Science.gov

Sample records for al ba fe

  1. Incorporation of Ba in Al and Fe pollucite

    NASA Astrophysics Data System (ADS)

    Vance, Eric R.; Gregg, Daniel J.; Griffiths, Grant J.; Gaugliardo, Paul R.; Grant, Charmaine

    2016-09-01

    Ba, the transmutation product of radioactive Cs, can be incorporated at levels of up to ∼0.07 formula units in Cs(1-2x)BaxAlSi2O6 aluminium pollucite formed by sol-gel methods and sintering at 1400 °C, with more Ba forming BaAl2Si2O8 phases. The effect of Ba substitution in pollucite-structured CsFeSi2O6 was also studied and no evidence of Ba substitution in the pollucite structure via cation vacancies or Fe2+ formation was obtained. The Ba entered a Fe-silicate glass structure. Charge compensation was also attempted with a Cs+ + Fe3+ ↔ Ba2+ + Ni2+ scheme but again the Ba formed a glass and NiO was evident. PCT leaching data showed CsFeSi2O6 to be very leach resistant.

  2. Co2FeAl based magnetic tunnel junctions with BaO and MgO/BaO barriers

    NASA Astrophysics Data System (ADS)

    Rogge, J.; Hetaba, W.; Schmalhorst, J.; Bouchikhaoui, H.; Stender, P.; Baither, D.; Schmitz, G.; Hütten, A.

    2015-07-01

    We succeed to integrate BaO as a tunneling barrier into Co2FeAl based magnetic tunnel junctions (MTJs). By means of Auger electron spectroscopy it could be proven that the applied annealing temperatures during BaO deposition and afterwards do not cause any diffusion of Ba neither into the lower Heusler compound lead nor into the upper Fe counter electrode. Nevertheless, a negative tunnel magnetoresistance (TMR) ratio of -10% is found for Co2FeAl (24 nm) / BaO (5 nm) / Fe (7 nm) MTJs, which can be attributed to the preparation procedure and can be explained by the formation of Co- and Fe-oxides at the interfaces between the Heusler and the crystalline BaO barrier by comparing with theory. Although an amorphous structure of the BaO barrier seems to be confirmed by high-resolution transmission electron microscopy (TEM), it cannot entirely be ruled out that this is an artifact of TEM sample preparation due to the sensitivity of BaO to moisture. By replacing the BaO tunneling barrier with an MgO/BaO double layer barrier, the electric stability could effectively be increased by a factor of five. The resulting TMR effect is found to be about +20% at room temperature, although a fully antiparallel state has not been realized.

  3. Co{sub 2}FeAl based magnetic tunnel junctions with BaO and MgO/BaO barriers

    SciTech Connect

    Rogge, J.; Schmalhorst, J.; Hütten, A.; Hetaba, W.

    2015-07-15

    We succeed to integrate BaO as a tunneling barrier into Co{sub 2}FeAl based magnetic tunnel junctions (MTJs). By means of Auger electron spectroscopy it could be proven that the applied annealing temperatures during BaO deposition and afterwards do not cause any diffusion of Ba neither into the lower Heusler compound lead nor into the upper Fe counter electrode. Nevertheless, a negative tunnel magnetoresistance (TMR) ratio of -10% is found for Co{sub 2}FeAl (24 nm) / BaO (5 nm) / Fe (7 nm) MTJs, which can be attributed to the preparation procedure and can be explained by the formation of Co- and Fe-oxides at the interfaces between the Heusler and the crystalline BaO barrier by comparing with theory. Although an amorphous structure of the BaO barrier seems to be confirmed by high-resolution transmission electron microscopy (TEM), it cannot entirely be ruled out that this is an artifact of TEM sample preparation due to the sensitivity of BaO to moisture. By replacing the BaO tunneling barrier with an MgO/BaO double layer barrier, the electric stability could effectively be increased by a factor of five. The resulting TMR effect is found to be about +20% at room temperature, although a fully antiparallel state has not been realized.

  4. First principles study of magnetoelectric coupling in Co2FeAl/BaTiO3 tunnel junctions.

    PubMed

    Yu, Li; Gao, Guoying; Zhu, Lin; Deng, Lei; Yang, Zhizong; Yao, Kailun

    2015-06-14

    Critical thickness for ferroelectricity and the magnetoelectric effect of Co2FeAl/BaTiO3 multiferroic tunnel junctions (MFTJs) are investigated using first-principles calculations. The ferroelectric polarization of the barriers can be maintained upto a critical thickness of 1.7 nm for both the Co2/TiO2 and FeAl/TiO2 interfaces. The magnetoelectric effect is derived from the difference in the magnetic moments on interfacial atoms, which is sensitive to the reversal of electric polarization. The magnetoelectric coupling is found to be dependent on the interfacial electronic hybridizations. Compared with the Co2/TiO2 interface, more net magnetization change is achieved at the FeAl/TiO2 interface. In addition, the in-plane strain effect shows that in-plane compressive strain can lead to the enhancement of ferroelectric polarization stability and intensity of magnetoelectric coupling. These findings suggest that Co2FeAl/BaTiO3 MFTJs could be utilized in the area of electrically controlled magnetism, especially the MFTJ with loaded in-plane compressive strain with the FeAl/TiO2 interface. PMID:25987345

  5. Ferroelectric property of (Ba,Bi)(Ti,M)O3 (M; Cu, Mn, Al, Fe, In, Y, Yb) ceramics

    NASA Astrophysics Data System (ADS)

    Shiroki, K.; Kumada, N.; Ogiso, H.; Yonesaki, Y.; Takei, T.; Kinomura, N.; Wada, S.

    2011-10-01

    Two types of solid solutions, (Ba1-2xBi2x)(CuxTi1-x)O3 (x <= 0.04) and (Ba1-xBix)(MxTi1-x)O3 (M; Al, Mn, Fe, In, Y, Yb; x <= 0.03) were prepared by conventional high temperature reaction. For the solid solution of (Ba1-2xBi2x)(CuxTi1-x)O3 single phases with the tetragonal cell was obtained in the region of x <= 0.04 and for the solid solutions of (Ba1-xBix)(MxTi1-x)O3 (M; Al, Mn, Fe, In, Y, Yb) single phases with the tetragonal cell was observed in the region of x <= 0.03 except the sample of M = Al in which a small amount of the second phase was contained. In these solid solutions the Tc increased with the value of x except for M = Al, and was 144.7°C for x = 0.020 of M = Cu, and the highest Tc was observed for x = 0.020 of every M atom and the order of the highest Tc was Cu (144.7°C), Y (141.4°C), Yb (140.8°C), In (138.5°C), Mn (135.5°C) and Fe (131.3°C). The highest apparent piezoelectric constant, (d33 = 258 pm/V) in these solid solutions was observed for x = 0.010 of Al.

  6. Mössbauer spectroscopy study of Al distribution in BaAl{sub x}Fe{sub 12−x}O{sub 19} thin films

    SciTech Connect

    Przybylski, M. Żukrowski, J.; Harward, I.; Celiński, Z.

    2015-05-07

    Barium hexagonal ferrite (BaM) films grown on Si are a good candidate material for new-generations of on-wafer microwave devices operating at frequencies above 40 GHz. Doping BaM with Al increases the value of anisotropy field even more, and in combination with a large value of remanence, would allow one to create a self-biasing material/structure that would eliminate the need for permanent bias magnets in millimeter wave devices. To examine the occupation of Fe sublattices by Al ions, we carried out Conversion Electron Mössbauer Spectroscopy (CEMS) measurements at room temperature and zero magnetic field (after magnetizing the samples in a strong magnetic field). The spectra can be reasonably fitted with three components (sub-spectra) corresponding to different Fe sublattices. There are significant changes in the spectra with the addition of Al: The magnetic hyperfine field decreases for all three components, and their relative contributions also change remarkably. These observations are in agreement with the fact that the Al substitutes Fe, thus lowering the component contributions and the value of the hyperfine field. In addition, our previous XRD analysis indicates increasing grain misalignment with Al content, further supporting the CEMS data.

  7. Vibrational spectroscopic characterization of the phosphate mineral kulanite Ba(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Xi, Yunfei; Granja, Amanda; Scholz, Ricardo

    2013-11-01

    The mineral kulanite BaFe2Al2(PO4)3(OH)3, a barium iron aluminum phosphate, has been studied by using a combination of electron microscopy and vibrational spectroscopy. Scanning electron microscopy with EDX shows the mineral is homogenous with no other phases present. The Raman spectrum is dominated by an intense band at 1022 cm-1 assigned to the PO43-ν1 symmetric stretching mode. Low intensity Raman bands at 1076, 1110, 1146, 1182 cm-1 are attributed to the PO43-ν3 antisymmetric stretching vibrations. The infrared spectrum shows a complex spectral profile with overlapping bands. Multiple phosphate bending vibrations supports the concept of a reduction in symmetry of the phosphate anion. Raman spectrum at 3211, 3513 and 3533 cm-1 are assigned to the stretching vibrations of the OH units. Vibrational spectroscopy enables aspects on the molecular structure of kulanite to be assessed.

  8. Evolution of the magnetic properties during the thermal treatment of nanosize BaMFe 11O 19 (M=Fe, Co, Ni and Al) obtained through aerosol route

    NASA Astrophysics Data System (ADS)

    Singhal, Sonal; Garg, A. N.; Chandra, Kailash

    2005-01-01

    Nanosize pure and metal substituted barium hexaferrites BaMFe11O19 (M=Fe, Co, Ni and Al) were prepared through aerosol route. The particle size of as-obtained samples were found to be ∼15 nm through TEM, which increases up to 100-130 nm after annealing at 1000 °C. The saturation magnetization for all the samples after annealing at 1000 °C lies in the range 45.7-59.8 emu/g. In case of Co substituted barium hexaferrite, the saturation magnetization is maximum and coercivity is minimum. Room temperature Mössbauer spectra of BaFe12O19 exhibited a doublet suggesting super paramagnetic nature, however, after annealing at 1000 °C this doublet gets converted into four magnetic sextets, which are typical of bulk barium hexaferrite.

  9. Effects of Al substitution and thermal annealing on magnetoelectric Ba0.5Sr1.5Zn2Fe12O22 investigated by the enhancement factor of 57Fe nuclear magnetic resonance.

    PubMed

    Kwon, Sangil; Kang, Byeongki; Kim, Changsoo; Jo, Euna; Lee, Soonchil; Chai, Yi Sheng; Chun, Sae Hwan; Kim, Kee Hoon

    2014-04-01

    The magnetoelectric properties of hexaferrite Ba0.5Sr1.5Zn2Fe12O22 are significantly improved by Al substitution and thermal annealing. Measuring the enhancement factor of 57Fe NMR, we found direct microscopic evidence that the magnetic moments of the L and S blocks are rotated by a magnetic field in such a way as to increase the net magnetic moment of a magnetic unit, even after the field is removed. Al substitution makes magnetoelectric property arise easily by suppressing the easy-plane anisotropy. The effect of thermal annealing is to stabilize the multiferroic state by reducing the number of pinning sites and the electron spin fluctuation. The transverse conic structure gradually changes to the alternating longitudinal conic structure where spins fluctuate more severely.

  10. Investigation of the crystal and magnetic structures of BaFe{sub 12-x}Al{sub x}O{sub 19} solid solutions (x = 0.1‒1.2)

    SciTech Connect

    Turchenko, V. A.; Trukhanov, A. V.; Bobrikov, I. A.; Trukhanov, S. V.; Balagurov, A. M.

    2015-09-15

    The structure of barium ferrite BaFe{sub 12-x}Al{sub x}O{sub 19} solid solutions (x = 0.1‒1.2) with iron partially replaced with diamagnetic aluminum ions has been studied by neutron diffraction. Experimental data have been collected at room temperature on a high-resolution diffractometer, which yielded precise information about the changes in the crystal and magnetic structures and data on the behavior of the sample microstructure. Barium hexaferrite retains a magnetoplumbite structure in the entire range of aluminum concentrations under study, and its magnetic structure is described within the Gorter model, with moments orientated along the hexagonal axis. The total magnetic moment per formula unit decreases while diamagnetic aluminum ions substitute for iron ions. Microstrains in crystallites increase with an increase in the diamagnetic ion concentration, which is related to the difference in the ionic radii of iron and aluminum ions.

  11. Magnetoelectric effect in Fe-embedded BaTiO{sub 3} single crystal

    SciTech Connect

    Gupta, Arti; Chatterjee, Ratnamala

    2011-06-15

    In this work, we experimentally demonstrate the magnetoelectric effect in a multilayered structure of Fe-BaTiO{sub 3}-Fe, with 70 A BaTiO{sub 3} (BT) sandwiched between 2 layers of implanted Fe, which was further treated by swift heavy ion (Ag{sup +15}) induced ion beam mixing/annealing. Due to this specific experimental procedure, condition of atomic orbital overlap between the Fe and Ti atoms could be favored in Fe-implanted BT crystal, showing a magnetoelectric effect arising from interfacial bonding at Fe/BT interface, as proposed by Duan et al.[Phys. Rev. Lett. 97, 047201 (2006)]. Results are successfully interpreted in terms of magnetostriction behavior of polycrystalline Fe.

  12. Heavy ion irradiations on synthetic hollandite-type materials: Ba1.0Cs0.3A2.3Ti5.7O16 (A=Cr, Fe, Al)

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Tumurugoti, Priyatham; Clark, Braeden; Sundaram, S. K.; Amoroso, Jake; Marra, James; Sun, Cheng; Lu, Ping; Wang, Yongqiang; Jiang, Ying.-Bing.

    2016-07-01

    The hollandite supergroup of minerals has received considerable attention as a nuclear waste form for immobilization of Cs. The radiation stability of synthetic hollandite-type compounds described generally as Ba1.0Cs0.3A2.3Ti5.7O16 (A=Cr, Fe, Al) were evaluated by heavy ion (Kr) irradiations on polycrystalline single phase materials and multiphase materials incorporating the hollandite phases. Ion irradiation damage effects on these samples were examined using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). Single phase compounds possess tetragonal structure with space group I4/m. GIXRD and TEM observations revealed that 600 keV Kr irradiation-induced amorphization on single phase hollandites compounds occurred at a fluence between 2.5×1014 Kr/cm2 and 5×1014 Kr/cm2. The critical amorphization fluence of single phase hollandite compounds obtained by in situ 1 MeV Kr ion irradiation was around 3.25×1014 Kr/cm2. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system.

  13. Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au

    NASA Astrophysics Data System (ADS)

    Michel, R.; Bodemann, R.; Busemann, H.; Daunke, R.; Gloris, M.; Lange, H.-J.; Klug, B.; Krins, A.; Leya, I.; Lüpke, M.; Neumann, S.; Reinhardt, H.; Schnatz-Büttgen, M.; Herpers, U.; Schiekel, Th.; Sudbrock, F.; Holmqvist, B.; Condé, H.; Malmborg, P.; Suter, M.; Dittrich-Hannen, B.; Kubik, P.-W.; Synal, H.-A.; Filges, D.

    1997-07-01

    Cross sections for residual nuclide production by p-induced reactions were measured from thresholds up to 2.6 GeV using accelerators at CERN/Geneve, IPN/Orsay, KFA/Jülich, LANL/Los Alamos, LNS/Saclay, PSI/Villigen, TSL/Uppsala, LUC/Louvain La Neuve. The target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au were investigated. Residual nuclides were measured by X- and γ-spectrometry and by Accelerator Mass Spectrometry (AMS). The measured cross sections were corrected for interfering secondary particles in experiments with primary proton energies above 200 MeV. Our consistent database covers presently ca 550 nuclear reactions and contains nearly 15000 individual cross sections of which about 10000 are reported here for the first time. They provide a basis for model calculations of the production of cosmogenic nuclides in extraterrestrial matter by solar and galactic cosmic ray protons. They are of importance for many other applications in which medium energy nuclear reactions have to be considered ranging from astrophysics over space and environmental sciences to accelerator technology and accelerator-based nuclear waste transmutation and energy amplification. The experimental data are compared with theoretical ones based on calculations using an INC/E model in form of the HETC/KFA2 code and on the hybrid model of preequilibrium reactions in form of the AREL code.>

  14. Strain induced superconductivity in the parent compound BaFe2As2.

    PubMed

    Engelmann, J; Grinenko, V; Chekhonin, P; Skrotzki, W; Efremov, D V; Oswald, S; Iida, K; Hühne, R; Hänisch, J; Hoffmann, M; Kurth, F; Schultz, L; Holzapfel, B

    2013-01-01

    The discovery of superconductivity with a transition temperature, Tc, up to 65 K in single-layer FeSe (bulk Tc=8 K) films grown on SrTiO3 substrates has attracted special attention to Fe-based thin films. The high Tc is a consequence of the combined effect of electron transfer from the oxygen-vacant substrate to the FeSe thin film and lattice tensile strain. Here we demonstrate the realization of superconductivity in the parent compound BaFe2As2 (no bulk Tc) just by tensile lattice strain without charge doping. We investigate the interplay between strain and superconductivity in epitaxial BaFe2As2 thin films on Fe-buffered MgAl2O4 single crystalline substrates. The strong interfacial bonding between Fe and the FeAs sublattice increases the Fe-Fe distance due to the lattice misfit, which leads to a suppression of the antiferromagnetic spin density wave and induces superconductivity with bulk Tc≈10 K. These results highlight the role of structural changes in controlling the phase diagram of Fe-based superconductors.

  15. Frustration of Negative Capacitance in Al2O3/BaTiO3 Bilayer Structure

    PubMed Central

    Kim, Yu Jin; Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Jeon, Woojin; Moon, Taehwan; Do Kim, Keum; Jeong, Doo Seok; Yamada, Hiroyuki; Hwang, Cheol Seong

    2016-01-01

    Enhancement of capacitance by negative capacitance (NC) effect in a dielectric/ferroelectric (DE/FE) stacked film is gaining a greater interest. While the previous theory on NC effect was based on the Landau-Ginzburg-Devonshire theory, this work adopted a modified formalism to incorporate the depolarization effect to describe the energy of the general DE/FE system. The model predicted that the SrTiO3/BaTiO3 system will show a capacitance boost effect. It was also predicted that the 5 nm-thick Al2O3/150 nm-thick BaTiO3 system shows the capacitance boost effect with no FE-like hysteresis behavior, which was inconsistent with the experimental results; the amorphous-Al2O3/epitaxial-BaTiO3 system showed a typical FE-like hysteresis loop in the polarization – voltage test. This was due to the involvement of the trapped charges at the DE/FE interface, originating from the very high field across the thin Al2O3 layer when the BaTiO3 layer played a role as the NC layer. Therefore, the NC effect in the Al2O3/BaTiO3 system was frustrated by the involvement of reversible interface charge; the highly stored charge by the NC effect of the BaTiO3 during the charging period could not be retrieved during the discharging process because integral part of the polarization charge was retained within the system as a remanent polarization. PMID:26742878

  16. Antiferromagnetic Critical Fluctuations in BaFe$_2$As$_2$

    SciTech Connect

    Wilson, Stephen D; Yamani, Z.; Rotundu, C. R.; Freelon, B.; Valdivia, P. N.; Bourret-Courchesne, E. D.; Lynn, J W; Chi, Songxue; Hong, Tao; Birgeneau, R. J.

    2010-01-01

    Magnetic correlations near the magnetostructural phase transition in the bilayer iron-pnictide parent compound, BaFe{sub 2}As{sub 2}, are measured. In close proximity to the antiferromagnetic phase transition in BaFe{sub 2}As{sub 2}, a crossover to three-dimensional critical behavior is anticipated and has been preliminarily observed. Here we report complementary measurements of two-dimensional magnetic fluctuations over a broad temperature range about T{sub N}. The potential role of two-dimensional critical fluctuations in the magnetic phase behavior of BaFe{sub 2}As{sub 2} and their evolution near the anticipated crossover to three-dimensional critical behavior and long-range order are discussed.

  17. X-ray absorption spectroscopy study in the BaFe2As2 family

    NASA Astrophysics Data System (ADS)

    Koh, Yoonyoung; Kim, Yeongkwan; Yang, Wanli; Kim, Changyoung

    2012-02-01

    One of the representative Fe-based superconductor families, BaFe2As2 (Tc =38K) is a semimetal with the same number of hole and electron carriers, and is in a spin density wave state below 139K. It has been reported that various types of ``doped'' BaFe2As2 systems can obtained by substitution of Ba, Fe, and As atoms. However, an important issue has been recently raised regarding whether each type of substitution indeed induces effective charge doping or not. It is essential to clarify whether each type of substitution indeed induce an effective doping in BaFe2As2 system. To clarify the carrier doping issue, we performed high resolution X-ray absorption spectroscopy experiment on Ba(Fe,Co)2As2, Ba(Fe,Ru)2As2, BaFe2(As,P)2 which are representative ``doped'' BaFe2As2 systems.

  18. Rapid chemical synthesis of the barium ferrate super-iron Fe (VI) compound, BaFeO 4

    NASA Astrophysics Data System (ADS)

    Licht, Stuart; Naschitz, Vera; Wang, Baohui

    An alternate rapid synthesis of BaFeO 4 is demonstrated. Fe(VI) salts, including BaFeO 4, are energetic cathode materials in super-iron batteries ranging from primary to secondary, and including aqueous and non-aqueous cells. Of the Fe(VI) salts, BaFeO 4 sustains unusually facile charge transfer, of importance to the high power domain of alkaline batteries. Unlike previous syntheses, BaFeO 4 preparation is demonstrated from all solid state room temperature reactants. This eliminates several synthetic procedural steps and improves stability to approach that of the rigorously stable chemically synthesized K 2FeO 4 salt.

  19. Synthesis, structural and magnetic characterisation of the fluorinated compound 15R-BaFeO{sub 2}F

    SciTech Connect

    Clemens, Oliver; Berry, Frank J.; Bauer, Jessica; Wright, Adrian J.; Knight, Kevin S.; Slater, Peter R.

    2013-07-15

    The compounds 15R-BaFeO{sub 2}F and 15R-BaFeO{sub 2.27}F{sub 0.5} have been synthesised by the low temperature fluorination of 15R-BaFeO{sub 3−d}F{sub 0.2} using polyvinylidenedifluoride (PVDF) as a fluorination agent. The materials have been structurally characterised by Rietveld analysis of the X-ray- and HRPD-powder neutron diffraction data. A detailed analysis of bond valence sums suggests that the oxide and fluoride ions order on the different anion sites. A reinvestigation of our recently published structure (Clemens et al., 2013) [34] of 6H-BaFeO{sub 2}F is also reported and incorporation of fluoride in h-type layers is also confirmed in this compound. The magnetic moments for 15R-BaFeO{sub 2}F and 15R-BaFeO{sub 2.25}F{sub 0.5} align in the a/b-plane with antiferromagnetic alignment of the moments between adjacent layers, and are flipped by 90° as compared to the precursor compound. 15R-BaFeO{sub 2}F exhibits very robust antiferromagnetism with a Néel temperature between 300 and 400 °C. - Graphical abstract: The crystal and magnetic structure of the perovskite phase 15R-BaFeO{sub 2}F. - Highlights: • 15R-BaFeO{sub 2}F and 15R-BaFeO{sub 2.27}F{sub 0.5}were prepared via low temperature fluorination using PVDF. • A structural investigation of the compounds BaFeO{sub 2}F is presented in detail. • This analysis suggests ordering of O{sup 2−} and F{sup −} anions between different layers. • 15R-BaFeO{sub 2}F shows antiferromagnetic ordering at 300 K with T{sub N} ∼300–400 °C. • The magnetic moments align in the a/b-plane.

  20. Controlled confinement of half-metallic two-dimensional electron gas in BaTiO3/Ba2FeReO6 /BaTiO3 heterostructures: A first-principles study

    NASA Astrophysics Data System (ADS)

    Baidya, Santu; Waghmare, Umesh V.; Paramekanti, Arun; Saha-Dasgupta, Tanusri

    2015-10-01

    Using density functional theory calculations, we establish that the half-metallicity of bulk Ba2FeReO6 survives down to 1 nm thickness in BaTiO3/Ba2FeReO6 /BaTiO3 heterostructures grown along the (001) and (111) directions. The confinement of the two-dimensional (2D) electron gas in this quantum well structure arises from the suppressed hybridization between Re/Fe d states and unoccupied Ti d states, and it is further strengthened by polar fields for the (111) direction. This mechanism, distinct from the polar catastrophe, leads to an order of magnitude stronger confinement of the 2D electron gas than that at the LaAlO3/SrTiO3 interface. We further show low-energy bands of (111) heterostructure display nontrivial topological character. Our work opens up the possibility of realizing ultrathin spintronic devices.

  1. Nematic magnetoelastic effect contrasted between Ba (Fe1 -xCox)2As2 and FeSe

    NASA Astrophysics Data System (ADS)

    Hu, Yuwen; Ren, Xiao; Zhang, Rui; Luo, Huiqian; Kasahara, Shigeru; Watashige, Tatsuya; Shibauchi, Takasada; Dai, Pengcheng; Zhang, Yan; Matsuda, Yuji; Li, Yuan

    2016-02-01

    To elucidate the origin of nematic order in Fe-based superconductors, we report a Raman scattering study of lattice dynamics, which quantify the extent of C4-symmetry breaking, in BaFe2As2 and FeSe. FeSe possesses a nematic ordering temperature Ts and orbital-related band-energy split below Ts that are similar to those in BaFe2As2 , but unlike BaFe2As2 it has no long-range magnetic order. We find that the Eg phonon-energy split in FeSe becomes substantial only well below Ts, and its saturated value is much smaller than that in BaFe2As2 . Together with reported results for the Ba (Fe1 -xCox)2As2 family, the data suggest that magnetism exerts a major influence on the lattice.

  2. Orientation relationship of eutectoid FeAl and FeAl2

    PubMed Central

    Scherf, A.; Kauffmann, A.; Kauffmann-Weiss, S.; Scherer, T.; Li, X.; Stein, F.; Heilmaier, M.

    2016-01-01

    Fe–Al alloys in the aluminium range of 55–65 at.% exhibit a lamellar microstructure of B2-ordered FeAl and triclinic FeAl2, which is caused by a eutectoid decomposition of the high-temperature Fe5Al8 phase, the so-called ∊ phase. The orientation relationship of FeAl and FeAl2 has previously been studied by Bastin et al. [J. Cryst. Growth (1978 ▸), 43, 745] and Hirata et al. [Philos. Mag. Lett. (2008 ▸), 88, 491]. Since both results are based on different crystallographic data regarding FeAl2, the data are re-evaluated with respect to a recent re-determination of the FeAl2 phase provided by Chumak et al. [Acta Cryst. (2010 ▸), C66, i87]. It is found that both orientation relationships match subsequent to a rotation operation of 180° about a 〈112〉 crystallographic axis of FeAl or by applying the inversion symmetry of the FeAl2 crystal structure as suggested by the Chumak data set. Experimental evidence for the validity of the previously determined orientation relationships was found in as-cast fully lamellar material (random texture) as well as directionally solidified material (∼〈110〉FeAl || solidification direction) by means of orientation imaging microscopy and global texture measurements. In addition, a preferential interface between FeAl and FeAl2 was identified by means of trace analyses using cross sectioning with a focused ion beam. On the basis of these habit planes the orientation relationship between the two phases can be described by (01)FeAl || (114) and [111]FeAl || [10]. There is no evidence for twinning within FeAl lamellae or alternating orientations of FeAl lamellae. Based on the determined orientation and interface data, an atomistic model of the structure relationship of Fe5Al8, FeAl and FeAl2 in the vicinity of the eutectoid decomposition is derived. This model is analysed with respect to the strain which has to be accommodated at the interface of FeAl and FeAl2. PMID:27047304

  3. Cu/Ba/bauxite: an Inexpensive and Efficient Alternative for Pt/Ba/Al2O3 in NOx Removal

    PubMed Central

    Wang, Xiuyun; Chen, Zhilin; Luo, Yongjin; Jiang, Lilong; Wang, Ruihu

    2013-01-01

    Cu/Ba/bauxite possesses superior NOx storage and reduction (NSR) performances, high thermal stability, strong resistance against SO2 poisoning and outstanding regeneration ability in comparison with Pt/Ba/Al2O3. It can serve as a cheap and promising alternative for traditional Pt/Ba/Al2O3 in NOx removal from lean-burn engines. PMID:23536149

  4. Innovative methodology for the synthesis of Ba-M hexaferrite BaFe{sub 12}O{sub 19} nanoparticles

    SciTech Connect

    Ahmed, M.A.; Helmy, N.; El-Dek, S.I.

    2013-09-01

    Graphical abstract: Transmission electron microscope images for the BaFe12O19. - Highlights: • BaFe{sub 12}O{sub 19}nanoparticles were prepared in single-phase from organometallic precursors. • BaFe{sub 12}O{sub 19} possesses small size 65 nm, H{sub C} = 3695 Oe and M{sub s} = 58 emu/g. • This method of preparation could be extended in the synthesis of other metal oxide nanoparticles. - Abstract: In this piece of work, high quality and homogeneity, barium hexaferrite (BaM) BaFe{sub 12}O{sub 19} nanoparticles were prepared from organometallic precursors for the 1st time. This method is based on the formation of supramolecular crystal structure of Ba[Fe(H{sub 3}NCH{sub 2}CH{sub 2}NH{sub 3})]Cl{sub 7}·8H{sub 2}O. The crystal structure, morphology and magnetic properties of BaFe{sub 12}O{sub 19} at two different annealing temperatures namely 1000 °C and 1200 °C were investigated using X-ray diffraction, transmission electron microscope TEM and vibrating sample magnetometry (VSM). The results show that monophasic nanoparticles of hexaferrites were obtained. Nanoparticles of crystallite size 40–50 nm distinguished by narrow distribution and excellent homogeneity were obtained with superior magnetic properties which suggested single-domain particles of Ba-M hexaferrite.

  5. Fenton degradation of sulfanilamide in the presence of Al,Fe-pillared clay: Catalytic behavior and identification of the intermediates.

    PubMed

    Khankhasaeva, Sesegma Ts; Dambueva, Darima V; Dashinamzhilova, Elvira Ts; Gil, Antonio; Vicente, Miguel A; Timofeeva, Maria N

    2015-08-15

    Liquid phase catalytic degradation of sulfanilamide with H2O2 was carried out in the presence of Fe,Al/M-pillared clay (Fe,Al/M-MM, M=Na(+), Ca(2+) and Ba(2+)) as heterogeneous Fenton type catalyst. Fe,Al/M-MMs were prepared by swelling of layered aluminosilicate (90-95 wt.% montmorillonite) from a bed located in Mukhortala (Buryatia, Russia) in Na(+), Ca(2+) and Ba(2+) forms by means of the exchange of these cations with bulky Fe,Al-polyoxocations prepared at Al/Fe=10/1 and OH/(Al+Fe)=2.0, and then calcinated at 500°C. XRD method and chemical analysis demonstrated that the rate of crystalline swelling was dependent on the interlayer cations and decreased in the order: Fe,Al-/Na-MM>Fe,Al/Ca-MM>Fe,Al/Ba-MM. It was found that the catalytic properties of Fe,Al/M-MMs depended on the type of exchangeable cations. The effect of the H2O2/sulfanilamide molar ratio, the catalyst content, the reaction temperature and the reaction pH on the removal rate of sulfanilamide has been studied in the presence of Fe,Al/Na-MM. The catalyst can be applied for degradation of sulfanilamide with H2O2 for at least three successive cycles without loss of activity. HPLC analyses pointed out that the main degradation intermediate products were sulfanilic acid, benzenesulfonic acid, p-benzoquinone and aliphatic carboxylic acids.

  6. High field nuclear magnetic resonance in transition metal substituted BaFe2As2

    NASA Astrophysics Data System (ADS)

    Garitezi, T. M.; Lesseux, G. G.; Rosa, P. F. S.; Adriano, C.; Reyes, A. P.; Kuhns, P. L.; Pagliuso, P. G.; Urbano, R. R.

    2014-05-01

    We report high field 75As nuclear magnetic resonance (NMR) measurements on Co and Cu substituted BaFe2As2 single crystals displaying same structural/magnetic transition T0≃128 K. From our anisotropy studies in the paramagnetic state, we strikingly found virtually identical quadrupolar splitting and consequently the quadrupole frequency νQ≃2.57(1) MHz for both compounds, despite the claim that each Cu delivers 2 extra 3d electrons in BaFe2As2 compared to Co substitution. These results allow us to conclude that a subtle change in the crystallographic structure, particularly in the Fe-As tetrahedra, must be the most probable tuning parameter to determine T0 in this class of superconductors rather than electronic doping. Furthermore, our NMR data around T0 suggest coexistence of tetragonal/paramagnetic and orthorhombic/antiferromagnetic phases between the structural and the spin density wave magnetic phase transitions, similarly to what was reported for K-doped BaFe2As2 [Urbano et al., Phys. Rev. Lett. 105, 107001 (2010)].

  7. Growth of single crystals of BaFe12O19 by solid state crystal growth

    NASA Astrophysics Data System (ADS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  8. Magnetism in Fe4Al13 and related FeAl intermetallics

    NASA Astrophysics Data System (ADS)

    Chi, Ji; Li, Yang; Gou, Weiping; Goruganti, V.; Rathnayaka, K. D. D.; Ross, Joseph H., Jr.

    2006-03-01

    We report the results of an experimental study of FeAl alloys, including Fe4Al13, FeAl2 and Fe2Al5. By using NMR, dc magnetic susceptibility, and specific heat, we found that Fe4Al13 and Fe2Al5 are non-magnetic with some dilute magnetic moments, while FeAl2 can be characterized as a concentrated local moment system. Fe4Al13 is a decagonal quasicrystal approximant with 102 atoms in its unit cell. The ^27Al NMR spin-lattice relaxation indicates a very narrow pseudogap in the electronic density of states [g(E)] in the vicinity of the Fermi energy. The observations could be fit assuming a parabolic variation of g(E), consistent with observations in other quasicrystals and approximants. NMR lineshape measurements also agree with this analysis, and show that the system is dilute-magnetic, in strong contrast to the FeAl2 ordered intermetallic. We use specific heat to analyze the dilute moment density. This work was supported by the Robert A. Welch Foundation, Grant No. A-1526, by the National Science Foundation (DMR-0103455), and by Texas A&M University through the Telecommunications and Informatics Task Force.

  9. Preparation and microwave properties of lamellar Fe/BaFeO2.5 composite particles with hydrogen-thermal reduction method

    NASA Astrophysics Data System (ADS)

    Gong, Yuanxun; Zhou, Zhongxiang; Jiang, Jiantang; Zhao, Hongjie

    2016-06-01

    Fe/BaFeO2.5 laminated composite particles were successfully prepared by hydrogen-thermal reducing BaFe12O19 particles. The average diameter of Fe/BaFeO2.5 composite particles is about 1 μm and the lamellar thickness is about 100 nm. The effective permittivity and permeability of Fe/BaFeO2.5 laminated composite particles were measured and EMA performance was evaluated. Compared with Fe particles with a similar diameter, the permeability of Fe/BaFeO2.5 composite particles is remarkably improved by the induction of insulator BaFeO2.5 phase. Due to the unique 2-dimension shape characteristic, ε‧ and μ‧ of Fe/BaFeO2.5 laminated composite particles is obviously higher than that of Fe/BaFeO2.5 composite particles without lamellar structure. EMA performance of coating containing Fe/BaFeO2.5 laminated composite particles as fillers is excellent, and a maximum reflection loss (RLmax) up to -29.94 dB was achieved in a coating of 1.36 mm. Meanwhile, the operation frequency band of coating containing Fe/BaFeO2.5 laminated composite particles as fillers covers completely X-band and Ku-band, which considerably wider than most of reported EMA coatings.

  10. Modulus measurements in ordered Co-Al, Fe-Al, and Ni-Al alloys

    NASA Technical Reports Server (NTRS)

    Harmouche, M. R.; Wolfenden, A.

    1985-01-01

    The composition and/or temperature dependence of the dynamic Young's modulus for the ordered B2 Co-Al, Fe-Al, and Ni-Al aluminides has been investigated using the piezoelectric ultrasonic composite oscillator technique (PUCOT). The modulus has been measured in the composition interval 48.49 to 52.58 at. pct Co, 50.87 to 60.2 at. pct Fe, and 49.22 to 55.95 at. pct Ni for Co-Al, Fe-Al, and Ni-Al, respectively. The measured values for Co-Al are in the temperature interval 300 to 1300 K, while those for the other systems are for ambient temperature only. The data points show that Co-Al is stiffer than Fe-Al, which is stiffer than Ni-Al. The data points for Fe-Al and Ni-Al are slightly higher than those reported in the literature.

  11. The mechanical properties of FeAl

    SciTech Connect

    Baker, I.; George, E.P.

    1996-12-31

    Only in the last few years has progress been made in obtaining reproducible mechanical properties data for FeAl. Two sets of observations are the foundation of this progress. The first is that the large vacancy concentrations that exist in FeAl at high temperature are easily retained at low temperature and that these strongly affect the low-temperature mechanical properties. The second is that RT ductility is adversely affected by water vapor. Purpose of this paper is not to present a comprehensive overview of the mechanical properties of FeAl but rather to highlight our understanding of key phenomena and to show how an understanding of the factors which control the yield strength and fracture behavior has followed the discovery of the above two effects. 87 refs, 9 figs.

  12. Preparation, photoluminescent properties and luminescent dynamics of BaAlF{sub 5}:Eu{sup 2+} nanophosphors

    SciTech Connect

    Zhang, Wei; Hua, Ruinian; Liu, Tianqing; Zhao, Jun; Na, Liyan; Chen, Baojiu

    2014-12-15

    Graphical abstract: Rice-shaped BaAlF{sub 5}:Eu{sup 2+} nanophosphors were synthesized via one-pot hydrothermal process. The as-prepared BaAlF{sub 5}:Eu{sup 2+} are composed of many particles with an average diameter of 40 nm. When excited at 260 nm, the sharp line emission located at 361 nm of Eu{sup 2+} was observed. The optimum doping concentration of Eu{sup 2+} was confirmed to be 5 mol%. The strong ultraviolet emission of Eu{sup 2+} ions in BaAlF{sub 5}:Eu{sup 2+} nanoparticles suggests that these nanoparticles may have potential applications for sensing, solid-state lasers and spectrometer calibration. - Highlights: • BaAlF{sub 5}:Eu{sup 2+} nanophosphors were synthesized via a mild hydrothermal process. • The Van and Huang models were used to research the mechanism of concentration quenching. • The optimum doping concentration of Eu2+ was confirmed to be 5 mol%. - Abstract: Eu{sup 2+}-doped BaAlF{sub 5} nanophosphors were synthesized via a facile one-pot hydrothermal method. The final products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. XRD results showed that the prepared samples are single-phase. The FE-SEM and TEM images indicated that the prepared BaAlF{sub 5}:Eu{sup 2+} nanophosphors are composed of many rice-shaped particles with an average diameter of 40 nm. When excited at 260 nm, BaAlF{sub 5}:Eu{sup 2+} nanophosphors exhibit the sharp line emissions of Eu{sup 2+} at room temperature. The optimum doping concentration of Eu{sup 2+} was confirmed to be 5 mol%. The Van and Huang models were used to study the mechanism of concentration quenching and the electric dipole–dipole interaction between Eu{sup 2+} can be deduced to be a dominant for quenching fluorescence in BaAlF{sub 5}:Eu{sup 2+} nanophosphors. The strong ultraviolet emission of Eu{sup 2+} in BaAlF{sub 5}:Eu{sup 2+} nanophosphors suggests that

  13. Nematic magnetoelastic effect contrasted between Ba(Fe1-x Cox)2 As2 and FeSe

    NASA Astrophysics Data System (ADS)

    Hu, Yuwen; Ren, Xiao; Zhang, Rui; Luo, Huiqian; Kasahara, Shigeru; Watashige, Tatsuya; Shibauchi, Takasada; Dai, Pengcheng; Zhang, Yan; Matsuda, Yuji; Li, Yuan

    Whether the nematic order ubiquitously found in Fe-based superconductors is driven by the spin or the charge or orbital degree of freedom is currently under heated debate. To elucidate its microscopic origin, we report a Raman scattering study of lattice dynamics, which quantify the extent of C4-symmetry breaking, in BaFe2As2 and FeSe. FeSe possesses a nematic ordering temperature Ts and orbital-related band-energy split below Ts that are similar to those in BaFe2As2 , but unlike BaFe2As2 it has no long-range magnetic order. We find that the Eg phonon-energy split in FeSe sets in only well below Ts, and its saturated value is substantially smaller than that in BaFe2As2 . Together with reported results for the Ba(Fe1-xCox) 2As2 family, the data suggest that magnetism exerts a major influence on the lattice. Present address: Princeton University, USA.

  14. Melting, Processing, and Properties of Disordered Fe-Al and Fe-Al-C Based Alloys

    NASA Astrophysics Data System (ADS)

    Satya Prasad, V. V.; Khaple, Shivkumar; Baligidad, R. G.

    2014-09-01

    This article presents a part of the research work conducted in our laboratory to develop lightweight steels based on Fe-Al alloys containing 7 wt.% and 9 wt.% aluminum for construction of advanced lightweight ground transportation systems, such as automotive vehicles and heavy-haul truck, and for civil engineering construction, such as bridges, tunnels, and buildings. The melting and casting of sound, porosity-free ingots of Fe-Al-based alloys was accomplished by a newly developed cost-effective technique. The technique consists of using a special flux cover and proprietary charging schedule during air induction melting. These alloys were also produced using a vacuum induction melting (VIM) process for comparison purposes. The effect of aluminum (7 wt.% and 9 wt.%) on melting, processing, and properties of disordered solid solution Fe-Al alloys has been studied in detail. Fe-7 wt.% Al alloy could be produced using air induction melting with a flux cover with the properties comparable to the alloy produced through the VIM route. This material could be further processed through hot and cold working to produce sheets and thin foils. The cold-rolled and annealed sheet exhibited excellent room-temperature ductility. The role of carbon in Fe-7 wt.% Al alloys has also been examined. The results indicate that Fe-Al and Fe-Al-C alloys containing about 7 wt.% Al are potential lightweight steels.

  15. The Structural Disorder and Lattice Stability of (Ba,Sr)(Co,Fe)O3 Complex Perovskites

    SciTech Connect

    S.N.Rashkeev

    2011-05-01

    The structural disorder and lattice stability of complex perovskite (Ba,Sr)(Co,Fe)O3, a promising cathode material for solid oxide fuel cells and oxygen permeation membranes, is explored by means of first principles DFT calculations. It is predicted that Ba and Sr ions easily exchange their lattice positions (A-cation disorder) similarly to Co and Fe ions (B-cation disorder). The cation antisite defects (exchange of A- and B-type cations) have a relatively high formation energy. The BSCF is predicted to exist in an equilibrium mixture of several phases and can decompose exothermically into the Ba- and Co-rich hexagonal (Ba,Sr)CoO3 and Sr- and Fe-rich cubic (Ba,Sr)FeO3 perovskites.

  16. Antiperovskite Chalco-Halides Ba3(FeS4)Cl, Ba3(FeS4)Br, and Ba3(FeSe4)Br with Spin Super-Super Exchange

    PubMed Central

    Zhang, Xian; Liu, Kai; He, Jian-Qiao; Wu, Hui; Huang, Qing-Zhen; Lin, Jian-Hua; Lu, Zhong-Yi; Huang, Fu-Qiang

    2015-01-01

    Perovskite-related materials have received increasing attention for their broad applications in photovoltaic solar cells and information technology due to their unique electrical and magnetic properties. Here we report three new antiperovskite chalco-halides: Ba3(FeS4)Cl, Ba3(FeS4)Br, and Ba3(FeSe4)Br. All of them were found to be good solar light absorbers. Remarkably, although the shortest Fe-Fe distance exceeds 6 Å, an unexpected anti-ferromagnetic phase transition near 100 K was observed in their magnetic susceptibility measurement. The corresponding complex magnetic structures were resolved by neutron diffraction experiments as well as investigated by first-principles electronic structure calculations. The spin-spin coupling between two neighboring Fe atoms along the b axis, which is realized by the Fe-S···S-Fe super-super exchange mechanism, was found to be responsible for this magnetic phase transition. PMID:26525136

  17. Magnetic field reversal of electric polarization and magnetoelectric phase diagram of the hexaferrite Ba{sub 1.3}Sr{sub 0.7}Co{sub 0.9}Zn{sub 1.1}Fe{sub 10.8}Al{sub 1.2}O{sub 22}

    SciTech Connect

    Shen, Shipeng; Yan, Liqin; Chai, Yisheng; Cong, Junzhuang; Sun, Young

    2014-01-20

    Low magnetic field reversal of electric polarization has been demonstrated in the multiferroic Y-type hexaferrite Ba{sub 1.3}Sr{sub 0.7}Co{sub 0.9}Zn{sub 1.1}Fe{sub 10.8}Al{sub 1.2}O{sub 22} single crystal. The maximum magnetoelectric coefficient at 200 K reaches 1065 ps/m near zero magnetic field. By a systematic investigation of magnetic field dependence of magnetic and dielectric responses at various temperatures, we obtained the magnetoelectric phase diagram describing the detailed evolution of the spin-induced ferroelectric phases with temperature and magnetic field. Below 225 K, the transverse spin cone can be stabilized at zero magnetic field, which is responsible for the reversal behavior of electric polarization. Our study reveals how to eventually achieve magnetic field reversal of electric polarization in hexaferrites at room temperature.

  18. Melt Processed Single Phase Hollandite Waste Forms For Nuclear Waste Immobilization: Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16}; A = Cr, Fe, Al

    SciTech Connect

    Brinkman, Kyle; Marra, James; Amoroso, Jake; Conradson, Steven D.; Tang, Ming

    2013-09-23

    Cs is one of the more problematic fission product radionuclides to immobilize due to its high volatility at elevated temperatures, ability to form water soluble compounds, and its mobility in many host materials. The hollandite structure is a promising crystalline host for Cs immobilization and has been traditionally fabricated by solid state sintering methods. This study presents the structure and performance of Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16}; A = Cr, Fe, Al hollandite fabricated by melt processing. Melt processing is considered advantageous given that melters are currently in use for High Level Waste (HLW) vitrification in several countries. This work details the impact of Cr additions that were demonstrated to i) promote the formation of a Cs containing hollandite phase and ii) maintain the stability of the hollandite phase in reducing conditions anticipated for multiphase waste form processing.

  19. Controlled Confinement of Half-metallic 2D Electron Gas in BaTiO3/Ba2FeReO6/BaTiO3 Heterostructures: A First-principles Study

    NASA Astrophysics Data System (ADS)

    Saha-Dasgupta, Tanusri; Baidya, Santu; Waghmare, Umesh; Paramekanti, Arun

    Using density functional theory calculations, we establish that the half-metallicity of bulk Ba2FeReO6 survives down i to 1 nm thickness in BaTiO3/Ba2FeReO6/BaTiO3 heterostructures grown along the (001) and (111) directions. The confinement of the two-dimensional (2D) electron gas in this quantum well structure arises from the suppressed hybridization between Re/Fe d states and unoccupied Ti d states, and it is further strengthened by polar fields for the (111) direction. This mechanism, distinct from the polar catastrophe, leads to an order of magnitude stronger confinement of the 2D electron gas than that at the LaAlO3/SrTiO3 interface. We further show low-energy bands of (111) heterostructure display nontrivial topological character. Our work opens up the possibility of realizing ultra-thin spintronic devices. Journal Ref: Phys. Rev. B 92, 161106(R) (2015) S.B. and T.S.D thank Department of Science and Technology, India for the support through Thematic Unit of Excellence. AP was supported by NSERC (Canada).

  20. Structure and magnetic properties of the cubic oxide fluoride BaFeO{sub 2}F

    SciTech Connect

    Berry, Frank J.; Coomer, Fiona C.; Hancock, Cathryn; Helgason, Orn; Moore, Elaine A.; Slater, Peter R.; Wright, Adrian J.; Thomas, Michael F.

    2011-06-15

    Fluorination of the parent oxide, BaFeO{sub 3-{delta}}, with polyvinylidine fluoride gives rise to a cubic compound with a=4.0603(4) A at 298 K. {sup 57}Fe Moessbauer spectra confirmed that all the iron is present as Fe{sup 3+}. Neutron diffraction data showed complete occupancy of the anion sites, indicating a composition BaFeO{sub 2}F, with a large displacement of the iron off-site. The magnetic ordering temperature was determined as T{sub N}=645{+-}5 K. Neutron diffraction data at 4.2 K established G-type antiferromagnetism with a magnetic moment per Fe{sup 3+} ion of 3.95 {mu}{sub B}. However, magnetisation measurements indicated the presence of a weak ferromagnetic moment that is assigned to the canting of the antiferromagnetic structure. {sup 57}Fe Moessbauer spectra in the temperature range 10-300 K were fitted with a model of fluoride ion distribution that retains charge neutrality of the perovskite unit cell. - Graphical abstract: The cubic oxide fluoride of composition BaFeO{sub 2}F has been synthesised and characterised. Highlights: > Fluorination of BaFeO{sub 3-{delta}} with polyvinylidene fluoride gives a cubic oxide fluoride of composition BaFeO{sub 2}F. > BaFeO{sub 2}F adopts a canted antiferromagnetic structure and is different from the related phase of composition SrFeO{sub 2}F. > A model of fluoride ion distribution about iron in BaFeO{sub 2}F has been explored.

  1. Ferroelectric switching induced magnetic anisotropy in Fe/BaTiO3 bilayers

    NASA Astrophysics Data System (ADS)

    Duan, Chun-Gang; Jaswal, S. S.; Tsymbal, E. Y.

    2007-03-01

    Ferromagnetic/ferroelectric heterostructures have recently attracted significantly interest due to their potential applications in multifunctional electronic devices. We have recently predicted a magnetoelectric effect at the Fe/BaTiO3 interface induced by ferroelectric polarization reversal [1]. In this report, calculations are being carried out on the magnetic anisotropy of Fe/BaTiO3 films. Preliminary results show that the ferroelectric switching of the BaTiO3 has appreciable effect on the magnetic anisotropy of magnetic Fe films. This should be of interest in multiferroic device applications. [1] Chun-gang Duan, S. S. Jaswal, E. Y. Tsymbal, Phys. Rev. Lett. 97, 047201 (2006).

  2. Boron strengthening in FeAl

    SciTech Connect

    Baker, I.; Li, X.; Xiao, H.; Klein, O.; Nelson, C.; Carleton, R.L.; George, E.P.

    1998-11-01

    The effect of boron on the strength of B2-structured FeAl is considered as a function of composition, grain size and temperature. Boron does not affect the concentrations of antisite atoms or vacancies present, with the former increasing and the latter decreasing with increasing deviation from the stoichiometric composition. When vacancies are absent, the strength increase per at. % B per unit lattice strain, {Delta}{sigma}/({Delta}c x {epsilon}) increases with increasing aluminum concentration, but when vacancies are present (>45 at. % Al), {Delta}{sigma}/({Delta}c x {epsilon}) decreases again. Boron increases grain size strengthening in FeAl. B strengthening is roughly independent of temperature up to the yield strength peak but above the point, when diffusion-assisted deformation occurs, boron strengthening increases dramatically.

  3. Fenton degradation of sulfanilamide in the presence of Al,Fe-pillared clay: Catalytic behavior and identification of the intermediates.

    PubMed

    Khankhasaeva, Sesegma Ts; Dambueva, Darima V; Dashinamzhilova, Elvira Ts; Gil, Antonio; Vicente, Miguel A; Timofeeva, Maria N

    2015-08-15

    Liquid phase catalytic degradation of sulfanilamide with H2O2 was carried out in the presence of Fe,Al/M-pillared clay (Fe,Al/M-MM, M=Na(+), Ca(2+) and Ba(2+)) as heterogeneous Fenton type catalyst. Fe,Al/M-MMs were prepared by swelling of layered aluminosilicate (90-95 wt.% montmorillonite) from a bed located in Mukhortala (Buryatia, Russia) in Na(+), Ca(2+) and Ba(2+) forms by means of the exchange of these cations with bulky Fe,Al-polyoxocations prepared at Al/Fe=10/1 and OH/(Al+Fe)=2.0, and then calcinated at 500°C. XRD method and chemical analysis demonstrated that the rate of crystalline swelling was dependent on the interlayer cations and decreased in the order: Fe,Al-/Na-MM>Fe,Al/Ca-MM>Fe,Al/Ba-MM. It was found that the catalytic properties of Fe,Al/M-MMs depended on the type of exchangeable cations. The effect of the H2O2/sulfanilamide molar ratio, the catalyst content, the reaction temperature and the reaction pH on the removal rate of sulfanilamide has been studied in the presence of Fe,Al/Na-MM. The catalyst can be applied for degradation of sulfanilamide with H2O2 for at least three successive cycles without loss of activity. HPLC analyses pointed out that the main degradation intermediate products were sulfanilic acid, benzenesulfonic acid, p-benzoquinone and aliphatic carboxylic acids. PMID:25819990

  4. Fabrication of Fe-Al nanoparticles by selective oxidation of Fe-Al thin films

    NASA Astrophysics Data System (ADS)

    Jang, Pyungwoo; Shin, Seungchan; Jung, Chip-Sup; Kim, Kwang-Ho; Seomoon, Kyu

    2013-04-01

    The possibility of a new technique for fabricating nanoparticles from thin films using selective oxidation in an atmosphere mixture of water vapor and hydrogen was investigated. Fe-5wt.%Al films were RF-sputtered and annealed in the atmosphere mixture at 900°C for up to 200 min, in order to oxidize aluminum selectively. Thermodynamics simulation showed that temperatures exceeding 800°C are necessary to prevent iron from being oxidized, as confirmed by the depth profile of XPS. As the annealing time increased, the morphology of the 200-nm Fe-Al films changed from the continuous to the discontinuous type; thus, particulate Fe-Al films formed after 100 min. The particulate 10- to 100-nm Fe-Al films showed super-paramagnetic behavior after the oxidation. Thus, a new technique for fabricating nanoparticles was successfully introduced using selective oxidation.

  5. Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hakim, M. A.; Basith, M. A.; Hossain, Md. Sarowar; Ahmmad, Bashir; Zubair, M. A.; Hussain, A.; Islam, Md. Fakhrul

    2016-03-01

    Improvement in magnetic and electrical properties of multiferroic BiFeO3 in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived Bi0.9Ba0.1FeO3 nanoparticles of different sizes ranging from ˜ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe2+ state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeO3 nanoparticles compared to its undoped counterpart. The saturation magnetization of Bi0.9Ba0.1FeO3 nanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ˜ 49 nm Bi0.9Ba0.1FeO3 nanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO3.

  6. Room temperature luminescence and ferromagnetism of AlN:Fe

    NASA Astrophysics Data System (ADS)

    Li, H.; Cai, G. M.; Wang, W. J.

    2016-06-01

    AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  7. Forging of FeAl intermetallic compounds

    SciTech Connect

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L.; Schneibel, J.H.

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  8. Preparation, characterization and magnetic properties of the BaFe12O19 @ chitosan composites

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Zunju; Xie, Yu; Zhao, Jie

    2016-07-01

    The BaFe12O19 @ chitosan composites are synthesized by the crosslinking reaction through chitosan and glutaraldehyde onto the surface of BaFe12O19. The structures of the samples were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. The shape and size were observed by scanning electron microscopy and transmission electron microscopy. These results showed that chitosan has been decorated onto the surface of BaFe12O19, and the chitosan-glutaraldehyde Schiff-base composites have also been formed within the chitosan layers. Then, the magnetic properties of the samples were tested with the vibrating sample magnetometer. The magnetic saturation (MS), residual magnetization (Mr) and coercive force (Hc) values of the BaFe12O19 @ chitosan Schiff-base composite have achieved 44.94 emu/g, 27.82 emu/g and 3580.7 Oe, respectively. Compared with single BaFe12O19, the MS, and Mr of the BaFe12O19 @ chitosan composites decreases 12.31 emu/g and 8.58 emu/g, respectively. Finally, based on the experimental results, the probable formation mechanism of this composite has been investigated.

  9. Quantum oscillations in iron-based superconductors: BaFe2As2 vs. KFe2As2

    NASA Astrophysics Data System (ADS)

    Terashima, Taichi; Kurita, Nobuyuki; Kimata, Motoi; Tomita, Megumi; Tsuchiya, Satoshi; Satsukawa, Hidetaka; Harada, Atsushi; Hazama, Kaori; Imai, Motoharu; Sato, Akira; Uji, Shinya; Kihou, Kunihiro; Lee, Chul-Ho; Kito, Hijiri; Tomioka, Yasuhide; Ito, Toshimitsu; Iyo, Akira; Eisaki, Hiroshi; Liang, Tian; Nakajima, Masamichi; Ishida, Shigeyuki; Uchida, Shin-ichi; Saito, Taku; Fukazawa, Hideto; Kohori, Yoh; Harima, Hisatomo

    2013-07-01

    We present results of Shubnikov-de Haas oscillation measurements on detwinned BaFe2As2 and de Haas-van Alphen oscillation measurements on KFe2As2. The Fermi surface of BaFe2As2 in the antiferromagnetic phase is found to consist of one hole and two electron pockets, all of which are three-dimensional and closed, and can reasonably be accounted for by LSD A band calculations. We find only moderate mass enhancements m*/mband of 2-3. In the case of KFe2As2, four quasi-two-dimensional Fermi surface cylinders epsilon, α, ζ, and β are observed in qualitative agreement with previous ARPES data. In sharp contrast to BaFe2As2, agreement between the observed and LDA-calculated Fermi surface is poor: LDA calculations seem to predict wrong crystal-field splitting of Fe 3d states. Large effective masses up to 20 me, me being the free electron mass, are found. The Sommerfeld coefficient estimated from the observed Fermi surface and effective masses is consistent with the measured value of 93 mJ/K2mol [H. Fukazawa et al., J. Phys. Soc. Jpn. 80, SA118 (2011)] and is 8-9 times larger than the band value, indicating strong electronic correlations in KFe2As2.

  10. Synthesis, characterization of polyaniline/BaFe 12O 19 composites with microwave-absorbing properties

    NASA Astrophysics Data System (ADS)

    Ting, Tzu-Hao; Wu, Kuo-Hui

    2010-08-01

    Polyaniline/BaFe 12O 19 (PANI/Ba ferrite) composites were synthesized by in situ polymerization at different aniline/Ba ferrite weight ratios (Ani/Ba ferrite=1/2, 1/1 and 2/1) and introduced into epoxy resin to be microwave absorber. The spectroscopic characterizations of the formation processes of PANI/Ba ferrite composites were studied using Fourier transform infrared, ultraviolet-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron spin resonance. Microwave-absorbing properties were investigated by measuring complex permittivity, complex permeability and reflection loss in the 2-18 and 18-40 GHz microwave frequency range using the free space method. The results showed that a wider absorption frequency range could be obtained by adding different polyaniline contents in Ba ferrite.

  11. Investigation of structure and oxygen permeability of Ba-Ce-Co-Fe-O system

    SciTech Connect

    Li, Qiming; Zhu, Xuefeng; Yang, Weishen

    2010-09-15

    Mixed ionic-electronic conducting perovskite oxides, BaCe{sub 0.1}Co{sub x}Fe{sub 0.9-x}O{sub 3-{delta}}, were synthesized with a combined citric acid and EDTA complexing method. The structure and oxygen permeability of BaCe{sub 0.1}Co{sub x}Fe{sub 0.9-x}O{sub 3-{delta}} series was investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and oxygen permeation operation. XRD characterization showed that pure cubic perovskite structure can be obtained only if the content of cobalt and cerium in B-site of Ba-Ce-Co-Fe-O series is no more than 40% and 15%, respectively. Lattice parameters of BaCe{sub 0.1}Co{sub x}Fe{sub 0.9-x}O{sub 3-{delta}} gradually increase with cobalt and cerium content, iodine titration experiment revealed that the doping of cerium ions with big radius can keep B-site cobalt and iron ions in low valence state. Oxygen permeation operation showed that oxygen permeation flux of all BaCe{sub 0.1}Co{sub x}Fe{sub 0.9-x}O{sub 3-{delta}} membranes gradually increases with testing time in the initial stage, and the time to reach steady state becomes longer with the increase of cobalt content. After reaching permeation steady state, BaCe{sub 0.1}Co{sub 0.4}Fe{sub 0.5}O{sub 3-{delta}} exhibits highest oxygen flux amongst BaCe{sub 0.1}Co{sub x}Fe{sub 0.9-x}O{sub 3-{delta}} series.

  12. Overview of the development of FeAl intermetallic alloys

    SciTech Connect

    Maziasz, P.J.; Liu, C.T.; Goodwin, G.M.

    1995-09-01

    B2-phase FeAl ordered intermetallic alloys based on an Fe-36 at.% Al composition are being developed to optimize a combination of properties that includes high-temperature strength, room-temperature ductility, and weldability. Microalloying with boron and proper processing are very important for FeAl properties optimization. These alloys also have the good to outstanding resistance to oxidation, sulfidation, and corrosion in molten salts or chlorides at elevated temperatures, characteristic of FeAl with 30--40 at.% Al. Ingot- and powder-metallurgy (IM and PM, respectively) processing both produce good properties, including strength above 400 MPa up to about 750 C. Technology development to produce FeAl components for industry testing is in progress. In parallel, weld-overlay cladding and powder coating technologies are also being developed to take immediate advantage of the high-temperature corrosion/oxidation and erosion/wear resistance of FeAl.

  13. Syntheses, crystal structures, and electronic properties of Ba8Si2US14 and Ba8SiFeUS14

    NASA Astrophysics Data System (ADS)

    Mesbah, Adel; Prakash, Jai; Lebègue, Sébastien; Stojko, Wojciech; Ibers, James A.

    2015-10-01

    Black single crystals of the new compounds Ba8Si2US14 and Ba8SiFeUS14 have been obtained by high-temperature solid-state methods at 1223 K. These isostructural compounds crystallize in a new structure type in space group C2h3 - C2/m of the monoclinic system. The salt-like structure comprises isolated US6 octahedra and MS4 tetrahedra separated by Ba cations. The US6 octahedra form pseudo-layers that are separated by two other pseudo-layers formed by isolated MS4 tetrahedra. These compounds do not show any short S-S interactions. Ba8Si2US14 charge balances with 8 Ba2+, 2 Si4+, 1 U4+, and 14 S2-; Ba8SiFeUS14 can be charge balanced with 8 Ba2+, 1 Si4+, 1 Fe3+, 1 U5+, and 14 S2-. DFT calculations using the HSE functional indicate that the compounds are semiconductors. The calculated band gaps are 1.2 eV and 1.8 eV for Ba8Si2US14 and Ba8SiFeUS14, respectively.

  14. Compositionally continuously graded cathode layers of (Ba0.5Sr0.5)(Fe0.91Al0.09)O3-δ-Gd0.1Ce0.9O2 by wet powder spraying technique for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Taizhi; Wang, Zhenhua; Ren, Baiyu; Qiao, Jinshuo; Sun, Wang; Sun, Kening

    2014-02-01

    Compositionally continuously graded cathode layers (CGCLs) of (Ba0.5Sr0.5)(Fe0.91Al0.09)O3-δ-Gd0.1Ce0.9O2 (BSFA-GDC) have been constructed by a handy and effective technique called wet powder spraying (WPS). CGCLs exhibit similar thermal expansion coefficient (TEC) value between adjacent thin layers. The continuously graded structure and the well-distributed components of BSFA-GDC cathode are confirmed by morphological characterization with scanning electron microscopy (SEM), and by compositional analysis with energy dispersion X-ray spectrometer (EDS), respectively. The polarization resistance (Rp) of CGCLs with three different thicknesses is investigated by electrochemical impedance spectra (EIS). The EIS results show that CGCLs with a moderate thickness of 20 μm achieve the lowest Rp of 0.301 Ω cm2 at 800 °C. In addition, anode-supported single cells with the configuration of NiO-YSZ/YSZ/GDC/BSFA-GDC have been fabricated and tested. The cell with the CGCLs thickness of 20 μm reaches the highest output power density of 848 mW cm-2 at 800 °C.

  15. Greatly enhanced magnetic properties of electrodeposited Ni-Co-P-BaFe12O19 composites

    NASA Astrophysics Data System (ADS)

    El-Sayed, Adly H.; Hemeda, O. M.; Tawfik, A.; Hamad, Mahmoud A.

    2016-03-01

    We prepared electrodeposited Ni-Co-P-M-type BaFe12O19 (BaM) film as magnetic soft-hard composites with a large amount of entrapped BaM particles more than 40 wt% were grown over polycrystalline copper substrates. The results show that the saturation magnetization of BaM particles remarkably increases by more than 300% and Mr increases by more than 700% when they embedded into the Ni-Co-P metal. In contrast to previous reports, it is clear that values of coercivity and squareness for our work are significantly better than corresponding values obtained for electrodeposited Ni-Co-BaM composite films of previous works.

  16. Barium aluminides Ba{sub x}Al{sub 5}(x=3,3.5,4)

    SciTech Connect

    Jehle, Michael; Scherer, Harald; Wendorff, Marco; Roehr, Caroline

    2009-05-15

    Three aluminides of the series Ba{sub x}Al{sub 5}(x=3,3.5,4) were synthesized from stoichiometric ratios of the elements in Ta crucibles. The crystal structure of the new compound Ba{sub 7}Al{sub 10} was determined using single crystal X-ray data (space group R3-barm, a=604.23(9), c=4879.0(12)pm, Z=3, R1=0.0325). The compound exhibits Al Kagome (3.6.3.6.) nets in which half of the triangles form the basis of trigonal bipyramids Al{sub 5}. The apical Al are thus three-bonded assuming a charge of -2 ({sup 27}Al-NMR chemical shift delta=660pm), whereas the Al atoms of the basal triangle (i.e. of the Kagome net) are four-bonded and thus of formal charge -1(delta=490ppm). The total charge of the anion is thus exactly compensated by the Ba cations, i.e. the compound can be interpreted as an electron precise Zintl phase, exhibiting a distinct pseudo-band gap at the Fermi level of the calculated tDOS. According to the total formula, the structure displays a combination the stacking sequences of Ba{sub 3}Al{sub 5} and Ba{sub 4}Al{sub 5}, the structures of which have been redetermined with current methods (both hexagonal with space group P6{sub 3}/mmc; Ba{sub 3}Al{sub 5}: a=606.55(7), c=1461.8(2)pm, Z=2, R1=0.0239; Ba{sub 4}Al{sub 5}: a=609.21(7), c=1775.8(3)pm, Z=2, R1=0.0300). These three compounds with slightly different electron counts but similar polyanions allow to compare the bond lengths, the electronic structures and the overall bonding situation in dependence of positive or negative deviation of the electron count in relation to the novel formally electron precise Zintl compound Ba{sub 7}Al{sub 10}. - Al{sub 5} layers of Kagome nets in the new binary electron precise Zintl compound Ba{sub 3.5}Al{sub 5}, also found in Ba{sub 3}Al{sub 5} and Ba{sub 4}Al{sub 5}.

  17. Preparation and thermal behavior of aerosol-derived BaFe 12O 19 nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, Hsuan-Fu; Lin, Hsin-Yi

    2004-12-01

    Pure BaFe12O19 nanoparticles, having single magnetic domain sizes, were obtained at 700 °C using a process combining the citrate precursor method and spray technique. A neutralized aqueous solution, containing Ba2+ and Fe3+ chelated by citric acid, was nebulized to undergo thermal decomposition in a flowing air with a maximum temperature of 250 °C. The dried solid precursor so obtained was calcined at different temperatures and was then chemically and physically characterized. Crystalline barium hexaferrites were formed at temperatures as low as 650 °C, but calcination temperatures higher than 680 °C were required to produce pure barium ferrite powder. Based on the obtained experimental results, the reaction mechanism for the aerosol-derived precursor to form BaFe12O19 was proposed and discussed in this study.

  18. Diamagnetic vortex barrier stripes in underdoped BaFe2(As1-xPx) 2

    NASA Astrophysics Data System (ADS)

    Yagil, A.; Lamhot, Y.; Almoalem, A.; Kasahara, S.; Watashige, T.; Shibauchi, T.; Matsuda, Y.; Auslaender, O. M.

    2016-08-01

    We report magnetic force microscopy (MFM) measurements on underdoped BaFe2(As1 -xPx)2 (x =0.26 ) that show enhanced superconductivity along stripes parallel to twin boundaries. These stripes of enhanced diamagnetic response repel superconducting vortices and act as barriers for them to cross. The width of the stripes is hundreds of nanometers, on the scale of the penetration depth, well within the inherent spatial resolution of MFM and implying that the width is set by the interaction of the superconductor with the MFM's magnetic tip. Unlike similar stripes observed previously by scanning SQUID in the electron doped Ba (Fe1 -xCox)2As2 , the stripes in the isovalently doped BaFe2(As1 -xPx)2 disappear gradually when we warm the sample towards the superconducting transition temperature. Moreover, we find that the stripes move well below the reported structural transition temperature in BaFe2(As1 -xPx)2 and that they can be much denser than in the Ba (Fe1 -xCox)2As2 study. When we cool in finite magnetic field we find that some vortices appear in the middle of stripes, suggesting that the stripes may have an inner structure, which we cannot resolve. Finally, we use both vortex decoration at higher magnetic field and deliberate vortex dragging by the MFM magnetic tip to obtain bounds on the strength of the interaction between the stripes and vortices. We find that this interaction is strong enough to play a significant role in determining the critical current in underdoped BaFe2(As1 -xPx)2 .

  19. Energetic ion bombarded Fe/Al multilayers

    SciTech Connect

    Al-Busaidy, M.S.; Crapper, M.D.

    2006-05-15

    The utility of ion-assisted deposition is investigated to explore the possibility of counteracting the deficiency of back-reflected current of Ar neutrals in the case of lighter elements such as Al. A range of energetically ion bombarded Fe/Al multilayers sputtered with applied surface bias of 0, -200, or -400 V were deposited onto Si(111) substrates in an argon atmosphere of 4 mTorr using a computer controlled dc magnetron sputtering system. Grazing incidence reflectivity and rocking curve scans by synchrotron x rays of wavelength of 1.38 A were used to investigate the structures of the interfaces produced. Substantial evidence has been gathered to suggest the gradual suppression of interfacial mixing and reduction in interfacial roughness with increases of applied bias. The densification of the Al microstructure was noticeable and may be a consequence of resputtering attributable to the induced ion bombardment. The average interfacial roughnesses were calculated for the 0, -200, and -400 V samples to be 7{+-}0.5, 6{+-}0.5, and 5{+-}0.5 A respectfully demonstrating a 30% improvement in interface quality. Data from rocking curve scans point to improved long-range correlated roughness in energetically deposited samples. The computational code based on the recursive algorithm developed by Parratt [Phys. Rev. 95, 359 (1954)] was successful in the simulation of the specular reflectivity curves.

  20. A first principles study on newly proposed (Ca/Sr/Ba)Fe2Bi2 compounds with their parent compounds

    NASA Astrophysics Data System (ADS)

    Sundareswari, M.; Jayalakshmi, D. S.; Viswanathan, E.

    2016-02-01

    The structural, electronic, bonding and magnetic properties of newly proposed iron-based compounds viz., CaFe2Bi2, SrFe2Bi2, BaFe2Bi2 with their Fermi surface topology are reported here for the first time by means of first principles calculation. All these properties of newly proposed compounds are compared and analysed along with their respective parent compounds namely (Ca,Sr,Ba)Fe2As2.

  1. Synthesis and characterization of hollow mesoporous BaFe12O19 spheres

    SciTech Connect

    Xu, X; Park, J; Hong, YK; Lane, AM

    2015-02-01

    A facile method is reported to synthesize hollow mesoporous BaFe12O19 spheres using a template-free chemical etching process. Hollow BaFe12O19 spheres were synthesized by conventional spray pyrolysis. The mesoporous structure is achieved by alkaline ethylene glycol etching at 185 degrees C, with the porosity controlled by the heating time. The hollow porous structure is confirmed by SEM, TEM, and FIB-FESEM characterization. The crystal structure and magnetic properties are not significantly affected after the chemical etching process. The formation mechanism of the porous structure is explained by grain boundary etching. (C) 2014 Elsevier Inc. All rights reserved.

  2. Removal of phosphate from water using six Al-, Fe-, and Al-Fe-modified bentonite adsorbents.

    PubMed

    Shanableh, Abdallah M; Elsergany, Moetaz M

    2013-01-01

    This study was part of a larger effort that involves evaluating alternatives to upgrading secondary treatment systems in the United Arab Emirates for the removal of nutrients. In this study, six modified bentonite (BNT) phosphate adsorbents were prepared using solutions that contained hydroxy-polycations of aluminum (Al-BNT), iron (Fe-BNT), and mixtures of aluminum and iron (Al-Fe-BNT). The adsorption kinetics and capacities of the six adsorbents were evaluated, and the adsorbents were used to remove phosphorus from synthetic phosphate solutions and from treated wastewater. The experimental adsorption kinetics results were well represented by the pseudo-second-order kinetic model, with R(2) values ranging from 0.99 to 1.00. Similarly, the experimental equilibrium adsorption results were well represented by the Freundlich and Langmuir isotherms, with R(2) values ranging from 0.98 to 1.00. The adsorption capacities of the adsorbents were dependent on the BNT preparation conditions; the types, quantities and combination of metals used; BNT particle size; and adsorption pH. The Langmuir maximum adsorption capacities of the six adsorbents ranged from 8.9-14.5 mg P/g-BNT. The results suggested that the BNT preparations containing Fe alone or in combination with Al achieved higher adsorption capacities than the preparations containing only Al. However, the Al-BNT preparations exhibited higher adsorption rates than the Fe-BNT preparation. Three of the six adsorbents were used to remove phosphate from secondarily treated wastewater samples, and the removal results were comparable to those obtained using synthetic phosphate solutions. The BNT adsorbents also exhibited adequate settling characteristics and significant regeneration potential.

  3. NOx Uptake Mechanism on Pt/BaO/Al2O3 Catalysts

    SciTech Connect

    Kwak, Ja Hun; Kim, Do Heui; Szailer, Tamas; Peden, Charles HF; Szanyi, Janos

    2006-11-01

    The NOx adsorption mechanism on Pt/BaO/Al2O3 catalysts was investigated by performing NOx storage/reduction cycles, NO2 adsorption and NO + O2 adsorption on 2%Pt/(x)BaO/Al2O3 (x = 2, 8 and 20 wt%) catalysts. NOx uptake profiles on 2%Pt/20%BaO/Al2O3 at 523 K show complete uptake behavior for almost 5 min, and then the NOx level starts gradually increasing with time and it reaches 75% of the inlet NOx concentration after 30 min time-on-stream. Although this catalyst shows fairly high NOx conversion at 523 K, only ~ 2.4 wt% out of 20 wt% BaO is converted to Ba(NO3)2. Adsorption studies by using NO2 and NO + O2 suggest two different NOx adsorption mechanisms. The NO2 uptake profile on 2%Pt/20%BaO/Al2O3 shows the absence of a complete NOx uptake period at the beginning of adsorption and the overall NOx uptake is controlled by the gas-solid equilibrium between NO2 and BaO/Ba(NO3)2 phase. When we use NO + O2, complete initial NOx uptake occurs and the time it takes to convert ~ 4 % of BaO to Ba(NO3)2 is independent of the NO concentration. These NOx uptake characteristics suggest that the NO + O2 reaction on the surface of Pt particles produces NO2 that is subsequently transferred to the neighboring BaO phase by spill over. At the beginning of the NOx uptake, this spill-over process is very fast and so it is able to provide complete NOx storage. However, the NOx uptake by this mechanism slows down as BaO in the vicinity of Pt particles are converted to Ba(NO3)2. The formation of Ba(NO3)2 around the Pt particles results in the development of a diffusion barrier for NO2, and increases the probability of NO2 desorption and consequently, the beginning of NOx slip. As NOx uptake by NO2 spill-over mechanism slows down due to the diffusion barrier formation, the rate and extent of NO2 uptake are determined by the diffusion rate of nitrate ions into the BaO bulk, which, in turn, is determined by the gas phase NO2 concentration.

  4. Solubility of BaS in BaO-BaF2 slag and the Influence of FeOx, SiO2, Cr2O3, BaCI2, CaO, and MgO on the sulfide capacity of this system

    NASA Astrophysics Data System (ADS)

    Rachev, Ivan P.; Tsukihashi, Fumitaka; Sano, Nobuo

    1992-03-01

    The influence of SiO2, FeOx, Cr2O3, BaCl2, CaO, and MgO on the sulfide capacity of the BaO-BaF2 system was measured at 1473 K, using a gas-slag-metal equilibration technique. It was found that the substitution of BaF2 by SiO2, FeOx, Cr2O3, and BaCl2 decreases the sulfide capacity of the BaO-BaF2 system. Similar results were obtained for the carbonate capacity. The CaO-saturated BaO-BaF2 flux, however, was found to have slightly higher sulfide and carbonate capacities than the pure BaO-BaF2 flux. The solubility of CaO increased with increasing BaF2 content and was 18 mol pet in BaF2 at 1473 K. The solubility of MgO in the BaO-BaF2 system at the same temperature is very low, and it has no effect on the sulfide and carbonate capacities. The solubility of BaS in the BaO-BaF2 system was also measured at 1473 K and had its maximum for the slag containing 40 mass pet BaO. The activity of BaO in the system was calculated from those data.

  5. Microstructure of the Al-La-Ni-Fe system

    SciTech Connect

    Vasil’ev, A. L.; Ivanova, A. G.; Bakhteeva, N. D.; Kolobylina, N. N.; Orekhov, A. S.; Presnyakov, M. Yu.; Todorova, E. V.

    2015-01-15

    The microstructure of alloys based on the Al-La-Ni-Fe system, which are characterized by a unique ability to form metal glasses and nanoscale composites in a wide range of compositions, has been investigated. Al{sub 85}Ni{sub 7}Fe{sub 4}La{sub 4} and Al{sub 85}Ni{sub 9}Fe{sub 2}La{sub 4} alloys have been analyzed by electron microscopy (including high-resolution scanning transmission electron microscopy), energy-dispersive X-ray microanalysis, electron diffraction (ED), and X-ray diffraction (XRD). It is found that, along with fcc Al and Al{sub 4}La (Al{sub 11}La{sub 3}) particles, these alloys contain a ternary phase Al{sub 3}Ni{sub 1−x}Fe{sub x} (sp. gr. Pnma) isostructural to the Al{sub 3}Ni phase and a quaternary phase Al{sub 8}Fe{sub 2−x}Ni{sub x}La isostructural to the Al{sub 8}Fe{sub 2}Eu phase (sp. gr. Pbam). The unit-cell parameters of the Al{sub 3}Ni{sub 1−x}Fe{sub x} and Al{sub 8}Fe{sub 2−x}Ni{sub x}La compounds, determined by ED and refined by XRD, are a = 0.664(1) nm, b = 0.734(1) nm, and c = 0.490(1) nm for Al{sub 3}Ni{sub 1−x}Fe{sub x} and a = 1.258(3) nm, b = 1.448(3) nm, and c = 0.405(8) nm for Al{sub 8}Fe{sub 2−x}Ni{sub x}La. In both cases Ni and Fe atoms are statistically arranged, and no ordering is found. Al{sub 8}Fe{sub 2−x}Ni{sub x}La particles contain inclusions in the form of Al{sub 3}Fe δ layers.

  6. BaFe12O19 powder with high magnetization prepared by acetone-aided coprecipitation

    NASA Astrophysics Data System (ADS)

    Yu, Hsuan-Fu

    2013-09-01

    BaFe12O19 particles with high magnetization were produced using an acetone-aided coprecipitation process. An aqueous solution of iron and barium nitrates, in an Fe3+/Ba2+ molar ratio of 12, was added in a stirred precipitation liquid medium composed of H2O, CH3(CO)CH3 and NH4OH. After reacting metallic ions with ammonia, the precipitates were formed, centrifugally filtered, freeze dried and calcined. Effects of amount of the acetone in the precipitation liquid medium on the formation of crystalline BaFe12O19 were investigated. The presence of acetone in the precipitation liquid medium can greatly promote formation of the crystalline BaFe12O19 at temperature as low as 650 °C and can enhance magnetization of the derived particles. On the other hand, raising the calcination temperature can effectively accelerate development of crystallite morphology and magnetic characters of the barium hexaferrites. While the barium hexaferrite powder obtained without acetone additions and calcined at 1000 °C had magnetization (measured at 50 kOe; M(50 kOe)) of 63.5 emu/g, remanence magnetization (Mr) of 31.3 emu/g and coercivity (Hc) of 4.7 kOe, the single magnetic domain size BaFe12O19 powder with M(50 kOe) of 70.6 emu/g, Mr of 34.4 emu/g and Hc of 3.7 kOe was produced at 1000 °C, using a precipitation liquid medium of 64 vol% acetone.

  7. Chemical ordering and large tunnel magnetoresistance in Co2FeAl/MgAl2O4/Co2FeAl(001) junctions

    NASA Astrophysics Data System (ADS)

    Scheike, Thomas; Sukegawa, Hiroaki; Inomata, Koichiro; Ohkubo, Tadakatsu; Hono, Kazuhiro; Mitani, Seiji

    2016-05-01

    Epitaxial magnetic tunnel junctions (MTJs) with a Co2FeAl/CoFe (0.5 nm)/MgAl2O4/Co2FeAl(001) structure were fabricated by magnetron sputtering. High-temperature in situ annealing led to a high degree of B2-order in the Co2FeAl layers and cation order of the MgAl2O4 barrier. Large tunnel magnetoresistance (TMR) of up to 342% was obtained at room temperature (616% at 4 K), in contrast to the TMR ratio ( ≲ 160%) suppressed by the band-folding effect in Fe/cation-ordered MgAl2O4/Fe MTJs. The present study reveals that the high degree of B2-order and the resulting high spin polarization in the Co2FeAl electrodes enable us to bypass the band-folding problem in spinel barriers.

  8. Structure determination of Fe-Al-Ge alloys

    NASA Astrophysics Data System (ADS)

    Gargicevich, D.; Galván Josa, V. M.; Blanco, C.; Lambri, A.; Cuello, G. J.

    2015-11-01

    We studied the crystalline structure of Fe - 8at.%Al - 4at.%Ge alloy between 300 and 1300 K and its relation to the mechanical response by means of neutron diffraction and mechanical spectroscopy. At room temperature we observe a Fe3Al-type ordered structure with a deficiency of Al in the 8c sites. The Ge atoms are distributed in the 4a and Al atoms in 8c sites. At high temperature we observe an order-disorder transformation when the crystal structure becomes Fe-α type. This loss of order gives rise to the hysteresis behavior of damping between the heating and cooling runs.

  9. Investigation of ferromagnetic properties in Fe/Co substituted BaSnO3 perovskite stannates

    NASA Astrophysics Data System (ADS)

    Manju, M. R.; Kumar, V. Punith; Dayal, Vijaylakshmi

    2016-11-01

    We report on structural and magnetic properties in Fe/Co substituted BaSnO3 polycrystalline samples synthesized by conventional nitrate route method. The substitution of Fe/Co at Sn site and the phase formation is confirmed by X-ray diffraction and microstructural measurements. The sample crystallizes to cubic perovskite structure indexed to Pm 3 ̅m space group. Fe/Co substituted BaSnO3 exhibit ferromagnetism at room temperature and ferromagnetic property varies gradually with increase in substitution of Co content. The observed enhancement of ferromagnetism in the studied samples can be explained due to F-Center exchange interactions. The presence of F-centers is evidenced by the electron spin resonance (ESR) spectrum on the studied samples, which also provides supporting evidence for the observed ferromagnetism.

  10. Structural Distortions under pressure and doping in superconducting BaFe2As2

    NASA Astrophysics Data System (ADS)

    Kimber, Simon

    2010-03-01

    The discovery of a new family of high-TC materials, the iron arsenides, has led to a resurgence of interest in superconductivity. Several important traits of these materials are now apparent: for example, layers of iron tetrahedrally coordinated by arsenic are crucial structural ingredients. The structure and properties of chemically substituted samples are known to be intimately linked; however, until recently (1), remarkably little was known about this relationship when high pressure is used to induce superconductivity in undoped compounds. Here we show that the key structural features in BaFe2As2 show the same behaviour under pressure as found in chemically substituted samples. Using experimentally derived structural data, we show that the electronic structure evolves similarly in both cases. Our results show that, in contrast to the cuprates, structural distortions are more important than charge doping in the iron arsenides. This work was performed at the Helmholtz-Zentrum Berlin in collaboration with Ames Laboratory, Goethe-Universit"at Frankfurt, JCNS J"ulich and the Institute Laue-Langevin. (1) S.A.J. Kimber et al, Nature Materials,

  11. Improvement of Gd123 superconductor bulks with the additions of BaFe12O19

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Peng, Liqi; Zhou, Wenli; Zhou, Xiaojuan; Jia, Lingling; Izumi, Mitsuru

    2015-07-01

    The flux pinning performance of the superconductors is important for the application of the Gd123 bulk superconductors. The study shows that to introduce the secondary phases into the Gd123 bulk matrix can enhance the flux pinning performance. In this article, by using top-seeding melt texture growth process method, single domain GdBa2Cu3O7-δ superconductor bulks doping with the different amounts of BaFe12O19 (0.0mol% to 0.8mol%) were successfully achieved. The property and micro-structure have also been investigated. The result shows that there is an obvious improvement on JC with 0.2mol% BaFe12O19 addition. The fine distribution and smaller size of Gd211 particles appear in the micro-structure which may result in the enhancement of JC. At the same time, BaFe12O19 may also form an effective pinning center to increase JC.

  12. Synthesis, structural and magnetic characterisation of the fully fluorinated compound 6H-BaFeO{sub 2}F

    SciTech Connect

    Clemens, Oliver; Wright, Adrian J.; Berry, Frank J.; Smith, Ronald I.; Slater, Peter R.

    2013-02-15

    The compound 6H-BaFeO{sub 2}F (P6{sub 3}/mmc) was synthesised by the low temperature fluorination of 6H-BaFeO{sub 3-d} using polyvinylidenedifluoride (PVDF) as a fluorination agent. Structural characterisation by XRD and NPD suggests that the local positions of the oxygen and fluorine atoms vary with no evidence for ordering on the anion sites. This compound shows antiferromagnetic ordering at room temperature with antiparallel alignment of the magnetic moments along the c-axis. The use of PVDF also allows the possibility of tuning the fluorine content in materials of composition 6H-BaFeO{sub 3-d}F{sub y} to any value of 0BaFeO{sub 2}F. Highlights: Black-Right-Pointing-Pointer The crystal structure of the hexagonal perovskite phase 6H-BaFeO{sub 2}F. Black-Right-Pointing-Pointer H-BaFeO{sub 2}F and 6H-BaFeO{sub 3-d}F{sub y} were prepared via low temperature fluorination using PVDF. Black-Right-Pointing-Pointer A structural investigation of the compounds BaFeO{sub 2}F is presented in detail. Black-Right-Pointing-Pointer This analysis suggests differences for the local coordination of O{sup 2-} and F{sup -} anions. Black-Right-Pointing-Pointer H-BaFeO{sub 2}F shows antiferromagnetic ordering at 300 K. Black-Right-Pointing-Pointer The magnetic moments align parallel to the a-axis.

  13. Block Magnetic Excitations in the Orbitally Selective Mott Insulator BaFe2Se3

    NASA Astrophysics Data System (ADS)

    Mourigal, M.; Wu, Shan; Stone, M. B.; Neilson, J. R.; Caron, J. M.; McQueen, T. M.; Broholm, C. L.

    2015-07-01

    Iron pnictides and selenides display a variety of unusual magnetic phases originating from the interplay between electronic, orbital, and lattice degrees of freedom. Using powder inelastic neutron scattering on the two-leg ladder BaFe2Se3 , we fully characterize the static and dynamic spin correlations associated with the Fe4 block state, an exotic magnetic ground state observed in this low-dimensional magnet and in Rb0.89Fe1.58Se2 . All the magnetic excitations of the Fe4 block state predicted by an effective Heisenberg model with localized spins are observed below 300 meV and quantitatively reproduced. However, the data only account for 16 (3 )μB2 per Fe2 + , approximatively 2 /3 of the total spectral weight expected for localized S =2 moments. Our results highlight how orbital degrees of freedom in iron-based magnets can conspire to stabilize an exotic magnetic state.

  14. New insights into the application of the valence rules in Zintl phases-Crystal and electronic structures of Ba7Ga4P9, Ba7Ga4As9, Ba7Al4Sb9, Ba6CaAl4Sb9, and Ba6CaGa4Sb9

    NASA Astrophysics Data System (ADS)

    He, Hua; Stoyko, Stanislav; Bobev, Svilen

    2016-04-01

    Crystals of three new ternary pnictides-Ba7Al4Sb9, Ba7Ga4P9, and Ba7Ga4As9 have been prepared by reactions of the respective elements in molten Al or Pb fluxes. Single-crystal X-ray diffraction studies reveal that the three phases are isotypic, crystallizing in the orthorhombic Ba7Ga4Sb9-type structure (space group Pmmn, Pearson symbol oP40, Z=2), for which only the prototype is known. The structure is based on TrPn4 tetrahedra (Tr=Al, Ga; Pn=P, As, Sb), connected in an intricate scheme into 1D-ribbons. Long interchain Pn-Pn bonds (dP-P>3.0 Å; dAs-As>3.1 Å; dSb-Sb>3.3 Å) account for the realization of 2D-layers, separated by Ba2+ cations. Applying the classic valance rules to rationalize the bonding apparently fails, and Ba7Ga4Sb9 has long been known as a metallic Zintl phase. Earlier theoretical calculations, both empirical and ab-initio, suggest that the possible metallic properties originate from filled anti-bonding Pn-Pn states, and the special roles of the "cations" in this crystal structure. To experimentally probe this hypothesis, we sought to synthesize the ordered quaternary phases Ba6CaTr4Sb9 (Tr=Al, Ga). Single-crystal X-ray diffraction work confirms Ba6.145(3)Ca0.855Al4Sb9 and Ba6.235(3)Ca0.765Ga4Sb9, with Ca atoms preferably substituting Ba on one of the three available sites. The nuances of the five crystal structures are discussed, and the chemical bonding in Ba7Ga4As9 is interrogated by tight-binding linear muffin-tin orbital calculations.

  15. Strength anomaly in B2 FeAl single crystals

    SciTech Connect

    Yoshimi, K.; Hanada, S.; Yoo, M.H.; Matsumoto, N.

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). The orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.

  16. Fabric cutting application of FeAl-based alloys

    SciTech Connect

    Sikka, V.K.; Blue, C.A.; Sklad, S.P.; Deevi, S.C.; Shih, H.R.

    1998-11-01

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.

  17. Oxidation of Fe-Cr-Al and Fe-Cr-Al-Y Single Crystals

    NASA Astrophysics Data System (ADS)

    Grabke, H. J.; Siegers, M.; Tolpygo, V. K.

    1995-03-01

    Single crystal samples of the alloy Fe-20%Cr-5%Al with and without Y-doping were used to study the "reactive element" (RE) effect, which causes improved oxidation behaviour and formation of a protective Al2O3 layer on this alloy. The oxidation was followed by AES at 10-7 mbar O2 up to about 1000 °C. Most observations were peculiar for this low pO2 environment, but yttrium clearly favors the formation of Al-oxide and stabilizes it also under these conditions, probably by favoring its nucleation. The oxides formed are surface compounds of about monolayer thickness, not clearly related to bulk oxides. Furthermore, the morphologies of oxide scales were investigated by SEM, after oxidation at 1000°C for 100 h at 133 mbar O2. On Fe-Cr-Al the scale is strongly convoluted and tends to spalling, whereas the presence of Y leads to flat scales which are well adherent. This difference is explained by a change in growth mechanism. The tendency for separation of oxide and metal was highest for the samples with low energy metal surface, i.e. (100) and (110), the scale was better adherent on the (111) oriented surface and on the polycrystalline specimen, since in the latter cases the overall energy for scale/metal separation is higher. All observations, from the low and from the high pO2 experiments, are discussed in relation to the approximately ten mechanisms proposed in the literature for explanation of the RE effects.

  18. Oxidation behavior of FeAl+Hf,Zr,B

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Doychak, Joseph

    1988-01-01

    The oxidation behavior of Fe-40Al-1Hf, Fe-40Al-1Hf-0.4B, and Fe-40Al-0.1Zr-0.4B (at. percent) alloys was characterized after 900, 1000, and 100 C exposures. Isothermal tests revealed parabolic kinetics after a period of transitional theta-alumina scale growth. The parabolic growth rates for the subsequent alpha-alumina scales were about five times higher than those for NiAl+0.1Zr alloys. The isothermally grown scales showed a propensity toward massive scale spallation due to both extensive rumpling from growth stresses and to an inner layer of HfO2. Cyclic oxidation for 200 1-hr cycles produced little degradation at 900 or 1000 C, but caused significant spallation at 1100 C in the form of small segments of the outer scale. The major difference in the cyclic oxidation of the three FeAl alloys was increased initial spallation for FeAl+Zr,B. Although these FeAl alloys showed many similarities to NiAl alloys, they were generally less oxidation resistant. It is believed that this resulted from nonoptimal levels of dopants and larger thermal expansion mismatch stresses.

  19. Thermal stability of Al-Cu-Fe icosahedral alloys

    NASA Astrophysics Data System (ADS)

    Bessière, M.; Quivy, A.; Lefebvre, S.; Devaud-Rzepski, J.; Calvayrac, Y.

    1991-12-01

    A stable ideally quasiperiodic phase exists in a small range of concentration, close to the composition Al{62}Cu{25.5}Fe{12.5}. Reducing the iron content, or replacing small amounts of copper by aluminium, lead to icosahedral alloys which exhibit around 650 ^{circ}C structural transformations of unclear nature: in the X-ray powder diffraction pattern, the peak profiles become purely Lorentzian (Al{62.3}Cu{25.3}Fe{12.4}) or diffuse “side-bands” appear in the tails of the Bragg peaks (Al{63}Cu{24.5}Fe{12.5}). In the last case long annealing treatments eventually transform the Bragg peaks into diffuse peaks located at positions clearly off the ideal icosahedral symmetry. Small deviations from this composition range lead to Bragg peaks with shoulders whatever the heat-treatment may be; perfect icosahedral order is never obtained for these compositions (Al{63,25}Cu{24,5}Fe{12,25}, Al{64}Cu{24}Fe{12}, Al{63}Cu{25}Fe{12}). Une phase stable idéalement quasipériodique existe dans un petit domaine de concentration, au voisinage de la composition Al{62}Cu{25,5}Fe{12,5}. La diminution de la teneur en fer, ou le remplacement de faibles quantités de cuivre par de l'aluminium, conduisent à des alliages icosaédriques qui subissent vers 650 ^{circ}C des transformations structurales dont la nature n'est pas clairement identifiée: dans le diagramme de diffraction des rayons X sur poudre, les profils de raies deviennent purement Lorentziens (Al{62,3}Cu{25,3}Fe{12,4}) ou bien des raies diffuses apparaissent dans le pied des pics de Bragg (Al{63}Cu{24,5}Fe{12,5}). Dans ce dernier cas un long traitement de recuit transforme finalement les pics de Bragg en des pics diffus localisés à des positions clairement en dehors de celles correspondant à la symétrie icosaédrique idéale. De faibles écarts à ce domaine de compositions conduisent à des diagrammes de rayons X où les pics de Bragg sont épaulés quel que soit le traitement thermique ; l'ordre icosaédrique parfait n

  20. On synthesis of BaFe12O19, SrFe12O19, and PbFe12O19 hexagonal ferrite ceramics with multiferroid properties

    NASA Astrophysics Data System (ADS)

    Kostishin, V. G.; Panina, L. V.; Kozhitov, L. V.; Timofeev, A. V.; Zyuzin, A. K.; Kovalev, A. N.

    2015-08-01

    We analyze the possibility of obtaining M-type hexagonal ferrites of barium, strontium, and lead with multiferroid properties with the help of ceramic technology. Using the modified ceramic technology (especially pure initial raw materials, admixture of B2O3, and sintering in the oxygen atmosphere), we obtained for the first time the BaFe12O19 and SrFe12O19 samples with intense multiferroid properties at room temperature. At the same time, the employed technology does not make it possible to obtain PbFe12O19 samples exhibiting ferroelectricity. The multiferroid characteristics of experimental samples are compared with the characteristics of classical high-temperature multiferroic BiFeO3 and with the characteristics of BaFe12O19, SrFe12O19, and PbFe12O19 ferrite ceramics obtained in accordance with polymer precursor technology. We propose a mechanism explaining multiferroid properties of the hexagonal ferrite ceramic samples and note the importance of our results for applications.

  1. Magnetic interactions in cubic-, hexagonal- and trigonal-barium iron oxide fluoride, BaFeO2F

    NASA Astrophysics Data System (ADS)

    Clemens, Oliver; Marco, José F.; Thomas, Michael F.; Forder, Susan D.; Zhang, Hongbin; Cartenet, Simon; Monze, Anais; Bingham, Paul A.; Slater, Peter R.; Berry, Frank J.

    2016-09-01

    57Fe Mössbauer spectra have been recorded from the hexagonal (6H)- and trigonal (15R)- modifications of BaFeO2F and are compared with those previously recorded from the cubic form of BaFeO2F. The spectra, recorded over a temperature range from 15 to 650 K show that all of the iron in all the compounds is in the Fe3+ state. Spectra from the 6H- and 15R-modifications were successfully fitted with components that were related to the Fe(1) and Fe(2) structural sites in the 6H variant and to the Fe(1), Fe(2) and Fe(3) structural sites in the 15R form. The magnetic ordering temperatures were determined as 597  ±  3 K for 6H-BaFeO2F and 636  ±  3 K for 15R-BaFeO2F. These values are surprisingly close to the value of 645  ±  5 K determined for the cubic form. The magnetic interactions in the three forms are compared with a view to explaining this similarity of magnetic ordering temperature.

  2. Magnetic interactions in cubic-, hexagonal- and trigonal-barium iron oxide fluoride, BaFeO2F.

    PubMed

    Clemens, Oliver; Marco, José F; Thomas, Michael F; Forder, Susan D; Zhang, Hongbin; Cartenet, Simon; Monze, Anais; Bingham, Paul A; Slater, Peter R; Berry, Frank J

    2016-09-01

    (57)Fe Mössbauer spectra have been recorded from the hexagonal (6H)- and trigonal (15R)- modifications of BaFeO2F and are compared with those previously recorded from the cubic form of BaFeO2F. The spectra, recorded over a temperature range from 15 to 650 K show that all of the iron in all the compounds is in the Fe(3+) state. Spectra from the 6H- and 15R-modifications were successfully fitted with components that were related to the Fe(1) and Fe(2) structural sites in the 6H variant and to the Fe(1), Fe(2) and Fe(3) structural sites in the 15R form. The magnetic ordering temperatures were determined as 597  ±  3 K for 6H-BaFeO2F and 636  ±  3 K for 15R-BaFeO2F. These values are surprisingly close to the value of 645  ±  5 K determined for the cubic form. The magnetic interactions in the three forms are compared with a view to explaining this similarity of magnetic ordering temperature. PMID:27355806

  3. Fe modified BaTiO{sub 3}: Influence of doping on ferroelectric property

    SciTech Connect

    Mishra, Ashutosh; Bisen, Supriya Jarabana, Kanaka Mahalakshmi; Mishra, Niyati

    2015-06-24

    We have investigate the ferroelectric property of Fe modified Barium Titanate (BaTiO{sub 3}) with possible tetragonal structure via solid state route was prepared. Modified sample of BaTi{sub 1−x}Fe{sub x}O{sub 3} (x=0.01, 0.02) were structural characterized by X-ray Diffraction (XRD) using a Bruker D8 Advance XRD instruments, the value of 2θ is in between 20° to 80°. Fourier transform infrared spectroscopy (FTIR) using a Bruker, vertex instruments has been performs to obtain Ti-O bonding in the modified sample; the region of wavenumber is from 4000 cm{sup −1} to 400 cm{sup −1}. P-E hysteresis loop measurements have been traced for different applied voltage- 100V, 300V and 500V.

  4. Nematic spin fluid in the tetragonal phase of BaFe{<_2}As{<_2}.

    SciTech Connect

    Harriger, L. W.; Luo, H. Q.; Liu, M. S.; Frost, C.; Hu, J. P.; Norman, M. R.; Dai, P.

    2011-08-24

    We use inelastic neutron scattering to study spin waves below and above T{sub N} in iron-arsenide BaFe{sub 2}As{sub 2}. In the low-temperature orthorhombic phase, we find highly anisotropic spin waves with a large damping along the antiferromagnetic a-axis direction. On warming the system to the paramagnetic tetragonal phase, the low-energy spin waves evolve into quasi-elastic excitations, while the anisotropic spin excitations near the zone boundary persist. These results strongly suggest the presence of a spin nematic fluid in the tetragonal phase of BaFe{sub 2}As{sub 2}, which may cause the electronic and orbital anisotropy observed in these materials.

  5. Effect of 3d doping on the electronic structure of BaFe2As2

    SciTech Connect

    McLeod, John A.; Buling, A.; Green, R.J.; Boyko, T.D.; Skorikov, N.A.; Kurmaev, E.Z.; Neumann, M.; Finkelstein, L.D.; Ni, Ni; Thaler, Alexander; Budko, Serguei L.; Canfield, Paul; Moewes, A.

    2012-04-25

    The electronic structure of BaFe2As2 doped with Co, Ni and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the distribution of Co, Ni and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d10 shell. These findings help shed light on why superconductivity can occur in BaFe2As2 doped with Co and Ni but not Cu.

  6. Elastic anomalies in BaFe2-xNixAs2 crystals

    NASA Astrophysics Data System (ADS)

    Saint-Paul, M.; Abbassi, A.; Wang, Zhao-Sheng; Luo, Huinqian; Lu, Xingye; Ren, Cong; Wen, Hai-Hu; Hasselbach, K.

    2012-12-01

    We present ultrasonic measurements on superconducting BaFe2-xNixAs2 crystals with x = 0.07 and x = 0.15. The elastic constants C33 and C44 for the underdoped crystal (x = 0.07) show a large softening related to the structural phase transition at high temperatures. Anomalies in the sound velocity and the ultrasonic attenuation have been found at the superconducting phase transition Tc = 17 K. Ultrasonic attenuation exhibits a peak at the superconducting transition in contrast with the attenuation in conventional superconductors. In the overdoped crystal (x = 0.15) a minimum of C66 is found at a temperature just above the superconducting temperature Tc = 13 K. Superconducting energy gap values have been tentatively extracted from the longitudinal ultrasonic attenuation. Unconventional behaviour of the ultrasonic attenuation is observed in the superconducting BaFe2-xNixAs2 crystals.

  7. Experimentally tuning the ground state of BaFe2As2 by orbital differentiation

    NASA Astrophysics Data System (ADS)

    Rosa, Priscila; Adriano, Cris; Garitezi, Thales; Grant, Ted; Fisk, Zachary; Urbano, Ricardo; Pagliuso, Pascoal

    2015-03-01

    The role of structural parameters in layered systems, such as iron pnictides/chalcogenides (Fe-Pn/Ch), cuprates and heavy fermions, has become crucial for the understanding of their properties. In this talk, I will discuss this subject using a combination of macroscopic and microscopic techniques to study Ba1-xEuxFe2-yMy As2 single crystals (M = Co, Cu, Mn, Ni, and Ru). Interestingly, a close connection arises between the spin-density wave (SDW) phase suppression and local distortions in the structure. Furthermore, these changes are reflected at the Fermi surface by an increase of anisotropy and localization of the Fe 3 d bands at the FeAs plane. Our results suggest that such increase in the planar (xy /x2 -y2) orbital symmetry seems to be a favorable ingredient for the emergence of superconductivity in this class of materials. This work was supported by FAPESP, CNPq, CAPES-Brazi and AFOSR MURI.

  8. Fe K-edge X-ray resonant magnetic scattering from Ba(Fe1−xCox)2As2 superconductors

    SciTech Connect

    Kim, Min Gyu; Kreyssig, Andreas; Lee, Yongbin; McQueeney, Robert J.; Harmon, Bruce N.; Goldman, Alan I.

    2012-06-15

    We present an X-ray resonant magnetic scattering study at the Fe-K absorption edge of the BaFe2As2 compound. The energy spectrum of the resonant scattering, together with our calculation using the full-potential linear-augmented plane wave method with a local density functional suggests that the observed resonant scattering arises from electric dipole (E1) transitions. We discuss the role of Fe K-edge X-ray resonant magnetic scattering in understanding the relationship between the structure and the antiferromagnetic transition in the doped Ba(Fe1−xCox)2As2 superconductors.

  9. Comparison of Jc characteristics in PIT wires based on BaFe2As2 with different substitutions

    NASA Astrophysics Data System (ADS)

    Tamegai, T.; Pyon, S.; Ding, Q. P.; Inoue, H.; Kobayashi, H.; Tsuchiya, Y.; Sun, Y.; Kajitani, H.; Koizumi, N.

    2014-05-01

    Three kinds of superconducting wires based on BaFe2As2 with different substitutions are fabricated using powder-in-tube method and characterized including magneto-optical imaging. In the case of (Ba,K)Fe2As2 wires processed by hot isostatic press, critical current density (Jc) of 32 kA/cm2 has been achieved at 4.2 K under self-field. Wires fabricated in a similar way with Ba(Fe,Co)2As2 resulted in much lower Jc of 7.8 kA/cm2 at 4.2 K under self-field. In the case of BaFe2(As,P)2, Jc of ambient-pressure processed wire has Jc of only 1.0 kA/cm2 at 4.2 K under self-field. Origins of these differences are discussed.

  10. Neutron scattering investigation of the magnetic order in single crystalline BaFe2As2

    SciTech Connect

    Bao, Wei; Qiu, Y; Kofu, M; Lee, S - H; Chang, S; Wu, T; Wu, G; Chen, X H

    2008-01-01

    The magnetic structure of BaFe{sub 2}As{sub 2} was determined from polycrystalline neutron diffraction measurements soon after the ThCr{sub 2}Si{sub 2}-type FeAs-based superconductors were discovered. Both the moment direction and the in-plane antiferromagnetic wavevector are along the longer a-axis of the orthorhombic unit cell. There is only one combined magnetostructural transition at {approx}140 K. However, a later single-crystal neutron diffraction work reported contradicting results. Here, we show neutron diffraction results from a single-crystal sample, grown by a self-flux method, that support the original polycrystalline work.

  11. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism.

    PubMed

    Duan, Chun-Gang; Jaswal, S S; Tsymbal, E Y

    2006-07-28

    An unexplored physical mechanism which produces a magnetoelectric effect in ferroelectric-ferromagnetic multilayers is studied based on first-principles calculations. Its origin is a change in bonding at the ferroelectric-ferromagnet interface that alters the interface magnetization when the electric polarization reverses. Using Fe/BaTiO3 multilayers as a representative model, we show a sizable difference in magnetic moments of Fe and Ti atoms at the two interfaces dissimilar by the orientation of the local electric dipole moments. The predicted magnetoelectric effect opens a new direction to control magnetic properties of thin-film layered structures by electric fields. PMID:16907608

  12. Synthesis and characterization of hollow mesoporous BaFe{sub 12}O{sub 19} spheres

    SciTech Connect

    Xu, Xia; Park, Jihoon; Hong, Yang-Ki; Lane, Alan M.

    2015-02-15

    A facile method is reported to synthesize hollow mesoporous BaFe{sub 12}O{sub 19} spheres using a template-free chemical etching process. Hollow BaFe{sub 12}O{sub 19} spheres were synthesized by conventional spray pyrolysis. The mesoporous structure is achieved by alkaline ethylene glycol etching at 185 °C, with the porosity controlled by the heating time. The hollow porous structure is confirmed by SEM, TEM, and FIB-FESEM characterization. The crystal structure and magnetic properties are not significantly affected after the chemical etching process. The formation mechanism of the porous structure is explained by grain boundary etching. - Graphical abstract: Hollow spherical BaFe{sub 12}O{sub 19} particles are polycrystalline with both grains and grain boundaries. Grain boundaries have less ordered structure and lower stability. When the particles are exposed to high temperature alkaline ethylene glycol, the grain boundaries are etched, leaving small grooves between grains. These grooves allow ethylene glycol to diffuse inside to further etch the grains. As the grain size decreases, gaps appear on the particle surfaces, and a porous structure is finally formed. - Highlights: • Two-step synthesis method for hollow mesoporous BaFe{sub 12}O{sub 19} spheres is proposed. • Porosity of the product can be regulated by controlling the second step of chemical etching. • The crystal structure and magnetic properties are examined to be little affected during the chemical etching. • The mesoporous structure formation mechanism is explained by grain boundary etching.

  13. Temperature-dependent anisotropic resistivity in electron, hole and isoelectron - doped BaFe2As2 superconductors

    NASA Astrophysics Data System (ADS)

    Tanatar, M. A.

    2012-02-01

    Anisotropic electrical resistivity, ρ(T), was studied in iron-arsenide superconductors, obtained by doping the parent BaFe2As2 compound on three different sites: (1) electron donor transition metal (Co,Ni,Rh,Pd) substitution of Fe [1,2]; (2) hole donor K substitution of Ba [3]; (3) isoelectron P substitution of As. For all three types of dopants a range of T-linear behavior is found at the optimal doping in both the in-plane and the inter-plane ρ(T) above Tc. At some higher temperature this range of T-linear resistivity is capped by a slope-changing anomaly, which, by comparison with NMR, magnetic susceptibility and Hall effect measurements, can be identified with the onset of carrier activation over the pseudogap [1]. The doping-evolution of anisotropic temperature dependent ρ(T) and of the pseudogap are quite different for three types of doping. A three-dimensional T-H phase diagram summarizing our results will be presented. Furthermore, potential correlation of the anisotropic normal state transport and anisotropic superconducting state heat transport will be discussed. [4pt] In collaboration with N. Ni, A. Thaler, S.L.Bud'ko, P.C. Canfield, R. Prozorov, Bing Shen, Hai-Hu Wen, K. Hashimoto, S. Kasahara, T. Terashima, T. Shibauchi and Y. Matsuda. [4pt] [1] M.A.Tanatar et al. PRB 82, 134528 (2010)[0pt] [2] M.A.Tanatar et al. PRB 84, 014519 (2011)[0pt] [3] M.A.Tanatar et al. arXiv:1106.0533

  14. Observations of Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report 5-(sigma) tangent column detections of Al and Fe, and strict 3-(sigma) tangent column upper limits for Ca(+) in Mercury's exosphere obtained using the HIRES spectrometer on the Keck I telescope. These are the first direct detections of Al and Fe in Mercury's exosphere. Our Ca(-) observation is consistent with that reported by The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.

  15. Interplane resistivity of isovalent doped BaFe2(As1-xPx)2

    SciTech Connect

    Tanatar, Michael A.; Hashimoto, K.; Kasahara, S.; Shibauchi, T.; Matsuda, Y.; Prozorov, Ruslan

    2013-03-07

    Temperature-dependent interplane resistivity ρc(T) was measured for the iron-based superconductor BaFe2(As1-xPx)2 over a broad isoelectron phosphorus substitution range from x=0 to x=0.60, from nonsuperconducting parent compound to heavily overdoped superconducting composition with Tc≈10K. The features due to structural and magnetic transitions are clearly resolved in ρc(T) of the underdoped crystals. A characteristic maximum in ρc(T), found in the parent BaFe2As2 at around 200 K, moves rapidly with phosphorus substitution to high temperatures. At the optimal doping, the interplane resistivity shows T-linear temperature dependence without any crossover anomalies, similar to the previously reported in-plane resistivity. This observation is in stark contrast with dissimilar temperature dependencies found at optimal doping in electron-doped Ba(Fe1-xCox)2As2. Our finding suggests that despite similar values of the resistivity and its anisotropy, the temperature-dependent transport in the normal state is very different in electron and isoelectron-doped compounds. Similar temperature dependence of both in-plane and interplane resistivities, in which the dominant contributions are coming from different parts of the Fermi surface, suggests that scattering is the same on the whole Fermi surface. Since magnetic fluctuations are expected to be much stronger on the quasinested sheets, this observation may point to the importance of the interorbital scattering between different sheets.

  16. Spin density wave (SDW) transition in Ru doped BaFeAs{sub 2} investigated by AC steady state calorimetry

    SciTech Connect

    Vinod, K. Sharma, Shilpam; Sundar, C. S.; Bharathi, A.

    2015-06-24

    Heat capacity measurements were done on sub-micron sized BaFe{sub 2−x}Ru{sub x}As{sub 2} single crystals using thin film membrane based the AC steady state calorimetry technique. Noticeable thermal hysteresis is observed in the heat capacity of the BaFe{sub 2−x}Ru{sub x}As{sub 2} during cooling and warming cycles, indicating first order nature of the SDW transition.

  17. Microwave absorption performance enhanced by high-crystalline graphene and BaFe12O19 nanocomposites

    NASA Astrophysics Data System (ADS)

    Tang, X. T.; Wei, G. T.; Zhu, T. X.; Sheng, L. M.; An, K.; Yu, L. M.; Liu, Y.; Zhao, X. L.

    2016-05-01

    The nanocomposites, consisting of BaFe12O19 ferrite and few-layer graphene sheets (FL-GSs) in various weight ratios (1-9 wt. %), were fabricated by a mechanical mixing method. The high-crystalline FL-GSs were prepared by direct current arc discharge evaporation of pure graphite electrodes in an H2-Ar gas mixture. We measured the electromagnetic properties, including effective magnetic permeability and effective permittivity in addition to microwave absorption performance, of the FL-GSs/BaFe12O19 nanocomposites compared with the pristine BaFe12O19 nanoparticles (NPs). The nanocomposite FL-GSs/BaFe12O19 with the optimal performance (6 wt. % FL-GSs) exhibited an effective microwave absorption (<-10 dB) bandwidth of 5.8 GHz with a thickness of 2.2 mm, 53% higher than that of the pristine BaFe12O19 NPs. Meanwhile, this nanocomposite had the minimum reflection loss of -49.7 dB at 8.4 GHz with a thickness of 2.8 mm, three times greater than those without FL-GSs. These performances result from a simultaneous increase in both magnetic and dielectric losses possibly due to synergistic effects of BaFe12O19 and FL-GSs. In such nanocomposites, both magnetic loss from BaFe12O19 and dielectric loss from FL-GSs contribute to the absorbing performances. Adding FL-GSs as dielectric fillers enhances the impedance matching of the nanocomposites compared with the pristine BaFe12O19 NPs based on the magnetic loss alone. Our results indicate that the incorporation of high-crystalline nanocarbon materials into ferrite oxides can provide high microwave absorption intensity and broad effective absorption bandwidth, while maintaining high thermal stability.

  18. Alloy development and processing of FeAl: An overview

    SciTech Connect

    Maziasz, P.J.; Goodwin, G.M.; Alexander, D.J.; Viswanathan, S.

    1997-03-01

    In the last few years, considerable progress has been made in developing B2-phase FeAl alloys with improved weldability, room-temperature ductility, and high-temperature strength. Controlling the processing-induced microstructure is also important, particularly for minimizing trade-offs in various properties. FeAl alloys have outstanding resistance to high-temperature oxidation, sulfidation, and corrosion in various kinds of molten salts due to formation of protective Al{sub 2}O{sub 3} scales. Recent work shows that FeAl alloys are carburization-resistant as well. Alloys with 36 to 40 at. % Al have the best combination of corrosion resistance and mechanical properties. Minor alloying additions of Mo, Zr, and C, together with microalloying additions of B, produce the best combination of weldability and mechanical behavior. Cast FeAl alloys, with 200 to 400 {mu}m grain size and finely dispersed ZrC, have 2 to 5% tensile ductility in air at room-temperature, and a yield strength > 400 MPa up to about 700 to 750{degrees}C. Extruded ingot metallurgy (I/M) and powder metallurgy (P/M) materials with refined grain sizes ranging from 2 to 50 {mu}m, can have 10 to 15% ductility in air and be much stronger, and can even be quite tough, with Charpy impact energies ranging from 25 to 105 J at room-temperature. This paper highlights progress made in refining the alloy composition and exploring processing effects on FeAl for monolithic applications. It also includes recent progress on developing FeAl weld-overlay technology, and new results on welding of FeAl alloys. It summarizes some of the current industrial testing and interest for applications.

  19. Thermodynamic stability of radiogenic Ba in CsAlSi2O6 pollucite

    NASA Astrophysics Data System (ADS)

    Jaffe, John; van Ginhoven, Renée; Jiang, Weilin

    2013-03-01

    Pollucite, a zeolite-like nanoporous aluminosilicate structure with nominal composition CsAlSi2O6, has been suggested as a nuclear waste storage form for fission-product radioactive isotopes of cesium, especially 137Cs. One factor affecting the long-term stability of this waste form is the valence change associated with the beta decay that converts Cs into barium. We have used first-principles density functional total energy calculations to evaluate the thermodynamic stability of pollucite with Ba replacing Cs at regular lattice sites with respect to the precipitation of Ba, Cs or their oxides. We included small clusters of substitutional BaCs as well as localized complexes of BaCs with compensating electron donor defects, specifically Cs vacancies and interstitial oxygen. We conclude that Cs-Ba pollucite is thermodynamically stable against precipitation of Cs or its oxide, but that partial precipitation of Ba or BaO may be thermodynamically favored under some conditions. Even this change may be kinetically limited, however. Fuel Cycle Research and Development, U.S. Department of Energy Waste Form Campaign

  20. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  1. Influence of FeCrAl Content on Microstructure and Bonding Strength of Plasma-Sprayed FeCrAl/Al2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; Luo, Fa; Zhou, Wancheng; Zhu, Dongmei

    2016-02-01

    Low-power plasma-sprayed FeCrAl/Al2O3 composite coatings with 1.5 mm thickness have been fabricated for radar absorption applications. The effects of FeCrAl content on the coating properties were studied. The FeCrAl presents in the form of a few thin lamellae and numerous particles, demonstrating relatively even distribution in all the coatings. Results show that the micro-hardness and porosity decrease with the increase in FeCrAl content. With FeCrAl content increasing from 28 to 47 wt.%, the bonding strength of the coatings with 1.5 mm thickness increases from 10.5 to 27 MPa, and the failure modes are composed of cohesive and adhesive failure, which are ascribed to the coating microstructure and the residual stress, respectively.

  2. Structural, Electrical and Dielectrical Property Investigations of Fe-Doped BaZrO3 Nanoceramics

    NASA Astrophysics Data System (ADS)

    Khirade, Pankaj P.; Birajdar, Shankar D.; Humbe, Ashok V.; Jadhav, K. M.

    2016-06-01

    Nanocrystalline samples of BaZr1- x Fe x O3 ( x = 0.0, 0.05, 0.10, 0.20, 0.30, 0.40 and 0.50) ceramics were synthesized by the wet chemical sol-gel auto combustion method. The perovskite structured cubic phase formation of BaZr1- x Fe x O3 samples was confirmed by x-ray diffraction (XRD) data analysis. Various structural parameters such as lattice constant ( a), unit cell volume ( V), x-ray density ( ρ x), and porosity ( P) were determined using XRD data. The lattice constant ( a), x-ray density ( ρ x) and porosity ( P) decrease with an increase in Fe content x. The average particle size was calculated by using the Debye-Scherer's formula using XRD data and was 9-18 nm. The microstructural studies were investigated through scanning electron microscopy technique. Compositional stoichiometry was confirmed by energy dispersive spectrum analysis. The direct current electrical resistivity studies of the prepared samples were carried out in the temperature range of 343-1133 K using a standard two-probe method. The electrical conductivity ( σ) increases with temperature and Fe concentration. The dielectric parameters such as dielectric constant ( ɛ') and loss tangent (tan δ) were measured with frequency at room temperature in the frequency range 50 Hz to 5 MHz. The dielectric parameters show strong compositional as well as frequency dependences. The dielectric parameters were found to be higher at lower frequency.

  3. Specific Heat vs Field in the 30 K Superconductor BaFe2(As0.7P0.3)2

    NASA Astrophysics Data System (ADS)

    Stewart, G. R.; Kim, J. S.; Hirschfeld, P. J.; Kasahara, S.; Shibauchi, T.; Terashima, T.; Matsuda, Y.

    2010-03-01

    Recently, superconductivity at 30 K has been reported [1] in P-doped BaFe2As2, with 1/3 of the As replaced by P. Magnetic penetration and thermal conductivity measurements [2] indicate a nodally gapped superconductor. We report here on measurements of the specific heat divided by temperature, C/T, as a function of field up to 15 T and down to 0.4 K in order to further investigate the nodal structure with another probe. [4pt] [1] S. Kasahara, et al., arXiv0905.4427. [0pt] [2] K. Hashimoto, et al., arXiv0907.4399.

  4. Ultrafast structural dynamics of the orthorhombic distortion in the Fe-pnictide parent compound BaFe2As2

    PubMed Central

    Rettig, L.; Mariager, S. O.; Ferrer, A.; Grübel, S.; Johnson, J. A.; Rittmann, J.; Wolf, T.; Johnson, S. L.; Ingold, G.; Beaud, P.; Staub, U.

    2016-01-01

    Using femtosecond time-resolved hard x-ray diffraction, we investigate the structural dynamics of the orthorhombic distortion in the Fe-pnictide parent compound BaFe2As2. The orthorhombic distortion analyzed by the transient splitting of the (1 0 3) Bragg reflection is suppressed on an initial timescale of 35 ps, which is much slower than the suppression of magnetic and nematic order. This observation demonstrates a transient state with persistent structural distortion and suppressed magnetic/nematic order which are strongly linked in thermal equilibrium. We suggest a way of quantifying the coupling between structural and nematic degrees of freedom based on the dynamics of the respective order parameters. PMID:27158636

  5. Giant thermal vibrations in the framework compounds Ba1 -xSrxAl2O4

    NASA Astrophysics Data System (ADS)

    Kawaguchi, S.; Ishii, Y.; Tanaka, E.; Tsukasaki, H.; Kubota, Y.; Mori, S.

    2016-08-01

    Synchrotron x-ray diffraction experiments were performed on the network compounds Ba1 -xSrxAl2O4 at temperatures between 15 and 800 K. The ferroelectric phase of the parent BaAl2O4 is largely suppressed by substituting a small amount of Sr for Ba and disappears for x ≥0.1 . Structural refinements reveal that the isotropic atomic displacement parameter Biso in the bridging oxygen atom is largely independent of temperature and retains an anomalously large value in the adjacent paraelectric phase even at the lowest temperature. The Biso systematically increases as x increases, exhibiting an especially large value for x =0.5 . According to previous electron diffraction experiments for Ba1 -xSrxAl2O4 with x ≥0.1 , strong thermal diffuse scattering occurs at two reciprocal points relating to two distinct soft modes at the M and K points over a wide range of temperatures below 800 K [Y. Ishii et al., Sci. Rep. 6, 19154 (2016), 10.1038/srep19154]. Although the latter mode disappears at approximately 200 K, the former does not condense, at least down to 100 K. The anomalously large Biso observed in this study is ascribed to these soft modes existing in a wide temperature range.

  6. Electric control of magnetism at the Fe/BaTiO3 interface

    SciTech Connect

    Radaelli, G.; Petti, D.; Plekhanov, E.; Fina, I.; Torelli, P.; Salles, B. R.; Cantoni, M.; Rinaldi, C.; Gutiérrez, D.; Panaccione, G.; Varela, M.; Picozzi, S.; Fontcuberta, J.; Bertacco, R.

    2014-03-03

    Interfacial magnetoelectric coupling (MEC) is a viable path to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO3 (BTO) system, only tiny changes of the interfacial Fe magnetic moment upon reversal of the BTO dielectric polarization have been predicted so far. Here, by using X-ray magnetic circular dichroism in combination with high resolution electron microscopy and first principles calculations, we report on an undisclosed physical mechanism for interfacial MEC in the Fe/BTO system. At the Fe/BTO interface, an ultrathin FeOx layer exists, whose magnetization can be electrically and reversibly switched on-off at room-temperature by reversing the BTO polarization. The suppression / recovery of interfacial ferromagnetism results from the asymmetric effect that ionic displacements in BTO produces on the exchange coupling constants in the adjacent FeOx layer. The observed giant magnetoelectric response holds potential for optimizing interfacial MEC in view of efficient, low-power spintronic devices.

  7. Electric control of magnetism at the Fe/BaTiO3 interface

    DOE PAGES

    Radaelli, G.; Petti, D.; Plekhanov, E.; Fina, I.; Torelli, P.; Salles, B. R.; Cantoni, M.; Rinaldi, C.; Gutiérrez, D.; Panaccione, G.; et al

    2014-03-03

    Interfacial magnetoelectric coupling (MEC) is a viable path to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO3 (BTO) system, only tiny changes of the interfacial Fe magnetic moment upon reversal of the BTO dielectric polarization have been predicted so far. Here, by using X-ray magnetic circular dichroism in combination with high resolution electron microscopy and first principles calculations, we report on an undisclosed physical mechanism for interfacial MEC in the Fe/BTO system. At the Fe/BTO interface, an ultrathin FeOx layer exists, whose magnetization can be electrically and reversibly switched on-off at room-temperature by reversing themore » BTO polarization. The suppression / recovery of interfacial ferromagnetism results from the asymmetric effect that ionic displacements in BTO produces on the exchange coupling constants in the adjacent FeOx layer. The observed giant magnetoelectric response holds potential for optimizing interfacial MEC in view of efficient, low-power spintronic devices.« less

  8. Thickness dependence of structural and transport properties of Co-doped BaFe2As2 on Fe buffered MgO substrates

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Hänisch, Jens; Trommler, Sascha; Haindl, Silvia; Kurth, Fritz; Hühne, Ruben; Schultz, Ludwig; Holzapfel, Bernhard

    2011-12-01

    We have investigated the influence of the superconducting layer thickness, d, on the structural and transport properties of Co-doped BaFe2As2 films deposited on Fe buffered MgO substrates by pulsed laser deposition. The superconducting transition temperature and the texture quality of Co-doped BaFe2As2 films improve with increasing d due to a gradual relief of the tensile strain. For d >= 90 nm an additional 110 textured component of Co-doped BaFe2As2 was observed, which leads to an upward shift in the angle-dependent critical current density at H \\parallel c . These results indicate that the grain boundaries created by the 110 textured component may contribute to the c-axis pinning.

  9. Evolution of structure and physical properties in Al-substituted Ba-hexaferrites

    NASA Astrophysics Data System (ADS)

    Alex, Trukhanov; Larisa, Panina; Sergei, Trukhanov; Vitalii, Turchenko; Mohamed, Salem

    2016-01-01

    The investigations of the crystal and magnetic structures of the BaFe12-xAlxO19 (x = 0.1-1.2) solid solutions have been performed with powder neutron diffractometry. Magnetic properties of the BaFe12-xAlxO19 (x = 0.1-1.2) solid solutions have been measured by vibration sample magnetometry at different temperatures under different magnetic fields. The atomic coordinates and lattice parameters have been Rietveld refined. The invar effect is observed in low temperature range (from 4.2 K to 150 K). It is explained by the thermal oscillation anharmonicity of atoms. The increase of microstress with decreasing temperature is found from Rietveld refinement. The Curie temperature and the change of total magnetic moment per formula unit are found for all compositions of the BaFe12-xAlxO19 (x = 0.1-1.2) solid solutions. The magnetic structure model is proposed. The most likely reasons and the mechanism of magnetic structure formation are discussed. Project supported by the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” (Grant No. K4-2015-040). L. Panina acknowledges support under the Russian Federation State contract for organizing a scientific work.

  10. Crystal and electronic structures of two new iron selenides: Ba{sub 4}Fe{sub 3}Se{sub 10} and BaFe{sub 2}Se{sub 4}

    SciTech Connect

    Berthebaud, David; Perez, Olivier; Tobola, Janusz; Pelloquin, Denis; Maignan, Antoine

    2015-10-15

    The new ternary selenides, Ba{sub 4}Fe{sub 3}Se{sub 10} and BaFe{sub 2}Se{sub 4,} were synthesized from a reaction of appropriate amounts of elements at high temperature in a silica sealed tube, and their structures were resolved using X-ray single crystal diffraction. BaFe{sub 2}Se{sub 4} crystallizes in the tetragonal space group I4/m with a=8.008(9) Å and c=5.483(3) Å as cell parameters. It is a new compound with a structure isotypical to the sulfide BaFe{sub 2}S{sub 4} which belongs to the infinitely adaptive structures series Ba{sub 1+x}Fe{sub 2}S{sub 4}. The second compound, Ba{sub 4}Fe{sub 3}Se{sub 10}, crystallizes in the monoclinic space group P2{sub 1}/n with a=8.8593(1) Å, b=8.8073(1) Å, c=12.2724(1) Å and β=109.037(6)° as cell parameters. It exhibits an original structure with a new type of iron selenide polyhedra. These data were consistent with the powder X-ray diffraction and TEM analyses. Their electronic structures point towards metallicity and electronic correlations for both selenides. - Graphical abstract: Experimental [010] oriented ED pattern and corresponding HREM image of Ba{sub 4}Fe{sub 3}Se{sub 10}. Image calculated with a focus and thickness to 15nm and 8 nm respectively is inserted. Bright contrasts are correlated to Se rows belonging to FeSe{sub 3}(Se{sub 2}){sup 2−}–FeSe{sub 6}–FeSe{sub 3}(Se{sub 2}){sup 2−} trimers. The corresponding structure projection is also shown. - Highlights: • Two new barium iron selenide compounds. • An original structure type Ba4Fe3Se10. • Electronic structure calculations.

  11. ARPES investigation of heavily hole-doped Fe-based superconductor (Ba,K)Fe2As2

    NASA Astrophysics Data System (ADS)

    Shi, Xun; Richard, Pierre; Zhang, Peng; van Roekeghem, Ambroise; Qian, Tian; Hu, Jiangping; Ding, Hong; Fang, Delong; Wen, Haihu; Xu, Nan; Shi, Ming; Kim, Timur; Hoesch, Moritz; Chen, Xianhui; Photoelectron Spectroscopy Research Team; Nanjing University Collaboration; Paul Scherrer Institut Collaboration; Diamond Light Source Collaboration; University of Science; Technology of China Collaboration

    A Lifshitz transition occurs in the (Ba,K)Fe2As2 family upon K doping and electron pocket are absent in the heavily doped compounds, including KFe2As2. The pairing symmetry is argued to undergoes a phase transition due to the existence of gap node(s) reported in various experiments. In this work we present angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy studies of KFe2As2. We observe a van Hove singularity (vHs) in proximity of the Fermi level (EF), which locates in the middle of the principal axes of the first Brillouin zone. The density-of-states at EF mainly comes from the vHs whereas it is non-gapped in the superconducting state. Our observation provides natural explanations for many novel behaviors in this material. In particular, it is consistent with our measurements of the gap structure in Ba0.1K0.9Fe2As2. All these results suggest that Cooper pairing is induced by a strong-coupling mechanism.

  12. Role of magnetism in superconductivity of BaFe2As2: Study of 5d Au-doped crystals

    DOE PAGES

    Li, Li; Cao, Huibo; McGuire, Michael A.; Kim, J. S.; Stewart, G. R.; Sefat, Athena Safa

    2015-09-09

    We investigate properties of BaFe2As2 (122) single crystals upon gold doping, which is the transition metal with the highest atomic weight. The Au substitution into the FeAs-planes of 122 crystal structure (Au-122) is only possible up to a small amount of ~3%. We find that 5d is more effective in reducing magnetism in 122 than its counter 3d Cu, and this relates to superconductivity. We provide evidence of short-range magnetic fluctuations and local lattice inhomogeneities that may prevent strong percolative superconductivity in Ba(Fe1-xAux)2As2.

  13. Comparison of metals extractability from Al/Fe-based drinking water treatment residuals.

    PubMed

    Wang, Changhui; Bai, Leilei; Pei, Yuansheng; Wendling, Laura A

    2014-12-01

    Recycling of drinking water treatment residuals (WTRs) as environment amendments has attracted substantial interest due to their productive reuse concomitant with waste minimization. In the present study, the extractability of metals within six Al/Fe-hydroxide-comprised WTRs collected throughout China was investigated using fractionation, in vitro digestion and the toxicity characteristic leaching procedure (TCLP). The results suggested that the major components and structure of the WTRs investigated were similar. The WTRs were enriched in Al, Fe, Ca, and Mg, also contained varying quantities of As, Ba, Be, Cd, Co, Cr, Cu, K, Mn, Mo, Na, Ni, Pb, Sr, V, and Zn, but Ag, Hg, Sb, and Se were not detected. Most of the metals within the WTRs were largely non-extractable using the European Community Bureau of Reference (BCR) procedure, but many metals exhibited high bioaccessibility based on in vitro digestion. However, the WTRs could be classified as non-hazardous according to the TCLP assessment method used by the US Environmental Protection Agency (USEPA). Further analysis showed the communication factor, which is calculated as the ratio of total extractable metal by BCR procedure to the total metal, for most metals in the six WTRs, was similar, whereas the factor for Ba, Mn, Sr, and Zn varied substantially. Moreover, metals in the WTRs investigated had different risk assessment code. In summary, recycling of WTRs is subject to regulation based on assessment of risk due to metals prior to practical application.

  14. Comparison of metals extractability from Al/Fe-based drinking water treatment residuals.

    PubMed

    Wang, Changhui; Bai, Leilei; Pei, Yuansheng; Wendling, Laura A

    2014-12-01

    Recycling of drinking water treatment residuals (WTRs) as environment amendments has attracted substantial interest due to their productive reuse concomitant with waste minimization. In the present study, the extractability of metals within six Al/Fe-hydroxide-comprised WTRs collected throughout China was investigated using fractionation, in vitro digestion and the toxicity characteristic leaching procedure (TCLP). The results suggested that the major components and structure of the WTRs investigated were similar. The WTRs were enriched in Al, Fe, Ca, and Mg, also contained varying quantities of As, Ba, Be, Cd, Co, Cr, Cu, K, Mn, Mo, Na, Ni, Pb, Sr, V, and Zn, but Ag, Hg, Sb, and Se were not detected. Most of the metals within the WTRs were largely non-extractable using the European Community Bureau of Reference (BCR) procedure, but many metals exhibited high bioaccessibility based on in vitro digestion. However, the WTRs could be classified as non-hazardous according to the TCLP assessment method used by the US Environmental Protection Agency (USEPA). Further analysis showed the communication factor, which is calculated as the ratio of total extractable metal by BCR procedure to the total metal, for most metals in the six WTRs, was similar, whereas the factor for Ba, Mn, Sr, and Zn varied substantially. Moreover, metals in the WTRs investigated had different risk assessment code. In summary, recycling of WTRs is subject to regulation based on assessment of risk due to metals prior to practical application. PMID:25023656

  15. Neutron diffraction and the electronic properties of BaFe2Se3

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.; Khalyavin, D. D.; van der Laan, G.

    2016-01-01

    It is argued on the basis of previously published experimental data that, the magnetic space-group Cac (#9.41) is the correct description of magnetically ordered BaFe2Se3. The corresponding crystal class m1‧ allows axial and polar dipoles and forbids bulk ferromagnetism. Magneto-electric multipoles that are both time-odd and parity-odd are allowed, e.g., a magnetic charge (monopole) and an anapole (magnetic toroidal dipole). The experimental observation of magneto-electric multipoles must shed light on valence electrons involved in bonding, including charge transfer using 3d(Fe) and p-states of ligand ions. We provide the appropriate structure factors for the Bragg diffraction neutrons, together with estimates of atomic form factors. Structure factors for resonant x-ray Bragg diffraction are also considered, because the analysis of successful experiments will yield complementary information about electronic properties. Magneto-electric multipoles, over and above those that contribute to magnetic neutron diffraction, include the magnetic monopole. A time-odd, parity-even monopole created from the magnetic dipole and an electric toroidal dipole, which is a manifestation of a structural rotation, is allowed in BaFe2Se3 but it is not visible in diffraction, nor is the corresponding dipole.

  16. Characteristics of B2O3 and Fe added into BaFe12O19 permanent magnets prepared at different milling time and sintering temperature

    NASA Astrophysics Data System (ADS)

    Sebayang, Perdamean; Sari, Ayu Yuswita; Ginting, Delovita; Allan, Yola; Nasruddin M., N.; Sebayang, Kerista

    2016-02-01

    The objective of present work is to investigate the characteristic of BaFe12O19, B2O3-BaFe12O19 and Fe-BaFe12O19 magnets fabricated at different milling time and sintering temperature. The characteristic of perrmanen magnet BaFe12O19 with different content of B2O3 and Fe which was fabricated at different milling time and sintering temperature were investigated. The powder mixtures were prepared by dry and wet milling at various milling time. The powder were mixtured and prepared by dry and wet milling at various milling time. The mixture powder was then compacted by anisotropic with compressive pressure of 50 N/cm2. The green bodies were sinter at 1050, 1100, 1150 and 1200°C and hold for 1 h, separately. The density, magnetic flux density and B-H curve were measured by Archimedes principle, Gauss meter and Permagraph, respectively. The microstructure and phase composition characterization were performed by SEM and XRD. The results of this study are presented in this paper. It shows that addition of Fe (in wet milling) and B2O3 (in dry milling) respectively give a potential benefit to reduce the sintering temperature and improve the magnetic flux density of barium hexaferrite.

  17. Host Atom Diffusion in Ternary Fe-Cr-Al Alloys

    NASA Astrophysics Data System (ADS)

    Rohrberg, Diana; Spitzer, Karl-Heinz; Dörrer, Lars; Kulińska, Anna J.; Borchardt, Günter; Fraczkiewicz, Anna; Markus, Torsten; Jacobs, Michael H. G.; Schmid-Fetzer, Rainer

    2014-01-01

    In the Fe-rich corner of the Fe-Cr-Al ternary phase diagram, both interdiffusion experiments [1048 K to 1573 K (775 °C to 1300 °C)] and 58Fe tracer diffusion experiments [873 K to 1123 K (600 °C to 850 °C)] were performed along the Fe50Cr50-Fe50Al50 section. For the evaluation of the interdiffusion data, a theoretical model was used which directly yields the individual self-diffusion coefficients of the three constituents and the shift of the original interface of the diffusion couple through inverse modeling. The driving chemical potential gradients were derived using a phenomenological Gibbs energy function which was based on thoroughly assessed thermodynamic data. From the comparison of the individual self-diffusivities of Fe as obtained from interdiffusion profiles and independent 58Fe tracer diffusivities, the influence of the B2-A2 order-disorder transition becomes obvious, resulting in a slightly higher activation enthalpy for the bcc-B2 phase and a significantly lower activation entropy for this phase.

  18. Synthesis, crystal and electronic structures of the new Zintl phases Ba3Al3Pn5 (Pn = P, As) and Ba3Ga3P5.

    PubMed

    He, Hua; Tyson, Chauntae; Saito, Maia; Bobev, Svilen

    2013-01-01

    The new Zintl compounds Ba(3)Al(3)P(5), Ba(3)Al(3)As(5,) and Ba(3)Ga(3)P(5) have been synthesized using molten metal fluxes. They are isoelectronic and isotypic, crystallizing with a novel rhombohedral structure type in the space group R3c with unit cell constants a = 14.5886(9) Å, c = 28.990(3) Å for Ba(3)Al(3)P(5), a = 14.613(3) Å, c = 28.884(8) Å for Ba(3)Ga(3)P(5), and a = 14.9727(13) Å, c = 29.689(4) Å for Ba(3)Al(3)As(5), respectively. The structures are based on TrPn(4) (Tr = Al, Ga; Pn = P, As) tetrahedra that share both edges and corners, leading to intricate arrangements embodied in the [Tr(4)Pn(9)](15-) and [Tr(3)Pn(6)](9-) strands, interconnected by dimeric [Tr(2)Pn(6)](12-) units. The Ba(2+) cations reside within cylindrical channels within the polyanionic framework and provide the valence electrons needed for Tr-Pn covalent bonding. In spite of the large and complex structure, there are no homoatomic Tr-Tr or Pn-Pn interactions, hence, the structures can be readily rationalized in the context of the Zintl-Klemm formalism as follows [Ba(2+)](3)[Tr(3+)](3)[Pn(3-)](5); calculations on their electronic band-structures confirm this reasoning and reveal about 1.4-1.9 eV energy band gaps, that is, semiconducting behavior. Structural parallels with other known Zintl compounds are also presented.

  19. BiFeO3 codoping with Ba, La and Ti: Magnetic and structural studies

    NASA Astrophysics Data System (ADS)

    García-Zaldívar, O.; Díaz-Castañón, S.; Espinoza-Beltran, F. J.; Hernández-Landaverde, M. A.; López, G.; Faloh-Gandarilla, J.; Calderón-Piñar, F.

    2015-12-01

    Conventional solid state reaction method, from oxides and carbonates, was employed to prepare bismuth (Bi)-based multiferroic systems. The undoped BiFeO3 (BFO) and the codoped system with Ba, La and Ti (Bi1-xBaxFe1-yTiyO3, Bi1-x-zBaxLazFe1-yTiyO3) with x,y,z=0.1 were prepared stoichiometrically and sintered at two different temperatures. The structural and magnetic properties were investigated at room temperature. XRD measurements confirm the obtaining of the rhombohedral perovskite structure of the BFO family system. For the undoped system, some reflections of undesired phases are present for two different sintering temperatures, while for the doped system only one phase is present for both temperatures. The magnetic characterization at room temperature revealed remarkable differences between the ceramic samples. The results show that for undoped BFO system, spontaneous magnetization is not observed at room temperature. Nevertheless, in doped one, a well-defined ferromagnetic behavior is observed at room temperature, possible, due to the suppression of the spatially modulated spin structure of BFO promoted by the reduction of the rhombohedral distortion and the weakening of the Bi-O bonds. The XPS results confirm the presence of oxygen vacancies and the coexistence of Fe3+ and Fe2+ in all the studied samples. Calorimetric measurements reveal that the dopant incorporation has not a direct effect in Néel temperature but possibly yes in ferroelectric-paraelectric transition.

  20. Weldability of Fe3Al based iron aluminide alloys

    NASA Astrophysics Data System (ADS)

    Zacharia, T.; Maziasz, P. J.; David, S. A.; McKamey, C. G.

    An investigation was carried out to determine the weldability of Fe3Al type alloys. Sigmajig tests of a commercial heat of FA-129 alloy indicate that hot-cracking may not be a problem for this alloy. Additionally, several new Fe3Al based iron aluminides were evaluated for weldability. The preliminary results are encouraging and suggest that some of these alloys have comparable or better weldability than FA-129 based iron-aluminides. For the first time, successful welds, without hot or cold cracking, were made on 13 mm (0.5 in.) thick plates from a commercial heat of FA-129 using the proper choice of welding conditions and parameters.

  1. Physical and magnetic properties of Ba(Fe1-xMnx)2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Thaler, A.; Hodovanets, H.; Torikachvili, M. S.; Ran, S.; Kracher, A.; Straszheim, W.; Yan, J. Q.; Mun, E.; Canfield, P. C.

    2011-10-01

    Single crystals of Ba(Fe1-xMnx)2As2, 0Ba(Fe1-xMnx)2As2 for the full 0⩽x⩽1 range were made, we find evidence for phase separation (associated with some form of immiscibility) starting for x>0.1-0.2. Our measurements show that whereas the structural/magnetic phase transition found in pure BaFe2As2 at 134 K is initially suppressed by Mn substitution, superconductivity is not observed at any substitution level. Although the effect of hydrostatic pressure up to 20 kbar in the parent BaFe2As2 compound is to suppress the structural/magnetic transition at the approximate rate of 0.9 K/kbar, the effects of pressure and Mn substitution in the x=0.102 compound are not cumulative. Phase diagrams of transition temperature versus substitution concentration x based on electrical transport, magnetization, and thermopower measurements have been constructed and compared to those of the Ba(Fe1-xTMx)2As2 (TM= Co and Cr) series.

  2. Fluorine insertion into the Ruddlesden-Popper phase La2BaFe2O7: the structure and magnetic properties of La2BaFe2O5F4.

    PubMed

    Gurusinghe, Nicola N M; Fones, Julia C; Marco, Jose F; Berry, Frank J; Greaves, Colin

    2014-02-01

    Fluorination of the n = 2 Ruddlesden-Popper phase La2BaFe2O7 occurs at ~300 °C in flowing 10% F2 in N2 to form La2BaFe2O5F4. This oxide fluoride contains 2F(-) ions in interstitial sites within the rocksalt regions and 2F(-) ions that have substituted for O(2-) ions in apical sites within the rocksalt layers. The fluorination results in an expansion along c of 7.6% to yield a tetragonal unit cell of dimensions a = 3.96237(7) Å, c = 22.3972(5) Å. The structure and magnetic properties have been examined by Mössbauer spectroscopy, neutron powder diffraction and magnetic susceptibility measurements. La2BaFe2O5F4 becomes antiferromagnetically ordered at temperatures below ~500 K, and the magnetic order shows a striking resemblance to that observed in La2BaFe2O7. The magnetic moments on Fe(3+) are perpendicular to [001] and aligned along ±{100} directions above 300 K, but at temperatures below 200 K, they rotate by 45° to lie along ±{110}. Mössbauer spectroscopy suggests the presence of Fe(3+) within the primary phase, but also indicates that fluorination results in some particle fragmentation to form a paramagnetic component of the fluorinated material.

  3. Common Building Motifs in Ba2Fe3(PO4)4·2H2O, BaFe3(PO4)3, and Na3Fe3(PO4)4: Labile Fe(2+)/Fe(3+) Ordering and Charge-Dependent Magnetism.

    PubMed

    David, Rénald; Pautrat, Alain; Kabbour, Houria; Mentré, Olivier

    2016-05-01

    Two new mixed-valence Fe(2/3+) barium phosphates have been synthesized in hydrothermal conditions and characterized: Ba2Fe(2.66+)3(PO4)4·2H2O (compound 1, ratio Fe(3+)/Fe(2+) = 2:1, orthorhombic space group Pbca, a = 6.71240(10) Å, b = 10.6077(2) Å, c = 20.9975(5) Å, R1 = 3.39%) and BaFe(2.33+)3(PO4)3 (compound 2, ratio Fe(3+)/Fe(2+) = 1:2, orthorhombic, space group Imma with a = 10.5236(3) Å, b = 13.4454(4) Å, c = 6.6411(2) Å, R1 = 1.63%). 1 has a two-dimensional crystal structure built of [Fe(2.5+)2Fe(3+)1(PO4)4](4-) layers with charge segregation on two individual Fe crystal sites, in contrast to the single valence on these two sites found in similar layers of Na3Fe(3+)3(PO4)4. The crystal structure of 2 is formed of the same layers but condensed into a 3D [Fe(2+)2Fe(3+)1(PO4)3](2-) framework. The complete Fe(2+) vs Fe(3+) charge ordering on the two available sites differs from what was found in the two previous cases and denotes a remarkable charge adaptability of the common elementary units. Compared to the antiferromagnetic Na3Fe(3+)3(PO4)4 the partial iron reduction into Fe(2+) is responsible for strong ferromagnetic components along the c-easy axis for both 1 and 2. Additionally 1 shows multiple magnetization steps in the perpendicular direction, giving raise to atypical anisotropic magnetism into a complex magnetic phase diagram.

  4. Raman Spectroscopy of Ba(Fe1- x Mn x )2As2

    NASA Astrophysics Data System (ADS)

    Dias, Fabio Teixeira; Pinheiro, Lincoln Brum Leite Gusmão; Jurelo, Alcione Roberto

    2015-04-01

    Raman scattering measurements on iron-pnictide Mn-doped BaFe2As2 single crystals are reported. Single crystals were grown out of a FeAs self-flux using conventional high-temperature solution growth and characterized by X-ray diffraction, atomic force microscopy, and Raman. Raman spectra were obtained at room temperature and 77 K on ab- and a( b) c-planes. Two of four phonon modes allowed by symmetry were found and identified. It was observed that the scattering intensity of A1g mode and the frequencies of the A1g and B1g phonons are dependent upon doping of Mn. The dependence of scattering intensity and frequency of A1g mode on Mn doping might indicate that the Mn ion also occupies the As site.

  5. Ferromagnetism and ferroelectricity in Fe doped BaTiO3

    NASA Astrophysics Data System (ADS)

    Deka, Bipul; Ravi, S.; Perumal, A.; Pamu, D.

    2014-09-01

    We report the investigation of crystal structure, magnetic and dielectric properties of BaTi1-xFexO3 samples for x=0.0-0.3. The parent compound is found to crystallize in tetragonal structure while Fe doped samples are found to crystallize in the mixture of tetragonal and hexagonal phases but they are free from any impurity phase. Room temperature ferromagnetism with the transition temperature (Tc) of 462 K was observed for x=0.3 sample. Fe doped samples exhibit ferroelectric transition with transition temperature (TcF) in the range of 390 K for x=0.0-312 K for x=0.2. The dielectric constant, ε‧ is found to decrease with the increase in doping concentrations.

  6. Aluminum and silicon diffusion in Fe-Cr-Al alloys

    SciTech Connect

    Heesemann, A.; Schmidtke, E.; Faupel, F.; Kolb-Telieps, A.; Kloewer, J.

    1999-02-05

    Foils of Fe-Cr-Al alloys containing about 20 wt% Cr, 5 wt% Al and additions of Si and reactive elements like Ce, La, Y, Hf, Zr or Ti are widely used as a substrate in metal-supported automotive catalytic converters. In the present paper the authors report on measurements of Al and Si diffusion in Fe-Cr-Al alloys. Due to a lack of suitable radiotracers concentration profiles were obtained by means of electron microprobe analysis. In connection with data evaluation they present numerical calculations assessing the accuracy of the Matano analysis and the thin-film solution of Fick`s 2nd law as function of the thickness of the initial diffusant layer. The results are of general interest, particularly for the evaluation of diffusion measurements involving industrial specimens with given geometry.

  7. Lateral electric-field control of giant magnetoresistance in Co/Cu/Fe/BaTiO{sub 3} multiferroic heterostructure

    SciTech Connect

    Savitha Pillai, S.; Kojima, H.; Itoh, M.; Taniyama, T.

    2015-08-17

    We report lateral electric-field-driven sizable changes in the magnetoresistance of Co/Cu/Fe tri-layered wires on BaTiO{sub 3} single crystal. While the observed change is marginal in the tetragonal phase of BaTiO{sub 3}, it reaches over 40% in the orthorhombic and rhombohedral phases with an electric field of 66 kV/cm. We attribute it to possible electric-field-induced variations of the spin-dependent electronic structures, i.e., spin polarization, of the Fe via interfacial strain transfer from BaTiO{sub 3}. The contrasting results for the different phases of BaTiO{sub 3} are discussed, associated with the distinct aspects of the ferroelectric polarization switching processes in each phase.

  8. FeAl-TiC and FeAl-WC composites - melt infiltration processing, microstructure and mechanical properties

    SciTech Connect

    Subramanian, R.; Schneibel, J.H.

    1997-04-01

    TiC-based and WC-based cermets were processed with iron aluminide, an intermetallic, as a binder by pressureless melt infiltration to near full density (> 97 % theoretical density). Phase equilibria calculations in the quaternary Fe-Al-Ti-C and Fe-Al-W-C systems at 145{degrees}C were performed to determine the solubility of the carbide phases in liquid iron aluminide. This was done by using Thermocalc{trademark} and the results show that molten Fe-40 at.% Al in equilibrium with Ti{sub 0.512}C{sub 0.488} and graphite, dissolves 4.9 at% carbon and 64 atomic ppm titanium. In the Fe-Al-W-C system, liquid Fe-40 at.% Al in equilibrium with graphite dissolves about 5 at.% carbon and 1 at.% tungsten. Due to the low values for the solubility of the carbide phases in liquid iron aluminide, liquid phase sintering of mixed powders does not yield a dense, homogeneous microstructure for carbide volume fractions greater than 0.70. Melt infiltration of molten FeAl into TiC and WC preforms serves as a successful approach to process cermets with carbide contents ranging from 70 to 90 vol. %, to greater than 97% of theoretical density. Also, the microstructures of cermets prepared by melt infiltration were very homogeneous. Typical properties such as hardness, bend strength and fracture toughness are reported. SEM observations of fracture surfaces suggest the improved fracture toughness to result from the ductility of the intermetallic phase. Preliminary experiments for the evaluation of the oxidation resistance of iron aluminide bonded cermets indicate that they are more resistant than WC-Co cermets.

  9. First-principles study of Fe and FeAl defects in SiGe alloys

    SciTech Connect

    Carvalho, A.; Coutinho, J.; Barroso, M.; Jones, R.; Goss, J.; Briddon, P. R.

    2008-09-15

    First-principles, spin-polarized local-density-functional calculations are used to model interstitial iron (Fe{sub i}) and its complexes with substitutional aluminum in dilute Si{sub x}Ge{sub 1-x} alloys (x<8%). We considered both the effect of direct bonding between Fe{sub i} or Fe{sub i}Al with Ge atoms in the x{yields}0 limit and the evolution of the defect properties with the alloy composition. It is found that Fe{sub i} prefers Si-rich regions, but when placed near a Ge atom, its (0/+) level is shifted toward the conduction band. However, the ionization energy of Fe{sup (+/+2)}-Al{sup -} is only slightly changed by the presence of neighboring Ge atoms in the proximity. It is also found that indirect alloying effects shift the donor levels of Fe{sub i} and FeAl at a fast rate toward the valence band. The acceptor levels, however, remain approximately at the same distance from E{sub v}.

  10. Effect of divalent (Sr, Ba) doping on the structural and magnetic properties of BiFeO{sub 3}

    SciTech Connect

    Rangi, Manisha Sanghi, Sujata; Agarwal, Ashish; Jangra, Sandhaya; Singh, Ompal

    2015-06-24

    The effect of divalent substitution on the crystal structure and magnetic properties of BiFeO{sub 3} has been investigated using X-ray diffraction and magnetic measurements technique. Single phase Bi{sub 0.8}A{sub 0.2}FeO{sub 3} (A= Sr, Ba) multiferroics have been synthesized by solid state reaction method. Rietveld analysis of the XRD patterns revealed that the prepared ceramics exhibit rhombohedral structure with space group R3c. M–H hysteresis loops were recorded at 5K revealed that Sr and Ba substitution transformed antiferromagnetic BiFeO3 into weak ferromagnetic. The enhanced magnetization with Sr and Ba addition is confirmed by the MT curve recorded at 1T. It is closely related to intrinsic structural distortion and modification of the antiparallel spin structure.

  11. Synthesis and characterization of nano crystalline BaFe{sub 12}O{sub 19} powders by low temperature combustion

    SciTech Connect

    Huang Jianguo; Zhuang Hanrui; Li Wenlan

    2003-01-01

    Nano crystalline BaFe{sub 12}O{sub 19} powders have been prepared at a relatively low calcination temperature by a gel combustion technique using citric acid as a fuel/reductant and nitrates as oxidants. The effects of processing parameters, such as Ba/Fe ratio, citric acid/nitrates ratio, reaction temperature on the powder characteristics and magnetic properties of the resultant barium ferrites were investigated. By controlling the molar ratio of citric acid to metal nitrates, nano crystalline BaFe{sub 12}O{sub 19} powders with different particle sizes have been obtained. Phase attributes, microstructures and magnetic properties of the powders were characterized using X-ray diffraction analysis, X-ray line-broadening technique, Fourier transform infrared spectroscopy measurements, transmission electron microscopy and vibrating sample magnetometer. The maximum saturation magnetization value and intrinsic coercivity value for the obtained barium hexaferrites are 59.36 emu/g and 5540 Oe.

  12. Ferroelectric control of the magnetocrystalline anisotropy of the Fe/BaTiO(3)(001) interface.

    PubMed

    Lukashev, Pavel V; Burton, J D; Jaswal, Sitaram S; Tsymbal, Evgeny Y

    2012-06-01

    Density-functional calculations are employed to investigate the effect of ferroelectric polarization of BaTiO(3) on the magnetocrystalline anisotropy of the Fe /BaTiO(3)(001) interface. It is found that the interface magnetocrystalline anisotropy energy changes from 1.33 to 1.02 erg cm (-2) when the ferroelectric polarization is reversed. This strong magnetoelectric coupling is explained in terms of the changing population of the Fe 3d orbitals at the Fe/BaTiO(3) interface driven by polarization reversal. Our results indicate that the electronically assisted magnetoelectric effects at the ferromagnetic/ferroelectric interfaces may be a viable alternative to the strain mediated coupling in related heterostructures and the electric field-induced effects on the interface magnetic anisotropy in ferromagnet/dielectric structures. PMID:22551672

  13. Ultrafast dynamics of quasiparticles and coherent acoustic phonons in slightly underdoped (BaK)Fe2As2

    PubMed Central

    Lin, Kung-Hsuan; Wang, Kuan-Jen; Chang, Chung-Chieh; Wen, Yu-Chieh; Lv, Bing; Chu, Ching-Wu; Wu, Maw-Kuen

    2016-01-01

    We have utilized ultrafast optical spectroscopy to study carrier dynamics in slightly underdoped (BaK)Fe2As2 crystals without magnetic transition. The photoelastic signals due to coherent acoustic phonons have been quantitatively investigated. According to our temperature-dependent results, we found that the relaxation component of superconducting quasiparticles persisted from the superconducting state up to at least 70 K in the normal state. Our findings suggest that the pseudogaplike feature in the normal state is possibly the precursor of superconductivity. We also highlight that the pseudogap feature of K-doped BaFe2As2 is different from that of other iron-based superconductors, including Co-doped or P-doped BaFe2As2. PMID:27180873

  14. High-pressure structural phase transitions in chromium-doped BaFe2As2

    NASA Astrophysics Data System (ADS)

    Uhoya, W. O.; Montgomery, J. M.; Samudrala, G. K.; Tsoi, G. M.; Vohra, Y. K.; Weir, S. T.; Sefat, A. S.

    2012-07-01

    We report on the results from high pressure x-ray powder diffraction and electrical resistance measurements for hole doped BaFe2-xCrxAs2 (x = 0, 0.05, 0.15, 0.4, 0.61) up to 81 GPa and down to 10 K using a synchrotron source and diamond anvil cell (DAC). At ambient temperature, an isostructural phase transition from a tetragonal (T) phase (I4/mmm) to a collapsed tetragonal (CT) phase is observed at 17 GPa. This transition is found to be dependent on ambient pressure unit cell volume and is slightly shifted to higher pressure upon increase in the Cr-doping. Unlike BaFe2As2 which superconduct under high pressure, we have not detected any evidence of pressure induced superconductivity in chromium doped samples in the pressure and temperature range of this study. The measured equation of state parameters are presented for both the tetragonal and collapsed tetragonal phases for x = 0.05, 0.15, 0.40 and 0.61.

  15. Processing and properties of FeAl-bonded composites

    SciTech Connect

    Schneibel, J.H.; Subramanian, R.; Alexander, K.B.; Becher, P.F.

    1996-12-31

    Iron aluminides are thermodynamically compatible with a wide range of ceramics such as carbides, borides, oxides, and nitrides, which makes them suitable as the matrix in composites or cermets containing fine ceramic particulates. For ceramic contents varying from 30 to 60 vol.%, composites of Fe-40 at. % Al with WC, TiC, TiB{sub 2}, and ZrB{sub 2} were fabricated by conventional liquid phase sintering of powder mixtures. For ceramic contents from 70 to 85 vol.%, pressureless melt infiltration was found to be a more suitable processing technique. In FeAl-60 vol.% WC, flexure strengths of up to 1.8 GPa were obtained, even though processing defects consisting of small oxide clusters were present. Room temperature fracture toughnesses were determined by flexure testing of chevron-notched specimens. FeAl/WC and FeAl/TiC composites containing 60 vol.% carbide particles exhibited K{sub Q} values around 20 MPa m{sup 1/2}. Slow crack growth measurements carried out in water and in dry oxygen suggest a relatively small influence of water-vapor embrittlement. It appears therefore that the mechanical properties of iron aluminides in the form of fine ligaments are quite different from their bulk properties. Measurements of the oxidation resistance, dry wear resistance, and thermal expansion of iron aluminide composites suggest many potential applications for these new materials.

  16. Carbon Nanostructures Grown on Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Čaplovičová, Mária; Čaplovič, Ľubomír; Búc, Dalibor; Vinduška, Peter; Janík, Ján

    2010-11-01

    The morphology and nanostructure of carbon nanotubes (CNTs), synthesized directly on Fe-Cr-Al-based alloy substrate using an alcohol catalytic chemical vapour deposition method (ACCVD), were examined by transmission electron microscopy (TEM). The grown CNTs were entangled with chain-like, bamboo-like, and necklace-like morphologies. The CNT morphology was affected by the elemental composition of catalysts and local instability of deposition process. Straight and bended CNTs with bamboo-like nanostructure grew mainly on γ-Fe and Fe3C particles. The synthesis of necklace-like nanostructures was influenced by silicon oxide, and growth of chain-like nanostructures was supported by a catalysts consisting of Fe, Si, oxygen and trace of Cr. Most of nanotubes grew according to base growth mechanism.

  17. Development of ODS-Fe{sub 3}Al alloys

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G.

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  18. Synthesis, crystal structure, and magnetic properties of quaternary iron selenides: Ba2FePnSe5 (Pn=Sb, Bi)

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Greenfield, Joshua T.; Kovnir, Kirill

    2016-10-01

    Two new barium iron pnictide-selenides, Ba2FeSbSe5 and Ba2FeBiSe5, were synthesized by a high-temperature solid-state route and their crystal structures were determined using single crystal X-ray diffraction. Both compounds are isomorphic to the high pressure phase Ba3FeS5 and crystallize in the orthorhombic space group Pnma (No. 62) with cell parameters of a=12.603(2)/12.619(2) Å, b=9.106(1)/9.183(1) Å, c=9.145(1)/9.123(1) Å and Z=4 for Ba2FeSbSe5 and Ba2FeBiSe5, respectively. According to differential scanning calorimetry, Ba2FePnSe5 compounds exhibit high thermal stability and melt congruently at 1055(5) K (Pn=Sb) and 1105(5) K (Pn=Bi). Magnetic characterizations reveal strong antiferromagnetic nearest-neighbor interactions in both compounds resulting in an antiferromagnetic ordering at 58(1) K for Ba2FeSbSe5 and 79(2) K for Ba2FeBiSe5. The magnetic interactions between Fe3+ centers, which are at least 6 Å apart from each other, are mediated by superexchange interactions.

  19. Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19

    NASA Astrophysics Data System (ADS)

    Kostishyn, V. G.; Panina, L. V.; Timofeev, A. V.; Kozhitov, L. V.; Kovalev, A. N.; Zyuzin, A. K.

    2016-02-01

    Dual ferroic properties of a strong magnetism and large ferroelectricity have been observed in barium BaFe12O19 and strontium SrFe12O19 hexaferrite ceramics. The samples were fabricated by a modified ceramic technique from highly purified raw materials with addition of boron oxide allowing the control of grain size and enhancement of bulk resistivity. Whereas the samples of PbFe12O19 fabricated by the same technological method did not have sufficient electric resistivity to support an electric field and did not exhibit the ferroelectric properties. The structure of the samples examined by X-ray diffraction is consistent with a single hexagonal phase. The grains are randomly oriented with the average grain size of 300-400 nm coated with boron oxide. The magnetic properties are characterised by standard ferrimagnetic behavior with the Neel temperature of about 450 °C. Large spontaneous polarization was observed with the maximal values of 45-50 μC/cm2 under an applied electric field of 100-300 kV/m. A strong coupling between magnetic and electric ordering was confirmed by measuring the magnetoelectric (ME) parameter and magnetodielectric ratio. These ME characteristics are more advanced than those for well-known room temperature multiferroic BiFeO3. Furthermore, by applying an electric field, the manipulation of magnetization in the range of up to 9% was observed, which is even greater than in some substituted hexaferrites with a non-collinear magnetic structure. The obtained results on electrical polarization are similar to the values reported for the corresponding hexaferrites sintered by polymer precursor technique. This suggests a promising potential of M-type hexaferrite ceramics in devices utilizing magnetoelectric coupling.

  20. Bandgap narrowing in the layered oxysulfide semiconductor Ba3Fe2O5Cu2S2: Role of FeO2 layer

    NASA Astrophysics Data System (ADS)

    Han, Zhang; Shifeng, Jin; Liwei, Guo; Shijie, Shen; Zhiping, Lin; Xiaolong, Chen

    2016-02-01

    A new layered Cu-based oxychalcogenide Ba3Fe2O5Cu2S2 has been synthesized and its magnetic and electronic properties were revealed. Ba3Fe2O5Cu2S2 is built up by alternatively stacking [Cu2S2]2- layers and iron perovskite oxide [(FeO2)(BaO)(FeO2)]2- layers along the c axis that are separated by barium ions with Fe3+ fivefold coordinated by a square-pyramidal arrangement of oxygen. From the bond valence arguments, we inferred that in layered CuCh-based (Ch = S, Se, Te) compounds the +3 cation in perovskite oxide sheet prefers a square pyramidal site, while the lower valence cation prefers the square planar sites. The studies on susceptibility, transport, and optical reflectivity indicate that Ba3Fe2O5Cu2S2 is an antiferromagnetic semiconductor with a Néel temperature of 121 K and an optical bandgap of 1.03 eV. The measurement of heat capacity from 10 K to room temperature shows no anomaly at 121 K. The Debye temperature is determined to be 113 K. Theoretical calculations indicate that the conduction band minimum is predominantly contributed by O 2p and 3d states of Fe ions that antiferromagnetically arranged in FeO2 layers. The Fe 3d states are located at lower energy and result in a narrow bandgap in comparison with that of the isostructural Sr3Sc2O5Cu2S2. Project supported by the National Natural Science Foundation of China (Grant Nos. 51472266, 51202286, and 91422303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100) and the ICDD.

  1. Giant magnetic flux jumps in single crystals of Ba0.6K0.4Fe2As2

    NASA Astrophysics Data System (ADS)

    Choi, Ki-Young; Jeon, Gun Sang; Wang, X. F.; Chen, X. H.; Wang, Xiao-Lin; Jung, Myung-Hwa; Lee, Sung-Ik; Park, Gangseo

    2011-05-01

    Giant magnetic flux jumps are observed in magnetic hysteresis loops of Ba0.6K0.4Fe2As2 single crystals. The size of the flux jumps, which appear only at low temperatures (T <4 K), is so large that it can transform the whole superconducting state into the normal state. The recovery rate to the superconducting state is rather slow, although the superconducting state is almost fully recovered. We show that theoretical predictions based on the adiabatic approach with nonlocal electrodynamics give a good explanation of the flux jumps observed in the single crystals of Ba0.6K0.4Fe2As2.

  2. Preparation and physical properties of (M1-xYbx) Fe2As2 (M = Ca, Ba) single crystals

    NASA Astrophysics Data System (ADS)

    Chen, S. C.; Syu, K. J.; Lee, W. H.; Chen, Y. Y.

    2014-03-01

    As judged by x-ray diffraction data, single crystals in the series (M1-xYbx) Fe2As2 (M = Ca, Ba) with 0 < x <0.22 have been made by flux method. Magnetic and electrical properties as well as the specific heat data in the systems (M1-xYbx) Fe2As2 (M = Ca, Ba) investigated will be discussed. Supported by the National Science Council of Republic of China under Contract Number NSC-102-2112-M-194-005-MY3.

  3. Optical probes of symmetry breaking in magnetic and superconducting BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Orenstein, Joseph

    The discovery of iron pnictide superconductors has opened promising new directions in the effort to fully understand the phenomenon of high-Tc, with a focus on the connections between superconductivity, magnetism, and electronic nematicity. The BaFe2(As1-xPx)2 (P:Ba122) system in particular has received attention because isovalent substitution of As for P generates less disorder than doping on the Fe site. The phase diagram of P:Ba122 is characterized by a line of simultaneous antiferromagnetic (AF) and tetragonal-to-orthorhombic transitions, Ts (x) , that penetrates the superconducting dome at x =0.28, just below optimal doping (xopt = 0.30). In this work, we use spatially-resolved optical polarimetry and photomodulated reflectance to detect linear birefringence and therefore breaking of 4-fold rotational (C4) symmetry. In underdoped (x<0.28) samples, birefringence appears at T>Tsand grows continuously with decreasing T . The birefringence is unidirectional in a large (300 μm x300 μm) field of view, suggesting that C4 breaking in this range of T is caused by residual strain that couples to a diverging nematic susceptibility. Birefringence maps just below Ts (x) show the appearance of domains, indicating the onset of spontaneous symmetry breaking to an AF ground state. Surprisingly, in samples with x>0.28, in which the low T phase is superconducting/ tetragonal rather than AF/orthorhombic, C4 breaking is observed as well, with an abrupt onset and domain formation at 55 K. We tentatively associate these features with a transition to an AF phase induced by residual strain, as previously proposed [H.-H. Kuo et al. Phys. Rev. B86, 134507 (2012)] to account for structure in resistivity vs. T. Time-resolved photomodulation allow us to follow the amplitude of the AF order with time following pulsed photoexcitation. Below Tc the AF order at first weakens , but then strengthens in response to the photoinduced weakening of superconductivity. This complex time evolution is

  4. Energy transfer between Eu-Mn and photoluminescence properties of Ba0.75Al11O17.25-BaMgAl10O17:Eu2+,Mn2+ solid solution

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Wang, Yuhua; Liu, Bitao; Li, Feng

    2010-08-01

    In order to evaluate the energy transfer between Eu-Mn in Ba0.75Al11O17.25-BaMgAl10O17 solid solution, Ba0.75Al11O17.25-BaMgAl10O17:Eu2+,Mn2+ phosphors were prepared by flux method. The crystal structure and the morphology of the solid solution were demonstrated by x-ray dirrfactometer and scanning electron microscopy. The photoluminescence mechanisms were explained by the energy transfer of Eu2+ to Mn2+ and the Dexter theory. A redshift of green emission peak and a decrease in decay time with the increase in Mn2+ concentration were observed. These phenomena are attributed to the formation of Mn2+ paired centers after analysis by a method of Pade approximations.

  5. Two dimensional growth of ultrathin Fe films on BaTiO3 with sharp chemical interface

    NASA Astrophysics Data System (ADS)

    Radaelli, G.; Cantoni, M.; Lijun, Li; Espahbodi, M.; Bertacco, R.

    2014-02-01

    The Fe/BaTiO3 interface is a prototypical artificial multiferroic system displaying purely electronic magnetoelectric effects at room temperature. As magneto-electric coupling is essentially localized at the interface, the properties of the very first Fe layers in contact with BaTiO3 play a major role. In this paper, we investigate, by using X-ray photoemission spectroscopy and photoelectron diffraction, the in-situ growth, by molecular beam epitaxy, of ultrathin Fe films (˜7 monolayers) on a BaTiO3/SrTiO3(001) template. We found that growing the Fe films above room temperature (373 K) is essential in order to avoid island growth and obtain a continuous film. Post-annealing up to 473 K improves the film crystallinity but prevents chemical interdiffusion and roughening. Just an interfacial monolayer of oxidized iron is detected in these conditions, which appears as an unavoidable consequence of the Fe/BaTiO3 chemical interaction. Its active role in magnetoelectric coupling must be carefully taken into account to correlate theoretical predictions and experiments.

  6. Chlorine Insertion Promoting Iron Reduction in Ba-Fe Hexagonal Perovskites: Effect on the Structural and Magnetic Properties.

    PubMed

    Serrador, Laura; Hernando, María; Martínez, José L; González-Calbet, José M; Varela, Aurea; García-García, F Javier; Parras, Marina

    2016-06-20

    BaFeCl0.13(2)O2.48(2) has been synthesized and studied. A proper tuning of the synthetic route has been designed to stabilize this compound as a single phase. The thermal stability and evolution, along with the magnetic and structural properties are reported here. The crystal structure has been refined from neutron powder diffraction data, and it is of the type (hhchc)2-10H. It is stable up to a temperature of 900 °C, where the composition reads BaFeCl0.13(2)O2.34(2). The study by electron microscopy shows that the crystal structure suffers no changes in the whole BaFeCl0.13(1)O3-y (2.34 ≤ 3 - y ≤ 2.48) compositional range. Refinement of the magnetic structure shows that the Fe is antiferromagneticaly ordered, with the magnetic moment parallel to the ab plane of the hexagonal structure. At higher temperature, a nonreversible phase transition into a (hchc)-4H structure type takes place with overall composition BaFeCl0.13(1)O2.26(1). Microstructural characterization shows that, in some crystals, this phase intergrows with a seemingly cubic related phase. Differences between these two crystalline phases reside in the chlorine content, which keeps constant through the phase transition for the former and disappears for the latter. PMID:27276508

  7. Chlorine Insertion Promoting Iron Reduction in Ba-Fe Hexagonal Perovskites: Effect on the Structural and Magnetic Properties.

    PubMed

    Serrador, Laura; Hernando, María; Martínez, José L; González-Calbet, José M; Varela, Aurea; García-García, F Javier; Parras, Marina

    2016-06-20

    BaFeCl0.13(2)O2.48(2) has been synthesized and studied. A proper tuning of the synthetic route has been designed to stabilize this compound as a single phase. The thermal stability and evolution, along with the magnetic and structural properties are reported here. The crystal structure has been refined from neutron powder diffraction data, and it is of the type (hhchc)2-10H. It is stable up to a temperature of 900 °C, where the composition reads BaFeCl0.13(2)O2.34(2). The study by electron microscopy shows that the crystal structure suffers no changes in the whole BaFeCl0.13(1)O3-y (2.34 ≤ 3 - y ≤ 2.48) compositional range. Refinement of the magnetic structure shows that the Fe is antiferromagneticaly ordered, with the magnetic moment parallel to the ab plane of the hexagonal structure. At higher temperature, a nonreversible phase transition into a (hchc)-4H structure type takes place with overall composition BaFeCl0.13(1)O2.26(1). Microstructural characterization shows that, in some crystals, this phase intergrows with a seemingly cubic related phase. Differences between these two crystalline phases reside in the chlorine content, which keeps constant through the phase transition for the former and disappears for the latter.

  8. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19.

    PubMed

    Rowley, S E; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A T; Watts, B E; Scott, J F

    2016-05-17

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T(3), in contrast to the 1/T(2) dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T(3), i.e. with a critical exponent γ = 3. In general γ = (d + z - 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T(3).

  9. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19

    PubMed Central

    Rowley, S. E.; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A. T.; Watts, B. E.; Scott, J. F.

    2016-01-01

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T3, in contrast to the 1/T2 dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T3, i.e. with a critical exponent γ = 3. In general γ = (d + z – 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T3. PMID:27185343

  10. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19.

    PubMed

    Rowley, S E; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A T; Watts, B E; Scott, J F

    2016-01-01

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T(3), in contrast to the 1/T(2) dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T(3), i.e. with a critical exponent γ = 3. In general γ = (d + z - 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T(3). PMID:27185343

  11. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19

    NASA Astrophysics Data System (ADS)

    Rowley, S. E.; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A. T.; Watts, B. E.; Scott, J. F.

    2016-05-01

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T3, in contrast to the 1/T2 dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T3, i.e. with a critical exponent γ = 3. In general γ = (d + z – 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T3.

  12. Effects of stoichiometry and substitution in quasi-one-dimensional iron chalcogenide BaFe2S3

    NASA Astrophysics Data System (ADS)

    Hirata, Yasuyuki; Maki, Sachiko; Yamaura, Jun-ichi; Yamauchi, Touru; Ohgushi, Kenya

    2015-11-01

    The effects of off-stoichiometry and elemental substitution on electronic properties of iron-based ladder compound BaFe2S3 are investigated. Resistivity and magnetization are revealed to be quite sensitive to the stoichiometry of Fe atoms, and 10% deficiency at Fe sites reduces the antiferromagnetic transition temperature by 40 K. The antiferromagnetic transition temperature decreases even faster and collapses to zero with hole doping through 10% K substitution at the Ba site, while the antiferromagnetic ordering phase remains with electron doping through 20% Co substitution at the Fe site. Such electron-hole asymmetry is opposite to two-dimensional iron-based superconductors, and can be explained on the basis of both itinerant and localized electronic pictures.

  13. Development of Fe-Mn-Al-X-C alloys

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.

    1982-01-01

    Development of a low cost Cr-free, iron-base alloy for aerospace applications involves both element substitution and enhancement of microstructural strengthening. When Mn is substituted for Ni and Al or Si is substituted for Cr, large changes occur in the mechanical and thermal stability of austenite in FeMnAlC alloys. The in situ strength of MC or M2C (M = Ti, V, Hf, Ta, or Mo) in FeMnAlC alloys was determined. The high temperature tensile strength depends more on the distribution of carbides than the carbide composition. Precipitation of a high volume percent-ordered phase was achieved in Fe2OMnlONi6Al6Ti (lC) alloys. As case, these alloys have a homogeneous austenitic structure. After solutioning at 1100 C for 5 hr followed by aging at 600 C for 16 hr, gamma prime or a perovskite carbide is precipitated. Overaging occurs at 900 C where eta is precipitated.

  14. Preparation and magnetic properties of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Ying; Wang, Qiufen

    2012-09-01

    Nanocomposite of hard (BaFe12O19)/soft ferrite (Ni0.8Zn0.2Fe2O4) have been prepared by the sol-gel process. The nanocomposite ferrite are formed when the calcining temperature is above 800 °C. It is found that the magnetic properties strongly depend on the presintering treatment and calcining temperature. The “bee waist” type hysteresis loops for samples disappear when the presintering temperature is 400 °C and the calcination temperature reaches 1100 °C owing to the exchange-coupling interaction. The remanence of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite with the mass ratio of 5:1 is higher than a single phase ferrite. The specific saturation magnetization, remanence magnetization and coercivity are 63 emu/g, 36 emu/g and 2750 G, respectively. The exchange-coupling interaction in the BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite is discussed.

  15. Direct characterization of photoinduced lattice dynamics in BaFe2As2.

    PubMed

    Gerber, S; Kim, K W; Zhang, Y; Zhu, D; Plonka, N; Yi, M; Dakovski, G L; Leuenberger, D; Kirchmann, P S; Moore, R G; Chollet, M; Glownia, J M; Feng, Y; Lee, J-S; Mehta, A; Kemper, A F; Wolf, T; Chuang, Y-D; Hussain, Z; Kao, C-C; Moritz, B; Shen, Z-X; Devereaux, T P; Lee, W-S

    2015-01-01

    Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe2As2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe-As-Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands. PMID:26051704

  16. Direct characterization of photoinduced lattice dynamics in BaFe2As2

    NASA Astrophysics Data System (ADS)

    Gerber, S.; Kim, K. W.; Zhang, Y.; Zhu, D.; Plonka, N.; Yi, M.; Dakovski, G. L.; Leuenberger, D.; Kirchmann, P. S.; Moore, R. G.; Chollet, M.; Glownia, J. M.; Feng, Y.; Lee, J.-S.; Mehta, A.; Kemper, A. F.; Wolf, T.; Chuang, Y.-D.; Hussain, Z.; Kao, C.-C.; Moritz, B.; Shen, Z.-X.; Devereaux, T. P.; Lee, W.-S.

    2015-06-01

    Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe2As2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe-As-Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands.

  17. Synthesis, crystal structure and electronic properties of the new iron selenide Ba9Fe4Se16

    NASA Astrophysics Data System (ADS)

    Berthebaud, David; Preethi Meher, K. R. S.; Pelloquin, Denis; Maignan, Antoine

    2014-03-01

    The new ternary selenide Ba9Fe4Se16 has been synthesized from the reaction of appropriate amounts of elements at high temperature in a silica sealed tube. The compound crystallizes in the tetragonal space group I41/a with a=10.0068(3) Å and c=35.6415(9) Å, Z=4. It is an isostructural compound to the sulfide α-Ba9Fe4S15, which is a high temperature polymorph of β-Ba9Fe4Se15 that belongs to the indefinitely adaptive phases series Ba3Fe1+xS5, 0≤x≤1. X-ray powder diffraction and TEM analyses of the synthesized compound were used to determine the phase composition and the structure. The crystal structure can be viewed as overlapping sections along the c axis. Those sections are formed by the coordination polyhedra around barium atoms which can be described as trigonal prisms and bidisphenoids. Within the sections formed by barium polyhedra, isolated pairs of edge sharing FeSe4 tetrahedra are found. Magnetic measurements performed on Ba9Fe4Se16 indicate an antiferromagnetic behavior with Néel temperature of ~13 K. Possible influence of air exposure on the magnetic properties is also discussed here. The electric measurements show an insulating behavior below 160 K and the dielectric permittivity and loss tangent at the lowest frequency measured reveal a change of slope very close to TN. However no magneto dielectric effect was evidenced for magnetic fields of up to 3 T. Activation energy, EA=0.18 eV, was extracted from the AC conductivity plot in the temperature range of 160-300 K.

  18. The structure of rapidly solidified Al- Fe- Cr alloys

    NASA Astrophysics Data System (ADS)

    Yearim, R.; Shechtman, D.

    1982-11-01

    Four aluminum alloys, designed for use at elevated temperatures, were studied. The alloys were supersaturated with iron and chromium, and one of them contained small amounts of Ti, V, and Zr. The starting materials were alloy powders made by the RSR (Rapid Solidification Rate) centrifugal atomization process. Extrusion bars were made from the four powders. The as-extruded microstructure and the microstructure of the alloys after annealing at 482 °C were investigated by optical and transmission electron microscopy and by X-ray diffraction. The microstructure consists of equiaxed grains of aluminum matrix and two types of precipitates, namely, Al3(Fe ,Cr) and a metastable phase, Al6(Fe,Cr). The precipitates were different in their shape, size, distribution, and location within the grains.

  19. Elevated concentrations of dissolved Ba, Fe and Mn in a mangrove subterranean estuary: Consequence of sea level rise?

    NASA Astrophysics Data System (ADS)

    Sanders, Christian J.; Santos, Isaac R.; Barcellos, Renato; Silva Filho, Emmanoel V.

    2012-07-01

    Groundwater underlying a mangrove habitat was studied to determine the geochemical nature of Ba, Fe and Mn as related to dissolved organic carbon (DOC), SO4 and salinity (Sepetiba Bay, Brazil). Wells were placed across geobotanic facies and sampled monthly for a year. We observed non-conservative behavior and elevated concentrations of dissolved metals relative to local end-members (i.e., fresh river water and seawater). Average Ba concentrations were near 2000 nM in an area with low salinity (˜5.3). Dissolved Fe (up to 654 μM) was two orders of magnitude greater in fresh groundwater than in the seaward sampling stations. Manganese concentrations were greatest (112 μM) in the high salinity (˜65) zone, being directly influenced by salinity. Groundwater Ba, Fe and Mn showed differing site specific concentrations, likely related to ion exchange processes and redox-controlled cycling along distinct mangrove facies. The results of this work show that metal concentrations are altered relative to conservative mixing between terrestrial and marine endmembers, illustrating the importance of mangrove subterranean estuaries as biogeochemical reactors. Roughly-estimated submarine groundwater discharge-derived dissolved Ba, Fe and Mn fluxes were at least one order of magnitude greater than river-derived fluxes into Sepetiba Bay.

  20. Both electron and hole Dirac cone states in Ba(FeAs)2 confirmed by magnetoresistance.

    PubMed

    Huynh, Khuong K; Tanabe, Yoichi; Tanigaki, Katsumi

    2011-05-27

    Quantum transport of Dirac cone states in the iron pnictide Ba(FeAs)(2) with a d-multiband system is studied by using single crystal samples. Transverse magnetoresistance develops linearly against the magnetic field at low temperatures. The transport phenomena are interpreted in terms of the zeroth Landau level by applying the theory predicted by Abrikosov. The results of the semiclassical analyses of a two carrier system in a low magnetic field limit show that both the electron and hole reside as the high mobility states. Our results show that pairs of electron and hole Dirac cone states must be taken into account for an accurate interpretation in iron pnictides, which is in contrast with previous studies.

  1. Negative Capacitance in BaTiO3/BiFeO3 Bilayer Capacitors.

    PubMed

    Hou, Ya-Fei; Li, Wei-Li; Zhang, Tian-Dong; Yu, Yang; Han, Ren-Lu; Fei, Wei-Dong

    2016-08-31

    Negative capacitances provide an approach to reduce heat generations in field-effect transistors during the switch processes, which contributes to further miniaturization of the conventional integrated circuits. Although there are many studies about negative capacitances using ferroelectric materials, the direct observation of stable ferroelectric negative capacitances has rarely been reported. Here, we put forward a dc bias assistant model in bilayer capacitors, where one ferroelectric layer with large dielectric constant and the other ferroelectric layer with small dielectric constant are needed. Negative capacitances can be obtained when external dc bias electric fields are larger than a critical value. Based on the model, BaTiO3/BiFeO3 bilayer capacitors are chosen as study objects, and negative capacitances are observed directly. Additionally, the upward self-polarization effect in the ferroelectric layer reduces the critical electric field, which may provide a method for realizing zero and/or small dc bias assistant negative capacitances.

  2. Negative Capacitance in BaTiO3/BiFeO3 Bilayer Capacitors.

    PubMed

    Hou, Ya-Fei; Li, Wei-Li; Zhang, Tian-Dong; Yu, Yang; Han, Ren-Lu; Fei, Wei-Dong

    2016-08-31

    Negative capacitances provide an approach to reduce heat generations in field-effect transistors during the switch processes, which contributes to further miniaturization of the conventional integrated circuits. Although there are many studies about negative capacitances using ferroelectric materials, the direct observation of stable ferroelectric negative capacitances has rarely been reported. Here, we put forward a dc bias assistant model in bilayer capacitors, where one ferroelectric layer with large dielectric constant and the other ferroelectric layer with small dielectric constant are needed. Negative capacitances can be obtained when external dc bias electric fields are larger than a critical value. Based on the model, BaTiO3/BiFeO3 bilayer capacitors are chosen as study objects, and negative capacitances are observed directly. Additionally, the upward self-polarization effect in the ferroelectric layer reduces the critical electric field, which may provide a method for realizing zero and/or small dc bias assistant negative capacitances. PMID:27502999

  3. Synthesis and characterization of Co2FeAl nanowires

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.; Gyawali, Parshu; Forbes, Andrew; Pegg, Ian L.; Philip, John

    2012-06-01

    We report the growth and characterization of Co2FeAl nanowires. Nanowires are grown using electrospinning method and the diameters range from 50 to 500 nm. These nanowires exhibit cubic crystal structure with a lattice constant of a =5.639 Å. The nanowires exhibit ferromagnetic behavior with a very high Curie temperature. The temperature dependent magnetization behavior displays an anomaly in the temperature range 600-850 K, which disappears at higher external magnetic fields.

  4. Melting and casting of FeAl-based cast alloy

    SciTech Connect

    Sikka, V.K.; Wilkening, D.; Liebetrau, J.; Mackey, B.

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  5. Towards a Superplastic Forming of Fe-Mn-Al Alloys

    SciTech Connect

    Guanabara, Paulo Jr.; Bueno, Levi de O.; Ferreira Batalha, Gilmar

    2011-01-17

    The aim is to study the characteristics of superplasticity, mostly on non qualified materials, such as austenitic steel of the Fe-Mn-Al alloy, which has some of the specific material parameters closely related to microstructural mechanisms. These parameters are used as indicators of material superplastic potentiality. The material was submitted to hot tensile testing, within a temperature range from 600 deg. C to 1000 deg. C and strain-rates varying from 10{sup -6} to 1 s{sup -1}. The strain rate sensitivity parameter (m) and observed maximum elongation until rupture ({epsilon}{sub r}) could be determined and also obtained from the hot tensile test. The experiments stated a possibility of superplastic behaviour in a Fe-Mn-Al alloy within a temperature range from 700 deg. C to 900 deg. C with grain size around 3 {mu}m (ASTM grain size 12) and average strain rate sensitivity of m {approx} 0.54, as well as a maximum elongation at rupture around 600%. The results are based on a more enhanced research from the authors; however, this paper has focused just on the hot tensile test, as further creep tests results are not available herein. There are rare examples of superplasticity study of an austenitic steel Fe-Mn-Al alloy, thus this work showed some possibility of exploring the potential use of such materials in this regime at temperatures {>=}700 deg. C.

  6. Al-matrix composite materials reinforced by Al-Cu-Fe particles

    NASA Astrophysics Data System (ADS)

    Bonneville, J.; Laplanche, G.; Joulain, A.; Gauthier-Brunet, V.; Dubois, S.

    2010-07-01

    Al-matrix material composites were produced using hot isostatic pressing technique, starting with pure Al and icosahedral (i) Al-Cu-Fe powders. Depending on the processing temperature, the final reinforcement particles are either still of the initial i-phase or transformed into the tetragonal ω-Al00.70Cu0.20Fe0.10 crystalline phase. Compression tests performed in the temperature range 293K - 823K on the two types of composite, i.e. Al/i and Al/ω, indicate that the flow stress of both composites is strongly temperature dependent and exhibit distinct regimes with increasing temperature. Differences exist between the two composites, in particul ar in yield stress values. In the low temperatureregime (T <= 570K), the yield stress of the Al/ω composite is nearly 75% higher than that of the Al/i composite, while for T > 570K both composites exhibit similar yield stress values. The results are interpreted in terms of load transfer contribution between the matrix and the reinforcement particles and elementary dislocation mechanisms in the Al matrix.

  7. Room-Temperature Ba(Fe1-x Cox)2 As2 is not Tetragonal: Direct Observation of Magnetoelastic Interactions in Pnictide Superconductors.

    PubMed

    Cantoni, Claudia; McGuire, Michael A; Saparov, Bayrammurad; May, Andrew F; Keiber, Trevor; Bridges, Frank; Sefat, Athena S; Sales, Brian C

    2015-05-01

    Lattice distortions corresponding to Ba displacements with respect to the FeAs sublattice are revealed to break the room-temperature tetragonal symmetry in Ba(Fe1-x Cox)2 As2. The displacements yield twin domains of the size of ≈10 nm. The domain size correlates with the magnitude of the local Fe magnetic moment and its non-monotonic dependence on Co concentration.

  8. Room-Temperature Ba(Fe1-x Cox)2 As2 is not Tetragonal: Direct Observation of Magnetoelastic Interactions in Pnictide Superconductors.

    PubMed

    Cantoni, Claudia; McGuire, Michael A; Saparov, Bayrammurad; May, Andrew F; Keiber, Trevor; Bridges, Frank; Sefat, Athena S; Sales, Brian C

    2015-05-01

    Lattice distortions corresponding to Ba displacements with respect to the FeAs sublattice are revealed to break the room-temperature tetragonal symmetry in Ba(Fe1-x Cox)2 As2. The displacements yield twin domains of the size of ≈10 nm. The domain size correlates with the magnitude of the local Fe magnetic moment and its non-monotonic dependence on Co concentration. PMID:25809406

  9. Evolution of Fe Bearing Intermetallics During DC Casting and Homogenization of an Al-Mg-Si Al Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Grant, P. S.; O'Reilly, K. A. Q.

    2016-06-01

    The evolution of iron (Fe) bearing intermetallics (Fe-IMCs) during direct chill casting and homogenization of a grain-refined 6063 aluminum-magnesium-silicon (Al-Mg-Si) alloy has been studied. The as-cast and homogenized microstructure contained Fe-IMCs at the grain boundaries and within Al grains. The primary α-Al grain size, α-Al dendritic arm spacing, IMC particle size, and IMC three-dimensional (3D) inter-connectivity increased from the edge to the center of the as-cast billet; both α c-AlFeSi and β-AlFeSi Fe-IMCs were identified, and overall α c-AlFeSi was predominant. For the first time in industrial billets, the different Fe-rich IMCs have been characterized into types based on their 3D chemistry and morphology. Additionally, the role of β-AlFeSi in nucleating Mg2Si particles has been identified. After homogenization, α c-AlFeSi predominated across the entire billet cross section, with marked changes in the 3D morphology and strong reductions in inter-connectivity, both supporting a recovery in alloy ductility.

  10. Anion ordering, magnetic structure and properties of the vacancy ordered perovskite Ba3Fe3O7F

    NASA Astrophysics Data System (ADS)

    Clemens, Oliver; Reitz, Christian; Witte, Ralf; Kruk, Robert; Smith, Ronald I.

    2016-11-01

    This article describes a detailed investigation of the crystallographic and magnetic structure of perovskite type Ba3Fe3O7F by a combined analysis of X-ray and neutron powder diffraction data. Complete ordering of vacancies within the perovskite lattice could be confirmed. In addition, the structure of the anion sublattice was studied by means of the valence bond method, which suggested partial ordering of the fluoride ions on two of the six crystallographically different anion sites. Moreover, the compound was found to show G-type antiferromagnetic ordering of Fe moments, in agreement with magnetometric measurements as well as previously recorded 57Fe Mössbauer spectroscopy data.

  11. FeAl and NbAl3 Intermetallic-HVOF Coatings: Structure and Properties

    NASA Astrophysics Data System (ADS)

    Guilemany, J. M.; Cinca, N.; Dosta, S.; Cano, I. G.

    2009-12-01

    Transition metal aluminides in their coating form are currently being explored in terms of resistance to oxidation and mechanical behavior. This interest in transition metal aluminides is mainly due to the fact that their high Al content makes them attractive for high-temperature applications. This is also a reason to study their resistance to wear; they may be suitable for use in applications that produce a lot of wear in aggressive environments, thus replacing established coating materials. In this study, the microstructure, microhardness, and wear and oxidation performance of FeAl and NbAl3 coatings produced by high-velocity oxy-fuel spraying are evaluated with two main aims: (i) to compare these two coating systems—a commonly studied aluminide (FeAl) and, NbAl3, an aluminide whose deposition by thermal spraying has not been attempted to date—and (ii) to analyze the relationship between their microstructure, composition and properties, and so clarify their wear and oxidation mechanisms. In the present study, the higher hardness of niobium aluminide coatings did not correlate with a higher wear resistance and, finally, although pesting phenomena (disintegration in oxidizing environments) were already known of in bulk niobium aluminides, here their behavior in the coating form is examined. It was shown that such accelerated oxidation was inevitable with respect to the better resistance of FeAl, but further improvements are foreseen by addition of alloying elements in that alloy.

  12. Local manifestations of a static magnetoelectric effect in nanostructured BaTiO3-BaFe12O9 composite multiferroics

    NASA Astrophysics Data System (ADS)

    Trivedi, Harsh; Shvartsman, Vladimir V.; Lupascu, Doru C.; Medeiros, Marco S. A.; Pullar, Robert C.; Kholkin, Andrei L.; Zelenovskiy, Pavel; Sosnovskikh, Andrey; Shur, Vladimir Ya.

    2015-02-01

    A study on magnetoelectric phenomena in the barium titanate-barium hexaferrite (BaTiO3-BaFe12O19) composite system, using high resolution techniques including switching spectroscopy piezoresponse force microscopy (SSPFM) and spatially resolved confocal Raman microscopy (CRM), is presented. It is found that both the local piezoelectric coefficient and polarization switching parameters change on the application of an external magnetic field. The latter effect is rationalized by the influence of magnetostrictive stress on the domain dynamics. Processing of the Raman spectral data using principal component analysis (PCA) and self-modelling curve resolution (SMCR) allowed us to achieve high resolution phase distribution maps along with separation of average and localized spectral components. A significant effect of the magnetic field on the Raman spectra of the BaTiO3 phase has been revealed. The observed changes are comparable with the classical pressure dependent studies on BaTiO3, confirming the strain mediated character of the magnetoelectric coupling in the studied composites.

  13. Effect of divalent Ba cation substitution with Sr on coupled 'multiglass' state in the magnetoelectric multiferroic compound Ba3NbFe3Si2O14.

    PubMed

    Rathore, Satyapal Singh; Vitta, Satish

    2015-01-01

    (Ba/Sr)3NbFe3Si2O14 is a magneto-electric multiferroic with an incommensurate antiferromagnetic spiral magnetic structure which induces electric polarization at 26 K. Structural studies show that both the compounds have similar crystal structure down to 6 K. They exhibit a transition, TN at 26 K and 25 K respectively, as indicated by heat capacity and magnetization, into an antiferromagnetic state. Although Ba and Sr are isovalent, they exhibit very different static and dynamic magnetic behaviors. The Ba-compound exhibits a glassy behavior with critical slowing dynamics with a freezing temperature of ~35 K and a critical exponent of 3.9, a value close to the 3-D Ising model above TN, in addition to the invariant transition into an antiferromagnetic state. The Sr-compound however does not exhibit any dispersive behavior except for the invariant transition at TN. The dielectric constant reflects magnetic behavior of the two compounds: the Ba-compound has two distinct dispersive peaks while the Sr-compound has a single dispersive peak. Thus the compounds exhibit coupled 'multiglass' behavior. The difference in magnetic properties between the two compounds is found to be due to modifications to super exchange path angle and length as well as anti-site defects which stabilize either ferromagnetic or antiferromagnetic interactions. PMID:25988657

  14. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe2As2.

    PubMed

    Sefat, Athena S; Li, Li; Cao, Huibo B; McGuire, Michael A; Sales, Brian; Custelcean, Radu; Parker, David S

    2016-01-01

    Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba(1-x)Tl(x)Fe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe2As2 (T(N) = T(s) = 133 K) increase for x = 0.05 (T(N) = 138 K, T(s) = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (T(N) = T(s) = 131 K), and this is due to charge doping. We illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism. PMID:26867821

  15. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe2As2

    NASA Astrophysics Data System (ADS)

    Sefat, Athena S.; Li, Li; Cao, Huibo B.; McGuire, Michael A.; Sales, Brian; Custelcean, Radu; Parker, David S.

    2016-02-01

    Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe2As2 (TN = Ts = 133 K) increase for x = 0.05 (TN = 138 K, Ts = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (TN = Ts = 131 K), and this is due to charge doping. We illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism.

  16. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe2As2

    DOE PAGES

    Sefat, Athena S.; Li, Li; Cao, Huibo B.; McGuire, Michael A.; Sales, Brian; Custelcean, Radu; Parker, David S.

    2016-02-12

    Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe2As2 (TN = Ts = 133 K) increase for x = 0.05 (TN = 138 K, Ts = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bondmore » distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (TN = Ts = 131 K), and this is due to charge doping. Finally, we illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism.« less

  17. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe2As2

    PubMed Central

    Sefat, Athena S.; Li, Li; Cao, Huibo B.; McGuire, Michael A.; Sales, Brian; Custelcean, Radu; Parker, David S.

    2016-01-01

    Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe2As2 (TN = Ts = 133 K) increase for x = 0.05 (TN = 138 K, Ts = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (TN = Ts = 131 K), and this is due to charge doping. We illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism. PMID:26867821

  18. NdBaFe{sub 2}O{sub 5+w} and steric effect of Nd on valence mixing and ordering of Fe

    SciTech Connect

    Linden, J.; Karen, P.

    2010-11-15

    NdBaFe{sub 2}O{sub 5} above and below Verwey transition is studied by synchrotron X-ray powder diffraction and Moessbauer spectroscopy and compared with GdBaFe{sub 2}O{sub 5} that adopts a higher-symmetry charge-ordered structure typical of the Sm-Ho variants of the title phase. Differences are investigated by Moessbauer spectroscopy accounting for iron valence states at their local magnetic and ionic environments. In the charge-ordered state, the orientation of the electric-field gradient (EFG) versus the internal magnetic field (B) agrees with experiment only when contribution from charges of the ordered d{sub xz} orbitals of Fe{sup 2+} is included, proving thus the orbital ordering. The EFG magnitude indicates that only some 60% of the orbital order occurring in the Sm-Ho variants is achieved in NdBaFe{sub 2}O{sub 5}. The consequent diminishing of the orbit contribution (of opposite sign) to the field B at the Fe{sup 2+} nucleus explains why B is larger than for the Sm-Ho variants. The decreased orbital ordering in NdBaFe{sub 2}O{sub 5} causes a corresponding decrease in charge ordering, which is achieved by decreasing both the amount of the charge-ordered iron states in the sample and their fractional valence separation as seen by the Moessbauer isomer shift. The charge ordering in NdBaFe{sub 2}O{sub 5+w} is more easily suppressed by the oxygen nonstoichiometry (w) than in the Sm-Ho variants. Also the valence mixing into Fe{sup 2.5+} is destabilized by the large size of Nd. The orientation of the EFG around this valence-mixed iron can only be accounted for when the valence-mixing electron is included in the electrostatic ligand field. This proves that the valence mixing occurs between the two iron atoms facing each other across the structural plane of the rare-earth atoms. -- Graphical Abstract: Moessbauer spectrum detects ordering of d{sub xz} orbitals of Fe{sup II}O{sub 5} via the electric-field gradient (EFG) of the orbital, which makes the main component of

  19. Elevated Temperature Deformation of Fe-39.8Al and Fe-15.6Mn-39.4Al

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel

    2004-01-01

    The elevated temperature compressive properties of binary Fe-39.8 at % Al and Fe-15.6Mn-39.4Al have been measured between 1000 and 1300 K at strain rates between 10(exp 7) and 10(exp 3)/ s. Although the Mn addition to iron aluminide did not change the basic deformation characteristics, the Mn-modified alloy was slightly weaker. In the regime where deformation of FeAl occurs by a high stress exponent mechanism (n = 6), strength increases as the grain size decreases at least for diameters between approx. 200 and approx. 10 microns. Due to the limitation in the grain size-flow stress-temperature-strain rate database, the influence of further reductions of the grain size on strength is uncertain. Based on the appearance of subgrains in deformed iron aluminide, the comparison of grain diameters to expected subgrain sizes, and the grain size exponent and stress exponent calculated from deformation experiments, it is believed that grain size strengthening is the result of an artificial limitation on subgrain size as proposed by Sherby, Klundt and Miller.

  20. First principles investigation of Fe and Al bearing phase H

    NASA Astrophysics Data System (ADS)

    Tsuchiya, J.; Tsuchiya, T.

    2015-12-01

    The global circulation of water in the earth is important to investigate the evolution history and dynamics of the earth, since the physical properties (e.g. atomic diffusivity, melting temperature, electrical conductivity and seismic velocities) of the constituent minerals are considerably changed by the presence of water. It has been believed that water is carried into the deep Earth's interior by hydrous minerals such as the dense hydrous magnesium silicates (DHMSs) which are also known as alphabet phases (phase A, superhydrous phase B, and phase D etc.) in the descending cold plate. It has been thought that the relay of these hydrous phases was terminated at ~1200 km depth by the dehydration of phase D which was the highest pressure phase of DHMSs. Recently, we have theoretically predicted the high pressure phase of phase D and experimentally confirmed the existence of this new DHMS in lower mantle pressure conditions above ~45 GPa. This phase has MgSiO4H2chemical composition and named as phase H. At the lower mantle pressure conditions, Al and H-bearing SiO2, δ-AlOOH, ɛ-FeOOH and phase H may be the relevant hydrous phases in the subducting slabs. Interestingly, the crystal structure of these hydrous phases are almost same and have CaCl2type structure. This suggests that these hydrous phases may potentially be able to make the wide range of solid solution. Some experimental studies already reported that Al preferentially partitioned into phase H and the stability of phase H drastically increased by incorporation of Al (Nishi et al. 2014, Ohira et al. 2014). The density of subducted MORB is reported to be denser than that of pyrolite in the lower mantle (e.g. Kawai et al. 2009). Therefore, there is a possibility that phase H containing Al and Fe in subducted MORB survive down to the bottom of lower mantle and the melting of phase H at the core mantle boundary may contribute to the cause of ultra-low velocity zones. In this study, we further extends our

  1. Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships

    SciTech Connect

    Kim, Hyong June

    2011-01-01

    Deformation processed metal-metal composites (DMMC’s) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule of mixtures. A quantitative relationship between UTS and deformation true strain was determined. X-ray diffraction data on transformation of Al + Ca microstructures to Al + various Al-Ca intermetallic compounds were obtained at the Advanced Photon Source at Argonne National Laboratory. Electrical conductivity was measured over a range of true strains and post-deformation heat treatment schedules.

  2. Facile synthesis of Ba(1-x)K(x)Fe2As2 superconductors via hydride route.

    PubMed

    Zaikina, Julia V; Batuk, Maria; Abakumov, Artem M; Navrotsky, Alexandra; Kauzlarich, Susan M

    2014-12-01

    We have developed a fast, easy, and scalable synthesis method for Ba(1-x)K(x)Fe2As2 (0 ≤ x ≤ 1) superconductors using hydrides BaH2 and KH as a source of barium and potassium metals. Synthesis from hydrides provides better mixing and easier handling of the starting materials, consequently leading to faster reactions and/or lower synthesis temperatures. The reducing atmosphere provided by the evolved hydrogen facilitates preparation of oxygen-free powders. By a combination of methods we have shown that Ba(1-x)K(x)Fe2As2 obtained via hydride route has the same characteristics as when it is prepared by traditional solid-state synthesis. Refinement from synchrotron powder X-ray diffraction data confirms a linear dependence of unit cell parameters upon K content as well as the tetragonal to orthorhombic transition at low temperatures for compositions with x < 0.2. Magnetic measurements revealed dome-like dependence of superconducting transition temperature Tc upon K content with a maximum of 38 K for x close to 0.4. Electron diffraction and high-resolution high-angle annular dark-field scanning transmission electron microscopy indicates an absence of Ba/K ordering, while local inhomogeneity in the Ba/K distribution takes place at a scale of several angstroms along [110] crystallographic direction. PMID:25386877

  3. Hydrogen permeation characteristics of some Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Van Deventer, E. H.; Maroni, V. A.

    1983-01-01

    Hydrogen permeation data are reported for two Fe-Cr-Al alloys, Type-405 SS (Cr 14-A1 0.2) and a member of the Fecralloy family of alloys (Cr 16-A1 5). The hydrogen permeability of each alloy (in a partially oxidized condition) was measured over a period of several weeks at randomly selected temperatures (between 150 and 850°C) and upstream H 2 pressures (between 2 and 1.5 × 10 4 Pa). The permeabilities showed considerable scatter with both time and temperature and were 10 2 to 10 3 times lower than those of pure iron, even in strongly reducing environments. The exponent, n, for the relationship between upstream H 2 pressure, P, and permeability, φ, ( φ ~ Pn) was closer to 0.7 than to the expected 0.5, indicating a process limited by surface effects (e.g., surface oxide films) as opposed to bulk material effects. Comparison of these results with prior permeation measurements on other Fe-Cr-Al alloys, on Fe-Cr alloys, and on pure iron shows that the presence of a few weight percent aluminum offers the best prospects for achieving low tritium permeabilities with martensitic and ferritic steels used in fusion-reactor first wall and blanket applications.

  4. Site specific spin dynamics in BaFe2As2: tuning the ground state by orbital differentiation.

    PubMed

    Rosa, P F S; Adriano, C; Garitezi, T M; Grant, T; Fisk, Z; Urbano, R R; Pagliuso, P G

    2014-10-08

    The role of orbital differentiation on the emergence of superconductivity in the Fe-based superconductors remains an open question to the scientific community. In this investigation, we employ a suitable microscopic spin probe technique, namely Electron Spin Resonance (ESR), to investigate this issue on selected chemically substituted BaFe2As2 single crystals. As the spin-density wave (SDW) phase is suppressed, we observe a clear increase of the Fe 3d bands anisotropy along with their localization at the FeAs plane. Such an increase of the planar orbital content is interestingly independent of the chemical substitution responsible for suppressing the SDW phase. As a consequence, the magnetic fluctuations in combination with this particular symmetry of the Fe 3d bands are propitious ingredients for the emergence of superconductivity in this class of materials.

  5. Site specific spin dynamics in BaFe2As2: tuning the ground state by orbital differentiation

    PubMed Central

    Rosa, P. F. S.; Adriano, C.; Garitezi, T. M.; Grant, T.; Fisk, Z.; Urbano, R. R.; Pagliuso, P. G.

    2014-01-01

    The role of orbital differentiation on the emergence of superconductivity in the Fe-based superconductors remains an open question to the scientific community. In this investigation, we employ a suitable microscopic spin probe technique, namely Electron Spin Resonance (ESR), to investigate this issue on selected chemically substituted BaFe2As2 single crystals. As the spin-density wave (SDW) phase is suppressed, we observe a clear increase of the Fe 3d bands anisotropy along with their localization at the FeAs plane. Such an increase of the planar orbital content is interestingly independent of the chemical substitution responsible for suppressing the SDW phase. As a consequence, the magnetic fluctuations in combination with this particular symmetry of the Fe 3d bands are propitious ingredients for the emergence of superconductivity in this class of materials. PMID:25292360

  6. Site specific spin dynamics in BaFe2As2: tuning the ground state by orbital differentiation

    NASA Astrophysics Data System (ADS)

    Rosa, P. F. S.; Adriano, C.; Garitezi, T. M.; Grant, T.; Fisk, Z.; Urbano, R. R.; Pagliuso, P. G.

    2014-10-01

    The role of orbital differentiation on the emergence of superconductivity in the Fe-based superconductors remains an open question to the scientific community. In this investigation, we employ a suitable microscopic spin probe technique, namely Electron Spin Resonance (ESR), to investigate this issue on selected chemically substituted BaFe2As2 single crystals. As the spin-density wave (SDW) phase is suppressed, we observe a clear increase of the Fe 3d bands anisotropy along with their localization at the FeAs plane. Such an increase of the planar orbital content is interestingly independent of the chemical substitution responsible for suppressing the SDW phase. As a consequence, the magnetic fluctuations in combination with this particular symmetry of the Fe 3d bands are propitious ingredients for the emergence of superconductivity in this class of materials.

  7. MFM studies of magnetic domain patterns in bulk barium ferrite (BaFe 12O 19) single crystals

    NASA Astrophysics Data System (ADS)

    Jalli, Jeevan; Hong, Yang-Ki; Abo, Gavin S.; Bae, Seok; Lee, Jae-Jin; Park, Ji-Hoon; Choi, Byoung C.; Kim, Seong-Gon

    2011-11-01

    Magnetic domain patterns in bulk barium ferrite (BaFe 12O 19; BaM) single crystals on the basal plane and the prism plane were measured and studied by magnetic force microscopy (MFM). The surface domain pattern is in the form of flowers or star on the basal plane and long elongated spikes or stripe domains on the prism plane. The change in domain structure with applied field ( Happ) and the thickness ( T) dependence on domain width ( δ) was observed. The domain width decreased from 32 to 9 μm for the crystals of 800-100 μm thicknesses, respectively.

  8. Giant magnetoelectric coupling interaction in BaTiO{sub 3}/BiFeO{sub 3}/BaTiO{sub 3} trilayer multiferroic heterostructures

    SciTech Connect

    Kotnala, R. K. E-mail: rkkotnala@gmail.com; Gupta, Rekha; Chaudhary, Sujeet

    2015-08-24

    Multiferroic trilayer thin films of BaTiO{sub 3}/BiFeO{sub 3}/BaTiO{sub 3} were prepared by RF-magnetron sputtering technique at different thicknesses of BiFeO{sub 3} layer. A pure phase polycrystalline growth of thin films was confirmed from X-ray diffraction results. The film showed maximum remnant electric polarization (2P{sub r}) of 13.5 μC/cm{sup 2} and saturation magnetization (M{sub s}) of 61 emu/cc at room temperature. Thermally activated charge transport dominated via oxygen vacancies as calculated by their activation energy, which was consistent with current–voltage characteristics. Magnetic field induced large change in resistance and capacitance of grain, and grain boundary was modeled by combined impedance and modulus spectroscopy in the presence of varied magnetic fields. Presence of large intrinsic magnetoelectric coupling was established by a maximum 20% increase in grain capacitance (C{sub g}) with applied magnetic field (2 kG) on trilayer having 20 nm BiFeO{sub 3} layer. Substantially higher magnetoelectric coupling in thinner films has been observed due to bonding between Fe and Ti atoms at interface via oxygen atoms. Room temperature magnetoelectric coupling was confirmed by dynamic magnetoelectric coupling, and maximum longitudinal magnetoelectric coupling of 515 mV/cm-Oe was observed at 20 nm thickness of BiFeO{sub 3}. The observed magnetoelectric properties are potentially useful for novel room temperature magnetoelectric and spintronic device applications for obtaining higher voltage at lower applied magnetic field.

  9. Large piezoelectric response of BiFeO3/BaTiO3 polycrystalline films induced by the low-symmetry phase.

    PubMed

    Hou, Y F; Li, W L; Zhang, T D; Wang, W; Cao, W P; Liu, X L; Fei, W D

    2015-05-01

    BaTiO3, BiFeO3 and BiFeO3/BaTiO3 polycrystalline films were prepared by the radio frequency magnetron sputtering on the Pt/Ti/SiO2/Si substrate. The phase structure, converse piezoelectric coefficient and domain structure of BaTiO3, BiFeO3 and BiFeO3/BaTiO3 thin films are characterized by XRD and PFM, respectively. The converse piezoelectric coefficient d33 of BiFeO3/BaTiO3 thin films is 119.5 pm V(-1), which is comparable to that of lead-based piezoelectric films. The large piezoelectric response of BiFeO3/BaTiO3 thin films is ascribed to the low-symmetry T-like phase BiFeO3, because the spontaneous polarization vector of T-like phase (with monoclinic symmetry) BiFeO3 can rotate easily under external field. In addition, the reduced leakage current and major domains with upward polarization are also attributed to the large piezoelectricity.

  10. Thermodynamic properties of ternary oxides in the system Ba-Fe-O using solid-state electrochemical cells with oxide and fluoride ion conducting electrolytes

    NASA Astrophysics Data System (ADS)

    Rakshit, S. K.; Parida, S. C.; Singh, Ziley; Prasad, R.; Venugopal, V.

    2004-04-01

    The standard molar Gibbs energy of formations of BaFe 12O 19(s), BaFe 2O 4(s), Ba 2Fe 2O 5(s), Ba 3Fe 2O 6(s) and Ba 5Fe 2O 8(s) have been determined using solid-state electrochemical technique employing CaF 2(s) as an electrolyte. The reversible e.m.f. values have been measured in the temperature range from 970 to 1151 K. The oxygen chemical potential corresponding to three phase equilibria involving technologically important compound BaFe 12O 19(s) has been determined using solid-state electrochemical technique employing CSZ as an electrolyte from 1048 to 1221 K. The values of Δ fGm0( T) for the above ternary oxides are given by ΔfG m0( BaFe12O19, s)/ kJ mol -1(±0.6)=-5431.3+1.5317 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( BaFe2O4, s)/ kJ mol -1(±1.3)=-1461.4+0.3745 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( Ba2Fe2O5, s)/ kJ mol -1(±1.4)=-2038.3+0.4433 (T/ K) (970⩽T/ K⩽1149) ΔfG m0( Ba3Fe2O6, s)/ kJ mol -1(±1.5)=-2700.1+0.6090 (T/ K) (969⩽T/ K⩽1150) and ΔfG m0( Ba5Fe2O8, s)/ kJ mol -1(±1.6)=-3984.1+0.9300 (T/ K) (973⩽T/ K⩽1150) The uncertainty estimates for Δ fGm0 includes the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. An isothermal oxygen potential diagram for the system Ba-Fe-O was constructed at 1100 K based on the thermodynamic data obtained in this study.

  11. Chemical mixing at “Al on Fe” and “Fe on Al” interfaces

    SciTech Connect

    Süle, P.; Horváth, Z. E.; Kaptás, D.; Bujdosó, L.; Balogh, J.; Nakanishi, A.

    2015-10-07

    The chemical mixing at the “Al on Fe” and “Fe on Al” interfaces was studied by molecular dynamics simulations of the layer growth and by {sup 57}Fe Mössbauer spectroscopy. The concentration distribution along the layer growth direction was calculated for different crystallographic orientations, and atomically sharp “Al on Fe” interfaces were found when Al grows over (001) and (110) oriented Fe layers. The Al/Fe(111) interface is also narrow as compared to the intermixing found at the “Fe on Al” interfaces for any orientation. Conversion electron Mössbauer measurements of trilayers—Al/{sup 57}Fe/Al and Al/{sup 57}Fe/Ag grown simultaneously over Si(111) substrate by vacuum evaporation—support the results of the molecular dynamics calculations.

  12. Sulfation and Desulfation Behavior of Pt-BaO/MgO-Al2O3 NOx Storage Reduction Catalyst.

    PubMed

    Jeong, Soyeon; Kim, Do Heui

    2016-05-01

    The comparative study between Pt-BaO/Al2O3 and Pt-BaO/MgO-Al2O3 gives the information about the effect of MgO addition to Al2O3 support on the sulfation and desulfation behavior of Pt-BaO/MgO-Al2O3 NOx storage reduction catalyst. The sulfated two samples were analyzed by using element analysis (EA), X-ray diffraction (XRD), H2 temperature programmed reaction (H2 TPRX) and NOx uptake measurement. The amount of sulfur uptake on 2 wt% Pt-20 wt% BaO/Al2O3 and 2 wt% Pt-20 wt% BaO/MgO-Al2O3 are almost identical as 0.45 and 0.40 of S/Ba, respectively, which yields the drastic decrease in NOx uptake for both sulfated samples. However, after desulfa- tion with H2 at 600 degrees C, the residual sulfur amount on MgO-Al2O3 supported catalyst is three times larger than that on Al2O3 supported one, indicating that sulfur species formed on the former are more stable than those on the latter. It is also well corresponding to the H2 TPRX results where the main H2S peak from MgO-Al2O3 supported sample is observed at higher temperature than Al2O3 supported one, resulting in the lower NOx uptake activity of former sample than the latter one. Meanwhile, after desulfation of MgO-Al2O3 supported sample at 700 degrees C and 800 degrees C, the activity is recovered more significantly due to the removal of the large amount of sulfur while Al2O3 supported one decreases monotonically due to the sintering of Pt crystallite and the formation of BaAl2O4 phase. It is summarized that MgO-Al2O3 supported catalyst enhances the thermal stability of the catalyst, however, forms the stable sulfate species, which needs to be improved to develop the more sulfur resistant NSR catalyst system. PMID:27483765

  13. Sulfation and Desulfation Behavior of Pt-BaO/MgO-Al2O3 NOx Storage Reduction Catalyst.

    PubMed

    Jeong, Soyeon; Kim, Do Heui

    2016-05-01

    The comparative study between Pt-BaO/Al2O3 and Pt-BaO/MgO-Al2O3 gives the information about the effect of MgO addition to Al2O3 support on the sulfation and desulfation behavior of Pt-BaO/MgO-Al2O3 NOx storage reduction catalyst. The sulfated two samples were analyzed by using element analysis (EA), X-ray diffraction (XRD), H2 temperature programmed reaction (H2 TPRX) and NOx uptake measurement. The amount of sulfur uptake on 2 wt% Pt-20 wt% BaO/Al2O3 and 2 wt% Pt-20 wt% BaO/MgO-Al2O3 are almost identical as 0.45 and 0.40 of S/Ba, respectively, which yields the drastic decrease in NOx uptake for both sulfated samples. However, after desulfa- tion with H2 at 600 degrees C, the residual sulfur amount on MgO-Al2O3 supported catalyst is three times larger than that on Al2O3 supported one, indicating that sulfur species formed on the former are more stable than those on the latter. It is also well corresponding to the H2 TPRX results where the main H2S peak from MgO-Al2O3 supported sample is observed at higher temperature than Al2O3 supported one, resulting in the lower NOx uptake activity of former sample than the latter one. Meanwhile, after desulfation of MgO-Al2O3 supported sample at 700 degrees C and 800 degrees C, the activity is recovered more significantly due to the removal of the large amount of sulfur while Al2O3 supported one decreases monotonically due to the sintering of Pt crystallite and the formation of BaAl2O4 phase. It is summarized that MgO-Al2O3 supported catalyst enhances the thermal stability of the catalyst, however, forms the stable sulfate species, which needs to be improved to develop the more sulfur resistant NSR catalyst system.

  14. Magnetic spin structure and magnetoelectric coupling in BiFeO{sub 3}-BaTiO{sub 3} multilayer

    SciTech Connect

    Lazenka, Vera Modarresi, Hiwa; Bisht, Manisha; Vantomme, André; Temst, Kristiaan; Lorenz, Michael; Bonholzer, Michael; Grundmann, Marius; Rüffer, Rudolf; Van Bael, Margriet J.

    2015-02-23

    Magnetic spin structures in epitaxial BiFeO{sub 3} single layer and an epitaxial BaTiO{sub 3}/BiFeO{sub 3} multilayer thin film have been studied by means of nuclear resonant scattering of synchrotron radiation. We demonstrate a spin reorientation in the 15 × [BaTiO{sub 3}/BiFeO{sub 3}] multilayer compared to the single BiFeO{sub 3} thin film. Whereas in the BiFeO{sub 3} film, the net magnetic moment m{sup →} lies in the (1–10) plane, identical to the bulk, m{sup →} in the multilayer points to different polar and azimuthal directions. This spin reorientation indicates that strain and interfaces play a significant role in tuning the magnetic spin order. Furthermore, large difference in the magnetic field dependence of the magnetoelectric coefficient observed between the BiFeO{sub 3} single layer and multilayer can be associated with this magnetic spin reorientation.

  15. Structural investigations in BaFe(2-x)Ru(x)As2 as a function of Ru and temperature.

    PubMed

    Sharma, Shilpam; Bharathi, A; Vinod, K; Sundar, C S; Srihari, V; Sen, Smritijit; Ghosh, Haranath; Sinha, Anil K; Deb, S K

    2015-02-01

    We present the results of synchrotron X-ray diffraction (XRD) measurements on powdered single-crystal samples of BaFe(2-x)Ru(x)As2, as a function of Ru content, and as a function of temperature, across the spin-density wave transition in BaFe(1.9)Ru(0.1)As2. The Rietveld refinements reveal that with Ru substitution, while the a-axis increases, the c-axis decreases. In addition, the variation of positional coordinates of As (z(As)), the Fe-As bond length and the As-Fe-As bond angles have also been determined. In the sample with x = 0.1, temperature-dependent XRD measurements indicate that the orthorhombicity shows the characteristic increase with a decrease in temperature, below the magnetic transition. It is seen that the c-axis, the As-Fe-As bond angles, Fe-As bond length and positional coordinates of the As show definite anomalies close to the structural transition. The observed anomalies in structural parameters are analysed in conjunction with restricted geometric optimization of the structure using ab initio electronic structure calculations.

  16. Luminescent Characteristics of Ba(1--x)Al2Si2O8:xTb3+ Green Phosphors.

    PubMed

    Hakeem, D A; Kim, Y; Park, K

    2016-02-01

    Ba(1--x)Al2Si2O8:xTb3+ (0.03 < or = x < or = 0.12) green phosphors are prepared by solution combustion method. The photoluminescence properties of the Ba(1--x)Al2Si2O8:xTb3+ phosphors are studied as a function of Tb3+ concentration. The Ba(1--x)Al2Si2O8:xTb3+ phosphors crystallize in a hexagonal crystal structure. The excitation spectra consist of two broad bands with maxima at 238 nm and 265 nm and several weak peaks in the range of 310-500 nm. Strong emission peaks are observed at 484, 540, 589, and 612 nm due to the (5)D4 --> (7)F6, (5)D4 --> (7)F5, (5)D4 --> (7)F4, and (5)D4 --> (7)F3 tran- sitions of the Tb3+, respectively. The emission peak (540 nm) from the (5)D4 --> (7)F3 transition is dominant, indicating green light emission. Ba(1--x)Al2Si2O8:xTb3+ phosphor shows the strongest green emission intensity. The Ba(1--x)Al2Si2O8:xTb3+ can be considered a promising green phosphor for white LEDs applications. PMID:27433666

  17. Suppression of structural phase transition by Sr substitution in the improper ferroelectric BaAl2O4

    NASA Astrophysics Data System (ADS)

    Mori, Shigeo; Ishii, Yui; Tanaka, Eri; Tsukasaki, Hirofumi; Kawaguchi, Shogo

    2015-10-01

    To clarify lattice fluctuations and precursor phenomena accompanied by structural phase transition in stuffed tridymite compounds, changes in diffuse scattering as a function of temperature in Ba0.6Sr0.4Al2O4 have been carefully investigated by powder X-ray diffraction using synchrotron radiation, electron diffraction and transmission electron microscopy (TEM) experiments. In situ electron diffraction experiments revealed that Ba0.6Sr0.4Al2O4 exhibits lattice fluctuation manifested as a unique honeycomb-shaped diffuse scattering in the wide temperature range between 298 and 100 K. Unlike in the case of BaAl2O4, Ba0.6Sr0.4Al2O4 shows no structural phase transition to the ferroelectric structure with the hexagonal P63 space group in the temperature range. In contrast, it is revealed that the electron beam irradiation to the Ba0.6Sr0.4Al2O4 sample inside the transmission electron microscope induced structural change from the hexagonal P6322 structure to the modulated structure with double periodicity in the three equivalent <110> directions in the low-temperature region. This implies that the total energy difference between these two structures is small. The hexagonal P6322 structure transforms into the modulated one with short correlation length owing to some small external perturbations.

  18. Microstructural and thermal properties of pure BaFe12O19 and Sr doped barium ferrite (Ba0.9Sr0.1Fe12O19) synthesized by auto combustion method

    NASA Astrophysics Data System (ADS)

    Taufeeq, Saba; Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2016-05-01

    Nanoparticles (NPs) of Pure BaFe12O19 and Strontium doped Barium Ferrite (Ba0.9Sr0.1Fe12O19) have been successfully synthesized by Auto combustion method using citric acid as a chelating agent and calcined at 450°C for 3 hrs and 850°C for 4 hrs. Microstructural studies were carried by XRD and SEM techniques. Structural studies suggest that the crystal system remains hexagonal even with the doping of Strontium. The XRD analysis confirms the formation of the structures in the nanometer regime and the peaks are the evidence of the crystalline phase. The SEM images shows the morphology of surface of the samples. The thermal property studied by TGA shows the weight loss which is with varying the temperature and weight loss also varies with Sr doping. The TGA analysis exhibits the loss of weight at different temperatures.

  19. Magnetotransport Properties of Co2FeAl Nanowires

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab; Gyawali, P.; Dahal, Bishnu; Dulal, R.; Pegg, I. L.; Philip, John

    2013-03-01

    Co2FeAl (CFA) nanowire (NW) exhibit interesting magnetic behavior with temperature, which arises from the granular structure.[2] To understand the magnetotransport properties, single CFA NW devices were fabricated using standard electron beam lithography. The magnetoresistance measurements of single CFA NW device were carried out at different temperatures. The magnetoresistance measurements show oscillations as a function of applied external magnetic field. This work has been supported by funding from NSF under CAREER Grant No. ECCS-0845501 and NSF-MRI, DMR-0922997.

  20. Zener Relaxation Peak in an Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng-Cun; Cheng, He-Fa; Gong, Chen-Li; Wei, Jian-Ning; Han, Fu-Sheng

    2002-11-01

    We have studied the temperature spectra of internal friction and relative dynamic modulus of the Fe-(25 wt%)Cr-(5 wt%)Al alloy with different grain sizes. It is found that a peak appears in the internal friction versus temperature plot at about 550°C. The peak is of a stable relaxation and is reversible, which occurs not only during heating but also during cooling. Its activation energy is 2.5 (+/- 0.15) eV in terms of the Arrhenius relation. In addition, the peak is not obvious in specimens with a smaller grain size. It is suggested that the peak originates from Zener relaxation.

  1. Preparation of iron aluminate (FeAl2O4) nanoparticles from FeAl2O4 hollow particles fabricated by using a spray pyrolysis process

    NASA Astrophysics Data System (ADS)

    Yun, Jaecheol; Kim, Yangdo; Park, Dahee; Yun, Jung-Yeul

    2015-05-01

    Iron aluminate (FeAl2O4) hollow particles with a spinel structure were synthesized by using a spray pyrolysis process. FeAl2O4 hollow particles were formed at a reaction temperature of 900 °C at a flow rate of 40 L/min as a result of the rapid solvent evaporation and decomposition gases from the droplets in the spray solution prepared from metal salts and organic reagents. FeAl2O4 hollow particles were fabricated at a reaction temperature of 900 °C with a flow rate of 40 L/min. The FeAl2O4 hollow particles were heat treated for 3 hours at 600 °C in a 5% H2/Ar atmosphere to form the crystal particles. Subsequently, FeAl2O4 nanoparticles were fabricated from the FeAl2O4 hollow particles by using the wet milling process. After milling for 60 minutes, transmission electron microscopy revealed the FeAl2O4 particles to have a mean size of approximately 50 nm. The FeAl2O4 nanoparticles were fabricated successfully by using a two-step process, spray pyrolysis and wet milling.

  2. Cyclic Oxidation of FeCrAlY/Al2O3 Composites

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.

    1999-01-01

    Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.

  3. Mechanism of particle growth of a BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphor by firing with AlF{sub 3}

    SciTech Connect

    Oshio, Shozo; Matsuoka, Tomizo; Tanaka, Shosaku; Kobayashi, Hiroshi

    1998-11-01

    The mechanism of particle growth of the blue emitting BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphor by firing with AlF{sub 3} has been clarified. It was found that the reaction between BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} and AlF{sub 3} during firing, on the basis of the following chemical equation, results in recreation of BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} with particle growth BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} + (4/3)AlF{sub 3} {l_reversible} BaMgF{sub 4}:Eu{sup 2+} + (17/3)Al{sub 2}O{sub 3}, the firing of Ba/MgAl{sub 10}O{sub 17}:Eu{sup 2+} with AlF{sub 3} first converts the phosphor into a mixture of the two compounds, BaMgF{sub 4}:Eu{sup 2+} and Al{sub 2}O{sub 3}, at around 1200 C. The BaMgF{sub 4}:Eu{sup 2+} melts at temperatures over 1000 C, then reacts with Al{sub 2}O{sub 3}, and participates in the recreation of both BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} and AlF{sub 3} through a chemical reaction between the two compounds at 1200 C in BaMgF{sub 4}:Eu{sup 2+} solutions. Recreated AlF{sub 3} appears to sublime immediately because it is a material which sublimates with heating. This paper proposes a mechanism for the growth of particle of recreated BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} by the melting of BaMgF{sub 4}:Eu{sup 2+}.

  4. Phase Separation kinetics in an Fe-Cr-Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Chao, J.

    2012-01-01

    The {alpha}-{alpha}{prime} phase separation kinetics in a commercial Fe-20 wt.% Cr-6 wt.% Al oxide dispersion-strengthened PM 2000{trademark} steel have been characterized with the complementary techniques atom probe tomography and thermoelectric power measurements during isothermal aging at 673, 708, and 748 K for times up to 3600 h. A progressive decrease in the Al content of the Cr-rich {alpha}{prime} phase was observed at 708 and 748 K with increasing time, but no partitioning was observed at 673 K. The variation in the volume fraction of the {alpha}{prime} phase well inside the coarsening regime, along with the Avrami exponent 1.2 and activation energy 264 kJ mol{sup -1}, obtained after fitting the experimental results to an Austin-Rickett type equation, indicates that phase separation in PM 2000{trademark} is a transient coarsening process with overlapping nucleation, growth, and coarsening stages.

  5. Ba3Pt4Al4-Structure, Properties, and Theoretical and NMR Spectroscopic Investigations of a Complex Platinide Featuring Heterocubane [Pt4Al4] Units.

    PubMed

    Stegemann, Frank; Benndorf, Christopher; Bartsch, Timo; Touzani, Rachid St; Bartsch, Manfred; Zacharias, Helmut; Fokwa, Boniface P T; Eckert, Hellmut; Janka, Oliver

    2015-11-16

    Ba3Pt4Al4 was prepared from the elements in niobium ampules and crystallizes in an orthorhombic structure, space group Cmcm (oP44, a = 1073.07(3), b = 812.30(3), c = 1182.69(3) pm) isopointal to the Zintl phase A2Zn5As4 (A = K, Rb). The structure features strands of distorted [Pt4Al4] heterocubane-like units connected by condensation over Pt/Al edges. These are arranged in a hexagonal rod packing by further condensation over Pt and Al atoms with the barium atoms located inside cavities of the [Pt4Al4](δ-) framework. Structural relaxation confirmed the electronic stability of the new phase, while band structure calculations indicate metallic behavior. Crystal orbital Hamilton bonding analysis coupled with Bader effective charge analysis suggest a polar intermetallic phase in which strong Al-Pt covalent bonds are present, while a significant electron transfer from Ba to the [Pt4Al4](δ-) network is found. By X-ray photoelectron spectroscopy measurements the Pt 4f5/2 and 4f7/2 energies for Ba3Pt4Al4 were found in the range of those of elemental Pt due to the electron transfer of Ba, while PtAl and PtAl2 show a pronounced shift toward a more cationic platinum state. (27)Al magic-angle spinning NMR investigations verified the two independent crystallographic Al sites with differently distorted tetrahedrally coordinated [AlPt4] units. Peak assignments could be made based on both geometrical considerations and in relation to electric field gradient calculations. PMID:26536164

  6. Local formation of a Heusler structure in CoFe-Al alloys

    NASA Astrophysics Data System (ADS)

    Wurmehl, S.; Jacobs, P. J.; Kohlhepp, J. T.; Swagten, H. J. M.; Koopmans, B.; Maat, S.; Carey, M. J.; Childress, J. R.

    2011-01-01

    We systematically study the changes in the local atomic environments of Co in CoFe-Al alloys as a function of Al content by means of nuclear magnetic resonance. We find that a Co2FeAl Heusler type structure is formed on a local scale. The observed formation of a highly spin-polarized Heusler compound may explain the improved magnetotransport properties in CoFe-Al based current-perpendicular-to-the-plane spin-valves.

  7. Close correlation between magnetic properties and the soft phonon mode of the structural transition in BaFe2As2 and SrFe2As2

    DOE PAGES

    Parshall, D.; Pintschovius, L.; Niedziela, Jennifer L.; Castellan, J. -P.; Lamago, D.; Mittal, R.; Wolf, Th.; Reznik, Dmitry

    2015-04-27

    Pmore » arent compounds of Fe-based superconductors undergo a structural phase transition from a tetragonal to an orthorhombic structure. We investigated the temperature dependence of the frequencies of TA phonons that extrapolate to the shear vibrational mode at the zone center, which corresponds to the orthorhombic deformation of the crystal structure at low temperatures in BaFe2As2 and SrFe2As2. We found that acoustic phonons at small wave vectors soften gradually towards the transition from high temperatures, tracking the increase of the size of slowly fluctuating magnetic domains. On cooling below the transition to base temperature the phonons harden, following the square of the magnetic moment (which we find is proportional to the anisotropy gap). Finally, our results provide evidence for close correlation between magnetic and phonon properties in Fe-based superconductors.« less

  8. Superconducting properties of hole doped Ba(0.6)Li(0.4)Fe2As2 single crystal.

    PubMed

    Ahmad, D; Min, B H; Ko, M J; Seo, Y L; Choi, W J; Lee, J H; Kim, G C; Kim, Y C; Kwon, Y S

    2014-04-30

    We report the emergence of superconductivity in Li doped Ba-122 single crystals grown by the Bridgman method. The superconducting transition temperature Tc,onset is around 19 K. The specific heat capacity C/T shows a weak anomaly near Tc. The value of ΔC/γnTc is smaller than the value predicted in BCS theory indicating a multigap nature of the sample. The magnetic measurements show that the lower critical field Hc1(T) exhibits a linear temperature dependence, with a pronounced change of the Hc1(T) curvature around 0.4Tc and Hc1(0) ≈ 430 Oe in the Ba0.6Li0.4Fe2As2 single crystal. Furthermore, temperature dependence of the penetration depth λ(T) follows a power law (~T(n)) below 0.4Tc which predicts possible S±-wave pairing in a Ba0.6Li0.4Fe2As2 superconductor. Over a wide range of temperatures, the Jc(H) exhibits a relation J(c)[proportionality] H(-α) with α = 0.5 ~ 0.6 for H || c and H || ab which indicates random defects in the sample. We found that the temperature dependence of the critical current density Jc(T) can be fitted well with the δl-type pinning model, whose origin is attributed to spatial variations of charge carrier mean free path l. We suggest that the large mismatch in the ionic radius of Ba and Li can affect the irreversible magnetic properties of the Ba0.6Li0.4Fe2As2 single crystal without any structural transition. PMID:24721709

  9. Doping effect of Cu and Ni impurities on the Fe-based superconductor Ba0.6K0.4Fe2As2

    NASA Astrophysics Data System (ADS)

    Cheng, Peng; Shen, Bing; Han, Fei; Wen, Hai-Hu

    2013-11-01

    Copper and nickel impurities have been doped into the iron pnictide superconductor Ba0.6K0.4Fe2As2. Resistivity measurements reveal that Cu and Ni impurities suppress the superconducting transition temperature Tc with rates of \\Delta T_c/\\text{Cu-}1%= -3.5\\ \\text{K} and \\Delta T_c/\\text{Ni-}1% = -2.9\\ \\text{K} , respectively. The temperature dependence of the Hall coefficient RH of these two series of samples shows that both Cu doping and Ni doping can introduce electrons into Ba0.6K0.4Fe2As2. With more doping, the sign of RH gradually changes from positive to negative, and the changing rate of Cu-doped samples is much faster than that of Ni-doped ones. Combining this with the results of first-principles calculations published previously and the nonmonotonic evolution of the Hall coefficient in the low-temperature region, we argue that when more Cu impurities are introduced into Ba0.6K0.4Fe2As2, the removal of Fermi spectral weight in the hole-like Fermi surfaces is much stronger than that in the electron-like Fermi surfaces, which is equivalent to a significant electron doping effect. DC magnetization and the lattice constants analysis reveal that static magnetic moments and notable lattice compression have formed in Cu-doped samples. It seems that superconductivity can be suppressed by the impurities disregarding whether they are magnetic or nonmagnetic in nature. This gives strong support to a pairing gap with a sign reversal, like S^+/- . However, the relatively slow suppression rates of Tc show the robustness of superconductivity of Ba0.6K0.4Fe2As2 against impurities, implying that multi-pairing channels may exist in the system.

  10. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explainmore » that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  11. Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Bhasin, K. B.; Stan, M. A.; Kong, K. S.; Itoh, T.

    1992-01-01

    Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range.

  12. Pressure-Induced Mott Transition Followed by a 24-K Superconducting Phase in BaFe2S3

    NASA Astrophysics Data System (ADS)

    Yamauchi, Touru; Hirata, Yasuyuki; Ueda, Yutaka; Ohgushi, Kenya

    2015-12-01

    We performed high-pressure study for a Mott insulator BaFe2S3 , by measuring dc resistivity and ac susceptibility up to 15 GPa. We found that the antiferromagnetic insulating state at the ambient pressure is transformed into a metallic state at the critical pressure, Pc=10 GPa , and the superconductivity with the optimum Tc=24 K emerges above Pc. Furthermore, we found that the metal-insulator transition (Mott transition) boundary terminates at a critical point around 10 GPa and 75 K. The obtained pressure-temperature (P -T ) phase diagram is similar to those of the organic and fullerene compounds; namely, BaFe2S3 is the first inorganic superconductor in the vicinity of bandwidth control type Mott transition.

  13. Effect of Uniaxial Strain on the Structural and Magnetic Phase Transitions in BaFe2As2

    SciTech Connect

    Dhital, Chetan; Yamani, Z; Tian, W.; Zeretsky, J; Safa-Sefat, Athena; Wang, Ziqiang; Birgeneau, R. J.; Wilson, Stephen

    2012-01-01

    We report neutron scattering experiments probing the influence of uniaxial strain on both the magnetic and structural order parameters in the parent iron pnictide compound, BaFe{sub 2}As{sub 2}. Our data show that modest strain fields along the in-plane orthorhombic b axis can affect significant changes in phase behavior simultaneous to the removal of structural twinning effects. As a result, we demonstrate in BaFe{sub 2}As{sub 2} samples detwinned via uniaxial strain that the in-plane C{sub 4} symmetry is broken by both the structural lattice distortion and long-range spin ordering at temperatures far above the nominal (strain-free) phase transition temperatures. Surprising changes in the magnetic order parameter of this system under relatively small strain fields also suggest the inherent presence of magnetic domains fluctuating above the strain-free ordering temperature in this material.

  14. Magnetoelectric memory effect in the Y-type hexaferrite BaSrZnMgFe12O22

    NASA Astrophysics Data System (ADS)

    Wang, Fen; Shen, Shi-Peng; Sun, Young

    2016-08-01

    We report on the magnetic and magnetoelectric properties of the Y-type hexaferrite BaSrZnMgFe12O22, which undergoes transitions from a collinear ferrimagnetic phase to a proper screw phase at 310 K and to a longitudinal conical phase at 45 K. Magnetic and electric measurements revealed that the magnetic structure with spiral spin order can be modified by applying a magnetic field, resulting in magnetically controllable electric polarization.It was observed that BaSrZnMgFe12O22 exhibits an anomalous magnetoelectric memory effect: the ferroelectric state can be partially recovered from the paraelectric phase with collinear spin structure by reducing magnetic field at 20 K. We ascribe this memory effect to the pinning of multiferroic domain walls, where spin chirality and structure are preserved even in the nonpolar collinear spin state. Project supported by the National Natural Science Foundation of China (Grant Nos. 11534015 and 51371193).

  15. Pressure-induced superconductivity in Ba0.5Sr0.5Fe2As2

    NASA Astrophysics Data System (ADS)

    Tsoi, Georgiy M.; Malone, Walter; Uhoya, Walter; Mitchell, Jonathan E.; Vohra, Yogesh K.; Wenger, Lowell E.; Sefat, Athena S.; Weir, S. T.

    2012-12-01

    High-pressure electrical resistance measurements have been performed on single crystal Ba0.5Sr0.5Fe2As2 platelets to pressures of 16 GPa and temperatures down to 10 K using designer diamond anvils under quasi-hydrostatic conditions with an insulating steatite pressure medium. The resistance measurements show evidence of pressure-induced superconductivity with an onset transition temperature at ˜31 K and zero resistance at ˜22 K for a pressure of 3.3 GPa. The transition temperature decreases gradually with increasing pressure before completely disappearing for pressures above 12 GPa. The present results provide experimental evidence that a solid solution of two 122-type materials, i.e., Ba1-xSrxFe2As2 (0 < x < 1), can also exhibit superconductivity under high pressure.

  16. Aging effect in magnetotransport property of oxygen adsorbed BaFe{sub 2}As{sub 2}

    SciTech Connect

    Ghosh, Nilotpal E-mail: nilotpal@vit.ac.in; Raj, Santhosh

    2015-06-24

    Presence of oxygen (O{sub 2}) has been found by Energy Dispersive X-ray Analysis (EDAX) on the surfaces of flux grown BaFe{sub 2}As{sub 2} single crystals which were kept in air ambience for several months. Transport studies show that the O{sub 2} adsorbed crystals are more resistive and do not display any sharp slope change near 140 K which is the well known Spin Density Wave (SDW) transition temperature (T{sub SDW}) accompanying structural transition for as grown BaFe{sub 2}As{sub 2}. An anomalous slope change in resistivity is observed around 18 K at 0 and 5T. Magnetoresistance (MR) is noticed to increase as a function of applied field (H) quite differently than that for as grown crystals below T{sub SDW} which may be attributed to aging effect.

  17. Formation of layered Fe(II)-Al(III)-hydroxides during reaction of Fe(II) with aluminum oxide.

    PubMed

    Elzinga, Evert J

    2012-05-01

    The reactivity of aqueous Fe(II) with aluminum oxide in anoxic solutions was investigated with batch kinetic experiments combined with Fe K edge X-ray absorption spectroscopy measurements to characterize Fe(II) sorption products. Formation of Fe(II)-Al(III)-layered double hydroxides with an octahedral sheet structure similar to nikischerite (NaFe(II)(6) Al(3)(SO(4))(2)(OH)(18) (H(2)O)(12)) was observed within a few hours during sorption at pH 7.5 and aqueous Fe(II) concentrations of 1-3 mM. These Fe(II) phases are composed of brucite-like Fe(II)(OH)(2) sheets with partial substitution of Al(III) for Fe(II), charge balanced by anions coordinated along the basal planes. Their fast rate of formation suggests that these previously unrecognized Fe(II) phases, which are structurally and compositionally similar to green rust, may be an important sink of Fe(II) in suboxic and anoxic geochemical environments, and impact the fate of structurally compatible trace metals, such as Co(II), Ni(II), and Zn(II), as well as redox-reactive species including Cr(VI) and U(VI). Further studies are required to assess the thermodynamics, formation kinetics, and stability of these Fe(II) minerals under field conditions. PMID:22409244

  18. Strain mediated magnetoelectric coupling in a NiFe2O4-BaTiO3 multiferroic composite

    NASA Astrophysics Data System (ADS)

    Gorige, Venkataiah; Kati, Raju; Yoon, D. H.; Kumar, P. S. Anil

    2016-10-01

    In this paper we demonstrate significant magnetoelectric coupling in ferrimagnetic, NiFe2O4, and ferroelectric, BaTiO3, multiferroic composite bulk materials by measuring temperature dependent magnetization. X-ray diffraction, scanning electron microscopy and high resolution transmission electron microscopy data show that the two phases coexist with a highly crystalline and sharp interface without any detectable impurities, which enables significant magnetoelectric (ME) coupling. The temperature dependent magnetization data of the composite clearly show the jumps in magnetization curves at the structural phase transitions of BaTiO3, thereby indicating their origin in ME coupling. The change in coercivity of composite sample in different ferroelectric phases of BaTiO3 has been observed compared to the NiFe2O4 sample. The different lattice strains corresponding to different ferroelectric phases of BaTiO3 could be the driving force for modulating the magnetization and coercivity of the composite material. This is clear evidence of strain mediated ME coupling in ferrimagnetic and ferroelectric composite materials.

  19. Ferroelectric characteristics of MFIS structure with P(VDF-TrFE)/BaTiO3 nanocomposite as ferroelectric layer

    NASA Astrophysics Data System (ADS)

    Valiyaneerilakkal, Uvais; Singh, Amit; Singh, Kulwant; Subash, C. K.; Abbas, S. M.; Komaragiri, Rama; Varghese, Soney

    2014-07-01

    A metal-ferroelectric-insulator-semiconductor (MFIS) structure has been made using poly(vinylidene difluoride-trifluoroethylene)/barium titanate [P(VDF-TrFE)/BaTiO3] nanocomposite as ferroelectric layer, on silicon/silicon dioxide (Si/SiO2) substrate. Different concentrations of BaTiO3 were added to P(VDF-TrFE) polymer using bath sonication method, and the films were prepared using spin coating method. The structure was annealed to 120 °C for 2 h and then the top aluminium electrode was deposited by thermal evaporation method. Capacitance-voltage shows an increase in accumulation capacitance as the BaTiO3 nanoparticle concentrations increases. Dielectric constant was estimated from the capacitance voltage (C-V) characteristics and found to be changing as the concentration of BaTiO3 is varied. Polarization-electric field analyses show hysteresis behaviour of the nanocomposite. A comparison of MFIS and metal-ferroelectric-semiconductor structures was done with varying ferroelectric film thicknesses. All these results suggest that this polymer nanocomposite can be a promising material which can be used in non-volatile memory devices.

  20. Aliovalent Ba2+ doping: A way to reduce oxygen vacancy in multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Das, Rajasree; Sharma, Sucheta; Mandal, Kalyan

    2016-03-01

    This paper demonstrates the impact of Ba2+ substitution on the structural, dielectric relaxation and AC conductivity properties of Bi1-xBaxFeO3 (0 ≤ x ≤ 0.25) ceramics. Ba doping incorporates rhombohedral to tetragonal structural transformation in perovskite BFO. XPS data shows change in oxygen vacancy concentration with Ba doping and it also suggests that schoimetry of the doped compounds is not maintained by creating mix valance state of Fe. Reduction in oxygen vacancy (OVs) in the doped samples is explained by Kroger-Vink notation. Arrhenius plot shows activation energy for dielectric relaxation of the doped samples lies between ~1.16 and 1.44 eV. AC conductivity of material decreases as Ba ion substitution increases in the parent compound. Electrical conductivity is attributed to the correlated barrier hopping (CBH) motion of the oxygen vacancies in the samples. Coulombic potential barrier (WM) height, calculated from Elliott model for CBH motion of charge carriers shows correlation with the activation energy of AC conductivity at low temperature. Activation energy value obtained from the impedance measurements of the samples implies short range migration of oxygen vacancies dominates the frequency dependent conductivity while the frequency independent part of conductivity is the result of long range migration of oxygen vacancies.

  1. Structural and magnetic properties and superconductivity in Ba(Fe1-xTMx)2As2

    SciTech Connect

    Thaler, Alexander

    2012-01-01

    We studied the effects on structural and magnetic phase transitions and the emergence of superconductivity in transition metal substituted BaFe2As2. We grew four series of Ba(Fe1-xTM2)2As2 (TM=Ru, Mn, Co+Cr and Co+Mn) and characterized them by crystallographic, magnetic and transport measurements. We also subjected Ba(Fe1-xCrx)2As2 and Ba(Fe1-xCox)2As2 to heat treatment to explore what changes might be induced.

  2. Spin glass instead of superconductivity in Ba(Fe1-xCrx/2Nix/2)2As2

    NASA Astrophysics Data System (ADS)

    Xu, Sheng-Gao; Sun, Yun-Lei; Jiang, Shuai; Xing, Hui; Jiao, Lin; Yuan, Hui-Qiu; Feng, Chun-Mu; Xu, Zhu-An; Cao, Guang-Han

    2012-12-01

    We have studied an “isoelectronic” Fe-site doping with Cr and Ni in Ba(Fe1-xCrx/2Nix/2)2As2 system. With increasing x, the antiferromagnetic SDW in the parent compound is suppressed quickly. Spin glass state emerges in the range of 0.1 <= x < 0.2. The spin glass state evolves into cluster glass with further doping, and finally becomes ferromagnetism at x = 1.0. No superconductivity was observed down to 0.5 K. The electronic phase diagram is established, and the underlying physics is discussed.

  3. Electrochemical properties of mixed conducting (La,M)(CoFe) oxide perovskites (M=3DSr, Ca, and Ba)

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.; Bates, J.L.

    1996-04-01

    Electrical properties and oxygen permeation properties of solid mixed-conducting electrolytes (La,M)(CoFe) oxide perovskites (M=3DSr, Ca, and Ba) have been characterized. These materials are potentially useful as passive membranes to separate high purity oxygen from air and as the cathode in a fuel cell. Dilatometric linear expansion measurements were performed as a function of temperature and oxygen partial pressure to evaluate the stability.

  4. ABO3 (A = La, Ba, Sr, K; B = Co, Mn, Fe) perovskites for thermochemical energy storage

    NASA Astrophysics Data System (ADS)

    Babiniec, Sean M.; Coker, Eric N.; Ambrosini, Andrea; Miller, James E.

    2016-05-01

    The use of perovskite oxides as a medium for thermochemical energy storage (TCES) in concentrating solar power systems is reported. The known reduction/oxidation (redox) active perovskites LaxSr1-xCoyMn1-yO3 (LSCM) and LaxSr1-xCoyFe1-yO3 (LSCF) were chosen as a starting point for such research. Materials of the LSCM and LSCF family were previously synthesized, their structure characterized, and thermodynamics reported for TCES operation. Building on this foundation, the reduction onset temperatures are examined for LSCM and LSCF compositions. The reduction extents and onset temperatures are tied to the crystallographic phase and reaction enthalpies. The effect of doping with Ba and K is discussed, and the potential shortcomings of this subset of materials families for TCES are described. The potential for long-term stability of the most promising material is examined through thermogravimetric cycling, scanning electron microscopy, and dilatometry. The stability over 100 cycles (450-1050 °C) of an LSCM composition is demonstrated.

  5. Preparation and radar absorptive properties of BaFe12O19 -coated glass fiber

    NASA Astrophysics Data System (ADS)

    Jia, F.; Xu, M.; Bao, H. Q.; Cui, K.; Zhang, F.

    2016-07-01

    Traditional passive jamming materials such as chaff and foil showed some limitations in use because they can only reflect the electromagnetic wave. Therefore, to develop a kind of absorptive passive jamming material to make up for deficiencies of traditional passive jamming materials and improve the jamming efficiency is of great significance. In this paper, the BaFe12O19-coated glass fiber, used as a kind of radar absorptive chaff, was prepared by sol-gel dip-coating method. The effects of heat treatment temperature, heat treatment time and coating times on film quality, tensile strength and attenuation efficiency of the samples were discussed. The study shows that an increase of the heat treatment temperature and an extension of the heat treatment time is conducive to the growth of barium ferrite grain, while they would introduce the loss of chaff strength at the same time. In addition, multi-coating process can improve the film quality and attenuation efficiency of the sample. Data show that the 10 times coated samples have a best reflectivity of (15GHz, -6.65dB) and the bandwidth of reflectivity lower than -5dB is11.8 GHz. According to the test results, the prepared material has certain attenuation efficiency in the range of 2GHz-18GHz, having a high practical value.

  6. Structural feature controlling superconductivity in compressed BaFe{sub 2}As{sub 2}

    SciTech Connect

    Yang, Wenge; Jia, Feng-Jiang; Tang, Ling-Yun; Tao, Qian; Xu, Zhu-An; Chen, Xiao-Jia

    2014-02-28

    Superconductivity can be induced with the application of pressure but it disappears eventually upon heavy compression in the iron-based parent compound BaFe{sub 2}As{sub 2}. Structural evolution with pressure is used to understand this behavior. By performing synchrotron X-ray powder diffraction measurements with diamond anvil cells up to 26.1 GPa, we find an anomalous behavior of the lattice parameter with a S shape along the a axis but a monotonic decrease in the c-axis lattice parameter with increasing pressure. The close relationship between the axial ratio c/a and the superconducting transition temperature T{sub c} is established for this parent compound. The c/a ratio is suggested to be a measure of the spin fluctuation strength. The reduction of T{sub c} with the further increase of pressure is a result of the pressure-driven weakness of the spin-fluctuation strength in this material.

  7. Nematic Quantum Critical Fluctuations in BaFe2 -xNix As2

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoyu; Gu, Yanhong; Zhang, Wei; Gong, Dongliang; Zhang, Wenliang; Xie, Tao; Lu, Xingye; Ma, Xiaoyan; Zhang, Xiaotian; Zhang, Rui; Zhu, Jun; Ren, Cong; Shan, Lei; Qiu, Xianggang; Dai, Pengcheng; Yang, Yi-feng; Luo, Huiqian; Li, Shiliang

    2016-10-01

    We have systematically studied the nematic fluctuations in the electron-doped iron-based superconductor BaFe2 -xNix As2 by measuring the in-plane resistance change under uniaxial pressure. While the nematic quantum critical point can be identified through the measurements along the (110) direction, as studied previously, quantum and thermal critical fluctuations cannot be distinguished due to similar Curie-Weiss-like behaviors. Here we find that a sizable pressure-dependent resistivity along the (100) direction is present in all doping levels, which is against the simple picture of an Ising-type nematic model. The signal along the (100) direction becomes maximum at optimal doping, suggesting that it is associated with nematic quantum critical fluctuations. Our results indicate that thermal fluctuations from striped antiferromagnetic order dominate the underdoped regime along the (110) direction. We argue that either there is a strong coupling between the quantum critical fluctuations and the fermions, or more exotically, a higher symmetry may be present around optimal doping.

  8. Magnetic Ordering in BaFe_{11.9} In_{0.1} O_{19} Hexaferrite

    NASA Astrophysics Data System (ADS)

    Trukhanov, S. V.; Trukhanov, A. V.; Turchenko, V. O.; Kostishin, V. G.; Panina, L. V.; Kazakevich, I. S.; Balagurov, A. M.

    2016-07-01

    The crystal and magnetic structure by powder neutron diffractometry as well as the magnetic properties by vibration sample magnetometry for the BaFe_{11.9} In_{0.1} O_{19} polycrystalline sample have been performed in a wide temperature range from 10 up to 730 K and in magnetic field up to 14 T. The atomic coordinates and lattice parameters have been Rietveld refined. The Invar effect has been observed in the low-temperature range below 150 K. It was explained by the thermal oscillation anharmonicity of atoms. The increase of the microstress value with decreasing temperature has been defined from Rietveld refinement. It is established that the ferrimagnet-paramagnet phase transition is a standard second-order one. From the macroscopic magnetization measurement, the Curie temperature and ordered magnetic moment per nominal iron ion are obtained. From the microscopic diffraction measurement, the magnetic moments at different atomic position and total magnetic moment per iron ion have been defined at different temperatures. The most likely reasons and the mechanism of magnetic ordering are discussed.

  9. Lifshitz transition and chemical instabilities in Ba1-xKxFe2As2 superconductors

    NASA Astrophysics Data System (ADS)

    Khan, Suffian; Johnson, Duane

    2014-03-01

    For solid-solution Ba1-xKxFe2As2, the Fermi surface (spectral function) evolution due to chemical disorder from x = 0.6-1.0 is mapped using density functional theory. Dissolution of electron cylinders occurs near x=0.9 with a non-uniform topological (Lifshitz) transitions, which influence s+/- superconductivity to the presence of line nodes in disordered samples and suggest the origin for the deviation from BNC scaling (i.e., specific heat jump ΔcS ~ Tc3).The formation energies indicate alloying at x=0.35, as observed, and a tendency for segregation on the K-rich side, with chemical instabilities for x > 0.6, explaining the difficulty of controlling sample quality and the conflicting results between characterized electronic structures. Supported by the U.S. DOE, Office of BES, Division of Materials Science and Engineering, and by the Center for Defect Physics, an EFRC at ORNL. The Ames Lab is operated by the DOE by Iowa State University under contract DE-AC02-07CH11358.

  10. Magnetoresistivity and filamentary superconductivity in nickel-doped BaFe2As2

    NASA Astrophysics Data System (ADS)

    Wei, Zhang; Yao-Min, Dai; Bing, Xu; Run, Yang; Jin-Yun, Liu; Qiang-Tao, Sui; Hui-Qian, Luo; Rui, Zhang; Xing-Ye, Lu; Hao, Yang; Xiang-Gang, Qiu

    2016-04-01

    We present magnetotransport studies on a series of BaFe2-x Ni x As2 (0.03 ≤ x ≤ 0.10) single crystals. In the underdoped (x = 0.03) non-superconducting sample, the temperature-dependent resistivity exhibits a peak at 22 K, which is associated with the onset of filamentary superconductivity (FLSC). FLSC is suppressed by an external magnetic field in a manner similar to the suppression of bulk superconductivity in an optimally-doped (x = 0.10) compound, suggesting the same possible origin as the bulk superconductivity. Our magnetoresistivity measurements reveal that FLSC persists up to the optimal doping and disappears in the overdoped regime where the long-range antiferromagnetic order is completely suppressed, pointing to a close relation between FLSC and the magnetic order. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821400, 2012CB921302, and 2015CB921303) and the National Natural Science Foundation of China (Grant Nos. 11274237, 91121004, 51228201, 11004238, and 11374011).

  11. Structural changes and microstructures in stuffed tridymite-type compounds Ba1-xSrxAl2O4

    NASA Astrophysics Data System (ADS)

    Tanaka, Eri; Ishii, Yui; Tsukasaki, Hirofumi; Taniguchi, Hiroki; Mori, Shigeo

    2014-09-01

    Crystal structures and microstructures in Ba1-xSrxAl2O4 solid solutions between the end members of BaAl2O4 and SrAl2O4 have been carefully investigated by powder X-ray diffraction, electron diffraction and transmission electron microscopy (TEM) imaging experiments. With the help of fast Fourier transform (FFT) calculation, high-resolution TEM images suggested that diffuse streaks along three equivalent <110> directions in the (001) plane, which appear in the P63 structure of Ba1-xSrxAl2O4 for x = 0.4, originate from the large structural fluctuation of the AlO4 tetrahedral network. On the other hand, the monoclinic P21 structure in Ba1-xSrxAl2O4 with x = 0.7 was found to consist of a modulated structure with \\boldsymbol{{q}} = 0,1/2,0. The present experimental results reveal that a structural phase boundary exists at approximately x = 0.6 between the P63 structure with a large structural fluctuation and a monoclinic P21 phase with the single-q modulated structure.

  12. High calcination of ferroelectric BaTiO3 doped Fe nanoceramics prepared by a solid-state sintering method

    NASA Astrophysics Data System (ADS)

    Samuvel, K.; Ramachandran, K.

    2015-07-01

    This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples.

  13. High calcination of ferroelectric BaTiO₃ doped Fe nanoceramics prepared by a solid-state sintering method.

    PubMed

    Samuvel, K; Ramachandran, K

    2015-07-01

    This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples.

  14. Dielectric relaxation in 0-3 PVDF-Ba(Fe1/2Nb1/2)O3 composites

    NASA Astrophysics Data System (ADS)

    Chandra, K. P.; Singh, Rajan; Kulkarni, A. R.; Prasad, K.

    2016-05-01

    (1-x)PVDF-xBa(Fe1/2Nb1/2)O3 ceramic-polymer composites with x = 0.025, 0.05, 0.10, 0.15 were prepared using melt-mixing technique. The crystal symmetry, space group and unit cell dimensions were determined from the XRD data of Ba(Fe1/2Nb1/2)O3 using FullProf software, whereas crystallite size and lattice strain were estimated using Williamson-Hall approach. The distribution of Ba(Fe1/2Nb1/2)O3 particles in the PVDF matrix were examined on the cryo-fractured surfaces using a scanning electron microscope. Cole-Cole and pseudo Cole-Cole analysis suggested the dielectric relaxation in this system to be of non-Debye type. Filler concentration dependent real and imaginary parts of dielectric constant as well as ac conductivity data followed definite trends of exponential growth types of variation.

  15. Low-loss Z-type hexaferrite (Ba3Co2Fe24O41) for GHz antenna applications

    NASA Astrophysics Data System (ADS)

    Lee, Woncheol; Hong, Yang-Ki; Park, Jihoon; LaRochelle, Gatlin; Lee, Jaejin

    2016-09-01

    We report a low magnetic loss Ba3Co2Fe24O41 (Co2Z) hexaferrite for use in gigahertz (GHz) antennas. Acid-etching was very effective in removal of unwanted Y-type hexaferrite (Ba2Co2Fe12O22) from calcined Co2Z powder. It is found that the calcined and acid etched (AE) Co2Z hexaferrite shows a low magnetic loss tangent (tan δμ) of 0.012 and 0.037 at 1 and 2 GHz, respectively. These low tan δμ are attributed to removal of Y-type hexaferrite, which possesses a lower anisotropy field (Hk) than W-type hexaferrite (BaCo2Fe16O27). The figure of merit (FOM) of the AE Co2Z hexaferrite is 141.7 and 48.7 at 1 and 2 GHz, respectively. These FOM are much higher than the FOM of previously reported low-loss magnetic materials. Therefore, the AE Co2Z hexaferrite can be a good candidate for GHz antenna application in the ultra-high frequency (UHF) band.

  16. Sample pretreatment in the determination of specific alpha emitters in drinking water using [Ba+Fe]-coprecipitation method.

    PubMed

    Suarez-Navarro, J A; Pujol, Ll; Suarez-Navarro, M J

    2015-02-01

    The [Ba+Fe]-coprecipitation method is applied to measure gross alpha activity for radiological examination of drinking water in the laboratory. This method collects all the alpha-emitting radionuclides of interest (natural alpha emitters and transuranium elements) in a precipitate on a filter. This paper describes an investigation of sample pretreatment of the precipitate collected by the [Ba+Fe]-coprecipitation method for gross alpha activity determination. The aim of this preliminary work is to be a starting point to develop simple and rapid radiochemical procedures for specific alpha emitters (polonium, radium, thorium, uranium, plutonium and americium), in contrast to the sophisticated, expensive and time-consuming alpha spectrometry method. The sample pretreatment aspects considered include quantitative [Ba+Fe]-coprecipitation, two methods for precipitate treatment (leaching and complete destruction of the filter), and the determination of the alpha-emitting proportions present in the barium sulfate precipitate and acid solution obtained after precipitate treatment. Furthermore, a radiochemical procedure for (226)Ra determination was performed and finally, the sample pretreatment proposed in this work was summarized.

  17. Structural and magnetic phase transitions near optimal superconductivity in BaFe2(As1-xPx)2

    DOE PAGES

    Hu, Ding; Lu, Xingye; Zhang, Wenliang; Luo, Huiqian; Li, Shiliang; Wang, Peipei; Chen, Genfu; Han, Fei; Banjara, Shree R.; Sapkota, A.; et al

    2015-04-17

    In this study, we use nuclear magnetic resonance (NMR), high-resolution x-ray and neutron scattering to study structural and magnetic phase transitions in phosphorus-doped BaFe2(As1-xPx)2. Thus, previous transport, NMR, specific heat, and magnetic penetration depth measurements have provided compelling evidence for the presence of a quantum critical point (QCP) near optimal superconductivity at x = 0.3. However, we show that the tetragonal-to-orthorhombic structural (Ts) and paramagnetic to antiferromagnetic (AF, TN) transitions in BaFe2(As1-xPx)2 are always coupled and approach to TN ≈ Ts ≥ Tc (≈ 29 K) for x = 0.29 before vanishing abruptly for x ≥ 0.3. These results suggestmore » that AF order in BaFe2(As1-xPx)2 disappears in a weakly first order fashion near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP.« less

  18. Defect-induced magnetism: Test of dilute magnetism in Fe-doped hexagonal BaTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tanushree; Ray, Sugata; Itoh, Mitsuru

    2011-04-01

    Single crystalline Fe-doped hexagonal BaTiO3 samples with varying oxygen content are created by specifically intended post-growth annealing treatments, in order to check the influence of defects on the unusual high temperature ferromagnetism observed in this system. The various defects have been shown to play a crucial role in dilute magnetic systems and therefore, it is important to carry out this check for the Fe-doped BaTiO3 system also, in which unusual ferromagnetism was reported even in its bulk single crystalline form. The x-ray diffraction and dielectric studies carried out here have confirmed that the Fe doping of Ti is intrinsic, while the high resolution transmission electron microscopy (HRTEM) and x-ray photoemission spectroscopy (XPS) studies proved the absence of unwanted magnetic metal clusters in the sample. The transport studies show that the oxygen concentrations could be varied substantially by the thermal treatments. Finally, magnetization measurements on the samples demonstrated that ferromagnetism is stronger in samples with higher oxygen deficiency, which could interestingly be retreated under high oxygen atmosphere and reversibly be taken back to a lower magnetic state. The vacancy-induced ferromagnetism is further confirmed by EPR measurements, which is consistent with earlier studies and, consequently, put the doped BaTiO3 in the list of true dilute magnetic oxide (DMO) systems.

  19. Fe/Ba Ratio Effect on Magnetic Properties of Barium Ferrite Powders Prepared by Microwave-Induced Combustion

    NASA Astrophysics Data System (ADS)

    Fu, Yen-Pei; Lin, Cheng-Hsiung; Pan, Ko-Ying

    2003-05-01

    Barium ferrite powders were successfully synthesized by microwave-induced combustion. The magnetic properties of barium ferrite powders with various Fe/Ba ratios varying from 11 to 12 annealed at various temperatures in the range of 850-1050°C were determined. The resultant powders were investigated by X-ray diffractometer (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), differential thermal analyzer/thermogravimeter (DTA/TG), and surface area measurement. Microwave-heated barium ferrite with an Fe/Ba ratio of 11 and annealed at 1000°C for 2 h exhibited optimum magnetic properties for magnetic recording applications, a saturation magnetization of 66 emu/g and an intrinsic coercive force of 2100 Oe. The microwave-heated barium ferrite powders with various Fe/Ba ratios annealed at various temperatures had particles size ranging from 40 to 90 nm. Thus, the fine control of crystal growth by varying the annealing temperature can be exploited for the production of fine magnetic powders of various sizes for a variety of practical applications.

  20. Sample pretreatment in the determination of specific alpha emitters in drinking water using [Ba+Fe]-coprecipitation method.

    PubMed

    Suarez-Navarro, J A; Pujol, Ll; Suarez-Navarro, M J

    2015-02-01

    The [Ba+Fe]-coprecipitation method is applied to measure gross alpha activity for radiological examination of drinking water in the laboratory. This method collects all the alpha-emitting radionuclides of interest (natural alpha emitters and transuranium elements) in a precipitate on a filter. This paper describes an investigation of sample pretreatment of the precipitate collected by the [Ba+Fe]-coprecipitation method for gross alpha activity determination. The aim of this preliminary work is to be a starting point to develop simple and rapid radiochemical procedures for specific alpha emitters (polonium, radium, thorium, uranium, plutonium and americium), in contrast to the sophisticated, expensive and time-consuming alpha spectrometry method. The sample pretreatment aspects considered include quantitative [Ba+Fe]-coprecipitation, two methods for precipitate treatment (leaching and complete destruction of the filter), and the determination of the alpha-emitting proportions present in the barium sulfate precipitate and acid solution obtained after precipitate treatment. Furthermore, a radiochemical procedure for (226)Ra determination was performed and finally, the sample pretreatment proposed in this work was summarized. PMID:25474768

  1. Structural and magnetic properties of Vanadium Doped M- Type Barium Hexaferrite (BaFe12-xVxO19)

    NASA Astrophysics Data System (ADS)

    Awadallah, Ahmad; Mahmood, Sami H.; Maswadeh, Yazan; Bsoul, Ibrahim; Aloqaily, Aynour

    2015-10-01

    Precursor powders of barium hexaferrite doped with vanadium, BaFe12-xVxO19 with (x = 0.1, 0.2, 0.3, 0.4, 0.5), were prepared using the ball milling technique and then sintered at different temperatures for 2 h. The structural properties of the prepared samples were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the magnetic properties were examined by the vibrating sample magnetometry (VSM). XRD and SEM studies of the samples sintered at 1100° C indicated the presence of Ba3V2O8 and α-Fe2O3 non-magnetic oxide phases in addition to BaM hexaferrite phase. The fractions of the nonmagnetic oxide phases were found to increase with increasing x, and sintering the samples at temperatures higher than 1100° C was found to reduce the amounts of these non-magnetic phases only slightly. However, the addition of barium in excess of the stoichiometric ratio was found to remove the α-Fe2O3 oxide, and improve the saturation magnetization of the samples significantly. In addition, washing these samples with HCl was found to improve the saturation magnetization further. The effect of sintering the samples at higher temperatures was also found to reduce the coercivity due to growth of the particle size. However, the coercivity of all samples remained high enough for potential permanent magnet and magnetic recording applications.

  2. Atomic and electronic structure of the BaTiO3/Fe interface in multiferroic tunnel junctions.

    PubMed

    Bocher, Laura; Gloter, Alexandre; Crassous, Arnaud; Garcia, Vincent; March, Katia; Zobelli, Alberto; Valencia, Sergio; Enouz-Vedrenne, Shaïma; Moya, Xavier; Mathur, Neil D; Marthur, Neil D; Deranlot, Cyrile; Fusil, Stéphane; Bouzehouane, Karim; Bibes, Manuel; Barthélémy, Agnès; Colliex, Christian; Stéphan, Odile

    2012-01-11

    Artificial multiferroic tunnel junctions combining a ferroelectric tunnel barrier of BaTiO(3) with magnetic electrodes display a tunnel magnetoresistance whose intensity can be controlled by the ferroelectric polarization of the barrier. This effect, called tunnel electromagnetoresistance (TEMR), and the corollary magnetoelectric coupling mechanisms at the BaTiO(3)/Fe interface were recently reported through macroscopic techniques. Here, we use advanced spectromicroscopy techniques by means of aberration-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) to probe locally the nanoscale structural and electronic modifications at the ferroelectric/ferromagnetic interface. Atomically resolved real-space spectroscopic techniques reveal the presence of a single FeO layer between BaTiO(3) and Fe. Based on this accurate description of the studied interface, we propose an atomistic model of the ferroelectric/ferromagnetic interface further validated by comparing experimental and simulated STEM images with atomic resolution. Density functional theory calculations allow us to interpret the electronic and magnetic properties of these interfaces and to understand better their key role in the physics of multiferroics nanostructures. PMID:22191458

  3. The effect of post annealing treatment on the citrate sol-gel derived nanocrystalline BaFe12O19 powder: structural, morphological, optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Brightlin, B. C.; Balamurugan, S.

    2016-05-01

    The nanocrystalline BaFe12O19 powders were obtained from citrate sol-gel combustion-derived powder upon annealing at 800-1100 °C, and explored their structural, micro-structural, optical and magnetic properties. The thermal decomposition of citrate sol-gel combustion product was verified by means of thermogravimetric and differential thermal analysis. Structural identification of the citrate sol-gel combustion powder and annealed samples were investigated by powder X-ray diffraction. Though the combustion product exhibits cubic spinel phase material, the annealed powder yields good quality nanocrystalline hexagonal BaFe12O19 phase materials. The thin plate-like flakes morphology with random particle sizes of ~100-200 nm with slightly agglomerated particles of BaFe12O19 phase is analyzed by high resolution scanning electron microscopy for the good quality annealed sample. Photoluminescence emission spectrum of BaFe12O19 material reveals broad emission peak at ~360 nm under the excitation wavelength of 270 nm. Interestingly, the near infrared relative reflectivity of the nanocrystalline BaFe12O19 materials obtained by citrate sol-gel synthesis method is higher than the nanocrystalline BaFe12O19 materials obtained by mechano-thermal and co-precipitation method. The present dark brown colored BaFe12O19 materials can be applied as a ceramic color pigment which includes several applications. The room temperature magnetic hysteresis loop of the annealed BaFe12O19 sample exhibits a ferromagnetic saturation magnetization, M s of 55.774 emu/g at 15 kOe.

  4. Mechanism of X-ray excited optical luminescence (XEOL) in europium doped BaAl2O4 phosphor.

    PubMed

    Rezende, Marcos V Dos S; Montes, Paulo J R; Andrade, Adriano B; Macedo, Zelia S; Valerio, Mário E G

    2016-06-29

    This paper reports a luminescence mechanism in Eu-doped BaAl2O4 excited with monochromatic X-rays (also known as X-ray excited optical luminescence - XEOL) from synchrotron radiation. The material was prepared via a proteic sol-gel methodology. The X-ray absorption near edge structures (XANES) at the Ba LIII- and Eu LIII-edges exhibit typical absorption spectra. XEOL spectra recorded in energy ranges, either around the Ba LIII- or Eu LIII-edges, showed important differences concerning the intensity of the Eu(2+) or Eu(3+) emission bands. Nevertheless, the total area under the XEOL spectra increases as the energy of the X-ray photons increases in both ranges (Ba LIII- and Eu LIII-edges). PMID:27306425

  5. Formation enthalpies of Al-Fe-Zr-Nd system calculated by using geometric and Miedema's models

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Rongcheng; Tao, Xiaoma; Guo, Hui; Chen, Hongmei; Ouyang, Yifang

    2015-04-01

    Formation enthalpy is important for the phase stability and amorphous forming ability of alloys. The formation enthalpies of Fe17RE2 (RE=Ce, Pr, Nd, Gd and Er) obtained by Miedema's theory are in good agreement with those of the experiments. The dependence of formation enthalpy on concentration of Al for intermetallic (AlxFe1-x)17Nd2 have been calculated by Miedema's theory and the geometric model. The solid solubility of Al in (AlxFe1-x)17Nd2 is coincident with the concentration dependence of formation enthalpy. The mixing enthalpies of liquid alloys and formation enthalpies of alloys for Al-Fe-Zr-Nd system have been predicted. The calculated mixing enthalpy indicates that the adding of Fe or Nd decreases monotonously the magnitude of enthalpy. The formation enthalpies of Al-Fe-Zr-Nd system indicate that the shape of the enthalpy contour map changes when the content of Al is less than 50.0 at% and then it remains unchanged except the decrease of magnitude. The formation enthalpy of Al-Fe-Zr-Nd increases with the increase of Fe and/or Nd content. The negative formation enthalpy indicates that Al-Fe-Zr-Nd system has higher amorphous forming ability and wide amorphous forming range. The certain contents of Zr and/or Al are beneficial for the formation of Al-Fe-Zr-Nd intermetallics.

  6. Discovery of New Al-Cu-Fe Minerals in the Khatyrka CV3 Meteorite

    NASA Astrophysics Data System (ADS)

    Ma, C.; Lin, C.; Bindi, L.; Steinhardt, P. J.

    2016-08-01

    Our nanomineralogy investigation of Khatyrka has revealed two new alloy minerals (AlCu with a Pm-3m CsCl structure and Al3Fe with a C2/m structure) and associated icosahedrite (quasicrystal Al63Cu26Fe11 with a five-fold symmetry) in section 126A of USNM 7908.

  7. First-principles investigation of mechanical behavior of B2 type aluminides: FeAl and NiAl

    SciTech Connect

    Fu, C.L.; Yoo, M.H.

    1990-01-01

    First-principles calculations of the elastic constants, shear fault energies, and cleavage strength of NiAl and FeAl are presented. For NiAl, we find that the dissociation of {l angle}111{r angle} superdislocation into partial dislocations is unlikely, due to a high antiphase boundary energy and a weak repulsive elastic force between partial dislocations. FeAl has a high ideal cleavage strength as a result of the directional d-bond formation at the Fe sites. The strong ordering behavior of NiAl is explained in terms of the Al-to-Ni charge transfer and the repulsive interaction between Al atoms. The spontaneous glide decomposition of the {l angle}111{r angle} superdislocation in NiAl is also discussed. 8 refs., 2 figs., 2 tabs.

  8. Theoretical investigation of superconductivity in Ba(AlSn) under pressure

    NASA Astrophysics Data System (ADS)

    Parlak, Cihan

    2016-10-01

    The compound of Ba(AlSn) from ternary superconductors exhibits the superconductivity behaviour below the temperature 2.9 K. We report the results of an ab initio study based on electronic, and detailed lattice dynamical properties as a function of pressure of superconducting material. The phonon dispersion curves along the high-symmetry directions and phonon frequencies parameters at the Brillouin zone center are computed by using density functional perturbation theory while the elastic constants are calculated in metric-tensor formulation. The Vickers hardness belonging to the compound is also evaluated clearly. The band structure, partial densities of states and Fermi surface topology are also discussed in detail. At the same time we describe the relationship between the properties determined and superconducting characteristic.

  9. Oxidation Control of Atmospheric Plasma Sprayed FeAl Intermetallic Coatings Using Dry-Ice Blasting

    NASA Astrophysics Data System (ADS)

    Song, Bo; Dong, Shujuan; Coddet, Pierre; Hansz, Bernard; Grosdidier, Thierry; Liao, Hanlin; Coddet, Christian

    2013-03-01

    The performance of atmospheric plasma sprayed FeAl coatings has been remarkably limited because of oxidation and phase transformation during the high-temperature process of preparation. In the present work, FeAl intermetallic coatings were prepared by atmospheric plasma spraying combined with dry-ice blasting. The microstructure, oxidation, porosity, and surface roughness of FeAl intermetallic coatings were investigated. The results show that a denser FeAl coating with a lower content of oxide and lower degree of phase transformation can be achieved because of the cryogenic, the cleaning, and the mechanical effects of dry-ice blasting. The surface roughness value decreased, and the adhesive strength of FeAl coating increased after the application of dry-ice blasting during the atmospheric plasma spraying process. Moreover, the microhardness of the FeAl coating increased by 72%, due to the lower porosity and higher dislocation density.

  10. Structural investigation of the (010) surface of the Al13 Fe4 catalyst.

    PubMed

    Ledieu, J; Gaudry, É; Loli, L N Serkovic; Villaseca, S Alarcón; de Weerd, M-C; Hahne, M; Gille, P; Grin, Y; Dubois, J-M; Fournée, V

    2013-02-15

    We have investigated the structure of the Al(13)Fe(4)(010) surface using both experimental and ab initio computational methods. The results indicate that the topmost surface layers correspond to incomplete puckered (P) planes present in the bulk crystal structure. The main building block of the corrugated termination consists of two adjacent pentagons of Al atoms, each centered by a protruding Fe atom. These motifs are interconnected via additional Al atoms referred to as "glue" atoms which partially desorb above 873 K. The surface structure of lower atomic density compared to the bulk P plane is explained by a strong Fe-Al-Fe covalent polar interaction that preserves intact clusters at the surface. The proposed surface model with identified Fe-containing atomic ensembles could explain the Al(13)Fe(4) catalytic properties recently reported in line with the site-isolation concept [M. Armbrüster et al., Nat. Mater. 11, 690 (2012)]. PMID:25166385

  11. Structural investigation of the (010) surface of the Al13 Fe4 catalyst.

    PubMed

    Ledieu, J; Gaudry, É; Loli, L N Serkovic; Villaseca, S Alarcón; de Weerd, M-C; Hahne, M; Gille, P; Grin, Y; Dubois, J-M; Fournée, V

    2013-02-15

    We have investigated the structure of the Al(13)Fe(4)(010) surface using both experimental and ab initio computational methods. The results indicate that the topmost surface layers correspond to incomplete puckered (P) planes present in the bulk crystal structure. The main building block of the corrugated termination consists of two adjacent pentagons of Al atoms, each centered by a protruding Fe atom. These motifs are interconnected via additional Al atoms referred to as "glue" atoms which partially desorb above 873 K. The surface structure of lower atomic density compared to the bulk P plane is explained by a strong Fe-Al-Fe covalent polar interaction that preserves intact clusters at the surface. The proposed surface model with identified Fe-containing atomic ensembles could explain the Al(13)Fe(4) catalytic properties recently reported in line with the site-isolation concept [M. Armbrüster et al., Nat. Mater. 11, 690 (2012)].

  12. Lower symmetrical behaviour of electronic state in the FeAs plane of Ba(Fe1-xCox)2As2 -75As NMR study-

    NASA Astrophysics Data System (ADS)

    Toyoda, Masayuki; Kobayashi, Yoshiaki; Itoh, Masayuki; Sato, Masatoshi

    2014-12-01

    To investigate the anisotropy within the FeAs plane in the tetragonal phase of Ba(Fe1-xCox)2As2, 75As NMR measurements on the electric field gradient (EFG) at the As site have been carried out for a Ba(Fe1-xCox)2As2 single crystal of x~0.08 with the superconducting (SC) transition temperature of Tc~23 K. We present a method how to analyse the 75As NMR spectra and deduce the anisotropic parameter of the EFG, η, that shows the electric inplane anisotropy at the As site. The EFG of the As site with no Co atoms at the nearest and next nearest Fe sites has the η value of 0.08-0.10 similar to that in the non-SC samples of x~0.02 in the tetragonal phase. The in-plane anisotropy in the x~0.08 sample remains even near Tc. We discuss the relationship between the in-plane anisotropy and local physical properties.

  13. Tetragonal To Collapsed Tetragonal Phase Transition In BaFe{sub 2}As{sub 2} and CaFe{sub 2}As{sub 2}

    SciTech Connect

    Mittal, R.; Mishra, S. K.; Chaplot, S. L.; Ovsyannikov, S. V.; Trots, D. M.; Dubrovinsky, L.; Greenberg, E.; Su, Y.; Brueckel, Th.; Matsuishi, S.; Hosono, H.; Garbarino, G.

    2010-12-01

    Superconductivity in MFe{sub 2}As{sub 2} (M = Ba, Ca) compounds appears either at a critical doping level at ambient pressure or in the parent compound itself by application of pressure above a critical value. We report high pressure powder x-ray diffractions studies for these compounds at 300 K up to about 56 GPa using membrane diamond anvil cells. The measurements for BaFe{sub 2}As{sub 2} show a new tetragonal to collapsed tetragonal phase transition at about 22 GPa that remains stable upto 56 GPa. CaFe{sub 2}As{sub 2} is already known to transform to collapsed phase at 1.7 GPa at 300 K. Our measurements on CaFe{sub 2}As{sub 2} do not show any post collapsed phase transition on increase of pressure 50 GPa at 300 K. It is important to note that the transition in both compounds occurs when they are compressed to almost the same value of the unit cell volume and attain similar c{sub t}/a{sub t} ratios. We present a detailed analysis of the pressure dependence and structure phase transitions as well as equation of state in these important FeAs compounds that should be useful in the context of possible superconductivity in the collapsed phase.

  14. Thermoelasticity of Fe3+- and Al-bearing bridgmanite: Effects of iron spin crossover

    NASA Astrophysics Data System (ADS)

    Shukla, Gaurav; Cococcioni, Matteo; Wentzcovitch, Renata M.

    2016-06-01

    We report ab initio (LDA + Usc) calculations of thermoelastic properties of ferric iron (Fe3+)- and aluminum (Al)-bearing bridgmanite (MgSiO3 perovskite), the main Earth forming phase, at relevant pressure and temperature conditions and compositions. Three coupled substitutions, namely, [Al]Mg-[Al]Si, [Fe3+]Mg-[Fe3+]Si, and [Fe3+]Mg-[Al]Si have been investigated. Aggregate elastic moduli and sound velocities are successfully compared with limited experimental data available. In the case of [Fe3+]Mg-[Fe3+]Si substitution, the high-spin (S = 5/2) to low-spin (S = 1/2) crossover in [Fe3+]Si induces a volume collapse and elastic anomalies across the transition region. However, the associated anomalies should disappear in the presence of aluminum in the most favorable substitution, i.e., [Fe3+]Mg-[Al]Si. Calculated elastic properties along a lower mantle model geotherm suggest that the elastic behavior of bridgmanite with simultaneous substitution of Fe2O3 and Al2O3 in equal proportions or with Al2O3 in excess should be similar to that of (Mg,Fe2+)SiO3 bridgmanite. However, excess of Fe2O3 should produce elastic anomalies in the crossover pressure region.

  15. Correlation induced self-doping in the iron-pnictide superconductor Ba2 Ti2 Fe2 As4 O

    NASA Astrophysics Data System (ADS)

    Ma, J. Z.; Richard, P.; Chen, G. F.; Miao, H.; Zeng, L. K.; Roekeghem, A. Van; Biermann, S.; Xu, N.; Shi, M.; Liu, Z. H.; He, J. B.; Wang, S. C.; Cao, C.; Sun, Y. L.; Cao, G. H.; Qian, T.; Ding, H.

    The electronic structure of the intercalated iron-based superconductor Ba2Ti2Fe2As4O (Tc ~21.5 K) has been investigated by using ARPES and combined LDA + DMFT calculations. The electronic states near the Fermi level are dominated by both the Fe 3d and Ti 3d orbitals, indicating that the spacing layers separating different FeAs layers are also metallic. By counting the enclosed volumes of the Fermi surface sheets, we observe a large self-doping effect, i.e., 0.25 electrons per unit cell are transferred from the FeAs layer to the Ti2As2O layer, leaving the FeAs layer in a hole-doped state, which is in contrast with the LDA prediction of an electron-doped FeAs layer. This exotic behavior is successfully reproduced by the LDA + DMFT calculations, in which the self-doping effect is attributed to the electronic correlations in the Fe 3d shell. Our work provides an alternative route of effective doping without element substitution for iron-based superconductors. Beijing 100190, China.

  16. Effect of nitrogen upon structural and magnetic properties of FePt in FePt/AlN multilayer structures

    SciTech Connect

    Gao, Tenghua Zhang, Cong; Sannomiya, Takumi; Muraishi, Shinji; Nakamura, Yoshio; Shi, Ji

    2014-09-01

    This paper investigates the effect of the addition of nitrogen in FePt layers for ultrathin FePt/AlN multilayer structures. X-ray diffraction results reveal that a compressive stress relaxation occurs after annealing owing to the release of interstitial nitrogen atoms in the FePt layers. The introduction of nitrogen also induces a large in-plane compressive strain during grain growth not seen in FePt deposited without nitrogen. This strain is considered to decrease the driving force for (111) grain growth and FePt ordering.

  17. Magnetostrictive behaviors of Fe-Al(001) single-crystal films under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Kawai, Tetsuroh; Abe, Tatsuya; Ohtake, Mitsuru; Futamoto, Masaaki

    2016-05-01

    Magnetostrictive behaviors of Fe100-x - Alx(x = 0 - 30 at.%)(001) single-crystal films under rotating magnetic fields are investigated along the two different crystallographic orientations, [100] and [110]. The behaviors of Fe and Fe90Al10 films show bath-tub like waveform along [100], easy magnetization axis, and triangular waveform along [110], hard magnetization axis, with respect to their four-fold magnetic anisotropy. On the other hand, the behaviors of Fe80Al20 film are different from those of Fe or Fe90Al10 film. The output of the film along [100] shows a strong magnetic field dependence. The Fe70Al30 film shows similar magnetostrictive behaviors along both [100] and [110] reflecting its magnetic properties, which are almost same for the both directions. The growth of ordered phase (B2) in Fe80Al20 and Fe70Al30 films is considered to have affected their magnetostrictive behaviors. The Al content dependence on λ100 and λ111 values shows similar tendency to that reported for the bulk samples but the values are slightly different. The Fe90Al10(001) single-crystal film shows a large magnetostriction along [100] under a very small magnetic field of 0.02 kOe, which is comparable to the saturated one, and changes the value abruptly in relation to the angle of applied magnetic field.

  18. The unusual chemical bonding and thermoelectric properties of a new type Zintl phase compounds Ba3Al2As4

    NASA Astrophysics Data System (ADS)

    Yang, Gui; Zhang, Guangbiao; Wang, Chao; Wang, Yuanxu

    2016-07-01

    Ba3Al2As4 exhibits an unusual anisotropic electrical conductivity, that is, the electrical conductivity along the chain is smaller than those along other two directions. The results is conflict with previous conclusion for Ca5M2Pn6. Earlier studies on Ca5M2Pn6 showed that a higher electrical conductivity could be obtained along the chain. The band decomposed charge density is used to explain such unusual behavior. Our calculations indicate the existence of a conductive pathway near the Fermi level is responsible for the electrons transport. Further, the Ba-As bonding of Ba3Al2As4 has some degree covalency which is novel for the Zintl compounds.

  19. Concentric nano rings observed on Al-Cu-Fe microspheres

    NASA Astrophysics Data System (ADS)

    Li, Chunfei; Wang, Limin; Hampikian, Helen; Bair, Matthew; Baker, Andrew; Hua, Mingjian; Wang, Qiongshu; Li, Dingqiang

    2016-05-01

    It is well known that when particle size is reduced, surface effect becomes important. As a result, micro/nanoparticles tend to have well defined geometric shapes to reduce total surface energy, as opposed to the irregular shapes observed in most bulk materials. The surface of such micro/nanostructures are smooth. Any deviation from a smooth surface implies an increased surface energy which is not energetically favorable. Here, we report an observation of spherical particles in an alloy of Al65Cu20Fe15 nominal composition prepared by arc melting. Such spherical particles stand out from those reported so far due to the decoration of concentric nanorings on the surface. Three models for the formation of these concentric ring patterns are suggested. The most prominent ones assume that the rings are frozen features of liquid motion which could open the door to investigate the kinetics of liquid motion on the micro/nanometer scale.

  20. Microstructure Evolution in Al-Cu-Fe Quasicrystalline Thin Films

    NASA Astrophysics Data System (ADS)

    Widjaja, Edy; Marks, Laurence

    2003-03-01

    Transmission Electron Microscopy (TEM) was performed to study the microstructure evolution in Al-Cu-Fe quasicrystalline thin films. Thin films were grown by magnetron sputtering on sodium chloride crystals which were subsequently dissolved in water to acquire free-standing films. Nanocrystalline films were found in the as-deposited sample. When annealed at 400oC the films changed to metastable crystalline phases that transformed into icosahedral phases upon further annealing at 500oC. TEM imaging combined with electron diffraction revealed various features associated with the phase evolution in the crystalline-quasicrystalline phase transformation. Some grains in the film functioned as sacrificial grains allowing others to grow into icosahedral phases. Elements near the boundary of the sacrificial grains diffused to form the icosahedral phases, resulting in fragments in the center of the grain. The oxide layer of the film was amorphous aluminum oxide that exhibited poor adhesion to the quasicrystalline films.

  1. Characterization of Co2FeAl nanowires

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.; Pegg, I. L.; Philip, J.

    2011-03-01

    Heusler alloy, Co 2 FeAl (CFA) is a potentially useful material in the field of spintronics due to its high spin polarization. The CFA nanowires are grown for the first time by the electrospinning method. The diameters of the wires formed are ranging from 80 -- 100 nm. The structural characterization of the nanowires is done using X-Ray diffraction and Raman spectroscopy. The nanowires exhibit cubic structure with a lattice constant, a = 2.44 Å. Parallel arrays of nanowires are grown for magnetic characterization using electric field applied at the collector plate. The nanowires exhibit ferromagnetic behavior with a Curie temperature higher than 400 K. Nanoscale devices are fabricated with single CFA nanowire to understand the magnetotransport properties. This work has been supported by funding from NSF under CAREER Grant No. ECCS-0845501 and NSF-MRI, DMR-0922997.

  2. Transition from three-dimensional anisotropic spin excitations to two-dimensional spin excitations by electron doping the FeAs-based BaFe1.96Ni0.04As2 superconductor.

    PubMed

    Harriger, Leland W; Schneidewind, Astrid; Li, Shiliang; Zhao, Jun; Li, Zhengcai; Lu, Wei; Dong, Xiaoli; Zhou, Fang; Zhao, Zhongxian; Hu, Jiangping; Dai, Pengcheng

    2009-08-21

    We use neutron scattering to study the effect of electron doping on the structural or magnetic order in BaFe2As2. In the undoped state, BaFe2As2 exhibits simultaneous structural and magnetic phase transitions below 143 K. Upon electron doping to form BaFe1.96Ni0.04As2, the system first displays the lattice distortion near approximately 97 K, and then orders antiferromagnetically at 91 K before developing weak superconductivity below approximately 15 K. The effect of electron doping is to reduce the c-axis exchange coupling in BaFe2As2 and induce quasi-two-dimensional (2D) spin excitations. These results suggest that the transition from 3D spin waves to quasi-2D spin excitations by electron doping is important for the separated structural and magnetic phase transitions in iron arsenides.

  3. Research and analysis on the thin films sputtered by the Ba-Al-S:Eu target fabricated by powder sintering

    NASA Astrophysics Data System (ADS)

    Zhang, Dongpu; Xu, Fang; Yu, Zhinong; Xue, Wei

    2014-11-01

    Europium-doped barium thioaluminate (BaAl2S4:Eu) is currently the most efficient blue phosphor for inorganic thin film electroluminescent (iEL) device. To produce the full-color EL device, several kinds of blue-emitting layer were attempted and tested. As a key point of blue-emitting layer fabrication, single target sputtering deposition is an effective method. In this work, new structural target is introduced and the fabricated process is expatiated. The PL spectra of as fabricated targets show that both of two, 3mol% and 5mol% europium-doped, have blue emitting property. According to the PL spectra excited by 290nm, 300nm and 320nm ultraviolet, emission peaks located in the region near 470nm. So the as-fabricated targets can be used in single target sputtering deposition on thin film of BaAl2S4:Eu. XRD pattern indicates that there are 4 different phases, barium tetraaluminum sulfide (BaAl4S7), barium sulfide (BaS), europium sulfide (EuS) and barium aluminum oxide (BaAl2O4), in target 1. Besides these four compounds, other two phases, aluminum sulfide (Al2S3) and barium thioaluminate (BaAl2S4), are detected in target 2. Considering the analysis results, especially the hydrolyzation of Al2S3, target 1 is more suitable for sputtering deposition of BaAl2S4:Eu thin film. XPS and X-ray Fluorescence patterns describe the precise molar ratio of each element. In target 1 the relative atom concentration of barium, aluminum, sulfur and oxygen can be calculated from the pattern and molar ratio is about 9:33:41:17. Molar ratio of barium and europium is about 1:0.03. In short, the barium thioaluminate doped by europium sputtering target 1 is better to be applied in the fabrication of blue-emitting layer in inorganic electro-luminescent devices.

  4. Nanostructure evolution in joining of Al and Fe nanoparticles with femtosecond laser irradiation

    SciTech Connect

    Jiao, Z.; Huang, H.; Zhou, Y. E-mail: nzhou@uwaterloo.ca; Liu, L.; Hu, A.; Duley, W.; He, P. E-mail: nzhou@uwaterloo.ca

    2014-04-07

    The joining of Al-Fe nanoparticles (NPs) by femtosecond (fs) laser irradiation is reported in this paper. Fe and Al NPs were deposited on a carbon film in vacuum via fs laser ablation. Particles were then exposed to multiple fs laser pulses at fluences between 0.5 and 1.3 mJ/cm{sup 2}. Transmission Electron Microscopy (TEM) and Electron Diffraction X-ray observations indicate that Al and Fe NPs bond to each other under these conditions. For comparison, bonding of Al to Al and Fe to Fe NPs was also investigated. The nanostructure, as observed using TEM, showed that individual Al NPs were monocrystalline while individual Fe NPs were polycrystalline prior to joining and that these structures are retained after the formation of Al-Al and Fe-Fe NPs. Al-Fe NPs produced by fs laser joining exhibited a mixed amorphous and crystalline phase at the interface. Bonding is suggested to originate from intermixing within a region of high field intensity between particles.

  5. Structural and magnetic properties of the quaternary oxides Ba{sub 6}Ln{sub 2}Fe{sub 4}O{sub 15} (Ln=Pr and Nd)

    SciTech Connect

    Abe, Kyosuke; Doi, Yoshihiro Hinatsu, Yukio; Ohoyama, Kenji

    2009-02-15

    The crystal structures and magnetic properties of the quaternary lanthanide oxides Ba{sub 6}Ln{sub 2}Fe{sub 4}O{sub 15} (Ln=Pr and Nd) are reported. They crystallize in a hexagonal structure with space group P6{sub 3}mc and have the 'Fe{sub 4}O{sub 15} cluster' consisting of one FeO{sub 6} octahedron and three FeO{sub 4} tetrahedra. Measurements of the magnetic susceptibility, specific heat, and powder neutron diffraction reveal that this cluster behaves as a spin tetramer with a ferrimagnetic ground state of S{sub T}=5 even at room temperature. The cluster moments show a long-range antiferromagnetic ordering at 23.2 K (Ln=Pr) and 17.8 K (Nd), and the magnetic moments of the Ln{sup 3+} ions also order cooperatively. By applying the magnetic field ({approx}2 T), this antiferromagnetic ordering of the clusters changes to a ferromagnetic one. This result indicates that there exists a competition in the magnetic interaction between the clusters. - Graphical abstract: Quaternary oxides Ba{sub 6}Ln{sub 2}Fe{sub 4}O{sub 15} (Ln=Pr and Nd) have the Ba{sub 6}Nd{sub 2}Al{sub 4}O{sub 15}-type structure with space group P6{sub 3}mc. In them, the magnetic moments for the ferrimagnetic Fe{sub 4}O{sub 15} cluster (smaller circles: Fe{sup 3+} ions) and Ln{sup 3+} ions (larger ones) cooperatively show an antiferromagnetic ordering at low temperatures.

  6. Laser soldering of sapphire substrates using a BaTiAl6O12 thin-film glass sealant

    NASA Astrophysics Data System (ADS)

    de Pablos-Martin, A.; Tismer, S.; Benndorf, G.; Mittag, M.; Lorenz, M.; Grundmann, M.; Höche, Th.

    2016-07-01

    Two sapphire substrates are tightly bonded through a BaTiAl6O12-glass thin film, by irradiation with a nanosecond laser. After the laser process, the composition of the glass sealant changes, due to incorporation of Al2O3 from the upper substrate. After annealing of the bonded samples (950 °C for 30 minutes) crystalline structures are observed by TEM which are attributed to crystalline BaTiAl6O12. These crystals together with Al2O3:Ti centers are the responsible of the observed strong blue luminescence of the laser irradiated region upon UV excitation. The structural and optical characterizations of the bonded samples clarify the laser soldering procedure as well as the origin of the luminescence. Bond quality and bond strength were evaluated by scanning acoustic microscopy (SAM) and tensile tests, which results in a tensile stress of nearly 13 MPa, which is an acceptable value for glass sealants.

  7. Structural characterization of a new vacancy ordered perovskite modification found for Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.333}F{sub 0.333}): Towards understanding of vacancy ordering for different perovskite-type ferrites

    SciTech Connect

    Clemens, Oliver

    2015-05-15

    The new vacancy ordered perovskite-type compound Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.33}F{sub 0.33}) was prepared by topochemical low-temperature fluorination of Ba{sub 2}Fe{sub 2}O{sub 5} (BaFeO{sub 2.5}) using stoichiometric amounts of polyvinylidene difluoride (PVDF). The vacancy order was found to be unique so far for perovskite compounds, and the connectivity pattern can be explained by the formula Ba{sub 3}(FeX{sub 6/2}) (FeX{sub 5/2}) (FeX{sub 3/2}X{sub 1/1}), with X=O/F. Mössbauer measurements were used to confirm the structural analysis and agree with the presence of Fe{sup 3+} in the above mentioned coordination environments. Group–subgroup relationships were used to build a starting model for the structure solution and to understand the relationship to the cubic perovskite structure. Furthermore, a comparison of a variety of vacancy-ordered iron-containing perovskite-type structures is given, highlighting the factors which favour one structure type over the other depending on the composition. - Graphical abstract: The crystal structure of Ba{sub 3}Fe{sub 3}O{sub 7}F in comparison to other perovskite type ferrites. - Highlights: • The crystal structure of Ba{sub 3}Fe{sub 3}O{sub 7}F in comparison to other perovskite type ferrites. • Ba{sub 3}Fe{sub 3}O{sub 7}F was synthesized by low temperature fluorination of Ba{sub 2}Fe{sub 2}O{sub 5}. • Ba{sub 3}Fe{sub 3}O{sub 7}F shows a unique vacancy order not found for other perovskite type compounds. • The structure of Ba{sub 3}Fe{sub 3}O{sub 7}F was solved using group–subgroup relationships. • A systematic comparison to other ferrite type compounds reveals structural similarities and differences. • The A-site coordination of the cation is shown to play an important role for the type of vacancy order found.

  8. Magnetic and Microwave Absorbing Properties of Electrospun Ba (1- x) La xFe 12O 19 Nanofibers

    NASA Astrophysics Data System (ADS)

    Li, Cong-Ju; Wang, Bin; Wang, Jiao-Na

    2012-04-01

    Ba(1-x)LaxFe12O19 (0.00≤x≤0.10) nanofibers were fabricated via the electrospinning technique followed by heat treatment at different temperatures for 2 h. Various characterization methods including scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and microwave vector network analyzer were employed to investigate the morphologies, crystalline phases, magnetic properties, and complex electromagnetic parameters of nanofibers. The SEM images indicate that samples with various values of x are of a continuous fiber-like morphology with an average diameter of 110±20 nm. The XRD patterns show that the main phase is M-type barium hexaferrite without other impurity phases when calcined at 1100 °C. The VSM results show that coercive force (Hc) decreases first and then increases, while saturation magnetization (Ms) reveals an increase at first and then decreases with La3+ ions content increase. Both the magnetic and dielectric losses are significantly enhanced by partial substitution of La3+ for Ba2+ in the M-type barium hexaferrites. The microwave absorption performance of Ba0.95La0.05Fe12O19 nanofibers gets significant improvement: The bandwidth below -10 dB expands from 0 GHz to 12.6 GHz, and the peak value of reflection loss decreases from -9.65 dB to -23.02 dB with the layer thickness of 2.0 mm.

  9. Optical properties of heusler alloys Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa

    NASA Astrophysics Data System (ADS)

    Shreder, E. I.; Svyazhin, A. D.; Belozerova, K. A.

    2013-11-01

    The results of an investigation of optical properties and the calculations of the electronic structure of Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa Heusler alloys are presented. The main focus of our attention is the study of the spectral dependence of the real part (ɛ1) and imaginary part (ɛ2) of the dielectric constant in the range of wavelengths λ = 0.3-13 μm using the ellipsometric method. An anomalous behavior of the optical conductivity σ(ω) has been found in the infrared range in the Co2CrAl and Co2CrGa alloys, which differs substantially from that in the Co2FeSi and Co2FeAl alloys. The results obtained are discussed based on the calculations of the electronic structure.

  10. A Fluctuating State in the Framework Compounds (Ba,Sr)Al2O4

    PubMed Central

    Ishii, Yui; Tsukasaki, Hirofumi; Tanaka, Eri; Mori, Shigeo

    2016-01-01

    The structural fluctuation in hexagonal Ba1−xSrxAl2O4 with a corner-sharing AlO4 tetrahedral network was characterized at various temperatures using transmission electron microscopy experiments. For x ≤ 0.05, soft modes of q ~ (1/2, 1/2, 0) and equivalent wave vectors condense at a transition temperature (TC) and form a superstructure with a cell volume of 2a × 2b × c. However, TC is largely suppressed by Sr-substitution, and disappears for x ≥ 0.1. Furthermore, the q ~ (1/2, 1/2, 0) soft mode deviates from the commensurate value as temperature decreases and survives in nanoscaled regions below ~200 K. These results strongly suggest the presence of a new quantum criticality induced by the soft mode. Two distinct soft modes were observed as honeycomb-type diffuse scatterings in the high-temperature region up to 800 K. This intrinsic structural instability is a unique characteristic of the framework compound and is responsible for this unusually fluctuating state. PMID:26758625

  11. Transport and magnetotransport properties across the two-step Verwey transition in BaGdFe2 O5+w

    NASA Astrophysics Data System (ADS)

    Lindén, J.; Karen, P.; Nakamura, J.; Karppinen, M.; Yamauchi, H.

    2006-02-01

    Magnetoresistance, electrical transport, and magnetic properties associated with a two-step Verwey-type transition in BaGdFe2O5+w (-0.015Fe2.5+ into Fe2.5-γ and Fe2.5+γ upon cooling through the transition temperature Tp and charge ordering into Fe2+ and Fe3+ at TV are manifested in electrical-conductivity and Seebeck-coefficient data. Above TV , electrical conductivity shows an activated hopping behavior with activation energy of ˜0.13eV . Seebeck measurements identify holes as charge carriers below TV . Above TV , both holes and valence-mixing electrons need to be considered, although the Seebeck coefficient remains positive up to room temperature. This suggests that the activation energy for electrons is higher than that for holes, and the actual value is close to that obtained from conductivity data. Increasing w increases electrical conductivity and decreases Seebeck coefficient in the charge-ordered state. In the valence-mixed state, increasing w increases Seebeck coefficient, but conductivity increases only up to w≈0.1 , from which the decay of the valence mixing takes over and conductivity begins to approach values extrapolated from the charge-ordered state. Magnetoresistance peaks with negative ratio up to ˜2% are observed, corresponding to a small magnetic-susceptibility change at TV .

  12. Synthesis of BaTiO[subscript 3]-20wt%CoFe[subscript 2]O[subscript 4] Nanocomposites via Spark Plasma Sintering

    SciTech Connect

    Ghosh, Dipankar; Han, Hyuksu; Nino, Juan C.; Subhash, Ghatu; Jones, Jacob L.

    2012-10-23

    Barium titanate-20wt% cobalt ferrite (BaTiO{sub 3}-20wt%CoFe{sub 2}O{sub 4}) nanocomposites were sintered from nanocrystalline BaTiO{sub 3} and CoFe{sub 2}O{sub 4} powders using spark plasma sintering (SPS) and pressureless sintering (PS) techniques. Using SPS, dense polycrystalline composites were obtained at a sintering temperature as low as 860 C and a time of 5 min whereas PS required a higher sintering temperature (1150 C) and time (120 min) to obtain similarly dense composites. Microstructural analysis of the composites showed that both the techniques retained nanocrystalline grain sizes after sintering. High resolution X-ray diffraction measurements revealed that the BaTiO{sub 3}-20wt%CoFe{sub 2}O{sub 4} composites sintered by the SPS technique did not exhibit formation of any new phase(s) due to reaction between the BaTiO{sub 3} and CoFe{sub 2}O{sub 4} phases during sintering. However, the PS technique resulted in the formation of additional phases (other than the BaTiO{sub 3} and CoFe{sub 2}O{sub 4} phases) in the composites. While the composites synthesized by SPS were of superior phase-purity, evidence of Fe diffusion from the spinel to the perovskite phase was found from X-ray diffraction and permittivity measurements.

  13. In situ generated dense shell-engaged Ostwald ripening: A facile controlled-preparation for BaFe{sub 12}O{sub 19} hierarchical hollow fiber arrays

    SciTech Connect

    Mou Fangzhi; Guan Jianguo; Sun Zhigang; Fan Xian; Tong Guoxiu

    2010-03-15

    This paper describes a simple and convenient approach to fabricate BaFe{sub 12}O{sub 19} hierarchical hollow fibers or hollow fiber arrays by heat-treating electrospun solid fibers or fiber arrays using a deliberately devised two-step heat-treatment process, in which the dense shells generated in situ during the short-time pre-treatment procedure direct Ostwald ripening of flake-shaped BaFe{sub 12}O{sub 19} nanocrystals in the elevated temperature heat-treatment procedure. The heat-treatment temperature has a strong effect on the structure and magnetic properties of the BaFe{sub 12}O{sub 19} hierarchical hollow fibers and the resulting BaFe{sub 12}O{sub 19} hierarchical hollow fiber arrays show a slight magnetic anisotropy as well as high coercivity. The in situ generated dense shell-engaged directing Ostwald ripening approach reported here can be readily extended to fabricate other metal oxides hollow fibers, and the resulting BaFe{sub 12}O{sub 19} hierarchical hollow fibers or hollow fiber arrays are promised to have use in a number of applications that involve microwave absorber, magnetic separation, and so forth. - Graphical abstract: This paper described a simple and convenient approach that allows for the facile fabrication of BaFe{sub 12}O{sub 19} hierarchical nanotubes or nanotube arrays by a deliberately devised two-step heat-treatment process, in which the dense shells generated in situ during the short-time pre-treatment procedure direct Ostwald ripening of flake-shaped BaFe{sub 12}O{sub 19} nanocrystals in the elevated temperature heat-treatment procedure.

  14. Synthesis, Crystal and Electronic Structures of the Pnictides AE3TrPn3 (AE = Sr, Ba; Tr = Al, Ga; Pn = P, As)

    DOE PAGES

    Stoyko, Stanislav; Voss, Leonard; He, Hua; Bobev, Svilen

    2015-09-24

    New ternary arsenides AE3TrAs3 (AE = Sr, Ba; Tr = Al, Ga) and their phosphide analogs Sr3GaP3 and Ba3AlP3 have been prepared by reactions of the respective elements at high temperatures. Single-crystal X-ray diffraction studies reveal that Sr3AlAs3 and Ba3AlAs3 adopt the Ba3AlSb3-type structure (Pearson symbol oC56, space group Cmce, Z = 8). This structure is also realized for Sr3GaP3 and Ba3AlP3. Likewise, the compounds Sr3GaAs3 and Ba3GaAs3 crystallize with the Ba3GaSb3-type structure (Pearson symbol oP56, space group Pnma, Z = 8). Both structures are made up of isolated pairs of edge-shared AlPn4 and GaPn4 tetrahedra (Pn = pnictogen, i.e.,more » P or As), separated by the alkaline-earth Sr2+ and Ba2+ cations. In both cases, there are no homoatomic bonds, hence, regardless of the slightly different atomic arrangements, both structures can be rationalized as valence-precise [AE2+]3[Tr3+][Pn3-]3, or rather [AE2+]6[Tr2Pn6]12-, i.e., as Zintl phases.« less

  15. Strongly enhanced flux pinning in one-step deposition of BaFe2(As0.66P0.33)2 superconductor films with uniformly dispersed BaZrO3 nanoparticles

    PubMed Central

    Miura, Masashi; Maiorov, Boris; Kato, Takeharu; Shimode, Takashi; Wada, Keisuke; Adachi, Seiji; Tanabe, Keiichi

    2013-01-01

    The high upper critical field and low anisotropy of the iron-based superconductor BaFe2As2 make it promising for its use in the construction of superconducting magnets. However, its critical current density in high magnetic fields needs to be improved. Here we demonstrate a simple, one-step and industrially scalable means of achieving just this. We show that introducing controlled amounts of uniformly dispersed BaZrO3 nanoparticles into carrier-doped BaFe2As2 significantly improves its superconducting performance without degrading its structural or superconducting properties. Our BaFe2(As0.66P0.33)2 films also exhibit an increase in both the irreversibility line and critical current density at all magnetic-field orientations. These films exhibit nearly isotropic critical current densities in excess of 1.5 MA cm−2 at 15 K and 1 T—seven times higher than previously reported for BaFe2As2 films. The vortex-pinning force in these films reaches ~59 GN m−3 at 5 K and 3–9 T, substantially higher than that of the conventional Nb3Sn wire. PMID:24051678

  16. Hall-plot of the phase diagram for Ba(Fe1‑xCox)2As2

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Grinenko, Vadim; Kurth, Fritz; Ichinose, Ataru; Tsukada, Ichiro; Ahrens, Eike; Pukenas, Aurimas; Chekhonin, Paul; Skrotzki, Werner; Teresiak, Angelika; Hühne, Ruben; Aswartham, Saicharan; Wurmehl, Sabine; Mönch, Ingolf; Erbe, Manuela; Hänisch, Jens; Holzapfel, Bernhard; Drechsler, Stefan-Ludwig; Efremov, Dmitri V.

    2016-06-01

    The Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic. Here, we investigate thin films of Ba(Fe1‑xCox)2As2 with compressive and tensile in-plane strain in a wide range of Co doping. Such in-plane strain changes the band structure of the compounds, resulting in various shifts of the whole phase diagram as a function of Co doping. We show that the resultant phase diagrams for different strain states can be mapped onto a single phase diagram with the Hall number. This universal plot is attributed to the critical fluctuations in multiband systems near the antiferromagnetic transition, which may suggest a direct link between magnetic and superconducting properties in the BaFe2As2 system.

  17. The phase diagram of BaFe2(As1-xPx)2 as determined by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Allred, Jared; Taddei, Keith; Bugaris, Daniel; Avci, Sevda; Chmaissem, Omar; Dela Cruz, Clarina; Chung, Duck Young; Kanatzidis, Mercouri; Rosenkranz, Stephan; Osborn, Ray

    2013-03-01

    The iron-arsenides are a now famous family of high-Tc superconductors where the superconducting state is stabilized by suppressing a magnetic ground state in a parent compound. The phenomenon is quite robust, and BaFe2As2, for example, can be made superconducting either by applying pressure or by electron, hole, or isovalent doping. The isovalently doped BaFe2(As1-xPx)2 materials are particularly interesting because it is not obvious what is driving the suppression of the SDW and enhancing Tc. The driving force has been variously ascribed to chemical pressure, changes in polarity of the Fe-(As,P) bond, and other even more subtle chemical effects. Moreover, reports on various general features in the iron-arsenide phase diagram--such as short-range nematic order and the separation of the Néel transition (TN) and the structural transition (Ts) --remain contradictory and underexplored. We have undertaken a detailed neutron diffraction study of the phase diagram in order to clarify some of the ambiguities. We find that Ts = TN and that the superconducting dome rises more sharply than for the aliovalently doped materials. Moreover, the T dependence of the structural and magnetic order parameters and a discontinuous increase in c/ a below TN suggest a first order phase transition.

  18. Hall-plot of the phase diagram for Ba(Fe1-xCox)2As2.

    PubMed

    Iida, Kazumasa; Grinenko, Vadim; Kurth, Fritz; Ichinose, Ataru; Tsukada, Ichiro; Ahrens, Eike; Pukenas, Aurimas; Chekhonin, Paul; Skrotzki, Werner; Teresiak, Angelika; Hühne, Ruben; Aswartham, Saicharan; Wurmehl, Sabine; Mönch, Ingolf; Erbe, Manuela; Hänisch, Jens; Holzapfel, Bernhard; Drechsler, Stefan-Ludwig; Efremov, Dmitri V

    2016-01-01

    The Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic. Here, we investigate thin films of Ba(Fe1-xCox)2As2 with compressive and tensile in-plane strain in a wide range of Co doping. Such in-plane strain changes the band structure of the compounds, resulting in various shifts of the whole phase diagram as a function of Co doping. We show that the resultant phase diagrams for different strain states can be mapped onto a single phase diagram with the Hall number. This universal plot is attributed to the critical fluctuations in multiband systems near the antiferromagnetic transition, which may suggest a direct link between magnetic and superconducting properties in the BaFe2As2 system. PMID:27328948

  19. Hall-plot of the phase diagram for Ba(Fe1−xCox)2As2

    PubMed Central

    Iida, Kazumasa; Grinenko, Vadim; Kurth, Fritz; Ichinose, Ataru; Tsukada, Ichiro; Ahrens, Eike; Pukenas, Aurimas; Chekhonin, Paul; Skrotzki, Werner; Teresiak, Angelika; Hühne, Ruben; Aswartham, Saicharan; Wurmehl, Sabine; Mönch, Ingolf; Erbe, Manuela; Hänisch, Jens; Holzapfel, Bernhard; Drechsler, Stefan-Ludwig; Efremov, Dmitri V.

    2016-01-01

    The Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic. Here, we investigate thin films of Ba(Fe1−xCox)2As2 with compressive and tensile in-plane strain in a wide range of Co doping. Such in-plane strain changes the band structure of the compounds, resulting in various shifts of the whole phase diagram as a function of Co doping. We show that the resultant phase diagrams for different strain states can be mapped onto a single phase diagram with the Hall number. This universal plot is attributed to the critical fluctuations in multiband systems near the antiferromagnetic transition, which may suggest a direct link between magnetic and superconducting properties in the BaFe2As2 system. PMID:27328948

  20. The role of magnetism and disorder in superconductivity of gold-doped BaFe2As2 crystals

    NASA Astrophysics Data System (ADS)

    Li, Li; Cao, Huibo; Chi, Miaofang; Sefat, Athena S.

    We present bulk magnetic and transport properties, and find structural and magnetic transitions, in order to construct the detailed T-x phase diagram for Ba(Fe1-xAux)2 As2 single crystals. The Au substitution into the FeAs-planes is only possible up to a small amount of ~3%, probably due to the large size of gold. We find that 5 d is more effective in reducing magnetism in BaFe2As2 than its counter 3d Cu, and this relates to superconductivity. In this talk, we reveal more comprehensive neutron diffraction data in order to clarify some of the inferred TN, TS points in our literature report. New transmission electron microscopy results will be presented that sheds light on the role of chemical disorder for preventing high Tc in these crystals The work (LL, AS) is supported by the U.S. DOE, Office of Science, BES. The work (HC) at ORNL's HFIR, and the work (MC) at CNMS are sponsored by the Scientific User Facilities Division.

  1. Hall-plot of the phase diagram for Ba(Fe1-xCox)2As2.

    PubMed

    Iida, Kazumasa; Grinenko, Vadim; Kurth, Fritz; Ichinose, Ataru; Tsukada, Ichiro; Ahrens, Eike; Pukenas, Aurimas; Chekhonin, Paul; Skrotzki, Werner; Teresiak, Angelika; Hühne, Ruben; Aswartham, Saicharan; Wurmehl, Sabine; Mönch, Ingolf; Erbe, Manuela; Hänisch, Jens; Holzapfel, Bernhard; Drechsler, Stefan-Ludwig; Efremov, Dmitri V

    2016-06-22

    The Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic. Here, we investigate thin films of Ba(Fe1-xCox)2As2 with compressive and tensile in-plane strain in a wide range of Co doping. Such in-plane strain changes the band structure of the compounds, resulting in various shifts of the whole phase diagram as a function of Co doping. We show that the resultant phase diagrams for different strain states can be mapped onto a single phase diagram with the Hall number. This universal plot is attributed to the critical fluctuations in multiband systems near the antiferromagnetic transition, which may suggest a direct link between magnetic and superconducting properties in the BaFe2As2 system.

  2. Enhanced microwave dielectric properties of Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} ceramics doping by metal Fe powders

    SciTech Connect

    Zhang Qiwei; Zhai Jiwei; Yao Xi; Ben Qianqian; Yu Xian

    2012-11-15

    Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} ceramics by adding mental Fe powders have been fabricated via the solid-state reaction method. The microstructures and optical properties of samples are systematically studied in order to establish the effects of Fe powder additives on microwave dielectric properties of Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} ceramics by x-ray diffraction, x-ray photoelectron spectroscopy, and optical reflective spectrum. The results show the coexistence of Fe{sup 2+} and Fe{sup 3+} in Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} ceramics, the decrease of O vacancy concentrations, and their incorporation into the B-site (Ti) of the Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} host lattice give rise to excellent microwave dielectric properties. All samples have a higher Q value above 290 while maintaining relatively high tunability above 16.6%. In particular, the sample with the composition of x = 0.035 mol has the dielectric constant of 889, Q Multiplication-Sign f value of 826 (at 1.370 GHz), and tunability of 24%, which are very promising for high power tunable devices. In comparison, Fe{sub 2}O{sub 3} oxide doped Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} ceramics with the same molar ratios of Fe exhibit inferior microwave properties. It indicates that additives of the metal Fe powders can more effectively improve dielectric properties of Ba{sub x}Sr{sub 1-x}TiO{sub 3} system than Fe{sub 2}O{sub 3} oxide.

  3. Band structure of the heavily-electron-doped FeAs-based Ba(Fe,Co)2As2 superconductor suppresses antiferromagnetic correlations.

    PubMed

    Sudayama, T; Wakisaka, Y; Takubo, K; Morinaga, R; Sato, T J; Arita, M; Namatame, H; Taniguchi, M; Mizokawa, T

    2010-04-30

    In the heavily-electron-doped regime of the Ba(Fe,Co)2As2 superconductor, three hole bands at the zone center are observed and two of them reach the Fermi level. The larger hole pocket at the zone center is apparently nested with the smaller electron pocket around the zone corner. However, the (pi,0) Fermi surface reconstruction reported for the hole-doped case is absent in the heavily-electron-doped case. This observation shows that the apparent Fermi surface nesting alone is not enough to enhance the antiferromagnetic correlation as well as the superconducting transition temperature.

  4. Enhanced spin signal in nonlocal devices based on a ferromagnetic CoFeAl alloy

    NASA Astrophysics Data System (ADS)

    Bridoux, G.; Costache, M. V.; Van de Vondel, J.; Neumann, I.; Valenzuela, S. O.

    2011-09-01

    We systematically study the nonlocal spin signal in lateral spin valves based on CoFeAl injectors and detectors and compare the results with identically fabricated devices based on CoFe. The devices are fabricated by electron beam evaporation at room temperature. We observe a > 10-fold enhancement of the spin signal in the CoFeAl devices. We explain this increase as due to the formation of a highly spin-polarized Co2FeAl Heusler compound with large resistivity. These results suggest that Heusler compounds are promising candidates as spin polarized electrodes in lateral spin devices for future spintronic applications.

  5. Preparation of Al-Cr-Fe Coatings by Heat Treatment of Electrodeposited Cr/Al Composite Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Chen, Chang'an; Zhang, Guikai; Rao, Yongchu; Ling, Guoping

    Al-Cr-Fe coatings have been widely used in the surface engineering field of materials, due to their excellent corrosion resistance to water vapor and fused salt deposits. In this study, a new two-step approach was developed to prepare Al-Cr-Fe coatings on surfaces of SUS430 stainless steels. First, the Cr/Al composite coatings were prepared by electrodepositing Cr from aqueous solution then electrodepositing Al from AlCl3-1-ethyl-3-methyl-imidazolium chloride (AlCl3-EMIC) ionic liquid on SUS430 stainless steel substrate. In the second, heat treatment of the Cr/Al composite coatings was carried out to acquire Al-Cr-Fe coatings. Effects of the thickness of Cr/Al composite coatings, the time and temperature of heat treatment on composition and phase structure of alloy layers were studied by using scanning electron microscope (SEM), backscattered electron (BSE), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The structure transformation process and formation mechanism of Al-Cr-Fe coatings were discussed.

  6. Atmospheric reactive plasma sprayed Fe-Al 2 O 3 -FeAl 2 O 4 composite coating and its property evaluation

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; He, Jining; Yan, Dianran; Dong, Yanchun; Zhang, Jianxin; Li, Xiangzhi; Liao, Hanlin

    2011-09-01

    In the present study, Fe-Al2O3-FeAl2O4 composite coatings were successfully deposited by reactive plasma sprayed Al/Fe2O3 agglomerated powder. Phase composition and microstructure of the coatings were determined by XRD and SEM. The results indicated that the composite coatings were principally composed of three different phases, i.e. FeAl2O4 phase as main framework, dispersed ball-like Fe-rich phase, and small splats of Al2O3 phase, and it was thought that the in situ synthesized metal phase was helpful to toughen the coating matrix. According to the results of the indentation and frictional wear tests, the composite coating exhibited excellent toughness and anti-friction properties in comparison with conventional Al2O3 monophase coating, though its microhardness value was a little lower than that of Al2O3 coating. The formation mechanism and the toughening mechanism of the composite coating were clarified in detail.

  7. Interactions at the Al-S-Fe interface: S inhibition of aluminum oxidation

    SciTech Connect

    Addepalli, S.G.; Lin, J.S.; Ekstrom, B.; Kelber, J.A.

    1999-08-01

    The deposition of aluminum on S/Fe(111) (1 x 1) at 300 K in UHV results in the formation of a disordered S-modified Al adlayer. Insertion of Al between the sulfur atoms and the Fe substrate is indicated by an increase of the S Auger signal with increasing Al deposition. Room-temperature oxidation of AlS/Fe(111) in UHV is inhibited compared to the oxidation of aluminum deposited on the sulfur-free Fe(111). The oxygen-uptake curves and variations in the S(LVV), Fe(MVV) intensities with oxygen exposure are also consistent with the insertion of the aluminum atoms between the S overlayer and the Fe substrate.

  8. Structure of Fe3Si/Al/Fe3Si thin film stacks on GaAs(001)

    NASA Astrophysics Data System (ADS)

    Jenichen, B.; Jahn, U.; Nikulin, A.; Herfort, J.; Kirmse, H.

    2015-11-01

    Fe3Si/Al/Fe3Si/GaAs(001) structures were deposited by molecular-beam epitaxy and characterized by transmission and scanning electron microscopy, and x-ray diffraction. The first Fe3Si film on GaAs(001) grew epitaxially as a (001) oriented single crystal. The subsequent Al film grew almost {111} oriented in a fibrous texture although the underlying Fe3Si is exactly (001) oriented. The growth in this orientation is triggered by a thin transition region which is formed at the Fe3Si/Al interface. In the end, after the growth of the second Fe3Si layer on top of the Al, the final properties of the whole stack depended on the substrate temperature T s during deposition of the last film. The upper Fe3Si films are mainly {110} oriented although they are poly-crystalline. At lower T s, around room temperature, all the films retain their original structural properties.

  9. Investigation on photoluminescence properties and defect chemistry of GdAlO3:Dy3+ Ba2+ phosphors

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, Thangaraj; Sellaiyan, Selvakumar; Uedono, Akira; Semba, Takaaki; Bose, Arumugam Chandra

    2016-08-01

    GdAlO3:Dy3+ Ba2+ phosphors are synthesized by citrate-based sol-gel method. Photoluminescence and positron annihilation studies are used to investigate the emission and defect chemistry of the phosphors respectively. The strong yellow (Dy3+) emission properties of phosphors are discussed for various concentrations of Dy3+ ions. Upon the addition of Ba2+ ion, an enhancement in emission intensity is observed due to the lattice distortions around Dy3+ ion. The positron studies indicate the presence of defects at crystallite boundaries, vacancy clusters and large voids in the materials. The influence of Ba2+ ion on the photoluminescence and lattice distortion around Dy3+ is also explored.

  10. Magnetic field dependence of piezoelectric resonance frequency in CoFe2O4-BaTiO3 composites

    NASA Astrophysics Data System (ADS)

    Kagomiya, Isao; Hayashi, Yusuke; Kakimoto, Ken-ichi; Kobayashi, Kazuyoshi

    2012-08-01

    The particulate and the multilayer CoFe2O4(CFO)-BaTiO3(BT) composites were prepared by the conventional solid state reaction method and the tape casting method, respectively. Both the prepared composites were simultaneously ferroelectric and ferromagnetic at room temperature. For the multilayer composite sample, a piezoelectric resonance frequency remarkably depended on the applied DC magnetic field, while no remarkable magnetic field dependence was observed for the particulate composite samples. An uniform magnetostriction of the CFO phase in the multilayer composite contributes to piezoelectric effect of the BT phases, resulting in the modulation of the piezoelectric resonance frequency.

  11. NMR Evidence for Inhomogeneous Nematic Fluctuations in BaFe_{2}(As_{1-x}P_{x})_{2}.

    PubMed

    Dioguardi, A P; Kissikov, T; Lin, C H; Shirer, K R; Lawson, M M; Grafe, H-J; Chu, J-H; Fisher, I R; Fernandes, R M; Curro, N J

    2016-03-11

    We present evidence for nuclear spin-lattice relaxation driven by glassy nematic fluctuations in isovalent P-doped BaFe_{2}As_{2} single crystals. Both the ^{75}As and ^{31}P sites exhibit a stretched-exponential relaxation similar to the electron-doped systems. By comparing the hyperfine fields and the relaxation rates at these sites we find that the As relaxation cannot be explained solely in terms of magnetic spin fluctuations. We demonstrate that nematic fluctuations couple to the As nuclear quadrupolar moment and can explain the excess relaxation. These results suggest that glassy nematic dynamics are a common phenomenon in the iron-based superconductors. PMID:27015507

  12. High-resolution thermal expansion of isovalently substituted BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Böhmer, A. E.; Burger, P.; Hardy, F.; Wolf, T.; Schweiss, P.; Fromknecht, R.; von Löhneysen, H.; Meingast, C.; Kasahara, S.; Terashima, T.; Shibauchi, T.; Matsuda, Y.

    2012-12-01

    We have investigated the isovalently substituted system BaFe2(As1-xPx)2 by high-resolution thermal expansion using a home-built capacitive dilatometer. Accurate measurements succeeded despite the very small size of the available single crystals (~ 500 × 500 × 100μm3). Information on the uniaxial pressure derivatives of the transition temperatures is obtained using thermodynamic relations. In-plane and out-of-plane pressure derivatives have opposite sign, which demonstrates the sensitivity of the compound to uniaxial pressure. The structural and the superconducting transition always respond oppositely to uniaxial pressure, which signals their coupling and competition.

  13. Quantum Oscillations in the Parent pnictide BaFe2As2 : Itinerant Electrons in the Reconstructed State

    SciTech Connect

    Analytis, J.G.

    2010-05-26

    We report quantum oscillation measurements that enable the direct observation of the Fermi surface of the low temperature ground state of BaFe{sub 2}As{sub 2}. From these measurements we characterize the low energy excitations, revealing that the Fermi surface is reconstructed in the antiferromagnetic state, but leaving itinerant electrons in its wake. The present measurements are consistent with a conventional band folding picture of the antiferromagnetic ground state, placing important limits on the topology and size of the Fermi surface.

  14. NMR evidence for inhomogeneous nematic fluctuations in BaFe2(As1-xPx)2

    DOE PAGES

    Dioguardi, A. P.; Kissikov, T.; Lin, C. H.; Shirer, K. R.; Lawson, M. M.; Grafe, H. -J.; Chu, J. -H.; Fisher, I. R.; Fernandes, R. M.; Curro, N. J.

    2016-03-10

    We present evidence for nuclear spin-lattice relaxation driven by glassy nematic fluctuations in isovalent P-doped BaFe2As2 single crystals. Both the 75As and 31P sites exhibit a stretched-exponential relaxation similar to the electron-doped systems. By comparing the hyperfine fields and the relaxation rates at these sites we find that the As relaxation cannot be explained solely in terms of magnetic spin fluctuations. We demonstrate that nematic fluctuations couple to the As nuclear quadrupolar moment and can explain the excess relaxation. Lastly, these results suggest that glassy nematic dynamics are a common phenomenon in the iron-based superconductors.

  15. SANS study of vortex lattice structural transition in optimally doped (Ba1-x K x )Fe2As2

    NASA Astrophysics Data System (ADS)

    Demirdiş, S.; van der Beek, C. J.; Mühlbauer, S.; Su, Y.; Wolf, Th

    2016-10-01

    Small-angle neutron scattering on high quality single crystalline Ba1-x K x Fe2As2 reveals the transition from a low-field vortex solid phase with orientational order to a vortex polycrystal at high magnetic field. The vortex order-disorder transition is correlated with the second-peak feature in isothermal hysteresis loops, and is interpreted in terms of the generation of supplementary vortex solid dislocations. The sharp drop of the structure factor above the second peak field is explained by the dynamics of freezing of the vortex ensemble in the high field phase.

  16. Properties of BaFe12O19 films prepared by laser deposition with in situ heating and post annealing

    NASA Astrophysics Data System (ADS)

    Lu, Y. F.; Song, W. D.

    2000-01-01

    BaFe12O19 films on (001) sapphire substrates are prepared by laser deposition with in situ heating and postannealing. The properties of the films are analyzed by x-ray diffractometry, vibrating sample magnetometer, atomic force microscopy, and Raman spectroscopy. The relationship among the coercivity, crystalline orientation, and grain shape and size is discussed. The film with coercivity of 5.1 kOe has been obtained by laser deposition with postannealing. The film with a preferential c-axis orientation normal to the film plane and the grains having good crystallinity with hexagonal symmetry have been obtained by laser deposition with in situ heating.

  17. SANS study of vortex lattice structural transition in optimally doped (Ba1-x K x )Fe2As2.

    PubMed

    Demirdiş, S; van der Beek, C J; Mühlbauer, S; Su, Y; Wolf, Th

    2016-10-26

    Small-angle neutron scattering on high quality single crystalline Ba1-x K x Fe2As2 reveals the transition from a low-field vortex solid phase with orientational order to a vortex polycrystal at high magnetic field. The vortex order-disorder transition is correlated with the second-peak feature in isothermal hysteresis loops, and is interpreted in terms of the generation of supplementary vortex solid dislocations. The sharp drop of the structure factor above the second peak field is explained by the dynamics of freezing of the vortex ensemble in the high field phase. PMID:27541966

  18. Effect of Fermi surface nesting on resonant spin excitations in Ba{<_1-x}K{<_x}Fe{<_2}As{<_2}.

    SciTech Connect

    Castellan, J.-P.; Rosenkranz, S.; Goremychkin, E.A.; Chung, D.Y.; Todorov, I.S.; Kanatzidis, M.G.; Eremin, I.; Knolle, J.; Chubukov, A.V.; Maiti, s.; Norman, M.R.; Weber, F.; Claus, H.; Guidi, T.; Bewley, R.I.; Osborn, R.

    2011-01-01

    We report inelastic neutron scattering measurements of the resonant spin excitations in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s{sub {+-}}-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.

  19. Correlation-induced self-doping in iron-pnictide superconductor Ba2Ti2Fe2As4O

    NASA Astrophysics Data System (ADS)

    Qian, Tian; Ma, Junzhang; Roekeghem, A. Van; Richard, Pierre; Cao, Guanghan; Biermann, Silke; Ding, Hong

    2015-03-01

    The electronic structure of the iron-based superconductor Ba2Ti2Fe2As4O (Tconset = 23.5 K) has been investigated by using angle-resolved photoemission spectroscopy and combined local density approximation and dynamical mean field theory calculations. The electronic states near the Fermi level are dominated by both the Fe 3 d and Ti 3 d orbitals, indicating that the spacer layers separating different FeAs layers are also metallic. By counting the enclosed volumes of the Fermi surface sheets, we observe a large self-doping effect, i. e. 0.25 electrons per unit cell are transferred from the FeAs layer to the Ti2As2O layer, leaving the FeAs layer in a hole-doped state. This exotic behavior is successfully reproduced by our dynamical mean field calculations, in which the self-doping effect is attributed to the electronic correlations in the 3 d shells. Our work provides an alternative route of effective doping without element substitution for iron-based superconductors.

  20. Study of Al impurity induced magnetic instability in CeFe{sub 2}

    SciTech Connect

    Das, Rakesh; Srivastava, S. K.

    2015-05-15

    We report experimental and computational studies on Al impurity induced magnetic instabilities in CeFe{sub 2}. The work is based on the reported first order magneto-structural phase transition in Ce(Fe{sub 1-x}Al{sub x}){sub 2}, with 0.02 ≤ x ≤ 0.08, below 90 K. We performed first-principles calculations of electronic and magnetic properties of Ce(Fe{sub 1-x}Al{sub x}){sub 2} for x = 0.031 and 0.25. A concentration dependence of Fe and Ce moments is observed, while the Al impurity does not carry any appreciable moment in either case. We investigated spin-polarised partial density of states of Ce(Fe{sub 1-x}Al{sub x}){sub 2} and their various hybridizations in order to find an answer for an antiferromagnetic kind of order at low temperatures.

  1. A study of temperature dependent local atomic displacements in a Ba(Fe(1-x)Co(x))2As2 superconductor.

    PubMed

    Hacisalihoglu, M Y; Paris, E; Joseph, B; Simonelli, L; Sato, T J; Mizokawa, T; Saini, N L

    2016-04-01

    We have studied the local structure of a Ba(Fe(1-x)Co(x))2As2 superconductor using temperature dependent extended X-ray absorption fine structure (EXAFS) measurements. Polarized EXAFS at the Fe K-edge on an optimally doped (x = 0.06) single crystal has permitted us to determine atomic displacements across the superconducting transition temperature (T(c)). The Fe-As bondlength hardly shows any change with temperature; however, the Fe-Fe sublattice reveals a sharp anomaly across T(c), indicated by a significant drop in mean square relative displacements, similar to the one known for cuprates and A15-type superconductors. We have also found a large atomic disorder around the substituted Co, revealed by polarized Co K-edge EXAFS measurements. The Co-Fe/Co bonds are more flexible than the Fe-Fe bonds with the As-height in Co-containing tetrahedra being larger than the one in FeAs4. The results suggest that the local Fe-Fe bondlength fluctuations and the atomic disorder in this sub-lattice should have some important role in the superconductivity of Ba(Fe(1-x)Co(x))2As2 pnictides.

  2. On stoichiometry and intermixing at the spinel/perovskite interface in CoFe2O4/BaTiO3 thin films.

    PubMed

    Tileli, Vasiliki; Duchamp, Martial; Axelsson, Anna-Karin; Valant, Matjaz; Dunin-Borkowski, Rafal E; Alford, Neil McN

    2015-01-01

    The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface stoichiometry, and cation intermixing are determined on the atomic level. The results reveal a surprisingly uneven BaTiO3 substrate surface formed after the film deposition and Fe atom incorporation in the top few monolayers inside the unit cell of the BaTiO3 crystal. Towards the CoFe2O4 side, a disordered region extending several nanometers from the interface was revealed and both Ba and Ti from the substrate were found to diffuse into the spinel layer. The analysis also shows that within this somehow incompatible composite interface, a different phase is formed corresponding to the compound Ba2Fe3Ti5O15, which belongs to the ilmenite crystal structure of FeTiO3 type. The results suggest a chemical activity between these two oxides, which could lead to the synthesis of complex engineered interfaces.

  3. Fabrication and magnetic property of BaSm(x)Fe(12-x)O19 (x < or = 0.4) nanofibers.

    PubMed

    Xian-Feng, Meng; Li-Ju, Guo

    2012-03-01

    BaSm(x)Fe(12-x)O19 (x < or = 0.4) ferrite nanofibers were prepared by sol-gel method from starting reagents of metal salts and citric acid. These nanofibers were characterized by TG-DTA, FTIR, SEM, XRD and VSM. These results show that the BaSm(x)Fe(12-x)O19 (x < or = 0.4) ferrite nanofibers were obtained subsequently from calcination at 750 degrees C for 1 h. The BaSm(x)Fe(12-x)O19 (x < or = 0.4) microstructure and magnetic property are mainly influenced by chemical composition and heat-treatment temperature. The grain sizes of BaSm0.3Fe11.7O19 ferrite nanofibers are in a nanoscale from 40 nm to 62 nm corresponding to the calcination temperature from 750 degrees C to 1050 derees C. The saturation magnetization of BaSm(x)Fe(12-x)O19 ferrite nanofiber calcined at 950 degrees C for 1 h initially decreases with the Sm content from 0 to 0.3 and then increases with a further Sm content, while the coercivity exhibits a continuous increase from 348 kA x m(-1) (x = 0) to 427 kA x m(-1) (x = 0.4). The differences of magnetic properties are attributed to lattice distortion and enhancement for the anisotropy energy. PMID:22755131

  4. Multiple diffraction in an icosahedral Al-Cu-Fe quasicrystal

    NASA Astrophysics Data System (ADS)

    Fan, C. Z.; Weber, Th.; Deloudi, S.; Steurer, W.

    2011-07-01

    In order to reveal its influence on quasicrystal structure analysis, multiple diffraction (MD) effects in an icosahedral Al-Cu-Fe quasicrystal have been investigated in-house on an Oxford Diffraction four-circle diffractometer equipped with an Onyx™ CCD area detector and MoKα radiation. For that purpose, an automated approach for Renninger scans (ψ-scans) has been developed. Two weak reflections were chosen as the main reflections (called P) in the present measurements. As is well known for periodic crystals, it is also observed for this quasicrystal that the intensity of the main reflection may significantly increase if the simultaneous (H) and the coupling (P-H) reflections are both strong, while there is no obvious MD effect if one of them is weak. The occurrence of MD events during ψ-scans has been studied based on an ideal structure model and the kinematical MD theory. The reliability of the approach is revealed by the good agreement between simulation and experiment. It shows that the multiple diffraction effect is quite significant.

  5. Constraints on Al, Fe and Li Abundances in Mercury's Exosphere

    NASA Astrophysics Data System (ADS)

    Doressoundiram, Alain; Leblanc, F.

    2009-09-01

    Before the arrival of Messenger and Bepi Colombo at Mercury, the only source of information available on Mercury's environment is observations done from ground based observatories. We performed high spectral resolution observations of the Mercury's exosphere on the 30th and 31st October 2005 using the ESO-NTT telescope, La Silla, Chile. The large spectral range, 385-855 nm of the spectrograph EMMI provides a unique opportunity to search for non-identified species in the Hermian's environment. In this paper, we report a tentative detection of atomic aluminium in the exosphere of Mercury. This detection should be confirmed by further observations and can be used as an upper limit for this element in Mercury's exosphere. We also estimate upper limit for the column densities of Fe and Si exospheric atoms. Detection of Al, a refractory element, if confirmed, as well as its high exospheric abundance (between 2 to 18) with respect to Ca would suggest either an unexpected surface composition or a relation between exosphere and surface composition that is not well understood.

  6. Magnetic properties and pairing tendencies of the iron-based superconducting ladder BaFe2S3: Combined ab initio and density matrix renormalization group study

    DOE PAGES

    Patel, Niravkumar D.; Nocera, Alberto; Alvarez, Gonzalo; Arita, Ryotaro; Moreo, Adriana; Dagotto, Elbio

    2016-08-10

    The recent discovery of superconductivity under high pressure in the two-leg ladder compound BaFe2S3 [H. Takahashi et al., Nat. Mater. 14, 1008 (2015)] opens a broad avenue of research, because it represents the first report of pairing tendencies in a quasi-one-dimensional iron-based high-critical-temperature superconductor. Similarly, as in the case of the cuprates, ladders and chains can be far more accurately studied using many-body techniques and model Hamiltonians than their layered counterparts, particularly if several orbitals are active. In this publication, we derive a two-orbital Hubbard model from first principles that describes individual ladders of BaFe2S3. The model is studied withmore » the density matrix renormalization group. These first reported results are exciting for two reasons: (i) at half-filling, ferromagnetic order emerges as the dominant magnetic pattern along the rungs of the ladder, and antiferromagnetic order along the legs, in excellent agreement with neutron experiments; and (ii) with hole doping, pairs form in the strong coupling regime, as found by studying the binding energy of two holes doped on the half-filled system. In addition, orbital selective Mott phase characteristics develop with doping, with only oneWannier orbital receiving the hole carriers while the other remains half-filled. Lastly, these results suggest that the analysis of models for iron-based two-leg ladders could clarify the origin of pairing tendencies and other exotic properties of iron-based high-critical-temperature superconductors in general.« less

  7. Magnetic properties and pairing tendencies of the iron-based superconducting ladder BaFe2S3 : Combined ab initio and density matrix renormalization group study

    NASA Astrophysics Data System (ADS)

    Patel, Niravkumar D.; Nocera, Alberto; Alvarez, Gonzalo; Arita, Ryotaro; Moreo, Adriana; Dagotto, Elbio

    2016-08-01

    The recent discovery of superconductivity under high pressure in the two-leg ladder compound BaFe2S3 [H. Takahashi et al., Nat. Mater. 14, 1008 (2015), 10.1038/nmat4351] opens a broad avenue of research, because it represents the first report of pairing tendencies in a quasi-one-dimensional iron-based high-critical-temperature superconductor. Similarly, as in the case of the cuprates, ladders and chains can be far more accurately studied using many-body techniques and model Hamiltonians than their layered counterparts, particularly if several orbitals are active. In this publication, we derive a two-orbital Hubbard model from first principles that describes individual ladders of BaFe2S3 . The model is studied with the density matrix renormalization group. These first reported results are exciting for two reasons: (i) at half-filling, ferromagnetic order emerges as the dominant magnetic pattern along the rungs of the ladder, and antiferromagnetic order along the legs, in excellent agreement with neutron experiments; and (ii) with hole doping, pairs form in the strong coupling regime, as found by studying the binding energy of two holes doped on the half-filled system. In addition, orbital selective Mott phase characteristics develop with doping, with only one Wannier orbital receiving the hole carriers while the other remains half-filled. These results suggest that the analysis of models for iron-based two-leg ladders could clarify the origin of pairing tendencies and other exotic properties of iron-based high-critical-temperature superconductors in general.

  8. Thermodynamic analysis of compatibility of several reinforcement materials with FeAl alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Chemical compatibility of several reinforcement materials with FeAl alloys within the concentration range 40 to 50 at pct Al have been analyzed from thermodynamic considerations at 1173 and 1273 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, and silicides. Although several chemically compatible reinforcement materials are identified, the coefficients of thermal expansion for none of these materials match closely with that of FeAl alloys and this might pose serious problems in the design of composite systems based on FeAl alloys.

  9. Third element effect in the surface zone of Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Airiskallio, E.; Nurmi, E.; Heinonen, M. H.; Väyrynen, I. J.; Kokko, K.; Ropo, M.; Punkkinen, M. P. J.; Pitkänen, H.; Alatalo, M.; Kollár, J.; Johansson, B.; Vitos, L.

    2010-01-01

    The third element effect to improve the high temperature corrosion resistance of the low-Al Fe-Cr-Al alloys is suggested to involve a mechanism that boosts the recovering of the Al concentration to the required level in the Al-depleted zone beneath the oxide layer. We propose that the key factor in this mechanism is the coexistent Cr depletion that helps to maintain a sufficient Al content in the depleted zone. Several previous experiments related to our study support that conditions for such a mechanism to be functional prevail in real oxidation processes of Fe-Cr-Al alloys.

  10. Structural disorder and magnetism in the spin-gapless semiconductor CoFeCrAl

    NASA Astrophysics Data System (ADS)

    Choudhary, Renu; Kharel, Parashu; Valloppilly, Shah R.; Jin, Yunlong; O'Connell, Andrew; Huh, Yung; Gilbert, Simeon; Kashyap, Arti; Sellmyer, D. J.; Skomski, Ralph

    2016-05-01

    Disordered CoFeCrAl and CoFeCrSi0.5Al0.5 alloys have been investigated experimentally and by first-principle calculations. The melt-spun and annealed samples all exhibit Heusler-type superlattice peaks, but the peak intensities indicate a substantial degree of B2-type chemical disorder. Si substitution reduces the degree of this disorder. Our theoretical analysis also considers several types of antisite disorder (Fe-Co, Fe-Cr, Co-Cr) in Y-ordered CoFeCrAl and partial substitution of Si for Al. The substitution transforms the spin-gapless semiconductor CoFeCrAl into a half-metallic ferrimagnet and increases the half-metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of CoFeCrSi0.5Al0.5 is predicted to increase from 2.01 μB to 2.50 μB per formula unit, in good agreement with experiment.

  11. Ca and In co-doped BaFeO3-δ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Lam, Kwun Yu; Saccoccio, Mattia; Gao, Yang; Chen, Dengjie; Ciucci, Francesco

    2016-08-01

    We report Ba0·95Ca0·05Fe0·95In0·05O3-δ (BCFI), a novel cobalt-free perovskite, as a promising cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). We synthesize this new material, and systematically characterize its lattice structure, thermal stability, chemical composition, electrical conductivity, and oxygen reduction reaction (ORR) activity. The cubic phase of BaFeO3-δ is stabilized by light isovalent and lower-valence substitution, i.e., 5% Ca2+ in the Ba2+ site and 5% In3+ in the Fe3+/Fe4+ site, in contrast with the typical approach of substituting elements of higher valence. Without resorting to co-doping strategy, the phase of BaFe0·95In0·05O3-δ (BFI) is rhombohedral, while Ba0·95Ca0·05FeO3-δ (BCF) is a mixture of the cubic phase together with BaFe2O4 impurities. The structure of BCFI is cubic from room temperature up to 900 °C with a moderate thermal expansion coefficient of 23.2 × 10-6 K-1. Thanks to the large oxygen vacancy concentration and fast oxygen mobility, BCFI exhibits a favorable ORR activity, i.e., we observe a polarization resistance as small as 0.038 Ω cm2 at 700 °C. The significantly enhanced performance, compared with BFI and BCF, is attributed to the presence of the cubic phase and the large oxygen vacancies brought by the isovalent substitution in the A-site and lower-valence doping in the B-site.

  12. Ca and In co-doped BaFeO3-δ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Lam, Kwun Yu; Saccoccio, Mattia; Gao, Yang; Chen, Dengjie; Ciucci, Francesco

    2016-08-01

    We report Ba0·95Ca0·05Fe0·95In0·05O3-δ (BCFI), a novel cobalt-free perovskite, as a promising cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). We synthesize this new material, and systematically characterize its lattice structure, thermal stability, chemical composition, electrical conductivity, and oxygen reduction reaction (ORR) activity. The cubic phase of BaFeO3-δ is stabilized by light isovalent and lower-valence substitution, i.e., 5% Ca2+ in the Ba2+ site and 5% In3+ in the Fe3+/Fe4+ site, in contrast with the typical approach of substituting elements of higher valence. Without resorting to co-doping strategy, the phase of BaFe0·95In0·05O3-δ (BFI) is rhombohedral, while Ba0·95Ca0·05FeO3-δ (BCF) is a mixture of the cubic phase together with BaFe2O4 impurities. The structure of BCFI is cubic from room temperature up to 900 °C with a moderate thermal expansion coefficient of 23.2 × 10-6 K-1. Thanks to the large oxygen vacancy concentration and fast oxygen mobility, BCFI exhibits a favorable ORR activity, i.e., we observe a polarization resistance as small as 0.038 Ω cm2 at 700 °C. The significantly enhanced performance, compared with BFI and BCF, is attributed to the presence of the cubic phase and the large oxygen vacancies brought by the isovalent substitution in the A-site and lower-valence doping in the B-site.

  13. Photoinduced Demagnetization and Insulator-to-Metal Transition in Ferromagnetic Insulating BaFeO3 Thin Films

    NASA Astrophysics Data System (ADS)

    Tsuyama, T.; Chakraverty, S.; Macke, S.; Pontius, N.; Schüßler-Langeheine, C.; Hwang, H. Y.; Tokura, Y.; Wadati, H.

    2016-06-01

    We studied the electronic and magnetic dynamics of ferromagnetic insulating BaFeO3 thin films by using pump-probe time-resolved resonant x-ray reflectivity at the Fe 2 p edge. By changing the excitation density, we found two distinctly different types of demagnetization with a clear threshold behavior. We assigned the demagnetization change from slow (˜150 ps ) to fast (<70 ps ) to a transition into a metallic state induced by laser excitation. These results provide a novel approach for locally tuning magnetic dynamics. In analogy to heat-assisted magnetic recording, metallization can locally tune the susceptibility for magnetic manipulation, allowing one to spatially encode magnetic information.

  14. Photoinduced Demagnetization and Insulator-to-Metal Transition in Ferromagnetic Insulating BaFeO_{3} Thin Films.

    PubMed

    Tsuyama, T; Chakraverty, S; Macke, S; Pontius, N; Schüßler-Langeheine, C; Hwang, H Y; Tokura, Y; Wadati, H

    2016-06-24

    We studied the electronic and magnetic dynamics of ferromagnetic insulating BaFeO_{3} thin films by using pump-probe time-resolved resonant x-ray reflectivity at the Fe 2p edge. By changing the excitation density, we found two distinctly different types of demagnetization with a clear threshold behavior. We assigned the demagnetization change from slow (∼150  ps) to fast (<70  ps) to a transition into a metallic state induced by laser excitation. These results provide a novel approach for locally tuning magnetic dynamics. In analogy to heat-assisted magnetic recording, metallization can locally tune the susceptibility for magnetic manipulation, allowing one to spatially encode magnetic information. PMID:27391735

  15. Ab initio downfolding study of the iron-based ladder superconductor BaFe2S3

    NASA Astrophysics Data System (ADS)

    Arita, Ryotaro; Ikeda, Hiroaki; Sakai, Shiro; Suzuki, Michi-To

    2015-08-01

    Motivated by the recent discovery of superconductivity in the iron-based ladder compound BaFe2S3 under high pressure, we derive low-energy effective Hamiltonians from first principles. We show that the complex band structure around the Fermi level is represented only by the Fe 3 dx z (mixed with 3 dx y ) and 3 dx2-y2 orbitals. The characteristic band degeneracy allows us to construct a four-band model with the band unfolding approach. We also estimate the interaction parameters and show that the system is more correlated than the 1111 family of iron-based superconductors. Provided the superconductivity is mediated by spin fluctuations, the 3 dx z -like band plays an essential role, and the gap function changes its sign between the Fermi surface around the Γ point and that around the Brillouin-zone boundary.

  16. Surface structures of Al-Pd-Mn and Al-Cu-Fe icosahedral quasicrystals

    SciTech Connect

    Shen, Z.

    1999-02-12

    In this dissertation, the author reports on the surface structure of i-Al-Pd-Mn twofold, threefold, fivefold and i-Al-Cu-Fe fivefold surfaces. The LEED studies indicate the existence of two distinct stages in the regrowth of all four surfaces after Ar{sup +} sputtering. In the first stage, upon annealing at relatively low temperature: 500K--800K (depending on different surfaces), a cubic phase appears. The cubic LEED patterns transform irreversibly to unreconstructed quasicrystalline patterns upon annealing to higher temperatures, indicating that the cubic overlayers are metastable. Based upon the data for three chemically-identical, but symmetrically-inequivalent surfaces, a model is developed for the relation between the cubic overlayers and the quasicrystalline substrate. The model is based upon the related symmetries of cubic close-packed and icosahedral-packed materials. These results may be general among Al-rich, icosahedral materials. STM study of Al-Pd-Mn fivefold surface shows that terrace-step-kink structures start to form on the surface after annealing above 700K. Large, atomic ally-flat terraces were formed after annealing at 900K. Fine structures with fivefold icosahedral symmetry were found on those terraces. Data analysis and comparison of the STM images and structure model of icosahedral Al-Pd-Mn suggest that the fine structures in the STM images may be the pseudo Mackay (PMI) clusters which are the structure units of the structure model. Based upon his results, he can conclude that quasicrystalline structures are the stable structures of quasicrystal surfaces. In other words, quasicrystalline structures extend from the bulk to the surface. As a result of the effort reported in this dissertation, he believes that he has increased his understanding of the surface structure of icosahedral quasicrystals to a new level.

  17. Crystal structure of the Fe-member of usovite

    PubMed Central

    Weil, Matthias

    2015-01-01

    Crystals of the title compound, with the idealized composition Ba2CaFeAl2F14, dibarium calcium iron(II) dialuminium tetra­deca­fluoride, were obtained serendipitously by reacting a mixture of the binary fluorides BaF2, CaF2 and AlF3 in a leaky steel reactor. The compound crystallizes in the usovite structure type (Ba2CaMgAl2F14), with Fe2+ cations replacing the Mg2+ cations. The principal building units are distorted [CaF8] square-anti­prisms (point group symmetry 2), [FeF6] octa­hedra (point group symmetry -1) and [AlF6] octa­hedra that are condensed into undulating 2 ∞[CaFeAl2F14]4− layers parallel (100). The Ba2+ cations separate the layers and exhibit a coordination number of 12. Two crystal structure models with a different treatment of the disordered Fe site [mixed Fe/Ca occupation, model (I), versus underoccupation of Fe, model (II)], are discussed, leading to different refined formulae Ba2Ca1.310 (15)Fe0.690 (15)Al2F14 [model (I)] and Ba2CaFe0.90 (1)Al2F14 [model (II)]. PMID:26090139

  18. Activities of the components in a spinel solid solution of the Fe-Al-O system

    NASA Astrophysics Data System (ADS)

    Lykasov, A. A.; Kimyashev, A. A.

    2011-09-01

    The conditions of the equilibrium between the Fe3O4-FeAl2O4 solution and wustite are determined by measuring the EMF of galvanic cells containing a solid electrolyte, and the activities of the components in the Fe3O4-FeAl2O4 solution are calculated by treating the results of the experiment on the equilibrium between the spinel solution and wustite. Their properties are found to be different from those of ideal solutions at temperatures of 1000-1300 K. A significant positive deviation from the Raoult's law is believed to indicate the tendency of the solution to decompose. The experimental data are treated in terms of the theory of regular solutions, assuming the energy of mixing to be a function of temperature only. The critical temperature of decomposition for the Fe3O4-FeAl2O4 solution is found to be 1084 K.

  19. Strong coercivity reduction and high initial permeability in NiCoP coated BaFe12O19-polystyrene bilayer composite

    NASA Astrophysics Data System (ADS)

    Hamad, Mahmoud A.; El-Sayed, Adly H.; Hemeda, O. M.; Tawfik, A.

    2016-03-01

    Soft-magnetic NiCoP coated hard-magnetic M-type ferrite BaFe12O19 (BaM)-polystyrene (PS) bilayer composite film was successfully synthesized. X-ray diffraction peaks exhibited no change in the structure of BaM after coating with PS. The NiCoP coated BaM-PS composite exhibited a wasp-waisted magnetic hysteretic loop with remarkable reduction in the coercivity, remanence and squareness with respect to BaM-PS, which is useful for the core of a magnetic switching device to control currents so large that they are unmanageable. Moreover, the initial permeability measurement exhibits initial permeability of around 100 000 and thermal stability up to 558 K, which is good for flux-amplifying components of smaller inductors.

  20. Lattice dynamics of BaFe2X3(X=S,Se) compounds

    DOE PAGES

    Popović, Z. V.; Šćepanović, M.; Lazarević, N.; Opačić, M.; Radonjić, M. M.; Tanasković, D.; Lei, Hechang; Petrovic, C.

    2015-02-27

    We present the Raman scattering spectra of the S=2 spin ladder compounds BaFe₂X₃ (X=S,Se) in a temperature range between 20 and 400 K. Although the crystal structures of these two compounds are both orthorhombic and very similar, they are not isostructural. The unit cell of BaFe₂S₃ (BaFe₂Se₃) is base-centered Cmcm (primitive Pnma), giving 18 (36) modes to be observed in the Raman scattering experiment. We have detected almost all Raman active modes, predicted by factor group analysis, which can be observed from the cleavage planes of these compounds. Assignment of the observed Raman modes of BaFe₂S(Se)₃ is supported by themore » lattice dynamics calculations. The antiferromagnetic long-range spin ordering in BaFe₂Se₃ below TN=255K leaves a fingerprint both in the A1g and B3g phonon mode linewidth and energy.« less

  1. Enhanced microwave dielectric properties of Ba0.4Sr0.6TiO3 ceramics doping by metal Fe powders

    NASA Astrophysics Data System (ADS)

    Zhang, Qiwei; Zhai, Jiwei; Ben, Qianqian; Yu, Xian; Yao, Xi

    2012-11-01

    Ba0.4Sr0.6TiO3 ceramics by adding mental Fe powders have been fabricated via the solid-state reaction method. The microstructures and optical properties of samples are systematically studied in order to establish the effects of Fe powder additives on microwave dielectric properties of Ba0.4Sr0.6TiO3 ceramics by x-ray diffraction, x-ray photoelectron spectroscopy, and optical reflective spectrum. The results show the coexistence of Fe2+ and Fe3+ in Ba0.4Sr0.6TiO3 ceramics, the decrease of O vacancy concentrations, and their incorporation into the B-site (Ti) of the Ba0.4Sr0.6TiO3 host lattice give rise to excellent microwave dielectric properties. All samples have a higher Q value above 290 while maintaining relatively high tunability above 16.6%. In particular, the sample with the composition of x = 0.035 mol has the dielectric constant of 889, Q × f value of 826 (at 1.370 GHz), and tunability of 24%, which are very promising for high power tunable devices. In comparison, Fe2O3 oxide doped Ba0.4Sr0.6TiO3 ceramics with the same molar ratios of Fe exhibit inferior microwave properties. It indicates that additives of the metal Fe powders can more effectively improve dielectric properties of BaxSr1-xTiO3 system than Fe2O3 oxide.

  2. Synthesis and electromagnetic properties of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites

    SciTech Connect

    Xie, Yu; Hong, Xiaowei; Liu, Jinmei; Le, Zhanggao; Huang, Feihui; Qin, Yuancheng; Zhong, Rong; Gao, Yunhua; Pan, Jianfei; Ling, Yun

    2014-02-01

    Graphical abstract: Due to combining different functions and characteristics of individual materials, hybrid nanocomposite materials can strengthen their applications. Magnetic-conductive nanocomposites are the promising materials with electromagnetic loss, which have synergetic behavior between magnetic and conductive materials. It is the first time to report the synthesis of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide (BF/TD) composites by the gel-precursor self-propagating combustion process. The influence of mass ratio of BF and TD on the electromagnetic properties of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites was studied. The tgδ{sub μ} and tgδ{sub ε} of BF–TD composites. - Highlights: • It is the first time to report BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites. • The composites are prepared by the gel-precursor self-propagating combustion. • The electromagnetic properties could be adjusted by the mass ratio of BF and TD. • The introduction of TD enhances the dielectric loss and widens the frequency bands. • BF/TD composites will be microwave absorption materials with wide frequency band. - Abstract: Doped BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites have been prepared by the gel-precursor self-propagating combustion process. The characterization of the composites are performed by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Differential thermal analysis-thermo gravimetry (DTA–TG), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and network analyzer. Both XRD and FT-IR indicate that the doped BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites are successfully synthesized and there are some interactions between BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19} and titanium dioxide. DTA–TG analysis of BaFe{sub 11.92}(LaNd){sub 0.04}O{sub 19}/titanium dioxide composites shows that the composite gel

  3. Large dielectric permittivity and possible correlation between magnetic and dielectric properties in bulk BaFeO{sub 3−δ}

    SciTech Connect

    Sagdeo, Archna; Gautam, Kamini; Singh, M. N.; Sinha, A. K.; Ghosh, Haranath; Ganguli, Tapas; Chakrabarti, Aparna; Sagdeo, P. R.; Gupta, S. M.; Nigam, A. K.; Rawat, Rajeev

    2014-07-28

    We report structural, magnetic, and dielectric properties of oxygen deficient hexagonal BaFeO{sub 3−δ}. A large dielectric permittivity comparable to that of other semiconducting oxides is observed in BaFeO{sub 3−δ}. Magnetization measurements indicate magnetic inhomogeneity and the system shows a paramagnetic to antiferromagnetic transition at ∼160 K. Remarkably, the temperature, at which paramagnetic to antiferromagnetic transition occurs, around this temperature, a huge drop in the dissipation factor takes place and resistivity shoots up; this indicates the possible correlation among magnetic and dielectric properties. First principle simulations reveal that some of these behaviors may be explained in terms of many body electron correlation effect in the presence of oxygen vacancy present in BaFeO{sub 3−δ} indicating its importance in both fundamental science as well as in applications.

  4. Crystal growth and characterization of tetragonal tungsten bronze FerroNiobates Ba 2LnFeNb 4O 15

    NASA Astrophysics Data System (ADS)

    Castel, E.; Veber, P.; Albino, M.; Velázquez, M.; Pechev, S.; Denux, D.; Chaminade, J. P.; Maglione, M.; Josse, M.

    2012-02-01

    Tetragonal Tungsten Bronze Ferroelectrics (TTB) are currently revisited for the elaboration of new multifunctional materials. Recent studies on Ba 2LnFeNb 4O 15 ceramics (Ln=Nd, Sm and Eu) demonstrated that these materials display both ferroelectric and ferromagnetic behaviors at room temperature due to the presence of barium hexaferrite as a secondary phase. In this paper, we report for the first time the growth of Ba 2LnFeNb 4O 15 single crystals (Ln=La, Pr, Nd, Sm and Eu) from high temperature solution using LiBO 2 flux. Inclusion free millimeter-sized single crystals were successfully grown. Structural and dielectric characterizations were performed and chemical analysis confirmed that the TTB matrix is reluctant to accommodate small rare earth as it was observed for ceramics. A paramagnetic behavior was observed for all compositions, which corroborates the composite nature of the TTB ceramic multiferroics at room temperature, while dielectric measurements on Ln=La and Pr crystals confirmed their relaxor behavior.

  5. Possible unconventional superconductivity in substituted BaFe2As2 revealed by magnetic pair-breaking studies

    PubMed Central

    Rosa, P. F. S.; Adriano, C.; Garitezi, T. M.; Piva, M. M.; Mydeen, K.; Grant, T.; Fisk, Z.; Nicklas, M.; Urbano, R. R.; Fernandes, R. M.; Pagliuso, P. G.

    2014-01-01

    The possible existence of a sign-changing gap symmetry in BaFe2As2-derived superconductors (SC) has been an exciting topic of research in the last few years. To further investigate this subject we combine Electron Spin Resonance (ESR) and pressure-dependent transport measurements to investigate magnetic pair-breaking effects on BaFe1.9M0.1As2 (M = Mn, Co, Cu, and Ni) single crystals. An ESR signal, indicative of the presence of localized magnetic moments, is observed only for M = Cu and Mn compounds, which display very low SC transition temperature (Tc) and no SC, respectively. From the ESR analysis assuming the absence of bottleneck effects, the microscopic parameters are extracted to show that this reduction of Tc cannot be accounted by the Abrikosov-Gorkov pair-breaking expression for a sign-preserving gap function. Our results reveal an unconventional spin- and pressure-dependent pair-breaking effect and impose strong constraints on the pairing symmetry of these materials. PMID:25176407

  6. Ultrafast magneto-optical spectroscopy of BiFeO3-BaTiO3 based structures

    NASA Astrophysics Data System (ADS)

    Magill, Brenden A.; Bishop, Michael; McGill, Stephen A.; Zhou, Yuon; Chopra, Anuj; Maurya, Deepam; Song, Hyun-Cheol; Priya, Shashank; Khodaparast, Giti A.

    2015-09-01

    Ultrafast optical spectroscopy can provide insight into fundamental microscopic interactions, dynamics and the coupling of several degrees of freedom. Pump/ probe studies can reveal the answer to questions like "What are the achievable switching speeds in multiferroics?", "What is the influence of the crystallographic orientation and domain states on the available switching states?", and "What is the effect of the hetrostructure on promoting the coupling between the varying field excitations?". In this presentation, we report on two color (400/800nm) ultrafast pump-probe differential reflectance spectroscopy of BiFeO3-BaTiO3 structures to probe the coupling between optical and acoustic phonons to spin waves. The data presented here is a combination of different transient reflectivity measurements to probe both the carrier and spin dynamics. The (001)-BiFeO3-BaTiO3 thin films were prepared using pulsed laser deposition on vicinal SrTiO3 substrates using La0.70 Sr0.30MnO3 bottom electrodes. Crystal orientation and topography were analyzed by x-ray diffraction and atomic force microscopy. . Our results are important to developing devices on the basis of this material system. This work was supported by the AFOSR through grant FA9550-14-1-0376,NSF-Career Award DMR-0846834, and the Virginia Tech Institute for Critical Technology and Applied Science.

  7. Determination of the phase diagram of the electron doped superconductor Ba(Fe1-xCox)2As2

    SciTech Connect

    Chu, Jiun-Haw; Analytis, James G.; Kucharczyk, Chris; Fisher, Ian R.; /Stanford U., Geballe Lab.

    2010-02-15

    Systematic measurements of the resistivity, heat capacity, susceptibility and Hall coefficient are presented for single crystal samples of the electron-doped superconductor Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2}. These data delineate an x-T phase diagram in which the single magnetic/structural phase transition that is observed for undoped BaFe{sub 2}As{sub 2} at 134 K apparently splits into two distinct phase transitions, both of which are rapidly suppressed with increasing Co concentration. Superconductivity emerges for Co concentrations above x {approx}0.025, and appears to coexist with the broken symmetry state for an appreciable range of doping, up to x {approx} 0.06. The optimal superconducting transition temperature appears to coincide with the Co concentration at which the magnetic/structural phase transitions are totally suppressed, at least within the resolution provided by the finite step size between crystals prepared with different doping levels. Superconductivity is observed for a further range of Co concentrations, before being completely suppressed for x {approx} 0.018 and above. The form of this x-T phase diagram is suggestive of an association between superconductivity and a quantum critical point arising from suppression of the magnetic and/or structural phase transitions.

  8. Point defect concentrations and solid solution hardening in NiAl with Fe additions

    SciTech Connect

    Pike, L.M.; Chang, Y.A.; Liu, C.T.

    1997-08-01

    The solid solution hardening behavior exhibited when Fe is added to NiAl is investigated. This is an interesting problem to consider since the ternary Fe additions may choose to occupy either the Ni or the Al sublattice, affecting the hardness at differing rates. Moreover, the addition of Fe may affect the concentrations of other point defects such as vacancies and Ni anti-sites. As a result, unusual effects ranging from rapid hardening to solid solution softening are observed. Alloys with varying amounts of Fe were prepared in Ni-rich (40 at. % Al) and stoichiometric (50 at. % Al) compositions. Vacancy concentrations were measured using lattice parameter and density measurements. The site occupancy of Fe was determined using ALCHEMI. Using these two techniques the site occupancies of all species could be uniquely determined. Significant differences in the defect concentrations as well as the hardening behavior were encountered between the Ni-rich and stoichiometric regimes.

  9. Transport properties, upper critical field and anisotropy of Ba(Fe0.75Ru0.25)2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Shen, Bing; Zeng, Bin; Liu, JianZhong; Ding, XiaXin; Wang, ZhiHe; Yang, Huan; Wen, HaiHu

    2012-12-01

    The temperature and angle dependent resistivity of Ba(Fe0.75Ru0.25)2As2 single crystals were measured in magnetic fields up to 14 T. The temperature dependent resistivity with the magnetic field aligned parallel to c-axis and ab-planes allow us to derive the slope of d H {/c2 ab }/d T and d H {/c2 c }/d T near T c yielding an anisotropy ratio Γ = d H {/c2 ab }/d T/d H {/c2 c }/d T≈2. By scaling the curves of resistivity vs. angle measured at a fixed temperature but different magnetic fields within the framework of the anisotropic Ginzburg-Landau theory, we obtained the anisotropy in an alternative way. Again we found that the anisotropy ( m c / m ab )1/2 was close to 2. This value is similar to that in Ba0.6K0.4Fe2As2 (K-doped Ba122) and Ba(Fe0.92Co0.08)2As2 (Co-doped Ba122). This suggests that the 3D warping effect of the Fermi surface in Ru-doped samples may not be stronger than that in the K-doped or Co-doped Ba122 samples, therefore the possible nodes appearing in Ru-doped samples cannot be ascribed to the 3D warping effect of the Fermi surface.

  10. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.; Unocic, Kinga A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  11. On stoichiometry and intermixing at the spinel/perovskite interface in CoFe2O4/BaTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Tileli, Vasiliki; Duchamp, Martial; Axelsson, Anna-Karin; Valant, Matjaz; Dunin-Borkowski, Rafal E.; Alford, Neil Mcn.

    2014-11-01

    The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface stoichiometry, and cation intermixing are determined on the atomic level. The results reveal a surprisingly uneven BaTiO3 substrate surface formed after the film deposition and Fe atom incorporation in the top few monolayers inside the unit cell of the BaTiO3 crystal. Towards the CoFe2O4 side, a disordered region extending several nanometers from the interface was revealed and both Ba and Ti from the substrate were found to diffuse into the spinel layer. The analysis also shows that within this somehow incompatible composite interface, a different phase is formed corresponding to the compound Ba2Fe3Ti5O15, which belongs to the ilmenite crystal structure of FeTiO3 type. The results suggest a chemical activity between these two oxides, which could lead to the synthesis of complex engineered interfaces.The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface

  12. Microstructural stability of Fe-Cr-Al alloys at 450-550 °C

    NASA Astrophysics Data System (ADS)

    Ejenstam, Jesper; Thuvander, Mattias; Olsson, Pär; Rave, Fernando; Szakalos, Peter

    2015-02-01

    Iron-Chromium-Aluminium (Fe-Cr-Al) alloys have been widely investigated as candidate materials for various nuclear applications. Albeit the excellent corrosion resistance, conventional Fe-Cr-Al alloys suffer from α-α‧ phase separation and embrittlement when subjected to temperatures up to 500 °C, due to their high Cr-content. Low-Cr Fe-Cr-Al alloys are anticipated to be embrittlement resistant and provide adequate oxidation properties, yet long-term aging experiments and simulations are lacking in literature. In this study, Fe-10Cr-(4-8)Al alloys and a Fe-21Cr-5Al were thermally aged in the temperature interval of 450-550 °C for times up to 10,000 h, and the microstructures were evaluated mainly using atom probe tomography. In addition, a Kinetic Monte Carlo (KMC) model of the Fe-Cr-Al system was developed. No phase separation was observed in the Fe-10Cr-(4-8)Al alloys, and the developed KMC model yielded results in good agreement with the experimental data.

  13. Photoluminescence properties of AlN-doped BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphors

    SciTech Connect

    Wang, Yong; Tang, Jianfeng; Ouyang, Xicheng; Liu, Buqiong; Lin, Rong Han

    2013-06-01

    Highlights: ► Ideal hexagonal shape particle size in 5 μm and 2.5–3 μm in thickness are obtained. ► The growth mechanism is studied by a computer simulation. ► The influence of introduced AlN on the sites of Eu{sup 2+} and photoluminescence properties was investigated. - Abstract: The AlN-doped BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphors were synthesized by conventional solid-state reaction. Powder X-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence spectrum (PL) were used for characterization. The growth mechanism was carried out by computer simulation with CASTEP application, and revealed that an ideal hexagonal shape, particle size in 5 μm and 2.5–3 μm in thickness, could be obtained by AlN doping. Additionally, due to the low electronegativity of N{sup 3−}, the AlN-doped sample showed 35% increase in PL intensity and improvement of thermal stability. These fine particle size and better photoluminescence properties are expected to be applicable to industrial production of BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphors.

  14. Coexisting charge and magnetic orders in the dimer-chain iridate Ba5AlIr2O11

    DOE PAGES

    Terzic, J.; Wang, J. C.; Ye, Feng; Song, W. H.; Yuan, S. J.; Aswartham, S.; DeLong, L. E.; Streltsov, S. V.; Khomskii, Daniel I.; Cao, G.

    2015-06-29

    In this paper, we have synthesized and studied single-crystal Ba5AlIr2O11 that features dimer chains of two inequivalent octahedra occupied by tetravalent Ir4+(5d5) and pentavalent Ir5+(5d4) ions, respectively. Ba5AlIr2O11 is a Mott insulator that undergoes a subtle structural phase transition near TS=210K and a magnetic transition at TM=4.5K; the latter transition is surprisingly resistant to applied magnetic fields μoH≤12T but more sensitive to modest applied pressure (dTM/dp ≈ +0.61K/GPa). All results indicate that the phase transition at TS signals an enhanced charge order that induces electrical dipoles and strong dielectric response near TS. It is clear that the strong covalency andmore » spin-orbit interaction (SOI) suppress double exchange in Ir dimers and stabilize a novel magnetic state that is neither S=3/2 nor J=1/2, but rather lies in an “intermediate” regime between these two states. Finally, the novel behavior of Ba5AlIr2O11 therefore provides unique insights into the physics of SOI along with strong covalency in competition with double-exchange interactions of comparable strength.« less

  15. Thermoelectric and Magnetic Properties of Pt-Substituted {BaFe_{4-{x}}Pt_{{x}}Sb_{12}} Compounds

    NASA Astrophysics Data System (ADS)

    Sertkol, Murat; Ballıkaya, Sedat; Aydoğdu, Fatih; Güler, Adil; Özdemir, Mustafa; Öner, Yıldırhan

    2016-08-01

    {BaFe_{4-{x}}Pt_{{x}}Sb_{12}} (x = 0, 0.1, 0.2) compounds were prepared by melting and annealing, followed by a spark plasma sintering method. Low-temperature thermoelectric and magnetic properties were investigated based on Seebeck coefficient, electrical and thermal conductivity and magnetization measurements. The structural properties of {BaFe_{4-{x}}Pt_{{x}}Sb_{12}} (x = 0, 0.1, 0.2) compounds were ascertained by powder x-ray diffraction analysis, confirming that all samples have a main phase of a skutterudite structure with the space group Im{bar{3}} . The lattice parameters obtained, 9.202(5), 9.199(5) and 9.202(1) Å for x = 0, 0.1 and 0.2, respectively, were found consistent with literature. The Seebeck coefficient sign shows that holes are dominant carriers in all compounds. The local maximum Seebeck coefficient was observed around 50 K which may be a trace of paramagnon-drag effect of charge carriers. Thermal conductivity and electrical resistivity measurements were carried out between 4.2 and 300 K. Temperature dependence of electrical resistivity reflects that all samples show semi-metallic behavior in our temperature range of 4.2-300 K. Samples for x = 0.1 and x = 0.2 show Kondo-like behavior. In magnetization measurement, we observe that there are two successive magnetic transitions in Pt-substituted compounds; however, there is only one (transition from a paramagnetic state to long-range magnetic ordering) in Pt-free compounds. In Pt-substituted compounds, the first transition appears at T _{ c} = 48 K. In addition, the second transition is observed at T _{ irr} = 30 K where an intermediate state is observed before the magnetic ordering transforms to an irreversible ferromagnetic state. We concluded that Pt substitution on the Fe side effectual on the thermoelectric and magnetic properties of {BaFe_{4-{x}}Pt_{{x}}Sb_{12}} (x = 0, 0.1, 0.2) compounds.

  16. Charge-compensation effect of Al on luminescence properties of M2(Si, Al)5N8:Ce3+ (M = Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Kuramoto, Daiki; Horikawa, Takashi; Hanzawa, Hiromasa; Machida, Ken-ichi

    2013-09-01

    The charge-compensated materials, M2AlxSi5-xN8:Ce3+ (M = Ca, Sr, Ba), were synthesized from appropriate mixtures of MSi, MAlSi, (MSiHy, MAlSiHy), Si3N4 and CeF3 by a direct nitriding process in a N2 gas and the luminescence properties were characterized. The resultant phosphors showed green emission suitable for LED illumination by optimizing the mixing ratio of metal elements. These phosphors were effectively excited by violet or blue light (400-430 nm) and the emission bands were observed at various wavelength regions for Ca: 489-528 nm, Sr: 511-520 nm, and Ba: 508-514 nm. Although the emission intensity of Ca2(Si, Al)5N8:Ce3+ was decreased with increasing amount of Al, those of Sr- and Ba-analogues were maximized at x = 0.5 of Al content in M2Si5-xAlxN8:Ce3+.

  17. Assessing the elastic properties and ductility of Fe-Cr-Al alloys from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Nurmi, E.; Wang, G.; Kokko, K.; Vitos, L.

    2016-01-01

    Fe-Al is one of the best corrosion resistant alloys at high temperatures. The flip side of Al addition to Fe is the deterioration of the mechanical properties. This problem can be solved by adding a suitable amount of third alloying component. In the present work, we use ab initio calculations based on density functional theory to study the elastic properties of Fe?Cr?Al? alloys for Al and Cr contents up to 20 at.%. We assess the ductility as a function of chemistry by making use of the semi-empirical correlations between the elastic parameters and mechanical properties. In particular, we derive the bulk modulus to shear modulus ratio and the Cauchy pressure and monitor their trends in terms of chemical composition. The present findings are contrasted with the previously established oxidation resistance of Fe-Cr-Al alloys.

  18. A vibrational spectroscopic study of the phosphate mineral lulzacite Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Belotti, Fernanda M.; Xi, Yunfei; Scholz, Ricardo

    2014-06-01

    The mineral lulzacite from Saint-Aubin des Chateaux mine, France, with theoretical formula Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10 has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Chemical analysis shows a Sr, Fe, Al phosphate with minor amounts of Ga, Ba and Mg. Raman spectroscopy identifies an intense band at 990 cm-1 with an additional band at 1011 cm-1. These bands are attributed to the PO43-ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The Raman bands at 1034, 1051, 1058, 1069 and 1084 together with the Raman bands at 1098, 1116, 1133, 1155 and 1174 cm-1 are assigned to the ν3 antisymmetric stretching vibrations of PO43- and the HOPO32- units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of lulzacite. The series of Raman bands at 567, 582, 601, 644, 661, 673 and 687 cm-1 are assigned to the PO43-ν2 bending modes. The series of Raman bands at 437, 468, 478, 491, 503 cm-1 are attributed to the PO43- and HOPO32-ν4 bending modes. No Raman bands of lulzacite which could be attributed to the hydroxyl stretching unit were observed. Infrared bands at 3511 and 3359 cm-1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm-1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral lulzacite.

  19. Room-temperature serrated-flow behavior in Fe-rich FeAl under vacancy supersaturation

    SciTech Connect

    Yoshimi, K.; Yoo, M.H.; Hanada, S.

    1998-11-01

    In Fe-rich FeAl, serrated plastic-flow behavior has been observed for the first time at room temperature. Serration on the tensile stress-strain curve occurs in single crystals that retained supersaturation of thermal vacancies after fast-cooling from the annealing temperature of 1173 K. In contrast to conventional serrated flow, the serrated flow in FeAl is associated with work hardening, and it becomes more pronounced with increasing Al content from 33 to 44 mol.%. The experimental results are interpreted in terms of the dynamic interaction of ({bar 1}01)[111] superdislocations with the excess thermal vacancies and their clusters, and the successive double cross-slip of screw superdislocations at the moving front of a slip band. The strong dependence on alloy composition and the lack of strain-rate sensitivity are discussed.

  20. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  1. One-step synthesis of homogeneous BaFe{sub 12}O{sub 19}/Y{sub 3}Fe{sub 5}O{sub 12} composite powders

    SciTech Connect

    Liu, Miao; Yang, Haibo Lin, Ying; Yang, Yanyan

    2014-12-15

    Highlights: • A simple one-step sol–gel method was used to synthesize composite magnets. • The composite powders show good homogeneity and exchange coupling. • The M{sub r}/M{sub s} value increases with the BaM concentration. - Abstract: BaFe{sub 12}O{sub 19}/Y{sub 3}Fe{sub 5}O{sub 12} (BaM/YIG) composite powders were synthesized via a simple one-step sol–gel method. The phase composition and morphology of the as-synthesized composite powders were characterized using an X-ray diffractometer and a scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The magnetic properties of the composite powders were investigated by a vibrating sample magnetometer. Compared with the composite powders prepared by the conventional physical mixing method, the BaM/YIG composite powders show better homogeneity and exchange coupling.

  2. Structure, magnetic and complex impedance analysis of (1-x)BaTiO3- xMgFe2O4 composite

    NASA Astrophysics Data System (ADS)

    Zolkepli, M. F. A.; Zainuddin, Z.

    2015-09-01

    MgFe2O4 was synthesized by using sol-gel auto-combustion technique and coupled with BaTiO3 using the conventional solid state reaction method with different weight fraction of x = 0.00, 0.02, 0.04, 0.06 and 0.08 to form (1-x)BaTiO3 - xMgFe2O4 composite. The structure, magnetic properties and complex impedance analysis of the composite samples were studied using X-ray diffraction technique (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) and High-frequency response analyzer (HFRA) respectively. XRD patterns showed a single phase tetragonal BaTiO3 for each composition due to the very small amount of MgFe2O4. The hysteresis loop confirmed that the composite has soft magnetic properties by addition of MgFe2O4. Small coercive field, HC has been recorded and it decreased with the increasing of MgFe2O4 weight fraction. However, magnetization increased when the amount of MgFe2O4 is increased. Impedance analysis conducted in range of 0.1 Hz to 10 MHz showed two depressed semicircle arcs for samples with MgFe2O4 due to the resistive and capacitive behavior of the bulk and grain boundaries of the samples.

  3. Effect of surface roughness on the development of protective Al 2O 3 on Fe-10Al (at.%) alloys containing 0-10 at.% Cr

    NASA Astrophysics Data System (ADS)

    Zhang, Z. G.; Hou, P. Y.; Gesmundo, F.; Niu, Y.

    2006-11-01

    The effect of alloy surface roughness, achieved by different degrees of surface polishing, on the development of protective alumina layer on Fe-10 at.% Al alloys containing 0, 5, and 10 at.% Cr was investigated during oxidation at 1000 °C in 0.1 MPa oxygen. For alloys that are not strong Al 2O 3 formers (Fe-10Al and Fe-5Cr-10Al), the rougher surfaces increased Fe incorporation into the overall surface layer. On the Fe-10Al, more iron oxides were formed in a uniform layer of mixed aluminum- and iron-oxides since the layer was thicker. On the Fe-5Cr-10Al, more iron-rich nodules developed on an otherwise thin Al 2O 3 surface layer. These nodules nucleated preferentially along surface scratch marks but not on alloy grain boundaries. For the strong Al 2O 3-forming Fe-10Cr-10Al alloy, protective alumina surface layers were observed regardless of the surface roughness. These results indicate that the formation of a protective Al 2O 3 layer on Fe-Cr-Al surfaces is not dictated by Al diffusion to the surface. More cold-worked surfaces caused an enhanced Fe diffusion, hence produced more Fe-rich oxides during the early stage of oxidation.

  4. Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2

    SciTech Connect

    Graser, Siegfried; Kemper, Alexander F; Maier, Thomas A; Cheng, Hai-Ping; Hirschfeld, Peter; Scalapino, Douglas

    2010-01-01

    Despite the wealth of experimental data on the Fe-pnictide compounds of the KFe2As2 type, K=Ba, Ca, or Sr, the main theoretical work based on multiorbital tight-binding models has been restricted so far to the study of the related 1111 compounds. This can be ascribed to the more three-dimensional electronic structure found by ab initio calculations for the 122 materials, making this system less amenable to model development. In addition, the more complicated Brillouin zone BZ of the body-centered tetragonal symmetry does not allow a straightforward unfolding of the electronic band structure into an effective 1Fe/unit cell BZ. Here we present an effective five-orbital tight-binding fit of the full density functional theory band structure for BaFe2As2 including the kz dispersions. We compare the five-orbital spin fluctuation model to one previously studied for LaOFeAs and calculate the random-phase approximation enhanced susceptibility. Using the fluctuation ex- change approximation to determine the leading pairing instability, we then examine the differences between a strictly two-dimensional model calculation over a single kz cut of the BZ and a completely three-dimensional approach. We find pairing states quite similar to the 1111 materials, with generic quasi-isotropic pairing on the hole sheets and nodal states on the electron sheets at kz=0, which however are gapped as the system is hole doped. On the other hand, a substantial kz dependence of the order parameter remains, with most of the pairing strength deriving from processes near kz=?. These states exhibit a tendency for an enhanced anisotropy on the hole sheets and a reduced anisotropy on the electron sheets near the top of the BZ.

  5. Anomalous behaviour of critical fields near a superconducting quantum critical point in BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Putzke, C.; Carrington, A.; Walmsley, P.; Malone, L.; Fletcher, J. D.; See, P.; Vignolles, D.; Proust, C.; Badoux, S.; Kasahara, S.; Mazukami, Y.; Shibauchi, T.; Matsuda, Y.

    2014-03-01

    BaFe2(As1-xPx)2 presents one of the cleanest and clearest systems in which to study the influence of quantum critical fluctuations on high temperature superconductivity. In this material a sharp maximum in the magnetic penetration depth has been found at the quantum critical point (QCP x = 0 . 3) where Tc is maximal1. Specific heat and de Haas-van Alphen effect measurements2 show that this peak is driven by a corresponding increase in the quasiparticle effective mass. Based on these previous results a simple one-band theory would suggest that at the QCP we should expect a large increase in Hc 2 and a corresponding dip in Hc 1 . Actual measurements of these critical fields, which we present here, shows quite different behavior which we suggest is caused by an anomalous enhancement in the vortex core energy close to the QCP. 1 K.Hashimoto et.al., Science 336, 1554 (2012) 2 P.Walmsley, C.Putzke et.al., Phys. Rev. Lett. 110, 257002 (2013) This work was supported by the Engineering and Physical Sciences Research Council, EuroMagNET II, and KAKENHI from JSPS.

  6. Spin reorientation in Ba0.65Na0.35Fe2As2 studied by single-crystal neutron diffraction

    NASA Astrophysics Data System (ADS)

    Waßer, F.; Schneidewind, A.; Sidis, Y.; Wurmehl, S.; Aswartham, S.; Büchner, B.; Braden, M.

    2015-02-01

    We have studied the magnetic ordering in Ba1 -xNaxFe2As2 with 0.25 ≤x ≤0.4 by unpolarized and polarized neutron diffraction using single crystals. Unlike most FeAs-based compounds that magnetically order, Na-doped BaFe2As2 exhibits two successive magnetic transitions: For x =0.35 , upon cooling, magnetic order occurs at ˜70 K with in-plane magnetic moments being arranged as in pure or Ni-, Co-, or K-doped BaFe2As2 samples. At a temperature of ˜46 K a second phase transition occurs, which the single-crystal neutron-diffraction experiments can unambiguously identify as a spin reorientation. At low temperatures, the ordered magnetic moments in Ba0.65Na0.35Fe2As2 point along the c direction. The two nearly degenerate magnetic states document orbital degeneracy to persist in the superconducting phase.

  7. Elasticity of AlFeO3 and FeAlO3 perovskite and post-perovskite from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Caracas, R.

    2010-10-01

    We use state-of-the-art ab initio calculations based on the generalized gradient approximation of the density functional theory in the planar augmented wavefunction formalism to determine the elastic constants tensor of perovskite and post-perovskite with formulas AlFeO3 and FeAlO3 in which Fe or Al respectively occupy only octahedral sites, for the stable magnetic configurations. The phase transition between perovskite and post-perovskite is associated with a site exchange, during which Fe from the inter-octahedral site in perovskite moves into the octahedral site in post-perovskite. Following this transition path the elastic moduli show positive jumps, considerably larger than for MgSiO3. The phase transition is marked by a positive jump of 0.04 km/s (0.33%) in the velocity of the compressional waves and by a negative jump of -0.15 km/s (-1.87%) in shear wave velocity. We find that the effects of the Mg + Si <=> Al + Fe substitution on the seismic properties of MgSiO3 perovskite and post-perovskite depend on the crystallography of the substitution, namely the position the exchanged cations take in the structure.

  8. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-09-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  9. Development of weldable, corrosion-resistant iron-aluminide (FeAl) alloys

    SciTech Connect

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L.; Alexander, D.J.

    1997-04-01

    A boron-microalloyed FeAl alloy (Fe-36Al-0.2Mo-0.05Zr-0.13C, at.%, with 100-400 appm B) with improved weldability and mechanical properties was developed in FY 1994. A new scale-up and industry technology development phase for this work began in FY 1995, pursuing two parallel paths. One path was developing monolithic FeAl component and application technology, and the other was developing coating/cladding technology for alloy steels, stainless steels and other Fe-Cr-Ni alloys. In FY 1995, it was found that cast FeAl alloys had good strength at 700-750{degrees}C, and some (2.5%) ductility in air at room-temperature. Hot-extruded FeAl with refined grain size was found to have ductility and to also have good impact-toughness at room-temperature. Further, it was discovered that powder-metallurgy (P/M) FeAl, consolidated by direct hot-extrusion at 950-1000{degrees}C to have an ultra fine-grained microstructure, had the highest ductility, strength and impact-toughness ever seen in such intermetallic alloys.

  10. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-07-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  11. Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of FeAs-based high-temperature superconductors.

    PubMed

    Huang, Q; Qiu, Y; Bao, Wei; Green, M A; Lynn, J W; Gasparovic, Y C; Wu, T; Wu, G; Chen, X H

    2008-12-19

    The recent discovery of superconductivity in (Ba,K)Fe2As2, which crystallizes in the ThCr2Si2 (122) structure as compared with the LnFeAsO (Ln is lanthanide) systems that possess the ZrCuSiAs (1111) structure, demonstrates the exciting potential of the FeAs-based materials for high-T{C} superconductivity. Here we report neutron diffraction studies that show a tetragonal-to-orthorhombic distortion associated with the onset of q=(101) antiferromagnetic order in BaFe2As2, with a saturation moment 0.87(3)micro {B} per Fe that is orientated along the longer a axis of the ab planes. The simultaneous first-order structural and magnetic transition is in contrast with the separated transitions previously reported in the 1111-type materials. The orientational relation between magnetic alignment and lattice distortion supports a multiorbital nature for the magnetic order.

  12. Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of FeAs-based high-temperature superconductors.

    PubMed

    Huang, Q; Qiu, Y; Bao, Wei; Green, M A; Lynn, J W; Gasparovic, Y C; Wu, T; Wu, G; Chen, X H

    2008-12-19

    The recent discovery of superconductivity in (Ba,K)Fe2As2, which crystallizes in the ThCr2Si2 (122) structure as compared with the LnFeAsO (Ln is lanthanide) systems that possess the ZrCuSiAs (1111) structure, demonstrates the exciting potential of the FeAs-based materials for high-T{C} superconductivity. Here we report neutron diffraction studies that show a tetragonal-to-orthorhombic distortion associated with the onset of q=(101) antiferromagnetic order in BaFe2As2, with a saturation moment 0.87(3)micro {B} per Fe that is orientated along the longer a axis of the ab planes. The simultaneous first-order structural and magnetic transition is in contrast with the separated transitions previously reported in the 1111-type materials. The orientational relation between magnetic alignment and lattice distortion supports a multiorbital nature for the magnetic order. PMID:19113744

  13. Crystal Growth and Photoluminescence Properties of Truncated Cubic BaMgAl10O17:Eu2+ Phosphors for Three-Dimensional Plasma Display Panels.

    PubMed

    Liu, Bitao; Chen, Yuan; Peng, Lingling; Han, Tao; Yu, Hong; Tian, Liangliang; Tu, Mingjing

    2016-04-01

    Monodispersed, truncated cube BaMgAl10O17:Eu2+ phosphors were synthesized by the sol-gel process. Scanning electron microscope (SEM), photoluminescence spectrum, powder X-ray diffraction and decay curves were used to evaluate the truncated cubic BaMgAl10O17:Eu2+ phosphors. The crystal growth process and photoluminescence properties were discussed in detail. The results showed that this truncated cubic morphology can be achieved via a simple sinter process. These truncated cubic BaMgAl10O17:Eu2+ phosphors showed acceptable emission intensity and better thermal properties. This result indicates truncated cubic BaMgAl10O17:Eu2+ phosphors would meet the requirements of plasma display panels (PDPs). PMID:27451727

  14. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  15. Corrosion Resistance of Fe-Al/Al2O3 Duplex Coating on Pipeline Steel X80 in Simulated Oil and Gas Well Environment

    NASA Astrophysics Data System (ADS)

    Huang, Min; Wang, Yu; Wang, Ping-Gu; Shi, Qin-Yi; Zhang, Meng-Xian

    2015-04-01

    Corrosion resistant Fe-Al/Al2O3 duplex coating for pipeline steel X80 was prepared by a combined treatment of low-temperature aluminizing and micro-arc oxidation (MAO). Phase composition and microstructure of mono-layer Fe-Al coating and Fe-Al/Al2O3 duplex coating were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) with energy dispersive spectrometer (EDS). Corrosion resistance of the coated pipeline steel X80 in a simulated oil and gas well condition was also investigated. Mono-layer Fe-Al coating consists of Fe2Al5 and FeAl, which is a suitable transitional layer for the preparation of ceramic coating by MAO on the surface of pipeline steel X80. Under the same corrosion condition at 373 K for 168 h with 1 MPa CO2 and 0.1 MPa H2S, corrosion weight loss rate of pipeline steel X80 with Fe-Al/Al2O3 duplex coating decreased to 23% of original pipeline steel X80, which improved by 10% than that of pipeline steel X80 with mono-layer Fe-Al coating. It cannot find obvious cracks and pits on the corrosion surface of pipeline steel X80 with Fe-Al/Al2O3 duplex coating.

  16. Microstructure and mechanical behavior of Fe30Ni 20Mn35Al15 and modified Fe30Ni 20Mn35Al15 alloys

    NASA Astrophysics Data System (ADS)

    Meng, Fanling

    A novel alloy with nominal composition Fe30Ni 20Mn35Al15 has been found to show good room-temperature strength and significant ductility. The current project is to study the wear properties of as-cast Fe30Ni20Mn35Al 15 and discuss the possibility of further improving the mechanical properties of this alloy. The dry sliding wear of as-cast Fe30Ni20Mn 35Al15 was studied in in four different environments, i.e. air, dry oxygen, dry argon and a 4% hydrogen/nitrogen mixture. Two-body and three-body abrasive wear mechanism was found for tests in oxygen-containing environments, while plastic flow mechanisms dominated the wear behavior for tests in argon. Hydrogen embrittlement led to 1000% increase of wear loss by causing more rapid crack nucleation of the asperities. The effects of different additions of chromium (≤ 8 at. %) on both microstructure and fracture behavior of Fe30Ni20Mn 35Al15 were investigated. All alloys consisted of (Ni, Al)-rich B2 and (Fe, Mn)-rich f.c.c. phases with most of the Cr residing in the f.c.c. phase. The addition of 6 at. % Cr not only increased the room temperature ductility, but also completely suppressed the environmental embrittlement observed in the Cr-free alloy at low strain rates. The effects of varying the Al concentration on the microstructures and tensile properties of six two-phase FeNiMnAl alloys with a composition close to Fe30Ni20Mn35Al15 were studied. The increase in f.c.c. volume fraction and f.c.c. lamellar width led to an increase in ductility and a decrease in yield strength. The correlation between the yield stress and f.c.c. lamellar spacing lambda obeyed a Hall-Petch-type relationship, i.e. sigmay=252+0.00027lambda-1, where the units for sigmay and lambda are MPa and meter, respectively. FeNiMnAl alloy with B2 and f.c.c. phases aligned along was reported to show high strength at room temperature. The mechanical properties of Fe 28Ni18Mn33Al21, consisting of (Ni, Al)-enriched B2 and (Fe, Mn)-enriched f.c.c. phases with

  17. Preparation and Electrochemical Characterization of Aluminium Liquid Battery Cells With Two Different Electrolytes (NaCl-BaCl2-AlF3-NaF and LiF-AlF3-BaF2).

    PubMed

    Napast, Viktor; Moškon, Jože; Homšak, Marko; Petek, Aljana; Gaberšček, Miran

    2015-01-01

    The possibility of preparation of operating rechargeable liquid battery cells based on aluminium and its alloys is systematically checked. In all cases we started from aluminium as the negative electrode whereas as the positive electrode three different metals were tested: Pb, Bi and Sn. Two types of electrolytes were selected: Na(3)AlF(6) -AlF(3) - BaCl(2) - NaCl and Li(3)AlF(3) - BaF(2). We show that some of these combinations allowed efficient separation of individual liquid layers. The cells exhibited expected voltages, relatively high current densities and could be charged and discharged several times. The capacities were relatively low (120 mAh in the case of Al-Pb system), mostly due to unoptimised cell construction. Improvements in various directions are possible, especially by hermetically sealing the cells thus preventing salt evaporation. Similarly, solubility of aluminium in alloys can be increased by optimising the composition of positive electrode. PMID:26680707

  18. Preparation and Electrochemical Characterization of Aluminium Liquid Battery Cells With Two Different Electrolytes (NaCl-BaCl2-AlF3-NaF and LiF-AlF3-BaF2).

    PubMed

    Napast, Viktor; Moškon, Jože; Homšak, Marko; Petek, Aljana; Gaberšček, Miran

    2015-01-01

    The possibility of preparation of operating rechargeable liquid battery cells based on aluminium and its alloys is systematically checked. In all cases we started from aluminium as the negative electrode whereas as the positive electrode three different metals were tested: Pb, Bi and Sn. Two types of electrolytes were selected: Na(3)AlF(6) -AlF(3) - BaCl(2) - NaCl and Li(3)AlF(3) - BaF(2). We show that some of these combinations allowed efficient separation of individual liquid layers. The cells exhibited expected voltages, relatively high current densities and could be charged and discharged several times. The capacities were relatively low (120 mAh in the case of Al-Pb system), mostly due to unoptimised cell construction. Improvements in various directions are possible, especially by hermetically sealing the cells thus preventing salt evaporation. Similarly, solubility of aluminium in alloys can be increased by optimising the composition of positive electrode.

  19. Alloy development of FeAl aluminide alloys for structural use in corrosive environments

    SciTech Connect

    Liu, C.T.; Sikka, V.K.; McKamey, C.G.

    1993-02-01

    Objectives include adequate ductilities ({ge}10%) at ambient temperature, high-temperature strength better than stainless steels (types 304 and 316), and fabricability and weldability by conventional techniques (gas tungsten arc). The alloys should be capable of being corrosion resistant in molten nitrate salts with rates lower than other iron-base structural alloys and coating materials (such as Fe-Cr-Al alloys). Such corrosion rates should be less than 0.3 mm per year. The FeAl aluminide containing 35.8 at. % Al was selected as base composition. Preliminary studies indicate that additions of B and Zr, increase the room-temperature ductility of FeAl. Further alloying with 0.2% Mo, and/or 5% Cr, improves the creep. Our preliminary alloying effort has led to identification of the following aluminide composition with promising properties: Fe - (35 {plus_minus} 2)Al - (0.3 {plus_minus} 0.2)Mo - (0.2 {plus_minus} 0.15)Zr - (0.3 {plus_minus} 0.2)B- up to 5Cr, at. %. However, this composition is likely to be modified in future work to improve the weldability of the alloy. The FeAl alloy FA-362 (Fe-35.8% Al-0.2% Mo-0.05% Zr-0.24% B) produced by hot extrusion at 900C showed a tensile ductility of more than 10% at room temperature and a creep rupture life longer than unalloyed FeAl by more than an order of magnitude at 593C at 138 MPa. Melting and processing of scaled-up heats of selected FeAl alloys are described. Forging, extruding, and hot-rolling processes for the scale-up heats are also described.

  20. Alloy development of FeAl aluminide alloys for structural use in corrosive environments

    SciTech Connect

    Liu, C.T.; Sikka, V.K.; McKamey, C.G.

    1993-02-01

    Objectives include adequate ductilities ([ge]10%) at ambient temperature, high-temperature strength better than stainless steels (types 304 and 316), and fabricability and weldability by conventional techniques (gas tungsten arc). The alloys should be capable of being corrosion resistant in molten nitrate salts with rates lower than other iron-base structural alloys and coating materials (such as Fe-Cr-Al alloys). Such corrosion rates should be less than 0.3 mm per year. The FeAl aluminide containing 35.8 at. % Al was selected as base composition. Preliminary studies indicate that additions of B and Zr, increase the room-temperature ductility of FeAl. Further alloying with 0.2% Mo, and/or 5% Cr, improves the creep. Our preliminary alloying effort has led to identification of the following aluminide composition with promising properties: Fe - (35 [plus minus] 2)Al - (0.3 [plus minus] 0.2)Mo - (0.2 [plus minus] 0.15)Zr - (0.3 [plus minus] 0.2)B- up to 5Cr, at. %. However, this composition is likely to be modified in future work to improve the weldability of the alloy. The FeAl alloy FA-362 (Fe-35.8% Al-0.2% Mo-0.05% Zr-0.24% B) produced by hot extrusion at 900C showed a tensile ductility of more than 10% at room temperature and a creep rupture life longer than unalloyed FeAl by more than an order of magnitude at 593C at 138 MPa. Melting and processing of scaled-up heats of selected FeAl alloys are described. Forging, extruding, and hot-rolling processes for the scale-up heats are also described.

  1. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-01

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co, and Ti within the AlNi-based matrix phase. In this paper, we report the results of first-principles calculations of the site preference of ternary alloying additions in DO3 Fe3Al, Co3Al, and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which correspond to experimental situation, Ti and Fe are found to occupy the α sites, while Co and Ni prefer the γ sites of the DO3 lattice. An important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co is added as a ternary element.

  2. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    DOE PAGES

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-07

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co and Ti within the AlNi-based matrix phase. In our paper we report the results of first-principles calculations of the site preference of ternarymore » alloying additions in DO3 Fe3Al, Co3Al and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which corresponds to experimental situation, Ti and Fe are found to occupy the sites, while Co and Ni prefer the sites of the DO3 lattice. Finally, an important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co are added as a ternary element.« less

  3. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.

    PubMed

    Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu

    2015-04-01

    There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters.

  4. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.

    PubMed

    Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu

    2015-04-01

    There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters. PMID:25649390

  5. Structural, optical and magnetic properties of polycrystalline BaTi{sub 1-x}Fe{sub x}O{sub 3} ceramics

    SciTech Connect

    Dang, N. V.; Thanh, T. D.; Hong, L. V.; Lam, V. D.; Phan, The-Long

    2011-08-15

    Polycrystalline BaTi{sub 1-x}Fe{sub x}O{sub 3} ceramics have been prepared by conventional solid-state reaction. Their structural, optical and magnetic properties are then studied by means of x-ray diffraction (XRD), Raman scattering (RS) and absorption spectrometers, and a physical properties measurement system. Detailed analyses of XRD patterns and RS spectra reveal the phase separation of the tetragonal-hexagonal structure at a threshold concentration of x = 0.005. The increase in the Fe-doping content (x) leads to development of the hexagonal phase. Magnetic measurements prove that many BaTi{sub 1-x}Fe{sub x}O{sub 3} samples exhibit the room-temperature ferromagnetic order, excepting the samples with x = 0.02-0.06. The ferromagnetism depends strongly on concentration of Fe impurities. The nature of this ferromagnetism is discussed by means of the results of structural analyses and optical absorption spectra.

  6. Magnetization distribution in the tetragonal Ba(Fe1-xCox)2As2, x=0.066 probed by polarized neutron diffraction

    NASA Astrophysics Data System (ADS)

    Prokeš, K.; Gukasov, A.; Argyriou, D. N.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.

    2011-02-01

    Polarized neutron diffraction has been performed on a tetragonal Ba(Fe1-xCox)2As2, x=0.066 single crystal under an applied magnetic field of 6 T directed along the [\\overline{1}10 ] direction to determine the magnetic structure factors of various Bragg reflections. The maximum entropy reconstruction based on bulk magnetization measurements and polarized neutron diffraction data reveal a small induced magnetic moment residing on the 4d Wyckoff site that is occupied by Fe/Co atoms. No significant magnetization density has been found on the Ba and As atomic positions. The small polarizability of Fe/Co sites leads to flipping ratios very close to 1.00. Our data suggest a non-zero orbital contribution to the Fe/Co magnetic form factor in good agreement with recent theoretical and experimental studies.

  7. Orbital and Pauli limiting effects in heavily doped Ba0.05K0.95Fe2As2

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Singh, Y. P.; Huang, X. Y.; Chen, X. J.; Dzero, M.; Almasan, C. C.

    We investigated the thermodynamic properties of the Fe-based lightly-disordered superconductor Ba0.05K0.95Fe2As2 in external magnetic field H applied along the FeAs layers (H||ab planes). The superconducting (SC) transition temperature for this doping level is Tc = 6.6 K. Our analysis of the specific heat C(T,H) measured for T

  8. Orbital and Pauli limiting effects in heavily doped Ba0.05K0.95Fe2As2

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Singh, Y. P.; Huang, X. Y.; Chen, X. J.; Dzero, M.; Almasan, C. C.

    2015-11-01

    We investigated the thermodynamic properties of the Fe-based lightly disordered superconductor Ba0.05K0.95Fe2As2 in external magnetic field H applied along the FeAs layers (H ||a b planes). The superconducting (SC) transition temperature for this doping level is Tc=6.6 K. Our analysis of the specific heat C (T ,H ) measured for T

  9. High frequency permeability and permittivity spectra of BiFeO{sub 3}/(CoTi)-BaM ferrite composites

    SciTech Connect

    Peng, Yun; Wu, Xiaohan; Li, Qifan; Yu, Ting; Feng, Zekun; Chen, Zhongyan; Su, Zhijuan; Chen, Yajie; Harris, Vincent G.

    2015-05-07

    Low magnetic loss ferrite composites consisting of Ba(CoTi){sub 1.2}Fe{sub 9.6}O{sub 19} and BiFeO{sub 3} (BFO) ferrite were investigated for permeability, permittivity, and high frequency losses at 10 MHz–1 GHz. The phase fraction of BiFeO{sub 3} was quantitatively analyzed by X-ray diffraction measurements. An effective medium approach was employed to predict the effective permeability and permittivity for the ferrite composites, which was found to be in good agreement with experimental data. The experiment demonstrated low magnetic losses (<0.128), modified by BFO phase fraction, while retaining high permeability (∼10.86) at 300 MHz. More importantly, the BFO phase resulted in a reduction of magnetic loss by 32%, as BFO phase increased from 2.7 vol. % to 12.6 vol. %. The effect of BFO phase on magnetic and dielectric properties revealed great potential for use in the miniaturization of high efficiency antennas.

  10. Probing the Superconducting Order Parameter of Ba(Fe 1-x Co x)2 As 2 by Josephson Interferometry

    NASA Astrophysics Data System (ADS)

    Atkinson, J. M.; van Harlingen, D. J.; Canfield, P.; Ni, N.; Strand, J. D.

    2011-03-01

    Since the discovery of the first Fe-based superconductors in 2006, extensive effort has been directed toward characterizing and modeling the novel properties of these exotic materials, in particular, the symmetry of their superconducting order parameter. We probe the order parameter in Co-doped BaFe 2 As 2 single crystals by fabricating Josephson junctions on polished faces orthogonal to the c-axis. It has been proposed that the Fe-pnictides form electron and hole pockets in the Fermi surface that have s-wave Cooper pair symmetry but opposite phases, the so-called s +/- model. The modulation of the critical current IC as a function of magnetic flux applied along the c-axis is different for junctions fabricated on a corner (between [100] and [110] faces) or on an edge (either [100] or [110]). In the same way, the product IC R should be different for each type of junction. The combination of these effects may help us map the phase anisotropy and test for this pairing symmetry. We will present preliminary results of these studies and attempts to match them with existing theoretical models. Work supported by the Department of Energy grant BNL-150252 through the CES-EFRC.

  11. Tuning ferromagnetic BaFe2(PO4)2 through a high Chern number topological phase

    NASA Astrophysics Data System (ADS)

    Song, Young-Joon; Ahn, Kyo-Hoon; Pickett, Warren E.; Lee, Kwan-Woo

    2016-09-01

    There is strong interest in discovering or designing wide-gap Chern insulators. Here we follow a Chern insulator to trivial Mott insulator transition versus interaction strength U in a honeycomb-lattice Fe-based transition-metal oxide, discovering that a spin-orbit coupling energy scale ξ =40 meV can produce and maintain a topologically entangled Chern insulating state against large band structure changes arising from an interaction strength U up to 60 times as large. Within the Chern phase the minimum gap switches from the zone corner K to the zone center Γ while maintaining the topological structure. At a critical strength Uc, the continuous evolution of the electronic structure encounters a gap closing then reopening, upon which the system reverts to a trivial Mott insulating phase. This Chern insulator phase of honeycomb lattice Fe2 +BaFe2 (PO4)2 corresponds to a large Chern number C =-3 that will provide enhanced anomalous Hall conductivity due to the associated three edge states threading through the bulk gap of 80 meV.

  12. Co2FeAl films with perpendicular magnetic anisotropy in multilayer structure

    NASA Astrophysics Data System (ADS)

    Li, X. Q.; Xu, X. G.; Yin, S. Q.; Zhang, D. L.; Miao, J.; Jiang, Y.

    2011-01-01

    We have fabricated Co2FeAl (CFA) films with perpendicular magnetic anisotropy (PMA) in a (Co2FeAl/Ni)6 multilayer structure. The effects of underlayer Cu thickness (tCu), Co2FeAl thickness (tCFA) and Ni thickness (tNi) on the magnetic properties have been studied. The PMA is realized with a large anisotropy energy density K = 3.7×106 ergs/cm3, a high squareness Mr/Ms = 1 and a small perpendicular coercivity Hc = 60 Oe, while tCu, tCFA and tNi are 9 nm, 0.2 nm and 0.6 nm respectively. The PMA remains after 300 °C annealing, which demonstrates better thermal stability of the (Co2FeAl/Ni)6 multilayer than that of (Co/Ni)n.

  13. Synthesis, crystal structure and electronic properties of the new iron selenide Ba{sub 9}Fe{sub 4}Se{sub 16}

    SciTech Connect

    Berthebaud, David Preethi Meher, K.R.S.; Pelloquin, Denis; Maignan, Antoine

    2014-03-15

    The new ternary selenide Ba{sub 9}Fe{sub 4}Se{sub 16} has been synthesized from the reaction of appropriate amounts of elements at high temperature in a silica sealed tube. The compound crystallizes in the tetragonal space group I4{sub 1}/a with a=10.0068(3) Å and c=35.6415(9) Å, Z=4. It is an isostructural compound to the sulfide α-Ba{sub 9}Fe{sub 4}S{sub 15}, which is a high temperature polymorph of β-Ba{sub 9}Fe{sub 4}Se{sub 15} that belongs to the indefinitely adaptive phases series Ba{sub 3}Fe{sub 1+x}S{sub 5}, 0≤x≤1. X-ray powder diffraction and TEM analyses of the synthesized compound were used to determine the phase composition and the structure. The crystal structure can be viewed as overlapping sections along the c axis. Those sections are formed by the coordination polyhedra around barium atoms which can be described as trigonal prisms and bidisphenoids. Within the sections formed by barium polyhedra, isolated pairs of edge sharing FeSe{sub 4} tetrahedra are found. Magnetic measurements performed on Ba{sub 9}Fe{sub 4}Se{sub 16} indicate an antiferromagnetic behavior with Néel temperature of ∼13 K. Possible influence of air exposure on the magnetic properties is also discussed here. The electric measurements show an insulating behavior below 160 K and the dielectric permittivity and loss tangent at the lowest frequency measured reveal a change of slope very close to T{sub N}. However no magneto dielectric effect was evidenced for magnetic fields of up to 3 T. Activation energy, E{sub A}=0.18 eV, was extracted from the AC conductivity plot in the temperature range of 160–300 K. -- Graphical abstract: Experimental electron diffraction (ED) patterns of Ba{sub 9}Fe{sub 4}Se{sub 16} recorded along a-[010]. Highlights: • A new iron selenide material. • A structure resolution by combination of XRD and TEM. • Magnetic properties of the new compound Ba{sub 9}Fe{sub 4}Se{sub 16} are discussed.

  14. Strain-induced magnetic domain wall control by voltage in hybrid piezoelectric BaTiO3 ferrimagnetic TbFe structures.

    PubMed

    Rousseau, Olivier; Weil, Raphael; Rohart, Stanislas; Mougin, Alexandra

    2016-01-01

    This paper reports on the voltage dependence of the magnetization reversal of a thin amorphous ferromagnetic TbFe film grown on a ferroelectric and piezoelectric BaTiO3 single crystal. Magneto-optical measurements, at macroscopic scale or in a microscope, demonstrate how the ferroelectric BaTiO3 polarisation history influences the properties of the perpendicularly magnetized TbFe film. Unpolarised and twinned regions are obtained when the sample is zero voltage cooled whereas flat and saturated regions are obtained when the sample is voltage cooled through the ferroelectric ordering temperature of the BaTiO3 crystal, as supported by atomic force microscopy experiments. The two steps involved in the TbFe magnetization reversal, namely nucleation and propagation of magnetic domain walls, depend on the polarisation history. Nucleation is associated to coupling through strains with the piezoelectric BaTiO3 crystal and propagation to pinning with the ferroelastic surface patterns visible in the BaTiO3 topography. PMID:26987937

  15. Strain-induced magnetic domain wall control by voltage in hybrid piezoelectric BaTiO3 ferrimagnetic TbFe structures

    PubMed Central

    Rousseau, Olivier; Weil, Raphael; Rohart, Stanislas; Mougin, Alexandra

    2016-01-01

    This paper reports on the voltage dependence of the magnetization reversal of a thin amorphous ferromagnetic TbFe film grown on a ferroelectric and piezoelectric BaTiO3 single crystal. Magneto-optical measurements, at macroscopic scale or in a microscope, demonstrate how the ferroelectric BaTiO3 polarisation history influences the properties of the perpendicularly magnetized TbFe film. Unpolarised and twinned regions are obtained when the sample is zero voltage cooled whereas flat and saturated regions are obtained when the sample is voltage cooled through the ferroelectric ordering temperature of the BaTiO3 crystal, as supported by atomic force microscopy experiments. The two steps involved in the TbFe magnetization reversal, namely nucleation and propagation of magnetic domain walls, depend on the polarisation history. Nucleation is associated to coupling through strains with the piezoelectric BaTiO3 crystal and propagation to pinning with the ferroelastic surface patterns visible in the BaTiO3 topography. PMID:26987937

  16. Strain-induced magnetic domain wall control by voltage in hybrid piezoelectric BaTiO3 ferrimagnetic TbFe structures

    NASA Astrophysics Data System (ADS)

    Rousseau, Olivier; Weil, Raphael; Rohart, Stanislas; Mougin, Alexandra

    2016-03-01

    This paper reports on the voltage dependence of the magnetization reversal of a thin amorphous ferromagnetic TbFe film grown on a ferroelectric and piezoelectric BaTiO3 single crystal. Magneto-optical measurements, at macroscopic scale or in a microscope, demonstrate how the ferroelectric BaTiO3 polarisation history influences the properties of the perpendicularly magnetized TbFe film. Unpolarised and twinned regions are obtained when the sample is zero voltage cooled whereas flat and saturated regions are obtained when the sample is voltage cooled through the ferroelectric ordering temperature of the BaTiO3 crystal, as supported by atomic force microscopy experiments. The two steps involved in the TbFe magnetization reversal, namely nucleation and propagation of magnetic domain walls, depend on the polarisation history. Nucleation is associated to coupling through strains with the piezoelectric BaTiO3 crystal and propagation to pinning with the ferroelastic surface patterns visible in the BaTiO3 topography.

  17. Self-organized homo-epitaxial growth in nonlinear optical BaAlBO3F2 crystal crossing lines patterned by laser in glass

    NASA Astrophysics Data System (ADS)

    Shinozaki, K.; Abe, S.; Honma, T.; Komatsu, T.

    2015-11-01

    Crystallization processing of glasses is important as a novel technique for the development of new optical materials, and laser-induced crystallization provides a new challenge in science and technology of materials. Nonlinear optical BaAlBO3F2 crystal lines with crossing, bending, and spiral shapes were patterned at the surface of 2NiO-49BaF2-24.5Al2O3-24.5B2O3 (mol%) and 2.9NiO-48.5BaF2-24.3Al2O3-24.3B2O3 (mol%) glasses by laser irradiation (Yb:YVO4 laser with a wavelength of 1080 nm) and the orientation state of BaAlBO3F2 crystals was examined from birefringence image observations. The birefringence images indicate that the growth of highly c-axis oriented BaAlBO3F2 crystals follows along the laser scanning direction even if the laser scanning direction changes, and in particular the direction of the c-axis of BaAlBO3F2 crystals changes gradually at the crossing and bending points. The model of "self-organized homo-epitaxial growth" is proposed for the crystal orientation at the crossing and bending points, as a new crystal growth science and engineering beyond the wise providence of nature.

  18. Mechanochemical synthesis of pnictide compounds and superconducting Ba0.6K0.4Fe2As2 bulks with high critical current density

    NASA Astrophysics Data System (ADS)

    Weiss, J. D.; Jiang, J.; Polyanskii, A. A.; Hellstrom, E. E.

    2013-07-01

    BaFe2As2 (Ba-122) and Ba0.6K0.4Fe2As2 (K-doped Ba-122) powders were successfully synthesized from the elements using a reaction method that incorporates a mechanochemical reaction using high-impact ball milling. Mechanically activated, self-sustaining reactions (MSRs) were observed while milling the elements together to form these compounds. After the MSR, the Ba-122 phase had formed, the powder had an average grain size <1 μm, and the material was effectively mixed. X-ray diffraction confirmed Ba-122 was the primary phase present after milling. Heat treatment of the K-doped MSR powder at high temperature (1120 ° C) and pressure yielded dense samples with high phase purity, but only granular current flow could be visualized by magneto-optical imaging. In contrast, a short, low temperature (600 ° C) heat treatment at ambient pressure resulted in global current flow throughout the bulk sample even though the density was lower and impurity phases were more prevalent. An optimized heat treatment involving a two-step, low temperature (600 ° C) heat treatment of the MSR powder produced bulk material with very high critical current density above 0.1 MA cm-2 at 4.2 K and self-field (SF).

  19. Aluminum Coprecipitates with Fe (hydr)oxides: Does Isomorphous Substitution of Al3plus for Fe3plus in Goethite Occur

    SciTech Connect

    E Bazilevskaya; D Archibald; M Aryanpour; J Kubicki; C Martinez

    2011-12-31

    Iron (hydr)oxides are common in natural environments and typically contain large amounts of impurities, presumably the result of coprecipitation processes. Coprecipitation of Al with Fe (hydr)oxides occurs, for example, during alternating reduction-oxidation cycles that promote dissolution of Fe from Fe-containing phases and its re-precipitation as Fe-Al (hydr)oxides. We used chemical and spectroscopic analyses to study the formation and transformation of Al coprecipitates with Fe (hydr)oxides. In addition, periodic density functional theory (DFT) computations were performed to assess the structural and energetic effects of isolated or clustered Al atoms at 8 and 25 mol% Al substitution in the goethite structure. Coprecipitates were synthesized by raising the pH of dilute homogeneous solutions containing a range of Fe and Al concentrations (100% Fe to 100% Al) to 5. The formation of ferrihydrite in initial suspensions with {<=}20 mol% Al, and of ferrihydrite and gibbsite in initial suspensions with {>=}25 mol% Al was confirmed by infrared spectroscopic and synchrotron-based X-ray diffraction analyses. While base titrations showed a buffer region that corresponded to the hydrolysis of Fe in initial solutions with {<=}25 mol% Al, all of the Al present in these solutions was retained by the solid phases at pH 5, thus indicating Al coprecipitation with the primary Fe hydroxide precipitate. In contrast, two buffer regions were observed in solutions with 30 mol% Al (at pH {approx}2.25 for Fe{sup 3+} and at pH {approx}4 for Al{sup 3+}), suggesting the formation of Fe and Al (hydr)oxides as two separate phases. The Al content of initial coprecipitates influenced the extent of ferrihydrite transformation and of its transformation products as indicated by the presence of goethite, hematite and/or ferrihydrite in aged suspensions. DFT experiments showed that: (i) optimized unit cell parameters for Al-substituted goethites (8 and 25 Mol% Al) in clustered arrangement (i.e., the

  20. Temperature-induced orbital selective localization and coherent-incoherent crossover in single-layer FeSe /Nb :BaTiO3/KTaO3

    NASA Astrophysics Data System (ADS)

    Pu, Y. J.; Huang, Z. C.; Xu, H. C.; Xu, D. F.; Song, Q.; Wen, C. H. P.; Peng, R.; Feng, D. L.

    2016-09-01

    Iron chalcogenide superconductors are multiorbital materials with strong electron correlations. Here we use angle-resolved photoemission spectroscopy to study orbital dependent correlation effects in single-layer FeSe /Nb :BaTiO3/KTaO3, an iron chalcogenide superconductor with high interfacial superconductivity, nondegenerate electron pockets, and varied electron correlation compared with single-layer FeSe /SrTiO3. Signatures of polaronic behavior are observed over the whole temperature range, suggesting electron-boson interactions. Moreover, the nondegeneracy of the electron bands helps to resolve the temperature dependent evolution of different bands. The coherent spectral weight of one electron band significantly decreases above 115 K and is completely depleted at 200 K while that of the other one remains finite, giving direct evidence of an orbital selective Mott crossover. Correspondingly, the weight of the incoherent photoemission spectra is enhanced, indicating a coherent-incoherent crossover during the Mott crossover process. Compared with that in single-layer FeSe /SrTiO3, the depletion temperature of the dx y band is higher in single-layer FeSe /Nb :BaTiO3/KTaO3 due to the decreased correlation of the dx y band in FeSe /Nb :BaTiO3. These phenomena help to construct a more complete picture of electron correlations in the FeSe family.

  1. Emergence of high-mobility minority holes in the electrical transport of the Ba (Fe1 -xMnxAs )2 iron pnictides

    NASA Astrophysics Data System (ADS)

    Urata, T.; Tanabe, Y.; Huynh, K. K.; Heguri, S.; Oguro, H.; Watanabe, K.; Tanigaki, K.

    2015-05-01

    In Fe pnictide (Pn) superconducting materials, neither Mn nor Cr doping to the Fe site induces superconductivity, even though hole carriers are generated. This is in strong contrast with the superconductivity appearing when holes are introduced by alkali-metal substitution on the insulating blocking layers. We investigate in detail the effects of Mn doping on magnetotransport properties in Ba (Fe1 -xMnxAs )2 for elucidating the intrinsic reason. The negative Hall coefficient for x =0 estimated in the low magnetic field (B ) regime gradually increases as x increases, and its sign changes to a positive one at x =0.020 . Hall resistivities as well as simultaneous interpretation using the magnetoconductivity tensor including both longitudinal and transverse transport components clarify that minority holes with high mobility are generated by the Mn doping via spin-density wave transition at low temperatures, while original majority electrons and holes residing in the paraboliclike Fermi surfaces of the semimetallic Ba (FeAs )2 are negligibly affected. Present results indicate that the mechanism of hole doping in Ba (Fe1 -xMnxAs )2 is greatly different from that of the other superconducting FePn family.

  2. Impact of Al passivation and cosputter on the structural property of β-FeSi2 for Al-doped β-FeSi2/n-Si(100) based solar cells application.

    PubMed

    Dalapati, Goutam Kumar; Kumar, Avishek; Tan, Cheng Cheh; Liew, Siao Li; Sonar, Prashant; Seng, Hwee Leng; Hui, Hui Kim; Tripathy, Sudhiranjan; Chi, Dongzhi

    2013-06-26

    The aluminum (Al) doped polycrystalline p-type β-phase iron disilicide (p-β-FeSi2) is grown by thermal diffusion of Al from Al-passivated n-type Si(100) surface into FeSi2 during crystallization of amorphous FeSi2 to form a p-type β-FeSi2/n-Si(100) heterostructure solar cell. The structural and photovoltaic properties of p-type β-FeSi2/n-type c-Si structures is then investigated in detail by using X-ray diffraction, Raman spectroscopy, transmission electron microscopy analysis, and electrical characterization. The results are compared with Al-doped p-β-FeSi2 prepared by using cosputtering of Al and FeSi2 layers on Al-passivated n-Si(100) substrates. A significant improvement in the maximum open-circuit voltage (Voc) from 120 to 320 mV is achieved upon the introduction of Al doping through cosputtering of Al and amorphous FeSi2 layer. The improvement in Voc is attributed to better structural quality of Al-doped FeSi2 film through Al doping and to the formation of high quality crystalline interface between Al-doped β-FeSi2 and n-type c-Si. The effects of Al-out diffusion on the performance of heterostructure solar cells have been investigated and discussed in detail.

  3. Synthesis, Crystal and Electronic Structures of the Pnictides AE3TrPn3 (AE = Sr, Ba; Tr = Al, Ga; Pn = P, As)

    SciTech Connect

    Stoyko, Stanislav; Voss, Leonard; He, Hua; Bobev, Svilen

    2015-09-24

    New ternary arsenides AE3TrAs3 (AE = Sr, Ba; Tr = Al, Ga) and their phosphide analogs Sr3GaP3 and Ba3AlP3 have been prepared by reactions of the respective elements at high temperatures. Single-crystal X-ray diffraction studies reveal that Sr3AlAs3 and Ba3AlAs3 adopt the Ba3AlSb3-type structure (Pearson symbol oC56, space group Cmce, Z = 8). This structure is also realized for Sr3GaP3 and Ba3AlP3. Likewise, the compounds Sr3GaAs3 and Ba3GaAs3 crystallize with the Ba3GaSb3-type structure (Pearson symbol oP56, space group Pnma, Z = 8). Both structures are made up of isolated pairs of edge-shared AlPn4 and GaPn4 tetrahedra (Pn = pnictogen, i.e., P or As), separated by the alkaline-earth Sr2+ and Ba2+ cations. In both cases, there are no homoatomic bonds, hence, regardless of the slightly different atomic arrangements, both structures can be rationalized as valence-precise [AE2+]3[Tr3+][Pn3-]3, or rather [AE2+]6[Tr2Pn6]12-, i.e., as Zintl phases.

  4. A photoelectron spectroscopy and thermal desorption study of CO on FeAl(110) and polycrystalline TiAl and NiAl

    NASA Astrophysics Data System (ADS)

    Gleason, N. R.; Strongin, D. R.

    1993-10-01

    Research presented in this paper investigates the electronic properties and surface reactivity of FeAl(110) and polycrystalline TiAl and NiAl toward carbon monoxide. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) have been used to characterize the electronic structure of the clean and CO-exposed surfaces. Temperature programmed desorption (TPD) shows CO desorption states below 470 K on all the aluminide surfaces. UPS shows that CO adsorption is molecular on FeAl(110) and NiAl at 130 and 200 K, respectively. The majority of CO is found to be dissociated on TiAl at 200 K. Adsorption of CO on FeAl(110) at 315 K results in both molecular and dissociated species, as determined by XPS. Heating this CO/FeAl(110) system results in further dissociation and CO desorption near 430 K. XPS data suggests that surface oxygen, resulting from CO dissociation, preferentially binds to the aluminum component.

  5. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  6. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    SciTech Connect

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  7. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    DOE PAGES

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less

  8. Growth and characterization of insulating ferromagnetic semiconductor (Al,Fe)Sb

    SciTech Connect

    Anh, Le Duc Kaneko, Daiki; Tanaka, Masaaki; Hai, Pham Nam

    2015-12-07

    We investigate the crystal structure, transport, and magnetic properties of Fe-doped ferromagnetic semiconductor (Al{sub 1−x},Fe{sub x})Sb thin films up to x = 14% grown by molecular beam epitaxy. All the samples show p-type conduction at room temperature and insulating behavior at low temperature. The (Al{sub 1−x},Fe{sub x})Sb thin films with x ≤ 10% maintain the zinc blende crystal structure of the host material AlSb. The (Al{sub 1−x},Fe{sub x})Sb thin film with x = 10% shows intrinsic ferromagnetism with a Curie temperature (T{sub C}) of 40 K. In the (Al{sub 1−x},Fe{sub x})Sb thin film with x = 14%, a sudden drop of the hole mobility and T{sub C} was observed, which may be due to the microscopic phase separation. The observation of ferromagnetism in (Al,Fe)Sb paves the way to realize a spin-filtering tunnel barrier that is compatible with well-established III-V semiconductor devices.

  9. Band alignment at epitaxial BaSnO3/SrTiO3(001) and BaSnO3/LaAlO3(001) heterojunctions

    NASA Astrophysics Data System (ADS)

    Chambers, Scott A.; Kaspar, Tiffany C.; Prakash, Abhinav; Haugstad, Greg; Jalan, Bharat

    2016-04-01

    We have spectroscopically determined the optical bandgaps and band offsets at epitaxial interfaces of BaSnO3 with SrTiO3(001) and LaAlO3(001). 28 u.c. BaSnO3 epitaxial films exhibit direct and indirect bandgaps of 3.56 ± 0.05 eV and 2.93 ± 0.05 eV, respectively. The lack of a significant Burstein-Moss shift corroborates the highly insulating, defect-free nature of the BaSnO3 films. The conduction band minimum is lower in electron energy in 5 u.c. films of BaSnO3 than in SrTiO3 and LaAlO3 by 0.4 ± 0.2 eV and 3.7 ± 0.2 eV, respectively. This result bodes well for the realization of oxide-based, high-mobility, two-dimensional electron systems that can operate at ambient temperature, since electrons generated in the SrTiO3 by modulation doping, or at the BaSnO3/LaAlO3 interface by polarization doping, can be transferred to and at least partially confined in the BaSnO3 film.

  10. Synthesis of Cd/(Al+Fe) layered double hydroxides and characterization of the calcination products

    SciTech Connect

    Perez, M.R.; Barriga, C.; Fernandez, J.M.; Rives, V.; Ulibarri, M.A.

    2007-12-15

    Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method at a constant pH value of 8. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange at pH 9. The samples have been characterized by elemental chemical analysis, powder X-ray diffraction (PXRD), and FT-IR spectroscopy. Their thermal stability has been assessed by thermogravimetric and differential thermal analyses (TG-DTA) and mass spectrometric analysis of the evolved gases. The PXRD patterns of the solids calcined at 800 deg. C show diffraction lines corresponding to Cd(Al)O and spinel-type materials, which precise nature (CdAl{sub 2}O{sub 4}, Cd{sub 1-x}Fe{sub 2+x}O{sub 4}, or Cd{sub x}Fe{sub 2.66}O{sub 4}) depends on location and concentration of iron in the parent material or precursor. - Graphical abstract: Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange. Calcination at 800 deg. C shows diffraction lines corresponding to CdO and to spinel-type materials. SEM micrograph of sample CdAlFe-N-0.

  11. Microstructure, Physical Properties, and Magnetic Flux Density Analysis of Permanent Magnet BaFe12O19 using Milling and Sintering Preparation Methods

    NASA Astrophysics Data System (ADS)

    Sardjono, Priyo; Suprapedi; Muljadi; Rusnaeni Djauhari, Nenen

    2016-08-01

    The purpose of this experiment is to analyze the influence of sintering temperature to the microstructure, physical, and magnetic properties of BaFe12O19 materials. The permanent magnet BaFe12O19 was made by using milling and sintering method, BaFe12O19 commercial powder was used as the raw material in this experiment. The raw material was pulverized by using ball mill for 15 hours and compacted at 400 MPa pressure to obtain a 16mm diameter and 4mm thick pellet. The pellet was sintered with 10oC/minute heating rate at various temperature ranges of 1050, 1100, 1150, and 1200oC for 1 hour. The microstructure and particle size of the pellet was investigated using XRD, SEM, and Particle Size Analyzer (PSA). The result shows that the milled powder has hexagonal BaFe12O19 crystal structure as the dominant phase, inhomogeneous size and shape of the grains, and average particle size is 19.60 pm. The bulk density measurement, shrinkage, and magnetic properties of the sintered samples were being observed and analyzed. It was found through this experiment that the optimum sintering temperature is 1150oC to obtain optimum bulk density (4.71 g/cm3), constant shrinkage (12.07%), 550 Gauss magnetic flux density, 1.79 kGauss remanence Br, and 1.75 kOe coercivity.

  12. Growth and characterization of A1-xKxFe2As2 (A = Ba, Sr) single crystals with x = 0 0.4

    NASA Astrophysics Data System (ADS)

    Luo, Huiqian; Wang, Zhaosheng; Yang, Huan; Cheng, Peng; Zhu, Xiyu; Wen, Hai-Hu

    2008-12-01

    Single crystals of A1-xKxFe2As2 (A = Ba, Sr) with high quality have been grown successfully by an FeAs self-flux method. The samples have sizes up to 4 mm with flat and shiny surfaces. The x-ray diffraction patterns suggest that they have high crystalline quality and c-axis orientation. The non-superconducting crystals show a spin-density-wave (SDW) instability at about 173 and 135 K for the Sr-based and Ba-based compound, respectively. After doping K as the hole dopant into the BaFe2As2 system, the SDW transition is smeared, and superconducting samples of the compound Ba1-xKxFe2As2 (0

  13. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; Ran, S.; Canfield, P. C.; Bourret-Courchesne, E. D.; Kreyssig, A.; Lee, D. H.; Goldman, A. I.; McQueeney, R. J.; Birgeneau, R. J.

    2015-12-01

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba (Fe 0.957Cu 0.043) 2As 2 , a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba (Fe1-xNix) 2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba (Fe0.957Cu0.043)2As2 , which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. We also show that the spin-spin correlation length ξ (T ) increases rapidly as the temperature is lowered and find ω /T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.

  14. Spin excitations in optimally P-doped BaFe2(As0.7P0.3)2 superconductor

    NASA Astrophysics Data System (ADS)

    Hu, Ding; Yin, Zhiping; Zhang, Wenliang; Ewings, R. A.; Ikeuchi, Kazuhiko; Nakamura, Mitsutaka; Roessli, Bertrand; Wei, Yuan; Zhao, Lingxiao; Chen, Genfu; Li, Shiliang; Luo, Huiqian; Haule, Kristjan; Kotliar, Gabriel; Dai, Pengcheng

    2016-09-01

    We use inelastic neutron scattering to study the temperature and energy dependence of spin excitations in an optimally P-doped BaFe2(As0.7P0.3 )2 superconductor (Tc=30 K) throughout the Brillouin zone. In the undoped state, spin waves and paramagnetic spin excitations of BaFe2As2 stem from an antiferromagnetic (AF) ordering wave vector QAF=(±1 ,0 ) , and peak near the zone boundary at (±1 ,±1 ) around 180 meV. Replacing 30% As by smaller P to induce superconductivity, low-energy spin excitations of BaFe2(As0.7P0.3 )2 form a resonance in the superconducting state and high-energy spin excitations now peak around 220 meV near (±1 ,±1 ) . These results are consistent with calculations from a combined density functional theory and dynamical mean field theory, and suggest that the decreased average pnictogen height in BaFe2(As0.7P0.3 )2 reduces the strength of electron correlations and increases the effective bandwidth of magnetic excitations.

  15. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    DOE PAGES

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; et al

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe0.957Cu0.043)2As2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba(Fe1–xNix)2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe0.957Cu0.043)2As2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. In addition, we show that themore » spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.« less

  16. Nodal structure and quantum critical point beneath the superconducting dome of BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Matsuda, Yuji

    2012-02-01

    Among BaFe2As2 based materials , the isovalent pnictogen substituted system BaFe2(As1-xPx)2 appears to be the most suitable system to discuss many physical properties, because BaFe2(As1-xPx)2 can be grown with very clean and homogeneous, as evidenced by the quantum oscillations observed over a wide doping range even in the superconducting dome giving detailed knowledge on the electronic structure. We investigate the structure of the superconducting order parameter in BaFe2(As0.67P0.33)2 (Tc=31,) with line nodes by the angle-resolved thermal conductivity measurements in magnetic field. The experimental results are most consistent with the closed nodal loops located at the flat part of the electron Fermi surface with high Fermi velocity. The doping evolution of the penetration depth indicates that nodal loop is robust against P-doping. Moreover, the magnitude of the zero temperature penetration depth exhibits a sharp peak at x=0.3, indicating the presence of a quantum phase transition deep inside the superconducting dome.[4pt] This work has been done in collaboration with T. Shibauchi, K. Hashimoto, S. Kasahara, M. Yamashita, T. Terashima, H. Ikeda (Kyoto), A. Carrington (Bristol), K. Cho, R. Prozorov, M. Tanatar (Ames), A.B. Vorontsov (Montana) and I.Vekhter (Louisiana).

  17. Superconductivity-induced re-entrance of the orthorhombic distortion in Ba1-xKxFe2As2.

    PubMed

    Böhmer, A E; Hardy, F; Wang, L; Wolf, T; Schweiss, P; Meingast, C

    2015-07-31

    Detailed knowledge of the phase diagram and the nature of the competing magnetic and superconducting phases is imperative for a deeper understanding of the physics of iron-based superconductivity. Magnetism in the iron-based superconductors is usually a stripe-type spin-density-wave, which breaks the tetragonal symmetry of the lattice, and is known to compete strongly with superconductivity. Recently, it was found that in some systems an additional spin-density-wave transition occurs, which restores this tetragonal symmetry, however, its interaction with superconductivity remains unclear. Here, using thermodynamic measurements on Ba1-xKxFe2As2 single crystals, we show that the spin-density-wave phase of tetragonal symmetry competes much stronger with superconductivity than the stripe-type spin-density-wave phase, which results in a novel re-entrance of the latter at or slightly below the superconducting transition.

  18. Ethylene glycol assisted spray pyrolysis for the synthesis of hollow BaFe12O19 spheres

    SciTech Connect

    Xu, X; Park, J; Hong, YK; Lane, AM

    2015-04-01

    Hollow spherical BaFe12O19 particles were synthesized by spray pyrolysis from a solution containing ethylene glycol (EG) and precursors at 1000 degrees C. The effects of EG concentration on particle morphology, crystallinity and magnetic properties were investigated. The hollow spherical particles were found to consist of primary particles, and higher EG concentration led to a bigger primary particle size. EG concentration did not show much effect on the hollow particle size. Better crystallinity and higher magnetic coercivity were obtained with higher EG concentration, which is attributed to further crystallization with the heat produced from EG combustion. Saturation magnetization (emu/g) decreased with increasing EG concentration due to residual carbon from EG incomplete combustion, contributing as a non-magnetic phase to the particles. Published by Elsevier B.V.

  19. Unusual Temperature and Field Dependence of Transport Properties Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Xiong, Yimin; Li, Jianneng; Jin, Rongying

    2010-10-01

    The in-plane transport properties of Ba(Fe1-xCox)2As2 single crystals with x = 0.02 ˜ 0.28 was measured as a function of temperature (2 ˜ 300 K) and magnetic field (up to 14 Tesla). A Cobalt doping composition-temperature (x-T) phase diagram was plotted and shows a non-Fermi liquid (NFL) transport behavior around the optimal doing level. The Hall effect and magneto-resistance results also show an anomaly and a change of field dependence around the optimal doing. The underlying physics of such unusual temperature and field dependence of transport properties ab plane will be discussed.

  20. Voltage-current characteristics of epitaxial and misoriented Ba(Fe1-xCox) 2As2 thin films

    NASA Astrophysics Data System (ADS)

    Rodríguez, O.; Mariño, A.

    2015-06-01

    Ba(Fe1-xCox) 2As2 thin films were produced by Pulsed Laser Deposition (PLD). Epitaxial thin films were obtained when the deposition temperature was 700 °C while at 875 °C misoriented films were obtained. The presence of grain boundaries reduces the transport critical current Jc in almost two order of magnitude with respect to the textured thin films. The Voltage-Current (V-I) curves of misoriented films, exhibit a mixture of a non-ohmic linear differential (NOLD) and power law behaviors, due to the viscous flow of the flux lines along the grain boundaries lines, corresponding to the Jc limited by grain boundaries and Jc limited by intragrain, respectively. The misoriented thin films also present a kinked V-I curves attributed to a vortex channeling along the boundaries.

  1. Superconducting properties in heavily overdoped Ba(Fe0.86Co0.14)2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Kim, Jeehoon; Haberkorn, N.; Gofryk, K.; Graf, M. J.; Ronning, F.; Sefat, A. S.; Movshovich, R.; Civale, L.

    2015-01-01

    We report the intrinsic superconducting parameters in a heavily overdoped Ba(Fe1-xCox)2As2 (x=0.14) single crystal and their influence in the resulting vortex dynamics. We find a bulk superconducting critical temperature of 9.8 K, magnetic penetration depth λab (0)=660±50 nm, coherence length ξab (0)=6.4±0.2 nm, and the upper critical field anisotropy γT→Tc≈3.7. The vortex phase diagram, in comparison with the optimally doped compound, presents a narrow collective creep regime. The intrinsic pinning energy plays an important role in the resulting vortex dynamics as compared with similar pinning landscape and comparable intrinsic thermal fluctuations.

  2. Critical and Gaussian conductivity fluctuations in a BaFe1.9Ni0.1As2 superconductor

    NASA Astrophysics Data System (ADS)

    Salem-Sugui, S., Jr.; Alvarenga, A. D.; Rey, R. I.; Mosqueira, J.; Luo, H.-Q.; Lu, X.-Y.

    2013-12-01

    We study fluctuation conductivity in a single crystal of BaFe1.9Ni0.1As2 superconductor (Tc = 20 K) as a function of temperature and applied magnetic field. Magneto-conductivity curves, Δσ versus T, were analyzed in terms of -1/(dln(Δσ)/dT) versus T plots, which allow us to study different fluctuation regimes and to estimate exponent values and temperature widths of each regime. The analysis of magneto-conductivity curves evidences the existence of only two fluctuation regimes, a possible critical one (of glass-like type) going from the irreversible temperature to above Tc(H), followed by Aslamazov-Larkin fluctuations in the Gaussian regime.

  3. Crossover from spin waves to diffusive spin excitations in underdoped Ba(Fe1-xCox)2 As2

    SciTech Connect

    Tucker, G S; Fernandes, R M; Pratt, D K; Thaler, A; Ni, N; Marty, K; Christianson, A D; Lumsden, M D; Sales, B C; Sefat, A S; Bud'ko, S L; Canfield, P C; Kreyssig, A; Goldman, A I; McQueeney, R J

    2014-05-01

    Using inelastic neutron scattering, we show that the onset of superconductivity in underdoped Ba(Fe1-xCox)2As2 coincides with a crossover from well-defined spin waves to overdamped and diffusive spin excitations. This crossover occurs despite the presence of long-range stripe antiferromagnetic order for samples in a compositional range from x=0.04 to 0.055, and is a consequence of the shrinking spin-density wave gap and a corresponding increase in the particle-hole (Landau) damping. The latter effect is captured by a simple itinerant model relating Co doping to changes in the hot spots of the Fermi surface. We argue that the overdamped spin fluctuations provide a pairing mechanism for superconductivity in these materials.

  4. Non-conventional superconducting fluctuations in Ba(Fe1-xRhx)2As2 iron-based superconductors.

    PubMed

    Bossoni, L; Romanó, L; Canfield, P C; Lascialfari, A

    2014-10-01

    We measured the static uniform spin susceptibility of Ba(Fe(1-x)Rh(x))(2)As(2) iron-based superconductors, over a broad range of doping (0.041 ⩽ x ⩽ 0.094) and magnetic fields. At small fields (H ⩽ 1 kOe) we observed, above the transition temperature Tc, the occurrence of precursor diamagnetism, which is not ascribable to the Ginzburg-Landau theory. On the contrary, our data agree with a phase fluctuation model, which has been used to interpret a similar phenomenology occurring in the high-Tc cuprate superconductors. Additionally, in the presence of strong fields, the unconventional fluctuating diamagnetism is suppressed, whereas Ginzburg-Landau fluctuations are found, in agreement with literature. PMID:25229750

  5. Persistence of slow fluctuations in the overdoped regime of Ba (Fe1 -xRhx) 2As2 superconductors

    NASA Astrophysics Data System (ADS)

    Bossoni, L.; Moroni, M.; Julien, M. H.; Mayaffre, H.; Canfield, P. C.; Reyes, A.; Halperin, W. P.; Carretta, P.

    2016-06-01

    We present nuclear magnetic resonance evidence that very slow (≤1 MHz) spin fluctuations persist into the overdoped regime of Ba (Fe1 -xRhx) 2As2 superconductors. Measurements of the 75As spin echo decay rate, obtained both with Hahn Echo and Carr Purcell Meiboom Gill pulse sequences, show that the slowing down of spin fluctuations can be described by short-range diffusive dynamics, likely involving domain walls motions separating (π /a ,0 ) from (0 ,π /a ) correlated regions. This slowing down of the fluctuations is weakly sensitive to the external magnetic field and, although fading away with doping, it extends deeply into the overdoped regime.

  6. Unconventional Electronic Reconstruction in Undoped (Ba,Sr)Fe2As2 Across the Spin Density Wave Transition

    SciTech Connect

    Yi, M.

    2010-06-02

    Through a systematic high-resolution angle-resolved photoemission study of the iron pnictide compounds (Ba,Sr)Fe{sub 2}As{sub 2}, we show that the electronic structures of these compounds are significantly reconstructed across the spin density wave transition, which cannot be described by a simple folding scenario of conventional density wave ordering. Moreover, we find that LDA calculations with an incorporated suppressed magnetic moment of 0.5{mu}{sub B} can match well the details in the reconstructed electronic structure, suggesting that the nature of magnetism in the pnictides is more itinerant than local, while the origin of suppressed magnetic moment remains an important issue for future investigations.

  7. Enhancement of critical current densities in (Ba,K)Fe2As2 wires and tapes using HIP technique

    NASA Astrophysics Data System (ADS)

    Pyon, Sunseng; Suwa, Takahiro; Park, Akiyoshi; Kajitani, Hideki; Koizumi, Norikiyo; Tsuchiya, Yuji; Awaji, Satoshi; Watanabe, Kazuo; Tamegai, Tsuyoshi

    2016-11-01

    (Ba,K)Fe2As2 superconducting wires and tapes are fabricated by using hot isostatic pressing (HIP) technique, and their superconducting properties are studied. In the HIP round wire, transport critical current density (J c) at 4.2 K has achieved record-high value of 175 kA cm-2 at zero field, and exceeds 20 kA cm-2 even at 100 kOe. Improvement of polycrystalline powder synthesis may play a key role for the enhancement of J c. In the HIP tape, even larger transport J c of 380 kA cm-2 is realized at zero field. Based on magnetization and magneto-optical measurements, possible further enhancement of J c is discussed.

  8. Optical study of BaFe2As2 under pressure: Coexistence of spin-density-wave gap and superconductivity

    NASA Astrophysics Data System (ADS)

    Uykur, E.; Kobayashi, T.; Hirata, W.; Miyasaka, S.; Tajima, S.; Kuntscher, C. A.

    2015-12-01

    Temperature-dependent reflectivity measurements in the frequency range 85 -7000 cm-1 were performed on BaFe2As2 single crystals under pressure up to ˜5 GPa. The corresponding pressure- and temperature-dependent optical conductivity was analyzed with the Drude-Lorentz model to extract the coherent and incoherent contributions. The gradual suppression of the spin-density-wave (SDW) state with increasing pressure and the appearance of the superconducting phase coexisting with the SDW phase at 3.6 GPa were observed. At 3.6 GPa, the reflectivity reaches unity below ˜95 cm-1 indicating the opening of the superconducting gap and shows a full gap tendency at 6 K.

  9. Superconductivity-induced re-entrance of the orthorhombic distortion in Ba1-xKxFe2As2

    NASA Astrophysics Data System (ADS)

    Böhmer, A. E.; Hardy, F.; Wang, L.; Wolf, T.; Schweiss, P.; Meingast, C.

    2015-07-01

    Detailed knowledge of the phase diagram and the nature of the competing magnetic and superconducting phases is imperative for a deeper understanding of the physics of iron-based superconductivity. Magnetism in the iron-based superconductors is usually a stripe-type spin-density-wave, which breaks the tetragonal symmetry of the lattice, and is known to compete strongly with superconductivity. Recently, it was found that in some systems an additional spin-density-wave transition occurs, which restores this tetragonal symmetry, however, its interaction with superconductivity remains unclear. Here, using thermodynamic measurements on Ba1-xKxFe2As2 single crystals, we show that the spin-density-wave phase of tetragonal symmetry competes much stronger with superconductivity than the stripe-type spin-density-wave phase, which results in a novel re-entrance of the latter at or slightly below the superconducting transition.

  10. Superconductivity-induced re-entrance of the orthorhombic distortion in Ba1-xKxFe2As2.

    PubMed

    Böhmer, A E; Hardy, F; Wang, L; Wolf, T; Schweiss, P; Meingast, C

    2015-01-01

    Detailed knowledge of the phase diagram and the nature of the competing magnetic and superconducting phases is imperative for a deeper understanding of the physics of iron-based superconductivity. Magnetism in the iron-based superconductors is usually a stripe-type spin-density-wave, which breaks the tetragonal symmetry of the lattice, and is known to compete strongly with superconductivity. Recently, it was found that in some systems an additional spin-density-wave transition occurs, which restores this tetragonal symmetry, however, its interaction with superconductivity remains unclear. Here, using thermodynamic measurements on Ba1-xKxFe2As2 single crystals, we show that the spin-density-wave phase of tetragonal symmetry competes much stronger with superconductivity than the stripe-type spin-density-wave phase, which results in a novel re-entrance of the latter at or slightly below the superconducting transition. PMID:26227915

  11. Multiferroic properties of microwave sintered BaTiO3-SrFe12O19 composites

    NASA Astrophysics Data System (ADS)

    Katlakunta, Sadhana; Raju, Pantagani; Meena, Sher Singh; Srinath, Sanyadanam; Sandhya, Reddigari; Kuruva, Praveena; Murthy, Sarabu Ramana

    2014-09-01

    The composites of xSrFe12O19-(1-x) BaTiO3 where x=0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1were prepared by Sol-gel method and consequently densified at 1100 °C/90 min using microwave sintering method. The phase formation and diphase microstructure of the composite samples was examined by X-ray diffraction and field emission electron microscope (FESEM), respectively. The effects of constituent phase variation on the ferroelectric, dielectric and magnetic properties were examined. It was observed that with a decrease of x, the Curie temperature shifted towards low temperature side.

  12. Specific heat investigation for line nodes in heavily overdoped Ba1-xKxFe2As2

    DOE PAGES

    Kim, J. S.; Stewart, G. R.; Liu, Yong; Lograsso, Thomas A.

    2015-06-10

    Previous research has found that the pairing symmetry in the iron-based superconductor Ba1-xKxFe2As2 changes from nodeless s-wave near optimally doped, x≈0.4-0.55 and Tc>30 K, to nodal (either d-wave or s-wave) at the pure endpoint, x=1 and Tc<4 K. Intense theoretical interest has been focused on this possibility of changing pairing symmetry, where in the transition region both order parameters would be present and time reversal symmetry would be broken. Here we report specific heat measurements in zero and applied magnetic fields down to 0.4 K of three individual single crystals, free of low temperature magnetic anomalies, of heavily overdoped Ba1-xKxFe2As2,more » x= 0.91, 0.88, and 0.81. The values for Tcmid are 5.6, 7.2 and 13 K and for Hc2≈ 4.5, 6, and 20 T respectively. Furthermore, the data can be analyzed in a two gap scenario, Δ2/Δ1 ≈ 4, with the magnetic field dependence of γ (=C/T as T→0) showing an anisotropic ‘S-shaped’ behavior vs H, with the suppression of the lower gap by 1 T and γ ≈ H1/2 overall. Although such a non-linear γ vs H is consistent with deep minima or nodes in the gap structure, it is not clear evidence for one, or both, of the gaps being nodal in these overdoped samples. Thus, following the established theoretical analysis of the specific heat of d-wave cuprate superconductors containing line nodes, we present the specific heat normalized by H1/2 plotted vs T/H1/2 of these heavily overdoped Ba1-xKxFe2As2 samples which – thanks to the absence of magnetic impurities in our sample - convincingly shows the expected scaling for line node behavior for the larger gap for all three compositions. There is however no clear observation of the nodal behavior C ∝ αT2 in zero field at low temperatures, with α ≤ 2 mJ/molK3 being consistent with the data. Together with the scaling, this leaves open the possibility of extreme anisotropy in a nodeless larger gap, Δ2, such that the scaling works for fields above 0.25 – 0

  13. Phase transition beneath the superconducting dome in BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debanjan; Orenstein, J.; Sachdev, Subir; Senthil, T.

    2015-08-01

    We present a theory for the large suppression of the superfluid density ρs in BaFe2(As1 -xPx )2 in the vicinity of a putative spin-density wave quantum critical point at a P doping, x =xc . We argue that the transition becomes weakly first order in the vicinity of xc, and disorder induces puddles of superconducting and antiferromagnetic regions at short length scales; thus, the system becomes an electronic microemulsion. We propose that frustrated Josephson couplings between the superconducting grains suppress ρs. In addition, the presence of "normal" quasiparticles at the interface of the frustrated Josephson junctions will give rise to a highly nontrivial feature in the low-frequency response in a narrow vicinity around xc. We propose a number of experiments to test our theory.

  14. Low-energy planar magnetic defects in BaFe2As2: Nanotwins, twins, antiphase, and domain boundaries

    SciTech Connect

    Khan, Suffian N.; Alam, Aftab; Johnson, Duane D.

    2013-11-27

    In BaFe2As2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity. We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22–210 m Jm−2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundaries—making a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should be considered when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower assessed “ordered” moments from longer spatial and/or time averaging and should be considered directly.

  15. Quantum fluctuations in iron-pnictide superconductor BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Shu, Lei; Ding, Z. F.; Zhang, J.; Tan, C.; Huang, K.; Liu, L.; Cheung, S.; Uemura, Y. J.; Maclaughlin, D. E.; Bernal, O. O.; Ho, P.-C.; Hu, D.; Dai, P. C.

    Muon-spin-relaxation/rotation (μSR) experiments were performed on single crystals of iron-pnictide superconductors BaFe2(As1-xPx)2 (x = 0 . 28 , 0 . 30 , and 0.33). Our preliminary results reveal that the static muon relaxation rate from ZF- μSR measurements is temperature independent through Tc, suggesting that time reversal symmetry is preserved in the superconducting state. Above Tc, the field dependence of muon relaxation rate shows NFL behaviors for optimal composition x = 0 . 3 . A maximum of zero temperature penetration depth at x = 0 . 3 is also observed. This work was supported by Chinese NSF, Grant 1147060, US NSF, Grant DMR-1506677 and DMR-1105380.

  16. Rietveld refinement and dielectric studies of Bi0.8Ba0.2FeO3 ceramic

    NASA Astrophysics Data System (ADS)

    Kaswan, Kavita; Agarwal, Ashish; Sanghi, Sujata; Rangi, Manisha; Jangra, Sandhaya; Singh, Ompal

    2016-05-01

    Polycrystalline Bi0.8Ba0.2FeO3 ceramic has been synthesized via conventional solid state reaction technique. The Rietveld refinement of x-ray powder diffraction revealed that the sample has a rhombohedral crystal structure (space group R3c). With increase in temperature, the values of dielectric constant (ɛ') and dielectric loss (tan δ) are found to be increase at different frequencies which may be the result of increase in the number of charge carriers and their mobilities due to the thermal activation. Further the ac conductivity data is analyzed by using Jonscher's universal power law. The values of frequency exponent `s' lies in the range 0.2 ≤ s ≤ 0.7 and decreases with increase in temperature which can be explained on the basis of CBH (Correlated Barrier Height) model.

  17. Enhancement in the multiferroic properties of BiFeO3 by charge compensated aliovalent substitution of Ba and Nb

    NASA Astrophysics Data System (ADS)

    Makhdoom, A. R.; Akhtar, M. J.; Rafiq, M. A.; Siddique, M.; Iqbal, M.; Hasan, M. M.

    2014-03-01

    Polycrystalline ceramics, Bi1-2xBa2xFe1-xNbxO3 (x = 0.00-0.15), were synthesized by solid state reactions method. X-ray diffraction data have revealed elimination of impurity phases and an increase in unit cell volume with Ba and Nb substitution. Diffraction peak splitting is found to be suppressed which indicates a decrease in octahedral distortion. The Mössbauer spectra demonstrate the suppression of spiral spin modulation of the magnetic moments resulting in enhanced ferromagnetism with increasing dopant concentration. The leakage current density of the sample with x = 0.10 is found to be greatly reduced up to six orders of magnitude as compared to the undoped sample. Ohmic conduction is found to be dominant mechanism in all the samples, however, undoped sample showed space charge limited conduction in high electric filed region, while the sample with x = 0.15 exhibited grain boundary limited conduction in low electric field region.

  18. Magnetoelectric coupling in multiferroic BaTiO3-CoFe2O4 composite nanofibers via electrospinning

    NASA Astrophysics Data System (ADS)

    Fu, Bi; Lu, Ruie; Gao, Kun; Yang, Yaodong; Wang, Yaping

    2015-07-01

    Magnetoelectric (ME) coupling in Pb-based multiferroic composites has been widely investigated due to the excellent piezoelectric property of lead zirconate titanate (PZT). In this letter, we report a strategy to create a hybrid Pb-free ferroelectric and ferromagnetic material and detect its ME coupling at the nanoscale. Hybrid Pb-free multiferroic BaTiO3-CoFe2O4 (BTO-CFO) composite nanofibers (NFs) were generated by sol-gel electrospinning. The perovskite structure of BTO and the spinel structure of CFO nanograins were homogenously distributed in the composite NFs and verified by bright-field transmission electron microscopy observations along the perovskite [111] zone axis. Multiferroicity was confirmed by amplitude-voltage butterfly curves and magnetic hysteresis loops. ME coupling was observed in terms of a singularity on a dM/dT curve at the ferroelectric Curie temperature (TC) of BaTiO3. The lateral ME coefficient was investigated by the evolution of the piezoresponse under an external magnetic field of 1000 Oe and was estimated to be α31 =0.78× 104 \\text{mV cm}-1 \\text{Oe}-1 . These findings could enable the creation of nanoscale Pb-free multiferroic composite devices.

  19. Weak localization effect in topological insulator micro flakes grown on insulating ferrimagnet BaFe12O19

    PubMed Central

    Zheng, Guolin; Wang, Ning; Yang, Jiyong; Wang, Weike; Du, Haifeng; Ning, Wei; Yang, Zhaorong; Lu, Hai-Zhou; Zhang, Yuheng; Tian, Mingliang

    2016-01-01

    Many exotic physics anticipated in topological insulators require a gap to be opened for their topological surface states by breaking time reversal symmetry. The gap opening has been achieved by doping magnetic impurities, which however inevitably create extra carriers and disorder that undermine the electronic transport. In contrast, the proximity to a ferromagnetic/ferrimagnetic insulator may improve the device quality, thus promises a better way to open the gap while minimizing the side-effects. Here, we grow thin single-crystal Sb1.9Bi0.1Te3 micro flakes on insulating ferrimagnet BaFe12O19 by using the van der Waals epitaxy technique. The micro flakes show a negative magnetoresistance in weak perpendicular fields below 50 K, which can be quenched by increasing temperature. The signature implies the weak localization effect as its origin, which is absent in intrinsic topological insulators, unless a surface state gap is opened. The surface state gap is estimated to be 10 meV by using the theory of the gap-induced weak localization effect. These results indicate that the magnetic proximity effect may open the gap for the topological surface attached to BaM insulating ferrimagnet. This heterostructure may pave the way for the realization of new physical effects as well as the potential applications of spintronics devices. PMID:26891682

  20. Weak localization effect in topological insulator micro flakes grown on insulating ferrimagnet BaFe12O19

    NASA Astrophysics Data System (ADS)

    Zheng, Guolin; Wang, Ning; Yang, Jiyong; Wang, Weike; Du, Haifeng; Ning, Wei; Yang, Zhaorong; Lu, Hai-Zhou; Zhang, Yuheng; Tian, Mingliang

    2016-02-01

    Many exotic physics anticipated in topological insulators require a gap to be opened for their topological surface states by breaking time reversal symmetry. The gap opening has been achieved by doping magnetic impurities, which however inevitably create extra carriers and disorder that undermine the electronic transport. In contrast, the proximity to a ferromagnetic/ferrimagnetic insulator may improve the device quality, thus promises a better way to open the gap while minimizing the side-effects. Here, we grow thin single-crystal Sb1.9Bi0.1Te3 micro flakes on insulating ferrimagnet BaFe12O19 by using the van der Waals epitaxy technique. The micro flakes show a negative magnetoresistance in weak perpendicular fields below 50 K, which can be quenched by increasing temperature. The signature implies the weak localization effect as its origin, which is absent in intrinsic topological insulators, unless a surface state gap is opened. The surface state gap is estimated to be 10 meV by using the theory of the gap-induced weak localization effect. These results indicate that the magnetic proximity effect may open the gap for the topological surface attached to BaM insulating ferrimagnet. This heterostructure may pave the way for the realization of new physical effects as well as the potential applications of spintronics devices.

  1. Temperature and composition phase diagram in the iron-based ladder compounds Ba 1 - x Cs x Fe 2 Se 3

    DOE PAGES

    Hawai, Takafumi; Nambu, Yusuke; Ohgushi, Kenya; Du, Fei; Hirata, Yasuyuki; Avdeev, Maxim; Uwatoko, Yoshiya; Sekine, Yurina; Fukazawa, Hiroshi; Ma, Jie; et al

    2015-05-28

    We investigated the iron-based ladder compounds (Ba,Cs)Fe₂Se₃. Their parent compounds BaFe₂Se₃ and CsFe₂Se₃ have different space groups, formal valences of Fe, and magnetic structures. Electrical resistivity, specific heat, magnetic susceptibility, x-ray diffraction, and powder neutron diffraction measurements were conducted to obtain a temperature and composition phase diagram of this system. Block magnetism observed in BaFe₂Se₃ is drastically suppressed with Cs doping. In contrast, stripe magnetism observed in CsFe₂Se₃ is not so fragile against Ba doping. A new type of magnetic structure appears in intermediate compositions, which is similar to stripe magnetism of CsFe₂Se₃, but interladder spin configuration is different. Intermediatemore » compounds show insulating behavior, nevertheless a finite T-linear contribution in specific heat was obtained at low temperatures.« less

  2. Preparation and properties of the Ni-Al/Fe-Al intermetallics composite coating produced by plasma cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Min; Liu, Bang-Wu; Sun, Dong-Bai

    2011-12-01

    A novel approach to produce an intermetallic composite coating was put forward. The microstructure, microhardness, and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS) analysis, microhardness test, and ball-on-disc wear experiment. XRD results indicate that some new phases FeAl, Fe0.23Ni0.77Al, and Ni3Al exit in the composite coating with the Al2O3 addition. SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures. The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating. The formation mechanism of the intermetallic compounds was also investigated.

  3. Phase diagram of Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2}.

    SciTech Connect

    Avci, S.; Chmaissem, O.; Chung, D. Y.; Rosenkranz, S.; Goremychkin, E. A.; Castellan, J. P.; Todorov, I. S.; Schlueter, J. A.; Claus, H.; Daoud-Aladine, A.; Khalyavin, D. D.; Kanatzidis, M. G.; Osborn, R.

    2012-01-01

    We report the results of a systematic investigation of the phase diagram of the iron-based superconductor Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} from x = 0 to x = 1.0 using high-resolution neutron and x-ray diffraction and magnetization measurements. The polycrystalline samples were prepared with an estimated compositional variation of {Delta}x {le} 0.01, allowing a more precise estimate of the phase boundaries than reported so far. At room temperature, Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} crystallizes in a tetragonal structure with the space group symmetry of I4/mmm, but at low doping, the samples undergo a coincident first-order structural and magnetic phase transition to an orthorhombic (O) structure with the space group Fmmm and a striped antiferromagnet (AF) with the space group F{sub c}mm'm'. The transition temperature falls from a maximum of 139 K in the undoped compound to 0 K at x = 0.252, with a critical exponent as a function of doping of 0.25(2) and 0.12(1) for the structural and magnetic order parameters, respectively. The onset of superconductivity occurs at a critical concentration of x = 0.130(3), and the superconducting transition temperature grows linearly with x until it crosses the AF/O phase boundary. Below this concentration, there is microscopic phase coexistence of the AF/O and superconducting order parameters, although a slight suppression of the AF/O order is evidence that the phases are competing. At higher doping, superconductivity has a maximum T{sub c} of 38 K at x = 0.4 that falls to 3 K at x = 1.0. We discuss reasons for the suppression of the spin density wave order and the electron-hole asymmetry in the phase diagram.

  4. Multiferroic approach for Cr,Mn,Fe,Co,Ni,Cu substituted BaTiO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Kuldeep Chand; Kotnala, R. K.

    2016-05-01

    Multiferroic magnetoelectric (ME) at room temperature is significant for new design nano-scale spintronic devices. We have given a comparative study to report multiferroicity in BaTM0.01Ti0.99O3 [TM = Cr,Mn,Fe,Co,Ni,Cu (1 mol% each) substituted BaTiO3 (BTO)] nanoparticles. The TM ions influenced both nano-size and lattice distortion of Ti-O6 octahedra to the BTO. X ray diffraction study indicates that the dopant TM could influence lattice constants, distortion, tetragonal splitting of diffraction peaks (002/200) as well as peak shifting of diffraction angle in the BTO lattice. This can induce lattice strain which responsible to oxygen defects formation to mediate ferromagnetism. Also, the lattice strain effect could responsible to reduce the depolarization field of ferroelectricity and provide piezoelectric and magnetostrictive strains to enhance ME coupling. The size of BTO nanoparticles is varied in 13-51 nm with TM doping. The room temperature magnetic measurement indicates antiferromagnetic exchange interactions in BTO lattice with TM ions. The zero-field cooling and field cooling magnetic measurement at 500 Oe indicates antiferromagnetic to ferromagnetic transition. It also confirms that the substitution of Cr, Fe and Co into BTO could induce strong antiferromagnetic behavior. However, the substitutions of Mn, Ni and Cu have weak antiferromagnetic character. The temperature dependent dielectric measurements indicates polarization enhancement that influenced with both nano-size as well TM ions and exhibits ferroelectric phase transition with relaxor-like characteristics. Dynamic ME coupling is investigated, and the longitudinal ME voltage coefficient, α ME is equivalent to linear ME coupling coefficient, α (={\\varepsilon }{{o}}{\\varepsilon }{{r}}{α }{{ME}}) is also calculated.

  5. Enhanced piezoelectricity in (1 -x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region.

    PubMed

    Zheng, Ting; Jiang, Zhenggen; Wu, Jiagang

    2016-07-28

    Site engineering has been employed to modulate the piezoelectric activity of high temperature (1 -x)Bi1.05Fe1-yScyO3-xBaTiO3 lead-free ceramics fabricated by a conventional solid-state method together with a quenching technique. The effects of x and y content on the phase structure, microstructure, and electrical properties have been investigated in detail. A wide rhombohedral (R) to pseudo-cubic (C) phase boundary was formed in the ceramics with x = 0.30 and 0 ≤y≤ 0.07, thus leading to enhanced piezoelectricity (d33 = 120-180 pC N(-1)), ferroelectricity (Pr = 19-22 μC cm(-2)) and a high Curie temperature (TC = 478-520 °C). In addition, the influence of different element substitutions for Fe(3+) on phase structure and electrical behavior was also investigated. Improved piezoelectricity (d33 = 160-180 pC N(-1)) and saturated P-E loops can be simultaneously achieved in the ceramics with A = Sc, Ga, and Al due to the R-C phase boundary. As a result, site engineering may be an efficient way to modulate the piezoelectricity of BiFeO3-BaTiO3 lead-free ceramics. PMID:27357104

  6. Thermal Stability of the Dynamic Magnetic Properties of FeSiAl-Al2O3 and FeSiAl-SiO2 Films Grown by Gradient-Composition Sputtering Technique

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoxi; Phuoc, Nguyen N.; Soh, Wee Tee; Ong, C. K.; Peng, Long; Li, Lezhong

    2016-08-01

    We carry out a systematic investigation of the dynamic magnetic properties of FeSiAl-Al2O3 and FeSiAl-SiO2 thin films prepared by gradient-composition deposition technique with respect to temperature in the range of 300 K to 420 K. It was found that the magnetic anisotropy field (H K) and ferromagnetic resonance frequency (f FMR) are increased with increasing deposition angle (β) due to the enhancement of stress (σ) when concentrations of Al and O or Si and O are increased. The thermal stability of FeSiAl-Al2O3 films show a very interesting behavior with the magnetic anisotropy increasing with temperature when the deposition angle is increased. In contrast, when the deposition angle is lower, the usual trend of decreasing magnetic anisotropy with increasing temperature is observed. Moreover, the temperature-dependent behaviors of the dynamic permeability and effective Gilbert damping coefficient (α eff) for FeSiAl-Al2O3 and FeSiAl-SiO2 films at different deposition angles are discussed in detail.

  7. A systematic ALCHEMI study of Fe-doped NiAl alloys

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1995-06-01

    ALCHEMI site-occupation studies of alloying additions to ordered aluminide intermetallic alloys have been performed with varying degrees of success, depending on the ionization delocalization correction. This study examines the variation in the site-occupancy of Fe in B2-ordered NiAl vs solute concentration and alloy stoichiometry. The fraction of Fe on the `Ni` site is plotted vs Fe concentration. The good separation among the data from alloys of the three stoichiometries shows that the site occupancy of iron depends on the relative concentrations of the Ni and Al host elements; however a preference for the `Ni` site is clearly indicated.

  8. An overview of the welding of Ni{sub 3}Al and Fe{sub 3}Al alloys

    SciTech Connect

    Santella, M.L.

    1996-12-31

    Weldability (degree to which defect formation is resisted when an alloy is welded) is an issue in fabrication of Ni{sub 3}Al and Fe{sub 3}Al. Work to define and improve welding of Ni{sub 3}Al and Fe{sub 3}Al alloys is reviewed and progress illustrated by examples of current activities. The cast Ni{sub 3}Al alloys currently under development, IC221M and IC396M, have low resistance to solidification cracking and hence difficult to weld. Modifications to the composition of both base alloys and weld deposits,however, increase their resistance to cracking. Crack-free, full-penetration welds were made in centrifugally cast tubes of IC221M. Tensile and stress- rupture properties of the weldments compare favorably with base metal properties. Weldability issues have limited the use of Fe{sub 3}Al alloys to weld overlay applications. Filler metal compositions suitable for weld overlay cladding were developed, and the preheat and postweld heat treatment needed to avoid cracking, were determined experimentally.

  9. Expansion of the tetragonal magnetic phase with pressure in the iron arsenide superconductor Ba1 -xKxFe2As2

    NASA Astrophysics Data System (ADS)

    Hassinger, E.; Gredat, G.; Valade, F.; de Cotret, S. René; Cyr-Choinière, O.; Juneau-Fecteau, A.; Reid, J.-Ph.; Kim, H.; Tanatar, M. A.; Prozorov, R.; Shen, B.; Wen, H.-H.; Doiron-Leyraud, N.; Taillefer, Louis

    2016-04-01

    In the temperature-concentration phase diagram of most iron-based superconductors, antiferromagnetic order is gradually suppressed to zero at a critical point, and a dome of superconductivity forms around that point. The nature of the magnetic phase and its fluctuations is of fundamental importance for elucidating the pairing mechanism. In Ba1 -xKxFe2As2 and Ba1-xNaxFe2As2 , it has recently become clear that the usual stripelike magnetic phase, of orthorhombic symmetry, gives way to a second magnetic phase, of tetragonal symmetry, near the critical point, in the range from x =0.24 to x =0.28 for Ba1 -xKxFe2As2 . In a prior study, an unidentified phase was discovered for x <0.24 but under applied pressure, whose onset was detected as a sharp anomaly in the resistivity. Here we report measurements of the electrical resistivity of Ba1 -xKxFe2As2 under applied hydrostatic pressures up to 2.75 GPa, for x =0.22 , 0.24, and 0.28. The critical pressure above which the unidentified phase appears is seen to decrease with increasing x and vanish at x =0.24 , thereby linking the pressure-induced phase to the tetragonal magnetic phase observed at ambient pressure. In the temperature-concentration phase diagram of Ba1 -xKxFe2As2 , we find that pressure greatly expands the tetragonal magnetic phase, while the stripelike phase shrinks. This reveals that pressure may be a powerful tuning parameter with which to explore the interplay between magnetism and superconductivity in this material.

  10. Interfacial perpendicular magnetic anisotropy and damping parameter in ultra thin Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Cui, Yishen; Khodadadi, Behrouz; Schäfer, Sebastian; Mewes, Tim; Lu, Jiwei; Wolf, Stuart A.

    2013-04-01

    B2-ordered Co2FeAl films were synthesized using an ion beam deposition tool. A high degree of chemical ordering ˜81.2% with a low damping parameter (α) less than 0.004 was obtained in a 50 nm thick film via rapid thermal annealing at 600 °C. The perpendicular magnetic anisotropy (PMA) was optimized in ultra thin Co2FeAl films annealed at 350 °C without an external magnetic field. The reduced thickness and annealing temperature to achieve PMA introduced extrinsic factors thus increasing α significantly. However, the observed damping of Co2FeAl films was still lower than that of Co60Fe20B20 films prepared at the same thickness and annealing temperature.

  11. Observations of the Minor Species Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report the first detections of Al and Fe, and strict upper limits for Ca(+) in the exosphere of Mercury, using the HIRES spectrometer at the Keck I telescope. We report observed 4-sigma tangent columns of 1.5x10(exp 7) Al atoms per square centimeter at an altitude of 1220 km (1.5 Mercury radii (R(sub M)) from planet center), and that for Fe of 1.6 x 10 per square centimeter at an altitude of 950 km (1.4 R(sub M)). The observed 3-sigma Ca(+) column was 3.9x10(exp 6) ions per square centimeter at an altitude of 1630 km (1.67 R(sub M). A simple model for zenith column abundances of the neutral species were 9.5 x 10(exp 7) Al per square centimeter, and 3.0 x 10(exp 8) Fe per square centimeter. The observations appear to be consistent with production of these species by impact vaporization with a large fraction of the ejecta in molecular form. The scale height of the Al gas is consistent with a kinetic temperature of 3000 - 9000 K while that of Fe is 10500 K. The apparent high temperature of the Fe gas would suggest that it may be produced by dissociation of molecules. A large traction of both Al and Fe appear to condense in a vapor cloud at low altitudes.

  12. Dielectric and Magnetic Properties of Ba(Fe1/2Ta1/2)O3-BiFeO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Manotham, S.; Butnoi, P.; Jaita, P.; Pinitsoontorn, S.; Sweatman, D.; Eitssayeam, S.; Pengpat, K.; Rujijanagul, G.

    2016-11-01

    The properties of (1- x)Ba(Fe1/2Ta1/2)O3- xBiFeO3 [(1- x)BFT- xBFO] ( x = 0.0, 0.1, 0.3, 0.5) ceramics have been investigated. (1- x)BFT- xBFO powders were synthesized by a modified two-step calcination technique, and ceramics were fabricated by a conventional technique. X-ray diffraction (XRD) analysis revealed that the modified ceramics exhibited a mixture of BFT cubic phase and BFO rhombohedral phase. The peaks shift increased with increasing BFO content to a maximum value for the composition with x = 0.5. The overall shift of the XRD patterns indicated distortion of the unit cell, which may be due to ions from BFO entering the BFT lattice. BFO additive promoted grain growth, while the maximum density of the studied ceramics was observed for the x = 0.1 composition. The modified ceramics presented enhanced thermal and frequency stability of the dielectric constant. BFO additive also reduced the loss tangent for the system. Improvement of the magnetic behavior was observed after adding BFO. Furthermore, all the ceramics, including pure BFT (a nonmagnetic phase at room temperature), presented a magnetocapacitance effect, which can be related to magnetoresistance along with Maxwell-Wagner polarization effects.

  13. Dielectric and Magnetic Properties of Ba(Fe1/2Ta1/2)O3-BiFeO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Manotham, S.; Butnoi, P.; Jaita, P.; Pinitsoontorn, S.; Sweatman, D.; Eitssayeam, S.; Pengpat, K.; Rujijanagul, G.

    2016-08-01

    The properties of (1-x)Ba(Fe1/2Ta1/2)O3-xBiFeO3 [(1-x)BFT-xBFO] (x = 0.0, 0.1, 0.3, 0.5) ceramics have been investigated. (1-x)BFT-xBFO powders were synthesized by a modified two-step calcination technique, and ceramics were fabricated by a conventional technique. X-ray diffraction (XRD) analysis revealed that the modified ceramics exhibited a mixture of BFT cubic phase and BFO rhombohedral phase. The peaks shift increased with increasing BFO content to a maximum value for the composition with x = 0.5. The overall shift of the XRD patterns indicated distortion of the unit cell, which may be due to ions from BFO entering the BFT lattice. BFO additive promoted grain growth, while the maximum density of the studied ceramics was observed for the x = 0.1 composition. The modified ceramics presented enhanced thermal and frequency stability of the dielectric constant. BFO additive also reduced the loss tangent for the system. Improvement of the magnetic behavior was observed after adding BFO. Furthermore, all the ceramics, including pure BFT (a nonmagnetic phase at room temperature), presented a magnetocapacitance effect, which can be related to magnetoresistance along with Maxwell-Wagner polarization effects.

  14. Atomic origin of the spin-polarization of the Co2FeAl Heusler compound

    NASA Astrophysics Data System (ADS)

    Liang, Jaw-Yeu; Lam, Tu-Ngoc; Lin, Yan-Cheng; Chang, Shu-Jui; Lin, Hong-Ji; Tseng, Yuan-Chieh

    2016-02-01

    Using synchrotron x-ray techniques, we studied the Co2FeAl spin-polarization state that generates the half-metallicity of the compound during an A2 (low-spin)  →  B2 (high-spin) phase transition. Given the advantage of element specificity of x-ray techniques, we could fingerprint the structural and magnetic cross-reactions between Co and Fe within a complex Co2FeAl structure deposited on a MgO (0 0 1) substrate. X-ray diffraction and extended x-ray absorption fine structure investigations determined that the Co atoms preferably populate the (1/4,1/4,1/4) and (3/4,3/4,3/4) sites during the development of the B2 phase. X-ray magnetic spectroscopy showed that although the two magnetic elements were ferromagnetically coupled, they interacted in a competing manner via a charge-transfer effect, which enhanced Co spin polarization at the expense of Fe spin polarization during the phase transition. This means that the spin-polarization of Co2FeAl was electronically dominated by Fe in A2 whereas the charge transfer turned the dominance to Co upon B2 formation. Helicity-dependent x-ray absorption spectra also revealed that only the minority state of Co/Fe was involved in the charge-transfer effect whereas the majority state was independent of it. Despite an overall increase of Co2FeAl magnetization, the charge-transfer effect created an undesired trade-off during the Co-Fe exchange interactions, because of the presence of twice as many X sites (Co) as Y sites (Fe) in the Heusler X 2 YZ formula. This suggests that the spin-polarization of Co2FeAl is unfortunately regulated by compromising the enhanced X (Co) sites and the suppressed Y (Fe) sites, irrespective of the development of the previously known high-spin-polarization phase of B2. This finding provides a possible cause for the limited half-metallicity of Co2FeAl discovered recently. Electronic tuning between the X and Y sites is necessary to further increase the spin-polarization, and likely the half

  15. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    NASA Astrophysics Data System (ADS)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  16. Salt-inclusion synthesis of two new polar solids, Ba6Mn4Si12O34Cl3 and Ba6Fe5Si11O34Cl3.

    PubMed

    Mo, Xunhua; Ferguson, Erin; Hwu, Shiou-Jyh

    2005-05-01

    A new family of salt-containing, mixed-metal silicates (CU-14), Ba6Mn4Si12O34Cl3 (1) and Ba6Fe5Si11O34Cl3 (2), was synthesized via the BaCl2 salt-inclusion reaction. These compounds crystallize in the noncentrosymmetric (NCS) space group Pmc2(1) (No. 26), adopting 1 of the 10 NCS polar, nonchiral crystal classes, mm2 (C2v). The cell dimensions are a = 6.821(1) A, b = 9.620(2) A, c = 13.172(3) A, and V = 864.4(3) A3 for 1 and a = 6.878(1) A, b = 9.664(2) A, c = 13.098(3) A, and V = 870.6(3) A3 for 2. The structures form a composite framework made of the (M(4+x)Si(12-x)O34)9- (M = Mn, x = 0; M = Fe, x = 1) covalent oxide and (Ba6Cl3)9+ ionic chloride sublattices. The covalent framework exhibits a pseudo-one-dimensional channel where the extended barium chloride lattice (Ba3Cl1.5)(infinity) resides, and it consists of fused eight-membered meta-silicate rings propagating along [100] via sharing two opposite [Si2O7]6- units to form an acentric lattice. Single-crystal structure studies also reveal the ClBa4 unit adopting an interesting seesaw configuration, in which the lone pair electrons of chlorine preferentially face the oxide anions of the transition metal silicate channel, thus forming the observed polar frameworks. Similar to the synthesis of organic-inorganic hybrid materials, the salt-inclusion method facilitates a promising approach for the directed synthesis of special framework solids, including NCS compounds, via composite lattices. PMID:15847417

  17. High pressure floating zone growth and structural properties of ferrimagnetic quantum paraelectric BaFe{sub 12}O{sub 19}

    SciTech Connect

    Cao, H. B.; Zhao, Z. Y.; Lee, M.; Choi, E. S.; McGuire, M. A.; Sales, B. C.; Zhou, H. D.; Yan, J.-Q.; Mandrus, D. G.

    2015-06-01

    High quality single crystals of BaFe{sub 12}O{sub 19} were grown using the floating zone technique in 100 atm of flowing oxygen. Single crystal neutron diffraction was used to determine the nuclear and magnetic structures of BaFe{sub 12}O{sub 19} at 4 K and 295 K. At both temperatures, there exist local electric dipoles formed by the off-mirror-plane displacements of magnetic Fe{sup 3+} ions at the bipyramidal sites. The displacement at 4 K is about half of that at room temperature. The temperature dependence of the specific heat shows no anomaly associated with long range polar ordering in the temperature range from 1.90 to 300 K. The inverse dielectric permittivity, 1/ε, along the c-axis shows a T{sup 2} temperature dependence between 10 K and 20 K, with a significantly reduced temperature dependence displayed below 10 K. Moreover, as the sample is cooled below 1.4 K there is an anomalous sharp upturn in 1/ε. These features resemble those of classic quantum paraelectrics such as SrTiO{sub 3}. The presence of the upturn in 1/ε indicates that BaFe{sub 12}O{sub 19} is a critical quantum paraelectric system with Fe{sup 3+} ions involved in both magnetic and electric dipole formation.

  18. Methane oxidation over mixed-conducting SrFe(Al)O3-delta-SrAl2O4 composite.

    PubMed

    Yaremchenko, A A; Kharton, V V; Valente, A A; Veniaminov, S A; Belyaev, V D; Sobyanin, V A; Marques, F M B

    2007-06-01

    The steady-state CH4 conversion by oxygen permeating through mixed-conducting (SrFe)0.7(SrAl2)0.3Oz composite membranes, comprising strontium-deficient SrFe(Al)O3-delta perovskite and monoclinic SrAl2O4-based phases, occurs via different mechanisms in comparison to the dry methane interaction with the lattice oxygen. The catalytic behavior of powdered (SrFe)0.7(SrAl2)0.3Oz, studied by temperature-programmed reduction in dry CH4 at 523-1073 K, is governed by the level of oxygen nonstoichiometry in the crystal lattice of the perovskite component and is qualitatively similar to that of other perovskite-related ferrites, such as Sr0.7La0.3Fe0.8Al0.2O3-delta. While extensive oxygen release from the ferrite lattice at 700-900 K leads to predominant total oxidation of methane, significant selectivity to synthesis gas formation, with H2/CO ratios close to 2, is observed above 1000 K, when a critical value of oxygen deficiency is achieved. The steady-state oxidation over dense membranes at 1123-1223 K results, however, in prevailing total combustion, particularly due to excessive oxygen chemical potential at the membrane surface. In combination with surface-limited oxygen permeability, mass transport limitations in a porous layer at the membrane permeate side prevent reduction and enable stable operation of (SrFe)0.7(SrAl2)0.3Oz membranes under air/methane gradient. Taking into account the catalytic activity of SrFeO3-delta-based phases for the partial oxidation of methane to synthesis gas and the important role of mass transport-related effects, one promising approach for membrane development is the fabrication of thick layer of porous ferrite-based catalyst at the surface of dense (SrFe)0.7(SrAl2)0.3Oz composite. PMID:17627318

  19. Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting

    NASA Astrophysics Data System (ADS)

    Cozzan, Clayton; Brady, Michael J.; O'Dea, Nicholas; Levin, Emily E.; Nakamura, Shuji; DenBaars, Steven P.; Seshadri, Ram

    2016-10-01

    With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl10O17, has been prepared using microwave-assisted heating (25 min) and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min). The resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  20. Co-Dopant Influence on the Persistent Luminescence of BaAl2O4:Eu2+,R3+

    NASA Astrophysics Data System (ADS)

    Rodrigues, Lucas C. V.; Hölsä, Jorma; Carvalho, José M.; Pedroso, Cássio C. S.; Lastusaari, Mika; Felinto, Maria C. F. C.; Watanabe, Shigeo; Brito, Hermi F.

    2014-04-01

    The R3+ (rare earth) co-dopants may have a surprisingly important role in persistent luminescence - enhancement of up to 1-3 orders of magnitude may be obtained in the performance of these phosphor materials - depending strongly on the R3+ ion, of course. In this work, the effects of the R3+ co-dopants in the BaAl2O4:Eu2+,R3+ materials were studied using mainly thermoluminescence (TL) and synchrotron radiation XANES methods. In BaAl2O4, the conventional and persistent luminescence both arise from the 4f7→4f65d1 transition of Eu2+, yielding blue-green emission color. The former, in the presence of humidity, turns to more bluish because of creation of an additional Eu2+ luminescence centre which is not, however, visible in persistent luminescence. The trap structure in the non-co-doped BaAl2O4:Eu2+ is rather complex with 4-5 TL bands above room temperature. With R3+ co-doping, this basic structure is modified though no drastic change can be observed. This underlines the fact that even very small changes in the trap depths can produce significant modifications in the persistent luminescence efficiency. It should be remembered that basically the persistent luminescence performance is controlled by the Boltzmann population law depending exponentially on both the temperature and trap depth. Some mechanisms for persistent luminescence have suggested the presence of either divalent R2+ or tetravalent RIV during the charging of the Eu2+ doped materials. The present XANES measurements on BaAl2O4:Eu2+,R3+ confirmed the presence of only the trivalent form of the R3+ co-dopants excluding both of these pathways. It must thus be concluded, that the energy is stored in intrinsic and extrinsic defects created by the synthesis conditions and charge compensation due to R3+ co-doping. Even though the effect of the R3+ co-dopants was carefully exploited and characterized, the differences in the effect of different R3+ ions with very similar chemical and spectroscopic properties could

  1. Uniaxial-strain mechanical detwinning of CaFe[subscript 2]As[subscript 2] and BaFe[subscript 2]As[subscript 2] crystals: Optical and transport study

    SciTech Connect

    Tanatar, M.A.; Blomberg, E.C.; Kreyssig, A.; Kim, M.G.; Ni, N.; Thaler, A.; Bud’ko, S.L.; Canfield, P.C.; Goldman, A.I.; Mazin, I.I.; Prozorov, R.

    2010-10-22

    The parent compounds of iron-arsenide superconductors, AFe{sub 2}As{sub 2} (A=Ca, Sr, Ba), undergo a tetragonal to orthorhombic structural transition at a temperature T{sub TO} in the range 135-205 K depending on the alkaline-earth element. Below T{sub TO} the free standing crystals split into equally populated structural domains, which mask intrinsic, in-plane, anisotropic properties of the materials. Here we demonstrate a way of mechanically detwinning CaFe{sub 2}As{sub 2} and BaFe{sub 2}As{sub 2}. The detwinning is nearly complete, as demonstrated by polarized light imaging and synchrotron x-ray measurements, and reversible, with twin pattern restored after strain release. Electrical resistivity measurements in the twinned and detwinned states show that resistivity, {rho}, decreases along the orthorhombic a{sub o} axis but increases along the orthorhombic b{sub o} axis in both compounds. Immediately below T{sub TO} the ratio {rho}{sub bo}/{rho}{sub ao} = 1.2 and 1.5 for Ca and Ba compounds, respectively. Contrary to CaFe{sub 2}As{sub 2}, BaFe{sub 2}As{sub 2} reveals an anisotropy in the nominally tetragonal phase, suggesting that either fluctuations play a larger role above T{sub TO} in BaFe{sub 2}As{sub 2} than in CaFe{sub 2}As{sub 2} or that there is a higher temperature crossover or phase transition.

  2. Role of magnetism in superconductivity of BaFe2As2: Study of 5d Au-doped crystals

    SciTech Connect

    Li, Li; Cao, Huibo; McGuire, Michael A.; Kim, J. S.; Stewart, G. R.; Sefat, Athena Safa

    2015-09-09

    We investigate properties of BaFe2As2 (122) single crystals upon gold doping, which is the transition metal with the highest atomic weight. The Au substitution into the FeAs-planes of 122 crystal structure (Au-122) is only possible up to a small amount of ~3%. We find that 5d is more effective in reducing magnetism in 122 than its counter 3d Cu, and this relates to superconductivity. We provide evidence of short-range magnetic fluctuations and local lattice inhomogeneities that may prevent strong percolative superconductivity in Ba(Fe1-xAux)2As2.

  3. Induced lattice strain in epitaxial Fe-based superconducting films on CaF{sub 2} substrates: A comparative study of the microstructures of SmFeAs(O,F), Ba(Fe,Co){sub 2}As{sub 2}, and FeTe{sub 0.5}Se{sub 0.5}

    SciTech Connect

    Ichinose, Ataru Tsukada, Ichiro; Nabeshima, Fuyuki; Imai, Yoshinori; Maeda, Atsutaka; Kurth, Fritz; Holzapfel, Bernhard; Iida, Kazumasa; Ueda, Shinya; Naito, Michio

    2014-03-24

    The microstructures of SmFeAs(O,F), Ba(Fe,Co){sub 2}As{sub 2}, and FeTe{sub 0.5}Se{sub 0.5} prepared on CaF{sub 2} substrates were investigated using transmission electron microscopy. The SmFeAs(O,F)/CaF{sub 2} interface is steep, without a disordered layer. By contrast, a chemical reaction occurs at the interface in the cases of Ba(Fe,Co){sub 2}As{sub 2} and FeTe{sub 0.5}Se{sub 0.5}. The reaction layers are located on opposite sides of the interface for Ba(Fe,Co){sub 2}As{sub 2} and FeTe{sub 0.5}Se{sub 0.5}. We found that the lattice distortion of the three superconducting films on the CaF{sub 2} substrates enhances the T{sub C} values compared with films prepared on oxide substrates. The origin of this lattice deformation varies depending on the superconducting material.

  4. STM study of the atomic structure of the icosahedral Al-Cu-Fe fivefold surface

    NASA Astrophysics Data System (ADS)

    Cai, T.; Fournée, V.; Lograsso, T.; Ross, A.; Thiel, P. A.

    2002-04-01

    We use scanning tunneling microscopy (STM) to investigate the atomic structure of the icosahedral (i-) Al-Cu-Fe fivefold surface in ultra high vacuum (UHV). Studies show that large, atomically flat terraces feature many ten-petal ``flowers'' with internal structure. The observed flower patterns can be associated with features on Al rich dense atomic planes generated from two-dimensional cuts of bulk models based on x-ray and neutron diffraction experiments. The results confirm that the fivefold surface of i-Al-Cu-Fe corresponds to a bulk-terminated plane.

  5. Preparation of nanofiber polythiophene layered on Ba x Sr1- x Fe12O19/Fe3O4/polyacrylic acid core-shell structure and its microwave absorption investigation

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Hossein; Moloudi, Maryam

    2015-09-01

    Ba x Sr1- x Fe12O19/Fe3O4/polyacrylic acid/polythiophene (Ba x Sr1- x Fe12O19/Fe3O4/PAA/PTh) nanocomposites with multi-core-shell structure were successfully synthesized by four steps. The samples were characterized by FTIR, X-ray diffraction (XRD), transmission electron microscope (TEM), vibrating sample magnetometer, and radar absorbing material reflectivity far-field radar cross-section method, respectively. XRD and TEM results indicated that the obtained nanoparticles have multi-core-shell morphology. The magnetic properties and microwave absorption analyses reveal that there are interphase interactions at the interface of Ba x Sr1- x Fe12O19, Fe3O4, PAA, and PTh, which can affect the magnetic properties and microwave absorption properties of the samples. The microwave-absorbing properties of nanocomposites were investigated at 8-14 GHz. A typical layer absorber exhibited an excellent microwave absorption with a -26 dB maximum absorption at 14 GHz. Compared with core material, the coercivity and saturation magnetization of multi-core-shell nanocomposites decrease obviously, but the microwave absorption properties of nanocomposites are improved greatly. The results show that these composite could be used as advancing absorption and shielding materials due to their favorable microwave-absorbing properties.

  6. Pressure-induced superconductivity in the iron-based ladder material BaFe2S3.

    PubMed

    Takahashi, Hiroki; Sugimoto, Akira; Nambu, Yusuke; Yamauchi, Touru; Hirata, Yasuyuki; Kawakami, Takateru; Avdeev, Maxim; Matsubayashi, Kazuyuki; Du, Fei; Kawashima, Chizuru; Soeda, Hideto; Nakano, Satoshi; Uwatoko, Yoshiya; Ueda, Yutaka; Sato, Taku J; Ohgushi, Kenya

    2015-10-01

    All the iron-based superconductors identified so far share a square lattice composed of Fe atoms as a common feature, despite having different crystal structures. In copper-based materials, the superconducting phase emerges not only in square-lattice structures but also in ladder structures. Yet iron-based superconductors without a square-lattice motif have not been found, despite being actively sought out. Here, we report the discovery of pressure-induced superconductivity in the iron-based spin-ladder material BaFe2S3, a Mott insulator with striped-type magnetic ordering below ∼120 K. On the application of pressure this compound exhibits a metal-insulator transition at about 11 GPa, followed by the appearance of superconductivity below Tc = 14 K, right after the onset of the metallic phase. Our findings indicate that iron-based ladder compounds represent promising material platforms, in particular for studying the fundamentals of iron-based superconductivity.

  7. Absence of strain-mediated magnetoelectric coupling at fully epitaxial Fe/BaTiO{sub 3} interface (invited)

    SciTech Connect

    Radaelli, G. Petti, D.; Cantoni, M.; Rinaldi, C.; Bertacco, R.

    2014-05-07

    Interfacial MagnetoElectric coupling (MEC) at ferroelectric/ferromagnetic interfaces has recently emerged as a promising route to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO{sub 3} (BTO) system, various MEC mechanisms have been theoretically predicted. Experimentally, it is well established that using BTO single crystal substrates MEC is dominated by strain-mediated mechanisms. In case of ferromagnetic layers epitaxially grown onto BTO films, instead, no direct evidence for MEC has been provided, apart from the results obtained on tunneling junction sandwiching a BTO tunneling barrier. In this paper, MEC at fully epitaxial Fe/BTO interface is investigated by Magneto-Optical Kerr Effect and magnetoresistance measurements on magnetic tunnel junctions fabricated on BTO. We find no evidence for strain-mediated MEC mechanisms in epitaxial systems, likely due to clamping of BTO to the substrate. Our results indicate that pure electronic MEC is the route of choice to be explored for achieving the electrical writing of information in epitaxial ferromagnet-ferroelectric heterostructures.

  8. High field superconducting properties of Ba(Fe1-xCox)2As2 thin films.

    PubMed

    Hänisch, Jens; Iida, Kazumasa; Kurth, Fritz; Reich, Elke; Tarantini, Chiara; Jaroszynski, Jan; Förster, Tobias; Fuchs, Günther; Hühne, Ruben; Grinenko, Vadim; Schultz, Ludwig; Holzapfel, Bernhard

    2015-01-01

    In general, the critical current density, Jc, of type II superconductors and its anisotropy with respect to magnetic field orientation is determined by intrinsic and extrinsic properties. The Fe-based superconductors of the '122' family with their moderate electronic anisotropies and high yet accessible critical fields (Hc2 and Hirr) are a good model system to study this interplay. In this paper, we explore the vortex matter of optimally Co-doped BaFe2As2 thin films with extended planar and c-axis correlated defects. The temperature and angular dependence of the upper critical field is well explained by a two-band model in the clean limit. The dirty band scenario, however, cannot be ruled out completely. Above the irreversibility field, the flux motion is thermally activated, where the activation energy U0 is going to zero at the extrapolated zero-kelvin Hirr value. The anisotropy of the critical current density Jc is both influenced by the Hc2 anisotropy (and therefore by multi-band effects) as well as the extended planar and columnar defects present in the sample. PMID:26612567

  9. Pressure-induced superconductivity in the iron-based ladder material BaFe2S3.

    PubMed

    Takahashi, Hiroki; Sugimoto, Akira; Nambu, Yusuke; Yamauchi, Touru; Hirata, Yasuyuki; Kawakami, Takateru; Avdeev, Maxim; Matsubayashi, Kazuyuki; Du, Fei; Kawashima, Chizuru; Soeda, Hideto; Nakano, Satoshi; Uwatoko, Yoshiya; Ueda, Yutaka; Sato, Taku J; Ohgushi, Kenya

    2015-10-01

    All the iron-based superconductors identified so far share a square lattice composed of Fe atoms as a common feature, despite having different crystal structures. In copper-based materials, the superconducting phase emerges not only in square-lattice structures but also in ladder structures. Yet iron-based superconductors without a square-lattice motif have not been found, despite being actively sought out. Here, we report the discovery of pressure-induced superconductivity in the iron-based spin-ladder material BaFe2S3, a Mott insulator with striped-type magnetic ordering below ∼120 K. On the application of pressure this compound exhibits a metal-insulator transition at about 11 GPa, followed by the appearance of superconductivity below Tc = 14 K, right after the onset of the metallic phase. Our findings indicate that iron-based ladder compounds represent promising material platforms, in particular for studying the fundamentals of iron-based superconductivity. PMID:26191659

  10. Critical spin fluctuations and the origin of nematic order in Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Kretzschmar, F.; Böhm, T.; Karahasanović, U.; Muschler, B.; Baum, A.; Jost, D.; Schmalian, J.; Caprara, S.; Grilli, M.; di Castro, C.; Analytis, J. G.; Chu, J.-H.; Fisher, I. R.; Hackl, R.

    2016-06-01

    Nematic fluctuations and order play a prominent role in material classes such as the cuprates, some ruthenates or the iron-based compounds and may be interrelated with superconductivity. In iron-based compounds signatures of nematicity have been observed in a variety of experiments. However, the fundamental question as to the relevance of the related spin, charge or orbital fluctuations remains open. Here, we use inelastic light (Raman) scattering and study Ba(Fe1-xCox)2As2 (0 <= x <= 0.085) for getting direct access to nematicity and the underlying critical fluctuations with finite characteristic wavelengths. We show that the response from fluctuations appears only in B1g (x2 - y2) symmetry (1 Fe unit cell). The scattering amplitude increases towards the structural transition at Ts but vanishes only below the magnetic ordering transition at TSDW < Ts, suggesting a magnetic origin of the fluctuations. The theoretical analysis explains the selection rules and the temperature dependence of the fluctuation response. These results make magnetism the favourite candidate for driving the series of transitions.

  11. High field superconducting properties of Ba(Fe1−xCox)2As2 thin films

    PubMed Central

    Hänisch, Jens; Iida, Kazumasa; Kurth, Fritz; Reich, Elke; Tarantini, Chiara; Jaroszynski, Jan; Förster, Tobias; Fuchs, Günther; Hühne, Ruben; Grinenko, Vadim; Schultz, Ludwig; Holzapfel, Bernhard

    2015-01-01

    In general, the critical current density, Jc, of type II superconductors and its anisotropy with respect to magnetic field orientation is determined by intrinsic and extrinsic properties. The Fe-based superconductors of the ‘122’ family with their moderate electronic anisotropies and high yet accessible critical fields (Hc2 and Hirr) are a good model system to study this interplay. In this paper, we explore the vortex matter of optimally Co-doped BaFe2As2 thin films with extended planar and c-axis correlated defects. The temperature and angular dependence of the upper critical field is well explained by a two-band model in the clean limit. The dirty band scenario, however, cannot be ruled out completely. Above the irreversibility field, the flux motion is thermally activated, where the activation energy U0 is going to zero at the extrapolated zero-kelvin Hirr value. The anisotropy of the critical current density Jc is both influenced by the Hc2 anisotropy (and therefore by multi-band effects) as well as the extended planar and columnar defects present in the sample. PMID:26612567

  12. Single-component and white light-emitting phosphor BaAl2Si2O8: Dy3+, Eu3+ synthesis, luminescence, energy transfer, and tunable color

    NASA Astrophysics Data System (ADS)

    Ma, Pingchuan; Song, Yanhua; Sheng, Ye; Yuan, Bo; Guan, Hongxia; Xu, Chengyi; Zou, Haifeng

    2016-10-01

    A series of Dy3+ - Eu3+ co-doped BaAl2Si2O8 phosphors were prepared via the conventional solid-state reaction method. Their crystal structure, luminescent characteristic and lifetime were investigated. The optimum doping concentrations of Dy3+and Eu3+ are both 0.05 for Dy3+ or Eu3+ singly doped BaAl2Si2O8. Furthermore, BaAl2Si2O8: 0.05Dy3+ and BaAl2Si2O8: 0.05Eu3+ emits yellow and red light. The emission color of BaAl2Si2O8: Dy3+, Eu3+ could be tuned from yellow to white due to the energy transfer. This energy transfer from Dy3+ to Eu3+ was confirmed and investigated by photoluminescence spectra and the decay time of energy donor Dy3+ ions. With constantly increasing Eu3+ concentration, the energy transfer efficiency from Dy3+ to Eu3+ in BaAl2Si2O8 host increased gradually and reached as high as 81%, the quantum yield was about 47.43%. BaAl2Si2O8: Dy3+, Eu3+ phosphors can be effectively excited by UV (about 348 nm) light and emit visible light from yellow to white by altering the concentration ratio of Dy3+ and Eu3+, indicating that the phosphors have potential applications as a white light-emitting phosphor for display and lighting.

  13. Synthesis, structural characterization and properties of SrAl4-xGex, BaAl4-xGex, and EuAl4-xGex (x≈0.3-0.4)—Rare examples of electron-rich phases with the BaAl4 structure type

    NASA Astrophysics Data System (ADS)

    Zhang, Jiliang; Bobev, Svilen

    2013-09-01

    Three solid solutions with the general formula AEAl4-xGex (AE=Eu, Sr, Ba; 0.32(1)≤x≤0.41(1)) have been synthesized via the aluminum self-flux method, and their crystal structures have been established from powder and single-crystal X-ray diffraction. They are isotypic and crystallize with the well-known BaAl4 structure type, adopted by the three AEAl4 end members. In all structures, Ge substitutes Al only at the 4e Wyckoff site. Results from X-rays photoelectron spectroscopy on EuAl4-xGex and EuAl4 indicate that the interactions between the Eu2+ cations and the polyanionic framework are enhanced in the Ge-doped structure, despite the slightly elevated Fermi level. Magnetic susceptibility measurements confirm the local moment magnetism, expected for the [Xe]4f7 electronic configuration of Eu2+ and suggest strong ferromagnetic interactions at cryogenic temperatures. Resistivity data from single-crystalline samples show differences between the title compounds, implying different bonding characteristics despite the close Debye temperatures. A brief discussion on the observed electron count and homogeneity ranges for AEAl4-xGex (AE=Eu, Sr, Ba) is also presented.

  14. Stability of Fe,Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite.

    PubMed

    Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Cerantola, Valerio; McCammon, Catherine; Boffa Ballaran, Tiziana; Bobrov, Andrei; Sinmyo, Ryosuke; Dubrovinskaia, Natalia; Glazyrin, Konstantin; Liermann, Hanns-Peter; Kupenko, Ilya; Hanfland, Michael; Prescher, Clemens; Prakapenka, Vitali; Svitlyk, Volodymyr; Dubrovinsky, Leonid

    2016-07-01

    The physical and chemical properties of Earth's mantle, as well as its dynamics and evolution, heavily depend on the phase composition of the region. On the basis of experiments in laser-heated diamond anvil cells, we demonstrate that Fe,Al-bearing bridgmanite (magnesium silicate perovskite) is stable to pressures over 120 GPa and temperatures above 3000 K. Ferric iron stabilizes Fe-rich bridgmanite such that we were able to synthesize pure iron bridgmanite at pressures between ~45 and 110 GPa. The compressibility of ferric iron-bearing bridgmanite is significantly different from any known bridgmanite, which has direct implications for the interpretation of seismic tomography data. PMID:27453945

  15. Stability of Fe,Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite

    PubMed Central

    Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Cerantola, Valerio; McCammon, Catherine; Boffa Ballaran, Tiziana; Bobrov, Andrei; Sinmyo, Ryosuke; Dubrovinskaia, Natalia; Glazyrin, Konstantin; Liermann, Hanns-Peter; Kupenko, Ilya; Hanfland, Michael; Prescher, Clemens; Prakapenka, Vitali; Svitlyk, Volodymyr; Dubrovinsky, Leonid

    2016-01-01

    The physical and chemical properties of Earth’s mantle, as well as its dynamics and evolution, heavily depend on the phase composition of the region. On the basis of experiments in laser-heated diamond anvil cells, we demonstrate that Fe,Al-bearing bridgmanite (magnesium silicate perovskite) is stable to pressures over 120 GPa and temperatures above 3000 K. Ferric iron stabilizes Fe-rich bridgmanite such that we were able to synthesize pure iron bridgmanite at pressures between ~45 and 110 GPa. The compressibility of ferric iron–bearing bridgmanite is significantly different from any known bridgmanite, which has direct implications for the interpretation of seismic tomography data. PMID:27453945

  16. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis.

  17. Investigation of slective laser melting of mecanically alloyed metastable Al5Fe2 powder

    NASA Astrophysics Data System (ADS)

    Montiel, Hugo

    Selective Laser Melting (SLM), an Additive Manufacturing (AM) technology, enables the production of complex structured metal products. Aluminum alloys are used in SLM as high-strength lightweight materials for weight reduction in structural components. Previous investigations report high laser powers (300 W) and slow scanning speeds (500 mm/s) to process aluminum alloys under SLM. This research investigates the SLM processing of Al-Fe alloy by utilizing metastable Al5Fe2 powder system produced by mechanical alloying. Metastable systems are thermodynamically activated with internal energy that can generate an energy shortcut when processing under SLM. The optimum laser power, scan speeds and scan distances were investigated by test series experiments. Results indicate that metastable Al5Fe2 alloy can be processed and stabilized under a 200 W laser scanning and a relative high scanning speed of 1000 mm/s. Thus, the internal energy of metastable powder contributes in reducing laser energy for SLM process for Al alloys.

  18. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis. PMID:25740001

  19. Preparation, crystal structure, dielectric properties, and magnetic behavior of Ba{sub 2}Fe{sub 2}Ti{sub 4}O{sub 13}

    SciTech Connect

    Vanderah, T.A.; Wong-Ng, W.; Santoro, A.

    1995-11-15

    The preparation, crystal structure, dielectric properties, and magnetic behavior of the new compound Ba{sub 2}Fe{sub 2}Ti{sub 4}O{sub 13} are reported. Structural studies carried out by single-crystal X-ray diffraction and neutron powder diffraction show that this phase is isostructural with K{sub 2}Ti{sub 6}O{sub 13} and Ba{sub 2}ZnTi{sub 5}O{sub 13} (C2/m (No. 12); a = 15.21691), b = 3.8979(3), c = 9.1350(6) {angstrom}, {beta} = 98.460(7){degrees}; V = 535.90(8) {angstrom}{sup 3}; Z = 2. The cations Fe{sup 3+} and Ti{sup 4+} are partially ordered among distorted octahedral sites with Ba{sup 2+} occupying eleven-coordinated polyhedra. Ba{sub 2}Fe{sub 2}Ti{sub 4}O{sub 13} exhibits TE{sub 0} resonance near 10 GHz with a dielectric constant of {approximately}28 and a dielectric loss tangent of 2 x 10{sup -3}. The compound displays complex paramagnetic behavior with marked field dependence; the magnetization at 80 kA/m is several orders of magnitude smaller than that of most ferrites. Spin-glass effects have not been observed; however, weak collective interactions are clearly present. No magnetic ordering has been detected by neutron diffraction down to 13 K.

  20. Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys

    NASA Technical Reports Server (NTRS)

    Przewlocka, H.; Siedlecka, J.

    1982-01-01

    The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests.

  1. ACO-zeotype iron aluminum phosphates with variable Al/Fe ratios controlled by F⁻ ions.

    PubMed

    Wang, Yanyan; Li, Yi; Wang, Lei; Zhang, Jingzhe; Yan, Yan; Li, Jiyang; Yu, Jihong; Wang, Jincheng; Xu, Ruren

    2011-03-01

    Three new iron aluminum phosphates |(C(2)H(10)N(2))(4)|[Fe(8 - x)Al(x)F(x)(H(2)O)(2 - x)(PO(4))(8)]·2H(2)O (χ = 1.64, 1.33, 0.80) with ACO-zeotype structures denoted as FeAPO-CJ66(a), FeAPO-CJ66(b), and FeAPO-CJ66(c), respectively, have been synthesized in the fluoride ion system. Their framework structures are made of double 4-ring (D4R) building units formed by the alternating connection of Fe(Al)O(4)F(O) trigonal bipyramids and PO(4) tetrahedra, which possess 3D intersecting 8-ring channels running along the [001], [010], and [100] directions. Fluoride ions or water molecules reside in the center of D4Rs, and diprotonated ethylenediamine cations and water molecules are occluded in the free space of channels to stabilize the whole structure. Notably, the Al/Fe ratios in the frameworks can be effectively controlled from 1/3.9 to 1/5.0 to 1/9.0 by adjusting the amounts of phosphoric acid and hydrofluoric acid added to the initial reaction mixture. Mössbauer and magnetic measurements show that the Fe ions in the compounds are bivalent and undergo antiferromagnetic ordering at room temperature.

  2. Mössbauer and electrical conduction investigations of LiFe(BaTi)(PO4) NASICON nano composite

    NASA Astrophysics Data System (ADS)

    Hassaan, M. Y.; Kaixin, Zhu; Wang, Junhu; Moustafa, M. G.

    2016-12-01

    NASICON glass sample with a composition of Li 1.3Fe 0.3(BaTi) 1.7(PO 4) 3 was prepared using the conventional melt-quenching technique at 1300 ∘C for one hour after two stages of calcination process at 300 ∘C and 600 ∘C respectively. DTA was used to determine (T g) and (T c) of the as-quenched glass sample. XRD was used to confirm the glassy state of the prepared sample. The as-quenched glass sample was heat treated near its onset crystallization temperature for different times 1, 2, 3, 4, and 5 hours. The gradual precipitation of the crystalline nano-particles with NASICON type structure was also confirmed using XRD. The as-prepared sample and the five heat treated (HT) samples were investigated using Mössbauer spectroscopy, DC and AC conductivities and dielectric permittivity. FTIR, density, and TEM measurements were also performed. After HT, XRD and FTIR measurements conformed the formation of NASICON phase. The results of the dielectric permittivity showed no maximum peak in the studied temperature and frequency ranges, which indicates the absence of ferroelectric behavior of the HT glass sample. Mössbauer data showed that the iron in the glass and its HT samples include two ionic states, Fe 3+ (O h) and Fe 2+ (O h) ions. It is observed that the DC conductivity of the HT glass for 5 h was almost two orders of magnitude higher than that of the parent glass.

  3. [Release of Si, Al and Fe in red soil under simulated acid rain].

    PubMed

    Liu, Li; Song, Cun-yi; Li, Fa-sheng

    2007-10-01

    bstract:A laboratory leaching experiment on simulated acid rain was carried out using soil columns. The release of Si, Al and Fe from soils and pH values of eluates were investigated. The results showed that under the given leaching volume, the release amounts of cations were influenced by the pH value of simulated acid rain, while their response to acid rain was different. Acid rain led to Si release, nearly none of Fe. Within the range from pH 3.0 to 5.6, a little Al release but mass Al only release at the pH below 3.0, both Si and Al had a declining release ability with the undergoing eluviation. At pH 2.5, the release amounts of Si and Al, especially Al, increased significantly with the strengthened weathering process of soil mineral. With an increase of the leaching amount of acid rain, the release of Si and Al increased, but acceleration of Si was slower than Al which was slower and slower. When the soil pH falling down to a certain grade, there are negative correlation between pH and both Al and DOC concentration of eluate. released, but most of Al derived from the aluminosilicates dissolved. Acid deposition can result in solid-phase alumino-organics broken and Al released, but most of Al derived from the aluminosilicates dissolved.

  4. Large tunnel magnetoresistance at room temperature with a Co{sub 2}FeAl full-Heusler alloy electrode

    SciTech Connect

    Okamura, S.; Miyazaki, A.; Sugimoto, S.; Tezuka, N.; Inomata, K.

    2005-06-06

    Magnetic tunnel junctions (MTJs) with a Co{sub 2}FeAl Heusler alloy electrode are fabricated by the deposition of the film using an ultrahigh vacuum sputtering system followed by photolithography and Ar ion etching. A tunnel magnetoresistance (TMR) of 47% at room temperature (RT) are obtained in a stack of Co{sub 2}FeAl/Al-O{sub x}/Co{sub 75}Fe{sub 25} magnetic tunnel junction (MTJ) fabricated on a thermally oxidized Si substrate despite the A2 type atomic site disorder for Co{sub 2}FeAl. There is no increase of TMR in MTJs with the B2 type Co{sub 2}FeAl, which is prepared by the deposition on a heated substrate. X-ray photoelectron spectroscopy (XPS) depth profiles in Co{sub 2}FeAl single layer films reveal that Al atoms in Co{sub 2}FeAl are oxidized preferentially at the surfaces. On the other hand, at the interfaces in Co{sub 2}FeAl/Al-O{sub x}/Co{sub 75}Fe{sub 25} MTJs, the ferromagnetic layers are hardly oxidized during plasma oxidation for a formation of Al oxide barriers.

  5. Structural, electron transportation and magnetic behavior transition of metastable FeAlO granular films

    PubMed Central

    Bai, Guohua; Wu, Chen; Jin, Jiaying; Yan, Mi

    2016-01-01

    Metal-insulator granular film is technologically important for microwave applications. It has been challenging to obtain simultaneous high electrical resistivity and large saturation magnetization due to the balance of insulating non-magnetic and metallic magnetic components. FeAlO granular films satisfying both requirements have been prepared by pulsed laser deposition. The as-deposited film exhibits a high resistivity of 3700 μΩ∙cm with a negative temperature coefficient despite that Fe content (0.77) exceeds the percolation threshold. This originates from its unique microstructure containing amorphous Fe nanoparticles embedded in Al2O3 network. By optimizing the annealing conditions, superior electromagnetic properties with enhanced saturation magnetization (>1.05 T), high resistivity (>1200 μΩ∙cm) and broadened Δf (>3.0 GHz) are obtained. Phase separation with Al2O3 aggregating as inclusions in crystallized Fe(Al) matrix is observed after annealing at 673 K, resulting in a metallic-like resistivity. We provide a feasible way to achieve both high resistivity and large saturation magnetization for the FeAlO films with dominating metallic component and show that the microstructure can be tuned for desirable performance. PMID:27075955

  6. Exchange bias-like effect in TbFeAl induced by atomic disorder

    NASA Astrophysics Data System (ADS)

    Nair, Harikrishnan S.; Strydom, André M.

    2016-05-01

    The exchange bias-like effect observed in the intermetallic compound TbFeAl, which displays a magnetic phase transition at T^hc ≈ 198 \\text{K} and a second one at T^lc ≈ 154 \\text{K} , is reported. Jump-like features are observed in the isothermal magnetization, M (H) , at 2 K which disappear above 8 K. The field-cooled magnetization isotherms below 10 K show loop shifts that are reminiscent of exchange bias, also supported by the training effect. A significant coercive field, Hc ≈ 1.5 \\text{T} at 2 K, is observed in TbFeAl which, after an initial increase, shows a subsequent decrease with temperature. The exchange bias field, H eb , shows a slight increase and a subsequent leveling off with temperature. It is argued that the inherent crystallographic disorder among Fe and Al and the high magnetocrystalline anisotropy related to Tb3+ lead to the exchange bias effect. TbFeAl has been recently reported to show the magnetocaloric effect and the present discovery of exchange bias makes this compound a multifunctional one. The result obtained on TbFeAl generalizes the observation of exchange bias in crystallographically disordered materials and gives impetus for the search for materials with exchange bias induced by atomic disorder.

  7. Mechanical Properties of In-Situ FeAl-TiB2 Intermetallic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kim, Jonghoon; Park, Bonggyu; Park, Yongho; Park, Ikmin; Lee, Heesoo

    Intermetallic matrix composites reinforced with ceramic particles have received a great deal of attention. Iron aluminide is known to be a good material for the matrix in such composites. Two processes were used to fabricate FeAl-TiB2 intermetallic matrix composites. One was liquid melt in-situ mixing, and the other was arc melting and suction casting processes. FeAl-TiB2 IMCs obtained by two different methods were investigated to elucidate the influence of TiB2 content. In both methods, the grain size in the FeAl alloy decreased with the presence of titanium diboride. The grain size of in-situ FeAl-TiB2 IMCs became smaller than that of arc FeAl-TiB2 IMCs. Significant increase in fracture stress and hardness was achieved in the composites. The in-situ process gives clean, contamination-free matrix/reinforcement interface which maintained good bonding causing high load bearing capability. This contributed to the increase in the mechanical properties of composites.

  8. Electronic structures and the spin polarization of Heusler alloy Co2FeAl surface

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoguang; Wang, Yankai; Zhang, Delin; Jiang, Yong

    2011-01-01

    The electronic structures of the Heusler alloy Co2FeAl surface are studied theoretically via first-principles calculations. The space localization of the surface states is the key effect on the electronic structures of the Co2FeAl surface. At the surface, the lattice parameter shrinks to minimize the total energy, and the minority spin gap disappears and shows a metallic band gap character. However, with the depth increasing, the lattice parameter equals to that of bulk phase, and there shows an energy gap opening at the Fermi level in the minority spin states. As a result, the spin polarization at the surface is lower than that of the bulk Co2FeAl, while it is close to that of bulk phase beneath the surface. According to the calculations, it is clear that the half-metallic property fading of the Co2FeAl films is caused by the surface states. Therefore, it is important to minimize the lattice mismatch at the interface of Co2FeAl in order to obtain a high tunneling magnetoresistance.

  9. Development of a new graded-porosity FeAl alloy by elemental reactive synthesis

    SciTech Connect

    Shen, P Z; He, Y H; Gao, H Y; Zou, J; Xu, N P; Jiang, Y; Huang, B; Lui, C T

    2009-01-01

    A new graded-porosity FeAl alloy can be fabricated through Fe and Al elemental reactive synthesis. FeAl alloy with large connecting open pores and permeability were used as porous supports. The coating was obtained by spraying slurries consisting of mixtures of Fe powder and Al powder with 3 5 m diameter onto porous FeAl support and then sintered at 1100 C. The performances of the coating were compared in terms of thickness, pore diameter and permeability. With an increase in the coating thickness up to 200 m, the changes of maximum pore size decreased from 23.6 m to 5.9 m and the permeability decreased from 184.2 m3m 2kPa 1h 1 to 76.2 m3m 2kPa 1h 1, respectively, for a sintering temperature equal to 1100 C. The composite membranes have potential application for excellent filters in severe environments.

  10. Structure evolution of Fe-50%Al coating prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Aryanto, D.; Wismogroho, A. S.; Sudiro, T.

    2016-08-01

    The deposition of Fe-50%Al coating (in at%) on low carbon steel was successfully prepared by using mechanical alloying (MA). The coating process was performed in a shaker mill with variation of milling times from 30 minute to 180 minutes. The deposited coating was then heat treated at 600°C for 2 hour in a vacuum furnace of 5.6 Pa. The structure evolution of mechanical alloyed samples before and after heat treatment was investigated by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDX) and X-ray diffractometer (XRD). The results revealed that before heat treatment, the deposited coating on low carbon steel is composed of Fe and Al. The Fe(Al) solid solution was mostly formed after 180 minutes of milling time. Metallographic observation indicated that the surface of Fe-Al coating was rough and the coating thickness was increased with increasing milling time. Meanwhile, the heat treatment process led to structural evolution by forming FeAl intermetallic phase on the surface of low carbon steel.

  11. Synthesis of TiB2/Fe-Cr-Al nanocomposite powder.

    PubMed

    Sachan, Ritesh; Park, Jong-Woo

    2008-10-01

    In this study, a route for synthesizing TiB2/Fe-Cr-Al nanocomposite is proposed via high energy ball milling by using directly coarse powders of TiB2, Fe, Cr and Al. Various compositions of these powder mixtures are milled up to 48 hrs to investigate the effect of composition on the crystalline refinement. The crystalline size is analyzed by an X-ray diffractometer for powder samples containing 30 to 100 wt% TiB2 (the rest of the powder consists of Fe-20 wt%Cr-5 wt%Al composition). The crystalline size after 48 hrs of ball milling decreases with increasing TiB2, and then again increases after reaching a minimum value of 18 nm at 70% TiB2. By transmission electron microscopic analysis, it is confirmed that particles of TiB2 are significantly reduced and finely dispersed in the Fe-Cr-Al matrix. The particle size of TiB2 is found around 20-25 nm, reinforced in the matrix. Considering the results of this study, the proposed mechanical milling route can be recommended as a promising way for fabrication of TiB2/Fe-Cr-Al nanocomposite powder. PMID:19198473

  12. The crystal structure of bøgvadite (Na2SrBa2Al4F20)

    NASA Astrophysics Data System (ADS)

    Balić-Žunić, Tonči

    2014-08-01

    The crystal structure of bøgvadite, Na2SrBa2Al4F20, has been solved and refined to a R1 factor of 4.4 % from single-crystal data (Mo Kα X-ray diffraction, CCD area detector) on a sample from the cryolite deposit at Ivittuut, SW Greenland. Bøgvadite is monoclinic, P21/ n space group, with unit cell parameters a = 7.134(1), b = 19.996(3) and c = 5.3440(8) Å, β = 90.02(1)o. A close proximity of the crystal structure to an orthorhombic symmetry and the presence of the two twin components in a nearly 1:1 ratio suggest that the investigated bøgvadite crystal has originally formed as a high-temperature orthorhombic polymorph which on cooling transformed to the stable low temperature monoclinic structure. The bøgvadite crystal structure has groupings of cation-fluoride coordination polyhedra similar to those found in the crystal structures of the genetically closely associated minerals jarlite and jørgensenite. However, its structure type is different from the latter two. The fluoridoaluminate framework of bøgvadite consists of infinite zig-zag chains of cis-connected AlF6 coordination octahedra. The 1 ∞[AlF5] chains are interconnected by infinite chains of Na-F coordination polyhedra which extend in the same direction. Na is coordinated by nine F atoms if its full surrounding is taken in consideration, but makes significant chemical bonds only to closest five. The chains of AlF6 and NaF9 coordination polyhedra form double layers. In the centre of layers, relatively large voids in the form of pentagonal antiprisms are occupied by Sr atoms which make chemical bonds with the closest six F atoms. Between the SrF10 coordinations in the centre of layers run empty channels. The double layers are interconnected by Ba atoms which are coordinated by eight F atoms and fill the spaces between the layers. Bøgvadite belongs to the group of fluoridoaluminates with infinite chains of cis-connected AlF6 coordination octahedra, alike those found in the crystal structures of Ba-fluoridoaluminates.

  13. Soot oxidation and NO{sub x} reduction over BaAl{sub 2}O{sub 4} catalyst

    SciTech Connect

    Lin, He; Li, Yingjie; Shangguan, Wenfeng; Huang, Zhen

    2009-11-15

    This study addresses soot oxidation and NO{sub x} reduction over a BaAl{sub 2}O{sub 4} catalyst. By XRD analysis, the catalyst was shown to be of spinel structure. Temperature Programmed Oxidation (TPO) and Constant Temperature Oxidation (CTO) at 673 K show that the presence of O{sub 2} decreases the ignition temperature of soot, and it enhances the conversion of NO{sub x} to N{sub 2} and N{sub 2}O. The kinetic features of soot oxidation in the TPO test are similar to that in the TG-DTA analysis. Analysis by Diffuse Reflectance Fourier Infrared Transform Spectroscopy (DRIFTS) indicates that the nitrates formed from NO{sub x} adsorption and the C(O) intermediates from soot oxidation are the key precursors of the redox process between soot and NO{sub x} over surfaces of the BaAl{sub 2}O{sub 4} catalyst. Moreover, DRIFTS tests suggest that nitrates act as the principal oxidants for C(O) oxidation, through which nitrates are reduced to N{sub 2} and N{sub 2}O. The O{sub 2} in the gas mixture presents a positive effect on the conversion of NO{sub x} to N{sub 2} and N{sub 2}O by promoting the oxidation of nitrites into nitrates species. (author)

  14. Laser cladding of quasi-crystal-forming Al-Cu-Fe-Bi on an Al-Si alloy substrate

    NASA Astrophysics Data System (ADS)

    Biswas, Krishanu; Chattopadhyay, Kamanio; Galun, Rolf; Mordike, Barry L.

    2005-07-01

    We report here the results of an investigation aimed at producing coatings containing phases closely related to the quasi-crystalline phase with dispersions of soft Bi particles using an Al-Cu-Fe-Bi elemental powder mixture on Al-10.5 at. pct Si substrates. A two-step process of cladding followed by remelting is used to fine-tune the alloying, phase distribution, and microstructure. A powder mix of Al64Cu22.3Fe11.7Bi2 has been used to form the clads. The basic reason for choosing Bi lies in the fact that it is immiscible with each of the constituent elements. Therefore, it is expected that Bi will solidify in the form of dispersoids during the rapid solidification. A detailed microstructural analysis has been carried out by using the backscattered imaging mode in a scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructural features are described in terms of layers of different phases. Contrary to our expectation, the quasi-crystalline phase could not form on the Al-Si substrate. The bottom of the clad and remelted layers shows the regrowth of aluminum. The formation of phases such as blocky hexagonal Al-Fe-Si and a ternary eutectic (Al + CuAl2 + Si) have been found in this layer. The middle layer shows the formation of long plate-shaped Al13Fe4 along with hexagonal Al-Fe-Si phase growing at the periphery of the former. The formation of metastable Al-Al6Fe eutectic has also been found in this layer. The top layer, in the case of the as-clad track, shows the presence of plate-shaped Al13Fe4 along with a 1/1 cubic rational approximant of a quasi-crystal. The top layer of the remelted track shows the presence of a significant amount of a 1/1 cubic rational approximant. In addition, the as-clad and remelted microstructures show a fine-scale dispersion of Bi particles of different sizes formed during monotectic solidification. The remelting is found to have a strong effect on the size and distribution of Bi particles. The dry

  15. Electronic structure and x-ray magnetic circular dichroism in A2FeReO6 (A =Ca ,Sr ,andBa ) oxides

    NASA Astrophysics Data System (ADS)

    Antonov, V. N.; Bekenov, L. V.; Ernst, A.

    2016-07-01

    A systematic electronic structure study of A2FeReO6 (A =Ba ,Sr ,andCa ) has been performed by employing the local-spin-density approximation (LSDA) and LSDA +U methods using the fully relativistic spin-polarized Dirac linear muffin-tin orbital band-structure method. We investigated the effects of the subtle interplay between spin-orbit coupling, electron correlations, and lattice distortion on the electronic structure of double perovskites. Ca2FeReO6 has a large distortion in the Fe-O-Re bond, and the electronic structure is mainly determined by electron correlations and lattice distortion. In the Ba -Sr -Ca row, the correlation effects at the Fe site are increased. The correlations at the Re site are small in the Ba- and Sr-based compounds but significant in Ca2FeReO6 . Ca2FeReO6 behaves like an insulator only if considered with a relatively large value of Coulomb repulsion Ueff=2.3 eV at the Re site in addition to Ueff=3.1 eV at the Fe site. Ca2FeReO6 possesses a phase transition at 140 K where the metal-insulator transition (MIT) occurs between metallic high-temperature and insulating low-temperature phases. The spin and orbital magnetic moments are linear functions of temperature before and after the MIT but change abruptly at the point of the phase transition. From theoretically calculated magnetocrystalline anisotropy energy (MAE), we found that the easy axis of magnetization for the low-temperature phase is along the b direction, in agreement with experimental data. We found that the major contribution to the MAE is due to the orbital magnetic anisotropy at the Re site. X-ray-absorption spectra and x-ray magnetic circular dichroism at the Re, Fe, and Ba L2 ,3 and Fe, Ca, and O K edges were investigated theoretically in the frame of the LSDA +U method. A qualitative explanation of the x-ray magnetic circular dichroism spectra shape is provided by an analysis of the corresponding selection rules, orbital character, and occupation numbers of individual orbitals

  16. Large anisotropic Fe orbital moments in perpendicularly magnetized Co2FeAl Heusler alloy thin films revealed by angular-dependent x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Okabayashi, Jun; Sukegawa, Hiroaki; Wen, Zhenchao; Inomata, Koichiro; Mitani, Seiji

    2013-09-01

    Perpendicular magnetic anisotropy (PMA) in Heusler alloy Co2FeAl thin films sharing an interface with a MgO layer is investigated by angular-dependent x-ray magnetic circular dichroism. Orbital and spin magnetic moments are deduced separately for Fe and Co 3d electrons. In addition, the PMA energies are estimated using the orbital magnetic moments parallel and perpendicular to the film surfaces. We found that PMA in Co2FeAl is determined mainly by the contribution of Fe atoms with large orbital magnetic moments, which are enhanced at the interface between Co2FeAl and MgO. Furthermore, element specific magnetization curves of Fe and Co are found to be similar, suggesting the existence of ferromagnetic coupling between Fe and Co PMA directions.

  17. Structure, magnetic and complex impedance analysis of (1-x)BaTiO{sub 3}- xMgFe{sub 2}O{sub 4} composite

    SciTech Connect

    Zolkepli, M. F. A. Zainuddin, Z.

    2015-09-25

    MgFe{sub 2}O{sub 4} was synthesized by using sol-gel auto-combustion technique and coupled with BaTiO{sub 3} using the conventional solid state reaction method with different weight fraction of x = 0.00, 0.02, 0.04, 0.06 and 0.08 to form (1-x)BaTiO{sub 3} - xMgFe{sub 2}O{sub 4} composite. The structure, magnetic properties and complex impedance analysis of the composite samples were studied using X-ray diffraction technique (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) and High-frequency response analyzer (HFRA) respectively. XRD patterns showed a single phase tetragonal BaTiO{sub 3} for each composition due to the very small amount of MgFe{sub 2}O{sub 4}. The hysteresis loop confirmed that the composite has soft magnetic properties by addition of MgFe{sub 2}O{sub 4}. Small coercive field, HC has been recorded and it decreased with the increasing of MgFe{sub 2}O{sub 4} weight fraction. However, magnetization increased when the amount of MgFe{sub 2}O{sub 4} is increased. Impedance analysis conducted in range of 0.1 Hz to 10 MHz showed two depressed semicircle arcs for samples with MgFe{sub 2}O{sub 4} due to the resistive and capacitive behavior of the bulk and grain boundaries of the samples.

  18. Preparation, crystal structure and properties of HoBaCo{sub 2−x}Fe{sub x}O{sub 5+δ}

    SciTech Connect

    Gavrilova, L. Ya.; Volkova, N.E.; Aksenova, T.V.; Cherepanov, V.A.

    2013-06-01

    Highlights: ► Synthesis of HoBaCo{sub 2−x}Fe{sub x}O{sub 5+δ} by glycerin nitrate technique in air and in pure oxygen. ► Substitution of Co by Fe influences both the value of oxygen content and crystal structure. ► The changes of oxygen content were measured by TGA. - Abstract: A series of samples of overall composition HoBaCo{sub 2−x}Fe{sub x}O{sub 5+δ} with 0.0 ≤ x ≤ 0.8 were prepared by glycerin nitrate technique in air and in pure oxygen. Irrespective of atmosphere used the homogeneity range of single phase iron substituted holmium barium cobaltate was proved to exist within the range 0.0 ≤ x ≤ 0.4. All samples prepared in air and samples within the compositional range 0.2 ≤ x ≤ 0.4 obtained in oxygen possess tetragonal a{sub p} × a{sub p} × 2a{sub p} (sp. gr. P4/mmm) structure. HoBaCo{sub 2}O{sub 5+δ} and HoBaCo{sub 1.9}Fe{sub 0.1}O{sub 5+δ} synthesized in oxygen crystallized in orthorhombic a{sub p} × 2a{sub p} × 2a{sub p} (sp. gr. Pmmm) structure. The structural parameters were refined by the Rietveld analysis. It was shown that parameter a remains practically constant while parameter c gradually increases with the increase of iron content. The changes of oxygen content in HoBaCo{sub 2−x}Fe{sub x}O{sub 5+δ} (x = 0, 0.2, 0.4) were measured by TGA within the temperature range 25–1100 °C in air. The absolute value of oxygen content was determined by the reduction of the samples in hydrogen flow. The influence of oxygen and iron content on the crystal structure has been discussed. The chemical stability of HoBaCo{sub 2−x}Fe{sub x}O{sub 5+δ} in contact with the solid electrolyte materials Ce{sub 0.8}Sm{sub 0.2}O{sub 2} and Zr{sub 0.85}Y{sub 0.15}O{sub 2} was examined.

  19. Magnetization Dynamics Through Magnetoimpedance Effect in Isotropic Co2FeAl/Au/Co2FeAl Full-Heusler Alloy Trilayer Films

    NASA Astrophysics Data System (ADS)

    Assolin Corrêa, Marcio; Montardo Escobar, Vivian; Trigueiro-Neto, Osvaldo; Bohn, Felipe; Daiane Sossmeier, Kelly; Gomes Bezerra, Claudionor; Chesman, Carlos; Pearson, John; Hoffmann, Axel

    2013-09-01

    We investigate the magnetization dynamics in low damping parameter α systems by measuring the magnetoimpedance effect over a wide range of frequencies, from 0.1 to 3.0 GHz, in Co2FeAl/Au/Co2FeAl full-Heusler alloy trilayer films grown by magnetron sputtering on glass and MgO substrates. We show that the film produced on the glass substrate presents high magnetoimpedance performance, while that grown on the MgO substrate has low magnetoimpedance performance. Since both films are polycrystalline and have isotropic in-plane magnetic properties, we interpret the magnetoimpedance results in terms of the low damping parameter α and strain effects in the films. Thus, we verified that our films present good magnetoimpedance performance and showed that high performance can be achieved even in films with isotropic in-plane magnetic properties, since they present low damping parameter α.

  20. Multiband orange-red photoluminescence of Eu{sup 3+} ions in new '114' LnBaZn{sub 3}GaO{sub 7} and LnBaZn{sub 3}AlO{sub 7} oxides

    SciTech Connect

    Saradhi, M.P.; Raveau, B.; Caignaert, V.; Varadaraju, U.V.

    2010-02-15

    A new series of gallozincates LnBaZn{sub 3}GaO{sub 7} (Ln=La, Nd, Sm, Eu, Gd, Dy, Y) and new aluminozincates LnBaZn{sub 3}AlO{sub 7} (Ln=Y, Eu, Dy) have been synthesized. Their structure refinements show that these phases belong to the '114' series, with hexagonal P6{sub 3}mc space group previously described for SmBaZn{sub 3}AlO{sub 7}. The photoluminescence study of these oxides shows that the Eu{sup 3+} activated LnBaZn{sub 3}MO{sub 7} oxides with Ln=Y, La, Gd; and M=Al, Ga exhibit strong magnetic and electric dipole transitions (multiband emission) which is of interest for white light production. These results also confirm that the site occupied by Eu{sup 3+} is not strictly centrosymmetric. The electric dipole transition intensity is the highest in GdBaZn{sub 3}MO{sub 7} [M=Al, Ga]: 0.05Eu{sup 3+} as compared with other Eu{sup 3+} activated compositions. This is due to the layer distortion around GdO{sub 6} octahedra when compared with YO{sub 6} and LaO{sub 6} octahedra. - Graphical abstract: The projected structure consists of alternate stacked layers of Kagome and Triangular type with statistical distribution of Zn and Ga atoms between two tetrahedral sites. Ba{sup 2+} present in anticuboctahedron coordinating with 12 oxygen atoms. The Eu{sup 3+} present in octahedral coordination with 3-fold rotational symmetry.

  1. Effect of the Chalcogenide Element Doping on the Electronic Properties of Co2FeAl Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Huang, Ting; Cheng, Xiao-min; Guan, Xia-wei; Miao, Xiang-shui

    2016-02-01

    The electronic properties of the typical Heusler compound Co2FeAl with chalcogenide element doping were investigated by means of first principles calculations within the local spin-density approximation (LSDA) + Hubbard U parameter (U). The calculations indicate that, only when 25% of the number of Al atoms is substituted by the chalcogenide element, the chalcogenide element-doped Co2FeAl shows the half metallic properties. The Fermi energy ( E F) of the 25% chalcogenide element-doped Co2FeAl is located in the middle of the gap of the minority states instead of around the top of the valence band as in Co2FeAl. Moreover, the band gap of 25% Te-doped Co2FeAl (0.80 eV) is wider than that of Co2FeAl (0.74 eV). These improved electronic structures will make 25% chalcogenide element-doped Co2FeAl more stable against temperature variation. Therefore, the expected excellent stability of the 25% chalcogenide element-doped Co2FeAl make it more suitable for spintronic applications than Co2FeAl.

  2. Flaky FeSiAl alloy-carbon nanotube composite with tunable electromagnetic properties for microwave absorption

    PubMed Central

    Huang, Lina; Liu, Xiaofang; Chuai, Dan; Chen, Yaxin; Yu, Ronghai

    2016-01-01

    Flaky FeSiAl alloy/multi-wall carbon nanotube (FeSiAl/MWCNT) composite was fabricated by facile and scalable ball milling method. The morphology and electromagnetic properties of the FeSiAl alloy can be well tuned by controlling the milling time. It is found that the magnetic loss of the FeSiAl alloy is improved by optimizing the milling time due to the increased anisotropy field. Meanwhile the addition of MWCNTs enhances the dielectric loss of the composite by increasing the interfacial polarizations, dipolar polarizations and conductive paths. Relative to conventional FeSiAl absorbers, the FeSiAl/MWCNT composite exhibits greatly improved microwave absorption performance with advantages of strong absorption and small thickness. The minimum reflection loss of the composite reaches −42.8 dB at 12.3 GHz at a very thin thickness of 1.9 mm. PMID:27762327

  3. Speciation of Al, Fe, and P in recent sediment from three lakes in Maine, USA.

    PubMed

    Norton, Stephen A; Coolidge, Kyle; Amirbahman, Aria; Bouchard, Roy; Kopácek, Jirí; Reinhardt, Raquel

    2008-10-15

    Sequential extraction of sediments [Psenner R, Pucsko R. Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten. Arch Hydrobiol/Suppl 1988. 70(1): 111-155.] from short, (210)Pb-dated cores from three lakes in Maine USA demonstrates that sediment P is dominantly associated with the NaOH-extractable fraction (P-NaOH(25)) and less with the bicarbonate-dithionite extractable fraction (P-BD). The ratios (Al-NaOH(25))/(Fe-BD) and (Al-NaOH(25))/(P-NH(4)Cl+P-BD) for upper sediment for two oligo-mesotrophic lakes exceeded 3 and 25, the thresholds for preventing substantial release of P from sediments during hypolimnetic anoxia [Kopácek J, Borovec J, Hejzlar J, Ulrich K-U, Norton SA, Amirbahman A. Aluminum control of phosphorus sorption by lake sediments. Environ Sci Technol 2005a;39:8784-8789.]. Hypolimnetic water chemistry verifies this effect. The third lake, currently eutrophic, has values for the ratios that are below the thresholds and this lake has substantial release of P from recent sediment. The sediment characteristics remain relatively constant over the last 150+ years, indicating that the processes responsible for P retention have operated long before atmospheric acidification of watersheds might have influenced the flux of Al and Fe to the lake. In 2002, the pH of inlets and the lakes was generally between 6 and 8. Input to the lakes had high concentrations of acid-soluble particulate and dissolved Al, Fe, and P, and dissolved Al and Fe complexed with dissolved organic carbon (DOC). Lake water column and outlet Al, Fe, and P were typically 90-95% lower than inlet concentrations over a 12 month period. Photo-oxidation of Al-DOC and Fe-DOC in the lake, liberation of inorganic Al and Fe, precipitation of Al(OH)(3) and Fe(OH)(3), adsorption of P by the hydroxides, and sedimentation are responsible for the changes in water quality and long-term sediment characteristics. PMID:18440053

  4. Shape memory behavior in Fe3Al-modeling and experiments

    NASA Astrophysics Data System (ADS)

    Ojha, A.; Alkan, S.; Patriarca, L.; Sehitoglu, H.; Chumlyakov, Y.

    2015-08-01

    The Fe3Al alloy with D03 structure exhibits large recoverable strains due to reversible slips. Tension and compression experiments were conducted on single crystals of Fe3Al, and the onset of slip in forward and reverse directions were obtained utilizing high-resolution digital image correlation technique. The back stress provides the driving force for reversal of deformation upon unloading, resulting in a superelastic phenomenon as in shape memory alloys. Using density functional theory simulations, we obtain the energy barriers (GSFE - generalized stacking fault energy) for {1 1 0}<1 1 1> and {1 1 2}<1 1 1> slips in D03 Fe3Al and the elastic moduli tensor, and undertake anisotropic continuum calculations to obtain the back stress and the frictional stress responsible for reversible slip. We compare the theoretically obtained slip stress magnitudes (friction and back stress) with the experimental measurements disclosing excellent agreement.

  5. Irradiation-enhanced α' precipitation in model FeCrAl alloys

    DOE PAGES

    Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar; Terrani, Kurt A.; Field, Kevin G.

    2016-02-17

    Model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) have been neutron irradiated at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. This is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning of the Al from themore » α' precipitates was also observed.« less

  6. Spin-orbit torque in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO epitaxial magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Kim, Junyeon; Sukegawa, Hiroaki; Hayashi, Masamitsu; Mitani, Seiji

    2016-05-01

    We study the spin-orbit torque (SOT) effective fields in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO magnetic heterostructures using the adiabatic harmonic Hall measurement. High-quality perpendicular-magnetic-anisotropy CoFeAl layers were grown on Cr and Ru layers. The magnitudes of the SOT effective fields were found to significantly depend on the underlayer material (Cr or Ru) as well as their thicknesses. The damping-like longitudinal effective field (ΔHL) increases with increasing underlayer thickness for all heterostructures. In contrast, the field-like transverse effective field (ΔHT) increases with increasing Ru thickness while it is almost constant or slightly decreases with increasing Cr thickness. The sign of ΔHL observed in the Cr-underlayer devices is opposite from that in the Ru-underlayer devices while ΔHT shows the same sign with a small magnitude. The opposite directions of ΔHL indicate that the signs of spin Hall angle in Cr and Ru are opposite, which are in good agreement with theoretical predictions. These results show sizable contribution from SOT even for elements with small spin orbit coupling such as 3d Cr and 4d Ru.

  7. Polymorphism of the borophosphate anion in K(Fe,Al)[BP2O8(OH)] and Rb(Al, Fe)[BP2O8(OH)] crystal structures

    NASA Astrophysics Data System (ADS)

    Yakubovich, O. V.; Steele, I. M.; Dimitrova, O. V.

    2010-09-01

    The crystal structure of two borophosphates, Rb(Al,Fe)[BP2O8(OH)] ( a = 9.381(6), b = 8.398(5), c = 9.579(6) Å, β = 102.605(10)°, sp. gr. P21/ c) and K(Fe,Al)[BP2O8(OH)] ( a = 5.139(2), b = 8.065(4), c = 8.290(4)Å, α = 86.841(8)°, β = 80.346(8)°, γ = 86.622(8)°, sp. gr. P bar 1 ), obtained by hydrothermal synthesis in the AlCl3: FeCl3: K3PO4(Rb3PO4): B2O3: H2O system has been established using X-ray diffraction (Bruker Smart diffractometer, T = 100 K). Hydrogen atoms are located and their coordinates and thermal parameters are refined. It is shown that the polymorphism of the [BP2O8(OH)]4- borophosphate anion has a morphotropic nature and is related to the substitutions both in the cationic part of the structure and in the octahedral position of the anionic mixed framework. The synthesis of new isotypic triclinic compounds under hydrothermal conditions is predicted.

  8. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  9. Hole-doping effect on the Verwey-type transition and magnetoresistivity of Ba(Sm,Ca)Fe 2O 5+ δ

    NASA Astrophysics Data System (ADS)

    Nakamura, J.; Lindén, J.; Yamauchi, H.; Karppinen, M.

    2002-02-01

    Two series of samples of the oxygen-deficient double-perovskite phase, Ba(Sm,Ca)Fe 2O 5+ δ were synthesized employing a sample encapsulation technique that utilizes Fe metal as an oxygen getter. The hole-doping level on the FeO 2 plane was controlled by varying the amount of excess oxygen or the Ca concentration at the Sm site. Earlier it had been found that at room temperature five-coordinated Fe 2+ and Fe 3+ species form pairs by sharing a d electron, leading to the formation of a Fe 2.5+ fluctuating valence state [Phys. Rev. B 60 (1999) 15,251]. At TV, a Verwey-type transition occurred, signifying the charge separation of the Fe 2.5+ fluctuating valence state into high-spin Fe 2+ and Fe 3+. Moreover, related to the Verwey-type transition a negative magnetoresistance peak with a magnitude of a few percent was observed [Appl. Phys. Lett. 77 (2000) 1683]. The position of the peak was found to correspond to the jumps seen in the susceptibility and resistivity vs. temperature curves. For the present samples, it is found that the value of TV is severely decreased upon increasing the Ca concentration, as seen by susceptibility and magnetoresistivity measurements. Introduction of excess oxygen leads to a less severe decrease of the transition temperature. The observed behavior of TV was reproduced by a simple model based on combinatorial-entropy calculations.

  10. Probing the pairing symmetry in the over-doped Fe-based superconductor Ba0.35Rb0.65Fe2As2 as a function of hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Guguchia, Z.; Khasanov, R.; Bukowski, Z.; von Rohr, F.; Medarde, M.; Biswas, P. K.; Luetkens, H.; Amato, A.; Morenzoni, E.

    2016-03-01

    We report muon spin rotation experiments on the magnetic penetration depth λ and the temperature dependence of λ-2 in the over-doped Fe-based high-temperature superconductor (Fe-HTS) Ba1 -xRbxFe2As2 (x = 0.65) studied at ambient and under hydrostatic pressures up to p =2.3 GPa. We find that in this system λ-2(T ) is best described by d -wave scenario. This is in contrast to the case of the optimally doped x =0.35 system which is known to be a nodeless s+--wave superconductor. This suggests that the doping induces the change of the pairing symmetry from s+- to d wave in Ba1 -xRbxFe2As2 . In addition, we find that the d -wave order parameter is robust against pressure, suggesting that d is the common and dominant pairing symmetry in over-doped Ba1 -xRbxFe2As2 . Application of pressure of p =2.3 GPa causes a decrease of λ (0) by less than 5 % , while at optimal doping x =0.35 a significant decrease of λ (0) was reported. The superconducting transition temperature Tc as well as the gap to Tc ratio 2 Δ /kBTc show only a modest decrease with pressure. By combining the present data with those previously obtained for optimally doped system x =0.35 and for the end member x = 1, we conclude that the SC gap symmetry as well as the pressure effects on the SC quantities strongly depend on the Rb doping level. These results are discussed in the light of the putative Lifshitz transition, i.e., a disappearance of the electron pockets in the Fermi surface of Ba1 -xRbxFe2As2 upon hole doping.

  11. Mixed metallic Ba(Co,Fe)X(0.2)O(3-δ) (X = F, Cl) hexagonal perovskites: drastic effect of Fe-incorporation on structural and electronic features.

    PubMed

    Iorgulescu, Mihaela; Roussel, Pascal; Tancret, Nathalie; Renault, Nicolas; Porcher, Florence; André, Gilles; Kabbour, Houria; Mentré, Olivier

    2012-07-16

    Starting from the parent 10H-Ba(5)Co(5)X(1-x)O(13-δ) (trimeric strings of face-sharing CoO(6) octahedra with terminal CoO(4) tetrahedra, stacking sequence (chhch')(2)) and 6H-Ba(6)Co(6)X(1-x)O(16-δ) (similar with tetrameric strings, stacking sequence chhhch') hexagonal perovskites forms (X = F, Cl; c, h = [BaO(3)] layers ; h' = [BaOX(1-y)] layers), we show here that the Fe incorporation leads to large domains of solid solutions for both X = F and Cl but exclusively stabilizes the 10H-form independently of the synthesis method. In this form, the lowest concentration of h-layers is stabilized by a sensitive metal reduction with increasing the Fe ratio. In a more general context of competition between several hexagonal perovskite polymorphs available for most of the transition metals, this redox change is most probably the key factor driving 1D (face-sharing chains) to 3D (corner-sharing) connectivities. Strikingly, ND data evidence the location of oxygen deficiencies in the tetrahedral (Co/Fe) coordination. This effect is exaggerated at high temperature, while (Co/Fe)O(4-δ) coordinations are completed by the displacement of X(-) anions toward the (Co/Fe) sphere of coordination following a "push-and-pull" mechanism within h'-[BaOX(1-y)] layers. The Fe-incorporation is also accompanied by increasing conduction gaps with predominant 1D variable range hopping. The full series show antiferromagnetic behavior with increasing T(N) as [Fe] increases. For Fe-rich compounds T(N) is estimated about 600 K, as rarely observed for hexagonal perovskite compounds. Finally, magnetic structures of all iron-doped compounds show a site-to-site AFM ordering, different of the magnetic structure of Co-only parent compounds. Here, DFT calculations predict low-spin octahedral Co configurations, but high-spin Fe species in the same sites.

  12. Analysis of Valence Electron Structure on Fe3AlCx Precipitated from C-Alloyed Iron Aluminides

    NASA Astrophysics Data System (ADS)

    Tian, Xiao-Feng; Zhang, Wei-Ke; Qi, Yu

    2013-12-01

    Carbides of Fe3AlCx precipitated from iron aluminides can strengthen the matrix; the empirical electron theory (EET) was applied to analyze the attribute of carbides in the paper, giving theoretical explanation on the matrix and precipitation. Valence electron structure (VES) of Fe3AlCx was studied in detail, comparison with the iron aluminides matrix, the hard and brittle phase of Fe3AlCx can be interpreted form the viewpoint of valence electron structure.

  13. Influence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe Cr Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Pimentel, G.; Chao, J.

    2012-01-01

    The effect of different starting microstructures on the kinetics of Fe-rich ({alpha}) and Cr-rich ({alpha}') phase separation during aging of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys has been analyzed with a combination of atom probe tomography and thermoelectric power measurements. The results revealed that the high recrystallization temperature necessary to produce a coarse grained microstructure in Fe-base ODS alloys affects the randomness of Cr-atom distributions and defect density, which consequently affect the phase separation kinetics at low annealing temperatures.

  14. Magnetotransport and magnetothermal properties of the ternary intermetallic compound TbFe2Al10

    NASA Astrophysics Data System (ADS)

    Khandelwal, Ashish; Chattopadhyay, M. K.; Roy, S. B.

    2016-09-01

    We have studied the temperature and field dependences of electrical resistivity and heat capacity of TbFe2Al10, and have also complimented the above studies with low field magnetization measurements. In zero magnetic field, TbFe2Al10 exhibits paramagnetic (PM) to ferrimagnetic (Ferri-I) and Ferri-I to antiferromagnetic (AFM) phase transitions below 17.6 and 10 K respectively. We have found that the electrical resistivity of TbFe2Al10 exhibits a sharp rise across the PM to Ferri-I phase transition in this compound. Our analysis indicates that this sharp rise of electrical resistivity is related to the formation of new zone boundaries (across the PM to Ferri-I phase transition) that reduce the area of the Fermi surface. We have found that TbFe2Al10 exhibits large magnetoresistance (MR) below 100 K. Overall, the MR behaviour of TbFe2Al10 below 17.6 K in different magnetic fields reveals strong competition between AFM and ferromagnetic (FM) correlations, which seems to be quite intrinsic to the magnetic structure of the compound. Our analysis indicates that the large MR and magnetocaloric effect persisting deep inside the PM regime of TbFe2Al10 is mainly related to the presence of FM spin fluctuations and the formation of a Griffiths like (GL) phase consisting of FM clusters within the PM regime. The formation of the GL phase may be mediated by the static crystal defects in the midst of the competing inter and intra layer magnetic interactions.

  15. Interstitial trapping in Fe-implanted Al after excimer laser annealing

    NASA Astrophysics Data System (ADS)

    Swanson, M. L.; Howe, L. M.; Quenneville, A. F.; Nilson, J. A.

    1983-12-01

    Laser annealing was used to create a supersaturated solution of Fe atoms in Al, in order that channeling measurements of self-interstitial trapping could be made. A single crystal of Al was implanted with 40 keV 56Fe to a fluence of 1.6×10 15 ions cm -2. A 4 mm diameter region of the crystal was annealed in air with a XeCl excimer laser at an energy density of ˜ 6 J cm -2. This treatment produced a relatively perfect crystal; the normalized yield of 1 MeV He + ions from near-surface Al atoms for <110> alignment at 35 K was 0.04. The Fe atoms were ˜ 90% substitutional, corresponding to a solubility of ˜ 0.3 at%, as compared with only ˜ 0.02 at% obtained by a water quench from 873 K. The crystal was then irradiated with 1 MeV He + at 70 K to a fluence of ˜ 5 × 10 15 ions cm -2, in order to create mobile Al self-interstitial atoms which could be trapped by the Fe atoms. A channeling analysis of the resulting displacement of Fe atoms indicated that they trapped self-interstitials strongly, as observed for other small solute atoms in Al. As no flux peaking in the backscattering yield from Fe atoms was observed for a <110> angular scan, the results indicate that the trapping configuration may differ from that observed for Cr, Mn or Cu solute atoms in Al. The trapped interstitials were annihilated by vacancy migration near 200 K.

  16. Static and dynamic magnetic property of MBE-grown Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Nie, Shuaihua; Huo, Yan; Zhao, Jianhua; Wu, Yizheng; Zhang, Xinhui

    2014-08-01

    In this work, the static and dynamic magnetic properties of Co2FeAl films grown by molecular beam epitaxy (MBE) were studied by employing the magneto-optical Kerr rotation and ferromagnetic resonance (FMR) measurements. The growth temperature dependent magnetocrystalline anisotropy of MBE-grown Co2FeAl films were first investigated by employing the rotating magneto-optical Kerr effect. Then the magnetization dynamics and Gilbert damping property for high quality Co2FeAl films were investigated in detail by combining both the FMR and time-resolved magneto-optical Kerr rotation techniques. The apparent damping parameter was found to show strong dependence on the strength of the applied magnetic field at low-field regime, but decrease drastically with increasing magnetic field and eventually become a constant value of 0.004 at high-field regime. The inhomogeneity of magnetocrystalline anisotropy and two-magnon scattering are suggested to be responsible for the observed abnormal damping properties observed especially at low field regime. The intrinsic damping parameter of 0.004 is deduced for our highly-ordered Co2FeAl film. Our results provide essential information for highly-ordered MBE-grown Co2FeA film and its possible application in spintronic devices.

  17. Gilbert damping parameter characterization in perpendicular magnetized Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Cui, Yishen; Lu, Jiwei; Khodadadi, Behrouz; Schäfer, Sebastian; Mewes, Tim; Wolf, Stuart

    2013-03-01

    Materials with perpendicular magnetic anisotropy(PMA) have gotten extensive recent attention because of their potential application in spintronic devices such as spin transfer torque random access memory (STT-RAM). It was shown that a much lower switching current density(JC) is required to write STT-RAM tunnel junctions with perpendicular magnetic anisotropy ferromagnetic electrodes (p-MTJ). Additionally Heusler alloy Co2FeAl is expected to further reduce JC due to its ultra low Gilbert damping parameter. In our study, Heusler alloy Co2FeAl films were prepared using a Biased Target Ion Beam Deposition (BTIBD) technique. We demonstrated a low Gilbert damping parameter achieved in thick B2-Co2FeAl films. Besides, we achieved an interfacial PMA in ultra thin Co2FeAl films by rapid thermal annealing (RTA) with no external field presented. Annealing conditions were carefully adjusted to maximize the interfacial PMA. However it was noticed that a higher annealing temperature was required for a low damping parameter which to some extent sacrificed the interfacial PMA. We also deposited ultra thin CoFeB films and characterized their damping parameters for comparison. We acknowledge the financial support from DARPA.

  18. Phase Separation Mediated Devitrification of Al88Y7Fe5 Glasses

    SciTech Connect

    Sahu, K. K.; Mauro, N. A.; Longstreth-Spoor, Lydia; Saha, D.; Miller, Michael K; Nussinova, Z; Kelton, K. F.

    2010-01-01

    The mechanisms responsible for the nanoscale devitrification of Al-based metallic glasses are unclear. A particularly well-studied case is Al{sub 88}Y{sub 7}Fe{sub 5}, where non-isothermal differential scanning calorimetry (DSC) measurements show an exothermic peak that is consistent with glass devitrification to {alpha}-Al, but with no glass transition. Additionally, isothermal DSC studies show a monotonic decrease in enthalpy release with annealing, a feature generally taken to indicate grain coarsening. The results of coordinated DSC, bright field transmission electron microscopy, in situ electrical resistivity and atom probe tomography (APT) studies of Al{sub 88}Y{sub 7}Fe{sub 5} support a nucleation/growth-based crystallization process. The APT data indicate the presence of sub-nanometer pure Al zones and coarser scale (separation distance -74-126nm) Al-rich regions in the glass. The pure Al zones dispersed in the Al-rich regions appear to catalyze {alpha}-Al nucleation, explaining the high nucleation rates. The solute-rich regions between the Al-rich regions inhibit long-range diffusion, explaining the low growth rates.

  19. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.

    PubMed

    Lu, Jinwen; Zhao, Yongqing; Niu, Hongzhi; Zhang, Yusheng; Du, Yuzhou; Zhang, Wei; Huo, Wangtu

    2016-05-01

    The present study is to investigate the microstructural characteristics, electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys with Fe addition for biomedical application, and Ti-6Al-4V alloy with two-phase (α+β) microstructure is also studied as a comparison. Microstructural characterization reveals that the phase and crystal structure are sensitive to the Fe content. Ti-6Al alloy displays feather-like hexagonal α phase, and Ti-6Al-1Fe exhibits coarse lath structure of hexagonal α phase and a small amount of β phase. Ti-6Al-2Fe and Ti-6Al-4Fe alloys are dominated by elongated, equiaxed α phase and retained β phase, but the size of α phase particle in Ti-6Al-4Fe alloy is much smaller than that in Ti-6Al-2Fe alloy. The corrosion resistance of these alloys is determined in SBF solution at 37 °C. It is found that the alloys spontaneously form a passive oxide film on their surface after immersion for 500 s, and then they are stable for polarizations up to 0 VSCE. In comparison with Ti-6Al and Ti-6Al-4V alloys, Ti-6Al-xFe alloys exhibit better corrosion resistance with lower anodic current densities, larger polarization resistances and higher open-circuit potentials. The passive layers show stable characteristics, and the wide frequency ranges displaying capacitive characteristics occur for high iron contents. Elasticity experiments are performed to evaluate the elasticity property at room temperature. Ti-6Al-4Fe alloy has the lowest Young's modulus (112 GPa) and exhibits the highest strength/modulus ratios as large as 8.6, which is similar to that of c.p. Ti (8.5). These characteristics of Ti-6Al-xFe alloys form the basis of a great potential to be used as biomedical implantation materials. PMID:26952395

  20. Spin Hall magnetoresistance in an ultrathin Co2FeAl system

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-qing; Fu, Hua-rui; Sun, Niu-yi; Che, Wen-ru; Ding, Ding; Qin, Juan; You, Cai-yin; Shan, Rong; Zhu, Zhen-gang

    2016-08-01

    Spin Hall magnetoresistance (SMR) is observed in an ultrathin Co2FeAl layer covered by a thin Pt film. The Co2FeAl layer grown on a MgO substrate should be too thin to be continuous. The result reveals that the magnetic insulator layer, such as yttrium iron garnet (YIG) substrate which is frequently used so far, is actually not a requisite for the observation of SMR. This work may greatly help to understand the true nature of SMR effect.