dutta, Dimple P; Roy, Mainak; Maiti, Nandita; Tyagi, Avesh K

    2016-04-14

    The properties of nanomaterials are highly dependent on their size, morphology, crystal phase, etc., which in turn depend on the method of synthesis. We report here the electrical and magnetic characterisation of sonochemically synthesized Fe(3+) doped nano BaTiO3 samples. The dopant ion concentration has been optimized and the coexistence of ferromagnetism and ferroelectricity has been observed in the sample. With increase in Fe(3+) doping from 0 to 20 mol%, a gradual phase change from tetragonal to hexagonal occurred in these sonochemically synthesized BaTiO3 nanomaterials. Below 15 mol% Fe concentration the material displays ferroelectric behaviour with the absence of any magnetic ordering, while at an Fe concentration of ∼15 mol% the material exhibits both room temperature ferromagnetism and ferroelectricity. Ferromagnetism as well as relaxor type behaviour has been observed in the BaTiO3:Fe(3+)(20%) sample. We have studied the ferromagnetic and ferroelectric ordering in these sonochemically synthesized Fe(3+) doped BaTiO3 nanomaterials and have tried to correlate the results with their crystal structure and morphology. The origin of ferromagnetism in these materials has been attributed to both intrinsic as well as extrinsic factors. PMID:27003320

  9. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.

    1988-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  10. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.

    1989-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  11. Processing and properties of FeAl-bonded composites

    SciTech Connect

    Schneibel, J.H.; Subramanian, R.; Alexander, K.B.; Becher, P.F.

    1996-12-31

    Iron aluminides are thermodynamically compatible with a wide range of ceramics such as carbides, borides, oxides, and nitrides, which makes them suitable as the matrix in composites or cermets containing fine ceramic particulates. For ceramic contents varying from 30 to 60 vol.%, composites of Fe-40 at. % Al with WC, TiC, TiB{sub 2}, and ZrB{sub 2} were fabricated by conventional liquid phase sintering of powder mixtures. For ceramic contents from 70 to 85 vol.%, pressureless melt infiltration was found to be a more suitable processing technique. In FeAl-60 vol.% WC, flexure strengths of up to 1.8 GPa were obtained, even though processing defects consisting of small oxide clusters were present. Room temperature fracture toughnesses were determined by flexure testing of chevron-notched specimens. FeAl/WC and FeAl/TiC composites containing 60 vol.% carbide particles exhibited K{sub Q} values around 20 MPa m{sup 1/2}. Slow crack growth measurements carried out in water and in dry oxygen suggest a relatively small influence of water-vapor embrittlement. It appears therefore that the mechanical properties of iron aluminides in the form of fine ligaments are quite different from their bulk properties. Measurements of the oxidation resistance, dry wear resistance, and thermal expansion of iron aluminide composites suggest many potential applications for these new materials.

  12. Ultrafast dynamics of quasiparticles and coherent acoustic phonons in slightly underdoped (BaK)Fe2As2

    NASA Astrophysics Data System (ADS)

    Lin, Kung-Hsuan; Wang, Kuan-Jen; Chang, Chung-Chieh; Wen, Yu-Chieh; Lv, Bing; Chu, Ching-Wu; Wu, Maw-Kuen

    2016-05-01

    We have utilized ultrafast optical spectroscopy to study carrier dynamics in slightly underdoped (BaK)Fe2As2 crystals without magnetic transition. The photoelastic signals due to coherent acoustic phonons have been quantitatively investigated. According to our temperature-dependent results, we found that the relaxation component of superconducting quasiparticles persisted from the superconducting state up to at least 70 K in the normal state. Our findings suggest that the pseudogaplike feature in the normal state is possibly the precursor of superconductivity. We also highlight that the pseudogap feature of K-doped BaFe2As2 is different from that of other iron-based superconductors, including Co-doped or P-doped BaFe2As2.

  13. Ultrafast dynamics of quasiparticles and coherent acoustic phonons in slightly underdoped (BaK)Fe2As2

    PubMed Central

    Lin, Kung-Hsuan; Wang, Kuan-Jen; Chang, Chung-Chieh; Wen, Yu-Chieh; Lv, Bing; Chu, Ching-Wu; Wu, Maw-Kuen

    2016-01-01

    We have utilized ultrafast optical spectroscopy to study carrier dynamics in slightly underdoped (BaK)Fe2As2 crystals without magnetic transition. The photoelastic signals due to coherent acoustic phonons have been quantitatively investigated. According to our temperature-dependent results, we found that the relaxation component of superconducting quasiparticles persisted from the superconducting state up to at least 70 K in the normal state. Our findings suggest that the pseudogaplike feature in the normal state is possibly the precursor of superconductivity. We also highlight that the pseudogap feature of K-doped BaFe2As2 is different from that of other iron-based superconductors, including Co-doped or P-doped BaFe2As2. PMID:27180873

  14. Ultrafast dynamics of quasiparticles and coherent acoustic phonons in slightly underdoped (BaK)Fe2As2.

    PubMed

    Lin, Kung-Hsuan; Wang, Kuan-Jen; Chang, Chung-Chieh; Wen, Yu-Chieh; Lv, Bing; Chu, Ching-Wu; Wu, Maw-Kuen

    2016-01-01

    We have utilized ultrafast optical spectroscopy to study carrier dynamics in slightly underdoped (BaK)Fe2As2 crystals without magnetic transition. The photoelastic signals due to coherent acoustic phonons have been quantitatively investigated. According to our temperature-dependent results, we found that the relaxation component of superconducting quasiparticles persisted from the superconducting state up to at least 70 K in the normal state. Our findings suggest that the pseudogaplike feature in the normal state is possibly the precursor of superconductivity. We also highlight that the pseudogap feature of K-doped BaFe2As2 is different from that of other iron-based superconductors, including Co-doped or P-doped BaFe2As2. PMID:27180873

  15. Synthesis and characterization of nano crystalline BaFe{sub 12}O{sub 19} powders by low temperature combustion

    SciTech Connect

    Huang Jianguo; Zhuang Hanrui; Li Wenlan

    2003-01-01

    Nano crystalline BaFe{sub 12}O{sub 19} powders have been prepared at a relatively low calcination temperature by a gel combustion technique using citric acid as a fuel/reductant and nitrates as oxidants. The effects of processing parameters, such as Ba/Fe ratio, citric acid/nitrates ratio, reaction temperature on the powder characteristics and magnetic properties of the resultant barium ferrites were investigated. By controlling the molar ratio of citric acid to metal nitrates, nano crystalline BaFe{sub 12}O{sub 19} powders with different particle sizes have been obtained. Phase attributes, microstructures and magnetic properties of the powders were characterized using X-ray diffraction analysis, X-ray line-broadening technique, Fourier transform infrared spectroscopy measurements, transmission electron microscopy and vibrating sample magnetometer. The maximum saturation magnetization value and intrinsic coercivity value for the obtained barium hexaferrites are 59.36 emu/g and 5540 Oe.

  16. Effect of divalent (Sr, Ba) doping on the structural and magnetic properties of BiFeO{sub 3}

    SciTech Connect

    Rangi, Manisha Sanghi, Sujata; Agarwal, Ashish; Jangra, Sandhaya; Singh, Ompal

    2015-06-24

    The effect of divalent substitution on the crystal structure and magnetic properties of BiFeO{sub 3} has been investigated using X-ray diffraction and magnetic measurements technique. Single phase Bi{sub 0.8}A{sub 0.2}FeO{sub 3} (A= Sr, Ba) multiferroics have been synthesized by solid state reaction method. Rietveld analysis of the XRD patterns revealed that the prepared ceramics exhibit rhombohedral structure with space group R3c. M–H hysteresis loops were recorded at 5K revealed that Sr and Ba substitution transformed antiferromagnetic BiFeO3 into weak ferromagnetic. The enhanced magnetization with Sr and Ba addition is confirmed by the MT curve recorded at 1T. It is closely related to intrinsic structural distortion and modification of the antiparallel spin structure.

  17. Effect of divalent (Sr, Ba) doping on the structural and magnetic properties of BiFeO3

    NASA Astrophysics Data System (ADS)

    Rangi, Manisha; Sanghi, Sujata; Agarwal, Ashish; Jangra, Sandhaya; Singh, Ompal

    2015-06-01

    The effect of divalent substitution on the crystal structure and magnetic properties of BiFeO3 has been investigated using X-ray diffraction and magnetic measurements technique. Single phase Bi0.8A0.2FeO3 (A= Sr, Ba) multiferroics have been synthesized by solid state reaction method. Rietveld analysis of the XRD patterns revealed that the prepared ceramics exhibit rhombohedral structure with space group R3c. M-H hysteresis loops were recorded at 5K revealed that Sr and Ba substitution transformed antiferromagnetic BiFeO3 into weak ferromagnetic. The enhanced magnetization with Sr and Ba addition is confirmed by the MT curve recorded at 1T. It is closely related to intrinsic structural distortion and modification of the antiparallel spin structure.

  18. The mechanically induced structural disorder in barium hexaferrite, BaFe12O19, and its impact on magnetism.

    PubMed

    Sepelák, V; Myndyk, M; Witte, R; Röder, J; Menzel, D; Schuster, R H; Hahn, H; Heitjans, P; Becker, K-D

    2014-01-01

    The response of the structure of the M-type barium hexaferrite (BaFe12O19) to mechanical action through high-energy milling and its impact on the magnetic behaviour of the ferrite are investigated. Due to the ability of the (57)Fe Mössbauer spectroscopic technique to probe the environment of the Fe nuclei, a valuable insight on a local atomic scale into the mechanically induced changes in the hexagonal structure of the material is obtained. It is revealed that the milling of BaFe12O19 results in the deformation of its constituent polyhedra (FeO6 octahedra, FeO4 tetrahedra and FeO5 triangular bi-pyramids) as well as in the mechanically triggered transition of the Fe(3+) cations from the regular 12k octahedral sites into the interstitial positions provided by the magnetoplumbite structure. The response of the hexaferrite to the mechanical treatment is found to be accompanied by the formation of a non-uniform nanostructure consisting of an ordered crystallite surrounded/separated by a structurally disordered surface shell/interface region. The distorted polyhedra and the non-equilibrium cation distribution are found to be confined to the amorphous near-surface layers of the ferrite nanoparticles with the thickness extending up to about 2 nm. The information on the mechanically induced short-range structural disorder in BaFe12O19 is complemented by an investigation of its magnetic behaviour on a macroscopic scale. It is demonstrated that the milled ferrite nanoparticles exhibit a pure superparamagnetism at room temperature. As a consequence of the far-from-equilibrium structural disorder in the surface shell of the nanoparticles, the mechanically treated BaFe12O19 exhibits a reduced magnetization and an enhanced coercivity. PMID:25406482

  19. High-pressure structural phase transitions in chromium-doped BaFe2As2

    SciTech Connect

    Uhoya, Walter; Brill, Joseph W.; Montgomery, Jeffrey M; Samudrala, G K; Tsoi, Georgiy; Vohra, Y. K.; Weir, S. T.; Safa-Sefat, Athena

    2012-01-01

    We report on the results from high pressure x-ray powder diffraction and electrical resistance measurements for hole doped BaFe{sub 2-x}Cr{sub x}As{sub 2} (x = 0, 0.05, 0.15, 0.4, 0.61) up to 81 GPa and down to 10 K using a synchrotron source and diamond anvil cell (DAC). At ambient temperature, an isostructural phase transition from a tetragonal (T) phase (I4/mmm) to a collapsed tetragonal (CT) phase is observed at 17 GPa. This transition is found to be dependent on ambient pressure unit cell volume and is slightly shifted to higher pressure upon increase in the Cr-doping. Unlike BaFe{sub 2}As{sub 2} which superconduct under high pressure, we have not detected any evidence of pressure induced superconductivity in chromium doped samples in the pressure and temperature range of this study. The measured equation of state parameters are presented for both the tetragonal and collapsed tetragonal phases for x = 0.05, 0.15, 0.40 and 0.61.

  20. Spin fluctuations of BaFe2(As,P)2 studied by neutron scattering

    NASA Astrophysics Data System (ADS)

    Lee, Chul-Ho; Steffens, P.; Qureshi, N.; Kihou, K.; Nakajima, M.; Iyo, A.; Eisaki, H.; Braden, M.

    2013-03-01

    Superconductivity can be induced in parent compounds of iron-based superconductors by several methods: carrier doping, external pressure and chemical pressure. To understand their superconducting mechanism, clarifying what is a common property for achieving high-Tc superconductivity is crucial. To date, studies on spin fluctuations have been mainly performed on carrier doped samples. On the other hand, there are only a few studies on chemical pressurized samples examined by powder samples. In this work, thus, we studied spin fluctuations of P doped BaFe2(As,P)2>(Tc = 29.5K) using single crystal samples. Inelastic neutron scattering measurements were conducted using triple axis spectrometer IN8 of ILL. As results, well-defined commensurate peaks have been observed at (0.5,0.5, L), which is consistent with the nesting vector of the Fermi surface. Energy spectrums at T = Tc show L dependence, suggesting a three dimensional character remains even in superconducting BaFe2(As,P)2. Clear spin gap has been observed below Tc, whose gap structure depends on L. Details will be discussed at the conference.

  1. Carbon Nanostructures Grown on Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Čaplovičová, Mária; Čaplovič, Ľubomír; Búc, Dalibor; Vinduška, Peter; Janík, Ján

    2010-11-01

    The morphology and nanostructure of carbon nanotubes (CNTs), synthesized directly on Fe-Cr-Al-based alloy substrate using an alcohol catalytic chemical vapour deposition method (ACCVD), were examined by transmission electron microscopy (TEM). The grown CNTs were entangled with chain-like, bamboo-like, and necklace-like morphologies. The CNT morphology was affected by the elemental composition of catalysts and local instability of deposition process. Straight and bended CNTs with bamboo-like nanostructure grew mainly on γ-Fe and Fe3C particles. The synthesis of necklace-like nanostructures was influenced by silicon oxide, and growth of chain-like nanostructures was supported by a catalysts consisting of Fe, Si, oxygen and trace of Cr. Most of nanotubes grew according to base growth mechanism.

  2. Development of ODS-Fe{sub 3}Al alloys

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G.

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  3. Nematic Crossover in BaFe2 As2 under Uniaxial Stress

    NASA Astrophysics Data System (ADS)

    Ren, Xiao; Duan, Lian; Hu, Yuwen; Li, Jiarui; Zhang, Rui; Luo, Huiqian; Dai, Pengcheng; Li, Yuan

    The nature of the nematic order in iron-based superconductors has invoked intense research interest. A substantial portion of experimental attempts on resolving this issue required the use of single-domain samples produced under external stress. Here we use Raman scattering, a technique that can detect spontaneous point-group symmetry breaking without resorting to single-domain samples, to study BaFe2As2, the parent compound of the ``122'' Fe-based superconductors. We show that an applied compression along the Fe-Fe direction, which is commonly used to produce untwinned orthorhombic samples, changes the structural phase transition at temperature Ts into a crossover that spans a considerable temperature range above Ts. Even in crystals that are not subject to any applied force, a distribution of substantial residual stress remains, which may explain phenomena that are seemingly indicative of symmetry breaking above Ts. Our results are consistent with an onset of spontaneous nematicity only below Ts. First author.

  4. A New Synthesis Strategy For High-Quality Fe / BaTiO3 Multiferroics

    NASA Astrophysics Data System (ADS)

    Chen, X.; Kim, J.; Kim, J. S.; Rojas, G.; Skomski, R.; Bode, M.; Bhattacharya, A.; Santos, T.; Guisinger, N.; Gruverman, A.; Lu, H.; Enders, A.

    2010-03-01

    Ultrathin film BaTiO3/Nb-SrTiO3 (BTO/STO) and Fe/BTO nanostructures were investigated with variable temperature scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) under ultrahigh vacuum. BTO films of 8 -- 13 unit cells thickness were grown by ozone-assisted molecular beam epitaxy on STO, and transferred through air into the STM chamber. Atomically flat, clean and unreconstructed films were recovered after annealing them in 1x10-4 mBar oxygen at 970K. Fe nanoclusters were deposited on the BTO by noble gas buffer layer assisted growth, and further studied by LEED and STM. The sharp 1x1 LEED images after cluster deposition show that the clusters are crystalline, suggesting that the interface oxidation is minimal. This synthesis route has thus the potential to fabricate ordered, atomically flat interfaces by suppressing interface mixing and Fe oxidation, which is a significant advantage over MBE deposition of Fe on BTO. The samples obtained are currently used as model system for the study of interface contributions to the magnetoelectric effect in multiferroics.

  5. Composition and solidification microstructure selection in the interdendritic matrix between primary Al{sub 3}Fe dendrites in hypereutectic Al-Fe alloys

    SciTech Connect

    Liang, D.; Korgul, P.; Jones, H.

    1996-07-01

    The composition and constitution of matrix microstructure between plate-like Al{sub 3}Fe dendrites in Bridgman-grown hypereutectic Al-Fe alloys has been determined as a function of alloy concentration C{sub 0} and growth velocity V in the ranges 2.5 < C{sub 0} < 28.1 wt%Fe and 0.01 < V < 5.0 mm/s. The transition at V = 0.1 mm/s from a fully eutectic matrix at C{sub 0} = 3.5 wt%Fe to one containing {alpha}Al dendrites at C{sub 0} {ge} 4.7 wt%Fe is attributed to growth temperatures of {alpha}Al dendrites that are higher than those of eutectic in a matrix of lower iron-content, which results from these conditions. The matrix eutectic changes from irregular {alpha}-Al-Al{sub 3}Fe to regular {alpha}Al-Al{sub x}Fe with increasing V, the transition velocity increasing from 0.1 to 0.2 mm/s for C{sub 0} values of 9.5 and 14 wt%Fe up to 0.35--1.0 mm/s for C{sub 0} values of 18.7--28.1 wt%Fe. This increased transition velocity, compared with that for {alpha}-Al-Al{sub 3}Fe to {alpha}Al-Al{sub 6}Fe at lower concentration, is indicative of a lower formation temperature for the {alpha}Al-Al{sub x}Fe than the {alpha}Al-Al{sub 6}Fe eutectic.

  6. Low cycle fatigue of FeAl(42 at. % Al) at room temperature

    SciTech Connect

    Hanes, D.B.; Gibala, R.

    1997-12-31

    The monotonic mechanical behavior in tension and compression of FeAl has been well documented. However, very little work has been done on the cyclic deformation behavior of this material. In this work, the behavior of FeAl (42 at. % Al) under low cycle fatigue was studied, including the effects of test environments and surface coatings. It was found that the fatigue life of this alloy is limited by environmental embrittlement. This embrittlement process can be equally well prevented by deformation in an oxygen environment or by coating the alloy with a protective film. The type of film applied appears to have little effect. Similar results were seen in monotonic testing.

  7. Structural, magnetic and microwave properties of barium hexaferrite thick films with different Fe/Ba mole ratio

    NASA Astrophysics Data System (ADS)

    Verma, Samiksha; Dhawan, S. K.; Paesano, Andrea; Pandey, O. P.; Sharma, Puneet

    2015-12-01

    Barium hexaferrite (BaFe12O19) thick films (∼60 μm) with different BaO·xFe2O3 mole ratio (x=5.0-6.0) were prepared by screen printing method. X-ray diffraction analysis confirmed the formation of single phase BaFe12O19 (BaM). Preferential site occupation of Fe3+ ion at five different crystallographic sites, with varied mole ratio was measured by Mössbauer spectroscopy. Vacancy fraction found to be higher at 4f1, 4f2 and 2b sites for mole ratio 5.5 and 5.0 respectively. Magnetic measurement shows that the magnetization (M) and magnetocrystalline anisotropy field (Ha) depends upon mole ratio. M and Ha are found to be maximum for mole ratio 5.5, while the coercivity (Hc) remains constant. Reflection losses (RL) in the frequency range of 12-18 GHz were also studied. Present investigation demonstrates the effect of mole ratio on structural, magnetic and microwave absorption properties of BaM thick films for microwave device applications.

  8. Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19

    NASA Astrophysics Data System (ADS)

    Kostishyn, V. G.; Panina, L. V.; Timofeev, A. V.; Kozhitov, L. V.; Kovalev, A. N.; Zyuzin, A. K.

    2016-02-01

    Dual ferroic properties of a strong magnetism and large ferroelectricity have been observed in barium BaFe12O19 and strontium SrFe12O19 hexaferrite ceramics. The samples were fabricated by a modified ceramic technique from highly purified raw materials with addition of boron oxide allowing the control of grain size and enhancement of bulk resistivity. Whereas the samples of PbFe12O19 fabricated by the same technological method did not have sufficient electric resistivity to support an electric field and did not exhibit the ferroelectric properties. The structure of the samples examined by X-ray diffraction is consistent with a single hexagonal phase. The grains are randomly oriented with the average grain size of 300-400 nm coated with boron oxide. The magnetic properties are characterised by standard ferrimagnetic behavior with the Neel temperature of about 450 °C. Large spontaneous polarization was observed with the maximal values of 45-50 μC/cm2 under an applied electric field of 100-300 kV/m. A strong coupling between magnetic and electric ordering was confirmed by measuring the magnetoelectric (ME) parameter and magnetodielectric ratio. These ME characteristics are more advanced than those for well-known room temperature multiferroic BiFeO3. Furthermore, by applying an electric field, the manipulation of magnetization in the range of up to 9% was observed, which is even greater than in some substituted hexaferrites with a non-collinear magnetic structure. The obtained results on electrical polarization are similar to the values reported for the corresponding hexaferrites sintered by polymer precursor technique. This suggests a promising potential of M-type hexaferrite ceramics in devices utilizing magnetoelectric coupling.

  9. Bandgap narrowing in the layered oxysulfide semiconductor Ba3Fe2O5Cu2S2: Role of FeO2 layer

    NASA Astrophysics Data System (ADS)

    Han, Zhang; Shifeng, Jin; Liwei, Guo; Shijie, Shen; Zhiping, Lin; Xiaolong, Chen

    2016-02-01

    A new layered Cu-based oxychalcogenide Ba3Fe2O5Cu2S2 has been synthesized and its magnetic and electronic properties were revealed. Ba3Fe2O5Cu2S2 is built up by alternatively stacking [Cu2S2]2- layers and iron perovskite oxide [(FeO2)(BaO)(FeO2)]2- layers along the c axis that are separated by barium ions with Fe3+ fivefold coordinated by a square-pyramidal arrangement of oxygen. From the bond valence arguments, we inferred that in layered CuCh-based (Ch = S, Se, Te) compounds the +3 cation in perovskite oxide sheet prefers a square pyramidal site, while the lower valence cation prefers the square planar sites. The studies on susceptibility, transport, and optical reflectivity indicate that Ba3Fe2O5Cu2S2 is an antiferromagnetic semiconductor with a Néel temperature of 121 K and an optical bandgap of 1.03 eV. The measurement of heat capacity from 10 K to room temperature shows no anomaly at 121 K. The Debye temperature is determined to be 113 K. Theoretical calculations indicate that the conduction band minimum is predominantly contributed by O 2p and 3d states of Fe ions that antiferromagnetically arranged in FeO2 layers. The Fe 3d states are located at lower energy and result in a narrow bandgap in comparison with that of the isostructural Sr3Sc2O5Cu2S2. Project supported by the National Natural Science Foundation of China (Grant Nos. 51472266, 51202286, and 91422303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100) and the ICDD.

  10. Optical probes of symmetry breaking in magnetic and superconducting BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Orenstein, Joseph

    The discovery of iron pnictide superconductors has opened promising new directions in the effort to fully understand the phenomenon of high-Tc, with a focus on the connections between superconductivity, magnetism, and electronic nematicity. The BaFe2(As1-xPx)2 (P:Ba122) system in particular has received attention because isovalent substitution of As for P generates less disorder than doping on the Fe site. The phase diagram of P:Ba122 is characterized by a line of simultaneous antiferromagnetic (AF) and tetragonal-to-orthorhombic transitions, Ts (x) , that penetrates the superconducting dome at x =0.28, just below optimal doping (xopt = 0.30). In this work, we use spatially-resolved optical polarimetry and photomodulated reflectance to detect linear birefringence and therefore breaking of 4-fold rotational (C4) symmetry. In underdoped (x<0.28) samples, birefringence appears at T>Tsand grows continuously with decreasing T . The birefringence is unidirectional in a large (300 μm x300 μm) field of view, suggesting that C4 breaking in this range of T is caused by residual strain that couples to a diverging nematic susceptibility. Birefringence maps just below Ts (x) show the appearance of domains, indicating the onset of spontaneous symmetry breaking to an AF ground state. Surprisingly, in samples with x>0.28, in which the low T phase is superconducting/ tetragonal rather than AF/orthorhombic, C4 breaking is observed as well, with an abrupt onset and domain formation at 55 K. We tentatively associate these features with a transition to an AF phase induced by residual strain, as previously proposed [H.-H. Kuo et al. Phys. Rev. B86, 134507 (2012)] to account for structure in resistivity vs. T. Time-resolved photomodulation allow us to follow the amplitude of the AF order with time following pulsed photoexcitation. Below Tc the AF order at first weakens , but then strengthens in response to the photoinduced weakening of superconductivity. This complex time evolution is

  11. Elastically controlled magnetic phase transition in Ga-FeRh/BaTiO3(001) heterostructure

    NASA Astrophysics Data System (ADS)

    Suzuki, Ippei; Itoh, Mitsuru; Taniyama, Tomoyasu

    2014-01-01

    We demonstrate elastically induced ferromagnetic to antiferromagnetic phase transition of Ga-substituted FeRh thin films on BaTiO3(001). It is found that two abrupt changes of magnetization occur at the successive phase transitions from the tetragonal to orthorhombic and the orthorhombic to rhombohedral phases of BaTiO3. Magnetization and magnetoresistance together clearly reveal that a ferromagnetic to antiferromagnetic phase transition is induced due to the compressive lattice strain accompanied by the orthorhombic to rhombohedral structural phase transition, while the tetragonal to orthorhombic phase transition causes a change in the symmetry of the magnetic anisotropy in the ferromagnetic phase of FeRh.

  12. Single-Crystal Growth of Ba1-xKxFe2As2 by KAs Self-Flux Method

    NASA Astrophysics Data System (ADS)

    Kihou, Kunihiro; Saito, Taku; Fujita, Kay; Ishida, Shigeyuki; Nakajima, Masamichi; Horigane, Kazumasa; Fukazawa, Hideto; Kohori, Yoh; Uchida, Shin-ichi; Akimitsu, Jun; Iyo, Akira; Lee, Chul-Ho; Eisaki, Hiroshi

    2016-03-01

    Single crystals of Ba1-xKxFe2As2 with 0.15 ≤ x ≤ 1 have been successfully synthesized by a KAs self-flux method. The potassium (K) concentration x of the grown crystals was systematically changed by changing the mixing ratio of Ba to Fe in the starting materials. The crystals have flat surfaces corresponding to the crystallographic (001) planes, whose planar dimensions increase with decreasing thickness when x increases. The superconducting transition temperature systematically changes with x, ranging from 38 K at x = 0.4 to 3.4 K at x = 1.0, in good agreement with the results for polycrystalline samples.

  13. Comparison of Ab initio Low-Energy Models for LaFePO, LaFeAsO, BaFe2As2, LiFeAs, FeSe, and FeTe: Electron Correlation and Covalency

    NASA Astrophysics Data System (ADS)

    Miyake, Takashi; Nakamura, Kazuma; Arita, Ryotaro; Imada, Masatoshi

    2010-04-01

    Effective low-energy Hamiltonians for several different families of iron-based superconductors are compared after deriving them from the downfolding scheme based on first-principles calculations. Systematic dependences of the derived model parameters on the families are elucidated, many of which are understood from the systematic variation of the covalency between Fe-3d and pnictogen-/chalcogen-p orbitals. First, LaFePO, LaFeAsO (1111), BaFe2As2 (122), LiFeAs (111), FeSe, and FeTe (11) have overall similar band structures near the Fermi level, where the total widths of 10-fold Fe-3d bands are mostly around 4.5 eV. However, the derived effective models of the 10-fold Fe-3d bands (d model) for FeSe and FeTe have substantially larger effective onsite Coulomb interactions U˜ 4.2 and 3.4 eV, respectively, after the screening by electrons on other bands and after averaging over orbitals, as compared to ˜2.5 eV for LaFeAsO. The difference is similar in the effective models containing p orbitals of As, Se or Te (d p or d p p model), where U ranges from ˜4 eV for the 1111 family to ˜7 eV for the 11 family. The exchange interaction J has a similar tendency. The family dependence of models indicates a wide variation ranging from weak correlation regime (LaFePO) to substantially strong correlation regime (FeSe). The origin of the larger effective interaction in the 11 family is ascribed to smaller spread of the Wannier orbitals generating larger bare interaction, and to fewer screening channels by the other bands. This variation is primarily derived from the distance h between the pnictogen/chalcogen position and the Fe layer: The longer h for the 11 family generates more ionic character of the bonding between iron and anion atoms, while the shorter h for the 1111 family leads to more covalent-bonding character, the larger spread of the Wannier orbitals, and more efficient screening by the anion p orbitals. The screened interaction of the d model is strongly orbital

  14. High noise suppression using magnetically isotropic (CoFe-AlN)/(AlN) multilayer films

    NASA Astrophysics Data System (ADS)

    Kijima, Hanae; Ohnuma, Shigehiro; Masumoto, Hiroshi; Shimada, Yutaka; Endo, Yasushi; Yamaguchi, Masahiro

    2015-05-01

    Magnetically isotropic (CoFe-AlN)n/(AlN)n+1 multilayer films, in which the number of CoFe-AlN magnetic layers n ranged from 1 to 27, were prepared by radio frequency sputtering to achieve noise suppression at gigahertz frequencies. The soft CoFe-AlN magnetic layers consisted of nanometer-sized CoFe ferromagnetic grains embedded in an insulating AlN amorphous matrix, while the insulating AlN layers comprised AlN columnar crystals. All films showed a similar frequency dependence of permeability and ferromagnetic resonance of 1.7 GHz. Noise suppression was evaluated using a microstrip line as a noise source by determining the in-line conductive loss and the near-field intensity picked up by magnetic field detective probes. High noise suppression effects were observed in every direction in the film plane. Maximum noise suppression values amounted to 60% for the in-line conductive loss and -20 dB for the magnetic near-field intensity at around 1.7 GHz in the 27-layer film. These high-frequency noise suppression levels may be attributed to eddy current losses and ferromagnetic resonance.

  15. Corrosion performance of Fe-Cr-Al and Fe aluminide alloys in complex gas environments

    SciTech Connect

    Natesan, K.; Johnson, R.N.

    1995-05-01

    Alumina-forming structural alloys can offer superior resistance to corrosion in the presence of sulfur-containing environments, which are prevalent in coal-fired fossil energy systems. Further, Fe aluminides are being developed for use as structural materials and/or cladding alloys in these systems. Extensive development has been in progress on Fe{sub 3}Al-based alloys to improve their engineering ductility. In addition, surface coatings of Fe aluminide are being developed to impart corrosion resistance to structural alloys. This paper describes results from an ongoing program that is evaluating the corrosion performance of alumina-forming structural alloys, Fe-Al and Fe aluminide bulk alloys, and Fe aluminide coatings in environments typical of coal-gasification and combustion atmospheres. Experiments were conducted at 650-1000{degrees}C in simulated oxygen/sulfur gas mixtures. Other aspects of the program are corrosion evaluation of the aluminides in the presence of HCl-containing gases. Results are used to establish threshold Al levels in the alloys for development of protective alumina scales and to determine the modes of corrosion degradation that occur in the materials when they are exposed to S/Cl-containing gaseous environments.

  16. Local anisotropic structure in amorphous Ba-Fe-O films and its role in determining magnetic anisotropy in crystallized Ba-hexaferrite films

    SciTech Connect

    Snyder, J.E.; Harris, V.G.; Koon, N.C.; Sui, X.; Kryder, M.H.

    1995-11-01

    Ba hexaferrite films with the easy direction of magnetization perpendicular or in-plane can be prepared by crystallization of amorphous films deposited under different sputtering conditions. Using polarization-dependent EXAFS (extended x-ray absorption fine structure), the authors have observed anisotropic local structure around the Fe atoms in as-sputtered amorphous Ba-Fe-O films. Such structure has not been detectable by conventional structural characterization techniques (x-ray diffraction, electron diffraction and transmission electron microscopy [TEM]). The results suggest that this local structural anisotropy determines the orientation of the fast-growing basal plane directions during post-deposition annealing and thus the directions of the c-axes and the magnetic anisotropy

  17. Spin glass and semiconducting behavior in one-dimensional BaFe2-dSe3 (d~2) crystals

    SciTech Connect

    Saparov, Bayrammurad I; Calder, Stuart A; Sipos, Balazs; Cao, Huibo; Chi, Songxue; Singh, David J; Christianson, Andrew D; Lumsden, Mark D; Sefat, A. S.

    2011-01-01

    We investigate the physical properties and electronic structure of BaFe{sub 1.79(2)}Se{sub 3} crystals, which were grown out of tellurium flux. The crystal structure of the compound, an iron-deficient derivative of the ThCr{sub 2}Si{sub 2}-type, is built upon edge-shared FeSe{sub 4} tetrahedra fused into double chains. The semiconducting BaFe{sub 1.79(2)}Se{sub 3} ({rho}{sub 295K} = 0.18 {Omega} {center_dot} cm and E{sub g} = 0.30 eV) does not order magnetically; however, there is evidence for short-range magnetic correlations of spin glass type (T{sub f} {approx} 50 K) in magnetization, heat capacity, and neutron diffraction results. A one-third substitution of selenium with sulfur leads to a slightly higher electrical conductivity ({rho}{sub 295K } = 0.11 {Omega} {center_dot} cm and E{sub g} = 0.22 eV) and a lower spin glass freezing temperature (T{sub f} {approx} 15 K), corroborating with higher electrical conductivity reported for BaFe{sub 2}S{sub 3}. According to the electronic structure calculations, BaFe{sub 2}Se{sub 3} can be considered as a one-dimensional ladder structure with a weak interchain coupling.

  18. Chlorine Insertion Promoting Iron Reduction in Ba-Fe Hexagonal Perovskites: Effect on the Structural and Magnetic Properties.

    PubMed

    Serrador, Laura; Hernando, María; Martínez, José L; González-Calbet, José M; Varela, Aurea; García-García, F Javier; Parras, Marina

    2016-06-20

    BaFeCl0.13(2)O2.48(2) has been synthesized and studied. A proper tuning of the synthetic route has been designed to stabilize this compound as a single phase. The thermal stability and evolution, along with the magnetic and structural properties are reported here. The crystal structure has been refined from neutron powder diffraction data, and it is of the type (hhchc)2-10H. It is stable up to a temperature of 900 °C, where the composition reads BaFeCl0.13(2)O2.34(2). The study by electron microscopy shows that the crystal structure suffers no changes in the whole BaFeCl0.13(1)O3-y (2.34 ≤ 3 - y ≤ 2.48) compositional range. Refinement of the magnetic structure shows that the Fe is antiferromagneticaly ordered, with the magnetic moment parallel to the ab plane of the hexagonal structure. At higher temperature, a nonreversible phase transition into a (hchc)-4H structure type takes place with overall composition BaFeCl0.13(1)O2.26(1). Microstructural characterization shows that, in some crystals, this phase intergrows with a seemingly cubic related phase. Differences between these two crystalline phases reside in the chlorine content, which keeps constant through the phase transition for the former and disappears for the latter. PMID:27276508

  19. On the microstructure and symmetry of apparently hexagonal BaAl 2O 4

    NASA Astrophysics Data System (ADS)

    Larsson, A.-K.; Withers, R. L.; Perez-Mato, J. M.; Fitz Gerald, J. D.; Saines, P. J.; Kennedy, B. J.; Liu, Y.

    2008-08-01

    The P6 3 ( a=2 ap, b=2 bp, c= cp) crystal structure reported for BaAl 2O 4 at room temperature has been carefully re-investigated by a combined transmission electron microscopy and neutron powder diffraction study. It is shown that the poor fit of this P6 3 ( a=2 ap, b=2 bp, c= cp) structure model for BaAl 2O 4 to neutron powder diffraction data is primarily due to the failure to take into account coherent scattering between different domains related by enantiomorphic twinning of the P6 322 parent sub-structure. Fast Fourier transformation of [0 0 1] lattice images from small localized real space regions (˜10 nm in diameter) are used to show that the P6 3 ( a=2 ap, b=2 bp, c= cp) crystal structure reported for BaAl 2O 4 is not correct on the local scale. The correct local symmetry of the very small nano-domains is most likely orthorhombic or monoclinic.

  20. Energy transfer between Eu-Mn and photoluminescence properties of Ba0.75Al11O17.25-BaMgAl10O17:Eu2+,Mn2+ solid solution

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Wang, Yuhua; Liu, Bitao; Li, Feng

    2010-08-01

    In order to evaluate the energy transfer between Eu-Mn in Ba0.75Al11O17.25-BaMgAl10O17 solid solution, Ba0.75Al11O17.25-BaMgAl10O17:Eu2+,Mn2+ phosphors were prepared by flux method. The crystal structure and the morphology of the solid solution were demonstrated by x-ray dirrfactometer and scanning electron microscopy. The photoluminescence mechanisms were explained by the energy transfer of Eu2+ to Mn2+ and the Dexter theory. A redshift of green emission peak and a decrease in decay time with the increase in Mn2+ concentration were observed. These phenomena are attributed to the formation of Mn2+ paired centers after analysis by a method of Pade approximations.

  1. Screened moments and absence of ferromagnetism in FeAl

    NASA Astrophysics Data System (ADS)

    Galler, A.; Taranto, C.; Wallerberger, M.; Kaltak, M.; Kresse, G.; Sangiovanni, G.; Toschi, A.; Held, K.

    2015-11-01

    While the stoichiometric intermetallic compound FeAl is found to be paramagnetic in experiment, standard band-theory approaches predict the material to be ferromagnetic. We show that this discrepancy can be overcome by a better treatment of electronic correlations with density-functional plus dynamical mean-field theory. Our results show no ferromagnetism down to 100 K and since the susceptibility is decreasing at the lowest temperatures studied we also do not expect ferromagnetism at even lower temperatures. This behavior is found to originate from temporal quantum fluctuations that screen short-lived local magnetic moments of 1.6 μB on Fe.

  2. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19.

    PubMed

    Rowley, S E; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A T; Watts, B E; Scott, J F

    2016-01-01

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T(3), in contrast to the 1/T(2) dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T(3), i.e. with a critical exponent γ = 3. In general γ = (d + z - 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T(3). PMID:27185343

  3. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19

    NASA Astrophysics Data System (ADS)

    Rowley, S. E.; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A. T.; Watts, B. E.; Scott, J. F.

    2016-05-01

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T3, in contrast to the 1/T2 dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T3, i.e. with a critical exponent γ = 3. In general γ = (d + z – 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T3.

  4. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19

    PubMed Central

    Rowley, S. E.; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A. T.; Watts, B. E.; Scott, J. F.

    2016-01-01

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T3, in contrast to the 1/T2 dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T3, i.e. with a critical exponent γ = 3. In general γ = (d + z – 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T3. PMID:27185343

  5. The pressure effects on the antiferromagentic orders in iron-based ladder compounds BaFe2S3

    NASA Astrophysics Data System (ADS)

    Chi, Songxue; Uwatoko, Yoshiya; Hirata, Yasuyuki; Ohgushi, Kenya

    The ladder compounds have recently become a new test ground for the studies on Fe-based superconductors. The building block for such materials, the two-leg Fe ladder surrounded by edge-sharing chalcogen tetrahedra, has provided a quasi-one-dimensional channel for the remaining critical issues in this field. Recently, superconductivity was successfully induced by pressure in one of such compounds, BaFe2S3. The knowledge of the pressure effect on its antiferromagnetic order is crucial in understanding the superconductivity in the low-dimensional system. I will present the results of our neutron diffraction studies on the evolution of the magnetic phase under hydraulic pressure in single crystalline BaFe2S3.

  6. Enhanced high temperature performance of MgAl2O4-supported Pt-BaO lean NOx trap catalysts

    SciTech Connect

    Kwak, Ja Hun; Kim, Do Heui; Szanyi, Janos; Cho, Sung June; Peden, Charles HF

    2012-03-05

    The structural and chemical characteristics of Pt/BaO lean-NO{sub x} trap (LNT) catalysts supported on {gamma}-Al{sub 2}O{sub 3} and MgAl{sub 2}O{sub 4} are compared in this study. The Pt-BaO/MgAl{sub 2}O{sub 4} sample shows relatively low NO{sub x} uptake at temperatures below 300 C, and the temperature of maximum NO{sub x} uptake (T{sub max}) is shifted to 350 C in comparison to that of Pt-BaO/Al{sub 2}O{sub 3} (T{sub max} {approx}250 C). More importantly, the NO{sub x} uptake over the MgAl{sub 2}O{sub 4}-supported catalyst at 350 C is twice that of the alumina-based one. The shift toward the higher temperature NO{sub x} uptake is explained by the larger interfacial area between Pt and BaO, due to smaller Pt clusters as evidenced by TEM and Pt L3 EXAFS. In situ TR-XRD results demonstrate that the formation of a BaAl{sub 2}O{sub 4} phase in the BaO/MgAl{sub 2}O{sub 4} LNT catalyst occurs at a temperature about 100 C higher than on BaO/Al{sub 2}O{sub 3}, which may also represent a beneficial attribute of the BaO/MgAl{sub 2}O{sub 4} LNT with respect to catalyst stability.

  7. The effect of Al-substitution on superconducting type-I clathrate Ba8Si46

    NASA Astrophysics Data System (ADS)

    Liu, Lihua; Bi, Shanli; Chen, Ning; Li, Feng; Liu, Yang; Cao, Guohui; Li, Yang

    2014-11-01

    A series of samples with the chemical formula Ba8Si46-xAlx (x = 2, 3, 5, 6, 7 and 8) were prepared by arc melting, ball milling and washing with diluted HCl. The lattice parameter of Ba8Si46-xAlx increases linearly with the increase of nominal Al content x. The composition analysis by energy-dispersive X-ray spectroscopy (EDS) shown that the actual Al contents in clathrates are lager than the nominal compositions because the dilute Al-contained impurity phases were washed out. The experimental results show that the minimum incorporation of Al into clathrate structure is expected to be about 3 at ambient pressure, which is in agreement with a first-principle simulation. The Al substitution for Si results in the decrease of superconducting transition temperature TC, which can be explained on the BCS theoretical frame. The electron density of state at Fermi level N(EF) decreases with the increment of x except for an abnormal increase for the sample x = 6. Such sample has a higher spatial symmetry of the structure in which all the six Si atoms at 6c sites were substituted by Al atoms. Its higher N(EF) causes to a higher TC. In addition, we calculated the phonon-dispersion relations and vibrational density of states for Al-doped silicon clathrates. The high frequency acoustic branch has a red shift from 430 cm-1 to 420 cm-1 with the doping of Al. The decreased frequency of bond-stretching vibration modes is another reason for the suppression of TC induced by Al substitution.

  8. Preparation and magnetic properties of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Ying; Wang, Qiufen

    2012-09-01

    Nanocomposite of hard (BaFe12O19)/soft ferrite (Ni0.8Zn0.2Fe2O4) have been prepared by the sol-gel process. The nanocomposite ferrite are formed when the calcining temperature is above 800 °C. It is found that the magnetic properties strongly depend on the presintering treatment and calcining temperature. The “bee waist” type hysteresis loops for samples disappear when the presintering temperature is 400 °C and the calcination temperature reaches 1100 °C owing to the exchange-coupling interaction. The remanence of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite with the mass ratio of 5:1 is higher than a single phase ferrite. The specific saturation magnetization, remanence magnetization and coercivity are 63 emu/g, 36 emu/g and 2750 G, respectively. The exchange-coupling interaction in the BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite is discussed.

  9. Enhancment of ferromagnetism in Ba and Er co-doped BiFeO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Naeimi, A. S.; Dehghan, E.; Sanavi Khoshnoud, D.; Gholizadeh, A.

    2015-11-01

    Bi1-y-xBayErxFeO3 [BByExFO, (0.13≤y≤0.17, 0≤x≤0.2)] nanoparticles were successfully synthesized by a sol-gel method. The structural, microstructural and magnetic properties have been investigated, using X-ray diffraction, Raman scattering, field emission scanning electron microscopy (FE-SEM) and magnetometry measurements at room temperature. The refinement of X-ray diffraction pattern of BB0.15E0FO indicates a phase transition from rhombohedral (R3c) to tetragonal (P4mm) with increasing Ba content and a transition from the coexistence of rhombohedral-tetragonal phase to orthorhombic (Pbnm) in BB0.15ExFO samples with increasing Er concentration. The Raman analysis confirms crystal phase transition in BB0.15ExFO compounds. The FE-SEM and TEM analysis show that the average nanoparticle size is about 50-100 nm and it decreases with Er concentration. The remnant magnetisation of BB0.15E0.1FO sample (Mr=0.98 emu/g) is approximately two times greater than compared to BB0.15E0FO (Mr=0.51 emu/g) that may be attributed to the collapse of spin structure and modifying exchange interactions because of Er+3 doping. This enhancement in magnetic properties at room temperature can play an important role for the practical applications.

  10. Direct characterization of photoinduced lattice dynamics in BaFe2As2

    NASA Astrophysics Data System (ADS)

    Gerber, S.; Kim, K. W.; Zhang, Y.; Zhu, D.; Plonka, N.; Yi, M.; Dakovski, G. L.; Leuenberger, D.; Kirchmann, P. S.; Moore, R. G.; Chollet, M.; Glownia, J. M.; Feng, Y.; Lee, J.-S.; Mehta, A.; Kemper, A. F.; Wolf, T.; Chuang, Y.-D.; Hussain, Z.; Kao, C.-C.; Moritz, B.; Shen, Z.-X.; Devereaux, T. P.; Lee, W.-S.

    2015-06-01

    Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe2As2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe-As-Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands.

  11. Magnetotransport and structure of Ba(Fe 1-xCox)2 As2 ultrathin films

    NASA Astrophysics Data System (ADS)

    Ruosi, Adele; Lee, Sanghan; Hernandez, T.; Ma, Yanjun; Rzchowski, M. S.; Eom, C. B.

    2014-03-01

    Since the discovery of superconductivity in iron-based materials significant progress has been made in the fabrication of high quality bulk and thin film materials to explore their intrinsic properties and evaluate novel device applications. For both pathways, the best crystalline quality and optimal superconducting properties are required. Here Co-doped Ba-122 thin films grown on various substrates and thicknesses down to 6 nm, have been investigated. Crystal structure analysis was used to investigate the Fe-As-Fe bond angle and the Fe-As distance, and magnetotransport measurements were used to evaluate the electronic characteristics of the thin films. In particular, we observe an anomalous Hall effect that depends on temperature and film thickness. Success in very thin film fabrication involving pnictides will serve to spur progress in heterostructured systems exhibiting novel interfacial phenomena and device applications. The work at the University of Wisconsin was supported by funding from the DOE Office of Basic Energy Sciences under award number DE-FG02-06ER46327.

  12. Interfacial Charge Induced Magnetoelectric Coupling at BiFeO₃/BaTiO₃ Bilayer Interface.

    PubMed

    Gupta, Rekha; Chaudhary, Sujeet; Kotnala, R K

    2015-04-29

    Bilayer thin films of BiFeO3-BaTiO3 at different thicknesses of BiFeO3 were prepared by RF-magnetron sputtering technique. A pure phase polycrystalline growth of thin films was confirmed from XRD results. Significantly improved ferroelectric polarization (2Pr ∼ 30 μC/cm(2)) and magnetic moment (Ms ∼ 33 emu/cc) were observed at room temperature. Effect of ferroelectric polarization on current conduction across the interface has been explored. Accumulation and depletion of charges at the bilayer interface were analyzed by current-voltage measurements which were further confirmed from hysteretic dynamic resistance and capacitance voltage profiles. Magnetoelectric coupling due to induced charges at grain boundaries of bilayer interface was further investigated by room temperature magnetocapacitance analysis. A room temperature magnetocapacitance was found to originate from induced charge at the bilayer interface which can be manipulated by varying the thickness of BFO to obtain higher ME coupling coefficient. Dynamic magnetoelectric coupling was investigated, and maximum longitudinal magnetoelectric coupling was observed to be 61 mV/cm·Oe at 50 nm thickness of BiFeO3. The observed magnetoelectric properties are potentially useful for novel room temperature magnetoelectric and spintronic device applications. PMID:25856737

  13. Direct characterization of photoinduced lattice dynamics in BaFe2As2.

    PubMed

    Gerber, S; Kim, K W; Zhang, Y; Zhu, D; Plonka, N; Yi, M; Dakovski, G L; Leuenberger, D; Kirchmann, P S; Moore, R G; Chollet, M; Glownia, J M; Feng, Y; Lee, J-S; Mehta, A; Kemper, A F; Wolf, T; Chuang, Y-D; Hussain, Z; Kao, C-C; Moritz, B; Shen, Z-X; Devereaux, T P; Lee, W-S

    2015-01-01

    Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe2As2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe-As-Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands. PMID:26051704

  14. Ordered BaAl4- Type Variants in the BaAuxSn4-x System: A Unified View on Their Phase Stabilities versus Valence Electron Counts

    SciTech Connect

    Lin, Qisheng; Miller, Gordon J.; Corbett, John D.

    2014-05-28

    Three ordered structures of the tetragonal BaAl4 type were identified in the Ba–Au–Sn system, from which a unified view of the interplay between the valence electron counts (VECs) and phase stabilities of these three types of derivatives can be developed. The BaNiSn3 (I4mm), ThCr2Si2 (I4/mmm), and CaBe2Ge2 (P4/nmm) type BaAuxSn4–x phases occurred respectively at x = 0.78(1)–1, 1.38(1)–1.47(1), and 1.52(1)–2.17(1), consistent with theoretical atomic “coloring” analyses that reveal an optimal VEC of 14 for the ThCr2Si2 type but larger and smaller values respectively for the BaNiSn3- and CaBe2Ge2-type structures.

  15. Synthesis, crystal structure and electronic properties of the new iron selenide Ba9Fe4Se16

    NASA Astrophysics Data System (ADS)

    Berthebaud, David; Preethi Meher, K. R. S.; Pelloquin, Denis; Maignan, Antoine

    2014-03-01

    The new ternary selenide Ba9Fe4Se16 has been synthesized from the reaction of appropriate amounts of elements at high temperature in a silica sealed tube. The compound crystallizes in the tetragonal space group I41/a with a=10.0068(3) Å and c=35.6415(9) Å, Z=4. It is an isostructural compound to the sulfide α-Ba9Fe4S15, which is a high temperature polymorph of β-Ba9Fe4Se15 that belongs to the indefinitely adaptive phases series Ba3Fe1+xS5, 0≤x≤1. X-ray powder diffraction and TEM analyses of the synthesized compound were used to determine the phase composition and the structure. The crystal structure can be viewed as overlapping sections along the c axis. Those sections are formed by the coordination polyhedra around barium atoms which can be described as trigonal prisms and bidisphenoids. Within the sections formed by barium polyhedra, isolated pairs of edge sharing FeSe4 tetrahedra are found. Magnetic measurements performed on Ba9Fe4Se16 indicate an antiferromagnetic behavior with Néel temperature of ~13 K. Possible influence of air exposure on the magnetic properties is also discussed here. The electric measurements show an insulating behavior below 160 K and the dielectric permittivity and loss tangent at the lowest frequency measured reveal a change of slope very close to TN. However no magneto dielectric effect was evidenced for magnetic fields of up to 3 T. Activation energy, EA=0.18 eV, was extracted from the AC conductivity plot in the temperature range of 160-300 K.

  16. Microstructure selection maps for Al-Fe alloys

    SciTech Connect

    Gilgien, P.; Zryd, A.; Kurz, W.

    1995-09-01

    The solidification microstructures for Al-0.5-4 at.% Fe alloys under constrained growth conditions have been calculated using analytical models of the growth kinetics of dendritic, eutectic and plane front interface morphologies of stable and metastable phases. Laser remelting experiments are carried out on an Al-4 at.% Fe alloy with low beam velocity (10 mm/s) in order to complete previous experimental results on the solidification microstructures obtained at intermediate growth rates by Bridgman experiments and at a high growth rates by rapid laser resolidification. Comparison of predicted with experimentally determined solidification microstructure maps shows satisfactory agreement in view of the limited knowledge of the thermophysical properties of this system. These maps are useful for the interpretation of microstructures and phases forming under medium to high solidification rates and for the understanding and development of rapid solidification processing. Further the modeling is useful for improving available phase diagram information.

  17. Strain-activated structural anisotropy in BaFe2As2

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Harriger, Leland; Sefat, Athena; Birgeneau, R. J.; Wilson, Stephen D.

    2016-04-01

    High-resolution single crystal neutron diffraction measurements are presented probing the magnetostructural response to uniaxial pressure in the iron pnictide parent system BaFe2As2 . Scattering data reveal a strain-activated, anisotropic broadening of nuclear Bragg reflections, which increase upon cooling below the resolvable onset of global orthorhombicity. This anisotropy in lattice coherence continues to build until a lower temperature scale—the first-order onset of antiferromagnetism—is reached. Our data suggest that antiferromagnetism and strong magnetoelastic coupling drive the strain-activated lattice response in this material and that the development of anisotropic lattice correlation lengths under strain is a possible origin for the high temperature transport anisotropy in this compound.

  18. Mobility spectrum analytical approach for intrinsic band picture of Ba(FeAs)2

    NASA Astrophysics Data System (ADS)

    Huynh, K. K.; Tanabe, Y.; Urata, T.; Heguri, S.; Tanigaki, K.; Kida, T.; Hagiwara, M.

    2014-09-01

    Unconventional high temperature superconductivity as well as three-dimensional bulk Dirac cone quantum states arising from the unique d-orbital topology have comprised an intriguing research area in physics. Here we apply a special analytical approach using a mobility spectrum, in which the carrier number is conveniently described as a function of mobility without any hypothesis, both on the types and the numbers of carriers, for the interpretations of longitudinal and transverse electric transport of high quality single crystal Ba(FeAs)2 in a wide range of magnetic fields. We show that the majority carriers are accommodated in large parabolic hole and electron pockets with very different topology as well as remarkably different mobility spectra, whereas the minority carriers reside in Dirac quantum states with the largest mobility as high as 70,000 cm2(Vs)-1. The deduced mobility spectra are discussed and compared to the reported sophisticated first principle band calculations.

  19. Effective band structure of Ru-doped BaFe2As2

    NASA Astrophysics Data System (ADS)

    Reticcioli, M.; Profeta, G.; Franchini, C.; Continenza, A.

    2016-02-01

    The use of lattice cells in real space that are arbitrarily larger than the primitive one, is nowadays more and more often required by ab initio calculations to study disorder, vacancy or doping effects in real materials. This leads, however, to complex band structures which are hard to interpret. Therefore an unfolding procedure is sought for in order to obtain useful data, directly comparable with experimental results, such as angle-resolved photoemission spectroscopy measurements. Here, we present an extension of the unfolding procedure recently implemented in the VASP code, which includes a projection scheme that leads to a full reconstruction of the primitive space. As a test case, we apply this newly implemented scheme to the Ru-doped BaFe2As2 superconducting compound. The results provide a clear description of the effective electronic band structure in the conventional Brillouin zone, highlighting the crucial role played by doping in this compound.

  20. Negative Capacitance in BaTiO3/BiFeO3 Bilayer Capacitors.

    PubMed

    Hou, Ya-Fei; Li, Wei-Li; Zhang, Tian-Dong; Yu, Yang; Han, Ren-Lu; Fei, Wei-Dong

    2016-08-31

    Negative capacitances provide an approach to reduce heat generations in field-effect transistors during the switch processes, which contributes to further miniaturization of the conventional integrated circuits. Although there are many studies about negative capacitances using ferroelectric materials, the direct observation of stable ferroelectric negative capacitances has rarely been reported. Here, we put forward a dc bias assistant model in bilayer capacitors, where one ferroelectric layer with large dielectric constant and the other ferroelectric layer with small dielectric constant are needed. Negative capacitances can be obtained when external dc bias electric fields are larger than a critical value. Based on the model, BaTiO3/BiFeO3 bilayer capacitors are chosen as study objects, and negative capacitances are observed directly. Additionally, the upward self-polarization effect in the ferroelectric layer reduces the critical electric field, which may provide a method for realizing zero and/or small dc bias assistant negative capacitances. PMID:27502999

  1. Tensile properties of Fe-16 at. % Al alloys

    SciTech Connect

    Sikka, V.K.

    1995-02-01

    A newly developed melting method for Fe-16 at. % Al alloy (FAPY) is described. Tensile data on the air-induction-melted (AIM) and vacuum-induction-melted (VIM) heats of FAPY after identical processing are presented. Optical, scanning electron micrographs (SEM), and microprobe analysis were carried out to explain the lower room-temperature ductility and more scatter in the data for the AIM material as opposed to the VIM material.

  2. Synthesis and characterization of Co2FeAl nanowires

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.; Gyawali, Parshu; Forbes, Andrew; Pegg, Ian L.; Philip, John

    2012-06-01

    We report the growth and characterization of Co2FeAl nanowires. Nanowires are grown using electrospinning method and the diameters range from 50 to 500 nm. These nanowires exhibit cubic crystal structure with a lattice constant of a =5.639 Å. The nanowires exhibit ferromagnetic behavior with a very high Curie temperature. The temperature dependent magnetization behavior displays an anomaly in the temperature range 600-850 K, which disappears at higher external magnetic fields.

  3. Melting and casting of FeAl-based cast alloy

    SciTech Connect

    Sikka, V.K.; Wilkening, D.; Liebetrau, J.; Mackey, B.

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  4. Yield stress anomaly in B2 FeAl

    SciTech Connect

    Yoshimi, K.; Hanada, S.; Yoo, M.H.

    1996-12-31

    The studies on yield stress anomaly of B2 FeAl single crystals are reviewed in this paper. A positive temperature dependence of yield stress, so-called yield stress anomaly, is observed in B2 FeAl in which excess vacancies are fully annealed out. Associated with the anomaly, characteristic asymmetry is found between tension and compression. While the strain-rate sensitivity is almost zero in the temperature range of the yield stress anomaly, the stress relaxation becomes significant with increasing temperature, indicating that a recovery process is thermally activated. It is ascertained by the two-surface trace analysis that slip transition from <111> direction at intermediate temperature to <100> at high temperature occurs around the peak temperature. Even at the peak temperature, in addition, operative slip vector for yielding is confirmed to be predominantly <111> by TEM. Also, it is observed that <111>-type superdislocations are frequently climb-dissociated in the temperature range of the anomaly. APB formation on {l_brace}111{r_brace} plane is energetically favorable, which is in agreement with the Flinn`s calculation for the B2 superlattice that APB energy on {l_brace}111{r_brace} plane is lower than that on {l_brace}110{r_brace} plane. Such an anisotropy of APB energy would offer specific driving force for the climb dissociation on <111> superdislocations. On the basis of the observed results, the anomalous strengthening behavior of B2 FeAl single crystals is discussed.

  5. Effect of local structural distortion on magnetic and dielectric properties in BiFeO3 with Ba, Ti co-doping

    NASA Astrophysics Data System (ADS)

    Cheng, G. F.; Ruan, Y. J.; Liu, W.; Wu, X. S.

    2015-07-01

    The structural, magnetic, and dielectric properties of Bi1-xBaxFe1-xTixO3 (x≤0.25) ceramics are studied systematically. The symmetry of the unit cell for BiFeO3 co-doping with Ba and Ti remains the space group of R3c. The addition of Ba and Ti increases the unit cell volume without changing the unit cell symmetry. The remnant magnetization decreases monotonically with increasing the doping content, which may originate from contraction in Fe-O-Fe bond and FeO6 octahedron. Charge compensation occurs in BiFeO3 with Ba and Ti co-doping, which may suppress the charge defects and decrease the magnetism. The substitution of Fe with smaller radial Ti ion supplies larger vibration space in FeO6 octahedron, which may enhance the dielectric constant and decrease the dielectric loss significantly.

  6. Morphological Evolution of Ba(NO3)2 Supported on -Al2O3(0001): An In-Situ TEM Study

    SciTech Connect

    Wang, Chong M; Kwak, Ja Hun; Kim, Do Heui; Szanyi, Janos; Sharma, R; Thevuthasan, Suntharampillai; Peden, Charles HF

    2006-06-22

    One of the key questions for the BaO-based NOx catalyst system is the morphological evolution of Ba(NO3)2 to BaO upon heating for releasing of NOx or vice versa from BaO to Ba(NO3)2 upon uptaking of NOx. However, associated with the small crystallite size of high-surface area Al2O3, it can be difficult to extract structural and morphological features of Ba(NO3)2 supported on -Al2O3 by any direct imaging method including transmission electron microscopy. In this work, by choosing a model system of Ba(NO3)2 particles supported on single crystal -Al2O3, we have investigated the structural and morphological features of Ba(NO3)2 as well as the formation of BaO from Ba(NO3)2 during the release of NOx using ex-situ and in-situ TEM imaging, electron diffraction, energy dispersive spectroscopy (EDS), and Wulff shape construction. We find that Ba(NO3)2 supported on -Al2O3 possesses a platelet morphology, with the interface and facets being invariably the 8 {111} planes. Formation of the platelet structure leads to an enlarged interface area between Ba(NO3)2 and -Al2O3, indicating that the interfacial energy is lower than the Ba(NO3)2 surface free energy. In fact, Wulff shape constructions indicate that the interfacial energy is ~1/4 of the {111} surface free energy of Ba(NO3)2. The orientation relationship between Ba(NO3)2 and the -Al2O3 is: -Al2O3[0001]//Ba(NO3)2[111] and -Al2O3(1-2 10)//Ba(NO3)2(110).

  7. Evolution of Fe Bearing Intermetallics During DC Casting and Homogenization of an Al-Mg-Si Al Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Grant, P. S.; O'Reilly, K. A. Q.

    2016-04-01

    The evolution of iron (Fe) bearing intermetallics (Fe-IMCs) during direct chill casting and homogenization of a grain-refined 6063 aluminum-magnesium-silicon (Al-Mg-Si) alloy has been studied. The as-cast and homogenized microstructure contained Fe-IMCs at the grain boundaries and within Al grains. The primary α-Al grain size, α-Al dendritic arm spacing, IMC particle size, and IMC three-dimensional (3D) inter-connectivity increased from the edge to the center of the as-cast billet; both α c-AlFeSi and β-AlFeSi Fe-IMCs were identified, and overall α c-AlFeSi was predominant. For the first time in industrial billets, the different Fe-rich IMCs have been characterized into types based on their 3D chemistry and morphology. Additionally, the role of β-AlFeSi in nucleating Mg2Si particles has been identified. After homogenization, α c-AlFeSi predominated across the entire billet cross section, with marked changes in the 3D morphology and strong reductions in inter-connectivity, both supporting a recovery in alloy ductility.

  8. Evolution of Fe Bearing Intermetallics During DC Casting and Homogenization of an Al-Mg-Si Al Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Grant, P. S.; O'Reilly, K. A. Q.

    2016-06-01

    The evolution of iron (Fe) bearing intermetallics (Fe-IMCs) during direct chill casting and homogenization of a grain-refined 6063 aluminum-magnesium-silicon (Al-Mg-Si) alloy has been studied. The as-cast and homogenized microstructure contained Fe-IMCs at the grain boundaries and within Al grains. The primary α-Al grain size, α-Al dendritic arm spacing, IMC particle size, and IMC three-dimensional (3D) inter-connectivity increased from the edge to the center of the as-cast billet; both α c-AlFeSi and β-AlFeSi Fe-IMCs were identified, and overall α c-AlFeSi was predominant. For the first time in industrial billets, the different Fe-rich IMCs have been characterized into types based on their 3D chemistry and morphology. Additionally, the role of β-AlFeSi in nucleating Mg2Si particles has been identified. After homogenization, α c-AlFeSi predominated across the entire billet cross section, with marked changes in the 3D morphology and strong reductions in inter-connectivity, both supporting a recovery in alloy ductility.

  9. FeAl and NbAl3 Intermetallic-HVOF Coatings: Structure and Properties

    NASA Astrophysics Data System (ADS)

    Guilemany, J. M.; Cinca, N.; Dosta, S.; Cano, I. G.

    2009-12-01

    Transition metal aluminides in their coating form are currently being explored in terms of resistance to oxidation and mechanical behavior. This interest in transition metal aluminides is mainly due to the fact that their high Al content makes them attractive for high-temperature applications. This is also a reason to study their resistance to wear; they may be suitable for use in applications that produce a lot of wear in aggressive environments, thus replacing established coating materials. In this study, the microstructure, microhardness, and wear and oxidation performance of FeAl and NbAl3 coatings produced by high-velocity oxy-fuel spraying are evaluated with two main aims: (i) to compare these two coating systems—a commonly studied aluminide (FeAl) and, NbAl3, an aluminide whose deposition by thermal spraying has not been attempted to date—and (ii) to analyze the relationship between their microstructure, composition and properties, and so clarify their wear and oxidation mechanisms. In the present study, the higher hardness of niobium aluminide coatings did not correlate with a higher wear resistance and, finally, although pesting phenomena (disintegration in oxidizing environments) were already known of in bulk niobium aluminides, here their behavior in the coating form is examined. It was shown that such accelerated oxidation was inevitable with respect to the better resistance of FeAl, but further improvements are foreseen by addition of alloying elements in that alloy.

  10. NdBaFe{sub 2}O{sub 5+w} and steric effect of Nd on valence mixing and ordering of Fe

    SciTech Connect

    Linden, J.; Karen, P.

    2010-11-15

    NdBaFe{sub 2}O{sub 5} above and below Verwey transition is studied by synchrotron X-ray powder diffraction and Moessbauer spectroscopy and compared with GdBaFe{sub 2}O{sub 5} that adopts a higher-symmetry charge-ordered structure typical of the Sm-Ho variants of the title phase. Differences are investigated by Moessbauer spectroscopy accounting for iron valence states at their local magnetic and ionic environments. In the charge-ordered state, the orientation of the electric-field gradient (EFG) versus the internal magnetic field (B) agrees with experiment only when contribution from charges of the ordered d{sub xz} orbitals of Fe{sup 2+} is included, proving thus the orbital ordering. The EFG magnitude indicates that only some 60% of the orbital order occurring in the Sm-Ho variants is achieved in NdBaFe{sub 2}O{sub 5}. The consequent diminishing of the orbit contribution (of opposite sign) to the field B at the Fe{sup 2+} nucleus explains why B is larger than for the Sm-Ho variants. The decreased orbital ordering in NdBaFe{sub 2}O{sub 5} causes a corresponding decrease in charge ordering, which is achieved by decreasing both the amount of the charge-ordered iron states in the sample and their fractional valence separation as seen by the Moessbauer isomer shift. The charge ordering in NdBaFe{sub 2}O{sub 5+w} is more easily suppressed by the oxygen nonstoichiometry (w) than in the Sm-Ho variants. Also the valence mixing into Fe{sup 2.5+} is destabilized by the large size of Nd. The orientation of the EFG around this valence-mixed iron can only be accounted for when the valence-mixing electron is included in the electrostatic ligand field. This proves that the valence mixing occurs between the two iron atoms facing each other across the structural plane of the rare-earth atoms. -- Graphical Abstract: Moessbauer spectrum detects ordering of d{sub xz} orbitals of Fe{sup II}O{sub 5} via the electric-field gradient (EFG) of the orbital, which makes the main component of

  11. Spin-phonon coupling in BaFe{sub 12}O{sub 19} M-type hexaferrite

    SciTech Connect

    Silva Júnior, Flávio M.; Paschoal, Carlos W. A.

    2014-12-28

    The spin-phonon coupling in magnetic materials is due to the modulation of the exchange integral by lattice vibrations. BaFe{sub 12}O{sub 19} M-type hexaferrite, which is the most used magnetic material as permanent magnet, transforms into ferrimagnet at high temperatures, but no spin-phonon coupling was previously observed at this transition. In this letter, we investigated the temperature-dependent Raman spectra of polycrystalline BaFe{sub 12}O{sub 19} M-type hexaferrite from room temperature up to 780 K to probe spin-phonon coupling at the ferrimagnetic transition. An anomaly was observed in the position of the phonon attributed to the Fe{sup (4)}O{sub 6}, Fe{sup (5)}O{sub 6}, and Fe{sup (1)}O{sub 6} octahedra, evidencing the presence of a spin-phonon coupling in BaM in the ferrimagnetic transition at 720 K. The results also confirmed the spin-phonon coupling is different for each phonon even when they couple with the same spin configuration.

  12. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe2As2

    NASA Astrophysics Data System (ADS)

    Sefat, Athena S.; Li, Li; Cao, Huibo B.; McGuire, Michael A.; Sales, Brian; Custelcean, Radu; Parker, David S.

    2016-02-01

    Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe2As2 (TN = Ts = 133 K) increase for x = 0.05 (TN = 138 K, Ts = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (TN = Ts = 131 K), and this is due to charge doping. We illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism.

  13. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe2As2

    PubMed Central

    Sefat, Athena S.; Li, Li; Cao, Huibo B.; McGuire, Michael A.; Sales, Brian; Custelcean, Radu; Parker, David S.

    2016-01-01

    Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe2As2 (TN = Ts = 133 K) increase for x = 0.05 (TN = 138 K, Ts = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (TN = Ts = 131 K), and this is due to charge doping. We illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism. PMID:26867821

  14. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe2As2

    DOE PAGESBeta

    Sefat, Athena S.; Li, Li; Cao, Huibo B.; McGuire, Michael A.; Sales, Brian; Custelcean, Radu; Parker, David S.

    2016-02-12

    Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe2As2 (TN = Ts = 133 K) increase for x = 0.05 (TN = 138 K, Ts = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bondmore » distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (TN = Ts = 131 K), and this is due to charge doping. Finally, we illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism.« less

  15. High pressure floating zone growth and structural properties of ferrimagnetic quantum paraelectric BaFe12O19

    NASA Astrophysics Data System (ADS)

    Cao, H. B.; Zhao, Z. Y.; Lee, M.; Choi, E. S.; McGuire, M. A.; Sales, B. C.; Zhou, H. D.; Yan, J.-Q.; Mandrus, D. G.

    2015-06-01

    High quality single crystals of BaFe12O19 were grown using the floating zone technique in 100 atm of flowing oxygen. Single crystal neutron diffraction was used to determine the nuclear and magnetic structures of BaFe12O19 at 4 K and 295 K. At both temperatures, there exist local electric dipoles formed by the off-mirror-plane displacements of magnetic Fe3+ ions at the bipyramidal sites. The displacement at 4 K is about half of that at room temperature. The temperature dependence of the specific heat shows no anomaly associated with long range polar ordering in the temperature range from 1.90 to 300 K. The inverse dielectric permittivity, 1/ɛ, along the c-axis shows a T2 temperature dependence between 10 K and 20 K, with a significantly reduced temperature dependence displayed below 10 K. Moreover, as the sample is cooled below 1.4 K there is an anomalous sharp upturn in 1/ɛ. These features resemble those of classic quantum paraelectrics such as SrTiO3. The presence of the upturn in 1/ɛ indicates that BaFe12O19 is a critical quantum paraelectric system with Fe3+ ions involved in both magnetic and electric dipole formation.

  16. Resonant Ultrasound studies of double perovskites A2FeReO6 (A=Ba, Ca)

    NASA Astrophysics Data System (ADS)

    Li, Ling; Yan, Jiaqiang; Mandrus, David; Keppens, Veerle

    2013-03-01

    The elastic response as a function of temperature (50-380) K and magnetic field (0-2) T has been studied using Resonant Ultrasound Spectroscopy (RUS) for the polycrystalline double perovskites A2FeReO6 (A= Ba, Ca). An elastic softening over a wide temperature range is observed below the Curie temperature (Tc ~ 305K) of Ba2FeReO6, which is suppressed upon the application of a magnetic field. For Ca2FeReO6, both the longitudinal and shear modulus show a step-like softening starting around 140K, indicative of a structural transition. A large change in the magnetoelastic coupling constant is observed at this temperature, suggesting that this transition is strongly coupled to the magnetic properties of this material. Work at ORNL was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  17. Local manifestations of a static magnetoelectric effect in nanostructured BaTiO3-BaFe12O9 composite multiferroics

    NASA Astrophysics Data System (ADS)

    Trivedi, Harsh; Shvartsman, Vladimir V.; Lupascu, Doru C.; Medeiros, Marco S. A.; Pullar, Robert C.; Kholkin, Andrei L.; Zelenovskiy, Pavel; Sosnovskikh, Andrey; Shur, Vladimir Ya.

    2015-02-01

    A study on magnetoelectric phenomena in the barium titanate-barium hexaferrite (BaTiO3-BaFe12O19) composite system, using high resolution techniques including switching spectroscopy piezoresponse force microscopy (SSPFM) and spatially resolved confocal Raman microscopy (CRM), is presented. It is found that both the local piezoelectric coefficient and polarization switching parameters change on the application of an external magnetic field. The latter effect is rationalized by the influence of magnetostrictive stress on the domain dynamics. Processing of the Raman spectral data using principal component analysis (PCA) and self-modelling curve resolution (SMCR) allowed us to achieve high resolution phase distribution maps along with separation of average and localized spectral components. A significant effect of the magnetic field on the Raman spectra of the BaTiO3 phase has been revealed. The observed changes are comparable with the classical pressure dependent studies on BaTiO3, confirming the strain mediated character of the magnetoelectric coupling in the studied composites.

  18. Local manifestations of a static magnetoelectric effect in nanostructured BaTiO3-BaFe12O9 composite multiferroics.

    PubMed

    Trivedi, Harsh; Shvartsman, Vladimir V; Lupascu, Doru C; Medeiros, Marco S A; Pullar, Robert C; Kholkin, Andrei L; Zelenovskiy, Pavel; Sosnovskikh, Andrey; Shur, Vladimir Ya

    2015-03-14

    A study on magnetoelectric phenomena in the barium titanate-barium hexaferrite (BaTiO3-BaFe12O19) composite system, using high resolution techniques including switching spectroscopy piezoresponse force microscopy (SSPFM) and spatially resolved confocal Raman microscopy (CRM), is presented. It is found that both the local piezoelectric coefficient and polarization switching parameters change on the application of an external magnetic field. The latter effect is rationalized by the influence of magnetostrictive stress on the domain dynamics. Processing of the Raman spectral data using principal component analysis (PCA) and self-modelling curve resolution (SMCR) allowed us to achieve high resolution phase distribution maps along with separation of average and localized spectral components. A significant effect of the magnetic field on the Raman spectra of the BaTiO3 phase has been revealed. The observed changes are comparable with the classical pressure dependent studies on BaTiO3, confirming the strain mediated character of the magnetoelectric coupling in the studied composites. PMID:25683862

  19. Synthesis and structural characterization of nonstoichiometric barium hexaferrite materials with Fe:Ba ratio of 11.5 - 16.16

    NASA Astrophysics Data System (ADS)

    Maswadeh, Yazan; Mahmood, Sami H.; Awadallah, Ahmad; Aloqaily, Aynour N.

    2015-10-01

    Synthesis of barium hexaferrites BaFe12O19 (BaM) is often accompanied by the presence of secondary nonmagnetic phases. The coexistence of these phases reduces the yield of the desired BaM magnetic phase and screens its intrinsic magnetic properties such as the saturation magnetization, and impacts the magnetic properties of the sample negatively. Therefore, assessment of the abundance of these phases and investigating their effect on the structural properties of the sample is of fundamental and practical importance. In this work, BaM hexaferrites were prepared by ball milling and sintering powder precursors with Fe:Ba molar ratios varying from 11.5 to 16.16. The structural properties of the phases in the samples were investigated by x-ray diffraction (XRD). The weight ratios of the different phases, as well as their refined structural parameters were determined using Rietveld analysis. XRD patterns revealed the development of α-Fe2O3 (hematite) phase with increasing relative diffracted intensity as the Fe:Ba molar ratio increased. The evolution of the intensity of this phase was used to monitor the weight ratio of the secondary hematite phase in the sample, and a relation between the its weight ratio and the Fe:Ba ratio was established. The optimal Fe:Ba ratio required to synthesis a pure barium hexaferrite phase was then determined, and found to be 11.7.

  20. The magnetoelectric coupling in rhombohedral-tetragonal phases coexisted Bi0.84Ba0.20FeO3

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Xuan, Haicheng; Wang, Liaoyu; Zhang, Yan; Shen, Kai; Wang, Dunhui; Qiu, Teng; Xu, Qingyu

    2012-06-01

    Ba doped Bi1.04-xBaxFeO3 ceramics with x up to 0.30 have been prepared by the tartaric acid modified sol-gel method. The X ray diffraction patterns show that the structure transforms from rhombohedral to tetragonal with increasing the Ba substitution concentration from 10% to 30% and the coexistence of distorted rhombohedral and tetragonal phases in 20% Ba substituted BiFeO3, which was further confirmed by the Raman spectra. Bi0.84Ba0.20FeO3 exhibits the highest magnetization (1.6 emu/g under magnetic field of 12 kOe) compared with the other samples of different Ba substitution concentration. Significant enhancement of the ferroelectricity has been observed in 20% and 30% Ba substituted BiFeO3 with saturate polarization close to 6.6 μC/cm2 for Bi0.74Ba0.30FeO3. The magnetoelectric coupling of Bi0.84Ba0.20FeO3 has been measured and the maximum decrease of magnetization under magnetic field of 9.8 kOe was about 0.06 emu/g with increasing applied electric field to 11 kV/cm, and the magnetoelectric coefficient is 1.5×10-12 s/m.

  1. Elevated Temperature Deformation of Fe-39.8Al and Fe-15.6Mn-39.4Al

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel

    2004-01-01

    The elevated temperature compressive properties of binary Fe-39.8 at % Al and Fe-15.6Mn-39.4Al have been measured between 1000 and 1300 K at strain rates between 10(exp 7) and 10(exp 3)/ s. Although the Mn addition to iron aluminide did not change the basic deformation characteristics, the Mn-modified alloy was slightly weaker. In the regime where deformation of FeAl occurs by a high stress exponent mechanism (n = 6), strength increases as the grain size decreases at least for diameters between approx. 200 and approx. 10 microns. Due to the limitation in the grain size-flow stress-temperature-strain rate database, the influence of further reductions of the grain size on strength is uncertain. Based on the appearance of subgrains in deformed iron aluminide, the comparison of grain diameters to expected subgrain sizes, and the grain size exponent and stress exponent calculated from deformation experiments, it is believed that grain size strengthening is the result of an artificial limitation on subgrain size as proposed by Sherby, Klundt and Miller.

  2. First principles investigation of Fe and Al bearing phase H

    NASA Astrophysics Data System (ADS)

    Tsuchiya, J.; Tsuchiya, T.

    2015-12-01

    The global circulation of water in the earth is important to investigate the evolution history and dynamics of the earth, since the physical properties (e.g. atomic diffusivity, melting temperature, electrical conductivity and seismic velocities) of the constituent minerals are considerably changed by the presence of water. It has been believed that water is carried into the deep Earth's interior by hydrous minerals such as the dense hydrous magnesium silicates (DHMSs) which are also known as alphabet phases (phase A, superhydrous phase B, and phase D etc.) in the descending cold plate. It has been thought that the relay of these hydrous phases was terminated at ~1200 km depth by the dehydration of phase D which was the highest pressure phase of DHMSs. Recently, we have theoretically predicted the high pressure phase of phase D and experimentally confirmed the existence of this new DHMS in lower mantle pressure conditions above ~45 GPa. This phase has MgSiO4H2chemical composition and named as phase H. At the lower mantle pressure conditions, Al and H-bearing SiO2, δ-AlOOH, ɛ-FeOOH and phase H may be the relevant hydrous phases in the subducting slabs. Interestingly, the crystal structure of these hydrous phases are almost same and have CaCl2type structure. This suggests that these hydrous phases may potentially be able to make the wide range of solid solution. Some experimental studies already reported that Al preferentially partitioned into phase H and the stability of phase H drastically increased by incorporation of Al (Nishi et al. 2014, Ohira et al. 2014). The density of subducted MORB is reported to be denser than that of pyrolite in the lower mantle (e.g. Kawai et al. 2009). Therefore, there is a possibility that phase H containing Al and Fe in subducted MORB survive down to the bottom of lower mantle and the melting of phase H at the core mantle boundary may contribute to the cause of ultra-low velocity zones. In this study, we further extends our

  3. Direct characterization of photoinduced lattice dynamics in BaFe2As2

    PubMed Central

    Gerber, S.; Kim, K. W.; Zhang, Y.; Zhu, D.; Plonka, N.; Yi, M.; Dakovski, G. L.; Leuenberger, D.; Kirchmann, P.S.; Moore, R. G.; Chollet, M.; Glownia, J. M.; Feng, Y.; Lee, J.-S.; Mehta, A.; Kemper, A. F.; Wolf, T.; Chuang, Y.-D.; Hussain, Z.; Kao, C.-C.; Moritz, B.; Shen, Z.-X.; Devereaux, T. P.; Lee, W.-S.

    2015-01-01

    Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe2As2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe–As–Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands. PMID:26051704

  4. Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships

    SciTech Connect

    Kim, Hyong June

    2011-01-01

    Deformation processed metal-metal composites (DMMC’s) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule of mixtures. A quantitative relationship between UTS and deformation true strain was determined. X-ray diffraction data on transformation of Al + Ca microstructures to Al + various Al-Ca intermetallic compounds were obtained at the Advanced Photon Source at Argonne National Laboratory. Electrical conductivity was measured over a range of true strains and post-deformation heat treatment schedules.

  5. Identification of an incommensurate FeAl{sub 2} overlayer on FeAl(110) using x-ray diffraction and reflectivity

    SciTech Connect

    Baddorf, A.P.; Chandavarkar, S.S.

    1995-06-30

    FeAl, like NiAl, crystallizes in the CsCl structure. Consequently the (110) planes contain equal amounts of Fe and Al distributed as interlocking rectangles. Unlike the NiAI(110) surface, which retains the (1{times}l) in-plane symmetry of the bulk, FeAl(l10) reconstructs to form an ordered, incommensurate overlayer. The reconstructed layer introduces x-ray diffraction rods at half-order positions along the [1{bar 1}0] direction, and displaced {plus_minus}0.2905 from integer positions along the [001] direction. Peak widths reveal excellent long range order. Specular reflectivity measurements above and below the Fe K{alpha} edge can be reproduced using a model containing a single reconstructed overlayer with an Fe:Al ratio of 1:2, consistent with FeA{sub I}2.

  6. Modeling of the solubilities of NiO/NiAl2O4 and FeO/FeAl2O4 in cryolite melts at 1300 K

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshu; Wu, Xiaoxia; Rapp, Robert A.

    2004-02-01

    Experiments to measure the solubilities of NiO/NiAl2O4 and FeO/FeAl2O4 were performed, and the results confirmed existing literature values. The solubilities of NiAl2O4 and FeAl2O4 in Al2O3-saturated cryolite melts at 1300 K were modeled thermodynamically in terms of the Ni-containing complexes Na2NiF4 and Na4NiF6, and the Fe-containing solutes FeF2, Na2FeF4, and Na4FeF6. The experimental solubility data were fitted to multiple simultaneous equilibria. Equilibrium constants and ΔG f 0 values for the formation reactions of the these solutes were thereby estimated. The solubilities of NiO/NiAl2O4 and FeO/FeAl2O4 and solute distributions in Al2O3-undersaturated cryolite melts were calculated for a number of melt compositions from the present model. The existence of several competitive solute species is inherent to highly buffered ionic cryolite solutions where the traditional log-log methodology had previously failed to identify dominant single solutes. In such solutions, individual solutes of oxides are not likely to dominate over a wide composition range so that a more global modeling is required. The principal solute species identified in the present study exhibit reasonable three-dimensional (3-D) anion geometries.

  7. Theoretical study on the anisotropic electronic structure of antiferromagnetic BaFe2As2 and Co-doped Ba(Fe 1 -xCox)2As2 as seen by angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Derondeau, Gerald; Braun, Jürgen; Ebert, Hubert; Minár, Ján

    2016-04-01

    By means of one-step model calculations the strong in-plane anisotropy seen in angle-resolved photoemission of the well-known iron pnictide prototype compounds BaFe2As2 and Ba(Fe 1 -xCox)2As2 in their low-temperature antiferromagnetic phases is investigated. The fully relativistic calculations are based on the Korringa-Kohn-Rostoker-Green function approach combined with the coherent potential approximation alloy theory to account for the disorder induced by Co substitution on Fe sites in a reliable way. The results of the calculations can be compared directly to experimental spectra of detwinned single crystals. One finds very good agreement with experiment and can reveal all features of the electronic structure contributing to the in-plane anisotropy. In particular the local density approximation can capture most of the correlation effects for the investigated system without the need for more advanced techniques. In addition, the evolution of the anisotropy for increasing Co concentration x in Ba(Fe 1 -xCox)2As2 can be tracked almost continuously. The results are also used to discuss surface effects and it is possible to identify clear signatures to make conclusions about different types of surface termination.

  8. Erosion behavior of Fe-Al intermetallic alloys

    SciTech Connect

    Kim, Y.S.; Song, J.H.; Chang, Y.W.

    1997-04-01

    The Fe-rich Fe-Al intermetallics have generated some interest, especially during the last decade, due to their excellent resistance for oxidation and sulfidation, high specific strength, and low material cost. The aluminide is therefore considered as one of the promising candidates for high-temperature structural materials in a corrosive atmosphere. Research effort has been focused mainly on process, development, and enhancement of room-temperature ductility together with the characterization of physical properties such as mechanical properties, oxidation, corrosion, and abrasive wear behavior. However, there have been only a few works reported to date in regard to the erosion characteristics of the alloy, one of the most important material property of this ordered intermetallic alloy for the use in a fossil-fuel plant. In this study, the solid-particle erosion behavior of the Fe-Al intermetallic alloys containing the various aluminum contents ranging from 25 to 30 at.% has been investigated to clarify the effect of aluminum content and different ordered structures, viz. DO{sub 3} and B2, on the erosion behavior. An attempt has been made to correlate the erosion behavior of these intermetallics to their mechanical properties by carrying out tensile tests together with SEM observation of the eroded surfaces.

  9. Hydrogen permeation characteristics of some Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Van Deventer, E. H.; Maroni, V. A.

    1983-01-01

    Hydrogen permeation data are reported for two Fe-Cr-Al alloys, Type-405 SS (Cr 14-A1 0.2) and a member of the Fecralloy family of alloys (Cr 16-A1 5). The hydrogen permeability of each alloy (in a partially oxidized condition) was measured over a period of several weeks at randomly selected temperatures (between 150 and 850°C) and upstream H 2 pressures (between 2 and 1.5 × 10 4 Pa). The permeabilities showed considerable scatter with both time and temperature and were 10 2 to 10 3 times lower than those of pure iron, even in strongly reducing environments. The exponent, n, for the relationship between upstream H 2 pressure, P, and permeability, φ, ( φ ~ Pn) was closer to 0.7 than to the expected 0.5, indicating a process limited by surface effects (e.g., surface oxide films) as opposed to bulk material effects. Comparison of these results with prior permeation measurements on other Fe-Cr-Al alloys, on Fe-Cr alloys, and on pure iron shows that the presence of a few weight percent aluminum offers the best prospects for achieving low tritium permeabilities with martensitic and ferritic steels used in fusion-reactor first wall and blanket applications.

  10. Equilibrium point defects in intermetallics with the [ital B]2 structure: NiAl and FeAl

    SciTech Connect

    Fu, C.L.; Ye, Y.; Yoo, M.H. ); Ho, K.M. )

    1993-09-01

    Equilibrium point defects and their relation to the contrasting mechanical behavior of NiAl and FeAl are investigated. For NiAl, the defect structure is dominated by two types of defects---monovacancies on the Ni sites and substitutional antisite defects on the Al sites. The defect structure of FeAl differs from that of NiAl in the occurrence of antisite defects at the transition-metal sites for Al-rich alloys and the tendency for vacancy clustering. The strong ordering (and brittleness) of NiAl is attributed mainly to the difference in atomic size between constituent atoms.

  11. Chemical mixing at “Al on Fe” and “Fe on Al” interfaces

    SciTech Connect

    Süle, P.; Horváth, Z. E.; Kaptás, D.; Bujdosó, L.; Balogh, J.; Nakanishi, A.

    2015-10-07

    The chemical mixing at the “Al on Fe” and “Fe on Al” interfaces was studied by molecular dynamics simulations of the layer growth and by {sup 57}Fe Mössbauer spectroscopy. The concentration distribution along the layer growth direction was calculated for different crystallographic orientations, and atomically sharp “Al on Fe” interfaces were found when Al grows over (001) and (110) oriented Fe layers. The Al/Fe(111) interface is also narrow as compared to the intermixing found at the “Fe on Al” interfaces for any orientation. Conversion electron Mössbauer measurements of trilayers—Al/{sup 57}Fe/Al and Al/{sup 57}Fe/Ag grown simultaneously over Si(111) substrate by vacuum evaporation—support the results of the molecular dynamics calculations.

  12. Giant magnetoelectric coupling interaction in BaTiO{sub 3}/BiFeO{sub 3}/BaTiO{sub 3} trilayer multiferroic heterostructures

    SciTech Connect

    Kotnala, R. K. E-mail: rkkotnala@gmail.com; Gupta, Rekha; Chaudhary, Sujeet

    2015-08-24

    Multiferroic trilayer thin films of BaTiO{sub 3}/BiFeO{sub 3}/BaTiO{sub 3} were prepared by RF-magnetron sputtering technique at different thicknesses of BiFeO{sub 3} layer. A pure phase polycrystalline growth of thin films was confirmed from X-ray diffraction results. The film showed maximum remnant electric polarization (2P{sub r}) of 13.5 μC/cm{sup 2} and saturation magnetization (M{sub s}) of 61 emu/cc at room temperature. Thermally activated charge transport dominated via oxygen vacancies as calculated by their activation energy, which was consistent with current–voltage characteristics. Magnetic field induced large change in resistance and capacitance of grain, and grain boundary was modeled by combined impedance and modulus spectroscopy in the presence of varied magnetic fields. Presence of large intrinsic magnetoelectric coupling was established by a maximum 20% increase in grain capacitance (C{sub g}) with applied magnetic field (2 kG) on trilayer having 20 nm BiFeO{sub 3} layer. Substantially higher magnetoelectric coupling in thinner films has been observed due to bonding between Fe and Ti atoms at interface via oxygen atoms. Room temperature magnetoelectric coupling was confirmed by dynamic magnetoelectric coupling, and maximum longitudinal magnetoelectric coupling of 515 mV/cm-Oe was observed at 20 nm thickness of BiFeO{sub 3}. The observed magnetoelectric properties are potentially useful for novel room temperature magnetoelectric and spintronic device applications for obtaining higher voltage at lower applied magnetic field.

  13. Large piezoelectric response of BiFeO3/BaTiO3 polycrystalline films induced by the low-symmetry phase.

    PubMed

    Hou, Y F; Li, W L; Zhang, T D; Wang, W; Cao, W P; Liu, X L; Fei, W D

    2015-05-01

    BaTiO3, BiFeO3 and BiFeO3/BaTiO3 polycrystalline films were prepared by the radio frequency magnetron sputtering on the Pt/Ti/SiO2/Si substrate. The phase structure, converse piezoelectric coefficient and domain structure of BaTiO3, BiFeO3 and BiFeO3/BaTiO3 thin films are characterized by XRD and PFM, respectively. The converse piezoelectric coefficient d33 of BiFeO3/BaTiO3 thin films is 119.5 pm V(-1), which is comparable to that of lead-based piezoelectric films. The large piezoelectric response of BiFeO3/BaTiO3 thin films is ascribed to the low-symmetry T-like phase BiFeO3, because the spontaneous polarization vector of T-like phase (with monoclinic symmetry) BiFeO3 can rotate easily under external field. In addition, the reduced leakage current and major domains with upward polarization are also attributed to the large piezoelectricity. PMID:25866266

  14. Magnetic spin structure and magnetoelectric coupling in BiFeO{sub 3}-BaTiO{sub 3} multilayer

    SciTech Connect

    Lazenka, Vera Modarresi, Hiwa; Bisht, Manisha; Vantomme, André; Temst, Kristiaan; Lorenz, Michael; Bonholzer, Michael; Grundmann, Marius; Rüffer, Rudolf; Van Bael, Margriet J.

    2015-02-23

    Magnetic spin structures in epitaxial BiFeO{sub 3} single layer and an epitaxial BaTiO{sub 3}/BiFeO{sub 3} multilayer thin film have been studied by means of nuclear resonant scattering of synchrotron radiation. We demonstrate a spin reorientation in the 15 × [BaTiO{sub 3}/BiFeO{sub 3}] multilayer compared to the single BiFeO{sub 3} thin film. Whereas in the BiFeO{sub 3} film, the net magnetic moment m{sup →} lies in the (1–10) plane, identical to the bulk, m{sup →} in the multilayer points to different polar and azimuthal directions. This spin reorientation indicates that strain and interfaces play a significant role in tuning the magnetic spin order. Furthermore, large difference in the magnetic field dependence of the magnetoelectric coefficient observed between the BiFeO{sub 3} single layer and multilayer can be associated with this magnetic spin reorientation.

  15. Magnetotransport Properties of Co2FeAl Nanowires

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab; Gyawali, P.; Dahal, Bishnu; Dulal, R.; Pegg, I. L.; Philip, John

    2013-03-01

    Co2FeAl (CFA) nanowire (NW) exhibit interesting magnetic behavior with temperature, which arises from the granular structure.[2] To understand the magnetotransport properties, single CFA NW devices were fabricated using standard electron beam lithography. The magnetoresistance measurements of single CFA NW device were carried out at different temperatures. The magnetoresistance measurements show oscillations as a function of applied external magnetic field. This work has been supported by funding from NSF under CAREER Grant No. ECCS-0845501 and NSF-MRI, DMR-0922997.

  16. MOKE Study of Fe/Co/Al Multilayers

    SciTech Connect

    Jani, Snehal; Lakshmi, N.; Venugopalan, K.; Rajput, Parasmani; Zajaoc, M.; Rueffer, R.; Reddy, V. R.; Gupta, Ajay

    2011-07-15

    The multilayer system (MLS)-[{sup 57}Fe{sub 25}A/Co{sub 11}A/Al{sub 17}A]x20 has been deposited by Ion beam sputtering (IBS) technique. The MLS has been annealed at 700 deg. C for 1 h. Overall composition of as deposited and annealed MLS have been characterized by EDX and magnetic properties have been studied through angular dependent magneto optic Kerr effect (MOKE) hysteresis curves. The study shows that the as-deposited MLS has excellent soft magnetic properties coupled with perpendicular magnetic isotropy which is destroyed on annealing.

  17. Zener Relaxation Peak in an Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng-Cun; Cheng, He-Fa; Gong, Chen-Li; Wei, Jian-Ning; Han, Fu-Sheng

    2002-11-01

    We have studied the temperature spectra of internal friction and relative dynamic modulus of the Fe-(25 wt%)Cr-(5 wt%)Al alloy with different grain sizes. It is found that a peak appears in the internal friction versus temperature plot at about 550°C. The peak is of a stable relaxation and is reversible, which occurs not only during heating but also during cooling. Its activation energy is 2.5 (+/- 0.15) eV in terms of the Arrhenius relation. In addition, the peak is not obvious in specimens with a smaller grain size. It is suggested that the peak originates from Zener relaxation.

  18. Annealing of cold-rolled Fe-40Al single crystals

    SciTech Connect

    Yang, Y.; Baker, I.

    1997-12-31

    Single crystals of Fe-40Al were cold-rolled to plastic strains in the range 5% to 48%. Discs cut from the rolled crystals at different rolling strains were heated at 10 K/min in a differential scanning calorimeter from room temperature to 973 K. Three exothermic peaks were observed in the temperature ranges of 440--550 K, 610--650 K, and 860--930 K, all the peaks shifting to lower temperatures with increasing strain. The origins of these peaks are discussed in terms of the disorder and vacancies introduced during rolling.

  19. Microstructural and thermal properties of pure BaFe12O19 and Sr doped barium ferrite (Ba0.9Sr0.1Fe12O19) synthesized by auto combustion method

    NASA Astrophysics Data System (ADS)

    Taufeeq, Saba; Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2016-05-01

    Nanoparticles (NPs) of Pure BaFe12O19 and Strontium doped Barium Ferrite (Ba0.9Sr0.1Fe12O19) have been successfully synthesized by Auto combustion method using citric acid as a chelating agent and calcined at 450°C for 3 hrs and 850°C for 4 hrs. Microstructural studies were carried by XRD and SEM techniques. Structural studies suggest that the crystal system remains hexagonal even with the doping of Strontium. The XRD analysis confirms the formation of the structures in the nanometer regime and the peaks are the evidence of the crystalline phase. The SEM images shows the morphology of surface of the samples. The thermal property studied by TGA shows the weight loss which is with varying the temperature and weight loss also varies with Sr doping. The TGA analysis exhibits the loss of weight at different temperatures.

  20. Suppression of structural phase transition by Sr substitution in the improper ferroelectric BaAl2O4

    NASA Astrophysics Data System (ADS)

    Mori, Shigeo; Ishii, Yui; Tanaka, Eri; Tsukasaki, Hirofumi; Kawaguchi, Shogo

    2015-10-01

    To clarify lattice fluctuations and precursor phenomena accompanied by structural phase transition in stuffed tridymite compounds, changes in diffuse scattering as a function of temperature in Ba0.6Sr0.4Al2O4 have been carefully investigated by powder X-ray diffraction using synchrotron radiation, electron diffraction and transmission electron microscopy (TEM) experiments. In situ electron diffraction experiments revealed that Ba0.6Sr0.4Al2O4 exhibits lattice fluctuation manifested as a unique honeycomb-shaped diffuse scattering in the wide temperature range between 298 and 100 K. Unlike in the case of BaAl2O4, Ba0.6Sr0.4Al2O4 shows no structural phase transition to the ferroelectric structure with the hexagonal P63 space group in the temperature range. In contrast, it is revealed that the electron beam irradiation to the Ba0.6Sr0.4Al2O4 sample inside the transmission electron microscope induced structural change from the hexagonal P6322 structure to the modulated structure with double periodicity in the three equivalent <110> directions in the low-temperature region. This implies that the total energy difference between these two structures is small. The hexagonal P6322 structure transforms into the modulated one with short correlation length owing to some small external perturbations.

  1. Luminescent Characteristics of Ba(1--x)Al2Si2O8:xTb3+ Green Phosphors.

    PubMed

    Hakeem, D A; Kim, Y; Park, K

    2016-02-01

    Ba(1--x)Al2Si2O8:xTb3+ (0.03 < or = x < or = 0.12) green phosphors are prepared by solution combustion method. The photoluminescence properties of the Ba(1--x)Al2Si2O8:xTb3+ phosphors are studied as a function of Tb3+ concentration. The Ba(1--x)Al2Si2O8:xTb3+ phosphors crystallize in a hexagonal crystal structure. The excitation spectra consist of two broad bands with maxima at 238 nm and 265 nm and several weak peaks in the range of 310-500 nm. Strong emission peaks are observed at 484, 540, 589, and 612 nm due to the (5)D4 --> (7)F6, (5)D4 --> (7)F5, (5)D4 --> (7)F4, and (5)D4 --> (7)F3 tran- sitions of the Tb3+, respectively. The emission peak (540 nm) from the (5)D4 --> (7)F3 transition is dominant, indicating green light emission. Ba(1--x)Al2Si2O8:xTb3+ phosphor shows the strongest green emission intensity. The Ba(1--x)Al2Si2O8:xTb3+ can be considered a promising green phosphor for white LEDs applications. PMID:27433666

  2. Local formation of a Heusler structure in CoFe-Al alloys

    NASA Astrophysics Data System (ADS)

    Wurmehl, S.; Jacobs, P. J.; Kohlhepp, J. T.; Swagten, H. J. M.; Koopmans, B.; Maat, S.; Carey, M. J.; Childress, J. R.

    2011-01-01

    We systematically study the changes in the local atomic environments of Co in CoFe-Al alloys as a function of Al content by means of nuclear magnetic resonance. We find that a Co2FeAl Heusler type structure is formed on a local scale. The observed formation of a highly spin-polarized Heusler compound may explain the improved magnetotransport properties in CoFe-Al based current-perpendicular-to-the-plane spin-valves.

  3. Phase Separation kinetics in an Fe-Cr-Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Chao, J.

    2012-01-01

    The {alpha}-{alpha}{prime} phase separation kinetics in a commercial Fe-20 wt.% Cr-6 wt.% Al oxide dispersion-strengthened PM 2000{trademark} steel have been characterized with the complementary techniques atom probe tomography and thermoelectric power measurements during isothermal aging at 673, 708, and 748 K for times up to 3600 h. A progressive decrease in the Al content of the Cr-rich {alpha}{prime} phase was observed at 708 and 748 K with increasing time, but no partitioning was observed at 673 K. The variation in the volume fraction of the {alpha}{prime} phase well inside the coarsening regime, along with the Avrami exponent 1.2 and activation energy 264 kJ mol{sup -1}, obtained after fitting the experimental results to an Austin-Rickett type equation, indicates that phase separation in PM 2000{trademark} is a transient coarsening process with overlapping nucleation, growth, and coarsening stages.

  4. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    DOE PAGESBeta

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explainmore » that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  5. Mechanism of particle growth of a BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphor by firing with AlF{sub 3}

    SciTech Connect

    Oshio, Shozo; Matsuoka, Tomizo; Tanaka, Shosaku; Kobayashi, Hiroshi

    1998-11-01

    The mechanism of particle growth of the blue emitting BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphor by firing with AlF{sub 3} has been clarified. It was found that the reaction between BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} and AlF{sub 3} during firing, on the basis of the following chemical equation, results in recreation of BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} with particle growth BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} + (4/3)AlF{sub 3} {l_reversible} BaMgF{sub 4}:Eu{sup 2+} + (17/3)Al{sub 2}O{sub 3}, the firing of Ba/MgAl{sub 10}O{sub 17}:Eu{sup 2+} with AlF{sub 3} first converts the phosphor into a mixture of the two compounds, BaMgF{sub 4}:Eu{sup 2+} and Al{sub 2}O{sub 3}, at around 1200 C. The BaMgF{sub 4}:Eu{sup 2+} melts at temperatures over 1000 C, then reacts with Al{sub 2}O{sub 3}, and participates in the recreation of both BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} and AlF{sub 3} through a chemical reaction between the two compounds at 1200 C in BaMgF{sub 4}:Eu{sup 2+} solutions. Recreated AlF{sub 3} appears to sublime immediately because it is a material which sublimates with heating. This paper proposes a mechanism for the growth of particle of recreated BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} by the melting of BaMgF{sub 4}:Eu{sup 2+}.

  6. Magnetic properties of mixed spinel BaTiO{sub 3}-NiFe{sub 2}O{sub 4} composites

    SciTech Connect

    Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal; Chakrabarti, Kaushik; De, S. K.; Mitra, Amitava

    2014-03-28

    Solid solution of nickel ferrite (NiFe{sub 2}O{sub 4}) and barium titanate (BaTiO{sub 3}), (100-x)BaTiO{sub 3}–(x) NiFe{sub 2}O{sub 4} has been prepared by solid state reaction. Compressive strain is developed in NiFe{sub 2}O{sub 4} due to mutual structural interaction across the interface of NiFe{sub 2}O{sub 4} and BaTiO{sub 3} phases. Quantitative analysis of X-ray diffraction and X-ray photo electron spectrum suggest mixed spinel structure of NiFe{sub 2}O{sub 4}. A systematic study of composition dependence of composite indicates BaTiO{sub 3} causes a random distribution of Fe and Ni cations among octahedral and tetrahedral sites during non-equilibrium growth of NiFe{sub 2}O{sub 4}. The degree of inversion decreases monotonically from 0.97 to 0.75 with increase of BaTiO{sub 3} content. Temperature dependence of magnetization has been analyzed by four sublattice model to describe complex magnetic exchange interactions in mixed spinel phase. Curie temperature and saturation magnetization decrease with increase of BaTiO{sub 3} concentration. Enhancement of strain and larger occupancy of Ni{sup 2+} at tetrahedral site increase coercivity up to 200 Oe. Magnetostructual coupling induced by BaTiO{sub 3} improves coercivity in NiFe{sub 2}O{sub 4}. An increase in the demagnetization and homogeneity in magnetization process in NiFe{sub 2}O{sub 4} is observed due to the interaction with diamagnetic BaTiO{sub 3}.

  7. Close correlation between magnetic properties and the soft phonon mode of the structural transition in BaFe2As2 and SrFe2As2

    DOE PAGESBeta

    Parshall, D.; Pintschovius, L.; Niedziela, Jennifer L.; Castellan, J. -P.; Lamago, D.; Mittal, R.; Wolf, Th.; Reznik, Dmitry

    2015-04-27

    Pmore » arent compounds of Fe-based superconductors undergo a structural phase transition from a tetragonal to an orthorhombic structure. We investigated the temperature dependence of the frequencies of TA phonons that extrapolate to the shear vibrational mode at the zone center, which corresponds to the orthorhombic deformation of the crystal structure at low temperatures in BaFe2As2 and SrFe2As2. We found that acoustic phonons at small wave vectors soften gradually towards the transition from high temperatures, tracking the increase of the size of slowly fluctuating magnetic domains. On cooling below the transition to base temperature the phonons harden, following the square of the magnetic moment (which we find is proportional to the anisotropy gap). Finally, our results provide evidence for close correlation between magnetic and phonon properties in Fe-based superconductors.« less

  8. Ba3Pt4Al4-Structure, Properties, and Theoretical and NMR Spectroscopic Investigations of a Complex Platinide Featuring Heterocubane [Pt4Al4] Units.

    PubMed

    Stegemann, Frank; Benndorf, Christopher; Bartsch, Timo; Touzani, Rachid St; Bartsch, Manfred; Zacharias, Helmut; Fokwa, Boniface P T; Eckert, Hellmut; Janka, Oliver

    2015-11-16

    Ba3Pt4Al4 was prepared from the elements in niobium ampules and crystallizes in an orthorhombic structure, space group Cmcm (oP44, a = 1073.07(3), b = 812.30(3), c = 1182.69(3) pm) isopointal to the Zintl phase A2Zn5As4 (A = K, Rb). The structure features strands of distorted [Pt4Al4] heterocubane-like units connected by condensation over Pt/Al edges. These are arranged in a hexagonal rod packing by further condensation over Pt and Al atoms with the barium atoms located inside cavities of the [Pt4Al4](δ-) framework. Structural relaxation confirmed the electronic stability of the new phase, while band structure calculations indicate metallic behavior. Crystal orbital Hamilton bonding analysis coupled with Bader effective charge analysis suggest a polar intermetallic phase in which strong Al-Pt covalent bonds are present, while a significant electron transfer from Ba to the [Pt4Al4](δ-) network is found. By X-ray photoelectron spectroscopy measurements the Pt 4f5/2 and 4f7/2 energies for Ba3Pt4Al4 were found in the range of those of elemental Pt due to the electron transfer of Ba, while PtAl and PtAl2 show a pronounced shift toward a more cationic platinum state. (27)Al magic-angle spinning NMR investigations verified the two independent crystallographic Al sites with differently distorted tetrahedrally coordinated [AlPt4] units. Peak assignments could be made based on both geometrical considerations and in relation to electric field gradient calculations. PMID:26536164

  9. Electrodynamic response in the electronic nematic phase of BaFe2As2

    NASA Astrophysics Data System (ADS)

    Mirri, C.; Dusza, A.; Bastelberger, S.; Chinotti, M.; Chu, J.-H.; Kuo, H.-H.; Fisher, I. R.; Degiorgi, L.

    2016-02-01

    We perform, as a function of uniaxial stress, a temperature-dependent optical-reflectivity investigation of the parent Fe-arsenide compound BaFe2As2 over a broad spectral range, from the far infrared up to the ultraviolet, across the coincident structural tetragonal-to-orthorhombic and spin-density-wave (SDW) phase transitions at Ts ,N=135 K. Our results provide knowledge to the complete electrodynamic response of the title compound over a wide energy range as a function of both tunable variables. For temperatures below Ts ,N, varying the uniaxial stress in situ affects the twin domain population and yields hysteretic behavior of the optical properties as the stress is first increased and then decreased, whereas for temperatures above Ts ,N the stress-induced optical anisotropy is reversible, as anticipated. In particular, by analyzing the low-frequency infrared response, we obtain detailed insight to the effects determining the intrinsic anisotropy of the (metallic) charge dynamics in the orthorhombic state, and similarly the induced one due to applied uniaxial stress at higher temperatures in the tetragonal phase. The low-frequency optical conductivity thus allows establishing a link to the d c transport properties and reveals that they are determined almost exclusively by changes in the Drude weight, therefore by the anisotropy in the Fermi surface parameters. Finally, we show that the spectral weight distribution in the SDW state occurs for energies below approximately 1 eV, and therefore points towards a correlation mechanism due to Hund's coupling rather than on-site Coulomb interactions.

  10. Pressure-Induced Mott Transition Followed by a 24-K Superconducting Phase in BaFe2S3

    NASA Astrophysics Data System (ADS)

    Yamauchi, Touru; Hirata, Yasuyuki; Ueda, Yutaka; Ohgushi, Kenya

    2015-12-01

    We performed high-pressure study for a Mott insulator BaFe2S3 , by measuring dc resistivity and ac susceptibility up to 15 GPa. We found that the antiferromagnetic insulating state at the ambient pressure is transformed into a metallic state at the critical pressure, Pc=10 GPa , and the superconductivity with the optimum Tc=24 K emerges above Pc. Furthermore, we found that the metal-insulator transition (Mott transition) boundary terminates at a critical point around 10 GPa and 75 K. The obtained pressure-temperature (P -T ) phase diagram is similar to those of the organic and fullerene compounds; namely, BaFe2S3 is the first inorganic superconductor in the vicinity of bandwidth control type Mott transition.

  11. High-resolution measurements of the thermal expansion of superconducting Co-doped BaFe2As2

    SciTech Connect

    Luz, M. S.; Neumeier, J. J.; Bollinger, R. K.; Sefat, A. S.; McGuire, Michael A; Jin, R.; Sales, Brian C; Mandrus, David

    2009-01-01

    High-resolution thermal expansion measurements of single crystalline BaFe{sub 1.84}Co{sub 0.16}As{sub 2} and BaFe{sub 1.77}Co{sub 0.23}As{sub 2} in the temperature range 5 < T < 300 K are reported. The thermal expansion is highly anisotropic, with the largest expansion along the c axis. Distinct anomalies are present at the normal-to-superconducting phase-transition temperature T{sub c}; the phase transition appears to be continuous. No structural transitions are observed over the temperature range of our measurements. The thermal expansion data and heat-capacity data acquired on the same specimens are used to estimate the volumetric pressure derivative of T{sub c} using the Ehrenfest relation.

  12. Magnetoelectric memory effect in the Y-type hexaferrite BaSrZnMgFe12O22

    NASA Astrophysics Data System (ADS)

    Wang, Fen; Shen, Shi-Peng; Sun, Young

    2016-08-01

    We report on the magnetic and magnetoelectric properties of the Y-type hexaferrite BaSrZnMgFe12O22, which undergoes transitions from a collinear ferrimagnetic phase to a proper screw phase at 310 K and to a longitudinal conical phase at 45 K. Magnetic and electric measurements revealed that the magnetic structure with spiral spin order can be modified by applying a magnetic field, resulting in magnetically controllable electric polarization.It was observed that BaSrZnMgFe12O22 exhibits an anomalous magnetoelectric memory effect: the ferroelectric state can be partially recovered from the paraelectric phase with collinear spin structure by reducing magnetic field at 20 K. We ascribe this memory effect to the pinning of multiferroic domain walls, where spin chirality and structure are preserved even in the nonpolar collinear spin state. Project supported by the National Natural Science Foundation of China (Grant Nos. 11534015 and 51371193).

  13. Effect of Uniaxial Strain on the Structural and Magnetic Phase Transitions in BaFe2As2

    SciTech Connect

    Dhital, Chetan; Yamani, Z; Tian, W.; Zeretsky, J; Safa-Sefat, Athena; Wang, Ziqiang; Birgeneau, R. J.; Wilson, Stephen

    2012-01-01

    We report neutron scattering experiments probing the influence of uniaxial strain on both the magnetic and structural order parameters in the parent iron pnictide compound, BaFe{sub 2}As{sub 2}. Our data show that modest strain fields along the in-plane orthorhombic b axis can affect significant changes in phase behavior simultaneous to the removal of structural twinning effects. As a result, we demonstrate in BaFe{sub 2}As{sub 2} samples detwinned via uniaxial strain that the in-plane C{sub 4} symmetry is broken by both the structural lattice distortion and long-range spin ordering at temperatures far above the nominal (strain-free) phase transition temperatures. Surprising changes in the magnetic order parameter of this system under relatively small strain fields also suggest the inherent presence of magnetic domains fluctuating above the strain-free ordering temperature in this material.

  14. Unification of the pressure and composition dependence of superconductivity in Ru substituted BaFe2As2

    NASA Astrophysics Data System (ADS)

    Devidas, T. R.; Mani, Awadhesh; Sharma, Shilpam; Vinod, K.; Bharathi, A.; Sundar, C. S.

    2014-05-01

    Temperature dependent high pressure electrical resistivity studies have been carried out on Ba(Fe1-x Rux)2As2 single crystals with x=0.12, 0.26 and 0.35, which correspond to under-doped, optimally doped and over-doped composition regimes, respectively. The evolution of structural/magnetic (TS-M) and superconducting transition (Tc) temperatures, with pressure for various compositions has been obtained. The normal state resistivity has been analyzed in terms of a model that incorporates both spin fluctuations and the opening of the gap in the spin density wave (SDW) phase. It is shown that Tc scales with the strength of the spin fluctuation, B, and TS-M scales with the SDW gap parameter, Δ. This provides a prescription for the unification of the composition and pressure induced superconductivity in BaFe2As2.

  15. Aging effect in magnetotransport property of oxygen adsorbed BaFe{sub 2}As{sub 2}

    SciTech Connect

    Ghosh, Nilotpal E-mail: nilotpal@vit.ac.in; Raj, Santhosh

    2015-06-24

    Presence of oxygen (O{sub 2}) has been found by Energy Dispersive X-ray Analysis (EDAX) on the surfaces of flux grown BaFe{sub 2}As{sub 2} single crystals which were kept in air ambience for several months. Transport studies show that the O{sub 2} adsorbed crystals are more resistive and do not display any sharp slope change near 140 K which is the well known Spin Density Wave (SDW) transition temperature (T{sub SDW}) accompanying structural transition for as grown BaFe{sub 2}As{sub 2}. An anomalous slope change in resistivity is observed around 18 K at 0 and 5T. Magnetoresistance (MR) is noticed to increase as a function of applied field (H) quite differently than that for as grown crystals below T{sub SDW} which may be attributed to aging effect.

  16. Mechanical milling assisted synthesis of Ba-Mn co-substituted BiFeO3 ceramics and their properties

    NASA Astrophysics Data System (ADS)

    Saravana Kumar, K.; Venkateswaran, C.; Kannan, D.; Tiwari, Brajesh; Ramachandra Rao, M. S.

    2012-10-01

    Samples of composition Bi1-xBaxFe1-xMnxO3 (x = 0, 0.1, 0.2) were synthesized by initial mixing of precursors by high-energy ball milling and subsequent sintering of the milled powders. The co-substitution of Ba-Mn controls the formation of impurity phases, as evident from x-ray diffraction analysis. Evidence of Fe in mixed oxidation states of +3 and +2 and Mn in +3 state is found from x-ray photoelectron spectroscopy. Electron microscopy exhibits a decrease in grain size due to inhibition in grain growth by Ba-Mn co-substitution. The magnetization value at 20 kOe increases as the percentage of substitution increases. The x = 0.2 sample exhibits a comparable and stable resistivity curve in the experimental temperature range and has a higher value of remanent polarization (Pr) when compared with the x = 0 sample.

  17. BaFe(2)Se(3) a high T(C) magnetic multiferroic with large ferrielectric polarization.

    PubMed

    Dong, Shuai; Liu, J-M; Dagotto, Elbio

    2014-10-31

    The iron selenides are important because of their superconducting properties. Here, an unexpected phenomenon is predicted to occur in an iron-selenide compound with a quasi-one-dimensional ladder geometry: BaFe(2)Se(3) should be a magnetic ferrielectric system, driven by its magnetic block order via exchange striction. A robust performance (high T(C) and large polarization) is expected. Different from most multiferroics, BaFe(2)Se(3) is ferrielectric, with a polarization that mostly cancels between ladders. However, its strong magnetostriction still produces a net polarization that is large (∼0.1  μC/cm(2)) as compared with most magnetic multiferroics. Its fully ferroelectric state, with energy only slightly higher than the ferrielectric, has a giant improper polarization ∼2-3  μC/cm(2). PMID:25396394

  18. Reoxidation of Aluminum in Fe- Al- M (M = C, Mn, and Ti) melts with CaO-Al2 O3-Fe t O (3 mass pct) slags

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Ro; Suito, Hideaki

    1996-06-01

    An Fe-0.01 to 0.5 mass pct Al alloy and an Fe-0.003 to 0.71 mass pct Al-1 mass pct M (M = C, Mn, and Ti) alloy were reoxidized with the CaO-Al2O3-FetO (3 mass pct) slags at 1873 K in an Al2O3 or CaO crucible for 5 and 60 minutes. The contents of acid-insoluble Al, total O, and alloying element M in metal as well as those of M and FetO in slag were measured as a function of total Al content. On the basis of the present and previous results for Fe- Al- Te alloys, the effect of alloying elements on the degree of supersaturation with respect to the Al2O3 precipitation was studied. As a result, the supersaturation phenomenon was observed in all experiments at 5 minutes, but in the experiments at 60 minutes, it was observed only in Fe- Al and Fe- Al- Ti alloys. No supersaturation was observed in the reoxidation of Si in Fe-0.13 to 0.98 mass pct Si alloys with the CaO-SiO2-FetO (3 mass pct) slags in a CaO crucible at 5 and 60 minutes.

  19. Bonding of WC with an iron aluminide (FeAl) intermetallic

    SciTech Connect

    Schneibel, J.H.; Subramanian, R.

    1996-08-01

    FeAl, which has high oxidation and sulfidation resistance, was shown to be thermodynamically compatible with WC. Calculations indicate that soly. of WC in liq. Fe-40at.%Al at 1450 C is about 2 at.%. Since liquid FeAl wets WC very well, the WC/FeAl system lends itself to liquid-phase sintering, resulting in close to theoretical densities. Almost fully dense cermets with 20.6 wt% FeAl binder were produced. With one-step infiltration, 98% dense cermets with only 7 wt% FeAl binder were fabricated. RT bend strengths and fracture toughness for WC-20.6 wt% FeAl reached 1680 MPa and 22 MPa{center_dot}m{sup 1/2}. Ductile binder fracture was observed on the fracture surfaces. Pores containing oxide inclusions were found, suggesting that improvements in processing are likely to further improve the mechanical properties. Insufficient process control may explain why WC/FeAlNi cermets did not show improved mechanical properties, although Ni strengthens FeAl. For WC bonded with FeAl, mechanical properties were measured at RT and 800 C. Bend strengths at 800 C in air increased with WC volume fraction, and fracture toughness were higher than at RT.

  20. Impact behavior of FeAl alloy FA-350

    SciTech Connect

    Alexander, D.J.

    1994-09-01

    The tensile properties and impact behavior of the iron aluminide FeAl-type alloy FA-350 [Fe-35.8Al-0.05Zr-0.24B (at. %)] have been studied over the temperature range of {minus}100 to 800C. Half-size Charpy specimens were either oil quenched from 700C or furnace cooled. The energy absorbed during the impact test showed a maximum value at 100 to 200C, with decreasing energy as the temperature was increased, for both heat treatments. The furnace-cooled material had greater energy absorption than the oil-quenched material. The tensile tests showed increasing ductility (as measured by total elongation) with increasing temperature. The furnace-cooled material had lower strength and higher ductility than the oil-quenched material. Fractographic examination of the oil-quenched impact specimens revealed that several different fracture modes operated, depending on the test temperature. Fracture occurred by intergranular and quasicleavage fracture at low temperatures, predominantly quasicleavage at intermediate temperatures, and intergranular fracture at 800C. For the furnace-cooled material fracture was predominantly quasicleavage at all temperatures. The higher ductility and energy absorption for the furnace-cooled material is believed to be the result of softening due to a decrease in the retained vacancy concentration.

  1. Weldability of Fe[sub 3]Al-type Aluminide

    SciTech Connect

    David, S.A.; Zacharia, T. )

    1993-05-01

    An investigation was carried out to determine the weldability of a series of Fe[sub 3]Al-type alloys. Autogenous welds were made on thin sheets of iron aluminide alloys using gas tungsten arc (GTA) and electron beam (EB) welding processes at different travel speeds and power levels. The results indicate that although these alloys can be successfully welded using the EB welding process, some compositions may hot crack during GTA welding. Boron and zirconium additions have been found to promote hot cracking in these alloys. Among the alloys investigated, Fe[sub 3]Al modified with chromium, niobium and carbon (FA-129) showed the most promise for good weldability. Hot-cracking severity of this alloy was further investigated using the Sigmajig test. The minimum threshold stress of 25 ksi measured is within the material range of other aluminides and some commercial stainless steels. Also, some of these alloys exhibited a tendency for cold cracking. This is related to severe hydrogen embrittlement associated with this class of alloys.

  2. Aliovalent Ba2+ doping: A way to reduce oxygen vacancy in multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Das, Rajasree; Sharma, Sucheta; Mandal, Kalyan

    2016-03-01

    This paper demonstrates the impact of Ba2+ substitution on the structural, dielectric relaxation and AC conductivity properties of Bi1-xBaxFeO3 (0 ≤ x ≤ 0.25) ceramics. Ba doping incorporates rhombohedral to tetragonal structural transformation in perovskite BFO. XPS data shows change in oxygen vacancy concentration with Ba doping and it also suggests that schoimetry of the doped compounds is not maintained by creating mix valance state of Fe. Reduction in oxygen vacancy (OVs) in the doped samples is explained by Kroger-Vink notation. Arrhenius plot shows activation energy for dielectric relaxation of the doped samples lies between ~1.16 and 1.44 eV. AC conductivity of material decreases as Ba ion substitution increases in the parent compound. Electrical conductivity is attributed to the correlated barrier hopping (CBH) motion of the oxygen vacancies in the samples. Coulombic potential barrier (WM) height, calculated from Elliott model for CBH motion of charge carriers shows correlation with the activation energy of AC conductivity at low temperature. Activation energy value obtained from the impedance measurements of the samples implies short range migration of oxygen vacancies dominates the frequency dependent conductivity while the frequency independent part of conductivity is the result of long range migration of oxygen vacancies.

  3. Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Bhasin, K. B.; Stan, M. A.; Kong, K. S.; Itoh, T.

    1992-01-01

    Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range.

  4. Structural and magnetic properties and superconductivity in Ba(Fe1-xTMx)2As2

    SciTech Connect

    Thaler, Alexander

    2012-01-01

    We studied the effects on structural and magnetic phase transitions and the emergence of superconductivity in transition metal substituted BaFe2As2. We grew four series of Ba(Fe1-xTM2)2As2 (TM=Ru, Mn, Co+Cr and Co+Mn) and characterized them by crystallographic, magnetic and transport measurements. We also subjected Ba(Fe1-xCrx)2As2 and Ba(Fe1-xCox)2As2 to heat treatment to explore what changes might be induced.

  5. Spin glass instead of superconductivity in Ba(Fe1-xCrx/2Nix/2)2As2

    NASA Astrophysics Data System (ADS)

    Xu, Sheng-Gao; Sun, Yun-Lei; Jiang, Shuai; Xing, Hui; Jiao, Lin; Yuan, Hui-Qiu; Feng, Chun-Mu; Xu, Zhu-An; Cao, Guang-Han

    2012-12-01

    We have studied an “isoelectronic” Fe-site doping with Cr and Ni in Ba(Fe1-xCrx/2Nix/2)2As2 system. With increasing x, the antiferromagnetic SDW in the parent compound is suppressed quickly. Spin glass state emerges in the range of 0.1 <= x < 0.2. The spin glass state evolves into cluster glass with further doping, and finally becomes ferromagnetism at x = 1.0. No superconductivity was observed down to 0.5 K. The electronic phase diagram is established, and the underlying physics is discussed.

  6. Disorder, critical currents, and vortex pinning energies in isovalently substituted BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Demirdiş, S.; Fasano, Y.; Kasahara, S.; Terashima, T.; Shibauchi, T.; Matsuda, Y.; Konczykowski, Marcin; Pastoriza, H.; van der Beek, C. J.

    2013-03-01

    We present a comprehensive overview of vortex pinning in single crystals of the isovalently substituted iron-based superconductor BaFe2(As1-xPx)2, a material that qualifies as an archetypical clean superconductor, containing only sparse strong pointlike pins [in the sense of C. J. van der Beek , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.66.024523 66, 024523 (2002)]. Widely varying critical current values for nominally similar compositions show that flux pinning is of extrinsic origin. Vortex configurations, imaged using the Bitter decoration method, show less density fluctuations than those previously observed in charge-doped Ba(Fe1-xCox)2As2 single crystals. Analysis reveals that the pinning force and energy distributions depend on the P content x. However, they are always much narrower than in Ba(Fe1-xCox)2As2, a result that is attributed to the weaker temperature dependence of the superfluid density on approaching Tc in BaFe2(As1-xPx)2. Critical current density measurements and pinning force distributions independently yield a mean distance between effective pinning centers L¯˜90 nm, increasing with increasing P content x. This evolution can be understood as being the consequence of the P dependence of the London penetration depth. Further salient features are a wide vortex free “Meissner belt”, observed at the edge of overdoped crystals, and characteristic chainlike vortex arrangements, observed at all levels of P substitution.

  7. Electrochemical properties of mixed conducting (La,M)(CoFe) oxide perovskites (M=3DSr, Ca, and Ba)

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.; Bates, J.L.

    1996-04-01

    Electrical properties and oxygen permeation properties of solid mixed-conducting electrolytes (La,M)(CoFe) oxide perovskites (M=3DSr, Ca, and Ba) have been characterized. These materials are potentially useful as passive membranes to separate high purity oxygen from air and as the cathode in a fuel cell. Dilatometric linear expansion measurements were performed as a function of temperature and oxygen partial pressure to evaluate the stability.

  8. Solidification Pathways of Alloys in the Mg-Rich Corner of the Mg-Al-Ba Ternary System

    NASA Astrophysics Data System (ADS)

    Bryan, Zachary L.; Hooper, Ryan J.; Henderson, Hunter B.; Manuel, Michele V.

    2015-04-01

    An experimental investigation of the solidification reactions and microstructures of alloys in the Mg-rich corner of the Mg-Al-Ba ternary system has been conducted. Four distinct exothermic reactions involving the formation of α-Mg, Mg17Ba2, Mg17Al12, and a fourth phase designated as τ were observed and their onset temperatures were recorded as functions of composition. Using compositional and microstructural analysis, the Mg17Ba2 intermetallic was found to have significant solubility of Al, up to 20 at. pct. The solidification pathways of the investigated alloys involved both a Class I and Class II equilibrium reaction. A flow block diagram that outlines the observed solidification reactions is presented and discussed in reference to cast microstructures.

  9. Magnetoresistivity and filamentary superconductivity in nickel-doped BaFe2As2

    NASA Astrophysics Data System (ADS)

    Wei, Zhang; Yao-Min, Dai; Bing, Xu; Run, Yang; Jin-Yun, Liu; Qiang-Tao, Sui; Hui-Qian, Luo; Rui, Zhang; Xing-Ye, Lu; Hao, Yang; Xiang-Gang, Qiu

    2016-04-01

    We present magnetotransport studies on a series of BaFe2‑x Ni x As2 (0.03 ≤ x ≤ 0.10) single crystals. In the underdoped (x = 0.03) non-superconducting sample, the temperature-dependent resistivity exhibits a peak at 22 K, which is associated with the onset of filamentary superconductivity (FLSC). FLSC is suppressed by an external magnetic field in a manner similar to the suppression of bulk superconductivity in an optimally-doped (x = 0.10) compound, suggesting the same possible origin as the bulk superconductivity. Our magnetoresistivity measurements reveal that FLSC persists up to the optimal doping and disappears in the overdoped regime where the long-range antiferromagnetic order is completely suppressed, pointing to a close relation between FLSC and the magnetic order. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821400, 2012CB921302, and 2015CB921303) and the National Natural Science Foundation of China (Grant Nos. 11274237, 91121004, 51228201, 11004238, and 11374011).

  10. Magnetic Ordering in BaFe_{11.9} In_{0.1} O_{19} Hexaferrite

    NASA Astrophysics Data System (ADS)

    Trukhanov, S. V.; Trukhanov, A. V.; Turchenko, V. O.; Kostishin, V. G.; Panina, L. V.; Kazakevich, I. S.; Balagurov, A. M.

    2016-07-01

    The crystal and magnetic structure by powder neutron diffractometry as well as the magnetic properties by vibration sample magnetometry for the BaFe_{11.9} In_{0.1} O_{19} polycrystalline sample have been performed in a wide temperature range from 10 up to 730 K and in magnetic field up to 14 T. The atomic coordinates and lattice parameters have been Rietveld refined. The Invar effect has been observed in the low-temperature range below 150 K. It was explained by the thermal oscillation anharmonicity of atoms. The increase of the microstress value with decreasing temperature has been defined from Rietveld refinement. It is established that the ferrimagnet-paramagnet phase transition is a standard second-order one. From the macroscopic magnetization measurement, the Curie temperature and ordered magnetic moment per nominal iron ion are obtained. From the microscopic diffraction measurement, the magnetic moments at different atomic position and total magnetic moment per iron ion have been defined at different temperatures. The most likely reasons and the mechanism of magnetic ordering are discussed.

  11. Preparation and radar absorptive properties of BaFe12O19 -coated glass fiber

    NASA Astrophysics Data System (ADS)

    Jia, F.; Xu, M.; Bao, H. Q.; Cui, K.; Zhang, F.

    2016-07-01

    Traditional passive jamming materials such as chaff and foil showed some limitations in use because they can only reflect the electromagnetic wave. Therefore, to develop a kind of absorptive passive jamming material to make up for deficiencies of traditional passive jamming materials and improve the jamming efficiency is of great significance. In this paper, the BaFe12O19-coated glass fiber, used as a kind of radar absorptive chaff, was prepared by sol-gel dip-coating method. The effects of heat treatment temperature, heat treatment time and coating times on film quality, tensile strength and attenuation efficiency of the samples were discussed. The study shows that an increase of the heat treatment temperature and an extension of the heat treatment time is conducive to the growth of barium ferrite grain, while they would introduce the loss of chaff strength at the same time. In addition, multi-coating process can improve the film quality and attenuation efficiency of the sample. Data show that the 10 times coated samples have a best reflectivity of (15GHz, -6.65dB) and the bandwidth of reflectivity lower than -5dB is11.8 GHz. According to the test results, the prepared material has certain attenuation efficiency in the range of 2GHz-18GHz, having a high practical value.

  12. Signatures of filamentary superconductivity in antiferromagnetic BaFe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Moseley, D.; Yates, K. A.; Branford, W. R.; Sefat, A. S.; Mandrus, D.; Stuard, S. J.; Salem-Sugui, S.; Ghivelder, L.; Cohen, L. F.

    2015-08-01

    In this paper, we present ac susceptibility and magnetotransport measurements on aged single crystals of the ferropnictide parent compound, BaFe2As2 with a paramagnetic-to-antiferromagnetic transition temperature of 134 K. The ac susceptibility shows the clear onset of a partial diamagnetic response with an onset temperature, commensurate with a subtle downturn in resistivity at approximately 20 K. Below 20 K the magnetotransport shows in-plane anisotropy, magnetic-field history dependence and a hysteretic signature. Above 20 K the crystals show the widely reported high-field linear magnetoresistance. An enhanced noise signature in ac susceptibility is observed above 20 K, which varies in character with amplitude and frequency of the ac signal. The hysteresis in magnetoresistance and the observed sensitivity of the superconducting phase to the amplitude of the ac signal are indicative characteristics of granular or weakly linked filamentary superconductivity. These features taken together with the observed noise signature above T{c} suggests a link between the formation of the superconducting filamentary phase and the freezing of antiphase domain walls, known to exist in these materials.

  13. ABO3 (A = La, Ba, Sr, K; B = Co, Mn, Fe) perovskites for thermochemical energy storage

    NASA Astrophysics Data System (ADS)

    Babiniec, Sean M.; Coker, Eric N.; Ambrosini, Andrea; Miller, James E.

    2016-05-01

    The use of perovskite oxides as a medium for thermochemical energy storage (TCES) in concentrating solar power systems is reported. The known reduction/oxidation (redox) active perovskites LaxSr1-xCoyMn1-yO3 (LSCM) and LaxSr1-xCoyFe1-yO3 (LSCF) were chosen as a starting point for such research. Materials of the LSCM and LSCF family were previously synthesized, their structure characterized, and thermodynamics reported for TCES operation. Building on this foundation, the reduction onset temperatures are examined for LSCM and LSCF compositions. The reduction extents and onset temperatures are tied to the crystallographic phase and reaction enthalpies. The effect of doping with Ba and K is discussed, and the potential shortcomings of this subset of materials families for TCES are described. The potential for long-term stability of the most promising material is examined through thermogravimetric cycling, scanning electron microscopy, and dilatometry. The stability over 100 cycles (450-1050 °C) of an LSCM composition is demonstrated.

  14. Structural and magnetic phase transitions near optimal superconductivity in BaFe2(As1-xPx)2

    DOE PAGESBeta

    Hu, Ding; Lu, Xingye; Zhang, Wenliang; Luo, Huiqian; Li, Shiliang; Wang, Peipei; Chen, Genfu; Han, Fei; Banjara, Shree R.; Sapkota, A.; et al

    2015-04-17

    In this study, we use nuclear magnetic resonance (NMR), high-resolution x-ray and neutron scattering to study structural and magnetic phase transitions in phosphorus-doped BaFe2(As1-xPx)2. Thus, previous transport, NMR, specific heat, and magnetic penetration depth measurements have provided compelling evidence for the presence of a quantum critical point (QCP) near optimal superconductivity at x = 0.3. However, we show that the tetragonal-to-orthorhombic structural (Ts) and paramagnetic to antiferromagnetic (AF, TN) transitions in BaFe2(As1-xPx)2 are always coupled and approach to TN ≈ Ts ≥ Tc (≈ 29 K) for x = 0.29 before vanishing abruptly for x ≥ 0.3. These results suggestmore » that AF order in BaFe2(As1-xPx)2 disappears in a weakly first order fashion near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP.« less

  15. Dielectric relaxation in 0-3 PVDF-Ba(Fe1/2Nb1/2)O3 composites

    NASA Astrophysics Data System (ADS)

    Chandra, K. P.; Singh, Rajan; Kulkarni, A. R.; Prasad, K.

    2016-05-01

    (1-x)PVDF-xBa(Fe1/2Nb1/2)O3 ceramic-polymer composites with x = 0.025, 0.05, 0.10, 0.15 were prepared using melt-mixing technique. The crystal symmetry, space group and unit cell dimensions were determined from the XRD data of Ba(Fe1/2Nb1/2)O3 using FullProf software, whereas crystallite size and lattice strain were estimated using Williamson-Hall approach. The distribution of Ba(Fe1/2Nb1/2)O3 particles in the PVDF matrix were examined on the cryo-fractured surfaces using a scanning electron microscope. Cole-Cole and pseudo Cole-Cole analysis suggested the dielectric relaxation in this system to be of non-Debye type. Filler concentration dependent real and imaginary parts of dielectric constant as well as ac conductivity data followed definite trends of exponential growth types of variation.

  16. Structural and dielectric properties of La and Ni-doped M-type BaFe12O19 ceramics

    NASA Astrophysics Data System (ADS)

    Sharma, Poorva; Kumar, Ashwini; Dube, Avinash; Li, Qi; Varshney, Dinesh

    2016-05-01

    BaFe12O19 and Ba0.98La0.02Fe12-xNixO19 (x = 0.02, 0.05) samples synthesized using solid-state reaction route crystallizes in hexagonal structure with space group P63/mmc as revealed from X-ray diffraction. A Raman spectrum shows seven strong and sharp modes at 291.9 (A1g), 410.4 (E2g), 496.09 (A1g), 611.3 (E2g), 681(A1g), 1048.0 (A1g+A1g) and 1313.3 cm-1 (A1g+E2g), identifying the presence of barium hexaferrite phase. The higher values of the dielectric constant at lower frequency and lower values at higher frequency indicate the dispersion due to interfacial polarization. Dielectric constant decreases as the doping concentration of Ni increases due to increase in band gap. A resonance peak has been observed in all three sample and is attributed to the fact that hopping frequency of charge carrier matches well with the frequency of the applied field. Henceforth, Ba0.98La0.02Fe12-xNixO19 (x = 0.02, 0.05) is suitable novel materials for microwave application with low dielectric constant and dielectric loss values.

  17. Sample pretreatment in the determination of specific alpha emitters in drinking water using [Ba+Fe]-coprecipitation method.

    PubMed

    Suarez-Navarro, J A; Pujol, Ll; Suarez-Navarro, M J

    2015-02-01

    The [Ba+Fe]-coprecipitation method is applied to measure gross alpha activity for radiological examination of drinking water in the laboratory. This method collects all the alpha-emitting radionuclides of interest (natural alpha emitters and transuranium elements) in a precipitate on a filter. This paper describes an investigation of sample pretreatment of the precipitate collected by the [Ba+Fe]-coprecipitation method for gross alpha activity determination. The aim of this preliminary work is to be a starting point to develop simple and rapid radiochemical procedures for specific alpha emitters (polonium, radium, thorium, uranium, plutonium and americium), in contrast to the sophisticated, expensive and time-consuming alpha spectrometry method. The sample pretreatment aspects considered include quantitative [Ba+Fe]-coprecipitation, two methods for precipitate treatment (leaching and complete destruction of the filter), and the determination of the alpha-emitting proportions present in the barium sulfate precipitate and acid solution obtained after precipitate treatment. Furthermore, a radiochemical procedure for (226)Ra determination was performed and finally, the sample pretreatment proposed in this work was summarized. PMID:25474768

  18. Low-loss Z-type hexaferrite (Ba3Co2Fe24O41) for GHz antenna applications

    NASA Astrophysics Data System (ADS)

    Lee, Woncheol; Hong, Yang-Ki; Park, Jihoon; LaRochelle, Gatlin; Lee, Jaejin

    2016-09-01

    We report a low magnetic loss Ba3Co2Fe24O41 (Co2Z) hexaferrite for use in gigahertz (GHz) antennas. Acid-etching was very effective in removal of unwanted Y-type hexaferrite (Ba2Co2Fe12O22) from calcined Co2Z powder. It is found that the calcined and acid etched (AE) Co2Z hexaferrite shows a low magnetic loss tangent (tan δμ) of 0.012 and 0.037 at 1 and 2 GHz, respectively. These low tan δμ are attributed to removal of Y-type hexaferrite, which possesses a lower anisotropy field (Hk) than W-type hexaferrite (BaCo2Fe16O27). The figure of merit (FOM) of the AE Co2Z hexaferrite is 141.7 and 48.7 at 1 and 2 GHz, respectively. These FOM are much higher than the FOM of previously reported low-loss magnetic materials. Therefore, the AE Co2Z hexaferrite can be a good candidate for GHz antenna application in the ultra-high frequency (UHF) band.

  19. Structural and magnetic properties of Vanadium Doped M- Type Barium Hexaferrite (BaFe12-xVxO19)

    NASA Astrophysics Data System (ADS)

    Awadallah, Ahmad; Mahmood, Sami H.; Maswadeh, Yazan; Bsoul, Ibrahim; Aloqaily, Aynour

    2015-10-01

    Precursor powders of barium hexaferrite doped with vanadium, BaFe12-xVxO19 with (x = 0.1, 0.2, 0.3, 0.4, 0.5), were prepared using the ball milling technique and then sintered at different temperatures for 2 h. The structural properties of the prepared samples were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the magnetic properties were examined by the vibrating sample magnetometry (VSM). XRD and SEM studies of the samples sintered at 1100° C indicated the presence of Ba3V2O8 and α-Fe2O3 non-magnetic oxide phases in addition to BaM hexaferrite phase. The fractions of the nonmagnetic oxide phases were found to increase with increasing x, and sintering the samples at temperatures higher than 1100° C was found to reduce the amounts of these non-magnetic phases only slightly. However, the addition of barium in excess of the stoichiometric ratio was found to remove the α-Fe2O3 oxide, and improve the saturation magnetization of the samples significantly. In addition, washing these samples with HCl was found to improve the saturation magnetization further. The effect of sintering the samples at higher temperatures was also found to reduce the coercivity due to growth of the particle size. However, the coercivity of all samples remained high enough for potential permanent magnet and magnetic recording applications.

  20. Enhanced multiferroic properties of BiFeO3 ceramics by Ba and high-valence Nb co-doping

    NASA Astrophysics Data System (ADS)

    Wu, M. S.; Huang, Z. B.; Han, C. X.; Yuan, S. L.; Lu, C. L.; Xia, S. C.

    2012-12-01

    Bi0.8Ba0.2Fe1-xNbxO3 (BBFNx) ceramics with x=0, 0.015 and 0.025 were prepared by a modified Pechini method. The formation of the desired materials was confirmed using X-ray diffraction. Nb substitution effectively suppressed the spiral spin structure and enhanced the ferromagnetic moment. Substitution with Nb also improved the ferroelectric polarization. As a result, enhanced multiferroic properties of Bi0.8Ba0.2Fe0.975Nb0.025O3 ceramics with remanent magnetization and polarization (Mr and Pr) of 3.69 emu/g and 1.34 μC/cm2, respectively, were obtained. The reduction of low-frequency dispersion in permittivity and loss due to Nb substitution in Bi0.8Ba0.2FeO3 was observed in its dielectric response curve. An anomaly in the dielectric constant was observed in the vicinity of the antiferromagnetic transition temperature. Nb Substitution was found to be helpful to reduce loss, especially at lower frequencies. In addition, an enhancement in remanent polarization after poling the samples with x=0.015 and 0.025 in the dc magnetic field was evidence of magnetoelectric coupling at room temperature.

  1. Structural changes and microstructures in stuffed tridymite-type compounds Ba1-xSrxAl2O4

    NASA Astrophysics Data System (ADS)

    Tanaka, Eri; Ishii, Yui; Tsukasaki, Hirofumi; Taniguchi, Hiroki; Mori, Shigeo

    2014-09-01

    Crystal structures and microstructures in Ba1-xSrxAl2O4 solid solutions between the end members of BaAl2O4 and SrAl2O4 have been carefully investigated by powder X-ray diffraction, electron diffraction and transmission electron microscopy (TEM) imaging experiments. With the help of fast Fourier transform (FFT) calculation, high-resolution TEM images suggested that diffuse streaks along three equivalent <110> directions in the (001) plane, which appear in the P63 structure of Ba1-xSrxAl2O4 for x = 0.4, originate from the large structural fluctuation of the AlO4 tetrahedral network. On the other hand, the monoclinic P21 structure in Ba1-xSrxAl2O4 with x = 0.7 was found to consist of a modulated structure with \\boldsymbol{{q}} = 0,1/2,0. The present experimental results reveal that a structural phase boundary exists at approximately x = 0.6 between the P63 structure with a large structural fluctuation and a monoclinic P21 phase with the single-q modulated structure.

  2. [Synthesis and properties of nanorod-long afterglow BaAl2O4:Eu2+, Dy3+ phosphor].

    PubMed

    He, Chun-hui; Zheng, Shu-hui; Xiao, Yong; Liu, Ying-liang

    2010-01-01

    The present paper mainly reports a new method to synthesize long afterglow photoluminescent material BaAl2O4:Eu2+, Dy3+. Al(NO3)3.9H2O, Ba(NO3)2, urea, RE(NO3) 3(RE==Eu, Dy) were employed as raw materials, the admixture of H2O/n-butanol and H2O/n-butanol/SBS were used as medium, then BaAl2O4:Eu2+, Dy3+ phosphor was achieved by calcining the precursor, which was synthesized by hydrothermal method, at 130 degrees C under reduction atmosphere. The TEM and SEM were used to analyse the morphology and BaAl2O4:Eu2+, Dy3+ synthesized by annealing at 1300 degrees C are all nanorods. The excitation and emission spectra of the phosphor indicated that all of them are broad band, and the main emission peak is around 498 nm, which is due to 5d-->4f transition of Eu2+. The state-solid synthesis of the long afterglow phosphor BaAl2O4:Eu2+, Dy3+ generally requires a high calcination temperature, so the products are easily agglomerated, and in this paper the hydrothermal solvothermal synthesis was used, so the synthesized products calcined at 130 degrees degrees C still present well-dispersed rod structure, need not milling, and display well luminescence performance. The authors compared the two different conditions of experiment, and found that under the condition without surfactant the authors can still get well-dispersed rod structure of BaAl2O4:Eu2+, Dy3+. The method is hopeful to be used in synthesizing other alkali-earth aluminate and silicate and other luminescent materials. PMID:20302073

  3. The effect of post annealing treatment on the citrate sol-gel derived nanocrystalline BaFe12O19 powder: structural, morphological, optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Brightlin, B. C.; Balamurugan, S.

    2016-05-01

    The nanocrystalline BaFe12O19 powders were obtained from citrate sol-gel combustion-derived powder upon annealing at 800-1100 °C, and explored their structural, micro-structural, optical and magnetic properties. The thermal decomposition of citrate sol-gel combustion product was verified by means of thermogravimetric and differential thermal analysis. Structural identification of the citrate sol-gel combustion powder and annealed samples were investigated by powder X-ray diffraction. Though the combustion product exhibits cubic spinel phase material, the annealed powder yields good quality nanocrystalline hexagonal BaFe12O19 phase materials. The thin plate-like flakes morphology with random particle sizes of ~100-200 nm with slightly agglomerated particles of BaFe12O19 phase is analyzed by high resolution scanning electron microscopy for the good quality annealed sample. Photoluminescence emission spectrum of BaFe12O19 material reveals broad emission peak at ~360 nm under the excitation wavelength of 270 nm. Interestingly, the near infrared relative reflectivity of the nanocrystalline BaFe12O19 materials obtained by citrate sol-gel synthesis method is higher than the nanocrystalline BaFe12O19 materials obtained by mechano-thermal and co-precipitation method. The present dark brown colored BaFe12O19 materials can be applied as a ceramic color pigment which includes several applications. The room temperature magnetic hysteresis loop of the annealed BaFe12O19 sample exhibits a ferromagnetic saturation magnetization, M s of 55.774 emu/g at 15 kOe.

  4. Adhesion of Escherichia coli to nano-Fe/Al oxides and its effect on the surface chemical properties of Fe/Al oxides.

    PubMed

    Liu, Zhao-Dong; Li, Jiu-Yu; Jiang, Jun; Hong, Zhi-Neng; Xu, Ren-Kou

    2013-10-01

    We investigated the adhesion of Escherichia coli to α-Fe2O3 and γ-Al2O3 and the effects of adhesion on the surface properties of the oxides in batch experiments, where we conducted potentiometric titration, zeta potential measurements, and FTIR spectroscopy. The adhesion isotherms fitted a Langmuir equation well. γ-Al2O3 had a higher adhesion capacity than α-Fe2O3 because of the higher positive charge on γ-Al2O3. The adhesion of E. coli to Fe/Al oxides decreased with increasing pH. Adhesion increased with increasing NaCl concentration, reaching its maximum at 0.05M for α-Fe2O3 and at 0.1M for γ-Al2O3, after which it decreased with further increases in NaCl concentration. Therefore, the electrostatic force plays an important role in the adhesion of E. coli to Fe/Al oxides. The zeta potential-pH curves of the binary-system fell between that for bacteria and those for Fe/Al oxides. Thus, overlapping of the diffuse layers of the electric double layers on the negatively-charged E. coli and positively-charged Fe/Al oxides reduced the effective surface charge density of the minerals and bacteria. E. coli adhesion decreased the point of zero salt effect and the isoelectric point of the Fe/Al oxides. The FTIR spectra indicated that non-electrostatic force also contributed to the interaction between E. coli and Fe/Al oxides, in addition to the electrostatic force between them. PMID:23732807

  5. Crystallographic and magnetic structure of the perovskite-type compound BaFeO2.5: unrivaled complexity in oxygen vacancy ordering.

    PubMed

    Clemens, Oliver; Gröting, Melanie; Witte, Ralf; Perez-Mato, J Manuel; Loho, Christoph; Berry, Frank J; Kruk, Robert; Knight, Kevin S; Wright, Adrian J; Hahn, Horst; Slater, Peter R

    2014-06-16

    We report here on the characterization of the vacancy-ordered perovskite-type structure of BaFeO2.5 by means of combined Rietveld analysis of powder X-ray and neutron diffraction data. The compound crystallizes in the monoclinic space group P2(1)/c [a = 6.9753(1) Å, b = 11.7281(2) Å, c = 23.4507(4) Å, β = 98.813(1)°, and Z = 28] containing seven crystallographically different iron atoms. The coordination scheme is determined to be Ba7(FeO4/2)1(FeO3/2O1/1)3(FeO5/2)2(FeO6/2)1 = Ba7Fe([6])1Fe([5])2Fe([4])4O17.5 and is in agreement with the (57)Fe Mössbauer spectra and density functional theory based calculations. To our knowledge, the structure of BaFeO2.5 is the most complicated perovskite-type superstructure reported so far (largest primitive cell, number of ABX2.5 units per unit cell, and number of different crystallographic sites). The magnetic structure was determined from the powder neutron diffraction data and can be understood in terms of "G-type" antiferromagnetic ordering between connected iron-containing polyhedra, in agreement with field-sweep and zero-field-cooled/field-cooled measurements. PMID:24901981

  6. Thermodynamic Assessment of the Aluminum Corner of the Al-Fe-Mn-Si System

    NASA Astrophysics Data System (ADS)

    Lacaze, Jacques; Eleno, Luiz; Sundman, Bo

    2010-09-01

    A new assessment of the aluminum corner of the quaternary Al-Fe-Mn-Si system has been made that extends beyond the COST-507 database. This assessment makes use of a recent, improved description of the ternary Al-Fe-Si system. In the present work, modeling of the Al-rich corner of the quaternary Al-Fe-Mn-Si system has been carried out by introducing Fe solubility into the so-called alpha-AlMnSi and beta-AlMnSi phases of the Al-Mn-Si system. A critical review of the data available on the quaternary system is presented and used for the extension of the description of these ternary phases into the quaternary Al-Fe-Mn-Si.

  7. Influence of testing environment on the room temperature ductility of FeAl alloys

    NASA Technical Reports Server (NTRS)

    Gaydosh, D. J.; Nathal, M. V.

    1990-01-01

    The effects of testing atmospheres (air, O2, N2, and vacuum) on the room-temperature ductility of Fe-40Al, Fe-40Al-0.5B, and Fe-50Al alloys were investigated. The results confirmed the decrease in room-temperature ductility of Fe-rich FeAl alloys by the interaction of the aluminide with water vapor, reported previously by Liu et al. (1989). The highest ductilities were measured in the atmosphere with the lowest moisture levels, i.e., in vacuum. It was found that significant ductility is still restricted to Fe-rich alloys (Fe-40Al), as the Fe-50Al alloy remained brittle under all testing conditions. It was also found that slow cooling after annealing was beneficial, and the effect was additive to the environmental effect. The highest ductility measurements in this study were 9 percent elongation in furnace-cooled Fe-40Al and in Fe-40Al-0.5B, when tested in vacuum.

  8. Strain induced enhancement of magnetization in Ba2FeMoO6 based heterostructure with (BaxSr1-x)TiO3

    NASA Astrophysics Data System (ADS)

    Kim, Kyeong-Won; Ghosh, Siddhartha; Buvaev, Sanal; Hebard, Arthur F.; Norton, David P.

    2016-05-01

    High quality epitaxial Ba2FeMoO6 thin films and Ba2FeMoO6-(BaxSr1-x)TiO3 bi-layer (BL) and superlattice (SL) structures were grown via pulsed laser deposition under low oxygen pressure, and their structural, magnetic, and magneto-transport properties were examined. Superlattice and bi-layer structures were confirmed by X-ray diffraction patterns. Low temperature magnetic measurement shows that the saturation magnetization (MS) is significantly higher for SLs and almost similar or lower for BLs, when compared to phase pure Ba2FeMoO6 thin films. The variation of the coercive field (HC) follows exact opposite trend, where BL samples have higher HC and SL samples have lower HC than pure Ba2FeMoO6 thin films. Also, a significant decrease of the Curie temperature is found in both BL and SL structures compared to pure Ba2FeMoO6 thin films. Negative magneto-resistance is seen in all the BL and SL structures as well as in pure Ba2FeMoO6 thin films. In contrast to the magnetic properties, the magneto-transport properties do not show much variation with induced strain.

  9. Structural investigation of the (010) surface of the Al13 Fe4 catalyst.

    PubMed

    Ledieu, J; Gaudry, É; Loli, L N Serkovic; Villaseca, S Alarcón; de Weerd, M-C; Hahne, M; Gille, P; Grin, Y; Dubois, J-M; Fournée, V

    2013-02-15

    We have investigated the structure of the Al(13)Fe(4)(010) surface using both experimental and ab initio computational methods. The results indicate that the topmost surface layers correspond to incomplete puckered (P) planes present in the bulk crystal structure. The main building block of the corrugated termination consists of two adjacent pentagons of Al atoms, each centered by a protruding Fe atom. These motifs are interconnected via additional Al atoms referred to as "glue" atoms which partially desorb above 873 K. The surface structure of lower atomic density compared to the bulk P plane is explained by a strong Fe-Al-Fe covalent polar interaction that preserves intact clusters at the surface. The proposed surface model with identified Fe-containing atomic ensembles could explain the Al(13)Fe(4) catalytic properties recently reported in line with the site-isolation concept [M. Armbrüster et al., Nat. Mater. 11, 690 (2012)]. PMID:25166385

  10. Oxidation Control of Atmospheric Plasma Sprayed FeAl Intermetallic Coatings Using Dry-Ice Blasting

    NASA Astrophysics Data System (ADS)

    Song, Bo; Dong, Shujuan; Coddet, Pierre; Hansz, Bernard; Grosdidier, Thierry; Liao, Hanlin; Coddet, Christian

    2013-03-01

    The performance of atmospheric plasma sprayed FeAl coatings has been remarkably limited because of oxidation and phase transformation during the high-temperature process of preparation. In the present work, FeAl intermetallic coatings were prepared by atmospheric plasma spraying combined with dry-ice blasting. The microstructure, oxidation, porosity, and surface roughness of FeAl intermetallic coatings were investigated. The results show that a denser FeAl coating with a lower content of oxide and lower degree of phase transformation can be achieved because of the cryogenic, the cleaning, and the mechanical effects of dry-ice blasting. The surface roughness value decreased, and the adhesive strength of FeAl coating increased after the application of dry-ice blasting during the atmospheric plasma spraying process. Moreover, the microhardness of the FeAl coating increased by 72%, due to the lower porosity and higher dislocation density.

  11. Mechanism of X-ray excited optical luminescence (XEOL) in europium doped BaAl2O4 phosphor.

    PubMed

    Rezende, Marcos V Dos S; Montes, Paulo J R; Andrade, Adriano B; Macedo, Zelia S; Valerio, Mário E G

    2016-06-29

    This paper reports a luminescence mechanism in Eu-doped BaAl2O4 excited with monochromatic X-rays (also known as X-ray excited optical luminescence - XEOL) from synchrotron radiation. The material was prepared via a proteic sol-gel methodology. The X-ray absorption near edge structures (XANES) at the Ba LIII- and Eu LIII-edges exhibit typical absorption spectra. XEOL spectra recorded in energy ranges, either around the Ba LIII- or Eu LIII-edges, showed important differences concerning the intensity of the Eu(2+) or Eu(3+) emission bands. Nevertheless, the total area under the XEOL spectra increases as the energy of the X-ray photons increases in both ranges (Ba LIII- and Eu LIII-edges). PMID:27306425

  12. Thermoelasticity of Fe3+- and Al-bearing bridgmanite: Effects of iron spin crossover

    NASA Astrophysics Data System (ADS)

    Shukla, Gaurav; Cococcioni, Matteo; Wentzcovitch, Renata M.

    2016-06-01

    We report ab initio (LDA + Usc) calculations of thermoelastic properties of ferric iron (Fe3+)- and aluminum (Al)-bearing bridgmanite (MgSiO3 perovskite), the main Earth forming phase, at relevant pressure and temperature conditions and compositions. Three coupled substitutions, namely, [Al]Mg-[Al]Si, [Fe3+]Mg-[Fe3+]Si, and [Fe3+]Mg-[Al]Si have been investigated. Aggregate elastic moduli and sound velocities are successfully compared with limited experimental data available. In the case of [Fe3+]Mg-[Fe3+]Si substitution, the high-spin (S = 5/2) to low-spin (S = 1/2) crossover in [Fe3+]Si induces a volume collapse and elastic anomalies across the transition region. However, the associated anomalies should disappear in the presence of aluminum in the most favorable substitution, i.e., [Fe3+]Mg-[Al]Si. Calculated elastic properties along a lower mantle model geotherm suggest that the elastic behavior of bridgmanite with simultaneous substitution of Fe2O3 and Al2O3 in equal proportions or with Al2O3 in excess should be similar to that of (Mg,Fe2+)SiO3 bridgmanite. However, excess of Fe2O3 should produce elastic anomalies in the crossover pressure region.

  13. Effect of nitrogen upon structural and magnetic properties of FePt in FePt/AlN multilayer structures

    SciTech Connect

    Gao, Tenghua Zhang, Cong; Sannomiya, Takumi; Muraishi, Shinji; Nakamura, Yoshio; Shi, Ji

    2014-09-01

    This paper investigates the effect of the addition of nitrogen in FePt layers for ultrathin FePt/AlN multilayer structures. X-ray diffraction results reveal that a compressive stress relaxation occurs after annealing owing to the release of interstitial nitrogen atoms in the FePt layers. The introduction of nitrogen also induces a large in-plane compressive strain during grain growth not seen in FePt deposited without nitrogen. This strain is considered to decrease the driving force for (111) grain growth and FePt ordering.

  14. Magnetostrictive behaviors of Fe-Al(001) single-crystal films under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Kawai, Tetsuroh; Abe, Tatsuya; Ohtake, Mitsuru; Futamoto, Masaaki

    2016-05-01

    Magnetostrictive behaviors of Fe100-x - Alx(x = 0 - 30 at.%)(001) single-crystal films under rotating magnetic fields are investigated along the two different crystallographic orientations, [100] and [110]. The behaviors of Fe and Fe90Al10 films show bath-tub like waveform along [100], easy magnetization axis, and triangular waveform along [110], hard magnetization axis, with respect to their four-fold magnetic anisotropy. On the other hand, the behaviors of Fe80Al20 film are different from those of Fe or Fe90Al10 film. The output of the film along [100] shows a strong magnetic field dependence. The Fe70Al30 film shows similar magnetostrictive behaviors along both [100] and [110] reflecting its magnetic properties, which are almost same for the both directions. The growth of ordered phase (B2) in Fe80Al20 and Fe70Al30 films is considered to have affected their magnetostrictive behaviors. The Al content dependence on λ100 and λ111 values shows similar tendency to that reported for the bulk samples but the values are slightly different. The Fe90Al10(001) single-crystal film shows a large magnetostriction along [100] under a very small magnetic field of 0.02 kOe, which is comparable to the saturated one, and changes the value abruptly in relation to the angle of applied magnetic field.

  15. Structure and high temperature oxidation of mechanical alloyed Fe-Al coating

    NASA Astrophysics Data System (ADS)

    Aryanto, Didik; Sudiro, Toto; Wismogroho, Agus S.

    2016-04-01

    The structure and high temperature oxidation resistance of Fe-Al coating on low carbon steel were investigated. The Fe-Al coating was deposited on the surface of low carbon steel using a mechanical alloying method. The coating was then annealed at 600°C for 2 hour in a vacuum of 5 Pa. The cyclic-oxidation tests of low carbon steel, Fe-Al coatings with and without annealing were performed at 600°C for up to 60h in air. The structure of oxidized samples was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy X-ray spectroscopy (EDS). The results show that the Fe-Al coatings exhibit high oxidation resistance compared to the uncoated steel. After 60 h exposure, the uncoated steel formed mainly Fe3O4 and Fe2O3 layers with the total thickness of around 75.93 µm. Fe-Al coating without annealing formed a thin oxide layer, probably (Fe,Al)2O3. Meanwhile, for annealed sample, EDX analysis observed the formation of two Fe-Al layers with difference in elements concentration. The obtained results suggest that the deposition of Fe-Al coating on low carbon steel can improve the oxidation resistance of low carbon steel.

  16. Nonlinear optical properties ofBaAlBO3F2 crystal.

    PubMed

    Zhou, Yong; Yue, Yinchao; Wang, Jianuo; Yang, Feng; Cheng, Xiankun; Cui, Dafu; Peng, Qinjun; Hu, Zhanggui; Xu, Zuyan

    2009-10-26

    We investigated the nonlinear optical properties of new BaAlBO(3)F(2)(BABF) crystal. The high quality BABF is nonhygroscopic and possesses a moderate birefringence suitable for UV light generation. On the basis of its refractive index dispersion curves, it is inferred that BABF has great potential applications nonlinear optical material, notably for UV light generation at 355 nm. In order to characterize its nonlinear optical properties, BABF samples were cut an oriented in phase matching conditions The optical conversion efficiency from 1064 nm to 532 nm was investigated for the first time: up to 49.0% were achieved. The external angular acceptance bandwidth of SHG and THG for 1064 nm pump light was measured. PMID:19997227

  17. Structural transformation and multiferroic properties of Ba-Mn co-doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Rout, Jyoshna; Choudhary, R. N. P.

    2016-01-01

    Pure BiFeO3 and Bi1-xBaxFe1-xMnxO3 (x = 0.10, 0.20) fine ceramics were synthesized using mechano-synthesis route. The influence of co-doping (Ba-Mn) on structural and multiferroic properties of BiFeO3 has been studied in different experimental conditions. X-ray diffraction patterns, Rietveld structural refinement of XRD patterns and Fourier transform infrared (FTIR) spectra reveal the structural transition from rhombohedral (R3c) to the biphasic structure (R3c + P4mm) on co-doping. The co-doping improves surface morphology and also reduces the particle size. The room temperature M-H loops of all samples showed antiferromagnetic/weak ferromagnetic behavior. Magnetoelectric coupling coefficient determination is carried out to reveal extent of intimate interaction between electric and magnetic dipoles interaction in the samples. Room temperature occurrence of ferromagnetism, ferroelectricity and magnetoelectric effect supports the observation of multiferroism and magnetoelectric coupling in BiFeO3. Thus, co-doping at Bi- and Fe-sites of BiFeO3 can improve multiferroic properties of BiFeO3 for various applications.

  18. RAPID COMMUNICATION: DC superconducting quantum interference devices fabricated using bicrystal grain boundary junctions in Co-doped BaFe2As2 epitaxial films

    NASA Astrophysics Data System (ADS)

    Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo

    2010-08-01

    DC superconducting quantum interference devices (dc-SQUIDs) were fabricated in Co-doped BaFe2As2 epitaxial films on (La, Sr)(Al, Ta)O3 bicrystal substrates with 30° misorientation angles. The 18 × 8 µm2 SQUID loop with an estimated inductance of 13 pH contained two 3 µm wide grain boundary junctions. The voltage-flux characteristics clearly exhibited periodic modulations with ΔV = 1.4 µV at 14 K, while the intrinsic flux noise of dc-SQUIDs was 7.8 × 10 - 5 Φ0 Hz - 1/2 above 20 Hz. The rather high flux noise is mainly attributed to the small voltage modulation depth which results from the superconductor-normal-metal-superconductor junction nature of the bicrystal grain boundary.

  19. Nanostructure evolution in joining of Al and Fe nanoparticles with femtosecond laser irradiation

    SciTech Connect

    Jiao, Z.; Huang, H.; Zhou, Y. E-mail: nzhou@uwaterloo.ca; Liu, L.; Hu, A.; Duley, W.; He, P. E-mail: nzhou@uwaterloo.ca

    2014-04-07

    The joining of Al-Fe nanoparticles (NPs) by femtosecond (fs) laser irradiation is reported in this paper. Fe and Al NPs were deposited on a carbon film in vacuum via fs laser ablation. Particles were then exposed to multiple fs laser pulses at fluences between 0.5 and 1.3 mJ/cm{sup 2}. Transmission Electron Microscopy (TEM) and Electron Diffraction X-ray observations indicate that Al and Fe NPs bond to each other under these conditions. For comparison, bonding of Al to Al and Fe to Fe NPs was also investigated. The nanostructure, as observed using TEM, showed that individual Al NPs were monocrystalline while individual Fe NPs were polycrystalline prior to joining and that these structures are retained after the formation of Al-Al and Fe-Fe NPs. Al-Fe NPs produced by fs laser joining exhibited a mixed amorphous and crystalline phase at the interface. Bonding is suggested to originate from intermixing within a region of high field intensity between particles.

  20. Characterization of Co2FeAl nanowires

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.; Pegg, I. L.; Philip, J.

    2011-03-01

    Heusler alloy, Co 2 FeAl (CFA) is a potentially useful material in the field of spintronics due to its high spin polarization. The CFA nanowires are grown for the first time by the electrospinning method. The diameters of the wires formed are ranging from 80 -- 100 nm. The structural characterization of the nanowires is done using X-Ray diffraction and Raman spectroscopy. The nanowires exhibit cubic structure with a lattice constant, a = 2.44 Å. Parallel arrays of nanowires are grown for magnetic characterization using electric field applied at the collector plate. The nanowires exhibit ferromagnetic behavior with a Curie temperature higher than 400 K. Nanoscale devices are fabricated with single CFA nanowire to understand the magnetotransport properties. This work has been supported by funding from NSF under CAREER Grant No. ECCS-0845501 and NSF-MRI, DMR-0922997.

  1. Concentric nano rings observed on Al-Cu-Fe microspheres

    NASA Astrophysics Data System (ADS)

    Li, Chunfei; Wang, Limin; Hampikian, Helen; Bair, Matthew; Baker, Andrew; Hua, Mingjian; Wang, Qiongshu; Li, Dingqiang

    2016-05-01

    It is well known that when particle size is reduced, surface effect becomes important. As a result, micro/nanoparticles tend to have well defined geometric shapes to reduce total surface energy, as opposed to the irregular shapes observed in most bulk materials. The surface of such micro/nanostructures are smooth. Any deviation from a smooth surface implies an increased surface energy which is not energetically favorable. Here, we report an observation of spherical particles in an alloy of Al65Cu20Fe15 nominal composition prepared by arc melting. Such spherical particles stand out from those reported so far due to the decoration of concentric nanorings on the surface. Three models for the formation of these concentric ring patterns are suggested. The most prominent ones assume that the rings are frozen features of liquid motion which could open the door to investigate the kinetics of liquid motion on the micro/nanometer scale.

  2. The unusual chemical bonding and thermoelectric properties of a new type Zintl phase compounds Ba3Al2As4

    NASA Astrophysics Data System (ADS)

    Yang, Gui; Zhang, Guangbiao; Wang, Chao; Wang, Yuanxu

    2016-07-01

    Ba3Al2As4 exhibits an unusual anisotropic electrical conductivity, that is, the electrical conductivity along the chain is smaller than those along other two directions. The results is conflict with previous conclusion for Ca5M2Pn6. Earlier studies on Ca5M2Pn6 showed that a higher electrical conductivity could be obtained along the chain. The band decomposed charge density is used to explain such unusual behavior. Our calculations indicate the existence of a conductive pathway near the Fermi level is responsible for the electrons transport. Further, the Ba-As bonding of Ba3Al2As4 has some degree covalency which is novel for the Zintl compounds.

  3. Research and analysis on the thin films sputtered by the Ba-Al-S:Eu target fabricated by powder sintering

    NASA Astrophysics Data System (ADS)

    Zhang, Dongpu; Xu, Fang; Yu, Zhinong; Xue, Wei

    2014-11-01

    Europium-doped barium thioaluminate (BaAl2S4:Eu) is currently the most efficient blue phosphor for inorganic thin film electroluminescent (iEL) device. To produce the full-color EL device, several kinds of blue-emitting layer were attempted and tested. As a key point of blue-emitting layer fabrication, single target sputtering deposition is an effective method. In this work, new structural target is introduced and the fabricated process is expatiated. The PL spectra of as fabricated targets show that both of two, 3mol% and 5mol% europium-doped, have blue emitting property. According to the PL spectra excited by 290nm, 300nm and 320nm ultraviolet, emission peaks located in the region near 470nm. So the as-fabricated targets can be used in single target sputtering deposition on thin film of BaAl2S4:Eu. XRD pattern indicates that there are 4 different phases, barium tetraaluminum sulfide (BaAl4S7), barium sulfide (BaS), europium sulfide (EuS) and barium aluminum oxide (BaAl2O4), in target 1. Besides these four compounds, other two phases, aluminum sulfide (Al2S3) and barium thioaluminate (BaAl2S4), are detected in target 2. Considering the analysis results, especially the hydrolyzation of Al2S3, target 1 is more suitable for sputtering deposition of BaAl2S4:Eu thin film. XPS and X-ray Fluorescence patterns describe the precise molar ratio of each element. In target 1 the relative atom concentration of barium, aluminum, sulfur and oxygen can be calculated from the pattern and molar ratio is about 9:33:41:17. Molar ratio of barium and europium is about 1:0.03. In short, the barium thioaluminate doped by europium sputtering target 1 is better to be applied in the fabrication of blue-emitting layer in inorganic electro-luminescent devices.

  4. Structural Investigation of the (010) Surface of the Al13Fe4 Catalyst

    NASA Astrophysics Data System (ADS)

    Ledieu, J.; Gaudry, É.; Loli, L. N. Serkovic; Villaseca, S. Alarcón; de Weerd, M.-C.; Hahne, M.; Gille, P.; Grin, Y.; Dubois, J.-M.; Fournée, V.

    2013-02-01

    We have investigated the structure of the Al13Fe4(010) surface using both experimental and ab initio computational methods. The results indicate that the topmost surface layers correspond to incomplete puckered (P) planes present in the bulk crystal structure. The main building block of the corrugated termination consists of two adjacent pentagons of Al atoms, each centered by a protruding Fe atom. These motifs are interconnected via additional Al atoms referred to as “glue” atoms which partially desorb above 873 K. The surface structure of lower atomic density compared to the bulk P plane is explained by a strong Fe-Al-Fe covalent polar interaction that preserves intact clusters at the surface. The proposed surface model with identified Fe-containing atomic ensembles could explain the Al13Fe4 catalytic properties recently reported in line with the site-isolation concept [M. Armbrüster , Nat. Mater. 11, 690 (2012)NMAACR1476-1122].

  5. Structural characterization of a new vacancy ordered perovskite modification found for Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.333}F{sub 0.333}): Towards understanding of vacancy ordering for different perovskite-type ferrites

    SciTech Connect

    Clemens, Oliver

    2015-05-15

    The new vacancy ordered perovskite-type compound Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.33}F{sub 0.33}) was prepared by topochemical low-temperature fluorination of Ba{sub 2}Fe{sub 2}O{sub 5} (BaFeO{sub 2.5}) using stoichiometric amounts of polyvinylidene difluoride (PVDF). The vacancy order was found to be unique so far for perovskite compounds, and the connectivity pattern can be explained by the formula Ba{sub 3}(FeX{sub 6/2}) (FeX{sub 5/2}) (FeX{sub 3/2}X{sub 1/1}), with X=O/F. Mössbauer measurements were used to confirm the structural analysis and agree with the presence of Fe{sup 3+} in the above mentioned coordination environments. Group–subgroup relationships were used to build a starting model for the structure solution and to understand the relationship to the cubic perovskite structure. Furthermore, a comparison of a variety of vacancy-ordered iron-containing perovskite-type structures is given, highlighting the factors which favour one structure type over the other depending on the composition. - Graphical abstract: The crystal structure of Ba{sub 3}Fe{sub 3}O{sub 7}F in comparison to other perovskite type ferrites. - Highlights: • The crystal structure of Ba{sub 3}Fe{sub 3}O{sub 7}F in comparison to other perovskite type ferrites. • Ba{sub 3}Fe{sub 3}O{sub 7}F was synthesized by low temperature fluorination of Ba{sub 2}Fe{sub 2}O{sub 5}. • Ba{sub 3}Fe{sub 3}O{sub 7}F shows a unique vacancy order not found for other perovskite type compounds. • The structure of Ba{sub 3}Fe{sub 3}O{sub 7}F was solved using group–subgroup relationships. • A systematic comparison to other ferrite type compounds reveals structural similarities and differences. • The A-site coordination of the cation is shown to play an important role for the type of vacancy order found.

  6. Laser soldering of sapphire substrates using a BaTiAl6O12 thin-film glass sealant

    NASA Astrophysics Data System (ADS)

    de Pablos-Martin, A.; Tismer, S.; Benndorf, G.; Mittag, M.; Lorenz, M.; Grundmann, M.; Höche, Th.

    2016-07-01

    Two sapphire substrates are tightly bonded through a BaTiAl6O12-glass thin film, by irradiation with a nanosecond laser. After the laser process, the composition of the glass sealant changes, due to incorporation of Al2O3 from the upper substrate. After annealing of the bonded samples (950 °C for 30 minutes) crystalline structures are observed by TEM which are attributed to crystalline BaTiAl6O12. These crystals together with Al2O3:Ti centers are the responsible of the observed strong blue luminescence of the laser irradiated region upon UV excitation. The structural and optical characterizations of the bonded samples clarify the laser soldering procedure as well as the origin of the luminescence. Bond quality and bond strength were evaluated by scanning acoustic microscopy (SAM) and tensile tests, which results in a tensile stress of nearly 13 MPa, which is an acceptable value for glass sealants.

  7. Magnetic and Microwave Absorbing Properties of Electrospun Ba (1- x) La xFe 12O 19 Nanofibers

    NASA Astrophysics Data System (ADS)

    Li, Cong-Ju; Wang, Bin; Wang, Jiao-Na

    2012-04-01

    Ba(1-x)LaxFe12O19 (0.00≤x≤0.10) nanofibers were fabricated via the electrospinning technique followed by heat treatment at different temperatures for 2 h. Various characterization methods including scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and microwave vector network analyzer were employed to investigate the morphologies, crystalline phases, magnetic properties, and complex electromagnetic parameters of nanofibers. The SEM images indicate that samples with various values of x are of a continuous fiber-like morphology with an average diameter of 110±20 nm. The XRD patterns show that the main phase is M-type barium hexaferrite without other impurity phases when calcined at 1100 °C. The VSM results show that coercive force (Hc) decreases first and then increases, while saturation magnetization (Ms) reveals an increase at first and then decreases with La3+ ions content increase. Both the magnetic and dielectric losses are significantly enhanced by partial substitution of La3+ for Ba2+ in the M-type barium hexaferrites. The microwave absorption performance of Ba0.95La0.05Fe12O19 nanofibers gets significant improvement: The bandwidth below -10 dB expands from 0 GHz to 12.6 GHz, and the peak value of reflection loss decreases from -9.65 dB to -23.02 dB with the layer thickness of 2.0 mm.

  8. Combustion Synthesized Cr3+-doped-BaMgAl10O17 Phosphor: An Electron Paramagnetic Resonance and Optical Study

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Sivaramaiah, G.; Rao, J. L.; Srivastava, Anoop K.; Ravikumar, R. V. S. S. N.; Dhoble, S. J.; Singh, P. K.; Mohapatra, Manoj

    2016-01-01

    BaMgAl10O17 phosphors doped with Cr3+ ions were prepared by a combustion route at a furnace temperature of 773 K. The X-ray diffraction pattern revealed that the BaMgAl10O17 phosphor was in a hexagonal phase. Energy-dispersive X-ray mapping images demonstrated the presence of the dopant ion in the BaMgAl10O17 matrix. The bands observed in the optical absorption spectrum were characteristic of Cr3+ ions in octahedral geometry. Upon 555-nm excitation, an intense narrow red emission line centred at 690 nm due to the 2Eg → 4A2g transition of Cr3+ ions was observed. The electron paramagnetic resonance (EPR) spectrum of Cr3+ ions in BaMgAl10O17 phosphor showed multiple absorption bands having at least 6 g values. Based on the EPR data, various parameters such as the absolute number of spins, Gibbs potential, magnetic susceptibility and magnetic moments, Curie constant, etc., for the system were evaluated.

  9. [Influence of Eu2+ content on the spectral characteristics of BaMgAl10O17 : Eu2+ phosphors].

    PubMed

    Chen, Zhe; Xie, Hong; Yan, You-Wei

    2007-04-01

    Nanocrsytalline Ba(1-x)MgAl10O17 : xEu2+ (0.05 < or = x < or = 0.4) blue-emitting phosphor was successfully prepared by low-temperature combustion synthesis. The influence of different Eu content on the spectral characteristics of Ba(1-x) MgAl10O17 : xEu2+ was mainly investigated. The results of XRD and SEM analysis show that the sample is single phase and its average grain size is about 30 nm. The luminescence property of Ba(1-x)MgAl10O17 : xEu2+ phosphor is considerably influenced by Eu2+ concentration. In an appropriate Eu2+ doping concentration range, the intensity of the fluorescence of Ba(1-x)MgAl10O17 : xEu2+ was increased obviously with increasing the Eu2+ doping concentration, owing to adding the number of luminescent centers and enhancing the energy transfer between Eu2+ ions. The optimum emission intensity was reached at x = 0.2. However, as the Eu2+ doping concentration was higher than 0.2, the intensity of the fluorescence was reduced, due to the concentration quenching occurrence. PMID:17608168

  10. Optical properties of heusler alloys Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa

    NASA Astrophysics Data System (ADS)

    Shreder, E. I.; Svyazhin, A. D.; Belozerova, K. A.

    2013-11-01

    The results of an investigation of optical properties and the calculations of the electronic structure of Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa Heusler alloys are presented. The main focus of our attention is the study of the spectral dependence of the real part (ɛ1) and imaginary part (ɛ2) of the dielectric constant in the range of wavelengths λ = 0.3-13 μm using the ellipsometric method. An anomalous behavior of the optical conductivity σ(ω) has been found in the infrared range in the Co2CrAl and Co2CrGa alloys, which differs substantially from that in the Co2FeSi and Co2FeAl alloys. The results obtained are discussed based on the calculations of the electronic structure.

  11. Transport and magnetotransport properties across the two-step Verwey transition in BaGdFe2 O5+w

    NASA Astrophysics Data System (ADS)

    Lindén, J.; Karen, P.; Nakamura, J.; Karppinen, M.; Yamauchi, H.

    2006-02-01

    Magnetoresistance, electrical transport, and magnetic properties associated with a two-step Verwey-type transition in BaGdFe2O5+w (-0.015Fe2.5+ into Fe2.5-γ and Fe2.5+γ upon cooling through the transition temperature Tp and charge ordering into Fe2+ and Fe3+ at TV are manifested in electrical-conductivity and Seebeck-coefficient data. Above TV , electrical conductivity shows an activated hopping behavior with activation energy of ˜0.13eV . Seebeck measurements identify holes as charge carriers below TV . Above TV , both holes and valence-mixing electrons need to be considered, although the Seebeck coefficient remains positive up to room temperature. This suggests that the activation energy for electrons is higher than that for holes, and the actual value is close to that obtained from conductivity data. Increasing w increases electrical conductivity and decreases Seebeck coefficient in the charge-ordered state. In the valence-mixed state, increasing w increases Seebeck coefficient, but conductivity increases only up to w≈0.1 , from which the decay of the valence mixing takes over and conductivity begins to approach values extrapolated from the charge-ordered state. Magnetoresistance peaks with negative ratio up to ˜2% are observed, corresponding to a small magnetic-susceptibility change at TV .

  12. Effects of Interfacial Layers Fracture on the Dissolution Mechanism of Solid Fe in Liquid Al

    NASA Astrophysics Data System (ADS)

    Rezaei, H.; Akbarpour, M. R.; Shahverdi, H. R.

    2015-07-01

    Solid Fe and liquid Al interaction was studied in the temperature range of 750-900°C by immersion tests in the absence of convection to better understand interfacial reactions during the first instances of immersion (10-80 s). Solidified interface profiles were characterized using a scanning electron microscope and an electron probe micro-analyzer. The results showed the formation of a transition layer with a composition close to pure Fe on the Fe side as a result of Al diffusion from the melt into the solid at initial times of the immersion test, before the formation of an intermetallic compound. At longer immersion times, two intermetallic layers were observed, Fe2Al5 and FeAl3. With increasing immersion time, the intermetallic compounds were thickened, and cracks formed at the interface layers. The formation of cracks accelerated the fracture of the interfacial layers and enhanced the Al diffusion toward solid Fe. As a result of the detachment and dissolution of the intermetallic phases in liquid Al, precipitates of FeAl3 with needle-like morphology were found in the Al phase. A model is proposed for the interface reaction of solid Fe with liquid Al at the first instance of immersion.

  13. Synthesis of BaTiO[subscript 3]-20wt%CoFe[subscript 2]O[subscript 4] Nanocomposites via Spark Plasma Sintering

    SciTech Connect

    Ghosh, Dipankar; Han, Hyuksu; Nino, Juan C.; Subhash, Ghatu; Jones, Jacob L.

    2012-10-23

    Barium titanate-20wt% cobalt ferrite (BaTiO{sub 3}-20wt%CoFe{sub 2}O{sub 4}) nanocomposites were sintered from nanocrystalline BaTiO{sub 3} and CoFe{sub 2}O{sub 4} powders using spark plasma sintering (SPS) and pressureless sintering (PS) techniques. Using SPS, dense polycrystalline composites were obtained at a sintering temperature as low as 860 C and a time of 5 min whereas PS required a higher sintering temperature (1150 C) and time (120 min) to obtain similarly dense composites. Microstructural analysis of the composites showed that both the techniques retained nanocrystalline grain sizes after sintering. High resolution X-ray diffraction measurements revealed that the BaTiO{sub 3}-20wt%CoFe{sub 2}O{sub 4} composites sintered by the SPS technique did not exhibit formation of any new phase(s) due to reaction between the BaTiO{sub 3} and CoFe{sub 2}O{sub 4} phases during sintering. However, the PS technique resulted in the formation of additional phases (other than the BaTiO{sub 3} and CoFe{sub 2}O{sub 4} phases) in the composites. While the composites synthesized by SPS were of superior phase-purity, evidence of Fe diffusion from the spinel to the perovskite phase was found from X-ray diffraction and permittivity measurements.

  14. Uniaxial pressure effect on structural and magnetic phase transitions in NaFeAs and its comparison with as-grown and annealed BaFe2As2

    SciTech Connect

    Song, Yu; Carr, Scott Victor; Lu, Xingye; Zhang, Chenglin; Luttrell, N.F.; Zhao, Yang; Lynn, J. W.; Dai, Pengcheng; Sims, Zachary; Chi, Songxue

    2013-01-01

    We use neutron scattering to study the effect of uniaxial pressure on the tetragonal-toorthorhombic structural (Ts) and paramagnetic-to-antiferromagnetic (TN) phase transitions in NaFeAs and compare the outcome with similar measurements on as-grown and annealed BaFe2As2. In previous work on as-grown BaFe2As2, uniaxial pressure necessary to detwin the sample was found to induce a significant increase in zero pressure TN and Ts. However, we find that similar uniaxial pressure used to detwin NaFeAs and annealed BaFe2As2 has a very small effect on their TN and Ts. Since transport measurements on these samples still reveal resistivity anisotropy above TN and Ts, we conclude that such anisotropy cannot be due to uniaxial strain induced TN and Ts shifts, but must arise from intrinsic electronic anisotropy in these materials.

  15. In situ generated dense shell-engaged Ostwald ripening: A facile controlled-preparation for BaFe{sub 12}O{sub 19} hierarchical hollow fiber arrays

    SciTech Connect

    Mou Fangzhi; Guan Jianguo; Sun Zhigang; Fan Xian; Tong Guoxiu

    2010-03-15

    This paper describes a simple and convenient approach to fabricate BaFe{sub 12}O{sub 19} hierarchical hollow fibers or hollow fiber arrays by heat-treating electrospun solid fibers or fiber arrays using a deliberately devised two-step heat-treatment process, in which the dense shells generated in situ during the short-time pre-treatment procedure direct Ostwald ripening of flake-shaped BaFe{sub 12}O{sub 19} nanocrystals in the elevated temperature heat-treatment procedure. The heat-treatment temperature has a strong effect on the structure and magnetic properties of the BaFe{sub 12}O{sub 19} hierarchical hollow fibers and the resulting BaFe{sub 12}O{sub 19} hierarchical hollow fiber arrays show a slight magnetic anisotropy as well as high coercivity. The in situ generated dense shell-engaged directing Ostwald ripening approach reported here can be readily extended to fabricate other metal oxides hollow fibers, and the resulting BaFe{sub 12}O{sub 19} hierarchical hollow fibers or hollow fiber arrays are promised to have use in a number of applications that involve microwave absorber, magnetic separation, and so forth. - Graphical abstract: This paper described a simple and convenient approach that allows for the facile fabrication of BaFe{sub 12}O{sub 19} hierarchical nanotubes or nanotube arrays by a deliberately devised two-step heat-treatment process, in which the dense shells generated in situ during the short-time pre-treatment procedure direct Ostwald ripening of flake-shaped BaFe{sub 12}O{sub 19} nanocrystals in the elevated temperature heat-treatment procedure.

  16. A Fluctuating State in the Framework Compounds (Ba,Sr)Al2O4

    PubMed Central

    Ishii, Yui; Tsukasaki, Hirofumi; Tanaka, Eri; Mori, Shigeo

    2016-01-01

    The structural fluctuation in hexagonal Ba1−xSrxAl2O4 with a corner-sharing AlO4 tetrahedral network was characterized at various temperatures using transmission electron microscopy experiments. For x ≤ 0.05, soft modes of q ~ (1/2, 1/2, 0) and equivalent wave vectors condense at a transition temperature (TC) and form a superstructure with a cell volume of 2a × 2b × c. However, TC is largely suppressed by Sr-substitution, and disappears for x ≥ 0.1. Furthermore, the q ~ (1/2, 1/2, 0) soft mode deviates from the commensurate value as temperature decreases and survives in nanoscaled regions below ~200 K. These results strongly suggest the presence of a new quantum criticality induced by the soft mode. Two distinct soft modes were observed as honeycomb-type diffuse scatterings in the high-temperature region up to 800 K. This intrinsic structural instability is a unique characteristic of the framework compound and is responsible for this unusually fluctuating state. PMID:26758625

  17. A Fluctuating State in the Framework Compounds (Ba,Sr)Al2O4

    NASA Astrophysics Data System (ADS)

    Ishii, Yui; Tsukasaki, Hirofumi; Tanaka, Eri; Mori, Shigeo

    2016-01-01

    The structural fluctuation in hexagonal Ba1-xSrxAl2O4 with a corner-sharing AlO4 tetrahedral network was characterized at various temperatures using transmission electron microscopy experiments. For x ≤ 0.05, soft modes of q ~ (1/2, 1/2, 0) and equivalent wave vectors condense at a transition temperature (TC) and form a superstructure with a cell volume of 2a × 2b × c. However, TC is largely suppressed by Sr-substitution, and disappears for x ≥ 0.1. Furthermore, the q ~ (1/2, 1/2, 0) soft mode deviates from the commensurate value as temperature decreases and survives in nanoscaled regions below ~200 K. These results strongly suggest the presence of a new quantum criticality induced by the soft mode. Two distinct soft modes were observed as honeycomb-type diffuse scatterings in the high-temperature region up to 800 K. This intrinsic structural instability is a unique characteristic of the framework compound and is responsible for this unusually fluctuating state.

  18. Classification of the electronic correlation strength in the iron pnictides: The case of the parent compound BaFe2As2

    SciTech Connect

    Efremov, Alexander

    2009-01-01

    Electronic correlations in the Fe-pnictide BaFe{sub 2}As{sub 2} are explored within LDA+DMFT, the combination of density functional theory with dynamical mean-field theory. While the correlated band structure is substantially renormalized there is only little transfer of spectral weight. The computed k-integrated and k-resolved spectral functions are in good agreement with photoemission spectroscopy (PES) and angular resolved PES experiments. Making use of a general classification scheme for the strength of electronic correlations we conclude that BaFe{sub 2}As{sub 2} is a moderately correlated system.

  19. The effect of Ti addition on oxidation behavior of FeAl intermetallic alloy

    SciTech Connect

    Li, D.; Lin, D.

    1997-12-31

    The influence of Ti addition on the high temperature oxidation behaviors of FeAl intermetallic alloys in air at 1,000 C and 1,100 C have been investigated. The oxidation kinetics of FeAl alloys were examined by the weight gain method and oxide products were examined by XRD, SEM, EDS and EPMA. The results showed that the oxidation kinetic curves of both Ti-doped and binary Fe-36.5Al alloys were described as different parabolas followed the formula: ({Delta}W/S){sup 2} = K{sub p}t. The parabolic rate constant, K{sub p} values are about 2.4 and 3.3 mg{sup 2}cm{sup {minus}4}h{sup {minus}1} for Fe-36.5Al alloy and about 1.3 and 2.0 mg{sup 2}cm{sup {minus}4}h{sup {minus}1} for Fe-36.5Al-2Ti alloy when oxidizing at 1,000 C and 1,100 C respectively. The difference between Fe-36.5Al and Fe-36.5Al-2Ti alloy is not only in the surface morphology but also in the phase components. In the surface there is only {alpha}-Al{sub 2}O{sub 3} oxide for the Fe-36.5Al alloy while there are {alpha}-Al{sub 2}O{sub 3} and TiO oxide for the Fe-36.5Al-2Ti alloy. The effects of Ti addition on the oxidation resistance of FeAl alloy were discussed based on the microstructural evidence.

  20. Synthesis and Characterization of BaFe12O19 Thin Films Using Suspension of Nano Powders

    NASA Astrophysics Data System (ADS)

    Salemizadeh, Saman; Seyyed Ebrahimi, S. A.

    BaM thin films have been synthesized by dispersing the dried gel nano powders prepared by Sol-Gel method. The solution was made by dissolving iron nitrate Fe(NO3).9H2O, barium nitrate Ba(NO3)2 and citric acid in deyonized water and methanol. This sol was slowly evaporated until a dried gel was formed. This dried gel was then added to ethylene glycol. The final solution was vigorously shaken and mixed in ultrasonic cleaner for 30 min to disperse particles sufficiently. Then the prepared solution spin coated on Si(110) substrate. The obtained thin films were dried at 120 °C and then calcined at 900 °C for 1 h. The films were characterized using X-ray diffraction (XRD) and vibrating sample magnetometer (VSM).

  1. Synthesis, Crystal and Electronic Structures of the Pnictides AE3TrPn3 (AE = Sr, Ba; Tr = Al, Ga; Pn = P, As)

    DOE PAGESBeta

    Stoyko, Stanislav; Voss, Leonard; He, Hua; Bobev, Svilen

    2015-09-24

    New ternary arsenides AE3TrAs3 (AE = Sr, Ba; Tr = Al, Ga) and their phosphide analogs Sr3GaP3 and Ba3AlP3 have been prepared by reactions of the respective elements at high temperatures. Single-crystal X-ray diffraction studies reveal that Sr3AlAs3 and Ba3AlAs3 adopt the Ba3AlSb3-type structure (Pearson symbol oC56, space group Cmce, Z = 8). This structure is also realized for Sr3GaP3 and Ba3AlP3. Likewise, the compounds Sr3GaAs3 and Ba3GaAs3 crystallize with the Ba3GaSb3-type structure (Pearson symbol oP56, space group Pnma, Z = 8). Both structures are made up of isolated pairs of edge-shared AlPn4 and GaPn4 tetrahedra (Pn = pnictogen, i.e.,more » P or As), separated by the alkaline-earth Sr2+ and Ba2+ cations. In both cases, there are no homoatomic bonds, hence, regardless of the slightly different atomic arrangements, both structures can be rationalized as valence-precise [AE2+]3[Tr3+][Pn3-]3, or rather [AE2+]6[Tr2Pn6]12-, i.e., as Zintl phases.« less

  2. Strongly enhanced flux pinning in one-step deposition of BaFe2(As0.66P0.33)2 superconductor films with uniformly dispersed BaZrO3 nanoparticles

    PubMed Central

    Miura, Masashi; Maiorov, Boris; Kato, Takeharu; Shimode, Takashi; Wada, Keisuke; Adachi, Seiji; Tanabe, Keiichi

    2013-01-01

    The high upper critical field and low anisotropy of the iron-based superconductor BaFe2As2 make it promising for its use in the construction of superconducting magnets. However, its critical current density in high magnetic fields needs to be improved. Here we demonstrate a simple, one-step and industrially scalable means of achieving just this. We show that introducing controlled amounts of uniformly dispersed BaZrO3 nanoparticles into carrier-doped BaFe2As2 significantly improves its superconducting performance without degrading its structural or superconducting properties. Our BaFe2(As0.66P0.33)2 films also exhibit an increase in both the irreversibility line and critical current density at all magnetic-field orientations. These films exhibit nearly isotropic critical current densities in excess of 1.5 MA cm−2 at 15 K and 1 T—seven times higher than previously reported for BaFe2As2 films. The vortex-pinning force in these films reaches ~59 GN m−3 at 5 K and 3–9 T, substantially higher than that of the conventional Nb3Sn wire. PMID:24051678

  3. Hall-plot of the phase diagram for Ba(Fe1−xCox)2As2

    PubMed Central

    Iida, Kazumasa; Grinenko, Vadim; Kurth, Fritz; Ichinose, Ataru; Tsukada, Ichiro; Ahrens, Eike; Pukenas, Aurimas; Chekhonin, Paul; Skrotzki, Werner; Teresiak, Angelika; Hühne, Ruben; Aswartham, Saicharan; Wurmehl, Sabine; Mönch, Ingolf; Erbe, Manuela; Hänisch, Jens; Holzapfel, Bernhard; Drechsler, Stefan-Ludwig; Efremov, Dmitri V.

    2016-01-01

    The Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic. Here, we investigate thin films of Ba(Fe1−xCox)2As2 with compressive and tensile in-plane strain in a wide range of Co doping. Such in-plane strain changes the band structure of the compounds, resulting in various shifts of the whole phase diagram as a function of Co doping. We show that the resultant phase diagrams for different strain states can be mapped onto a single phase diagram with the Hall number. This universal plot is attributed to the critical fluctuations in multiband systems near the antiferromagnetic transition, which may suggest a direct link between magnetic and superconducting properties in the BaFe2As2 system. PMID:27328948

  4. The role of magnetism and disorder in superconductivity of gold-doped BaFe2As2 crystals

    NASA Astrophysics Data System (ADS)

    Li, Li; Cao, Huibo; Chi, Miaofang; Sefat, Athena S.

    We present bulk magnetic and transport properties, and find structural and magnetic transitions, in order to construct the detailed T-x phase diagram for Ba(Fe1-xAux)2 As2 single crystals. The Au substitution into the FeAs-planes is only possible up to a small amount of ~3%, probably due to the large size of gold. We find that 5 d is more effective in reducing magnetism in BaFe2As2 than its counter 3d Cu, and this relates to superconductivity. In this talk, we reveal more comprehensive neutron diffraction data in order to clarify some of the inferred TN, TS points in our literature report. New transmission electron microscopy results will be presented that sheds light on the role of chemical disorder for preventing high Tc in these crystals The work (LL, AS) is supported by the U.S. DOE, Office of Science, BES. The work (HC) at ORNL's HFIR, and the work (MC) at CNMS are sponsored by the Scientific User Facilities Division.

  5. The effects of post-growth annealing on the structural and magnetic properties of BaFe2As2

    NASA Astrophysics Data System (ADS)

    Forrest, T. R.; Valdivia, P. N.; Rotundu, C. R.; Bourret-Courchesne, E.; Birgeneau, R. J.

    2016-03-01

    We investigate the effects of post-growth annealing on the structural and magnetic properties of BaFe2As2. Magnetic susceptibility measurements, which exhibit a signal corresponding to the magnetic phase transition, and high-resolution x-ray diffraction measurements, which directly probe the structural order parameter, show that annealing causes the ordering temperatures of both the phase transitions to increase, sharpen and converge. In the as grown sample, our measurements show two distinct transitions corresponding to structural and magnetic ordering, which are separated in temperature by approximately 1 K. After 46 days (d) of annealing at 700 °C, the two become concurrent in temperature. These measurements demonstrate that the structural phase transition is second-order like when the magnetic and structural phase transitions are separated in temperature, and first-order like when the two phase transition temperatures coincide. This observation indicates that annealing causes the system to cross a hitherto undiscovered tricritical point. In addition, x-ray diffraction measurements show that the c-axis lattice parameter increases with annealing up to 30 d, but remains constant for longer annealing times. Comparisons of BaFe2As2 to SrFe2As2 are made when possible.

  6. Hall-plot of the phase diagram for Ba(Fe1-xCox)2As2.

    PubMed

    Iida, Kazumasa; Grinenko, Vadim; Kurth, Fritz; Ichinose, Ataru; Tsukada, Ichiro; Ahrens, Eike; Pukenas, Aurimas; Chekhonin, Paul; Skrotzki, Werner; Teresiak, Angelika; Hühne, Ruben; Aswartham, Saicharan; Wurmehl, Sabine; Mönch, Ingolf; Erbe, Manuela; Hänisch, Jens; Holzapfel, Bernhard; Drechsler, Stefan-Ludwig; Efremov, Dmitri V

    2016-01-01

    The Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic. Here, we investigate thin films of Ba(Fe1-xCox)2As2 with compressive and tensile in-plane strain in a wide range of Co doping. Such in-plane strain changes the band structure of the compounds, resulting in various shifts of the whole phase diagram as a function of Co doping. We show that the resultant phase diagrams for different strain states can be mapped onto a single phase diagram with the Hall number. This universal plot is attributed to the critical fluctuations in multiband systems near the antiferromagnetic transition, which may suggest a direct link between magnetic and superconducting properties in the BaFe2As2 system. PMID:27328948

  7. Enhanced spin signal in nonlocal devices based on a ferromagnetic CoFeAl alloy

    NASA Astrophysics Data System (ADS)

    Bridoux, G.; Costache, M. V.; Van de Vondel, J.; Neumann, I.; Valenzuela, S. O.

    2011-09-01

    We systematically study the nonlocal spin signal in lateral spin valves based on CoFeAl injectors and detectors and compare the results with identically fabricated devices based on CoFe. The devices are fabricated by electron beam evaporation at room temperature. We observe a > 10-fold enhancement of the spin signal in the CoFeAl devices. We explain this increase as due to the formation of a highly spin-polarized Co2FeAl Heusler compound with large resistivity. These results suggest that Heusler compounds are promising candidates as spin polarized electrodes in lateral spin devices for future spintronic applications.

  8. Effect of silicon alloying additions on growth temperature and primary spacing of Al{sub 3}Fe in Al-8wt%Fe alloy

    SciTech Connect

    Liang, D.; Jones, H.; Gilgien, P.

    1995-05-15

    Alloys of Al-8.4Fe-1.7Si, Al-8.5Fe-3.4Si and Al-8.5Fe-5.6Si (wt%) designated A, B and C, respectively, were prepared from high purity (99.99%) aluminum, Japanese electrolytic iron (99.9%) and superpure silicon (99.99%). Melting was carried out in a recrystallized alumina crucible by using a Radyne induction furnace and was followed by chill casting under flowing argon into steel molds of cavity dimension 15 mm thick, 50 mm wide and 150 mm high. Rods 3 mm in diameter were fabricated directly from the ingots. Lengths of the rods, which were contained in 3 mm bore tubular alumina crucibles, were melted in a Bridgman growth facility. After maintaining the melt at 100K above the liquidus temperatures liquidus: 1,118, 1,108 and 1,092 K for 1.7, 3.4 and 5.6 wt%Si, respectively, for about 10 minutes, crucibles containing the melt were withdrawn at a speed of 0.34 mm/s into a water bath. The following conclusions can be drawn from analysis of the specimens. Addition of silicon to Al-8wt%Fe alloy results in an increase in growth undercooling and primary spacing of Al{sub 3}Fe dendrites Bridgman grown at 0.34 mm/s and 10K/mm. This increase in growth undercooling, relative to predicted local liquidus temperatures which have been corrected for observed macrosegregation of Fe, is in good accord with the predictions of the Kurz-Giovanola-Trivedi model for needle-like dendrite growth. The silicon content of the Al{sub 3}Fe dendrites obtained is consistent with previously reported measurements for a range of cast Al-Fe-Si alloys.

  9. Fe-Al layered double hydroxides in bromate reduction: Synthesis and reactivity.

    PubMed

    Chitrakar, Ramesh; Makita, Yoji; Sonoda, Akinari; Hirotsu, Takahiro

    2011-02-15

    This study presents a rare use of layered double hydroxides of Fe(II) and Al(III) (Fe-Al LDH), as reported for the first time for bromate removal from aqueous solutions. The Fe-Al LDH samples were prepared with Fe/Al molar ratios of 1-4 using a co-precipitation method at pH 7, with subsequent hydrothermal treatment at 120°C. The Fe-Al LDH (molar ratio of Fe/Al=1, 2) with a layered structure exhibited nearly complete removal of bromate from initial concentration of 100μmol/dm(3) at a wide pH range of 4.0-10.5 over a 2h reaction period; the residual bromate concentration in the solution was lower than the detection limit of 0.07μmol/dm(3) (9μg-BrO(3)(-)/dm(3)). During the reaction period, bromide was released into the solution via a reduction process. Reactivity of Fe-Al LDH with a Fe/Al molar ratio of 2 did not decrease the bromate reduction efficiency during 30days. PMID:21126742

  10. Preparation of Al-Cr-Fe Coatings by Heat Treatment of Electrodeposited Cr/Al Composite Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Chen, Chang'an; Zhang, Guikai; Rao, Yongchu; Ling, Guoping

    Al-Cr-Fe coatings have been widely used in the surface engineering field of materials, due to their excellent corrosion resistance to water vapor and fused salt deposits. In this study, a new two-step approach was developed to prepare Al-Cr-Fe coatings on surfaces of SUS430 stainless steels. First, the Cr/Al composite coatings were prepared by electrodepositing Cr from aqueous solution then electrodepositing Al from AlCl3-1-ethyl-3-methyl-imidazolium chloride (AlCl3-EMIC) ionic liquid on SUS430 stainless steel substrate. In the second, heat treatment of the Cr/Al composite coatings was carried out to acquire Al-Cr-Fe coatings. Effects of the thickness of Cr/Al composite coatings, the time and temperature of heat treatment on composition and phase structure of alloy layers were studied by using scanning electron microscope (SEM), backscattered electron (BSE), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The structure transformation process and formation mechanism of Al-Cr-Fe coatings were discussed.

  11. Enhanced microwave dielectric properties of Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} ceramics doping by metal Fe powders

    SciTech Connect

    Zhang Qiwei; Zhai Jiwei; Yao Xi; Ben Qianqian; Yu Xian

    2012-11-15

    Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} ceramics by adding mental Fe powders have been fabricated via the solid-state reaction method. The microstructures and optical properties of samples are systematically studied in order to establish the effects of Fe powder additives on microwave dielectric properties of Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} ceramics by x-ray diffraction, x-ray photoelectron spectroscopy, and optical reflective spectrum. The results show the coexistence of Fe{sup 2+} and Fe{sup 3+} in Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} ceramics, the decrease of O vacancy concentrations, and their incorporation into the B-site (Ti) of the Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} host lattice give rise to excellent microwave dielectric properties. All samples have a higher Q value above 290 while maintaining relatively high tunability above 16.6%. In particular, the sample with the composition of x = 0.035 mol has the dielectric constant of 889, Q Multiplication-Sign f value of 826 (at 1.370 GHz), and tunability of 24%, which are very promising for high power tunable devices. In comparison, Fe{sub 2}O{sub 3} oxide doped Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} ceramics with the same molar ratios of Fe exhibit inferior microwave properties. It indicates that additives of the metal Fe powders can more effectively improve dielectric properties of Ba{sub x}Sr{sub 1-x}TiO{sub 3} system than Fe{sub 2}O{sub 3} oxide.

  12. Thermal decomposition of iron(VI) oxides, K{sub 2}FeO{sub 4} and BaFeO{sub 4}, in an inert atmosphere

    SciTech Connect

    Madarasz, Janos; Zboril, Radek; Homonnay, Zoltan . E-mail: vsharma@fit.edu; Pokol, Gyoergy

    2006-05-15

    The thermal decomposition of solid samples of iron(VI) oxides, K{sub 2}FeO{sub 4}.0.088 H{sub 2}O (1) and BaFeO{sub 4}.0.25H{sub 2}O (2) in inert atmosphere has been examined using simultaneous thermogravimetry and differential thermal analysis (TG/DTA), in combination with in situ analysis of the evolved gases by online coupled mass spectrometer (EGA-MS). The final decomposition products were characterized by {sup 57}Fe Moessbauer spectroscopy. Water molecules were released first, followed by a distinct decomposition step with endothermic DTA peak of 1 and 2 at 273 and 248 deg. C, respectively, corresponding to the evolution of molecular oxygen as confirmed by EGA-MS. The released amounts of O{sub 2} were determined as 0.42 and 0.52 mol pro formula of 1 and 2, respectively. The decomposition product of K{sub 2}FeO{sub 4} at 250 deg. C was determined as Fe(III) species in the form of KFeO{sub 2}. Formation of an amorphous mixture of superoxide, peroxide, and oxide of potassium may be other products of the thermal conversion of iron(VI) oxide 1 to account for less than expected released oxygen. The thermogravimetric and Moessbauer data suggest that barium iron perovskite with the intermediate valence state of iron (between III and IV) was the product of thermal decomposition of iron(VI) oxide 2.

  13. Thermal decomposition of iron(VI) oxides, K 2FeO 4 and BaFeO 4, in an inert atmosphere

    NASA Astrophysics Data System (ADS)

    Madarász, János; Zbořil, Radek; Homonnay, Zoltán; Sharma, Virender K.; Pokol, György

    2006-05-01

    The thermal decomposition of solid samples of iron(VI) oxides, K 2FeO 4·0.088 H 2O ( 1) and BaFeO 4·0.25H 2O ( 2) in inert atmosphere has been examined using simultaneous thermogravimetry and differential thermal analysis (TG/DTA), in combination with in situ analysis of the evolved gases by online coupled mass spectrometer (EGA-MS). The final decomposition products were characterized by 57Fe Mössbauer spectroscopy. Water molecules were released first, followed by a distinct decomposition step with endothermic DTA peak of 1 and 2 at 273 and 248 °C, respectively, corresponding to the evolution of molecular oxygen as confirmed by EGA-MS. The released amounts of O 2 were determined as 0.42 and 0.52 mol pro formula of 1 and 2, respectively. The decomposition product of K 2FeO 4 at 250 °C was determined as Fe(III) species in the form of KFeO 2. Formation of an amorphous mixture of superoxide, peroxide, and oxide of potassium may be other products of the thermal conversion of iron(VI) oxide 1 to account for less than expected released oxygen. The thermogravimetric and Mössbauer data suggest that barium iron perovskite with the intermediate valence state of iron (between III and IV) was the product of thermal decomposition of iron(VI) oxide 2.

  14. Large orbital moment and spin-orbit enabled Mott transition in the Ising Fe honeycomb lattice of BaFe2(PO4)2

    NASA Astrophysics Data System (ADS)

    Song, Young-Joon; Lee, Kwan-Woo; Pickett, Warren E.

    2015-09-01

    BaFe2(PO4)2 is an unusual Ising insulating ferromagnet based on the Fe2 + spin S =2 ion, the susceptibility of which suggests a large orbital component to the Fe local moment. We apply density functional theory based methods to obtain a microscopic picture of the competing interactions and the critical role of spin-orbit coupling (SOC) in this honeycomb lattice system. The low-temperature ferromagnetic phase displays a half-semimetallic Dirac point pinning the Fermi level and preventing gap opening before consideration of SOC, presenting a case in which correlation effects modeled by a repulsive Hubbard U fail to open a gap. Simultaneous inclusion of both correlation and SOC drives a large orbital moment in excess of 0.7 μB (essentially L =1 ) for spin aligned along the c ̂ axis, with a gap comparable with the inferred experimental value. The large orbital moment accounts for the large Ising anisotropy, in spite of the small magnitude of the SOC strength on the 3 d (Fe) ion. Ultimately, the Mott-Hubbard gap is enabled by degeneracy lifting by SOC and the large Fe moments, rather than by standard Hubbard interactions alone. We suggest that competing orbital occupations are responsible for the structural transitions involved in the observed reentrant rhombohedral-triclinic-rhombohedral sequence.

  15. Band Structure of the Heavily-Electron-Doped FeAs-Based Ba(Fe,​Co)2As2 Superconductor Suppresses Antiferromagnetic Correlations

    NASA Astrophysics Data System (ADS)

    Sudayama, T.; Wakisaka, Y.; Takubo, K.; Morinaga, R.; Sato, T. J.; Arita, M.; Namatame, H.; Taniguchi, M.; Mizokawa, T.

    2010-04-01

    In the heavily-electron-doped regime of the Ba(Fe,​Co)2As2 superconductor, three hole bands at the zone center are observed and two of them reach the Fermi level. The larger hole pocket at the zone center is apparently nested with the smaller electron pocket around the zone corner. However, the (π,​0) Fermi surface reconstruction reported for the hole-doped case is absent in the heavily-electron-doped case. This observation shows that the apparent Fermi surface nesting alone is not enough to enhance the antiferromagnetic correlation as well as the superconducting transition temperature.

  16. (Fe,Si,Al)-based nanocrystalline soft magnetic alloys for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Daniil, Maria; Osofsky, Michael S.; Gubser, Donald U.; Willard, Matthew A.

    2010-04-01

    In this work Al and Si are substituted for Fe in a (Fe,Si,Al)-Nb-B-Cu alloy with the goal of improving its magnetic properties at 77 K. The x-ray diffraction patterns for a series of five alloys annealed at 823 K shows a Fe3(Si,Al) ordered phase with some residual amorphous phase. The lowest coercivity at room temperature was observed for the alloy with composition Fe68Si15.5Al3.5Nb3B9Cu1. At cryogenic temperatures, the saturation magnetization of 99.3 A m2/kg, coercivity of 0.45 A/m, and resistivity of 122 μΩ cm for the Fe63Si17.5Al6Nb3B9Cu1 alloy, compare favorably to commercial alloys at 77 K.

  17. Study of Al impurity induced magnetic instability in CeFe{sub 2}

    SciTech Connect

    Das, Rakesh; Srivastava, S. K.

    2015-05-15

    We report experimental and computational studies on Al impurity induced magnetic instabilities in CeFe{sub 2}. The work is based on the reported first order magneto-structural phase transition in Ce(Fe{sub 1-x}Al{sub x}){sub 2}, with 0.02 ≤ x ≤ 0.08, below 90 K. We performed first-principles calculations of electronic and magnetic properties of Ce(Fe{sub 1-x}Al{sub x}){sub 2} for x = 0.031 and 0.25. A concentration dependence of Fe and Ce moments is observed, while the Al impurity does not carry any appreciable moment in either case. We investigated spin-polarised partial density of states of Ce(Fe{sub 1-x}Al{sub x}){sub 2} and their various hybridizations in order to find an answer for an antiferromagnetic kind of order at low temperatures.

  18. Quantum Oscillations in the Parent pnictide BaFe2As2 : Itinerant Electrons in the Reconstructed State

    SciTech Connect

    Analytis, J.G.

    2010-05-26

    We report quantum oscillation measurements that enable the direct observation of the Fermi surface of the low temperature ground state of BaFe{sub 2}As{sub 2}. From these measurements we characterize the low energy excitations, revealing that the Fermi surface is reconstructed in the antiferromagnetic state, but leaving itinerant electrons in its wake. The present measurements are consistent with a conventional band folding picture of the antiferromagnetic ground state, placing important limits on the topology and size of the Fermi surface.

  19. Role of antisymmetric exchange in selecting magnetic chirality in Ba3NbFe3Si2O14.

    PubMed

    Zorko, A; Pregelj, M; Potočnik, A; van Tol, J; Ozarowski, A; Simonet, V; Lejay, P; Petit, S; Ballou, R

    2011-12-16

    We present an electron spin resonance (ESR) investigation of the acentric Ba(3)NbFe(3)Si(2)O(14), featuring a unique single-domain double-chiral magnetic ground state. Combining simulations of the ESR linewidth anisotropy and the antiferromagnetic-resonance modes allows us to single out the Dzyaloshinsky-Moriya (DM) interaction as the leading magnetic anisotropy term. We demonstrate that the rather minute out-of-plane DM component d(c)=45 mK is responsible for selecting a unique ground state, which endures thermal fluctuations up to astonishingly high temperatures. PMID:22243107

  20. Role of Antisymmetric Exchange in Selecting Magnetic Chirality in Ba3NbFe3Si2O14

    NASA Astrophysics Data System (ADS)

    Zorko, A.; Pregelj, M.; Potočnik, A.; van Tol, J.; Ozarowski, A.; Simonet, V.; Lejay, P.; Petit, S.; Ballou, R.

    2011-12-01

    We present an electron spin resonance (ESR) investigation of the acentric Ba3NbFe3Si2O14, featuring a unique single-domain double-chiral magnetic ground state. Combining simulations of the ESR linewidth anisotropy and the antiferromagnetic-resonance modes allows us to single out the Dzyaloshinsky-Moriya (DM) interaction as the leading magnetic anisotropy term. We demonstrate that the rather minute out-of-plane DM component dc=45mK is responsible for selecting a unique ground state, which endures thermal fluctuations up to astonishingly high temperatures.

  1. SANS study of vortex lattice structural transition in optimally doped (Ba1-x K x )Fe2As2.

    PubMed

    Demirdiş, S; van der Beek, C J; Mühlbauer, S; Su, Y; Wolf, Th

    2016-10-26

    Small-angle neutron scattering on high quality single crystalline Ba1-x K x Fe2As2 reveals the transition from a low-field vortex solid phase with orientational order to a vortex polycrystal at high magnetic field. The vortex order-disorder transition is correlated with the second-peak feature in isothermal hysteresis loops, and is interpreted in terms of the generation of supplementary vortex solid dislocations. The sharp drop of the structure factor above the second peak field is explained by the dynamics of freezing of the vortex ensemble in the high field phase. PMID:27541966

  2. Incipient Orbital Order in Half-Metallic Ba{sub 2}FeReO{sub 6}

    SciTech Connect

    Azimonte, C.; Granado, E.; Cezar, J. C.; Huang, Q.; Lynn, J. W.; Campoy, J. C. P.; Gopalakrishnan, J.; Ramesha, K.

    2007-01-05

    Largely unquenched Re 5d orbital magnetic moments in half-metallic Ba{sub 2}FeReO{sub 6} drive a symmetry lowering transition from a cubic paramagnet to a compressed tetragonal (c/a<1) ferrimagnet below T{sub C}{approx}305 K, with a giant linear magnetoelastic constant and the spins lying spontaneously along the unique tetragonal axis. The large orbital magnetization and degree of structural deformation indicate proximity to a metal-insulator transition. These results point to an incipient orbitally ordered state in the metallic ferrimagnetic phase.

  3. Frequency and temperature dependent dielectric studies of BaTi0.96Fe0.04O3

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Mishra, Niyati; Bisen, Supriya; Jarabana, Kanaka M.

    2014-09-01

    A Finest possible sample of 4% Iron doped BaTiO3 (BTO) with possible tetragonal structure via a solid state route was prepared. Prepared sample was characterized by X-ray diffraction (XRD) using Brnker D8 Advance XRD instrument, the value of 2θ is in between 200 to 800. Detailed analysis of dielectric constant, dielectric loss, ac conductivity and electrical modulus at various range of frequency and temperature have been done of 4% Fe doped BTO was recorded on hp-Hewlett Packard 4192 A, LF impedance, 5Hz-13Hz analyser.

  4. Competing magnetic ground states in non-superconducting Ba(Fe1-xCrx)2As2

    SciTech Connect

    Marty, Karol J; Christianson, Andrew D; Wang, Cuihuan; Matsuda, Masaaki; Cao, Huibo; VanBebber, L. H.; Zaretsky, Jerel L.; Singh, David J; Sefat, A. S.; Lumsden, Mark D

    2011-01-01

    We present neutron diffraction measurements on single-crystal samples of nonsuperconducting Ba(Fe{sub 1-x}Cr{sub x}){sub 2}As{sub 2} as a function of Cr doping for 0 x 0.47. The average spin-density-wave moment is independent of concentration for x 0.2 and decreases rapidly for x 0.3. For concentrations in excess of 30% chromium, we find a new competing magnetic phase consistent with G-type antiferromagnetism which rapidly becomes the dominant magnetic ground state. Strong magnetism is observed for all concentrations measured, naturally explaining the absence of superconductivity in the Cr-doped materials.

  5. NMR evidence for inhomogeneous nematic fluctuations in BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Dioguardi, Adam P.; Kissikov, Tanat; Lin, Ching-Han; Shirer, Kent R.; Lawson, Matthew M.; Grafe, Hans-Joachim; Chu, Jiun-Haw; Fisher, Ian R.; Fernandes, Rafael M.; Curro, Nicholas J.

    We present evidence for nuclear spin-lattice relaxation driven by glassy nematic fluctuations in isovalent P-doped BaFe2As2 single crystals. Both the 75As and 31P sites exhibit stretched-exponential relaxation similar to the electron-doped systems. By comparing the hyperfine fields and the relaxation rates at these sites we find that the As relaxation cannot be explained solely in terms of magnetic spin fluctuations. We demonstrate that nematic fluctuations couple to the As nuclear quadrupolar moment and can explain the excess relaxation. These results suggest that glassy nematic dynamics are a universal phenomenon in the iron-based superconductors.

  6. NMR Evidence for Inhomogeneous Nematic Fluctuations in BaFe2 (As1 -xPx )2

    NASA Astrophysics Data System (ADS)

    Dioguardi, A. P.; Kissikov, T.; Lin, C. H.; Shirer, K. R.; Lawson, M. M.; Grafe, H.-J.; Chu, J.-H.; Fisher, I. R.; Fernandes, R. M.; Curro, N. J.

    2016-03-01

    We present evidence for nuclear spin-lattice relaxation driven by glassy nematic fluctuations in isovalent P-doped BaFe2As2 single crystals. Both the 75As and 31 sites exhibit a stretched-exponential relaxation similar to the electron-doped systems. By comparing the hyperfine fields and the relaxation rates at these sites we find that the As relaxation cannot be explained solely in terms of magnetic spin fluctuations. We demonstrate that nematic fluctuations couple to the As nuclear quadrupolar moment and can explain the excess relaxation. These results suggest that glassy nematic dynamics are a common phenomenon in the iron-based superconductors.

  7. NMR evidence for inhomogeneous nematic fluctuations in BaFe2(As1-xPx)2

    DOE PAGESBeta

    Dioguardi, A. P.; Kissikov, T.; Lin, C. H.; Shirer, K. R.; Lawson, M. M.; Grafe, H. -J.; Chu, J. -H.; Fisher, I. R.; Fernandes, R. M.; Curro, N. J.

    2016-03-10

    We present evidence for nuclear spin-lattice relaxation driven by glassy nematic fluctuations in isovalent P-doped BaFe2As2 single crystals. Both the 75As and 31P sites exhibit a stretched-exponential relaxation similar to the electron-doped systems. By comparing the hyperfine fields and the relaxation rates at these sites we find that the As relaxation cannot be explained solely in terms of magnetic spin fluctuations. We demonstrate that nematic fluctuations couple to the As nuclear quadrupolar moment and can explain the excess relaxation. Lastly, these results suggest that glassy nematic dynamics are a common phenomenon in the iron-based superconductors.

  8. Effect of Fermi surface nesting on resonant spin excitations in Ba{<_1-x}K{<_x}Fe{<_2}As{<_2}.

    SciTech Connect

    Castellan, J.-P.; Rosenkranz, S.; Goremychkin, E.A.; Chung, D.Y.; Todorov, I.S.; Kanatzidis, M.G.; Eremin, I.; Knolle, J.; Chubukov, A.V.; Maiti, s.; Norman, M.R.; Weber, F.; Claus, H.; Guidi, T.; Bewley, R.I.; Osborn, R.

    2011-01-01

    We report inelastic neutron scattering measurements of the resonant spin excitations in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s{sub {+-}}-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.

  9. High-resolution thermal expansion of isovalently substituted BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Böhmer, A. E.; Burger, P.; Hardy, F.; Wolf, T.; Schweiss, P.; Fromknecht, R.; von Löhneysen, H.; Meingast, C.; Kasahara, S.; Terashima, T.; Shibauchi, T.; Matsuda, Y.

    2012-12-01

    We have investigated the isovalently substituted system BaFe2(As1-xPx)2 by high-resolution thermal expansion using a home-built capacitive dilatometer. Accurate measurements succeeded despite the very small size of the available single crystals (~ 500 × 500 × 100μm3). Information on the uniaxial pressure derivatives of the transition temperatures is obtained using thermodynamic relations. In-plane and out-of-plane pressure derivatives have opposite sign, which demonstrates the sensitivity of the compound to uniaxial pressure. The structural and the superconducting transition always respond oppositely to uniaxial pressure, which signals their coupling and competition.

  10. A study of temperature dependent local atomic displacements in a Ba(Fe1-xCox)2As2 superconductor.

    PubMed

    Hacisalihoglu, M Y; Paris, E; Joseph, B; Simonelli, L; Sato, T J; Mizokawa, T; Saini, N L

    2016-03-23

    We have studied the local structure of a Ba(Fe1-xCox)2As2 superconductor using temperature dependent extended X-ray absorption fine structure (EXAFS) measurements. Polarized EXAFS at the Fe K-edge on an optimally doped (x = 0.06) single crystal has permitted us to determine atomic displacements across the superconducting transition temperature (Tc). The Fe-As bondlength hardly shows any change with temperature; however, the Fe-Fe sublattice reveals a sharp anomaly across Tc, indicated by a significant drop in mean square relative displacements, similar to the one known for cuprates and A15-type superconductors. We have also found a large atomic disorder around the substituted Co, revealed by polarized Co K-edge EXAFS measurements. The Co-Fe/Co bonds are more flexible than the Fe-Fe bonds with the As-height in Co-containing tetrahedra being larger than the one in FeAs4. The results suggest that the local Fe-Fe bondlength fluctuations and the atomic disorder in this sub-lattice should have some important role in the superconductivity of Ba(Fe1-xCox)2As2 pnictides. PMID:26966734

  11. High pressure studies of A2Mo3O12 negative thermal expansion materials (A2=Al2, Fe2, FeAl, AlGa)

    NASA Astrophysics Data System (ADS)

    Young, Lindsay; Gadient, Jennifer; Gao, Xiaodong; Lind, Cora

    2016-05-01

    High pressure powder X-ray diffraction studies of several A2Mo3O12 materials (A2=Al2, Fe2, FeAl, and AlGa) were conducted up to 6-7 GPa. All materials adopted a monoclinic structure under ambient conditions, and displayed similar phase transition behavior upon compression. The initial isotropic compressibility first became anisotropic, followed by a small but distinct drop in cell volume. These patterns could be described by a distorted variant of the ambient pressure polymorph. At higher pressures, a distinct high pressure phase formed. Indexing results confirmed that all materials adopted the same high pressure phase. All changes were reversible on decompression, although some hysteresis was observed. The similarity of the high pressure cells to previously reported Ga2Mo3O12 suggested that this material undergoes the same sequence of transitions as all materials investigated in this paper. It was found that the transition pressures for all phase changes increased with decreasing radius of the A-site cations.

  12. Thermodynamic analysis of compatibility of several reinforcement materials with FeAl alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Chemical compatibility of several reinforcement materials with FeAl alloys within the concentration range 40 to 50 at pct Al have been analyzed from thermodynamic considerations at 1173 and 1273 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, and silicides. Although several chemically compatible reinforcement materials are identified, the coefficients of thermal expansion for none of these materials match closely with that of FeAl alloys and this might pose serious problems in the design of composite systems based on FeAl alloys.

  13. On stoichiometry and intermixing at the spinel/perovskite interface in CoFe2O4/BaTiO3 thin films.

    PubMed

    Tileli, Vasiliki; Duchamp, Martial; Axelsson, Anna-Karin; Valant, Matjaz; Dunin-Borkowski, Rafal E; Alford, Neil McN

    2015-01-01

    The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface stoichiometry, and cation intermixing are determined on the atomic level. The results reveal a surprisingly uneven BaTiO3 substrate surface formed after the film deposition and Fe atom incorporation in the top few monolayers inside the unit cell of the BaTiO3 crystal. Towards the CoFe2O4 side, a disordered region extending several nanometers from the interface was revealed and both Ba and Ti from the substrate were found to diffuse into the spinel layer. The analysis also shows that within this somehow incompatible composite interface, a different phase is formed corresponding to the compound Ba2Fe3Ti5O15, which belongs to the ilmenite crystal structure of FeTiO3 type. The results suggest a chemical activity between these two oxides, which could lead to the synthesis of complex engineered interfaces. PMID:25406863

  14. Preparation of thermal infrared and microwave absorber using SrTiO3/BaFe12O19/polyaniline nanocomposites

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Hossein; Zamani, Parisa

    2016-01-01

    In this research, first, SrTiO3 was synthesized as thermal infrared (TIR) absorbent and core and then BaFe12O19 as microwave absorbent was prepared on SrTiO3 via co-precipitation method as first shell. Second, polyaniline (PANI) was coated on SrTiO3/BaFe12O19 NPs (NPs) via in situ polymerization by multi core-shell structures (SrTiO3/BaFe12O19/PANI). Nanometer size and structures of samples were measured by TEM, XRD and FTIR. Morphology of nanocomposite was showed by SEM images. The magnetic and electric properties were also performed by VSM and four probe methods. The TIR absorption and microwave reflection loss of nanocomposites were investigated at 10-40 μm and 8-12 GHz, TIR and microwave frequencies, respectively. The results showed that the SrTiO3/BaFe12O19/PANI nanocomposites have good compatible electric and magnetic properties and hence the microwave absorbency show wide bandwidth properties. The infrared thermal image testing showed that the ability of infrared thermal imaging was increased by increasing SrTiO3/BaFe12O19 as core and independent to increasing PANI as final shell.

  15. Evolution of the in-plane resistivity anisotropy in isovalenly substituted Ba(Fe1-xRux)2As2

    NASA Astrophysics Data System (ADS)

    Blomberg, Erick C.; Tanatar, M. A.; Ran, S.; Bud'Ko, S. L.; Canfield, P. C.; Prozorov, R.; Thaler, A.

    2014-03-01

    Recent studies of electronic anisotropy in iron-based superconductors have revealed a dramatic asymmetry between electron and hole doped compounds. A natural question is: What effect would isovalent substitution have? The BaFe2As2 system shows little change in its Fermi surface and carrier concentration upon Ru-doping, even at the levels far beyond the point of total suppression of the AFM state, making it a valuable system to compare against the hole and electron doped system. Here we study in-plane resistivity anisotropy in detwinned single crystals of Ba(Fe1-xRux)2As2. Polarized optical imaging was used to confirm detwinning. A quantitative comparison of our new results with the isovalently substituted BaFe2(As1-xPx)2 system, as well as the charge doped Ba(Fe1-xCox)2As2 and Ba1-xKxFe2As2 systems will be discussed. This work was supported by the Department of Energy Office of Science, Basic Energy Sciences under Contract No. DE-AC02-O7CH11358.

  16. Investigation on photoluminescence properties and defect chemistry of GdAlO3:Dy3+ Ba2+ phosphors

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, Thangaraj; Sellaiyan, Selvakumar; Uedono, Akira; Semba, Takaaki; Bose, Arumugam Chandra

    2016-08-01

    GdAlO3:Dy3+ Ba2+ phosphors are synthesized by citrate-based sol-gel method. Photoluminescence and positron annihilation studies are used to investigate the emission and defect chemistry of the phosphors respectively. The strong yellow (Dy3+) emission properties of phosphors are discussed for various concentrations of Dy3+ ions. Upon the addition of Ba2+ ion, an enhancement in emission intensity is observed due to the lattice distortions around Dy3+ ion. The positron studies indicate the presence of defects at crystallite boundaries, vacancy clusters and large voids in the materials. The influence of Ba2+ ion on the photoluminescence and lattice distortion around Dy3+ is also explored.

  17. Third element effect in the surface zone of Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Airiskallio, E.; Nurmi, E.; Heinonen, M. H.; Väyrynen, I. J.; Kokko, K.; Ropo, M.; Punkkinen, M. P. J.; Pitkänen, H.; Alatalo, M.; Kollár, J.; Johansson, B.; Vitos, L.

    2010-01-01

    The third element effect to improve the high temperature corrosion resistance of the low-Al Fe-Cr-Al alloys is suggested to involve a mechanism that boosts the recovering of the Al concentration to the required level in the Al-depleted zone beneath the oxide layer. We propose that the key factor in this mechanism is the coexistent Cr depletion that helps to maintain a sufficient Al content in the depleted zone. Several previous experiments related to our study support that conditions for such a mechanism to be functional prevail in real oxidation processes of Fe-Cr-Al alloys.

  18. Structural disorder and magnetism in the spin-gapless semiconductor CoFeCrAl

    NASA Astrophysics Data System (ADS)

    Choudhary, Renu; Kharel, Parashu; Valloppilly, Shah R.; Jin, Yunlong; O'Connell, Andrew; Huh, Yung; Gilbert, Simeon; Kashyap, Arti; Sellmyer, D. J.; Skomski, Ralph

    2016-05-01

    Disordered CoFeCrAl and CoFeCrSi0.5Al0.5 alloys have been investigated experimentally and by first-principle calculations. The melt-spun and annealed samples all exhibit Heusler-type superlattice peaks, but the peak intensities indicate a substantial degree of B2-type chemical disorder. Si substitution reduces the degree of this disorder. Our theoretical analysis also considers several types of antisite disorder (Fe-Co, Fe-Cr, Co-Cr) in Y-ordered CoFeCrAl and partial substitution of Si for Al. The substitution transforms the spin-gapless semiconductor CoFeCrAl into a half-metallic ferrimagnet and increases the half-metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of CoFeCrSi0.5Al0.5 is predicted to increase from 2.01 μB to 2.50 μB per formula unit, in good agreement with experiment.

  19. Magnetic properties and pairing tendencies of the iron-based superconducting ladder BaFe2S3 : Combined ab initio and density matrix renormalization group study

    NASA Astrophysics Data System (ADS)

    Patel, Niravkumar D.; Nocera, Alberto; Alvarez, Gonzalo; Arita, Ryotaro; Moreo, Adriana; Dagotto, Elbio

    2016-08-01

    The recent discovery of superconductivity under high pressure in the two-leg ladder compound BaFe2S3 [H. Takahashi et al., Nat. Mater. 14, 1008 (2015), 10.1038/nmat4351] opens a broad avenue of research, because it represents the first report of pairing tendencies in a quasi-one-dimensional iron-based high-critical-temperature superconductor. Similarly, as in the case of the cuprates, ladders and chains can be far more accurately studied using many-body techniques and model Hamiltonians than their layered counterparts, particularly if several orbitals are active. In this publication, we derive a two-orbital Hubbard model from first principles that describes individual ladders of BaFe2S3 . The model is studied with the density matrix renormalization group. These first reported results are exciting for two reasons: (i) at half-filling, ferromagnetic order emerges as the dominant magnetic pattern along the rungs of the ladder, and antiferromagnetic order along the legs, in excellent agreement with neutron experiments; and (ii) with hole doping, pairs form in the strong coupling regime, as found by studying the binding energy of two holes doped on the half-filled system. In addition, orbital selective Mott phase characteristics develop with doping, with only one Wannier orbital receiving the hole carriers while the other remains half-filled. These results suggest that the analysis of models for iron-based two-leg ladders could clarify the origin of pairing tendencies and other exotic properties of iron-based high-critical-temperature superconductors in general.

  20. High strain-rate plastic flow in Fe and Al

    NASA Astrophysics Data System (ADS)

    Smith, Raymond; Eggert, Jon; Rudd, Robert; Bolme, Cynthia; Collins, Gilbert

    2011-06-01

    Understanding the nature and time-dependence of material deformation at high strain rates is an important goal in condensed matter physics. Under dynamic loading, the rate of plastic strain is determined by the flow of dislocations through the crystal lattice and is a complex function of time, distance, sample purity, temperature, internal stresses, microstructure and strain rate. Under shock compression time-dependent plasticity is typically inferred by fitting elastic precursor stresses as a function of propagation distance with a phenomenologically based dislocation kinetics model. We employ a laser-driven ramp wave loading technique to compress 6-70 micron thick samples of bcc-Fe and fcc-Al over a strain rate range of 1e6-1e8 1/s. Our data show that for fixed sample thickness, stresses associated the onset of plasticity are highly dependent on the strain rate of compression and do not readily fit into the elastic stress - distance evolution descriptive of instantaneous shock loading. We find that the elastic stress at the onset of plasticity is well correlated with the strain rate at the onset of plastic flow for both shock- and ramp-wave experiments. Our data, combined with data from other dynamic compression platforms, reveal a sharp increase in the peak elastic stress at high strain rates, consistent with a transition in dislocation flow dominated by phonon drag. smith248@llnl.gov

  1. Multiple diffraction in an icosahedral Al-Cu-Fe quasicrystal

    NASA Astrophysics Data System (ADS)

    Fan, C. Z.; Weber, Th.; Deloudi, S.; Steurer, W.

    2011-07-01

    In order to reveal its influence on quasicrystal structure analysis, multiple diffraction (MD) effects in an icosahedral Al-Cu-Fe quasicrystal have been investigated in-house on an Oxford Diffraction four-circle diffractometer equipped with an Onyx™ CCD area detector and MoKα radiation. For that purpose, an automated approach for Renninger scans (ψ-scans) has been developed. Two weak reflections were chosen as the main reflections (called P) in the present measurements. As is well known for periodic crystals, it is also observed for this quasicrystal that the intensity of the main reflection may significantly increase if the simultaneous (H) and the coupling (P-H) reflections are both strong, while there is no obvious MD effect if one of them is weak. The occurrence of MD events during ψ-scans has been studied based on an ideal structure model and the kinematical MD theory. The reliability of the approach is revealed by the good agreement between simulation and experiment. It shows that the multiple diffraction effect is quite significant.

  2. Machining of Fe[sub 3]Al intermetallics

    SciTech Connect

    Woodyard, J.R.

    1992-01-01

    Scientists at the US Bureau of Mines are studying iron aluminides as possible substitutes for stainless steels to reduce the Nation's dependence on imported strategic and critical materials. In a Bureau investigation on the mechanical properties of Fe-28Al, it was found that the material's machining properties were significantly improved at slow tool and feed speeds. Machining techniques normally used for brittle materials failed or were costly. Further experiments using a 5-in (12.7-cm) mill cutter with carbide inserts, operating dry at minimum machining speeds, produced visually smooth sample surfaces with no tool damage. As a result of these experiments and a review of published data on hydrogen embrittlement of iron aluminide under tension, non-water-based (e.g., sulfur-based) lubricants were chosen for production machining. Four-flute, 3/4-in(19-mm) carbide end mills were used at slow speed under lubrication. This latter procedure reduced tool wear and breakage by a factor of 2. Machined surfaces and specimen cross sections were analyzed by scanning electron microscopy to detect microcracking. Tensile tests gave the expected yield and ultimate strengths, indicating that no degradation by low-speed machining occurred. This study extends this work to show that the alloy can be machined at higher speeds using high-speed steel end mills, and that water-soluble cutting oil is a suitable lubricant and coolant. 11 figs., 1 tab.

  3. Effect of Al3+ on Photoluminescence Properties of Eu3+-Doped BaZr(BO3)2 Phosphors

    NASA Astrophysics Data System (ADS)

    Li, Guang-Min; Li-Lan; Wang, Da-Jian; Zhang, Xiao-Song; Tao, Yi

    2006-08-01

    We discuss the influence of Al3+ on the charge transfer state (CTS) and the photoluminescence properties of BaZr(BO3)2:Eu. The results reveal that there is a red shift which is about 20 nm for the charge transfer state when doping with Al3+ and indicate the formation of `free' electrons due to the change of microstructures. In addition, the influence of Al3+ doping on the PPR is analysed and a new explanation is raised based on the photo luminescent mechanism. It is the CTS intensity rather than the CTS energy that influences the peak-peak ratio.

  4. Ca and In co-doped BaFeO3-δ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Lam, Kwun Yu; Saccoccio, Mattia; Gao, Yang; Chen, Dengjie; Ciucci, Francesco

    2016-08-01

    We report Ba0·95Ca0·05Fe0·95In0·05O3-δ (BCFI), a novel cobalt-free perovskite, as a promising cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). We synthesize this new material, and systematically characterize its lattice structure, thermal stability, chemical composition, electrical conductivity, and oxygen reduction reaction (ORR) activity. The cubic phase of BaFeO3-δ is stabilized by light isovalent and lower-valence substitution, i.e., 5% Ca2+ in the Ba2+ site and 5% In3+ in the Fe3+/Fe4+ site, in contrast with the typical approach of substituting elements of higher valence. Without resorting to co-doping strategy, the phase of BaFe0·95In0·05O3-δ (BFI) is rhombohedral, while Ba0·95Ca0·05FeO3-δ (BCF) is a mixture of the cubic phase together with BaFe2O4 impurities. The structure of BCFI is cubic from room temperature up to 900 °C with a moderate thermal expansion coefficient of 23.2 × 10-6 K-1. Thanks to the large oxygen vacancy concentration and fast oxygen mobility, BCFI exhibits a favorable ORR activity, i.e., we observe a polarization resistance as small as 0.038 Ω cm2 at 700 °C. The significantly enhanced performance, compared with BFI and BCF, is attributed to the presence of the cubic phase and the large oxygen vacancies brought by the isovalent substitution in the A-site and lower-valence doping in the B-site.

  5. Ca and In co-doped BaFeO3-δ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Lam, Kwun Yu; Saccoccio, Mattia; Gao, Yang; Chen, Dengjie; Ciucci, Francesco

    2016-08-01

    We report Ba0·95Ca0·05Fe0·95In0·05O3-δ (BCFI), a novel cobalt-free perovskite, as a promising cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). We synthesize this new material, and systematically characterize its lattice structure, thermal stability, chemical composition, electrical conductivity, and oxygen reduction reaction (ORR) activity. The cubic phase of BaFeO3-δ is stabilized by light isovalent and lower-valence substitution, i.e., 5% Ca2+ in the Ba2+ site and 5% In3+ in the Fe3+/Fe4+ site, in contrast with the typical approach of substituting elements of higher valence. Without resorting to co-doping strategy, the phase of BaFe0·95In0·05O3-δ (BFI) is rhombohedral, while Ba0·95Ca0·05FeO3-δ (BCF) is a mixture of the cubic phase together with BaFe2O4 impurities. The structure of BCFI is cubic from room temperature up to 900 °C with a moderate thermal expansion coefficient of 23.2 × 10-6 K-1. Thanks to the large oxygen vacancy concentration and fast oxygen mobility, BCFI exhibits a favorable ORR activity, i.e., we observe a polarization resistance as small as 0.038 Ω cm2 at 700 °C. The significantly enhanced performance, compared with BFI and BCF, is attributed to the presence of the cubic phase and the large oxygen vacancies brought by the isovalent substitution in the A-site and lower-valence doping in the B-site.

  6. Crystal structure of the Fe-member of usovite.

    PubMed

    Weil, Matthias

    2015-06-01

    Crystals of the title compound, with the idealized composition Ba2CaFeAl2F14, dibarium calcium iron(II) dialuminium tetra-deca-fluoride, were obtained serendipitously by reacting a mixture of the binary fluorides BaF2, CaF2 and AlF3 in a leaky steel reactor. The compound crystallizes in the usovite structure type (Ba2CaMgAl2F14), with Fe(2+) cations replacing the Mg(2+) cations. The principal building units are distorted [CaF8] square-anti-prisms (point group symmetry 2), [FeF6] octa-hedra (point group symmetry -1) and [AlF6] octa-hedra that are condensed into undulating (2) ∞[CaFeAl2F14](4-) layers parallel (100). The Ba(2+) cations separate the layers and exhibit a coordination number of 12. Two crystal structure models with a different treatment of the disordered Fe site [mixed Fe/Ca occupation, model (I), versus underoccupation of Fe, model (II)], are discussed, leading to different refined formulae Ba2Ca1.310 (15)Fe0.690 (15)Al2F14 [model (I)] and Ba2CaFe0.90 (1)Al2F14 [model (II)]. PMID:26090139

  7. Crystal structure of the Fe-member of usovite

    PubMed Central

    Weil, Matthias

    2015-01-01

    Crystals of the title compound, with the idealized composition Ba2CaFeAl2F14, dibarium calcium iron(II) dialuminium tetra­deca­fluoride, were obtained serendipitously by reacting a mixture of the binary fluorides BaF2, CaF2 and AlF3 in a leaky steel reactor. The compound crystallizes in the usovite structure type (Ba2CaMgAl2F14), with Fe2+ cations replacing the Mg2+ cations. The principal building units are distorted [CaF8] square-anti­prisms (point group symmetry 2), [FeF6] octa­hedra (point group symmetry -1) and [AlF6] octa­hedra that are condensed into undulating 2 ∞[CaFeAl2F14]4− layers parallel (100). The Ba2+ cations separate the layers and exhibit a coordination number of 12. Two crystal structure models with a different treatment of the disordered Fe site [mixed Fe/Ca occupation, model (I), versus underoccupation of Fe, model (II)], are discussed, leading to different refined formulae Ba2Ca1.310 (15)Fe0.690 (15)Al2F14 [model (I)] and Ba2CaFe0.90 (1)Al2F14 [model (II)]. PMID:26090139

  8. Magnetic properties of BaFe 12-( x+y) Sn xCo yO 19 single crystals

    NASA Astrophysics Data System (ADS)

    Solé, R.; Zhang, X. X.; Ruiz, X.; Aguiló, M.; Díaz, F.

    1996-06-01

    Magnetic properties of BaFe 12-( x+y) Sn xCo yO 19 single crystals, with 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2, have been investigated in the temperature range 6 to 320 K with a varying field from - 5 to + 5 T applied parallel and perpendicular to the c-axis. It is found that when Fe 3+ is substituted by Co 2+ and Sn 2+, the anisotropy and saturation magnetization of these materials are reduced. With x + y < 1.5, the sample exhibits long range magnetic ordering with the uniaxial anisotropy in the c-axis. When the substitution was increased to x + y = 2.5, the long distance magnetic coupling is partially destroyed, and the sample behaves as a weakly long-range anisotropy granular material. At x + y ˜ 4, the sample shows reentrant spin glass behavior.

  9. Ab initio downfolding study of the iron-based ladder superconductor BaFe2S3

    NASA Astrophysics Data System (ADS)

    Arita, Ryotaro; Ikeda, Hiroaki; Sakai, Shiro; Suzuki, Michi-To

    2015-08-01

    Motivated by the recent discovery of superconductivity in the iron-based ladder compound BaFe2S3 under high pressure, we derive low-energy effective Hamiltonians from first principles. We show that the complex band structure around the Fermi level is represented only by the Fe 3 dx z (mixed with 3 dx y ) and 3 dx2-y2 orbitals. The characteristic band degeneracy allows us to construct a four-band model with the band unfolding approach. We also estimate the interaction parameters and show that the system is more correlated than the 1111 family of iron-based superconductors. Provided the superconductivity is mediated by spin fluctuations, the 3 dx z -like band plays an essential role, and the gap function changes its sign between the Fermi surface around the Γ point and that around the Brillouin-zone boundary.

  10. Photoinduced Demagnetization and Insulator-to-Metal Transition in Ferromagnetic Insulating BaFeO3 Thin Films

    NASA Astrophysics Data System (ADS)

    Tsuyama, T.; Chakraverty, S.; Macke, S.; Pontius, N.; Schüßler-Langeheine, C.; Hwang, H. Y.; Tokura, Y.; Wadati, H.

    2016-06-01

    We studied the electronic and magnetic dynamics of ferromagnetic insulating BaFeO3 thin films by using pump-probe time-resolved resonant x-ray reflectivity at the Fe 2 p edge. By changing the excitation density, we found two distinctly different types of demagnetization with a clear threshold behavior. We assigned the demagnetization change from slow (˜150 ps ) to fast (<70 ps ) to a transition into a metallic state induced by laser excitation. These results provide a novel approach for locally tuning magnetic dynamics. In analogy to heat-assisted magnetic recording, metallization can locally tune the susceptibility for magnetic manipulation, allowing one to spatially encode magnetic information.

  11. Photoinduced Demagnetization and Insulator-to-Metal Transition in Ferromagnetic Insulating BaFeO_{3} Thin Films.

    PubMed

    Tsuyama, T; Chakraverty, S; Macke, S; Pontius, N; Schüßler-Langeheine, C; Hwang, H Y; Tokura, Y; Wadati, H

    2016-06-24

    We studied the electronic and magnetic dynamics of ferromagnetic insulating BaFeO_{3} thin films by using pump-probe time-resolved resonant x-ray reflectivity at the Fe 2p edge. By changing the excitation density, we found two distinctly different types of demagnetization with a clear threshold behavior. We assigned the demagnetization change from slow (∼150  ps) to fast (<70  ps) to a transition into a metallic state induced by laser excitation. These results provide a novel approach for locally tuning magnetic dynamics. In analogy to heat-assisted magnetic recording, metallization can locally tune the susceptibility for magnetic manipulation, allowing one to spatially encode magnetic information. PMID:27391735

  12. Luminescence properties of undoped LiBaAlF6 single crystals.

    PubMed

    Omelkov, S I; Kirm, M; Feldbach, E; Pustovarov, V A; Cholakh, S O; Isaenko, L I

    2010-07-28

    This paper presents the results of the study of electronic excitations in undoped LiBaAlF(6) single crystals by means of luminescence spectroscopy and complimentary optical methods. The intrinsic emission at 4.2 eV due to self-trapped excitons was identified. The fast nanosecond defect-related luminescence was revealed at 3.0 eV. Both emissions degrade under electron beam irradiation, the most probable reason of which is defect creation introducing an additional non-radiative relaxation channel prohibiting energy transfer to luminescence centers. These defects can be recovered and luminescence intensity restored at higher temperatures (>200 K). The permanent damage by electron beam irradiation results only in overall growth of the absorption coefficient in the whole 1.5-6.5 eV spectral region studied. The analysis of thermally stimulated luminescence glow curves in the temperature range of 5-410 K revealed two shallow charge carrier traps with the activation energies of 0.22 and 0.33 eV, respectively. The luminescence of an impurity peaked at 2.5 eV was found and tentatively assigned to an oxygen-related emission center. PMID:21399311

  13. Erosion studies on a Fe sub 3 Al-based iron aluminide and 1100 Al

    SciTech Connect

    Rao, M.; Keiser, J.

    1991-01-01

    Samples of a Fe{sub 3}Al-based iron aluminide alloy were eroded using nominally spherical steel shot. Two distinct erosion mechanisms were observed: (1) extrusion of platelets resulting from spherical particle impacts and (2) cutting of the target by angular particles either present in the initial erodent or formed on impact by fracture of the shot. The overall erosion resistance of the alloy was judged to be relatively good and may be improved by increasing the alloy's ductility. Measurements using a mechanical properties microprobe (MPM) showed that significant work hardening occurred due to erosion, but the hardness dropped off near the surface, apparently due to thermal effects. In contrast no sub-surface softening was observed in samples of 1100 Al which were also eroded by steel shot. In order to model the impact process, single 343 {mu}m WC spheres were shot at the two alloys at velocities between 20 m/s and 900 m/s. Compared to the iron aluminide, the craters on 1100 Al show better developed lips and features indicative of sustained plastic deformation. Both alloys showed thermally induced subsurface softening at high velocities. At lower velocities, only the iron aluminide showed clear thermal effects. Results of the single particle and multiple particle impact tests are reconciled in terms of deformation behavior and thermal effects. 22 refs., 7 figs.

  14. Activities of the components in a spinel solid solution of the Fe-Al-O system

    NASA Astrophysics Data System (ADS)

    Lykasov, A. A.; Kimyashev, A. A.

    2011-09-01

    The conditions of the equilibrium between the Fe3O4-FeAl2O4 solution and wustite are determined by measuring the EMF of galvanic cells containing a solid electrolyte, and the activities of the components in the Fe3O4-FeAl2O4 solution are calculated by treating the results of the experiment on the equilibrium between the spinel solution and wustite. Their properties are found to be different from those of ideal solutions at temperatures of 1000-1300 K. A significant positive deviation from the Raoult's law is believed to indicate the tendency of the solution to decompose. The experimental data are treated in terms of the theory of regular solutions, assuming the energy of mixing to be a function of temperature only. The critical temperature of decomposition for the Fe3O4-FeAl2O4 solution is found to be 1084 K.

  15. Electronic structure and magnetism on FeSiAl alloy: A DFT study

    NASA Astrophysics Data System (ADS)

    Cardoso Schwindt, V.; Sandoval, M.; Ardenghi, J. S.; Bechthold, P.; González, E. A.; Jasen, P. V.

    2015-09-01

    Density functional theory (DFT) calculation has been performed to study the electronic structure and chemical bonding in FeSiAl alloy. These calculations are useful to understand the magnetic properties of this alloy. Our results show that the mean magnetic moment of Fe atoms decreases due to the crystal structure and the effect of Si and Al. Depending on the environment, the magnetic moment of one Fe site (Fe1) increases to about 14.3% while of the other site (Fe2) decreases to about 25.9% (compared with pure bcc Fe). All metal-metal overlap interactions are bonding and slightly weaker than those found in the bcc Fe structure. The electronic structure (DOS) shows an important hybridization among Fe, Si and Al atoms, thus making asymmetric the PDOS with a very slight polarization of Al and Si atoms. Our study explains the importance of crystal structure in determining the magnetic properties of the alloys. FeSiAl is a good candidate for electromagnetic interference shielding combining low price and good mechanical and magnetic properties.

  16. Effect of Ba substitution on the multiferroic properties of BiFeO3 films on glass substrates

    NASA Astrophysics Data System (ADS)

    Chang, H. W.; Yuan, F. T.; Tu, K. T.; Lo, Y. C.; Tu, S. Y.; Wang, C. R.; Yang, A. B.; Tu, C. S.; Jen, S. U.; Chang, W. C.

    2015-05-01

    Effect of Ba substitution on the multiferroic properties of non-epitaxially grown polycrystalline Bi1-xBaxFeO3 (BBFO) films on refined Pt(111) electrode buffered glass substrates is studied. The structural analysis shows that a pure perovskite phase is present for BBFO films (x = 0.05-0.15), and (110) preferred orientation is developed for films with high x = 0.15. The grain size and surface roughness are reduced with increasing x. All studied BBFO films show desired ferroelectric and ferromagnetic properties. The good ferroelectric properties with the remanent polarization (2Pr) of 36-70 μC/cm2 and electrical coercive field (Ec) of 318-570 kV/cm are attained. On the other hand, the substitution of Ba2+ for Bi3+ in the A site of the BFO crystal structure can effectively enhance the ferromagnetic properties with magnetization (Ms) of 9.4-13.9 emu/cm3 and coercivity (Hc) of 1216-1380 Oe. The ferromagnetic and ferroelectric properties and leakage behavior as functions of Ba content x are discussed.

  17. Point defect concentrations and solid solution hardening in NiAl with Fe additions

    SciTech Connect

    Pike, L.M.; Chang, Y.A.; Liu, C.T.

    1997-08-01

    The solid solution hardening behavior exhibited when Fe is added to NiAl is investigated. This is an interesting problem to consider since the ternary Fe additions may choose to occupy either the Ni or the Al sublattice, affecting the hardness at differing rates. Moreover, the addition of Fe may affect the concentrations of other point defects such as vacancies and Ni anti-sites. As a result, unusual effects ranging from rapid hardening to solid solution softening are observed. Alloys with varying amounts of Fe were prepared in Ni-rich (40 at. % Al) and stoichiometric (50 at. % Al) compositions. Vacancy concentrations were measured using lattice parameter and density measurements. The site occupancy of Fe was determined using ALCHEMI. Using these two techniques the site occupancies of all species could be uniquely determined. Significant differences in the defect concentrations as well as the hardening behavior were encountered between the Ni-rich and stoichiometric regimes.

  18. Structural and Thermal Study of Nanocrystalline Fe-Al-B Alloy Prepared by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Gharsallah, Hana Ibn; Sekri, Abderrahmen; Azabou, Myriam; Escoda, Luiza; Suñol, Joan Josep; Khitouni, Mohamed

    2015-08-01

    Nanostructured iron-aluminum alloy of Fe-25 at. pct Al composition doped with 0.2 at. pct B was prepared by mechanical alloying. The phase transformations and structural changes occurring in the studied material during mechanical alloying and during subsequent heating were investigated by SEM, XRD, and DSC techniques. The patterns so obtained were analyzed using the Rietveld program. The alloyed powders were disordered Fe(Al) solid solutions and Fe2B boride phase. The Fe2B boride phase is formed after 4 hours of milling. The crystallite size reduction to the nanometer scale (5 to 8 nm) is accompanied by an increase in lattice strains. The powder milled for 40 hours was annealed at temperatures of 523 K, 823 K, 883 K, and 973 K (250 °C, 550 °C, 610 °C, and 700 °C) for 2 hours. Low temperatures annealing are responsible for the relaxation of the disordered structure, while high temperatures annealing enabled supersaturated Fe(Al) solid solutions to precipitate out fines Fe3Al, Fe2Al5, and Fe4Al13 intermetallics and, also the recrystallization and the grain growth phenomena.

  19. Strong coercivity reduction and high initial permeability in NiCoP coated BaFe12O19-polystyrene bilayer composite

    NASA Astrophysics Data System (ADS)

    Hamad, Mahmoud A.; El-Sayed, Adly H.; Hemeda, O. M.; Tawfik, A.

    2016-03-01

    Soft-magnetic NiCoP coated hard-magnetic M-type ferrite BaFe12O19 (BaM)-polystyrene (PS) bilayer composite film was successfully synthesized. X-ray diffraction peaks exhibited no change in the structure of BaM after coating with PS. The NiCoP coated BaM-PS composite exhibited a wasp-waisted magnetic hysteretic loop with remarkable reduction in the coercivity, remanence and squareness with respect to BaM-PS, which is useful for the core of a magnetic switching device to control currents so large that they are unmanageable. Moreover, the initial permeability measurement exhibits initial permeability of around 100 000 and thermal stability up to 558 K, which is good for flux-amplifying components of smaller inductors.

  20. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.; Unocic, Kinga A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  1. X-ray diffraction study of Ba3TaFe3Si2O14 single crystal—a promising langasite-type multiferroic

    NASA Astrophysics Data System (ADS)

    Dudka, A. P.; Balbashov, A. M.; Lyubutin, I. S.

    2016-01-01

    Ba3TaFe3Si2O14 single crystals (sp. gr. P321, Z = 1), promising langasite-type multiferroics, have been grown by floating zone melting. An accurate X-ray diffraction study of Ba3TaFe3Si2O14 single crystal has been performed using two datasets, obtained independently for two different orientations of the same sample on a diffractometer equipped with a CCD area detector at 295 K. Structure refinement is performed based on an averaged dataset: a = 8.5355(1) Å, c = 5.2332(1) Å, sp. gr. P321, Z = 1; the R factors of model structure refinement were found to be R/ wR = 1.02/1.23% for 4552 independent reflections. Disordering asymmetry is revealed for the magnetic Fe ion in the 3 f site and the Ba cation in the 3 e site.

  2. Synthesis and electromagnetic properties of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites

    SciTech Connect

    Xie, Yu; Hong, Xiaowei; Liu, Jinmei; Le, Zhanggao; Huang, Feihui; Qin, Yuancheng; Zhong, Rong; Gao, Yunhua; Pan, Jianfei; Ling, Yun

    2014-02-01

    Graphical abstract: Due to combining different functions and characteristics of individual materials, hybrid nanocomposite materials can strengthen their applications. Magnetic-conductive nanocomposites are the promising materials with electromagnetic loss, which have synergetic behavior between magnetic and conductive materials. It is the first time to report the synthesis of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide (BF/TD) composites by the gel-precursor self-propagating combustion process. The influence of mass ratio of BF and TD on the electromagnetic properties of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites was studied. The tgδ{sub μ} and tgδ{sub ε} of BF–TD composites. - Highlights: • It is the first time to report BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites. • The composites are prepared by the gel-precursor self-propagating combustion. • The electromagnetic properties could be adjusted by the mass ratio of BF and TD. • The introduction of TD enhances the dielectric loss and widens the frequency bands. • BF/TD composites will be microwave absorption materials with wide frequency band. - Abstract: Doped BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites have been prepared by the gel-precursor self-propagating combustion process. The characterization of the composites are performed by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Differential thermal analysis-thermo gravimetry (DTA–TG), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and network analyzer. Both XRD and FT-IR indicate that the doped BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites are successfully synthesized and there are some interactions between BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19} and titanium dioxide. DTA–TG analysis of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites shows that the composite gel

  3. Ultrafast magneto-optical spectroscopy of BiFeO3-BaTiO3 based structures

    NASA Astrophysics Data System (ADS)

    Magill, Brenden A.; Bishop, Michael; McGill, Stephen A.; Zhou, Yuon; Chopra, Anuj; Maurya, Deepam; Song, Hyun-Cheol; Priya, Shashank; Khodaparast, Giti A.

    2015-09-01

    Ultrafast optical spectroscopy can provide insight into fundamental microscopic interactions, dynamics and the coupling of several degrees of freedom. Pump/ probe studies can reveal the answer to questions like "What are the achievable switching speeds in multiferroics?", "What is the influence of the crystallographic orientation and domain states on the available switching states?", and "What is the effect of the hetrostructure on promoting the coupling between the varying field excitations?". In this presentation, we report on two color (400/800nm) ultrafast pump-probe differential reflectance spectroscopy of BiFeO3-BaTiO3 structures to probe the coupling between optical and acoustic phonons to spin waves. The data presented here is a combination of different transient reflectivity measurements to probe both the carrier and spin dynamics. The (001)-BiFeO3-BaTiO3 thin films were prepared using pulsed laser deposition on vicinal SrTiO3 substrates using La0.70 Sr0.30MnO3 bottom electrodes. Crystal orientation and topography were analyzed by x-ray diffraction and atomic force microscopy. . Our results are important to developing devices on the basis of this material system. This work was supported by the AFOSR through grant FA9550-14-1-0376,NSF-Career Award DMR-0846834, and the Virginia Tech Institute for Critical Technology and Applied Science.

  4. Determination of the phase diagram of the electron doped superconductor Ba(Fe1-xCox)2As2

    SciTech Connect

    Chu, Jiun-Haw; Analytis, James G.; Kucharczyk, Chris; Fisher, Ian R.; /Stanford U., Geballe Lab.

    2010-02-15

    Systematic measurements of the resistivity, heat capacity, susceptibility and Hall coefficient are presented for single crystal samples of the electron-doped superconductor Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2}. These data delineate an x-T phase diagram in which the single magnetic/structural phase transition that is observed for undoped BaFe{sub 2}As{sub 2} at 134 K apparently splits into two distinct phase transitions, both of which are rapidly suppressed with increasing Co concentration. Superconductivity emerges for Co concentrations above x {approx}0.025, and appears to coexist with the broken symmetry state for an appreciable range of doping, up to x {approx} 0.06. The optimal superconducting transition temperature appears to coincide with the Co concentration at which the magnetic/structural phase transitions are totally suppressed, at least within the resolution provided by the finite step size between crystals prepared with different doping levels. Superconductivity is observed for a further range of Co concentrations, before being completely suppressed for x {approx} 0.018 and above. The form of this x-T phase diagram is suggestive of an association between superconductivity and a quantum critical point arising from suppression of the magnetic and/or structural phase transitions.

  5. Microwave absorption properties of BaGdxFe12-xO19 nanoparticles synthesized by wet milling process

    NASA Astrophysics Data System (ADS)

    Kaynar, Mehmet; Ozcan, Sadan; Shah, S.

    2013-03-01

    It is a big demand to have a wide band, easy to synthesize microwave absorption materials with a high absorption ratio according to their weight. As a solution, nanoparticles are used for the couple of years because of their tunable frequencies by just changing their particle size. Most interesting nano structures for this objective are ferrites. In this work as a microwave absorber, BaFe12O19 and BaGd2Fe10O19 nanoparticles with different particles size are synthesized by the wet milling process. Their crystal structure analyzed by XRD, mean particle sizes were calculated from XRD patterns using rietveld analysis and from TEM images. Magnetic properties are analyzed by using Quantum design VSM. Microwave absorption properties are measured by using coaxial transmission method with an Agilent E5071 VNA. With the change of the last milling time from 0 to 20-hour crystalline sizes are changed from 48 nm to 13 nm. Decrease of particle size give rise to a decrease at coercivity and saturation magnetization of the samples. Change at the hysteresis loops gives a clue to the change of the microwave absorption frequency which is directly observed from the microwave measurements. Supported by TUBITAK-BIDEB 2214-Abroad Research Scholarship program.

  6. Transport properties, upper critical field and anisotropy of Ba(Fe0.75Ru0.25)2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Shen, Bing; Zeng, Bin; Liu, JianZhong; Ding, XiaXin; Wang, ZhiHe; Yang, Huan; Wen, HaiHu

    2012-12-01

    The temperature and angle dependent resistivity of Ba(Fe0.75Ru0.25)2As2 single crystals were measured in magnetic fields up to 14 T. The temperature dependent resistivity with the magnetic field aligned parallel to c-axis and ab-planes allow us to derive the slope of d H {/c2 ab }/d T and d H {/c2 c }/d T near T c yielding an anisotropy ratio Γ = d H {/c2 ab }/d T/d H {/c2 c }/d T≈2. By scaling the curves of resistivity vs. angle measured at a fixed temperature but different magnetic fields within the framework of the anisotropic Ginzburg-Landau theory, we obtained the anisotropy in an alternative way. Again we found that the anisotropy ( m c / m ab )1/2 was close to 2. This value is similar to that in Ba0.6K0.4Fe2As2 (K-doped Ba122) and Ba(Fe0.92Co0.08)2As2 (Co-doped Ba122). This suggests that the 3D warping effect of the Fermi surface in Ru-doped samples may not be stronger than that in the K-doped or Co-doped Ba122 samples, therefore the possible nodes appearing in Ru-doped samples cannot be ascribed to the 3D warping effect of the Fermi surface.

  7. Lattice dynamics of BaFe2X3(X=S,Se) compounds

    DOE PAGESBeta

    Popović, Z. V.; Šćepanović, M.; Lazarević, N.; Opačić, M.; Radonjić, M. M.; Tanasković, D.; Lei, Hechang; Petrovic, C.

    2015-02-27

    We present the Raman scattering spectra of the S=2 spin ladder compounds BaFe₂X₃ (X=S,Se) in a temperature range between 20 and 400 K. Although the crystal structures of these two compounds are both orthorhombic and very similar, they are not isostructural. The unit cell of BaFe₂S₃ (BaFe₂Se₃) is base-centered Cmcm (primitive Pnma), giving 18 (36) modes to be observed in the Raman scattering experiment. We have detected almost all Raman active modes, predicted by factor group analysis, which can be observed from the cleavage planes of these compounds. Assignment of the observed Raman modes of BaFe₂S(Se)₃ is supported by themore » lattice dynamics calculations. The antiferromagnetic long-range spin ordering in BaFe₂Se₃ below TN=255K leaves a fingerprint both in the A1g and B3g phonon mode linewidth and energy.« less

  8. Microstructural stability of Fe-Cr-Al alloys at 450-550 °C

    NASA Astrophysics Data System (ADS)

    Ejenstam, Jesper; Thuvander, Mattias; Olsson, Pär; Rave, Fernando; Szakalos, Peter

    2015-02-01

    Iron-Chromium-Aluminium (Fe-Cr-Al) alloys have been widely investigated as candidate materials for various nuclear applications. Albeit the excellent corrosion resistance, conventional Fe-Cr-Al alloys suffer from α-α‧ phase separation and embrittlement when subjected to temperatures up to 500 °C, due to their high Cr-content. Low-Cr Fe-Cr-Al alloys are anticipated to be embrittlement resistant and provide adequate oxidation properties, yet long-term aging experiments and simulations are lacking in literature. In this study, Fe-10Cr-(4-8)Al alloys and a Fe-21Cr-5Al were thermally aged in the temperature interval of 450-550 °C for times up to 10,000 h, and the microstructures were evaluated mainly using atom probe tomography. In addition, a Kinetic Monte Carlo (KMC) model of the Fe-Cr-Al system was developed. No phase separation was observed in the Fe-10Cr-(4-8)Al alloys, and the developed KMC model yielded results in good agreement with the experimental data.

  9. FeAl underlayers for CoCrPt thin film longitudinal media

    SciTech Connect

    Lee, L.; Laughlin, D.E.; Lambeth, D.N.

    1997-04-01

    B2 ordered FeAl films with a small, uniform grain size have been produced by rf diode sputter deposition on glass substrates. CoCrPt films grown on FeAl underlayers were found to have the (10{bar 1}0) lamellar texture. The in-plane coercivities (H{sub c}) of the CoCrPt/FeAl films are comparable to those of the CoCrPt/Cr films and they can be further improved by inserting a thin Cr intermediate layer between the CoCrPt and the FeAl layers. By employing a MgO seed layer or a (002) textured Cr seed layer, (001) textured FeAl can be obtained. However, the (001) FeAl underlayer only induces a weak (11{bar 2}0) textured CoCrPt. Thus no improvement in H{sub c} over those produced on unseeded FeAl underlayers was observed. {copyright} {ital 1997 American Institute of Physics.}

  10. Magnetic properties of ultrasoft-nanocomposite FeAlSiBNbCu alloys

    NASA Astrophysics Data System (ADS)

    Todd, I.; Tate, B. J.; Davies, H. A.; Gibbs, M. R. J.; Kendall, D.; Major, R. V.

    2000-06-01

    The effects of up to 10 at% substitution of Fe by Al on the microstructure and DC and AC magnetic properties of nanocrystalline FeSiBCuNb alloy ribbon are summarised and analysed. The minimum DC H c developed during annealing decreases by 40% for 2 at% Al (to 0.3 A/m) and remains roughly constant for larger Al contents. The largest peak value of μ 0.4 at 50 Hz also corresponds to 2 at% Al. The best frequency response for μ 0.4 occurs for 6 at% Al while there was no improvement in AC power loss behaviour over the 0% Al alloy. The improvements in DC H c and AC μ 0.4 are ascribed to a reduction in K 1 of the Fe-Si-based nanocrystallites by the introduction of Al.

  11. Electronic structure and soft magnetic properties of Se/FeSiAl (110) films

    NASA Astrophysics Data System (ADS)

    Schwindt, V. Cardoso; Ardenghi, J. S.; Bechthold, P.; Juan, A.; Batic, B. Setina; Jenko, M.; González, E. A.; Jasen, P. V.

    2015-11-01

    The Se adsorption at different coverages on DO3 FeSiAl(110) surface is studied using density functional theory (DFT). Se adsorption is favorable in almost all surface high-symmetry sites, except for the bridge site formed by Fe-Si atoms. The most stable is a hollow site formed by four Fe atoms with adsorption energy of -5.30 eV. When the coverages increase, the energies decrease in the case of hollow sites. The surface present a reconstruction after Se adsorption, being the most important at 1/2 ML. The local magnetic moment for Fe atoms increase for the type A (all nearst neighbours (nn) are Fe atoms) and decrease for the type B (nn are Fe, Si and Al atoms). The most affected metal orbitals are Fe 4s and 4p. In the case of the hollow site the surface Fe-Fe bond is weakened after Se adsorption. A Fe-Se bond is developed at all coverages in both sites being the most important on top (dFe-Se = 2.23 Å, OP: 0.774 at 1/4 ML). The first and second layer Fe-Fe bond increase at 1/4 ML and decrease at 1/2 and 1 ML. Small Se-Se bonding interaction appear at 1/2 ML and increase noticeable for 1 ML. For the top site, the Se-Se bond appears at all coverage. The Fe-Fe surface bonds also decrease its strength with respect to the clean surface at all coverage. The first and second layer Fe-Fe bond increase at all coverage.

  12. On stoichiometry and intermixing at the spinel/perovskite interface in CoFe2O4/BaTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Tileli, Vasiliki; Duchamp, Martial; Axelsson, Anna-Karin; Valant, Matjaz; Dunin-Borkowski, Rafal E.; Alford, Neil Mcn.

    2014-11-01

    The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface stoichiometry, and cation intermixing are determined on the atomic level. The results reveal a surprisingly uneven BaTiO3 substrate surface formed after the film deposition and Fe atom incorporation in the top few monolayers inside the unit cell of the BaTiO3 crystal. Towards the CoFe2O4 side, a disordered region extending several nanometers from the interface was revealed and both Ba and Ti from the substrate were found to diffuse into the spinel layer. The analysis also shows that within this somehow incompatible composite interface, a different phase is formed corresponding to the compound Ba2Fe3Ti5O15, which belongs to the ilmenite crystal structure of FeTiO3 type. The results suggest a chemical activity between these two oxides, which could lead to the synthesis of complex engineered interfaces.The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface

  13. X-ray crystal structures of Al-doped (Y,Ca)Ba2Cu3O(7-y) whiskers.

    PubMed

    Bertolotti, Federica; Calore, Leandro; Gervasio, Giuliana; Agostino, Angelo; Truccato, Marco; Operti, Lorenza

    2014-04-01

    Al(+3)-doped (Y,Ca)Ba2Cu3O(7-y) (YBCO) whiskers have been synthesized using a solid-state reaction technique. These materials are promising candidates for solid-state THz applications based on sequences of Josephson Junctions (IJJs). Alumina addition was systematically varied and the effect of aluminium incorporation on the structure has been investigated using single-crystal X-ray diffraction. Aluminium only replaces Cu atoms in the O-Cu-O-Cu chains and a gradual transition from orthorhombic to tetragonal space group occurs, thus increasing the Al content. A gradual modification of the coordination sphere of the copper site has also been observed. The Ca(2+) ion substitutes mainly the Y(3+) ion and also, to a small extent, the Ba(2+) ion. PMID:24675593

  14. Isothermal transport properties and majority-type defects of BaCo(0.70)Fe(0.22)Nb(0.08)O(3-δ).

    PubMed

    Lee, Taewon; Cho, Deok-Yong; Kwon, Hyung-Soon; Yoo, Han-Ill

    2015-01-28

    (Ba,Sr)(Co,Fe)O3-δ based mixed conducting oxides, e.g. (Ba0.5Sr0.5)(Co1-xFex)O3-δ and Ba(Co0.7Fe0.3-xNbx)O3-δ, are promising candidates for oxygen permeable membranes and SOFC cathodes due to their excellent ambipolar conductivities. Despite these excellent properties, however, their mass/charge transport properties have not been fully characterized and hence, their defect structure has not been clearly elucidated. Until now, the majority types of ionic and electronic defects have been regarded as oxygen vacancies and localized holes. Holes, whether localized or not, are acceptable as majority electronic carriers on the basis of the as-measured total conductivity, which is essentially electronic, and electronic thermopower. On the other hand, the proposal of oxygen vacancies as majority ionic carriers lacks solid evidence. In this work, we document all the isothermal transport properties of Ba(Co0.70Fe0.22Nb0.08)O3-δ in terms of a 2 × 2 Onsager transport coefficient matrix and its steady-state electronic thermopower against oxygen activity at elevated temperatures, and determine the valences of Co and Fe via soft X-ray absorption spectroscopy. It turns out that the ionic and electronic defects in majority should be oxygen interstitials and at least two kinds of holes, one free and the other trapped. Furthermore, the lattice molecule should be Ba(Co0.7Fe0.3-xNbx)O2+δ, not Ba(Co0.7Fe0.3-xNbx)O3-δ, to be consistent with all the results observed. PMID:25503813

  15. Catalyst Size and Morphological Effects on the Interaction of NO2 with BaO/γ-Al2O3 Materials

    SciTech Connect

    Mei, Donghai; Kwak, Ja Hun; Szanyi, Janos; Ge, Qingfeng; Peden, Charles HF

    2010-06-19

    The capability of NOx storage on the supported BaO catalyst largely depends on the Ba loading. With different Ba loadings, the supported BaO component exposes various phases ranging from well-dispersed nanoclusters to large crystalline particles on the oxide support materials. In order to better understand size and morphological effects on NOx storage over -Al2O3 supported BaO materials, the adsorption structures and energetics of single NO2 molecule, as well as NOx+NOy (NO2+NO2, NO+NO3 and NO2+NO3) pairs on the BaO/-Al2O3(100), (BaO)2/-Al2O3(100), and (BaO)5/-Al2O3(100) surfaces were investigated using first-principles density functional theory calculations. A single NO2 molecule prefers to adsorb at basic OBa site forming anionic nitrate species. Upon adsorption, a charge redistribution in the supported (BaO)n clusters occurs. Synergistic effects due to the interaction of NO2 with both the (BaO)n clusters and the  Al2O3(100) support enhances the stability of adsorbed NO2. The interaction between NO2 and the (BaO)n/ Al2O3(100) catalysts was found to be markedly affected by the sizes and morphologies of the supported (BaO)n clusters. The adsorption energy of NO2 increases from 0.98 eV on the BaO/-Al2O3(100) surface to 3.01 eV on (BaO)5/ Al2O3(100). NO2 adsorption on (BaO)2 clusters in a parallel configuration on the -Al2O3(100) surface is more stable than on dimers oriented in a perpendicular fashion. Similar to the bulk BaO(100) surface, a supported (BaO)n cluster-mediated electron transfer induces cooperative effects that dramatically increase the total adsorption energy of NOx+NOy pairs on the (BaO)n/-Al2O3(100) surfaces. Following the widely accepted NO2 storage mechanism of , our thermodynamic analysis indicates that the largest energy gain for this overall process of NOx uptake is obtained on the amorphous monolayer-like (BaO)5/-Al2O3(100) surface. This suggests that -Al2O3-supported BaO materials with ~ 6  12 wt

  16. Assessing the elastic properties and ductility of Fe-Cr-Al alloys from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Nurmi, E.; Wang, G.; Kokko, K.; Vitos, L.

    2016-01-01

    Fe-Al is one of the best corrosion resistant alloys at high temperatures. The flip side of Al addition to Fe is the deterioration of the mechanical properties. This problem can be solved by adding a suitable amount of third alloying component. In the present work, we use ab initio calculations based on density functional theory to study the elastic properties of Fe?Cr?Al? alloys for Al and Cr contents up to 20 at.%. We assess the ductility as a function of chemistry by making use of the semi-empirical correlations between the elastic parameters and mechanical properties. In particular, we derive the bulk modulus to shear modulus ratio and the Cauchy pressure and monitor their trends in terms of chemical composition. The present findings are contrasted with the previously established oxidation resistance of Fe-Cr-Al alloys.

  17. Synthesis and characterization of quasicrystals in an Al-Fe-W alloy

    SciTech Connect

    Mukhopadhyay, N.K.; Weatherly, G.C.; Embury, J.D. ); Lloyd, D.J. )

    1992-07-01

    After the discovery of quasicrystals (QC) in an al-14% Mn alloy, many attempts have been made to find alloy systems which form quasicrystals. Much effort has been devoted to the study of the Al-Fe system and its modification by Cu and other elements such as Mn, Cr, Mo and Ta to improve the ease of forming icosahedral quasicrystals (IQC). Although the Al-Fe system does not form IQC, the formation of a decagonal quasicrystal (DQC) being favored, these elements promote the IQC phase. This paper considers the Al-Fe system and its modification by W and demonstrates the existence of IQC in an Al-Fe-W ternary alloy.

  18. Point defect behavior in B2-type intermetallic compound FeAl

    SciTech Connect

    Haraguchi, T.; Kogachi, M.

    1999-07-01

    Point defect behavior in B2-type FeAl alloys is investigated from a thermodynamic point of view, based on the Bragg-Williams method. The model is developed by taking new defect formation mechanisms, random vacancy distribution (RVD), and antisite atom recovering (ASAR), into consideration, which were proposed based on the current findings in in situ neutron and X-ray diffraction studies for the B2 FeAl. The condition for appearance of the RVD and ASAR states is given. Application of this model to B2 FeAl alloys shows that the RVD-like behavior is reproduced in the Fe-rich composition region and also a rapid increase in vacancy concentration observed in the Al-rich region can be interpreted by the ASAR process by antisite Al atoms.

  19. A vibrational spectroscopic study of the phosphate mineral lulzacite Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Belotti, Fernanda M.; Xi, Yunfei; Scholz, Ricardo

    2014-06-01

    The mineral lulzacite from Saint-Aubin des Chateaux mine, France, with theoretical formula Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10 has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Chemical analysis shows a Sr, Fe, Al phosphate with minor amounts of Ga, Ba and Mg. Raman spectroscopy identifies an intense band at 990 cm-1 with an additional band at 1011 cm-1. These bands are attributed to the PO43-ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The Raman bands at 1034, 1051, 1058, 1069 and 1084 together with the Raman bands at 1098, 1116, 1133, 1155 and 1174 cm-1 are assigned to the ν3 antisymmetric stretching vibrations of PO43- and the HOPO32- units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of lulzacite. The series of Raman bands at 567, 582, 601, 644, 661, 673 and 687 cm-1 are assigned to the PO43-ν2 bending modes. The series of Raman bands at 437, 468, 478, 491, 503 cm-1 are attributed to the PO43- and HOPO32-ν4 bending modes. No Raman bands of lulzacite which could be attributed to the hydroxyl stretching unit were observed. Infrared bands at 3511 and 3359 cm-1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm-1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral lulzacite.

  20. On the microstructure and symmetry of apparently hexagonal BaAl{sub 2}O{sub 4}

    SciTech Connect

    Larsson, A.-K. Withers, R.L.; Perez-Mato, J.M.; Fitz Gerald, J.D.; Saines, P.J.; Kennedy, B.J.; Liu, Y.

    2008-08-15

    The P6{sub 3} (a=2a{sub p}, b=2b{sub p}, c=c{sub p}) crystal structure reported for BaAl{sub 2}O{sub 4} at room temperature has been carefully re-investigated by a combined transmission electron microscopy and neutron powder diffraction study. It is shown that the poor fit of this P6{sub 3} (a=2a{sub p}, b=2b{sub p}, c=c{sub p}) structure model for BaAl{sub 2}O{sub 4} to neutron powder diffraction data is primarily due to the failure to take into account coherent scattering between different domains related by enantiomorphic twinning of the P6{sub 3}22 parent sub-structure. Fast Fourier transformation of [0 0 1] lattice images from small localized real space regions ({approx}10 nm in diameter) are used to show that the P6{sub 3} (a=2a{sub p}, b=2b{sub p}, c=c{sub p}) crystal structure reported for BaAl{sub 2}O{sub 4} is not correct on the local scale. The correct local symmetry of the very small nano-domains is most likely orthorhombic or monoclinic. - Graphical abstract: The electron diffraction pattern of BaAl{sub 2}O{sub 4} (left) is compatible with the 3-q superstructure corresponding to the conventional P6{sub 3}, a=2a{sub p} structure (p refers to the tridymite-related parent P6{sub 3}22 structure). Fast Fourier transforms (right) of small domains of lattice images, however, show that the local structure in fact is single q, and that true symmetry is monoclinic or orthorhombic.

  1. Magnetoresistance effect in Ag-Fe3O4 and Al-Fe3O4 composite films

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hwa; Chen, Shang-Yi; Chang, Wen-Ming; Jian, T. S.; Chang, Ching-Ray; Lee, Shan-Fan

    2003-05-01

    The Agx-(Fe3O4)1-x and Agx-(Fe3O4)1-x composite films were prepared by dc sputtering on Si(100) substrates. The x-ray diffraction results show that the films contain essentially only the cubic inverse spinal phase from Fe3O4 and face-centered cubic phase from Ag or Al. The transmission electron microscopy images indicate that the metal granules are randomly distributed with Fe3O4 grains. The resistivity determined from the four-probe method decreases rapidly with increasing metal content. At x≒0.5, a percolation occurs. The conducting path is formed from metal granules in series with Fe3O4 grains. The magnetoresistance (MR) is defined to be {R(H=0.8 T)-R(H=0)}/R(H=0). It has been found that MR is isotropic and the appearance of Ag granules has significant impact on the MR effect. Furthermore, a positive MR region appears with 0.011Fe3O4)1-x. On the contrary, the incorporation of Al granules does not have the same effect on MR as in Agx-(Fe3O4)1-x. A slow increase of MR with Al content might be due to Coulomb blockade. The extra contribution to MR in Agx-(Fe3O4)1-x can be attributed to spin injection from Fe3O4 into Ag granules so that spin accumulation in Ag granules impedes the current causing a larger resistance under a field.

  2. Room-temperature serrated-flow behavior in Fe-rich FeAl under vacancy supersaturation

    SciTech Connect

    Yoshimi, K.; Yoo, M.H.; Hanada, S.

    1998-11-01

    In Fe-rich FeAl, serrated plastic-flow behavior has been observed for the first time at room temperature. Serration on the tensile stress-strain curve occurs in single crystals that retained supersaturation of thermal vacancies after fast-cooling from the annealing temperature of 1173 K. In contrast to conventional serrated flow, the serrated flow in FeAl is associated with work hardening, and it becomes more pronounced with increasing Al content from 33 to 44 mol.%. The experimental results are interpreted in terms of the dynamic interaction of ({bar 1}01)[111] superdislocations with the excess thermal vacancies and their clusters, and the successive double cross-slip of screw superdislocations at the moving front of a slip band. The strong dependence on alloy composition and the lack of strain-rate sensitivity are discussed.

  3. Photoluminescence properties of AlN-doped BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphors

    SciTech Connect

    Wang, Yong; Tang, Jianfeng; Ouyang, Xicheng; Liu, Buqiong; Lin, Rong Han

    2013-06-01

    Highlights: ► Ideal hexagonal shape particle size in 5 μm and 2.5–3 μm in thickness are obtained. ► The growth mechanism is studied by a computer simulation. ► The influence of introduced AlN on the sites of Eu{sup 2+} and photoluminescence properties was investigated. - Abstract: The AlN-doped BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphors were synthesized by conventional solid-state reaction. Powder X-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence spectrum (PL) were used for characterization. The growth mechanism was carried out by computer simulation with CASTEP application, and revealed that an ideal hexagonal shape, particle size in 5 μm and 2.5–3 μm in thickness, could be obtained by AlN doping. Additionally, due to the low electronegativity of N{sup 3−}, the AlN-doped sample showed 35% increase in PL intensity and improvement of thermal stability. These fine particle size and better photoluminescence properties are expected to be applicable to industrial production of BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphors.

  4. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  5. Effect of surface roughness on the development of protective Al 2O 3 on Fe-10Al (at.%) alloys containing 0-10 at.% Cr

    NASA Astrophysics Data System (ADS)

    Zhang, Z. G.; Hou, P. Y.; Gesmundo, F.; Niu, Y.

    2006-11-01

    The effect of alloy surface roughness, achieved by different degrees of surface polishing, on the development of protective alumina layer on Fe-10 at.% Al alloys containing 0, 5, and 10 at.% Cr was investigated during oxidation at 1000 °C in 0.1 MPa oxygen. For alloys that are not strong Al 2O 3 formers (Fe-10Al and Fe-5Cr-10Al), the rougher surfaces increased Fe incorporation into the overall surface layer. On the Fe-10Al, more iron oxides were formed in a uniform layer of mixed aluminum- and iron-oxides since the layer was thicker. On the Fe-5Cr-10Al, more iron-rich nodules developed on an otherwise thin Al 2O 3 surface layer. These nodules nucleated preferentially along surface scratch marks but not on alloy grain boundaries. For the strong Al 2O 3-forming Fe-10Cr-10Al alloy, protective alumina surface layers were observed regardless of the surface roughness. These results indicate that the formation of a protective Al 2O 3 layer on Fe-Cr-Al surfaces is not dictated by Al diffusion to the surface. More cold-worked surfaces caused an enhanced Fe diffusion, hence produced more Fe-rich oxides during the early stage of oxidation.

  6. Specific heat discontinuity, ΔC, at Tc in BaFe2(As0.7P0.3)2-consistent with unconventional superconductivity.

    PubMed

    Kim, J S; Stewart, G R; Kasahara, S; Shibauchi, T; Terashima, T; Matsuda, Y

    2011-06-01

    We report the specific heat discontinuity, ΔC/T(c), at T(c) = 28.2 K of a collage of single crystals of BaFe(2)(As(0.7)P(0.3))(2) and compare the measured value of 38.5 mJ mol(-1) K(-2) with other iron pnictide and iron chalcogenide (FePn/Ch) superconductors. This value agrees well with the trend established by Bud'ko, Ni and Canfield, who found that ΔC/T(c) is proportional to aT(c)(2) for 14 examples of doped Ba(1 - x)K(x)Fe(2)As(2) and BaFe(2 - x)TM(x)As(2), where the transition metal TM = Co and Ni. We extend their analysis to include all the FePn/Ch superconductors for which ΔC/T(c) is currently known and find ΔC/T(c) is proportional to aT(c)(1.9) and a = 0.083 mJ mol(-1) K(-4). A comparison with the elemental superconductors with T(c) > 1 K and with A-15 superconductors shows that, contrary to the FePn/Ch superconductors, electron-phonon-coupled conventional superconductors exhibit a significantly different dependence of ΔC on T(c), namely ΔC/T(c) is proportional to aT(c)(1.9). However ΔC/γT(c) appears to be comparable in all three classes (FePn/Ch, elemental and A-15) of superconductors with, for example, ΔC/γT(c) = 2.4 for BaFe(2)(As(0.7)P(0.3))(2). A discussion of the possible implications of these phenomenological comparisons for the unconventional superconductivity believed to exist in the FePn/Ch is given. PMID:21572230

  7. Structure, magnetic and complex impedance analysis of (1-x)BaTiO3- xMgFe2O4 composite

    NASA Astrophysics Data System (ADS)

    Zolkepli, M. F. A.; Zainuddin, Z.

    2015-09-01

    MgFe2O4 was synthesized by using sol-gel auto-combustion technique and coupled with BaTiO3 using the conventional solid state reaction method with different weight fraction of x = 0.00, 0.02, 0.04, 0.06 and 0.08 to form (1-x)BaTiO3 - xMgFe2O4 composite. The structure, magnetic properties and complex impedance analysis of the composite samples were studied using X-ray diffraction technique (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) and High-frequency response analyzer (HFRA) respectively. XRD patterns showed a single phase tetragonal BaTiO3 for each composition due to the very small amount of MgFe2O4. The hysteresis loop confirmed that the composite has soft magnetic properties by addition of MgFe2O4. Small coercive field, HC has been recorded and it decreased with the increasing of MgFe2O4 weight fraction. However, magnetization increased when the amount of MgFe2O4 is increased. Impedance analysis conducted in range of 0.1 Hz to 10 MHz showed two depressed semicircle arcs for samples with MgFe2O4 due to the resistive and capacitive behavior of the bulk and grain boundaries of the samples.

  8. One-step synthesis of homogeneous BaFe{sub 12}O{sub 19}/Y{sub 3}Fe{sub 5}O{sub 12} composite powders

    SciTech Connect

    Liu, Miao; Yang, Haibo Lin, Ying; Yang, Yanyan

    2014-12-15

    Highlights: • A simple one-step sol–gel method was used to synthesize composite magnets. • The composite powders show good homogeneity and exchange coupling. • The M{sub r}/M{sub s} value increases with the BaM concentration. - Abstract: BaFe{sub 12}O{sub 19}/Y{sub 3}Fe{sub 5}O{sub 12} (BaM/YIG) composite powders were synthesized via a simple one-step sol–gel method. The phase composition and morphology of the as-synthesized composite powders were characterized using an X-ray diffractometer and a scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The magnetic properties of the composite powders were investigated by a vibrating sample magnetometer. Compared with the composite powders prepared by the conventional physical mixing method, the BaM/YIG composite powders show better homogeneity and exchange coupling.

  9. Anomalous behaviour of critical fields near a superconducting quantum critical point in BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Putzke, C.; Carrington, A.; Walmsley, P.; Malone, L.; Fletcher, J. D.; See, P.; Vignolles, D.; Proust, C.; Badoux, S.; Kasahara, S.; Mazukami, Y.; Shibauchi, T.; Matsuda, Y.

    2014-03-01

    BaFe2(As1-xPx)2 presents one of the cleanest and clearest systems in which to study the influence of quantum critical fluctuations on high temperature superconductivity. In this material a sharp maximum in the magnetic penetration depth has been found at the quantum critical point (QCP x = 0 . 3) where Tc is maximal1. Specific heat and de Haas-van Alphen effect measurements2 show that this peak is driven by a corresponding increase in the quasiparticle effective mass. Based on these previous results a simple one-band theory would suggest that at the QCP we should expect a large increase in Hc 2 and a corresponding dip in Hc 1 . Actual measurements of these critical fields, which we present here, shows quite different behavior which we suggest is caused by an anomalous enhancement in the vortex core energy close to the QCP. 1 K.Hashimoto et.al., Science 336, 1554 (2012) 2 P.Walmsley, C.Putzke et.al., Phys. Rev. Lett. 110, 257002 (2013) This work was supported by the Engineering and Physical Sciences Research Council, EuroMagNET II, and KAKENHI from JSPS.

  10. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-07-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  11. Development of weldable, corrosion-resistant iron-aluminide (FeAl) alloys

    SciTech Connect

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L.; Alexander, D.J.

    1997-04-01

    A boron-microalloyed FeAl alloy (Fe-36Al-0.2Mo-0.05Zr-0.13C, at.%, with 100-400 appm B) with improved weldability and mechanical properties was developed in FY 1994. A new scale-up and industry technology development phase for this work began in FY 1995, pursuing two parallel paths. One path was developing monolithic FeAl component and application technology, and the other was developing coating/cladding technology for alloy steels, stainless steels and other Fe-Cr-Ni alloys. In FY 1995, it was found that cast FeAl alloys had good strength at 700-750{degrees}C, and some (2.5%) ductility in air at room-temperature. Hot-extruded FeAl with refined grain size was found to have ductility and to also have good impact-toughness at room-temperature. Further, it was discovered that powder-metallurgy (P/M) FeAl, consolidated by direct hot-extrusion at 950-1000{degrees}C to have an ultra fine-grained microstructure, had the highest ductility, strength and impact-toughness ever seen in such intermetallic alloys.

  12. Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2

    SciTech Connect

    Graser, Siegfried; Kemper, Alexander F; Maier, Thomas A; Cheng, Hai-Ping; Hirschfeld, Peter; Scalapino, Douglas

    2010-01-01

    Despite the wealth of experimental data on the Fe-pnictide compounds of the KFe2As2 type, K=Ba, Ca, or Sr, the main theoretical work based on multiorbital tight-binding models has been restricted so far to the study of the related 1111 compounds. This can be ascribed to the more three-dimensional electronic structure found by ab initio calculations for the 122 materials, making this system less amenable to model development. In addition, the more complicated Brillouin zone BZ of the body-centered tetragonal symmetry does not allow a straightforward unfolding of the electronic band structure into an effective 1Fe/unit cell BZ. Here we present an effective five-orbital tight-binding fit of the full density functional theory band structure for BaFe2As2 including the kz dispersions. We compare the five-orbital spin fluctuation model to one previously studied for LaOFeAs and calculate the random-phase approximation enhanced susceptibility. Using the fluctuation ex- change approximation to determine the leading pairing instability, we then examine the differences between a strictly two-dimensional model calculation over a single kz cut of the BZ and a completely three-dimensional approach. We find pairing states quite similar to the 1111 materials, with generic quasi-isotropic pairing on the hole sheets and nodal states on the electron sheets at kz=0, which however are gapped as the system is hole doped. On the other hand, a substantial kz dependence of the order parameter remains, with most of the pairing strength deriving from processes near kz=?. These states exhibit a tendency for an enhanced anisotropy on the hole sheets and a reduced anisotropy on the electron sheets near the top of the BZ.

  13. Interplane resistivity of underdoped single crystals (Ba1-xKx)Fe2As2(0<= x < 0.34)

    SciTech Connect

    Tanatar, M A; Straszheim, W E; Kim, Hyunsoo; Murphy, J; Spyrison, N; Blomberg, E C; Cho, K; Reid, J -Ph; Shen, Bing; Taillefer, Louis; Wen, Hai-Hu; Prozorov, R

    2014-04-01

    The temperature-dependent interplane resistivity ρc(T) was measured in the hole-doped iron arsenide superconductor (Ba1-xKx)Fe2As2 over a doping range from parent compound to optimal doping at Tc≈38 K, 0≤x≤0.34. The measurements were undertaken on high-quality single crystals grown from FeAs flux. The coupled magnetic/structural transition at TSM leads to a clear accelerated decrease of ρc(T) on cooling in samples with Tc<26 K (x<0.25). This decrease in the hole-doped material is in notable contrast to the increase in ρc(T) in the electron-doped Ba(Fe1-xCox)Fe 2As2 and isoelectron-substituted BaFe2(As1-xPx)2. TSM decreases very sharply with doping, dropping from Ts=71 K to zero on increase of Tc from approximately 25 to 27 K. ρc(T) becomes linear in T close to optimal doping. The broad crossover maximum in ρc(T), found in the parent BaFe2As2 at around Tmax~200 K, shifts to higher temperature ~250 K with doping of x=0.34. The maximum shows clear correlation with the broad crossover feature found in the temperature-dependent in-plane resistivity ρa(T). The evolution with doping of Tmax in (Ba1-xKx)Fe2As2 is in notable contrast with both the rapid suppression of Tmax found in Ba(Fe1-xTx)2As2 (T=Co,Rh,Ni,Pd) and its rapid increase in BaFe2(As1-xPx)2. This observation suggests that pseudogap features are much stronger in hole-doped than in electron-doped iron-based superconductors, revealing significant electron-hole doping asymmetry similar to that in the cuprates.

  14. Interplane resistivity of underdoped single crystals (Ba1-xKx)Fe2As2 (0≤x<0.34)

    NASA Astrophysics Data System (ADS)

    Tanatar, M. A.; Straszheim, W. E.; Kim, Hyunsoo; Murphy, J.; Spyrison, N.; Blomberg, E. C.; Cho, K.; Reid, J.-Ph.; Shen, Bing; Taillefer, Louis; Wen, Hai-Hu; Prozorov, R.

    2014-04-01

    The temperature-dependent interplane resistivity ρc(T) was measured in the hole-doped iron arsenide superconductor (Ba1-xKx)Fe2As2 over a doping range from parent compound to optimal doping at Tc≈38 K, 0≤x≤0.34. The measurements were undertaken on high-quality single crystals grown from FeAs flux. The coupled magnetic/structural transition at TSM leads to a clear accelerated decrease of ρc(T ) on cooling in samples with Tc<26 K (x <0.25). This decrease in the hole-doped material is in notable contrast to the increase in ρc(T) in the electron-doped Ba(Fe1-xCox)Fe2As2 and isoelectron-substituted BaFe2(As1-xPx)2.TSM decreases very sharply with doping, dropping from Ts=71 K to zero on increase of Tc from approximately 25 to 27 K. ρc(T ) becomes linear in T close to optimal doping. The broad crossover maximum in ρc(T), found in the parent BaFe2As2 at around Tmax˜200 K, shifts to higher temperature ˜250 K with doping of x =0.34. The maximum shows clear correlation with the broad crossover feature found in the temperature-dependent in-plane resistivity ρa(T). The evolution with doping of Tmax in (Ba1-xKx)Fe2As2 is in notable contrast with both the rapid suppression of Tmax found in Ba(Fe1-xTx)2As2 (T =Co,Rh,Ni,Pd) and its rapid increase in BaFe2(As1-xPx)2. This observation suggests that pseudogap features are much stronger in hole-doped than in electron-doped iron-based superconductors, revealing significant electron-hole doping asymmetry similar to that in the cuprates.

  15. Corrosion Resistance of Fe-Al/Al2O3 Duplex Coating on Pipeline Steel X80 in Simulated Oil and Gas Well Environment

    NASA Astrophysics Data System (ADS)

    Huang, Min; Wang, Yu; Wang, Ping-Gu; Shi, Qin-Yi; Zhang, Meng-Xian

    2015-04-01

    Corrosion resistant Fe-Al/Al2O3 duplex coating for pipeline steel X80 was prepared by a combined treatment of low-temperature aluminizing and micro-arc oxidation (MAO). Phase composition and microstructure of mono-layer Fe-Al coating and Fe-Al/Al2O3 duplex coating were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) with energy dispersive spectrometer (EDS). Corrosion resistance of the coated pipeline steel X80 in a simulated oil and gas well condition was also investigated. Mono-layer Fe-Al coating consists of Fe2Al5 and FeAl, which is a suitable transitional layer for the preparation of ceramic coating by MAO on the surface of pipeline steel X80. Under the same corrosion condition at 373 K for 168 h with 1 MPa CO2 and 0.1 MPa H2S, corrosion weight loss rate of pipeline steel X80 with Fe-Al/Al2O3 duplex coating decreased to 23% of original pipeline steel X80, which improved by 10% than that of pipeline steel X80 with mono-layer Fe-Al coating. It cannot find obvious cracks and pits on the corrosion surface of pipeline steel X80 with Fe-Al/Al2O3 duplex coating.

  16. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  17. Alloy development of FeAl aluminide alloys for structural use in corrosive environments

    SciTech Connect

    Liu, C.T.; Sikka, V.K.; McKamey, C.G.

    1993-02-01

    Objectives include adequate ductilities ([ge]10%) at ambient temperature, high-temperature strength better than stainless steels (types 304 and 316), and fabricability and weldability by conventional techniques (gas tungsten arc). The alloys should be capable of being corrosion resistant in molten nitrate salts with rates lower than other iron-base structural alloys and coating materials (such as Fe-Cr-Al alloys). Such corrosion rates should be less than 0.3 mm per year. The FeAl aluminide containing 35.8 at. % Al was selected as base composition. Preliminary studies indicate that additions of B and Zr, increase the room-temperature ductility of FeAl. Further alloying with 0.2% Mo, and/or 5% Cr, improves the creep. Our preliminary alloying effort has led to identification of the following aluminide composition with promising properties: Fe - (35 [plus minus] 2)Al - (0.3 [plus minus] 0.2)Mo - (0.2 [plus minus] 0.15)Zr - (0.3 [plus minus] 0.2)B- up to 5Cr, at. %. However, this composition is likely to be modified in future work to improve the weldability of the alloy. The FeAl alloy FA-362 (Fe-35.8% Al-0.2% Mo-0.05% Zr-0.24% B) produced by hot extrusion at 900C showed a tensile ductility of more than 10% at room temperature and a creep rupture life longer than unalloyed FeAl by more than an order of magnitude at 593C at 138 MPa. Melting and processing of scaled-up heats of selected FeAl alloys are described. Forging, extruding, and hot-rolling processes for the scale-up heats are also described.

  18. Alloy development of FeAl aluminide alloys for structural use in corrosive environments

    SciTech Connect

    Liu, C.T.; Sikka, V.K.; McKamey, C.G.

    1993-02-01

    Objectives include adequate ductilities ({ge}10%) at ambient temperature, high-temperature strength better than stainless steels (types 304 and 316), and fabricability and weldability by conventional techniques (gas tungsten arc). The alloys should be capable of being corrosion resistant in molten nitrate salts with rates lower than other iron-base structural alloys and coating materials (such as Fe-Cr-Al alloys). Such corrosion rates should be less than 0.3 mm per year. The FeAl aluminide containing 35.8 at. % Al was selected as base composition. Preliminary studies indicate that additions of B and Zr, increase the room-temperature ductility of FeAl. Further alloying with 0.2% Mo, and/or 5% Cr, improves the creep. Our preliminary alloying effort has led to identification of the following aluminide composition with promising properties: Fe - (35 {plus_minus} 2)Al - (0.3 {plus_minus} 0.2)Mo - (0.2 {plus_minus} 0.15)Zr - (0.3 {plus_minus} 0.2)B- up to 5Cr, at. %. However, this composition is likely to be modified in future work to improve the weldability of the alloy. The FeAl alloy FA-362 (Fe-35.8% Al-0.2% Mo-0.05% Zr-0.24% B) produced by hot extrusion at 900C showed a tensile ductility of more than 10% at room temperature and a creep rupture life longer than unalloyed FeAl by more than an order of magnitude at 593C at 138 MPa. Melting and processing of scaled-up heats of selected FeAl alloys are described. Forging, extruding, and hot-rolling processes for the scale-up heats are also described.

  19. Microstructure and mechanical behavior of Fe30Ni 20Mn35Al15 and modified Fe30Ni 20Mn35Al15 alloys

    NASA Astrophysics Data System (ADS)

    Meng, Fanling

    A novel alloy with nominal composition Fe30Ni 20Mn35Al15 has been found to show good room-temperature strength and significant ductility. The current project is to study the wear properties of as-cast Fe30Ni20Mn35Al 15 and discuss the possibility of further improving the mechanical properties of this alloy. The dry sliding wear of as-cast Fe30Ni20Mn 35Al15 was studied in in four different environments, i.e. air, dry oxygen, dry argon and a 4% hydrogen/nitrogen mixture. Two-body and three-body abrasive wear mechanism was found for tests in oxygen-containing environments, while plastic flow mechanisms dominated the wear behavior for tests in argon. Hydrogen embrittlement led to 1000% increase of wear loss by causing more rapid crack nucleation of the asperities. The effects of different additions of chromium (≤ 8 at. %) on both microstructure and fracture behavior of Fe30Ni20Mn 35Al15 were investigated. All alloys consisted of (Ni, Al)-rich B2 and (Fe, Mn)-rich f.c.c. phases with most of the Cr residing in the f.c.c. phase. The addition of 6 at. % Cr not only increased the room temperature ductility, but also completely suppressed the environmental embrittlement observed in the Cr-free alloy at low strain rates. The effects of varying the Al concentration on the microstructures and tensile properties of six two-phase FeNiMnAl alloys with a composition close to Fe30Ni20Mn35Al15 were studied. The increase in f.c.c. volume fraction and f.c.c. lamellar width led to an increase in ductility and a decrease in yield strength. The correlation between the yield stress and f.c.c. lamellar spacing lambda obeyed a Hall-Petch-type relationship, i.e. sigmay=252+0.00027lambda-1, where the units for sigmay and lambda are MPa and meter, respectively. FeNiMnAl alloy with B2 and f.c.c. phases aligned along was reported to show high strength at room temperature. The mechanical properties of Fe 28Ni18Mn33Al21, consisting of (Ni, Al)-enriched B2 and (Fe, Mn)-enriched f.c.c. phases with

  20. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    DOE PAGESBeta

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-07

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co and Ti within the AlNi-based matrix phase. In our paper we report the results of first-principles calculations of the site preference of ternarymore » alloying additions in DO3 Fe3Al, Co3Al and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which corresponds to experimental situation, Ti and Fe are found to occupy the sites, while Co and Ni prefer the sites of the DO3 lattice. Finally, an important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co are added as a ternary element.« less

  1. Tensile properties of cast and mechanically alloyed FeAl with high boron content

    SciTech Connect

    Kim, M.H.; Kwun, S.I.

    1996-08-01

    The FeAl with B2 structure has been considered as a potential structural material for use at elevated temperatures and severe environment. Two major problems with this polycrystalline aluminide are its brittleness through cleavage or grain boundary failure at ambient temperature and rapid strength drop at high temperatures above 750K. In order to expand the use of iron aluminide, these two problems must be overcome. Making a grain size small might be one of the effective ways as the stress distribution is more homogeneous throughout the material. Another method to increase the ductility of iron rich FeAl seems to add small amount of boron. Webb reported that the optimum B content for ambient temperature ductility enhancement was approximately 12 wppm in FeAl(40at%Al). With these points in mind, the authors have tried to modify room and high temperature mechanical properties of FeAl by mechanical alloying. The mechanical alloying is a unique process in that it is an entirely solid state process, permitting fine distribution of insoluble phases and fine grain size material. This paper compares the mechanical properties of the cast and the mechanically alloyed FeAl with B as much as 0.3wt%. The highest B content added in iron rich FeAl was reported to be 0.2wt% up to now.

  2. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.

    PubMed

    Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu

    2015-04-01

    There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters. PMID:25649390

  3. Origin of a carbonate-hosted Fe-Mn-(Ba-As-Pb-Sb-W) deposit of Långban-type in central Sweden

    NASA Astrophysics Data System (ADS)

    Holtstam, D.; Mansfeld, J.

    2001-10-01

    The Sjögruvan deposit is one of the Långban-type Fe-Mn oxide deposits hosted by marble interbeds within Svecofennian metavolcanic rocks in the Bergslagen region, central Sweden. Mineralogical and geochemical studies have been carried out to clarify the premetamorphic origin of this type of deposit, which is set apart from most other Mn mineralizations by a significant enrichment in Ba, As, Sb, Pb, W and Be contained by various oxyminerals. The principal ore types at Sjögruvan are (1) hematite+quartz±magnetite, (2) hausmannite+calcite+tephroite and (3) braunite+celsian+phlogopite. The Mn ores are compositionally akin to modern Mn deposits formed by submarine hydrothermal processes (with a high Mn/Fe ratio and low contents of Co, Ni, Th, U and REE) and likely owe their existence to similar mechanisms of formation. Pb isotope data indicate that the metal source and timing of deposition is similar to the major stratabound base-metal and iron deposits in Bergslagen. All the key elements have been leached from the local felsic volcanic units and were deposited on the sea floor; the excellent Mn-Fe separation occurred in an Eh-pH gradient that essentially corresponded to the mixing zone of hydrothermal solutions and seawater. The braunite ore is chemically distinct from the hausmannite ore, with a high concentration of refractory elements (Al, Ti, Zr) and a positive Ce anomaly, which indicate a detrital/hydrogenetic contribution to its protolith. Carbon isotope (δ13C) values around 0‰ (relative PDB) suggest that carbonates in the deposit formed directly from seawater.

  4. Structural, optical and magnetic properties of polycrystalline BaTi{sub 1-x}Fe{sub x}O{sub 3} ceramics

    SciTech Connect

    Dang, N. V.; Thanh, T. D.; Hong, L. V.; Lam, V. D.; Phan, The-Long

    2011-08-15

    Polycrystalline BaTi{sub 1-x}Fe{sub x}O{sub 3} ceramics have been prepared by conventional solid-state reaction. Their structural, optical and magnetic properties are then studied by means of x-ray diffraction (XRD), Raman scattering (RS) and absorption spectrometers, and a physical properties measurement system. Detailed analyses of XRD patterns and RS spectra reveal the phase separation of the tetragonal-hexagonal structure at a threshold concentration of x = 0.005. The increase in the Fe-doping content (x) leads to development of the hexagonal phase. Magnetic measurements prove that many BaTi{sub 1-x}Fe{sub x}O{sub 3} samples exhibit the room-temperature ferromagnetic order, excepting the samples with x = 0.02-0.06. The ferromagnetism depends strongly on concentration of Fe impurities. The nature of this ferromagnetism is discussed by means of the results of structural analyses and optical absorption spectra.

  5. A preliminary investigation for an Al/AlCl3-NaCl/FeS2 secondary cell

    NASA Astrophysics Data System (ADS)

    Koura, N.

    1980-07-01

    The development of an Al/AlCl3-NaCl/FeS2 cell as a potential candidate for advanced secondary cells is investigated, considering that aluminum has a negative potential and a high theoretical capacity, and the system has a low melting point and is stable as molten salt not in the presence of air or moisture. Discharge curves at various temperatures showed a high plateau at about 0.9 V and a low plateau at about 0.6 V; it was also shown that the more the current density increased, the greater was the high plateau capacity. In addition, FeS was detected from the FeS2 electrode discharged up to 0.65 V, and Al2S3 was detected up to 0.20 V by X-ray analysis.

  6. Crystal Growth and Photoluminescence Properties of Truncated Cubic BaMgAl10O17:Eu2+ Phosphors for Three-Dimensional Plasma Display Panels.

    PubMed

    Liu, Bitao; Chen, Yuan; Peng, Lingling; Han, Tao; Yu, Hong; Tian, Liangliang; Tu, Mingjing

    2016-04-01

    Monodispersed, truncated cube BaMgAl10O17:Eu2+ phosphors were synthesized by the sol-gel process. Scanning electron microscope (SEM), photoluminescence spectrum, powder X-ray diffraction and decay curves were used to evaluate the truncated cubic BaMgAl10O17:Eu2+ phosphors. The crystal growth process and photoluminescence properties were discussed in detail. The results showed that this truncated cubic morphology can be achieved via a simple sinter process. These truncated cubic BaMgAl10O17:Eu2+ phosphors showed acceptable emission intensity and better thermal properties. This result indicates truncated cubic BaMgAl10O17:Eu2+ phosphors would meet the requirements of plasma display panels (PDPs). PMID:27451727

  7. Co2FeAl films with perpendicular magnetic anisotropy in multilayer structure

    NASA Astrophysics Data System (ADS)

    Li, X. Q.; Xu, X. G.; Yin, S. Q.; Zhang, D. L.; Miao, J.; Jiang, Y.

    2011-01-01

    We have fabricated Co2FeAl (CFA) films with perpendicular magnetic anisotropy (PMA) in a (Co2FeAl/Ni)6 multilayer structure. The effects of underlayer Cu thickness (tCu), Co2FeAl thickness (tCFA) and Ni thickness (tNi) on the magnetic properties have been studied. The PMA is realized with a large anisotropy energy density K = 3.7×106 ergs/cm3, a high squareness Mr/Ms = 1 and a small perpendicular coercivity Hc = 60 Oe, while tCu, tCFA and tNi are 9 nm, 0.2 nm and 0.6 nm respectively. The PMA remains after 300 °C annealing, which demonstrates better thermal stability of the (Co2FeAl/Ni)6 multilayer than that of (Co/Ni)n.

  8. Preparation and Electrochemical Characterization of Aluminium Liquid Battery Cells With Two Different Electrolytes (NaCl-BaCl2-AlF3-NaF and LiF-AlF3-BaF2).

    PubMed

    Napast, Viktor; Moškon, Jože; Homšak, Marko; Petek, Aljana; Gaberšček, Miran

    2015-01-01

    The possibility of preparation of operating rechargeable liquid battery cells based on aluminium and its alloys is systematically checked. In all cases we started from aluminium as the negative electrode whereas as the positive electrode three different metals were tested: Pb, Bi and Sn. Two types of electrolytes were selected: Na(3)AlF(6) -AlF(3) - BaCl(2) - NaCl and Li(3)AlF(3) - BaF(2). We show that some of these combinations allowed efficient separation of individual liquid layers. The cells exhibited expected voltages, relatively high current densities and could be charged and discharged several times. The capacities were relatively low (120 mAh in the case of Al-Pb system), mostly due to unoptimised cell construction. Improvements in various directions are possible, especially by hermetically sealing the cells thus preventing salt evaporation. Similarly, solubility of aluminium in alloys can be increased by optimising the composition of positive electrode. PMID:26680707

  9. Orbital and Pauli limiting effects in heavily doped Ba0.05K0.95Fe2As2

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Singh, Y. P.; Huang, X. Y.; Chen, X. J.; Dzero, M.; Almasan, C. C.

    We investigated the thermodynamic properties of the Fe-based lightly-disordered superconductor Ba0.05K0.95Fe2As2 in external magnetic field H applied along the FeAs layers (H||ab planes). The superconducting (SC) transition temperature for this doping level is Tc = 6.6 K. Our analysis of the specific heat C(T,H) measured for T

  10. Orbital and Pauli limiting effects in heavily doped Ba0.05K0.95Fe2As2

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Singh, Y. P.; Huang, X. Y.; Chen, X. J.; Dzero, M.; Almasan, C. C.

    2015-11-01

    We investigated the thermodynamic properties of the Fe-based lightly disordered superconductor Ba0.05K0.95Fe2As2 in external magnetic field H applied along the FeAs layers (H ||a b planes). The superconducting (SC) transition temperature for this doping level is Tc=6.6 K. Our analysis of the specific heat C (T ,H ) measured for T

  11. High frequency permeability and permittivity spectra of BiFeO{sub 3}/(CoTi)-BaM ferrite composites

    SciTech Connect

    Peng, Yun; Wu, Xiaohan; Li, Qifan; Yu, Ting; Feng, Zekun; Chen, Zhongyan; Su, Zhijuan; Chen, Yajie; Harris, Vincent G.

    2015-05-07

    Low magnetic loss ferrite composites consisting of Ba(CoTi){sub 1.2}Fe{sub 9.6}O{sub 19} and BiFeO{sub 3} (BFO) ferrite were investigated for permeability, permittivity, and high frequency losses at 10 MHz–1 GHz. The phase fraction of BiFeO{sub 3} was quantitatively analyzed by X-ray diffraction measurements. An effective medium approach was employed to predict the effective permeability and permittivity for the ferrite composites, which was found to be in good agreement with experimental data. The experiment demonstrated low magnetic losses (<0.128), modified by BFO phase fraction, while retaining high permeability (∼10.86) at 300 MHz. More importantly, the BFO phase resulted in a reduction of magnetic loss by 32%, as BFO phase increased from 2.7 vol. % to 12.6 vol. %. The effect of BFO phase on magnetic and dielectric properties revealed great potential for use in the miniaturization of high efficiency antennas.

  12. Microstructure and Mechanical Properties of the Ti-45Al-5Fe Intermetallic Alloy

    NASA Astrophysics Data System (ADS)

    Nazarova, T. I.; Imayev, V. M.; Imayev, R. M.

    2015-10-01

    Microstructure including changes in the phase composition and mechanical compression properties of the Ti-45Al-5Fe (at.%) intermetallic alloy manufactured by casting and subjected to homogenization annealing are investigated as functions of the temperature. The initial alloy has a homogeneous predominantly lamellar structure with relatively small size of colonies of three intermetallic phases: γ(TiAl), τ2(Al2FeTi), and α2(Ti3Al) in the approximate volume ratio 75:20:5. Compression tests have revealed the enhanced strength at room temperature and the improved hot workability at 800°C compared to those of TNM alloys of last generation.

  13. Aluminum Coprecipitates with Fe (hydr)oxides: Does Isomorphous Substitution of Al3plus for Fe3plus in Goethite Occur

    SciTech Connect

    E Bazilevskaya; D Archibald; M Aryanpour; J Kubicki; C Martinez

    2011-12-31

    Iron (hydr)oxides are common in natural environments and typically contain large amounts of impurities, presumably the result of coprecipitation processes. Coprecipitation of Al with Fe (hydr)oxides occurs, for example, during alternating reduction-oxidation cycles that promote dissolution of Fe from Fe-containing phases and its re-precipitation as Fe-Al (hydr)oxides. We used chemical and spectroscopic analyses to study the formation and transformation of Al coprecipitates with Fe (hydr)oxides. In addition, periodic density functional theory (DFT) computations were performed to assess the structural and energetic effects of isolated or clustered Al atoms at 8 and 25 mol% Al substitution in the goethite structure. Coprecipitates were synthesized by raising the pH of dilute homogeneous solutions containing a range of Fe and Al concentrations (100% Fe to 100% Al) to 5. The formation of ferrihydrite in initial suspensions with {<=}20 mol% Al, and of ferrihydrite and gibbsite in initial suspensions with {>=}25 mol% Al was confirmed by infrared spectroscopic and synchrotron-based X-ray diffraction analyses. While base titrations showed a buffer region that corresponded to the hydrolysis of Fe in initial solutions with {<=}25 mol% Al, all of the Al present in these solutions was retained by the solid phases at pH 5, thus indicating Al coprecipitation with the primary Fe hydroxide precipitate. In contrast, two buffer regions were observed in solutions with 30 mol% Al (at pH {approx}2.25 for Fe{sup 3+} and at pH {approx}4 for Al{sup 3+}), suggesting the formation of Fe and Al (hydr)oxides as two separate phases. The Al content of initial coprecipitates influenced the extent of ferrihydrite transformation and of its transformation products as indicated by the presence of goethite, hematite and/or ferrihydrite in aged suspensions. DFT experiments showed that: (i) optimized unit cell parameters for Al-substituted goethites (8 and 25 Mol% Al) in clustered arrangement (i.e., the

  14. Synthesis, crystal structure and electronic properties of the new iron selenide Ba{sub 9}Fe{sub 4}Se{sub 16}

    SciTech Connect

    Berthebaud, David Preethi Meher, K.R.S.; Pelloquin, Denis; Maignan, Antoine

    2014-03-15

    The new ternary selenide Ba{sub 9}Fe{sub 4}Se{sub 16} has been synthesized from the reaction of appropriate amounts of elements at high temperature in a silica sealed tube. The compound crystallizes in the tetragonal space group I4{sub 1}/a with a=10.0068(3) Å and c=35.6415(9) Å, Z=4. It is an isostructural compound to the sulfide α-Ba{sub 9}Fe{sub 4}S{sub 15}, which is a high temperature polymorph of β-Ba{sub 9}Fe{sub 4}Se{sub 15} that belongs to the indefinitely adaptive phases series Ba{sub 3}Fe{sub 1+x}S{sub 5}, 0≤x≤1. X-ray powder diffraction and TEM analyses of the synthesized compound were used to determine the phase composition and the structure. The crystal structure can be viewed as overlapping sections along the c axis. Those sections are formed by the coordination polyhedra around barium atoms which can be described as trigonal prisms and bidisphenoids. Within the sections formed by barium polyhedra, isolated pairs of edge sharing FeSe{sub 4} tetrahedra are found. Magnetic measurements performed on Ba{sub 9}Fe{sub 4}Se{sub 16} indicate an antiferromagnetic behavior with Néel temperature of ∼13 K. Possible influence of air exposure on the magnetic properties is also discussed here. The electric measurements show an insulating behavior below 160 K and the dielectric permittivity and loss tangent at the lowest frequency measured reveal a change of slope very close to T{sub N}. However no magneto dielectric effect was evidenced for magnetic fields of up to 3 T. Activation energy, E{sub A}=0.18 eV, was extracted from the AC conductivity plot in the temperature range of 160–300 K. -- Graphical abstract: Experimental electron diffraction (ED) patterns of Ba{sub 9}Fe{sub 4}Se{sub 16} recorded along a-[010]. Highlights: • A new iron selenide material. • A structure resolution by combination of XRD and TEM. • Magnetic properties of the new compound Ba{sub 9}Fe{sub 4}Se{sub 16} are discussed.

  15. Interatomic force interaction in an i-AlCuFe quasicrystal

    SciTech Connect

    Parshin, P. P.; Zemlyanov, M. G. Brand, R. A.

    2007-11-15

    Partial spectra of thermal vibrations of Al, Cu, and Fe atoms in an icosahedral quasicrystal have been obtained by the isotopic-contrast method in inelastic neutron scattering. Joint analysis of these results and the published data on the atomic and electronic structures of the icosahedral i-AlCuFe quasicrystal has been performed. A physical model of the quasicrystal structure is proposed that is in agreement with the existing experimental data and qualitatively describes the peculiarities of interatomic interaction.

  16. Strain-induced magnetic domain wall control by voltage in hybrid piezoelectric BaTiO3 ferrimagnetic TbFe structures

    PubMed Central

    Rousseau, Olivier; Weil, Raphael; Rohart, Stanislas; Mougin, Alexandra

    2016-01-01

    This paper reports on the voltage dependence of the magnetization reversal of a thin amorphous ferromagnetic TbFe film grown on a ferroelectric and piezoelectric BaTiO3 single crystal. Magneto-optical measurements, at macroscopic scale or in a microscope, demonstrate how the ferroelectric BaTiO3 polarisation history influences the properties of the perpendicularly magnetized TbFe film. Unpolarised and twinned regions are obtained when the sample is zero voltage cooled whereas flat and saturated regions are obtained when the sample is voltage cooled through the ferroelectric ordering temperature of the BaTiO3 crystal, as supported by atomic force microscopy experiments. The two steps involved in the TbFe magnetization reversal, namely nucleation and propagation of magnetic domain walls, depend on the polarisation history. Nucleation is associated to coupling through strains with the piezoelectric BaTiO3 crystal and propagation to pinning with the ferroelastic surface patterns visible in the BaTiO3 topography. PMID:26987937

  17. Strain-induced magnetic domain wall control by voltage in hybrid piezoelectric BaTiO3 ferrimagnetic TbFe structures.

    PubMed

    Rousseau, Olivier; Weil, Raphael; Rohart, Stanislas; Mougin, Alexandra

    2016-01-01

    This paper reports on the voltage dependence of the magnetization reversal of a thin amorphous ferromagnetic TbFe film grown on a ferroelectric and piezoelectric BaTiO3 single crystal. Magneto-optical measurements, at macroscopic scale or in a microscope, demonstrate how the ferroelectric BaTiO3 polarisation history influences the properties of the perpendicularly magnetized TbFe film. Unpolarised and twinned regions are obtained when the sample is zero voltage cooled whereas flat and saturated regions are obtained when the sample is voltage cooled through the ferroelectric ordering temperature of the BaTiO3 crystal, as supported by atomic force microscopy experiments. The two steps involved in the TbFe magnetization reversal, namely nucleation and propagation of magnetic domain walls, depend on the polarisation history. Nucleation is associated to coupling through strains with the piezoelectric BaTiO3 crystal and propagation to pinning with the ferroelastic surface patterns visible in the BaTiO3 topography. PMID:26987937

  18. Strain-induced magnetic domain wall control by voltage in hybrid piezoelectric BaTiO3 ferrimagnetic TbFe structures

    NASA Astrophysics Data System (ADS)

    Rousseau, Olivier; Weil, Raphael; Rohart, Stanislas; Mougin, Alexandra

    2016-03-01

    This paper reports on the voltage dependence of the magnetization reversal of a thin amorphous ferromagnetic TbFe film grown on a ferroelectric and piezoelectric BaTiO3 single crystal. Magneto-optical measurements, at macroscopic scale or in a microscope, demonstrate how the ferroelectric BaTiO3 polarisation history influences the properties of the perpendicularly magnetized TbFe film. Unpolarised and twinned regions are obtained when the sample is zero voltage cooled whereas flat and saturated regions are obtained when the sample is voltage cooled through the ferroelectric ordering temperature of the BaTiO3 crystal, as supported by atomic force microscopy experiments. The two steps involved in the TbFe magnetization reversal, namely nucleation and propagation of magnetic domain walls, depend on the polarisation history. Nucleation is associated to coupling through strains with the piezoelectric BaTiO3 crystal and propagation to pinning with the ferroelastic surface patterns visible in the BaTiO3 topography.

  19. Mechanochemical synthesis of pnictide compounds and superconducting Ba0.6K0.4Fe2As2 bulks with high critical current density

    NASA Astrophysics Data System (ADS)

    Weiss, J. D.; Jiang, J.; Polyanskii, A. A.; Hellstrom, E. E.

    2013-07-01

    BaFe2As2 (Ba-122) and Ba0.6K0.4Fe2As2 (K-doped Ba-122) powders were successfully synthesized from the elements using a reaction method that incorporates a mechanochemical reaction using high-impact ball milling. Mechanically activated, self-sustaining reactions (MSRs) were observed while milling the elements together to form these compounds. After the MSR, the Ba-122 phase had formed, the powder had an average grain size <1 μm, and the material was effectively mixed. X-ray diffraction confirmed Ba-122 was the primary phase present after milling. Heat treatment of the K-doped MSR powder at high temperature (1120 ° C) and pressure yielded dense samples with high phase purity, but only granular current flow could be visualized by magneto-optical imaging. In contrast, a short, low temperature (600 ° C) heat treatment at ambient pressure resulted in global current flow throughout the bulk sample even though the density was lower and impurity phases were more prevalent. An optimized heat treatment involving a two-step, low temperature (600 ° C) heat treatment of the MSR powder produced bulk material with very high critical current density above 0.1 MA cm-2 at 4.2 K and self-field (SF).

  20. Growth and characterization of insulating ferromagnetic semiconductor (Al,Fe)Sb

    SciTech Connect

    Anh, Le Duc Kaneko, Daiki; Tanaka, Masaaki; Hai, Pham Nam

    2015-12-07

    We investigate the crystal structure, transport, and magnetic properties of Fe-doped ferromagnetic semiconductor (Al{sub 1−x},Fe{sub x})Sb thin films up to x = 14% grown by molecular beam epitaxy. All the samples show p-type conduction at room temperature and insulating behavior at low temperature. The (Al{sub 1−x},Fe{sub x})Sb thin films with x ≤ 10% maintain the zinc blende crystal structure of the host material AlSb. The (Al{sub 1−x},Fe{sub x})Sb thin film with x = 10% shows intrinsic ferromagnetism with a Curie temperature (T{sub C}) of 40 K. In the (Al{sub 1−x},Fe{sub x})Sb thin film with x = 14%, a sudden drop of the hole mobility and T{sub C} was observed, which may be due to the microscopic phase separation. The observation of ferromagnetism in (Al,Fe)Sb paves the way to realize a spin-filtering tunnel barrier that is compatible with well-established III-V semiconductor devices.

  1. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  2. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    DOE PAGESBeta

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less

  3. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    SciTech Connect

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  4. Self-organized homo-epitaxial growth in nonlinear optical BaAlBO3F2 crystal crossing lines patterned by laser in glass

    NASA Astrophysics Data System (ADS)

    Shinozaki, K.; Abe, S.; Honma, T.; Komatsu, T.

    2015-11-01

    Crystallization processing of glasses is important as a novel technique for the development of new optical materials, and laser-induced crystallization provides a new challenge in science and technology of materials. Nonlinear optical BaAlBO3F2 crystal lines with crossing, bending, and spiral shapes were patterned at the surface of 2NiO-49BaF2-24.5Al2O3-24.5B2O3 (mol%) and 2.9NiO-48.5BaF2-24.3Al2O3-24.3B2O3 (mol%) glasses by laser irradiation (Yb:YVO4 laser with a wavelength of 1080 nm) and the orientation state of BaAlBO3F2 crystals was examined from birefringence image observations. The birefringence images indicate that the growth of highly c-axis oriented BaAlBO3F2 crystals follows along the laser scanning direction even if the laser scanning direction changes, and in particular the direction of the c-axis of BaAlBO3F2 crystals changes gradually at the crossing and bending points. The model of "self-organized homo-epitaxial growth" is proposed for the crystal orientation at the crossing and bending points, as a new crystal growth science and engineering beyond the wise providence of nature.

  5. Synthesis of Cd/(Al+Fe) layered double hydroxides and characterization of the calcination products

    SciTech Connect

    Perez, M.R.; Barriga, C.; Fernandez, J.M.; Rives, V.; Ulibarri, M.A.

    2007-12-15

    Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method at a constant pH value of 8. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange at pH 9. The samples have been characterized by elemental chemical analysis, powder X-ray diffraction (PXRD), and FT-IR spectroscopy. Their thermal stability has been assessed by thermogravimetric and differential thermal analyses (TG-DTA) and mass spectrometric analysis of the evolved gases. The PXRD patterns of the solids calcined at 800 deg. C show diffraction lines corresponding to Cd(Al)O and spinel-type materials, which precise nature (CdAl{sub 2}O{sub 4}, Cd{sub 1-x}Fe{sub 2+x}O{sub 4}, or Cd{sub x}Fe{sub 2.66}O{sub 4}) depends on location and concentration of iron in the parent material or precursor. - Graphical abstract: Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange. Calcination at 800 deg. C shows diffraction lines corresponding to CdO and to spinel-type materials. SEM micrograph of sample CdAlFe-N-0.

  6. Corrosion behaviour of sintered NdFeB coated with Al/Al 2O 3 multilayers by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mao, Shoudong; Yang, Hengxiu; Huang, Feng; Xie, Tingting; Song, Zhenlun

    2011-02-01

    Al/Al2O3 multilayers were deposited on sintered NdFeB magnets to improve the corrosion resistance. The amorphous Al2O3 films were used to periodically interrupt the columnar growth of the Al layers. The structure of the multilayers was investigated by Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM). It was found that the columnar structure was effectively inhibited in the multilayers. Subsequent corrosion testing by potentiodynamic polarization in 3.5 wt.% NaCl and neutral salt spray test (NSS) revealed that the Al/Al2O3 multilayers had much better corrosion resistance than the Al single layer. Furthermore, for multilayers with similar thickness, the corrosion resistance was improved as the period decreased.

  7. Structural transitions in La 0.95 Ba 0.05 Mn 0.98 57 Fe 0.02 O 3 under heat treatment

    NASA Astrophysics Data System (ADS)

    Sedykh, V.; Rusakov, V.

    2014-04-01

    Structural transitions in polycrystalline Ba-doped lanthanum manganite La0.95Ba0.05Mn0.98Fe0.02O3 + δ have been investigated under different cooling conditions after vacuum annealing (fast and slow cooling) by Mössbauer spectroscopy and X-ray diffraction (XRD) analysis. A rhombohedral structure of the synthesized La0.95Ba0.05Mn0.98Fe0.02O3 + δ sample transfers into a mixture of the orthorhombic PnmaI, PnmaII* and PnmaII phases (common space group Pnma) with a stoichiometric oxygen composition under vacuum annealing. The further vacuum annealing leads to fluctuations in a partial relation of the orthorhombic phases on fast cooling. This unusual behavior of the structural transitions are discussed.

  8. Structure and magnetic properties of the composite of Co1.75Fe1.25O4 and BaTiO3

    NASA Astrophysics Data System (ADS)

    Kazhugasalamoorthy, S.; Bhowmik, R. N.

    2015-06-01

    We report the structure and magnetic properties of a composite consisting of magnetic Co1.75Fe1.25O4 and ferroelectric BaTiO3. The composite material was prepared by heating the mixture at 1000 °C. XRD pattern of the composite confirms the presence of cubic (CoFe2O4) and tetragonal (BaTiO3) phases and a minor impurity phase of BaCO3. Line scan in the energy dispersive analysis of X-ray spectrum indicated the separation of the ferrite particles about 15-23 µm in the composite. The composite material became magnetically soft in comparison to the Co-ferrite and shows scope for tailoring ferromagnetic parameters at room temperature.

  9. Nodal structure and quantum critical point beneath the superconducting dome of BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Matsuda, Yuji

    2012-02-01

    Among BaFe2As2 based materials , the isovalent pnictogen substituted system BaFe2(As1-xPx)2 appears to be the most suitable system to discuss many physical properties, because BaFe2(As1-xPx)2 can be grown with very clean and homogeneous, as evidenced by the quantum oscillations observed over a wide doping range even in the superconducting dome giving detailed knowledge on the electronic structure. We investigate the structure of the superconducting order parameter in BaFe2(As0.67P0.33)2 (Tc=31,) with line nodes by the angle-resolved thermal conductivity measurements in magnetic field. The experimental results are most consistent with the closed nodal loops located at the flat part of the electron Fermi surface with high Fermi velocity. The doping evolution of the penetration depth indicates that nodal loop is robust against P-doping. Moreover, the magnitude of the zero temperature penetration depth exhibits a sharp peak at x=0.3, indicating the presence of a quantum phase transition deep inside the superconducting dome.[4pt] This work has been done in collaboration with T. Shibauchi, K. Hashimoto, S. Kasahara, M. Yamashita, T. Terashima, H. Ikeda (Kyoto), A. Carrington (Bristol), K. Cho, R. Prozorov, M. Tanatar (Ames), A.B. Vorontsov (Montana) and I.Vekhter (Louisiana).

  10. New high permittivity tetragonal tungsten bronze dielectrics Ba{sub 2}LaMNb{sub 4}O{sub 15}: M=Mn, Fe

    SciTech Connect

    McCabe, Emma E.; West, Anthony R.

    2010-03-15

    The new phases Ba{sub 2}LaMNb{sub 4}O{sub 15}: M=Mn, Fe were prepared by solid state reaction at 1100 deg. C. They have the tetragonal tungsten bronze structure, space group P4/mbm, at room temperature. The two octahedral sites show partial order of M and Nb with preferential occupancy of the smaller B(1) sites by M. Both phases have high permittivities 90+-15 over the range 10-320 K. Ba{sub 2}LaFeNb{sub 4}O{sub 15} is highly insulating with bulk conductivity <<10{sup -8} ohm{sup -1} cm{sup -1} at 25 deg. C and tan delta<<0.001 over the range 100-320 K and at 10{sup 5} Hz. Solid solutions between these new phases and the compositionally and structurally related relaxor ferroelectric Ba{sub 2}LaTi{sub 2}Nb{sub 3}O{sub 15} show gradual loss of ferroelectric behaviour attributed to replacement of polarisable Ti{sup 4+} by a mixture of (Mn, Fe){sup 3+} and Nb{sup 5+}. - Graphical Abstract: Tetragonal tungsten bronze structure of Ba{sub 2}La(Mn, Fe)Nb{sub 4}O{sub 15} from two different viewpoints.

  11. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    DOE PAGESBeta

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; et al

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe0.957Cu0.043)2As2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba(Fe1–xNix)2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe0.957Cu0.043)2As2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. In addition, we show that themore » spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.« less

  12. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; Ran, S.; Canfield, P. C.; Bourret-Courchesne, E. D.; Kreyssig, A.; Lee, D. H.; Goldman, A. I.; McQueeney, R. J.; Birgeneau, R. J.

    2015-12-01

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba (Fe 0.957Cu 0.043) 2As 2 , a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba (Fe1-xNix) 2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba (Fe0.957Cu0.043)2As2 , which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. We also show that the spin-spin correlation length ξ (T ) increases rapidly as the temperature is lowered and find ω /T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.

  13. Water oxidation catalysis: an amorphous quaternary Ba-Sr-Co-Fe oxide as a promising electrocatalyst for the oxygen-evolution reaction.

    PubMed

    Zhang, Cuijuan; Berlinguette, Curtis P; Trudel, Simon

    2016-01-25

    We present an amorphous quaternary Ba-Sr-Co-Fe oxide (a-BSCF) with a specific stoichiometry, readily fabricated via a photochemical decomposition method. a-BSCF demonstrates high catalytic activity towards the oxygen-evolution reaction (OER). PMID:26659269

  14. Emergence of high mobility hole-like carrier in Ba(Fe1-xMnxAs)2

    NASA Astrophysics Data System (ADS)

    Tanabe, Yoichi; Urata, Takahiro; Huynh, Khuong; Heguri, Satoshi; Oguro, Hidetoshi; Watanabe, Kazuo; Tanigaki, Katsumi

    2014-03-01

    An evolution of electronic states through impurity substitutions is one of key issues for understanding the electronic ground state of iron pnictides. In this talk, we will report the emergence of the hole-like carrier with high mobility in Ba(Fe1-xMnxAs)2. A clear sign change of the Hall resistivity at low magnetic fields indicated that the electron-like high mobility carrier changes to the hole-like one through Mn substitution, although the nuclear magnetic resonance revealed that the Mn substitution does not introduce any carrier doping. The evolution of p-type carrier will be discussed based on results of conductive tensor analyses. The research was partially supported by Grant-in-Aid for Young Scientists (B) (23740251) and GCOE program of Tohoku University.

  15. Doping dependence of spin dynamics in electron-doped Ba(Fe1-xCox)2As2

    SciTech Connect

    Matan, K.; Lynn, J W; Christianson, Andrew D; Lumsden, Mark D; Sato, T. J.

    2010-01-01

    The spin dynamics in single crystal, electron-doped Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} has been investigated by inelastic neutron scattering over the full range from undoped to the overdoped regime. We observe damped magnetic fluctuations in the normal state of the optimally doped compound (x=0.06) that share a remarkable similarity with those in the paramagnetic state of the parent compound (x=0). In the overdoped superconducting compound (x=0.14), magnetic excitations show a gaplike behavior, possibly related to a topological change in the hole Fermi surface (Lifshitz transition) while the imaginary part of the spin susceptibility {chi}' prominently resembles that of the overdoped cuprates. For the heavily overdoped, nonsuperconducting compound (x=0.24) the magnetic scattering disappears, which could be attributed to the absence of a hole Fermi-surface pocket observed by photoemission.

  16. Decoupling of the superconducting and magnetic/structural phase transitions in electron-doped BaFe2As2

    SciTech Connect

    Canfield, P.C.; Bud'ko, S.L.; Ni, Ni; Yan, J.Q.; Kracher, A.

    2009-08-03

    Study and comparison of over 30 examples of electron-doped BaFe{sub 2}As{sub 2} for transition metal (TM) = Co, Ni, Cu, and (Co/Cu mixtures) have led to an understanding that the suppression of the structural/antiferromagnetic phase transition to low-enough temperature in these compounds is a necessary condition for superconductivity but not a sufficient one. Whereas the structural/antiferromagnetic transitions are suppressed by the number of TM dopant ions (or changes in the c axis) the superconducting dome exists over a limited range of values of the number of valence electrons added by doping (or values of the a/c ratio). By choosing which combination of dopants is used we can change the relative positions of the upper phase lines and the superconducting dome, even to the extreme limit of suppressing the upper structural and magnetic phase transitions without the stabilization of a lower-temperature superconducting dome.

  17. Superconducting properties in heavily overdoped Ba(Fe0.86Co0.14)2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Kim, Jeehoon; Haberkorn, N.; Gofryk, K.; Graf, M. J.; Ronning, F.; Sefat, A. S.; Movshovich, R.; Civale, L.

    2015-01-01

    We report the intrinsic superconducting parameters in a heavily overdoped Ba(Fe1-xCox)2As2 (x=0.14) single crystal and their influence in the resulting vortex dynamics. We find a bulk superconducting critical temperature of 9.8 K, magnetic penetration depth λab (0)=660±50 nm, coherence length ξab (0)=6.4±0.2 nm, and the upper critical field anisotropy γT→Tc≈3.7. The vortex phase diagram, in comparison with the optimally doped compound, presents a narrow collective creep regime. The intrinsic pinning energy plays an important role in the resulting vortex dynamics as compared with similar pinning landscape and comparable intrinsic thermal fluctuations.

  18. Ethylene glycol assisted spray pyrolysis for the synthesis of hollow BaFe12O19 spheres

    SciTech Connect

    Xu, X; Park, J; Hong, YK; Lane, AM

    2015-04-01

    Hollow spherical BaFe12O19 particles were synthesized by spray pyrolysis from a solution containing ethylene glycol (EG) and precursors at 1000 degrees C. The effects of EG concentration on particle morphology, crystallinity and magnetic properties were investigated. The hollow spherical particles were found to consist of primary particles, and higher EG concentration led to a bigger primary particle size. EG concentration did not show much effect on the hollow particle size. Better crystallinity and higher magnetic coercivity were obtained with higher EG concentration, which is attributed to further crystallization with the heat produced from EG combustion. Saturation magnetization (emu/g) decreased with increasing EG concentration due to residual carbon from EG incomplete combustion, contributing as a non-magnetic phase to the particles. Published by Elsevier B.V.

  19. Specific Heat in High Magnetic Fields of BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Moir, Camilla M.; Galvis, Jose A.; Walmsley, Phillip; Analytis, James G.; Chu, Jiun-Haw; Fisher, Ian R.; Shekhter, Arkady; Boebinger, Greg S.; Riggs, Scott C.

    We measure the magnetic field dependence of the specific heat in BaFe2(As1-xPx)2 with x ranging from x =0.31 to x =0.6 in fields up to 34.5T. We report three important observations: √H behavior indicating a nodal superconducting gap with a linear energy dispersion, saturation of the heat capacity at the magnetic field that corresponds to the resistive onset, and a calculated quasiparticle mass using the increase in the electronic specific heat coefficient when entering the normal state, Δγ = γ (34.5T) - γ(0T), as a measure of the normal state specific heat.

  20. Phase transition beneath the superconducting dome in BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debanjan; Orenstein, J.; Sachdev, Subir; Senthil, T.

    2015-08-01

    We present a theory for the large suppression of the superfluid density ρs in BaFe2(As1 -xPx )2 in the vicinity of a putative spin-density wave quantum critical point at a P doping, x =xc . We argue that the transition becomes weakly first order in the vicinity of xc, and disorder induces puddles of superconducting and antiferromagnetic regions at short length scales; thus, the system becomes an electronic microemulsion. We propose that frustrated Josephson couplings between the superconducting grains suppress ρs. In addition, the presence of "normal" quasiparticles at the interface of the frustrated Josephson junctions will give rise to a highly nontrivial feature in the low-frequency response in a narrow vicinity around xc. We propose a number of experiments to test our theory.

  1. Superconductivity-induced re-entrance of the orthorhombic distortion in Ba1-xKxFe2As2

    NASA Astrophysics Data System (ADS)

    Böhmer, A. E.; Hardy, F.; Wang, L.; Wolf, T.; Schweiss, P.; Meingast, C.

    2015-07-01

    Detailed knowledge of the phase diagram and the nature of the competing magnetic and superconducting phases is imperative for a deeper understanding of the physics of iron-based superconductivity. Magnetism in the iron-based superconductors is usually a stripe-type spin-density-wave, which breaks the tetragonal symmetry of the lattice, and is known to compete strongly with superconductivity. Recently, it was found that in some systems an additional spin-density-wave transition occurs, which restores this tetragonal symmetry, however, its interaction with superconductivity remains unclear. Here, using thermodynamic measurements on Ba1-xKxFe2As2 single crystals, we show that the spin-density-wave phase of tetragonal symmetry competes much stronger with superconductivity than the stripe-type spin-density-wave phase, which results in a novel re-entrance of the latter at or slightly below the superconducting transition.

  2. Superconductivity-induced re-entrance of the orthorhombic distortion in Ba1-xKxFe2As2.

    PubMed

    Böhmer, A E; Hardy, F; Wang, L; Wolf, T; Schweiss, P; Meingast, C

    2015-01-01

    Detailed knowledge of the phase diagram and the nature of the competing magnetic and superconducting phases is imperative for a deeper understanding of the physics of iron-based superconductivity. Magnetism in the iron-based superconductors is usually a stripe-type spin-density-wave, which breaks the tetragonal symmetry of the lattice, and is known to compete strongly with superconductivity. Recently, it was found that in some systems an additional spin-density-wave transition occurs, which restores this tetragonal symmetry, however, its interaction with superconductivity remains unclear. Here, using thermodynamic measurements on Ba1-xKxFe2As2 single crystals, we show that the spin-density-wave phase of tetragonal symmetry competes much stronger with superconductivity than the stripe-type spin-density-wave phase, which results in a novel re-entrance of the latter at or slightly below the superconducting transition. PMID:26227915

  3. Multiferroic properties of microwave sintered BaTiO3-SrFe12O19 composites

    NASA Astrophysics Data System (ADS)

    Katlakunta, Sadhana; Raju, Pantagani; Meena, Sher Singh; Srinath, Sanyadanam; Sandhya, Reddigari; Kuruva, Praveena; Murthy, Sarabu Ramana

    2014-09-01

    The composites of xSrFe12O19-(1-x) BaTiO3 where x=0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1were prepared by Sol-gel method and consequently densified at 1100 °C/90 min using microwave sintering method. The phase formation and diphase microstructure of the composite samples was examined by X-ray diffraction and field emission electron microscope (FESEM), respectively. The effects of constituent phase variation on the ferroelectric, dielectric and magnetic properties were examined. It was observed that with a decrease of x, the Curie temperature shifted towards low temperature side.

  4. Microwave absorption study of pinning regimes in Ba(Fe1-xCox)2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Talanov, Yu; Beisengulov, N.; Kornilov, G.; Shaposhnikova, T.; Vavilova, E.; Nacke, C.; Wurmehl, S.; Panarina, N.; Hess, C.; Kataev, V.; Büchner, B.

    2013-04-01

    Magnetic field dependent modulated microwave absorption (MMWA) measurements have been carried out to investigate vortex pinning effects in single crystals of the iron-based high-Tc superconductor Ba(Fe1-xCox)2As2 with three different cobalt doping levels of x = 0.07, 0.09 and 0.11. The dependence of the MMWA hysteresis loops on temperature, magnetic field and Co concentration have been measured and analyzed using a theoretical model of microwave absorption in superconductors. The analysis reveals that in the underdoped crystal (x = 0.07) the so called δTc-pinning due to magnetically ordered regions defines the temperature dependence of the critical current density, while in the optimally doped (x = 0.09) and overdoped (x = 0.11) samples the pinning is governed by structural imperfections due to the inhomogeneous distribution of the cobalt dopant and has the so called δl character.

  5. Unconventional Electronic Reconstruction in Undoped (Ba,Sr)Fe2As2 Across the Spin Density Wave Transition

    SciTech Connect

    Yi, M.

    2010-06-02

    Through a systematic high-resolution angle-resolved photoemission study of the iron pnictide compounds (Ba,Sr)Fe{sub 2}As{sub 2}, we show that the electronic structures of these compounds are significantly reconstructed across the spin density wave transition, which cannot be described by a simple folding scenario of conventional density wave ordering. Moreover, we find that LDA calculations with an incorporated suppressed magnetic moment of 0.5{mu}{sub B} can match well the details in the reconstructed electronic structure, suggesting that the nature of magnetism in the pnictides is more itinerant than local, while the origin of suppressed magnetic moment remains an important issue for future investigations.

  6. The Magnetic Excitations in Optimal Doped BaFe2(As0.7P0.3)2

    NASA Astrophysics Data System (ADS)

    Hu, Ding; Li, Shiliang; Dai, Pengcheng

    High temperature superconductivity in iron based superconductors emerges near the boundary of static antiferromagnetic order which is suppressed by doping or pressure. Although spin fluctuations may be responsible for superconductivity, there is still no consensus on the mechanism. As a unique system in 122-type iron pnictides, the phosphorus doping in the arsenic position in BaFe2As2 does not induce external carrier and impurity scattering, but the maximum Tc = 30K. We have carried out inelastic neutron scattering experiment on Time of Flight Spectrometers, and mapped out the whole spin fluctuation up to 300mev. Our results are consistent with the combined DFT and DMFT calculation results, which confirm that pnictogen height is correlated with the electron-electron correlation strength and consequently the effective bandwidth of magnetic excitations in iron pnictides. Support from MOST and U.S. NSF.

  7. Low-energy planar magnetic defects in BaFe2As2: Nanotwins, twins, antiphase, and domain boundaries

    SciTech Connect

    Khan, Suffian N.; Alam, Aftab; Johnson, Duane D.

    2013-11-27

    In BaFe2As2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity. We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22–210 m Jm−2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundaries—making a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should be considered when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower assessed “ordered” moments from longer spatial and/or time averaging and should be considered directly.

  8. Persistence of slow fluctuations in the overdoped regime of Ba (Fe1 -xRhx) 2As2 superconductors

    NASA Astrophysics Data System (ADS)

    Bossoni, L.; Moroni, M.; Julien, M. H.; Mayaffre, H.; Canfield, P. C.; Reyes, A.; Halperin, W. P.; Carretta, P.

    2016-06-01

    We present nuclear magnetic resonance evidence that very slow (≤1 MHz) spin fluctuations persist into the overdoped regime of Ba (Fe1 -xRhx) 2As2 superconductors. Measurements of the 75As spin echo decay rate, obtained both with Hahn Echo and Carr Purcell Meiboom Gill pulse sequences, show that the slowing down of spin fluctuations can be described by short-range diffusive dynamics, likely involving domain walls motions separating (π /a ,0 ) from (0 ,π /a ) correlated regions. This slowing down of the fluctuations is weakly sensitive to the external magnetic field and, although fading away with doping, it extends deeply into the overdoped regime.

  9. Solvothermal synthesis and magnetic properties of BaFe12-2x(NiTi)xO19 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Zi, Zhenfa; Liu, Qiangchun; Zhu, Xuebin; Liang, Changhao; Sun, Yuping; Dai, Jianming

    2014-11-01

    M-type hexaferrites BaFe12-2x(NiTi)xO19 (x=0, 0.05, 0.1, 0.3, 0.5, 0.7, and 0.9) were synthesized by the solvothermal method. X-ray diffraction (XRD) analysis reveals that the samples are of pure-phase with the space group of p63/mmc. As the Ni-Ti substitution level increases from x=0 to 0.9, the results of field-emission scanning electronic microscopy indicate that the particles are agglomerated and the mean particle size decreases. With the increase in substitution concentration x, the saturation magnetization increases first, and then declines slowly, whereas the coercivity decreases gradually. The variation of magnetic properties can be explained by the effects of Ni-Ti substitution. The results above indicate that our samples have positive effects on high density perpendicular recording.

  10. Rietveld refinement and dielectric studies of Bi0.8Ba0.2FeO3 ceramic

    NASA Astrophysics Data System (ADS)

    Kaswan, Kavita; Agarwal, Ashish; Sanghi, Sujata; Rangi, Manisha; Jangra, Sandhaya; Singh, Ompal

    2016-05-01

    Polycrystalline Bi0.8Ba0.2FeO3 ceramic has been synthesized via conventional solid state reaction technique. The Rietveld refinement of x-ray powder diffraction revealed that the sample has a rhombohedral crystal structure (space group R3c). With increase in temperature, the values of dielectric constant (ɛ') and dielectric loss (tan δ) are found to be increase at different frequencies which may be the result of increase in the number of charge carriers and their mobilities due to the thermal activation. Further the ac conductivity data is analyzed by using Jonscher's universal power law. The values of frequency exponent `s' lies in the range 0.2 ≤ s ≤ 0.7 and decreases with increase in temperature which can be explained on the basis of CBH (Correlated Barrier Height) model.

  11. Critical and Gaussian conductivity fluctuations in a BaFe1.9Ni0.1As2 superconductor

    NASA Astrophysics Data System (ADS)

    Salem-Sugui, S., Jr.; Alvarenga, A. D.; Rey, R. I.; Mosqueira, J.; Luo, H.-Q.; Lu, X.-Y.

    2013-12-01

    We study fluctuation conductivity in a single crystal of BaFe1.9Ni0.1As2 superconductor (Tc = 20 K) as a function of temperature and applied magnetic field. Magneto-conductivity curves, Δσ versus T, were analyzed in terms of -1/(dln(Δσ)/dT) versus T plots, which allow us to study different fluctuation regimes and to estimate exponent values and temperature widths of each regime. The analysis of magneto-conductivity curves evidences the existence of only two fluctuation regimes, a possible critical one (of glass-like type) going from the irreversible temperature to above Tc(H), followed by Aslamazov-Larkin fluctuations in the Gaussian regime.

  12. Non-Fermi liquid behavior in quantum critical iron-pnictide metal Ba(Fe,Ni,Co)2As2

    NASA Astrophysics Data System (ADS)

    Nakajima, Yasuyuki; Kirshenbaum, Kevin; Hughes, Alex; Eckberg, Christopher; Wang, Renxiong; Metz, Tristin; Saha, Shanta; Paglione, Johnpierre

    The breakdown of Landau's Fermi liquid theory has been believed to be induced by quantum fluctuations in the vicinity of a quantum critical point (QCP), occasionally accompanied by exotic superconductivity in the strongly correlated electron systems, such as cuprate and iron pnictide superconductors. However, the superconducting dome of such materials with high Tc precludes us from investigating the interplay between quantum fluctuations and the exotic superconductivity. We report non-Fermi liquid behavior associated with quantum fluctuations in the transport and thermodynamic properties of the non-superconducting iron pnictide Ba(Fe,Co,Ni)2As2, which allows us to elucidate the behavior on cooling down to near absolute zero without distractions from the superconductivity. We will discuss the evolution of non-Fermi liquid behavior with magnetic field, highlighting the presence of field tuned QCP.

  13. Voltage-current characteristics of epitaxial and misoriented Ba(Fe1-xCox) 2As2 thin films

    NASA Astrophysics Data System (ADS)

    Rodríguez, O.; Mariño, A.

    2015-06-01

    Ba(Fe1-xCox) 2As2 thin films were produced by Pulsed Laser Deposition (PLD). Epitaxial thin films were obtained when the deposition temperature was 700 °C while at 875 °C misoriented films were obtained. The presence of grain boundaries reduces the transport critical current Jc in almost two order of magnitude with respect to the textured thin films. The Voltage-Current (V-I) curves of misoriented films, exhibit a mixture of a non-ohmic linear differential (NOLD) and power law behaviors, due to the viscous flow of the flux lines along the grain boundaries lines, corresponding to the Jc limited by grain boundaries and Jc limited by intragrain, respectively. The misoriented thin films also present a kinked V-I curves attributed to a vortex channeling along the boundaries.

  14. Specific heat investigation for line nodes in heavily overdoped Ba1-xKxFe2As2

    DOE PAGESBeta

    Kim, J. S.; Stewart, G. R.; Liu, Yong; Lograsso, Thomas A.

    2015-06-10

    Previous research has found that the pairing symmetry in the iron-based superconductor Ba1-xKxFe2As2 changes from nodeless s-wave near optimally doped, x≈0.4-0.55 and Tc>30 K, to nodal (either d-wave or s-wave) at the pure endpoint, x=1 and Tc<4 K. Intense theoretical interest has been focused on this possibility of changing pairing symmetry, where in the transition region both order parameters would be present and time reversal symmetry would be broken. Here we report specific heat measurements in zero and applied magnetic fields down to 0.4 K of three individual single crystals, free of low temperature magnetic anomalies, of heavily overdoped Ba1-xKxFe2As2,more » x= 0.91, 0.88, and 0.81. The values for Tcmid are 5.6, 7.2 and 13 K and for Hc2≈ 4.5, 6, and 20 T respectively. Furthermore, the data can be analyzed in a two gap scenario, Δ2/Δ1 ≈ 4, with the magnetic field dependence of γ (=C/T as T→0) showing an anisotropic ‘S-shaped’ behavior vs H, with the suppression of the lower gap by 1 T and γ ≈ H1/2 overall. Although such a non-linear γ vs H is consistent with deep minima or nodes in the gap structure, it is not clear evidence for one, or both, of the gaps being nodal in these overdoped samples. Thus, following the established theoretical analysis of the specific heat of d-wave cuprate superconductors containing line nodes, we present the specific heat normalized by H1/2 plotted vs T/H1/2 of these heavily overdoped Ba1-xKxFe2As2 samples which – thanks to the absence of magnetic impurities in our sample - convincingly shows the expected scaling for line node behavior for the larger gap for all three compositions. There is however no clear observation of the nodal behavior C ∝ αT2 in zero field at low temperatures, with α ≤ 2 mJ/molK3 being consistent with the data. Together with the scaling, this leaves open the possibility of extreme anisotropy in a nodeless larger gap, Δ2, such that the scaling works for fields above 0.25 – 0

  15. Phonon softening near the structural transition in BaFe2As2 observed by inelastic x-ray scattering

    SciTech Connect

    Niedziela, Jennifer L; Parshall, D; Lokshin, Konstantin A; Safa-Sefat, Athena; Alatas, A; Egami, Takeshi

    2011-01-01

    In this work we present the results of an inelastic x-ray scattering experiment detailing the behavior of the transverse acoustic [110] phonon in BaFe{sub 2}As{sub 2} as a function of temperature. When cooling through the structural transition temperature, the transverse acoustic phonon energy is reduced from the value at room temperature, reaching a maximum shift near inelastic momentum transfer q = 0.1. This softening of the lattice results in a change of the symmetry from tetragonal to orthorhombic at the same temperature as the transition to long-range antiferromagnetic order. While the lattice distortion is minor, the anisotropy in the magnetic exchange constants in pnictide parent compounds is large. We suggest mechanisms of electron-phonon coupling to describe the interaction between the lattice softening and the onset of magnetic ordering.

  16. Preparation and properties of the Ni-Al/Fe-Al intermetallics composite coating produced by plasma cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Min; Liu, Bang-Wu; Sun, Dong-Bai

    2011-12-01

    A novel approach to produce an intermetallic composite coating was put forward. The microstructure, microhardness, and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS) analysis, microhardness test, and ball-on-disc wear experiment. XRD results indicate that some new phases FeAl, Fe0.23Ni0.77Al, and Ni3Al exit in the composite coating with the Al2O3 addition. SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures. The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating. The formation mechanism of the intermetallic compounds was also investigated.

  17. Synthesis, Crystal and Electronic Structures of the Pnictides AE3TrPn3 (AE = Sr, Ba; Tr = Al, Ga; Pn = P, As)

    SciTech Connect

    Stoyko, Stanislav; Voss, Leonard; He, Hua; Bobev, Svilen

    2015-09-24

    New ternary arsenides AE3TrAs3 (AE = Sr, Ba; Tr = Al, Ga) and their phosphide analogs Sr3GaP3 and Ba3AlP3 have been prepared by reactions of the respective elements at high temperatures. Single-crystal X-ray diffraction studies reveal that Sr3AlAs3 and Ba3AlAs3 adopt the Ba3AlSb3-type structure (Pearson symbol oC56, space group Cmce, Z = 8). This structure is also realized for Sr3GaP3 and Ba3AlP3. Likewise, the compounds Sr3GaAs3 and Ba3GaAs3 crystallize with the Ba3GaSb3-type structure (Pearson symbol oP56, space group Pnma, Z = 8). Both structures are made up of isolated pairs of edge-shared AlPn4 and GaPn4 tetrahedra (Pn = pnictogen, i.e., P or As), separated by the alkaline-earth Sr2+ and Ba2+ cations. In both cases, there are no homoatomic bonds, hence, regardless of the slightly different atomic arrangements, both structures can be rationalized as valence-precise [AE2+]3[Tr3+][Pn3-]3, or rather [AE2+]6[Tr2Pn6]12-, i.e., as Zintl phases.

  18. Weak localization effect in topological insulator micro flakes grown on insulating ferrimagnet BaFe12O19.

    PubMed

    Zheng, Guolin; Wang, Ning; Yang, Jiyong; Wang, Weike; Du, Haifeng; Ning, Wei; Yang, Zhaorong; Lu, Hai-Zhou; Zhang, Yuheng; Tian, Mingliang

    2016-01-01

    Many exotic physics anticipated in topological insulators require a gap to be opened for their topological surface states by breaking time reversal symmetry. The gap opening has been achieved by doping magnetic impurities, which however inevitably create extra carriers and disorder that undermine the electronic transport. In contrast, the proximity to a ferromagnetic/ferrimagnetic insulator may improve the device quality, thus promises a better way to open the gap while minimizing the side-effects. Here, we grow thin single-crystal Sb1.9Bi0.1Te3 micro flakes on insulating ferrimagnet BaFe12O19 by using the van der Waals epitaxy technique. The micro flakes show a negative magnetoresistance in weak perpendicular fields below 50 K, which can be quenched by increasing temperature. The signature implies the weak localization effect as its origin, which is absent in intrinsic topological insulators, unless a surface state gap is opened. The surface state gap is estimated to be 10 meV by using the theory of the gap-induced weak localization effect. These results indicate that the magnetic proximity effect may open the gap for the topological surface attached to BaM insulating ferrimagnet. This heterostructure may pave the way for the realization of new physical effects as well as the potential applications of spintronics devices. PMID:26891682

  19. Magnetoelectric coupling in multiferroic BaTiO3-CoFe2O4 composite nanofibers via electrospinning

    NASA Astrophysics Data System (ADS)

    Fu, Bi; Lu, Ruie; Gao, Kun; Yang, Yaodong; Wang, Yaping

    2015-07-01

    Magnetoelectric (ME) coupling in Pb-based multiferroic composites has been widely investigated due to the excellent piezoelectric property of lead zirconate titanate (PZT). In this letter, we report a strategy to create a hybrid Pb-free ferroelectric and ferromagnetic material and detect its ME coupling at the nanoscale. Hybrid Pb-free multiferroic BaTiO3-CoFe2O4 (BTO-CFO) composite nanofibers (NFs) were generated by sol-gel electrospinning. The perovskite structure of BTO and the spinel structure of CFO nanograins were homogenously distributed in the composite NFs and verified by bright-field transmission electron microscopy observations along the perovskite [111] zone axis. Multiferroicity was confirmed by amplitude-voltage butterfly curves and magnetic hysteresis loops. ME coupling was observed in terms of a singularity on a dM/dT curve at the ferroelectric Curie temperature (TC) of BaTiO3. The lateral ME coefficient was investigated by the evolution of the piezoresponse under an external magnetic field of 1000 Oe and was estimated to be α31 =0.78× 104 \\text{mV cm}-1 \\text{Oe}-1 . These findings could enable the creation of nanoscale Pb-free multiferroic composite devices.

  20. Weak localization effect in topological insulator micro flakes grown on insulating ferrimagnet BaFe12O19

    PubMed Central

    Zheng, Guolin; Wang, Ning; Yang, Jiyong; Wang, Weike; Du, Haifeng; Ning, Wei; Yang, Zhaorong; Lu, Hai-Zhou; Zhang, Yuheng; Tian, Mingliang

    2016-01-01

    Many exotic physics anticipated in topological insulators require a gap to be opened for their topological surface states by breaking time reversal symmetry. The gap opening has been achieved by doping magnetic impurities, which however inevitably create extra carriers and disorder that undermine the electronic transport. In contrast, the proximity to a ferromagnetic/ferrimagnetic insulator may improve the device quality, thus promises a better way to open the gap while minimizing the side-effects. Here, we grow thin single-crystal Sb1.9Bi0.1Te3 micro flakes on insulating ferrimagnet BaFe12O19 by using the van der Waals epitaxy technique. The micro flakes show a negative magnetoresistance in weak perpendicular fields below 50 K, which can be quenched by increasing temperature. The signature implies the weak localization effect as its origin, which is absent in intrinsic topological insulators, unless a surface state gap is opened. The surface state gap is estimated to be 10 meV by using the theory of the gap-induced weak localization effect. These results indicate that the magnetic proximity effect may open the gap for the topological surface attached to BaM insulating ferrimagnet. This heterostructure may pave the way for the realization of new physical effects as well as the potential applications of spintronics devices. PMID:26891682