Science.gov

Sample records for al ca cd

  1. Ag-Al-Ca

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Louzguine, D. V.; Takeuchi, A.

    This document is part of Part 1 http://dx.doi.org/10.1007/97.etType="URL"/> 'Systems from Ag-Al-Ca to Au-Pd-Si' of Subvolume B 'Physical Properties of Ternary Amorphous Alloys' of Volume 37 'Phase Diagrams and Physical Properties of Nonequilibrium Alloys' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains the Chapter 'Ag-Al-Ca' with the content:

  2. Heavy metals in cement phases: on the solubility of Mg, Cd, Pb and Ba in Ca{sub 3}Al{sub 2}O{sub 6}

    SciTech Connect

    Prodjosantoso, A.K.; Kennedy, B.J

    2003-07-01

    The compounds formed when the divalent cations Mg{sup 2+}, Cd{sup 2+}, Ba{sup 2+} and Pb{sup 2+} are present during the preparation of Ca{sub 3}Al{sub 2}O{sub 6} have been studied using X-ray microanalysis and diffraction methods. The smaller Mg cations are found to partially substitute for Ca{sup 2+}, and structural refinements show that Mg preferentially occupies the smaller six-coordinate sites in Ca{sub 3-x}Mg{sub x}Al{sub 2}O{sub 6}. When Ba is present, it preferentially occupies the larger eight- and nine-coordinate sites. X-ray microanalysis suggests that Pb and Cd are lost from the samples during the preparation process. The diffraction patterns show a small decrease in the lattice parameters, suggesting that a defect structure of the type Ca{sub 3-x}(vac){sub x}Al{sub 2}O{sub 6} is formed. The distribution of products formed on hydration of the doped Ca{sub 3-x}M{sub x}Al{sub 2}O{sub 6} is found to be very different than that observed for the undoped material.

  3. Comparative studies of CdS, CdS:Al, CdS:Na and CdS:(Al-Na) thin films prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Yılmaz, S.; Atasoy, Y.; Tomakin, M.; Bacaksız, E.

    2015-12-01

    In the present study, the spray pyrolysis technique was used to prepare pure CdS, 4 at.% Al-doped CdS, 4 at.% Na-doped CdS and (4 at.% Al, 4 at.% Na)-co-doped CdS thin films. It was found from X-ray diffraction data that all the specimens showed hexagonal wurtzite structure with the preferred orientation of (101). Scanning electron microscopy results indicated that 4 at.% Al-doping caused a grain growth in the morphology of CdS thin films whereas the 4 at.% Na-doping and (4 at.% Al, 4 at.% Na)-co-doping led to porous structure with small grains. The band gap value of CdS thin films increased to 2.42 eV after 4 at.% Al-doping. However, it reduced to 2.30 eV and 2.08 eV for 4 at.% Na-doping and (4 at.% Al, 4 at.% Na)-co-doping, respectively. The room temperature photoluminescence measurements illustrated that the peak intensity of CdS thin films enhanced with 4 at.% Al-doping while 4 at.% Na-doping and (4 at.% Al, 4 at.% Na)-co-doping caused a decline in the intensity. The maximum carrier concentration and minimum resistivity were obtained for 4 at.% Al-doped CdS thin films, which is associated with the grain growth. Furthermore, (4 at.% Al, 4 at.% Na)-co-doping gave rise to a slight reduction in the carrier concentration and a slight increment in the resistivity. As a result, it can be said that 4 at.% Al-doped CdS thin films exhibited the best electrical and optical properties, which is important for the opto-electronic applications.

  4. CD147 reinforces [Ca2+]i oscillations and promotes oncogenic progression in hepatocellular carcinoma.

    PubMed

    Tang, Juan; Guo, Yun-Shan; Yu, Xiao-Ling; Huang, Wan; Zheng, Ming; Zhou, Ying-Hui; Nan, Gang; Wang, Jian-Chao; Yang, Hai-Jiao; Yu, Jing-Min; Jiang, Jian-Li; Chen, Zhi-Nan

    2015-10-27

    Oscillations in intracellular Ca2+ concentrations ([Ca2+]i) mediate various cellular function. Although it is known that [Ca2+]i oscillations are susceptible to dysregulation in tumors, the tumor-specific regulators of [Ca2+]i oscillations are poorly characterized. We discovered that CD147 promotes hepatocellular carcinoma (HCC) metastasis and proliferation by enhancing the amplitude and frequency of [Ca2+]i oscillations in HCC cells. CD147 activates two distinct signaling pathways to regulate [Ca2+]i oscillations. By activating FAK-Src-IP3R1 signaling pathway, CD147 promotes Ca2+ release from endoplasmic reticulum (ER) and enhances the amplitude of [Ca2+]i oscillations. Furthermore, CD147 accelerates ER Ca2+refilling and enhances the frequency of [Ca2+]i oscillations through activating CaMKP-PAK1-PP2A-PLB-SERCA signaling pathway. Besides, CD147-promoted ER Ca2+ release and refilling are tightly regulated by changing [Ca2+]i. CD147 may activate IP3R1 channel under low [Ca2+]i conditions and CD147 may activate SERCA pump under high [Ca2+]i conditions. CD147 deletion suppresses HCC tumorigenesis and increases the survival rate of liver-specific CD147 knockout mice by regulating [Ca2+]i oscillations in vivo. Together, these results reveal that CD147 functions as a critical regulator of ER-dependent [Ca2+]i oscillations to promote oncogenic progression in HCC.

  5. Substantial Cd-Cd bonding in Ca6PtCd11: a condensed intermetallic phase built of pentagonal Cd7 and rectangular Cd4/2Pt pyramids.

    PubMed

    Gulo, Fakhili; Samal, Saroj L; Corbett, John D

    2013-09-03

    The novel intermetallic Ca6PtCd11 is orthorhombic, Pnma, Z = 4, with a = 18.799(2) Å, b = 5.986(1) Å, c = 15.585(3) Å. The heavily condensed network contains three types of parallel cadmium chains: apically strongly interbonded Cd7 pentagonal bipyramids, linear Cd arrays, and rectangular Cd4/2Pt pyramids. All of the atoms have 11-13 neighbors. Calculations by means of the linear muffin-tin orbitals method in the atomic spheres approximation indicate that some Cd-Cd interactions correspond to notably high Hamilton populations (1.07 eV per average bond) whereas the Ca-Ca covalent interactions (integrated crystal orbital Hamiltonian population) are particularly small (0.17 eV/bond). (Pt-Cd interactions are individually greater but much less in aggregate.) The Ca-Ca separations are small, appreciably less than the single bond metallic diameters, and unusually uniform (Δ = 0.14 Å). The Cd atoms make major contributions to the stability of the phase via substantial 5s and 5p bonding, which include back-donation of Cd 5s, 5p and Pt 5d into Ca 3d states in the principal bonding modes for Ca-Cd and Ca-Pt. Bonding Ca-Ca, Ca-Cd, and Cd-Cd states remain above EF, and some relative oxidation of Ca in this structure seems probable. Ca6PtCd11 joins a small group of other phases in which Cd clustering and Cd-Cd bonding are important.

  6. X-Ray Data on Extraterrestrial CA Dialuminate (CaAl4O7)

    NASA Astrophysics Data System (ADS)

    Weber, D.; Ross, C. R., II; Bischoff, A.

    1993-07-01

    After the first discovery of Ca-dialuminate (CaAl4O7) in Allende [1], in recent years this phase has been found in several carbonaceous chondrites. Ca- dialuminate is a major phase in Ca,Al-rich inclusions from ALH85085 (e.g., [2]) and a dominating phase in CAIs from Acfer 182 ([3,4]). X-ray data on Ca-dialuminate are known from synthetic (e.g., [5-8]; cell constants) and terrestrial CaAl4O7 ([9]; only d-spacings), but are not available from extraterrestrial Ca-dialuminate. We report here the results of the first X-ray study of extraterrestrial Ca- dialuminate. The data (Table 1) were obtained by microdiffraction using a Rigaku PSPC microdiffractometer at the Bayerisches Geoinstitut. Ni-filtered Cr radiation was used with a direct beam diameter of about 50 micrometers. This powder diffraction method allows in situ measurement of polycrystalline Ca- dialuminate in a thin section. The CaAl4O7-rich inclusion 022/9 described in [4], consisting of a ~200-micrometer-sized core of Ca-dialuminate surrounded by layers of melilite and Ca-pyroxene, was chosen for analysis. The polycrystalline core contains only a small number of tiny inclusions (especially perovskite) and is therefore an excellent candidate for an X-ray study. For determination of the d-spacings of Ca-dialuminate an external standard (Ag6Ge10P12) was used for detector calibration. A large number of reflections could be indexed based upon comparison with the X-ray pattern of synthetic CaAl4O7 available in the JCPDS compilation [7]. The comparison was simplified because of the high purity of CaAl4O7 in inclusion 022/9 [4], and suggests the same structure for synthetic and extraterrestrial Ca-dialuminate. For determination of lattice parameters (cell constants, cell volume) refinement calculations were made based on 14 reflections (Table 1). The data for extraterrestrial CaAl4O7 shown in Table 1 indicate a close similarity to those obtained for synthetic CaAl4O7. The cell constants a, b, and therefore the cell

  7. Thermogynamics of Genesis of Ca-Al-Inclusions in Chrondrites

    NASA Astrophysics Data System (ADS)

    Shornikov, S. I.

    2013-09-01

    The semi-empirical model was used for thermodynamic calculations of composition changes in the Ca-Al-Inclusions in chondrites during their evaporation and condensation. The presented model discussed with the Grossman approaches.

  8. Observations of Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report 5-(sigma) tangent column detections of Al and Fe, and strict 3-(sigma) tangent column upper limits for Ca(+) in Mercury's exosphere obtained using the HIRES spectrometer on the Keck I telescope. These are the first direct detections of Al and Fe in Mercury's exosphere. Our Ca(-) observation is consistent with that reported by The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.

  9. Effects of Ca addition on the uptake, translocation, and distribution of Cd in Arabidopsis thaliana.

    PubMed

    Zeng, Lihua; Zhu, Ting; Gao, Ya; Wang, Yutao; Ning, Chanjuan; Björn, Lars Olof; Chen, Da; Li, Shaoshan

    2017-05-01

    Cadmium (Cd) pollution poses a risk to human health for its accumulation in soil and crops, but this can be alleviated by calcium (Ca) addition. However, its mechanism remains unclear yet. In this study, Arabidopsis thaliana was used to explore the alleviating effects of Ca on Cd toxicity and its specific function during uptake, upward-translocation, and distribution of Cd. Supplementing plants with 5mM CaCl2 alleviated the intoxication symptoms caused by 50μM CdCl2, such as smaller leaves, early bolting and root browning. Ca addition decreased uptake of Cd, possibly by reducing the physical adsorption of Cd since the root cell membrane was well maintained and lignin deposition was decreased as well, and by decreasing symplastic Cd transport. Expression of the genes involved (AtZIP2 and AtZIP4) was also decreased. In addition, Ca accumulated in the plant shoot to help facilitating the upward-translocation of Cd, with evidence of higher translocation factor and expression of genes that were involved in Ca transport (AtPCR1) and Cd xylem loading (AtHMA2 and AtHMA4). Dithizone-staining of Cd in leaves showed that in Cd+Ca-treated plants, Ca addition initially protected the leaf stomata by preventing Cd from entering guard cells, but with prolonged Cd treatment facilitated the Cd accumulation around trichomes and maybe its excretion. We conclude that Ca promotes the upward-translocation of Cd and changes its distribution in leaves. The results may have relevance for bioremediation.

  10. The initial 41Ca/40Ca ratios in two type A Ca-Al-rich inclusions: Implications for the origin of short-lived 41Ca

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Chang

    2017-03-01

    This paper reports new 41Ca-41K isotopic data for two Type A CAIs, NWA 3118 #1Nb (Compact Type A) and Vigarano 3138 F8 (Fluffy Type A), from reduced CV3 chondrites. The NWA CAI is found to have carried live 41Ca at the level of (4.6 ± 1.9) ×10-9 , consistent with the proposed Solar System initial 41Ca /40Ca = 4.2 ×10-9 by Liu et al. (2012a). On the other hand, the Vigarano CAI does not have resolvable radiogenic 41K excesses that can be attributed to the decay of 41Ca. Combined with the 26Al data that have been reported for these two CAIs, we infer that the 41Ca distribution was not homogeneous when 26Al was widespread at the canonical level of 26Al /27Al = 5.2 ×10-5 . Such a 41Ca heterogeneity can be understood under two astrophysical contexts: in situ charged particle irradiation by the protoSun in the solar nebula that had inherited some baseline 10Be abundance from the molecular cloud, and Solar System formation in a molecular cloud enriched in 26Al and 41Ca contaminated by massive star winds. That said, more high quality 41Ca data are still needed to better understand the origin of this radionuclide.

  11. CD36 Protein Influences Myocardial Ca2+ Homeostasis and Phospholipid Metabolism

    PubMed Central

    Pietka, Terri A.; Sulkin, Matthew S.; Kuda, Ondrej; Wang, Wei; Zhou, Dequan; Yamada, Kathryn A.; Yang, Kui; Su, Xiong; Gross, Richard W.; Nerbonne, Jeanne M.; Efimov, Igor R.; Abumrad, Nada A.

    2012-01-01

    Sarcolemmal CD36 facilitates myocardial fatty acid (FA) uptake, which is markedly reduced in CD36-deficient rodents and humans. CD36 also mediates signal transduction events involving a number of cellular pathways. In taste cells and macrophages, CD36 signaling was recently shown to regulate store-responsive Ca2+ flux and activation of Ca2+-dependent phospholipases A2 that cycle polyunsaturated FA into phospholipids. It is unknown whether CD36 deficiency influences myocardial Ca2+ handling and phospholipid metabolism, which could compromise the heart, typically during stresses. Myocardial function was examined in fed or fasted (18–22 h) CD36−/− and WT mice. Echocardiography and telemetry identified conduction anomalies that were associated with the incidence of sudden death in fasted CD36−/− mice. No anomalies or death occurred in WT mice during fasting. Optical imaging of perfused hearts from fasted CD36−/− mice documented prolongation of Ca2+ transients. Consistent with this, knockdown of CD36 in cardiomyocytes delayed clearance of cytosolic Ca2+. Hearts of CD36−/− mice (fed or fasted) had 3-fold higher SERCA2a and 40% lower phospholamban levels. Phospholamban phosphorylation by protein kinase A (PKA) was enhanced after fasting reflecting increased PKA activity and cAMP levels in CD36−/− hearts. Abnormal Ca2+ homeostasis in the CD36−/− myocardium associated with increased lysophospholipid content and a higher proportion of 22:6 FA in phospholipids suggests altered phospholipase A2 activity and changes in membrane dynamics. The data support the role of CD36 in coordinating Ca2+ homeostasis and lipid metabolism and the importance of this role during myocardial adaptation to fasting. Potential relevance of the findings to CD36-deficient humans would need to be determined. PMID:23019328

  12. Coral Cd/Ca and Mn/Ca records of ENSO variability in the Gulf of California

    NASA Astrophysics Data System (ADS)

    Carriquiry, J. D.; Villaescusa, J. A.

    2010-06-01

    We analyzed the trace element ratios Cd/Ca and Mn/Ca in three coral colonies (Porites panamensis (1967-1989), Pavona clivosa (1967-1989) and Pavona gigantea (1979-1989)) from Cabo Pulmo reef, Southern Gulf of California, Mexico, to assess the oceanographic changes caused by El Niño - Southern Oscillation (ENSO) events in the Eastern Tropical North Pacific (ETNP). Interannual variations in the coral Cd/Ca and Mn/Ca ratios showed clear evidence that incorporation of Cd and Mn in the coral skeleton was influenced by ENSO conditions, but the response for each metal was controlled by different processes. The Mn/Ca ratios were significantly higher during ENSO years (p<0.05) relative to non-ENSO years for the three species of coral. In contrast, the Cd/Ca was systematically lower during ENSO years, but the difference was significant (p<0.05) only in Pavona gigantea. A decrease in the incorporation of Cd and a marked increase in Mn indicated strongly reduced vertical mixing in the Gulf of California during the mature phase of El Niño. The oceanic warming during El Niño events produces a relaxation of upwelling and a stabilization of the thermocline, which may act as a physical barrier limiting the transport of Cd from deeper waters into the surface layer. In turn, this oceanic condition can increase the residence time of particulate-Mn in surface waters, allowing an increase in the photo-reduction of particulate-Mn and the release of available Mn into the dissolved phase. These results support the use of Mn/Ca and Cd/Ca ratios in biogenic carbonates as tracers of increases in ocean stratification and trade wind weakening and/or collapse in the ETNP during ENSO episodes.

  13. Aluminian Low-Ca Pyroxene in a Ca-Al-rich Chondrule from the Semarkona Meteorite

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    A Ca-AI-rich chondrule (labeled G7) from the Semarkona LL3.0 ordinary chondrite (OC) consists of 73 vol% glassy mesostasis, 22 vol% skeletal forsterite. 3 vol% fassaite (i.e., Al-Ti diopside), and 2 vol% Al-rich, low-Ca pyroxene. The latter phase, which contains up to 16.3 wt% A1203, is among the most AI-rich, low-Ca pyroxene grains ever reported. It is inferred that 20% of the tetrahedral sites and 13% of the octahedral sites in this grain are occupied by Al. Approximately parallel optical extinction implies that the Al-rich, low-Ca pyroxene grains are probably orthorhombic, consistent with literature data that show that A1203 stabilizes the orthoenstatite structure relative to protoenstatite at low pressure. The order of crystallization in the chondrule was forsterite, AI-rich low-Ca pyroxene, and fassaite; the residual liquid vitrified during chondrule quenching. Phase relationships indicate that, for a G7-composition liquid at equilibrium, spinel and anorthite should crystallize early and orthopyroxene should not crystallize at all. The presence of AI-rich orthopyroxene in G7 is due mainly to the kinetic failure of anorthite to crystallize; this failure was caused by quenching of the G7 precursor droplet. Aluminum preferentially enters the relatively large B tetrahedra of orthopyroxene; because only one tetrahedral size occurs in fassaite, this phase contains higher mean concentrations of Al2O3 than the Al-rich orthopyroxene (17.8 and 14.7 wt%, respectively). Chondrule G7 may have formed by remelting an amoeboid olivine inclusion that entered the OC region of the solar nebula during an episode of chondrule formation.

  14. Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships

    SciTech Connect

    Kim, Hyong June

    2011-01-01

    Deformation processed metal-metal composites (DMMC’s) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule of mixtures. A quantitative relationship between UTS and deformation true strain was determined. X-ray diffraction data on transformation of Al + Ca microstructures to Al + various Al-Ca intermetallic compounds were obtained at the Advanced Photon Source at Argonne National Laboratory. Electrical conductivity was measured over a range of true strains and post-deformation heat treatment schedules.

  15. LiCaAl/sub 6/:Cr/sup 3+/

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Smith, L.K.; Krupke, W.F. )

    1988-11-01

    The authors report the discovery of a new laser, LiCaAIF/sub 6/:Cr/sup 3/ (Cr/sup 3+/ :LiCAF). The intrinsic (extrapolated maximum) slope efficiency was found to be 67 percent. For comparison, they also measured the intrinsic slope efficiencies of BeAl/sub 2/O/sub 4/:Cr/sup 3+/ (alexandrite), Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/, and ScBO/sub 3/:Cr/sup 3+/, and obtained values of 65,28, and 26 percent, respectively. The tuning range of LiCaAIF/sub 6/:Cr/sup 3+/ was determined to be at least 720-840 nm. The conventional spectroscopic properties, such as the absorption, emission, and emission lifetimes as a function of temperature, are reported as well.

  16. Effect of reaction time and (Ca+Mg)/Al molar ratios on crystallinity of Ca-Mg-Al layered double Hydroxide

    NASA Astrophysics Data System (ADS)

    Heraldy, E.; Nugrahaningtyas, K. D.; Sanjaya, F. B.; Darojat, A. A.; Handayani, D. S.; Hidayat, Y.

    2016-02-01

    Ca-Mg-Al Layered Double Hydroxides (Ca-Mg-Al-LDH) compounds were successfully synthesized from brine water and AlCl3.6H2O as the starting materials by coprecipitation method. The product result was characterized by X-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR). The effects of the reaction time and the molar ratios of the raw material on the crystallinity of Ca-Mg-Al-LDH were examining. Results show that increasing reaction time (30; 60 and 90 min.) could improve the crystallinity and monodispersity of layered double hydroxide compounds particles. The well-defined Ca-Mg- Al-LDH could be prepared with (Ca+Mg)/Al molar ratios 0.5.

  17. Sodium chloride salinity reduces Cd uptake by edible amaranth (Amaranthus mangostanus L.) via competition for Ca channels.

    PubMed

    Mei, XiuQin; Li, SongSong; Li, QuSheng; Yang, YuFeng; Luo, Xuan; He, BaoYan; Li, Hui; Xu, ZhiMin

    2014-07-01

    Soil salinity is known to enhance cadmium (Cd) accumulation in crops. However, the mechanism by which this occurs independent of the surrounding soil remains unclear. In this study, root adsorption and uptake of salt cations and Cd by edible amaranth under NaCl salinity stress were investigated in hydroponic cultures with 0, 40, 80, 120, and 160mM of NaCl and 27nM Cd. The dominant Cd species in the nutrient solution changed from free Cd(2+) to Cd chlorocomplexes as NaCl salinity increased. High salinity significantly reduced K, Ca, and Cd root adsorption and K, Ca, Mg, and Cd uptake. High salinity decreased root adsorption of Cd by 43 and 58 percent and Cd uptake by 32 and 36 percent in salt-tolerant and salt-sensitive cultivars, respectively. Transformation of Cd from free ion to chlorocomplexes is unlikely to have significantly affected Cd uptake by the plant because of the very low Cd concentrations involved. Application of Ca ion channel blocker significantly reduced Na, K, Ca, Mg, and Cd uptake by the roots, while blocking K ion channels significantly reduced Na and K uptake but not Ca, Mg, and Cd uptake. These results suggest that Na was absorbed by the roots through both Ca and K ion channels, while Cd was absorbed by the roots mainly through Ca ion channels and not K ion channels. Salinity caused a greater degree of reduction in Cd adsorption and uptake in the salt-sensitive cultivar than in the salt-tolerant cultivar. Thus, competition between Na and Cd for Ca ion channels can reduce Cd uptake at very low Cd concentrations in the nutrient solution.

  18. Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4: Calculated dehydrogenation enthalpy, including zero point energy, and the structure of the phonon spectra.

    PubMed

    Marashdeh, Ali; Frankcombe, Terry J

    2008-06-21

    The dehydrogenation enthalpies of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski's direct method. The dehydrogenation of Ca(AlH(4))(2) is exothermic, indicating a metastable hydride. Calculations for CaAlH(5) including ZPE effects indicate that it is not stable enough for a hydrogen storage system operating near ambient conditions. The destabilized combination of LiBH(4) with CaH(2) is a promising system after ZPE-corrected enthalpy calculations. The calculations confirm that including ZPE effects in the harmonic approximation for the dehydrogenation of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) has a significant effect on the calculated reaction enthalpy. The contribution of ZPE to the dehydrogenation enthalpies of Ca(AlH(4))(2) and CaAlH(5) calculated by the direct method phonon analysis was compared to that calculated by the frozen-phonon method. The crystal structure of CaAlH(5) is presented in the more useful standard setting of P2(1)c symmetry and the phonon density of states of CaAlH(5), significantly different to other common complex metal hydrides, is rationalized.

  19. Substantial Cd-Cd Bonding in Ca6PtCd11: A Condensed Intermetallic Phase Built of Pentagonal Cd7 and Rectangular Cd4/2Pt Pyramids

    SciTech Connect

    Gulo, Fakhili; Samal, Saroj L.; Corbett, John D.

    2013-08-19

    The new trail-breaking compound Ca6PtCd11 has been synthesized and its structural and bonding properties investigated. This unusual phase features an unprecedented degree of cadmium aggregation, including linear chains, novel Cd7 PBP aggregates, and edge-shared chains of PtCd4/2 square pyramids. Manifestations of this chemistry elsewhere has evidently been precluded in earlier work by the inclusion of larger amounts of the strong d-metal bonding Au or Pt. Under the right conditions Cd seems quite effective as an open s,p-band metal.

  20. Actinide chemistry in Allende Ca-Al-rich inclusions

    NASA Technical Reports Server (NTRS)

    Murrell, M. T.; Burnett, D. S.

    1987-01-01

    Fission track radiography is used to investigate the U and Th microscale distribution in a set of Allende-meteorite Ca-Al-rich inclusions. In the Type B inclusions, the major phases melilite and fassaite are important actinide host phases, and on the rims of Type B inclusions and throughout all other inclusions studied, perovskite is the dominant actinide host phase. Results suggest that neither alteration nor loss or gain of an actinide-rich phase appears to have been an important Th/U fractionation mechanism, and that volatility differences may be the dominant factor. Th/U and rare earth element abundance patterns for the spinel and perovskite rim suggest rim formation by volatilization of interior material, and within the constraints of the brief time scale required for this heating, several mechanisms for spinel-perovskite rim formation are possible.

  1. Actinide chemistry in Allende Ca-Al-rich inclusions

    NASA Astrophysics Data System (ADS)

    Murrell, M. T.; Burnett, D. S.

    1987-04-01

    Fission track radiography is used to investigate the U and Th microscale distribution in a set of Allende-meteorite Ca-Al-rich inclusions. In the Type B inclusions, the major phases melilite and fassaite are important actinide host phases, and on the rims of Type B inclusions and throughout all other inclusions studied, perovskite is the dominant actinide host phase. Results suggest that neither alteration nor loss or gain of an actinide-rich phase appears to have been an important Th/U fractionation mechanism, and that volatility differences may be the dominant factor. Th/U and rare earth element abundance patterns for the spinel and perovskite rim suggest rim formation by volatilization of interior material, and within the constraints of the brief time scale required for this heating, several mechanisms for spinel-perovskite rim formation are possible.

  2. Optical properties of Al-CdO nano-clusters thin films

    NASA Astrophysics Data System (ADS)

    Yahia, I. S.; Salem, G. F.; Abd El-sadek, M. S.; Yakuphanoglu, F.

    2013-12-01

    The aluminum doped cadmium oxide (CdO:Al) thin films were grown onto glass substrates by sol-gel spin-coating method. The structural properties of undoped and Al-doped CdO thin films were studied by atomic force microscopy. AFM results reveal that the studied CdO films were formed from the nano-clusters. The optical transmittance of undoped and Al-doped CdO is decreased with increasing Al contents. The optical band gaps of the CdO films were varied from 2.54 eV to 2.32 eV with increasing Al dopants. The width of localized states in the optical band gap of the films is increased with increasing Al content. The improvement of the optical constant of Al-doped CdO has potential applications as transparent conducting oxide for different optoelectronic device applications.

  3. Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan

    NASA Astrophysics Data System (ADS)

    Khoury, Hani N.; Sokol, Ella V.; Kokh, Svetlana N.; Seryotkin, Yurii V.; Nigmatulina, Elena N.; Goryainov, Sergei V.; Belogub, Elena V.; Clark, Ian D.

    2016-02-01

    Tululite (Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36 (the hypothetical end-member formula Ca14{Fe3+O6}[SiO4][Zn5Al9]O26) (IMA2014-065) is a new natural Ca zincate-aluminate, identified in medium-temperature (800-850 °C) combustion metamorphic (CM) spurrite-fluorellestadite marbles from central Jordan. The type locality (Tulul Al Hammam area) is situated in the northern part of the Siwaqa complex, the largest area of the "Mottled Zone" Formation in the Dead Sea region. The marbles originated from bitumen-rich chalky marine sediments of the Maastrichtian-Paleogene Muwaqqar Chalk Marl Formation, which have low clay content (and, consequently, low Al) and high Zn, Cd, and U enrichments. The bulk CM rocks derived from the low-Al protolith have unusually high (Zn + Cd)/Al ratios ( 0.2) and, as a result, a mineralogy with negligibly small percentages of Ca aluminates having low Ca:Al molar ratios (minerals of mayenite supergroup, Ca:Al = 6:7) common to most of calcareous CM rocks in the Mottled Zone. Instead, the mineral assemblage of the Zn-rich marbles contains tululite, with high Ca:Al = 2.55 molar ratios and Zn substituting for a large portion of Al (Zn:Al = 1.1). Tululite occurs in thin clusters as irregular grains with indented outlines (20-100 μm in size), having typical open-work textures associated with rock-forming calcite, fluorellestadite, spurrite, and accessory Zn-rich periclase, lime-monteponite solid solutions, calcium uranates, and zincite. Marbles also bear brownmillerite, dorrite, fluormayenite, high-fluorine Ca aluminate, and lakargiite. Secondary phases are brucite, gel-like calcium silicate hydrates and calcium silicate aluminate hydrates, including Zn- and U-bearing and Cd-rich compounds, Si-bearing hydrated compounds after calcium uranates, and basic Cd chlorides. The empirical formula of the holotype tululite (a mean of 32 analyses) is (Ca13.29Cd0.75)Σ14.04(Al5.46Zn5.20Fe3+ 2.23Si0.95Mn3+ 1.01Mg0.78P0.41)Σ16.04O36. Tululite is cubic, space

  4. Enthalpies of formation of CaAl4O7 and CaAl12O19 (hibonite) by high temperature, alkali borate solution calorimetry

    NASA Technical Reports Server (NTRS)

    Geiger, C. A.; Kleppa, O. J.; Grossman, L.; Mysen, B. O.; Lattimer, J. M.

    1988-01-01

    Enthalpies of formation were determined for two calcium aluminate phases, CaAl4O7 and CaAl12O19, using high-temperature alkali borate solution calorimetry. The aluminates were synthesized by multiple-cycle heating and grinding stoichiometric mixtures of CaCO3 and Al2O3, and the products were characteized by X-ray diffraction and SEM microbeam analysis. The data on impurities (CaAl4O7 was found to be about 89.00 percent pure by weight and the CaAl12O19 samples about 91.48 percent pure) were used to correct the heat of solution values of the synthetic products. The enthalpies of formation, at 1063 K, from oxides, were found to be equal to -(25.6 + or - 4.7) kJ/g.f.w. for CaAl4O7 and -(33.0 + or - 9.7) kJ/g.f.w. for CaAl12O19; the respective standard enthalpies of formation from elements, at 298 K, were estimated to be -4007 + or - 5.2 kJ/g.f.w. and -10,722 + or - 12 kJ/g.f.w.

  5. Synthesis, Structure and bonding Analysis of the Polar Intermetallic Phase Ca2Pt2Cd

    SciTech Connect

    Samal, Saroj L.; Corbett, John D.

    2012-08-14

    The polar intermetallic phase Ca2Pt2Cd was discovered during explorations of the Ca-Pt-Cd system. The compound was synthesized by high temperature reactions, and its structure refined by single-crystal X-ray diffraction as orthorhombic, Immm, a = 4.4514(5), b = 5.8415(6), c = 8.5976(9) Å, Z = 2. The structure formally contains infinite, planar networks of [Pt2Cd]4– along the ab plane, which can be described as tessellation of six and four-member rings of the anions, with cations stuffed between the anion layers. The infinite condensed platinum chains show a substantial long–short distortion of 0.52 Å, an appreciable difference between Ca2Pt2Cd (26 valence electrons) and the isotypic but regular Ca2Cu2Ga (29 VE). The relatively large cation proportion diminishes the usual dominance of polar (Pt–Cd) and 5d–5d (Pt–Pt) contributions to the total Hamilton populations.

  6. Prognostic role and correlation of CA9, CD31, CD68 and CD20 with the desmoplastic stroma in pancreatic ductal adenocarcinoma

    PubMed Central

    D'Costa, Zenobia; Azad, Abul; Silva, Michael A.; Soonawalla, Zahir; Allen, Paul; Liu, Stanley; McKenna, W. Gillies; Muschel, Ruth J.; Fokas, Emmanouil

    2016-01-01

    We assessed the prognostic value of hypoxia (carbonic anhydrase 9; CA9), vessel density (CD31), with macrophages (CD68) and B cells (CD20) that can interact and lead to immune suppression and disease progression using scanning and histological mapping of whole-mount FFPE pancreatectomy tissue sections from 141 primarily resectable pancreatic ductal adenocarcinoma (PDAC) samples treated with surgery and adjuvant chemotherapy. Their expression was correlated with clinicopathological characteristics, and overall survival (OS), progression-free survival (PFS), local progression-free survival (LPFS) and distant metastases free-survival (DMFS), also in the context of stroma density (haematoxylin-eosin) and activity (alpha-smooth muscle actin). The median OS was 21 months after a mean follow-up of 20 months (range, 2–69 months). The median tumor surface area positive for CA9 and CD31 was 7.8% and 8.1%, respectively. Although total expression of these markers lacked prognostic value in the entire cohort, nevertheless, high tumor compartment CD68 expression correlated with worse PFS (p = 0.033) and DMFS (p = 0.047). Also, high CD31 expression predicted for worse OS (p = 0.004), PFS (p = 0.008), LPFS (p = 0.014) and DMFS (p = 0.004) in patients with moderate density stroma. High stromal and peripheral compartment CD68 expression predicted for significantly worse outcome in patients with loose and moderate stroma density, respectively. Altogether, in contrast to the current notion, hypoxia levels in PDAC appear to be comparable to other malignancies. CD31 and CD68 constitute prognostic markers in patient subgroups that vary according to tumor compartment and stromal density. Our study provides important insight on the pathophysiology of PDAC and should be exploited for future treatments. PMID:27637082

  7. Modulation of NMDA channel gating by Ca2+ and Cd2+ binding to the external pore mouth

    PubMed Central

    Tu, Ya-Chi; Yang, Ya-Chin; Kuo, Chung-Chin

    2016-01-01

    NMDA receptor channels are characterized by high Ca2+ permeability. It remains unclear whether extracellular Ca2+ could directly modulate channel gating and control Ca2+ influxes. We demonstrate a pore-blocking site external to the activation gate for extracellular Ca2+ and Cd2+, which has the same charge and radius as Ca2+ but is impermeable to the channel. The apparent affinity of Cd2+ or Ca2+ is higher toward the activated (a steady-state mixture of the open and desensitized, probably chiefly the latter) than the closed states. The blocking effect of Cd2+ is well correlated with the number of charges in the DRPEER motif at the external pore mouth, with coupling coefficients close to 1 in double mutant cycle analyses. The effect of Ca2+ and especially Cd2+ could be allosterically affected by T647A mutation located just inside the activation gate. A prominent “hook” also develops after wash-off of Cd2+ or Ca2+, suggesting faster unbinding rates of Cd2+ and Ca2+ with the mutation. We conclude that extracellular Ca2+ or Cd2+ directly binds to the DRPEER motif to modify NMDA channel activation (opening as well as desensitization), which seems to involve essential regional conformational changes centered at the bundle crossing point A652 (GluN1)/A651(GluN2). PMID:27848984

  8. Thermal neutron imaging with rare-earth-ion-doped LiCaAlF 6 scintillators and a sealed 252Cf source

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Noriaki; Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei; Fukuda, Kentaro; Suyama, Toshihisa; Watanabe, Kenichi; Yamazaki, Atsushi; Chani, Valery; Yoshikawa, Akira

    2011-10-01

    Thermal neutron imaging with Ce-doped LiCaAlF 6 crystals has been performed. The prototype of the neutron imager using a Ce-doped LiCaAlF 6 scintillating crystal and a position sensitive photomultiplier tube (PSPMT) which had 64 multi-channel anode was developed. The Ce-doped LiCaAlF 6 single crystal was grown by the Czochralski method. A plate with dimensions of a diameter of 50×2 mm 2 was cut from the grown crystal, polished, and optically coupled to PSPMT by silicone grease. The 252Cf source (<1 MBq) was sealed with 43 mm of polyethylene for neutron thermalization. Alphabet-shaped Cd pieces with a thickness of 2 mm were used as a mask for the thermal neutrons. After corrections for the pedestals and gain of each pixel, we successfully obtained two-dimensional neutron images using Ce-doped LiCaAlF 6.

  9. Thermoelectric properties of Al substituted misfit cobaltite Ca3(Co1- x Al x )4O9 at low temperature

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Chen, Hong-mei; Hu, Jin-lian; Tang, Xu-bing; Li, Hai-jin; Wang, Wei

    2014-07-01

    Thermoelectric properties of Al substituted compounds Ca3(Co1- x Al x )4O9 ( x = 0, 0.03, 0.05), prepared by a sol-gel process, have been investigated in the temperature range 305-20 K. The results indicate that after Al substitution for Co in Ca3(Co1- x Al x )4O9, the direct current electrical resistivity and thermopower increase due to the reduction of carrier concentration. Experiments show that Al substitution results in decreased lattice thermal conductivity. The figure of merit of temperature behavior suggests that Ca3(Co0.97Al0.03)4O9 would be a promising candidate thermoelectric material for high-temperature thermoelectric application.

  10. Ca(2+) and CaM are involved in Al(3+) pretreatment-promoted fluoride accumulation in tea plants (Camellia sinesis L.).

    PubMed

    Zhang, Xian-Chen; Gao, Hong-Jian; Wu, Hong-Hong; Yang, Tian-Yuan; Zhang, Zheng-Zhu; Mao, Jing-Dong; Wan, Xiao-Chun

    2015-11-01

    Tea plant (Camellia sinensis (L.) O. kuntze) is known to be a fluoride (F) and aluminum (Al(3+)) hyper-accumulator. Previous study showed that pre-treatment of Al(3+) caused a significant increase of F accumulation in tea plants. However, less is known about the intricate network of Al(3+) promoted F accumulation in tea plants. In this study, the involvement of endogenous Ca(2+) and CaM in Al(3+) pretreatment-promoted F accumulation in tea plants was investigated. Our results showed that Al(3+) induced the inverse change of intracellular Ca(2+) fluorescence intensity and stimulated Ca(2+) trans-membrane transport in the mature zone of tea root. Also, a link between internal Ca(2+) and CaM was found in tea roots under the presence of Al(3+). In order to investigate whether Ca(2+) and CaM were related to F accumulation promoted by Al(3+) pretreatment, Ca(2+) chelator EGTA and CaM antagonists CPZ and TFP were used. EGTA, CPZ, and TFP pretreatment inhibited Al(3+)-induced increase of Ca(2+) fluorescence intensity and CaM content in tea roots, and also significantly reduced Al(3+)-promoted F accumulation in tea plants. Taken together, our results suggested that the endogenous Ca(2+) and CaM are involved in Al(3+) pretreatment-promoted F accumulation in tea roots.

  11. Selectivity of the Cd2+/Ca2+ exchange on modified rice hull silica.

    PubMed

    Sánchez-Flores, Norma A; Solache, Marcos; Olguín, M Teresa; Fripiat, José J; Pacheco-Malagón, Graciela; Saniger, José M; Bulbulian, Silvia

    2009-03-01

    The rice hull ash is composed by 94% of SiO2, an agricultural waste that can be recovered and purified by a depolymerization reaction yielding an organo-silicic gel. The purpose of this paper is to show that this silica can be used to fix Cd2+ from aqueous solution. The pH of hydrolysis of the organo-silicic gel is the main factor modifying the distribution between the solid and the solution. The contact time between the Cd2+ solution and the solid was studied to optimize the sorption conditions. The equilibrium measurements were performed after 40 hours at room temperature. The competition with Ca2+ ions in the solutions was also studied in order to evaluate the selectivity of the Cd2+ fixation. It was found that the rice hull ash has a higher capacity to fix Cd2+ than the rice hull derivatives.

  12. Synthesis of Cd/(Al+Fe) layered double hydroxides and characterization of the calcination products

    SciTech Connect

    Perez, M.R.; Barriga, C.; Fernandez, J.M.; Rives, V.; Ulibarri, M.A.

    2007-12-15

    Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method at a constant pH value of 8. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange at pH 9. The samples have been characterized by elemental chemical analysis, powder X-ray diffraction (PXRD), and FT-IR spectroscopy. Their thermal stability has been assessed by thermogravimetric and differential thermal analyses (TG-DTA) and mass spectrometric analysis of the evolved gases. The PXRD patterns of the solids calcined at 800 deg. C show diffraction lines corresponding to Cd(Al)O and spinel-type materials, which precise nature (CdAl{sub 2}O{sub 4}, Cd{sub 1-x}Fe{sub 2+x}O{sub 4}, or Cd{sub x}Fe{sub 2.66}O{sub 4}) depends on location and concentration of iron in the parent material or precursor. - Graphical abstract: Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange. Calcination at 800 deg. C shows diffraction lines corresponding to CdO and to spinel-type materials. SEM micrograph of sample CdAlFe-N-0.

  13. Microhabitat effects on Cd/Ca and δ 13C of benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Tachikawa, K.; Elderfield, H.

    2002-09-01

    Cd/Ca and δ 13C were measured on bottom and pore water samples, and samples comprising dead individuals of six species of benthic foraminifera, including Cibicidoides wuellerstorfi, Uvigerina peregrina and Melonis barleeanum, from throughout the sediment mixed layer at three well-characterised sites in the Northeastern Atlantic. 'Living' (i.e., Rose Bengal stained) U. peregrina and M. barleeanum from one of the three sites were also analysed. Co-existing living and dead foraminifera of the same species from the same site have similar Cd/Ca and δ 13C, and show no significant down core variability. Therefore, comparison of δ 13C in foraminifera with bottom water and pore waters was used to estimate average calcification depths within the sediment for each species and thereby determine DCd based on the Cd concentrations at these depths. Pore waters are 2-4 times more enriched in Cd than bottom waters; consequently, DCd values are different from estimates based on bottom water Cd. Results give DCd of ˜1 for all the infaunal species, with no significant water depth dependence. DCd for C. wuellerstorfi based on bottom water Cd are 3.2±1.1 at 3600 m water depth and 3.9±1.3 at 1900 m water depth, being consistent with DCd estimated from culture experiments. The results suggest that the depth dependence of DCd based on bottom water Cd may be partly explained by a pore water influence on the test chemistry for infaunal species.

  14. Al/CdSe/GaSe/C resonant tunneling thin film transistors

    NASA Astrophysics Data System (ADS)

    Qasrawi, A. F.; Kayed, T. S.; Elsayed, Khaled A.

    2017-02-01

    An Al/CdSe/GaSe/C thin film transistor device was prepared by the physical vapor deposition technique at a vacuum pressure of 10-5 mbar. The x-ray diffraction measurements demonstrated the polycrystalline nature of the surface of the device. The dc current-voltage characteristics recorded for the Al/CdSe/C and Al/CdSe/GaSe/C channels displayed a resonant tunneling diode features during the forward and reverse voltage biasing, respectively. In addition, the switching current ratio of the Al/CdSe/C increased from 18.6 to 9.62×103 as a result of the GaSe deposition on the CdSe surface. Moreover, the alternating electrical signal analyses in the frequency range of 1.0 MHz to 1.8 GHz, showed some remarkable properties of negative resistance and negative capacitance spectra of the Al/CdSe/GaSe/C thin film transistors. Two distinct resonance-antiresonance phenomena in the resistance spectra and one in the capacitance spectra were observed at 0.53, 1.04 and 1.40 GHz for the Al/CdSe/C channel, respectively. The respective resonating peak positions of the resistance spectra shift to 0.38 and 0.95 GHz when GaSe is interfaced with CdSe. These features of the thin film transistors are promising for use in high quality microwave filtering circuits and also for use as ultrafast switches.

  15. P- T- X controls on Ca and Na distribution between Mg-Al tourmaline and fluid

    NASA Astrophysics Data System (ADS)

    Berryman, Eleanor J.; Wunder, Bernd; Rhede, Dieter; Schettler, Georg; Franz, Gerhard; Heinrich, Wilhelm

    2016-04-01

    Ca-Na partitioning between tourmaline and a coexisting fluid is investigated in the system CaO-Na2O-B2O3-Al2O3-MgO-SiO2-H2O-Cl between 0.2-4.0 GPa and 500-700 °C. The synthesis experiments produced a mineral assemblage of tourmaline, coesite/quartz, and in some cases additional phases, typically comprising <1 wt% of the solid product. The synthesized tourmalines are solid solutions of dravite [NaMg3Al6Si6O18(BO3)3(OH)3(OH)], "oxy-uvite" (i.e. "Ca-Mg-O root name") [CaMg3Al6Si6O18(BO3)3(OH)3O], and magnesio-foitite [☐(Mg2Al)Al6Si6O18(BO3)3(OH)3(OH)]. Starting materials comprised a fluid of constant ionic strength (2.00 m) and an oxide mixture with a constant Mg/Al ratio. As a result, the number of vacancies at the X site and the Mg/Al ratio of tourmaline crystals synthesized at the same temperature vary only slightly. The major solid solution is Ca-Na exchange at the X site via the exchange vector X Ca W O[ X Na W (OH)]-1, with the exchange vector X (Ca☐)[ X Na2]-1 serving as a secondary Ca-incorporation mechanism. Tourmaline's X-site composition reflects the fluid composition, whereby the Ca (or Na) concentration in the fluid corresponds with the Ca (or Na) content in tourmaline at each pressure and temperature. At 0.2 GPa, 700 °C, Ca preferentially partitions into tourmaline, producing the most Ca-rich tourmaline crystals synthesized here. At pressures >1.0 GPa, Ca partitions preferentially into the fluid, resulting in Na-dominant tourmaline compositions. Temperature has a secondary effect on Ca-Na partitioning, with higher temperatures correlating with increased Ca incorporation in tourmaline. Based on the experimental findings, tourmaline is expected to have Ca-rich compositions when it forms in low pressure, high-temperature Ca-rich rocks, consistent with the current record of tourmaline occurrence. The bulk Mg/Al ratio and the pH of the tourmaline-forming system may also affect Ca incorporation in tourmaline, but remain to be investigated experimentally.

  16. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis.

  17. Coral Cd/Ca and Mn/Ca records of El Niño variability in the Gulf of California

    NASA Astrophysics Data System (ADS)

    Carriquiry, J. D.; Villaescusa, J. A.

    2010-02-01

    We analyzed the trace element ratios Cd/Ca and Mn/Ca in three coral colonies (Pavona gigantea, Pavona clivosa and Porites panamensis) from Cabo Pulmo reef, Southern Gulf of California, Mexico, to assess the oceanographic changes caused by El Niño - Southern Oscillation (ENSO) events in the Eastern Tropical North Pacific (ETNP). The interannual variations in the coral Cd/Ca and Mn/Ca ratios show clear evidence that incorporation of Cd and Mn in the coral skeleton are influenced by ENSO conditions, but the response for each metal is controlled by different process. The Mn/Ca ratios were significantly higher during ENSO years (p<0.05) relative to non-ENSO years for the three species of coral. In contrast, the Cd/Ca was systematically lower during ENSO years, but it was significant (p<0.05) only in P. gigantea. The decrease in the incorporation of Cd, and the marked increase in Mn during the mature phase of El Niño indicate strongly reduced vertical mixing in the Gulf of California. The oceanic warming during El Niño events produces a relaxation of upwelling and a stabilization of the thermocline which acts as a physical barrier limiting the transport of Cd from deeper waters into the surface layer. In turn, this oceanic condition can increase the residence time of particulate-Mn in surface waters, which in turn increases the photo-reduction of particulate-Mn and the release of the available Mn into the dissolved phase. These results provide validation for using Mn/Ca and Cd/Ca in biogenic carbonates as tracers of changes in ocean stratification and trade wind weakening and/or collapse in the ETNP during ENSO episodes.

  18. First-principles investigation of point defect and atomic diffusion in Al2Ca

    NASA Astrophysics Data System (ADS)

    Tian, Xiao; Wang, Jia-Ning; Wang, Ya-Ping; Shi, Xue-Feng; Tang, Bi-Yu

    2017-04-01

    Point defects and atomic diffusion in Al2Ca have been studied from first-principles calculations within density functional framework. After formation energy and relative stability of point defects are investigated, several predominant diffusion processes in Al2Ca are studied, including sublattice one-step mechanism, 3-jump vacancy cycles and antistructure sublattice mechanism. The associated energy profiles are calculated with climbing image nudged elastic band (CI-NEB) method, then the saddle points and activation barriers during atomic diffusion are further determined. The resulted activation barriers show that both Al and Ca can diffuse mainly mediated by neighbor vacancy on their own sublattice. 3-jump cycle mechanism mediated by VCa may make some contribution to the overall Al diffusion. And antistructure (AS) sublattice mechanism can also play an important role in Ca atomic diffusion owing to the moderate activation barrier.

  19. AlF4- induces Ca2+ oscillations in guinea-pig ileal smooth muscle.

    PubMed

    Himpens, B; Missiaen, L; Droogmans, G; Casteels, R

    1991-02-01

    The effects of different compounds that inhibit the isolated plasma-membrane Ca2+/Mg2(+)-ATPase on the cytosolic free Ca2+ concentration ([Ca2+]i) and on the corresponding force development have been examined in smooth muscle of the longitudinal layer of the guinea-pig ileum. F-, in the presence of Al3+, induced an increase of the resting force and of the amplitude of the superimposed phasic contractions. The increase of resting force was associated with an increased level of basal [Ca2+]i while the phasic contractions were accompanied by concomitant oscillations in [Ca2+]i. Comparable contractions could be induced by vanadate and the calmodulin antagonist calmidazolium. The oscillations of [Ca2+]i and of force elicited by AlF4- were not modified by adrenergic or cholinergic blocking agents but were inhibited by verapamil. These phasic contractions were not affected by depleting the intracellular Ca2+ stores with ryanodine. This finding excludes a cytosolic origin of these oscillations. However, hyperpolarization and complete depolarization of the cells inhibited the oscillations. It is concluded that AlF4-, vanadate and calmidazolium induce cytoplasmic Ca2+ oscillations possibly by acting at the plasma membrane. Indeed all these substances affect by different mechanisms the isolated plasma-membrane Ca2+/Mg2(+)-ATPase. The generation of membrane-linked Ca2+ oscillations could therefore be related to an inhibition of the plasma-membrane Ca2+ pump resulting in an increase of [Ca2+]i. This change in [Ca2+]i could be responsible for the pronounced changes of the electrical and mechanical activity of this tissue.

  20. Cadmium Stabilization Efficiency and Leachability by CdAl4O7 Monoclinic Structure.

    PubMed

    Su, Minhua; Liao, Changzhong; Chuang, Kui-Hao; Wey, Ming-Yen; Shih, Kaimin

    2015-12-15

    This study investigated the stabilization efficiencies of using an aluminum-rich precursor to incorporate simulated cadmium-bearing waste sludge and evaluated the leaching performance of the product phase. Cadmium oxide and γ-alumina mixtures with various Cd/Al molar ratios were fired at 800-1000 °C for 3 h. Cadmium could be crystallochemically incorporated by γ-alumina into CdAl4O7 monoclinic phase and the reaction was strongly controlled by the treatment temperature. The crystal structure details of CdAl4O7 were solved and refined with the Rietveld refinement method. According to the structural refinement results, the stabilization efficiencies were quantified and expressed as a transformation ratio (TR) with optimized processing parameters. The preferred treatment temperature was found to be 950 °C for mixtures with a Cd/Al molar ratio of 1/4, as its TR value indicated the cadmium incorporation was nearly completed after a 3 h treatment scheme. Constant-pH leaching tests (CPLT) were conducted by comparing the leachability of the CdO and CdAl4O7 phases in a pH 4.0 environment. A remarkable reduction in cadmium leachability could be achieved via monoclinic CdAl4O7 structure formation to effectively stabilize hazardous cadmium in the waste stream. The CPLT and X-ray photoelectron spectroscopy (XPS) results suggested incongruent dissolution behavior during the leaching of the CdAl4O7 phase.

  1. Calcium-Ca/AlCl4/2-thionyl chloride cell - Performance and safety

    NASA Astrophysics Data System (ADS)

    Meitav, A.; Peled, E.

    1982-03-01

    Tests to determine the effect of concentration and temperature on the conductivity of Ca(AlCl4)2-thionyl chloride solutions, to assess the discharge performance of the Ca/Ca(AlCl4)2-thionyl chloride cell at varying temperatures and electrolyte concentrations, and to study the safety of the cell during charging and reversal in comparison to a LiAlCl4 electrolyte-based cell are reported. Flat cells were examined for discharge and cylindrical cells with a reference electrode were used for electrodeposition experiments. Conductivity was found to increase when temperature decreased in the Ca(AlCl4)2 solutions, with a preferred concentration set at 0.7 M for low temperatures and 1.25 M in the range 10-60 C. No anodic disintegration was observed with lithium cathodes, although an explosion hazard remained. Finally, sandwich-like Ca/Ca(AlCl4)2-thionyl chloride cells possessed the energy density of the Li-SO2 cells, and were also impossible to charge or overdischarge, indicating a suitability for high rate multicell battery applications.

  2. Phosphate-sulfide assemblages and Al/Ca ratios in type-3 chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, A. E.; Grossman, J. N.

    1985-01-01

    Electron microscopic examinations were carried out on various chondrites to re-examine previously reported anomalously high Al/Ca ratios. Polished thin sections of the three CV3, two CO3 and the Krymka LL3 chondrites were scanned to characterize the phosphate-sulfide inclusions. The formation of the assemblages was interpreted as proceeding in five steps, starting with the formation of metal grains with early nebular material and finishing with a reaction between schreibersite with Ca, O and Cl to form merrillite and chloropatite. The abundances of the observed assemblages were not high enough to imply Al/Ca ratios similar to whole-rocks. It is concluded that the specimens were originally examined with a broader electron beam than used to examine standard samples, and resulted in the anomalously high Al/Ca ratios.

  3. Water Column Study of Planktonic Foraminiferal Cd/Ca Temperature-Nutrient Dependency: Plankton tow Results From the NE Pacific

    NASA Astrophysics Data System (ADS)

    Martinez-Boti, M. A.; Mortyn, P.; Vance, D.

    2006-12-01

    The Cd/Ca ratio of foraminiferal calcite has long been relied upon as a nutrient tracer, as Cd and [PO4] are coupled in the world's oceans. This link has been especially useful with benthic foraminifera to estimate time since surface ventilation and changes in thermohaline circulation, both of which have important impacts on the links between ocean and climate. Planktonic foraminiferal Cd/Ca studies have been relatively rare however, due to the lower nutrient compositions of surface waters, and therefore lower Cd/Ca ratios compositions in foraminifera as well. Recent analytical developments have advanced the potential for this kind of work, but the link between Cd/Ca and [PO4] has been assumed more than tested. Rickaby and Elderfield (1999) explicitly evaluated the controls on Globigerina bulloides Cd/Ca ratios from a suite of N. Atlantic core-top samples, and concluded that temperature (T), rather than [PO4], was the predominant influence. Furthermore, Elderfield and Rickaby (2000), applying a temperature correction to the partition coefficient (DCd) for incorporation of Cd into calcite, made an attempt to reconstruct past surface water [PO4] using planktonic foraminiferal Cd/Ca. Here, we test this temperature influence from a NE Pacific water column perspective, using depth-restricted (Cd/Ca correspondence with T than [PO4]. We calculate partition coefficients (DCd) using the published core-top approach, and obtain higher DCd values -as a result of higher original Cd/Ca ratios-, as well as an enhanced sensitivity to T, both of which are then confirmed with independent data from sediment-trap G. bulloides that were also recovered from the same study region. We also evaluate other species

  4. Pressure effects on the superconducting transition in nH-CaAlSi

    NASA Astrophysics Data System (ADS)

    Boeri, L.; Kim, J. S.; Giantomassi, M.; Razavi, F. S.; Kuroiwa, S.; Akimitsu, J.; Kremer, R. K.

    2008-04-01

    We present a combined experimental and theoretical study of the effects of pressure on Tc of the hexagonal layered superconductors nH-CaAlSi ( n=1 , 5, and 6), where nH denotes the different stacking variants that were recently discovered. Experimentally, the pressure dependence of Tc has been investigated by measuring the magnetic susceptibility of single crystals up to 10 kbars. In contrast to previous results on polycrystalline samples, single crystals with different stacking sequences display different pressure dependences of Tc . 1H-CaAlSi shows a decrease in Tc with pressure, whereas 5H - and 6H-CaAlSi exhibit an increase in Tc with pressure. Ab initio calculations for 1H -, 5H -, and 6H-CaAlSi reveal that an ultrasoft phonon branch associated with out-of-plane vibrations of the Al-Si layers softens with pressure, leading to a structural instability at high pressures. For 1H-CaAlSi , the softening is not sufficient to cause an increase in Tc , which is consistent with the present experiments but adverse to previous reports. For 5H and 6H , the softening provides the mechanism to understand the observed increase in Tc with pressure. Calculations for hypothetical 2H and 3H stacking variants reveal qualitative and quantitative differences.

  5. Effect of Ca addition on the damping capacity of Mg-Al-Zn casting alloys

    NASA Astrophysics Data System (ADS)

    Jun, Joong-Hwan; Moon, Jung-Hyun

    2015-07-01

    The influences of Ca addition on the microstructures and damping capacities of AZ91-(0˜2)%Ca casting alloys were investigated, on the basis of the results of X-ray diffractometry, optical microscopy, scanning electron microscopy and vibration tests in a single cantilever mode. The amount of intermetallic compounds decreased with increasing Ca content up to 0.5%, above which it increased; the average cell size showed the opposite tendency. All alloys exhibited similar damping levels in the strain-amplitude independent region. Considering the very low solubility of Ca in the matrix, and that most of the Ca elements are consumed by the formation of the Al2Ca phase and incorporation into the Mg17Al12 phase, this would be ascribed to the almost identical concentrations of Ca solutes distributed in the matrix. In the strain-amplitude dependent region, however, the AZ91-0.5%Ca alloy possessed the maximum damping capacity. From the viewpoint of microstructural evolution with Ca addition, the number density of compound particles is considered to be the principal factor affecting the damping behavior in the strain-amplitude dependent region.

  6. Formation Mechanism of CaS-Bearing Inclusions and the Rolling Deformation in Al-Killed, Low-Alloy Steel with Ca Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Guang; Jiang, Zhouhua; Li, Yang

    2016-08-01

    The existing form of CaS inclusion in Ca-treated, Al-killed steel during secondary refining process was investigated with scanning electron microscopy and an energy-dispersive spectrometer (EDS). The results of 12 heats industrial tests showed that CaS has two kinds of precipitation forms. One form takes place by the direct reaction of Ca and S, and the other takes place by the reaction of CaO in calcium aluminates with dissolved Al and S in liquid steel. Thermodynamic research for different precipitation modes of CaS under different temperature was carried out. In particular, CaO-Al2O3-CaS isothermal section diagrams and component activities of calcium aluminates were calculated by the thermodynamic software FactSage. By thermodynamic calculation, a precipitation-area diagram of oxide-sulfide duplex inclusion was established by fixing the sulfur content. The quantity of CaS, which was precipitated in a reaction between [Al], [S] and (CaO), can be calculated and predicted based on the precipitation-area diagram of oxide-sulfide duplex inclusion. Electron probe microanalysis and EDS were used for observing rolling deformation of different types of CaS-bearing inclusions during the rolling process. Low modification of calcium aluminates wrapped by CaS has different degrees of harm to steel in the rolling process. A thick CaS layer can prevent some fragile calcium aluminates from being crushed during the rolling process. Some oxide-sulfide duplex inclusion contains little CaS performed better deformation during the rolling process, but when CaS in oxide-sulfide duplex inclusion becomes more, it will cause the whole inclusion to lose plastic yielding ability. The plastic deformation region of CaS-bearing inclusion in a CaO-Al2O3-CaS isothermal section diagram is confirmed.

  7. Ab initio calculation of half-metallic ferromagnetism in zinc-blende (CaN)1/(AlN)x and (CaN)x/(AlN)1 (x=2, 3) (001) superlattices

    NASA Astrophysics Data System (ADS)

    Song, Xiao-Sheng; Dong, Shengjie; Zhao, Hui

    2014-09-01

    Using first-principles density functional theory calculations, we investigated the electronic and magnetic properties of zinc-blende (CaN)1/(AlN)x and (CaN)x/(AlN)1 (x=2, 3) superlattices in the (001) direction. With a total magnetic moment of 1 μB for (CaN)1/(AlN)2, 2 μB for (CaN)2/(AlN)1, 1 μB for (CaN)1/(AlN)3, and 3 μB for (CaN)3/(AlN)1, these four superlattices show very stable half-metallic ferromagnetic behaviors. The analysis of the partial density of states reveals that the p-d hybridization of N and Ca is responsible for the magnetization. Besides, it is shown that the magnetic properties of these multilayer superlattices can be controlled by changing the ratio of the layer numbers of dissimilar materials.

  8. X-ray Diffraction Analysis on Post Treatment of Ca-Mg-Al-Layered Double Hydroxide Slurry

    NASA Astrophysics Data System (ADS)

    Heraldy, E.; Nugrahaningtyas, K. D.; Heriyanto

    2017-02-01

    This research objectives to study post treatment on Ca-Mg-Al-Layered Double Hydroxide (Ca-Mg-Al-LDH) slurry which was prepared from brine water by cooling treatment. The cooling rate was varied from 1 to 3 °C/min by using stirring and without stirring, and the cooling time was done at 0, 30 minutes and 24 hours. The quantitative X-ray diffraction (QXRD) was employed on Ca-Mg-Al-LDH using Le Bail refinement method. The refinement results found another Mg-Al-LDH and Ca-Al-LDH phases, such as Mg(OH)2, Al(OH)3 and CaCO3. The highest phase composition on material Ca-Mg-Al-LDH using Le Bail refinement was showed by Al(OH)3.

  9. Influence of Al doping on optical properties of CdS/PVA nanocomposites: Theory and experiment

    SciTech Connect

    Bala, Vaneeta Tripathi, S. K. Kumar, Ranjan

    2014-04-24

    In the present work theoretical and experimental studies of aluminium doped cadmium sulphide polyvinyl alcohol (Al:CdS/PVA) nanocomposites have been carried out. Tetrahedral cluster AlCd{sub 9}S{sub 2}(SH){sub 18}]{sup 1−} has been encapsulated by small segments of polyvinyl alcohol (PVA) chains in order to simulate experimental environment of nanocomposites. Density functional theory (DFT) using local density approximation (LDA) functionals is employed to study the broadening of band gap upon ligation of nanoclusters. We have used in situ chemical route to synthesize nanocomposites. Optical band gap has been calculated from both experimental and theoretical approach.

  10. Electronic structure and unusual superconducting properties of of CaAlSi and SrAlSi

    NASA Astrophysics Data System (ADS)

    Mazin, Igor I.; Papaconstantopoulos, Dimitris

    2004-03-01

    We report full-potential LAPW calculations for CaAlSi and SrAlSi in ordered structures and in the virtual crystal approximation, at normal and elevated pressures. We also estimate the electron-phonon coupling using either frozen-phon calculations at the zone center, or the rigid muffin tin approximation. We conclude that there is no simple way to explain the recently reported qualitative disparity in the superconducting properties of the two compounds. An assumption of an ultrasoft phonon mode, on the other hand, allows to reconcile in a reasonable way the experimental findings with the theory.

  11. XPS and NMR analysis on 12CaO•7Al2O3

    NASA Astrophysics Data System (ADS)

    Pan, R. K.; Feng, S.; Tao, H. Z.

    2017-01-01

    12CaO·7Al2O3 (C12A7) glass was prepared by the melt quenching method. The glass transition temperature (T g) and the crystallization temperature (T c) of C12A7 glass are about 1050 K and 1194 K, respectively, measured by the differential scanning calorimetry (DSC). The structure of C12A7 glass was investigated by X-ray photoelectron spectroscopy (XPS) as well as magic angle spinning-nuclear magnetic resonance spectroscopy (MAS-NMR). Analysis shows that Al coordination number is about four in C12A7 glass, in which AlO4 tetrahedrons and bridging oxygens (BO) constitute the glass network. Ca2+ produces a few of non-bridging oxygens (NBO), which become neighbours of Al.

  12. CdS-pillared CoAl-layered double hydroxide nanosheets with superior photocatalytic activity

    SciTech Connect

    Qiu, Yanqiang; Lin, Bizhou Jia, Fangcao; Chen, Yilin; Gao, Bifen; Liu, Peide

    2015-12-15

    Graphical abstract: - Highlights: • CdS nanocrystals were intercalated into CoAl-LDH interlayer. • The nanohybrid display superior visible-light photocatalytic activity. • A photoexcitation model for the pillared heterostructured system was proposed. - Abstract: A new nanohybrid was synthesized by mixing the positively charged 2D nanosheets of CoAl-layered double hydroxide (CoAl-LDH) and the negatively charged CdS nanosol suspensions. It was revealed that the CdS nanoparticles were intercalated into the interlayer region of CoAl-LDH with a spacing of 2.62 nm. The obtained nanohybrid exhibited a mesoporous texture with an expanded specific surface area of 62 m{sup 2} g{sup −1} and a superior photocatalytic activity in the degradation of acid red with a reaction constant of 1.26 × 10{sup −2} min{sup −1} under visible-light radiation, which is more than 2 times those of his parents CoAl-LDH and CdS.

  13. Ca-,Al-rich inclusions in the unique chondrite ALH85085 - Petrology, chemistry, and isotopic compositions

    NASA Astrophysics Data System (ADS)

    Kimura, M.; El Goresy, A.; Palme, H.; Zinner, E.

    1993-05-01

    A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.

  14. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    NASA Astrophysics Data System (ADS)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  15. Hydrogen sorption behavior of CaAl1.5Li0.5

    NASA Astrophysics Data System (ADS)

    Bereznitsky, Matvey; Mogilyanski, Dmitry; Jacob, Isaac

    2016-04-01

    The hydrogen sorption properties of an alloy with nominal composition CaAl1.5Li0.5 have been investigated in a pursuit for hydrogen-absorbing Li-containing intermetallics. X-ray analysis of the original alloy indicated a coexistence of three closely related Laves phases. The maximum hydrogen capacity, recorded at about 6 MPa and 300 °C, was approximately 2.5 H atoms per formula unit (f.u.). Pressure-composition (p-c) isotherm measurements were taken in the temperature range between 350 and 450 °C up to pressures of 133 kPa. Thermodynamic parameters are derived for two plateau regions in the p-c isotherms. Analysis of these parameters and supporting evidence from X-ray patterns of hydrogenated and dehydrogenated samples suggest: (a) an initial irreversible disproportionation of the original alloy and (b) subsequent reversible hydrogenations, featuring reversible disproportionations of CaAl2 and LiAl intermetallic compounds. Attempts to form additional Li-containing intermetallics, namely CaAlLi, TiMn2- x Li x (x = 0.2, 0.3, 0.4, 0.6) and TiAl2- x Li x (x = 0.3, 0.5), and to hydrogenate them, are reported in brief.

  16. Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}

    DOEpatents

    Marshall, C.D.; Payne, S.A.; Krupke, W.F.

    1996-05-14

    Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.

  17. Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6

    DOEpatents

    Marshall, Christopher D.; Payne, Stephen A.; Krupke, William F.

    1996-01-01

    Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.

  18. NMR probe of pseudogap characteristics in CaAl2-xSi2+x

    NASA Astrophysics Data System (ADS)

    Lue, C. S.; Wang, S. Y.; Fang, C. P.

    2007-06-01

    We report the results of a Al27 nuclear magnetic resonance (NMR) study of CaAl2-xSi2+x , near the stoichiometric composition with x=0 . The low-temperature NMR relaxation rates for stoichiometric (x=0) and nonstoichiometric ( x=-0.1 and 0.1) compounds follow a Korringa law, associated with a finite density of carriers at the Fermi level. High-temperature relaxation rates for x⩾0 go over to a semiconductorlike activated form, providing information about the electronic structure near the Fermi energy. The results are consistent with pseudogap features identified by recent band-structure calculations. An analysis of the pseudogap change vs composition further points out that the band-filling picture is proper for the understanding of the NMR observations in CaAl2-xSi2+x .

  19. Study of two tungstates Ca0.5 Cd0.5 WO4 and Ca0.2 Cd0.8 WO4 by transmission electron microscopy.

    PubMed

    Taoufyq, A; Patout, L; Guinneton, F; Benlhachemi, A; Bakiz, B; Villain, S; Lyoussi, A; Nolibe, G; Gavarri, J-R

    2015-01-01

    To better understand the role of crystal structures and local disorder in the photonic properties of the system (1 - x)CaWO4  - xCdWO4 with 0 < x < 1, two specific phases with compositions x = 0.5 (scheelite phase) and 0.8 (wolframite phase) have been studied by scanning and transmission electron microscopies. High-resolution electron microscopy images and image simulations, associated with X-ray diffraction data, allowed confirming the lattices and space groups I41 /a and P2/c of the two scheelite and wolframite phases, at the local scale. The electron microscopy data show the existence of a high degree of crystallization associated with statistical distribution of Ca or Cd atoms on a Ca1- x Cdx site in each lattice.

  20. The Al-Rich Part of the System CaO-Al 2O 3-MgO . Part I. Phase Relationships

    NASA Astrophysics Data System (ADS)

    Göbbels, M.; Woermann, E.; Jung, J.

    1995-12-01

    In the Al-rich part of the ternary system CaO-Al 2O 3MgO two new ternary phases Ca 2Mg 2Al 28O 46 (CAM-I) and CaMg 2Al 16O 27 (CAM-II) with limited solid solution ranges were found. Due to the fact that the compositions of the Mg-rich end members of these solid solutions lie on the join between hibonite (CaAl 12O 19) and spinel (MgAl 2O 4), the model of the crystal structures of these phases can be constructed by a suitable combination of hibonite and spinel units. Both phases, CAM-I and CAM-II, exhibit solid solution ranges described by a substitution mechanism also found in the binary spinel phase, MgAl 2O 4: 3 Mg 2+ = 2 Al 3+ + □. Thus the ternary phases can be expressed by the chemical formulas. Ca 2Mg 2-3 xAl 28+2 x□ xO 46 for CAM-I with 0 ≤ x ≤ 0.30 and CaMg 2-3 yAl 16+2 y□ yO 27 for CAM-II with 0 ≤ y ≤ 0.2.

  1. Photoluminescence in solid solutions and thin films of tungstates CaWO{sub 4}-CdWO{sub 4}

    SciTech Connect

    Taoufyq, A.; Mauroy, V.; Guinneton, F.; Valmalette, J-C.; Fiorido, T.; Benlhachemi, A.; Lyoussi, A.; Nolibe, G.; Gavarri, J-R.

    2015-07-01

    In this study, we present two types of studies on the luminescence properties under UV and X-ray excitations of solid solutions Ca{sub 1-x}Cd{sub x}WO{sub 4} and of thin layers of CaWO{sub 4} and CdWO{sub 4}. These tungstate based solid solutions are susceptible to be integrated into new radiation sensors, in order to be used in different fields of applications such as reactor measurements, safeguards, homeland security, nuclear nondestructive assays, LINAC emission radiation measurement. However these complex materials were rarely investigated in the literature. One first objective of our studies was to establish correlations between luminescence efficiency, chemical substitution and the degree of crystallization resulting from elaboration conditions. A second objective will be to determine the efficiency of luminescence properties of thin layers of these materials. In the present work, we focus our attention on the role of chemical substitution on photon emissions under UV and X-ray irradiations. The luminescence spectra of Ca{sub 1-x}Cd{sub x}WO{sub 4} polycrystalline materials have been investigated at room temperature as a function of composition (0≤x≤1). In addition, we present a preliminary study of the luminescence of CaWO{sub 4} and CdWO{sub 4} thin layers: oscillations observed in the case of X-ray excitations in the luminescence spectra are discussed. (authors)

  2. Magnetic and microstructural properties of Al substituted M-type Ca-Sr hexaferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Wang, Fanhou; Liu, Xiansong; Shao, Juxiang; Huang, Duohui

    2017-01-01

    In the current study, Al substituted M-type Ca-Sr hexaferrites, with composition Ca0.6Sr0.1La0.3Fe12-xAlxO19 (0≤x≤1.4), have been prepared using the conventional ceramic techniques. The phase composition of the magnetic powders was characterized by X-ray diffraction (XRD). The XRD data show that the magnetic powders with Al content (x) from 0 to 0.8 show α-Fe2O3 as a second phase, while the magnetic powders with x from 1.0 to 1.4 consist of pure magnetoplumbite without any other impurity phases. A field emission scanning electron microscopy (FE-SEM) was used to observe the morphologies of the magnetic powders. FE-SEM images of the magnetic powders show the hexagonal platelet-like shape. The magnetic properties of the magnetic powders were measured by a physical property measurement system-vibrating sample magnetometer (PPMS-VSM). The saturation magnetization (Ms) linearly decreases with Al content (x) from 0 to 1.4. While the remanent magnetization (Mr) first increases with Al content (x) from 0 to 0.2 and then decreases when Al content (x)≥0.2. However, the coercivity (Hc) increases with Al content (x) from 0 to 1.4.

  3. Thermoelectric properties of the Ca(5)Al(2-x)In(x)Sb(6) solid solution.

    PubMed

    Zevalkink, Alex; Swallow, Jessica; Ohno, Saneyuki; Aydemir, Umut; Bux, Sabah; Snyder, G Jeffrey

    2014-11-14

    Zintl phases are attractive for thermoelectric applications due to their complex structures and bonding environments. The Zintl compounds Ca(5)Al(2)In(x)Sb(6)and Ca(5)Al(2)In(x)Sb(6) have both been shown to have promising thermoelectric properties, with zT values of 0.6 and 0.7, respectively, when doped to control the carrier concentration. Alloying can often be used to further improve thermoelectric materials in cases when the decrease in lattice thermal conductivity outweighs reductions to the electronic mobility. Here we present the high temperature thermoelectric properties of the Ca(5)Al(2-x)In(x)Sb(6)solid solution. Undoped and optimally Zn-doped samples were investigated. X-ray diffraction confirms that a full solid solution exists between the Al and In end-members. We find that the Al : In ratio does not greatly influence the carrier concentration or Seebeck effect. The primary effect of alloying is thus increased scattering of both charge carriers and phonons, leading to significantly reduced electronic mobility and lattice thermal conductivity at room temperature. Ultimately, the figure of merit is unaffected by alloying in this system, due to the competing effects of reduced mobility and lattice thermal conductivity.

  4. Electrical properties of pure and (Al, Ga and In) doped CdS/PVA nanocomposites

    NASA Astrophysics Data System (ADS)

    Bala, Vaneeta; Rani, Mamta; Tripathi, S. K.; Kumar, Ranjan

    2015-09-01

    (Al, Ga and In) doped CdS/PVA nanocomposites have been prepared by an in situ chemical method. dc conductivity (σd) measurements of thin films have been done at different temperatures from 288-333 K. The variation of current with voltage is found to be symmetric and linear up to the operating range of the applied voltage. At low temperatures (below 300 K), the conduction mechanism is based on the Davis-Mott model, which involve the presence of localized states originating from a lack of long-range order. In this regime, σ varies exponentially with T-1/4. For high temperatures, conduction is through regular band-type conduction in extended states. From the slope of lnσT1/2 versus T-1/4, we have calculated various Mott’s parameters such as degree of disorder (To), density of states N (Ef), hopping distance (R), and hopping energy (W). The doping of group III elements in CdS/PVA thin films results in a decrease in photoconductivity. Further, n-type conduction behaviour is confirmed in pure and (Al, Ga and In) doped CdS/PVA thin films with Hall measurements. Hall mobility increases with the doping of Ga and In, while it remains almost the same with Al doping in CdS/PVA. Dielectric measurements have also been done to see the effect of frequency at different temperatures (293 K, 313 K and 333 K) and at different applied fields (1 Volt and 3 Volt) on pure and (Al, Ga and In) doped CdS/PVA nanocomposites.

  5. Thermal transformation of quaternary compounds in NaF-CaF{sub 2}-AlF{sub 3} system

    SciTech Connect

    Zaitseva, Julia N.; Yakimov, Igor S.; Kirik, Sergei D.

    2009-08-15

    Details of quaternary compounds formation in the system NaF-CaF{sub 2}-AlF{sub 3} are specified. To achieve this aim, the samples of phases NaCaAlF{sub 6} and Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} have been obtained by high-temperature solid-phase synthesis. Their thermal behavior when heated up to 800 deg. C has been studied using the methods of high-temperature X-ray diffraction (XRD) and thermal analysis (TA). The system under consideration can be regarded as a quasibinary section CaF{sub 2}-NaAlF{sub 4}, where at T=745-750 deg. C invariant equilibrium is implemented with the phases CaF{sub 2}-NaCaAlF{sub 6}-Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14}-(liquid melt)-(NaAlF{sub 4}). The peculiarity of the equilibrium is NaAlF{sub 4} metastability at normal pressure. Below the equilibrium temperature the quaternary phase Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} is stable and NaCaAlF{sub 6} above this temperature. The phase NaCaAlF{sub 6} fixed by rapid quenching from high temperatures and when heated up to 640 deg. C decomposes, yielding Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14}. Further heating in vacuum at temperature up to 740 deg. C results in decomposition of Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} into CaF{sub 2} and Na{sub 3}AlF{sub 6}. The expected reverse transformation of Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14} into NaCaAlF{sub 6} has not been observed under experimental conditions. Transformations in bulk samples reveal direct and reverse transformation of quaternary phases. Synopsis: Thermal transformation of the quaternary compounds in system (NaF-CaF{sub 2}-AlF{sub 3}) was investigated using high-temperature X-ray diffraction (XRD) and thermal analysis (TA). In the system the invariant equilibrium is implemented with the phases CaF{sub 2}-NaCaAlF{sub 6}-Na{sub 2}Ca{sub 3}Al{sub 2}F{sub 14}-(liquid melt)-(NaAlF{sub 4}) at T=745-750 deg. C. - Graphical Abstract: The paper concerns of a small piece of the ternary system (NaF-CaF{sub 2}-AlF{sub 3}) which is very important for

  6. Origin of Ca-Al-rich inclusions. II - Sputtering and collisions in the three-ph8se interstellar medium

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1981-01-01

    The theory put forward by Clayton (1977) for the formation of the Ca-Al-rich inclusions within C3 meteorites is extended to an evolutionary history in a three-phase interstellar medium. Widespread supersonic turbulence in the hot interstellar medium is maintained by supernova shock waves, giving rise to heavy sputtering of the refractory dust. Subsequent reaccumulation with varying dust/gas ratios or varying particle sizes produces isotopically fractionated Ca-Al-rich accumulates. It is thought that the Ca-Al-rich inclusions themselves are formed by the following sequence in the solar system: (1) cold accumulation of larger-than-average Ca-Al-rich particles containing supernova condensate cores into macroscopic (approximately 1 cm) Ca-Al-rich agglomerates, probably by sedimentation; and (2) fusion of the supernova condensates into macroscopic minerals by exothermic chemical reactions that begin when the accumulate has been warmed, thereby releasing energy from the unequilibrated forms accumulated from the interstellar medium.

  7. Temperature-dependent polarized far-infrared optical properties of CaNdAlO 4 single crystal

    NASA Astrophysics Data System (ADS)

    Ma, J. Y.; Bi, C. Z.; Fang, X.; Kamran, M.; Zhao, H. Y.; Zhao, B. R.; Qiu, X. G.

    2008-10-01

    Polarized near-normal incident infrared reflectivity spectra of (1 0 0) CaNdAlO 4 single crystal along the ab plane and c-axis have been measured under different temperatures in the frequency region between 100 and 6000 cm -1. All the spectra are fitted with the factorized form of the dielectric function. Assignment of different phonon modes has been done in both crystalline directions. The dielectric property and optical conductivity of the CaNdAlO 4 crystal are analyzed. The differences between CaNbAlO 4 and SrLaAlO 4 are discussed with respect to vibration frequency and static optical permittivities.

  8. Dissolution of Al2TiO5 inclusions in CaO-SiO2-Al2O3 slags at 1823 K

    NASA Astrophysics Data System (ADS)

    Wang, De-Yong; Liu, Jun; Jiang, Mao-Fa; Tsukihashi, Fumitaka; Matsuura, Hiroyuki

    2011-12-01

    Al-Ti-O inclusions always clog submerged nozzles in Ti-bearing Al-killed steel. A typical synthesized Al2TiO5 inclusion was immersed in a CaO-SiO2-Al2O3 molten slag for different durations at 1823 K. The Al2TiO5 dissolution paths and mechanism were revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Decreased amounts of Ti and Al and increased amounts of Si and Ca at the dissolution boundary prove that inclusion dissolution and slag penetration simultaneously occur. SiO2 diffuses or penetrates the inclusion more quickly than CaO, as indicated by the w(CaO)/ w(SiO2) value in the reaction region. A liquid product (containing 0.7-1.2 w(CaO)/ w(SiO2), 15wt%-20wt% Al2O3, and 5wt%-15wt% TiO2) forms on the inclusion surface when Al2TiO5 is dissolved in the slag. Al2TiO5 initially dissolves faster than the diffusion rate of the liquid product toward the bulk slag. With increasing reaction time, the boundary reaches its largest distance, the Al2TiO5 dissolution rate equals the liquid product diffusion rate, and the dissolution process remains stable until the inclusion is completely dissolved.

  9. Preparation and properties of Eu doped CaAlSiN3 red phosphor

    NASA Astrophysics Data System (ADS)

    He, Pan; Zhang, Ning; Man, Shiqing

    2017-03-01

    The Eu2+ activated CaAlSiN3 phosphor was synthesized by solid-state reaction method under a nitrogen atmosphere at 1550°C for 6h. The phosphors structure was measured by X-ray diffraction (XRD); excitation spectra, emission spectra and decay lifetime were obtained by fluorescence spectrophotometer equipped. It showed a broad excitation band originating from the 4f7-4f65d transition of Eu2+ ion extending to 650nm and the peaking at 467nm; a strong emission band centering at 668nm, and the lifetime of Eu2+ in the CaAlSiN3 host is 1.4227 µs.

  10. Observations of the Minor Species Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report the first detections of Al and Fe, and strict upper limits for Ca(+) in the exosphere of Mercury, using the HIRES spectrometer at the Keck I telescope. We report observed 4-sigma tangent columns of 1.5x10(exp 7) Al atoms per square centimeter at an altitude of 1220 km (1.5 Mercury radii (R(sub M)) from planet center), and that for Fe of 1.6 x 10 per square centimeter at an altitude of 950 km (1.4 R(sub M)). The observed 3-sigma Ca(+) column was 3.9x10(exp 6) ions per square centimeter at an altitude of 1630 km (1.67 R(sub M). A simple model for zenith column abundances of the neutral species were 9.5 x 10(exp 7) Al per square centimeter, and 3.0 x 10(exp 8) Fe per square centimeter. The observations appear to be consistent with production of these species by impact vaporization with a large fraction of the ejecta in molecular form. The scale height of the Al gas is consistent with a kinetic temperature of 3000 - 9000 K while that of Fe is 10500 K. The apparent high temperature of the Fe gas would suggest that it may be produced by dissociation of molecules. A large traction of both Al and Fe appear to condense in a vapor cloud at low altitudes.

  11. EXAFS Study of Refractory Cement Phases: CaAl2O{14}H{20}, Ca2Al2O{13}H{16}, and Ca3Al2O{12}H{12}

    NASA Astrophysics Data System (ADS)

    Richard, N.; Lequeux, N.; Boch, P.

    1995-11-01

    X-ray absorption spectroscopy (EXAFS and XANES) is used for the first time to characterize the local environment of aluminium and calcium in phases formed by hydration of high-alumina cements. Ca K-edge EXAFS spectrum confirms that C2AH8 is an AFm phase. A location is given for the interlayer aluminium cations, which are in a tetrahedrally coordinated hydrated site. Absorption measurements at the AI K-edge show a structural analogy between CAH{10} and gibbsite AH3. The structural model proposed for CAH{10} is based on two rings of six edge-sharing [ Al(OH)6] ^{3-} octahedra, with Ca^{2+} cations linking them together. High-alumina cements are commonly used for refractory applications. Changes in aluminium and calcium environments during CAH{10} dehydration is therefore investigated by X-ray absorption spectroscopy. Dehydration leads to a decrease in the Ca-O distance and reduces the number of oxygen neighbours in the first coordination shell around calcium. La spectroscopie d'absorption des rayons X est utilisée pour la première fois pour caractériser l'environnement local autour de l'aluminium et du calcium dans des phases formées par hydratation de ciments alumineux. Le spectre EXAFS au seuil K du calcium confirme que C2AH8 est une phase AFm. De plus, on indique une position pour les cations aluminium de l'intercouche, qui sont dans un site tétraédrique hydraté. Les expériences d'absorption au seuil K de l'aluminium révèlent une analogie entre la structure de CAH{10} et celle de la gibbsite AH3. Le modèle structural proposé pour CAH{10} est basé sur l'existence de deux anneaux formés chacun de six octaèdres [ Al(OH)6] ^{3-} liés par arêtes, les atomes de calcium assurant un lien entre ces anneaux. Les ciments alumineux sont couramment utilisés pour des applications réfractaires ; c'est pourquoi cette étude suit l'évolution de l'environnement autour du calcium et de l'aluminium au cours de la déshydratation de CAH{10}. Une diminution

  12. Effect of CaF2 on Interfacial Phenomena of High Alumina Refractories with Al Alloy

    NASA Astrophysics Data System (ADS)

    Koshy, Pramod; Gupta, Sushil; Sahajwalla, Veena; Edwards, Phil

    2008-08-01

    An experimental study was conducted to investigate the interfacial phenomena between Al-alloy and industrial grade high alumina refractories containing varying contents of CaF2 at 1250 °C. Interfacial reaction products and phases formed in the heat-treated refractory samples were characterized using electron probe microanalysis (EPMA) and X-ray diffraction (XRD), respectively, while interfacial phenomena including dynamic wetting behavior were analyzed using the sessile drop technique. Refractories containing less than 5 wt pct CaF2 showed good resistance to reactions with the molten alloy, due to the dominance of corundum, and the presence of anorthite at the interface. However, with a further increase in the additive content, a glassy matrix of anorthite with CaF2 was formed. Formation of this phase significantly increased the intensity of reactions resulting in the buildup of an interfacial layer. The study thus revealed the strong catalytic effect of CaF2 on reactions of high alumina refractories with Al-alloy.

  13. Sr isotopic fractionation in Ca-Al inclusions from the Allende meteorite

    USGS Publications Warehouse

    Patchett, P.J.

    1980-01-01

    True relative Sr isotopic compositions, determined by double spiking on Ca-Al inclusions from the Allende meteorite show up to 1.5??? per mass unit mass fractionation relative to the Earth and bulk chondrites. All abnormal inclusions are light-isotope enriched. A lack of isotopically heavy Sr in inclusions would place constraints on the time, place and mechanism of origin of these objects. ?? 1980 Nature Publishing Group.

  14. Evidence from Cd/Ca ratios in foraminifera for greater upwelling off California 4,000 years ago

    USGS Publications Warehouse

    VanGeen, A.; Luoma, N.; Fuller, C.C.; Anima, R.; Clifton, H.E.; Trumbore, S.

    1992-01-01

    UPWELLING of nutrient-rich Pacific deep water along the North American west coast is ultimately driven by the temperature difference between air masses over land and over the ocean. The intensity of upwelling, and biological production in the region, could therefore be affected by anthropogenic climate change. Examination of the geological record is one way to study the link between climate and upwelling. Because Pacific deep water is enriched in cadmium, dissolved cadmium concentrations in coastal water off central California reflect the intensity of upwelling. By demonstrating that the Cd/Ca ratio in the shell of a benthic foraminifer, Elphidiella hannai, is proportional to the Cd concentration in coastal water, we show here that foraminiferal Cd/Ca ratios can be used to detect past changes in mean upwelling intensity. Examination of a sediment core from the mouth of San Francisco Bay reveals that foraminiferal Cd/Ca decreased by about 30% from 4,000 years ago to the present, probably because of a reduction in coastal upwelling. This observation is consistent with predictions of atmospheric general circulation models that northwesterly winds, which drive upwelling, became weaker over this period as summer insolation of the Northern Hemisphere decreased.

  15. Polymer Coated CaAl-Layered Double Hydroxide Nanomaterials for Potential Calcium Supplement

    PubMed Central

    Kim, Tae-Hyun; Lee, Jeong-A; Choi, Soo-Jin; Oh, Jae-Min

    2014-01-01

    We have successfully prepared layered double hydroxide (LDH) nanomaterials containing calcium and aluminum ions in the framework (CaAl-LDH). The surface of CaAl-LDH was coated with enteric polymer, Eudragit®L 100 in order to protect nanomaterials from fast dissolution under gastric condition of pH 1.2. The X-ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electron and transmission electron microscopy revealed that the pristine LDH was well prepared having hydrocalumite structure, and that the polymer effectively coated the surface of LDH without disturbing structure. From thermal analysis, it was determined that only a small amount (less than 1%) of polymer was coated on the LDH surface. Metal dissolution from LDH nanomaterials was significantly reduced upon Eudragit®L 100 coating at pH 1.2, 6.8 and 7.4, which simulates gastric, enteric and plasma conditions, respectively, and the dissolution effect was the most suppressed at pH 1.2. The LDH nanomaterials did not exhibit any significant cytotoxicity up to 1000 μg/mL and intracellular calcium concentration significantly increased in LDH-treated human intestinal cells. Pharmacokinetic study demonstrated absorption efficiency of Eudragit®L 100 coated LDH following oral administration to rats. Moreover, the LDH nanomaterials did not cause acute toxic effect in vivo. All the results suggest the great potential of CaAl-LDH nanomaterials as a calcium supplement. PMID:25490138

  16. Hibonite, Ca2/Al, Ti/24O38, from the Leoville and Allende chondritic meteorites.

    NASA Technical Reports Server (NTRS)

    Keil, K.; Fuchs, L. H.

    1971-01-01

    Hibonite was discovered in light-colored, Ca-Al-Ti-rich and Si-Fe-poor, achondritic inclusions of the Leoville and Allende HL-group chondrites. Two varieties of hibonite occur: one emits a bright red-orange luminescence under electron bombardment and has high amounts of Al2O3 (87.7; 87.9) and low amounts of MgO (0.65; 0.8) and TiO2 (0.68; 0.8). The other emits a bright blue luminescence and is low in Al2O3 (78.7; 79.2) and high in MgO (3.3; 3.7) and TiO2 (6.5; 7.9) (in wt. %). The oxide CaO is about the same in both varieties. It is suggested that the change in the color of the visible luminescence results from changes in composition. The origin of hibonite which occurs in complex mineral assemblages together with anorthite, gelhenite, wollastonite, aluminous diopside, andradite, Ca-pyroxene, perovskite, spinel, taenite, chromite, and pentlandite, and in close proximity to nodules containing calcite, whewellite, forsterite and many of the aforementioned phases, is discussed. The proposition that hibonite and associated phases originated by contact metamorphism and metasomatism of calcite-dolomite bearing assemblages cannot, at this time, be completely ruled out.

  17. Crystallization of Ca-Al-Rich Inclusions: Experimental Studies on the Effects of Repeated Heating Events

    NASA Technical Reports Server (NTRS)

    Paque, Julie M.; Lofgren, Gary E.; Le, Loan

    2000-01-01

    The observed textures and chemistry of Ca-Al-rich inclusions (CAIs) are presumed to be the culmination of a series of repeated heating and cooling events in the early history of the solar nebula. We have examined the effects of these heating/cooling cycles experimentally on a bulk composition representing an average Type B Ca-Al-rich inclusion composition. We have tested the effect of the nature of the starting material. Although the most recent and/or highest temperature event prior to incorporation into the parent body dominates the texture and chemistry of the CAI, prior events also affect the phase compositions and textures. We have determined that heating precursor grains to about 1275 C prior to the final melting event increases the likelihood of anorthite crystallization in subsequent higher temperature events and a prior high temperature even that produced dendritic melilite results in melilite that shows evidence of rapid crystallization in subsequent lower temperature events. Prior low temperature pre-crystallization events produce final ran products with pyroxene compositions similar to Type B Ca-Al-rich inclusions, and the glass (residual liquid) composition is more anorthitic than any other experiments to date. The addition of Pt powder to the starting material appears to enhance the ability of anorthite to nucleate from this composition.

  18. Polymer coated CaAl-layered double hydroxide nanomaterials for potential calcium supplement.

    PubMed

    Kim, Tae-Hyun; Lee, Jeong-A; Choi, Soo-Jin; Oh, Jae-Min

    2014-12-05

    We have successfully prepared layered double hydroxide (LDH) nanomaterials containing calcium and aluminum ions in the framework (CaAl-LDH). The surface of CaAl-LDH was coated with enteric polymer, Eudragit®L 100 in order to protect nanomaterials from fast dissolution under gastric condition of pH 1.2. The X-ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electron and transmission electron microscopy revealed that the pristine LDH was well prepared having hydrocalumite structure, and that the polymer effectively coated the surface of LDH without disturbing structure. From thermal analysis, it was determined that only a small amount (less than 1%) of polymer was coated on the LDH surface. Metal dissolution from LDH nanomaterials was significantly reduced upon Eudragit®L 100 coating at pH 1.2, 6.8 and 7.4, which simulates gastric, enteric and plasma conditions, respectively, and the dissolution effect was the most suppressed at pH 1.2. The LDH nanomaterials did not exhibit any significant cytotoxicity up to 1000 μg/mL and intracellular calcium concentration significantly increased in LDH-treated human intestinal cells. Pharmacokinetic study demonstrated absorption efficiency of Eudragit®L 100 coated LDH following oral administration to rats. Moreover, the LDH nanomaterials did not cause acute toxic effect in vivo. All the results suggest the great potential of CaAl-LDH nanomaterials as a calcium supplement.

  19. Solid-State Reaction Between Fe-Al-Ca Alloy and Al2O3-CaO-FeO Oxide During Heat Treatment at 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Liu, Chengsong; Yang, Shufeng; Li, Jingshe; Ni, Hongwei; Zhang, Xueliang

    2016-12-01

    The aim of this study was to control the physicochemical characteristics of inclusions in steel through appropriate heat treatment. Using a confocal scanning laser microscope (CSLM) and pipe furnace, the solid-state reactions between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide during heat treatment at 1473 K (1200 °C) and the influence of these reactions on the compositions of and phases in the alloy and oxide were investigated by the diffusion couple method. Suitable pretreatment of the oxide using a CSLM and production of the diffusion couple of Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide gave good contact between the alloy and oxide. The diffusion couple was then sealed in a quartz tube with a piece of Ti foil to lower oxygen partial pressure and a block of Fe-Al-Ca alloy was introduced to conduct heat treatment experiments. Solid-state reactions between the alloy and oxide during heat treatment at 1473 K (1200 °C) were analyzed and discussed. A dynamic model to calculate the width of the particle precipitation zone based on the Wagner model of internal oxidation of metal was proposed. This model was helpful to understand the solid-state reaction mechanism between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide.

  20. Solid-State Reaction Between Fe-Al-Ca Alloy and Al2O3-CaO-FeO Oxide During Heat Treatment at 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Liu, Chengsong; Yang, Shufeng; Li, Jingshe; Ni, Hongwei; Zhang, Xueliang

    2017-04-01

    The aim of this study was to control the physicochemical characteristics of inclusions in steel through appropriate heat treatment. Using a confocal scanning laser microscope (CSLM) and pipe furnace, the solid-state reactions between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide during heat treatment at 1473 K (1200 °C) and the influence of these reactions on the compositions of and phases in the alloy and oxide were investigated by the diffusion couple method. Suitable pretreatment of the oxide using a CSLM and production of the diffusion couple of Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide gave good contact between the alloy and oxide. The diffusion couple was then sealed in a quartz tube with a piece of Ti foil to lower oxygen partial pressure and a block of Fe-Al-Ca alloy was introduced to conduct heat treatment experiments. Solid-state reactions between the alloy and oxide during heat treatment at 1473 K (1200 °C) were analyzed and discussed. A dynamic model to calculate the width of the particle precipitation zone based on the Wagner model of internal oxidation of metal was proposed. This model was helpful to understand the solid-state reaction mechanism between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide.

  1. Ca- and Sc-based ternary AlB2-like crystals: a first-principles study

    NASA Astrophysics Data System (ADS)

    Tsetseris, Leonidas

    2017-02-01

    The aluminum diboride (AlB2) crystal structure comprises intercalated metal atoms between honeycomb sheets. In addition to metal diborides, which represent the most common family of AlB2-like structures, many more materials are known to crystallize in this geometry. Here we use first-principles calculations to probe the structural and electronic properties of several such systems. Specifically, we investigate the stability of various polymorphs of CaAuAs, CaAuP, CaCuP, ScAuGe, ScAuSi, Ca2AgSi3 and Ca2AuGe3 and find lattice parameters in excellent agreement with available experimental data. The analysis of densities of states and band structure diagrams show that all materials are metallic. However, the details of band dispersion vary significantly, from typical metals such as CaAuP, to almost semi-metallic behaviour in CaCuP.

  2. CdS/CdSe-sensitized solar cell based on Al-doped ZnO nanoparticles prepared by the decomposition of zinc acetate solid solution

    NASA Astrophysics Data System (ADS)

    Deng, Jianping; Wang, Minqiang; Ye, Wei; Fang, Junfei; Zhang, Pengchao; Yang, Yongping; Yang, Zhi

    2017-01-01

    In the study, Al-doped ZnO nanoparticles (Al-ZnO NPs) were prepared by the decomposition of zinc acetate solid solution. The X-ray diffraction results showed that Al3+ was successfully doped without the formation of Al and Al2O3 impurity phases. The less Al-doping did not change the hexagonal wurtzite crystal structure of ZnO. The ratio of Al to Al + Zn (9.05%) measured by the energy dispersive X-ray also confirmed the formation of Al-ZnO. The Al-ZnO NPs were used as the photoanode material to prepare CdS/CdSe-sensitized solar cell. Compared with the cell based on commercial ZnO NPs (C-ZnO), the short-circuit current density and the fill factor of the cell were increased from 5.8 mA/cm2 and 34.1% (C-ZnO) to 7.78 mA/cm2 and 48.7% (Al-ZnO), respectively. The cell efficiency was increased from 1.01% (C-ZnO) to (1.9%) (Al-ZnO) and the increase percentage reached 88.1%. The results of electrochemical impedance spectroscopy and open-circuit voltage-decay suggested the lower carrier transport resistance and the longer electron lifetime of Al-ZnO-based cell.

  3. Nanostructured Al-ZnO/CdSe/Cu2O ETA solar cells on Al-ZnO film/quartz glass templates

    PubMed Central

    2011-01-01

    The quartz/Al-ZnO film/nanostructured Al-ZnO/CdSe/Cu2O extremely thin absorber solar cell has been successfully realized. The Al-doped ZnO one-dimensional nanostructures on quartz templates covered by a sputtering Al-doped ZnO film was used as the n-type electrode. A 19- to 35-nm-thin layer of CdSe absorber was deposited by radio frequency magnetron sputtering, coating the ZnO nanostructures. The voids between the Al-ZnO/CdSe nanostructures were filled with p-type Cu2O, and therefore, the entire assembly formed a p-i-n junction. The cell shows the energy conversion efficiency as high as 3.16%, which is an interesting option for developing new solar cell devices. PACS: 88.40.jp; 73.40.Lq; 73.50.Pz. PMID:22136081

  4. Nanostructured Al-ZnO/CdSe/Cu2O ETA solar cells on Al-ZnO film/quartz glass templates

    NASA Astrophysics Data System (ADS)

    Wang, Xianghu; Li, Rongbin; Fan, Donghua

    2011-12-01

    The quartz/Al-ZnO film/nanostructured Al-ZnO/CdSe/Cu2O extremely thin absorber solar cell has been successfully realized. The Al-doped ZnO one-dimensional nanostructures on quartz templates covered by a sputtering Al-doped ZnO film was used as the n-type electrode. A 19- to 35-nm-thin layer of CdSe absorber was deposited by radio frequency magnetron sputtering, coating the ZnO nanostructures. The voids between the Al-ZnO/CdSe nanostructures were filled with p-type Cu2O, and therefore, the entire assembly formed a p-i-n junction. The cell shows the energy conversion efficiency as high as 3.16%, which is an interesting option for developing new solar cell devices. PACS: 88.40.jp; 73.40.Lq; 73.50.Pz.

  5. Reconstructing the Late Pleistocene Southern Ocean biological pump using the vertical gradient of Cd/Ca in planktic and benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Charidemou, Miros; Hall, Ian; Ziegler, Martin

    2015-04-01

    arise due to δ13C fractionation between the ocean and the atmosphere. Due to the similarity in the distribution of phosphate and cadmium (Cd) in the ocean and the incorporation of this trace metal into the calcite tests of foraminifera, Cd/Ca ratios can provide an additional proxy for reconstructing the vertical nutrient distribution in the ocean in the same way as δ13C. We present downcore records of Cd/Ca in the deep-dwelling planktic species, Globorotalia truncatulinoides (s) and the benthic species, Cibicidoides wuellerstorfi from sediment core MD02-2588. A new core a core-top calibration of Cd/Ca in G. truncatulinoides, combined with the established calibration for benthic species allows us to estimate seawater Cd within intermediate and deep water masses that bath the study site and to reconstruct the vertical seawater Cd gradient (ΔCdsw) over the past 150,000 years. Comparison of ΔCdsw to Δδ13C from the same samples from core MD02-2588 in the Southern Ocean indicate a very similar downcore variability which supports the use of the Δδ13C method to reconstruct the biological pump during the MPT.

  6. Removal of Tin and Copper from Liquid Iron by Al2O3-Saturated Ca-CaCl2 Slags at 1448 to 1648 K

    NASA Astrophysics Data System (ADS)

    Ghosh, Dinabandhu

    2009-08-01

    The removal of tin and copper from liquid iron by Al2O3-saturated Ca-CaCl2 slags was carried out in separate alumina crucibles at 1448 to 1648 K that showed small partition ratios of less than 1. The tin content of the liquid iron typically decreased from its initial value of 50 to 40 wt pct and the (gross) copper content of the iron-copper mixture from 50 to 45 wt pct, at equilibrium. The small refining efficiencies (37 pct, maximum) of the slags, the initial composition of which were, in most cases, Ca-50 wt pct CaCl2, may be attributed to the significant dissolution in them of alumina, up to 42.0 wt pct (29.6 mol pct), in experiments with Sn, and up to 54.4 wt pct (38.6 mol pct), in experiments with Cu. Treating Ca as the solvent, a number of interaction coefficients such as \\varepsilon_{{{text{Al}}_{ 2} {text{O}}_{ 3} }}^{{{text{Al}}_{ 2} {text{O}}_{ 3} }} , \\varepsilon_{{{text{Al}}_{ 2} {text{O}}_{ 3} }}^{{{text{CaCl}}_{ 2} }} , \\varepsilon_{{{text{Al}}_{ 2} {text{O}}_{ 3} }}^{text{Sn}} , \\varepsilon_{{{text{CaCl}}_{ 2} }}^{{{text{CaCl}}_{ 2} }} , \\varepsilon_{{{text{CaCl}}_{ 2} }}^{text{Sn}} , and \\varepsilon_{text{Sn}}^{text{Sn}} as well as the activity coefficient γ_{{{text{Al}}_{ 2} {text{O}}_{ 3} }}0 were all determined at 1448 K. The activity of Ca (relative to pure liquid Ca) was obtained as approximately 0.65 to 0.75 in the system. Further, the two partial molar mixing/excess properties of alumina bar{H}_{{{text{Al}}_{ 2} {text{O}}_{ 3} }}M and bar{S}_{{{text{Al}}_{ 2} {text{O}}_{ 3} }}^{XS} in the alumina-saturated Ca-17 pct CaCl2- 37 pct Al2O3 (molar basis) slag were evaluated and found to be -118.3(±10.8) kJ/mol and -0.062(±0.007) kJ/K·mol, respectively, at 1448 to 1648 K. In addition, in view of the reported success of CaC2 as a refining agent, some experiments were carried out with CaC2-CaF2 mixtures in alumina, magnesia, and graphite crucibles at 1873 K, to remove tin from liquid Fe-2 wt pct Sn. However, alumina and magnesia crucibles

  7. Network topology for the formation of solvated electrons in binary CaO-Al2O3 composition glasses.

    PubMed

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J K Richard; Benmore, Chris J

    2013-06-18

    Glass formation in the CaO-Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO-Al2O3 glasses using combined density functional theory-reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O-Ca and O-Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al-O is stronger than that of Ca-O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71-74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass.

  8. Petrography, mineralogy, and Mg isotope composition of VICTA: A vigarano CaAl4O7-bearing type A inclusion

    NASA Technical Reports Server (NTRS)

    Greenwood, R. C.; Morse, A.; Long, J. V. P.

    1993-01-01

    Thermodynamic calculations predict that Ca-dialuminate (CaAl4O7) condenses from a cooling gas of solar composition after hibonite and before melilite. Although Ca-dialuminate has now been recorded from Ca Al-rich inclusions (CAI's) in at least 9 meteorites, compared to hibonite it is a relatively rare phase. As pointed out by Michel-Levy et al., the absence of Ca-dialuminate from most hibonite-bearing inclusions poses a serious problem for the condensation model of CAI formation. Here we describe an inclusion which contains abundant CA-dialuminate partially altered to a hercynite-rich (FeAl2O4) assemblage. The evidence from VICTA indicates that compared to all other phases in type A inclusions, Ca-dialuminate is the most susceptible to secondary alteration; a feature which may explain its restricted occurrence. Unaltered Ca-dialuminate and melilite in VICTA display excess Mg-26 indicative of in situ decay of Al-26.

  9. Accumulation of Al, Mn, Fe, Cu, Zn, Cd and Pb by the bryophyte Scapania undulata in three upland waters of different pH.

    PubMed

    Vincent, C D; Lawlor, A J; Tipping, E

    2001-01-01

    Measurements were made of the contents of Al, Mn, Fe, Cu, Zn, Cd and Pb in Scapania undulata in three streams (D2, D5, D11) in the English Lake District. The stream waters had average pH values of 5.35 (D2), 5.81 (D5) and 7.26 (D11), the main differences in other major chemical components being in Mg, Al, Ca and alkalinity. There was generally more metal accumulation in the older parts of the plants, but this was not significant in all cases. Extents of accumulation varied with stream pH and dissolved metal concentration. For Al, accumulation was greatest in streams D2 and D5. Mn accumulated most in D5 and Fe was without preference. Cu, Zn and Cd accumulated mostly in the plants in stream D11 and Pb accumulated more in D5 and D11. In terms of enrichment factors (amount of metal in the plants divided by stream water concentration) the sequence was Zn < Cd < Cu < Mn < Pb < Al < Fe. Laboratory experiments supported the findings of the field data, providing evidence that uptake increases with pH at constant total metal concentration. The results are interpreted qualitatively in terms of the chemical speciation of the metals in the stream water and competition between metal ions and protons at the plant-water interface. It is suggested that Al, Cu, Zn, Cd and Pb behave according to chemical complexation, whereas redox processes and/or colloidal interactions may be significant for Mn and Fe.

  10. CaMn2Al10: Itinerant Mn magnetism on the verge of magnetic order

    DOE PAGES

    Steinke, L.; Simonson, J. W.; Yin, W. -G.; ...

    2015-07-24

    We report the discovery of CaMn2Al10, a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83μB/Mn, significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈ 9% of Rln2. These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010]/χ[001] ≈ 3.5. A strong power-lawmore » divergence χ(T) ~ T–1.2 below 20 K implies incipient ferromagnetic order, an Arrott plot analysis of the magnetization suggests a vanishing low Curie temperature TC ~ 0. Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.« less

  11. CaMn2Al10 : Itinerant Mn magnetism on the verge of magnetic order

    NASA Astrophysics Data System (ADS)

    Steinke, L.; Simonson, J. W.; Yin, W.-G.; Smith, G. J.; Kistner-Morris, J. J.; Zellman, S.; Puri, A.; Aronson, M. C.

    2015-07-01

    We report the discovery of CaMn2Al10 , a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83 μB/Mn , significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈9 % of R ln 2 . These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010 ]/χ[001 ]≈3.5 . A strong power-law divergence χ (T ) ˜T-1.2 below 20 K implies incipient ferromagnetic order with a low Curie temperature TC<2 K . Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.

  12. Besides an ITIM/SHP-1-dependent pathway, CD22 collaborates with Grb2 and plasma membrane calcium-ATPase in an ITIM/SHP-1-independent pathway of attenuation of Ca2+i signal in B cells.

    PubMed

    Chen, Jie; Wang, Hong; Xu, Wei-Ping; Wei, Si-Si; Li, Hui Joyce; Mei, Yun-Qing; Li, Yi-Gang; Wang, Yue-Peng

    2016-08-30

    CD22 is a surface immunoglobulin implicated in negative regulation of B cell receptor (BCR) signaling; particularly inhibiting intracellular Ca2+ (Ca2+i)signals. Its cytoplasmic tail contains six tyrosine residues (Y773/Y783/Y817/Y828/Y843/Y863, designated Y1~Y6 respectively), including three (Y2/5/6) lying within immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that serve to recruit the protein tyrosine phosphatase SHP-1 after BCR activation-induced phosphorylation. The mechanism of inhibiting Ca2+i by CD22 has been poorly understood. Previous study demonstrated that CD22 associated with plasma membrane calcium-ATPase (PMCA) and enhanced its activity (Chen, J. et al. Nat Immunol 2004;5:651-7). The association is dependent on BCR activation-induced cytoplasmic tyrosine phosphorylation, because CD22 with either all six tyrosines mutated to phenylalanines or cytoplasmic tail truncated loses its ability to associate with PMCA. However, which individual or a group of tyrosine residues determine the association and how CD22 and PMCA interacts, are still unclear. In this study, by using a series of CD22 tyrosine mutants, we found that ITIM Y2/5/6 accounts for 34.3~37.1% Ca2+i inhibition but is irrelevant for CD22/PMCA association. Non-ITIM Y4 and its YEND motif contribute to the remaining 69.4~71.7% Ca2+i inhibition and is the binding site for PMCA-associated Grb2. Grb2, independently of BCR cross-linking, is constitutively associated with and directly binds to PMCA in both chicken and human B cells. Knockout of Grb2 by CRISPR/Cas9 completely disrupted the CD22/PMCA association. Thus, our results demonstrate for the first time that in addition to previously-identified ITIM/SHP-1-dependent pathway, CD22 holds a major pathway of negative regulation of Ca2+i signal, which is ITIM/SHP-1-independent, but Y4/Grb2/PMCA-dependent.

  13. Besides an ITIM/SHP-1-dependent pathway, CD22 collaborates with Grb2 and plasma membrane calcium-ATPase in an ITIM/SHP-1-independent pathway of attenuation of Ca2+i signal in B cells

    PubMed Central

    Chen, Jie; Wang, Hong; Xu, Wei-Ping; Wei, Si-Si; Li, Hui Joyce; Mei, Yun-Qing; Li, Yi-Gang; Wang, Yue-Peng

    2016-01-01

    CD22 is a surface immunoglobulin implicated in negative regulation of B cell receptor (BCR) signaling; particularly inhibiting intracellular Ca2+ (Ca2+i)signals. Its cytoplasmic tail contains six tyrosine residues (Y773/Y783/Y817/Y828/Y843/Y863, designated Y1~Y6 respectively), including three (Y2/5/6) lying within immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that serve to recruit the protein tyrosine phosphatase SHP-1 after BCR activation-induced phosphorylation. The mechanism of inhibiting Ca2+i by CD22 has been poorly understood. Previous study demonstrated that CD22 associated with plasma membrane calcium-ATPase (PMCA) and enhanced its activity (Chen, J. et al. Nat Immunol 2004;5:651-7). The association is dependent on BCR activation-induced cytoplasmic tyrosine phosphorylation, because CD22 with either all six tyrosines mutated to phenylalanines or cytoplasmic tail truncated loses its ability to associate with PMCA. However, which individual or a group of tyrosine residues determine the association and how CD22 and PMCA interacts, are still unclear. In this study, by using a series of CD22 tyrosine mutants, we found that ITIM Y2/5/6 accounts for 34.3~37.1% Ca2+i inhibition but is irrelevant for CD22/PMCA association. Non-ITIM Y4 and its YEND motif contribute to the remaining 69.4~71.7% Ca2+i inhibition and is the binding site for PMCA-associated Grb2. Grb2, independently of BCR cross-linking, is constitutively associated with and directly binds to PMCA in both chicken and human B cells. Knockout of Grb2 by CRISPR/Cas9 completely disrupted the CD22/PMCA association. Thus, our results demonstrate for the first time that in addition to previously-identified ITIM/SHP-1-dependent pathway, CD22 holds a major pathway of negative regulation of Ca2+i signal, which is ITIM/SHP-1-independent, but Y4/Grb2/PMCA-dependent. PMID:27276708

  14. Geochemical modeling of leaching of Ca, Mg, Al, and Pb from cementitious waste forms

    SciTech Connect

    Martens, E.; Jacques, D.; Van Gerven, T.; Wang, L.; Mallants, D.

    2010-08-15

    Results from extraction tests on cement-waste samples were simulated with a thermodynamic equilibrium model using a consistent database, to which lead data were added. Subsequent diffusion tests were modeled by means of a 3D diffusive transport model combined with the geochemical model derived from the extraction tests. Modeling results of the leached major element concentrations for both uncarbonated and (partially) carbonated samples agreed well with the extraction test using the set of pure minerals and solid solutions present in the database. The observed decrease in Ca leaching with increasing carbonation level was qualitatively predicted. Simulations also revealed that Pb leaching is not controlled by dissolution/precipitation only. The addition of the calcite-cerrusite solid solution and adsorption reactions on amorphous Fe- and Al-oxides improved the predictions and are considered to control the Pb leaching during the extractions tests. The dynamic diffusive leaching tests were appropriately modeled for Na, K, Ca and Pb.

  15. 12CaO-7Al2O3 Electride Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Rand, Lauren P. (Inventor); Williams, John D. (Inventor); Martinez, Rafael A. (Inventor)

    2017-01-01

    The use of the electride form of 12CaO-7Al2O3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.

  16. Chemical zoning and diffusion of Ca, Al, Mn, and Cr in olivine of springwater pallasite

    NASA Technical Reports Server (NTRS)

    Zhou, Y.; Steele, Ian M.

    1993-01-01

    The pallasites, consisting mainly of Fe-Ni metal and olivine, are thought to represent the interior of a planetary body which slowly cooled from high temperature. Although the olivines are nearly homogeneous, ion microprobe studies revealed variations of Ca, Ti, Co, Cr, and Ni near grain edges. These variations were thought to represent diffusion in response to falling temperature of the parent body. Pallasite cooling rates have been estimated based on kamacite taenite textures but results differ by x100. In principle elemental profiles in olivine can allow estimates of cooling rate if diffusion coefficients are known; in addition, given a cooling rate, diffusion coefficients could be derived. Data are presented which show that apparent diffusion profiles can be measured for Al, Ca, Cr, and Mn which qualitatively agree with expected diffusion rates and have the potential of providing independent estimates of pallasite cooling rates.

  17. Low-temperature heat capacities of CaAl2SiO6 glass and pyroxene and thermal expansion of CaAl2SiO6 pyroxene.

    USGS Publications Warehouse

    Haselton, H.T.; Hemingway, B.S.; Robie, R.A.

    1984-01-01

    Low-T heat capacities (5-380 K) have been measured by adiabatic calorimetry for synthetic CaAl2SiO6 glass and pyroxene. High-T unit cell parameters were measured for CaAl2SiO6 pyroxene by means of a Nonius Guinier-Lenne powder camera in order to determine the mean coefficient of thermal expansion in the T range 25-1200oC. -J.A.Z.

  18. Magnetic behaviour of the MTbF{sub 6} fluoroterbates (M=Cd, Ca, Sr, ({alpha}/{beta})-Ba)

    SciTech Connect

    Josse, M.; El-Ghozzi, M.; Avignant, D.; Andre, G.; Bouree, F.; Isnard, O.

    2012-01-15

    Neutron powder diffraction has been performed on the MTbF{sub 6} fluorides (M=Cd, Ca, Sr, ({alpha}/{beta})-Ba). Four of these fluorides (Cd, Ca, Sr, {beta}-Ba) are built of a (pseudo-) tetragonal packing of [TbF{sub 6}]{sup 2-} chains and only differs by the chains relative orientations. Thus this series represents a valuable opportunity to evaluate the Tb{sup 4+}-Tb{sup 4+} magnetic interactions. All the compounds displayed antiferromagnetic order (T{sub N}=2.70 K (Cd), 2.15 K (Ca), 2.60 K (Sr), 2.10 K ({beta}-Ba)), except for the {alpha} form of BaTbF{sub 6}. The crystal structure of this latter fluoroterbate has also been investigated by means of high-resolution neutron powder diffraction. From Neutron Powder Diffraction data, CdTbF{sub 6} and {beta}-BaTbF{sub 6} magnetic structures were determined, together with the metamagnetic behaviour of {beta}-BaTbF{sub 6} as a function of an external magnetic field. A tentative phase diagram is then given for {beta}-BaTbF{sub 6}. Advantage was taken of the polymorphism of the BaTbF{sub 6} fluoroterbate to analyse, on the basis of topological parameters such as bond distances and angles, the magnetic behaviour of its {alpha} and {beta} forms. It was shown that superexchange interactions are present in {beta}-BaTbF{sub 6}, and that these interactions may also rule the magnetic behaviour of the other MTbF{sub 6} (M=Ca, Sr, Cd) tetravalent terbium fluorides. - Graphical abstract: Powder neutron diffraction revealed magnetic order in four of the five investigated fluoroterbates, while crystal chemical analyses of {alpha} and {beta} forms of BaTbF{sub 6} evidenced the existence of superexchange interactions. Highlights: Black-Right-Pointing-Pointer Five fluoroterbates are investigated by Powder Neutron Diffraction (PND). Black-Right-Pointing-Pointer Four of them are antiferromagnetically ordered at 1.4 K. Black-Right-Pointing-Pointer Magnetic structures of {beta}-BaTbF{sub 6} and CdTbF{sub 6} are determined. Black

  19. Experimental results from Al/p-CdTe/Pt X-ray detectors

    NASA Astrophysics Data System (ADS)

    Abbene, L.; Gerardi, G.; Turturici, A. A.; Del Sordo, S.; Principato, F.

    2013-12-01

    Recently, Al/CdTe/Pt detectors have been proposed for the development of high resolution X-ray spectrometers. Due to the low leakage currents, these detectors allow high electric fields and the pixellization of anodes with the possibility to realize single charge carrier sensing detectors. In this work, we report on the results of electrical and spectroscopic investigations on CdTe diode detectors with Al/CdTe/Pt electrode configuration (4.1×4.1×0.75 and 4.1×4.1×2 mm3). The detectors are characterized by very low leakage currents in the reverse bias operation: 0.3 nA at 25 °C and 2.4 pA at -25 °C under a bias voltage of -1000 V. The spectroscopic performance of the detectors at both low and high photon counting rates were also investigated with a focus on the minimization of time instability, generally termed as polarization, looking for the optimum bias voltage and temperature. Good time stability, during a long-term operation of 10 h, was observed for both detectors at -25 °C and by using an electric field of 5000 V/cm. The 2 mm thick detector exhibited good energy resolution of 6.1%, 2.5% and 2.0% (FWHM) at 22.1 keV, 59.5 and 122.1 keV, respectively. Performance enhancements were obtained by using digital pulse processing techniques, especially at high photon counting rates (300 kcps). The 2 mm thick detector, after a digital pulse shape correction (PSC), is characterized by similar performance to the thin detector ones, opening up to the use of thick CdTe detectors without excessive performance degradations. This work was carried out in the framework of the development of portable X-ray spectrometers for both laboratory research and medical applications.

  20. Partition coefficients for Al, Ca, Ti, Cr, and Ni in olivine obtained by melting experiment on an LL6 chondrite

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Mikouchi, T.; Mckay, G. A.

    1994-01-01

    We report the partition coefficients for Ca, Al, Ti, Cr, and Ni in olivine obtained through a series of melting experiments on an LL6 chondrite under varying conditions of temperature and oxygen fugacity. It is necessary to examine the variation of partition coefficients up to extremely reducing conditions in order to study meteoritic olivines. For Ca, Al, and Cr, the partition coefficients tend to decrease as temperature increases, but do not change even under extremely reducing conditions.

  1. An Unusual Ca-Ti-Al Silicate in a Type A Allende Inclusion

    NASA Astrophysics Data System (ADS)

    Floss, C.; El Goresy, A.; Palme, H.; Spettel, B.; Zinner, E.

    1992-07-01

    During the investigation of a Type A inclusion from Allende, preparatory to experimental studies designed to address the role of volatilization in CAI formation, we noted an unusual Ca-Ti-Al silicate, previously observed only as rare tiny grains in several CAIs. Here we report the petrography and chemistry of inclusion A44 and preliminary data for this mineral. Petrography: A44 is a large, highly convoluted inclusion that is remarkably unaltered compared to most Allende CAIs. Except for several broken fragments and faulted regions, it is surrounded by a well-defined rim sequence ranging from 50 to 100 microns in width. The core of the inclusion consists of irregular to almost perfectly circular patches of spinel poikilitically enclosed by fassaite and melilite, which are separated by large regions of spinel-free melilite. Several of these spinel framboids surround voids containing wollastonite needles similar to those described by Allen et al. (1978). Minor perovskite is primarily associated with spinel, but is also found within melilite. Several grains of the Ca-Ti-Al silicate are present in the inclusion; their occurrences and chemistry are discussed below. Chemistry: Two fragments (A: 249.6 mg and E: 241.1 mg) were analyzed by INAA. Fragment A is uniformly enriched in refractory lithophiles and siderophiles to 13-20 x C1, except for depletions of W and Mo, due to the increased volatility of both elements under oxidizing conditions (Fegley and Palme, 1985). Fragment E shows a wider range of enrichment factors (14-30 x C1) with a Yb anomaly (Yb/Lu = 0.52 x C1) characteristic of Group III patterns. The presence of a Yb anomaly in E and its absence in A may indicate that the inclusion consists of fragments formed under different nebular conditions. Mg isotopic fractionations are +5.5 +- 2.0 for melilite and +5.0 +- 1.6 for spinel, values typical for Allende CAIs. Ca-Ti-Al Silicate: An unusually Ti- and Ca-rich mineral occurs in three distinct modes. Numerous grains

  2. Temporal variability of bioavailable Cd, Hg, Zn, Mn and Al in an upwelling regime.

    PubMed

    Lares, M Lucila; Flores, Muñoz Gilberto; Lara-Lara, Ruben

    2002-01-01

    Monthly variability of Cd, Hg, Zn, Mn and Al concentrations in mussels (Mytilus californianus) soft tissue and brown seaweed (Macrocystis pyrifera) was studied at a pristine rocky shore off San Quintin Bay, Baja California, México. The results were related to climatic and hydrographic conditions and to the physiological state of the mussels (condition index) by correlation analysis and principal component analysis (PCA). A "normalization" to account for the variability induced by the physiological state of the mussel was performed. The PCA was performed in two ways to relate the environmental variables and the condition index to: (1) the metal concentrations in mussels, and (2) the "normalized" mussel concentrations. The association of the variability of Cd with the upwelling season was revealed in both PCAs. The temporal variability of this metal in mussels was highly correlated to that in seaweed, suggesting that the dissolved phase determined the variability of Cd in mussels. However, for Hg, Zn, Mn and Al the results from both PCAs were different. The first PCA showed the relationship of these metals to pluvial precipitation and to the condition index. The PCA for the normalized mussel concentrations showed that, after eliminating the effect of the condition index, only Al was related to pluvial precipitation. Manganese, and to a less degree Zn, were related to these metals in seaweed. Because zinc is an essential element in mussels, some regulation of their internal concentrations is likely. Mercury was not detected in seaweed, but because of its reactive nature, it is not expected that the dissolved fraction could be a significant pathway; therefore, it can be concluded that its temporal variability was determined by the variability in the condition index only.

  3. Identical superconducting gap on different Fermi surfaces of Ca(Al0.5Si0.5)2 with the AlB2 structure

    NASA Astrophysics Data System (ADS)

    Tsuda, S.; Yokoya, T.; Shin, S.; Imai, M.; Hase, I.

    2004-03-01

    Angle-resolved photoemission spectroscopy of Ca(Al0.5Si0.5)2 (CaAlSi), which is a superconductor (transition temperature is 7.7 K) with the AlB2 structure, revealed that superconducting gaps on two Fermi surfaces (FSs) with three-dimensional character around Γ(A) and M(L) in the Brillouin zone provide essentially the same superconducting gap value (˜1.2 meV±0.2 meV). This is in contrast to the case of MgB2, in which different FSs exhibit different gap values. The reduced gap value 2Δ(0)/kBTc of ˜4.2±0.2 classifies CaAlSi as a moderately strong-coupling superconductor.

  4. Acid precipitation and food quality: Effects of dietary Al, Ca and P on bone and liver characteristics in American black ducks and mallards

    USGS Publications Warehouse

    Sparling, D.W.

    1991-01-01

    American black ducks (Anas rubripes) and mallards (A. platyrhynchos) were fed diets varying in concentrations of aluminum (Al). calcium (Ca), and phosphorus (P) for 10 weeks to identify toxic effects of Al under conditions representative of areas with acid precipitation. Femur and liver tissues were analyzed for Al. Ca, and P concentrations and structural characteristics. At two weeks of age, both species demonstrated pronounced differences in femur Al and P concentrations and femur mass from dietary Al and interaction between Ca:P regimen and Al:Low Ca:Low P enhanced Al storage and decreased P and mass in femurs. Femur Ca was lowest in the Low Ca:Low P regimen but was not affected by dietary Al. At 10 weeks, femur and liver Al continued to vary with dietary Al. Elevated Al and reduced Ca lowered modulus of elasticity. Femur P increased with elevated dietary P in black ducks. Elevated dietary P negated some of the effects of dietary A! on femur mass in black ducks. Reduced Ca concentrations weakened bones of both species and lowered both Ca and P. An array of clinical signs including lameness, discoloration of the upper mandible, complete and greenstick fractures, and death were responses to elevated Al and Ca:P regimen. Black ducks seemed to display these signs over a wider range of diets than mallards. Diets of 1,000 mg/kg Al had toxic effects on both species, particularly when combined with diets low in Ca and P.

  5. (Ca/Sr)Au xCd 1- x: Stacking variants of the CrB-FeB series

    NASA Astrophysics Data System (ADS)

    Harms, Wiebke; Dürr, Ines; Daub, Michael; Röhr, Caroline

    2010-01-01

    The structural chemistry of binary 1:1 alkaline earth metallides AIIM ( M=p-block or late transition element) is dominated by planar M zig-zag chains, which are stacked in different orientations (CrB ( c) to FeB ( h) type) and with variable stacking distances (types I and II). As a case study of the electronic influences, the substitution of Au against Cd in the respective Ca and Sr aurides was examined by means of experimental, crystallographic and computational methods. Starting from CaAu, up to 11% of Au can be substituted by Cd without a change in the CrB structure type (orthorhombic, space group Cmcm, a=398.2(1), b=1122.6(6), c=460.9(2) pm, Z=4, R1=0.0303). Starting from SrAu (stacking sequence (hc)2(h2c)2), depending on the proportion of the Cd substitution a successive change to structures with increased hexagonality is observed: In SrAu0.93Cd0.07 (monoclinic, space group P21/m, a=621.3(4), b=472.4(2), c=1216.1(9) pm, β=96.97(5)∘, Z=6, R1=0.0467) the stacking sequence is h2 c, i.e. the hexagonality is 66.67%. A slightly more increased Cd content in SrAu0.78Cd0.22 (orthorhombic, space group Pnma, a=3243.3(8), b=474.17(8), c=626.20(9) pm, Z=16, R1=0.0682) drives the hexagonality to 75%, with a (h3c)2 stacking sequence known from several rare earth nickel compounds. Further Cd substitution is not possible. However, in the Cd-rich section of the two series, where the CsCl/β-brass structure type occurs for both alkaline earth elements, a small Au substitution, as determined from powder data by Rietveld refinements, is possible. The substitution limit and the stability ranges of the CsCl and the CrB type can be rationalized from the calculated band structures. Geometrical and electronic criteria are used to compare and discuss the stability ranges in a structural map.

  6. Network topology for the formation of solvated electrons in binary CaO–Al2O3 composition glasses

    PubMed Central

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J. K. Richard; Benmore, Chris J.

    2013-01-01

    Glass formation in the CaO–Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO–Al2O3 glasses using combined density functional theory–reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O–Ca and O–Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al–O is stronger than that of Ca–O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71–74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass. PMID:23723350

  7. Crystal growth and spectroscopic properties of Cr3+-doped CaGdAlO4

    NASA Astrophysics Data System (ADS)

    Zhang, Zhu; Huang, Yisheng; Zhang, Lizhen; Sun, Shijia; Yuan, Feifei; Lin, Zhoubin

    2017-04-01

    A Cr3+:CaGdAlO4 single crystal with dimensions of ∅21 × 33 mm3 was grown successfully by Czochralski method for the first time. Its spectral properties including polarized absorption spectra, polarized fluorescence spectra, excitation spectrum and fluorescence decay curves were investigated in detail. The absorption cross-sections at around 573 nm corresponding to the 4A2 → 4T2 transition of Cr3+ ions are 4.75 × 10-20 and 2.56 × 10-20 cm2 for σ- and π-polarizations, respectively. The excitation spectrum shows two broad and intense absorption bands at about 390 nm and 570 nm, which are associated with the 4A2 → 4T1 and 4A2 → 4T2 transitions of Cr3+ ions, respectively. The emission band with peak at around 744 nm is ascribed to the 2E → 4A2 transition of Cr3+ ions, with the emission cross-sections of 5.55 × 10-22 and 5.41 × 10-22 cm2 for σ- and π-polarizations, respectively. The fluorescence lifetime is 4.35 ms at room temperature. The Dq/B value is 2.72, which means that Cr3+ ions occupy the lattice sites with strong crystal field strength. The results show that Cr3+:CaGdAlO4 crystal can be regarded as a potential laser gain medium.

  8. Removal of Phosphorus in Silicon by the Formation of CaAl2Si2 Phase at the Solidification Interface

    NASA Astrophysics Data System (ADS)

    Sun, Liyuan; Wang, Zhi; Chen, Hang; Wang, Dong; Qian, Guoyu

    2017-02-01

    To fully understand the role of CaAl2Si2 phase in concentrating the non-metallic impurity phosphorus, an experiment of directional solidification of Al-70 at. pct Si alloy with extreme small lowering rate 0.05 mm min-1 was carried out. With good dynamic condition for the diffusion of impurity (Ca, Al, P) from silicon to the S/L interface, the CaAl2Si2 phase with 0.6-0.7 at. pct P was successfully observed by Electron Probe Micro Analyzer (EPMA), and its distribution character was originally presented. This impurity phase was widely detected in the refined sample but only at the interface of silicon crystal and Al-Si alloy which contributed to the deep removal of impurity P. The formation mechanism of CaAl2Si2-P phase was thus explored, in which the microsegregation and concentration of element P, Ca, Al in front of S/L interface were crucial. After acid leaching, the P content decreased from the original 23 ppm to below 5 ppm. Compared with normal solidification, a 16 pct higher removal efficiency of P was obtained in this study.

  9. Influence of Ca and pH on the uptake and effects of Cd in Folsomia candida exposed to simplified soil solutions.

    PubMed

    Ardestani, Masoud M; Ortiz, Maria Diez; van Gestel, Cornelis A M

    2013-08-01

    The present study sought to quantify the components of a biotic ligand model (BLM) for the effects of Cd on Folsomia candida (Collembola). Assuming that soil porewater is the main route of exposure and to exclude the effects of soil particles on metal availability, animals were exposed for 7 d to different Cd concentrations between 0.1 mM and 100 mM in simplified soil solutions at different Ca concentrations (0.2 mM, 0.8 mM, 3.2 mM, and 12.8 mM) or at different pH (5.0, 6.0, and 7.0). Higher Ca concentrations decreased the toxicity of Cd (adult survival) in test solutions, whereas toxicity was slightly lower at pH 7 and 6 than at pH 5, suggesting a mitigating effect of Ca and to a lesser extent pH on Cd toxicity to F. candida. Internal Cd concentrations in the animals increased with increasing exposure level but were significantly reduced by increasing Ca concentrations and were not significantly affected by pH. By using Langmuir isotherms, binding constants for Cd, Ca, and protons and the fraction of binding sites occupied by Cd were calculated and used to predict effects of Cd on survival. Predicted toxicity showed a good agreement with measured responses when Ca and pH were used as separate factors or combined together. The present study shows indications of protective effects of Ca but less of protons on the toxicity and uptake of Cd in F. candida on exposure to simplified soil solutions, which can be described using the principles of a biotic ligand model.

  10. CO₂ sorbents with scaffold-like Ca-Al layered double hydroxides as precursors for CO₂ capture at high temperatures.

    PubMed

    Chang, Po-Hsueh; Lee, Tai-Jung; Chang, Yen-Po; Chen, San-Yuan

    2013-06-01

    A highly stable high-temperature CO₂ sorbent consisting of scaffold-like Ca-rich oxides (Ca-Al-O) with rapid absorption kinetics and a high capacity is described. The Ca-rich oxides were prepared by annealing Ca-Al-NO₃ layered double hydroxide (LDH) precursors through a sol-gel process with Al(O(i)P)₃ and Ca(NO₃)₂ with Ca(2+)/Al(3+) ratios of 1:1, 2:1, 4:1, and 7:1. XRD indicated that only LDH powders were formed for Ca(2+)/Al(3+) ratios of 2:1. However, both LDH and Ca(OH)₂ phases were produced at higher ratios. Both TEM and SEM observations indicated that the Ca-Al-NO₃ LDHs displayed a scaffold-like porous structure morphology rather than platelet-like particles. Upon annealing at 600 °C, a highly stable porous network structure of the CaO-based Ca-Al-O mixed oxide (CAMO), composed of CaO and Ca₁₂Al₁₄O₃₃, was still present. The CAMO exhibited high specific surface areas (up to 191 m(2)g(-1)) and a pore size distribution of 3-6 nm, which allowed rapid diffusion of CO₂ into the interior of the material, inducing fast carbonation/calcination and enhancing the sintering-resistant nature over multiple carbonation/calcination cycles for CO₂ absorption at 700 °C. Thermogravimetric analysis results indicated that a CO₂ capture capacity of approximately 49 wt% could be obtained with rapid absorption from the porous 7:1 CAMO sorbents by carbonation at 700 °C for 5 min. Also, 94-98% of the initial CO₂ capture capability was retained after 50 cycles of multiple carbonation/calcination tests. Therefore, the CAMO framework is a good isolator for preventing the aggregation of CaO particles, and it is suitable for long-term cyclic operation in high-temperature environments.

  11. Petrography and classification of Ca, Al-rich and olivine-rich inclusions in the Allende CV3 chondrite

    NASA Technical Reports Server (NTRS)

    Kormacki, A. S.; Wood, J. A.

    1984-01-01

    The results of a detailed, systematic petrographic survey of Ca, Al-rich and olivine-rich inclusions in the Allende CV3 chondrite are reported, and a new classification system based on clearly defined and readily applied petrographic criteria is presented. Most Allende inclusions are aggregates containing one or more of three distinct constituents: (1) rimmed concentric objects enriched in Al- and Ti-rich oxide minerals and various amounts of Ca-rich silicates; (2) porous, 'fine-grained' chaotic material enriched in Ca-rich silicates, especially clinopyroxenes and garnets; and (3) porous, 'fine-grained', mafic inclusion matrix, enriched in olivine, pyroxene, and feldspathoids. Two texturally distinct varieties of inclusions consist primarily of inclusion matrix: unrimmed olivine aggregates and rimmed olivine aggregates. Ca, Al-rich inclusions are classified on the basis of the size and abundance of their constituent concentric objects. Some fundamental relationships among Allende inclusions that previusly have not been emphasized are discussed.

  12. Control of mean ionic radius at Ca site by Sr co-doping for Ce doped LiCaAlF6 single crystals and the effects on optical and scintillation properties

    NASA Astrophysics Data System (ADS)

    Yokota, Yuui; Yamaji, Akihiro; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2014-10-01

    Sr co-doped Ce:LiCaAlF6 [Ce:Li(Ca,Sr)AlF6] crystals with various Ca/Sr ratios were grown by a micro-pulling-down (μ-PD) method and effects of Sr co-doping on crystal structure, chemical composition, optical and scintillation properties for Ce:LiCaAlF6 crystals were investigated as a neutron scintillator. High transparent Ce2%:Li(Ca,Sr)AlF6 crystals with 2% and 5% Sr contents were obtained while Ce2%:Li(Ca,Sr)AlF6 crystals with 10% and 20% Sr contents included milky parts in the crystals. a- and c-axis lengths of Ce:Li(Ca,Sr)AlF6 phase systematically increased with an increase of Sr content. In addition to the emission at 284 and 308 nm from Ce3+ ion, emission peaks at 367 nm appeared by Sr co-doping.

  13. Dynamic behaviour of Cd2+ adsorption in equilibrium batch studies by CaCO3(-)-rich Corbicula fluminea shell.

    PubMed

    Ismail, Farhah Amalya; Aris, Ahmad Zaharin; Latif, Puziah Abdul

    2014-01-01

    This work presents the structural and adsorption properties of the CaCO3(-)-rich Corbicula fluminea shell as a natural and economic adsorbent to remove Cd ions from aqueous solutions under batch studies. Experiments were conducted with different contact times, various initial concentrations, initial solution pH and serial biosorbent dosage to examine the dynamic characterization of the adsorption and its influence on Cd uptake capacity. The characterization of the C. fluminea shell using SEM/EDX revealed that the adsorbent surface is mostly impregnated by small particles of potentially calcium salts. The dominant Cd adsorption mechanism is strongly pH and concentration dependent. A maximum Cd removal efficiency of 96.20% was obtained at pH 7 while the optimum adsorbent dosage was observed as 5 g/L. The Langmuir isotherm was discovered to be more suitable to represent the experimental equilibrium isotherm results with higher correlation coefficients (R(2) > 0.98) than Freundlich (R(2) < 0.97).The correlation coefficient values (p < 0.01) indicated the superiority of the Langmuir isotherm over the Freundlich isotherm.

  14. Spinel to CaFe2O4 transformation: mechanism and properties of beta-CdCr2O4.

    PubMed

    Arévalo-López, Angel M; Dos santos-García, Antonio J; Castillo-Martínez, Elizabeth; Durán, Alejandro; Alario-Franco, Miguel A

    2010-03-15

    The CdCr(2)O(4) spinel transforms to a 10.6% denser new polymorph of the CaFe(2)O(4)-type structure at 10 GPa and 1100 degrees C. This new polymorph has a honeycomb-like structure because of double rutile-type chains formed by [Cr-O(6)] edge-shared octehedra. This crystal structure is prone to be magnetically frustrated and presents low-dimensional antiferromagnetism at 25 K < T < 150 K, accompanied by more complex interactions as the temperature decreases. These transitions are evidenced by magnetic susceptibility and heat capacity measurements. We also discuss a possible structural mechanism for the transformation.

  15. Simultaneous determination of Ca, Cu, Ni, Zn and Cd binding strengths with fulvic acid fractions by Schubert's method

    USGS Publications Warehouse

    Brown, G.K.; MacCarthy, P.; Leenheer, J.A.

    1999-01-01

    The equilibrium binding of Ca2+, Ni2+, Cd2+, Cu2+ and Zn2+ with unfractionated Suwannee river fulvic acid (SRFA) and an enhanced metal binding subfraction of SRFA was measured using Schubert's ion-exchange method at pH 6.0 and at an ionic strength (??) of 0.1 (NaNO3). The fractionation and subfractionation were directed towards obtaining an isolate with an elevated metal binding capacity or binding strength as estimated by Cu2+ potentiometry (ISE). Fractions were obtained by stepwise eluting an XAD-8 column loaded with SRFA with water eluents of pH 1.0 to pH 12.0. Subfractions were obtained by loading the fraction eluted from XAD-8 at pH 5.0 onto a silica gel column and eluting with solvents of increasing polarity. Schuberts ion exchange method was rigorously tested by measuring simultaneously the conditional stability constants (K) of citric acid complexed with the five metals at pH 3.5 and 6.0. The logK of SRFA with Ca2+, Ni2+, Cd2+, Cu2+ and Zn2+ determined simultaneously at pH 6.0 follow the sequence of Cu2+>Cd2+>Ni2+>Zn2+>Ca2+ while all logK values increased for the enhanced metal binding subfraction and followed a different sequence of Cu2+>Cd2+>Ca2+>Ni2+>Zn2+. Both fulvic acid samples and citric acid exhibited a 1:1 metal to ligand stochiometry under the relatively low metal loading conditions used here. Quantitative 13C nuclear magnetic resonance spectroscopy showed increases in aromaticity and ketone content and decreases in aliphatic carbon for the elevated metal binding fraction while the carboxyl carbon, and elemental nitrogen, phosphorus, and sulfur content did not change. The more polar, elevated metal binding fraction did show a significant increase in molecular weight over the unfractionated SRFA. Copyright (C) 1999 Elsevier Science B.V.

  16. Refinement of Eutectic Si in High Purity Al-5Si Alloys with Combined Ca and P Additions

    NASA Astrophysics Data System (ADS)

    Ludwig, Thomas Hartmut; Li, Jiehua; Schaffer, Paul Louis; Schumacher, Peter; Arnberg, Lars

    2015-01-01

    The effects of combined additions of Ca and P on the eutectic Si in a series of high purity Al-5 wt pct Si alloys have been investigated with the entrained droplet technique and complementary sets of conventional castings. Differential scanning calorimetry (DSC) and thermal analysis were used to investigate the eutectic droplet undercooling and the recalescence undercooling, respectively. Optical microscopy, SEM, EPMA, and TEM were employed to characterize the resultant microstructures. It was found that 250 ppm Ca addition to Al-5Si wt pct alloys with higher P contents leads to a significant increase of the eutectic droplet undercooling. For low or moderate cooling rates, the TEM results underline that Ca additions do not promote Si twinning. Thus, a higher twin density cannot be expected in Ca containing Al-Si alloys after, e.g., sand casting. Consequently, a refinement of the eutectic Si from coarse flake-like to fine plate-like structure, rather than a modification of the eutectic Si to a fibrous morphology, was achieved. This strongly indicates that the main purpose of Ca additions is to counteract the coarsening effect of the eutectic Si imposed by higher P concentrations. Significant multiple Si twinning was observed in melt-spun condition; however, this can be attributed to the higher cooling rate. After DSC heating (slow cooling), most of Si twins disappeared. Thus, the well-accepted impurity-induced twinning mechanism may be not valid in the case of Ca addition. The possible refinement mechanisms were discussed in terms of nucleation and growth of eutectic Si. We propose that the pre-eutectic Al2Si2Ca phase and preferential formation of Ca3P2 deactivate impurity particles, most likely AlP, poisoning the nucleation sites for eutectic Si.

  17. Novel humanized anti-CD20 antibody BM-ca binds to a unique epitope and exerts stronger cellular activity than others.

    PubMed

    Kobayashi, Hideaki; Matsunaga, Yuka; Uchiyama, Yumiko; Nagura, Kenji; Komatsu, Yasuhiko

    2013-04-01

    Cellular activity of BM-ca, a novel humanized anti-CD20 antibody, was quantitatively compared with that of two other anti-CD20 antibodies used for clinical practice, rituximab and ofatumumab. The results of a complement-dependent cytotoxicity (CDC) assay revealed that the strongest antibody was ofatumumab, followed by BM-ca, with rituximab being the weakest. Ofatumumab and BM-ca were effective not only against rituximab-sensitive SU-DHL-4 cells but also against rituximab-resistant RC-K8 cells. In an antibody-dependent cell-mediated cytotoxicity (ADCC) assay, although the effective concentrations against SU-DHL-4 cells were almost the same among these three antibodies, the maximum cytotoxic level was the highest for BM-ca. In an anti-cell proliferation assay using SU-DHL-4 cells, BM-ca was the most effective and ofatumumab, the weakest. Against RC-K8 cells, only BM-ca was effective. When combined with each of four cancer chemotherapeutics (prednisolone, vincristine, hydroxydaunorubicin, and cisplatin), BM-ca exerted the most effective combinatorial anti-cell proliferation activity. To assess the in vivo effect of BM-ca, we intravenously administered BM-ca into cynomolgus monkeys and found that the peripheral B-cell levels did not decrease in half of the animals. Sequencing of cDNA encoding CD20 of cynomolgus monkeys revealed that the responders and nonresponders had Leu/Pro (hetero) and Leu/Leu (homo) at amino acid (a.a.) position 160, respectively, suggesting that the epitope recognized by BM-ca was around this a.a. By analyzing reactivity to synthetic peptides, the epitope recognized by BM-ca was estimated to be a.a.'s 156-166, not shared with rituximab and ofatumumab. These results suggest BM-ca to be a promising anti-CD20 antibody having superior properties and recognizing a unique epitope.

  18. Early development of Al, Ca, and Na compositional gradients in labradorite leached in pH 2 HCl solutions

    NASA Astrophysics Data System (ADS)

    Nesbitt, H. W.; Skinner, W. M.

    2001-03-01

    Labradorite reacted with HCl solution (pH = 2.0) develops leached layers extending to about 500 Å depth after 12 h leaching, and to 1500 Å depth after 143 h leaching. Accurate Al, Ca, and Na compositional depth profiles were measured using x-ray photoelectron spectroscopy (XPS), with compositional accuracy of about 10% and depth resolution of about 50 Å. XPS analyses of pristine K-feldspar and labradorite surfaces yield Ca, Al, Si, and O analyses within about 5% of electron microprobe results. Alkali element analyses are inaccurate due to preferential sputtering or mobility induced by fracture. The accurate compositional depth profiles yield well constrained diffusion coefficients and moving boundary velocities for Ca and Al. Na, Ca, and Al compositional gradients change character after about 2 days of leaching, from a convex upward hyperboloid to a sigmoid shape. Thereafter, the feldspar diffusion front is clearly separated from the surface (where silica dissolution occurs), with the diffusion front migrating into the feldspar at about 4 × 10 -11 cm/s. Al diffuses down the compositional gradient at about 2.5 × 10 -17 cm 2/s and Ca diffuses almost twice as fast (4.0 × 10 -17 cm 2/s). The solution-solid interface and active leaching zone are separated (after 2 days) by a Si-rich zone virtually devoid of Na, Ca, and Al. Diffusion rates through this Si-rich overlayer may be very rapid and approach rates observed in aqueous solutions. Diffusive release of Ca and Al from labradorite cannot be modelled accurately with mathematical solutions where diffusion through homogeneous media is assumed. During leaching, Ca and Al apparently diffuse by "jumping" to, and residing on, previously vacated structural sites of the feldspar. The probability of Ca and Al migrating towards solution consequently is greater than their probability of migrating towards pristine plagioclase, primarily because there are many more "vacant" sites in the leached zone than in pristine

  19. Photoluminescence and thermoluminescence studies of CaAl2O4:Dy(3+) phosphor.

    PubMed

    Ziyauddin, Mohammad; Tigga, Shalinta; Brahme, Nameeta; Bisen, D P

    2016-02-01

    Calcium aluminate phosphors activated by Dy(3+) have been prepared by a combustion method at a temperature of 600°C. Photoluminescence (PL) and thermoluminescence (TL) properties of gamma-irradiated Dy-doped calcium aluminate were investigated. The PL spectrum shows a broad peak around 488 nm and 573 nm, under 347 nm excitation. Thermoluminescence studies were performed for different concentrations of Dy. Optimum intensity of photoluminescence was found for 0.02 mol% concentration of Dy. It was found that initially the peak TL intensity increases with increasing concentration of Dy in the CaAl2O4 host, attains a maximum value for 0.05 mol% concentration and decreases with further increase in the doping concentration due to concentration quenching.

  20. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  1. Negative Differential Resistance of CaF 2/CdF 2 Triple-Barrier Resonant-Tunneling Diode on Si(111) Grown by Partially Ionized Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahiro; Aoki, Yuichi; Saito, Wataru; Tsuganezawa, Mika

    1999-02-01

    Room-temperature negative differential resistance (NDR) of triple-barrier cadmium di-fluoride (CdF2)/calcium di-fluoride (CaF2) heterostructure resonant-tunneling diode (RTD) on a Si(111) substrate has been demonstrated. CdF2/CaF2 multilayered heterostructures were grown on a Si(111) substrate using partially ionized beam epitaxy to obtain atomically flat interfaces. The RTD structures, which consist of triple CaF2 energy barriers and double CdF2 quantum wells, were fabricated by electron beam (EB) lithography and dry etching to avoid thermal and chemical damage to the CdF2 layers. In the current-voltage characteristics of the RTD, NDR was clearly observed even at room temperature and the maximum peak-to-valley (P/V) ratio was about 6.

  2. Model of Silicon Refining During Tapping: Removal of Ca, Al, and Other Selected Element Groups

    NASA Astrophysics Data System (ADS)

    Olsen, Jan Erik; Kero, Ida T.; Engh, Thorvald A.; Tranell, Gabriella

    2016-12-01

    A mathematical model for industrial refining of silicon alloys has been developed for the so-called oxidative ladle refining process. It is a lumped (zero-dimensional) model, based on the mass balances of metal, slag, and gas in the ladle, developed to operate with relatively short computational times for the sake of industrial relevance. The model accounts for a semi-continuous process which includes both the tapping and post-tapping refining stages. It predicts the concentrations of Ca, Al, and trace elements, most notably the alkaline metals, alkaline earth metal, and rare earth metals. The predictive power of the model depends on the quality of the model coefficients, the kinetic coefficient, τ, and the equilibrium partition coefficient, L for a given element. A sensitivity analysis indicates that the model results are most sensitive to L. The model has been compared to industrial measurement data and found to be able to qualitatively, and to some extent quantitatively, predict the data. The model is very well suited for alkaline and alkaline earth metals which respond relatively fast to the refining process. The model is less well suited for elements such as the lanthanides and Al, which are refined more slowly. A major challenge for the prediction of the behavior of the rare earth metals is that reliable thermodynamic data for true equilibrium conditions relevant to the industrial process is not typically available in literature.

  3. Model of Silicon Refining During Tapping: Removal of Ca, Al, and Other Selected Element Groups

    NASA Astrophysics Data System (ADS)

    Olsen, Jan Erik; Kero, Ida T.; Engh, Thorvald A.; Tranell, Gabriella

    2017-04-01

    A mathematical model for industrial refining of silicon alloys has been developed for the so-called oxidative ladle refining process. It is a lumped (zero-dimensional) model, based on the mass balances of metal, slag, and gas in the ladle, developed to operate with relatively short computational times for the sake of industrial relevance. The model accounts for a semi-continuous process which includes both the tapping and post-tapping refining stages. It predicts the concentrations of Ca, Al, and trace elements, most notably the alkaline metals, alkaline earth metal, and rare earth metals. The predictive power of the model depends on the quality of the model coefficients, the kinetic coefficient, τ, and the equilibrium partition coefficient, L for a given element. A sensitivity analysis indicates that the model results are most sensitive to L. The model has been compared to industrial measurement data and found to be able to qualitatively, and to some extent quantitatively, predict the data. The model is very well suited for alkaline and alkaline earth metals which respond relatively fast to the refining process. The model is less well suited for elements such as the lanthanides and Al, which are refined more slowly. A major challenge for the prediction of the behavior of the rare earth metals is that reliable thermodynamic data for true equilibrium conditions relevant to the industrial process is not typically available in literature.

  4. Electronic structure, mechanical, and optical properties of CaO·Al2O3 system: a first principles approach

    NASA Astrophysics Data System (ADS)

    Hussain, A.; Mehmood, S.; Rasool, M. N.; Aryal, S.; Rulis, P.; Ching, W. Y.

    2016-08-01

    A comprehensive study of the structure, bonding, mechanical and optical properties of five stable phases within the calcium aluminate (Ca-Al-O) series with different CaO to Al2O3 proportions has been carried out using the density functional theory based orthogonalized linear combination of atomic orbitals (OLCAO) method. The phases are C3A, C12A7-crystal, CA, CA2, and CA6 and the oxygen deficient C12A7-electride phase. These five stable phases are wide band gap insulators with energy gap values ranging from 3.85 to 4.62 eV. The charge neutral C12A7-crystal has localized defective states in the gap whereas the C12A7-electride phase has a region of metallic bands of about 2 eV wide in the gap. Effective charge and bond order calculations reveal intimate details of electronic structure and bonding in relation to the aluminate contents in the series. It is shown that Al-O bonds dominate the Ca-O bonds in determining the crystal strength with CA6 having the highest and C12A7 having the lowest bond order density. Calculations of elastic coefficients and mechanical properties in these crystals show a high degree of diversity and anisotropic behavior consistent with the bond order calculations. The refractive index values from optical properties calculations are in good agreement with available literature. Other results furnish more insights for the Ca-Al-O series and provide the opportunity for further investigations on similar or more complicated quaternary systems with potential novel properties.

  5. Scintillation characteristics of LiCaAlF6-based single crystals under X-ray excitation

    NASA Astrophysics Data System (ADS)

    Nikl, M.; Bruza, P.; Panek, D.; Vrbova, M.; Mihokova, E.; Mares, J. A.; Beitlerova, A.; Kawaguchi, N.; Fukuda, K.; Yoshikawa, A.

    2013-04-01

    LiCaAlF6-based scintillators are studied under X- and soft gamma-ray excitations. Under nanosecond pulsed soft X-ray laser excitation the scintillation decay is measured with extremely high dynamical resolution and broad time scale. The undoped LiCaAlF6 shows complex temperature dependence of exciton luminescence and tunneling-driven energy transfer process in scintillation decay. In both the Ce and Eu-doped LiCaAlF6 the dominant part of measured scintillation decay is due to prompt recombination of electrons and holes at the doped emission centers. Nevertheless, the measured light yield value is considerably lower with respect to the derived upper limits. Possible origin of its deterioration is discussed.

  6. Dihydroxyacetone (DHA) monomer complexes with CaBr2 and CdCl2.

    PubMed

    Rlepokura, Katarzyna; Lis, Tadeusz

    2008-03-01

    Two hydrated complexes of monomeric dihydroxyacetone (DHA; the simplest ketose), viz. the calcium bromide complex bis(mu-dihydroxyacetone)bis[tetraaquacalcium(II)] tetrabromide (isomorphous with the chloride compound reported previously), [Ca(2)(C(3)H(6)O(3))(2)(H(2)O)(8)]Br(4), (2e), and the cadmium chloride complex poly[[bis(mu-dihydroxyacetone)bis[bis(dihydroxyacetone)cadmium(II)

  7. Investigation of Al doping concentration effect on the structural and optical properties of the nanostructured CdO thin film

    NASA Astrophysics Data System (ADS)

    Gencer Imer, Arife

    2016-04-01

    Nanostructured aluminium (Al) doped cadmium oxide (CdO) films with highly electrical conductivity and optical transparency have been deposited for the first time on soda-lime glass substrates preheated at 250 °C by ultrasonic spray coating technique. The aluminium dopant content in the CdO film was changed from 0 to 5 at%. The influencing of Al doping on the structural, morphological, electrical and optical properties of the CdO nanostructured films has been investigated. Atomic force microscopy study showed the grain size of the films is an order of nanometers, and it decreases with increase in Al dopant content. All the films having cubic structure with a lattice parameter 4.69 Å were determined via X ray diffraction analysis. The optical band gap value of the films, obtained by optical absorption, was found to increase with Al doping. Electrical studies exhibited mobility, carrier concentration and resistivity of the film strongly dependent on the doping content. It has been evaluated that optical band gap, and grain size of the nanostructured CdO film could be modified by Al doping.

  8. Microstructural and Mössbauer properties of low temperature synthesized Ni-Cd-Al ferrite nanoparticles

    PubMed Central

    2011-01-01

    We report the influence of Al3+ doping on the microstructural and Mössbauer properties of ferrite nanoparticles of basic composition Ni0.2Cd0.3Fe2.5 - xAlxO4 (0.0 ≤ x ≤ 0.5) prepared through simple sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM), Fourier transformation infrared (FTIR), and Mössbauer spectroscopy techniques were used to investigate the structural, chemical, and Mössbauer properties of the grown nanoparticles. XRD results confirm that all the samples are single-phase cubic spinel in structure excluding the presence of any secondary phase corresponding to any structure. SEM micrographs show the synthesized nanoparticles are agglomerated but spherical in shape. The average crystallite size of the grown nanoparticles was calculated through Scherrer formula and confirmed by TEM and was found between 2 and 8 nm (± 1). FTIR results show the presence of two vibrational bands corresponding to tetrahedral and octahedral sites. Mössbauer spectroscopy shows that all the samples exhibit superparamagnetism, and the quadrupole interaction increases with the substitution of Al3+ ions. PMID:21851597

  9. Effect of Al2O3 Concentration on Density and Structure of (CaO-SiO2)-xAl2O3 Slag

    NASA Astrophysics Data System (ADS)

    Rajavaram, Ramaraghavulu; Kim, Hyelim; Lee, Chi-Hoon; Cho, Won-Seung; Lee, Chi-Hwan; Lee, Joonho

    2017-03-01

    The effect of Al2O3 concentration on the density and structure of CaO-SiO2-Al2O3 slag was investigated at multiple Al2O3 mole percentages and at a fixed CaO/SiO2 ratio of 1. The experiments were conducted in the temperature range of 2154 K to 2423 K (1881 °C to 2150 °C) using the aerodynamic levitation technique. In order to understand the relationship between density and structure, structural analysis of the silicate melts was carried out using Raman spectroscopy. The density of each slag sample investigated in this study decreased linearly with increasing temperature. When the Al2O3 content was less than 15 mole pct, density decreased with increasing Al2O3 content due to the coupling of Si (Al), whereas above 20 mole pct density of the slag increased due to the role of Al3+ ion as a network modifier.

  10. Al-Cd Alloy Formation by Aluminum Underpotential Deposition from AlCl3+NaCl Melts on Cadmium Substrate

    NASA Astrophysics Data System (ADS)

    Jovićević, Niko; Cvetković, Vesna S.; Kamberović, Željko J.; Jovićević, Jovan N.

    2013-02-01

    Aluminum was incorporated into a polycrystalline cadmium electrode surface by underpotential deposition from equimolar AlCl3+ NaCl melt at 473 K, 523 K, and 573 K (200 °C, 250 °C, and 300 °C). The process was studied by linear sweep voltammetry and potentiostatic deposition/galvanostatic striping. The deposits were characterized X-ray diffraction (XRD), Auger electron spectroscopy (AES), and electron probe microanalyzer (EPMA). The electrochemical measurements showed evidence of Cd-Al alloys being formed but they could not be identified. The growth kinetics of the Cd-Al layers of various proportion and depths that depended on temperature and deposition time were described.

  11. Particulate contacts to Si and CdTe: Al, Ag, Hg-Cu-Te, and Sb-Te

    NASA Astrophysics Data System (ADS)

    Schulz, Douglas L.; Ribelin, Rosine; Curtis, Calvin J.; Ginley, David S.

    1999-03-01

    Our team has been investigating the use of particle-based contacts in both Si and CdTe solar cell technologies. First, in the area of contacts to Si, powders of Al and Ag prepared by an electroexplosion process have been characterized by transmission electron microscopy (TEM), TEM elemental determination X-ray spectroscopy (TEM-EDS), and TEM electron diffraction (TEM-ED). These Al and Ag particles were slurried and tested as contacts to p- and n-type silicon wafers, respectively. Linear current-voltage (I-V) was observed for Ag on n-type Si, indicative of an ohmic contact, whereas the Al on p-type Si sample was non-ideal. A wet-chemical surface treatment was performed on one Al sample and TEM-EDS indicated a substantial decrease in the O contaminant level. The treated Al on p-type Si films exhibited linear I-V after annealing. Second, in the area of contacts to CdTe, particles of Hg-Cu-Te and Sb-Te have been applied as contacts to CdTe/CdS/SnO2 heterostructures prepared by the standard NREL protocol. First, Hg-Cu-Te and Sb-Te were prepared by a metathesis reaction. After CdCl2 treatment and NP etch of the CdTe layer, particle contacts were applied. The Hg-Cu-Te contacted cells exhibited good electrical characteristics, with Voc>810 mV and efficiencies > 11.5% for most cells. Although Voc>800 mV were observed for the Sb-Te contacted cells, efficiencies in these devices were limited to 9.1% presumably by a large series resistance (>20 Ω) observed in all samples.

  12. Atomic and electronic structure of CdTe/metal (Cu, Al, Pt) interfaces and their influence to the Schottky barrier

    NASA Astrophysics Data System (ADS)

    Odkhuu, Dorj; Miao, Mao-sheng; Aqariden, F.; Grein, Christoph; Kioussis, Nicholas

    2016-11-01

    Schottky barrier heights (SBHs) and other features of the interfaces are determining factors for the performance of the CdTe based high-energy photon detectors. Although known for long time that SBH is sensitive to surface treatment and metal contact growth method, there is a lack of understanding of the effect of the atomic and electronic structures of CdTe/metal interface on the SBH. Employing first-principles electronic structure calculations, we have systematically studied the structural stability and electronic properties of a number of representing structures of Cd Terminated CdTe/metal (Cu, Pt, and Al) interfaces. Comparison of the total energies of the various optimized structural configurations allows to identify the existence of Te-metal alloy formation at the interface. The SBHs of Cu, Pt, and Al metal contacts with a number of stable interface structures are determined by aligning the band edges of bulk CdTe with the Fermi level of the metal/CdTe system. We find that the metal-induced states in the gap play an essential role in determining the SBH.

  13. Synthesis and characterization of CdS/CuAl2O4 core-shell: application to photocatalytic eosin degradation

    NASA Astrophysics Data System (ADS)

    Bellal, B.; Trari, M.; Afalfiz, A.

    2015-08-01

    The advantages of the hetero-junction CdS/CuAl2O4 for the photocatalytic eosin degradation are reported. Composite semiconductors are elaborated by co-precipitation of CdS on the spinel CuAl2O4 giving a core-shell structure with a uniform dispersion and intimate contact of the spinel nanoparticles inside the hexagonal CdS. The Mott-Schottky plots ( C -2- V) of both materials show linear behaviors from which flat band potentials are determined. The photoactivity increases with increasing the mass of the sensitizer CdS and the best performance is achieved on CdS/CuAl2O4 (85 %/15 %). The pH has a strong influence on the degradation and the photoactivity peaks at pH 7.78. The dark adsorption eosin is weak (~4 %), hence the change in the eosin concentration is attributed to the photocatalytic process. The degradation follows a zero-order kinetic with a rate constant of 5.2 × 10-8 mol L-1 mn-1 while that of the photolysis is seven times lower (0.75 × 10-8 mol L-1 mn-1).

  14. Effect of Al and Ca co-doping, in the presence of Te, in superconducting YBCO whiskers growth.

    PubMed

    Pascale, Lise; Truccato, Marco; Operti, Lorenza; Agostino, Angelo

    2016-10-01

    High-Tc superconducting cuprates (HTSC) such as YBa2Cu3O7 - x (YBCO) are promising candidates for solid-state THz applications based on stacks of intrinsic Josephson junctions (IJJs) with atomic thickness. In view of future exploitation of IJJs, high-quality superconducting YBCO tape-like single crystals (whiskers) have been synthesized from Ca-Al-doped precursors in the presence of Te. The main aim of this paper is to determine the importance of the simultaneous use of Al, Te and Ca in promoting YBCO whiskers growth with good superconducting properties (Tc = 79-84 K). Further, single-crystal X-ray diffraction (SC-XRD) refinements of tetragonal YBCO whiskers (P4/mmm) are reported to fill the literature lack of YBCO structure investigations. All the as-grown whiskers have also been investigated by means of X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Our results demonstrate that the interplay of Ca, Te and Al elements is clearly necessary in order to obtain superconducting YBCO whiskers. The data obtained from SC-XRD analyses confirm the highly crystalline nature of the whiskers grown. Ca and Al enter the structure by replacing the Y and the octahedral coordinated Cu1 site, respectively, as in other similar orthorhombic compounds, while Te does not enter the structure of whiskers but its presence in the precursor is essential to the growth of the crystals.

  15. Luminescence properties of Eu 2+- and Ce 3+-doped CaAl 2S 4 and application in white LEDs

    NASA Astrophysics Data System (ADS)

    Yu, Ruijin; Wang, Jing; Zhang, Jianhui; Yuan, Haibin; Su, Qiang

    2008-03-01

    The Eu 2+- and Ce 3+-doped CaAl 2S 4 phosphors were comparatively synthesized by conventional solid-state reaction and the evacuated sealed quartz ampoule. The X-ray diffraction (XRD) patterns show that the sample with better crystalline quality was prepared by the evacuated sealed quartz ampoule, resulting in the enhancement of the emission intensity of Eu 2+ ion by a factor of 1.7. The intensive green LEDs were also fabricated by combining CaAl 2S 4:Eu 2+ with near-ultraviolet InGaN chips ( λem=395 nm). The dependence of as-fabricated green LEDs on forward-bias currents shows that it presents good chromaticity stability and luminance saturation, indicating that CaAl 2S 4:Eu 2+ is a promising green-emitting phosphor for a near-UV InGaN-based LED. In addition, the optical properties of CaAl 2S 4:Ce 3+ were systematically investigated by means of diffuse reflectance, photoluminescence excitation and emission, concentrating quenching and the decay curve.

  16. Flash-Heated Wild 2 Particles in the Stardust Aerogel: Anatomy of an Al-Ca-Mg Impact Melt

    NASA Astrophysics Data System (ADS)

    Leroux, H.; Roskosz, M.

    2014-09-01

    Using analytical TEM, chemical maps were recorded on an impact melt from the Stardust aerogel. We show that the impacting particle was a fine-grained refractory assemblage dominated by low and high-Ca pyroxenes and Mg-Al-spinel.

  17. Progress in the material development of LiCaAlF sub 6 :Cr sup 3+ laser crystals

    SciTech Connect

    Michelle D. Shinn.; Chase, L.L.; Caird, J.A.; Payne, S.A.; Atherton, L.J.; Kway, W.L.

    1990-03-01

    High Cr{sup 3+} doping levels, up to 8 mole percent, and low losses have been obtained with the tunable solid-state laser material LiCaAlF{sub 6}:Cr{sup 3+} (Cr:LiCAF). Measurements and calculations show that high pumping and extraction efficiencies are possible with the improved material. 13 refs., 4 figs., 1 tab.

  18. Mg, Al, Si, Ca, Ti, Fe, and Ni abundance for a sample of solar analogues

    NASA Astrophysics Data System (ADS)

    López-Valdivia, Ricardo; Bertone, Emanuele; Chávez, Miguel

    2017-01-01

    We report on the determination of chemical abundances of 38 solar analogues, including 11 objects previously identified as super metal-rich stars. We have measured the equivalent widths for 34 lines of 7 different chemical elements (Mg, Al, Si, Ca, Ti, Fe, and Ni) in high-resolution (R ˜ 80 000) spectroscopic images, obtained at the Observatorio Astrofísico Guillermo Haro (Sonora, Mexico), with the Cananea High-resolution Spectrograph. We derived chemical abundances using ATLAS12 model atmospheres and the Fortran code MOOG. We confirmed the super metallicity status of 6 solar analogues. Within our sample, BD+60 600 is the most metal-rich star ([Fe/H]=+0.35 dex), while for HD 166991 we obtained the lowest iron abundance ([Fe/H]=-0.53 dex). We also computed the so-called [Ref] index for 25 of our solar analogues, and we found, that BD+60 600 ([Ref]=+0.42) and BD+28 3198 ([Ref]=+0.34) are good targets for exoplanet search.

  19. Experimentally Produced Spinel Rims on Ca-Al-Rich Inclusion Bulk Compositions

    NASA Technical Reports Server (NTRS)

    Paque, Julie M.; Le, L.; Lofgren, G. E.

    1998-01-01

    Most Ca-Al-rich inclusions (CAls) from Allende are surrounded by a series of mineralogically distinct rim layers. Proposed modes of formation for these layers include flash heating, evaporation, and condensation. The innermost of these rim layers is generally spinel (SP), in some cases intergrown with perovskite (PV), and commonly containing varying amounts of secondary iron increasing towards the edge of the CAI. The SP or SP+PV rim is not always contiguous with the other rim layers, indicating that it is probably the result of a separate event. We have produced continuous SP rims on synthetic analogs representing Type A/B1, average Type B, and Type B2 bulk compositions by reheating a solid glass experimental charge to subliquidus crystallization temperatures. This experimental result is consistent with the formation of chondrules; and CAIs by more than one sequence of heating and cooling. Previous work indicated that prior crystallization events produced observable effects in the texture and chemistry of the final run product. Information on the nature of the heating/cooling cycles experienced by CAls and chondrules is important in modeling the environment of their formation. Additional information is contained in the original extended abstract.

  20. Overexpression of human CD38/ADP-ribosyl cyclase enhances acetylcholine-induced Ca2+ signalling in rodent NG108-15 neuroblastoma cells.

    PubMed

    Higashida, Haruhiro; Bowden, Sarah E H; Yokoyama, Shigeru; Salmina, Alla; Hashii, Minako; Hoshi, Naoto; Zhang, Jia-Sheng; Knijnik, Rimma; Noda, Mami; Zhong, Zen-Guo; Jin, Duo; Higashida, Kazuhiro; Takeda, Hisashi; Akita, Tenpei; Kuba, Kenji; Yamagishi, Sayaka; Shimizu, Noriaki; Takasawa, Shin; Okamoto, Hiroshi; Robbins, Jon

    2007-03-01

    The role of cyclic ADP-ribose (cADPR) and its synthetic enzyme, CD38, as a downstream signal of muscarinic acetylcholine receptors (mAChRs) was examined in neuroblastoma cells expressing M1 mAChRs (NGM1). NGM1 cells were further transformed with both wild-type and mutant (C119K/C201E) human CD38. The dual transformed cells exhibited higher cADPR formation than ADPR production and elevated intracellular free Ca(2+) concentrations ([Ca(2+)](i)) in response to ACh. These phenotypes were analyzed in detail in a representative CD38 clone. The intracellular cADPR concentration by ACh application was significantly increased by CD38 overexpression. Digital image analysis by a confocal microscopy revealed that topographical distribution of the sites of Ca(2+) release was unchanged between control and overexpressed cells. These results indicate that cADPR is an intracellular messenger of Ca(2+) signalling, suggesting that CD38 can contribute to mAChR-cADPR signalling.

  1. Microstructure and Fatigue Behavior of Friction Stir-welded Noncombustive Mg-9Al-Zn-Ca Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Li, Z. Y.; Nakata, K.; Feng, J. C.; Huang, Y. X.; Liao, J. S.

    2016-06-01

    Microstructure and fatigue behavior of friction stir-welded noncombustive Mg-9Al-Zn-Ca magnesium alloy were investigated. The as-received hot-extruded material consisted of equiaxed α-Mg grains with β-Mg17Al12 and Al2Ca compounds distributed along the grain boundaries. Friction stir welding produced much refined α-Mg grains accompanied by the dissolution of the eutectic β-Mg17Al12 phase, while Al2Ca phase was dispersed homogenously into the Mg matrix. Friction stir welding produced slightly increased hardness and tensile strength in the defect-free welds compared with the base material due to microstructural refinement and uniform distribution of intermetallic compounds. The load-controlled uniaxial tensile high-cycle fatigue tests indicated that fatigue strength of 90 MPa was obtained for the friction stir-welded joint with fatigue crack initiated basically near the specimen's surface and at the retreating side of the joint. Crack propagation was characterized by cleavage and fatigue striations.

  2. LiCaAlF6 scintillators in neutron and gamma radiation fields

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Klupák, V.; Vinš, M.; Koleška, M.; Šoltés, J.; Yoshikawa, A.; Nikl, M.

    2016-09-01

    Intentionally doped LiCaAlF6 (LiCAF) single crystals are prospective scintillators, especially for thermal neutron detection through the 6Li(n,t)4He nuclear reaction. Four different LiCAF scintillator samples were tested in various neutron and gamma fields. Two of the tested samples were LiCAF:Eu and LiCAF:Eu,Na single crystals, and another two samples were made of LiCAF:Eu micro crystals dispersed in transparent rubber, with different rubber dimensions. All LiCAF samples contain lithium enriched to6Li. A plutonium-beryllium source was used as a neutron source. The neutron spectrum was modified by moderator and filter to get different ratios between thermal, epithermal and fast neutron fluence rates. The MCNP code was used for calculations of the fluence rates for different configurations. Radionuclides 137Cs and 60Co were applied as gamma radiation sources. The light signal from the scintillator was evaluated with a photomultiplier and a multichannel analyzer. The purpose of this work was to study the characteristics of LiCAF scintillators, especially the ability to discriminate signals from neutron and gamma radiation, which is the basic scintillator condition for neutron detection in mixed neutron-gamma radiation fields. Generally, the discrimination can be done by the pulse height and/or the pulse shape of the evaluated signals. Both methods can be used for a LiCAF scintillator. However, only the pulse height discrimination method is discussed in this paper. The possibility of fast neutron detection with LiCAF scintillators was also tested.

  3. Effect of SiO2 on the Crystallization Behaviors and In-Mold Performance of CaF2-CaO-Al2O3 Slags for Drawing-Ingot-Type Electroslag Remelting

    NASA Astrophysics Data System (ADS)

    Shi, Cheng-Bin; Li, Jing; Cho, Jung-Wook; Jiang, Fang; Jung, In-Ho

    2015-10-01

    The crystallization characteristics of CaF2-CaO-Al2O3 slags with varying amounts of SiO2 were experimentally studied. The effects of slag crystallization behaviors on the horizontal heat transfer and lubrication performance in drawing-ingot-type electroslag remelting (ESR) were also evaluated in terms of as-cast ingots surface quality and drawing-ingot operation. The results show that increasing SiO2 addition from 0 to 6.8 mass pct strongly suppresses the crystallization of ESR type CaF2-CaO-Al2O3 slags. The crystallization temperature of the studied slags decreases with the increase in SiO2 addition. The liquidus temperatures of the slags also show a decreasing trend with increasing SiO2 content. In CaF2-CaO-Al2O3-(SiO2) slags, faceted 11CaO·7Al2O3·CaF2 crystals precipitate first during continuous cooling of the slag melts, followed by the formation of CaF2 at lower temperatures. 11CaO·7Al2O3·CaF2 was confirmed to be the dominant crystalline phase in the studied slags. CaF2-CaO-Al2O3 slags with a small amount of SiO2 addition are favorable for providing sound lubrication and horizontal heat transfer in mold for drawing-ingot-type ESR, which consequently bring the improvement in the surface quality of ESR ingot and drawing-ingot operating practice as demonstrated by plant trials.

  4. Teaching the Modes of Ca[superscript 2+] Transport between the Plasma Membrane and Endoplasmic Reticulum Using a Classic Paper by Kwan et al.

    ERIC Educational Resources Information Center

    Liang, Willmann

    2009-01-01

    This teaching article uses the report by Kwan et al., "Effects of methacholine, thapsigargin, and La[superscript 3+] on plasmalemmal and intracellular Ca[superscript 2+] transport in lacrimal acinar cells," where the effects of Ca[superscript 2+]-mobilizing agents in regulating Ca[superscript 2+] fluxes were examined under various conditions.…

  5. The apoptotic members CD95, BclxL, and Bcl-2 cooperate to promote cell migration by inducing Ca2+ flux from the endoplasmic reticulum to mitochondria

    PubMed Central

    Fouqué, A; Lepvrier, E; Debure, L; Gouriou, Y; Malleter, M; Delcroix, V; Ovize, M; Ducret, T; Li, C; Hammadi, M; Vacher, P; Legembre, P

    2016-01-01

    Metalloprotease-processed CD95L (cl-CD95L) is a soluble cytokine that implements a PI3K/Ca2+ signaling pathway in triple-negative breast cancer (TNBC) cells. Accordingly, high levels of cl-CD95L in TNBC women correlate with poor prognosis, and administration of this ligand in an orthotopic xenograft mouse model accelerates the metastatic dissemination of TNBC cells. The molecular mechanism underlying CD95-mediated cell migration remains unknown. Here, we present genetic and pharmacologic evidence that the anti-apoptotic molecules BclxL and Bcl-2 and the pro-apoptotic factors BAD and BID cooperate to promote migration of TNBC cells stimulated with cl-CD95L. BclxL was distributed in both endoplasmic reticulum (ER) and mitochondrion membranes. The mitochondrion-localized isoform promoted cell migration by interacting with voltage-dependent anion channel 1 to orchestrate Ca2+ transfer from the ER to mitochondria in a BH3-dependent manner. Mitochondrial Ca2+ uniporter contributed to this flux, which favored ATP production and cell migration. In conclusion, this study reveals a novel molecular mechanism controlled by BclxL to promote cancer cell migration and supports the use of BH3 mimetics as therapeutic options not only to kill tumor cells but also to prevent metastatic dissemination in TNBCs. PMID:27367565

  6. Disappearance of superconductivity in the solid solution between (Ca4Al2O6)(Fe2As2) and (Ca4Al2O6)(Fe2P2) superconductors.

    PubMed

    Shirage, Parasharam M; Kihou, Kunihiro; Lee, Chul-Ho; Takeshita, Nao; Eisaki, Hiroshi; Iyo, Akira

    2012-09-19

    The effect of alloying the two perovskite-type iron-based superconductors (Ca(4)Al(2)O(6))(Fe(2)As(2)) and (Ca(4)Al(2)O(6))(Fe(2)P(2)) was examined. While the two stoichiometric compounds possess relatively high T(c)'s of 28 and 17 K, respectively, their solid solutions of the form (Ca(4)Al(2)O(6))(Fe(2)(As(1-x)P(x))(2)) do not show superconductivity over a wide range from x = 0.50 to 0.95. The resultant phase diagram is thus completely different from those of other typical iron-based superconductors such as BaFe(2)(As,P)(2) and LaFe(As,P)O, in which superconductivity shows up when P is substituted for As in the non-superconducting "parent" compounds. Notably, the solid solutions in the non-superconducting range exhibit resistivity anomalies at temperatures of 50-100 K. The behavior is reminiscent of the resistivity kink commonly observed in various non-superconducting parent compounds that signals the onset of antiferromagnetic/orthorhombic long-range order. The similarity suggests that the suppression of the superconductivity in the present case also has a magnetic and/or structural origin.

  7. The efficacy evaluation of cryosurgery in pancreatic cancer patients with the expression of CD44v6, integrin-β1, CA199, and CEA.

    PubMed

    Zhou, Gang; Chiu, David; Qin, Dajiang; Niu, Lizhi; Cai, Jinlei; He, Lihua; Huang, Wenhao; Xu, Kecheng

    2012-09-01

    Increased expression of cell adhesion molecule CD44v6, integrin-β1, carbohydrate antigen 199 (CA199), and carcinoembryonic antigen (CEA) are closely associated with the progression and metastasis of numerous cancers. In this study, peripheral blood mononuclear cell (PBMC) and serum samples were collected from 37 pancreatic cancer patients and 12 healthy people. A novel triplex TaqMan real-time reverse transcription polymerase chain reaction assay was used to measure the expression levels of CD44v6 and integrin-β1 gene in PBMCs, while chemiluminescence and enzyme-linked immunosorbent assay were used to measure the levels of CA199 and CEA expression in serum. The results showed that both the levels of CD44v6 and integrin-β1 expression had significant correlation with clinical stage, lymph node, and liver metastasis of pancreatic cancer (P < 0.05). Age, tumor size, tumor differentiation, clinical stage, lymph nodes, and liver metastasis were significantly associated with the levels of CA199 and CEA expression (P < 0.05). The levels of CD44v6, integrin-β1, CA199, and CEA expression in the patients prior cryosurgery and chemotherapy were significantly higher than those in the control group (P < 0.05), whereas no significant difference was found between the patients 1 month post cryosurgery and control group (P > 0.05). The expression levels of CD44v6, integrin-β1, CA199, and CEA in the patients 1 month post cryosurgery were significantly lower than those in the patients prior cryosurgery (P < 0.05). Interestingly, no significant difference was found for the CD44v6, integrin-β1, CA199, and CEA levels between the patients prior and post-chemotherapy (P > 0.05). The higher expression of CD44v6, integrin-β1, CA199, and CEA are closely related to the progression and metastasis of pancreatic cancer and may play a important role in the curative evaluation of cryosurgery of pancreatic cancer.

  8. Removal of arsenic from water by Friedel's salt (FS: 3CaO·Al2O3·CaCl2·10H2O).

    PubMed

    Zhang, Danni; Jia, Yongfeng; Ma, Jiayu; Li, Zhibao

    2011-11-15

    Low levels of arsenic can be effectively removed from water by adsorption onto various materials and searching for low-cost, high-efficiency new adsorbents has been a hot topic in recent years. In the present study, the performance of Friedel's salt (FS: 3CaO·Al(2)O(3)·CaCl(2)·10H(2)O), a layered double hydroxide (LDHs), as an adsorbent for arsenic removal from aqueous solution was investigated. Friedel's salt was synthesized at lower temperature (50°C) compared to traditional autoclave methods by reaction of calcium chloride with sodium aluminate. Kinetic study revealed that adsorption of arsenate by Friedel's salt was fast in the first 12h and equilibrium was achieved within 48 h. The adsorption kinetics are well described by second-order Lageren equation. The adsorption capacity of the synthesized sorbent for arsenate at pH 4 and 7 calculated from Langmuir adsorption isotherms was 11.85 and 7.80 mg/g, respectively. Phosphate and silicate markedly decreased the removal of arsenate, especially at higher pH, but sulfate was found to suppress arsenate adsorption at lower pH and the adverse effect was disappeared at pH ≥ 6. Common metal cations (Ca(2+), Mg(2+)) enhanced arsenate adsorption. The results suggest that Friedel's salt is a potential cost-effective adsorbent for arsenate removal in water treatment.

  9. Blue upconversion luminescence in 12 CaO·7 Al 2O 3:Tm 3 + /Yb 3 + polycrystals

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Liu, Liang; Sun, Jinchao; Qian, Yannan; Zhang, Yushen; Xu, Yanling

    2012-03-01

    The effect of Yb 3 + concentration on the fluorescence of 12 CaO·7 Al 2O 3:Tm 3 + /Yb 3 + polycrystals is investigated. Under the excitation of 980 nm laser, the strong blue (477 nm) emission band is observed and attributed to 1G 4 → 3H 6 of Tm 3 + . The ratio of blue to red emission increases with the increasing of Yb 3 + and remains constant at 10 mol% Yb 3 + . The pump dependence and upconversion mechanisms show that the two-photon cooperative upconversion process is responsible for the enhancement of the blue upconversion emission. The Commission Internationale de l'eclairage chromaticity coordinates (x, y) illustrate that the 12 CaO·7 Al 2O 3:1 mol% Tm 3 + /10 mol% Yb 3 + can emit high-purity blue light.

  10. The Effects of Cd2+ Concentration on the Structure, Optical and Luminescence Properties of MgAl2O4: x% Cd2+ (0 < x ≤ 1.75) Nanophosphor Prepared by Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Motloung, S. V.; Dejene, F. B.; Sithole, M. E.; Koao, L. F.; Ntwaeaborwa, O. M.; Swart, H. C.; Motaung, T. E.

    2016-10-01

    Cadmium-doped magnesium aluminate (MgAl2O4: x% Cd2+) powders with different cadmium concentrations (0 < x ≤ 1.75) were prepared by the sol-gel method. Energy dispersive x-ray spectroscopy (EDS) analysis confirmed the presence of the expected elements (Mg, Al, O, and Cd). The x-ray diffraction (XRD) analysis revealed that the powders crystallized into the cubic spinel structure. Cd2+ doping influenced crystallinity of the powder samples. The crystallite size and particle morphology were not affected by variation in the Cd2+ concentration. Ultraviolet-visible spectroscopy (UV-vis) measurements revealed that the band gap of the MgAl2O4 was influenced by Cd2+ doping. Un-doped and Cd2+-doped MgAl2O4 nanophosphors exhibited violet emission at 392 nm. There was no evidence of the emission peak shift, which suggested that all emissions originated from the defects within the host material. Increasing the Cd2+ concentration up-to 0.88 mol.% lead to luminescence intensity enhancement, while further increase of Cd2+ concentration lead to concentration quenching. The critical energy transfer distance ( R c) between the neighbouring donors and acceptors was found to be 5.21 Å, suggesting that the multipole-multipole interaction (M-MI) is the major cause of concentration quenching. Commission Internationale de l'Elcairage (CIE) colour coordinates confirmed non-tuneable violet emission with intensity dependent on the Cd2+ concentration.

  11. Synthesis and hydration behavior of calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cement

    SciTech Connect

    Kang, Eun-Hee; Yoo, Jun-Sang; Kim, Bo-Hye; Choi, Sung-Woo; Hong, Seong-Hyeon

    2014-02-15

    Calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cements were prepared by solid state reaction and polymeric precursor methods, and their phase evolution, morphology, and hydration behavior were investigated. In polymeric precursor method, a nearly single phase Ca{sub 7}ZrAl{sub 6}O{sub 18} was obtained at relatively lower temperature (1200 °C) whereas in solid state reaction, a small amount of CaZrO{sub 3} coexisted with Ca{sub 7}ZrAl{sub 6}O{sub 18} even at higher temperature (1400 °C). Unexpectedly, Ca{sub 7}ZrAl{sub 6}O{sub 18} synthesized by polymeric precursor process was the large-sized and rough-shaped powder. The planetary ball milling was employed to control the particle size and shape. The hydration behavior of Ca{sub 7}ZrAl{sub 6}O{sub 18} was similar to that of Ca{sub 3}Al{sub 2}O{sub 6} (C3A), but the hydration products were Ca{sub 3}Al{sub 2}O{sub 6}·6H{sub 2}O (C3AH6) and several intermediate products. Thus, Zr (or ZrO{sub 2}) stabilized the intermediate hydration products of C3A.

  12. Ascorbate, added after irradiation, reduces the mutant yield and alters the spectrum of CD59- mutations in A(L) cells irradiated with high LET carbon ions

    NASA Technical Reports Server (NTRS)

    Ueno, Akiko; Vannais, Diane; Lenarczyk, Marek; Waldren, Charles A.; Chatterjee, A. (Principal Investigator)

    2002-01-01

    It has been reported that X-ray induced HPRT- mutation in cultured human cells is prevented by ascorbate added after irradiation. Mutation extinction is attributed to neutralization by ascorbate, of radiation-induced long-lived radicals (LLR) with half-lives of several hours. We here show that post-irradiation treatment with ascorbate (5 mM added 30 min after radiation) reduces, but does not eliminate, the induction of CD59- mutants in human-hamster hybrid A(L) cells exposed to high-LET carbon ions (LET of 100 KeV/microm). RibCys, [2(R,S)-D-ribo-1',2',3',4'-Tetrahydroxybutyl]-thiazolidene-4(R)-ca riboxylic acid] (4 mM) gave a similar but lesser effect. The lethality of the carbon ions was not altered by these chemicals. Preliminary data are presented that ascorbate also alters the spectrum of CD59- mutations induced by the carbon beam, mainly by reducing the incidence of small mutations and mutants displaying transmissible genomic instability (TGI), while large mutations are unaffected. Our results suggest that LLR are important in initiating TGI.

  13. The Relative Nature of Perception: A Response to Cañal-Bruland and van der Kamp (2015)

    PubMed Central

    2015-01-01

    Cañal-Bruland and van der Kamp present an argument about the incommensurate relationship between affordance perception and spatial perception in a criticism of Proffitt and Linkenauger’s phenotypic approach to perception. Many of their criticisms are based on a difference in the interpretation of the core ideas underlying the phenotypic approach. The most important of these differences in interpretations concern fundamental assumptions about the nature of the perceptions of size and distance themselves. Extent perception must be relative to the organism; therefore, there can be no veridical perception of space. Also, we argue in the phenotypic approach that space perception is an emergent property of affordance perception; they are not different types of perceptions as Cañal-Bruland and van der Kamp presume. Third, affordance perception need not be perfectly accurate, just good enough. Additionally, affordance perception need not be dichotomous; this presumption likely originates in the methodology typically employed to study affordance perception. Finally, I agree with Cañal-Bruland and van der Kamp that joint research efforts will clarify and improve our understanding of these issues. PMID:27648215

  14. Phase transition from BCT to spinel structure in CdAl2Se4 and its optical properties

    NASA Astrophysics Data System (ADS)

    Singh, Poonam; Verma, U. P.; Jensen, Per

    2013-10-01

    We present a detailed first principle investigation on CdAl2Se4 both at ambient and the high pressure conditions. At ambient condition CdAl2Se4 exists in body centered tetragonal (BCT) phase and at high pressure in spinel phase. Corresponding to different volume the total energy has been optimized using three functional, viz., the local density approximation (LDA), the generalized gradient approximation (GGA) and the Engel-Vosko generalised gradient approximation (EV-GGA). In all the cases phase transition from the BCT to the spinel phase has been observed. The equilibrium lattice constants, energy band gaps, bulk modulus have been reported at ambient conditions in both the phases. According to our prediction CdAl2Se4 is a direct band gap material in both the studied phases, contrary to the earlier results reported by Funetes-cabrea and Sankey for spinel phase. Among optical constants index of refraction, absorption coefficient and optical conductivity are calculated and compared with the existing results in both the phases within the energy range of 0-25 eV.

  15. Reduced defect density at the CZTSSe/CdS interface by atomic layer deposition of Al2O3

    NASA Astrophysics Data System (ADS)

    Erkan, Mehmet Eray; Chawla, Vardaan; Scarpulla, Michael A.

    2016-05-01

    The greatest challenge for improving the power conversion efficiency of Cu2ZnSn(S,Se)4 (CZTSSe)/CdS/ZnO thin film solar cells is increasing the open circuit voltage (VOC). Probable leading causes of the VOC deficit in state-of-the-art CZTSSe devices have been identified as bulk recombination, band tails, and the intertwined effects of CZTSSe/CdS band offset, interface defects, and interface recombination. In this work, we demonstrate the modification of the CZTSSe absorber/CdS buffer interface following the deposition of 1 nm-thick Al2O3 layers by atomic layer deposition (ALD) near room temperature. Capacitance-voltage profiling and quantum efficiency measurements reveal that ALD-Al2O3 interface modification reduces the density of acceptor-like states at the heterojunction resulting in reduced interface recombination and wider depletion width. Indications of increased VOC resulting from the modification of the heterojunction interface as a result of ALD-Al2O3 treatment are presented. These results, while not conclusive for application to state-of-the-art high efficiency CZTSSe devices, suggest the need for further studies as it is probable that interface recombination contributes to reduced VOC even in such devices.

  16. Inhibition of the plasma membrane Ca2+ pump by CD44 receptor activation of tyrosine kinases increases the action potential afterhyperpolarization in sensory neurons.

    PubMed

    Ghosh, Biswarup; Li, Yan; Thayer, Stanley A

    2011-02-16

    The cytoplasmic Ca(2+) clearance rate affects neuronal excitability, plasticity, and synaptic transmission. Here, we examined the modulation of the plasma membrane Ca(2+) ATPase (PMCA) by tyrosine kinases. In rat sensory neurons grown in culture, the PMCA was under tonic inhibition by a member of the Src family of tyrosine kinases (SFKs). Ca(2+) clearance accelerated in the presence of selective tyrosine kinase inhibitors. Tonic inhibition of the PMCA was attenuated in cells expressing a dominant-negative construct or shRNA directed to message for the SFKs Lck or Fyn, but not Src. SFKs did not appear to phosphorylate the PMCA directly but instead activated focal adhesion kinase (FAK). Expression of constitutively active FAK enhanced and dominant-negative or shRNA knockdown of FAK attenuated tonic inhibition. Antisense knockdown of PMCA isoform 4 removed tonic inhibition of Ca(2+) clearance, indicating that FAK acts on PMCA4. The hyaluronan receptor CD44 activates SFK-FAK signaling cascades and is expressed in sensory neurons. Treating neurons with a CD44-blocking antibody or short hyaluronan oligosaccharides, which are produced during injury and displace macromolecular hyaluronan from CD44, attenuated tonic PMCA inhibition. Ca(2+)-activated K(+) channels mediate a slow afterhyperpolarization in sensory neurons that was inhibited by tyrosine kinase inhibitors and enhanced by knockdown of PMCA4. Thus, we describe a novel kinase cascade in sensory neurons that enables the extracellular matrix to alter Ca(2+) signals by modulating PMCA-mediated Ca(2+) clearance. This signaling pathway may influence the excitability of sensory neurons following injury.

  17. Effect of Al2O3 on the Viscosity and Structure of CaO-SiO2-MgO-Al2O3-FetO Slags

    NASA Astrophysics Data System (ADS)

    Wang, Zhanjun; Sun, Yongqi; Sridhar, Seetharaman; Zhang, Mei; Guo, Min; Zhang, Zuotai

    2015-04-01

    The present paper provided a fundamental investigation on the effect of Al2O3 on the viscosity and structure of CaO-SiO2-MgO-Al2O3-FetO slags for the purpose of efficiently recycling the valuable elements from the steelmaking slags. The results show that the viscosity of CaO-SiO2-Al2O3-MgO-FetO slags slightly increases with increasing Al2O3 content. The degree of the polymerization (DOP) of quenched slags, determined from Raman spectra and magic angle spinning-nuclear magnetic resonance, is also found to increase with increasing Al2O3 content. It can be deduced that the increasing DOP can promote the formation of gehlenite phase (Ca2Al2SiO7), thus facilitating the formation of higher phosphorous (or vanadium) contained solid solution ( n'Ca2SiO4·Ca3((P or V)O4)2). As Al2O3 content increases up to a specific value, the charge compensating ions which present near [AlO4]-tetrahedra and [FeO4]-tetrahedra are not fully supplied due to the scarcity of Ca2+. In this case, the existing Fe3+ in the melt cannot completely form [FeO4]-tetrahedra and part of Fe3+ would form [FeO6]-octahedra to substitute Ca2+ to modify the slags.

  18. The influence of Ca-Mg-Al hydrotalcite synthesized from brine water on thermal and mechanical properties of HTlc-EVA composite

    SciTech Connect

    Karina, Wiwiek Heraldy, Eddy Pramono, Edi; Heriyanto,; Astuti, Shanti

    2016-02-08

    Ca-Mg-Al hydrotalcite-like compound (Ca-Mg-Al HTlc) was prepared by co-precipitation method using brine water that is well known as the desalination process waste water. The structure of Ca-Mg-Al HTlc was determined by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) analysis. Ca-Mg-Al HTlc was studied as a non-halogenated filler in ethylene vinyl acetate (EVA) matrix. Composites with different filler concentrations were prepared to evaluate the influence of Ca-Mg-Al HTlc on thermal and mechanical properties of EVA.The presence of Ca-Mg-Al HTlc in the composite has been confirmed by FTIR analysis. Thermal properties of composites show significant reduction of degradation temperature as well as the loading of HTlc in EVA. However, the total enthalpies combustion of composites with 1% and 5% HTlc loadings higher compared to neat EVA. Further, mechanical properties were determined by tensile test. The result shows that tensile strength and elongation at break of composites decrease relatively by Ca-Mg-Al HTlc addition.

  19. The influence of Ca-Mg-Al hydrotalcite synthesized from brine water on thermal and mechanical properties of HTlc-EVA composite

    NASA Astrophysics Data System (ADS)

    Karina, Wiwiek; Heraldy, Eddy; Pramono, Edi; Heriyanto, Astuti, Shanti

    2016-02-01

    Ca-Mg-Al hydrotalcite-like compound (Ca-Mg-Al HTlc) was prepared by co-precipitation method using brine water that is well known as the desalination process waste water. The structure of Ca-Mg-Al HTlc was determined by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) analysis. Ca-Mg-Al HTlc was studied as a non-halogenated filler in ethylene vinyl acetate (EVA) matrix. Composites with different filler concentrations were prepared to evaluate the influence of Ca-Mg-Al HTlc on thermal and mechanical properties of EVA.The presence of Ca-Mg-Al HTlc in the composite has been confirmed by FTIR analysis. Thermal properties of composites show significant reduction of degradation temperature as well as the loading of HTlc in EVA. However, the total enthalpies combustion of composites with 1% and 5% HTlc loadings higher compared to neat EVA. Further, mechanical properties were determined by tensile test. The result shows that tensile strength and elongation at break of composites decrease relatively by Ca-Mg-Al HTlc addition.

  20. Evolution of Inclusions in Fe-13Cr Treated by CaO-SiO2-Al2O3-Based Top Slag

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wang, Lijun; Zhai, Jun; Li, Jianmin; Chou, Kuo-Chih

    2017-02-01

    Experiments were carried out to determine the effect of Al2O3 in the slag of the CaO-SiO2-Al2O3-MgO-CaF2 system on the cleanness of Fe-13Cr stainless steel deoxidized by ferrosilicon. Increasing the Al2O3 content in basicity = 2.28 slag can reduce the usage of CaF2 and benefit the obtainment of a good kinetic condition for inclusion removal, but over 21 pct would lead to a higher total oxygen content in the melt and make the inclusion composition more complex. It is found that increasing basicity in 16 pct Al2O3 slag would have a good deoxidation ability and accelerate the transformation from high Al2O3 inclusions to low melting point CaO-Al2O3-SiO2-MgO system inclusions, but basicity over 2.58 would lead to high content of [Al] in liquid steel, which would promote the formation of MgO-Al2O3 inclusions. Therefore, it is not suitable to add a high content of Al2O3 into high-basicity slag. Adding Al2O3 into slag of 2.28 in basicity until a content of 16 pct could achieve inclusion plastication within 45 minutes without Ca treatment, which has potential application in industrial production.

  1. Paxillus involutus-Facilitated Cd2+ Influx through Plasma Membrane Ca2+-Permeable Channels Is Stimulated by H2O2 and H+-ATPase in Ectomycorrhizal Populus × canescens under Cadmium Stress

    PubMed Central

    Zhang, Yuhong; Sa, Gang; Zhang, Yinan; Zhu, Zhimei; Deng, Shurong; Sun, Jian; Li, Nianfei; Li, Jing; Yao, Jun; Zhao, Nan; Zhao, Rui; Ma, Xujun; Polle, Andrea; Chen, Shaoliang

    2017-01-01

    Using a Non-invasive Micro-test Technique, flux profiles of Cd2+, Ca2+, and H+ were investigated in axenically grown cultures of two strains of Paxillus involutus (MAJ and NAU), ectomycorrhizae formed by these fungi with the woody Cd2+-hyperaccumulator, Populus × canescens, and non-mycorrhizal (NM) roots. The influx of Cd2+ increased in fungal mycelia, NM and ectomycorrhizal (EM) roots upon a 40-min shock, after short-term (ST, 24 h), or long-term (LT, 7 days) exposure to a hydroponic environment of 50 μM CdCl2. Cd2+ treatments (shock, ST, and LT) decreased Ca2+ influx in NM and EM roots but led to an enhanced influx of Ca2+ in axenically grown EM cultures of the two P. involutus isolates. The susceptibility of Cd2+ flux to typical Ca2+ channel blockers (LaCl3, GdCl3, verapamil, and TEA) in fungal mycelia and poplar roots indicated that the Cd2+ entry occurred mainly through Ca2+-permeable channels in the plasma membrane (PM). Cd2+ treatment resulted in H2O2 production. H2O2 exposure accelerated the entry of Cd2+ and Ca2+ in NM and EM roots. Cd2+ further stimulated H+ pumping activity benefiting NM and EM roots to maintain an acidic environment, which favored the entry of Cd2+ across the PM. A scavenger of reactive oxygen species, DMTU, and an inhibitor of PM H+-ATPase, orthovanadate, decreased Ca2+ and Cd2+ influx in NM and EM roots, suggesting that the entry of Cd2+ through Ca2+-permeable channels is stimulated by H2O2 and H+ pumps. Compared to NM roots, EM roots exhibited higher Cd2+-fluxes under shock, ST, and LT Cd2+ treatments. We conclude that ectomycorrhizal P. × canescens roots retained a pronounced H2O2 production and a high H+-pumping activity, which activated PM Ca2+ channels and thus facilitated a high influx of Cd2+ under Cd2+ stress. PMID:28111579

  2. Evaluation of ZnO:Al as a contact material to CdZnTe for radiation detector applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Roy, Utpal N.; Camarda, Giuseppe S.; Cui, Yonggang; Gul, Rubi; Hossain, Anwar; Yang, Ge; James, Ralph B.; Pradhan, Aswini K.; Mundle, Rajeh

    2016-09-01

    Aluminum (Al) doped ZnO with very high Al concentration acts as metal regarding its electrical conductivity. ZnO offers many advantages over the commonly-known metals being used today as electrode materials for nuclear detector fabrication. Often, the common metals show poor adhesion to CdZnTe or CdTe surfaces and have a tendency to peel off. In addition, there is a large mismatch of the coefficients of thermal expansion (CTE) between the metals and underlying CdZnTe, which is one of the reasons for mechanical degradation of the contact. In contrast ZnO has a close match of the CTE with CdZnTe and possesses 8-20 times higher hardness than the commonly-used metals. In this presentation, we will explore and discuss the properties of CdZnTe detectors with ZnO:Al contacts.

  3. Thermodynamics and Structure of CaO-Al2O3-3 Mass Pct B2O3 Slag at 1773 K (1500 °C)

    NASA Astrophysics Data System (ADS)

    Shu, Qifeng; Li, Pengfei; Zhang, Xiang; Chou, Kuochih

    2016-12-01

    Activity values of Al2O3 in CaO-Al2O3-B2O3 systems at 1773 K (1500 °C) were determined experimentally using a gas-copper-slag equilibrium technique. The oxygen partial pressure was controlled by C/CO equilibrium. A negative deviation from ideality was found in measured activity of Al2O3. The activity coefficient of Al2O3 decreases with the increase of CaO/Al2O3 ratio. To interpret the variation of Al2O3 activity with composition, structures of CaO-Al2O3-B2O3 glassy slag were investigated by using Raman spectroscopy. It was found that the number of bridging oxygen decreases with increasing CaO/Al2O3 ratio. With increase of CaO content, the aluminate network was gradually depolymerized, which corresponds to the decrease of the activity coefficient of Al2O3.

  4. CaMn2Al10: Itinerant Mn magnetism on the verge of magnetic order

    SciTech Connect

    Steinke, L.; Simonson, J. W.; Yin, W. -G.; Smith, G. J.; Kistner-Morris, J. J.; Zellman, S.; Puri, A.; Aronson, M. C.

    2015-07-24

    We report the discovery of CaMn2Al10, a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83μB/Mn, significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈ 9% of Rln2. These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010][001] ≈ 3.5. A strong power-law divergence χ(T) ~ T–1.2 below 20 K implies incipient ferromagnetic order, an Arrott plot analysis of the magnetization suggests a vanishing low Curie temperature TC ~ 0. Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.

  5. Texture gradient evolution in Al-5%Ca-5%Zn sheet alloy after tensile deformation at high superplastic strain rate

    SciTech Connect

    Perez-Prado, M.T.; Cristina, M.C.; Torralba, M.; Ruano, O.A.; Gonzalez-Doncel, G.

    1996-12-15

    Texture inhomogeneities have been found in many materials. Given the significant influence of texture in industrial processes like superplastic forming of complex-shaped components, it is important to study the evolution of texture gradients under different testing conditions, particularly at high strain rates. Strong through-thickness texture-gradients have been observed in hot rolled Al alloys. As a consequence of the severe deformation during the hot rolling process, a well defined Brass texture-component (B-orientation) {l_brace}011{r_brace}<211> develops in the mid layer. The Al-5%Ca-5%Zn sheet alloy deforms superplastically when tested uniaxially at temperatures ranging from 350 to 450 C and at strain rates between 10{sup {minus}5}s{sup {minus}1} and 10{sup {minus}2}s{sup {minus}1}. The B-orientation, however, is not present in the texture of the as-rolled material, but it appears after straining in tension along the transverse direction under certain conditions of temperature and moderately high superplastic strain rates. In this work the evolution of the through-thickness texture-gradient in the Al-5%Ca-5% Zn sheet alloy when tested uniaxially in the transverse direction is investigated. Due to the importance of high strain rates in superplastic forming processes, tests at higher strain rates than those usually reported in the literature have been conducted. Current models which predict the appearance of the B-component are criticized on the light of these new findings.

  6. Impact of CaO, fly ash, sulfur and Na2S on the (im)mobilization and phytoavailability of Cd, Cu and Pb in contaminated soil.

    PubMed

    Mahar, Amanullah; Wang, Ping; Ali, Amjad; Guo, Zhanyu; Awasthi, Mukesh Kumar; Lahori, Altaf Hussain; Wang, Quan; Shen, Feng; Li, Ronghua; Zhang, Zengqiang

    2016-12-01

    Soil heavy metals pollution is a serious problem worldwide due to its potential human health risks through food chain. Therefore, a sustainable solution is needed to efficiently remediate HMs contaminated soils. Our study aimed to assess the impact of CaO, fly ash, sulfur, and Na2S on the immobilization of Cd, Cu, and Pb and their uptake by Chinese cabbage (Brassica rapa chinensis) in a contaminated soil. The concentration of DTPA-extractable Cd, Cu, and Pb was significantly decreased as compared to control in treated soil. However, the solubility of Cd, Cu, and Pb has increased at greater extent in soil system which favored the uptake of metals in roots and shoots of Chinese cabbage. In general, Cd uptake was significantly increased in shoots followed by roots as compared to control. In addition, Cu has also same trend of increased uptake in shoots as compared to roots. However, the uptake Pb in shoots was considerably increased in Na2S treated samples whereas roots have shown great potential for Pb uptake in CaO treated samples as compared to control. Although, sulfur treatments had efficiently immobilized metals but reduced soil pH to highly acidic level which restricted the growth of Chinese cabbage in sulfur treated samples. We assume that sulfur amendment could be applied for immobilization of metals in alkaline soils rather than acidic soils to achieve better immobilization results. In order to achieve sustainable phytoextraction of Cd, Cu, and Pb using CaO, FA, and Na2S, the non-edible hyperaccumulators species are suggested to be investigated in future studies.

  7. Thermostimulated luminescence of Ca(Al x Ga1- x )2S4Eu2+ crystals

    NASA Astrophysics Data System (ADS)

    Asadov, E. G.; Kazimova, F. A.; Ibragimova, T. Sh.; Tagiev, K. O.

    2017-02-01

    Thermoluminescence of Ca(AlxGa1-x)2S4:Eu2+ ( x = 0.1-0.3) solid solutions upon UV irradiation has been studied in the course of linear heating. It is established that the observed thermostimulated emission bands are complex, consisting of several strongly overlapped partial maxima. The activation energies, capture cross sections, frequency factors, and concentrations of trap levels responsible for these peaks are determined. The emission intensity and number of components increase with growing aluminum content x.

  8. Crystal growth and optical properties of indium doped LiCaAlF6 scintillator single crystals

    NASA Astrophysics Data System (ADS)

    Tanaka, Chieko; Yokota, Yuui; Kurosawa, Shunsuke; Yamaji, Akihiro; Jary, Vitezslav; Babin, Vladimir; Pejchal, Jan; Ohashi, Yuji; Kamada, Kei; Nikl, Martin; Yoshikawa, Akira

    2017-03-01

    The In-doped LiCaAlF6 [In:LiCAF] single crystals were grown by the micro-pulling-down (μ-PD) method, and the phases, chemical compositions, transmittance and radioluminescence spectra were investigated. All the grown crystals showed high transparency and single phase of LiCAF without visible cracks and inclusions except for the end part of In2%:LiCAF crystal which included the impurity phase. In the radioluminescence spectra of the In:LiCAF crystals under X-ray irradiation, the emission peak around 750 nm was revealed.

  9. Composition and mineralogy of refractory-metal-rich assemblages from a Ca,Al-rich inclusion in the Allende meteorite

    NASA Astrophysics Data System (ADS)

    Bischoff, A.; Palme, H.

    1987-10-01

    Four refractory metal-rich samples (10-190 micrograms) were separated from a single Ca,Al inclusion of the Allende meteorite. Chemical analyses were carried out by INAA; mineral phases from six large fremdlinge and the surrounding inclusion were analyzed by EDS. It is found that three of the four separated samples have variable absolute but similar relative abundances of refractory metals. All six fremdlinge are made up of Ni-rich metal containing 2-9 percent Ir, surrounded by a fine-grained intergrowth of V-magnetite and FeS.

  10. Calcium aluminate silicate Ca2Al2SiO7 single crystal applicable to piezoelectric sensors at high temperature

    NASA Astrophysics Data System (ADS)

    Takeda, Hiroaki; Hagiwara, Manabu; Noguchi, Hiroaki; Hoshina, Takuya; Takahashi, Tomoko; Kodama, Nobuhiro; Tsurumi, Takaaki

    2013-06-01

    Ca2Al2SiO7 (CAS) bulk single crystals were grown by the Czochralski method. Material constants of the crystal were determined over the driving temperature range of a typical combustion pressure sensor. The electrical resistivity at 800 °C was found to be of the order of 108 Ωcm. We constructed a measurement system for the direct piezoelectric effect at high temperature, and characterized the crystals in a simulated engine cylinder combustion environment. Output charge signal against applied stress was detected at 700 °C. These observations suggest that CAS crystals are superior candidate materials for high temperature for stress sensing.

  11. Efficient Yb³⁺:CaGdAlO₄ bulk and femtosecond-laser-written waveguide lasers.

    PubMed

    Hasse, Kore; Calmano, Thomas; Deppe, Bastian; Liebald, Christoph; Kränkel, Christian

    2015-08-01

    We report on, to the best of our knowledge, the first fs-laser-written waveguide laser in Yb3+:CaGdAlO4 (Yb:CALGO). With Yb:CALGO crystals grown in our labs, we obtained a slope efficiency of 69% and up to 2.4 W of continuous wave (cw) output power in a waveguide-laser configuration. Moreover, bulk laser experiments with Yb:CALGO were performed, and slope efficiencies up to 73%, optical-to-optical efficiencies of 65%, and maximum cw output powers of 3.3 W were reached. These are the highest efficiencies in the laser configuration with Yb:CALGO.

  12. High-resolution continuum source electrothermal absorption spectrometry of AlBr and CaBr for the determination of bromine

    NASA Astrophysics Data System (ADS)

    Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Heitmann, Uwe; Okruss, Michael

    2008-05-01

    Molecular absorption spectra of AlBr and CaBr, produced in a graphite furnace, were investigated using a high-resolution echelle spectrometer equipped with a xenon short-arc lamp as continuum source. The analytical usability of the spectra for the determination of bromine was studied. To this end, the molecular absorptions of AlBr at 278.914 nm and CaBr at 625.315 nm were evaluated. Apart from strong absorption bands of CaF around 625.3 nm, which disturb the use of CaBr, no spectral interferences were observed for both AlBr and CaBr. Regarding chemical interference with matrix substances, the molecular absorption of AlBr and CaBr is influenced in a different way. While the sensitivity of the CaBr absorption is susceptible to chloride, aluminum, potassium and sodium ions, there is no significant effect on the AlBr absorption. In contrast, the inorganic acids (nitric, phosphoric, and sulfuric) have an influence on AlBr, but not on the CaBr molecular absorption. Therefore, the two methods complement each other and each has its own application area. Regarding real samples, a salt sample from the death sea and an organic pharmaceutical were evaluated. The results were in good agreement with those derived from two independent methods and with an existing reference value. Relative standard deviations were found in the range of 5%. The limit of detection for bromine was about 2 ng for both AlBr and CaBr molecular absorption; the dynamic range was linear at least up to 250 ng Br.

  13. Cross sections for He and Ne isotopes in natural Mg, Al, and Si, He isotopes in CaF2, Ar isotopes in natural Ca, and radionuclides in natural Al, Si, Ti, Cr, and stainless steel induced by 12- to 45-MeV protons

    NASA Technical Reports Server (NTRS)

    Walton, J. R.; Heymann, D.; Yaniv, A.; Edgerley, D.; Rowe, M. W.

    1976-01-01

    Stacks of thin Mg, Al, Si, Ca, CaF2, Ti, and stainless steel foils were bombarded in twelve irradiations by a variable energy cyclotron. Cross sections are reported for He and Ne in natural Mg, Al, and Si, and for He in CaF2, and for Ar in natural Ca, as determined from mass spectrometer analysis of the inert gases. In addition, cross sections of Na-22 in natural Al and Si, of V-48 in natural Ti, and of Cr-51, Mn-52, and Co-57 in stainless steel are reported. From these were deduced Cr-51 and Mn-52 cross sections in natural Cr.

  14. Synthesis of a novel green fluorescent material Ca3Al2O6:Tb3+ based on a layered double hydroxide precursor

    NASA Astrophysics Data System (ADS)

    Gao, Xiaorui; Jiang, Kangle; Hao, Yongjing; Chang, Tao; Yin, Yaobing

    2015-08-01

    A novel green light emitting material, Ca3Al2O6:Tb3+ was synthesized by calcination of a terbium doped Ca/Al layered double hydroxide precursor at 1350°C. The precursor was prepared by coprecipitation from metal nitrates with sodium hydroxide. The material shows characteristic green emission at 543 nm when excited with 266 nm UV source. The photoluminescence intensity reaches its maximum at Tb3+ concentration of 0.5 mol %.

  15. Persistent deNOx Ability of CaAl2O4:(Eu, Nd)/TiO2-xNy Luminescent Photocatalyst.

    PubMed

    Li, Huihui; Yin, Shu; Sato, Tsugio

    2010-08-20

    CaAl2O4:(Eu, Nd)/TiO2-xNy composite luminescent photocatalyst was successfully synthesized by a simple planetary ball milling process. Improvement of photocatalytic deNOx ability of TiO2-xNy, together with the persistent photocatalytic activity for the decomposition of NO after turning off the light were realized, by coupling TiO2-xNy with long afterglow phosphor, CaAl2O4:(Eu, Nd). The novel persistent photocatalytic behavior was related to the overlap between the absorption wavelength of TiO2-xNy and the emission wavelength of the CaAl2O4:(Eu, Nd). It was found that CaAl2O4:(Eu, Nd)/TiO2-xNy composites provided the luminescence to persist photocatalytic reaction for more than 3 h after turning off the light. GRAPHICAL CaAl2O4:(Eu, Nd)/TiO2-xNy composite luminescent photocatalyst with persistent deNOx activity after turning off the light was successfully synthesized by a simple planetary ball milling process. The novel persistent photocatalytic behavior was related to the overlap between the absorption wavelength of TiO2-xNy and the emission wavelength of the CaAl2O4:(Eu, Nd).

  16. Structural, vibrational and luminescence properties of the (1−x)CaWO{sub 4}−xCdWO{sub 4} system

    SciTech Connect

    Taoufyq, A.; Guinneton, F.; Valmalette, J-C.; Arab, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; and others

    2014-11-15

    In the present work, we investigate the structural, microstructural, vibrational and luminescence properties of the system (1−x)CaWO{sub 4}−xCdWO{sub 4} with x ranging between 0 and 1. Polycrystalline samples were elaborated using a coprecipitation technique followed by thermal treatment at 1000 °C. The samples were then characterized using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and luminescence analyses. X-ray diffraction profile analyses using Rietveld method showed that two kinds of solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4} having scheelite and wolframite structures, with respectively tetragonal and monoclinic crystal cells, were observed, with a biphasic system for compositions x=0.6 and 0.7. The scanning electron microscopy experiments showed a complex evolution of morphologies and crystallite sizes as x increased. The vibration modes of Raman spectra were characteristic of composition-dependent disordered solid solutions with decreasing wavenumbers as x increased. Luminescence experiments were performed under UV-laser light irradiation. The energies of emission bands increased linearly with cadmium composition x. The integrated intensity of luminescence reached a maximum value for the substituted wolframite phase with composition x=0.8. - Graphical abstract: Luminescence on UV excitation (364.5 nm) of (1−x)CaWO{sub 4−x}CdWO{sub 4} system, elaborated from coprecipitation technique at 1000 °C, with 0Ca{sub 1−x}Cd{sub x}WO{sub 4} polycrystalline phases with 0≤x≤0.5. (b) Maximum of luminescence intensity for the composition x=0.8. - Highlights: • Solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4} are elaborated from coprecipitation technique. • The structures of two types of solid solutions are refined using Rietveld method. • A maximum of luminescence is obtained for an intermediate composition x=0.8.

  17. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    NASA Astrophysics Data System (ADS)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation.

  18. Crustal structure of the Pannonian Basin: The AlCaPa and Tisza Terrains and the Mid-Hungarian Zone

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Ren, Yong; Dando, Ben; Stuart, Graham W.; Hegedűs, Endre; Kovács, Attila Csaba; Houseman, Gregory A.

    2015-04-01

    The Pannonian Basin of Central Europe is one of the key examples of Miocene continental extension that is easily accessible to surface seismological investigation. It comprises two major crustal blocks: AlCaPa and Tisza which abut along a poorly understood structure referred to as the Mid-Hungarian Zone (MHZ), the whole being surrounded by the arc of the Carpathian Mountains, the Alps and the Dinarides. Using data from the CBP (Carpathian Basins Project) temporary broadband seismic array of 46 stations deployed across the western Pannonian Basin in 2006-2007, we calculated receiver functions that constrain the variation of crustal thickness across the basin and derive a map of Moho depth across a NW-SE oriented swath about 450 km long and 75 km wide. The measured Moho depths show no significant change in crustal thickness between AlCaPa and Tisza terrains, but the Moho is not or very weakly imaged along a ca. 40 km wide strip centred on the MHZ. Moho depths within the Pannonian Basin are typically in the range 25-30 km, and increase toward the periphery of the basin. Our measurements are generally consistent with earlier VP models from controlled-source seismic surveys and recent VS models determined by tomographic analysis of ambient noise signals. The lack of a sharp Moho image beneath the MHZ suggests that the crust-mantle boundary in that zone may consist of a gradual increase in velocity with depth. The relatively constant crustal thickness across the two domains of the Pannonian Basin suggests that thinning to the same final state is controlled thermally. This structural characteristic seems to be governed by a large-scale balance of gravitational potential energy that is insensitive to the separate prior histories of the two regions.

  19. Dynamic Wetting of CaO-Al2O3-SiO2-MgO Liquid Oxide on MgAl2O4 Spinel

    NASA Astrophysics Data System (ADS)

    Abdeyazdan, Hamed; Dogan, Neslihan; Rhamdhani, M. Akbar; Chapman, Michael W.; Monaghan, Brian J.

    2015-02-01

    Inclusion type and content in steel is critical in steelmaking, affecting both productivity through clogging, and downstream physical properties of the steel. They are normally removed from steel by reacting with a slag (liquid oxide) phase. For efficient inclusion removal, the inclusions must attach/bond with this liquid phase. The strength of the attachment can be in part characterized by the wettability of the liquid oxide on the inclusions. In this study, the dynamic wetting of liquid oxides of the CaO-Al2O3-SiO2-MgO system on a solid spinel (MgAl2O4) substrate with low porosity of 1.9 pct was measured at 1773 K (1500 °C) using a modified sessile drop technique. The dynamic contact angle between the liquid and solid spinel was determined for different CaO/Al2O3 mass percent ratios ranging from 0.98 to 1.55. Characteristic curves of wettability ( θ) vs time showed a rapid decrease in wetting in the first 10 seconds tending to a plateau value at extended times. A mathematical model for spreading behavior of liquid oxides by Choi and Lee was adopted and shown to provide a reasonable representation of the spreading behavior with time. The chemical interaction at the interface between spinel (MgAl2O4) and slag was analyzed by carrying out detailed thermodynamic evaluation and characterization using scanning electron microscopy/energy dispersive spectroscopy. There is evidence of liquid penetrating the substrate via pores and along grain boundaries, forming a penetration layer in the substrate. The depth of the penetration layer was found to be a function of substrate porosity and sample cooling rate. It decreased from ~350 µm for 6.7 pct-porous substrate to ~190 µm for substrate with porosity of 1.9 pct and from ~190 µm to ~50 µm for a slow-cooled liquid oxide-spinel substrate sample in the furnace to a rapidly cooled liquid cooled-spinel substrate sample, respectively.

  20. Synthesis of Compositionally Defined Single-Crystalline Eu 3+ -Activated Molybdate–Tungstate Solid-Solution Composite Nanowires and Observation of Charge Transfer in a Novel Class of 1D CaMoO 4CaWO 4 :Eu 3+ –0D CdS/CdSe QD Nanoscale Heterostructures

    SciTech Connect

    Han, Jinkyu; McBean, Coray; Wang, Lei; Jaye, Cherno; Liu, Haiqing; Fischer, Daniel A.; Wong, Stanislaus S.

    2015-02-10

    As a first step, we have synthesized and optically characterized a systematic series of one-dimensional (1D) single-crystalline Eu³⁺-activated alkaline-earth metal tungstate/molybdate solid solution composite CaW₁₋xMoxO₄ (0 ≤ ‘x’ ≤ 1) nanowires of controllable chemical composition using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanowires has been performed using X-ray diffraction, electron microscopy, and optical spectroscopy. The crystallite size and single crystallinity of as-prepared 1D CaW₁₋xMoxO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) solid solution composite nanowires increase with increasing Mo component (‘x’). We note a clear dependence of luminescence output upon nanowire chemical composition with our 1D CaW₁₋xMoxO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) evincing the highest photoluminescence (PL) output at ‘x’ = 0.8, amongst samples tested. Subsequently, coupled with either zero-dimensional (0D) CdS or CdSe quantum dots (QDs), we successfully synthesized and observed charge transfer processes in 1D CaW1-xMoxO4: Eu3+ (‘x’ = 0.8) – 0D QD composite nanoscale heterostructures. Our results show that CaW₁₋xMoxO₄: Eu³⁺ (‘x’ = 0.8) nanowires give rise to PL quenching when CdSe QDs and CdS QDs are anchored onto the surfaces of 1D CaW₁₋xMoxO₄: Eu³⁺ nanowires. The observed PL quenching is especially pronounced in CaW₁₋xMoxO₄: Eu³⁺ (‘x’ = 0.8) – 0D CdSe QD heterostructures. Conversely, the PL output and lifetimes of CdSe and CdS QDs within these heterostructures are not noticeably altered as compared with unbound CdSe and CdS QDs. The difference in optical behavior between 1D Eu³⁺ activated tungstate and molybdate solid solution nanowires and the semiconducting 0D QDs within our

  1. Synthesis of Compositionally Defined Single-Crystalline Eu 3+ -Activated Molybdate–Tungstate Solid-Solution Composite Nanowires and Observation of Charge Transfer in a Novel Class of 1D CaMoO 4 –CaWO 4 :Eu 3+ –0D CdS/CdSe QD Nanoscale Heterostructures

    DOE PAGES

    Han, Jinkyu; McBean, Coray; Wang, Lei; ...

    2015-02-10

    As a first step, we have synthesized and optically characterized a systematic series of one-dimensional (1D) single-crystalline Eu³⁺-activated alkaline-earth metal tungstate/molybdate solid solution composite CaW₁₋xMoxO₄ (0 ≤ ‘x’ ≤ 1) nanowires of controllable chemical composition using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanowires has been performed using X-ray diffraction, electron microscopy, and optical spectroscopy. The crystallite size and single crystallinity of as-prepared 1D CaW₁₋xMoxO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) solid solution composite nanowires increase with increasing Mo component (‘x’). We note a clear dependence of luminescence output upon nanowire chemical composition withmore » our 1D CaW₁₋xMoxO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) evincing the highest photoluminescence (PL) output at ‘x’ = 0.8, amongst samples tested. Subsequently, coupled with either zero-dimensional (0D) CdS or CdSe quantum dots (QDs), we successfully synthesized and observed charge transfer processes in 1D CaW1-xMoxO4: Eu3+ (‘x’ = 0.8) – 0D QD composite nanoscale heterostructures. Our results show that CaW₁₋xMoxO₄: Eu³⁺ (‘x’ = 0.8) nanowires give rise to PL quenching when CdSe QDs and CdS QDs are anchored onto the surfaces of 1D CaW₁₋xMoxO₄: Eu³⁺ nanowires. The observed PL quenching is especially pronounced in CaW₁₋xMoxO₄: Eu³⁺ (‘x’ = 0.8) – 0D CdSe QD heterostructures. Conversely, the PL output and lifetimes of CdSe and CdS QDs within these heterostructures are not noticeably altered as compared with unbound CdSe and CdS QDs. The difference in optical behavior between 1D Eu³⁺ activated tungstate and molybdate solid solution nanowires and the semiconducting 0D QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. We propose that

  2. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    NASA Astrophysics Data System (ADS)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-08-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  3. Toxic Metals (Pb and Cd) and Their Respective Antagonists (Ca and Zn) in Infant Formulas and Milk Marketed in Brasilia, Brazil

    PubMed Central

    De Castro, Clarissa S. P.; Arruda, Andréa F.; Da Cunha, Leandro R.; SouzaDe, Jurandir R.; Braga, Jez W. B.; Dórea, José G.

    2010-01-01

    In non-ideal scenarios involving partial or non-breastfeeding, cow’s milk-based dairy products are mainstream in infant feeding. Therefore, it is important to study the concentrations of potentially neurotoxic contaminants (Pb and Cd) and their respective counteracting elements (Ca and Zn) in infant dairy products. Fifty-five brands of infant formulas and milk sold in Brasilia, Brazil were analyzed. The dairy products came from areas in the central-west (26%), southeast (29%) and south of Brazil (36%) extending as far as Argentina (7%) and the Netherlands (2%). For toxic Pb and Cd, median concentrations in powdered samples were 0.109 mg/kg and 0.033 mg/kg, respectively; in fluid samples median Pb concentration was 0.084 mg/kg, but median Cd concentration was below the limit of detection and overall values were below reference safety levels. However, 62% of these samples presented higher Pb concentration values than those established by FAO/WHO. Although the inverse correlation between Cd and Zn (Spearman r = −0.116; P = 0.590) was not statistically significant, the positive correlation between Ca and Pb was (Spearman r = 0.619; P < 0.0001). Additionally, there was a significant correlation between Pb and Cd. Furthermore, the study also revealed that provision of the essential trace element Zn in infant formulas can provide adequate amounts of the recommended daily requirements. Infant formulas and milk sold for consumption by infants and children can be an efficient tool to monitor neurotoxic metal risk exposure among young children. PMID:21139877

  4. Probing structure-induced optical behavior in a new class of self-activated luminescent 0D/1D CaWO₄ metal oxide – CdSe nanocrystal composite heterostructures

    SciTech Connect

    Han, Jinkyu; McBean, Coray; Wang, Lei; Hoy, Jessica; Jaye, Cherno; Liu, Haiqing; Li, Zhuo-Qun; Sfeir, Matthew Y.; Fischer, Daniel A.; Taylor, Gordon T.; Misewich, James A.; Wong, Stanislaus S.

    2015-01-30

    In this report, we synthesize and characterize the structural and optical properties of novel heterostructures composed of (i) semiconducting nanocrystalline CdSe quantum dot (QDs) coupled with (ii) both one and zero-dimensional (1D and 0D) motifs of self-activated luminescence CaWO₄ metal oxides. Specifically, ~4 nm CdSe QDs have been anchored onto (i) high-aspect ratio 1D nanowires, measuring ~230 nm in diameter and ~3 μm in length, as well as onto (ii) crystalline 0D nanoparticles (possessing an average diameter of ~ 80 nm) of CaWO₄ through the mediation of 3-mercaptopropionic acid (MPA) as a connecting linker. Composite formation was confirmed by complementary electron microscopy and spectroscopy (i.e. IR and Raman) data. In terms of luminescent properties, our results show that our 1D and 0D heterostructures evince photoluminescence (PL) quenching and shortened PL lifetimes of CaWO₄ as compared with unbound CaWO₄. We propose that a photo-induced electron transfer process occurs from CaWO₄ to CdSe QDs, a scenario which has been confirmed by NEXAFS measurements and which highlights a decrease in the number of unoccupied orbitals in the conduction bands of CdSe QDs. By contrast, the PL signature and lifetimes of MPA-capped CdSe QDs within these heterostructures do not exhibit noticeable changes as compared with unbound MPA-capped CdSe QDs. The striking difference in optical behavior between CaWO₄ nanostructures and CdSe QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. In addition, the PL quenching behaviors for CaWO₄ within the heterostructure configuration were examined by systematically varying (i) the quantities and coverage densities of CdSe QDs as well as (ii) the intrinsic morphology (and by extension, the inherent crystallite size) of CaWO₄ itself.

  5. Synthesis and characterization of phosphates in molten systems Cs 2O-P 2O 5-CaO- MIII2O 3 ( MIII—Al, Fe, Cr)

    NASA Astrophysics Data System (ADS)

    Zatovsky, Igor V.; Strutynska, Nataliya Yu.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S.; Ogorodnyk, Ivan V.; Shishkin, Oleg V.

    2011-03-01

    The crystallization of complex phosphates from the melts of Cs 2O-P 2O 5-CaO- MIII2O 3 ( MIII—Al, Fe, Cr) systems have been investigated at fixed value Cs/P molar ratios equal to 0.7, 1.0 and 1.3 and Са/Р=0.2 and Ca/ МIII=1. The fields of crystallization of CsCaP 3O 9, β-Ca 2P 2O 7, Cs 2CaP 2O 7, Cs 3CaFe(P 2O 7) 2, Ca 9MIII(PO 4) 7 ( MIII—Fe, Cr), Cs 0.63Ca 9.63Fe 0.37(PO 4) 7 and CsCa 10(PO 4) 7 were determined. Obtained phosphates were investigated using powder X-ray diffraction and FTIR spectroscopy. Novel whitlockite-related phases CsCa 10(PO 4) 7 and Cs 0.63Ca 9.63Fe 0.37(PO 4) 7 have been characterized by single crystal X-ray diffraction: space group R3c, a=10.5536(5) and 10.5221(4) Å, с=37.2283(19) and 37.2405(17) Å, respectively.

  6. Vitality and chemistry of roots of red spruce in forest floors of stands with a gradient of soil Al/Ca ratios in the northeastern United States

    USGS Publications Warehouse

    Wargo, P.M.; Vogt, K.; Vogt, D.; Holifield, Q.; Tilley, J.; Lawrence, G.; David, M.

    2003-01-01

    Number of living root tips per branch, percent dead roots, percent mycorrhizae and mycorrhizal morphotype, response of woody roots to wounding and colonization by fungi, and concentrations of starch, soluble sugars, phenols, percent C and N and C/N ratio, and Al Ca, Fe, K, Mg, Mn, and P were measured for 2 consecutive years in roots of red spruce (Picea rubens Sarg.) in stands in the northeastern United States (nine in 1993 and two additional in 1994) dominated by red spruce and with a gradient of forest floor exchangeable Al/Ca ratios. Root vitality was measured for nonwoody and coarse woody roots; chemical variables were measured for nonwoody (<1 mm), fine woody (1 to <2 mm), and coarse woody (2 to <5 mm) roots. There were significant differences among sites for all variables, particularly in 1993, although few were related to the Al/Ca ratio gradient. Percent mycorrhizae decreased, while some morphotypes increased or decreased as the Al/Ca ratio increased. In nonwoody roots, N increased as the Al/Ca ratio increased. Most sampled trees appeared to be in good or fair health, suggesting that an adverse response of these root variables to high Al concentrations may be apparent only after a significant change in crown health.

  7. Mechanical Properties and Fracture Behaviors of the As-Extruded Mg-5Al-3Ca Alloys Containing Yttrium at Elevated Temperature.

    PubMed

    Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee

    2016-02-01

    Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound.

  8. Single-crystal Elasticity of Zoisite Ca2Al3Si3O12(OH) by Brillouin Scattering

    NASA Astrophysics Data System (ADS)

    Mao, Z.; Jiang, F.; Duffy, T. S.

    2005-12-01

    Zoisite, Ca 2Al3Si3O12(OH), is an important metamorphic mineral and one of the main H2O-containing phases minerals in subduction zones. Experiments in basaltic compositions have shown that zoisite can remain stable to pressures of ~3.1 GPa at 650°C (Forneris and Holloway, 2003), and it is stable to ~7 GPa and 1000°C in the calcium-aluminum-silicon-hydrogen system (Poli et al, 1998). The bulk modulus of zoisite was measured by X-ray diffraction in both multi-anvil apparatus and diamond anvil cells (Holland et al, 1996; Comodi et al, 1997; Pawley et al, 1998; Grevel et al, 2000). However, existing results show large discrepancies. That cannot be explained by presence of small amounts of Fe. In order to provide reliable elastic moduli, the single-crystal elastic constants of zoisite were determined by Brillouin spectroscopy. Three platelets were cut from a gem-quality zoisite sample. Single-crystal x-ray diffraction was performed at x17C of Brookhaven National Laboratory. The lattice parameters are a=16.207(5), b=5.540(5), c=10.056(2) Å with a calculated density 3.343(3)g/cm3. The Brillouin spectra were recorded in a forward scattering geometry at ambient conditions. Measurements were made in a total of 37 directions in each plane. The data were inverted for 9 elastic tensor components and 9 crystal orientation parameters. The single crystal elastic tensor constants C11, C12, C13, C22, C23, C33, C44, C55, C66 are 279.1(8), 95.1(18), 91.3(16), 249.3(8), 30.9(8), 216.5(8), 51.6(4), 80.2(4), 65.9(3)GPa respectively. The resulting bounds on the adiabatic bulk and shear moduli are 127.9(4) and 72.6(2)GPa respectively. Our results are generally consistent with previous static compression studies although we obtain higher c axis compressibility than some X-ray studies. Compared with the elastic moduli of lawsonite, zoisite has a similar bulk modulus (~125 GPa), but a 30% larger shear modulus than lawsonite (~52 GPa) (Sinogeikin et al, 2000). The VP/VS ratio is 1.76 for

  9. Diode-pumped Kerr-lens mode-locked Yb:CaGdAlO4 laser with tunable wavelength

    NASA Astrophysics Data System (ADS)

    Gao, Ziye; Zhu, Jiangfeng; Wang, Junli; Wang, Zhaohua; Wei, Zhiyi; Xu, Xiaodong; Zheng, Lihe; Su, Liangbi; Xu, Jun

    2016-01-01

    We experimentally demonstrated a wavelength tunable Kerr-lens mode-locked femtosecond laser based on an Yb:CaGdAlO4 (Yb:CGA) crystal. The Kerr-lens mode-locked wavelength tuning range was from 1043.5 to 1076 nm, as broad as 32.5 nm, by slightly tilting the end mirror. Pulses as short as 60 fs were generated at the central wavelength of 1043.8 nm with an average output power of 66 mW. By using an output coupler with 1.5% transmittance, the Kerr-lens mode-locked average output power reached 127 mW with a pulse duration of 81 fs at a central wavelength of 1049.5 nm.

  10. Studies on the fabrication of Ag/Hg1Ba2Ca1Cu2O6+dgr/CdSe heterostructures using the pulse electrodeposition technique

    NASA Astrophysics Data System (ADS)

    Shivagan, D. D.; Shirage, P. M.; Pawar, S. H.

    2004-03-01

    Metal/superconductor/semiconductor (Ag/Hg1Ba2Ca1Cu2O6+dgr (Hg-1212)/CdSe) heterostructures have been successfully fabricated using the pulse electrodeposition technique. The electrochemical parameters are optimized and diffusion free growth of CdSe on to Ag/Hg-1212 was obtained by employing underpotential deposition and by studying nucleation and growth mechanism during deposition. The heterostructures are characterized by x-ray diffraction, scanning electron microscopy studies and low-temperature four-probe electrical resistivity measurements. After the deposition of CdSe, the critical transition temperature of Hg-1212 films was found to be increased from 115 K with Jc (77 K) = 1.7 × 103 A cm-2 to 117.2 K with Jc (77 K) = 1.91 × 103 A cm-2. Tc and Jc (77 K) values were 120.3 K and 3.7 × 103 A cm-2, respectively, when the heterostructure was irradiated with red He-Ne laser. The improvements in superconducting properties of Hg-1212 in Ag/Hg-1212/CdSe heterostructures have been explained at length in this paper.

  11. Photocatalytic characteristics for the nanocrystalline TiO2 on the Ag-doped CaAl2O4:(Eu,Nd) phosphor

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Sik; Sung, Hyun-Je; Kim, Bum-Joon

    2015-04-01

    This study investigated the photocatalytic behavior of nanocrystalline TiO2 deposited on Ag-doped long-lasting phosphor (CaAl2O4:Eu2+,Nd3+). The CaAl2O4:Eu2+,Nd3+ phosphor powders were prepared via conventional sintering using CaCO3, Al2O3, Eu2O3, and Nd2O3 as raw materials according to the appropriate molar ratios. Silver nanoparticles were loaded on the phosphor by mixing with an aqueous Ag-dispersion solution. Nanocrystalline TiO2 was deposited on Ag-doped CaAl2O4:Eu2+,Nd3+ powders via low-pressure chemical vapor deposition (LPCVD). The TiO2 coated on the phosphor was actively photo-reactive under irradiation with visible light and showed much faster benzene degradation than pure TiO2, which is almost non-reactive. The coupling of TiO2 with phosphor may result in an energy band bending in the junction region, which then induces the TiO2 crystal at the interface to be photo-reactive under irradiation with visible light. In addition, the intermetallic compound of CaTiO3 that formed at the interface between TiO2 and the CaAl2O4:(Eu2+,Nd3+) phosphor results in the formation of oxygen vacancies and additional electrons that promote the photodecomposition of benzene gas. The addition of Ag nanoparticles enhanced the photocatalytic reactivity of the TiO2/CaAl2O4:Eu2+,Nd3+ phosphor. TiO2 on the Ag-doped phosphor presented a higher benzene gas decomposition rate than the TiO2 did on the phosphor without Ag-doping under both irradiation with ultraviolet and visible light.

  12. Novel ZnO:Al contacts to CdZnTe for X- and gamma-ray detectors

    NASA Astrophysics Data System (ADS)

    Roy, U. N.; Mundle, R. M.; Camarda, G. S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Pradhan, A. K.; James, R. B.

    2016-05-01

    CdZnTe (CZT) has made a significant impact as a material for room-temperature nuclear-radiation detectors due to its potential impact in applications related to nonproliferation, homeland security, medical imaging, and gamma-ray telescopes. In all such applications, common metals, such as gold, platinum and indium, have been used as electrodes for fabricating the detectors. Because of the large mismatch in the thermal-expansion coefficient between the metal contacts and CZT, the contacts can undergo stress and mechanical degradation, which is the main cause for device instability over the long term. Here, we report for the first time on our use of Al-doped ZnO as the preferred electrode for such detectors. The material was selected because of its better contact properties compared to those of the metals commonly used today. Comparisons were conducted for the detector properties using different contacts, and improvements in the performances of ZnO:Al-coated detectors are described in this paper. These studies show that Al:ZnO contacts to CZT radiation detectors offer the potential of becoming a transformative replacement for the common metallic contacts due to the dramatic improvements in the performance of detectors and improved long-term stability.

  13. Novel ZnO:Al contacts to CdZnTe for X- and gamma-ray detectors

    PubMed Central

    Roy, U. N.; Mundle, R. M.; Camarda, G. S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Pradhan, A. K.; James, R. B.

    2016-01-01

    CdZnTe (CZT) has made a significant impact as a material for room-temperature nuclear-radiation detectors due to its potential impact in applications related to nonproliferation, homeland security, medical imaging, and gamma-ray telescopes. In all such applications, common metals, such as gold, platinum and indium, have been used as electrodes for fabricating the detectors. Because of the large mismatch in the thermal-expansion coefficient between the metal contacts and CZT, the contacts can undergo stress and mechanical degradation, which is the main cause for device instability over the long term. Here, we report for the first time on our use of Al-doped ZnO as the preferred electrode for such detectors. The material was selected because of its better contact properties compared to those of the metals commonly used today. Comparisons were conducted for the detector properties using different contacts, and improvements in the performances of ZnO:Al-coated detectors are described in this paper. These studies show that Al:ZnO contacts to CZT radiation detectors offer the potential of becoming a transformative replacement for the common metallic contacts due to the dramatic improvements in the performance of detectors and improved long-term stability. PMID:27216387

  14. Thermal equation of state of CaFe 2O 4-type MgAl 2O 4

    NASA Astrophysics Data System (ADS)

    Sueda, Yuichiro; Irifune, Tetsuo; Sanehira, Takeshi; Yagi, Takehiko; Nishiyama, Norimasa; Kikegawa, Takumi; Funakoshi, Ken-ichi

    2009-05-01

    In situ X-ray diffraction measurements of CaFe 2O 4-type MgAl 2O 4 have been conducted at pressures up to 42 GPa and temperatures to 2400 K using Kawai-type multianvil apparatus with sintered diamond anvils. Additional measurements have also been conducted at pressures to 12 GPa using diamond anvil cell with helium as a pressure medium at room temperature, and at temperatures to 836 K at the ambient pressure using a high-temperature X-ray diffractometer. The analysis of room-temperature data yielded V0 = 240.1(2) Å 3, K0 = 205(6) GPa, and K0=4.1(3). A fit of the present data to high-temperature Birch-Murnaghan equation of state (EOS) yielded (∂ K0/∂ T) P = -0.030(2) GPa/K and α0 = a0 + b0T with values of a0 = 1.96(13) × 10 -5 K -1 and b0 = 1.64(24) × 10 -8 K -2. The present data set was also fitted to Mie-Grüneisen-Debye (MGD) EOS and we obtained γ0 = 1.73(7), q = 2.03(37), and θ0 = 1546(104) K. Density changes of MORB have been estimated using the newly obtained thermoelastic parameters, assuming that the Al-rich phase in this composition possesses the CaFe 2O 4-type structure under the lower mantle P, T conditions. The calculated densities along geotherms for the normal mantle and subducting cold slabs are both significantly higher than those of typical seismological models, confirming the conclusion of some recent results on MORB by laser-heated diamond anvil cell experiments.

  15. Microstructure and mechanical properties of spray-deposited Mg-12.55Al-3.33Zn-0.58Ca-1Nd alloy

    SciTech Connect

    Bai Pucun; Dong Taishang; Hou Xiaohu; Zhao Chunwang; Xing Yongming

    2010-07-15

    A Mg-Al-Zn-Ca-Nd magnesium alloy was prepared by spray forming technology, and the spray-deposited alloy was subsequently hot-extruded with a reduction rate of 16:1 at 623 K. The mechanical properties of the extruded alloy were investigated, and the result shows that the spray-formed Mg alloy offers superior tensile strength with poor ductility. The morphologies, fracture characteristic and chemical compositions of the extruded alloy were then explored by scanning electron microscopy with energy dispersive spectrometer. Furthermore, microstructure of the extruded alloy was examined by X-ray diffractometry and transmission electron microscopy. The results indicate that the microstructure of the spray-deposited magnesium alloy consists of {alpha}-Mg and Al{sub 2}Ca phases, and the Al{sub 2}Ca compound is distributed along the grain boundaries of the primary {alpha}-Mg. Moreover, twin substructure is found to exist in microstructure of the Al{sub 2}Ca phase, rare earth Nd in the Al{sub 2}Ca phase in the form of solid solution.

  16. Formation of ettringite, Ca 6Al 2(SO 4) 3(OH) 12·26H 2O, AFt, and monosulfate, Ca 4Al 2O 6(SO 4)·14H 2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide—calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Christensen, Axel Nørlund; Jensen, Torben R.; Hanson, Jonathan C.

    2004-06-01

    In the hydration of calcium aluminum oxide-gypsum mixtures, i.e., Ca 3Al 2O 6, Ca 12Al 14O 33 and CaSO 4·2H 2O, the reaction products can be ettringite, Ca 6Al 2(SO 4) 3(OH) 12·26H 2O, monosulfate, Ca 4Al 2O 6(SO 4)·14H 2O, or the calcium aluminum oxide hydrate, Ca 4Al 2O 7·19H 2O. Ettringite is formed if sufficient CaSO 4·2H 2O is present in the mixture. Ettringite is converted to monosulfate when all CaSO 4·2H 2O is consumed in the synthesis of ettringite. The reactions were investigated in the temperature range 25-170°C using in situ synchrotron X-ray powder diffraction. This technique allows the study of very fast chemical reactions that are observed here under hydrothermal conditions. A new experimental approach was developed to perform in situ mixing of the reactants during X-ray data collection.

  17. Partial Melt Processing of Solid-Solution Bi2Sr2CaCu2O8+delta Thick-Film Conductors with Nanophase Al2O3 Additions

    DTIC Science & Technology

    2006-04-01

    range of partial-melt temperatures. Results were compared to Al2O3-free films with compositions lying within the single-phase solid - solution 2212 region...Nanophase Al2O3 reacted with 2212-type precursors to form a composite of micron size or smaller particles of solid - solution (Sr,Ca)3Al2O6 in a solid ... solution 2212 superconducting matrix. The Ca content of the (Sr,Ca)3Al2O6 in a solid - solution 2212 superconducting matrix. The Ca content of the (Sr,Ca

  18. Temperature dependent electrical properties of Al/Cd0.8Zn0.2S/ITO Schottky diode

    NASA Astrophysics Data System (ADS)

    M, Parameshwari P.; V, Shrisha B.; Naik, K. Gopalakrishna

    2015-06-01

    In this work effect of temperature on the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of Al/Cd0.8Zn0.2S/ITO diode were studied. The series resistance, Schottky barrier height and ideality factor of the diode were obtained from the forward I-V characteristics at temperatures ranging193 K - 303 K. Activation energy of the diode was calculated from the reverse bias I-V characteristics. Room temperature C - V measurement was used to find the carrier concentration (NA) and built in voltage (Vb) of the diode. Schottky barrier height (ΦB) was also measured from C-V characteristics at room temperature.

  19. Al-doped ZnO contact to CdZnTe for x- and gamma-ray detector applications

    NASA Astrophysics Data System (ADS)

    Roy, U. N.; Camarda, G. S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Mundle, R. M.; Pradhan, A. K.; James, R. B.

    2016-06-01

    The poor adhesion of common metals to CdZnTe (CZT)/CdTe surfaces has been a long-standing challenge for radiation detector applications. In this present work, we explored the use of an alternative electrode, viz., Al-doped ZnO (AZO) as a replacement to common metallic contacts. ZnO offers several advantages over the latter, such as having a higher hardness, a close match of the coefficients of thermal expansion for CZT and ZnO, and better adhesion to the surface of CZT due to the contact layer being an oxide. The AZO/CZT contact was investigated via high spatial-resolution X-ray response mapping for a planar detector at the micron level. The durability of the device was investigated by acquiring I-V measurements over an 18-month period, and good long-term stability was observed. We have demonstrated that the AZO/CZT/AZO virtual-Frisch-grid device performs fairly well, with comparable or better characteristics than that for the same detector fabricated with gold contacts.

  20. Saddle-point equilibrium lines between fcc and bcc phases in Al and Ca from first principles

    NASA Astrophysics Data System (ADS)

    Qiu, S. L.; Marcus, P. M.

    2013-10-01

    Phase equilibrium lines (denoted ph-eq lines) of face-centered-cubic (fcc) and body-centered-cubic (bcc) phases, as well as saddle-point equilibrium lines (denoted sp-eq lines) in Al and Ca are studied by first-principles total-energy calculations. For a non-vibrating crystal of Al we determine the transition pressure p t = 2.62 Mbar from fcc to bcc phase. The sp-eq line lies between the two ph-eq lines, merges with the bcc-eq line at V = 61 au3/atom ( p = 1.64 Mbar) and with the fcc-eq line at V = 42.4 au3/atom ( p = 5.50 Mbar), gives the Gibbs free energy barrier ΔG = 0.64 mRy/atom at p t . The bcc phase is unstable below 1.64 Mbar, while the fcc phase is unstable above 5.50 Mbar. In a non-vibrating crystal of Ca two sp-eq lines (denoted sp1-eq line and sp2-eq line, respectively) are found corresponding to two phase transitions: one is from fcc to bcc at p t1 = 89.6 kbar, the other is from bcc to fcc at p t2 = 787 kbar. The sp1-eq line merges with the bcc-eq line at V = 231 au3/atom ( p = 50 kbar) and with the fcc-eq line at V = 183 au3/atom ( p = 174 kbar), gives a barrier of Δ G 1 = 0.62 mRy/atom at p t1. The sp2-eq line merges with the bcc-eq line at V = 90 au3/atom ( p = 981 kbar) and with the fcc-eq line at V = 110 au3/atom ( p = 624 kbar), gives a barrier of Δ G 2 = 1.1 mRy/atom at p t2. The bcc phase is stable in the range from 50 kbar to 981 kbar but unstable outside this range, while the fcc phase is unstable in the range from 174 to 624 kbar but stable outside this range. This work confirms all the features of the sp-eq line described in our recent work [S.L. Qiu, P.M. Marcus, J. Phys.: Condens. Matter 24, 225501 (2012)] and finds two additional features: (1) there are two sp-eq lines corresponding to the two phase transitions between fcc and bcc phases in Ca; (2) fcc phase of Ca is unstable between the two merge points on the fcc-eq line but stable beyond them, while bcc phase of Ca is stable between the two merge points on the bcc-eq line but

  1. Fluoride evaporation and crystallization behavior of CaF2-CaO-Al2O3-(TiO2) slag for electroslag remelting of Ti-containing steels

    NASA Astrophysics Data System (ADS)

    Shi, Cheng-bin; Cho, Jung-wook; Zheng, Ding-li; Li, Jing

    2016-06-01

    To elucidate the behavior of slag films in an electroslag remelting process, the fluoride evaporation and crystallization of CaF2-CaO-Al2O3-(TiO2) slags were studied using the single hot thermocouple technique. The crystallization mechanism of TiO2-bearing slag was identified based on kinetic analysis. The fluoride evaporation and incubation time of crystallization in TiO2-free slag are found to considerably decrease with decreasing isothermal temperature down to 1503 K. Fish-bone and flower-like CaO crystals precipitate in TiO2-free slag melt, which is accompanied by CaF2 evaporation from slag melt above 1503 K. Below 1503 K, only near-spherical CaF2 crystals form with an incubation time of less than 1 s, and the crystallization is completed within 1 s. The addition of 8.1wt% TiO2 largely prevents the fluoride evaporation from slag melt and promotes the slag crystallization. TiO2 addition leads to the precipitation of needle-like perovskite (CaTiO3) crystals instead of CaO crystals in the slag. The crystallization of perovskite (CaTiO3) occurs by bulk nucleation and diffusion-controlled one-dimensional growth.

  2. Blue-Emitting Eu2+-Doped CaAl2O4 Phosphor Thin Films Prepared Using Pulsed Laser Deposition Technique with Post Annealing

    NASA Astrophysics Data System (ADS)

    Kunimoto, Takashi; Kakehi, Ken-nosuke; Yoshimatsu, Ryo; Ohmi, Koutoku; Tanaka, Shosaku; Kobayashi, Hiroshi

    2001-10-01

    Blue-emitting Eu2+-doped calcium aluminate phosphor thin films were obtained using the pulsed laser deposition technique with post annealing. As-deposited films were amorphous and showed weak red Eu3+ photoluminescence (PL). By annealing in reducing atmosphere (N2/H2:2% mixed gas) at 950°C for 3 h, the film was crystallized and showed a PL emission band peaking at about 447 nm, which originated from the 4f65d to 4f7 transition of Eu2+ ion. It is considered that the deposited film consists mainly of CaAl2O4 and partly of other binary compounds of the CaO-Al2O3 system. It was determined that the PL intensity of Eu2+ in CaAl2O4 can be controlled by the laser fluence, target-substrate distance and injection gas.

  3. Structural, elastic and electronic properties of C14-type Al2M (M=Mg, Ca, Sr and Ba) Laves phases

    NASA Astrophysics Data System (ADS)

    Lishi, Ma; Yonghua, Duan; Runyue, Li

    2017-02-01

    The structural and mechanical properties, Debye temperatures and anisotropic sound velocities of the Laves phases Al2M (M=Mg, Ca, Sr and Ba) with C14-type structure were investigated using the first-principles corresponding calculations. The corresponding calculated structural parameters and formation enthalpies are in good agreement with the available theoretical values, and Al2Ca has the best phase stability. The mechanical properties, including elastic constants, bulk modulus B, shear modulus G, Young's modulus E, and Poisson ratio ν, were deduced within the Voigt-Reuss-Hill approximation. The brittleness and ductility were estimated by the values of Poisson ratio, B/G and Cauchy pressure. Moreover, the elastic anisotropy was investigated by calculating and discussing several anisotropy indexes. Finally, the electronic structures were used to illustrate the bonding characteristics of C14-Al2M (M=Mg, Ca, Sr and Ba) phases.

  4. The pressure-volume equation of state of a synthetic grossular Ca3Al2Si3O12

    NASA Astrophysics Data System (ADS)

    Milani, Sula; Boffa Ballaran, Tiziana; Nestola, Fabrizio

    2014-05-01

    In the framework of a wide research project focused on mineral inclusions in diamonds we have investigated the compressibility of a synthetic grossular garnet (Ca3Al2Si3O12) with the purpose of providing new constraints on the diamond geobarometry. In fact, not only garnets are among the important phases of the Earth upper mantle but at the same time are one of the main phases found as inclusion in diamonds. Garnets are a crucial marker in determining the origin source of diamonds, which can be eclogitic and/or peridotitic. In particular, peridotitic diamonds include garnets characterized by about 90-92% of pyrope-almandine with the grossular component reaching about 6-8%, whereas eclogitic diamonds have garnets with the grossular component increased up to about 20-22%. In order to obtain information about the depth of formation of the diamond-garnet pair, beyond the classical chemical method, we propose the so called "elastic method", which is based on the knowledge of precise and accurate thermoelastic parameters for both diamond and inclusion (e.g. Nestola et al. 2011 and references therein). We have determined the pressure - volume equation of state of a pure synthetic grossular garnet by single-crystal X-ray diffraction up to about 8 GPa. The resulting equation of state coefficients, together with those previously determined for pyrope and almandine end-members and their intermediate compositions (see Milani et al. 2013) will cover the compositional range of garnets found as inclusions in diamonds, allowing to construct a robust model to predict the elastic parameters for any garnet composition typical of eclogitic and/or peridotitic diamond. The research was funded by the ERC Starting Grant to FN (grant agreement n° 307322). References Milani S., Mazzucchelli M., Nestola F., Alvaro M., Angel R.J., Geiger C.A., Domeneghetti M.C. (2013) The P-T conditions of garnet inclusion formation in diamond: thermal expansion of synthetic end-member pyrope. EGU General

  5. Teaching the modes of Ca2+ transport between the plasma membrane and endoplasmic reticulum using a classic paper by Kwan et al.

    PubMed

    Liang, Willmann

    2009-09-01

    This teaching article uses the report by Kwan et al., "Effects of methacholine, thapsigargin, and La(3+) on plasmalemmal and intracellular Ca(2+) transport in lacrimal acinar cells," where the effects of Ca(2+)-mobilizing agents in regulating Ca(2+) fluxes were examined under various conditions. Upper-level undergraduate and new graduate students in physiology are the targe audience. Teaching and learning points are put forth in this article to illustrate 1) the characteristics of methacholine- and thapsigargin-induced Ca(2+) responses, 2) the different endoplasmic reticulum Ca(2+) stores accessible to methacholine and thapsigargin, 3) the inhibitory effects of La(3+) on Ca(2+) extrusion and Ca(2+) influx, and 4) the facilitatory role of La(3+) on endoplasmic reticulum Ca(2+) recycling. Each of the above concepts is first explained with references to the figures adapted from the original article. A list of student learning questions then follows, where the answers are found in the teaching notes for the instructors. It is the objective of this article to make both teaching and learning Ca(2+) regulation a rewarding experience for all.

  6. Micelle-Assisted Synthesis of Al2O3·CaO Nanocatalyst: Optical Properties and Their Applications in Photodegradation of 2,4,6-Trinitrophenol

    PubMed Central

    Imtiaz, Ayesha; Khaleeq-ur-rahman, Muhammad; Adnan, Rohana

    2013-01-01

    Calcium oxide (CaO) nanoparticles are known to exhibit unique property due to their high adsorption capacity and good catalytic activity. In this work the CaO nanocatalysts were prepared by hydrothermal method using anionic surfactant, sodium dodecyl sulphate (SDS), as a templating agent. The as-synthesized nanocatalysts were further used as substrate for the synthesis of alumina doped calcium oxide (Al2O3·CaO) nanocatalysts via deposition-precipitation method at the isoelectric point of CaO. The Al2O3·CaO nanocatalysts were characterized by FTIR, XRD, TGA, TEM, and FESEM techniques. The catalytic efficiencies of these nanocatalysts were studied for the photodegradation of 2,4,6-trinitrophenol (2,4,6-TNP), which is an industrial pollutant, spectrophotometrically. The effect of surfactant and temperature on size of nanocatalysts was also studied. The smallest particle size and highest percentage of degradation were observed at critical micelle concentration of the surfactant. The direct optical band gap of the Al2O3·CaO nanocatalyst was found as 3.3 eV. PMID:24311980

  7. Spin-Spin Interactions in the Oxides A(3)M'MO(6) (M = Rh, Ir; A = Ca, Sr; M' = Alkaline Earth, Zn, Cd, Na) of the K(4)CdCl(6) Structure Type Examined by Electronic Structure Calculations.

    PubMed

    Lee, K.-S.; Koo, H.-J.; Whangbo, M.-H.

    1999-05-03

    The oxides A(3)M'MO(6) (M = Rh, Ir; A = Ca, Sr; M' = alkaline earth, Zn, Cd) of the K(4)CdCl(6) structure type consist of isolated (MO(6))(8)(-) octahedral anions and exhibit an antiferromagnetic ordering at low temperatures. The spin-spin interactions in these oxides, Ca(3)NaMO(6) (M = Ir, Ru), and Sr(3)NaRuO(6) were examined by calculating how strongly the t(2g)-block levels of adjacent (MO(6))((6+)(n)()())(-) (n = 1, 2) anions interact in the presence and absence of the intervening cations A(2+) and M' (n)()(+) (n = 1, 2). Our calculations show that the spin-spin interactions in these oxides are three-dimensional, and the superexchange interactions occur mainly through the short intrachain and interchain M-O.O-M linkages. When the M(n)()(+) cation is very small compared with the A(2+) cation, the intrachain interaction is substantially stronger than the interchain interaction. The opposite is found when the sizes of the M(n)()(+) and A(2+) cations become similar.

  8. Determination of Ca, Mg, Na, Cd, Cu, Fe, K, Li and Zn in acid mine and reference water samples by inductively coupled plasma atomic fluorescence spectrometry

    USGS Publications Warehouse

    Sanzolone, R.F.; Meier, A.L.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric (ICP-AFS) method was used for the determination of nine elements in natural water. Reference and acid mine water samples were analysed by this method to demonstrate its usefulness for hydrogeochemical exploration. The elements were determined in two groups based on the compatibility of operating conditions and consideration of element abundance levels in natural water. Ca, Mg and Na were determined as a group using one set of instrumental conditions and a 1 + 99 dilution of the sample, and Cd, Cu, Fe, K, Li and Zn were determined using another set of conditions and the undiluted sample. The detection limits for the elements are as follows: Ca, 1.4; Mg, 1.7; Na, 2.0; Cd, 1.8; Cu, 6.2; Fe, 15.8; K, 3.5; Li, 0.3; and Zn, 1.2 ng m1-1. Each element has a linear range spanning about four orders of magnitude. The method has good precision and accuracy, as shown by statistics on replicate analyses and by the agreement between values obtained and those recommended for the reference water samples, and also those obtained by atomic absorption spectrometry for the acid mine water samples.

  9. How do mineral coatings affect dissolution rates? An experimental study of coupled CaCO 3 dissolution—CdCO 3 precipitation

    NASA Astrophysics Data System (ADS)

    Cubillas, Pablo; Köhler, Stephan; Prieto, Manuel; Causserand, Carole; Oelkers, Eric H.

    2005-12-01

    Coupled CaCO 3 dissolution-otavite (CdCO 3) precipitation experiments have been performed to 1) quantify the effect of mineral coatings on dissolution rates, and 2) to explore the possible application of this coupled process to the remediation of polluted waters. All experiments were performed at 25°C in mixed-flow reactors. Various CaCO 3 solids were used in the experiments including calcite, aragonite, and ground clam, mussel, and cockle shells. Precipitation was induced by the presence of Cd(NO 3) 2 in the inlet solution, which combined with aqueous carbonate liberated by CaCO 3 dissolution to supersaturate otavite. The precipitation of an otavite layer of less than 0.01 μm in thickness on calcite surfaces decreases its dissolution rate by close to two orders of magnitude. This decrease in calcite dissolution rates lowers aqueous carbonate concentrations in the reactor such that the mixed-flow reactor experiments attain a steady-state where the reactive fluid is approximately in equilibrium with otavite, arresting its precipitation. In contrast, otavite coatings are far less efficient in lowering aragonite, and ground clam, mussel, and cockle shell dissolution rates, which are comprised primarily of aragonite. A steady-state is only attained after the precipitation of an otavite layer of 3-10 μm thick; the steady state CaCO 3 dissolution rate is 1-2 orders of magnitude lower than that in the absence of otavite coatings. The difference in behavior is interpreted to stem from the relative crystallographic structures of the dissolving and precipitating minerals. As otavite is isostructural with respect to calcite, it precipitates by epitaxial growth directly on the calcite, efficiently slowing dissolution. In contrast, otavite's structure is appreciably different from that of aragonite. Thus, it will precipitate by random three dimensional heterogeneous nucleation, leaving some pore space at the otavite-aragonite interface. This pore space allows aragonite

  10. Roles of doping ions in afterglow properties of blue CaAl2O4:Eu2+,Nd3+ phosphors

    NASA Astrophysics Data System (ADS)

    Wako, A. H.; Dejene, B. F.; Swart, H. C.

    2014-04-01

    Eu2+ doped and Nd3+ co-doped calcium aluminate (CaAl2O4:Eu2+,Nd3+) phosphor was prepared by a urea-nitrate solution combustion method at furnace temperatures as low as 500 °C. The produced CaAl2O4:Eu2+,Nd3+ powder was investigated in terms of phase composition, morphology and luminescence by X-Ray diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infra Red spectroscopy (FTIR) and Photoluminescence (PL) techniques respectively. XRD analysis depicts a dominant monoclinic phase that indicates no change in the crystalline structure of the phosphor with varying concentration of Eu2+ and Nd3+. SEM results show agglomerates with non-uniform shapes and sizes with a number of irregular network structures having lots of voids and pores. The Energy Dispersive X-ray Spectroscopy (EDS) and (FTIR) spectra confirm the expected chemical components of the phosphor. PL measurements indicated one broadband excitation spectra from 200 to 300 nm centered around 240 nm corresponding to the crystal field splitting of the Eu2+ d-orbital and an emission spectrum in the blue region with a maximum on 440 nm. This is a strong indication that there was dominantly one luminescence center, Eu2+ which represents emission from transitions between the 4f7 ground state and the 4f6-5d1 excited state configuration. High concentrations of Eu2+ and Nd3+ generally reduce both intensity and lifetime of the phosphor powders. The optimized content of Eu2+ is 1 mol% and for Nd3+ is 1 mol% for the obtained phosphors with excellent optical properties. The phosphor also emits visible light at around 587 and 616 nm. Such emissions can be ascribed to the 5D0-7F1 and 5D0-7F2 intrinsic transition of Eu3+ respectively. The decay characteristics exhibit a significant rise in initial intensity with increasing Eu2+ doping concentration while the decay time increased with Nd3+ co-doping. The observed afterglow can be ascribed to the generation of suitable traps due to the presence of the Nd3

  11. Layered double hydroxide of Cd-Al/C for the Mineralization and De-coloration of Dyes in Solar and Visible Light Exposure

    NASA Astrophysics Data System (ADS)

    Khan, Shahid Ali; Khan, Sher Bahadar; Asiri, Abdullah M.

    2016-11-01

    Cd-Al/C layered double hydroxide (Cd-Al/C-LDH) and Cd-Sb/C nanocatalyst are reported here for the de-coloration and mineralization of organic dyes. These catalysts were largely characterized by FESEM, EDS, XRD, FTIR, XPS, PL and DRS. The diffuse reflectance data showed a band gap at 2.92 and 2.983 eV for Cd-Al/C-LDH and Cd-Sb/C respectively. The band gap suggested that both catalysts work well in visible range. The photoluminescence spectra indicated a peak at 623 nm for both the catalysts which further support the effectiveness of the respective catalyst in visible range. Both catalysts also showed good recyclability and durability till 4th cycle. Five dyes, acridine orange (AO), malachite green (MG), crystal violet (CV), congo red (CR) and methyl orange (MO) were used in this experiment. Various parameters of different light intensity such as visible, ultraviolet, sunlight and dark condition are observed for the de-coloration of these dyes. The de-coloration phenomenon was proceeded through adsorption assisted phot-degradation. The low cost, abundant nature, good recyclability and better dye removal efficiency make these catalysts suitable candidates for the de-coloration and mineralization of organic dyes.

  12. Layered double hydroxide of Cd-Al/C for the Mineralization and De-coloration of Dyes in Solar and Visible Light Exposure

    PubMed Central

    Khan, Shahid Ali; Khan, Sher Bahadar; Asiri, Abdullah M.

    2016-01-01

    Cd-Al/C layered double hydroxide (Cd-Al/C-LDH) and Cd-Sb/C nanocatalyst are reported here for the de-coloration and mineralization of organic dyes. These catalysts were largely characterized by FESEM, EDS, XRD, FTIR, XPS, PL and DRS. The diffuse reflectance data showed a band gap at 2.92 and 2.983 eV for Cd-Al/C-LDH and Cd-Sb/C respectively. The band gap suggested that both catalysts work well in visible range. The photoluminescence spectra indicated a peak at 623 nm for both the catalysts which further support the effectiveness of the respective catalyst in visible range. Both catalysts also showed good recyclability and durability till 4th cycle. Five dyes, acridine orange (AO), malachite green (MG), crystal violet (CV), congo red (CR) and methyl orange (MO) were used in this experiment. Various parameters of different light intensity such as visible, ultraviolet, sunlight and dark condition are observed for the de-coloration of these dyes. The de-coloration phenomenon was proceeded through adsorption assisted phot-degradation. The low cost, abundant nature, good recyclability and better dye removal efficiency make these catalysts suitable candidates for the de-coloration and mineralization of organic dyes. PMID:27841277

  13. Experimental investigation of the stability of clinopyroxene in mid-ocean ridge basalts: The role of Cr and Ca/Al

    NASA Astrophysics Data System (ADS)

    Voigt, Martin; Coogan, Laurence A.; von der Handt, Anette

    2017-03-01

    The change in the stability field of clinopyroxene in mid-ocean ridge basalt (MORB) as a function of pressure has been used widely as a geobarometer. Based on results from crystallization experiments using MORB-like compositions it has been suggested that MORB differentiation occurs at relatively high pressures at ultraslow- and slow-spreading ridges. However, differentiation requires the loss of substantial heat and it is unclear how this is possible at elevated pressures. To better understand the controls on the stability field of clinopyroxene in MORB-like compositions we report a series of experiments performed at 0.1 MPa in which the temperature of clinopyroxene saturation was determined in melts with variable Cr, Ca/Al and fO2. The results show that increased Cr and Ca/Al lead to an expansion of the clinopyroxene stability field. Incorporating these results into a new model of MORB differentiation shows that realistic parental melt Cr contents can increase the temperature at which clinopyroxene saturation occurs relative to assuming a Cr-free melt (as is commonly the case). Likewise, high Ca/Al melts will saturate clinopyroxene earlier than low Ca/Al melts and their crystallization may provide an explanation for high Mg# clinopyroxene in oceanic gabbros. The newly calibrated geobarometer gives lower crystallization pressures for MORB at the slow-spreading SWIR than previous calibrations, but still suggests relatively higher pressures of crystallization with decreasing spreading rate.

  14. An ab initio study of the structural, elastic, electronic and optical properties of the newly synthesized nitridoaluminate LiCaAlN2

    NASA Astrophysics Data System (ADS)

    Haddadi, K.; Bouhemadou, A.; Bin-Omran, S.; Maabed, S.; Khenata, R.

    2015-01-01

    The structural parameters, elastic constants, electronic structure and optical properties of the recently reported monoclinic quaternary nitridoaluminate LiCaAlN2 are investigated in detail using the ab initio plane-wave pseudopotential method within the generalized gradient approximation. The calculated equilibrium structural parameters are in excellent agreement with the experimental data, which validate the reliability of the applied theoretical method. The chemical and structural stabilities of LiCaAlN2 are confirmed by calculating the cohesion energy and enthalpy of formation. Chemical band stiffness is calculated to explain the pressure dependence of the lattice parameters. Through the band structure calculation, LiCaAlN2 is predicted to be an indirect band gap of 2.725 eV. The charge-carrier effective masses are estimated from the band structure dispersions. The frequency-dependent dielectric function, absorption coefficient, refractive index, extinction coefficient, reflectivity coefficient and electron energy loss function spectra are calculated for polarized incident light in a wide energy range. Optical spectra exhibit a noticeable anisotropy. Single-crystal and polycrystalline elastic constants and related properties, including isotropic sound velocities and Debye temperatures, are numerically estimated. The calculated elastic constants and elastic compliances are used to analyse and visualize the elastic anisotropy of LiCaAlN2. The calculated elastic constants demonstrate the mechanical stability and brittle behaviour of the considered material.

  15. Investigation of the hydration process in 3CaO.Al(2)O(3)-CaSO(4) . 2H(2)O-plasticizer-H(2)O systems by X-ray diffraction.

    PubMed

    Carazeanu, Ionela; Chirila, Elisabeta; Georgescu, Maria

    2002-06-10

    The development of the hydration process in 3CaO.Al(2)O(3)-CaSO(4) . 2H(2)O-H(2)O system is studied by X-ray diffraction in the presence of varying contents of new plasticizer admixtures belonging to the lignosulphonates class (calcium lignosuphonate-LSC) and condensates melamine formaldehyde sulfonated class-MSF (VIMC-11). The plasticizer admixtures were added in proportion of 0.1-1% solid substance. The influence of the plasticizer admixtures on the hydration process with increasing time is observed and it is shown to depend on the nature and content of the admixtures and the reaction time. The strong adsorption of admixtures on the surfaces on the anhydrous or partially hydrated particles of the system can explain the influence of the admixtures upon the kinetics of the hydration process retardation or acceleration. These plasticizer admixtures influence also the evolution of the hydrated compounds and forming of the hardening structure in the 3CaO.Al(2)O(3)-CaSO(4) . 2H(2)O-H(2)O system; their proportion in the system and the considered length of hardening are correlated. In the 3CaO.Al(2)O(3)-CaSO(4) . 2H(2)O-H(2)O system there are two different influences of the plasticizer admixtures upon the hydration process. One is a delaying action, as a result of plasticizer adsorption on the surface of the anhydrous and hydrated compound particles and another one is the intensifying action due to the stronger dispersion of the particles in aqueous medium.

  16. Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency

    PubMed Central

    Yan, Yuli; Zhang, Guangbiao; Wang, Chao; Peng, Chengxiao; Zhang, Peihong; Wang, Yuanxu; Ren, Wei

    2016-01-01

    The effects of doping on the transport properties of Ca5Al2Sb6 are investigated using first-principles electronic structure methods and Boltzmann transport theory. The calculated results show that a maximum ZT value of 1.45 is achieved with an optimum carrier concentration at 1000 K. However, experimental studies have shown that the maximum ZT value is no more than 1 at 1000 K. By comparing the calculated Seebeck coefficient with experimental values, we find that the low dopant solubility in this material is not conductive to achieve the optimum carrier concentration, leading a smaller experimental value of the maximum ZT. Interestingly, the calculated dopant formation energies suggest that optimum carrier concentrations can be achieved when the dopants and Sb atoms have similar electronic configurations. Therefore, it might be possible to achieve a maximum ZT value of 1.45 at 1000 K with suitable dopants. These results provide a valuable theoretical guidance for the synthesis of high-performance bulk thermoelectric materials through dopants optimization. PMID:27406178

  17. Site-sensitive energy transfer modes in Ca3Al2O6: Ce(3+)/Tb(3+)/Mn(2+) phosphors.

    PubMed

    Zhang, Jilin; He, Yani; Qiu, Zhongxian; Zhang, Weilu; Zhou, Wenli; Yu, Liping; Lian, Shixun

    2014-12-28

    Ce(3+)/Eu(2+), Tb(3+) and Mn(2+) co-doping in single-phase hosts is a common strategy to achieve white-light phosphors via energy transfer, which provides a high color rendering index (CRI) value and good color stability. However, not all hosts are suitable for white-light phosphors due to inefficient energy transfer. In this study, the site-sensitive energy transfer from different crystallographic sites of Ce(3+) to Tb(3+)/Mn(2+) in Ca3Al2O6 has been investigated in detail. The energy transfer from purplish-blue Ce(3+) to Tb(3+) is an electric dipole-dipole mode, and the calculated critical distance (Rc) suggests the existence of purplish-blue Ce(3+)-Tb(3+) clusters. No energy transfer is observed from purplish-blue Ce(3+) to Mn(2+). In co-doped phosphors based on greenish-blue Ce(3+), however, the radiative mode dominates the energy transfer from Ce(3+) to Tb(3+), and an electric dipole-quadrupole interaction is responsible for the energy transfer from Ce(3+) to Mn(2+). A detailed discussion on the site-sensitive energy transfer modes might provide a new aspect to discuss and understand the possibilities and mechanisms of energy transfer, according to certain crystallographic sites in a complex host with different cation sites, as well as provide a possible approach in searching for single-phase white-light-emitting phosphors.

  18. Phonon and electronic properties of the LiCaAlF6 crystal: Experiment and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Klimin, S. A.; Mavrin, B. N.; Novikova, N. N.

    2016-11-01

    We have studied the IR polarized reflection spectra of LiCaAlF6 crystal in the range of 50-2000 cm-1 and have obtained parameters of dipole phonons. In order to calculate the electronic and vibrational properties of the crystal, we have applied the density functional method with the basis sets of Gaussian functions and plane waves. We have shown that the structure of electronic bands has a direct energy gap. The projected densities of electronic states of atoms, the Born effective charges, and the Mulliken populations have been found to be consistent with the ionic-covalent character of cation-fluorine interatomic bonds. The dielectric properties in high and low-frequency limits have been calculated. We have examined the longitudinal-transverse splitting of dipole modes and have revealed a phonon with an inverted splitting. The theoretical IR reflection and Raman spectra have been found to agree well with experiment. Based on the analysis of the dispersion of phonons in the Brillouin zone, we have revealed an effect of the "quasi-doubling" of the crystal cell along the z axis due to the competing interactions of atoms with nearest and next neighbors. We have found that phonons with frequencies higher than 500 cm-1 are separated by an energy gap and have predominantly stretching character of vibrations.

  19. High-pressure modifications of CaZn{sub 2}, SrZn{sub 2}, SrAl{sub 2}, and BaAl{sub 2}: Implications for Laves phase structural trends

    SciTech Connect

    Kal, Subhadeep; Stoyanov, Emil; Belieres, Jean-Philippe; Groy, Thomas L.; Norrestam, Rolf; Haeussermann, Ulrich

    2008-11-15

    High-pressure forms of intermetallic compounds with the composition CaZn{sub 2}, SrZn{sub 2}, SrAl{sub 2}, and BaAl{sub 2} were synthesized from CeCu{sub 2}-type precursors (CaZn{sub 2}, SrZn{sub 2}, SrAl{sub 2}) and Ba{sub 21}Al{sub 40} by multi-anvil techniques and investigated by X-ray powder diffraction (SrAl{sub 2} and BaAl{sub 2}), X-ray single-crystal diffraction (CaZn{sub 2}), and electron microscopy (SrZn{sub 2}). Their structures correspond to that of Laves phases. Whereas the dialuminides crystallize in the cubic MgCu{sub 2} (C15) structure, the dizincides adopt the hexagonal MgZn{sub 2} (C14) structure. This trend is in agreement with the structural relationship displayed by sp bonded Laves phase systems at ambient conditions. - Graphical abstract: CeCu{sub 2}-type polar intermetallics can be transformed to Laves phases upon simultaneous application of pressure and temperature. The observed structures are controlled by the valence electron concentration.

  20. Thermodynamic investigation of the CaO-Al[sub 2]O[sub 3]-CaCO[sub 3]-H[sub 2]O closed system at 25 C and the influence of Na[sub 2]O

    SciTech Connect

    Damidot, D.; Stronach, S.; Kindness, A.; Atkins, M.; Glasser, F.P. . Dept. of Chemistry)

    1994-01-01

    The solubilities of calcium hemicarboaluminate, calcium monocarboaluminate and calcium tricarboaluminate have been determined and the equilibrium phase diagram for the CaO-Al[sub 2]O[sub 3]-CaCO[sub 3]-H[sub 2]O closed system at 25 C has been calculated. Six isothermally invariant points have been located involving six stable hydrates: CH, C[sub 3]AH[sub 6], AH[sub 3], calcium hemicarboaluminate, calcium monocarboaluminate and calcite. Calcium tricarboaluminate, the carbonate analogue of ettringite, does not appear to be stable at 25 C. This study was part of a larger study on radioactive waste solidification.

  1. Effects of CaO/SiO2 Ratio and Na2O Content on Melting Properties and Viscosity of SiO2-CaO-Al2O3-B2O3-Na2O Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Zhang, Chen; Cai, Dexiang; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg

    2017-02-01

    This paper investigated the effects of CaO/SiO2 ratio (0.8 to 1.5) and Na2O concentration (6 to 9 wt pct) on melting properties and viscosity of SiO2-CaO-Al2O3-B2O3-Na2O mold fluxes with a fixed B2O3 content. Melting properties of fluxes (softening temperature T s, hemispherical temperature T h, and fluidity temperature T f) were determined by the hot-stage microscopy method. Viscosity was measured using rotating cylindrical viscometer, and structure of quenched fluxes was studied using Raman spectroscopy. Equilibrium phases in the SiO2-CaO-Al2O3-B2O3-Na2O system were calculated using FactSage. It was found that T h decreased with increasing CaO/SiO2 ratio from 0.8 to 1.0 and increased with a further increase in the CaO/SiO2 ratio to 1.5. The effect of Na2O content in the range of 6 to 9 wt pct on T h of the flux with a fixed CaO/SiO2 ratio at 1.3 was marginal. Increasing CaO/SiO2 ratio and Na2O content increased the break temperature and reduced the value of viscosity at 1673 K (1400 °C). Viscosity of liquid fluxes was discussed in the relationship with the flux structure. Melting properties and viscosity of boracic fluxes were compared with those of industrial fluorine-containing mold fluxes.

  2. Thermodynamics of Gold Dissolution Behavior in CaO-SiO2-Al2O3-MgOsat Slag System

    NASA Astrophysics Data System (ADS)

    Han, Yun Soon; Swinbourne, Douglas R.; Park, Joo Hyun

    2015-12-01

    Gold solubility in the CaO-SiO2-Al2O3-MgOsat slag system was measured at 1773 K (1500 °C) under a CO2-CO atmosphere over a wide range of compositions, i.e., 8 to 40 mass pct CaO, 26 to 50 mass pct SiO2, and 0 to 36 mass pct Al2O3, to determine the dissolution mechanism of gold in the CaO-based metallurgical slags. Gold solubility in the present slag system increased with increasing oxygen partial pressure and increasing activity of CaO. From the thermodynamic analysis, the dissolution mechanism of gold into the (alumino-)silicate melts is proposed as follows according to the activity of basic oxide, which indicates that the predominant species of gold is dependent on slag basicity. {Au}(s) + 1/4{O}2 (g) + 1/2( {{O}^{2 - } } ) = ( {{AuO}^{ - } } ),quad ( {a_{BO} < 0.1} ) {Au}(s) + 1/4{O}2 (g) + 3/2( {{O}^{2 - } } ) = ( {{AuO}2^{3 - } } ),quad ( {a_{BO} > 0.1} ) The enthalpy change for the dissolution of gold into the CaO-SiO2-Al2O3-MgOsat slag system was measured to be about -80 kJ/mol, indicating that the gold dissolution is exothermic. From the iso-Au solubility contours, the dominant factor affecting the gold dissolution behavior is the (CaO + MgO)/SiO2 ratio, whereas the influence of Al2O3 was negligible. Consequently, less basic slags and higher processing temperatures, in conjunction with a strongly reducing atmosphere, are recommended to increase gold recovery during pyro-processing of Au-containing e-wastes.

  3. Structure of Calcium Aluminate Decahydrate (CaAl2O4.10D2O) from Neutron and X-ray Powder Diffraction Data

    SciTech Connect

    Christensen,A.; Lebech, B.; Sheptyakov, D.; Hanson, J.

    2007-01-01

    Calcium aluminate decahydrate is hexagonal with the space group P63/m and Z = 6. The compound has been named CaAl2O4{center_dot}10H2O (CAH10) for decades and is known as the product obtained by hydration of CaAl2O4 (CA) in the temperature region 273-288 K - one of the main components in high-alumina cements. The lattice constants depend on the water content. Several sample preparations were used in this investigation: one CAH10, three CAD10 and one CA(D/H)10, where the latter is a zero-matrix sample showing no coherent scattering contribution from the D/H atoms in a neutron diffraction powder pattern. The crystal structure including the positions of the H/D atoms was determined from analyses of four neutron diffraction powder patterns by means of the ab initio crystal structure determination program FOX and the FULLPROF crystal structure refinement program. Additionally, eight X-ray powder diffraction patterns (Cu K[alpha]1 and synchrotron X-rays) were used to establish phase purity. The analyses of these combined neutron and X-ray diffraction data clearly show that the previously published positions of the O atoms in the water molecules are in error. Thermogravimetric analysis of the CAD10 sample preparation used for the neutron diffraction studies gave the composition CaAl2(OD)8(D2O)2{center_dot}2.42D2O. Neutron and X-ray powder diffraction data gave the structural formula CaAl2(OX)8(X2O)2{center_dot}[gamma]X2O (X = D, H and D/H), where the [gamma] values are sample dependent and lie between 2.3 and 3.3.

  4. Enhanced Emission from Li2CaSiO4:Dy3+ Phosphors by Doping with Al3+ and B3+

    NASA Astrophysics Data System (ADS)

    Erdoğmuş, E.

    2016-05-01

    Pure Li2CaSiO4, Li2CaSiO4:Dy3+ and Al3+, B3+ co-doped materials were prepared by a solid-state reaction in air at 900°C for 6 h and characterized by using powder XRD. The luminescence properties of the synthesized phosphors were measured at room temperature with a spectrofluorometer. Li2CaSiO4:Dy3+ emits at 484, 575, and 660 nm upon 352 nm excitation. The emission spectrum intensity of Dy3+ increased from 0.01 to 0.06 mol.%, and beyond 0.06 mol.%, concentration quenching was observed. Also, in this study, the effects of boric acid and aluminum oxide concentration on the photoluminescence properties of Dy3+ doped phosphors were investigated. The results showed that boric acid and aluminum oxide were effective in improving the photoluminescence intensity of Li2CaSiO4:Dy3+ compounds.

  5. Luminescence properties of Eu{sup 2+}- and Ce{sup 3+}-doped CaAl{sub 2}S{sub 4} and application in white LEDs

    SciTech Connect

    Yu Ruijin; Wang Jing Zhang Jianhui; Yuan Haibin; Su Qiang

    2008-03-15

    The Eu{sup 2+}- and Ce{sup 3+}-doped CaAl{sub 2}S{sub 4} phosphors were comparatively synthesized by conventional solid-state reaction and the evacuated sealed quartz ampoule. The X-ray diffraction (XRD) patterns show that the sample with better crystalline quality was prepared by the evacuated sealed quartz ampoule, resulting in the enhancement of the emission intensity of Eu{sup 2+} ion by a factor of 1.7. The intensive green LEDs were also fabricated by combining CaAl{sub 2}S{sub 4}:Eu{sup 2+} with near-ultraviolet InGaN chips ({lambda}{sub em}=395 nm). The dependence of as-fabricated green LEDs on forward-bias currents shows that it presents good chromaticity stability and luminance saturation, indicating that CaAl{sub 2}S{sub 4}:Eu{sup 2+} is a promising green-emitting phosphor for a near-UV InGaN-based LED. In addition, the optical properties of CaAl{sub 2}S{sub 4}:Ce{sup 3+} were systematically investigated by means of diffuse reflectance, photoluminescence excitation and emission, concentrating quenching and the decay curve. - Graphical abstract: The Eu{sup 2+}- and Ce{sup 3+}-doped CaAl{sub 2}S{sub 4} phosphors were comparatively synthesized by two methods. The emission intensity of Eu{sup 2+} ion in sample synthesized by the evacuated sealed quartz ampoule method is by a factor of 1.7 as strong as that of Eu{sup 2+} ion in sample prepared by the conventional solid-state reaction method.

  6. Microstructure and wear behavior of γ/Al 4C 3/TiC/CaF 2 composite coating on γ-TiAl intermetallic alloy prepared by Nd:YAG laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Xiu-Bo; Shi, Shi-Hong; Guo, Jian; Fu, Ge-Yan; Wang, Ming-Di

    2009-03-01

    As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF 2 in the preparation of precursor NiCr-Cr 3C 2-CaF 2 mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) and the friction and wear behavior of the composite coatings sliding against the hardened 0.45% C steel ring was evaluated using a block-on-ring wear tester at room temperature. It was found that the coating had a unique microstructure consisting of primary dendrites TiC and block Al 4C 3 carbides reinforcement as well as fine isolated spherical CaF 2 solid lubrication particles uniformly dispersed in the NiCrAlTi ( γ) matrix. The good friction-reducing and anti-wear abilities of the laser clad composite coating was suggested to the Ni-P electroless plating and the attendant reduction of mass loss of CaF 2 and the increasing of it's wettability with the NiCrAlTi ( γ) matrix during the laser cladding process.

  7. Effects of Ca and H2O2 added to RPMI on the fretting corrosion of Ti6Al4V.

    PubMed

    Montague, A; Merritt, K; Brown, S; Payer, J

    1996-12-01

    Titanium and its alloys have demonstrated considerable success in various surgical procedures including orthopedic, dental, and cardiovascular surgery. However, particulate debris from corrosion and wear is present in a considerable quantity in tissue local to the implant. This study evaluated the effect of Ca, since it is present in both serum and bone, and H2O2, since it is produced through local inflammation, on the amount of titanium release. Four sets of Ti6Al4V plates and Ti6Al4V screws were used. Each set was designated to one of four solutions: RPMI (cell culture growth media), RPMI with CaCl2, RPMI with CaCO3, and RPMI with H2O2. A fretter was used to cause corrosion by creating micromotion between two screws and a two-hole plate of Ti6Al4V. After fretting for 72 h, weight loss of the plate and screws and the amount of Ti and vanadium (V) in solution was used to assess the amount of fretting corrosion which had occurred. Results of weight loss and Ti in solution indicated that the presence of H2O2 increased the amount of particulate debris produced in RPMI as compared with RPMI alone. The addition of CaCl2 to RPMI also increased both weight loss and Ti in solution compared with RPMI alone. The addition of CaCO2, however, did not give values significantly different from RPMI alone. Comparison of weight loss and Ti in solution indicated that the increase in fretting corrosion was not different between RPMI with CaCl2 and RPMI with H2O2. The particulate wear debris from the four solutions was black in color and the size of the particulate produced was compared using a Coulter Multisizer. The results indicated that particles produced in the four solutions were not different, with mean values between 1.324 and 1.100 microns, and they were similar in size to the particulate found in tissues surrounding failed total hip replacements. In order to better understand the role of Ca in the fretting corrosion of Ti6Al4V, energy dispersive x-ray analysis (EDXA) using

  8. An SEM, EDS and vibrational spectroscopic study of the silicate mineral meliphanite (Ca,Na)2Be[(Si,Al)2O6(F,OH)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Theiss, Frederick L.; Romano, Antônio Wilson; Scholz, Ricardo

    2015-02-01

    The mineral meliphanite (Ca,Na)2Be[(Si,Al)2O6(F,OH)] is a crystalline sodium calcium beryllium silicate which has the potential to be used as piezoelectric material and for other ferroelectric applications. The mineral has been characterized by a combination of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and vibrational spectroscopy. EDS analysis shows a material with high concentrations of Si and Ca and low amounts of Na, Al and F. Beryllium was not detected. Raman bands at 1016 and 1050 cm-1 are assigned to the SiO and AlOH stretching vibrations of three dimensional siloxane units. The infrared spectrum of meliphanite is very broad in comparison with the Raman spectrum. Raman bands at 472 and 510 cm-1 are assigned to OSiO bending modes. Raman spectroscopy identifies bands in the OH stretching region. Raman spectroscopy with complimentary infrared spectroscopy enables the characterization of the silicate mineral meliphanite.

  9. Temperature and Frequency Dependent Dielectric Properties of Cu0.5Tl0.5Ba2Ca3(Cu4- y Cd y )O12- δ Bulk Superconductor

    NASA Astrophysics Data System (ADS)

    Rahim, M.; Khan, Nawazish A.; Mumtaz, M.

    2013-07-01

    The temperature and frequency dependent dielectric properties of polycrystalline Cd-doped Cu0.5Tl0.5Ba2Ca3(Cu4- y Cd y )O12- δ ( y=0,0.25,0.5,0.75) bulk superconductor samples are investigated. The zero resistivity critical temperature { T c( R=0)} has decreased and normal state resistivity has increased with the increase of Cd-doping in Cu0.5Tl0.5Ba2Ca3(Cu4- y Cd y )O12- δ samples. The dielectric properties such as dielectric constants ( ɛ', ɛ″), dielectric loss tangent (tan δ) and ac-conductivity ( σ ac ) are investigated by measuring the capacitance (C) and conductance (G) in the frequency range of 10 KHz to 10 MHz at different temperature from 80 K to 300 K. The negative capacitance (NC) is observed in all Cu0.5Tl0.5Ba2Ca3(Cu4- y Cd y )O12- δ samples. The large values of NC observed at lower frequencies and temperatures may be due to reduced thermal vibrations and enhanced polarizability of the material. The effect of Cd-doping on bulk properties, dc-resistivity ( ρ) and ac-electrical conductivity ( σ ac ) of these superconductor samples are investigated. The polarization in Cu0.5Tl0.5Ba2Ca3(Cu4- y Cd y )O12- δ samples is most likely arising from the displacement of charges in CuO2/CdO2 planes relative to the static charges at Ba2+, Tl3+, and Cu2+ sites in Cu0.5Tl0.5Ba2O4- δ charge reservoir layers by external applied field.

  10. Rare-Earths Centers (Sm{sup 3+}, Eu{sup 3+}, Yb{sup 3+}) in MeF{sub 2}(Me = Ca, Sr, Ba, Cd) Crystals

    SciTech Connect

    Nikiforov, A. E.; Chernyshev, V. A.; Volodin, V. P.; Avram, N. M.; Avram, C. N.; Vaida, M.

    2010-08-04

    Rare-earth elements RE{sup 3+}(RE = Sm, Eu, Yb) form impurity centers in fluorite-like crystals MeF{sub 2}(Me = Ca, Sr, Ba, Cd). The crystal structure of cubic, trigonal and tetragonal centers in MeF{sub 2} has been investigated in the framework of shell model and pair potential approximation. The crystal field parameters were calculated with the exchange charges model, using the optimized geometry of the doped host matrix. With these parameters we have been calculated the optical spectra and spin-Hamiltonian (g-factors) of RE{sup 3+} in MeF{sub 2}, for some combination of R{sup 3+} and MeF{sup 2}. The obtained results were discussed and comparison with experimental data was made. A good agreement confirms the method and model of calculations.

  11. Probing structure-induced optical behavior in a new class of self-activated luminescent 0D/1D CaWO₄ metal oxide – CdSe nanocrystal composite heterostructures

    DOE PAGES

    Han, Jinkyu; McBean, Coray; Wang, Lei; ...

    2015-01-30

    In this report, we synthesize and characterize the structural and optical properties of novel heterostructures composed of (i) semiconducting nanocrystalline CdSe quantum dot (QDs) coupled with (ii) both one and zero-dimensional (1D and 0D) motifs of self-activated luminescence CaWO₄ metal oxides. Specifically, ~4 nm CdSe QDs have been anchored onto (i) high-aspect ratio 1D nanowires, measuring ~230 nm in diameter and ~3 μm in length, as well as onto (ii) crystalline 0D nanoparticles (possessing an average diameter of ~ 80 nm) of CaWO₄ through the mediation of 3-mercaptopropionic acid (MPA) as a connecting linker. Composite formation was confirmed by complementarymore » electron microscopy and spectroscopy (i.e. IR and Raman) data. In terms of luminescent properties, our results show that our 1D and 0D heterostructures evince photoluminescence (PL) quenching and shortened PL lifetimes of CaWO₄ as compared with unbound CaWO₄. We propose that a photo-induced electron transfer process occurs from CaWO₄ to CdSe QDs, a scenario which has been confirmed by NEXAFS measurements and which highlights a decrease in the number of unoccupied orbitals in the conduction bands of CdSe QDs. By contrast, the PL signature and lifetimes of MPA-capped CdSe QDs within these heterostructures do not exhibit noticeable changes as compared with unbound MPA-capped CdSe QDs. The striking difference in optical behavior between CaWO₄ nanostructures and CdSe QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. In addition, the PL quenching behaviors for CaWO₄ within the heterostructure configuration were examined by systematically varying (i) the quantities and coverage densities of CdSe QDs as well as (ii) the intrinsic morphology (and by extension, the inherent crystallite size) of CaWO₄ itself.« less

  12. Optically stimulated luminescence (OSL) response of Al2O3:C, BaFCl:Eu and K2Ca2(SO4)3:Eu phosphors.

    PubMed

    Kumar, Pratik; Bahl, Shaila; Sahare, P D; Kumar, Surender; Singh, Manveer

    2015-12-01

    This paper investigates the optically stimulated luminescence (OSL) response of BaFCl:Eu and K2Ca2(SO4)3:Eu phosphors for different doses and bleaching durations. The results have also been compared with the commercially available Landauer Al2O3:C (Luxel®) dosemeter. Nanocrystalline K2Ca2(SO4)3:Eu is known to be a sensitive thermoluminescent phosphor, but its OSL response is hardly reported. At first, pellets of nanocrystalline K2Ca2(SO4)3:Eu powder were prepared by adding Teflon as a binder. Their OSL signal was compared with that of the material in pure form, i.e. without adding the binder (in 100:1 ratio). It was observed that adding the binder does not appreciably affect the OSL intensity. On comparison with the commercially available Al2O3:C from Landauer, it was found that K2Ca2(SO4)3:Eu is around 15 times less sensitive than Al2O3:C. 'Homemade' BaFCl:Eu phosphor has also been studied. The intensity of BaFCl:Eu was ∼20 times more than the standard Al2O3:C dosemeter and ∼200 times more sensitive than K2Ca2(SO4)3:Eu in the dose range of 13-200 cGy. OSL dosemeters are believed to give luminescence signal even if they are read before, i.e. multiple reading may be possible under suitable conditions after single exposure. This was also checked for all the prepared dosemeters and it was found that Al2O3:C showed the least decrease of <2 %, followed by BaFCl:Eu of 15 % and K2Ca2(SO4)3:Eu with 20 %. Finally, Al2O3:C and BaFCl:Eu phosphors were also studied for their optical bleaching durations to which the respective signals get completely removed so that the phosphor can be re-used. It was observed that BaFCl:Eu is bleached faster and more easily than Al2O3:C.

  13. Low dietary levels of Al, Pb and Cd may affect the non-enzymatic antioxidant capacity in caged honey bees (Apis mellifera).

    PubMed

    Gauthier, Maxime; Aras, Philippe; Jumarie, Catherine; Boily, Monique

    2016-02-01

    Several hypotheses have been proposed to explain the abnormally high mortality rate observed in bee populations in Europe and North America. While studies based on the effects of pesticides are paramount, the metals present in agroecosystems are often overlooked. Sources of metals are linked to the nature of soils and to agricultural practices, namely the use of natural or chemical nutrients as well as residual materials from waste-water treatment sludge. The aim of this study was to investigate the effects of metals on honey bees exposed for 10 days to environmentally realistic concentrations of Al, Pb and Cd (dissolved in syrup). The monitoring of syrup consumption combined with the quantification of metals in bees revealed the following order for metal bioconcentration ratios: Cd > Pb > Al. Alpha-tocopherol, metallothionein-like proteins (MTLPs) and lipid peroxidation were quantified. When bees were exposed to increasing amounts of Cd, a marked augmentation of MTLPs levels was found. Lead (Pb) and Cd caused an increase in α-tocopherol content, while alteration of lipid peroxidation was observed only with Al exposure. These findings raise concerns about the bioavailability and the additional threat posed by metals for pollinators in agricultural areas while providing new insights for potential use of the honey bee as a sentinel species for metal exposure.

  14. Phase Equilibria in the System "FeO"-CaO-SiO2-Al2O3-MgO at Different CaO/SiO2 Ratios

    NASA Astrophysics Data System (ADS)

    Jang, Kyoung-oh; Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Zhao, Baojun

    2017-03-01

    The "FeO"-containing slags play an important role in the operation of an ironmaking blast furnace (BF), in particular the primary slags such as the system "FeO"-CaO-SiO2-Al2O3-2 mass pct MgO with CaO/SiO2 weight ratios of 1.3, 1.5, and 1.8 saturated with metallic iron. To investigate the characteristics of such a slag system and its behavior in BF, the phase equilibria and liquidus temperatures in the slag system have been experimentally determined using the high-temperature equilibration and quenching technique followed by an electron probe X-ray microanalysis (EPMA). Isotherms between 1553 K and 1603 K (1280 °C and 1330 °C) were determined in the primary phase fields of dicalcium silicate, melilite, spinel, and monoxide [(Mg,Fe2+)O]. Pseudo-ternary phase diagrams of (CaO + SiO2)-Al2O3-"FeO" with a fixed MgO concentration at 2 mass pct and at CaO/SiO2 ratios of 1.3, 1.5, and 1.8 have been discussed, respectively, simplifying the complexity of the slag system for easy understanding and applying in BF operation. It was found that the liquidus temperatures increase in melilite and spinel primary phase fields, but decrease in dicalcium silicate and monoxide primary phase fields with increasing Al2O3/(CaO + SiO2) ratio. In addition, the liquidus temperatures decrease with increasing "FeO" concentration in dicalcium silicate and melilite primary phase fields, while showing an increasing trend in the spinel and monoxide primary phase fields. The data resulted from this study can be used to improve and optimize currently available database of thermodynamic models used in FactSage.

  15. Structure-property relationships in an Al matrix Ca nanofilamentary composite conductor with potential application in high-voltage power transmission

    NASA Astrophysics Data System (ADS)

    Tian, Liang

    This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.

  16. RE2MAl6Si4 (RE = Gd, Tb, Dy; M = Au, Pt): layered quaternary intermetallics featuring CaAl2Si2-type and YNiAl4Ge2-type slabs grown from aluminum flux.

    PubMed

    Latturner, Susan E; Bilc, Daniel; Mahanti, S D; Kanatzidis, Mercouri G

    2003-12-01

    Six new intermetallic aluminum silicides--Gd(2)PtAl(6)Si(4), Gd(2)AuAl(6)Si(4), Tb(2)PtAl(6)Si(4), Tb(2)AuAl(6)Si(4), Dy(2)PtAl(6)Si(4), and Dy(2)AuAl(6)Si(4)--have been obtained from reactions carried out in aluminum flux. The structure of these compounds was determined by single-crystal X-ray diffraction. They form in space group Rthremacr;m with cell constants of a = 4.1623(3) A and c = 51.048(5) A for the Gd(2)PtAl(6)Si(4) compound. The crystal structure is comprised of hexagonal nets of rare earth atoms alternating with two kinds of layers that have been observed in other multinary aluminide intermetallic compounds (CaAl(2)Si(2) and YNiAl(4)Ge(2)). All six RE(2)MAl(6)Si(4) compounds show antiferromagnetic transitions at low temperatures (T(N) < 20 K); magnetization studies of the Dy compounds show metamagnetic behavior with reorientation of spins at 6000 G. Band structure calculations indicate that the AlSi puckered hexagonal sheets in this structure are electronically distinct from the other surrounding structural motifs.

  17. [Research on the Relationship between Surface Structure and Fluorescence Intensity of Ca(1-x)Al2Si2O8 : Eu(x)].

    PubMed

    He, Xiao; Zhang, Li-sheng; Zu, En-dong; Yang, Xiao-yun; Dong, Kun

    2016-01-01

    Ca(1-x)Al2Si2O8 : Eu(x)(x = 0, 0.01, 0.05, 0.15) were synthesized by solid-state reaction respectively at 1 150, 1 250 1350 and 1 450 degrees C. With X-ray diffraction(XRD), Raman spectroscopy(Raman), photoluminescence spectroscopy(PL) and X-ray fluorescence spectrometer(XRF), the relationship between surface structure and fluorescence intensity of Ca(1-x) Al2Si2O8: Eu(x) were studied. XRD and Raman results show that, CaAl2Si2O8 anorthite single-phase has formed gradually along with the temperature rising in the process of synthesis. Raman spectroscopy is clear that when the Eu doping amount is the same, Si-O amorphous phase disappear gradually and the CaAl2Si2O8 phase form gradually with the temperature increases. As the temperature increases, vibration peaks position silicon oxygen tetrahedron shift to lower wave number. When 1 450 degrees C, the temperature is too high to destroy the structure of silicon oxygen tetrahedron. At the same time, there is a broadening amorphous peak appears in Raman spectroscopy. The procedure of Al to replace Si is hindered with Eu doped in. It is the result that the peak at 1 620 cm(-1) decreases after the first increases. The change of surface structure associated with the scattering amount of Eu. PL and XRF results show that: as the temperature increases, the amount of Eu atom scattering on the material surface increases gradually, this change lead to the fluorescence intensity raise. Therefore, there is proportional relationship between the fluorescence intensity of the samples and the number of samples per unit surface area of Eu atoms.

  18. Laboratory Study on Prevention of CaO-Containing ASTM "D-Type" Inclusions in Al-Deoxidized Low-Oxygen Steel Melts During Basic Slag Refining

    NASA Astrophysics Data System (ADS)

    Jiang, Min; Wang, Xin-Hua; Yang, Die; Lei, Shao-Long; Wang, Kun-Peng

    2015-12-01

    Present work was attempted to explore the possibility of preventing CaO-containing inclusions in Al-deoxidized low-oxygen special steel during basic slag refining, which were known as ASTM D-type inclusions. Based on the analysis on formation thermodynamics of CaO-containing inclusions, a series of laboratory experiments were designed and carried out in a vacuum induction furnace. During the experiments, slag/steel reaction equilibrium was intentionally suppressed with the aim to decrease the CaO contents in inclusions, which is different from ordinary concept that slag/steel reaction should be promoted for better control of inclusions. The obtained results showed that high cleanliness of steel was obtained in all the steel melts, with total oxygen contents varied between 0.0003 and 0.0010 pct. Simultaneously, formation of CaO-containing inclusions was successfully prohibited, and all the formed oxide inclusions were MgO-Al2O3 or/and Al2O3 in very small sizes of about 1 to 3 μm. And 90 pct to nearly 98 pct of them were wrapped by relative thicker MnS outer surface layers to produce dual-phased "(MgO-Al2O3) + MnS" or "Al2O3 + MnS" complex inclusions. Because of much better ductility of MnS, certain deformability of these complex inclusions can be expected which is helpful to improve fatigue resistance property of steel. Only very limited number of singular MnS inclusions were with sizes larger than 13 μm, which were formed during solidification because of. In the end, formation of oxide inclusions in steel was qualitatively evaluated and discussed.

  19. Crystal structure of a methylamine sorption complex of fully dehydrated fully Ca2+ -exchanged zeolite X, |Ca46(CH3NH2)16|[Si100Al92O384]-FAU.

    PubMed

    Jeong, Gyoung Hwa; Kim, Yang; Seff, Karl

    2004-10-12

    The structure of a methylamine sorption complex of fully dehydrated fully Ca2+-exchanged zeolite X, |Ca46(CH3NH2)16|[Si100Al92O384]-FAU, has been determined in the cubic space group Fd3 at 21(1) degrees C (a = 24.994(4) angstroms) by single-crystal X-ray diffraction techniques. The crystal was prepared by ion exchange in a flowing stream of 0.05 M aqueous Ca(NO3)2 for 3 days, followed by dehydration at 480 degrees C and 2 x 10(-6) Torr for 2 days, and exposure to 160 Torr of zeolitically dry methylamine gas at 21(1) degrees C. The structure was determined in this atmosphere and was refined, using the 739 reflections for which I > 0, to the final error indices R1 = 0.152 and R2 = 0.061. In this structure, Ca2+ ions occupy three crystallographic sites. Sixteen Ca2+ ions fill the octahedral site at the centers of hexagonal prisms (Ca-O = 2.429(7) angstroms). The remaining 30 Ca2+ ions are found at two nonequivalent sites II (in the supercages) with occupancies of 14 and 16 ions. Each of these Ca2+ ions coordinates to three framework oxygens, either at 2.296(7) or 2.334(7) angstroms, respectively. Sixteen methylamine molecules have been sorbed per unit cell, two per supercage. Each coordinates to one of the latter 16 site-II Ca2+ ions: N-Ca = 2.30(9) angstroms. The imprecisely determined N-C bond length, 1.48(23) angstroms, differs insignificantly from that in methylamine(g), 1.474(5) angstroms. The positions of the hydrogen atoms were calculated. One of the amino hydrogen atoms hydrogen bonds to a 6-ring oxygen, and the other forms a bifurcated hydrogen bond to two other 6-ring oxygens. The methyl group does not hydrogen bond to anything.

  20. Facile synthesis of yellow-emitting CaAlSiN3:Ce3+ phosphors and the enhancement of red-component by co-doping Eu2+ ions

    NASA Astrophysics Data System (ADS)

    Chen, Jingjing; Zhao, Yang; Li, Guanghao; Mao, Zhiyong; Wang, Dajian; Bie, Lijian

    2017-04-01

    In this paper, facile synthesis of CaAlSiN3:Ce3+ yellow-emitting phosphors under atmospheric pressure at a moderate temperature and their photoluminescent properties are reported. The prepared CaAlSiN3:Ce3+ phosphors exhibit a broad yellow emission band positioned at 580 nm and covering a bandwidth of 150 nm. The thermal stability of CaAlSiN3:Ce3+ phosphors shows obvious superiority than the commercial YAG: Ce3+ phosphor, indicating its promising application prospect in power LEDs. In addition, the enhancement of red-light component for CaAlSiN3:Ce3+ phosphor is demonstrated by co-doping Eu2+ ions. This study offers a facile route to prepare CaAlSiN3:Ce3+ yellow-emitting phosphors, which may be used as a promising candidate for high performance white LEDs.

  1. Tailor-Made Core-Shell CaO/TiO2-Al2O3 Architecture as a High-Capacity and Long-Life CO2 Sorbent.

    PubMed

    Peng, Weiwei; Xu, Zuwei; Luo, Cong; Zhao, Haibo

    2015-07-07

    CaO-based sorbents are widely used for CO2 capture, steam methane reforming, and gasification enhancement, but the sorbents suffer from rapid deactivation during successive carbonation/calcination cycles. This research proposes a novel self-assembly template synthesis (SATS) method to prepare a hierarchical structure CaO-based sorbent, Ca-rich, Al2O3-supported, and TiO2-stabilized in a core-shell microarchitecture (CaO/TiO2-Al2O3). The cyclic CO2 capture performance of CaO/TiO2-Al2O3 is compared with those of pure CaO and CaO/Al2O3. CaO/TiO2-Al2O3 sorbent achieved superior and durable CO2 capture capacity of 0.52 g CO2/g sorbent after 20 cycles under the mild calcination condition and retained a high-capacity and long-life performance of 0.44 g CO2/g sorbent after 104 cycles under the severe calcination condition, much higher than those of CaO and CaO/Al2O3. The microstructure characterization of CaO/TiO2-Al2O3 confirmed that the core-shell structure of composite support effectively inhibited the reaction between active component (CaO particles) and main support (Al2O3 particles) by TiO2 addition, which contributed to its properties of high reactivity, thermal stability, mechanical strength, and resistance to agglomeration and sintering.

  2. Lunar highland rocks - Element partitioning among minerals. II - Electron microprobe analyses of Al, P, Ca, Ti, Cr, Mn and Fe in olivine

    NASA Technical Reports Server (NTRS)

    Smith, J. V.; Hansen, E. C.; Steele, I. M.

    1980-01-01

    Lunar olivines from anorthosites, granulitic impactites, and rocks in the Mg-rich plutonic trend were subjected to electron probe measurements for Al, P, Ca, Ti, Cr and Mn, which show that the FeO/MnO ratio for lunar olivines lies between 80 and 110 with little difference among the rock types. The low values of Ca in lunar olivines indicate slow cooling to subsolidus temperatures, with blocking temperatures of about 750 C for 67667 and 1000 C for 60255,73-alpha determined by the Finnerty and Boyd (1978) experiments. An important paradox is noted in the low Ti content of Fe-rich olivines from anorthosites, although both Ti and Fe tend to become enriched in liquid during fractional distillation. Except for Ca and Mn, olivine from anorthosites has lower minor element values than other rock types. Formation from a chemically distinct system is therefore implied.

  3. Uwachib'alil Qach'ab'al--Asi se Ilustra mi Palabra (Illustrating My Words). [CD-ROM].

    ERIC Educational Resources Information Center

    Academy for Educational Development, Washington, DC.

    This CD-ROM is part of an interactive and dynamic multimedia package of information and games for learning K'iche' and Ixil. This CD-ROM contains a database of 3,000 culturally-relevant vocabulary words in K'iche', Ixil, and Spanish, with appropriate illustrations that describe traditional Mayan rituals, foods, beliefs, clothing, and other topics.…

  4. The effect of Al2O3, CaO, Cr2O3 and MgO on devitrification of silica

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor

    1988-01-01

    The effect of doping on devitrification of vitreous silica was studied at 1100, 1200, and 1300 C. Dispersion of dopants on a molecular scale was accomplished via a sol-gel technique. All dopants accelerated the devitrification of silica but to different degrees. The most active was CaO followed by MgO, Al2O3, and Cr2O3. Pure silica and silica containing Cr2O3 and Al2O3 devitrified to alpha-cristobalite only, whereas silica doped with CaO and MgO produced alpha-quartz and alpha-cristobalite. It appears that prolonged heat treatment would cause alpha-quartz to transform to alpha-cristobalite.

  5. (CaO · Al2O3 · SiO2): Eu phosphors for violet/ultraviolet-to-white radiation conversion

    NASA Astrophysics Data System (ADS)

    Gurin, N. T.; Paksyutov, K. V.; Terent'ev, M. A.; Shirokov, A. V.

    2012-02-01

    (2CaO · 0.5Al2O3 · 5SiO2): Eu and (CaO · 0.2Al2O3 · SiO2): Eu phosphors doped with B2O3 in an amount of 3 wt % are obtained by direct solid-phase synthesis at 1350°C. When excited by LED radiation with a maximum at 380 nm, these phosphors emit white light with color coordinates, which are close to those in the EBU and NTSC TV standards and fall into the field of white light corresponding to light warning systems according to the International Commission on Illumination (CIE).

  6. Directional solidification, thermo-mechanical and optical properties of (Mg(x)Ca(1-x))(3)Al(2)Si(3)O(12) glasses doped with Nd(3+) ions.

    PubMed

    Sola, D; Conejos, D; Martínez de Mendivil, J; Ortega-San-Martín, L; Lifante, G; Peña, J I

    2015-10-05

    In this work glass rods of (Mg(x)Ca(1-x))(3)Al(2)Si(3)O(12) (x = 0, 0.5 and 1) doped with 1 wt% Nd(2)O(3) were produced by the laser floating zone technique. Thermo-mechanical and spectroscopic properties have been evaluated. The three glass samples present good thermo-mechanical properties, with similar hardness, toughness and glass transition temperatures. The spectroscopic characterization shows spectral shifts in absorption and emission spectra. These spectral shifts together with Judd-Ofelt intensity parameters and ionic packing ratio have been used to investigate the local structure surrounding the Nd(3+) ions and the covalency of the Nd-O bond. All obtained results agree and confirm the higher covalency of the Nd-O bond in the Ca(3)Al(2)Si(3)O(12) glass.

  7. Crystallization paths in SiO2-Al2O3-CaO system as a genotype of silicate materials

    NASA Astrophysics Data System (ADS)

    Lutsyk, V. I.; Zelenaya, A. E.

    2013-12-01

    The phases trajectories in the fields of primary crystallization of cristobalite (SiO2cr), tridymite (SiO2tr), mullite (3Al2O3-2SiO2) and in a field of liquid immiscibility are analyzed on a basis of computer model for T-x-y diagram of SiO2-Al2O3-CaO system. The concentration fields with unique set of microconstituents and the fields without individual crystallization schemes and microconstituents are revealed.

  8. Evaluating the Diffusion Coefficient of Sulfur in Low-Silica CaO-SiO2-Al2O3 Slag

    NASA Astrophysics Data System (ADS)

    Muhmood, Luckman; Viswanathan, Nurni Neelakandan; Iwase, Masanori; Seetharaman, Seshadri

    2011-04-01

    The chemical diffusion coefficient of sulfur in the ternary slag of composition 51.5 pct CaO-9.6 pct SiO2-38.9 pct Al2O3 slag was measured at 1680 K, 1700 K, and 1723 K (1403 °C, 1427 °C, and 1450 °C) using the experimental method proposed earlier by the authors. The P_{{{{S}}2 }} and P_{{{{O}}2 }} pressures were calculated from the Gibbs energy of the equilibrium reaction between CaO in the slag and solid CaS. The density of the slag was obtained from earlier experiments. Initially, the order of magnitude for the diffusion coefficient was taken from the works of Saito and Kawai but later was modified so that the concentration curve for sulfur obtained from the program was in good fit with the experimental results. The diffusion coefficient of sulfur in 51.5 pct CaO-9.6 pct SiO2-38.9 pct Al2O3 slag was estimated to be in the range 3.98 to 4.14 × 10-6 cm2/s for the temperature range 1680 K to 1723 K (1403 °C to 1450 °C), which is in good agreement with the results available in literature

  9. Superconductivity up to 114 K in the Bi-Al-Ca-Sr-Cu-O compound system without rare-earth elements

    NASA Technical Reports Server (NTRS)

    Chu, C. W.; Bechtold, J.; Gao, L.; Hor, P. H.; Huang, Z. J.

    1988-01-01

    Stable superconductivity up to 114 K has been reproducibly detected in Bi-Al-Ca-Sr-Cu-O multiphase systems without any rare-earth elements. Pressure has only a slight positive effect on T(c). These observations provide an extra material base for the study of the mechanism of high-temperature superconductivity and also the prospect of reduced material cost for future applications of superconductivity.

  10. A single-component white-emitting CaSr2Al2O6:Ce3+, Li+, Mn2+ phosphor via energy transfer.

    PubMed

    Li, Yanyan; Shi, Yurong; Zhu, Ge; Wu, Quansheng; Li, Hao; Wang, Xicheng; Wang, Qian; Wang, Yuhua

    2014-07-21

    A series of single-component Ce(3+), Li(+), Mn(2+) ions codoped color-tunable CaSr2Al2O6 phosphors were synthesized by a high-temperature solid-state reaction, and the photoluminescence properties as well as the energy transfer mechanism from Ce(3+) to Mn(2+) ions have been investigated in detail. The Ce(3+) activated phosphors have strong absorption in the range of 250-420 nm and can give a blue emission centered at about 460 nm. When Mn(2+) ions are codoped, the emission of CaSr2Al2O6:Ce(3+), Li(+), Mn(2+) phosphors can be tuned from blue to red through adjusting the doping concentration of the Mn(2+) ions, under the irradiation of 358 nm. When the concentration of Mn(2+) is increased to 0.02, a warm-white light can be obtained with good CIE coordinates of (0.388, 0.323) and a low CCT of 3284 K. The energy transfer mechanism from the Ce(3+) to Mn(2+) ions is demonstrated to be a quadrupole-quadrupole interaction based on the analysis of the decay curves of the phosphors. The thermal quenching stability was also investigated. The results indicate that CaSr2Al2O6:Ce(3+), Li(+), Mn(2+) samples might have potential applications in w-LEDs.

  11. Optical spectroscopy of Dy3+-doped CaGdAlO4 single crystal for potential use in solid-state yellow lasers

    NASA Astrophysics Data System (ADS)

    Xu, Xiaodong; Hu, Zongwen; Li, Ruijuan; Li, Dongzhen; Di, Juqing; Su, Liangbi; Yang, Qiuhong; Sai, Qinglin; Tang, Huili; Wang, Qingguo; Strzęp, Adam; Xu, Jun

    2017-04-01

    The crystal growth, optical spectra and lifetime of Dy:CaGdAlO4 crystal were investigated for the first time to our best knowledge. Single Dy:CaGdAlO4 crystal with size of Φ4 × 40 mm3 was grown by floating zone method. The peak absorption cross-sections were calculated to be 2.43 × 10-21cm2 and 1.28 × 10-21 cm2 at 453 nm for σ and π polarizations. The Judd-Ofelt (JO) parameters of Ω2, Ω4 and Ω6 were calculated to be 1.8 × 10-20cm2, 1.0 × 10-20cm2 and 0.5 × 10-20cm2, respectively. The emission cross-sections were calculated to be 0.51 × 10-20cm2 and 0.55 × 10-20cm2 for σ and π polarizations. The fluorescence decay time is 222 μs. The results indicate that the Dy:CaGdAlO4 crystal is a potential candidate for yellow laser operation.

  12. New insights into organic-inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+

    NASA Astrophysics Data System (ADS)

    Navas, Javier; Sánchez-Coronilla, Antonio; Gallardo, Juan Jesús; Cruz Hernández, Norge; Piñero, Jose Carlos; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; de Los Santos, Desireé M.; Aguilar, Teresa; Martín-Calleja, Joaquín

    2015-03-01

    This paper presents the synthesis of the organic-inorganic hybrid perovskite, CH3NH3PbI3, doped in the Pb2+ position with Sn2+, Sr2+, Cd2+ and Ca2+. The incorporation of the dopants into the crystalline structure was analysed, observing how the characteristics of the dopant affected properties such as the crystalline phase, emission and optical properties. XRD showed how doping with Sn2+, Sr2+ and Cd2+ did not modify the normal tetragonal phase. When doping with Ca2+, the cubic phase was obtained. Moreover, DR-UV-Vis spectroscopy showed how the band gap decreased with the dopants, the values following the trend Sr2+ < Cd2+ < Ca2+ < CH3NH3PbI3 ~ Sn2+. The biggest decrease was generated by Sr2+, which reduced the CH3NH3PbI3 value by 4.5%. In turn, cathodoluminescence (CL) measurements confirmed the band gap obtained. Periodic-DFT calculations were performed to understand the experimental structures. The DOS analysis confirmed the experimental results obtained using UV-Vis spectroscopy, with the values calculated following the trend Sn2+ ~ Pb2+ > Cd2+ > Sr2+ for the tetragonal structure and Pb2+ > Ca2+ for the cubic phase. The electron localization function (ELF) analysis showed similar electron localizations for undoped and Sn2+-doped tetragonal structures, which were different from those doped with Sr2+ and Cd2+. Furthermore, when Cd2+ was incorporated, the Cd-I interaction was strengthened. For Ca2+ doping, the Ca-I interaction had a greater ionic nature than Cd-I. Finally, an analysis based on the non-covalent interaction (NCI) index is presented to determine the weak-type interactions of the CH3NH3 groups with the dopant and I atoms. To our knowledge, this kind of analysis with these hybrid systems has not been performed previously.This paper presents the synthesis of the organic-inorganic hybrid perovskite, CH3NH3PbI3, doped in the Pb2+ position with Sn2+, Sr2+, Cd2+ and Ca2+. The incorporation of the dopants into the crystalline structure was analysed

  13. CD44 interaction with ankyrin and IP3 receptor in lipid rafts promotes hyaluronan-mediated Ca2+ signaling leading to nitric oxide production and endothelial cell adhesion and proliferation.

    PubMed

    Singleton, Patrick A; Bourguignon, Lilly Y W

    2004-04-15

    In this study, we have showed that aortic endothelial cells (GM7372A cell line) express CD44v10 [a hyaluronan (HA) receptor], which is significantly enriched in cholesterol-containing lipid rafts (characterized as caveolin-rich plasma membrane microdomains). HA binding to CD44v10 promotes recruitment of the cytoskeletal protein, ankyrin and inositol 1,4,5-triphosphate (IP3) receptor into cholesterol-containing lipid rafts. The ankyrin repeat domain (ARD) of ankyrin is responsible for binding IP3 receptor to CD44v10 at lipid rafts and subsequently triggering HA/CD44v10-mediated intracellular calcium (Ca2+) mobilization leading to a variety of endothelial cell functions such as nitric oxide (NO) production, cell adhesion and proliferation. Further analyses indicate (i) disruption of lipid rafts by depleting cholesterol from the membranes of GM7372A cells (using methyl-beta-cyclodextrin treatment) or (ii) interference of endogenous ankyrin binding to CD44 and IP3 receptor using overexpression of ARD fragments (by transfecting cells with ARDcDNA) not only abolishes ankyrin/IP3 receptor accumulation into CD44v10/cholesterol-containing lipid rafts, but also blocks HA-mediated Ca2+ signaling and endothelial cell functions. Taken together, our findings suggest that CD44v10 interaction with ankyrin and IP3 receptor in cholesterol-containing lipid rafts plays an important role in regulating HA-mediated Ca2+ signaling and endothelial cell functions such as NO production, cell adhesion and proliferation.

  14. ITH33/IQM9.21 provides neuroprotection in a novel ALS model based on TDP-43 and Na(+)/Ca(2+) overload induced by VTD.

    PubMed

    Mouhid Al-Achbili, Lamia; Moreno-Ortega, Ana J; Matías-Guiu, Jorge; Cano-Abad, María F; Ruiz-Nuño, Ana

    2016-10-28

    Therapeutic options for amyotrophic lateral sclerosis (ALS) are scarce and controversial. Although the aetiology of neuronal vulnerability is unknown, growing evidence supports a complex network in which multiple toxicity pathways, rather than a single mechanism, are involved in the pathogenesis of ALS. However, most cellular models only explain single pathogenic mechanisms. The present study proposes the two main cytotoxic mechanisms: (1) veratridine (VTD), which induced Na(+) and Ca(2+) overload; and (2) the TARD DNA-binding protein 43 (TDP-43) in NSC-34 cell line as an in vitro model of ALS. The study was carried out by MTT as an indirect measurement of cell viability and by flow cytometry to determine cell death stages. The impact of Ca(2+) overload combined with TDP-43 overexpression increased early apoptosis of NSC-34 cells. Furthermore, we found that ITH33/IQM9.21 (ITH33) exerted a neuroprotective effect in this model by reducing activation of the apoptotic pathway. Therefore, treatment with VTD in TDP-43 overexpressing NSC-34 cells is a good in vitro ALS model that makes it possible to test new neuroprotective compounds such as ITH33.

  15. High pressure synthesis and crystal structure of a ternary superconductor Ca{sub 2}Al{sub 3}Si{sub 4} containing layer structured calcium sub-network isomorphous with black phosphorus

    SciTech Connect

    Tanaka, Masashi; Zhang, Shuai; Tanaka, Yuki; Inumaru, Kei; Yamanaka, Shoji

    2013-02-15

    The Zintl compound CaAl{sub 2}Si{sub 2} is peritectically decomposed to a mixture of Ca{sub 2}Al{sub 3}Si{sub 4} and aluminum metal at temperatures above 600 Degree-Sign C under a pressure of 5 GPa. The new ternary compound Ca{sub 2}Al{sub 3}Sl{sub 4} crystalizes with the space group Cmc2{sub 1} and the lattice parameters a=5.8846(8), b=14.973(1), and c=7.7966(5) A. The structure is composed of aluminum silicide framework [Al{sub 3}Si{sub 4}] and layer structured [Ca{sub 2}] network interpenetrating with each other. The electron probe microanalysis (EPMA) shows the formation of solid solutions Ca{sub 2}Al{sub 3-x}Si{sub 4+x} (x<0.6). The layer structured [Ca{sub 2}] sub-network is isomorphous with black phosphorus. The new ternary compound shows superconductivity with a transition temperature (T{sub c}) of 6.4 K. The band structure calculation suggests that the superconductivity should occur through the conduction bands mainly composed of 3p orbitals of the aluminum silicide framework. - Graphical abstract: A new ternary superconductor Ca{sub 2}Al{sub 3}Si{sub 4} has been prepared under high pressure and high temperature conditions, which includes layer structured calcium sub-network isomorphous with black phosphorus. Highlights: Black-Right-Pointing-Pointer A typical Zintl compound CaAl{sub 2}Si{sub 2} melts congruently at ambient pressure. Black-Right-Pointing-Pointer Under high pressure CaAl{sub 2}Si{sub 2} decomposes to Ca{sub 2}Al{sub 3}Si{sub 4} and Al at {approx}600 Degree-Sign C. Black-Right-Pointing-Pointer Ca{sub 2}Al{sub 3}Si{sub 4} contains Ca sub-network isomorphous with black phosphorus. Black-Right-Pointing-Pointer Ca{sub 2}Al{sub 3}Si{sub 4} shows superconductivity with a transition temperature of 6.4 K.

  16. Properties of transparent (Gd,Lu)3(Al,Ga)5O12:Ce ceramic with Mg, Ca and Ce co-dopants

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Baldoni, Gary; Brecher, Charles; Rhodes, William H.; Shirwadkar, Urmila; Glodo, Jarek; Shah, Ishaan; Ji, Chuncheng

    2015-08-01

    Cerium activated mixed lutetium/gadolinium- and aluminum/gallium-based garnets have great potential as host scintillators for medical imaging applications. (Gd,Lu)3(Al,Ga)5O12:Ce and denoted as GLuGAG feature high effective atomic number and good light yield, which make it particularly attractive for Positron Emission Tomography (PET) and other γ-ray detection applications. For PET application, rapid decay and good timing resolution are extremely important. Most Ce-doped mixed garnet materials such as GLuGAG:Ce, have their main decay component at around 80 ns. However, it has been reported that the decays of some single crystal scintillators (e.g., LSO and GGAG) can be effectively accelerated by codoping with selected additives such as Ca, Mg and B. In this study, transparent polycrystalline (Gd,Lu)3(Al,Ga)5O12:Ce ceramics codoped with Ca or Mg or additional Ce, were fabricated by the sinter-HIP approach. It was found the transmission of the ceramics are closely related to the microstructure of the ceramics. As the co-dopant levels increase, 2nd phase occurs in the ceramic and thus transparency of the ceramic decreases. Ca and Mg co-doping in GLuGAG:Ce ceramic effectively accelerate decays of GLuGAG:Ce ceramics at a cost of light output. However, additional Ce doping in the GLuGAG:Ce has no benefit on improving decay time but, on the other hand, reduces transmission, light output. The mechanism under the different scintillation behaviors with Mg, Ca and Ce dopants are discussed. The results suggest that decay time of GLuGAG:Ce ceramics can be effectively tailored by co-doping GLuGAG:Ce ceramic with Mg and Ca for applications with optimal timing resolution.

  17. Characterisation of a duplex TiO2/CaP coating on Ti6Al4V for hard tissue replacement.

    PubMed

    Ng, Boon Sing; Annergren, Ingegerd; Soutar, Andrew M; Khor, K A; Jarfors, Anders E W

    2005-04-01

    An initial TiO(2) coating was applied on Ti6Al4V by electrochemical anodisation in two dissimilar electrolytes. The secondary calcium phosphate (CaP) coating was subsequently applied by immersing the substrates in a simulated body fluid (SBF) with three times concentration (SBFx3), mimicking biomineralisation of biological bone. Electrochemical impedance spectroscopy and potentiodynamic polarisation assessments in SBF revealed that the anodic TiO(2) layer is compact, exhibiting up to four-folds improvement in in vitro corrosion resistance over unanodised Ti6Al4V. X-ray photoelectron spectroscopy analysis indicates that the anodic Ti oxide is thicker than air-formed ones with a mixture of TiO(2-x) compound between the TiO(2)/Ti interfaces. The morphology of the dense CaP film formed, when observed using scanning electron microscopy, is made up of linked globules 0.1-0.5microm in diameter without observable delamination. Fourier transform infrared spectrometry with an attenuated total internal reflection analysis revealed that this film is an amorphous/poorly crystallised calcium-deficient-carbonated CaP system. The calculated Ca:P ratios of all samples (1.14-1.28) are lower than stoichiometric hydroxyapatite (1.67). These results show that a duplex coating consisting of (1) a compact TiO(2) with enhanced in vitro corrosion resistance and (2) bone-like apatite coating can be applied on Ti6Al4V by anodisation and subsequent immersion in SBF.

  18. Visible light CrO4(2-) reduction using the new CuAlO2/CdS hetero-system.

    PubMed

    Brahimi, R; Bessekhouad, Y; Nasrallah, N; Trari, M

    2012-06-15

    In this study, 64% of hexavalent chromium Cr(VI) reduction from the initial concentration (10(-4) M) is reported under visible light using the (CuAlO(2)/CdS) hetero-system. In this new hetero-system, low doped CuAlO(2) delafossite, synthesized by sol-gel works as an electrons reservoir with a wide space charge region (440 nm). In this case, the electron transfer to chromate is mediated via the hexagonal CdS variety, whose conduction band level is at -1.08 V with respect to the saturated calomel electrode which is more negative than the CrO(4)(2-)/Cr(3+) level. This high reduction rate is achieved under optimized pH and CuAlO(2) percentage. Moreover, salicylic acid gives the best performance among hole scavengers and CuAlO(2) approaches 100% photostability at pH 7.5. The photo-catalytic process follows a pseudo first order kinetic with a half life of 2h. The reaction products are identified by UV-visible spectrophotometry and linear voltametry at a platinum rotating electrode. The results reveal the presence of Cr(3+) after irradiation.

  19. Tunable optical properties of some rare earth elements-doped mayenite Ca12Al14O33 nanopowders elaborated by oxalate precursor route

    NASA Astrophysics Data System (ADS)

    Rashad, Mohamed M.; Mostafa, Ahmed G.; Mwakikunga, Bonex W.; Rayan, Diaa A.

    2017-01-01

    Rare earth (RE) ions-doped mayenite Ca12Al14- x RE x O33 nanopowders (where RE = La and Gd and x = 0-1.0) were synthesized using the oxalate precursor technique. The as-prepared precursors were calcined at 800 °C for 2 h. Obviously, all RE-doped Ca12Al14- x RE x O33 possessed a well-crystalline cubic mayenite phase till RE content of 0.8. The crystallo-chemical aspects including crystallite size, lattice parameters, theoretical X-ray density and bulk density were robustly on RE nature and ratio. The microstructure and the average grain size were significantly influenced by the RE kind and content. The high transparency of Ca12Al14- x RE x O33 over 80% was found to be evinced in the visible wavelength range of 400-800 nm. Besides, the incorporation of RE cation minimized the direct band gap energy from 4.42 eV for pure mayenite to 3.85 and 3.59 eV with x value 1.0 of La3+ and Gd3+ ions. The photoluminescence spectra of pure mayenite nanoparticles showed that the band edge emission ( λ exc = 248 nm) with an intense visible emission band at 360 nm was detected. Otherwise, the band edge emission showed a slight shift toward short wavelength due to the substitution Al3+ by RE3+ ions. Such results open a new avenue for application of mayenite as a good candidate for transparent low-temperature electron conductor for optoelectronics applications.

  20. Equiatomic AEAuX (AE=Ca-Ba, X=Al-In) Intermetallics: A Systematic Study of their Electronic Structure and Spectroscopic Properties.

    PubMed

    Benndorf, Christopher; Stegemann, Frank; Seidel, Stefan; Schubert, Lea; Bartsch, Manfred; Zacharias, Helmut; Mausolf, Bernhard; Haarmann, Frank; Eckert, Hellmut; Pöttgen, Rainer; Janka, Oliver

    2017-01-31

    The three intermetallic compounds SrAuGa, BaAuAl and BaAuGa were synthesised from the elements in niobium ampoules. The Sr compound crystallises in the orthorhombic KHg2 -type structure (Imma, a=465.6(1), b=771.8(2), c=792.6(2) pm, wR2 =0.0740, 324 F(2) values, 13 variables), whereas the Ba compounds were both found to crystallise in the cubic non-centrosymmetric LaIrSi-type structure (P21 3, BaAuAl: a=696.5(1) pm; wR2 =0.0427, 446 F(2) values, 12 variables; BaAuGa: a=693.49(4) pm, wR2 =0.0717, 447 F(2) values, 12 variables). The samples were investigated by powder X-ray diffraction and their structures refined on the basis of single-crystal X-ray diffraction data. The title compounds, along with references from the literature (CaAuAl, CaAuGa, CaAuIn, and SrAuIn), were characterised further by susceptibility measurements and (27) Al and (71) Ga solid-state NMR spectroscopy. Theoretical calculations of the density of states (DOS) and the NMR parameters were used for the interpretation of the spectroscopic data. The electron transfer from the alkaline-earth metals and the group 13 elements onto the gold atoms was investigated through X-ray photoelectron spectroscopy (XPS), classifying these intermetallics as aurides.

  1. Experimental high pressure and high temperature study of the incorporation of uranium in Al-rich CaSiO 3 perovskite

    NASA Astrophysics Data System (ADS)

    Gréaux, Steeve; Gautron, Laurent; Andrault, Denis; Bolfan-Casanova, Nathalie; Guignot, Nicolas; Bouhifd, M. Ali

    2009-05-01

    The high ability of the Al-rich CaSiO 3 perovskite to contain large amounts of uranium (up to 4 at.% U) has been studied up to 54 GPa and 2400 K, using laser-heated diamond anvil cell (LH-DAC) and up to 18 GPa and 2200 K using a multi-anvil press (MAP). Both latter HP-HT techniques proved to be complementary and gave similar results, in spite of different heating modes (laser and furnace). Chemical reactions were characterized and described by electron probe microanalysis and analytical scanning electron microscopy while associated structural changes were precisely characterized by synchrotron angle dispersive X-ray diffraction and by X-ray micro-diffraction. The diffusion of uranium into the CaSiO 3 matrix was measured as a function of run duration and temperature. We obtain diffusion coefficients with the same order of magnitude (about 10 -16 m 2 s -1) than for those found in the literature. After this work, coupled cationic substitutions of Ca by U and Si by Al are proposed to generate new interesting crystallographic features for a CaSiO 3 perovskite: a higher compressibility, a tetragonal distortion along the c-axis with c/ a ratio >1, a different compression behaviour of c-axis relative to a-axis, and a perovskite structure quenchable to ambient P and T conditions. The tetragonal U-bearing aluminous CaSiO 3 perovskite is observed to remain stable at pressures up to 54 GPa, then in the ( P, T) range of the upper part of the lower mantle. The influence of the present results, in terms of both uranium and aluminium partitioning related to the coexisting mineral phases as the (Mg,Fe)SiO 3 perovskite, is discussed. Uranium provides approximately 25% of the total energy generated within the deep Earth through its radioactive decay. The location of this source within the deep mantle is fundamental to the understanding of the geodynamics and thermal behaviour of our planet. Since the tetragonal structure of the U-bearing Al-rich CaSiO 3 perovskite is expected to

  2. First-principles study of the mechanical properties of NiAl microalloyed by M (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd)

    NASA Astrophysics Data System (ADS)

    Zhang, Caili; Han, Peide; Li, Jinmin; Chi, Mei; Yan, Lingyun; Liu, Yanping; Liu, Xuguang; Xu, Bingshe

    2008-05-01

    Structural, electronic and elastic properties for NiAl with 4d alloying elements M (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd) have been studied using the first-principles pseudopotential density functional method within a generalized gradient approximation. From the elastic constants, C11, C12, C44, bulk modulus B0, Young's modulus E, the shear modulus G, the ratios of shear modulus to bulk modulus G/B0, negative Cauchy pressure parameter (C12 - C44) and Poisson's ratio ν calculated after structural full relaxation, M (Tc, Ru, Rh, Pd) alloying addition in NiAl has been shown to increase the stiffness of NiAl and improve its ductility. The density of states and charge density contour involving alloying additions of Ru were further investigated to clarify the electronic causes of the alloying additions.

  3. Effect of Ca-Al-Si-O common glass on dielectric properties of low-temperature co-fired ceramic materials with different fillers.

    PubMed

    Park, Zee-Hoon; Yeo, Dong-Hun; Shin, Hyo-Soon

    2014-11-14

    High-density integration in single component used for mobile communication is highly demanded with the miniaturization trend in multi-functional light-weighted mobile communication devices. Embedding passive components into multi-layered ceramic chips is also increasingly needed for high integrity. The need for high strength materials to be used in handheld devices has also increased. To this end, many attempts to join different low-temperature co-fired ceramics (LTCC) materials with different dielectric constants have been made, but failed with de-laminations or internal cracks mainly due to difference of thermal expansion coefficients. It is thought that this difference could be minimized with the use of common glass in different LTCC materials. In this study, several candidates of common glass were mixed with various fillers of LTCC to have various dielectric constants in the radio-frequency, and to minimize the mismatch in joining. Ca-Al-Si-O glass was mixed with 1.3MgO-TiO2, cordierite and CaTiO3. Mixtures were tape-cast and sintered to be compared with their micro-structures, dielectric properties and thermo-mechanical characteristics. When 1.3MgO-TiO2 with volumetric ratio of 30% was mixed with Ca-Al-Si-O glass, the measured dielectric constant was 7.9, the quality factor was 3708. With 45 volumetric percent of cordierite, the dielectric constant was 5 and the quality factor was 1052.

  4. Thermodynamics of mixing in diopside jadeite, CaMgSi2O6 NaAlSi2O6, solid solution from static lattice energy calculations

    NASA Astrophysics Data System (ADS)

    Vinograd, Victor L.; Gale, Julian D.; Winkler, Björn

    2007-12-01

    Static lattice energy calculations (SLEC), based on empirical interatomic potentials, have been performed for a set of 800 different structures in a 2 × 2 × 4 supercell of C2/ c diopside with compositions between diopside and jadeite, and with different states of order of the exchangeable Na/Ca and Mg/Al cations. Excess static energies of these structures have been cluster expanded in a basis set of 37 pair-interaction parameters. These parameters have been used to constrain Monte Carlo simulations of temperature-dependent properties in the range of 273 2,023 K and to calculate a temperature composition phase diagram. The simulations predict the order disorder transition in omphacite at 1,150 ± 20°C in good agreement with the experimental data of Carpenter (Mineral Petrol 78:433 440, 1981). The stronger ordering of Mg/Al within the M1 site than of Ca/Na in the M2 site is attributed to the shorter M1 M1 nearest-neighbor distance, and, consequently, the stronger ordering force. The comparison of the simulated relationship between the order parameters corresponding to M1 and M2 sites with the X-ray refinement data on natural omphacites (Boffa Ballaran et al. in Am Mineral 83:419 433, 1998) suggests that the cation ordering becomes kinetically ineffective at about 600°C.

  5. Factors influencing the stability of AFm and AFt in the Ca-Al-S-O-H system at 25 °C.

    PubMed

    Feng, Pan; Miao, Changwen; Bullard, Jeffrey W

    2016-03-01

    The stabilities of Al2O3-Fe2O3-mono (AFm) and -tri (AFt) phases in the Ca-Al-S-O-H system at 25 °C are examined using Gibbs energy minimization as implemented by GEM-Selektor software coupled with the Nagra/PSI thermodynamic database. Equilibrium phase diagrams are constructed and compared to those reported in previous studies. The sensitivity of the calculations to the assumed solid solubility products, highlighted by the example of hydrogarnet, is likely the reason why some studies, including this one, predict a stable SO4-rich AFm phase while others do not. The majority of the effort is given to calculating the influences on AFm and AFt stability of alkali and carbonate components, both of which are typically present in cementitious binders. Higher alkali content shifts the equilibria of both AFt and AFm to lower Ca but higher Al and S concentrations in solution. More importantly, higher alkali content significantly expands the range of solution compositions in equilibrium with AFm relative to AFt phases. The introduction of carbonates alters not only the stable AFm solid solution compositions, as expected, but also influences the range of solution pH over which SO4-rich and OH-rich AFm phases are dominant. Some experimental tests are suggested that could provide validation of these calculations, which are all the more important because of the implications for resistance of portland cement binders to external sulfate attack.

  6. Effects of sintering temperature variation on microstructure and magnetic nature of Al diluted La0.7Ca0.3MnO3

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Choudhary, R. J.; Phase, D. M.

    2013-02-01

    The samples of La0.7Ca0.3Mn1-XAlXO3 (X=0,0.05,0.15) are synthesized at two different sintering temperature 1200°C and 1400°C. The phase purity of the samples is analyzed using x-ray diffraction measurements. The microstructural evolution for different sintering temperatures is carefully tracked using scanning electron microscope (SEM). Increase in grain size with increasing sintering temperature is well identified in SEM images. Variation in the magnetic nature of the samples sintered at different temperature is seen in temperature dependent magnetization M(T) measurements. M(T) results reveal that Al doped samples show strong dependence of their magnetic behavior on sintering temperature as compared to undoped La0.7Ca0.3MnO3.

  7. Effects of inorganic acids and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process.

    PubMed

    Zhang, Jian; Xia, Yuguo; Zhang, Li; Chen, Dairong; Jiao, Xiuling

    2015-11-07

    In-depth understanding of the sol-gel process plays an essential role in guiding the preparation of new materials. Herein, the effects of different inorganic acids (HCl, HNO3 and H2SO4) and divalent hydrated metal cations (Mg(2+), Ca(2+), Co(2+), Ni(2+)) on γ-AlOOH sol-gel process were studied based on experiments and density functional theory (DFT) calculations. In these experiments, the sol originating from the γ-AlOOH suspension was formed only with the addition of HCl and HNO3, but not with H2SO4. Furthermore, the DFT calculations showed that the strong adsorption of HSO4(-) on the surface of the γ-AlOOH particles, and the hydrogen in HSO4(-) pointing towards the solvent lead to an unstable configuration of electric double layer (EDL). In the experiment, the gelation time sequence of γ-AlOOH sol obtained by adding metal ions changed when the ionic strength was equal to or greater than 0.198 mol kg(-1). The DFT calculations demonstrated that the adsorption energy of hydrated metal ions on the γ-AlOOH surface can actually make a difference in the sol-gel process.

  8. Structural study of Al2O3-Na2O-CaO-P2O5 bioactive glasses as a function of aluminium content.

    PubMed

    Smith, J M; King, S P; Barney, E R; Hanna, J V; Newport, R J; Pickup, D M

    2013-01-21

    Calcium phosphate based biomaterials are extensively used in the context of tissue engineering: small changes in composition can lead to significant changes in properties allowing their use in a wide range of applications. Samples of composition (Al(2)O(3))(x)(Na(2)O)(0.11-x)(CaO)(0.445)(P(2)O(5))(0.445), where x = 0, 0.03, 0.05, and 0.08, were prepared by melt quenching. The atomic-scale structure has been studied using neutron diffraction and solid state (27)Al MAS NMR, and these data have been rationalised with the determined density of the final glass product. With increasing aluminium concentration the density increases initially, but beyond about 3 mol. % Al(2)O(3) the density starts to decrease. Neutron diffraction data show a concomitant change in the aluminium speciation, which is confirmed by (27)Al MAS NMR studies. The NMR data reveal that aluminium is present in 4, 5, and 6-fold coordination and that the relative concentrations of these environments change with increasing aluminium concentration. Materials containing aluminium in 6-fold coordination tend to have higher densities than analogous materials with the aluminium found in 4-fold coordination. Thus, the density changes may readily be explained in terms of an increase in the relative concentration of 4-coordinated aluminium at the expense of 6-fold aluminium as the Al(2)O(3) content is increased beyond 3 mol. %.

  9. A clear effect of charge compensation through Na+ co-doping on the luminescence spectra and decay kinetics of Nd3+-doped CaAl4O7

    NASA Astrophysics Data System (ADS)

    Puchalska, M.; Watras, A.

    2016-06-01

    We present a detailed analysis of luminescence behavior of singly Nd3+ doped and Nd3+, Na+ co-doped calcium aluminates powders: Ca1-xNdxAl4O7 and Ca1-2xNdxNaxAl4O7 (x=0.001-0.1). Relatively intense Nd3+ luminescence in IR region corresponding to typical 4F3/2→4IJ (J=9/2-13/2) transitions with maximum located at about 1079 nm was obtained in all samples on direct excitation into f-f levels. The effect of dopant concentration and charge compensation by co-doping with Na+ ions on morphology and optical properties were studied. The results show that both, the Nd3+ concentration and the alkali metal co-doping affected the optical properties but had no influence on the powders morphology. The studies of luminescence spectra (298 and 77 K) in a function of dopant concentration showed an increasing distortion of the local symmetry of Nd3+with raising activator content due to certain defects created in the crystal lattice. On the other hand Na+ addition led to significant narrowing of absorption and luminescence bands and also a reduction of the number of their components, showing smaller disturbance of Nd3+ ions local symmetries. Consequently, charge compensated by Na+ co-doping materials showed significantly enhanced Nd3+ luminescence. The decrease of emission intensity and luminescence lifetimes with increase of activator concentration was attributed mainly to phonon-assisted cross-relaxation processes between Nd3+ ions. Analysis with Inokuti-Hirayama model indicated dipole-dipole mechanism of ion-ion interaction. Na+ addition led to much smaller concentration quenching due to smaller clustering of dopant ions in CaAl4O7 lattice.

  10. Facile synthesis of Ca0.68Si9Al3(ON)16:Eu2+ microbelts mat with the enhanced fluorescence and mechanical performance

    NASA Astrophysics Data System (ADS)

    Zhao, Hailei; Cui, Bo; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2016-01-01

    Yellow-emitting phosphor mat consisting of Ca0.68Si9Al3(ON)16:Eu2+ microbelts was prepared by electrospinning and subsequent nitridation. The as-prepared fiber precursor is smooth and uniform with diameter of 800 to 900 nm. After removing organic templates and nitridation, the morphology of the fiber is well retained and thus a smooth microbelts phosphor mat was obtained. X-ray diffraction and the photoluminescence (PL) spectra reveals that a relatively pure Ca0.68Si9Al3(ON)16 phase and the highest spectral intensity could be obtained at a relatively low temperature of 1500 °C and Eu2+ doping molar concentration of 0.1. The excitation spectra exhibits a broad band, ranging from 300 to 550 nm, which could be excited by blue LED chip at room temperature. The emission spectra of all exhibits a single broad band in the 400 to 700 nm region, with the maximum intensity always being at 580 nm. The Ca0.68Si9Al3(ON)16:Eu2+ microbelts phosphor mat has the bending strength about 4.5 MPa with a photoluminescence quantum yield as high as 65%. By employing it as yellow phosphor, a high-performance warm white LED could be fabricated with low correlated color temperature (2985 K), high-color-rendering index (Ra=86) and luminous efficacy of 129.5 lm W-1. Different color temperatures also could be tuned by employing microbelts phosphor mats with different thicknesses.

  11. The influence of Nd3+ in CaAl2O4:Eu2+,Nd3+ phosphor fabricated by combustion synthesis

    NASA Astrophysics Data System (ADS)

    Yang, Zhiping; Yang, Yong; Li, Xingmin; Li, Xu; Liu, Chong; Feng, Jianwei

    2005-01-01

    Eu2+, Nd3+ co-doped calcium aluminate (CaAl2O4) phosphor with high brightness and long afterglow were fabricated by urea-nitrate solution combustion synthesis at 600°C. The phosphor powder of combustion synthesis were generally more homogeneous and had fewer impurity than phosphor fabricated by conventional solid-state methods, the character could conduce to obtain more exact data. The excitation and emission spectrum indicated that there waxs only one luminescence center Eu2+, both of the characteristic spectrums of Eu3+ and Nd3+ weren't discovered. As a secondary activator, Nd3+ could make remarkable influence on the afterglow of phosphor. From altering the moral ratio of Eu2+ and Nd3+, the lasting time of afterglow and thermoluminescence were studied respectively, when Nd3+ wasn't appended, the intensity of initial brightness could compared with other materials which had different ratio of Eu2+ and Nd3+, however the brightness of afterglow decayed rapidly, the lasting time and brightness of afterglow were improved with reduce the radio of Eu2+ and Nd3+, while the ratio achieved some value, the lasting time of afterglow become shorten with the reduce of ratio of Eu2+ and Nd3+. Moreover the depth of trap was calculated from the parameter of thermoluminescence. However, the emission spectrum and XRD patterns didn't change obviously with the altering ratio of Eu2+ and Nd3+. It showed that the little amount of doped rear earth ions (Eu2+ and Nd3+) had almost no effect on the CaAl2O4 phase composition. Based on these conclusions, the model of the luminescence process of CaAl2O4:Eu2+, Nd3+ was built.

  12. [Effect of temperature on the structure of CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramics studied by Raman spectroscopy].

    PubMed

    Li, Bao-Wei; Ouyang, Shun-Li; Zhang, Xue-Feng; Jia, Xiao-Lin; Deng, Lei-Bo; Liu, Fang

    2014-07-01

    In the present paper, nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system was produced by melting method. The CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramic was measured by Raman spectroscopy in the temperature range from -190 to 310 degrees C in order to study the effect of temperature on the structure of this system nanocrystalline glass-ceramics. The results showed that different non-bridge oxygen bond silicon-oxygen tetrahedron structural unit changes are not consistent with rising temperature. Further analyses indicated that: the SiO4 tetrahedron with 2 non-bridged oxygen (Q2), the SiO4 tetrahedron with 3 non-bridged oxygen (Q(1)), which are situated at the edge of the 3-D SiO4 tetrahedrons network, and the SiO4 tetrahedron with 4 non-bridged oxygen (Q(0)), which is situated outside the 3-D network all suffered a significant influence by the temperature change, which has been expressed as: shifts towards the high wave-number, increased bond force constants, and shortened bond lengths. This paper studied the influence of temperature on CMAS system nanocrystalline glass-ceramics using variable temperature Raman technology. It provides experiment basis to the research on external environment influence on CMAS system nanocrystalline glass-ceramics materials in terms of structure and performance. In addition, the research provides experimental basis for controlling the expansion coefficient of nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system.

  13. The Aqueous Ca2+ System, in Comparison with Zn2+, Fe3+, and Al3+: An Ab Initio Molecular Dynamics Study

    SciTech Connect

    Bogatko, Stuart A.; Cauet, Emilie L.; Bylaska, Eric J.; Schenter, Gregory K.; Fulton, John L.; Weare, John H.

    2013-02-21

    Results of Ab Initio Molecular Dynamics (AIMD) simulations of a Ca2+ ion in an aqueous environment (64 waters, 38ps=5ps equilibration + 33ps data collection, 300K) are reported. The 1st hydration shell contains 6-7 waters with d(OH) = 0.97Å (identical to our bulk water estimate) and average tilt angle, I = 32º. The 1st maximum in the radial distribution function occurs at GCaO(r) = 2.45Å. Our results compare well with published experimental structural data from X-Ray Absorption (XAFS) and Neutron Diffraction. We also generate simulated XAFS spectra using a 1st principles MD-XAFS procedure and show quantitative agreement with experimental XAFS data from a 0.2m Ca(ClO4)2 aqueous solution. The Ca2+ 1st shell water dipole moment of 3.1D is identical to our bulk water estimate (3.1D). The structured 2nd hydration shell, composed of ~16.5 waters, has a maximum at GCaO(r) =4.6Å. The average 2nd shell dipole moment = 2.9D, is suppressed relative to bulk water values. Detailed H-bond analysis demonstrates the waters in this shell predominately coordinate 1st shell waters with a trigonally structured H-bond network. Two exchanges between the 1st hydration shell and the bulk were observed. These were consistent with a dissociative and dissociative interchange Eigen-Wilkins ligand exchange mechanism. Many transfers between the 2nd shell and bulk are detected for Ca2+ allowing an estimation of the 2nd shell mean residence time (MRT) of 4.6ps. Comparison of the Ca2+ hydration shell structure and dynamics with those of the recently reported Zn2+, Fe3+ and Al3+ cation species show that the 1st and 2nd hydration shell parameters, d(M-OI) distance, CNII, H-bond d(OI-OII) distance and %Tetrahedral structure are correlated with cation charge density, the ratio of cation charge (Z) and size (Rion). However, important exceptions are d(M-OII) and the 2nd shell Mean Residence Time (MRT). These differences are explained in terms of the 1st shell structure parameters (d(M-OI) distance

  14. The effect of H2O gas on volatilities of planet-forming major elements. I - Experimental determination of thermodynamic properties of Ca-, Al-, and Si-hydroxide gas molecules and its application to the solar nebula

    NASA Technical Reports Server (NTRS)

    Hashimoto, Akihiko

    1992-01-01

    The vapor pressures of Ca(OH)2(g), Al(OH)3(g), and Si(OH)4(g) molecules in equilibrium with solid calcium-, aluminum, and silicon-oxides, respectively, were determined, and were used to derive the heats of formation and entropies of these species, which are expected to be abundant under the currently postulated physical conditions in the primordial solar nebula. These data, in conjunction with thermodynamic data from literature, were used to calculate the relative abundances of M, MO(x), and M(OH)n gas species and relative volatilities of Fe, Mg, Si, Ca, and Al for ranges of temperature, total pressure, and H/O abundance ratio corresponding to the plausible ranges of physical conditions in the solar nebula. The results are used to explain how Ca and Al could have evaporated from Ca,Al-rich inclusions in carbonaceous chondrites, while Si, Mg, and Fe condensed onto them during the preaccretion alteration of CAIs.

  15. Synthesis, characterization and optical properties of Ce{sup 3+} activated CaMgAl{sub 10}O{sub 17} phosphor

    SciTech Connect

    Selot, Anupam; Aynyas, Mahendra; Tiwari, Manoj; Dev, Kapil

    2014-04-24

    Phosphor material CaMgAl{sub 10}O{sub 17} with varying concentration of rare earth Ce{sub 3+} synthesis by combustion method at 500°C. The synthesized phosphor material characterized for their crystallinity and nature by XRD measurements. The photoluminescence measurements of phosphor exhibit mainly two PL spectra 382nm and 575 nm in blue and red region, respectively, this is due to crystal field and covalence effect. These results show that concentration quenching occur at 5mol° of Ce dopant. The results suggest the possibility of utilizing as a phosphor may be in solid state lighting.

  16. Trace element and petrologic clues to the formation of forsterite-bearing Ca-Al-rich inclusions in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Wark, D. A.; Boynton, W. V.; Keays, R. R.; Palme, H.

    1987-01-01

    New trace element and petrographic data are presented for the TE, 818a, 110-A forsterite-bearing Ca-Al-rich inclusions (CAIs) from the Allende meteorite; these form a continuum with type B1 and B2 CAIs, and are here accordingly designated 'type B3'. Evidence is adduced to the effect that 818a was strongly reheated and modified in the nebula after its initial crystallization. A three-stage formation process is required for 818a, involving crystallization of the primary CAI, reheating and partial volatilization of Mg and Si from the outer portion of the CAI, and a metasomatic alteration of the melilite-rich mantle.

  17. The abundance and relative volatility of refractory trace elements in Allende Ca,Al-rich inclusions - Implications for chemical and physical processes in the solar nebula

    NASA Technical Reports Server (NTRS)

    Kornacki, Alan S.; Fegley, Bruce, Jr.

    1986-01-01

    The relative volatilities of lithophile refractory trace elements (LRTE) were determined using calculated 50-percent condensation temperatures. Then, the refractory trace-element abundances were measured in about 100 Allende inclusions. The abundance patterns found in Allende Ca,Al-rich inclusions (CAIs) and ultrarefractory inclusions were used to empirically modify the calculated LRTE volatility sequence. In addition, the importance of crystal-chemical effects, diffusion constraints, and grain transport for the origin of the trace-element chemistry of Allende CAIs (which have important implications for chemical and physical processes in the solar nebula) is discussed.

  18. The role of Al, Ba, and Cd dopant elements in tailoring the properties of c-axis oriented ZnO thin films

    NASA Astrophysics Data System (ADS)

    Ali, Dilawar; Butt, M. Z.; Arif, Bilal; Al-Ghamdi, Ahmed A.; Yakuphanoglu, Fahrettin

    2017-02-01

    Highly c-axis oriented un-doped ZnO and Al-, Ba-, and Cd-doped ZnO thin films were successfully deposited on glass substrate employing sol-gel spin coating method. XRD analysis showed that all thin films possess hexagonal wurtzite structure with preferred orientation along c-axis. Field emission scanning electron microscope (FESEM) was used to study the morphology of thin films. The morphology consists of spherical and non-spherical shape grains. EDX analysis confirms the presence of O, Zn, Al, Ba, and Cd in the relevant thin films. The optical properties of thin films were studied using UV-Vis spectrometer. All thin films possess more than 85% optical transmittance in the visible region. Blue shift in optical band gap Eg has been observed on doping with Al, whereas doping with Ba and Cd resulted in red shift of Eg. Urbach energy Eu of all doped ZnO thin films was found to have excellent correlation with their band gap energy Eg. Moreover, Eg increases while Eu decreases on the increase in crystallite size D. Optical parameters Eg and Eu as well as structural parameters lattice strain and stacking fault probability also show excellent correlation with the B-factor or the mean-square amplitude of atomic vibrations of the dopant elements. Electrical conductivity measurement of the thin films was carried out using two-point probe method. The electrical conductivity was found to increase with the increase in crystallite orientation along c-axis.

  19. FP-LAPW study of the fundamental properties of the cubic spinel CdAl{sub 2}O{sub 4}

    SciTech Connect

    Bouhemadou, A.; Zerarga, F.; Almuhayya, A.; Bin-Omran, S.

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Fundamental properties of CdAl{sub 2}O{sub 4} are investigated. Black-Right-Pointing-Pointer Results obtained for energy band gaps using EV-GGA are larger than that within PBE-GGA. Black-Right-Pointing-Pointer The decomposition of the dielectric function into individual band-to-band contributions is calculated. Black-Right-Pointing-Pointer The effective charge-carrier masses are estimated from the band structure. Black-Right-Pointing-Pointer Pressure and temperature dependences of some macroscopic parameters are obtained. -- Abstract: We have investigated the structural, elastic, electronic, optical and thermodynamic properties of the cubic spinel CdAl{sub 2}O{sub 4} using accurate ab initio calculations. Computed equilibrium structural parameters are in good agreement with the available experimental data. Single-crystals elastic parameters are calculated for pressure up to 30 GPa using a conserving-volume total energy-strain method. Isotropic elastic parameters for ideal polycrystalline CdAl{sub 2}O{sub 4} aggregates are computed in the framework of the Voigt-Reuss-Hill approximation. Result for band structure using the Engel-Vosko scheme of the GGA shows a significant improvement over the common GGA functionals. Optical spectra have been calculated for the energy range 0-30 eV. The peaks and structures in the optical spectra are assigned to interband transitions. Pressure dependence of the band gaps, static dielectric constant and static refractive index are also investigated. Pressure and thermal effects on some macroscopic properties are predicted using the quasi-harmonic Debye model.

  20. A double substitution induced Ca(Mg0.8, Al0.2)(Si1.8, Al0.2)O6:Eu(2+) phosphor for w-LEDs: synthesis, structure, and luminescence properties.

    PubMed

    Li, Yang; Liu, Wenjing; Wang, Xicheng; Zhu, Ge; Wang, Chuang; Wang, Yuhua

    2015-08-07

    A double substitution induced blue-emitting phosphor Ca(Mg0.8, Al0.2)(Si1.8, Al0.2)O6:Eu(2+) (CMAS:Eu(2+)) was successfully synthesized by a solid-state reaction process, and its structure and luminescence properties were investigated in detail. The crystal structure and chemical composition of the CMAS matrix were analyzed and determined based on Rietveld refinements and Energy Dispersive Spectroscopy (EDS). The composition-optimized CMAS:Eu(2+) exhibited a strong blue light, centered at 446 nm upon excitation at 365 nm with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.144, 0.113). Under 380 nm excitation, the PL emission intensity area of the optimized phosphor was found to be 46.95% of that of the commercial BaMgAl10O17:Eu(2+) (BAM:Eu(2+)) phosphor and the quantum efficiency of the phosphor is 41.32%. The temperature-dependent PL studies have been investigated which show the thermal stability of the CMAS:Eu(2+) phosphor compared with that of the CaMgSi2O6:Eu(2+) (CMS:Eu(2+)) phosphor.

  1. New insights into the application of the valence rules in Zintl phases-Crystal and electronic structures of Ba7Ga4P9, Ba7Ga4As9, Ba7Al4Sb9, Ba6CaAl4Sb9, and Ba6CaGa4Sb9

    NASA Astrophysics Data System (ADS)

    He, Hua; Stoyko, Stanislav; Bobev, Svilen

    2016-04-01

    Crystals of three new ternary pnictides-Ba7Al4Sb9, Ba7Ga4P9, and Ba7Ga4As9 have been prepared by reactions of the respective elements in molten Al or Pb fluxes. Single-crystal X-ray diffraction studies reveal that the three phases are isotypic, crystallizing in the orthorhombic Ba7Ga4Sb9-type structure (space group Pmmn, Pearson symbol oP40, Z=2), for which only the prototype is known. The structure is based on TrPn4 tetrahedra (Tr=Al, Ga; Pn=P, As, Sb), connected in an intricate scheme into 1D-ribbons. Long interchain Pn-Pn bonds (dP-P>3.0 Å; dAs-As>3.1 Å; dSb-Sb>3.3 Å) account for the realization of 2D-layers, separated by Ba2+ cations. Applying the classic valance rules to rationalize the bonding apparently fails, and Ba7Ga4Sb9 has long been known as a metallic Zintl phase. Earlier theoretical calculations, both empirical and ab-initio, suggest that the possible metallic properties originate from filled anti-bonding Pn-Pn states, and the special roles of the "cations" in this crystal structure. To experimentally probe this hypothesis, we sought to synthesize the ordered quaternary phases Ba6CaTr4Sb9 (Tr=Al, Ga). Single-crystal X-ray diffraction work confirms Ba6.145(3)Ca0.855Al4Sb9 and Ba6.235(3)Ca0.765Ga4Sb9, with Ca atoms preferably substituting Ba on one of the three available sites. The nuances of the five crystal structures are discussed, and the chemical bonding in Ba7Ga4As9 is interrogated by tight-binding linear muffin-tin orbital calculations.

  2. Low-Temperature Sintering of AlN Ceramics by Sm2O3-Y2O3-CaO Sintering Additives Formed via Decomposition of Nitrate Solutions

    NASA Astrophysics Data System (ADS)

    Zhan, Jun; Cao, Ye; Zhang, Hao; Guo, Jun; Zhang, Jianhua; Geng, Chunlei; Shi, Changdong; Cui, Song; Tang, Wenming

    2017-01-01

    The Sm, Y and Ca anhydrous nitrates were mixed with the AlN powder in ethanol and then decomposed into the Sm2O3-Y2O3-CaO sintering additives via calcining. Low-temperature sintering of the AlN ceramics was carried out at temperature range from 1675 to 1750 °C. Effects of the composition and adding amount of the sintering additives on the phases, microstructures and properties of the AlN ceramics were investigated. During sintering the AlN ceramics, main secondary phases of CaYAl3O7 and CaSmAl3O7 form. The relative density, bending strength and thermal conductivity of the AlN ceramics increase with the increase in the rare-earth oxides in them. The thermal conductivity of the sintered AlN ceramics is also greatly affected by the distribution of the secondary phases. As sintered at 1750 °C, the AlN ceramics by adding the sintering additives of 2 wt.% Sm2O3, 2 wt.% Y2O3 and 1 wt.% CaO formed via decomposition of their nitrates is fully dense and have the optimal bending strength and thermal conductivity of 402.1 MPa and 153.7 W/(m K), respectively.

  3. Electronic and magnetic properties of CdI2-type MX2 (M = V, Nb; X = Al, Ga and In) compounds

    NASA Astrophysics Data System (ADS)

    Jaiganesh, G.; Kalpana, G.

    2015-02-01

    First-principle calculations within the density-functional theory is used to investigate the possibility of existence of ferromagnetism in hypothetical CdI2-type MX2 (M = V, Nb; X = Al, Ga and In) compounds. The TBLMTO-ASA program is used for this purpose. Both spin-polarization and non-spin-polarization calculations are carried out for each compound. The spin-polarization calculation shows that VX2 (X = Al, Ga and In) compounds are ferromagnets whereas NbX2 (X = Al, Ga and In) compounds are non-magnets because no effective polarization of the energy states occurs at their equilibrium volume. However, the NbX2 (X = Al, Ga and In) compounds become ferromagnets under large volume expansion. Ferromagnetism in these compounds is predicted for the first time. The variation of lattice constant with magnetic moment for VX2 (X = Al, Ga and In) compounds are also analysed. The magnetism arises mainly from the cation d-like states. This result is similar to other transition-metal based pnictide and chalcogenide compounds. The ground-state properties like equilibrium lattice parameters, bulk modulus, heat of formation and total and partial magnetic moments are calculated.

  4. Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Bhasin, K. B.; Stan, M. A.; Kong, K. S.; Itoh, T.

    1992-01-01

    Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range.

  5. SEM, EDX and vibrational spectroscopic study of the mineral tunisite NaCa2Al4(CO3)4Cl(OH)8.

    PubMed

    Frost, Ray L; López, Andrés; Scholz, Ricardo; de Oliveira, Fernando A N

    2015-02-05

    The mineral tunisite has been studied by using a combination of scanning electron microscopy with energy dispersive X-ray fluorescence and vibrational spectroscopy. Chemical analysis shows the presence of Na, Ca, Al and Cl. SEM shows a pure single phase. An intense Raman band at 1127 cm(-1) is assigned to the carbonate ν1 symmetric stretching vibration and the Raman band at 1522 cm(-1) is assigned to the ν3 carbonate antisymmetric stretching vibration. Infrared bands are observed in similar positions. Multiple carbonate bending modes are found. Raman bands attributable to AlO stretching and bending vibrations are observed. Two Raman bands at 3419 and 3482 cm(-1) are assigned to the OH stretching vibrations of the OH units. Vibrational spectroscopy enables aspects of the molecular structure of the carbonate mineral tunisite to be assessed.

  6. Observation of indium ion migration-induced resistive switching in Al/Mg0.5Ca0.5TiO3/ITO

    NASA Astrophysics Data System (ADS)

    Lin, Zong-Han; Wang, Yeong-Her

    2016-08-01

    Understanding switching mechanisms is very important for resistive random access memory (RRAM) applications. This letter reports an investigation of Al/Mg0.5Ca0.5TiO3 (MCTO)/ITO RRAM, which exhibits bipolar resistive switching behavior. The filaments that connect Al electrodes with indium tin oxide electrodes across the MCTO layer at a low-resistance state are identified. The filaments composed of In2O3 crystals are observed through energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, nanobeam diffraction, and comparisons of Joint Committee on Powder Diffraction Standards (JCPDS) cards. Finally, a switching mechanism resulting from an electrical field induced by In3+ ion migration is proposed. In3+ ion migration forms/ruptures the conductive filaments and sets/resets the RRAM device.

  7. Alumovesuvianite, Ca19Al(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group member from the Jeffrey mine, asbestos, Estrie region, Québec, Canada

    NASA Astrophysics Data System (ADS)

    Panikorovskii, Taras L.; Chukanov, Nikita V.; Aksenov, Sergey M.; Mazur, Anton S.; Avdontseva, Evgenia Yu; Shilovskikh, Vladimir V.; Krivovichev, Sergey V.

    2017-02-01

    Alumovesuvianite (IMA 2016-014), ideally Ca19Al(Al,Mg)12Si18O69(OH)9, is a new vesuvianite-group member found in the rodingite zone at the contact of a gabbroid rock with host serpentinite in the abandoned Jeffrey mine, Asbestos, Estrie Region, Québec, Canada. It occurs as prismatic tetragonal crystals up to 4 × 4 × 6 mm3 in size encrusting walls of cavities in a granular diopside. Associated minerals are diopside, grossular and prehnite. Single crystals of alumovesuvianite are transparent colorless or light pink with a vitreous lustre. The dominant crystal forms are {100}, {110}, {210}, {111}, {101} and {001}. The Mohs hardness is 6.5. The specific gravitiy is D meas = 3.31(1) g/cm3 and D calc = 3.36 g/cm3, respectively. The mineral is optically uniaxial (-), ω = 1.725(2), ɛ = 1.722(2). The chemical composition, determined by SEM-WDS (wavelength-dispersive spectroscopy on a scanning electron microscope; all oxides except H2O) and TG (thermogravimety; H2O) analysis, is: SiO2 37.1 wt%, Al2O3 18.8 wt%, CaO 36.6 wt%, MgO 2.48 wt%, Mn2O3 0.67 wt%, Fe2O3 0.22 wt%, H2O 2.61 wt%, total 98.5 wt%. The empirical formula based on 19 Ca atoms per formula unit and taking into account the MAS-NMR (magic-angle spinning nuclear magnetic resonance) data, is: Ca19.00(Al0.92Fe3+ 0.08)Σ1.00(Al9.83Mg1.80Mn3+ 0.25)Σ11.88Si17.98O69.16(OH)8.44. The most intense IR absorption bands lie in the ranges 412-609, 897-1024, and 3051-3671 cm-1. The eight strongest lines of the powder X-ray diffraction pattern are (I-d(Å)-hkl): 22-2.96-004, 100-2.761-432, 61-2.612-224, 25-2.593-600, 20-1.7658-831, 20-1.6672-734, 21-1.6247-912, and 22-1.3443-880. Alumovesuvianite is tetragonal, space group P4/n, unit-cell parameters refined from the powder data are a = 15.5603(5) Å, c = 11.8467(4) Å, V = 2868.3(4) Å3, Z = 2. The crystal structure has been refined to R 1 = 0.036 for 3098 unique observed reflections with |F o| ≥ 4σ F . The structure refinement provides the bond length of 1

  8. Exotic fluoride molecules in IRC +10216: Confirmation of AlF and searches for MgF and CaF

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Apponi, A. J.; Phillips, T. G.

    1994-01-01

    Three new rotational transitions of aluminum fluoride (AlF) at 0.8 and 1.2 mm have been observed. The J = 10-9, J = 8-7, and J = 7-6 lines of AlF at 230, 263, and 329 GHz, respectively, were seen toward IRC +10216 using the Caltech Submillimter Observatory (CSO). Combined with the earlier data obtained for this species at IRAM at 2 and 3 mm, these measurements confirm the presence of the metal halide in this carbon-rich circumstellar shell. Analysis of the CSO and IRAM data suggests that AlF arises from a source with a diameter of theta(sub s) approximately = 5-10 sec and hence is present chiefly in the inner envelope of IRC +10216. In this region, the molecule has a column density of (0.3-1.1) x 10(exp 15)/sq cm, which indicates a fractional abundance of at least approximately 10(exp -9), relative to H2. Searches for the metal fluoride species CaF and MgF have also been conducted toward IRC +10216, but with negative results. The column density upper limits for MgF and CaF are N(sub tot) less than (1-4) x 10(exp 14)/sq cm. Relative abundances of these metal fluoride molecules can be understood in terms of chemical thermodynamic equilibrium. The presence of AlF in IRC +10216 also indicates that large quantities of fluorine must be present in the inner stellar envelope, suggesting that this element may be produced not primarily in explosive nucleosynthesis but rather in helium shell flashes, as indicated also by HF spectroscopy of red giant stars.

  9. Synaptic conditions for auto-associative memory storage and pattern completion in Jensen et al.'s model of hippocampal area CA3.

    PubMed

    Cheu, Eng Yeow; Yu, Jiali; Tan, Chin Hiong; Tang, Huajin

    2012-12-01

    Jensen et al. (Learn Memory 3(2-3):243-256, 1996b) proposed an auto-associative memory model using an integrated short-term memory (STM) and long-term memory (LTM) spiking neural network. Their model requires that distinct pyramidal cells encoding different STM patterns are fired in different high-frequency gamma subcycles within each low-frequency theta oscillation. Auto-associative LTM is formed by modifying the recurrent synaptic efficacy between pyramidal cells. In order to store auto-associative LTM correctly, the recurrent synaptic efficacy must be bounded. The synaptic efficacy must be upper bounded to prevent re-firing of pyramidal cells in subsequent gamma subcycles. If cells encoding one memory item were to re-fire synchronously with other cells encoding another item in subsequent gamma subcycle, LTM stored via modifiable recurrent synapses would be corrupted. The synaptic efficacy must also be lower bounded so that memory pattern completion can be performed correctly. This paper uses the original model by Jensen et al. as the basis to illustrate the following points. Firstly, the importance of coordinated long-term memory (LTM) synaptic modification. Secondly, the use of a generic mathematical formulation (spiking response model) that can theoretically extend the results to other spiking network utilizing threshold-fire spiking neuron model. Thirdly, the interaction of long-term and short-term memory networks that possibly explains the asymmetric distribution of spike density in theta cycle through the merger of STM patterns with interaction of LTM network.

  10. Structure and microstructure of the glasses from NaCaPO4-SiO2 and NaCaPO4-SiO2-AlPO4 systems

    NASA Astrophysics Data System (ADS)

    Wajda, A.; Bułat, K.; Sitarz, M.

    2016-12-01

    Structure and microstructure of silico-phosphate glasses belong to NaXPO4-SiO2 and NaXPO4-SiO2-AlPO4 (where X = Ca or/and Mg) systems were investigated. Scanning electron microscopic studies combined with EDX were made it possible to show the occurrence of phase separation in the obtained materials. It was found that alumina has a homogenising effect on the microstructure of silico-phosphate glasses. Addition of a small amount of alumina (5 mol. % of AlPO4) causes the chemical compositions inversion of the matrix and the inclusions. Structural investigations of the obtained glasses as well as of the corresponding crystalline materials showed that the studied glasses exhibit domain composition. Structure of the domains is close to that of the corresponding crystalline phases. Spectroscopic investigations involving spectra decomposition into component bands were made it possible to establish the homogenising effect of aluminium on the structure of silicate-phosphate glasses. Presence of alumina leads to elimination of Pdbnd O bonds as well as replacement of Si-O-P by the Al-O-P ones.

  11. Hydrothermal origin of hexagonal CaAl2Si2O8 (dmisteinbergite) in a compact type A CAI from the Northwest Africa 2086 CV3 chondrite

    NASA Astrophysics Data System (ADS)

    Fintor, Krisztian; Park, Changkun; Nagy, Szabolcs; Pál-Molnár, Elemér; Krot, Alexander N.

    2014-05-01

    We report an occurrence of hexagonal CaAl2Si2O8 (dmisteinbergite) in a compact type A calcium-aluminum-rich inclusion (CAI) from the CV3 (Vigarano-like) carbonaceous chondrite Northwest Africa 2086. Dmisteinbergite occurs as approximately 10 μm long and few micrometer-thick lath-shaped crystal aggregates in altered parts of the CAI, and is associated with secondary nepheline, sodalite, Ti-poor Al-diopside, grossular, and Fe-rich spinel. Spinel is the only primary CAI mineral that retained its original O-isotope composition (Δ17O ~ -24‰); Δ17O values of melilite, perovskite, and Al,Ti-diopside range from -3 to -11‰, suggesting postcrystallization isotope exchange. Dmisteinbergite, anorthite, Ti-poor Al-diopside, and ferroan olivine have 16O-poor compositions (Δ17O ~ -3‰). We infer that dmisteinbergite, together with the other secondary minerals, formed by replacement of melilite as a result of fluid-assisted thermal metamorphism experienced by the CV chondrite parent asteroid. Based on the textural appearance of dmisteinbergite in NWA 2086 and petrographic observations of altered CAIs from the Allende meteorite, we suggest that dmisteinbergite is a common secondary mineral in CAIs from the oxidized Allende-like CV3 chondrites that has been previously misidentified as a secondary anorthite.

  12. Stability of Fluorine-Free CaO-SiO2-Al2O3-B2O3-Na2O Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang

    2017-01-01

    B2O3 and Na2O are key components of fluorine-free mold fluxes for continuous casting, but both are highly volatile, which affects the flux stability. This paper investigated the evaporation of the SiO2-CaO-Al2O3-B2O3-Na2O fluxes (Na2O: 6 to 10 wt pct, CaO/SiO2 ratio: 0.8 to 1.3) in the temperatures ranging from 1573 K to 1673 K (1300 °C to 1400 °C) using thermogravimetric analysis. The weight loss as a result of the flux evaporation increased with the increasing temperature for all fluxes. The rate of evaporation was found to be very small for the Na2O-free flux but significantly increased with the addition of Na2O. The high evaporation rate of fluxes in the presence of B2O3 and Na2O was attributed to the formation of highly volatile NaBO2. Changing the ratio of CaO/SiO2, however, did not affect the rate of evaporation. Kinetic analysis of the evaporation processes demonstrated that external mass transfer contributed to the rate of evaporation.

  13. Stability of Fluorine-Free CaO-SiO2-Al2O3-B2O3-Na2O Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang

    2017-04-01

    B2O3 and Na2O are key components of fluorine-free mold fluxes for continuous casting, but both are highly volatile, which affects the flux stability. This paper investigated the evaporation of the SiO2-CaO-Al2O3-B2O3-Na2O fluxes (Na2O: 6 to 10 wt pct, CaO/SiO2 ratio: 0.8 to 1.3) in the temperatures ranging from 1573 K to 1673 K (1300 °C to 1400 °C) using thermogravimetric analysis. The weight loss as a result of the flux evaporation increased with the increasing temperature for all fluxes. The rate of evaporation was found to be very small for the Na2O-free flux but significantly increased with the addition of Na2O. The high evaporation rate of fluxes in the presence of B2O3 and Na2O was attributed to the formation of highly volatile NaBO2. Changing the ratio of CaO/SiO2, however, did not affect the rate of evaporation. Kinetic analysis of the evaporation processes demonstrated that external mass transfer contributed to the rate of evaporation.

  14. Dachiardite-K, (K2Ca)(Al4Si20O48) · 13H2O, a new zeolite from Eastern Rhodopes, Bulgaria

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Encheva, S.; Petrov, P.; Pekov, I. V.; Belakovskiy, D. I.; Britvin, S. N.; Aksenov, S. M.

    2016-12-01

    Dachiardite-K (IMA No. 2015-041), a new zeolite, is a K-dominant member of the dachiardite series with the idealized formula (K2Ca)(Al4Si20O48) · 13H2O. It occurs in the walls of opal-chalcedony veinlets cutting hydrothermally altered effusive rocks of the Zvezdel paleovolcanic complex near the village of Austa, Momchilgrad Municipality, Eastern Rhodopes, Bulgaria. Chalcedony, opal, dachiardite-Ca, dachiardite-Na, ferrierite-Mg, ferrierite-K, clinoptilolite-Ca, clinoptilolite-K, mordenite, smectite, celadonite, calcite, and barite are associated minerals. The mineral forms radiated aggregates up to 8 mm in diameter consisting of split acicular individuals. Dachiardite-K is white to colorless. Perfect cleavage is observed on (100). D meas = 2.18(2), D calc = 2.169 g/cm3. The IR spectrum is given. Dachiardite-K is biaxial (+), α = 1.477 (calc), β = 1.478(2), γ = 1.481(2), 2 V meas = 65(10)°. The chemical composition (electron microprobe, mean of six point analyses, H2O determined by gravimetric method) is as follows, wt %: 4.51 K2O, 3.27 CaO, 0.41 BaO, 10.36 A12O3, 67.90 SiO2, 13.2 H2O, total is 99.65. The empirical formula is H26.23K1.71Ca1.04Ba0.05Al3.64Si20.24O61. The strongest reflections in the powder X-ray diffraction pattern [ d, Å (I, %) (hkl)] are: 9.76 (24) (001), 8.85 (58) (200), 4.870 (59) (002), 3.807 (16) (202), 3.768 (20) (112, 020), 3.457 (100) (220), 2.966 (17) (602). Dachiardite-K is monoclinic, space gr. C2/m, Cm or C2; the unit cell parameters refined from the powder X-ray diffraction data are: a = 18.670(8), b = 7.511(3), c = 10.231(4) Å, β = 107.79(3)°, V= 1366(1) Å3, Z = 1. The type specimen has been deposited in the Earth and Man National Museum, Sofia, Bulgaria, with the registration number 23927.

  15. Influences of Na2O and K2O Additions on Electrical Conductivity of CaO-MgO-Al2O3-SiO2 Melts

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Hua; Zheng, Wei-Wei; Chou, Kuo-Chih

    2017-01-01

    The present study investigated the influences of Na2O and K2O additions on electrical conductivity of blast furnace type CaO-MgO-Al2O3-SiO2 melts by the four-electrode method. Both the single addition of Na2O or K2O and the double additions of Na2O and K2O were studied. It was found that electrical conductivity monotonously increased as the amount of Na2O addition was gradually increased, whereas, when K2O was added, there was a continuous decrease of electrical conductivity. With melts containing both Na2O and K2O, electrical conductivity first decreased but then increased when Na2O was gradually substituted for K2O while keeping the molar fractions of other components constant. In other words, the mixed-alkali effect took place in CaO-Mg-Al2O3-SiO2-ΣR2O melts.

  16. Influences of Na2O and K2O Additions on Electrical Conductivity of CaO-MgO-Al2O3-SiO2 Melts

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Hua; Zheng, Wei-Wei; Chou, Kuo-Chih

    2017-04-01

    The present study investigated the influences of Na2O and K2O additions on electrical conductivity of blast furnace type CaO-MgO-Al2O3-SiO2 melts by the four-electrode method. Both the single addition of Na2O or K2O and the double additions of Na2O and K2O were studied. It was found that electrical conductivity monotonously increased as the amount of Na2O addition was gradually increased, whereas, when K2O was added, there was a continuous decrease of electrical conductivity. With melts containing both Na2O and K2O, electrical conductivity first decreased but then increased when Na2O was gradually substituted for K2O while keeping the molar fractions of other components constant. In other words, the mixed-alkali effect took place in CaO-Mg-Al2O3-SiO2-ΣR2O melts.

  17. Melting relations of hydrous pyrolite in CaO-MgO-Al2O3-SiO2-H2O System at the transition zone pressures

    NASA Astrophysics Data System (ADS)

    Litasov, Konstantin; Ohtani, Eiji; Taniguchi, Hiromitsu

    Phase relations and melt compositions in CaO-MgO-Al2O3-SiO2-pyrolite under hydrous (+2% of H2O) and anhydrous conditions have been determined at 13-20 GPa and 1600-2220°C. Liquidus and solidus temperatures for the hydrous system are about 50-100°C and 180-240°C lower than those for the dry system, respectively. Majorite is a liquidus phase of the hydrous pyrolite from 13 to 20 GPa. Olivine is a liquidus phase at 13 GPa and both periclase and majorite are the liquidus phases at 20 GPa in the dry pyrolite. We observed expansion of the stability field of anhydrous phase B in hydrous experiments. Compositions of partial melts at 13-20 GPa are generally similar in dry and hydrous systems, but hydrous melts contain more SiO2 at 13-17 GPa. The melts formed by low degree of melting have Al2O3-depleted and CaO-rich compositions. Trends of hydrous melt compositions are generally consistent with those of aluminum-depleted komatiite magmas.

  18. Viscosity Measurement and Structure Analysis of Cr2O3-Bearing CaO-SiO2-MgO-Al2O3 Slags

    NASA Astrophysics Data System (ADS)

    Li, Qiuhan; Gao, Jintao; Zhang, Yanling; An, Zhuoqing; Guo, Zhancheng

    2017-02-01

    In this study, the effects of different Cr2O3 contents and optical basicity (denoted by Λ) on the viscosity and structure of the Cr2O3-bearing CaO-SiO2-MgO-Al2O3 slag were investigated. The viscosities of Cr2O3-bearing CaO-SiO2-MgO-Al2O3 slags in the liquid phase below 1823 K (1550 °C) were measured by rotating-cylinder method, and the structures of the slags were examined via Raman spectroscopy. Three different parameters were used to characterize the structures of the slags. The results showed that the viscosity of the slags increased as the Cr2O3 content increased, but decreased as Λ increased. The Cr3+ ions acted as network formers and increased the degree of polymerization (DOP), and thus, the addition of Cr2O3 to the slag increased the number of bridging oxygen atoms in the silicate structural units. Generally, the viscosity increased by increasing DOP. In addition, there was a linear inverse relationship between the viscous activation energy ( E μ ) and Λ. Furthermore, as the Cr2O3 content increased, the gradients of the plots of E μ vs Λ decreased. This indicates that for a slag with a high Cr2O3 content, trying to improve the fluidity of the slag by increasing Λ has a limited effect.

  19. Photoemission-spectroscopy investigation of the chemical-pressure effect in Yb sub 1 minus x M x Al sub 2 ( M =Ca,Sc)

    SciTech Connect

    Vescovo, E.; Braicovich, L.; De Michelis, B.; Fasana, A. ); Eggenhoeffner, R. ); Iandelli, A.; Olcese, G.L.; Palenzona, A. )

    1991-05-15

    We present photoemission results with uv and with x rays from a family of pseudobinary compounds obtained by partial substitution of Yb, with Ca or Sc, in the reference compound YbAl{sub 2}. The substitution with Ca gives rise to a decompression and the one with Sc a compression of the lattice. Ultraviolet photoemission shows the perturbation of the electron states due to chemical substitution; Sc introduces a {ital d} character extending up to about 3 eV below the Fermi level. The weights of the Yb{sup 3+} and Yb{sup 2+} multiplets given by x-ray photoemission are compared with the results from x-ray absorption; the two spectroscopies agree in YbAl{sub 2} while the relative weights Yb{sup 3+} versus Yb{sup 2+} from x-ray photoemission are definitely below the x-ray-absorption values in the compounds heavily substituted with Sc; this is interpreted as a photoemission final-state effect connected with the {ital d} character introduced by the substitution.

  20. Thermoluminescence and optically stimulated luminescence properties of Dy3+-doped CaO-Al2O3-B2O3-based glasses

    NASA Astrophysics Data System (ADS)

    Yahaba, T.; Fujimoto, Y.; Yanagida, T.; Koshimizu, M.; Tanaka, H.; Saeki, K.; Asai, K.

    2017-02-01

    We developed Dy3+-doped CaO-Al2O3-B2O3 based glasses with Dy concentrations of 0.5, 1.0, and 2.0 mol% using a melt-quenching technique. The as-synthesized glasses were applicable as materials exhibiting thermoluminescence (TL) and optically stimulated luminescence (OSL). The optical and radiation response properties of the glasses were characterized. In the photoluminescence (PL) spectra, two emission bands due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ were observed at 480 and 580 nm. In the OSL spectra, the emission band due to the 4F9/2 → 6H15/2 transition of Dy3+ was observed. Excellent TL and OSL responses were observed for dose ranges of 0.1-90 Gy. In addition, TL fading behavior was better than that of OSL in term of the long-time storage. These results indicate that the Dy3+-doped CaO-Al2O3-B2O3-based glasses are applicable as TL materials.

  1. Rheology and Structure of Chlorine, Fluorine and Water-Bearing Na2O-CaO-Al2O3-SiO2 Melts

    NASA Astrophysics Data System (ADS)

    Baasner, A.; Schmidt, B.; Webb, S. L.; Dupree, R.

    2012-12-01

    The effect of chlorine (Cl), fluorine (F) and water (H2O), alone and in combination, on the rheology and structure of synthetic peralkaline Na2O-CaO-Al2O3-SiO2 melts as an analog for highly evolved alkaline melts is investigated. We also investigated a peraluminous counterpart to study how the effect of Cl and F depends on the (Na+Ca)/Al ratio. The volatile-free melts were produced from oxide and carbonate powders at 1 atm and temperatures between 1200 and 1650 °C. Amounts of 0.5 to 1.3 mol% of Cl and 0.5 to 18 mol% F were added as NH4Cl, NH4F, NaCl, NaF, CaCl2 and CaF2. The composition of the samples was analysed by electron microprobe. The melts were hydrated with 0.5 to 4 wt% H2O. For the hydration of the peralkaline melts we used an internally heated pressure vessel at 1200 to 1250 °C and 1.5 to 3 kbar. Because of their high liquidus temperatures, the peraluminous melts were hydrated at 1600 to 1675°C and 5 kbar in a piston cylinder apparatus. Water contents were determined by Karl-Fischer-titration, thermogravimetry and IR-spectroscopy. The viscosities of the dry and hydrous peralkaline and peraluminous melts were measured with micropenetration and parallel plate techniques between 13 log10(Pa s) and 5.5 log10(Pa s). We found that the addition of 1.1 mol% Cl to peralkaline melts increased the viscosity by 0.8 log10(Pa s) while 1.9 mol% F decreased the viscosity by 1.2 log10(Pa s) relative to a viscosity of 12 log10(Pa s) of the halogen-free melt. In peralkaline melts containing equal amounts of both, Cl and F, the viscosity is 0.5 log10(Pa s) lower than the volatile-free melt, independent of the total amount of halogens. The effects of Cl and F seem to buffer each other. If there is twice as much F in the melt as Cl, the viscosity is reduced by 0.7 log10(Pa s). In peraluminous melts containing Cl and F the viscosity decreases with increasing volatile content independent of the ratio between the two volatiles. The addition of H2O decreases the viscosity of

  2. Survey of trace elements (Al, As, Cd, Cr, Co, Hg, Mn, Ni, Pb, Se, and Si) in retail samples of flavoured and bottled waters.

    PubMed

    Barroso, M F; Ramos, S; Oliva-Teles, M T; Delerue-Matos, C; Sales, M G F; Oliveira, M B P P

    2009-01-01

    Concentrations of eleven trace elements (Al, As, Cd, Cr, Co, Hg, Mn, Ni, Pb, Se, and Si) were measured in 39 (natural and flavoured) water samples. Determinations were performed using graphite furnace electrothermetry for almost all elements (Al, As, Cd, Cr, Co, Mn, Ni, Pb, and Si). For Se determination hydride generation was used, and cold vapour generation for Hg. These techniques were coupled to atomic absorption spectrophotometry. The trace element content of still or sparkling natural waters changed from brand to brand. Significant differences between natural still and natural sparkling waters (p < 0.001) were only apparent for Mn. The Mann-Whitney U-test was used to search for significant differences between flavoured and natural waters. The concentration of each element was compared with the presence of flavours, preservatives, acidifying agents, fruit juice and/or sweeteners, according to the labelled composition. It was shown that flavoured waters generally increase the trace element content. The addition of preservatives and acidifying regulators had a significant influence on Mn, Co, As and Si contents (p < 0.05). Fruit juice can also be correlated to the increase of Co and As. Sweeteners did not provide any significant difference in Mn, Co, Se and Si content.

  3. Symmetry-dependent interfacial reconstruction to compensate polar discontinuity at perovskite oxide interfaces (LaAlO{sub 3}/SrTiO{sub 3} and LaAlO{sub 3}/CaTiO{sub 3})

    SciTech Connect

    Lee, Joohwi; Moon, Seon Young; Kim, Jin-Sang; Choi, Jung-Hae E-mail: almacore@kist.re.kr; Choi, Jong Kwon; Park, Jaehong; Hwang, Cheol Seong; Baek, Seung-Hyub; Chang, Hye Jung E-mail: almacore@kist.re.kr

    2015-02-16

    We report the crystal symmetry-dependency of the interfacial reconstruction to relieve the polar discontinuity at the complex oxide heterointerfaces. We chose LaAlO{sub 3}/SrTiO{sub 3} and LaAlO{sub 3}/CaTiO{sub 3} interfaces as model systems, where the neutral TiO{sub 2} and the positive LaO{sup +} layers form the polar discontinuity at the interface with TiO{sub 2}-terminated (001) cubic SrTiO{sub 3} and orthorhombic CaTiO{sub 3}. Using scanning transmission electron microscopy, we observed that the interlayer distance abnormally increased at the interface. We performed the first-principles calculations to understand the detailed atomic displacement at the interfaces having no oxygen vacancy and intermixing. Our results show that cations were reconstructed in different ways depending on the crystal symmetry through the octahedral tilts and atomic displacements to compensate the polar discontinuity at the interfaces. Our results imply that the interfacial reconstructions have to be considered along with the ionic compensation (intermixing) and electronic compensation (two dimensional electron gas) to fully understand the interfacial phenomena.

  4. High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}CaCO{sub 3}{center_dot}11H{sub 2}O

    SciTech Connect

    Moon, Juhyuk; Oh, Jae Eun; Balonis, Magdalena; Glasser, Fredrik P.; Clark, Simon M.; Monteiro, Paulo J.M.

    2012-01-15

    Synchrotron X-ray diffraction data was collected from a sample of monocarboaluminate 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}CaCO{sub 3}{center_dot}11H{sub 2}O from ambient pressure to 4.3 GPa. The refined crystal structure at ambient pressure is triclinic with parameters a = 5.77(2) A, b = 8.47(5) A, c = 9.93(4) A, {alpha} = 64.6(2) Degree-Sign , {beta} = 82.8(3) Degree-Sign , {gamma} = 81.4(4) Degree-Sign , and space group of P1 or P1{sup Macron }. It showed some degree of perfectly reversible pressure-induced dehydration with a non-hygroscopic pressure-transmitting medium. However the dehydration effect does not critically affect a bulk modulus due to its strong framework. The isothermal bulk modulus of monocarboaluminate was found to be 53(5) GPa and 54(4) GPa with 3rd order and 2nd order Birch-Murnaghan Equation of state, respectively. That value is higher than for any other reported AFm or AFt phase. The pressure-volume behavior of the monocarboaluminate was compared with that of previous studied hemicarboaluminate.

  5. Formation Mechanism of CaO-SiO2-Al2O3-(MgO) Inclusions in Si-Mn-Killed Steel with Limited Aluminum Content During the Low Basicity Slag Refining

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Jiang, Min; Wang, Xinhua; Wang, Ying; Zhao, Haoqian; Cao, Zhanmin

    2016-02-01

    Pilot trails were carried out to study the formation mechanism of CaO-SiO2-Al2O3-(MgO) inclusions in tire cord steel. 48 samples were taken from 8 heats of liquid steel during secondary refining, which were subsequently examined by an automatic scanning electron microscope with energy dispersive spectrometer (SEM-EDS). Characteristics of thousands of oxide inclusions at different refining stages were obtained, including their compositions, sizes, morphologies, etc. Based on the obtained information of inclusions, details during formation of CaO-SiO2-Al2O3-(MgO) inclusions were revealed and a new mechanism was proposed, including their origin, formation, and evolution during the refining process. It was found that CaO-SiO2-Al2O3-(MgO) inclusions were initially originated from the CaO-SiO2-MnO-(MgO) inclusions, which were formed during BOF tapping by the coalescence between MnO-SiO2 deoxidation products and the emulsified slag particles because of violent flow of steel. This can be well confirmed by the evaluation of the formation thermodynamics of CaO-SiO2-MnO-(MgO) inclusions, which was proved very difficult to be produced by intrinsic reactions inside liquid steel. Because of chemical reactions between CaO-SiO2-MnO-(MgO) inclusions and molten steel, they were mainly changed into CaO-SiO2-MnO-Al2O3-(MgO) and partially into CaO-SiO2-Al2O3-(MgO), which may be detrimental to the cold drawing ability of coils. Based on this finding, improvements were made in industrial production during BOF tapping and secondary refining. The results indicated that such (CaO-SiO2)-based inclusions existed in conventional process were effectively decreased after the improvements.

  6. Low-temperature superstructures of a series of Cd6M (M = Ca, Y, Sr, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) crystalline approximants.

    PubMed

    Nishimoto, Kazue; Sato, Takeru; Tamura, Ryuji

    2013-06-12

    The low-temperature (LT) superstructure and the phase transition temperature have been investigated for a series of Cd6M crystalline approximants by transmission electron microscopy as well as electrical resistivity measurements. Except for M = Lu, Cd6M is found to undergo a phase transition to a monoclinic phase at a low temperature and the transition temperature (Tc) scales well with the size of the M atom. For M = Ca, Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm the LT superstructure is explained by a √2a × a × √2a lattice with the space group C2/c, and for M = Sr and Yb a √2a × 2a × √2a monoclinic lattice with P2/m. On the other hand, no phase transition is observed for M = Lu, indicating that a Cd4 tetrahedron at the cluster center remains disordered down to the lowest temperature, i.e. 16 K. It is shown that the volume inside the Cd20 dodecahedron plays a crucial role in the occurrence of the phase transition, and long-term aging in particular promotes the phase transition for late rare-earth elements such as Ho, Er and Tm, suggesting that the transition is sensitive to and is even hindered by disorder such as atomic vacancies. The absence of the transition for M = Lu is attributed to the highest activation energy for the transition due to the smallest volume inside the Cd20 dodecahedron.

  7. Ultrasensitive photoelectrochemical immunoassay for CA19-9 detection based on CdSe@ZnS quantum dots sensitized TiO2NWs/Au hybrid structure amplified by quenching effect of Ab2@V(2+) conjugates.

    PubMed

    Zhu, Hua; Fan, Gao-Chao; Abdel-Halim, E S; Zhang, Jian-Rong; Zhu, Jun-Jie

    2016-03-15

    A novel, enhanced photoelectrochemical immunoassay was established for sensitive and specific detection of carbohydrate antigen 19-9 (CA19-9, Ag). In this protocol, TiO2 nanowires (TiO2NWs) were first decorated with Au nanoparticles to form TiO2NWs/Au hybrid structure, and then coated with CdSe@ZnS quantum dots (QDs) via the layer-by-layer method, producing TiO2NWs/Au/CdSe@ZnS sensitized structure, which was employed as the photoelectrochemical matrix to immobilize capture CA19-9 antibodies (Ab1); whereas, bipyridinium (V(2+)) molecules were labeled on signal CA19-9 antibodies (Ab2) to form Ab2@V(2+) conjugates, which were used as signal amplification elements. The TiO2NWs/Au/CdSe@ZnS sensitized structure could adequately absorb light energy and dramatically depress electron-hole recombination, resulting in evidently enhanced photocurrent intensity of the immunosensing electrode. While target Ag were detected, the Ab2@V(2+) conjugates could significantly decrease the photocurrent detection signal because of strong electron-withdrawing property of V(2+) coupled with evident steric hindrance of Ab2. Thanks to synergy effect of TiO2NWs/Au/CdSe@ZnS sensitized structure and quenching effect of Ab2@V(2+) conjugates, the well-established photoelectrochemical immunoassay exhibited a low detection limit of 0.0039 U/mL with a wide linear range from 0.01 U/mL to 200 U/mL for target Ag detection. This proposed photoelectrochemical protocol also showed good reproducibility, specificity and stability, and might be applied to detect other important biomarkers.

  8. Melts in the Deep Earth: Calculating the Densities of CaO-FeO-MgO-Al2O3-SiO2 Liquids

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Guo, X.; Agee, C. B.; Asimow, P. D.; Lange, R. A.

    2012-12-01

    We present new equation of state (EOS) measurements for hedenbergite (Hd, CaFeSi2O6) and forsterite (Fo, Mg2SiO4) liquids. These liquid EOS add to the basis set in the CaO-FeO-MgO-Al2O3-SiO2 (CMASF) oxide space at elevated temperatures and pressures; other liquids include: enstatite (En, MgSiO3), anorthite (An, CaAl2Si2O8), diopside (Di, CaMgSi2O6), and fayalite (Fa, Fe2SiO4). The Hd EOS measurement was a multi-technique collaboration using 1-atm double-bob Archimedean, ultrasonic, sink/float, and shock wave techniques. Un-weighted linear fitting of the shock data in shock velocity (US)-particle velocity (up) space defines a pre-heated (1400 °C) Hugoniot US = 2.628(0.024) + 1.54(0.01)up km/s. The slope corresponds to a K' of 5.16(0.04), consistent with piston-cylinder and multi-anvil sink/float experiments. The intercept is fixed at the ultrasonic sound speed (Co) since the unconstrained intercept is within the stated error. This behavior demonstrates consistency across methods and that the liquid is relaxed during shock compression. Shock compression of pre-heated (2000°C) single crystal Fo gives an un-weighted linear Hugoniot of US = 2.674(0.188) + 1.64(0.06)up km/s. The unconstrained Co falls below estimates based on extrapolation in both temperature and composition from two published partial molar sound speed models, 3.195m/s [1] and 3.126 m/s [2]. The shock-derived Co indicates that dC/dT is negative for Fo liquid, contrary to the positive [1] and zero [2] temperature dependences derived over relatively narrow temperature intervals. CMASF liquid isentropes were calculated using five end-members (En, Fo, Fa, An, Di). For modeling crystallization of a fictive magma ocean, we examined two liquids: peridotite [3] (P=.33En+.56Fo+.07Fa+.03An+.007Di) and simplified chondrite [4] (Ch=.62En+.24Fo+.08Fa+.04An+.02Di). Each end-member is defined by a 3rd or 4th order Birch-Murnaghan isentrope, Mie-Grüneisen thermal pressure and a constant heat capacity. The volumes are

  9. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-A review

    NASA Astrophysics Data System (ADS)

    Theiss, Frederick L.; Ayoko, Godwin A.; Frost, Ray L.

    2016-10-01

    Co-precipitation is a common method for the preparation of layered double hydroxides (LDHs) and related materials. This review article is aimed at providing newcomers to the field with some examples of the types of co-precipitation reactions that have been reported previously and to briefly investigate some of the properties of the products of these reactions. Due to the sheer volume of literature on the subject, the authors have had to limit this article to the synthesis of Mg/Al, Zn/Al and Ca/Al LDHs by co-precipitation and directly related methods. LDHs have been synthesised from various reagents including metal salts, oxides and hydroxides. Co-precipitation is also useful for the direct synthesis of LDHs with a wide range of interlayer anions and various bases have been successfully employed to prepare LDHs. Examples of other synthesis techniques including the urea method, hydrothermal synthesis and various mechanochemical methods that are undoubtedly related to co-precipitation have also been included in this review. The effect of post synthesis hydrothermal has also been summarised.

  10. The co-crystallization of beryl-structure compounds in the Al 2Be 3Si 6O 18—Mg,Ca/F,Cl system

    NASA Astrophysics Data System (ADS)

    Mikhailov, M. A.

    2005-02-01

    An Al 2Be 3Si 6O 18 — Mg, Ca/F, Cl flux system unused earlier has been chosen for the synthesis of beryl (Al 2Be 3Si 6O 18) and its varieties. In such a case of disregarding the well-known rules of the choice of a solvent, the following crystallization features of beryl have been revealed: (1) the beryl co-crystallizes successively and/or simultaneously with isostructural beryllian indialite (Mg 2BeAl 2Si 6O 18); (2) the bulk of beryl crystals is formed only in regions with high concentration of a flux; (3) the solution-melt liquates; (4) the solvent evaporates intensively. The advantages of the flux proposed are both the possibility of using inexpensive steel crucibles and good chromophoric properties of Cr, V, and Ti. Ratios of constitutient elements and some additive those between beryl and beryllian indialite, both grown simultaneously, and between pinacoid and prism in crystals of these compounds are reported.

  11. Analysis of the Fe-Ce-O-C- M phase diagrams ( M = Ca, Mg, Al, Si) by constructing a component-solubility surface

    NASA Astrophysics Data System (ADS)

    Mikhailov, G. G.; Makrovets, L. A.; Smirnov, L. A.; Dresvyankina, L. E.

    2016-06-01

    Analysis of the ternary phase diagrams of Ce2O3- and CeO2-containing oxide systems allowed us to find the oxide compounds that form during steel deoxidizing with cerium and with cerium together with aluminum, calcium, magnesium, or silicon. The temperature dependences of the equilibrium constants of formation of Ce2O3 oxides and Ce2O3 · Al2O3, Ce2O3 · 11Al2O3, Ce2O3 · 2SiO2, 7Ce2O3 · 9SiO2 and Ce2O3 · SiO2 compounds are found. Surfaces for the component solubility in metallic melts Fe-Al-Ce-O-C, Fe- Ca-Ce-O-C, Fe-Mg-Ce-O-C, and Fe-Si-Ce-O-C are constructed. Nonmetallic inclusions that form in the course of experimental melts of St20 steel after its deoxidizing with silicocalcium and rare-earth metal (REM)-containing master alloys in a ladle furnace after degassing are studied. Phase inhomogeneity of the inclusions is found. As a rule, they consist of phases classified into the following three groups: oxide-sulfide, sulfide-oxide, and multiphase oxide-sulfide melt. Calcium aluminates are found to be components of complex sulfide-oxide noncorrosive inclusions.

  12. Effect of Ce2O3 on Structure, Viscosity, and Crystalline Phase of CaO-Al2O3-Li2O-Ce2O3 Slags

    NASA Astrophysics Data System (ADS)

    Qi, Jie; Liu, Chengjun; Zhang, Chi; Jiang, Maofa

    2017-02-01

    Aiming at devising new mold flux for Ce-bearing stainless steel, a fundamental investigation on the effect of Ce2O3 on properties of the CaO-Al2O3-Li2O-Ce2O3 slag was provided by the present work. The results show that adding Ce2O3 could decrease the viscosity of the slag due to its effects on decreasing the polymerization of the slag. The crystalline process was restrained by increasing the content of Ce2O3, and the crystalline phases also can be influenced by the slag structure. The crystalline phases were transferred from LiAlO2 and CaO to LiAlO2 and CaCeAlO4 with the addition of Ce2O3 to the slag, which could be well confirmed by the structure of the unit cell of the crystals.

  13. Properties of blue emitting CaAl2O4:Eu2+, Nd3+ phosphor by optimizing the amount of flux and fuel

    NASA Astrophysics Data System (ADS)

    Wako, A. H.; Dejene, B. F.; Swart, H. C.

    2014-04-01

    Long afterglow CaAl2O4:0.03Eu2+, 0.03Nd3+ phosphor was prepared by solution-combustion synthesis. The active role of boric acid (H3BO3) as a flux in enhancing the Eu2+ photoluminescence and the effect of a varied amount of urea (CO (NH2)2) as a fuel on the morphological, structural and photoluminescent (PL) properties of the CaAl2O4:0.03Eu2+, 0.03Nd3+ systems were investigated. The results of X-ray diffraction, scanning electron microscopy, and PL spectra revealed the influence of the dosage of urea and hence the heated process on the crystallinity, morphology, and luminescence of the phosphor. The addition of H3BO3 favoured the formation of a monoclinic CaAl2O4 phase while the variation of the amount of CO (NH2)2 showed mixed phases although still predominantly monoclinic. Both H3BO3 and CO(NH2)2 to some extent influence the luminescence intensity of the obtained phosphor but unlike the case of CO(NH2)2, the presence of H3BO3 did not evidently shift the emission peak due to no obvious change in the energy level difference of the 4f-5d levels. The broad blue emissions consisting mainly of symmetrical bands having maxima between 440 and 445 nm originate from the energy transitions between the ground state (4f7) and the excited state (4f65d1) of the Eu2+ ions while the narrow emissions in the red region (600-630 nm) arise from the 5D0→7F2 transitions of the remnant unreduced Eu3+ions. Higher concentrations of H3BO3 (0.228 mol and 0.285 mol) reduce both intensity and lifetime of the phosphor. The optimized content of H3BO3 was 0.171 mol for the obtained phosphor with the best optical properties.

  14. An Investigation of Armenite, BaCa2Al6Si9O302H2O.H2O Molecules and H Bonding in Microporous Silicates

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Gatta, G.; Xue, X.; McIntyre, G.

    2012-12-01

    The crystal chemistry of armenite, ideally BaCa2Al6Si9O30.2H2O, a double-ring structure belonging to the milarite group, was studied to better understand the nature of extra-framework "Ca-oxygen-anion-H2O-molecule quasi-clusters" and H bonding behavior in microporous silicates. Neutron and X-ray single-crystal diffraction and IR powder and 1H NMR spectroscopic measurements were made. Four crystallographically independent Ca and H2O molecule sites were refined from the diffraction data, whereby both sites appear to have partial occupancies such that locally a Ca atom can have only a single H2O molecule bonded to it through an ion-dipole interaction. The Ca cation is further bonded to six O atoms of the framework forming a quasi cluster around it. The neutron results give the first static description of the protons in armenite, allowing bond distances and angles relating to the H2O molecules and H bonds to be determined. The IR spectrum of armenite is characterized in the OH-stretching region at RT by two broad bands at roughly 3470 and 3410 cm-1 and by a single H2O bending mode at 1654 cm-1. At 10 K four intense OH bands are located at 3479, 3454, 3401 and 3384 cm-1 and two H2O bending modes at 1650 and 1606 cm-1. The 1H MAS NMR spectrum shows a single strong resonance near 5.3 ppm and a smaller one near 2.7 ppm. The former can be assigned to H2O molecules bonded to Ca and the latter to weakly bonded H2O located at a site at the center of the structural double ring and it is partially occupied. The nature of H bonding in the microporous Ca-bearing zeolites scolecite, wairakite and epistilbite are also analyzed. The average OH stretching wavenumber shown by the IR spectra of armenite (~3435 cm-1) and scolecite (~3430 cm-1) are similar, while the average OH wavenumbers for wairakite (~3475 cm-1) and epistilbite (~3500 cm-1) are greater. In all cases the average OH stretching wavenumber is more similar to that of liquid water (~3400 cm-1) than of ice (~3220 cm-1). The

  15. Estimation of the solubility product of hydrocalumite-hydroxide, a layered double hydroxide with the formula of [Ca2Al(OH)6]OH·nH2O

    NASA Astrophysics Data System (ADS)

    Gácsi, Attila; Kutus, Bence; Kónya, Zoltán; Kukovecz, Ákos; Pálinkó, István; Sipos, Pál

    2016-11-01

    From aqueous NaOH/Ca(OH)2/NaAl(OH)4 mixtures, after allowing short reaction times we observed the precipitation of Ca(OH)2(s) at lower, and a mixture of Ca(OH)2(s) and a layered double hydroxide, hydrocalumite (HC) at higher aluminate concentrations. From the maximum aluminate concentration, at which the equilibrium solid phase is still portlandite (i.e., further increase in the aluminate concentration results in HC appearing in the precipitate beside the portlandite), the concentration based solubility products of two polymorphs of HC with the formula of [Ca2Al(OH)6]OH·nH2O (differing in n) has been estimated and was found to be log LHC=-11.4 at 25 °C and -12.1 at 75 °C, respectively (where LHC=[Ca2+]2[Al(OH)4-][OH-]3) and at constant ionic strength (I=1 M NaCl). To the best of our knowledge, this is the first published estimate for the solubility product of hydrocalumite. Additionally, from the composition obtained for NaOH/Ca(OH)2/NaAl(OH)4 mother liquors in equilibrium with Ca(OH)2(s), attempts were made to extract the formation constant of the ion pair CaAl(OH)4+. It was found, that the effects caused by the supposed formation of this solution species are too small to be reliably determined, which allowed an upper estimate for its formation constant, K, to be suggested in the temperature range of 25-75 °C (K<200 and 40 M-1 at 25 and 75 °C, respectively).

  16. First principles study of the structural, elastic, electronic and phonon properties of CdX{sub 2}O{sub 4} (X=Al, Ga, In) spinel-type oxides

    SciTech Connect

    Candan, Abdullah; Uğur, Gökay

    2014-10-06

    We have performed ab-initio calculations of the structural, electronic, elastic and dynamical properties for the spinel compounds CdX{sub 2}O{sub 4} (X=Al, Ga, In) using the plane wave pseudo-potential method within the generalized gradient approximation (GGA). The calculated lattice parameters, elastic constants for these compounds are in good agreement with the previous calculated values. The computed direct band gaps of CdAl{sub 2}O{sub 4}, CdGa{sub 2}O{sub 4} and CdIn{sub 2}O{sub 4} are 2.90 eV, 1.92 eV and 1.16 eV, respectively. The lattice vibrations were calculated by direct method. The calculated phonon dispersion curves show that all compounds are dynamically stable in the spinel structure.

  17. Epitaxial growth of dielectric CaCu3Ti4O12 thin films on (001) LaAlO3 by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Chen, Y. B.; Garret, T.; Liu, S. W.; Chen, C. L.; Chen, L.; Bontchev, R. P.; Jacobson, A.; Jiang, J. C.; Meletis, E. I.; Horwitz, J.

    2002-07-01

    High dielectric CaCu3Ti4O12 (CCTO) thin films were epitaxially grown on (001) LaAlO3 (LAO) substrates by pulsed laser deposition. Microstructural studies by x-ray diffraction, pole figure measurements, and transmission electron microscopy show that the as-grown films are good single crystalline quality with an interface relationship of (001)CCTO)//(001LAO and 100]CCTO//[100LAO. Dielectric property measurements show that the films have an extremely high dielectric constant with value of 10 000 at 1 MHz at room temperature. It is interesting to note that the twinned substrate results in the formation of twinning or dislocations inside the CCTO film.

  18. Spectroscopic properties and ultrafast performance of Yb:CaLu x Gd1‑x AlO4 crystal

    NASA Astrophysics Data System (ADS)

    Hu, Qiangqiang; Su, Xiancui; Wang, Yiran; He, Jingliang; Zhang, Baitao; Jia, Zhitai; Tao, Xutang

    2017-04-01

    A systematical investigation of the spectroscopic and ultrafast performance of Yb:CaLu x Gd1‑x AlO4 crystal (Yb:CLGA) was reported first in this work. A SESAM-based mode-locking laser was achieved by self-starting, generating reliable pulses as short as 69.6 fs. At a central wavelength of 1054 nm, a maximum average output power of 232 mW was obtained with the highest peak power of 63.7 kW. The same crystal was employed in wavelength tunable operation, and 65.7 nm of tuning range between 1023.1 nm and 1088.8 nm was obtained with a resolution of sub-0.1 nm.

  19. White luminescence and energy transfer process in Bi3+,Sm3+ co-doped Ca3Al2O6 phosphors

    NASA Astrophysics Data System (ADS)

    Wang, LongJun; Guo, Hai; Wei, YunLe; Noh, Hyeon Mi; Jeong, Jung Hyun

    2015-04-01

    Ca3Al2O6:Bi3+,Sm3+ phosphors were synthesized by conventional solid state reaction method and their luminescent properties were systemically investigated by excitation, emission spectra and decay curves measurement. Through an efficient energy transfer process from Bi3+ to Sm3+, the obtained phosphors exhibit emission from Bi3+ and Sm3+ with considerable intensity under near-ultraviolet excitation (300 nm). Tuning the content of Sm3+ can generate the varied hues from blue green to white. Our research will extend the understanding of interactions between Bi3+ and rare earth ions and show the potential application of Bi3+,Sm3+ co-doped phosphors in W-LEDs field.

  20. Transesterification of rapeseed oil for biodiesel production in trickle-bed reactors packed with heterogeneous Ca/Al composite oxide-based alkaline catalyst.

    PubMed

    Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua

    2013-05-01

    A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation.

  1. On formation of CaO-Al(2)O(3)-SiO2 glass-ceramics by vitrification of incinerator fly ash.

    PubMed

    Cheng, T W; Chen, Y S

    2003-06-01

    CaO-Al(2)O(3)-SiO(2) system glass ceramics of incinerator fly ash have been prepared by vitrification and then heat-treated in different conditions. The thermal molten process (TMP) was applied to heat treat vitrified samples at high temperatures whereas in the powder sintering process water-quenched vitrified samples were ground into powder and then sintered at high temperatures. Gehlenite was found present as the major phase in all treated samples. Treated samples in general exhibited good leachability characteristics as well as chemical durability, except in the HCl solution. Microstructure and physical properties varied with the treatment condition. Fine and relatively high dense structures with desirable properties were obtained for samples treated by the TMP. For both processes, higher temperature treatments caused crystal growth and thus poor properties were attained. Good physical and mechanical properties achieved at 900-950 degrees C in this study imply the treated samples have attractive potential for engineering applications.

  2. Highly improved reliability of amber light emitting diode with Ca -α-SiAlON phosphor in glass formed by gas pressure sintering for automotive applications.

    PubMed

    Yoon, Chang-Bun; Kim, Sanghyun; Choi, Sung-Woo; Yoon, Chulsoo; Ahn, Sang Hyeon; Chung, Woon Jin

    2016-04-01

    Phosphor in glass (PiG) with 40 wt% of Ca-α-SiAlON phosphor and 60 wt% of Pb-free silicate glass was synthesized and mounted on a high-power blue LED to make an amber LED for automotive applications. Gas pressure sintering was applied after the conventional sintering process was used to achieve fully dense PiG plates. Changes in photoluminescence spectra and color coordination were inspected by varying the thickness of the plates that were mounted after optical polishing and machining. A trade-off between luminous flux and color purity was observed. The commercial feasibility of amber PiG packaged LED, which can satisfy international regulations for automotive components, was successfully demonstrated by examining the practical reliability under 85% humidity at an 85°C condition.

  3. Thermomechanical and thermo-optical properties of the LiCaAlF sub 6 :Cr sup 3+ laser material (US)

    SciTech Connect

    Woods, B.W.; Payne, S.A.; Marion, J.E.; Hughes, R.S.; Davis, L.E. )

    1991-05-01

    Measurements of the intrinsic thermomechanical and thermo-optical properties of the new laser material LiCaAlF{sub 6}:Cr{sup 3+} (known as Cr:LiCAF) are performed. Thermal diffusivity, heat capacity, thermal expansion, elastic constants, fracture toughness, and dispersion and temperature variation of the refractive index are all characterized for this material. In addition, the magnitude of the thermal lensing induced in a flash-lamp-pumped laser rod of Cr:LiCAF is measured and compared with the results obtained for an alexandrite laser rod in the same laser head. We find that the thermal lensing of Cr:LiCAF is favorably small and that the thermomechanical properties are expected to be adequate for applications at low and medium average power.

  4. Modelling Equilibrium and Fractional Crystallization in the System MgO-FeO-CaO-Al2O3-SiO2

    NASA Technical Reports Server (NTRS)

    Herbert, F.

    1985-01-01

    A mathematical modelling technique for use in petrogenesis calculations in the system MgO-FeO-CaO-Al2O3-SiO2 is reported. Semiempirical phase boundary and elemental distribution information was combined with mass balance to compute approximate equilibrium crystallization paths for arbitrary system compositions. The calculation is applicable to a range of system compositions and fractionation calculations are possible. The goal of the calculation is the computation of the composition and quantity of each phase present as a function of the degree of solidification. The degree of solidification is parameterized by the heat released by the solidifying phases. The mathematical requirement for the solution of this problem is: (1) An equation constraining the composition of the magma for each solid phase in equilibrium with the liquidus phase, and (2) an equation for each solid phase and each component giving the distribution of that element between that phase and the magma.

  5. Preparation and photoluminescence property of a loose powder, Ca{sub 3}Al{sub 2}O{sub 6}:Eu{sup 3+} by calcination of a layered double hydroxide precursor

    SciTech Connect

    Gao Xiaorui; Lei Lixu Lv Changgui; Sun Yueming; Zheng Hegen; Cui Yiping

    2008-08-15

    A novel red light-emitting material, Ca{sub 3}Al{sub 2}O{sub 6}:Eu{sup 3+}, which is the first example found in the Ca{sub 3}Al{sub 2}O{sub 6} host, was prepared by calcination of a layered double hydroxide precursor at 1350 deg. C. The precursor, [Ca{sub 2.9-x}Al{sub 2}Eu{sub x}(OH){sub 9.8}](NO{sub 3}){sub 2+x}.2.5H{sub 2}O, was prepared by coprecipitation of metal nitrates with sodium hydroxide. The material is a loose powder composed of irregular particles formed from aggregation of particles of a few nanometers, as shown in scanning electron microscope (SEM) images. It was found that the photoluminescence intensity reached the maximum when the calcination temperature was 1350 deg. C and the concentration of Eu{sup 3+} was 1.0%. The material emits bright red emission at 614 nm under a radiation of {lambda}=250 nm. - Graphical abstract: Calcination of a layered double hydroxide precursor produces Ca{sub 3}Al{sub 2}O{sub 6}:Eu{sup 3+}, which is very easy to be pulverized. It is proposed that Eu{sup 3+} takes the place of one Ca{sup 2+} (green spheres in the picture, pink pyramids are [AlO{sub 4}] tetrahedrons) in the cell of Ca{sub 3}Al{sub 2}O{sub 6}. The Ca{sup 2+} could be any one of the bigger green spheres without inversion symmetry, and emits red light under a UV radiation of {lambda}=250 nm. Display Omitted.

  6. Giant dielectric response and low dielectric loss in Al{sub 2}O{sub 3} grafted CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    SciTech Connect

    Rajabtabar-Darvishi, A.; Bayati, R. E-mail: mbayati@ncsu.edu; Sheikhnejad-Bishe, O.; Wang, L. D.; Li, W. L.; Sheng, J.; Fei, W. D. E-mail: mbayati@ncsu.edu

    2015-03-07

    This study sheds light on the effect of alumina on dielectric constant and dielectric loss of novel CaCu{sub 3}Ti{sub 4}O{sub 12} composite ceramics. Alumina, at several concentrations, was deposited on the surface of CaCu{sub 3}Ti{sub 4}O{sub 12} particles via sol-gel technique. The dielectric constant significantly increased for all frequencies and the dielectric loss substantially decreased for low and intermediate frequencies. These observations were attributed to the change in characteristics of grains and grain boundaries. It was found that the insulating properties of the grain boundaries are improved following the addition of Al{sub 2}O{sub 3}. The relative density of CaCu{sub 3}Ti{sub 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics decreased compared to the pure CaCu{sub 3}Ti{sub 4}O{sub 12} and the grain size was greatly changed with the alumina content affecting the dielectric properties. With the addition of alumina into CaCu{sub 3}Ti{sub 4}O{sub 12}, tighter interfaces formed. The 6%- and 10%-alumina ceramics showed the minimum dielectric loss and the maximum dielectric constant, respectively. Both the dielectric constant and loss tangent decreased in the 20%-alumina ceramic due to the formation of CuO secondary phase. It was revealed that Al serves as an electron acceptor decreasing the electron concentration, if Al{sup 3+} ions substitute for Ti{sup 4+} ions, and as an electron donor increasing the electron concentration, if Al{sup 3+} ions substitute for Ca{sup 2+} ions. We established a processing-microstructure-properties paradigm which opens new avenues for novel applications of CaCu{sub 3}Ti{sub 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics.

  7. Influences of CaO on Crystallization, Microstructures, and Properties of BaO-Al2O3-B2O3-SiO2 Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Bo; Tang, Bo; Xu, Mingjiang

    2015-10-01

    We have developed BaO-CaO-Al2O3-B2O3-SiO2 glass-ceramics with high thermal coefficient of expansion (TCE) to overcome thermal mismatch at board level. The crystalline phases include quartz (major), cristobalite (minor), and bazirite BaZrSi3O9 (minor). Calculations from whole-pattern fitting show that the crystallinity varies slightly within the range of 33.48% to 34.89%, while the mass fraction of the phases changes remarkably with the CaO content. This indicates that CaO cannot promote crystallization of Ba-Al-B-Si glass, but effectively suppresses the phase transformation from quartz to cristobalite, making the thermal expansion curves linear. An empirical equation for the TCE versus the temperature and the amount of CaO is established. Furthermore, the densification mechanism of Ca modifiers is revealed. Due to its higher field strength than Ba, substitution of Ca increases the glass viscosity and inhibits ion diffusion. Excessive CaO is thus harmful to the density, bending strength, and electrical properties. The sample with 10 wt.% CaO sintered at 950°C exhibited high bending strength (154.1 MPa) and high TCE (12.38 ppm/°C) as well as good electrical properties ( ɛ = 6.2, tan δ = 5 × 10-4, ρ = 3.8 × 1012 Ω cm).

  8. [Determination of Al, Be, Cd, Co, Cr, Mn, Ni, Pb, Se and Tl in whole blood by atomic absorption spectrometry without preliminary sample digestion].

    PubMed

    Ivanenko, N B; Ivanenko, A A; Solov'ev, N D; Navolotskiĭ, D V; Pavlova, O V; Ganeev, A A

    2014-01-01

    Methods of whole blood trace element determination by Graphite furnace atomic absorption spectrometry (in the variant of Zeeman's modulation polarization spectrometry) have been proposed. They do not require preliminary sample digestion. Furnace programs, modifiers and blood dilution factors were optimized. Seronorm™ human whole blood reference materials were used for validation. Dynamic ranges (for undiluted blood samples) were: Al 8 ¸ 210 мg/L; Be 0.3 ¸ 50 мg/L; Cd 0.2 ¸ 75 мg/L; Сo 5 ¸ 350 мg/L; Cr 10 ¸ 100 мg/L; Mn 6 ¸ 250 мg/L; Ni 10 ¸ 350 мg/L; Pb 3 ¸ 240 мg/L; Se 10 ¸ 500 мg/L; Tl 2 ¸ 600 мg/L. Precision (RSD) for the middle of dynamic range ranged from 5% for Mn to 11 for Se.

  9. Thermodynamic simulation on mineralogical composition of CaO-SiO2-Al2O3-MgO quaternary slag system.

    PubMed

    Liu, Chao; Zhang, Yu-Zhu; Li, Jie; Li, Jun-Guo; Kang, Yue

    2016-01-01

    It is necessary to elucidate the crystallization thermodynamic of mineralogical phases during the cooling process of the molten BFS with different chemical composition, because the high-melting point mineral phase maybe crystallized during the fiber forming and thereafter cooling process. Thermodynamic calculation software FactSage6.4 and the hot remelting experiments were performed to explore the influence of basicity, Al2O3 content and MgO content on the crystallization of mineralogical components and their transformation. The results showed that the main mineralography of the CaO-SiO2-Al2O3-MgO quaternary slag system was melilite, and a certain amount of anorthite and calcium metasilicate. The crystallographic temperature of melilite is increased with the increasing of basicity, MgO and Al2O3 content, which has a significant impact on the utilization performance of the mineral wool prepared with the hot blast furnace slag directly. With the increasing of basicity, there was a tendency that crystallographic amount of melilite increased to the summit and then declined, while the amount of anorthite and calcium metasilicate decreased consistently. Finally, these two mineralogical components could be replaced by magnesium rhodonite and spinel with the increasing of basicity. When the basicity and MgO content were 1.0 and 9 %, the crystallographic mass ratio of melilite and anorthite increased, while that of calcium silicate declined, and replaced by spinel finally with the increasing of Al2O3 content. When the basicity and Al2O3 content were 1.0 and 13 %, the crystallographic mass ratio of melilite increased, while that of anorthite and calcium silicate declined, and replaced by pyroxene and spinel with the increasing of MgO content. To decline fiberization temperature of the melt BFS, the basicity, MgO and Al2O3 content should be decreased during the modification process of chemical composition, because the crystallization temperature of the primary crystalline

  10. Ab-initio study of the structural, linear and nonlinear optical properties of CdAl{sub 2}Se{sub 4} defect-chalcopyrite

    SciTech Connect

    Ouahrani, T.; Reshak, Ali H.; Khenata, R.; Amrani, B.; Mebrouki, M.; Otero-de-la-Roza, A.; Luana, V.

    2010-01-15

    The complex density functional theory (DFT) calculations of structural, electronic, linear and nonlinear optical properties for the defect chalcopyrite CdAl{sub 2}Se{sub 4} compound have been reported using the full potential linearized augmented plane wave (FP-LAPW) method as implemented in the WIEN2k code. We employed the Wu and Cohen generalized gradient approximation (GGA-WC), which is based on exchange-correlation energy optimization to calculate the total energy. Also we have used the Engel-Vosko GGA formalism, which optimizes the corresponding potential for band structure, density of states and the spectral features of the linear and nonlinear optical properties. This compound has a wide direct energy band gap of about 2.927 eV with both the valence band maximum and conduction band minimum located at the center of the Brillouin zone. The ground state quantities such as lattice parameters (a, c, x, y and z), bulk modulus B and its pressure derivative B' are evaluated. We have calculated the frequency-dependent complex epsilon(omega), its zero-frequency limit epsilon{sub 1}(0), refractive index n(omega), birefringence DELTAn(omega), the reflectivity R(omega) and electron energy loss function L(omega). Calculations are reported for the frequency-dependent complex second-order nonlinear optical susceptibilities. We find opposite signs of the contributions of the 2omega and 1omega inter/intra-band to the imaginary part for the dominant component through the wide optical frequency range. - Graphical abstract: Calculated band structure and total density of CdAl{sub 2}Se{sub 4}.

  11. Antigen S1, encoded by the MIC1 gene, is characterized as an epitope of human CD59, enabling measurement of mutagen-induced intragenic deletions in the AL cell system

    NASA Technical Reports Server (NTRS)

    Wilson, A. B.; Seilly, D.; Willers, C.; Vannais, D. B.; McGraw, M.; Waldren, C. A.; Hei, T. K.; Davies, A.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    S1 cell membrane antigen is encoded by the MIC1 gene on human chromosome 11. This antigen has been widely used as a marker for studies in gene mapping or in analysis of mutagen-induced gene deletions/mutations, which utilized the human-hamster hybrid cell-line, AL-J1, carrying human chromosome 11. Evidence is presented here which identifies S1 as an epitope of CD59, a cell membrane complement inhibiting protein. E7.1 monoclonal antibody, specific for the S1 determinant, was found to react strongly with membrane CD59 in Western blotting, and to bind to purified, urinary form of CD59 in ELISAs. Cell membrane expression of S1 on various cell lines always correlated with that of CD59 when examined by immunofluorescent staining. In addition, E7.1 antibody inhibited the complement regulatory function of CD59. Identification of S1 protein as CD59 has increased the scope of the AL cell system by enabling analysis of intragenic mutations, and multiplex PCR analysis of mutated cells is described, showing variable loss of CD59 exons.

  12. Phase Equilibria Studies in the System ZnO-``FeO''-Al2O3-CaO-SiO2 Relevant to Imperial Smelting Furnace Slags: Part II

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2010-04-01

    The phase equilibria and the liquidus temperatures in the system ZnO-“FeO”-Al2O3-CaO-SiO2 have been determined experimentally in equilibrium with metallic iron. Specifically, the effects of Al2O3 concentrations in Imperial Smelting Furnace slags are identified, and the results are presented in the form of pseudo-ternary sections ZnO-“FeO”-(Al2O3 + CaO + SiO2) in which CaO/SiO2 = 0.93 and (CaO + SiO2)/Al2O3 = 5.0 and 3.5, respectively. It was found that, in the presence of Al2O3, the spinel phase is formed, the spinel primary phase field expands, and the wustite and melilite primary phase fields are reduced in size with an increasing Al2O3 concentration. The implications of the findings to industrial practice are discussed.

  13. Short-lived chlorine-36 in a Ca- and Al-rich inclusion from the Ningqiang carbonaceous chondrite

    PubMed Central

    Lin, Yangting; Guan, Yunbin; Leshin, Laurie A.; Ouyang, Ziyuan; Wang, Daode

    2005-01-01

    Excesses of sulfur-36 in sodalite, a chlorine-rich mineral, in a calcium- and aluminum-rich inclusion from the Ningqiang carbonaceous chondrite linearly correlate with chorine/sulfur ratios, providing direct evidence for the presence of short-lived chlorine-36 (with a half-life of 0.3 million years) in the early solar system. The best inferred (36Cl/35Cl)o ratios of the sodalite are ≈5 × 10-6. Different from other short-lived radionuclides, chlorine-36 was introduced into the inclusion by solid-gas reaction during secondary alteration. The alteration reaction probably took place at least 1.5 million years after the first formation of the inclusion, based on the correlated study of the 26Al-26Mg systems of the relict primary minerals and the alteration assemblages, from which we inferred an initial ratio of (36Cl/35Cl)o > 1.6 × 10-4 at the time when calcium- and aluminum-rich inclusions formed. This discovery supports a supernova origin of short-lived nuclides [Cameron, A. G. W., Hoeflich, P., Myers, P. C. & Clayton, D. D. (1995) Astrophys. J. 447, L53; Wasserburg, G. J., Gallino, R. & Busso, M. (1998) Astrophys. J. 500, L189–L193], but presents a serious challenge for local irradiation models [Shu, F. H., Shang, H., Glassgold, A. E. & Lee, T. (1997) Science 277, 1475–1479; Gounelle, M., Shu, F. H., Shang, H., Glassgold, A. E., Rehm, K. E. & Lee, T. (2001) Astrophys. J. 548, 1051–1070]. Furthermore, the short-lived 36Cl may serve as a unique fine-scale chronometer for volatile-rock interaction in the early solar system because of its close association with aqueous and/or anhydrous alteration processes. PMID:15671168

  14. Activity of MnO in MnO-CaO-SiO2-Al2O3-MgO Molten Slags

    NASA Astrophysics Data System (ADS)

    Yan, Baijun; Chen, Xuexin; Tao, Jun

    2016-12-01

    The activities of MnO in the MnO-CaO-SiO2-Al2O3 (10, 20, and 30 mass pct)-MgO (5 mass pct) melts at 1873 K (1600 °C) were measured by equilibrating the melts with liquid copper under an oxygen partial pressure controlled by CO/CO2 gas mixture with a volume ratio of 99/1. Over the investigated composition range, MnO shows a negative deviation from Raoultian behavior. On the basis of the experimental data, the activity coefficient of MnO in this multicomponent melts was evaluated using the following quadratic formalism based on regular solution model: RT ln {γ_{MnO(s)} = sumlimits_j {{α_{ij}}x_j^2} + sumlimits_j {sumlimits_k {( {{α_{ij}} + {α_{ik}} - {α_{jk}}}){x_j}{x_k} + I{^' } . The values of the conversion factor, I', for the melts containing 10, 20, and 30 mass pct Al2O3 were determined to be 6950, 2715, and 12092 J/mol, respectively. Iso-activity contours for MnO in the five component system were calculated using the quadratic formalism, and they showed a good agreement with the experimental data.

  15. Density functional investigation of metal encapsulated X@C 12Si 8 heterofullerene (X=Li +, Na +, K +, Be 2+, Mg 2+, Ca 2+, Al 3+, Ga 3+)

    NASA Astrophysics Data System (ADS)

    Shakib, F. A.; Momeni, M. R.

    2011-04-01

    The stability and the possible application of our recently reported SiC heterofullerenes inspire the investigation of their further stabilization through ion encapsulation. The endohedral complexes X@C 12Si 8, where X=Li +, Na +, K +, Be 2+, Mg 2+, Ca 2+, Al 3+, and Ga 3+, are probed at the MPWB1K/6-311G* and B3LYP/6-311G* levels of theory. The optimized geometries show the expanding or contracting capability of C 12Si 8 in order to accommodate metal ion guests. The inclusion energies indicate the stability of the complexes compared to the components. Meanwhile, the calculated binding energies show the stabilization of C 12Si 8 through the inclusion of Be 2+, Mg 2+, Al 3+, and Ga 3+. The host-guest interaction that is probed through NBO atomic charges supports the obtained results. This study refers to “metal ion encapsulation” as a strategy for stabilization of SiC heterofullerenes.

  16. Fracture behavior and microstructure analysis of Al2O3-MgO-CaO castables for steel-ladle purging plugs

    NASA Astrophysics Data System (ADS)

    Long, Bin; Xu, Gui-ying; Li, Yong; Buhr, Andreas

    2016-11-01

    Three different castables based on the Al2O3-MgO-CaO system were prepared as steel-ladle purging plug refractories: corundum- based low-cement castable (C-LCC), corundum-spinel-based low-cement castable (C-S-LCC), and corundum-spinel no-cement castable (C-S-NCC) (hydratable alumina (ρ-Al2O3) bonded). The fracture behavior at room temperature was tested by the method of "wedge-splitting" on samples pre-fired at different temperatures; the specific fracture energy G f ' and notched tensile strength σNT were obtained from these tests. In addition, the Young's modulus E was measured by the method of resonance frequency of damping analysis (RFDA). The thermal stress resistance parameter R'''' calculated using the values of G f ' , σ NT, and E was used to evaluate the thermal shock resistance of the materials. According to the microstructure analysis results, the sintering effect and the bonding type of the matrix material were different among these three castables, which explains their different fracture behaviors.

  17. Interlayer states arising from anionic electrons in the honeycomb-lattice-based compounds A e AlSi (A e =Ca , Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Lu, Yangfan; Tada, Tomofumi; Toda, Yoshitake; Ueda, Shigenori; Wu, Jiazhen; Li, Jiang; Horiba, Koji; Kumigashira, Hiroshi; Zhang, Yaoqing; Hosono, Hideo

    2017-03-01

    We report that the interlayer states common to the compounds A e AlSi (A e =Ca , Sr, Ba) arise from F-center-like electrons arrayed in periodic cavities. The SrPtSb-type intermetallic phases exhibit electrons localized to columns of the trigonal bipyramidal A e3A l2 cages running perpendicular to the honeycomb layers. Ab initio calculations in combination with hard/soft x-ray photoemission spectroscopic measurements reveal that these features correspond to the anionic electrons that hybridize with apical Al 3 pz orbitals from the honeycomb layers above and below. Extra bands with a significant dispersion along the kz direction therefore contribute to the Fermi level in contrast to the apparent two-dimensional connectivity of the bonding in the compounds, and completely account for the presence of interlayer states. Our study demonstrates how the cage centers may serve as electronically important crystallographic sites, and extend the anionic electron concept into honeycomb lattice compounds.

  18. Activity of MnO in MnO-CaO-SiO2-Al2O3-MgO Molten Slags

    NASA Astrophysics Data System (ADS)

    Yan, Baijun; Chen, Xuexin; Tao, Jun

    2017-04-01

    The activities of MnO in the MnO-CaO-SiO2-Al2O3 (10, 20, and 30 mass pct)-MgO (5 mass pct) melts at 1873 K (1600 °C) were measured by equilibrating the melts with liquid copper under an oxygen partial pressure controlled by CO/CO2 gas mixture with a volume ratio of 99/1. Over the investigated composition range, MnO shows a negative deviation from Raoultian behavior. On the basis of the experimental data, the activity coefficient of MnO in this multicomponent melts was evaluated using the following quadratic formalism based on regular solution model: RT ln {γ_{{{MnO}}({{s}})}} = \\sum\\limits_j {{α_{ij}}x_j^2} + \\sum\\limits_j {\\sum\\limits_k {( {{α_{ij}} + {α_{ik}} - {α_{jk}}}){x_j}{x_k} + I{^' } . The values of the conversion factor, I', for the melts containing 10, 20, and 30 mass pct Al2O3 were determined to be 6950, 2715, and 12092 J/mol, respectively. Iso-activity contours for MnO in the five component system were calculated using the quadratic formalism, and they showed a good agreement with the experimental data.

  19. Surface modification of Ca-α-SiAlON: Eu2+ phosphor particles by SiO2 coating and fabrication of its deposit by electrophoretic deposition (EPD) process

    NASA Astrophysics Data System (ADS)

    Zhang, Chenning; Uchikoshi, Tetsuo; Kitabatake, Takuya; Sakka, Yoshio; Hirosaki, Naoto

    2013-09-01

    Ca-α-SiAlON: Eu2+ phosphor powder was modified with a SiO2 coating by the adsorption, hydrolysis, and polymerization of the TEOS precursor. Through the modification for the surface defects of the particles by the SiO2 coating, the photoluminescence (PL) emission could be significantly strengthened in the SiO2-coated Ca-α-SiAlON: Eu2+ powder. The electrophoretic deposition (EPD) technique was employed to fabricate the deposit layer on ITO glass using the SiO2 coated phosphor powder. The prepared deposit exhibited a uniform surface morphology with strong adhesion to the substrate. The SiO2-coated Ca-α-SiAlON: Eu2+ powder indicates a potential application when used in pseudo white light-emitting diodes (LEDs) devices.

  20. Effects of MgO and Al2O3 Addition on Redox State of Chromium in CaO-SiO2-CrO x Slag System by XPS Method

    NASA Astrophysics Data System (ADS)

    Wang, Li-jun; Yu, Ji-peng; Chou, Kuo-chih; Seetharaman, Seshadri

    2015-08-01

    The effects of MgO and Al2O3 on the redox state of chromium in CaO-SiO2-CrO x system have been investigated at 1873 K (1600 °C) under Ar-CO-CO2 atmosphere and analyzed by means of X-ray photoelectron spectroscopy. From the analysis of the Cr 2p core level spectra, it was found that both Cr(II) and Cr(III) exist simultaneously in CaO-MgO/Al2O3-SiO2-CrO x , and the quantitative ratio Cr(II)/Cr(III) has been obtained by deducing from the area under the computer-resolved peaks. Substitutions of CaO by MgO, SiO2 by Al2O3 favored the Cr(II) state existing in the system in the composition ranges of 3 to 10 wt pct MgO and 5 to 20 pct Al2O3. Meanwhile, from the analysis of the O1s spectra in CaO-MgO-SiO2-CrO x , it was found that the ratio of the non-bridging oxygen content increased first due to the CrO contribution to the electron distribution uniformly as O- at MgO low content. Afterward, it went to decreasing with continuing addition of MgO because ionic contribution of MgO is less than that of CaO and the influence of the CrO clustering on the non-Bridging oxygen is limited due to only 5 wt pct CrO x . In CaO-Al2O3-SiO2-CrO x system, Cr(II) acts as a network modifier to compensate Al3+ charge balance to make the structure stable, so the non-bridge oxygen in this system continues decreasing.

  1. Evaluation of Existing Viscosity Data and Models and Developments of New Viscosity Model for Fully Liquid Slag in the SiO2-Al2O3-CaO-MgO System

    NASA Astrophysics Data System (ADS)

    Han, Chen; Chen, Mao; Zhang, Weidong; Zhao, Zhixing; Evans, Tim; Zhao, Baojun

    2016-10-01

    Metallurgical properties of slag are determined to a great extent by its viscosity. High-temperature viscosity measurements are time-consuming and expensive. It is necessary to develop an accurate viscosity model for blast furnace slag in the SiO2-Al2O3-CaO-MgO system using reliable viscosity data. This paper describes a systemic evaluation procedure to determine the viscosity data to be used for model development. 1780 viscosity data from 10 to 65 wt pct SiO2, 3.5 to 40 wt pct Al2O3, 2 to 60 wt pct CaO, and 2 to 38 wt pct MgO in the SiO2-Al2O3-CaO-MgO system have been accepted for model evaluation after critical reviews. The existing 14 viscosity models in SiO2-Al2O3-CaO-MgO system is also reviewed and evaluated. Based on the structure of alumina-silicate slag and evaluated viscosity data, a new viscosity model has been proposed for the system SiO2-Al2O3-CaO-MgO. A new term "probability," based on the basic oxide and electronegativity, is introduced to calculate the integral activation energy of slag. The model has been evaluated and compared with existing viscosity models in three different composition ranges in SiO2-Al2O3-CaO-MgO system for different applications. The new model reports an outstanding agreement between predictions and experimental data. The industrial implications of the new model have also been discussed in ironmaking and steelmaking processes.

  2. First-principles calculations of electronic and optical properties of LiCaAlF6 and LiSrAlF6 crystals as VUV to UV solid-state laser materials

    NASA Astrophysics Data System (ADS)

    Luong, Mui Viet; Empizo, Melvin John F.; Cadatal-Raduban, Marilou; Arita, Ren; Minami, Yuki; Shimizu, Toshihiko; Sarukura, Nobuhiko; Azechi, Hiroshi; Pham, Minh Hong; Nguyen, Hung Dai; Kawazoe, Yoshiyuki; Steenbergen, Krista G.; Schwerdtferger, Peter

    2017-03-01

    We report the density functional calculations of the electronic and optical properties of perfect LiCaAlF6 (LiCAF) and LiSrAlF6 (LiSAF) crystals. The calculations are based on the Perdew-Burke-Ernzerhof (PBE) functional employing 35% exact exchange. Using optimized unit crystal volumes and equilibrium lattice constants, both LiCAF and LiSAF are found to have indirect band gaps of 12.23 and 11.79 eV, respectively. The band gap energies of these fluoride crystals are also observed to increase upon application of pressure by uniform volume compression. Moreover, their bulk moduli are determined to be 108.01 (LiCAF) and 83.75 GPa (LiSAF), while their static dielectric constants are 1.27 (LiCAF) and 1.26 (LiSAF). Considering the dielectric functions, refractive indices, and absorption coefficients, both perfect LiCAF and LiSAF crystals are viable vacuum ultraviolet (VUV) to ultraviolet (UV) laser host media. With knowledge of the different optical transitions and pressure dependence, our results yield helpful insights on the use of these fluoride compounds as effective solid-state laser materials in the VUV region.

  3. Tissintite, (Ca, Na,$${\\square}$$)AlSi2O6, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite

    DOE PAGES

    Ma, Chi; Tschauner, Oliver; Beckett, John R.; ...

    2015-04-24

    Here, tissintite is a new vacancy-rich, high-pressure clinopyroxene, with a composition essentially equivalent to plagioclase. It was discovered in maskelynite (shocked plagioclase) and is commonly observed included within, or in contact with, shock-melt pockets in the Tissint meteorite, a depleted olivine-phyric shergottite fall from Mars. The simple composition of tissintite (An58-69) and its precursor plagioclase (An59-69) together with the limited occurrence, both spatially (only in maskelynite less than ~25 μm of a shock melt pocket) and in terms of bulk composition, make tissintite a "goldilocks" phase. It formed during a shock event severe enough to allow nucleation and growth of vacancy-rich clinopyroxene from a melt of not too calcic and not too sodic plagioclase composition that was neither too hot nor too cold. With experimental calibration, these limitations on occurrence can be used to place strong constraints on the thermal history of a shock event. The kinetics for nucleation and growth of tissintite are probably slower for more-sodic plagioclase precursors, so tissintite is most likely to occur in depleted olivinephyric shergottites like Tissint and other highly shocked meteorites and lunar and terrestrial rocks that consistently contained calcic plagioclase precursors in the appropriate compositional range for a shock of given intensity. Tissintite, (Ca0.45Na0.31more » $${\\square}$$ 0.24)(Al0.97Fe0.03Mg0.01)(Si1.80Al0.20)O6, is a C2/c clinopyroxene, containing 42-60 mol% of the Ca-Eskola component, by far the highest known. The cell parameters are a = 9.21 (17) Å, b = 9.09 (4) Å, c = 5.20 (2) Å, β = 109.6 (9)°, V = 410 (8) Å3, Z = 4. The density is 3.32 g/cm(3) and we estimate a cell volume for the Ca-Eskola end-member pyroxene of 411 ±13 Å3, which is consistent with a previous estimate and, therefore, supports the importance of this component in clinopyroxenes from ultra-high pressure metamorphic rocks from the Earth's upper mantle

  4. Tissintite, (Ca, Na, □)AlSi2O6, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite

    NASA Astrophysics Data System (ADS)

    Ma, Chi; Tschauner, Oliver; Beckett, John R.; Liu, Yang; Rossman, George R.; Zhuravlev, Kirill; Prakapenka, Vitali; Dera, Przemyslaw; Taylor, Lawrence A.

    2015-07-01

    Tissintite is a new vacancy-rich, high-pressure clinopyroxene, with a composition essentially equivalent to plagioclase. It was discovered in maskelynite (shocked plagioclase) and is commonly observed included within, or in contact with, shock-melt pockets in the Tissint meteorite, a depleted olivine-phyric shergottite fall from Mars. The simple composition of tissintite (An58-69) and its precursor plagioclase (An59-69) together with the limited occurrence, both spatially (only in maskelynite less than ˜25 μm of a shock melt pocket) and in terms of bulk composition, make tissintite a "goldilocks" phase. It formed during a shock event severe enough to allow nucleation and growth of vacancy-rich clinopyroxene from a melt of not too calcic and not too sodic plagioclase composition that was neither too hot nor too cold. With experimental calibration, these limitations on occurrence can be used to place strong constraints on the thermal history of a shock event. The kinetics for nucleation and growth of tissintite are probably slower for more-sodic plagioclase precursors, so tissintite is most likely to occur in depleted olivine-phyric shergottites like Tissint and other highly shocked meteorites and lunar and terrestrial rocks that consistently contained calcic plagioclase precursors in the appropriate compositional range for a shock of given intensity. Tissintite, (Ca0.45Na0.31□0.24) (Al0.97Fe0.03Mg0.01) (Si1.80Al0.20)O6, is a C 2 / c clinopyroxene, containing 42-60 mol% of the Ca-Eskola component, by far the highest known. The cell parameters are a = 9.21 (17) Å, b = 9.09 (4) Å, c = 5.20 (2) Å, β = 109.6 (9)°, V = 410 (8) Å3, Z = 4. The density is 3.32 g/cm3 and we estimate a cell volume for the Ca-Eskola end-member pyroxene of 411 ± 13 Å3, which is consistent with a previous estimate and, therefore, supports the importance of this component in clinopyroxenes from ultra-high pressure metamorphic rocks from the Earth's upper mantle. At least in C 2 / c

  5. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al2O3 using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Yi; Mao, Ming-Hua

    2016-08-01

    We report photo-stability enhancement of colloidal CdSe/ZnS quantum dots (QDs) passivated in Al2O3 thin film using the atomic layer deposition (ALD) technique. 62% of the original peak photoluminescence (PL) intensity remained after ALD. The photo-oxidation and photo-induced fluorescence enhancement effects of both the unpassivated and passivated QDs were studied under various conditions, including different excitation sources, power densities, and environment. The unpassivated QDs showed rapid PL degradation under high excitation due to strong photo-oxidation in air while the PL intensity of Al2O3 passivated QDs was found to remain stable. Furthermore, recombination dynamics of the unpassivated and passivated QDs were investigated by time-resolved measurements. The average lifetime of the unpassivated QDs decreases with laser irradiation time due to photo-oxidation. Photo-oxidation creates surface defects which reduces the QD emission intensity and enhances the non-radiative recombination rate. From the comparison of PL decay profiles of the unpassivated and passivated QDs, photo-oxidation-induced surface defects unexpectedly also reduce the radiative recombination rate. The ALD passivation of Al2O3 protects QDs from photo-oxidation and therefore avoids the reduction of radiative recombination rate. Our experimental results demonstrated that passivation of colloidal QDs by ALD is a promising method to well encapsulate QDs to prevent gas permeation and to enhance photo-stability, including the PL intensity and carrier lifetime in air. This is essential for the applications of colloidal QDs in light-emitting devices.

  6. Three-dimensional analysis of Eu dopant atoms in Ca-α-SiAlON via through-focus HAADF-STEM imaging.

    PubMed

    Saito, Genki; Yamaki, Fuuta; Kunisada, Yuji; Sakaguchi, Norihito; Akiyama, Tomohiro

    2017-01-31

    Three-dimensional (3D) distributional analysis of individual dopant atoms in materials is important to development of optical, electronic, and magnetic materials. In this study, we adopted through-focus high-angle annular dark-field (HAADF) imaging for 3D distributional analysis of Eu dopant atoms in Ca-α-SiAlON phosphors. In this context, the effects of convergence semi-angle and Eu z-position on the HAADF image contrast were investigated. Multi-slice image simulation revealed that the contrast of the dopant site was sensitive to change of the defocus level. When the defocus level matched the depth position of a Eu atom, the contrast intensity was significantly increased. The large convergence semi-angle greatly increased the depth resolution because the electron beam tends spread instead of channeling along the atomic columns. Through-focus HAADF-STEM imaging was used to analyze the Eu atom distribution surrounding 10nm cubes with defocus steps of 0.68nm each. The contrast depth profile recorded with a narrow step width clearly analyzed the possible depth positions of Eu atoms. The radial distribution function obtained for the Eu dopants was analyzed using an atomic distribution model that was based on the assumption of random distribution. The result suggested that the Ca concentration did not affect the Eu distribution. The decreased fraction of neighboring Eu atoms along z-direction might be caused by the enhanced short-range Coulomb-like repulsive forces along the z-direction.

  7. Formation of Si-Al-Mg-Ca-rich zoned magnetite in an end-Permian phreatomagmatic pipe in the Tunguska Basin, East Siberia

    NASA Astrophysics Data System (ADS)

    Neumann, Else-Ragnhild; Svensen, Henrik H.; Polozov, Alexander G.; Hammer, Øyvind

    2017-03-01

    Magma-sediment interactions in the evaporite-rich Tunguska Basin resulted in the formation of numerous phreatomagmatic pipes during emplacement of the Siberian Traps. The pipes contain magnetite-apatite deposits with copper and celestine mineralization. We have performed a detailed petrographic and geochemical study of magnetite from long cores drilled through three pipe breccia structures near Bratsk, East Siberia. The magnetite samples are zoned and rich in Si (≤5.3 wt% SiO2), Ca, Al, and Mg. They exhibit four textural types: (1) massive ore in veins, (2) coating on breccia clasts, (3) replacement ore, and (4) reworked ore at the crater base. The textural types have different chemical characteristics. "Breccia coating" magnetite has relatively low Mg content relative to Si, as compared to the other groups, and appears to have formed at lower oxygen fugacity. Time series analyses of MgO variations in microprobe transects across Si-bearing magnetite in massive ore indicate that oscillatory zoning in the massive ore was controlled by an internal self-organized process. We suggest that hydrothermal Fe-rich brines were supplied from basalt-sediment interaction zones in the evaporite-rich sedimentary basin, leading to magnetite ore deposition in the pipes. Hydrothermal fluid composition appears to be controlled by proximity to dolerite fragments, temperature, and oxygen fugacity. Magnetite from the pipes has attributes of iron oxide-apatite deposits (e.g., textures, oscillatory zoning, association with apatite, and high Si content) but has higher Mg and Ca content and different mineral assemblages. These features are similar to magnetite found in skarn deposits. We conclude that the Siberian Traps-related pipe magnetite deposit gives insight into the metamorphic and hydrothermal effects following magma emplacement in a sedimentary basin.

  8. Low-temperature superstructures of a series of Cd6M (M = Ca, Y, Sr, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) crystalline approximants

    NASA Astrophysics Data System (ADS)

    Nishimoto, Kazue; Sato, Takeru; Tamura, Ryuji

    2013-06-01

    The low-temperature (LT) superstructure and the phase transition temperature have been investigated for a series of Cd6M crystalline approximants by transmission electron microscopy as well as electrical resistivity measurements. Except for M = Lu, Cd6M is found to undergo a phase transition to a monoclinic phase at a low temperature and the transition temperature (Tc) scales well with the size of the M atom. For M = Ca, Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm the LT superstructure is explained by a \\sqrt{2}a\\times a\\times \\sqrt{2}a lattice with the space group C2/c, and for M = Sr and Yb a \\sqrt{2}a\\times 2 a\\times \\sqrt{2}a monoclinic lattice with P2/m. On the other hand, no phase transition is observed for M = Lu, indicating that a Cd4 tetrahedron at the cluster center remains disordered down to the lowest temperature, i.e. 16 K. It is shown that the volume inside the Cd20 dodecahedron plays a crucial role in the occurrence of the phase transition, and long-term aging in particular promotes the phase transition for late rare-earth elements such as Ho, Er and Tm, suggesting that the transition is sensitive to and is even hindered by disorder such as atomic vacancies. The absence of the transition for M = Lu is attributed to the highest activation energy for the transition due to the smallest volume inside the Cd20 dodecahedron.

  9. New insights into organic-inorganic hybrid perovskite CH₃NH₃PbI₃ nanoparticles. An experimental and theoretical study of doping in Pb²⁺ sites with Sn²⁺, Sr²⁺, Cd²⁺ and Ca²⁺.

    PubMed

    Navas, Javier; Sánchez-Coronilla, Antonio; Gallardo, Juan Jesús; Hernández, Norge Cruz; Piñero, Jose Carlos; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; De los Santos, Desireé M; Aguilar, Teresa; Martín-Calleja, Joaquín

    2015-04-14

    This paper presents the synthesis of the organic-inorganic hybrid perovskite, CH3NH3PbI3, doped in the Pb(2+) position with Sn(2+), Sr(2+), Cd(2+) and Ca(2+). The incorporation of the dopants into the crystalline structure was analysed, observing how the characteristics of the dopant affected properties such as the crystalline phase, emission and optical properties. XRD showed how doping with Sn(2+), Sr(2+) and Cd(2+) did not modify the normal tetragonal phase. When doping with Ca(2+), the cubic phase was obtained. Moreover, DR-UV-Vis spectroscopy showed how the band gap decreased with the dopants, the values following the trend Sr(2+) < Cd(2+) < Ca(2+) < CH3NH3PbI3 ≈ Sn(2+). The biggest decrease was generated by Sr(2+), which reduced the CH3NH3PbI3 value by 4.5%. In turn, cathodoluminescence (CL) measurements confirmed the band gap obtained. Periodic-DFT calculations were performed to understand the experimental structures. The DOS analysis confirmed the experimental results obtained using UV-Vis spectroscopy, with the values calculated following the trend Sn(2+) ≈ Pb(2+) > Cd(2+) > Sr(2+) for the tetragonal structure and Pb(2+) > Ca(2+) for the cubic phase. The electron localization function (ELF) analysis showed similar electron localizations for undoped and Sn(2+)-doped tetragonal structures, which were different from those doped with Sr(2+) and Cd(2+). Furthermore, when Cd(2+) was incorporated, the Cd-I interaction was strengthened. For Ca(2+) doping, the Ca-I interaction had a greater ionic nature than Cd-I. Finally, an analysis based on the non-covalent interaction (NCI) index is presented to determine the weak-type interactions of the CH3NH3 groups with the dopant and I atoms. To our knowledge, this kind of analysis with these hybrid systems has not been performed previously.

  10. Photoluminescence properties and application of yellow Ca0.65Si10Al2O0.7N15.3:xEu2+ phosphors for white LEDs

    NASA Astrophysics Data System (ADS)

    Wang, Baochen; Liu, Yangai; Chen, Jian; Mi, Ruiyu; Xia, Yufei; Huang, Zhaohui; Fang, Minghao; Mei, Lefu

    2017-02-01

    A series of yellow-emitting oxynitride Ca0.65Si10Al2O0.7N15.3:xEu2+ phosphors with α-sialon structure were synthesized. The phase composition and crystal structure were identified by X-ray diffraction and the Rietveld refinement. The excitation and emission spectra, reflectance spectra and thermal stability were investigated in detail, respectively. Results show that Ca0.65Si10Al2O0.7N15.3:0.12Eu2+ phosphors can be efficiently excited by UV-Vis light in the broad range of 290-450 nm and exhibit broad emission spectra peaking at 550-575 nm. The concentration quenching mechanism are discussed in detail and determined to be the dipole-dipole interaction. When the temperature increased to 150 °C, the emission intensity of Ca0.65Si10Al2O0.7N15.3:0.12Eu2+ phosphor is 88.46% of the initial value at room temperature. White LED was fabricated with N-UV LED chip combined with blue Ca3Si2O4N2:Ce3+ and yellow Ca0.65Si10Al2O0.7N15.3:Eu2+ phosphors. The color rendering index and correlated color temperature of this white LED were measured to 78.94 and 6728.12 K, respectively. All above results demonstrate that the as-prepared Ca0.65Si10Al2O0.7N15.3:xEu2+ may serve as a potential yellow phosphor for N-UV w-LEDs.

  11. Understanding the reentrant superconducting phase diagram of the iron pnictide Ca4Al2O6Fe2(As1-xPx)2: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Usui, Hidetomo; Suzuki, Katsuhiro; Kuroki, Kazuhiko; Takeshita, Nao; Shirage, Parasharam Maruti; Eisaki, Hiroshi; Iyo, Akira

    2013-05-01

    Recently, a very rich phase diagram has been obtained for an iron-based superconductor Ca4Al2O6Fe2(As1-xPx)2. It has been revealed that nodeless (x˜0) and nodal (x=1) superconductivity are separated by an antiferromagnetic phase. Here we study the origin of this peculiar phase diagram using a five orbital model constructed from first-principles band calculation, and applying the fluctuation exchange approximation assuming spin-fluctuation-mediated pairing. At x=1, there are three hole Fermi surfaces, but the most inner one around the wave vector (0,0) has strong dX2-Y2 orbital character, unlike in LaFeAsO, where the most inner Fermi surface has dXZ/YZ character. Since the Fermi surfaces around (0,0), (π,0), and (π,π) all have dX2-Y2 orbital character, the repulsive pairing interaction mediated by the spin fluctuations gives rise to a frustration in momentum space, thereby degrading superconductivity despite the bond angle being close to the regular tetrahedron angle. As x decreases and the bond angle is reduced, the inner hole Fermi surface disappears, but the frustration effect still remains because the top of the band with dX2-Y2 character lies close to the Fermi level. On the other hand, the loss of the Fermi surface itself gives rise to a very good nesting of the Fermi surface because the number of electron and hole Fermi surfaces are now the same. The pairing interaction frustration and the good nesting combined favors antiferromagnetism over superconductivity. Finally for x close to 0, the band sinks far below the Fermi level, reducing the frustration effect, so that superconductivity is enhanced. There, the Fermi surface nesting is also lost to some extent, once again favoring superconductivity over antiferromagnetism. To see whether the present theoretical scenario is consistent with the actual nature of the competition between superconductivity and antiferromagnetism, we also perform hydrostatic pressure experiment for Ca4Al2O6Fe2(As1-xPx)2. In the

  12. Phase transformation of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} and its disordered crystal structure at 1073 K

    SciTech Connect

    Kurokawa, Daisuke; Takeda, Seiya; Colas, Maggy; Asaka, Toru; Thomas, Philippe; Fukuda, Koichiro

    2014-07-01

    The phase transformation of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} and the crystal structure of its high-temperature phase were investigated by differential thermal analysis, temperature-dependent Raman spectroscopy and high-temperature X-ray powder diffraction (CuKα{sub 1}). We determined the starting temperature of the orthorhombic-to-cubic transformation during heating (=711 K) and that of the reverse transformation during cooling (=742 K). The thermal hysteresis was negative (=−31 K), suggesting the thermoelasticity of the transformation. The space group of the high temperature phase is I4{sup ¯}3m with the unit-cell dimensions of a=0.92426(2) nm and V=0.78955(2) nm{sup 3} (Z=2) at 1073 K. The initial structural model was derived by the direct methods and further refined by the Rietveld method. The final structural model showed the orientational disordering of SO{sub 4} tetrahedra. The maximum-entropy method-based pattern fitting method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. At around the transformation temperature during heating, the vibrational spectra, corresponding to the Raman-active SO{sub 4} internal stretching mode, showed the continuous and gradual change in the slope of full width at half maximum versus temperature curve. This strongly suggests that the orthorhombic-to-cubic phase transformation would be principally accompanied by the statistical disordering in orientation of the SO{sub 4} tetrahedra, without distinct dynamical reorientation. - Graphical abstract: (Left) Three-dimensional electron-density distributions of the SO{sub 4} tetrahedron with the split-atom model, and (right) a bird's eye view of electron densities on the plane parallel to (111). - Highlights: • Crystal structure of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} at 1073 K is determined by powder XRD. • The atom arrangements are represented by the split-atom model

  13. Role of the chemical substitution on the luminescence properties of solid solutions Ca{sub (1−x)}Cd{sub (x)}WO{sub 4} (0 ≤ x ≤1)

    SciTech Connect

    Taoufyq, A.; Mauroy, V.; Guinneton, F.; Bakiz, B.; Villain, S.; and others

    2015-10-15

    Highlights: • Luminescence can be modified by chemical substitution in solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4}. • The various emission spectra (charge transfer) were obtained under X-ray excitation. • Scheelite or wolframite solid solutions presented two types of emission spectra. • A luminescence component depended on cadmium substitution in each solid solution. • A component was only characteristic of oxyanion symmetry in each solid solution. - Abstract: We have investigated the chemical substitution effects on the luminescence properties under X-ray excitation of the solid solutions Ca{sub (1−x)}Cd{sub (x)}WO{sub 4} with 0 ≤ x ≤ 1. Two types of wide spectral bands, associated with scheelite-type or wolframite-type solid solutions, have been observed at room temperature. We decomposed each spectral band into several spectral components characterized by energies and intensities varying with composition x. One Gaussian component was characterized by an energy decreasing regularly with the composition x, while the other Gaussian component was only related to the tetrahedral or octahedral configurations of tungstate groups WO{sub 4}{sup 2−} or WO{sub 6}{sup 6−}. The luminescence intensities exhibited minimum values in the composition range x < 0.5 corresponding to scheelite-type structures, then, they regularly increased for cadmium compositions x > 0.5 corresponding to wolframite-type structures.

  14. Ca, Mg, Fe, Si, Al, and Na in the Massive, Metal-Rich, Dust-Enshrouded, DAZ White Dwarf GD 362

    NASA Astrophysics Data System (ADS)

    Melis, C.; Koester, D.; Zuckerman, B.; Rich, R. M.; Hansen, B.; Kalirai, J.

    2006-06-01

    GD362 presents the greatest number of atomic species ever documented in a hydrogen atmosphere white dwarf. Our spectroscopy with Keck I (LRIS; 4 Å red, 2 Å blue resolution) and KECK II (ESI, 0.5 Å resolution) covers the wavelengths 3100-7400 Å and 3850-11,000 Å , respectively; in these ranges we identify lines from H, Mg, Fe, Si, Al, Ca, and Na. Preliminary analysis of the spectra yields photospheric abundances for Mg, Fe, Si, and Al in about the solar ratio relative to each other and a few times below solar relative to hydrogen. Relative to the abundance of these four metals, the calcium (sodium) abundance is about a factor of 10 larger (smaller) in GD 362 than it is in the Sun. We do not detect oxygen in GD362. From this we derive a limit on its abundance by number at least 104 times below that of hydrogen. Tentatively, we derive from atmospheric models a surface gravity of log g ˜ 9.00 for GD362 (whose effective temperature is 9740 K). D1 and D2 sodium lines in the ESI spectrum are seen both from the stellar photosphere (broad and deep) and, probably, from the interstellar medium (narrow and weaker). However, GD362 emits mid-infrared flux in excess of its photospheric emission. The excess is due to a dusty disk located beyond ˜ 10 stellar radii. Thus, we cannot presently rule out circumstellar sodium as the carrier of the narrow feature. This research was supported in part by NASA's Astrobiology Institute and other NASA grants to UCLA.

  15. K -shell ionization cross sections of Al, Si, S, Ca, and Zn for oxygen ions in the energy range 1. 1--8 MeV

    SciTech Connect

    Geretschlaeger, M. ); Smit, Z. ); Steinbauer, E. )

    1992-03-01

    {ital K}-shell ionization cross sections induced by 1.1--8-MeV oxygen ions in Al, Si, S, Ca, and Zn were measured using different target thicknesses. The cross sections for vanishingly thin and for charge-equilibrium targets were obtained by extrapolation. The experimental results are compared to the perturbed stationary-state approximation with energy-loss, Coulomb, and relativistic corrections (ECPSSR) cross sections (Brandt and Lapicki, Phys. Rev. A 23, 1717 (1981)), to the modification of the ECPSSR theory (MECPSSR) (Benka, Geretschlaeger, and Paul, J. Phys. (Paris) Colloq. Suppl. 12, C9-251 (1987)), to the theory for direct Coulomb ionization of the 1{ital s}{sigma} molecular orbital (Montenegro and Sigaud, J. Phys. B 18, 299 (1985)), and to several semiclassical approximation codes using either the united atom binding procedure or the variational approach of Andersen {ital et} {ital al}. (Nucl. Instrum. Methods 192, 79 (1982)). The cross sections were also compared to the statistical molecular-orbital theory of inner-shell ionization for (nearly) symmetric atomic collisions (Mittelman and Wilets, Phys. Rev. 154, 12 (1967)). For fast collisions ({xi}{similar to}1), the ionization cross sections are well reproduced by theories for direct Coulomb ionization. For slower collisions ({xi}{lt}1), the experimental cross sections are systematically higher than the direct-ionization values, but they agree satisfactorily with the summed cross sections for direct Coulomb ionization and for molecular-orbital ionization. Best agreement (within a factor of 2) was found for the sums of MECPSSR and statistical cross sections.

  16. Impedance-based interpretations in 2-dimensional electron gas conduction formed in the LaAlO3/SrxCa1-xTiO3/SrTiO3 system

    NASA Astrophysics Data System (ADS)

    Park, Chan-Rok; Moon, Seon Young; Park, Da-Hee; Kim, Shin-Ik; Kim, Seong-Keun; Kang, Chong-Yun; Baek, Seung-Hyub; Choi, Jung-Hae; Kim, Jin-Sang; Choi, Eunsoo; Hwang, Jin-Ha

    2016-06-01

    Frequency-dependent impedance spectroscopy was applied to the 2-dimensioanl conduction transport in the LaAlO3/SrxCa1-xTiO3/SrTiO3 system. The 2-dimensional conduction modifies the electrical/dielectric responses of the LaAlO3/SrxCa1-xTiO3/SrTiO3 depending on the magnitude of the interfacial 2-dimensional resistance. The high conduction of the 2-dimensional electron gas (2DEG) layer can be described using a metallic resistor in series with two parallel RC circuits. However, the high resistance of the 2-dimensional layer drives the composite system from a finite low resistor in parallel with the surrounding dielectrics composed of LaAlO3 and SrTiO3 materials to a dielectric capacitor. This change in the resistance of the 2-dimensional layers modifies the overall impedance enabled by the presence of the interfacial layer due to SrxCa1-xTiO3, which alters the charge transport of the 2-dimensional layer from metallic to semiconducting conduction. A noticeable change is observed in the capacitance Bode plots, indicating highly amplified dielectric constants compared with the pristine SrTiO3 substrates and SrxCa1-xTiO3 with a greater Ca content.

  17. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements.

    PubMed

    Zárubová, Pavla; Hejcman, Michal; Vondráčková, Stanislava; Mrnka, Libor; Száková, Jiřina; Tlustoš, Pavel

    2015-12-01

    Fast-growing clones of Salix and Populus have been studied for remediation of soils contaminated by risk elements (RE) using short-rotation coppice plantations. Our aim was to assess biomass yield and distributions of elements in wood and bark of highly productive willow (S1--[Salix schwerinii × Salix viminalis] × S. viminalis, S2--Salix × smithiana clone S-218) and poplar (P1--Populus maximowiczii × Populus nigra, P2--P. nigra) clones with respect to aging. The field experiment was established in April 2008 on moderately Cd-, Pb- and Zn- contaminated soil. Shoots were harvested after four seasons (February 2012) and separated into annual classes of wood and bark. All tested clones grew on contaminated soils, with highest biomass production and lowest mortality exhibited by P1 and S2. Concentrations of elements, with exception of Ca and Pb, decreased with age and were higher in bark than in wood. The Salix clones were characterised by higher removal of Cd, Mn and Zn compared to the Populus clones. Despite generally higher RE content in young shoots, partly due to lower wood/bark ratios and higher RE concentrations in bark, the overall removal of RE was higher in older wood classes due to higher biomass yield. Thus, longer rotations seem to be more effective when phytoextraction strategy is considered. Of the four selected clones, S1 exhibited the best removal of Cd and Zn and is a good candidate for phytoextraction.

  18. Structural and electronic properties of AB- and AA-stacking bilayer-graphene intercalated by Li, Na, Ca, B, Al, Si, Ge, Ag, and Au atoms

    NASA Astrophysics Data System (ADS)

    Tayran, Ceren; Aydin, Sezgin; Çakmak, Mehmet; Ellialtıoğlu, Şinasi

    2016-04-01

    The structural and electronic properties of X (=Li, Na, Ca, B, Al, Si, Ge, Ag, and Au)-intercalated AB- and AA-stacking bilayer-graphene have been investigated by using ab initio density functional theory. It is shown that Boron (Lithium)-intercalated system is energetically more stable than the others for the AB (AA) stacking bilayer-graphene systems. The structural parameters, electronic band structures, and orbital nature of actual interactions are studied for the relaxed stable geometries. It is seen that the higher the binding energy, the smaller is the distance between the layers, in these systems. The electronic band structures for these systems show that different intercalated atoms can change the properties of bilayer-graphene differently. For qualitative description of the electronic properties, the metallicities of the systems are also calculated and compared with each other. The Mulliken analysis and electron density maps clearly indicate that the interactions inside a single layer (intralayer interactions) are strong and highly covalent, while the interactions between the two layers (interlayer interactions) are much weaker.

  19. Dual mode green fluorescence from Tb{sup 3+}:Ca{sub 12}Al{sub 14}O{sub 33} and its applicability as delayed fluorescence

    SciTech Connect

    Verma, R.K.; Kaur, G.; Rai, A.; Rai, S.B.

    2012-11-15

    Highlights: ► Synthesis of Yb{sup 3+}/Tb{sup 3+} co-doped Ca{sub 12}Al{sub 14}O{sub 33} phosphor. ► Dual mode emission in green area on excitation with 976 nm and 266 nm. ► Delayed fluorescence on excitation of 266 nm. ► Effect of time on delayed fluorescence. -- Abstract: A Tb{sup 3+}/Yb{sup 3+} doped calcium aluminate phosphor has been synthesized using well known combustion synthesis. The structural characterization and morphology has been studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The characteristic luminescence of Tb{sup 3+} in both upconversion and down-conversion modes, i.e. dual mode luminescence has been recorded on excitation with 976 nm and 266 nm radiation. The Stokes emission observed on 266 nm excitation also shows a characteristic of delayed fluorescence. The delayed fluorescence has been measured as a function of time and pump power. It has been correlated to the white light emission (broad continuum emission) from the host. The possible reason of association of electron hole trapping to the defect level as well as in crystal potential is suggested.

  20. An Internally Consistent Thermodynamic Model for the System CaO-MgO-Al2O3-SiO2 Derived Primarily from Phase Equilibrium Data.

    PubMed

    Gasparik

    2000-01-01

    An internally consistent thermodynamic model for the subsolidus system CaO-MgO-Al2O3-SiO2 (CMAS) was developed and refined using primarily data from phase equilibrium experiments. The solution properties of pyroxenes and garnet were approximated with an ionic model, with independent mixing on adjacent crystallographic sites. This approach simplified the calculation of phase relations by allowing sequential calculation of the site occupancies. Enthalpy, entropy, and volume differences, nominally at 970 K, were derived for all participating phases by matching as closely as possible the experimentally observed phase relations. Although thermochemical measurements were not used directly in the refinement, the results were continuously monitored and compared with the thermochemical data to achieve a close match. The new model can be used to calculate phase diagrams for the CMAS system and its subsystems in the whole pressure range of the upper mantle. Simple empirical corrections for the effects of Na, Fe, Cr, etc., could potentially be introduced to make the model applicable to the thermobarometry of chemically complex mantle materials. Application of the new model to garnet lherzolite xenoliths from northern Lesotho and garnet peridotites from Norway supports the proposals for higher temperatures of the continental lithosphere.

  1. Photo-luminescent properties and synthesis of Ca3Al4ZnO10:Mn4+ deep red-emitting phosphor

    NASA Astrophysics Data System (ADS)

    Cao, Renping; Zhang, Jinlong; Wang, Wudi; Chen, Ting; Gou, Qingdong; Wen, Yufeng; Xiao, Fen; Luo, Zhiyang

    2017-04-01

    Novel deep red-emitting Ca3Al4ZnO10:Mn4+ (CAZO:Mn4+) phosphor is synthesized by high-temperature solid-state reaction method in air. The crystal structures and optical characterizations of the phosphors are described. X-ray diffraction patterns indicate that all samples are a pure phase. CAZO:Mn4+ phosphor with excitation 330 and 465 nm exhibits strong deep red emission in the range of 650-790 nm. CAZO:Mn4+ phosphor can be efficiently excited by near-ultraviolet and blue light from 300 to 500 nm. The optimal Mn4+ ion concentration in CAZO:Mn4+ phosphor is ∼0.6 mol%. Lifetimes of CAZO:xMn4+ (0.3 ≤ x ≤ 1.8 mol%) phosphors decrease from 1.95 to 1.56 ms with increasing Mn4+ ion concentration in the range of 0.3-1.8 mol%. The paper content is help to develop other Mn4+ ion doped luminescence materials.

  2. Raman spectroscopy of the multi-anion mineral schlossmacherite (H 3O,Ca)Al 3(AsO 4,PO 4,SO 4) 2(OH) 6

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei

    2012-02-01

    The mineral schlossmacherite (H 3O,Ca)Al 3(AsO 4,PO 4,SO 4) 2(OH) 6, a multi-cation-multi-anion mineral of the beudantite mineral subgroup has been characterised by Raman spectroscopy. The mineral and related minerals functions as a heavy metal collector and is often amorphous or poorly crystalline, such that XRD identification is difficult. The Raman spectra are dominated by an intense band at 864 cm -1, assigned to the symmetric stretching mode of the AsO 43- anion. Raman bands at 809 and 819 cm -1 are assigned to the antisymmetric stretching mode of AsO 43-. The sulphate anion is characterised by bands at 1000 cm -1 ( ν1), and at 1031, 1082 and 1139 cm -1 ( ν3). Two sets of bands in the OH stretching region are observed: firstly between 2800 and 3000 cm -1 with bands observed at 2850, 2868, 2918 cm -1 and secondly between 3300 and 3600 with bands observed at 3363, 3382, 3410, 3449 and 3537 cm -1. These bands enabled the calculation of hydrogen bond distances and show a wide range of H-bond distances.

  3. Thermochemistry of CaO-MgO-Al2O3-SiO2 (CMAS) and Advanced Thermal and Environmental Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo C. C.; Zhu, Dongming

    2016-01-01

    CaO-MgO-Al2O3-SiO2 (CMAS) oxides are constituents in a broad number of materials and minerals which have recently inferred to discussions in materials science, planetary science, geochemistry and cosmochemistry communities. In materials science, there is increasing interest in the degradation studies of thermal (TBC) and environmental (EBC) barrier coatings of gas turbines by molten CMAS. These coatings have been explored to be applied on silicon-based ceramics and composites which are lighter and more temperature capable hot-section materials of gas turbines than the current Ni-based superalloys. The degradation of the coatings occurs when CMAS minerals carried by the intake air into gas turbines, e.g. in aircraft engines, reacts at high temperatures (1000C) with the coating materials. This causes premature failure of the static and rotating components of the turbine engines. We discuss some preliminary results of the reactions between CMAS and Rare-Earth (RE Y, Yb and Gd) oxide stabilized ZrO2 systems, and stability of the resulting oxides and silicates.

  4. Plasmon-enhanced UV and blue upconverted emissions of Tm3+-doped 12CaO·7Al2O3 nanocrystals by attaching Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhu, Hancheng; Liu, Yuxue; Zhao, Dongxing; Zhang, Meng; Yang, Jian; Yan, Duanting; Liu, Chunguang; Xu, Changshan; Layfield, Carter; Ma, Li; Wang, Xiaojun

    2016-09-01

    Tm3+-doped 12CaO·7Al2O3 (C12A7) nanocrystals with the grain size of 360 nm have been fabricated by chemical co-precipitation method. Up-converted emissions at 367, 457, 476, 648, and 682 nm, corresponding to the 1D2 → 3H6, 1D2 → 3F4, 1G4 → 3H6, 1G4 → 3F4, and 3F3 → 3H6 transitions, respectively, are observed under 808 nm excitation. Plasmon-enhanced ultraviolet (UV) and blue upconverted emissions of Tm3+-doped C12A7 nanocrystals have been achieved by attaching Ag nanoparticles onto the surface of nanocrystals. The enhancement of the upconverted emissions is highly wavelength-dependent. The emission intensities of the sample with Ag+ concentration of 5.0 × 10-3 mol/L at 367 and 476 nm are enhanced about 10 and 3 times, respectively, relative to the sample without Ag attachment. The enhancement mechanism can be ascribed to surface plasmon resonance due to the highly localized electric field and the increased radiative decay rate around Ag nanoparticles. Our results suggest that Tm3+-doped C12A7 nanocrystals by attaching Ag nanoparticles might be a potential material for upconversion, compact and tunable short-wavelength lasers.

  5. Comparison of thermoluminescence characteristics in γ-ray and C(5+) ion beam-irradiated LiCaAlF6 :Ce phosphor.

    PubMed

    Yerpude, M M; Dhoble, N S; Lochab, S P; Dhoble, S J

    2016-08-01

    We compare the thermoluminescence (TL) behavior of Ce(3+) ion-activated LiCaAlF6 exposed to γ-rays and a carbon ion beam. The reported phosphor is synthesized using an in-house precipitation method with varying concentrations of activator ion and is characterized by X-ray diffraction (XRD) and TL. Rietveld refinement is performed to study the structural statistics. The TL glow curve consists of a prominent glow peak at 232°C with three shoulders at 115, 159 and 333°C when exposed to γ-rays from a (60) Co source. When exposed to a C(5+) ion beam, the TL glow curve consists of five peaks with peak temperatures near 156, 221, 250, 287 and 330°C, and is found to vary slightly with changing fluence. Glow curve convolution deconvolution (GCCD) functions are applied to the TL curves for complete analysis of the glow curve structure and TL traps. The order of kinetics (b), activation energy (E) and frequency factor are determined using Chen's peak shape method and theoretical curves are drawn using GCCD functions. A track interaction model (TIM) is used to explain the sublinearity/saturation at higher fluences. Ion beam parameters are analyzed using Monte-Carlo simulation-based SRIM-2013 code. Copyright © 2016 John Wiley & Sons, Ltd.

  6. A novel orange emitting Sm3+ ions doped NaCaAlPO4F3 phosphor: Optical and luminescence properties

    NASA Astrophysics Data System (ADS)

    Nagaraja, R.; Pushpa Manjari, V.; Sailaja, B.; Ravikumar, R. V. S. S. N.

    2017-02-01

    A novel orange light emitting Sm3+ ions doped NaCaAlPO4F3 phosphor was synthesized via solid state reaction. The prepared sample was characterized by powder X-ray diffraction (PXRD), Optical absorption, Photoluminescence (PL) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques. From powder XRD data, the average crystallite size and structural parameters are estimated. Absorption spectra consist of ten absorption peaks corresponding to the transitions from the 6H5/2 ground state to various excited energy levels. Transition probabilities, branching ratios and radiative lifetime were evaluated by using Judd-Ofelt analysis. Photoluminescence spectrum show three prominent emission bands centered at 562, 597 and 643 nm corresponding to the 4G5/2 → 6HJ (J = 5/2, 7/2 and 9/2) transitions respectively. From the emission transitions, stimulated emission cross-section (σe) and gain bandwidth (GBW) were predicted. The decay profiles of the prepared phosphor reveals the single exponential nature and the experimental lifetime is calculated. The colorimetric parameters CIE coordinates, Correlated color temperature of the prepared phosphor are also evaluated. FT-IR spectrum demonstrates the characteristic vibration bands of the prepared phosphor material.

  7. Determination of Vanadium Valence State in CaO-MgO-Al2O3-SiO2 System By High-Temperature Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Teng, Lidong; Chou, Kuo-Chih; Seetharaman, Seshadri

    2013-08-01

    In the present study, the applicability of the high-temperature mass spectrometric method combined with Knudsen effusion cell for quantifying the valence states of V in the multicomponent system CaO-MgO-Al2O3-SiO2-VO x up to a maximum temperature of 2050 K (1777 °C) was examined. The valence ratio of V3+/V4+ in slag phase was derived from the partial pressures of VO and VO2 in the effused vapor phase. The results show good agreement with the literature values obtained by other techniques. A correlation between the valence ratio V3+/V4+ and the oxygen partial pressure as well as basicity was achieved based on the present results and accessed data in the literature. The results of the present study demonstrate that the Knudsen cell-mass spectrometric method can be a very effective tool in estimating the valence ratios for of transition metals in metallurgical slags.

  8. Variation of photoluminescence features in Pr{sup 3+} doped lithium-fluoro-borate glass by changing different modifier oxides (MgO, CaO, CdO and PbO)-Judd-Ofelt theory application

    SciTech Connect

    Balakrishna, A.; Rajesh, D.; Babu, S.; Ratnakaram, Y. C.

    2015-06-24

    Pr{sup 3+} (1.0 mol%) doped different modifier oxide based six lithium-fluoro-borate glasses with chemical composition of 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-20MO (where M= Mg, Ca, Cd and Pb), 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10MgO-10CaO and 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10CdO-10PbO were prepared by conventional melt quenching technique. Judd-Ofelt theory has been applied for evaluating the Judd-Ofelt intensity parameters for Pr{sup 3+} ion in these glass compositions and are in turn to used to predict radiative properties such as radiative transition probabilities (A{sub T}), branching ratios (β) and stimulated emission cross-section (σ{sub P}). Stimulated emission cross-section (σ{sub p}) of prominent emission transitions, {sup 3}P{sub 0}→{sup 3}H{sub 4} and {sup 1}D{sub 2}→{sup 3}H{sub 4} of Pr{sup 3+} ion in all lithium-fluoro-borate glasses were calculated. Among all the emission transitions, {sup 3}P{sub 0}→{sup 3}H{sub 4} posseses higher branching ratio and stimulated emission cross-section in Mg-Ca glass, which leads to the best laser excitation at 487 nm wavelength.

  9. Ladle and Continuous Casting Process Models for Reduction of SiO2 in SiO2-Al2O3-CaO Slags by Al in Fe-Al(-Si) Melts

    NASA Astrophysics Data System (ADS)

    Park, Jiwon; Sridhar, S.; Fruehan, Richard J.

    2015-02-01

    Based on a mixed control or two-phase mass transfer model considering mass transport in the metal and the slag phases, process models for ladle and continuous castor mold were developed to predict the changes in the metal and the slag chemistry and viscosity. In the ladle process model, the rate of reaction is primarily determined by stirring gas flow rate, which greatly alters the mass transports of the metal and the slag phases. In the continuous casting process model, the effects of the Al, Si, and SiO2 contents in the incoming flow of the fluid phases, casting speed, mold flux consumption rate, and depth of the liquid mold flux pool on the steady-state compositions of the metal and the mold flux were assessed.

  10. Phase Equilibrium Studies of CaO-SiO2-MgO-Al2O3 System with Binary Basicity of 1.5 Related to Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Kou, Mingyin; Wu, Shengli; Ma, Xiaodong; Wang, Laixin; Chen, Mao; Cai, Qingwu; Zhao, Baojun

    2016-04-01

    Slags play an important role in blast furnace operation, and their compositions are based on the CaO-SiO2-MgO-Al2O3 quaternary system in many steel companies. The binary basicity (CaO/SiO2 weight ratio) of blast furnace slags, especially primary slag and bosh slag, can be as high as 1.5 or higher. Phase equilibria and liquidus temperatures in the CaO-SiO2-MgO-Al2O3 system with binary basicity of 1.50 are experimentally determined for temperatures in the range 1723 K to 1823 K (1450 °C to 1550 °C). High temperature equilibration, quenching, and electron probe X-ray microanalysis techniques have been used in the present study. The isotherms are obtained in the primary phase fields of Ca2SiO4, melilite, spinel, periclase, and merwinite related to blast furnace slags. Effects of Al2O3, MgO, and binary basicity on liquidus temperatures have been discussed. In addition, extensive solid solutions have been measured for different primary phases and will be used for development and optimization of the thermodynamic database.

  11. Structure and physical properties of RT{sub 2}Cd{sub 20} (R=rare earth, T=Ni, Pd) compounds with the CeCr{sub 2}Al{sub 20}-type structure

    SciTech Connect

    Burnett, V.W.; Yazici, D.; White, B.D.; Dilley, N.R.; Friedman, A.J.; Brandom, B.; Maple, M.B.

    2014-07-01

    Eleven new compounds, R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Sm, Gd, Tb) and R Pd{sub 2}Cd{sub 20} (R=Ce, Pr, Sm), were grown as single crystals in high temperature cadmium-rich solutions. They crystallize in the cubic CeCr{sub 2}Al{sub 20}-type structure (Fd3{sup ¯}m, Z=8) as characterized by measurements of powder X-ray diffraction. Electrical resistivity, magnetization, and specific heat measurements were performed on R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Sm, Gd, Tb) single crystals. Whereas YNi{sub 2}Cd{sub 20} and LaNi{sub 2}Cd{sub 20} exhibit unremarkable metallic behavior, when magnetic moments from localized 4f electron states (Gd{sup 3+}–Tb{sup 3+}) are embedded into this host, they exhibit ferromagnetic order with values of the Curie temperature T{sub C} for R Ni{sub 2}Cd{sub 20} (R=Gd, and Tb) which scale with the de Gennes factor. - Graphical abstract: Specific heat divided by temperature C/T vs. T for single crystals of R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Gd, and Tb). Left inset: Low temperature C/T vs. T{sup 2} for LaNi{sub 2}Cd{sub 20}. The solid line represents a linear fit of the data. Right inset: Low-temperature C/T data vs. T for R=Ce–Nd, Gd, and Tb; magnetic ordering temperatures are indicated by arrows. - Highlights: • R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Sm, Gd, Tb) single crystals synthesized for the first time. • R Pd{sub 2}Cd{sub 20} (R=Ce, Pr, Sm) single crystals synthesized for the first time. • Single crystals are of good metallurgical quality (large RRR values). • NdNi{sub 2}Cd{sub 20} orders antiferromagnetically at T{sub N}=1.5 K. • R Ni{sub 2}Cd{sub 20} (R=Sm, Gd, Tb) order ferromagnetically.

  12. Melting enthalpies of mantle peridotite: calorimetric determinations in the system CaO-MgO-Al 2O 3-SiO 2 and application to magma generation

    NASA Astrophysics Data System (ADS)

    Kojitani, Hiroshi; Akaogi, Masaki

    1997-12-01

    High-temperature drop calorimetry in the temperature range of 1398-1785 K was performed for the samples of mixtures of synthetic anorthite (An), diopside (Di), enstatite (En) and forsterite (Fo) with the same compositions as those of primary melts generated at 1.1, 3 and 4 GPa at most 10° above the solidus of anhydrous mantle peridotite in the CaO-MgO-Al 2O 3-SiO 2 system. From the differences between the heat contents ( H T-H 298) of liquid and that of crystal mixture at the liquidus temperature, melting enthalpies of the samples of 1.1, 3 and 4 GPa-primary melt compositions were determined at 1 atm to be 531 ± 39 J · g -1 at 1583 K, 604 ± 21 J · g -1 at 1703 K, 646 ± 21 J · g -1 at 1753 K, respectively. These heat of fusion values suggest that mixing enthalpy of the melt in the An-Di-En-Fo system is approximately zero within the experimental errors when we use the heat of fusion of Fo by Richet et al. (P. Richet, F. Leclerc, L. Benoist, Melting of forsterite and spinel, with implications for the glass transition of Mg 2SiO 4 liquid, Geophys. Res. Lett. 20 (1993) 1675-1678). The measured enthalpies of melting at 1 atm were converted into those for melting reactions which occur under high pressures by correcting enthalpy changes associated with solid-state mineral reactions. Correcting the effects of pressure, temperature and FeO and Na 2O components on the melting enthalpies at 1 atm, heat of fusion values of a representative mantle peridotite just above the solidus under high pressure were estimated to be 590 J at 1.1 GPa and 1523 K, 692 J at 3 GPa and 1773 K, and 807 J at 4 GPa and 1923 K for melting reactions producing liquid of 1 g, with uncertainties of 50 J. By applying these melting enthalpies to a mantle diapir model which generates present MORBs, a potential mantle temperature of 1533 K has been estimated, assuming an eruption temperature of magma of 1473 K.

  13. Uptake properties of Ni2+ by nCaO.Al2O3.2SiO2 (n=1-4) prepared from solid-state reaction of kaolinite and calcite.

    PubMed

    Jha, Vinay Kumar; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; MacKenzie, Kenneth J D

    2005-08-31

    A series of nCaO.Al2O3.2SiO2 samples (n=1-4) were prepared by solid-state reaction of mechanochemically treated mixtures of kaolinite and calcite fired at 600-1000 degrees C for 24 h. All the samples were X-ray amorphous after firing at 600-800 degrees C but had crystallized by 900 degrees C. The main crystalline phases were anorthite (n=1), gehlenite (n=2 and 3) and larnite (n=4). The uptake of Ni2+ by nCaO.Al2O3.2SiO2 samples fired at 800 and 900 degrees C was investigated at room temperature using solutions with initial Ni2+ concentrations of 0.1-50 mmol/l. Amorphous samples (fired at 800 degrees C) showed a higher Ni2+ uptake capacity than crystalline samples (fired at 900 degrees C). Ni2+ uptake was found to increase with increasing of CaO content. Amorphous 4CaO.Al2O3.2SiO2 showed the highest Ni2+ uptake capacity (about 9 mmol/g). The Ni2+ uptake abilities of the present samples are higher than those of other materials reported in the literature. Since the sorbed Ni2+/released Ca2+ ratios of these samples are close to unity, ion replacement of Ni2+ for Ca2+ is thought to be the principal mechanism of Ni2+ uptake by the present samples.

  14. Isotopic Measurements in CAIs with the Nanosims: Implications to the understanding of the Formation process of Ca, Al-Rich Inclusions

    NASA Technical Reports Server (NTRS)

    Ito, M.; Messenger, S.; Walker, Robert M.

    2007-01-01

    Ca, Al-rich Inclusions (CAIs) preserve evidence of thermal events that they experienced during their formation in the early solar system. Most CAIs from CV and CO chondrites are characterized by large variations in O-isotopic compositions of primary minerals, with spinel, hibonite, and pyroxene being more O-16-rich than melilite and anorthite, with delta 17, O-18 = approx. -40%o (DELTA O-17 = delta O-17 - 0.52 x delta O-18 = approx. - 20%o ). These anomalous compositions cannot be accounted for by standard mass dependent fractionation and diffusive process of those minerals. It requires the presence of an anomalous oxygen reservoir of nucleosynthetic origin or mass independent fractionations before the formation of CAIs in the early solar system. The CAMECA NanoSIMS is a new generation ion microprobe that offers high sensitivity isotopic measurements with sub 100 nm spatial resolution. The NanoSIMS has significantly improved abilities in the study of presolar grains in various kind of meteorites and the decay products of extinct nuclides in ancient solar system matter. This instrument promises significant improvements over other conventional ion probes in the precision isotopic characterization of sub-micron scales. We report the results of our first O isotopic measurements of various CAI minerals from EK1-6-3 and 7R19-1(a) utilizing the JSC NanoSIMS 50L ion microprobe. We evaluate the measurement conditions, the instrumental mass fractionation factor (IMF) for O isotopic measurement and the accuracy of the isotopic ratio through the analysis of a San Carlos olivine standard and CAI sample of 7R19-1(a).

  15. Electronically driven structural transitions in A10(PO4)6F2 apatites (A = Ca, Sr, Pb, Cd and Hg).

    PubMed

    Balachandran, Prasanna V; Rajan, Krishna; Rondinelli, James M

    2014-06-01

    It is shown that there is a dynamic lattice instability in the aristotype P63/m structure of A10(PO4)6F2 apatites containing divalent A-site Cd or Hg cations with (n - 1)d(10)ns(0) electronic configurations. The distortion to a low-symmetry P\\bar{1} triclinic structure is driven by an electronic mechanism rather than from ionic size mismatch. Our theoretical work provides key insights into the role of the electronic configurations of A cations in fluorapatites.

  16. Chemical composition characterization of Ca3Ta(Ga0.5Al0.5)3Si2O14 single crystal by the line-focus-beam ultrasonic material characterization system

    NASA Astrophysics Data System (ADS)

    Ohashi, Yuji; Kudo, Tetsuo; Yokota, Yuui; Shoji, Yasuhiro; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2016-10-01

    A new method for evaluation of homogeneity of Ca3Ta(Ga0.5Al0.5)3Si2O14 (CTGAS) single crystals was established based on leaky surface acoustic wave (LSAW) velocity measurements performed by the line-focus-beam ultrasonic material characterization (LFB-UMC) system. Three plate specimens cut perpendicular to X-, Y-, and Z-axes were prepared from the CTGAS crystal ingot and LSAW velocity distributions were examined for these specimens. LSAW velocity changes due to Al-substitution effect were successfully extracted by using a relationship between two LSAW velocities propagating along different directions for Ca3TaGa3Si2O14 (CTGS) and Al-substituted CTGS. Comparison of measured LSAW velocities and the results of chemical composition analysis performed by electron probe microanalysis (EPMA) demonstrated that LSAW velocity is mainly affected by Al-content change in CTGAS. Maximum velocity variation was observed in radial direction of the crystal ingot through the Z-axis propagating LSAW velocity measurements for Y-cut CTGAS specimen corresponding to Al-content change of 0.226 mol%. Accuracy of evaluation of Al content by velocity measurement for Y-cut Z-propagating LSAW is estimated to be ±0.0047 mol% and is superior to that by EPMA.

  17. Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), thermogravimetric and antimicrobial studies of Ca(II), Mn(II), Cu(II), Zn(II) and Cd(II) complexes of ferulic acid

    NASA Astrophysics Data System (ADS)

    Kalinowska, M.; Piekut, J.; Bruss, A.; Follet, C.; Sienkiewicz-Gromiuk, J.; Świsłocka, R.; Rzączyńska, Z.; Lewandowski, W.

    2014-03-01

    The molecular structure of Mn(II), Cu(II), Zn(II), Cd(II) and Ca(II) ferulates (4-hydroxy-3-methoxycinnamates) was studied. The selected metal ferulates were synthesized. Their composition was established by means of elementary and thermogravimetric analysis. The following spectroscopic methods were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance (13C, 1H NMR) and ultraviolet-visible (UV/VIS). On the basis of obtained results the electronic charge distribution in studied metal complexes in comparison with ferulic acid molecule was discussed. The microbiological study of ferulic acid and ferulates toward Escherichia coli, Bacillus subtilis, Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris was done.

  18. Al{sub 15}Ge{sub 4}Ni{sub 3}: A new intergrowth structure with Cu{sub 3}Au- and CaF{sub 2}-type building blocks

    SciTech Connect

    Reichmann, Thomas L.; Jandl, Isabella; Effenberger, Herta S.; Herzig, Peter; Richter, Klaus W.

    2015-05-15

    The new ternary compound Al{sub 15}Ge{sub 4}Ni{sub 3} (τ{sub 2} in the system Al–Ge–Ni) was synthesized in single crystalline form by a special annealing procedure from samples located in the three phase fields [L+Al+τ{sub 2}] and [L+Ge+τ{sub 2}]. The crystal structure of Al{sub 15}Ge{sub 4}Ni{sub 3} was determined by single-crystal X-ray diffraction. The compound crystallizes in a new structure type in space group I4-bar3m, Pearson Symbol cI88, cubic lattice parameter a=11.405(1) Å. Phase diagram investigations indicate stoichiometric composition without considerable homogeneity range; τ{sub 2} melts peritectically at T=444 °C. The crystal structure of Al{sub 15}Ge{sub 4}Ni{sub 3} shows a unique combination of simple Cu{sub 3}Au- and CaF{sub 2}-type building blocks: a three dimensional network of CaF{sub 2}-type units, formed by Ni and Al atoms, is interspaced by clusters (Al{sub 6}Ge{sub 8}) resembling unit cells of the Cu{sub 3}Au-type. Both structural motifs are connected by Al–Ge bonds. The ground state energy of the compound was obtained by DFT calculations and the densities of states were analyzed in detail. In addition, electron density maps were calculated in four different sections through the unit cell using the full potential linearized augmented plane-wave (FLAPW) method. The bonding situation in Al{sub 15}Ge{sub 4}Ni{sub 3} was discussed combining results from electronic calculations with the analysis of the coordination of atoms. - Graphical abstract: The new compound Al{sub 15}Ge{sub 4}Ni{sub 3} shows a unique combination of simple Cu{sub 3}Au- and CaF{sub 2}-type building blocks. - Highlights: • The crystal structure of Al{sub 15}Ge{sub 4}Ni{sub 3} (space group I4-bar3m) was determined. • It shows a unique combination of CaF{sub 2}- and Cu{sub 3}Au-type building blocks. • Electronic (DFT) calculations were performed to gain insight to chemical bonding.

  19. Structure of the quantum spin Hall states in HgTe/CdTe and InAs/GaSb/AlSb quantum wells

    NASA Astrophysics Data System (ADS)

    Klipstein, P. C.

    2015-01-01

    A solution of the k . p model is presented for bulk and quantum spin hall (QSH) edge states in semiconductor topological insulator (TI) quantum wells (QWs), bounded at the edge by an infinite wall potential. The edge states are exponentially localized, with a nonzero amplitude at the QW edge, and obey standard boundary conditions for the wave function and its derivative. Single helical edge states with spin locked to the direction of motion are found in the TI band gap (ETI) of QWs with both strong (HgTe/CdTe) and weak (InAs/GaSb/AlSb) s -p hybridization, but in the second case only below a small critical band gap, Ecrit˜1.6 meV . For ETI>Ecrit , there appear to be two degenerate states for each spin direction. It is suggested that Z2-like topological properties can still be maintained if one of these states is spurious or suppressed by disorder. The effect of interface band mixing, and band mixing due to structural inversion asymmetry and bulk inversion asymmetry is also considered. Simple model Hamiltonians are developed for the bulk and edge states which are calibrated against a bulk eight-band k . p calculation close to the TI transition. At the transition, the zero gap bulk states exhibit a spin splitting, essentially changing the Dirac point to a circle. In the TI phase, there is a small change in the dispersion of the QSH edge states. These results confirm the robustness of the QSH edge states to spatial symmetry breaking interactions.

  20. e/a determination for 4d- and 5d-transition metal elements and their intermetallic compounds with Mg, Al, Zn, Cd and In

    NASA Astrophysics Data System (ADS)

    Mizutani, U.; Sato, H.; Inukai, M.; Zijlstra, E. S.

    2013-08-01

    The present work is devoted to the determination of the effective electrons per atom ratio e/a by means of first-principles full-potential linearized augmented plane wave-Fourier method for elements from Rb to Ag in Period 5 and from Cs to Au in Period 6 of the periodic table and is regarded as a continuation of the preceding work done for elements from K to Cu in Period 4. The value of e/a was determined by reading off the square of the Fermi diameter, ? from the dispersion relation for electrons outside the Muffin-Tin spheres. A straightforward reading of the ordinate at the Fermi level, i.e. local reading method was validated for Rb and Cs in Group 1, Sr in Group 2, Y in Group 3, Pd and Pt in Group 10 and Ag and Au in Group 11. Instead, the nearly free electron (NFE) method was found to be indispensable for TM elements from Zr to Rh in Period 5 and those from Ba to Ir in Period 6. The composition dependence of e/a values for intermetallic compounds in X-TM (X = Mg, Al, Zn, Cd and In) alloy systems was also studied. The new Hume-Rothery electron concentration rule was established by constructing e/uc, the number of electrons per unit cell, vs. square of critical reciprocal lattice vector, ? , diagram for structurally complex metallic alloys having a pseudogap at the Fermi level. A proper use of either the local reading- or the NFE-e/a for the elements as indicated above is found to be essential.

  1. Mixing Properties of CaMgSi2O6-KAlSi2O6-NaAlSi2O6 Clinopyroxenes Determined From Static Lattice Energy Minimization Calculations

    NASA Astrophysics Data System (ADS)

    Vinograd, V. L.; Safonov, O. G.; Winkler, B.

    2004-05-01

    Recent experimental studies (Chudinovskikh et al., 2001; Safonov et al., 2003) have shown that under pressures of 7-10 GPa clinopyroxen can contain up to 25 % of KAlSi2O6. This suggested that K-Cpx could be a major host of K in the upper mantle. Low K2O content of clinopyroxens of crustal origin could possibly be attributed to the instability of K-rich pyroxens with respect to other K-bearing phases. Thermodynamic calculations of phase equilibria in K-bearing systems require the knowledge of mixing properties of K-bearing pyroxens and standard properties of KAlSi2O6-Cpx. Here we report on our preliminary results of static lattice energy minimization calculations of the required thermodynamic parameters using the program GULP (Gale, 1997). We developed a new self-consistent set of interatomic potentials, which permitted us to accurately reproduce structural and elastic properties of major phases in the system K-Na-Ca-Mg-Al-Si-O and to predict the properties of the unknown KAlSi2O6 phase. It appears that the structural constants of this phase are close to those of diopside, while its elastic and thermodynamic properties are close to those of jadeite. The mixing properties of the disordered KAlSi2O6-CaMgSi2O6 solid solution we estimated using the supercell method: In the supercell of diopside containing 16 Ca and 16 Mg atoms we replaced randomly one Ca and one Mg with K and Al, respectively and calculated the increase in the lattice energy. Similar calculations have been done with the supercell containig 16 K and 16 Al atoms. These calculations permitted us to estimate Margules parameters of the subregular model of mixing (WK-cpx = 29.4, WDi = 26.5 kJ/mole) using the method of Sluiter and Kawazoe (2002). The analogous calculations for NaAlSi2O6-CaMgSi2O6 gave WJad = 41.85 and WDi = 39.86 kJ/mole. The latter numbers compare well with the Margules parameters derived by Wood et al. (1980) from calorimetric data. Thus, it appears that the KAlSi2O6 end member is able to

  2. Crystalline orientations of Tl2Ba2Ca2Cu3O(x) grains on MgO, SrTiO3, and LaAlO3 substrates

    NASA Technical Reports Server (NTRS)

    Liou, S. H.; Wu, C. Y.

    1992-01-01

    Crystalline orientations of Tl2Ba2Ca2Cu3O(x) grains in magnetron sputtered films on MgO (001), SrTiO3 (001), and LaAlO3 (001) substrates were investigated by scanning electron microscopy. In contrast to the nearly single crystalline films on the lattice matched substrates SrTiO3 and LaAlO3, films on the MgO (001) substrate, being polycrystalline in nature, exhibit several preferred in-plane grain orientations. These orientations agree well with a simplified theory of near-coincidence site lattices between Tl2Ba2Ca2Cu3O(x) and MgO.

  3. Synthesis, characterization of double perovskite Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr, Al) materials via sol–gel auto-combustion and their catalytic properties

    SciTech Connect

    Feraru, S.; Samoila, P.; Borhan, A.I.; Ignat, M.; Iordan, A.R.; Palamaru, M.N.

    2013-10-15

    Double perovskite-type oxide Ca{sub 2}MSbO{sub 6} materials, where M = Dy, Fe, Cr, and Al, were prepared by using the sol–gel auto-combustion method. The role of different B-site cations on their synthesis, structures, morphologies and catalytic properties was investigated. The progress of double-perovskite type structure formation and the disappearance of the organic phases were monitored by infrared absorption spectroscopy (FTIR). Double perovskite oxide structures were evaluated using X-ray diffraction (XRD), while the microstructure of obtained compounds was studied using scanning electron microscopy (SEM). Also, BET surface areas were measured at the liquid nitrogen temperature by nitrogen adsorption. Catalytic properties of the obtained compounds were evaluated by test reaction of hydrogen peroxide decomposition. - Highlights: • Ca{sub 2}MSbO{sub 6} double perovskites were obtained by sol–gel auto-combustion method. • Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr and Al) as catalysts in H{sub 2}O{sub 2} decomposition • Strong relationship between particles' shape, BET area and catalytic performance • Ca{sub 2}FeSbO{sub 6} spherical grains show superior catalytic activity.

  4. Luminescence and energy-transfer properties of color-tunable Ca2Mg0.25Al1.5Si1.25O7:Ce(3+)/Eu(2+)/Tb(3+) phosphors for ultraviolet light-emitting diodes.

    PubMed

    Yuan, Bo; Song, Yanhua; Sheng, Ye; Zheng, Keyan; Huo, Qisheng; Xu, Xuechun; Zou, Haifeng

    2016-03-01

    A series of Ca2Mg0.25Al1.5Si1.25O7:Ce(3+)/Eu(2+)/Tb(3+) phosphors was been prepared via a conventional high temperature solid-state reaction and their luminescence properties were studied. The emission spectra of Ca2Mg0.25Al1.5Si1.25O7:Ce(3+),Eu(2+) and Ca2Mg0.25Al1.5Si1.25O7:Ce(3+),Tb(3+) phosphors show not only a band due to Ce(3+) ions (409 nm) but also as a band due to Eu(2+) (520 nm) and Tb(3+) (542 nm) ions. More importantly, the effective energy transfer from Ce(3+) to Eu(2+) and Tb(3+) ions was confirmed and investigated by emission/excitation spectra and luminescent decay behaviors. Furthermore, the energy level scheme and energy transfer mechanism were investigated and were demonstrated to be of resonant type via dipole-dipole (Ce(3+) to Eu(2+)) and dipole-quadrupole (Ce(3+) to Tb(3+)) reactions, respectively. Under excitation at 350 nm, the emitting color could be changed from blue to green by adjusting the relative doping concentration of Ce(3+) and Eu(2+) ions as well as Ce(3+) and Tb(3+) ions. The above results indicate that Ca2Mg0.25Al1.5Si1.25O7:Ce(3+),Eu(2+)/Tb(3+) are promising single-phase blue-to-green phosphors for application in phosphor conversion white-light-emitting diodes.

  5. Formation of multinary intermetallics from reduction of perovskites by aluminum flux: M(3)Au(6+)(x)()Al(26)Ti (M = Ca, Sr, Yb), a stuffed variant of the BaHg(11) type.

    PubMed

    Latturner, Susan E; Kanatzidis, Mercouri G

    2004-01-12

    New intermetallic phases were synthesized by reacting oxidic perovskites and gold metal in aluminum flux. The combination of MTiO(3) (M = Ca, Sr, Ba) and Au metal in excess molten aluminum produces quaternary compounds M(3)Au(6+)(x)()Al(26)Ti with a stuffed BaHg(11) structure type. An analogue with M = Yb was also synthesized; it shows mixed valent behavior.

  6. Distribution of p-process 174Hf in early solar system materials and the origin of nucleosynthetic Hf and W isotope anomalies in Ca-Al rich inclusions

    NASA Astrophysics Data System (ADS)

    Peters, Stefan T. M.; Münker, Carsten; Pfeifer, Markus; Elfers, Bo-Magnus; Sprung, Peter

    2017-02-01

    Some nuclides that were produced in supernovae are heterogeneously distributed between different meteoritic materials. In some cases these heterogeneities have been interpreted as the result of interaction between ejecta from a nearby supernova and the nascent solar system. Particularly in the case of the oldest objects that formed in the solar system - Ca-Al rich inclusions (CAIs) - this view is confirm the hypothesis that a nearby supernova event facilitated or even triggered solar system formation. We present Hf isotope data for bulk meteorites, terrestrial materials and CAIs, for the first time including the low-abundance isotope 174Hf (∼0.16%). This rare isotope was likely produced during explosive O/Ne shell burning in massive stars (i.e., the classical "p-process"), and therefore its abundance potentially provides a sensitive tracer for putative heterogeneities within the solar system that were introduced by supernova ejecta. For CAIs and one LL chondrite, also complementary W isotope data are reported for the same sample cuts. Once corrected for small neutron capture effects, different chondrite groups, eucrites, a silicate inclusion of a IAB iron meteorite, and terrestrial materials display homogeneous Hf isotope compositions including 174Hf. Hafnium-174 was thus uniformly distributed in the inner solar system when planetesimals formed at the <50 ppm level. This finding is in good agreement with the evidently homogeneous distributions of p-process isotopes 180W, 184Os and possibly 190Pt between different iron meteorite groups. In contrast to bulk meteorite samples, CAIs show variable depletions in p-process 174Hf with respect to the inner solar system composition, and also variable r-process (or s-process) Hf and W contributions. Based on combined Hf and W isotope compositions, we show that CAIs sampled at least one component in which the proportion of r- and s-process derived Hf and W deviates from that of supernova ejecta. The Hf and W isotope

  7. The crystal and magnetic structures of LaCa{sub 2}Fe{sub 3-x}M{sub x}O{sub 8} (M=Al, Ga, In)

    SciTech Connect

    Goossens, D.J.; Henderson, L.S.F.; Trevena, S.; Hudspeth, J.M.; Avdeev, M.; Hester, J.R.

    2012-12-15

    LaCa{sub 2}Fe{sub 3}O{sub 8} (A{sub 3}B{sub 3}O{sub 8}) is an example of a layered structure in that it consists of pairs of octahedral, perovskite-like layers alternating with a single tetrahedral layer. This work explores the doping of non-magnetic group 13 elements, M=Al, Ga and In, onto the B-site of LaCa{sub 2}Fe{sub 3-x}M{sub x}O{sub 8} as a function of x. The structural and magnetic effects are examined using a combination of neutron and X-ray diffraction. Solubility limits are established. It is found that for M=Ga the solubility limit occurs between x=1.0 and x=1.25, for the synthesis conditions used, while there is evidence for low (x<0.25) but non-zero substitution of Al. Structural refinements at x=1 suggest that Ga prefers neither the tetrahedral nor octahedral sites. The magnetic structure of LaCa{sub 2}Fe{sub 2}GaO{sub 8} has been examined using neutron diffraction at 3.2 K and room temperature. At low temperature the staggered moment per Fe{sup 3+} is 3.8(1){mu}{sub B} in LaCa{sub 2}Fe{sub 3}O{sub 8} and 4.8(1){mu}{sub B} in LaCa{sub 2}Fe{sub 2}GaO{sub 8}. The magnetic space group (P{sub 2b}2{sub 1} Prime ma Prime ) and moment direction (along c) does not appear to change with Ga substitution. - Graphical abstract: Solubility limits for group 13 elements in LaCa{sub 2}Fe{sub 3}O{sub 8}. Highlights: Black-Right-Pointing-Pointer Solubility limits for group 13 elements in LaCa{sub 2}Fe{sub 3}O{sub 8} are determined. Black-Right-Pointing-Pointer Evolution of the magnetic structure with temperature and doping is explored using neutron scattering. Black-Right-Pointing-Pointer The magnetic space group is quoted as P{sub 2b}2{sub 1}'ma' and the staggered moments are obtained for LaCa{sub 2}Fe{sub 3}O{sub 8} and LaCa{sub 2}Fe{sub 2}GaO{sub 8}.

  8. Growth of large-domain YBa 2Cu 3O x with new seeding crystals of CaNdAlO 4 and SrLaGaO 4

    NASA Astrophysics Data System (ADS)

    Shi, Donglu; Lahiri, K.; Hull, J. R.; LeBlanc, D.; LeBlanc, M. A. R.; Dabkowski, Antoni; Chang, Y.; Jiang, Y.; Zhang, Z.; Fan, H.

    1995-02-01

    Single crystals of CaNdAlO 4 and SrLaGaO 4 were used as seeds to grow large domains of YBa 2Cu 3O x for levitation applications. These crystals have high melting temperatures (> 1500°C) and similar lattice structures to that of YBa 2Cu 3O x. In a seeded melt-texturing method developed previously, the single crystals of CaNdAlO 4, SrLaGaO 4, and NdBa 2Cu 3O x were used as seeds for comparison. After melt processing, scanning electron microscopy analysis did not reveal any major differences in all these seeded melt-textured samples. However, the levitation forces in the samples seeded with single crystals of CaNdAlO 4 and SrLaGaO 4 increased considerably compared to that of the sample seeded with NdBa 2Cu 3O x. A model is proposed to describe the domain growth mechanism during seeded melt processing.

  9. White long-lasting phosphorescence generation in a CaAl2Si2O8 : Eu2+, Mn2+, Dy3+ system through persistent energy transfer

    NASA Astrophysics Data System (ADS)

    Zhang, Jinsu; Chen, Baojiu; Sun, Jiashi; Li, Xiangping; Cheng, Lihong; Zhong, Haiyang

    2012-08-01

    Based on the persistent energy transfer principle, Mn2+ was introduced into a CaAl2Si2O8 : Eu2+/Dy3+ phosphor to achieve white long-lasting emissions. Eu2+, Mn2+ and Dy3+ tri-doped CaAl2Si2O8 phosphors with various Mn2+ concentrations were prepared via a solid-state reaction, and the crystal structure of the phosphors was identified by the x-ray diffraction technique. The luminescent properties of the Eu2+, Mn2+ and Dy3+ tri-doped CaAl2Si2O8 phosphors were studied. The energy transfer behaviour from Eu2+ to Mn2+ was analysed within the framework of Dexter theory. The physical mechanism of energy transfer was assigned to the electric dipole-quadrupole interaction. It was also demonstrated that the colour coordinates of the phosphors can be tuned from the blue region to the white region in the colour space. Furthermore, the afterglow decay and thermoluminescence curves were measured, indicating excellent phosphorescence properties of the current phosphors.

  10. Microstructure and Microwave Dielectric Properties of (1- x)MgAl2O4- x(Ca0.8Sr0.2)TiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Huang, Yafei; Yu, Jun; Shen, Chunying; Tang, Mingliang

    2016-10-01

    The microwave dielectric properties of the (1- x)MgAl2O4- x(Ca0.8Sr0.2)TiO3 ( x = 0.02 to 0.10) ceramic system synthesized by the traditional solid-state reaction method have been investigated. Spinel-structured MgAl2O4 was present together with perovskite-structured (Ca0.8Sr0.2)TiO3, and this multiphase system was verified by x-ray diffraction (XRD) and energy spectrum analyses throughout the whole compositional range. With increasing x, the temperature coefficient of resonant frequency ( τ f) and permittivity ( ɛ r) gradually increased. Consequently, near-zero τ f could be obtained for samples with x = 0.08. Excellent microwave dielectric properties with relative permittivity ( ɛ r) of 10.92, quality factor ( Q × f) of 52,563 GHz (at 12.9 GHz), and temperature coefficient of resonant frequency ( τ f) of -5.6 ppm/°C were obtained for 0.92MgAl2O4-0.08(Ca0.8Sr0.2)TiO3 composite sintered at 1440°C for 3 h, making this material a promising candidate for use in global communication satellites and radar detectors.

  11. New insights into the application of the valence rules in Zintl phases—Crystal and electronic structures of Ba{sub 7}Ga{sub 4}P{sub 9}, Ba{sub 7}Ga{sub 4}As{sub 9}, Ba{sub 7}Al{sub 4}Sb{sub 9}, Ba{sub 6}CaAl{sub 4}Sb{sub 9}, and Ba{sub 6}CaGa{sub 4}Sb{sub 9}

    SciTech Connect

    He, Hua; Stoyko, Stanislav; Bobev, Svilen

    2016-04-15

    Crystals of three new ternary pnictides—Ba{sub 7}Al{sub 4}Sb{sub 9}, Ba{sub 7}Ga{sub 4}P{sub 9}, and Ba{sub 7}Ga{sub 4}As{sub 9} have been prepared by reactions of the respective elements in molten Al or Pb fluxes. Single-crystal X-ray diffraction studies reveal that the three phases are isotypic, crystallizing in the orthorhombic Ba{sub 7}Ga{sub 4}Sb{sub 9}-type structure (space group Pmmn, Pearson symbol oP40, Z=2), for which only the prototype is known. The structure is based on TrPn{sub 4} tetrahedra (Tr=Al, Ga; Pn=P, As, Sb), connected in an intricate scheme into 1D-ribbons. Long interchain Pn–Pn bonds (d{sub P–P}>3.0 Å; d{sub As–As}>3.1 Å; d{sub Sb–Sb}>3.3 Å) account for the realization of 2D-layers, separated by Ba{sup 2+} cations. Applying the classic valance rules to rationalize the bonding apparently fails, and Ba{sub 7}Ga{sub 4}Sb{sub 9} has long been known as a metallic Zintl phase. Earlier theoretical calculations, both empirical and ab-initio, suggest that the possible metallic properties originate from filled anti-bonding Pn–Pn states, and the special roles of the “cations” in this crystal structure. To experimentally probe this hypothesis, we sought to synthesize the ordered quaternary phases Ba{sub 6}CaTr{sub 4}Sb{sub 9} (Tr=Al, Ga). Single-crystal X-ray diffraction work confirms Ba{sub 6.145(3)}Ca{sub 0.855}Al{sub 4}Sb{sub 9} and Ba{sub 6.235(3)}Ca{sub 0.765}Ga{sub 4}Sb{sub 9}, with Ca atoms preferably substituting Ba on one of the three available sites. The nuances of the five crystal structures are discussed, and the chemical bonding in Ba{sub 7}Ga{sub 4}As{sub 9} is interrogated by tight-binding linear muffin-tin orbital calculations. - Graphical abstract: The new Zintl phases—Ba{sub 7}Al{sub 4}Sb{sub 9}, Ba{sub 7}Ga{sub 4}P{sub 9}, and Ba{sub 7}Ga{sub 4}As{sub 9}, and their quaternary variants Ba{sub 6}CaTr{sub 4}Sb{sub 9} (Tr=Al, Ga)—crystallize in the Ba{sub 7}Ga{sub 4}Sb{sub 9} structure type. The structures are based

  12. Adsorption studies of Cd(II) onto Al 2O 3/Nb 2O 5 mixed oxide dispersed on silica matrix and its on-line preconcentration and determination by flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mendonça Costa, Lucimara; Ribeiro, Emerson Schwingel; Segatelli, Mariana Gava; do Nascimento, Danielle Raphael; de Oliveira, Fernanda Midori; Tarley, César Ricardo Teixeira

    2011-05-01

    The present study describes the adsorption characteristic of Cd(II) onto Nb 2O 5/Al 2O 3 mixed oxide dispersed on silica matrix. The characterization of the adsorbent has been carried out by infrared spectroscopy (IR), scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS), energy dispersive X-ray fluorescence analysis (EDXRF) and specific surface area ( SBET). From batch experiments, adsorption kinetic of Cd(II) was described by a pseudo-second-order kinetic model. The Langmuir linear isotherm fitted to the experimental adsorption isotherm very well, and the maximum adsorption capacity was found to be 17.88 mg g -1. Using the effective material, a method for Cd(II) preconcentration at trace level was developed. The method was based on on-line adsorption of Cd(II) onto SiO 2/Al 2O 3/Nb 2O 5 at pH 8.64, in which the quantitative desorption occurs with 1.0 mol L -1 hydrochloric acid towards FAAS detector. The experimental parameters related to the system were studied by means of multivariate analysis, using 2 4 full factorial design and Doehlert matrix. The effect of SO 42-, Cu 2+, Zn 2+ and Ni 2+ foreign ions showed no interference at 1:100 analyte:interferent proportion. Under the most favorable experimental conditions, the preconcentration system provided a preconcentration factor of 18.4 times, consumption index of 1.08 mL, sample throughput of 14 h -1, concentration efficiency of 4.35 min -1, linear range from 5.0 up to 35.0 μg L -1 and limits of detection and quantification of 0.19 and 0.65 μg L -1 respectively. The feasibility of the proposed method for Cd(II) determination was assessed by analysis of water samples, cigarette sample and certified reference materials TORT-2 (Lobster hepatopancreas) and DOLT-4 (Dogfish liver).

  13. Calcioferrite with composition (Ca3.94Sr0.06)Mg1.01(Fe2.93Al1.07)(PO4)6(OH)4·12H2O

    PubMed Central

    Lafuente, Barbara; Downs, Robert T.; Yang, Hexiong; Jenkins, Robert A.

    2014-01-01

    Calcioferrite, ideally Ca4MgFe3+ 4(PO4)6(OH)4·12H2O (tetra­calcium magnesium tetrairon(III) hexakis-phosphate tetra­hydroxide dodeca­hydrate), is a member of the calcioferrite group of hydrated calcium phosphate minerals with the general formula Ca4 AB 4(PO4)6(OH)4·12H2O, where A = Mg, Fe2+, Mn2+ and B = Al, Fe3+. Calcioferrite and the other three known members of the group, montgomeryite (A = Mg, B = Al), kingsmountite (A = Fe2+, B = Al), and zodacite (A = Mn2+, B = Fe3+), usually occur as very small crystals, making their structure refinements by conventional single-crystal X-ray diffraction challenging. This study presents the first structure determination of calcioferrite with composition (Ca3.94Sr0.06)Mg1.01(Fe2.93Al1.07)(PO4)6(OH)4·12H2O based on single-crystal X-ray diffraction data collected from a natural sample from the Moculta quarry in Angaston, Australia. Calcioferrite is isostructural with montgomeryite, the only member of the group with a reported structure. The calcioferrite structure is characterized by (Fe/Al)O6 octa­hedra (site symmetries 2 and -1) sharing corners (OH) to form chains running parallel to [101]. These chains are linked together by PO4 tetra­hedra (site symmetries 2 and 1), forming [(Fe/Al)3(PO4)3(OH)2] layers stacking along [010], which are connected by (Ca/Sr)2+ cations (site symmetry 2) and Mg2+ cations (site symmetry 2; half-occupation). Hydrogen-bonding inter­actions involving the water mol­ecules (one of which is equally disordered over two positions) and OH function are also present between these layers. The relatively weaker bonds between the layers account for the cleavage of the mineral parallel to (010). PMID:24764934

  14. High-temperature tribological properties of NiCoCrAlY-WSe2-BaF2·CaF2 solid lubricant coatings prepared by plasma spraying

    NASA Astrophysics Data System (ADS)

    Chen, X. H.; Yuan, X. J.; Xia, J.; Yu, Z. H.

    2015-12-01

    In this paper, NiCoCrAlY-WSe2-BaF2·CaF2 solid lubricant coatings were produced on a substrate by plasma spray and investigated at the high temperature, such as 500 °C and 800 °C. The structure of the coatings was characterized using XRD pattern and scanning electron microscopy. The TC1 (83wt% NiCoCrAlY) coating has a low friction coefficient at 500C, where the WSe2 is a good solid lubricant. The TC2 (65wt% NiCoCrAlY) coating has the low friction coefficient (0.279) at 800°C, due to the formation of BaCrO4 on the surfaces. As a result, the TC2 coating has the optimal tribological property in the wide temperature.

  15. CdS nanoparticles sensitization of Al-doped ZnO nanorod array thin film with hydrogen treatment as an ITO/FTO-free photoanode for solar water splitting

    PubMed Central

    2012-01-01

    Aluminum-doped zinc oxide (AZO) nanorod array thin film with hydrogen treatment possesses the functions of transparent conducting oxide thin film and 1-D nanostructured semiconductor simultaneously. To enhance the absorption in the visible light region, it is sensitized by cadmium sulfide (CdS) nanoparticles which efficiently increase the absorption around 460 nm. The CdS nanoparticles-sensitized AZO nanorod array thin film with hydrogen treatment exhibits significantly improved photoelectrochemical property. After further heat treatment, a maximum short current density of 5.03 mA cm−2 is obtained under illumination. They not only are much higher than those without CdS nanoparticles sensitization and those without Al-doping and/or hydrogen treatment, but also comparable and even slightly superior to some earlier works for the CdS-sensitized zinc oxide nanorod array thin films with indium tin oxide (ITO) or fluorine-doped tin oxide (FTO) as substrates. This demonstrated successfully that the AZO nanorod array thin film with hydrogen treatment is quite suitable as an ITO/FTO-free photoanode and has great potentials in solar water splitting after sensitization by quantum dots capable of visible light absorption. PMID:23098050

  16. Mission CaMKIIγ: shuttle calmodulin from membrane to nucleus.

    PubMed

    Malik, Zulfiqar A; Stein, Ivar S; Navedo, Manuel F; Hell, Johannes W

    2014-10-09

    Neuronal plasticity depends on plasma membrane Ca(2+) influx, resulting in activity-dependent gene transcription. Calmodulin (CaM) activated by Ca(2+) initiates the nuclear events, but how CaM makes its way to the nucleus has remained elusive. Ma et al. now show that CaMKIIγ transports CaM from cell surface Ca(2+) channels to the nucleus.

  17. EFFECT OF MgO ON STRUCTURE AND DIELECTRIC PROPERTIES OF CaO-Al2O3-B2O3-SiO2 GLASSES

    NASA Astrophysics Data System (ADS)

    Du, Zhao; Zhang, Xuehong; Yue, Yunlong; Wu, Haitao

    2012-12-01

    The effect of MgO on structure and dielectric properties of aluminoborosilicate glasses was investigated. FTIR data indicated that glass network was mainly built by tetrahedral [SiO4], [BO4], [AlO4] and trigonal [BO3]. A small amount of AlO5 or AlO6 units also existed. The glass system was characterized with lower dielectric constant (4.17 4.6) and dielectric loss (12.3 × 10-4 14.77 × 10-4) at 1 MHz. With the increase of MgO content, the quantity of AlO5 or AlO6 units decreased. The variation of density showed a decreasing tendency. The dielectric constant and loss were all found to decrease.

  18. Crystal structure of Kuzel's salt 3CaO.Al{sub 2}O{sub 3}.1/2CaSO{sub 4}.1/2CaCl{sub 2}.11H{sub 2}O determined by synchrotron powder diffraction

    SciTech Connect

    Mesbah, Adel; Francois, Michel; Cau-dit-Coumes, Celine; Frizon, Fabien; Leroux, Fabrice; Ravaux, Johann

    2011-05-15

    The crystal structure of Kuzel's salt has been successfully determined by synchrotron powder diffraction. It crystallizes in the rhombohedral R3-bar symmetry with a = 5.7508 (2) A, c = 50.418 (3) A, V = 1444.04 (11) A{sup 3}. Joint Rietveld refinement was realized using three X-ray powder patterns recorded with a unique wavelength and three different sample-to-detector distances. Kuzel's salt is the chloro-sulfoaluminate AFm phase and belongs to the layered double hydroxide (LDH) large family. Its structure is composed of positively charged main layer [Ca{sub 2}Al(OH){sub 6}]{sup +} and negatively charged interlayer [Cl{sub 0.50}.(SO{sub 4}){sub 0.25}.2.5H{sub 2}O]{sup -}. Chloride and sulfate anions are ordered into two independent crystallographic sites and fill successive interlayer leading to the formation of a second-stage compound. The two kinds of interlayer have the compositions [Cl.2H{sub 2}O]{sup -} and [(SO{sub 4}){sub 0.5}.3H{sub 2}O]{sup -}. The crystal structure explains why chloride and sulfate anions are not substituted and why the formation of extended solid solution in the chloro-sulfate AFm system does not occur.

  19. Enhancing selectivity in stripping voltammetry by different adsorption behaviors: the use of nanostructured Mg-Al-layered double hydroxides to detect Cd(II).

    PubMed

    Xu, Ren-Xia; Yu, Xin-Yao; Gao, Chao; Liu, Jin-Huai; Compton, Richard G; Huang, Xing-Jiu

    2013-03-21

    We report the use of nanostructured layered double hydroxides (LDHs) for the highly selective and sensitive detection of Cd(2+) using anodic stripping voltammetry (ASV). In particular, the modification of a glassy carbon electrode promotes the sensitivity and selectivity towards Cd(2+) in the presence of Pb(2+), Hg(2+), Cu(2+) and Zn(2+). The electrochemical characterization and anodic stripping voltammetric performance of Cd(2+) were evaluated using cyclic voltammetry (CV) and square wave anodic stripping voltammetry (SWASV) analysis. Operational parameters, including supporting electrolytes, pH value, deposition potential and deposition time were optimized. In addition, the selectivity, interference and stability were also investigated under the optimized conditions. The results showed that the fabricated electrode possessed good selectivity, stability and reproducibility. The proposed electrochemical sensing strategy is thus expected to open new opportunities to broaden the use of ASV in analysis for detecting heavy metal ions in the environment.

  20. Angular properties of pure and Ca-substituted YBa2Cu3O7-δ superconducting thin films grown on SrTiO3 and CeO2 buffered Al2O3 substrates

    NASA Astrophysics Data System (ADS)

    Augieri, A.; Celentano, G.; Ciontea, L.; Galluzzi, V.; Gambardella, U.; Halbritter, J.; Petrisor, T.; Rufoloni, A.; Vannozzi, A.

    2007-09-01

    In this work transport properties of superconducting 10 at.% Ca-substituted YBCO thin films grown on (1 0 0)-SrTiO 3 single crystal substrate (STO) and superconducting pure and 10 at.% Ca-substituted YBCO thin films grown on CeO 2 buffered Al 2O 3 substrates (CAO) have been analyzed as a function of the temperature, applied magnetic field and angle between magnetic field direction and the direction normal to the film surfaces. Particularly, the angular analysis provides an easy way to discriminate between isotropic point defects and correlated pinning sites. Despite the intragrain pinning mechanisms remained unaffected by Ca substitution, a detrimental effect on grain boundary properties clearly emerged for 10 at.% Ca concentration. This effect is enhanced in sample grown on CeO 2 buffered sapphire where a more disturbed grain boundary is expected resulting in an enhancement of the correlated pinning, already observed in pure YBCO films grown on CAO, and in a reduction of the intrinsic pinning efficiency.

  1. A comparison of benthic foraminiferal Mn / Ca and sedimentary Mn / Al as proxies of relative bottom-water oxygenation in the low-latitude NE Atlantic upwelling system

    NASA Astrophysics Data System (ADS)

    McKay, C. L.; Groeneveld, J.; Filipsson, H. L.; Gallego-Torres, D.; Whitehouse, M. J.; Toyofuku, T.; Romero, O. E.

    2015-09-01

    Trace element incorporation into foraminiferal shells (tests) is governed by physical and chemical conditions of the surrounding marine environment, and therefore foraminiferal geochemistry provides a means of palaeo-oceanographic reconstructions. With the availability of high-spatial-resolution instrumentation with high precision, foraminiferal geochemistry has become a major research topic over recent years. However, reconstructions of past bottom-water oxygenation using foraminiferal tests remain in their infancy. In this study we explore the potential of using Mn / Ca determined by secondary ion mass spectrometry (SIMS) as well as by flow-through inductively coupled plasma optical emission spectroscopy (FT-ICP-OES) in the benthic foraminiferal species Eubuliminella exilis as a proxy for recording changes in bottom-water oxygen conditions in the low-latitude NE Atlantic upwelling system. Furthermore, we compare the SIMS and FT-ICP-OES results with published Mn sediment bulk measurements from the same sediment core. This is the first time that benthic foraminiferal Mn / Ca is directly compared with Mn bulk measurements, which largely agree on the former oxygen conditions. Samples were selected to include different productivity regimes related to Marine Isotope Stage 3 (35-28 ka), the Last Glacial Maximum (28-19 ka), Heinrich Event 1 (18-15.5 ka), Bølling Allerød (15.5-13.5 ka) and the Younger Dryas (13.5-11.5 ka). Foraminiferal Mn / Ca determined by SIMS and FT-ICP-OES is comparable. Mn / Ca was higher during periods with high primary productivity, such as during the Younger Dryas, which indicates low-oxygen conditions. This is further supported by the benthic foraminiferal faunal composition. Our results highlight the proxy potential of Mn / Ca in benthic foraminifera from upwelling systems for reconstructing past variations in oxygen conditions of the sea floor environment as well as the need to use it in combination with other proxy records such as faunal

  2. Effects of Al2O3 and MgO on Softening, Melting, and Permeation Properties of CaO-FeO-SiO2 on a Coke Bed

    NASA Astrophysics Data System (ADS)

    Ueda, Shigeru; Kon, Tatsuya; Miki, Takahiro; Kim, Sun-Joong; Nogami, Hiroshi

    2016-08-01

    In ironmaking, maintaining gas permeability in blast furnace with low coke rate operation is essential to reduce carbon emissions. The high pressure loss in the cohesive zone decreases the gas permeability and affects the productivity of blast furnace. In order to increase the gas permeability in the cohesive zone, the thickness of the cohesive layer should be decreased. For this purpose, increasing softening temperature and decreasing dripping temperature of the iron ore are desired. In this study, softening, melting, and permeation of SiO2-FeO-CaO-Al2O3-MgO on a coke bed were investigated. The oxide sample in a tablet form was heated under CO/CO2 atmosphere, and the shape of the tablet was observed. The softening and melting temperatures of the SiO2-FeO-CaO system changed with the addition of Al2O3 and MgO. Oxide tablets with and without Al2O3 softened below and above the solidus temperature, respectively. The melting temperatures varied with the ratio of CO/CO2 in the gas. The permeation temperature was independent of the melting temperature, but dependent on the wettability.

  3. Quasi-Chemical Viscosity Model for Fully Liquid Slag in the Al2O3-CaO-MgO-SiO2 System—Part I: Revision of the Model

    NASA Astrophysics Data System (ADS)

    Suzuki, Masanori; Jak, Evgueni

    2013-12-01

    A model has been developed that enables the viscosities of the fully liquid slag in the multi-component Al2O3-CaO-FeO-Fe2O3-MgO-Na2O-SiO2 system to be predicted within experimental uncertainties over a wide range of compositions and temperatures. The Eyring equation is used to express viscosity as a function of temperature and composition. The model links the activation and pre-exponential energy terms in the viscosity expression to the slag internal structure through the concentrations of various Si0.5O, , and viscous flow structural units (SUs). The concentrations of these SUs are derived from a quasi-chemical thermodynamic model of the liquid slag using the thermodynamic computer package FactSage. The model describes a number of slag viscosity features including the charge compensation effect specific for the Al2O3-containing systems. The predictive capability of the model is enhanced by the physical aspects of the model parameters—the correlation with other physicochemical properties as well as experimental viscosity data is used to determine model parameters. The present series of two papers outlines (a) recent significant improvements introduced into the model formalism and (b) application of the model to the Al2O3-CaO-MgO-SiO2 system, review of experimental viscosity data, and optimization of the corresponding model parameters for this system.

  4. Genetic relationship between Na-rich chondrules and Ca,Al-rich inclusions? - Formation of Na-rich chondrules by melting of refractory and volatile precursors in the solar nebula

    NASA Astrophysics Data System (ADS)

    Ebert, Samuel; Bischoff, Addi

    2016-03-01

    Al-rich objects (Ca,Al-rich inclusions (CAIs), Al-rich chondrules, Al-rich fragments) occur in all chondrite classes. These objects can be centimeter-sized in CV3 carbonaceous chondrites, but they are generally much smaller in other chondrite groups and classes. Within the ordinary chondrites, most Al-rich objects are chondrules that vary from Ca- to Na-rich. Here, we have investigated the mineralogy and major element chemistry of 32 Na-rich chondrules and 3 Na-rich fragments from 15 different chondrites. Most objects (chondrules and chondrule fragments) are from ordinary chondrites (petrologic types 3.2-3.8), but two of the chondrules are from two CO3 chondrites, and three of the chondrules are from one Rumuruti (R)-chondrite. We found that these Na-rich objects have bulk Na2O-concentrations between 4.3 and 15.2 wt%. Texturally, they typically consist of euhedral to subhedral (often skeletal) mafic minerals (olivine and pyroxenes) embedded within a nepheline-normative, glassy mesostasis, which is brownish in transmitted light. In addition, some chondrules contain euhedral to subhedral spinel. Bulk chondrule compositions show group II, group III, and ultrarefractory rare earth element (REE) patterns similar to those found in CAIs. These results clearly demonstrate that the Na-rich chondrules must have been formed by melting of precursors containing an (ultra-)refractory element-rich component and Na-rich constituents. The Na-rich chondrules showed Sm and Eu anomalies, indicating that they must have formed at low oxygen fugacities. Based on the chemical composition of the Na-rich objects, we can rule out that they were formed as a result of planetary formation due to metasomatic processes or processes related to collisions between molten planetesimals.

  5. Facile synthesis of Ca{sub 0.68}Si{sub 9}Al{sub 3}(ON){sub 16}:Eu{sup 2+} microbelts mat with the enhanced fluorescence and mechanical performance

    SciTech Connect

    Zhao, Hailei; Cui, Bo; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2016-01-15

    Yellow-emitting phosphor mat consisting of Ca{sub 0.68}Si{sub 9}Al{sub 3}(ON){sub 16}:Eu{sup 2+} microbelts was prepared by electrospinning and subsequent nitridation. The as-prepared fiber precursor is smooth and uniform with diameter of 800 to 900 nm. After removing organic templates and nitridation, the morphology of the fiber is well retained and thus a smooth microbelts phosphor mat was obtained. X-ray diffraction and the photoluminescence (PL) spectra reveals that a relatively pure Ca{sub 0.68}Si{sub 9}Al{sub 3}(ON){sub 16} phase and the highest spectral intensity could be obtained at a relatively low temperature of 1500 °C and Eu{sup 2+} doping molar concentration of 0.1. The excitation spectra exhibits a broad band, ranging from 300 to 550 nm, which could be excited by blue LED chip at room temperature. The emission spectra of all exhibits a single broad band in the 400 to 700 nm region, with the maximum intensity always being at 580 nm. The Ca{sub 0.68}Si{sub 9}Al{sub 3}(ON){sub 16}:Eu{sup 2+} microbelts phosphor mat has the bending strength about 4.5 MPa with a photoluminescence quantum yield as high as 65%. By employing it as yellow phosphor, a high-performance warm white LED could be fabricated with low correlated color temperature (2985 K), high-color-rendering index (Ra=86) and luminous efficacy of 129.5 lm W{sup −1}. Different color temperatures also could be tuned by employing microbelts phosphor mats with different thicknesses. - Graphical abstract: Yellow-emitting phosphor mat consisting of Ca{sub 0.68}Si{sub 9}Al{sub 3}(ON){sub 16}:Eu{sup 2+} microbelts fibers were prepared by electrospinning the fiber precursor and subsequent nitridation. Because the good mechanical strength it could be utilized to realize LEDs remote packaging. By employing it as yellow phosphor, a high-performance warm white LED could be fabricated. Different color temperatures also could be tuned by employing microbelts phosphor mats with different thicknesses

  6. Optimization of Al2O3 and Li3BO3 Content as Sintering Additives of Li7- x La2.95Ca0.05ZrTaO12 at Low Temperature

    NASA Astrophysics Data System (ADS)

    Rosero-Navarro, Nataly Carolina; Miura, Akira; Higuchi, Mikio; Tadanaga, Kiyoharu

    2017-01-01

    Simultaneous effect of Al2O3 and Li3BO3 additions on sintering behavior and Li-ion conductivity of Li7- x La2.95Ca0.05ZrTaO12 (LLCZT) garnet electrolyte sintered at 900°C (10 h) is evaluated. The crystal phase and microstructure of the different composites were evaluated by x-ray diffraction and scanning electron microscopy (SEM), respectively. Electrical properties of the composites with high relative densities (95%) were examined by impedance spectroscopy. The cubic phase was formed for LLCZT sintered with 0-0.21 mol of Al2O3 and 0.70 mol-0.80 mol of Li3BO3. The excess of Al2O3 (0.22 mol) led to the formation of secondary phases. SEM observation revealed the good interconnection between LLCZT grains and the distribution of the glassy phase formed by Li3BO3 and Al2O3. Effective combination of 0.21 mol of Al2O3 and 0.80 mol of Li3BO3 produced denser material with high relative density of 95% and high Li-ion conduction of 1 × 10-4 S/cm at 32°C.

  7. An analysis of point defects induced by In, Al, Ni, and Sn dopants in Bridgman-grown CdZnTe detectors and their influence on trapping of charge carriers

    NASA Astrophysics Data System (ADS)

    Gul, R.; Roy, U. N.; James, R. B.

    2017-03-01

    In this research, we studied point defects induced in Bridgman-grown CdZnTe detectors doped with Indium (In), Aluminium (Al), Nickel (Ni), and Tin (Sn). Point defects associated with different dopants were observed, and these defects were analyzed in detail for their contributions to electron/hole (e/h) trapping. We also explored the correlations between the nature and abundance of the point defects with their influence on the resistivity, electron mobility-lifetime (μτe) product, and electron trapping time. We used current-deep level transient spectroscopy to determine the energy, capture cross-section, and concentration of each trap. Furthermore, we used the data to determine the trapping and de-trapping times for the charge carriers. In In-doped CdZnTe detectors, uncompensated Cd vacancies (VCd-) were identified as a dominant trap. The VCd- were almost compensated in detectors doped with Al, Ni, and Sn, in addition to co-doping with In. Dominant traps related to the dopant were found at Ev + 0.36 eV and Ev + 1.1 eV, Ec + 76 meV and Ev + 0.61 eV, Ev + 36 meV and Ev + 0.86 eV, Ev + 0.52 eV and Ec + 0.83 eV in CZT:In, CZT:In + Al, CZT:In + Ni, and CZT:In + Sn, respectively. Results indicate that the addition of other dopants with In affects the type, nature, concentration (Nt), and capture cross-section (σ) and hence trapping (tt) and de-trapping (tdt) times. The dopant-induced traps, their corresponding concentrations, and charge capture cross-section play an important role in the performance of radiation detectors, especially for devices that rely solely on electron transport.

  8. Thermodynamic data of lawsonite and zoisite in the system CaO-Al2O3-SiO2-H2O based on experimental phase equilibria and calorimetric work

    NASA Astrophysics Data System (ADS)

    Grevel, Klaus-Dieter; Schoenitz, Mirko; Skrok, Volker; Navrotsky, Alexandra; Schreyer, Werner

    2001-08-01

    The enthalpy of drop-solution in molten 2PbO.B2O3 of synthetic and natural lawsonite, CaAl2(Si2O7)(OH)2.H2O, was measured by high-temperature oxide melt calorimetry. The enthalpy of formation determined for the synthetic material is ΔfHOxides=-168.7+/-3.4 kJ mol-1, or ΔfH0298=-4,872.5+/-4.0 kJ mol-1. These values are in reasonable agreement with previously published data, although previous calorimetric work yielded slightly more exothermic data and optimisation methods resulted in slightly less exothermic values. The equilibrium conditions for the dehydration of lawsonite to zoisite, kyanite and quartz/coesite at pressures and temperatures up to 5 GPa and 850 °C were determined by piston cylinder experiments. These results, other recent phase equilibrium data, and new calorimetric and thermophysical data for lawsonite and zoisite, Ca2Al3(SiO4)(Si2O7)O(OH), were used to constrain a mathematical programming analysis of the thermodynamic data for these two minerals in the chemical system CaO-Al2O3-SiO2-H2O (CASH). The following data for lawsonite and zoisite were obtained: ΔfH0298 (lawsonite)=-4,865.68 kJ mol-1 , S0298 (lawsonite)=229.27 J K-1 mol-1 , ΔfH0298 (zoisite)=-6,888.99 kJ mol-1 , S0298 (zoisite)=297.71 J K-1 mol-1 . Additionally, a recalculation of the bulk modulus of lawsonite yielded K=120.7 GPa, which is in good agreement with recent experimental work.

  9. Soft X-ray absorption spectroscopy of La{sub 0.7}Ca{sub 0.3}Mn{sub 1−X}Al{sub X}O{sub 3} thin films

    SciTech Connect

    Kumar, Manish Choudhary, R. J. Phase, D. M.

    2014-04-24

    Epitaxial thin films of rare earth manganites have generated much attention recently due to their rich phase diagram. The electronic structure of these films is playing a very crucial role and demands a fundamental understanding prior to device fabrication. We have investigated the electronic structure of La{sub 0.7}Ca{sub 0.3}Mn{sub 1−X}Al{sub X}O{sub 3} (X=0, 0.15) epitaxial thin films by soft X-ray absorption spectroscopy technique using the surface sensitive total electron yield (TEY) mode.

  10. Arrays of ZnO/AZO (Al-doped ZnO) nanocables: a higher open circuit voltage and remarkable improvement of efficiency for CdS-sensitized solar cells.

    PubMed

    Deng, Jianping; Wang, Minqiang; Liu, Jing; Song, Xiaohui; Yang, Zhi

    2014-03-15

    Photoelectrode of nanocables (NCs) structure of ZnO nanowires (NWs) coated with Al-doped ZnO (AZO) shells was investigated for CdS quantum dots sensitized solar cells (QDSSCs). ZnO NWs serve as the frame for the preparation of AZO shells, in which electron transport more rapidly due to the more higher electron mobility of AZO (n-ZnO) than that of i-ZnO. AZO shells were assembled onto the surface of ZnO NWs via a spin-coating method. Optical band-gap of the ZnO/AZO films varies from 3.19 eV for pure ZnO to 3.25 eV for AZO (15%) depending on the Al-doping concentration. The PL intensity of AZO/ZnO, V(oc), J(sc) and η of the cells first increased and then decreased with the increase in the Al-doping (from 0% to 20%) and post-annealed temperature. Remarkably, the value of V(oc) can achieve above 0.8 V after Al-doping. The dark current and absorption spectrum provided direct evidence of the increase in J(sc) and V(oc), respectively. Moreover, we discussed the effect of Al-doping on optical band-gap of the samples and the transfer of electron.

  11. Superspin glassy behaviour of La{sub 0.7}Ca{sub 0.3}Mn{sub 0.85}Al{sub 0.15}O{sub 3} thin film

    SciTech Connect

    Kumar, Manish; Choudhary, R. J. Shukla, D. K.; Phase, D. M.

    2014-07-21

    Here, we present the low temperature magnetic behaviour of epitaxial La{sub 0.7}Ca{sub 0.3}Mn{sub 0.85}Al{sub 0.15}O{sub 3} (LCMAO) thin film through a series of DC magnetic measurements. Overall behaviour inferred from the magnetization measurements indicate that the magnetic phases created due to Al doping induced inhomogeneous distribution of Mn{sup 3+} and Mn{sup 4+} ions and oxygen vacancies present in the system act like superspins, and the strong interaction among themselves results in the superspin glassy behaviour. Interactions among the superspins are marked by the aging and zero filed memory effects. The glassy magnetic phase in LCMAO is found to follow the hierarchical model of spin glasses.

  12. Hydrothermal synthesis and the crystal structure of borate cancrinite (Na,Ca){sub 2}[Na{sub 6}(AlSiO{sub 4}){sub 6}](BO{sub 3}) . 2H{sub 2}O

    SciTech Connect

    Shirinova, A. F. Khrustalev, V. N.; Samedov, H. R.; Chiragov, M. I.

    2006-01-15

    Transparent prismatic single crystals of borate cancrinite (Na,Ca){sub 2}[Na{sub 6}(AlSiO{sub 4}){sub 6}](BO{sub 3}) . 2H{sub 2}O are prepared through hydrothermal crystallization. The parameters of the hexagonal unit cell and intensities of 10806 reflections are measured on an Enraf-Nonius CAD4 automated diffractometer. The compound crystallizes in the hexagonal crystal system with the unit cell parameters a = 12.745(4) A, c = 5.180(2) A, V = 728.6(4) A{sup 3}, and space group P6{sub 3}. The structure is determined by direct methods and refined using the full-matrix least-squares procedure in the anisotropic approximation for the non-hydrogen atoms. The refinement of the structure is performed to the final discrepancy factor R{sub 1} = 0.027 for 2889 unique reflections with I > 2 {sigma} (I). In the structure of the borate cancrinite, the AlO{sub 4} and SiO{sub 4} tetrahedra form a zeolite-like framework in which twelve-membered hexagonal channels are occupied by sodium atoms and BO{sub 3} groups, whereas six-membered channels are filled with sodium and calcium atoms and water molecules. The mean interatomic distances are found to be as follows: (Si-O){sub mean} = 1.614 A and (Al-O){sub mean} = 1.741 A in the AlO{sub 4} and SiO{sub 4} tetrahedra, (Na-O){sub mean} = 2.542 A in the seven-vertex sodium polyhedra, and [(Na,Ca)-O]{sub mean} = 2.589 A in the ditrigonal bipyramids.

  13. Study on electrical properties of Al/Cu(In,Ga)Se2 Schottky junction and ZnO/CdS/Cu(In,Ga)Se2 heterojunction using admittance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakurai, T.; Ishida, N.; Ishizuka, S.; Matsubara, K.; Sakurai, K.; Yamada, A.; Paul, G. K.; Akimoto, K.; Niki, S.

    2006-09-01

    The electrical properties of Al/Cu(In,Ga)Se2 (Al/CIGSe) Schottky junction and ZnO/CdS/CIGSe heterojunction were studied by admittance spectroscopy. Three distinct peaks (peaks , , and ) were detected from all the CIGSe samples. The activation energies for the traps corresponding to peaks and were estimated to be approximately 10 meV and 300 meV, respectively. The peak may be due to the shallow acceptor, and peaks and may be due to defects in the CIGSe layer. The characteristics of the peak have close correlation with the surface potential of the CIGSe layer. Therefore, the peak may be caused by traps such as grain boundary defects near the surface of the CIGSe layer.

  14. Phase Relations and Elemental Distribution Among Co-Existing Phases in the Ceramics of the Pseudobinary System CaZrTi{sub 2}O{sub 7}-LnAlO{sub 3} (Ln= Nd, Sm)

    SciTech Connect

    Mikhailenko, Natalia; Stefanovsky, Sergey

    2007-07-01

    In the ceramics in series (1-x) CaZrTi{sub 2}O{sub 7} - x NdAlO{sub 3} and (1-x) CaZrTi{sub 2}O{sub 7} - x SmAlO{sub 3} (x = 0.25, 0.5 and 0.75) produced by cold pressing and sintering at 1400, 1450 and 1500 deg. C zirconolite was found to be a major phase, perovskite was an extra phase and traces of residual baddeleyite occurred. At x = 0.75 the perovskite was major phase and zirconolite and cubic oxide of fianite or tazheranite type were extra phases. Major Nd and Sm host phase at x = 0.25 was found to be zirconolite (about 65% of total Nd{sub 2}O{sub 3} and 74% of total Sm{sub 2}O{sub 3}). With the x value increasing perovskite becomes major host phase for Nd and Sm accumulating of up to about 92% of total Nd and about 72% of total Sm. As follows from SEM/EDS data Nd and Sm contents in the zirconolite may reach {approx}1 formula unit (fu). (authors)

  15. Phase Relations and Elemental Distributions in the Ceramics of the Pseudo-Binary Systems CaZrTi{sub 2}O{sub 7} - LnAlO{sub 3} (Ln = Eu, Gd)

    SciTech Connect

    Mikhailenko, N.S.; Stefanovsky, S.V.; Ochkin, A.V.; Lapina, M.I.

    2007-07-01

    Zirconolite and perovskite were found to be major and minor phases respectively in the ceramics of the series (1-x) CaZrTi2O{sub 7} - x EuAlO{sub 3} and (1-x) CaZrTi{sub 2}O{sub 7} - x GdAlO{sub 3} (x = 0.25; 0.5; 0.75) produced by cold pressing and sintering at 1400, 1450 and 1500 deg. C. Zirconolite and cubic fianite-type oxide (in the Eu-bearing ceramics) were extra phases. At x = 0.25 major host phase for Eu and Gd is zirconolite accumulating of up to 90% of total Eu and Gd. With increase x value to 0.5 zirconolite remains major host phase for both Eu and Gd and accommodates almost 70% of total Eu{sub 2}O{sub 3} and about 60% of total Gd{sub 2}O{sub 3}. Perovskite becomes major phase for both Eu{sub 2}O{sub 3} and Gd{sub 2}O{sub 3} at x = 0.75 accumulating of about 66% of total Gd{sub 2}O{sub 3}. As follows from SEM/EDS data Eu and Gd contents in the zirconolite may exceed {approx}1 formula units, therefore, zirconolite ceramics may be effective matrices for actinide fraction of HLW where Am and Cm are dominant because their crystal chemical behavior is similar to behavior of Gd. (authors)

  16. Pressure induced insulator-metal transition and giant negative piezoresistance in Pr0.6Ca0.4Mn0.96Al0.04O3 polycrystal

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Thiyagarajan, R.; Kalaiselvan, G.; Sivaprakash, P.

    2016-11-01

    The effect of external hydrostatic pressure (P) on the magnetization (M) and resistivity (ρ) properties of charge-orbital (CO) ordered-insulating phase-separated manganite Pr0.6Ca0.4Mn0.96Al0.04O3 system is reported here. At ambient P, CO ordering transition and spin-canting in the AFM are observed at 223 K and 55 K respectively in M(T) and ρ(T) measurements. Application of P increases simultaneously the magnitude of magnetization (M) and transition temperature, and weakens the CO ordering in M(T) measurements up to 0.98 GPa. During ρ(T) measurements, P induces an insulator-metallic transition (TIM) at 1.02 GPa, and further increase of P up to 2.84 GPa leads to increase of TIM (dTIM/dP =21.6 K/GPa). ρ at TIM is reduced about three orders of magnitude at 2.84 GPa, and leads to the giant negative piezoresistance (~98%). These results are analyzed separately in two temperature regions i.e., below and above TIM by power function equation and small polaronic hopping model respectively. It is understood from these analyses that the application of P suppresses the Jahn-Teller distortions, electron-electron and electron-magnon scattering factors, and induces the insulator-metal transition in Pr0.6Ca0.4Mn0.96Al0.04O3 system.

  17. Heterogeneous reaction of acetic acid on MgO, α-Al2O3, and CaCO3 and the effect on the hygroscopic behaviour of these particles.

    PubMed

    Ma, Qingxin; Liu, Yongchun; Liu, Chang; He, Hong

    2012-06-21

    Mixtures of organic compounds with mineral dust are ubiquitous in the atmosphere, whereas the formation pathways and hygroscopic behavior of these mixtures are not well understood. In this study, in situ DRIFTS, XRD, and a vapor sorption analyzer were used to investigate the heterogeneous reaction of acetic acid on α-Al(2)O(3), MgO, and CaCO(3) particles under both dry and humid conditions while the effect of reactions on the hygroscopic behavior of these particles was also measured. In all cases, formation of acetate is significantly enhanced in the presence of surface water. However, the reaction extent varied with the mineral phase of these particles. For α-Al(2)O(3), the reaction is limited to the surface with the formation of surface coordinated acetate under both dry and humid conditions. For MgO, the bulk of the particle is involved in the reaction and Mg(CH(3)COO)(2) is formed under both dry and humid conditions, although it exhibits a saturation effect under dry conditions. In the case of CaCO(3), acetic acid uptake is limited to the surface under dry conditions while it leads to the decomposition of the bulk of CaCO(3) under humid conditions. While coordinated surface acetate species increased the water adsorption capacity slightly, the formation of bulk acetate promoted the water absorption capacity greatly. This study demonstrated that heterogeneous reaction between CH(3)COOH and mineral dust is not only an important sink for CH(3)COOH, but also has a significant effect on the hygroscopic behavior of mineral dust.

  18. Experimental investigation of zoisite-clinozoisite phase equilibria in the system CaO-Fe2O3-Al2O3-SiO2-H2O

    NASA Astrophysics Data System (ADS)

    Brunsmann, A.; Franz, G.; Heinrich, W.

    2002-01-01

    The system Ca2Al3Si3O11(O/OH)-Ca2Al2FeSi3O11(O/OH), with emphasis on the Al-rich portion, was investigated by synthesis experiments at 0.5 and 2.0 GPa, 500-800 °C, using the technique of producing overgrowths on natural seed crystals. Electron microprobe analyses of overgrowths up to >100 µm wide have located the phase transition from clinozoisite to zoisite as a function of P-T-Xps and a miscibility gap in the clinozoisite solid solution. The experiments confirm a narrow, steep zoisite-clinozoisite two-phase loop in T-Xps section. Maximum and minimum iron contents in coexisting zoisite and clinozoisite are given by $X{ ps}{ zo} (max) = 1.9*10{ - 4} T+ 3.1*10{ - 2} P - 5.36*10{ - 2} and X{ ps}{ czo} (min) = (4.6 * 10{ - 4} - 4 * 10{ - 5} P)T + 3.82 * 10{ - 2} P - 8.76 * 10{ - 2} $ (P in GPa, T in °C). The iron-free end member reaction clinozoisite = zoisite has equilibrium temperatures of 185+/-50 °C at 0.5 GPa and 0+/-50 °C at 2.0 GPa, with ΔHr0=2.8+/-1.3 kJ/mol and ΔSr0=4.5+/-1.4 J/mol×K. At 0.5 GPa, two clinozoisite modifications exist, which have compositions of clinozoisite I 0.15 to 0.25 Xps and clinozoisite II >0.55 Xps. The upper thermal stability of clinozoisite I at 0.5 GPa lies slightly above 600 °C, whereas Fe-rich clinozoisite II is stable at 650 °C. The schematic phase relations between epidote minerals, grossular-andradite solid solutions and other phases in the system CaO-Al2O3-Fe2O3-SiO2-H2O are shown.

  19. Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress.

    PubMed

    Wang, Feijuan; Wang, Min; Liu, Zhouping; Shi, Yan; Han, Tiqian; Ye, Yaoyao; Gong, Ning; Sun, Junwei; Zhu, Cheng

    2015-11-01

    Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. The accumulation of Cd in rice grains is a major agricultural problem in regions with Cd pollution. A hydroponics experiment using low grain-Cd-accumulating rice (xiushui 11) and high grain-Cd-accumulating rice (xiushui 110) was carried out to characterize the different responses of rice cultivars to Cd stress. We found that xiushui 11 was more tolerant to Cd than xiushui 110, and xiushui 11 suffered less oxidative damage. Cell walls played an important role in limiting the amount of Cd that entered the protoplast, especially in xiushui 11. Cd stored in organelles as soluble fractions, leading to greater physiological stress of Cd detoxification. We found that Cd can disturb the ion homeostasis in rice roots because Cd(2+) and Ca(2+) may have a similar uptake route. Xiushui 11 had a faster root-to-shoot transport of Cd, and the expression level of OsPCR1 gene which was predicted related with Cd accumulation in rice was consist with the Cd transport of root-to-shoot in rice and maintain the greater Cd tolerance of xiushui 11. These results suggest there are different Cd detoxification and accumulation mechanisms in rice cultivars.

  20. Lattice constant grading in the Al.sub.y Ca.sub.1-y As.sub.1-x Sb.sub.x alloy system

    DOEpatents

    Moon, Ronald L.

    1981-01-01

    Liquid phase epitaxy is employed to grow a lattice matched layer of GaAsSb on GaAs substrates through the compositional intermediary of the III-V alloy system AlGaAsSb which acts as a grading layer. The Al constituent reaches a peak atomic concentration of about 6% within the first 2.5.mu.m of the transition layer, then decreases smoothly to about 1% to obtain a lattice constant of 5.74 A. In the same interval the equilibrium concentration of Sb smoothly increases from 0 to about 9 atomic percent to form a surface on which a GaAsSb layer having the desired energy bandgap of 1.1 ev for one junction of an optimized dual junction photovoltaic device. The liquid phase epitaxy is accomplished with a step cooling procedure whereby dislocation defects are more uniformly distributed over the surface of the growing layer.

  1. Alloriite, Na5K1.5Ca(Si6Al6O24)(SO4)(OH)0.5 · H2O, a new mineral species of the cancrinite group

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Rastsvetaeva, R. K.; Pekov, I. V.; Zadov, A. E.

    2007-12-01

    Alloriite, a new mineral species, has been found in volcanic ejecta at Mt. Cavalluccio (Campagnano municipality, Roma province, Latium region, Italy) together with sanidine, biotite, andradite, and apatite. The mineral is named in honor of Roberto Allori (b. 1933), an amateur mineralogist and prominent mineral collector who carried out extensive and detailed field mineralogical investigations of volcanoes in the Latium region. Alloriite occurs as short prismatic and tabular crystals up to 1.5 × 2 mm in size. The mineral is colorless, transparent, with a white streak and vitreous luster. Alloriite is not fluorescent and brittle; the Mohs’ hardness is 5. The cleavage is imperfect parallel to {10overline 1 0}. The density measured with equilibration in heavy liquids is 2.35g/cm3 and calculated density ( D calc) is 2.358 g/cm3 (on the basis of X-ray single-crystal data) and 2.333 g/cm3 (from X-ray powder data). Alloriite is optically uniaxial, positive, ω = 1.497(2), and ɛ = 1.499(2). The infrared spectrum is given. The chemical composition (electron microprobe, H2O determined using the Penfield method, CO2, with selective sorption, wt %) is: 13.55 Na2O, 6.67 K2O, 6.23 CaO, 26.45 Al2O3, 34.64 SiO2, 8.92 SO3, 0.37 Cl, 2.1 H2O, 0.7 CO2, 0.08-O = Cl2, where the total is 99.55. The empirical formula ( Z = 1) is Na19.16K6.21Ca4.87(Si25.26Al22.74O96)(SO4)4.88(CO3)0.70Cl0.46(OH)0.76 · 4.73H2O. The simplified formula (taking into account the structural data, Z = 4) is: [Na(H2O)][Na4K1.5(SO4)] · [Ca(OH,Cl)0.5](Si6Al6O24). The crystal structure has been studied ( R = 0.052). Alloriite is trigonal, the space group is P31 c; the unit-cell dimensions are a = 12.892(3), c = 21.340(5) Å, and V = 3071.6(15) Å3. The crystal structure of alloriite is based on the same tetrahedral framework as that of afghanite. In contrast to afghanite containing clusters [Ca-Cl]+ and chains ...Ca-Cl-Ca-Cl..., the new mineral contains clusters [Na-H2O]+ and chains ...Na-H2O-Na-H2O.... The

  2. Dehydration and partial melting of tremolitic amphibole coexisting with zoisite, quartz, anorthite, diopside, and water in the system H2O-CaO-MgO-Al2O3-SiO2

    NASA Astrophysics Data System (ADS)

    Quirion, Diane M.; Jenkins, David M.

    The greenschist to amphibolite transition as modeled by the reaction zoisite+tremolite + quartz= anorthite+diopside+water has been experimentally investigated in the chemical system H2O-CaO- MgO-Al2O3-SiO2 over the range of 0.4-0.8 GPa. This reaction is observed to lie within the stability fields of anorthite + water and of zoisite + quartz, in accord with phase equilibrium principles, and its position is in excellent agreement with the boundary calculated from current internally-consistent data bases. The small dP/dT slope of 0.00216 GPa/K (21.6 bars/K) observed for this reaction supports the pressure-dependency of this transition in this chemical system. Experimental reversals of the Al content in tremolitic amphibole coexisting with zoisite, diopside, quartz, and water were obtained at 600, 650, and 700°C and indicated Al total cations (atoms per formula unit, apfu) of only up to 0.5+/-0.08 at the highest temperature. Thermodynamic analysis of these and previous compositional reversal data for tremolitic amphibole indicated that, of the activity/composition relationships considered, a two-site-coupled cation substitution model yielded the best fit to the data and a S0 (1 bar, 298 K) of 575.4+/-1.6 J/K.mol for magnesio-hornblende. The calculated isopleths of constant Al content in the amphibole are relatively temperature sensitive with Al content increasing with increasing temperature and pressure. Finally, several experiments in the range of 1.0-1.3 GPa were conducted to define the onset of melting, and thus the upper-thermal limit, for this mineral assemblage, which must involve an invariant point located at approximately 1.05 GPa and 770°C.

  3. Tatarinovite Ca3Al(SO4)[B(OH)4](OH)6 · 12H2O, a new ettringite-group mineral from the Bazhenovskoe deposit, Middle Urals, Russia, and its crystal structure

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Kasatkin, A. V.; Zubkova, N. V.; Britvin, S. N.; Pautov, L. A.; Pekov, I. V.; Varlamov, D. A.; Bychkova, Ya. V.; Loskutov, A. B.; Novgorodova, E. A.

    2016-12-01

    A new mineral, tatarinovite, ideally Ca3Al(SO4)[B(OH)4](OH)6 · 12H2O, has been found in cavities of rhodingites at the Bazhenovskoe chrysotile asbestos deposit, Middle Urals, Russia. It occurs (1) colorless, with vitreous luster, bipyramidal crystals up to 1 mm across in cavities within massive diopside, in association with xonotlite, clinochlore, pectolite and calcite, and (2) as white granular aggregates up to 5 mm in size on grossular with pectolite, diopside, calcite, and xonotlite. The Mohs hardness is 3; perfect cleavage on (100) is observed. D meas = 1.79(1), D calc = 1.777 g/cm3. Tatarinovite is optically uniaxial (+), ω = 1.475(2), ɛ = 1.496(2). The IR spectrum contains characteristic bands of SO4 2-, CO3 2-, B(OH)4 -, B(OH)3, Al(OH)6 3-, Si(OH)6 2-, OH-, and H2O. The chemical composition of tatarinovite (wt %; ICP-AES; H2O was determined by the Alimarin method; CO2 was determined by selective sorption on askarite) is as follows: 27.40 CaO, 4.06 B2O3, 6.34 A12O3, 0.03 Fe2O3, 2.43 SiO2, 8.48 SO3, 4.2 CO2, 46.1 H2O, total is 99.04. The empirical formula (calculated on the basis of 3Ca apfu) is H31.41Ca3.00(Al0.76Si0.25)Σ1.01 · (B0.72S0.65C0.59)Σ1.96O24.55. Tatarinovite is hexagonal, space gr. P63, a = 11.1110(4) Å, c = 10.6294(6) Å, V = 1136.44(9) A3, Z = 2. Its crystal chemical formula is Ca3(Al0.70Si0.30) · {[SO4]0.34[B(OH)4]0.33[CO3]0.24}{[SO4]0.30[B(OH)4]0.34[CO3]0.30[B(OH)3]0.06}(OH5·73O0.27) · 12H2O. The strongest reflections of the powder X-ray diffraction pattern [ d, Å ( I, %) ( hkl)] are 9.63 (100) (100), 5.556 (30) (110), 4.654 (14) (102), 3.841 (21) (112), 3.441 (12) (211), 2.746 (10) (302), 2.538 (12) (213). Tatarinovite was named in memory of the Russian geologist and petrologist Pavel Mikhailovich Tatarinov (1895-1976), a well-known specialist in chrysotile asbestos deposits. Type specimens have been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow.

  4. A thermodynamic model for subsolidus equilibria in the system CaO-MgO-Al2O3-SiO2

    NASA Technical Reports Server (NTRS)

    Wood, B. J.; Holloway, J. R.

    1984-01-01

    It is shown that the high temperature enthalpy of solution data for pure phases and solid solutions in the CMAS system are, for 'gabbroic' and 'peridotitic' compositions, consistent with available phase equilibrium data for the MAS, CAS and CMAS systems. A refined set of values of thermodynamic properties for these phases and solid solutions is tabulated. The small differences between the new data set and that of Helgeson et al. (1978) arise from new data on heat capacity and enthalpy being incorporated. The important constraints applied and the major difficulties in fitting which arose are summarized.

  5. Pronounced matrix effect in YbMo{sub 2}Al{sub 4}-type Ca(Au{sub x}Zn{sub 2−x})Au{sub 4} (x=0.09–0.89)

    SciTech Connect

    Mishra, Trinath; Lin, Qisheng; Corbett, John D.

    2014-10-15

    Electron-poor polar intermetallics Ca(Au{sub x}Zn{sub 2−x})Au{sub 4} have been synthesized through fusion of stoichiometric metals in sealed tantalum tubes at 800 °C and annealing at 400 °C for one week. Single crystal X-ray diffraction analyses reveal that this phase belongs to the YbMo{sub 2}Al{sub 4}-type structure (I4/mmm, Pearson symbol tI14), a≈6.943–7.017 Å, c≈5.278–5.286 Å, Z=2, with homogeneous composition range of x=0.09(1)–0.89(1). The structure exhibits a three-dimensional framework of (Au{sub 8}){sub 1/2} featuring square and octagonal channels extending in c, in which Ca and the infinite linear chains of [(Au,Zn){sub 2}]{sub 1/2} are located, respectively. Mulliken population analyses demonstrate that Zn prefers to form the linear chains in the whole homogeneous composition range, consistent with experimental observations. Crystal orbital Hamilton population (COHP) analyses reveal that the channel-to-chain Au–Zn contact has strong bonding interactions regardless of its large interatomic distance (∼2.85 Å), a signature of pronounced matrix effect. The last mentioned effect in YbMo{sub 2}Al{sub 4}-type structures is expected in case the linear chains are defined by small size atoms. - Graphical abstract: Pronounced matrix effect incurred by Au–Au bonding within the gold substructure in Ca(Au{sub x}Zn{sub 2−x})Au{sub 4} results in an elongation of the channel-to-chain Au–Zn interatomic distance without weakening bonding interactions. - Highlights: • The complete solid solution of Ca(Au{sub x}Zn{sub 2−x})Au{sub 4} was accomplished. • Site preference was explained by “coloring” analyses. • Abnormally large Au–Zn distance but with strong bonding was observed. • Pronounced matrix effect incurred by Au–Au bonding in gold substructure was found.

  6. Uptake of Al, As, Cr, Cd, Cu, Fe, Mn, Ni, Pb, Sr, and Zn in native wheatgrasses, wildryes, and bluegrass on three metal-contaminated soils from Montana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the biggest challenges to successfully phytoremediate contaminated mineland soils is the identification of native plants that possess a broad adaptation to ecological sites and either exclude or uptake heavy metals of interest. This study evaluated forage concentrations of aluminum (Al), ars...

  7. The effect of SiO2/Al2O3 ratio on the structure and microstructure of the glazes from SiO2-Al2O3-CaO-MgO-Na2O-K2O system

    NASA Astrophysics Data System (ADS)

    Partyka, Janusz; Sitarz, Maciej; Leśniak, Magdalena; Gasek, Katarzyna; Jeleń, Piotr

    2015-01-01

    Ceramic glazes are commonly used to covering of the facing surface of ceramics ware. A well-chosen oxide composition and firing conditions of glazes causes significant improvement of technical parameters of ceramic products. Modern glazes are classified as glass-ceramic composites with different crystalline phases arising during firing. The presence of crystals in the glass matrix is influenced by many factors, especially by oxides molar composition. A crucial role is played by the molar ratio of SiO2/Al2O3. In this work the six composition of glazes from SiO2-Al2O3-CaO-MgO-Na2O-K2O system were examined. The only variable is the ratio of the silicon oxideto alumina at a constant content of other components: MgO, CaO, K2O, Na2O, ZnO. In order to determine the real phase composition of the obtained glazes research on fluorescence spectrometer (XRF) were done. For structural studies X-ray diffraction (XRD) and spectroscopic in the middle infrared (MIR) were performed. In order to determine the state of the surface (microstructure) research on the scanning electron microscope (SEM) with EDX. The research allowed to determine the influence of SiO2/Al2O3 ratio on the structure and phase composition of glazes and the nature, and type of formed crystalline phases.

  8. A clear effect of charge compensation through Na{sup +} co-doping on the luminescence spectra and decay kinetics of Nd{sup 3+}-doped CaAl{sub 4}O{sub 7}

    SciTech Connect

    Puchalska, M.; Watras, A.

    2016-06-15

    We present a detailed analysis of luminescence behavior of singly Nd{sup 3+} doped and Nd{sup 3+}, Na{sup +} co-doped calcium aluminates powders: Ca{sub 1−x}Nd{sub x}Al{sub 4}O{sub 7} and Ca{sub 1−2x}Nd{sub x}Na{sub x}Al{sub 4}O{sub 7} (x=0.001–0.1). Relatively intense Nd{sup 3+} luminescence in IR region corresponding to typical {sup 4}F{sub 3/2}→{sup 4}I{sub J} (J=9/2–13/2) transitions with maximum located at about 1079 nm was obtained in all samples on direct excitation into f–f levels. The effect of dopant concentration and charge compensation by co-doping with Na{sup +} ions on morphology and optical properties were studied. The results show that both, the Nd{sup 3+} concentration and the alkali metal co-doping affected the optical properties but had no influence on the powders morphology. The studies of luminescence spectra (298 and 77 K) in a function of dopant concentration showed an increasing distortion of the local symmetry of Nd{sup 3+}with raising activator content due to certain defects created in the crystal lattice. On the other hand Na{sup +} addition led to significant narrowing of absorption and luminescence bands and also a reduction of the number of their components, showing smaller disturbance of Nd{sup 3+} ions local symmetries. Consequently, charge compensated by Na{sup +} co-doping materials showed significantly enhanced Nd{sup 3+} luminescence. The decrease of emission intensity and luminescence lifetimes with increase of activator concentration was attributed mainly to phonon-assisted cross-relaxation processes between Nd{sup 3+} ions. Analysis with Inokuti–Hirayama model indicated dipole–dipole mechanism of ion-ion interaction. Na{sup +} addition led to much smaller concentration quenching due to smaller clustering of dopant ions in CaAl{sub 4}O{sub 7} lattice.

  9. The layered antimonides RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho). Filled derivatives of the CaAl{sub 2}Si{sub 2} structure type

    SciTech Connect

    Schäfer, Marion C.; Suen, Nian-Tzu; Raglione, Michaella; Bobev, Svilen

    2014-02-15

    Reported are the synthesis and the structural characterization of an extended family of rare-earth metal–lithium–antimonides with the formula RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho). They crystallize in the trigonal space group P3{sup ¯}m1 (No. 164, Pearson symbol hP6) with a structure, best viewed as a filled derivative of the common CaAl{sub 2}Si{sub 2} structure type (ternary variant of α-La{sub 2}O{sub 3}). Across the series, the lattice parameters monotonically decrease, following the lanthanide contraction. Temperature-dependent magnetic susceptibility measurements for CeLi{sub 3}Sb{sub 2}, PrLi{sub 3}Sb{sub 2} and TbLi{sub 3}Sb{sub 2} reveal paramagnetic behavior in the high temperature range, and the obtained effective moments are consistent with the expected ones for the free-ion RE{sup 3+} ground state. Possible ferromagnetic ordering for PrLi{sub 3}Sb{sub 2} and antiferromagnetic ordering for TbLi{sub 3}Sb{sub 2} are observed in the low temperature range (below 20 K). Tight-binding muffin-tin orbital electronic band structure calculations for LaLi{sub 3}Sb{sub 2} are presented and discussed as well. - Graphical abstract: The large family of rare-earth metal–lithium–antimonides with the formula RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho) crystallize in the trigonal space group P3{sup ¯}m1 (No. 164, Pearson symbol hP6) with a structure that is a filled derivative of the CaAl{sub 2}Si{sub 2} structure type (ternary variant of α-La{sub 2}O{sub 3}). Display Omitted - Highlights: • RELi{sub 3}Sb{sub 2} (RE=Ce–Nd, Sm, Gd–Ho) constitute an extended family of rare-earth metal–lithium–antimonides. • The layered structure is a filled derivative of the common CaAl{sub 2}Si{sub 2} structure type. • The valence electron count follows the Zintl–Klemm rules. • Electronic band structure calculations for LaLi{sub 3}Sb{sub 2} indicate small band-gap semiconducting behavior.

  10. Effect of Ground Rubber vs. ZnSO4 on Spinach Accumulation of Cd from Cd-Mineralized California Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain soils derived from marine shale in Salinas Valley, CA, USA, contain significant levels of natural Cd but normal levels of Zn, all derived from the soil parent materials. Crops grown on these soils contain high levels of Cd, and because of the high Cd:Zn, this Cd is highly bioavailable and a...

  11. The dynamics of mitochondrial Ca2+ fluxes.

    PubMed

    de la Fuente, Sergio; Montenegro, Pablo; Fonteriz, Rosalba I; Moreno, Alfredo; Lobatón, Carmen D; Montero, Mayte; Alvarez, Javier

    2010-10-01

    We have investigated the kinetics of mitochondrial Ca(2+) influx and efflux and their dependence on cytosolic [Ca(2+)] and [Na(+)] using low-Ca(2+)-affinity aequorin. The rate of Ca(2+) release from mitochondria increased linearly with mitochondrial [Ca(2+)] ([Ca(2+)](M)). Na(+)-dependent Ca(2+) release was predominant al low [Ca(2+)](M) but saturated at [Ca(2+)](M) around 400muM, while Na(+)-independent Ca(2+) release was very slow at [Ca(2+)](M) below 200muM, and then increased at higher [Ca(2+)](M), perhaps through the opening of a new pathway. Half-maximal activation of Na(+)-dependent Ca(2+) release occurred at 5-10mM [Na(+)], within the physiological range of cytosolic [Na(+)]. Ca(2+) entry rates were comparable in size to Ca(2+) exit rates at cytosolic [Ca(2+)] ([Ca(2+)](c)) below 7muM, but the rate of uptake was dramatically accelerated at higher [Ca(2+)](c). As a consequence, the presence of [Na(+)] considerably reduced the rate of [Ca(2+)](M) increase at [Ca(2+)](c) below 7muM, but its effect was hardly appreciable at 10muM [Ca(2+)](c). Exit rates were more dependent on the temperature than uptake rates, thus making the [Ca(2+)](M) transients to be much more prolonged at lower temperature. Our kinetic data suggest that mitochondria have little high affinity Ca(2+) buffering, and comparison of our results with data on total mitochondrial Ca(2+) fluxes indicate that the mitochondrial Ca(2+) bound/Ca(2+) free ratio is around 10- to 100-fold for most of the observed [Ca(2+)](M) range and suggest that massive phosphate precipitation can only occur when [Ca(2+)](M) reaches the millimolar range.

  12. Study of damage induced by room-temperature Al ion implantation in Hg{sub 0.8}Cd{sub 0.2}Te by x-ray diffuse scattering

    SciTech Connect

    Renault, P.O.; Declemy, A.; Leveque, P.; Fayoux, C.; Bessiere, M.; Lefebvre, S.; Corbel, C.; Baroux, L.

    1997-07-01

    Ion-implantation is a widely used doping technique in II{endash}VI semiconductors. Nevertheless, ion-implantation damage has to be better understood to properly control this process. In order to investigate the implantation-induced defects in such compounds, room-temperature implantations of 320 keV Al ions have been performed on crystalline samples of [111] Hg{sub 1{minus}x}Cd{sub x}Te (x{approx}20{percent}) for doses ranging from 10{sup 13} to 10{sup 15}cm{sup {minus}2}. We report the first measurements of x-ray diffuse scattering close to different Bragg reflections on such as-implanted samples. The evolution of the diffuse intensity as a function of the dose has been observed. The defect-induced diffuse intensity arises mainly from interstitial dislocation loops. Nevertheless, vacancy loops are observed above 3{times}10{sup 14}Al/cm{sup 2}. The mean radius of the dislocation loops increases in size by three to four times when the dose rises from 10{sup 13} to 10{sup 15}cm{sup {minus}2}. Finally, the saturation of point defects has been observed independently of their clustering at about 5{times}10{sup 13}Al/cm{sup 2}, that is in the same range as the saturation dose of the sheet electron concentration. {copyright} {ital 1997 American Institute of Physics.}

  13. A vibrational spectroscopic study of the phosphate mineral whiteite CaMn(++)Mg2Al2(PO4)4(OH)2·8(H2O).

    PubMed

    Frost, Ray L; Scholz, Ricardo; López, Andrés; Xi, Yunfei

    2014-04-24

    Vibrational spectroscopy enables subtle details of the molecular structure of whiteite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. The infrared and Raman spectroscopy were applied to compare the molecular structure of whiteite with that of other phosphate minerals. The Raman spectrum of whiteite shows an intense band at 972 cm(-1) assigned to the ν1PO4(3-) symmetric stretching vibrations. The low intensity Raman bands at 1076 and 1173 cm(-1) are assigned to the ν3PO4(3-) antisymmetric stretching modes. The Raman bands at 1266, 1334 and 1368 cm(-1) are assigned to AlOH deformation modes. The infrared band at 967 cm(-1) is ascribed to the PO4(3-)ν1 symmetric stretching vibrational mode. The infrared bands at 1024, 1072, 1089 and 1126 cm(-1) are attributed to the PO4(3-)ν3 antisymmetric stretching vibrations. Raman bands at 553, 571 and 586 cm(-1) are assigned to the ν4 out of plane bending modes of the PO4(3-) unit. Raman bands at 432, 457, 479 and 500 cm(-1) are attributed to the ν2 PO4 and H2PO4 bending modes. In the 2600 to 3800 cm(-1) spectral range, Raman bands for whiteite are found 3426, 3496 and 3552 cm(-1) are assigned to AlOH stretching vibrations. Broad infrared bands are also found at 3186 cm(-1). Raman bands at 2939 and 3220 cm(-1) are assigned to water stretching vibrations. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of whiteite to be ascertained and compared with that of other phosphate minerals.

  14. Crystallization Kinetics and Mechanism of CaO-Al2O3-Based Mold Flux for Casting High-Aluminum TRIP Steels

    NASA Astrophysics Data System (ADS)

    Shi, Cheng-Bin; Seo, Myung-Duk; Wang, Hui; Cho, Jung-Wook; Kim, Seon-Hyo

    2014-09-01

    Non-isothermal crystallization of the newly developed lime-alumina-based mold fluxes was investigated using differential scanning calorimetry. The crystallization kinetic parameters were determined by Ozawa equation, the combined Avrami-Ozawa equation, and the differential iso-conversional method of Friedman. It was found that Ozawa method failed to describe the non-isothermal crystallization behavior of the mold fluxes. The Avrami exponent determined by the combined Avrami-Ozawa equation indicates that the crystallization of cuspidine occurs through bulk nucleation and reaction-controlled three-dimensional growth, and then transforms to reaction-controlled two-dimensional growth at the crystallization later stage in lime-alumina-based mold fluxes with higher B2O3 content. For the mold fluxes with lower B2O3 content (10.8 mass pct), the crystallization of cuspidine is bulk nucleation and reaction-controlled two-dimensional growth at the crystallization primary stage followed by a diffusion-controlled two-dimensional growth process. The crystallization of CaF2 in mold flux originates from bulk nucleation and diffusion-controlled three-dimensional growth, which then transforms to two-dimensional growth. FE-SEM observations support these kinetic analysis results. The effective activation energy for cuspidine crystallization in the mold flux with higher B2O3 and Na2O contents increases as the crystallization progresses, and then decreases at the relative degree of crystallinity greater than 60 pct. The transition point of this trend approximately corresponds to the relative degree of crystallinity at which the crystallization mode of cuspidine transforms. For the mold fluxes with lower B2O3 and Na2O contents, the effective activation energy for cuspidine formation varies monotonically with the increase in the relative degree of crystallinity.

  15. Crystallization Kinetics and Mechanism of CaO-Al2O3-Based Mold Flux for Casting High-Aluminum TRIP Steels

    NASA Astrophysics Data System (ADS)

    Shi, Cheng-Bin; Seo, Myung-Duk; Wang, Hui; Cho, Jung-Wook; Kim, Seon-Hyo

    2015-02-01

    Non-isothermal crystallization of the newly developed lime-alumina-based mold fluxes was investigated using differential scanning calorimetry. The crystallization kinetic parameters were determined by Ozawa equation, the combined Avrami-Ozawa equation, and the differential iso-conversional method of Friedman. It was found that Ozawa method failed to describe the non-isothermal crystallization behavior of the mold fluxes. The Avrami exponent determined by the combined Avrami-Ozawa equation indicates that the crystallization of cuspidine occurs through bulk nucleation and reaction-controlled three-dimensional growth, and then transforms to reaction-controlled two-dimensional growth at the crystallization later stage in lime-alumina-based mold fluxes with higher B2O3 content. For the mold fluxes with lower B2O3 content (10.8 mass pct), the crystallization of cuspidine is bulk nucleation and reaction-controlled two-dimensional growth at the crystallization primary stage followed by a diffusion-controlled two-dimensional growth process. The crystallization of CaF2 in mold flux originates from bulk nucleation and diffusion-controlled three-dimensional growth, which then transforms to two-dimensional growth. FE-SEM observations support these kinetic analysis results. The effective activation energy for cuspidine crystallization in the mold flux with higher B2O3 and Na2O contents increases as the crystallization progresses, and then decreases at the relative degree of crystallinity greater than 60 pct. The transition point of this trend approximately corresponds to the relative degree of crystallinity at which the crystallization mode of cuspidine transforms. For the mold fluxes with lower B2O3 and Na2O contents, the effective activation energy for cuspidine formation varies monotonically with the increase in the relative degree of crystallinity.

  16. CaO-MgO-Al2O3-SiO2 (CMAS) corrosion of Gd2Zr2O7 and Sm2Zr2O7

    DOE PAGES

    Wang, Honglong; Bakal, Ahmet; Zhang, Xingxing; ...

    2016-08-08

    Ceramic thermal barrier coatings are applied to superalloys used in gas turbine engineering to increase the operating temperature and the energy conversion efficiency. However, dust consisting of CaO-MgO-Al2O3-SiO2 (CMAS) from the air can be injected into the engines and corrode the thermal barrier coatings. Lanthanide zirconates are promising materials in thermal barrier coatings due to their low thermal conductivities, good phase stability and good corrosion resistance. However, the corrosion resistance mechanism of CMAS on lanthanide zirconates is still not clearly understood. In this work, the corrosion mechanism of Gd2Zr2O7 and Sm2Zr2O7 in CMAS is studied. Here, the results show thatmore » the CMAS can easily react with lanthanide zirconate thermal barrier coatings to form a dense layer, which can resist further corrosion« less

  17. Ferromagnetic glass ceramics and glass fibers based on the composition of SiO2-CaO-Al2O3-B2O3-Fe2O3 glass system

    NASA Astrophysics Data System (ADS)

    Liu, Jianan; Zhu, Chaofeng; Zhang, Meimei; Zhang, Yanfei; Yang, Xuena

    2017-03-01

    Ferromagnetic glass-ceramics and glass fibers were obtained by the melt-method from the glass system SiO2-CaO-Al2O3-B2O3-Fe2O3 without performing any nucleation and crystallization heat treatments. Glass-ceramics and glass fibers were characterized by x-ray diffraction, scanning and transmission electron microscopy, magnetic measurements, and thermal expansion instrument. The influence of alumina content on the spontaneous crystallization of magnetite, magnetism properties and thermal expansion performances in glass were investigated. We examined the crystallization behavior of the glasses and found that the spontaneous crystallization capacity of magnetite and magnetism properties in base glass increases with increasing the content of alumina. The ferromagnetic glass fibers containing magnetite nano-crystals are also obtained.

  18. Identification of montgomeryite mineral [Ca4MgAl4(PO4)6·(OH)4·12H2O] found in the Jenolan Caves-Australia.

    PubMed

    Frost, Ray L; Xi, Yunfei; Palmer, Sara J; Pogson, Ross E

    2012-08-01

    In this paper, we report on many phosphate containing natural minerals found in the Jenolan Caves - Australia. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the montgomeryite mineral [Ca(4)MgAl(4)(PO(4))(6)·(OH)(4)·12H(2)O]. The presence of montgomeryite in deposits of the Jenolan Caves - Australia has been identified by X-ray diffraction (XRD). Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the crystal structure of montgomeryite. The Raman spectrum of a standard montgomeryite mineral is identical to that of the Jenolan Caves sample. Bands are assigned to H(2)PO(4)(-), OH and NH stretching vibrations. By using a combination of XRD and Raman spectroscopy, the existence of montgomeryite in the Jenolan Caves - Australia has been proven. A mechanism for the formation of montgomeryite is proposed.

  19. Phase Relations and Elemental Distribution among Co-Existing Phases in the Ceramics of the Pseudobinary System CaZrTi{sub 2}O{sub 7}-CeAlO{sub 3}

    SciTech Connect

    Mikhailenko, N.S.; Stefanovsky, S.V.; Lapina, M.I.

    2006-07-01

    Ceramics formally related to a pseudo-binary system CaZrTi{sub 2}O{sub 7}-CeAlO{sub 3} being important for design of matrices for immobilization of a rare-earth - actinide fraction of high level waste were synthesized by cold pressing and sintering at temperatures of 1400, 1450 and 1500 deg. C. It has been shown that the target zirconolite and perovskite structure phases as well as cerium and zirconium dioxide based cubic phases were formed. Content of the latter phases in the ceramics increases significantly with increase of sintering temperature to 1500 deg. C and they are capable to accumulate up to 77% CeO{sub 2} of total amount introduced. (authors)

  20. Characterization of 12CaO x 7Al2O3 doped indium tin oxide films for transparent cathode in top-emission organic light-emitting diodes.

    PubMed

    Jung, Chul Ho; Hwang, In Rok; Park, Bae Ho; Yoon, Dae Ho

    2013-11-01

    12CaO x 7Al2O3, insulator (C12A7) doped indium tin oxide (ITO) (ITO:C12A7) films were fabricated using a radio frequency magnetron co-sputtering system with ITO and C12A7 targets. The qualitative and quantitative properties of ITO:C12A7 films, as a function of C12A7 concentration, were examined via X-ray photoemission spectroscopy and synchrotron X-ray scattering as well as by conducting atomic force microscopy. The work function of ITO:C12A7 (1.3%) films of approximately 2.8 eV obtained by high resolution photoemission spectroscopy measurements make them a reasonable cathode for top-emission organic light-emitting diodes.

  1. Thermodynamic tabulations for selected phases in the system CaO-Al2O3-SiO2-H2 at 101.325 kPa (1 atm) between 273.15 and 1800 K

    USGS Publications Warehouse

    Haas, John L.; Robinson, Glipin R.; Hemingway, Bruch S.

    1981-01-01

    The standard thermodynamic properties of phases in the lime‐alumina‐silica‐ water system between 273.15 and 1800 K at 101.325 kPa (1 atm) were evalated from published experimental data. Phases included in the compilation are boehmite, diaspore, gibbsite, kaolinite, dickite, halloysite, andalusite, kyanite, sillimanite, Ca‐Al cliniopyroxene, anorthite, gehlenite, grossular, prehnite, zoisite, margarite, wollastonite, cyclowollastonite ( = pseudowollastonite), larnite, Ca olivine, hatrurite, and rankinite. The properties include heat capacity, entropy, relative enthalpy, and the Gibbs energy function of the phases and the enthalpies, Gibbs energies, and equilibrium constants for formation both from the elements and the oxides. Tabulated values are given at 50 K intervals with the 2‐sigma confidence limit at 250 K intervals. Summaries for each phase give the temperature‐ dependent functions for heat capacity, entropy, and relative enthalpy and the experimental data used in the final evaluation.

  2. Distribution of Calcium and Aluminum Between Molten Silicon and Silica-Rich CaO-Al2O3-SiO2 Slags at 1823 K (1550 °C)

    NASA Astrophysics Data System (ADS)

    Ahn, Seung Hwan; Jakobsson, Lars Klemet; Tranell, Gabriella

    2017-02-01

    Oxidative refining of silicon after tapping from the furnace is performed to remove calcium and aluminum impurities. Depending on the slag composition, the refining limit is determined by the thermodynamic equilibrium between silicon and slag. Silica-rich CaO-Al2O3-SiO2 slags were equilibrated with silicon at 1823 K (1550 °C) in the present study. The results were compared with previous experimental measurements, experimentally measured activities in the slag and thermodynamically modeled data. The present study was found to agree relatively well with most of these works. The concentrations of calcium and aluminum in silicon along the liquidus line for SiO2 saturation were also investigated, and this area was found to have less agreement between different works.

  3. Field dependence of temperature induced irreversible transformations of magnetic phases in Pr(0.5)Ca(0.5)Mn(0.975)Al(0.025)O(3) crystalline oxide.

    PubMed

    Lakhani, Archana; Kushwaha, Pallavi; Rawat, R; Kumar, Kranti; Banerjee, A; Chaddah, P

    2010-01-27

    Glass-like arrest has recently been reported in various magnetic materials. As in structural glasses, the kinetics of a first order transformation is arrested while retaining the higher entropy phase as a non-ergodic state. We show visual mesoscopic evidence of the irreversible transformation of the arrested antiferromagnetic-insulating phase in Pr(0.5)Ca(0.5)Mn(0.975)Al(0.025)O(3) to its equilibrium ferromagnetic-metallic phase with an isothermal increase of magnetic field, similar to its iso-field transformation on warming. The magnetic field dependence of the non-equilibrium to equilibrium transformation temperature is shown to be governed by Le Chatelier's principle.

  4. FAST TRACK COMMUNICATION: Field dependence of temperature induced irreversible transformations of magnetic phases in Pr0.5Ca0.5Mn0.975Al0.025O3 crystalline oxide

    NASA Astrophysics Data System (ADS)

    Lakhani, Archana; Kushwaha, Pallavi; Rawat, R.; Kumar, Kranti; Banerjee, A.; Chaddah, P.

    2010-01-01

    Glass-like arrest has recently been reported in various magnetic materials. As in structural glasses, the kinetics of a first order transformation is arrested while retaining the higher entropy phase as a non-ergodic state. We show visual mesoscopic evidence of the irreversible transformation of the arrested antiferromagnetic-insulating phase in Pr0.5Ca0.5Mn0.975Al0.025O3 to its equilibrium ferromagnetic-metallic phase with an isothermal increase of magnetic field, similar to its iso-field transformation on warming. The magnetic field dependence of the non-equilibrium to equilibrium transformation temperature is shown to be governed by Le Chatelier's principle.

  5. Experimentally dictated stability of carbonated oceanic crust to moderately great depths in the Earth: Results from the solidus determination in the system CaO-MgO-Al2O3-SiO2-CO2

    NASA Astrophysics Data System (ADS)

    Keshav, Shantanu; Gudfinnsson, Gudmundur H.

    2010-05-01

    Solidus melting phase relations are reported for carbonated eclogite in the system CaO-MgO-Al2O3-SiO2-CO2 at 12 to 25 GPa. From 12 to 16 GPa, melts are in equilibrium with clinopyroxene, stishovite, garnet, aragonite, and magnesite. At 20 and 25 GPa, melts are in equilibrium with garnet, stishovite, calcium-alumino silicate, calcium perovskite, and magnesite. Melting reactions demonstrate that from 12 to 16 GPa, stishovite is in reaction with the melt. At 20 and 25 GPa, garnet and stishovite together are produced upon melting of model, carbonated eclogite. At 20 and 25 GPa, calcium perovskite is also the phase that contributes the most toward liquid production. Melt compositions at all pressures are carbonatitic, with roughly 37-40 wt% dissolved CO2. From 12 to 16 GPa, the liquids are calciocarbonatites with Ca#molar of ˜69-71; liquid compositions become less calcic with Ca# of ˜52-55 at 20 and 25 GPa. Given these melting phase relations, suitable subduction zone adiabats do not intersect the solidus of model carbonated eclogite at depths investigated in the present study. Hence, on this basis, it is fair to say that carbonated eclogite possibly avoids melting in subduction zone settings, thereby delivering carbonate to at least moderate depths in the Earth. However, owing to local heating events, small-degree melting of carbonated eclogite is not completely precluded, and the liquids liberated from this melting can be viewed as agents of chemical mass transfer in the deep Earth. At present, however, geochemical consequences of subduction-related melting of carbonated eclogite are difficult to evaluate.

  6. Crystal and electronic structures of CaAl 2Si 2-type rare-earth copper zinc phosphides RECuZnP 2 ( RE=Pr, Nd, Gd-Tm, Lu)

    NASA Astrophysics Data System (ADS)

    Blanchard, Peter E. R.; Stoyko, Stanislav S.; Cavell, Ronald G.; Mar, Arthur

    2011-01-01

    The quaternary rare-earth phosphides RECuZnP 2 ( RE=Pr, Nd, Gd-Tm, Lu) have been prepared by reaction of the elements at 900 °C, completing this versatile series which forms for nearly all RE metals. They adopt the trigonal CaAl 2Si 2-type structure (Pearson symbol hP5, space group P3¯ m1, Z=1), as confirmed by single-crystal X-ray diffraction analysis on ErCuZnP 2 and powder X-ray diffraction analysis on the remaining members. The Cu and Zn atoms are assumed to be disordered over the single transition-metal site. Band structure calculations on a hypothetically ordered YCuZnP 2 model suggest a semimetal, with a zero band gap between the valence and conduction bands. This electronic structure is supported by XPS valence band spectra for RECuZnP 2 ( RE=Gd-Er), in which the intensity drops off smoothly at the Fermi edge. The absence of a band gap permits the electron count to deviate from the precise value of 16 e - per formula unit, as demonstrated by the formation of a solid solution in GdCu xZn 2- xP 2 (1.0≤ x≤1.3), while still retaining the CaAl 2Si 2-type structure. Because the Cu 2 p XPS spectra indicate that the Cu atoms are always monovalent, the substitution of Cu for Zn leads to a decrease in electron count and a lowering of the Fermi level in the valence band. The magnetic susceptibility of RECuZnP 2 ( RE=Gd-Er), which obeys the Curie-Weiss law, confirms the presence of trivalent RE atoms.

  7. Esperanzaite, NaCa2Al2(As5+O4)2F4(OH)*2H2O, a new mineral species from the La Esperanza mine, Mexico: descriptive mineralogy and atomic arrangement

    USGS Publications Warehouse

    Foord, E.E.; Hughes, J.M.; Cureton, F.; Maxwell, C.H.; Falster, A.U.; Sommer, A.J.; Hlava, P.F.

    1999-01-01

    Esperanzaite, ideally NaCa2Al2(As5+O4)2F4(OH)??2H2O, Z = 2, is a new mineral species from the La Esperanza mine, Durango State, Mexico. The mineral occurs as blue-green botryoidal crystalline masses on rhyolite, with separate spheres up to 1.5 mm in diameter. The Mohs hardness is 4 1/2 , and the specific gravity, 3.24 (obs.) and 3.36(3) (calc.). Optical properties were measured in 589 nm light. Esperanzaite is biaxial (-), X = Y = Z = colorless, ?? 1.580(1), ?? 1.588(1), and ?? 1.593(1); 2V(obs) is 74(1)??and 2V(calc) is 76.3??. The dispersion is medium, r < v, and the optic axes are oriented according to a ?? Z = +50.5??, b = Y, c ?? X = +35??. The strongest five X-ray-diffraction maxima in the powder pattern [d in A??(I)(hkl)] are: 2.966(100)(131, 311, 031), 3.527(90)(220), 2.700(90)(221,002,040), 5.364(80)(001,020) and 4.796(80)(011). Esperanzaite is monoclinic, a 9.687(5), b 10.7379(6), c 5.5523(7) A??, ?? 105.32(1)??, space group P21/m. The atomic arrangement of esperanzaite was solved by direct methods and Fourier analysis (R = 0.032). The Fundamental Building Block (FBB) is formed of [001] stacks of heteropolyhedral tetramers; the tetramers are formed of two arsenate tetrahedra and two Al octahedra, corner-linked in four-member rings. The FBBs are linked by irregular Na??5 and Ca??8 polyhedra.

  8. Crystallization, densification and dielectric properties of CaO–MgO–Al{sub 2}O{sub 3}–SiO{sub 2} glass with ZrO{sub 2} as nucleating agent

    SciTech Connect

    Hsiang, Hsing-I; Yung, Shi-Wen; Wang, Chung-Ching

    2014-12-15

    SEM micrographs for the pure CaO–MgO–Al{sub 2}O{sub 3}–SiO{sub 2} glass sintered at 850–1000 °C (a) 850 °C, (b) 900 °C, (c) 950 °C, (d) 1000 °C. - Highlights: • ZrO{sub 2} effects on the crystallization of LTCC glass system were investigated. • ZrO{sub 2} effects on the dielectric properties of LTCC glass system were investigated. • LTCC with a dielectric constant of 6.65 and a low dielectric loss can be obtained. - Abstract: The zirconium oxide effects on the crystallization and dielectric properties of CaO–MgO–Al{sub 2}O{sub 3}–SiO{sub 2} (CMAS) glass were investigated. The results showed that phyllosiloxide and anorthite crystallites were observed in sequence during sintering. For glass added with 8 wt% ZrO{sub 2}, homogeneously dispersed tetragonal ZrO{sub 2} crystallites were observed at 850 °C. The as-prepared CMAS glass–ceramics exhibited a dielectric constant of about 6–7 and a dielectric loss below 0.005 at 100 MHz. The dielectric properties of CMAS glass with 8 wt% ZrO{sub 2} sintered at 850 °C show a low dielectric constant of 6.65 and a dielectric loss tangent of about 2.5 × 10{sup −3}, which provides a promising candidate for LTCC applications.

  9. Ca isotope variations in Allende

    NASA Technical Reports Server (NTRS)

    Jungck, M. H. A.; Shimamura, T.; Lugmair, G. W.

    1984-01-01

    Ca-isotope measurements of Allende Ca-Al-rich inclusions (CAIs), together with those on an apatite-enriched fraction from Orgueil, indicate the existence of widespread excesses on the neutron-rich isotope Ca-48. Isotopic anomalies are noted in 7 out of 11 CAIs analyzed. This abundance of isotopic excesses places Ca alongside Ti and O, although no clear correlation has yet been found between Ca-48 and Ti-50, which are thought to be coproduced by neutron-rich nucleosynthetic processes within stars. It is suggested that the higher volatility of Ca, by comparison with Ti compounds, led to a variable dilution with isotopically normal Ca in vaporization and recondensation processes in stellar envelopes, the interstellar medium, and/or the solar nebula.

  10. Raman and infrared spectroscopy study on structure and microstructure of glass-ceramic materials from SiO2-Al2O3-Na2O-K2O-CaO system modified by variable molar ratio of SiO2/Al2O3.

    PubMed

    Partyka, Janusz; Leśniak, Magdalena

    2016-01-05

    This paper is focused on the effect of the molar ratio of SiO2/Al2O3 on the microstructure and structure of the internal aluminium-silicon-oxide lattice of the glass-ceramic materials from the SiO2-Al2O3-Na2O-K2O-CaO system. In order to examine the real composition of the obtained samples, a chemical analysis was performed. Following the heat-treatment procedure, pseudowollastonite, anorthite and the vitreous phase were identified. In order to determine the microstructure, research using the scanning electron microscope (SEM) with EDS was done. For the inner structural study, X-ray diffraction (XRD), Raman spectroscopy as well as MIR and FIR spectroscopy were performed.

  11. Raman and infrared spectroscopy study on structure and microstructure of glass-ceramic materials from SiO2-Al2O3-Na2O-K2O-CaO system modified by variable molar ratio of SiO2/Al2O3

    NASA Astrophysics Data System (ADS)

    Partyka, Janusz; Leśniak, Magdalena

    2016-01-01

    This paper is focused on the effect of the molar ratio of SiO2/Al2O3 on the microstructure and structure of the internal aluminium-silicon-oxide lattice of the glass-ceramic materials from the SiO2-Al2O3-Na2O-K2O-CaO system. In order to examine the real composition of the obtained samples, a chemical analysis was performed. Following the heat-treatment procedure, pseudowollastonite, anorthite and the vitreous phase were identified. In order to determine the microstructure, research using the scanning electron microscope (SEM) with EDS was done. For the inner structural study, X-ray diffraction (XRD), Raman spectroscopy as well as MIR and FIR spectroscopy were performed.

  12. Increasing CACNA1C expression in placenta containing high Cd level: an implication of Cd toxicity.

    PubMed

    Phuapittayalert, Laorrat; Saenganantakarn, Phisid; Supanpaiboon, Wisa; Cheunchoojit, Supaporn; Hipkaeo, Wiphawi; Sakulsak, Natthiya

    2016-12-01

    Cadmium (Cd) has known to produce many adverse effects on organs including placenta. Many essential transporters are involved in Cd transport pathways such as DMT-1, ZIP as well as L-VDCC. Fourteen pregnant women participated and were divided into two groups: high and low Cd-exposed (H-Cd, L-Cd) groups on the basis of their residential areas, Cd concentrations in the blood (B-Cd), urine (U-Cd), and placenta (P-Cd). The results showed that the B-Cd and U-Cd were significantly increased in H-Cd group (p < 0.05). Interestingly, the P-Cd in H-Cd group was elevated (p < 0.05) and positively related to their B-Cd and U-Cd values (p < 0.05). However, the mean cord blood Cd (C-Cd) concentration in H-Cd group was not significantly increased about 2.5-fold when comparing to L-Cd group. To determine the Cd accumulation in placental tissues, metallothionein-1A (MT-1A) and metallothionein-2A (MT-2A) expressions were used as biomarkers. The results revealed that mean MT-1A and MT-2A mRNAs and MT-1/2 proteins were up-regulated in H-Cd group (p < 0.05). In addition, the Ca channel alpha 1C (CACNA1C) mRNA and protein expressions were noticeably elevated in H-Cd group (p < 0.05). From these findings, we suggested that CACNA1C might be implicated in Cd transport in human placenta.

  13. A Sulfide Capacity Prediction Model of CaO-SiO2-MgO-FeO-MnO-Al2O3 Slags during the LF Refining Process Based on the Ion and Molecule Coexistence Theory

    NASA Astrophysics Data System (ADS)

    Yang, Xue-Min; Zhang, Meng; Shi, Cheng-Bin; Chai, Guo-Ming; Zhang, Jian

    2012-04-01

    A sulfide capacity prediction model of CaO-SiO2-MgO-FeO-MnO-Al2O3 ladle furnace (LF) refining slags has been developed based on the ion and molecule coexistence theory (IMCT). The predicted sulfide capacity of the LF refining slags has better accuracy than the measured sulfide capacity of the slags at the middle and final stages during the LF refining process. Increasing slag binary basicity, optical basicity, and the Mannesmann index can lead to an increase of the predicted sulfide capacity for the LF refining slags as well as to an increase of the sulfur distribution ratio between the slags and molten steel at the middle and final stages during the LF refining process. The calculated equilibrium mole numbers, mass action concentrations of structural units or ion couples, rather than mass percentages of components, are recommended to represent the slag composition for correlating with the sulfide capacity of the slags. The developed sulfide capacity IMCT model can calculate not only the total sulfide capacity of the slags but also the respective sulfide capacity of free CaO, MgO, FeO, and MnO in the slags. The comprehensive contribution of the combined ion couples (Ca2+ + O2-) and (Mn2+ + O2-) on the desulfurization reactions accounts for 96.23 pct; meanwhile, the average contribution of the ion couple (Fe2+ + O2-) and (Mg2+ + O2-) only has a negligible contribution as 3.13 pct and 0.25 pct during the LF refining process, respectively. The oxygen activity of bulk molten steel in LF is controlled by the [Al]-[O] equilibrium, and the oxygen activity of molten steel at the slag-metal interface is controlled by the (FeO)-[O] equilibrium. The ratio of the oxygen activity of molten steel at the slag-metal interface to the oxygen activity of bulk molten steel will decrease from 37 to 5 at the initial stage, and further decrease from 28 to 4 at the middle stage, but will maintain at a reliable constant as 5 to 14 at the final stage during the LF refining process. The

  14. Investigation of the evaporation thermodynamics and stationary states (so-called ''congruent states'') in the study of oxides and their mixtures by the effusion method--application to Al/sub 2/O/sub 3/, CaO, and the mixtures Al/sub 2/O/sub 3/-CaO and Ti/sub 2/O/sub 3/-TiO/sub 2/

    SciTech Connect

    Banon, S.; Chatillon, C.; Allibert, M.

    1982-01-01

    The congruent vaporization of oxides and oxide mixtures during Knudsen effusion has been studied, taking into account the nature of the equilibrium reactions between samples and crucible materials, the complexity of the resulting gaseous phases, and the possibility of an oxygen leak by diffusion through the crucible walls. The influence of the crucible reaction and of oxygen diffusion is estimated for pure CaO and Al/sub 2/O/sub 3/ and for the mixtures CaO + Al/sub 2/O/sub 3/ and Ti/sub 2/O/sub 3/ + TiO/sub 2/, in molybdenum cells. The results show a systematic shift of the effusion flow composition toward a reducing composition--either by crucible reaction or by establishment of a diffusion process. In the case of the Ti/sub 2/O/sub 3/-TiO/sub 2/ system, calculations of the expected congruent evaporation from JANAF standard pressures and our activity measurements indicate that the standard pressure of TiO/sub 2/ gas over solid TiO/sub 2/ must be increased by a factor of 4 to 14 to agree with the results from our studies of the congruent vaporization of solid Ti/sub 3/O/sub 5/. The congruent vaporization of liquid Ti/sub 2/O/sub 3/-TiO/sub 2/ mixtures occurs in the composition range Ti/sub 2/O/sub 3/-Ti/sub 3/O/sub 5/, an with inert crucible, a molybdenum crucible, or diffusion through the walls.

  15. Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: Implications for hydrothermal mass transfer in granitic rocks

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Wagner, Thomas

    2008-01-01

    We present the results of thermodynamic modeling of fluid-rock interaction in the system Si-Al-Fe-Mg-Ca-Na-H-O-Cl using the GEM-Selektor Gibbs free energy minimization code. Combination of non-ideal mixing properties in solids with multicomponent aqueous fluids represents a substantial improvement and it provides increased accuracy over existing modeling strategies. Application to the 10-component system allows us to link fluid composition and speciation with whole-rock mineralogy, mass and volume changes. We have simulated granite-fluid interaction over a wide range of conditions (200-600 °C, 100 MPa, 0-5 m Cl and fluid/rock ratios of 10-2-104) in order to explore composition of magmatic fluids of variable salinity, temperature effects on fluid composition and speciation and to simulate several paths of alteration zoning. At low fluid/rock ratios (f/r) the fluid composition is buffered by the silicate-oxide assemblage and remains close to invariant. This behavior extends to a f/r of 0.1 which exceeds the amount of exsolved magmatic fluids controlled by water solubility in silicate melts. With increasing peraluminosity of the parental granite, the Na-, K- and Fe-bearing fluids become more acidic and the oxidation state increases as a consequence of hydrogen and ferrous iron transfer to the fluid. With decreasing temperature, saline fluids become more Ca- and Na-rich, change from weakly acidic to alkaline, and become significantly more oxidizing. Large variations in Ca/Fe and Ca/Mg ratios in the fluid are a potential geothermometer. The mineral assemblage changes from cordierite-biotite granites through two-mica granites to chlorite-, epidote- and zeolite-bearing rocks. We have carried out three rock-titration simulations: (1) reaction with the 2 m NaCl fluid leads to albitization, chloritization and desilication, reproducing essential features observed in episyenites, (2) infiltration of a high-temperature fluid into the granite at 400 °C leads to hydrolytic

  16. Vladimirivanovite, Na6Ca2[Al6Si6O24](SO4,S3,S2,Cl)2 · H2O, a new mineral of sodalite group

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, A. N.; Kaneva, E. V.; Cherepanov, D. I.; Suvorova, L. F.; Levitsky, V. I.; Ivanova, L. A.; Reznitsky, L. Z.

    2012-12-01

    The results of an examination of vladimirivanovite, a new mineral of the sodalite group, found at the Tultui deposit in the Baikal region are discussed. The mineral occurs in the form of outer rims (0.01-3 mm thick) of lazurite, elongated segregations without faced crystals (0.2 to 3-4 mm in size; less frequently, 4 × 12-15 × 20 mm), and rare veinlets (up to 5 mm) hosted in calciphyre and marble. Vladimirivanovite is irregular and patchy dark blue. The mineral is brittle; on average, the microhardness VHN is 522-604, 575 kg/mm2; and the Mohs hardness is 5.0-5.5. The measured and calculated densities are 2.48(3) and 2.436 g/cm3, respectively. Vladimirivanovite is optically biaxial; 2 V meas = 63(±1)°, 2 V calc = 66.2°; the refractive indices are α = 1.502-1.507 (±0.002), N m = 1.509-1.514 (±0.002), and N g = 1.512-1.517 (±0.002). The chemical composition is as follows, wt %: 32.59 SiO2, 27.39 Al2O3, 7.66 CaO, 17.74 Na2O, 11.37 SO3, 1.94 S, 0.12 Cl, and 1.0 H2O; total is 99.62. The empirical formula calculated based on (Si + Al) = 12 with sulfide sulfur determined from the charge balance is Na6.36Ca1.52(Si6.03Al5.97)Σ12O23.99(SO4)1.58(S3)0.17(S2)0.08 · Cl0.04 · 0.62H2O; the idealized formula is Na6Ca2[Al6Si6O24](SO4,S3,S2,Cl)2 · H2O. The new mineral is orthorhombic, space group Pnaa; the unit-cell dimensions are a = 9.066, b = 12.851, c = 38.558 Å, V = 4492 Å3, and Z = 6. The strongest reflections in the X-ray powder diffraction pattern ( dÅ— I[ hkl]) are: 6.61-5[015], 6.43-11[020, 006], 3.71-100[119, 133], 2.623-30[20.12, 240], 2.273-6[04.12], 2.141-14[159, 13.15], 1.783-9[06.12, 04.18], and 1.606-6[080, 00.24]. The crystal structure has been solved with a single crystal. The mineral was named in memoriam of Vladimir Georgievich Ivanov (1947-2002), Russian mineralogist and geochemist. The type material of the mineral is deposited at the Mineralogical Museum of St. Petersburg State University, St. Petersburg, Russia.

  17. Multicomponent diffusion in silicate melts: SiO2-TiO2-Al2O3-MgO-CaO-Na2O-K2O System

    NASA Astrophysics Data System (ADS)

    Guo, Chenghuan; Zhang, Youxue

    2016-12-01

    Nine successful diffusion couple experiments were carried out in a 7-component haplobasaltic silicate melt SiO2-TiO2-Al2O3-MgO-CaO-Na2O-K2O system to study multicomponent diffusion at ∼1500 °C and 1 GPa, typically with compositional gradients in only two components in each experiment. At least two concentration traverses were measured for each experiment. Effective binary diffusion coefficients (EBDC) for monotonic profiles were obtained by an error function fit, and the EBDC of a given component is dependent on its counter diffusing component, especially for SiO2. The EBDC's of SiO2 vary from 15.7 μm2/s when diffusing against Al2O3, to 102.9 μm2/s when diffusing against K2O. Furthermore, the multicomponent diffusion matrix was obtained by simultaneously fitting profiles of all oxides in all experiments. Most features in the diffusion profiles, for example uphill diffusion, are captured well by this 6 × 6 diffusion matrix. The slowest diffusing eigenvector is largely due to the exchange between Si and Al, and the fastest diffusing eigenvector is the exchange of Na with all other components. An anorthite dissolution experiment was also conducted to test whether the diffusion matrix can be applied to mineral dissolution experiments. The calculated diffusion profiles in the melt during anorthite dissolution roughly match the measured profiles, demonstrating the validity and utility of the diffusion matrix in this FeO-free aluminosilicate melt system.

  18. CD Rainbows

    ERIC Educational Resources Information Center

    Ouseph, P. J.

    2007-01-01

    Several papers have been published on the use of a CD as a grating for undergraduate laboratories and/or for high school and college class demonstrations. Four years ago "The Physics Teacher" had a spectacular cover picture showing emission spectrum as viewed through a CD with no coating. That picture gave the impetus to develop a system that can…

  19. Crystal structure of the mineral (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4}: a triclinic representative of the amphibole family

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.

    2012-05-15

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Angstrom-Sign , b = 18.0457(3) Angstrom-Sign ; c = 9.8684(2) Angstrom-Sign , {alpha} = 90.016(2) Degree-Sign , {beta} = 105.543(4) Degree-Sign , {gamma} = 89.985(2) Degree-Sign . The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with |F| > 3{sigma}(F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4} has some symmetry and structural features that distinguish it from other minerals of this family.

  20. Evolution of Seawater 44Ca/40Ca Through the Late Cretaceous and Cenozoic

    NASA Astrophysics Data System (ADS)

    Castillo, P. R.; Gopalan, K.; Norris, R. D.; MacIsaac, C.; Liu, X.; MacDougall, J. D.

    2009-12-01

    We analyzed the Ca concentrations and 44Ca/40Ca ratios of surface ocean planktonic (Morozovella, Acarinina, Dentoglobigerina) and benthic (Gavelinella) foraminifera of Late Cretaceous to Late Oligocene ages from DSDP and ODP sites in the Pacific, Atlantic and Indian oceans in order to fill a major gap in the Phanerozoic seawater 44Ca/40Ca curve (Farkass et al., Geochim. Cosmochim. Acta 71, 2007). Our new 44Ca/40Ca data indicate a general increase in foraminiferan-based seawater 44Ca/40Ca from ~-1.3 ‰ δ44Ca/40CaSW in Late Cretaceous to ~0.0 ‰ δ44Ca/40CaSW in Early Miocene (Heuser et al., Paleocean. 20, 2005; Sime et al., Geochim. Cosmochim. Acta 71, 2007). In detail, the 44Ca/40Ca ratio stepped abruptly from ~-1.3 ‰ δ44Ca/40CaSW to a slightly higher value of ~-1.1 ‰ δ44Ca/40CaSW across the Cretaceous-Tertiary (K/T) boundary. A slight positive excursion of ~0.2 ‰ above the background value occurred after the Paleocene Thermal Maximum (55 Ma) but otherwise, the Paleocene to Middle Eocene ratio is relatively stable at ~-1.0 ‰ δ44Ca/40CaSW. The most prominent increase in foraminiferan-based seawater 44Ca/40Ca occurred from Late Eocene to Late Oligocene, roughly coincident with the initial phase of the rapid and steady rise of marine carbonate 87Sr/86Sr ratio in the Tertiary (e.g., DePaolo and Ingram, Science 227, 1985).

  1. Tissintite, (Ca, Na,${\\square}$)AlSi2O6, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite

    SciTech Connect

    Ma, Chi; Tschauner, Oliver; Beckett, John R.; Liu, Yang; Rossman, George R.; Zhuravlev, Kirill; Prakapenka, Vitali; Dera, Przemyslaw; Taylor, Lawrence A.

    2015-04-24

    Here, tissintite is a new vacancy-rich, high-pressure clinopyroxene, with a composition essentially equivalent to plagioclase. It was discovered in maskelynite (shocked plagioclase) and is commonly observed included within, or in contact with, shock-melt pockets in the Tissint meteorite, a depleted olivine-phyric shergottite fall from Mars. The simple composition of tissintite (An58-69) and its precursor plagioclase (An59-69) together with the limited occurrence, both spatially (only in maskelynite less than ~25 μm of a shock melt pocket) and in terms of bulk composition, make tissintite a "goldilocks" phase. It formed during a shock event severe enough to allow nucleation and growth of vacancy-rich clinopyroxene from a melt of not too calcic and not too sodic plagioclase composition that was neither too hot nor too cold. With experimental calibration, these limitations on occurrence can be used to place strong constraints on the thermal history of a shock event. The kinetics for nucleation and growth of tissintite are probably slower for more-sodic plagioclase precursors, so tissintite is most likely to occur in depleted olivinephyric shergottites like Tissint and other highly shocked meteorites and lunar and terrestrial rocks that consistently contained calcic plagioclase precursors in the appropriate compositional range for a shock of given intensity. Tissintite, (Ca0.45Na0.31${\\square}$ 0.24)(Al0.97Fe0.03Mg0.01)(Si1.80Al0.20)O6, is a C2/c clinopyroxene, containing 42-60 mol% of the Ca-Eskola component, by far the highest known. The cell parameters are a = 9.21 (17) Å, b = 9.09 (4) Å, c = 5.20 (2) Å, β = 109.6 (9)°, V = 410 (8) Å3, Z = 4. The density is 3.32 g/cm(3) and we estimate a cell volume for the Ca-Eskola end-member pyroxene of 411 ±13 Å3, which is consistent with a previous estimate and, therefore, supports the importance

  2. Biachellaite, (Na,Ca,K)8(Si6Al6O24)(SO4)2(OH)0.5 · H2O, a new mineral species of the cancrinite group

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Rastsvetaeva, R. K.; Pekov, I. V.; Zadov, A. E.; Allori, R.; Zubkova, N. V.; Giester, G.; Puscharovsky, D. Yu.; van, K. V.

    2009-12-01

    Biachellaite, a new mineral species of the cancrinite group, has been found in a volcanic ejecta in the Biachella Valley, Sacrofano Caldera, Latium region, Italy, as colorless isometric hexagonal bipyramidal-pinacoidal crystals up to 1 cm in size overgrowing the walls of cavities in a rock sample composed of sanidine, diopside, andradite, leucite and hauyne. The mineral is brittle, with perfect cleavage parallel to {10 bar 1 0} and imperfect cleavage or parting (?) parallel to {0001}. The Mohs hardness is 5. Dmeas = 2.51(1) g/cm3 (by equilibration with heavy liquids). The densities calculated from single-crystal X-ray data and from X-ray powder data are 2.515 g/cm3 and 2.520 g/cm3, respectively. The IR spectrum demonstrates the presence of SO{4/2-}, H2O, and absence of CO{3/2-}. Biachellaite is uniaxial, positive, ω = 1.512(1), ɛ = 1.514(1). The weight loss on ignition (vacuum, 800°C, 1 h) is 1.6(1)%. The chemical composition determined by electron microprobe is as follows, wt %: 10.06 Na2O, 5.85 K2O, 12.13 CaO, 26.17 Al2O3, 31.46 SiO2, 12.71 SO3, 0.45 Cl, 1.6 H2O (by TG data), -0.10 -O=Cl2, total is 100.33. The empirical formula ( Z = 15) is (Na3.76Ca2.50K1.44)Σ7.70(Si6.06Al5.94O24)(SO4)1.84Cl0.15(OH)0.43 · 0.81H2O. The simplified formula is as follows: (Na,Ca,K)8(Si6Al6O24)(SO4)2(OH)0.5 · H2O. Biachellaite is trigonal, space group P3, a =12.913(1), c = 79.605(5) Å; V = 11495(1) Å3. The crystal structure of biachellaite is characterized by the 30-layer stacking sequence ( ABCABCACACBACBACBCACBACBACBABC)∞. The tetrahedral framework contains three types of channels composed of cages of four varieties: cancrinite, sodalite, bystrite (losod) and liottite. The strongest lines of the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are as follows: 11.07 (19) (100, 101), 6.45 (18) (110, 111), 3.720 (100) (2.1.10, 300, 301, 2.0.16, 302), 3.576 (18) (1.0.21, 2.0.17, 306), 3.300 (47) (1.0.23, 2.1.15), 3.220 (16) (2.1.16, 222). The type material of

  3. AN IMPROVED UNDERSTANDING OF SOIL CD RISK TO HUMANS AND LOW COST METHODS TO PHYTOEXTRACT CD FROM CONTAMINATED SOILS TO PREVENT SOIL CD RISKS

    EPA Science Inventory

    We have described a new paradigm for human risk from soil Cd that reflects many years of agronomic, nutritional and toxicological research. This new model for soil Cd risk reflects the ability of rice to accumulate soil Cd in grain while excluding Fe, Zn and Ca even though the s...

  4. The effect of boron oxide on the crystallization behavior of MgAl2O4 spinel phase during the cooling of the CaO-SiO2-10 mass.% MgO-30 mass.%Al2O3 systems

    NASA Astrophysics Data System (ADS)

    Park, Joo Hyun

    2010-12-01

    The microstructural characteristics of the CaO-SiO2-B2O3-10 mass.% MgO-30 mass.% Al2O3 systems solidified during slow cooling from 1600 °C were investigated using SEM-EDS and a thermochemical computation package. The effect of boron oxide on the crystallization behavior of the spinel in the aluminosilicate system was observed because boron oxide is believed to become a potential flux to reduce the melting point of the liquid oxides. The primary crystalline phase was spinel, mainly MgAl2O4, irrespective of the boron content. The liquidus temperature T L continuously decreased as the boron oxide content increased, indicating that the boron oxide decreased the activity of the MgAl2O4 spinel phase in liquid melts at high temperatures. The size of the spinel crystals increased as the temperature range for the solid + liquid coexisting region, viz. the mushy zone, increased. In the present systems, because the T L continuously decreased with the increase in the boron oxide content, the viscosity of the liquid oxide may have affected the crystallization behavior of the spinel during cooling. Based on these results, an injection of a small amount of B2O3 flux into molten steel containing liquid aluminosilicate inclusions is not recommended because large spinel crystals can originate from the changes in the thermophysical properties of the liquid inclusions due to the incorporation of boron oxide into the aluminosilicate networks.

  5. Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures

    DTIC Science & Technology

    2008-09-22

    CdSe nanoparticles nanorods nanostructures photocatalysis semiconductors Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting...National Laboratory, Berkeley, CA 94720, USA Semiconductor photocatalysis has been identified as a promising avenue for the conversion of solar...sophistication leading to increasingly complex and multi-functional architectures. For photocatalysis in particular, the high surface- to- volume ratios in

  6. The Precise Determination of Cd Isotope Ratio in Geological Samples by MC-ICP-MS with Ion Exchange Separation

    NASA Astrophysics Data System (ADS)

    Du, C.; Hu, S.; Wang, D.; Jin, L.; Guo, W.

    2014-12-01

    Cadmium (Cd) is a trace element which occurs at μg g-1 level abundances in the crust. Cd isotopes have great prospects in the study of the cosmogony, the trace of anthropogenic sources, the micronutrient cycling and the ocean productivity. This study develops an optimized technique for the precise and accurate determination of Cd isotopic compositions. Cd was separated from the matrix by elution with AG-MP-1 anionic exchange chromatographic resin. The matrix elements (K, Na, Ca, Al, Fe, and Mg etc.), polyatomic interfered elements (Ge, Ga, Zr, Nb, Ru, and Mo), and isobaric interfered elements (In, Pd and most of Sn) were eluted using HCl with gradient descent concentrations (2, 0.3, 0.06, 0.012 and 0.0012 mol L-1). The same elution procedure was repeated to eliminate the residuel Sn (Sn/Cd < 0.018). The collected Cd was analyzed using MC-ICP-MS, in which the instrumental mass fractionation was controlled by a "sample-standard bracketing" technique. The recovery of Cd larger than 96.85%, and the δ114/110Cd are in the range of -1.43~+0.20‰ for ten geological reference materials (GSD-3a, GSD-5a, GSD-7a, GSD-6, GSD-9, GSD-10, GSD-11, GSD-12, GSD-23, and GSS-1). The δ114/110Cd obtained for GSS-1 soil sample relative to the NIST SRM 3108 Cd solution was 0.20, which was coherent with the literature values (0.08±0.23). This method had a precision of 0.001~0.002% (RSD), an error range of 0.06~0.14 (δ114/110Cd, 2σ), and a long-term reproducibility of 0.12 (δ114/110Cd, 2σ).

  7. Multiple Ca2+ Binding Sites in the Extracellular Domain of Ca2+-Sensing Receptor Corresponding to Cooperative Ca2+ Response†

    PubMed Central

    Huang, Yun; Zhou, Yubin; Castiblanco, Adriana; Yang, Wei; Brown, Edward M.; Yang, Jenny J.

    2009-01-01

    A small change in the extracellular Ca2+ concentration ([Ca2+]o) integrates cell signaling responses in multiple cellular and tissue networks and functions via activation of Ca2+-sensing receptors (CaSR). Mainly through binding of Ca2+ to the large extracellular domain (ECD) of the dimeric CaSR, intracellular Ca2+ responses are highly cooperative with an apparent Hill coefficient ranging from 2 to 4. We have previously reported the identification of two continuous putative Ca2+-binding sites by grafting CaSR-derived, Ca2+-binding peptides to a scaffold protein, CD2, that does not bind Ca2+. In this paper, we predict more potential non-continuous Ca2+-binding sites in the ECD. We dissect the intact CaSR into three globular subdomains, each of which contains 2 to 3 predicted Ca2+-binding sites. This approach enables us to further understand the mechanisms underlying the binding of multiple metal ions to extended polypeptides derived from within the ECD of the CaSR, which would be anticipated to more closely mimic the structure of the native CaSR ECD. Tb3+-luminescence energy transfer, ANS fluorescence, and NMR studies show biphasic metal-binding components and Ca2+-dependent conformational changes in these subdomains. Removing the predicted Ca2+-binding ligands in site 1 and site 3 abolishes the first binding step and second binding step, respectively. Studies on these subdomains suggest the existence of multiple metal-binding sites and metal-induced conformational changes that might be responsible for switching on/off the CaSR by transition between its open inactive form and closed active form. PMID:19102677

  8. CD Rom.

    PubMed

    1996-02-01

    A new CD-Rom has been launched by Guy's and St Thomas' Trust's poisonous unit to help health professionals discover which species have been involved in cases of plant poisoning. The unit says thousands of people are poisoned every year by eating or touching plants - the majority of those people affected being under the age of seven. The CD-Rom covers several thousand species of plant, and has been jointly researched with Kew Gardens.

  9. Highly luminescent silica-coated CdS/CdSe/CdS nanoparticles with strong chemical robustness and excellent thermal stability.

    PubMed

    Wang, Nianfang; Koh, Sungjun; Jeong, Byeong Guk; Lee, Dongkyu; Kim, Whi Dong; Park, Kyoungwon; Nam, Min Ki; Lee, Kangha; Kim, Yewon; Lee, Baek-Hee; Lee, Kangtaek; Bae, Wan Ki; Lee, Doh C

    2017-05-05

    We present facile synthesis of bright CdS/CdSe/CdS@SiO2 nanoparticles with 72% of quantum yields (QYs) retaining ca 80% of the original QYs. The main innovative point is the utilization of the highly luminescent CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) as silica coating seeds. The significance of inorganic semiconductor shell passivation and structure design of quantum dots (QDs) for obtaining bright QD@SiO2 is demonstrated by applying silica encapsulation via reverse microemulsion method to three kinds of QDs with different structure: CdSe core and 2 nm CdS shell (CdSe/CdS-thin); CdSe core and 6 nm CdS shell (CdSe/CdS-thick); and CdS core, CdSe intermediate shell and 5 nm CdS outer shell (CdS/CdSe/CdS-SQW). Silica encapsulation inevitably results in lower photoluminescence quantum yield (PL QY) than pristine QDs due to formation of surface defects. However, the retaining ratio of pristine QY is different in the three silica coated samples; for example, CdSe/CdS-thin/SiO2 shows the lowest retaining ratio (36%) while the retaining ratio of pristine PL QY in CdSe/CdS-thick/SiO2 and SQW/SiO2 is over 80% and SQW/SiO2 shows the highest resulting PL QY. Thick outermost CdS shell isolates the excitons from the defects at surface, making PL QY relatively insensitive to silica encapsulation. The bright SiO2-coated SQW sample shows robustness against harsh conditions, such as acid etching and thermal annealing. The high luminescence and long-term stability highlights the potential of using the SQW/SiO2 nanoparticles in bio-labeling or display applications.

  10. Phase Equilibria of ``Cu2O''-``FeO''-CaO-MgO-Al2O3 Slags at PO2 of 10-8.5 atm in Equilibrium with Metallic Copper for a Copper Slag Cleaning Production

    NASA Astrophysics Data System (ADS)

    Henao, Hector M.; Pizarro, Claudio; Font, Jonkion; Moyano, Alex; Hayes, Peter C.; Jak, Evgueni

    2010-12-01

    Limited data are available on phase equilibria of the multicomponent slag system at the oxygen partial pressures used in the copper smelting, converting, and slag-cleaning processes. Recently, experimental procedures have been developed and have been applied successfully to characterize several complex industrial slags. The experimental procedures involve high-temperature equilibration on a substrate and quenching followed by electron probe X-ray microanalysis. This technique has been used to construct the liquidus for the “Cu2O”-“FeO”-SiO2-based slags with 2 wt pct of CaO, 0.5 wt pct of MgO, and 4.0 wt pct of Al2O3 at controlled oxygen partial pressures in equilibrium with metallic copper. The selected ranges of compositions and temperatures are directly relevant to the copper slag-cleaning processes. The new experimental equilibrium results are presented in the form of ternary sections and as a liquidus temperature vs Fe/SiO2 weight ratio diagram. The experimental results are compared with the FactSage thermodynamic model calculations.

  11. Antiferromagnetic spin fluctuations and unconventional nodeless superconductivity in an iron-based new superconductor (Ca4Al2O(6-y))(Fe2As2): 75As nuclear quadrupole resonance study.

    PubMed

    Kinouchi, H; Mukuda, H; Yashima, M; Kitaoka, Y; Shirage, P M; Eisaki, H; Iyo, A

    2011-07-22

    We report 75As nuclear quadrupole resonance studies on (Ca4Al2O(6-y))(Fe2As2) with T(c) = 27  K. Measurement of nuclear-spin-relaxation rate 1/T1 has revealed a significant development of two-dimensional antiferromagnetic spin fluctuations down to T(c) in association with the smallest As-Fe-As bond angle. Below T(c), the temperature dependence of 1/T1 without any trace of the coherence peak is well accounted for by a nodeless s(±)-wave multiple-gaps model. From the fact that its T(c) is comparable to T(c) = 28  K in the optimally doped LaFeAsO(1-y) in which antiferromagnetic spin fluctuations are not dominant, we remark that antiferromagnetic spin fluctuations are not a unique factor for enhancing T(c) among Fe-based superconductors, but a condition for optimizing superconductivity should be addressed from the lattice structure point of view.

  12. Thermal Conductivity of Molten Silicate of Al2O3-CaO-Na2O-SiO2 Measured by Means of a Front Heating-Front Detection Laser Flash Method

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hiroki; Kowatari, Takaya; Shiroki, Yasuhiro; Shibata, Hiroyuki; Ohta, Hiromichi; Waseda, Yoshio

    2012-12-01

    Thermal conductivity values have been systematically obtained for molten silicates containing Al2O3, CaO, Na2O, and SiO2 by means of a front heating-front detection laser flash method. The measurements were made for 13 samples in the temperature range between 1073 K and 1823 K (800 °C and 1550 °C), depending on the composition. Thermal conductivities of the silicate melts are found to be relatively insensitive to the variation of temperature, but they depend on the composition ratio, particularly the ratio of Non-Bridging Oxygen ions per Tetrahedrally coordinated cation—NBO/T. The thermal conductivity values decrease from 2.8 W/mK to 1.5 W/mK with the NBO/T value until it reaches about 1. Thermal conductivity values become constant for silicate melts with a higher value of NBO/T. It is known that the length of the silicate chain decreases with disconnection by the addition of alkaline earth cation or alkaline cation. The strong correlation between thermal conductivity and NBO/T is quite likely to suggest that silicate chain is a preferential path for heat transport in silicate melts.

  13. Structural characterization of glass-ceramics made from fly ash containing SiO2-Al2O3-Fe2O3-CaO and analysis by FT-IR-XRD-SEM methods

    NASA Astrophysics Data System (ADS)

    Yilmaz, G.

    2012-07-01

    The glass-ceramics has been proposed as a useful recycling fly ash from thermal power plants. In this study, C type fly ash containing SiO2-Al2O3-Fe2O3-CaO has been sintered to form glass-ceramic materials at different temperatures between 850 °C and 1050 °C after using powder processing based on milling and powder compaction without inorganic additives. The effect of firing temperatures between 850 °C and 1050 °C on mineralogy and microstructure of sintered samples is reported. The Fourier Transform Infrared Spectra (FT-IR), Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques were applied on the sintered powder form. From the XRD results, the amount of quartz decreases on sintering, when the sintering temperature increases. On the basis of SEM observations, new crystallites structure developed in the microstructures of the C type of fly ash samples and the glassy region decreased at the crystallization temperature.

  14. Synthesis of cement based CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O (CASH) hydroceramics at 200 and 250 deg. C: Ex-situ and in-situ diffraction

    SciTech Connect

    Meller, Nicola . E-mail: Nicola.Meller@ed.ac.uk; Hall, Christopher; Kyritsis, Konstantinos; Giriat, Gaetan

    2007-06-15

    Hydroceramic compositions in the CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O (CASH) system have potential as geothermal well sealants as well as autoclaved construction materials. We report new data on phase compositions and reaction rates in hydrothermal syntheses at 200 deg. C and 250 deg. C using a commercial API Class G oilwell cement alone, and at 200 deg. C with additions of silica flour